WorldWideScience

Sample records for providing potential targets

  1. Vitiligo blood transcriptomics provides new insights into disease mechanisms and identifies potential novel therapeutic targets.

    Science.gov (United States)

    Dey-Rao, Rama; Sinha, Animesh A

    2017-01-28

    Significant gaps remain regarding the pathomechanisms underlying the autoimmune response in vitiligo (VL), where the loss of self-tolerance leads to the targeted killing of melanocytes. Specifically, there is incomplete information regarding alterations in the systemic environment that are relevant to the disease state. We undertook a genome-wide profiling approach to examine gene expression in the peripheral blood of VL patients and healthy controls in the context of our previously published VL-skin gene expression profile. We used several in silico bioinformatics-based analyses to provide new insights into disease mechanisms and suggest novel targets for future therapy. Unsupervised clustering methods of the VL-blood dataset demonstrate a "disease-state"-specific set of co-expressed genes. Ontology enrichment analysis of 99 differentially expressed genes (DEGs) uncovers a down-regulated immune/inflammatory response, B-Cell antigen receptor (BCR) pathways, apoptosis and catabolic processes in VL-blood. There is evidence for both type I and II interferon (IFN) playing a role in VL pathogenesis. We used interactome analysis to identify several key blood associated transcriptional factors (TFs) from within (STAT1, STAT6 and NF-kB), as well as "hidden" (CREB1, MYC, IRF4, IRF1, and TP53) from the dataset that potentially affect disease pathogenesis. The TFs overlap with our reported lesional-skin transcriptional circuitry, underscoring their potential importance to the disease. We also identify a shared VL-blood and -skin transcriptional "hot spot" that maps to chromosome 6, and includes three VL-blood dysregulated genes (PSMB8, PSMB9 and TAP1) described as potential VL-associated genetic susceptibility loci. Finally, we provide bioinformatics-based support for prioritizing dysregulated genes in VL-blood or skin as potential therapeutic targets. We examined the VL-blood transcriptome in context with our (previously published) VL-skin transcriptional profile to address

  2. Integrative analysis of kinase networks in TRAIL-induced apoptosis provides a source of potential targets for combination therapy

    DEFF Research Database (Denmark)

    So, Jonathan; Pasculescu, Adrian; Dai, Anna Y.

    2015-01-01

    phosphoproteomics. With these protein interaction maps, we modeled information flow through the networks and identified apoptosis-modifying kinases that are highly connected to regulated substrates downstream of TRAIL. The results of this analysis provide a resource of potential targets for the development of TRAIL...

  3. Potential targets for lung squamous cell carcinoma

    Science.gov (United States)

    Researchers have identified potential therapeutic targets in lung squamous cell carcinoma, the second most common form of lung cancer. The Cancer Genome Atlas (TCGA) Research Network study comprehensively characterized the lung squamous cell carcinoma gen

  4. Obesity: Current and Potential Pharmacotherapeutics and Targets

    Science.gov (United States)

    Narayanaswami, Vidya; Dwoskin, Linda P.

    2016-01-01

    Obesity is a global epidemic that contributes to a number of health complications including cardiovascular disease, type 2 diabetes, cancer and neuropsychiatric disorders. Pharmacotherapeutic strategies to treat obesity are urgently needed. Research over the past two decades has increased substantially our knowledge of central and peripheral mechanisms underlying homeostatic energy balance. Homeostatic mechanisms involve multiple components including neuronal circuits, some originating in hypothalamus and brain stem, as well as peripherally-derived satiety, hunger and adiposity signals that modulate neural activity and regulate eating behavior. Dysregulation of one or more of these homeostatic components results in obesity. Coincident with obesity, reward mechanisms that regulate hedonic aspects of food intake override the homeostatic regulation of eating. In addition to functional interactions between homeostatic and reward systems in the regulation of food intake, homeostatic signals have the ability to alter vulnerability to drug abuse. Regarding the treatment of obesity, pharmacological monotherapies primarily focus on a single protein target. FDA-approved monotherapy options include phentermine (Adipex-P®), orlistat (Xenical®), lorcaserin (Belviq®) and liraglutide (Saxenda®). However, monotherapies have limited efficacy, in part due to the recruitment of alternate and counter-regulatory pathways. Consequently, a multi-target approach may provide greater benefit. Recently, two combination products have been approved by the FDA to treat obesity, including phentermine/topiramate (Qsymia®) and naltrexone/bupropion (Contrave®). The current review provides an overview of homeostatic and reward mechanisms that regulate energy balance, potential therapeutic targets for obesity and current treatment options, including some candidate therapeutics in clinical development. Finally, challenges in anti-obesity drug development are discussed. PMID:27773782

  5. Serving some and serving all: how providers navigate the challenges of providing racially targeted health services.

    Science.gov (United States)

    Zhou, Amy

    2017-10-01

    Racially targeted healthcare provides racial minorities with culturally and linguistically appropriate health services. This mandate, however, can conflict with the professional obligation of healthcare providers to serve patients based on their health needs. The dilemma between serving a particular population and serving all is heightened when the patients seeking care are racially diverse. This study examines how providers in a multi-racial context decide whom to include or exclude from health programs. This study draws on 12 months of ethnographic fieldwork at an Asian-specific HIV organization. Fieldwork included participant observation of HIV support groups, community outreach programs, and substance abuse recovery groups, as well as interviews with providers and clients. Providers managed the dilemma in different ways. While some programs in the organization focused on an Asian clientele, others de-emphasized race and served a predominantly Latino and African American clientele. Organizational structures shaped whether services were delivered according to racial categories. When funders examined client documents, providers prioritized finding Asian clients so that their documents reflected program goals to serve the Asian population. In contrast, when funders used qualitative methods, providers could construct an image of a program that targets Asians during evaluations while they included other racial minorities in their everyday practice. Program services were organized more broadly by health needs. Even within racially targeted programs, the meaning of race fluctuates and is contested. Patients' health needs cross cut racial boundaries, and in some circumstances, the boundaries of inclusion can expand beyond specific racial categories to include racial minorities and underserved populations more generally.

  6. Pharmacists as providers: targeting pneumococcal vaccinations to high risk populations.

    Science.gov (United States)

    Taitel, Michael; Cohen, Ed; Duncan, Ian; Pegus, Cheryl

    2011-10-19

    Older adults and persons with chronic conditions are at increased risk for pneumococcal disease. Severe pneumococcal disease represents a substantial humanistic and economic burden to society. Although pneumococcal vaccination (PPSV) can decrease risk for serious consequences, vaccination rates are suboptimal. As more people seek annual influenza vaccinations at community pharmacies, pharmacists have the ability to identify at-risk patients and provide PPSV. The objective of this study was to evaluate the impact of pharmacists educating at-risk patients on the importance of receiving a pneumococcal vaccination. Using de-identified claims from a large, national pharmacy chain, all patients who had received an influenza vaccination between August 1, 2010 and November 14, 2010 and who were eligible for PPSV were identified for the analysis. Based on the Advisory Committee on Immunization Practices recommendations, at-risk patients were identified as over 65 years of age or as aged 2-64 with a comorbid conditions. A benchmark medical and pharmacy claims database of commercial and Medicare health plan members was used to derive a PPSV vaccination rate typical of traditional care delivery to compare to pharmacy-based vaccination. Period incidence of PPSV was calculated and compared. Among the 1.3 million at-risk patients who were vaccinated by a pharmacist during the study period, 65,598 (4.88%) also received a pneumococcal vaccine. This vaccination rate was significantly higher than the benchmark rate of 2.90% (34,917/1,204,104; pvaccination rate (6.60%; 26,430/400,454) of any age group. Pharmacists were successful at identifying at-risk patients and providing additional immunization services. Concurrent immunization of PPSV with influenza vaccination by pharmacists has potential to improve PPSV coverage. These results support the expanding role of community pharmacists in the provision of wellness and prevention services. Copyright © 2011 Elsevier Ltd. All rights

  7. Potential targets for colorectal cancer prevention.

    Science.gov (United States)

    Temraz, Sally; Mukherji, Deborah; Shamseddine, Ali

    2013-08-22

    The step-wise development of colorectal neoplasia from adenoma to carcinoma suggests that specific interventions could delay or prevent the development of invasive cancer. Several key factors involved in colorectal cancer pathogenesis have already been identified including cyclooxygenase 2 (COX-2), nuclear factor kappa B (NF-κB), survivin and insulin-like growth factor-I (IGF-I). Clinical trials of COX-2 inhibitors have provided the "proof of principle" that inhibition of this enzyme can prevent the formation of colonic adenomas and potentially carcinomas, however concerns regarding the potential toxicity of these drugs have limited their use as a chemopreventative strategy. Curcumin, resveratrol and quercetin are chemopreventive agents that are able to suppress multiple signaling pathways involved in carcinogenesis and hence are attractive candidates for further research.

  8. Potential Targets for Colorectal Cancer Prevention

    Directory of Open Access Journals (Sweden)

    Ali Shamseddine

    2013-08-01

    Full Text Available The step-wise development of colorectal neoplasia from adenoma to carcinoma suggests that specific interventions could delay or prevent the development of invasive cancer. Several key factors involved in colorectal cancer pathogenesis have already been identified including cyclooxygenase 2 (COX-2, nuclear factor kappa B (NF-κB, survivin and insulin-like growth factor-I (IGF-I. Clinical trials of COX-2 inhibitors have provided the “proof of principle” that inhibition of this enzyme can prevent the formation of colonic adenomas and potentially carcinomas, however concerns regarding the potential toxicity of these drugs have limited their use as a chemopreventative strategy. Curcumin, resveratrol and quercetin are chemopreventive agents that are able to suppress multiple signaling pathways involved in carcinogenesis and hence are attractive candidates for further research.

  9. Virtual target screening to rapidly identify potential protein targets of natural products in drug discovery

    Directory of Open Access Journals (Sweden)

    Yuri Pevzner

    2014-05-01

    Full Text Available Inherent biological viability and diversity of natural products make them a potentially rich source for new therapeutics. However, identification of bioactive compounds with desired therapeutic effects and identification of their protein targets is a laborious, expensive process. Extracts from organism samples may show desired activity in phenotypic assays but specific bioactive compounds must be isolated through further separation methods and protein targets must be identified by more specific phenotypic and in vitro experimental assays. Still, questions remain as to whether all relevant protein targets for a compound have been identified. The desire is to understand breadth of purposing for the compound to maximize its use and intellectual property, and to avoid further development of compounds with insurmountable adverse effects. Previously we developed a Virtual Target Screening system that computationally screens one or more compounds against a collection of virtual protein structures. By scoring each compound-protein interaction, we can compare against averaged scores of synthetic drug-like compounds to determine if a particular protein would be a potential target of a compound of interest. Here we provide examples of natural products screened through our system as we assess advantages and shortcomings of our current system in regards to natural product drug discovery.

  10. Virtual target screening to rapidly identify potential protein targets of natural products in drug discovery

    Directory of Open Access Journals (Sweden)

    Yuri Pevzner

    2015-08-01

    Full Text Available Inherent biological viability and diversity of natural products make them a potentially rich source for new therapeutics. However, identification of bioactive compounds with desired therapeutic effects and identification of their protein targets is a laborious, expensive process. Extracts from organism samples may show desired activity in phenotypic assays but specific bioactive compounds must be isolated through further separation methods and protein targets must be identified by more specific phenotypic and in vitro experimental assays. Still, questions remain as to whether all relevant protein targets for a compound have been identified. The desire is to understand breadth of purposing for the compound to maximize its use and intellectual property, and to avoid further development of compounds with insurmountable adverse effects. Previously we developed a Virtual Target Screening system that computationally screens one or more compounds against a collection of virtual protein structures. By scoring each compound-protein interaction, we can compare against averaged scores of synthetic drug-like compounds to determine if a particular protein would be a potential target of a compound of interest. Here we provide examples of natural products screened through our system as we assess advantages and shortcomings of our current system in regards to natural product drug discovery.

  11. TargetNet: a web service for predicting potential drug-target interaction profiling via multi-target SAR models.

    Science.gov (United States)

    Yao, Zhi-Jiang; Dong, Jie; Che, Yu-Jing; Zhu, Min-Feng; Wen, Ming; Wang, Ning-Ning; Wang, Shan; Lu, Ai-Ping; Cao, Dong-Sheng

    2016-05-01

    Drug-target interactions (DTIs) are central to current drug discovery processes and public health fields. Analyzing the DTI profiling of the drugs helps to infer drug indications, adverse drug reactions, drug-drug interactions, and drug mode of actions. Therefore, it is of high importance to reliably and fast predict DTI profiling of the drugs on a genome-scale level. Here, we develop the TargetNet server, which can make real-time DTI predictions based only on molecular structures, following the spirit of multi-target SAR methodology. Naïve Bayes models together with various molecular fingerprints were employed to construct prediction models. Ensemble learning from these fingerprints was also provided to improve the prediction ability. When the user submits a molecule, the server will predict the activity of the user's molecule across 623 human proteins by the established high quality SAR model, thus generating a DTI profiling that can be used as a feature vector of chemicals for wide applications. The 623 SAR models related to 623 human proteins were strictly evaluated and validated by several model validation strategies, resulting in the AUC scores of 75-100 %. We applied the generated DTI profiling to successfully predict potential targets, toxicity classification, drug-drug interactions, and drug mode of action, which sufficiently demonstrated the wide application value of the potential DTI profiling. The TargetNet webserver is designed based on the Django framework in Python, and is freely accessible at http://targetnet.scbdd.com .

  12. TargetNet: a web service for predicting potential drug-target interaction profiling via multi-target SAR models

    Science.gov (United States)

    Yao, Zhi-Jiang; Dong, Jie; Che, Yu-Jing; Zhu, Min-Feng; Wen, Ming; Wang, Ning-Ning; Wang, Shan; Lu, Ai-Ping; Cao, Dong-Sheng

    2016-05-01

    Drug-target interactions (DTIs) are central to current drug discovery processes and public health fields. Analyzing the DTI profiling of the drugs helps to infer drug indications, adverse drug reactions, drug-drug interactions, and drug mode of actions. Therefore, it is of high importance to reliably and fast predict DTI profiling of the drugs on a genome-scale level. Here, we develop the TargetNet server, which can make real-time DTI predictions based only on molecular structures, following the spirit of multi-target SAR methodology. Naïve Bayes models together with various molecular fingerprints were employed to construct prediction models. Ensemble learning from these fingerprints was also provided to improve the prediction ability. When the user submits a molecule, the server will predict the activity of the user's molecule across 623 human proteins by the established high quality SAR model, thus generating a DTI profiling that can be used as a feature vector of chemicals for wide applications. The 623 SAR models related to 623 human proteins were strictly evaluated and validated by several model validation strategies, resulting in the AUC scores of 75-100 %. We applied the generated DTI profiling to successfully predict potential targets, toxicity classification, drug-drug interactions, and drug mode of action, which sufficiently demonstrated the wide application value of the potential DTI profiling. The TargetNet webserver is designed based on the Django framework in Python, and is freely accessible at http://targetnet.scbdd.com.

  13. Sphingolipid and Ceramide Homeostasis: Potential Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    Simon A. Young

    2012-01-01

    Full Text Available Sphingolipids are ubiquitous in eukaryotic cells where they have been attributed a plethora of functions from the formation of structural domains to polarized cellular trafficking and signal transduction. Recent research has identified and characterised many of the key enzymes involved in sphingolipid metabolism and this has led to a heightened interest in the possibility of targeting these processes for therapies against cancers, Alzheimer's disease, and numerous important human pathogens. In this paper we outline the major pathways in eukaryotic sphingolipid metabolism and discuss these in relation to disease and therapy for both chronic and infectious conditions.

  14. Sphingolipid and Ceramide Homeostasis: Potential Therapeutic Targets

    Science.gov (United States)

    Young, Simon A.; Mina, John G.; Denny, Paul W.; Smith, Terry K.

    2012-01-01

    Sphingolipids are ubiquitous in eukaryotic cells where they have been attributed a plethora of functions from the formation of structural domains to polarized cellular trafficking and signal transduction. Recent research has identified and characterised many of the key enzymes involved in sphingolipid metabolism and this has led to a heightened interest in the possibility of targeting these processes for therapies against cancers, Alzheimer's disease, and numerous important human pathogens. In this paper we outline the major pathways in eukaryotic sphingolipid metabolism and discuss these in relation to disease and therapy for both chronic and infectious conditions. PMID:22400113

  15. Reactor potential for magnetized target fusion

    International Nuclear Information System (INIS)

    Dahlin, J.E.

    2001-06-01

    Magnetized Target Fusion (MTF) is a possible pathway to thermonuclear fusion different from both magnetic fusion and inertial confinement fusion. An imploding cylindrical metal liner compresses a preheated and magnetized plasma configuration until thermonuclear conditions are achieved. In this report the Magnetized Target Fusion concept is evaluated and a zero-dimensional computer model of the plasma, liner and circuit as a connected system is designed. The results of running this code are that thermonuclear conditions are achieved indeed, but only during a very short time. At peak compression the pressure from the compressed plasma and magnetic field is so large reversing the liner implosion into an explosion. The time period of liner motion reversal is termed the dwell time and is crucial to the performance of the fusion system. Parameters as liner thickness and plasma density are certainly of significant importance to the dwell time, but it seems like a reactor based on the MTF principle hardly can become economic if not innovative solutions are introduced. In the report two such solutions are presented as well

  16. Reactor potential for magnetized target fusion

    Energy Technology Data Exchange (ETDEWEB)

    Dahlin, J.E

    2001-06-01

    Magnetized Target Fusion (MTF) is a possible pathway to thermonuclear fusion different from both magnetic fusion and inertial confinement fusion. An imploding cylindrical metal liner compresses a preheated and magnetized plasma configuration until thermonuclear conditions are achieved. In this report the Magnetized Target Fusion concept is evaluated and a zero-dimensional computer model of the plasma, liner and circuit as a connected system is designed. The results of running this code are that thermonuclear conditions are achieved indeed, but only during a very short time. At peak compression the pressure from the compressed plasma and magnetic field is so large reversing the liner implosion into an explosion. The time period of liner motion reversal is termed the dwell time and is crucial to the performance of the fusion system. Parameters as liner thickness and plasma density are certainly of significant importance to the dwell time, but it seems like a reactor based on the MTF principle hardly can become economic if not innovative solutions are introduced. In the report two such solutions are presented as well.

  17. Trailer-targeting a potential audience

    OpenAIRE

    Brůnová, Lada

    2013-01-01

    How can movie production companies speak to their potential audience thru movie trailers? Which means do they use and what is the public reception? How does a viewer interpret a movie trailer? What can we learn about viewers from movie trailers? This thesis is offering all the answers to questions mentioned above in two different parts - in the first part the concepts of movie trailers are introduced and explained, the second part analyses the outcomes of a research which studies the affects ...

  18. Prediction of potential drug targets based on simple sequence properties

    Directory of Open Access Journals (Sweden)

    Lai Luhua

    2007-09-01

    Full Text Available Abstract Background During the past decades, research and development in drug discovery have attracted much attention and efforts. However, only 324 drug targets are known for clinical drugs up to now. Identifying potential drug targets is the first step in the process of modern drug discovery for developing novel therapeutic agents. Therefore, the identification and validation of new and effective drug targets are of great value for drug discovery in both academia and pharmaceutical industry. If a protein can be predicted in advance for its potential application as a drug target, the drug discovery process targeting this protein will be greatly speeded up. In the current study, based on the properties of known drug targets, we have developed a sequence-based drug target prediction method for fast identification of novel drug targets. Results Based on simple physicochemical properties extracted from protein sequences of known drug targets, several support vector machine models have been constructed in this study. The best model can distinguish currently known drug targets from non drug targets at an accuracy of 84%. Using this model, potential protein drug targets of human origin from Swiss-Prot were predicted, some of which have already attracted much attention as potential drug targets in pharmaceutical research. Conclusion We have developed a drug target prediction method based solely on protein sequence information without the knowledge of family/domain annotation, or the protein 3D structure. This method can be applied in novel drug target identification and validation, as well as genome scale drug target predictions.

  19. The potential predictability of fire danger provided by ECMWF forecast

    Science.gov (United States)

    Di Giuseppe, Francesca

    2017-04-01

    The European Forest Fire Information System (EFFIS), is currently being developed in the framework of the Copernicus Emergency Management Services to monitor and forecast fire danger in Europe. The system provides timely information to civil protection authorities in 38 nations across Europe and mostly concentrates on flagging regions which might be at high danger of spontaneous ignition due to persistent drought. The daily predictions of fire danger conditions are based on the US Forest Service National Fire Danger Rating System (NFDRS), the Canadian forest service Fire Weather Index Rating System (FWI) and the Australian McArthur (MARK-5) rating systems. Weather forcings are provided in real time by the European Centre for Medium range Weather Forecasts (ECMWF) forecasting system. The global system's potential predictability is assessed using re-analysis fields as weather forcings. The Global Fire Emissions Database (GFED4) provides 11 years of observed burned areas from satellite measurements and is used as a validation dataset. The fire indices implemented are good predictors to highlight dangerous conditions. High values are correlated with observed fire and low values correspond to non observed events. A more quantitative skill evaluation was performed using the Extremal Dependency Index which is a skill score specifically designed for rare events. It revealed that the three indices were more skilful on a global scale than the random forecast to detect large fires. The performance peaks in the boreal forests, in the Mediterranean, the Amazon rain-forests and southeast Asia. The skill-scores were then aggregated at country level to reveal which nations could potentiallty benefit from the system information in aid of decision making and fire control support. Overall we found that fire danger modelling based on weather forecasts, can provide reasonable predictability over large parts of the global landmass.

  20. TCGA bladder cancer study reveals potential drug targets

    Science.gov (United States)

    Investigators with TCGA have identified new potential therapeutic targets for a major form of bladder cancer, including important genes and pathways that are disrupted in the disease. They also discovered that, at the molecular level, some subtypes of bla

  1. Causes of CNS inflammation and potential targets for anticonvulsants.

    Science.gov (United States)

    Falip, Mercé; Salas-Puig, Xavier; Cara, Carlos

    2013-08-01

    Inflammation is one of the most important endogenous defence mechanisms in an organism. It has been suggested that inflammation plays an important role in the pathophysiology of a number of human epilepsies and convulsive disorders, and there is clinical and experimental evidence to suggest that inflammatory processes within the CNS may either contribute to or be a consequence of epileptogenesis. This review discusses evidence from human studies on the role of inflammation in epilepsy and highlights potential new targets in the inflammatory cascade for antiepileptic drugs. A number of mechanisms have been shown to be involved in CNS inflammatory reactions. These include an inflammatory response at the level of the blood-brain barrier (BBB), immune-mediated damage to the CNS, stress-induced release of inflammatory mediators and direct neuronal dysfunction or damage as a result of inflammatory reactions. Mediators of inflammation in the CNS include interleukin (IL)-1β, tumour necrosis factor-α, nuclear factor-κB and toll-like receptor-4 (TLR4). IL-1β, BBB and high-mobility group box-1-TLR4 signalling appear to be the most promising targets for anticonvulsant agents directed at inflammation. Such agents may provide effective therapy for drug-resistant epilepsies in the future.

  2. Potentialities of the internal target station at the Nuclotron

    Energy Technology Data Exchange (ETDEWEB)

    Malakhov, A.I.; Afanasiev, S.V.; Anisimov, Yu.S.; Artiomov, A.S.; Bazilev, S.N.; Khrenov, A.N.; Kliman, J.; Krasnov, V.A.; Matousek, V.; Morhac, M. E-mail: fyzimiro@savba.sk; Starikov, A.Yu.; Shabunov, A.V.; Slepnev, V.M.; Turzo, I

    2000-02-01

    The potentialities of the internal target station used in physics experiments at the Nuclotron, as well as its construction, hardware and software configurations are described. The remote control of the station is performed by means of a PC and is based on operative presentation of the magnetic field cycle, the beam parameters and the target position on screen. Consequently, the space-time trajectory of motion of a chosen target can be determined in an interactive way by an operator. During the accelerator operation the motion is carried out by means of a stepper motor.

  3. Amino Acid Metabolism and Transport Mechanisms as Potential Antifungal Targets

    Directory of Open Access Journals (Sweden)

    Matthew W. McCarthy

    2018-03-01

    Full Text Available Discovering new drugs for treatment of invasive fungal infections is an enduring challenge. There are only three major classes of antifungal agents, and no new class has been introduced into clinical practice in more than a decade. However, recent advances in our understanding of the fungal life cycle, functional genomics, proteomics, and gene mapping have enabled the identification of new drug targets to treat these potentially deadly infections. In this paper, we examine amino acid transport mechanisms and metabolism as potential drug targets to treat invasive fungal infections, including pathogenic yeasts, such as species of Candida and Cryptococcus, as well as molds, such as Aspergillus fumigatus. We also explore the mechanisms by which amino acids may be exploited to identify novel drug targets and review potential hurdles to bringing this approach into clinical practice.

  4. A potential target for organophosphate insecticides leading to spermatotoxicity.

    Science.gov (United States)

    Suzuki, Himiko; Tomizawa, Motohiro; Ito, Yuki; Abe, Keisuke; Noro, Yuki; Kamijima, Michihiro

    2013-10-16

    Organophosphate (OP) insecticides as an anticholinesterase also act on the diverse serine hydrolase targets, thereby revealing secondary or unexpected toxic effects including male reproductive toxicity. The present investigation detects a possible target molecule(s) for OP-induced spermatotoxicity (sperm deformity, underdevelopment, and reduced motility) from a chemical standpoint. The activity-based protein profiling (ABPP) approach with a phosphonofluoridate fluorescent probe pinpointed the molecular target for fenitrothion (FNT, a major OP insecticide) oxon (bioactive metabolite of FNT) in the mouse testicular membrane proteome, i.e., FNT oxon phosphorylates the fatty acid amide hydrolase (FAAH), which plays pivotal roles in spermatogenesis and sperm motility acquirement. Subsequently, mice were treated orally with vehicle or FNT for 10 days, and FAAH activity in testis or epididymis cauda was markedly reduced by the subacute exposure. ABPP analysis revealed that FAAH was selectively inhibited among the FNT-treated testicular membrane proteome. Accordingly, FAAH is a potential target for OP-elicited spermatotoxicity.

  5. Glycan Markers as Potential Immunological Targets in Circulating Tumor Cells.

    Science.gov (United States)

    Wang, Denong; Wu, Lisa; Liu, Xiaohe

    2017-01-01

    We present here an experimental approach for exploring a new class of tumor biomarkers that are overexpressed by circulating tumor cells (CTCs) and are likely targetable in immunotherapy against tumor metastasis. Using carbohydrate microarrays, anti-tumor monoclonal antibodies (mAbs) were scanned against a large panel of carbohydrate antigens to identify potential tumor glycan markers. Subsequently, flow cytometry and fiber-optic array scanning technology (FAST) were applied to determine whether the identified targets are tumor-specific cell-surface markers and are, therefore, likely suitable for targeted immunotherapy. Finally, the tumor glycan-specific antibodies identified were validated using cancer patients' blood samples for their performance in CTC-detection and immunotyping analysis. In this article, identifying breast CTC-specific glycan markers and targeting mAbs serve as examples to illustrate this tumor biomarker discovery strategy.

  6. Potential of probiotics as biotherapeutic agents targeting the innate ...

    African Journals Online (AJOL)

    Potential of probiotics as biotherapeutic agents targeting the innate immune system. ... Some of the positive effects of probiotics are: growth promotion of farm animals, protection of host from intestinal infections, alleviation of lactose intolerance, relief of constipation, anticarcinogenic effect, anticholesterolaemic effects, ...

  7. Comparison of provider and plan-based targeting strategies for disease management.

    Science.gov (United States)

    Annis, Ann M; Holtrop, Jodi Summers; Tao, Min; Chang, Hsiu-Ching; Luo, Zhehui

    2015-05-01

    We aimed to describe and contrast the targeting methods and engagement outcomes for health plan-delivered disease management with those of a provider-delivered care management program. Health plan epidemiologists partnered with university health services researchers to conduct a quasi-experimental, mixed-methods study of a 2-year pilot. We used semi-structured interviews to assess the characteristics of program-targeting strategies, and calculated target and engagement rates from clinical encounter data. Five physician organizations (POs) with 51 participating practices implemented care management. Health plan member lists were sent monthly to the practices to accept patients, and then the practices sent back data reports regarding targeting and engagement in care management. Among patients accepted by the POs, we compared those who were targeted and engaged by POs with those who met health plan targeting criteria. The health plan's targeting process combined claims algorithms and employer group preferences to identify candidates for disease management; on the other hand, several different factors influenced PO practices' targeting approaches, including clinical and personal knowledge of the patients, health assessment information, and availability of disease-relevant programs. Practices targeted a higher percentage of patients for care management than the health plan (38% vs 16%), where only 7% of these patients met the targeting criteria of both. Practices engaged a higher percentage of their targeted patients than the health plan (50% vs 13%). The health plan's claims-driven targeting approach and the clinically based strategies of practices both provide advantages; an optimal model may be to combine the strengths of each approach to maximize benefits in care management.

  8. Potential of acylated peptides to target the influenza A virus

    Directory of Open Access Journals (Sweden)

    Daniel Lauster

    2015-04-01

    Full Text Available For antiviral drug design, especially in the field of influenza virus research, potent multivalent inhibitors raise high expectations for combating epidemics and pandemics. Among a large variety of covalent and non-covalent scaffold systems for a multivalent display of inhibitors, we created a simple supramolecular platform to enhance the antiviral effect of our recently developed antiviral Peptide B (PeBGF, preventing binding of influenza virus to the host cell. By conjugating the peptide with stearic acid to create a higher-order structure with a multivalent display, we could significantly enhance the inhibitory effect against the serotypes of both human pathogenic influenza virus A/Aichi/2/1968 H3N2, and avian pathogenic A/FPV/Rostock/34 H7N1 in the hemagglutination inhibition assay. Further, the inhibitory potential of stearylated PeBGF (C18-PeBGF was investigated by infection inhibition assays, in which we achieved low micromolar inhibition constants against both viral strains. In addition, we compared C18-PeBGF to other published amphiphilic peptide inhibitors, such as the stearylated sugar receptor mimicking peptide (Matsubara et al. 2010, and the “Entry Blocker” (EB (Jones et al. 2006, with respect to their antiviral activity against infection by Influenza A Virus (IAV H3N2. However, while this strategy seems at a first glance promising, the native situation is quite different from our experimental model settings. First, we found a strong potential of those peptides to form large amyloid-like supramolecular assemblies. Second, in vivo, the large excess of cell surface membranes provides an unspecific target for the stearylated peptides. We show that acylated peptides insert into the lipid phase of such membranes. Eventually, our study reveals serious limitations of this type of self-assembling IAV inhibitors.

  9. Heart failure—potential new targets for therapy

    Science.gov (United States)

    Nabeebaccus, Adam; Zheng, Sean; Shah, Ajay M.

    2016-01-01

    Abstract Introduction/background Heart failure is a major cause of cardiovascular morbidity and mortality. This review covers current heart failure treatment guidelines, emerging therapies that are undergoing clinical trial, and potential new therapeutic targets arising from basic science advances. Sources of data A non-systematic search of MEDLINE was carried out. International guidelines and relevant reviews were searched for additional articles. Areas of agreement Angiotensin-converting enzyme inhibitors and beta-blockers are first line treatments for chronic heart failure with reduced left ventricular function. Areas of controversy Treatment strategies to improve mortality in heart failure with preserved left ventricular function are unclear. Growing points Many novel therapies are being tested for clinical efficacy in heart failure, including those that target natriuretic peptides and myosin activators. A large number of completely novel targets are also emerging from laboratory-based research. Better understanding of pathophysiological mechanisms driving heart failure in different settings (e.g. hypertension, post-myocardial infarction, metabolic dysfunction) may allow for targeted therapies. Areas timely for developing research Therapeutic targets directed towards modifying the extracellular environment, angiogenesis, cell viability, contractile function and microRNA-based therapies. PMID:27365454

  10. Semaphorin 3A: A Potential Target for Low Back Pain.

    Science.gov (United States)

    Yin, Pengbin; Lv, Houchen; Zhang, Lihai; Zhang, Licheng; Tang, Peifu

    2015-01-01

    Low back pain is a common disorder. Pathological innervation and intervertebral disc degeneration are two major factors associated with this disease. Semaphorin 3A, originally known for its potent inhibiting effect on axonal outgrowth, is recently found to correlate with disease activity and histological features in some skeletal disorders. Based on its effects on innervation and vascularization, as well as enzyme secretion, we presume that semaphorin 3A may act as a potential target for low back pain.

  11. Semaphorin 3A, A Potential Target for Low Back Pain.

    Directory of Open Access Journals (Sweden)

    Pengbin eYin

    2015-11-01

    Full Text Available Low back pain is a common disorder. Pathological innervation and intervertebral disc degeneration are two major factors associated with this disease. Semaphorin 3A, originally known for its potent inhibiting effect on axonal outgrowth, is recently found to correlate with disease activity and histological features in some skeletal disorders. Based on its effects on innervation and vascularization, as well as enzyme secretion, we presume that semaphorin 3A may act as a potential target for low back pain.

  12. Generation dependent cancer targeting potential of poly(propyleneimine) dendrimer.

    Science.gov (United States)

    Kesharwani, Prashant; Tekade, Rakesh K; Jain, Narendra K

    2014-07-01

    Dendrimer-mediated delivery of bioactive is a successful and widely explored concept. This paper desribes comparative data pertaining to generation dependent cancer targeting propensity of Poly(propyleneimine) (PPI) dendrimers. This debut report reportsthe drug targeting and antciancer potential of different dendrimer generations. PPI dendrimers of different generations (3.0G, 4.0G and 5.0G) were synthesized and loaded with Melphalan. Results from loading, hemolysis, hematologic, cytotoxicty and flow cytometry assay depicted that as the generation of dendrimer increased from fourth to fifth, the only parameter i.e. toxicty is increased exponentionally. However, others parameters, i.e. loading, sustained release behavior, and targeting efficacy increased negligibly. Kaplan-Meier survival curves clearly depicted comparable therapeutic potential of PPI4M with PPI5M. In vivo investigations in Balb/c mice again favored 4.0G PPI dendrimer to be preferable nanocarrier for anticancer drug delivery owing to analogous anticancer potential. The outcomes of the investigation evidently projects 4.0G PPI dendrimer over 3.0G and 5.0G dendrimer in respect of its drug delivery benefit as well as superior biocompatibility. Thus, much against the common belief, 4.0G PPI dendrimers may be considered to be optimum in respect of drug delivery precluding the use of much more toxic 5.0G PPI dendrimer, which offers no benefit over 4.0G. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Chemical warfare agent and biological toxin-induced pulmonary toxicity: could stem cells provide potential therapies?

    Science.gov (United States)

    Angelini, Daniel J; Dorsey, Russell M; Willis, Kristen L; Hong, Charles; Moyer, Robert A; Oyler, Jonathan; Jensen, Neil S; Salem, Harry

    2013-01-01

    Chemical warfare agents (CWAs) as well as biological toxins present a significant inhalation injury risk to both deployed warfighters and civilian targets of terrorist attacks. Inhalation of many CWAs and biological toxins can induce severe pulmonary toxicity leading to the development of acute lung injury (ALI) as well as acute respiratory distress syndrome (ARDS). The therapeutic options currently used to treat these conditions are very limited and mortality rates remain high. Recent evidence suggests that human stem cells may provide significant therapeutic options for ALI and ARDS in the near future. The threat posed by CWAs and biological toxins for both civilian populations and military personnel is growing, thus understanding the mechanisms of toxicity and potential therapies is critical. This review will outline the pulmonary toxic effects of some of the most common CWAs and biological toxins as well as the potential role of stem cells in treating these types of toxic lung injuries.

  14. Autophagy as a potential target for sarcoma treatment.

    Science.gov (United States)

    Min, Li; Choy, Edwin; Pollock, Raphael E; Tu, Chongqi; Hornicek, Francis; Duan, Zhenfeng

    2017-08-01

    Autophagy is a constitutively active, evolutionary conserved, catabolic process for maintaining homeostasis in cellular stress responses and cell survival. Although its mechanism has not been fully illustrated, recent work on autophagy in various types of sarcomas has demonstrated that autophagy exerts an important role in sarcoma cell growth and proliferation, in pro-survival response to therapies and stresses, and in therapeutic resistance of sarcoma. Thus, the autophagic process is being seen as a possibly novel therapeutic target of sarcoma. Additionally, some co-regulators of autophagy have also been investigated as promising biomarkers for the diagnosis and prognosis of sarcoma. In this review, we summarize contemporary advances in the role of autophagy in sarcoma and discuss the potential of autophagy as a new target for sarcoma treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The potential of natural products for targeting PPARα

    Directory of Open Access Journals (Sweden)

    Daniela Rigano

    2017-07-01

    Full Text Available Peroxisome proliferator activated receptors (PPARs α, -γ and -β/δ are ligand-activated transcription factors and members of the superfamily of nuclear hormone receptor. These receptors play key roles in maintaining glucose and lipid homeostasis by modulating gene expression. PPARs constitute a recognized druggable target and indeed several classes of drugs used in the treatment of metabolic disease symptoms, such as dyslipidemia (fibrates, e.g. fenofibrate and gemfibrozil and diabetes (thiazolidinediones, e.g. rosiglitazone and pioglitazone are ligands for the various PPAR isoforms. More precisely, antidiabetic thiazolidinediones act on PPARγ, while PPARα is the main molecular target of antidyslipidemic fibrates. Over the past few years, our understanding of the mechanism underlying the PPAR modulation of gene expression has greatly increased. This review presents a survey on terrestrial and marine natural products modulating the PPARα system with the objective of highlighting how the incredible chemodiversity of natural products can provide innovative leads for this “hot” target.

  16. BONE TUMOR ENVIRONMENT AS POTENTIAL THERAPEUTIC TARGET IN EWING SARCOMA

    Directory of Open Access Journals (Sweden)

    Françoise eREDINI

    2015-12-01

    Full Text Available Ewing sarcoma is the second most common pediatric bone tumor, with three cases per million worldwide. In clinical terms, ES is an aggressive, rapidly fatal malignancy that mainly develops in osseous sites (85%, but also in extraskeletal soft tissue. It spreads naturally to the lungs, bones and bone marrow with poor prognosis in the two latter cases. Bone lesions from primary or secondary (metastases tumors are characterized by extensive bone remodeling, more often due to osteolysis. Osteoclast activation and subsequent bone resorption is responsible for the clinical features of bone tumors including pain, vertebral collapse and spinal cord compression. Based on the vicious cycle concept of tumor cells and bone resorbing cells, drugs which target osteoclasts may be promising agents as adjuvant setting for treating bone tumors, including Ewing sarcoma. There is also increasing evidence that cellular and molecular protagonists present in the bone microenvironment play a part in establishing a favorable niche for tumor initiation and progression. The purpose of this review is to discuss the potential therapeutic value of drugs targeting the bone tumor microenvironment in Ewing Sarcoma. The first part of the review will focus on targeting the bone resorbing function of osteoclasts by means of bisphosphonates (BPs or drugs blocking the pro-resorbing cytokine Receptor Activator of NF-kappa B Ligand (RANKL. Second, the role of this peculiar hypoxic microenvironment will be discussed in the context of resistance to chemotherapy, escape from the immune system, or neo-angiogenesis. Therapeutic interventions based on these specificities could be then proposed in the context of Ewing sarcoma.

  17. Frizzled Receptors as Potential Therapeutic Targets in Human Cancers

    Directory of Open Access Journals (Sweden)

    Chui-Mian Zeng

    2018-05-01

    Full Text Available Frizzled receptors (FZDs are a family of seven-span transmembrane receptors with hallmarks of G protein-coupled receptors (GPCRs that serve as receptors for secreted Wingless-type (WNT ligands in the WNT signaling pathway. Functionally, FZDs play crucial roles in regulating cell polarity, embryonic development, cell proliferation, formation of neural synapses, and many other processes in developing and adult organisms. In this review, we will introduce the basic structural features and review the biological function and mechanism of FZDs in the progression of human cancers, followed by an analysis of clinical relevance and therapeutic potential of FZDs. We will focus on the development of antibody-based and small molecule inhibitor-based therapeutic strategies by targeting FZDs for human cancers.

  18. The AEROPATH project targeting Pseudomonas aeruginosa: crystallographic studies for assessment of potential targets in early-stage drug discovery

    International Nuclear Information System (INIS)

    Moynie, Lucille; Schnell, Robert; McMahon, Stephen A.; Sandalova, Tatyana; Boulkerou, Wassila Abdelli; Schmidberger, Jason W.; Alphey, Magnus; Cukier, Cyprian; Duthie, Fraser; Kopec, Jolanta; Liu, Huanting; Jacewicz, Agata; Hunter, William N.; Naismith, James H.; Schneider, Gunter

    2012-01-01

    A focused strategy has been directed towards the structural characterization of selected proteins from the bacterial pathogen P. aeruginosa. The objective is to exploit the resulting structural data, in combination with ligand-binding studies, and to assess the potential of these proteins for early-stage antimicrobial drug discovery. Bacterial infections are increasingly difficult to treat owing to the spread of antibiotic resistance. A major concern is Gram-negative bacteria, for which the discovery of new antimicrobial drugs has been particularly scarce. In an effort to accelerate early steps in drug discovery, the EU-funded AEROPATH project aims to identify novel targets in the opportunistic pathogen Pseudomonas aeruginosa by applying a multidisciplinary approach encompassing target validation, structural characterization, assay development and hit identification from small-molecule libraries. Here, the strategies used for target selection are described and progress in protein production and structure analysis is reported. Of the 102 selected targets, 84 could be produced in soluble form and the de novo structures of 39 proteins have been determined. The crystal structures of eight of these targets, ranging from hypothetical unknown proteins to metabolic enzymes from different functional classes (PA1645, PA1648, PA2169, PA3770, PA4098, PA4485, PA4992 and PA5259), are reported here. The structural information is expected to provide a firm basis for the improvement of hit compounds identified from fragment-based and high-throughput screening campaigns

  19. C595 antibody: A potential vector for targeted alpha therapy

    International Nuclear Information System (INIS)

    Perkins, A.C.; Allen, B.J.

    2005-01-01

    experimental studies have concentrated on the targeted therapy of carcinoma of the prostate, pancreas and ovary. On 120 paraffin embedded specimens from patients who underwent radical retro-pubic prostatectomy or trans-urethralresection of the prostate for primary untreated carcinoma of the pancreas MUC1 expression was detected in 58% primary Ca prostate tissues and 90% lymph node metastases but not in normal prostates or benign tissues. The 213 Bi-C595 conjugate demonstrated cell killing in PC-3 and DU 145 cell lines isolated from human prostatic adenocarcinoma. Other results indicate that 213 Bi-C595 targeting efficacy is in accordance with the expression of MUC1 in three pancreatic cancer cell clusters CFPAC-1, PANC-1 and CAPAN-1 and demonstrated effective toxicity of tumour spheroids of up to 100 m in diameter. When administered to tumour bearing mice at 333 MBq/kg the c595 alpha conjugate caused significant tumour growth delay, compared with the non-specific control at after 16 weeks. Similar results have been obtained in monolayers and cell clusters of the ovarian OVCAR-3 cell line. We believe this antibody conjugate offers great potential for targeted alpha therapy of prostatic, pancreatic and ovarian tumours. (author)

  20. GPR 120: The Potential Target for Obesity Treatment.

    Science.gov (United States)

    Tanagho, Peter A; Shohdy, Kyrillus S

    2016-01-01

    G protein coupled receptor 120 (GPR120) is a class of receptors in the gastrointestinal tract (GIT) that is implicated in nutrient sensing and body weight regulation. Functions of GPR120 are thought to be mediated by the release of a group of hormones known as incretins, such as glucagon like peptide 1 (GLP-1) and gastric inhibitory polypeptide (GIP). We have searched PubMed with the keywords "GPR120","GLP-1" and "obesity". Relevant studies were retrieved and included in the review. Recently, many exogenous compounds have been investigated in their role in the release of GLP-1 and in causing weight loss in obese rats. However, some results question the putative role of GPR120 in metabolic homeostasis. Herein, we evaluate the potential use of GPR120 as a target receptor in obesity and found it to be ubiquitous throughout the GIT, with various functions in each site. In order to find the optimal drug, the role of GPR120 in each site needs to be defined and selectivity of the potential drug needs to be studied to ensure the success of this growing line of obesity management.

  1. Activated signature of antiphospholipid syndrome neutrophils reveals potential therapeutic target

    Science.gov (United States)

    Knight, Jason S.; Meng, He; Coit, Patrick; Yalavarthi, Srilakshmi; Sule, Gautam; Gandhi, Alex A.; Grenn, Robert C.; Mazza, Levi F.; Ali, Ramadan A.; Renauer, Paul; Wren, Jonathan D.; Bockenstedt, Paula L.; Wang, Hui; Eitzman, Daniel T.; Sawalha, Amr H.

    2017-01-01

    Antiphospholipid antibodies, present in one-third of lupus patients, increase the risk of thrombosis. We recently reported a key role for neutrophils — neutrophil extracellular traps (NETs), in particular — in the thrombotic events that define antiphospholipid syndrome (APS). To further elucidate the role of neutrophils in APS, we performed a comprehensive transcriptome analysis of neutrophils isolated from patients with primary APS. Moreover, APS-associated venous thrombosis was modeled by treating mice with IgG prepared from APS patients, followed by partial restriction of blood flow through the inferior vena cava. In patients, APS neutrophils demonstrated a proinflammatory signature with overexpression of genes relevant to IFN signaling, cellular defense, and intercellular adhesion. For in vivo studies, we focused on P-selectin glycoprotein ligand-1 (PSGL-1), a key adhesion molecule overexpressed in APS neutrophils. The introduction of APS IgG (as compared with control IgG) markedly potentiated thrombosis in WT mice, but not PSGL-1–KOs. PSGL-1 deficiency was also associated with reduced leukocyte vessel wall adhesion and NET formation. The thrombosis phenotype was restored in PSGL-1–deficient mice by infusion of WT neutrophils, while an anti–PSGL-1 monoclonal antibody inhibited APS IgG–mediated thrombosis in WT mice. PSGL-1 represents a potential therapeutic target in APS. PMID:28931754

  2. Activated mammalian target of rapamycin is a potential therapeutic target in gastric cancer

    International Nuclear Information System (INIS)

    Xu, Da-zhi; Sun, Xiao-wei; Guan, Yuan-xiang; Li, Yuan-fang; Lin, Tong-yu; Geng, Qi-rong; Tian, Ying; Cai, Mu-yan; Fang, Xin-juan; Zhan, You-qing; Zhou, Zhi-wei; Li, Wei; Chen, Ying-bo

    2010-01-01

    The mammalian target of rapamycin (mTOR) plays a key role in cellular growth and homeostasis. The purpose of our present study is to investigate the expression of activated mTOR (p-mTOR) in gastric cancer patients, their prognostic significance and the inhibition effect of RAD001 on tumor growth and to determine whether targeted inhibition of mTOR could be a potential therapeutic strategy for gastric cancer. The expression of p-mTOR was detected in specimens of 181 gastric cancers who underwent radical resection (R0) by immunohistochemistry. The correlation of p-mTOR expression to clinicopathologic features and survival of gastric cancer was studied. We also determined the inhibition effect of RAD001 on tumor growth using BGC823 and AGS human gastric cancer cell lines. Immunostaining for p-mTOR was positive in 93 of 181 (51.4%) gastric cancers, closely correlated with lymph node status and pTNM stage. Patients with p-mTOR positive showed significantly shorter disease-free survival (DFS) and overall survival (OS) rates than those with p-mTOR-negative tumors in univariable analyses, and there was a trend toward a correlation between p-mTOR expression and survival in multivariable analyses. RAD001 markedly inhibited dose-dependently proliferation of human gastric carcinoma cells by down-regulating expression of p70s6k, p-p70s6k, C-myc, CyclinD1 and Bcl-2, up-regulating expression of P53. In gastric cancer, p-mTOR is a potential therapeutic target and RAD001 was a promising treatment agent with inducing cell cycle arrest and apoptosis by down-regulating expression of C-myc, CyclinD1 and Bcl-2, up-regulating expression of P53

  3. Training needs assessment of service providers: targeted intervention for HIV/AIDS in Jharkhand, India.

    Science.gov (United States)

    Kumar, Anant; Kumar, Prakash

    2013-01-01

    Training needs assessments are pivotal for any capacity building program. Building capacity of service providers and staff involved in HIV/AIDS intervention programs is crucial because of the distinct nature of such programs. It requires specific knowledge, skills, and attitudes that are of utmost importance, influencing the reach of the program and its impact in halting and reversing the epidemic. This study was conducted to identify the training needs assessment of personnel involved in targeted intervention for high risk populations vulnerable to HIV infection in Jharkhand, India. Through the study the authors critically examine the existing training needs and gaps and suggest strategies to address them.

  4. Syndecans as modulators and potential pharmacological targets in cancer progression

    Directory of Open Access Journals (Sweden)

    Despoina eBarbouri

    2014-02-01

    Full Text Available Extracellular matrix (ECM components form a dynamic network of key importance for cell function and properties. Key macromolecules in this interplay are syndecans (SDCs, a family of transmembrane heparan sulfate proteoglycans (HSPGs. Specifically, heparan sulfate (HS chains with their different sulfation pattern have the ability to interact with growth factors and their receptors in tumor microenvironment, promoting the activation of different signaling cascades that regulate tumor cell behavior. The affinity of HS chains with ligands is altered during malignant conditions because of the modification of chain sequence/sulfation pattern. Furthermore, matrix degradation enzymes derived from the tumor itself or the tumor microenvironment, like heparanase and matrix metalloproteinases (MMPs, ADAM as well as ADΑMTS are involved in the cleavage of SDCs ectodomain at the HS and protein core level, respectively. Such released soluble syndecans shed syndecans in the extracellular matrix interact in an autocrine or paracrine manner with the tumor or/and stromal cells. Shed syndecans, upon binding to several matrix effectors, such as growth factors, chemokines and cytokines, have the ability to act as competitive inhibitors for membrane PGs, and modulate the inflammatory microenvironment of cancer cells. It is notable that syndecans and their soluble counterparts may affect either the behavior of cancer cells and/or their microenvironment during cancer progression. The importance of these molecules has been highlighted since HSPGs have been proposed as prognostic markers of solid tumors and hematopoietic malignancies. Going a step further down the line, the multi-actions of syndecans in many levels make them appealing as potential pharmacological targets, either by targeting directly the tumor or indirectly the adjacent stroma.

  5. Pharmacological effects and potential therapeutic targets of DT-13.

    Science.gov (United States)

    Khan, Ghulam Jilany; Rizwan, Mohsin; Abbas, Muhammad; Naveed, Muhammad; Boyang, Yu; Naeem, Muhammad Ahsan; Khan, Sara; Yuan, Shengtao; Baig, Mirza Muhammad Faran Ashraf; Sun, Li

    2018-01-01

    DT-13 is an isolated compound from Dwarf lillytruf tuber and currently among active research drugs by National Natural Science foundation of China for its several potential effects. The drug has been reported for its multiple pharmacological actions however no thorough review studies are available on it. Our present study is highlighting the pros and cons of DT-13 focusing on its potential pharmacological actions, therapeutic utilization and further exploration for novel targets. The drug possesses very low toxicity profile, quick onset and long duration of action with slow elimination that combinely makes it favorable for the clinical studies. In vivo and in vitro studies show that the drug regulates multiple cellular functions for its several pharmacological effects including, anti-adhesive effects via regulation of tissue factor and transforming growth factor; anti-migratory effects through indirect regulation of NM-IIA in the tumor microenvironment, Tissue factor, down-regulation of CCR5-CCL5 axis and MMP-2/9 inhibition; anti-metastatic effects via regulation of MMPs and tissue factor; pro-apoptotic effects by modulation of endocytosis of EGF receptor; anti-angiogenic effects via regulation of HIF-1α,ERK, Akt signalling and autophagy inducing characteristics by regulating PI3K/Akt/mTOR signalling pathway. In addition to anti-tumor activities, DT-13 has significant anti-inflammatory, cardioprotective, hepatoprotective and immunomodulating effects. Pharmaceutical dosage form and targeted drug delivery system for DT-13 has not been established yet. Moreover, DT-13, has not been studied for its action on brain, colorectal, hepatic, pancreatic, prostate and blood cancers. Similarly the effects of drug on carbohydrate and glucose metabolism is another niche yet to be explored. In some traditional therapies, crude drug from the plant is used against diabetic and neurological disorders that are not reported in scientific literature, however due to profound effects of

  6. Pyruvate kinase M2: a potential target for regulating inflammation

    Directory of Open Access Journals (Sweden)

    Jose Carlos eAlves-Filho

    2016-04-01

    Full Text Available Pyruvate kinase (PK is the enzyme responsible for catalyzing the last step of glycolysis. Of the four PK isoforms expressed in mammalian cells, PKM2 has generated the most interest due to its impact on changes in cellular metabolism observed in cancer as well as in activated immune cells. As our understanding of dysregulated metabolism in cancer develops, and in light of the growing field of immunometabolism, intense efforts are in place to define the mechanism by which PKM2 regulates the metabolic profile of cancer as well as of immune cells. The enzymatic activity of PKM2 is heavily regulated by endogenous allosteric effectors as well as by intracellular signalling pathways, affecting both the enzymatic activity of PKM2 as a pyruvate kinase and the regulation of the recently described non-canonical nuclear functions of PKM2. We here review the current literature on PKM2 and its regulation, and discuss the potential for PKM2 as a therapeutic target in inflammatory and metabolic disorders.

  7. Targeting gut microbiome: A novel and potential therapy for autism.

    Science.gov (United States)

    Yang, Yongshou; Tian, Jinhu; Yang, Bo

    2018-02-01

    Autism spectrum disorder (ASD) is a severely neurodevelopmental disorder that impairs a child's ability to communicate and interact with others. Children with neurodevelopmental disorder, including ASD, are regularly affected by gastrointestinal problems and dysbiosis of gut microbiota. On the other hand, humans live in a co-evolutionary association with plenty of microorganisms that resident on the exposed and internal surfaces of our bodies. The microbiome, refers to the collection of microbes and their genetic material, confers a variety of physiologic benefits to the host in many key aspects of life as well as being responsible for some diseases. A large body of preclinical literature indicates that gut microbiome plays an important role in the bidirectional gut-brain axis that communicates between the gut and central nervous system. Moreover, accumulating evidences suggest that the gut microbiome is involved in the pathogenesis of ASD. The present review introduces the increasing evidence suggesting the reciprocal interaction network among microbiome, gut and brain. It also discusses the possible mechanisms by which gut microbiome influences the etiology of ASD via altering gut-brain axis. Most importantly, it highlights the new findings of targeting gut microbiome, including probiotic treatment and fecal microbiota transplant, as novel and potential therapeutics for ASD diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Metabolic control of female puberty: potential therapeutic targets.

    Science.gov (United States)

    Castellano, Juan M; Tena-Sempere, Manuel

    2016-10-01

    The onset of puberty in females is highly sensitive to the nutritional status and the amount of energy reserves of the organism. This metabolic information is sensed and transmitted to hypothalamic GnRH neurons, considered to be ultimately responsible for triggering puberty through the coordinated action of different peripheral hormones, central neurotransmitters, and molecular mediators. This article will review and discuss (i) the relevant actions of the adipose hormone leptin, as a stimulatory/permissive signal, and the gut hormone ghrelin, as an inhibitory factor, in the metabolic control of female puberty; (ii) the crucial role of the hypothalamic kisspeptin neurons, recently emerged as essential gatekeepers of puberty, in transmitting this metabolic information to GnRH neurons; and (iii) the potential involvement of key cellular energy sensors, such as mTOR, as molecular mediators in this setting. The thorough characterization of the physiological roles of the above elements in the metabolic control of female puberty, along with the discovery of novel factors, pathways, and mechanisms involved, will promote our understanding of the complex networks connecting metabolism and puberty and, ultimately, will aid in the design of target-specific treatments for female pubertal disorders linked to conditions of metabolic stress.

  9. Rac1 in human diseases: The therapeutic potential of targeting Rac1 signaling regulatory mechanisms.

    Science.gov (United States)

    Marei, Hadir; Malliri, Angeliki

    2017-07-03

    Abnormal Rac1 signaling is linked to a number of debilitating human diseases, including cancer, cardiovascular diseases and neurodegenerative disorders. As such, Rac1 represents an attractive therapeutic target, yet the search for effective Rac1 inhibitors is still underway. Given the adverse effects associated with Rac1 signaling perturbation, cells have evolved several mechanisms to ensure the tight regulation of Rac1 signaling. Thus, characterizing these mechanisms can provide invaluable information regarding major cellular events that lead to aberrant Rac1 signaling. Importantly, this information can be utilized to further facilitate the development of effective pharmacological modulators that can restore normal Rac1 signaling. In this review, we focus on the pathological role of Rac1 signaling, highlighting the benefits and potential drawbacks of targeting Rac1 in a clinical setting. Additionally, we provide an overview of available compounds that target key Rac1 regulatory mechanisms and discuss future therapeutic avenues arising from our understanding of these mechanisms.

  10. Nutraceuticals: potential for chondroprotection and molecular targeting of osteoarthritis.

    Science.gov (United States)

    Leong, Daniel J; Choudhury, Marwa; Hirsh, David M; Hardin, John A; Cobelli, Neil J; Sun, Hui B

    2013-11-21

    Osteoarthritis (OA) is a degenerative joint disease and a leading cause of adult disability. There is no cure for OA, and no effective treatments which arrest or slow its progression. Current pharmacologic treatments such as analgesics may improve pain relief but do not alter OA disease progression. Prolonged consumption of these drugs can result in severe adverse effects. Given the nature of OA, life-long treatment will likely be required to arrest or slow its progression. Consequently, there is an urgent need for OA disease-modifying therapies which also improve symptoms and are safe for clinical use over long periods of time. Nutraceuticals-food or food products that provide medical or health benefits, including the prevention and/or treatment of a disease-offer not only favorable safety profiles, but may exert disease- and symptom-modification effects in OA. Forty-seven percent of OA patients use alternative medications, including nutraceuticals. This review will overview the efficacy and mechanism of action of commonly used nutraceuticals, discuss recent experimental and clinical data on the effects of select nutraceuticals, such as phytoflavonoids, polyphenols, and bioflavonoids on OA, and highlight their known molecular actions and limitations of their current use. We will conclude with a proposed novel nutraceutical-based molecular targeting strategy for chondroprotection and OA treatment.

  11. Nutraceuticals: Potential for Chondroprotection and Molecular Targeting of Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Daniel J. Leong

    2013-11-01

    Full Text Available Osteoarthritis (OA is a degenerative joint disease and a leading cause of adult disability. There is no cure for OA, and no effective treatments which arrest or slow its progression. Current pharmacologic treatments such as analgesics may improve pain relief but do not alter OA disease progression. Prolonged consumption of these drugs can result in severe adverse effects. Given the nature of OA, life-long treatment will likely be required to arrest or slow its progression. Consequently, there is an urgent need for OA disease-modifying therapies which also improve symptoms and are safe for clinical use over long periods of time. Nutraceuticals—food or food products that provide medical or health benefits, including the prevention and/or treatment of a disease—offer not only favorable safety profiles, but may exert disease- and symptom-modification effects in OA. Forty-seven percent of OA patients use alternative medications, including nutraceuticals. This review will overview the efficacy and mechanism of action of commonly used nutraceuticals, discuss recent experimental and clinical data on the effects of select nutraceuticals, such as phytoflavonoids, polyphenols, and bioflavonoids on OA, and highlight their known molecular actions and limitations of their current use. We will conclude with a proposed novel nutraceutical-based molecular targeting strategy for chondroprotection and OA treatment.

  12. Epigenetic Modifications and Potential New Treatment Targets in Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Lorena Perrone

    2014-01-01

    Full Text Available Retinopathy is a debilitating vascular complication of diabetes. As with other diabetic complications, diabetic retinopathy (DR is characterized by the metabolic memory, which has been observed both in DR patients and in DR animal models. Evidences have provided that after a period of poor glucose control insulin or diabetes drug treatment fails to prevent the development and progression of DR even when good glycemic control is reinstituted (glucose normalization, suggesting a metabolic memory phenomenon. Recent studies also underline the role of epigenetic chromatin modifications as mediators of the metabolic memory. Indeed, epigenetic changes may lead to stable modification of gene expression, participating in DR pathogenesis. Moreover, increasing evidences suggest that environmental factors such as chronic hyperglycemia are implicated DR progression and may also affect the epigenetic state. Here we review recent findings demonstrating the key role of epigenetics in the progression of DR. Further elucidation of epigenetic mechanisms, acting both at the cis- and trans-chromatin structural elements, will yield new insights into the pathogenesis of DR and will open the way for the discovery of novel therapeutic targets to prevent DR progression.

  13. Novel Class of Potential Therapeutics that Target Ricin Retrograde Translocation

    Directory of Open Access Journals (Sweden)

    Veronika Redmann

    2013-12-01

    Full Text Available Ricin toxin, an A-B toxin from Ricinus communis, induces cell death through the inhibition of protein synthesis. The toxin binds to the cell surface via its B chain (RTB followed by its retrograde trafficking through intracellular compartments to the ER where the A chain (RTA is transported across the membrane and into the cytosol. Ricin A chain is transported across the ER membrane utilizing cellular proteins involved in the disposal of aberrant ER proteins by a process referred to as retrograde translocation. Given the current lack of therapeutics against ricin intoxication, we developed a high-content screen using an enzymatically attenuated RTA chimera engineered with a carboxy-terminal enhanced green fluorescent protein (RTAE177Qegfp to identify compounds that target RTA retrograde translocation. Stabilizing RTAE177Qegfp through the inclusion of proteasome inhibitor produced fluorescent peri-nuclear granules. Quantitative analysis of the fluorescent granules provided the basis to discover compounds from a small chemical library (2080 compounds with known bioactive properties. Strikingly, the screen found compounds that stabilized RTA molecules within the cell and several compounds limited the ability of wild type RTA to suppress protein synthesis. Collectively, a robust high-content screen was developed to discover novel compounds that stabilize intracellular ricin and limit ricin intoxication.

  14. Adenosine metabolism in Toxoplasma gondii: potential targets for chemotherapy.

    Science.gov (United States)

    el Kouni, Mahmoud H

    2007-01-01

    Toxoplasma gondii is an intracellular parasitic protozoan that infects approximately a billion people worldwide. Infection with T. gondii represents a major health problem for immunocompromised individuals, such as AIDS patients, organ transplant recipients, and the unborn children of infected mothers. Currently available drugs usually do not eradicate infection and as many as 50% of the patients do not respond to this therapy. Furthermore, they are ineffective against T. gondii tissue cysts. In addition, prolonged exposure to these drugs induces serious host toxicity forcing the discontinuation of the therapy. Finally, there is no effective vaccine currently available for the treatment of toxoplasmosis. Therefore, it is necessary to develop new and effective drugs for the treatment and management of toxoplasmosis. The rational design of a drug depends on the exploitation of fundamental biochemical or physiological differences between pathogens and their host. Some of the most striking differences between T. gondii and their mammalian host are found in purine metabolism. T. gondii, like most parasites studied, lack the ability to synthesize purines do novo and depend on the salvage of purines from their host to satisfy their requirements of purines. In this respect, the salvage of adenosine is the major source of purines in T. gondii. Therefore, interference with adenosine uptake and metabolism in T. gondii can be selectively detrimental to the parasite. The host cells, on the other hand, can still obtain their purine requirements by their de novo pathways. This review will focus on the broad aspects of the adenosine transport and the enzyme adenosine kinase (EC 2.7.1.20) which are the two primary routes for adenosine utilization in T. gondii, in an attempt to illustrate their potentials as targets for chemotherapy against this parasite.

  15. Solute carrier transporters: potential targets for digestive system neoplasms.

    Science.gov (United States)

    Xie, Jing; Zhu, Xiao Yan; Liu, Lu Ming; Meng, Zhi Qiang

    2018-01-01

    Digestive system neoplasms are the leading causes of cancer-related death all over the world. Solute carrier (SLC) superfamily is composed of a series of transporters that are ubiquitously expressed in organs and tissues of digestive systems and mediate specific uptake of small molecule substrates in facilitative manner. Given the important role of SLC proteins in maintaining normal functions of digestive system, dysregulation of these protein in digestive system neoplasms may deliver biological and clinical significance that deserves systemic studies. In this review, we critically summarized the recent advances in understanding the role of SLC proteins in digestive system neoplasms. We highlighted that several SLC subfamilies, including metal ion transporters, transporters of glucose and other sugars, transporters of urea, neurotransmitters and biogenic amines, ammonium and choline, inorganic cation/anion transporters, transporters of nucleotide, amino acid and oligopeptide organic anion transporters, transporters of vitamins and cofactors and mitochondrial carrier, may play important roles in mediating the initiation, progression, metastasis, and chemoresistance of digestive system neoplasms. Proteins in these SLC subfamilies may also have diagnostic and prognostic values to particular cancer types. Differential expression of SLC proteins in tumors of digestive system was analyzed by extracting data from human cancer database, which revealed that the roles of SLC proteins may either be dependent on the substrates they transport or be tissue specific. In addition, small molecule modulators that pharmacologically regulate the functions of SLC proteins were discussed for their possible application in the treatment of digestive system neoplasms. This review highlighted the potential of SLC family proteins as drug target for the treatment of digestive system neoplasms.

  16. HIV LIFE CYCLE AND POTENTIAl TARGETS FOR DRUG ACTIVITY

    African Journals Online (AJOL)

    TABLE Ill. STAGES IN THE HIV UFE CYCLE THAT ARE TARGETS FOR CURRENTLY AVAIlABLE ANTIRETROVIRAlS. Fig. 7. Life cycle ofHIVand targets for ontiretrovirol theropy. (Reproduced with permission from: 5Miller, The Clinician's Guide to. Antiretroviral Resistance, 2007.) JULY 2002. Budding: immature virus.

  17. Protein targeting in the analysis of learning and memory: a potential alternative to gene targeting.

    Science.gov (United States)

    Gerlai, R; Williams, S P; Cairns, B; Van Bruggen, N; Moran, P; Shih, A; Caras, I; Sauer, H; Phillips, H S; Winslow, J W

    1998-11-01

    Gene targeting using homologous recombination in embryonic stem (ES) cells offers unprecedented precision with which one may manipulate single genes and investigate the in vivo effects of defined mutations in the mouse. Geneticists argue that this technique abrogates the lack of highly specific pharmacological tools in the study of brain function and behavior. However, by now it has become clear that gene targeting has some limitations too. One problem is spatial and temporal specificity of the generated mutation, which may appear in multiple brain regions or even in other organs and may also be present throughout development, giving rise to complex, secondary phenotypical alterations. This may be a disadvantage in the functional analysis of a number of genes associated with learning and memory processes. For example, several proteins, including neurotrophins--cell-adhesion molecules--and protein kinases, that play a significant developmental role have recently been suggested to be also involved in neural and behavioral plasticity. Knocking out genes of such proteins may lead to developmental alterations or even embryonic lethality in the mouse, making it difficult to study their function in neural plasticity, learning, and memory. Therefore, alternative strategies to gene targeting may be needed. Here, we suggest a potentially useful in vivo strategy based on systemic application of immunoadhesins, genetically engineered fusion proteins possessing the Fc portion of the human IgG molecule and, for example, a binding domain of a receptor of interest. These proteins are stable in vivo and exhibit high binding specificity and affinity for the endogenous ligand of the receptor, but lack the ability to signal. Thus, if delivered to the brain, immunoadhesins may specifically block signalling of the receptor of interest. Using osmotic minipumps, the protein can be infused in a localized region of the brain for a specified period of time (days or weeks). Thus, the location

  18. Targeting adults who provide alcohol to underage youth: results from a national survey of local law enforcement agencies.

    Science.gov (United States)

    Jones-Webb, Rhonda; Toomey, Traci L; Lenk, Kathleen M; Nelson, Toben F; Erickson, Darin J

    2015-06-01

    We investigated what local enforcement agencies are doing to target adults who provide alcohol to underage youth; what types of enforcement activities are being conducted to target adult providers; and factors that encourage enforcement activities that target adult providers. We surveyed 1,056 local law enforcement agencies in the US and measured whether or not the agency conducted enforcement activities that target adults who provide alcohol to underage youth. We also measured whether certain agency and jurisdiction characteristics were associated with enforcement activities that target adults who provide alcohol to underage youth. Less than half (42%) of local enforcement agencies conducted enforcement efforts targeting adults who provide alcohol to underage youth. Agencies that conducted the enforcement activities targeting adult providers were significantly more likely to have a full time officer specific to alcohol enforcement, a division specific to alcohol enforcement, a social host law, and to perceive underage drinking was very common. Results suggest that targeting social providers (i.e., adults over 21 years of age) will require greater law enforcement resources, implementation of underage drinking laws (e.g., social host policies), and changing perceptions among law enforcement regarding underage drinking. Future studies are needed to identify the most effective enforcement efforts and to examine how enforcement efforts are prospectively linked to alcohol consumption.

  19. Does a Consumer-Targeted Deprescribing Intervention Compromise Patient-Healthcare Provider Trust?

    Science.gov (United States)

    Zhang, Yi Zhi; Turner, Justin P; Martin, Philippe; Tannenbaum, Cara

    2018-04-16

    One in four community-dwelling older adults is prescribed an inappropriate medication. Educational interventions aimed at patients to reduce inappropriate medications may cause patients to question their prescriber’s judgment. The objective of this study was to determine whether a patient-focused deprescribing intervention compromised trust between older adults and their healthcare providers. An educational brochure was distributed to community-dwelling older adults by community pharmacists in order to trigger deprescribing conversations. At baseline and 6-months post-intervention, participants completed the Primary Care Assessment Survey, which measures patient trust in doctors and pharmacists. Changes in trust were ascertained post-intervention. Proportions with 95% confidence intervals (CI), and logistic regression were used to determine a shift in trust and associated predictors. 352 participants responded to the questionnaire at both time points. The majority of participants had no change or gained trust in their doctors for items related to the choice of medical care (78.5%, 95% CI = 74.2–82.8), communication transparency (75.4%, 95% CI = 70.7–79.8), and overall trust (81.9%, 95% CI = 77.9–86.0). Similar results were obtained for participants’ perceptions of their pharmacists, with trust remaining intact for items related to the choice of medical care (79.4%, 95% CI = 75.3–83.9), transparency in communicating (82.0%, 95% CI = 78.0–86.1), and overall trust (81.6%, 95% CI = 77.5–85.7). Neither age, sex nor the medication class targeted for deprescribing was associated with a loss of trust. Overall, the results indicate that patient-focused deprescribing interventions do not shift patients’ trust in their healthcare providers in a negative direction.

  20. Does a Consumer-Targeted Deprescribing Intervention Compromise Patient-Healthcare Provider Trust?

    Directory of Open Access Journals (Sweden)

    Yi Zhi Zhang

    2018-04-01

    Full Text Available One in four community-dwelling older adults is prescribed an inappropriate medication. Educational interventions aimed at patients to reduce inappropriate medications may cause patients to question their prescriber’s judgment. The objective of this study was to determine whether a patient-focused deprescribing intervention compromised trust between older adults and their healthcare providers. An educational brochure was distributed to community-dwelling older adults by community pharmacists in order to trigger deprescribing conversations. At baseline and 6-months post-intervention, participants completed the Primary Care Assessment Survey, which measures patient trust in doctors and pharmacists. Changes in trust were ascertained post-intervention. Proportions with 95% confidence intervals (CI, and logistic regression were used to determine a shift in trust and associated predictors. 352 participants responded to the questionnaire at both time points. The majority of participants had no change or gained trust in their doctors for items related to the choice of medical care (78.5%, 95% CI = 74.2–82.8, communication transparency (75.4%, 95% CI = 70.7–79.8, and overall trust (81.9%, 95% CI = 77.9–86.0. Similar results were obtained for participants’ perceptions of their pharmacists, with trust remaining intact for items related to the choice of medical care (79.4%, 95% CI = 75.3–83.9, transparency in communicating (82.0%, 95% CI = 78.0–86.1, and overall trust (81.6%, 95% CI = 77.5–85.7. Neither age, sex nor the medication class targeted for deprescribing was associated with a loss of trust. Overall, the results indicate that patient-focused deprescribing interventions do not shift patients’ trust in their healthcare providers in a negative direction.

  1. Nonstructural Proteins of Alphavirus—Potential Targets for Drug Development

    Directory of Open Access Journals (Sweden)

    Farhana Abu Bakar

    2018-02-01

    Full Text Available Alphaviruses are enveloped, positive single-stranded RNA viruses, typically transmitted by arthropods. They often cause arthralgia or encephalitic diseases in infected humans and there is currently no targeted antiviral treatment available. The re-emergence of alphaviruses in Asia, Europe, and the Americas over the last decade, including chikungunya and o’nyong’nyong viruses, have intensified the search for selective inhibitors. In this review, we highlight key molecular determinants within the alphavirus replication complex that have been identified as viral targets, focusing on their structure and functionality in viral dissemination. We also summarize recent structural data of these viral targets and discuss how these could serve as templates to facilitate structure-based drug design and development of small molecule inhibitors.

  2. Lithium inhibits tumorigenic potential of PDA cells through targeting hedgehog-GLI signaling pathway.

    Directory of Open Access Journals (Sweden)

    Zhonglu Peng

    Full Text Available Hedgehog signaling pathway plays a critical role in the initiation and development of pancreatic ductal adenocarcinoma (PDA and represents an attractive target for PDA treatment. Lithium, a clinical mood stabilizer for mental disorders, potently inhibits the activity of glycogen synthase kinase 3β (GSK3β that promotes the ubiquitin-dependent proteasome degradation of GLI1, an important downstream component of hedgehog signaling. Herein, we report that lithium inhibits cell proliferation, blocks G1/S cell-cycle progression, induces cell apoptosis and suppresses tumorigenic potential of PDA cells through down-regulation of the expression and activity of GLI1. Moreover, lithium synergistically enhances the anti-cancer effect of gemcitabine. These findings further our knowledge of mechanisms of action for lithium and provide a potentially new therapeutic strategy for PDA through targeting GLI1.

  3. Omen: identifying potential spear-phishing targets before the email is sent.

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Jeremy Daniel.

    2013-07-01

    We present the results of a two year project focused on a common social engineering attack method called "spear phishing". In a spear phishing attack, the user receives an email with information specifically focused on the user. This email contains either a malware-laced attachment or a link to download the malware that has been disguised as a useful program. Spear phishing attacks have been one of the most effective avenues for attackers to gain initial entry into a target network. This project focused on a proactive approach to spear phishing. To create an effective, user-specific spear phishing email, the attacker must research the intended recipient. We believe that much of the information used by the attacker is provided by the target organization's own external website. Thus when researching potential targets, the attacker leaves signs of his research in the webserver's logs. We created tools and visualizations to improve cybersecurity analysts' abilities to quickly understand a visitor's visit patterns and interests. Given these suspicious visitors and log-parsing tools, analysts can more quickly identify truly suspicious visitors, search for potential spear-phishing targeted users, and improve security around those users before the spear phishing email is sent.

  4. Effects of beam, target and substrate potentials in ion beam processing

    International Nuclear Information System (INIS)

    Harper, J.M.E.

    1982-01-01

    Ion beam etching and deposition are normally carried out with beam, target and substrate potentials near ground potential. In this paper, the effects of intentional or unintentional changes in these potentials are described. Examples include beam neutralization, a single extraction grid, substrate bias, and target bias. Each example is described in terms of beam plasma parameters. (Auth.)

  5. The Potential of Targeting Ribosome Biogenesis in High-Grade Serous Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Shunfei Yan

    2017-01-01

    Full Text Available Overall survival for patients with ovarian cancer (OC has shown little improvement for decades meaning new therapeutic options are critical. OC comprises multiple histological subtypes, of which the most common and aggressive subtype is high-grade serous ovarian cancer (HGSOC. HGSOC is characterized by genomic structural variations with relatively few recurrent somatic mutations or dominantly acting oncogenes that can be targeted for the development of novel therapies. However, deregulation of pathways controlling homologous recombination (HR and ribosome biogenesis has been observed in a high proportion of HGSOC, raising the possibility that targeting these basic cellular processes may provide improved patient outcomes. The poly (ADP-ribose polymerase (PARP inhibitor olaparib has been approved to treat women with defects in HR due to germline BRCA mutations. Recent evidence demonstrated the efficacy of targeting ribosome biogenesis with the specific inhibitor of ribosomal RNA synthesis, CX-5461 in v-myc avian myelocytomatosis viral oncogene homolog (MYC-driven haematological and prostate cancers. CX-5461 has now progressed to a phase I clinical trial in patients with haematological malignancies and phase I/II trial in breast cancer. Here we review the currently available targeted therapies for HGSOC and discuss the potential of targeting ribosome biogenesis as a novel therapeutic approach against HGSOC.

  6. MicroRNAs and potential target interactions in psoriasis

    DEFF Research Database (Denmark)

    Zibert, John Robert; Løvendorf, Marianne B.; Litman, Thomas

    2010-01-01

    BACKGROUND: Psoriasis is a chronic inflammatory skin disease often seen in patients with a genetic susceptibility. MicroRNAs (miRNA) are endogenous, short RNA molecules that can bind to parts of mRNA target genes, thus inhibiting their translation and causing accelerated turnover or transcript...... degradation. MicroRNAs are important in the pathogenesis of human diseases such as immunological disorders, as they regulate a broad range of biological processes. OBJECTIVE: We investigated miRNA-mRNA interactions in involved (PP) and non-involved (PN) psoriatic skin compared with healthy skin (NN). METHODS...

  7. MicroRNAs as potential therapeutic targets in kidney disease

    Science.gov (United States)

    Gomez, Ivan G; Grafals, Monica; Portilla, Didier; Duffield, Jeremy S

    2014-01-01

    One cornerstone of Chronic Kidney Disease (CKD) is fibrosis, as kidneys are susceptible due to their high vascularity and predisposition to ischemia. Presently, only therapies targeting the angiotensin receptor are used in clinical practice to retard the progression of CKD. Thus, there is a pressing need for new therapies designed to treat the damaged kidney. Several independent laboratories have identified a number of microRNAs that are dysregulated in human and animal models of CKD. We will explore the evidence suggesting that by blocking the activity of such dysregulated microRNAs, new therapeutics could be developed to treat the progression of CKD. PMID:23660218

  8. DEPDC5 as a potential therapeutic target for epilepsy.

    Science.gov (United States)

    Myers, Kenneth A; Scheffer, Ingrid E

    2017-06-01

    Dishevelled, Egl-10 and Pleckstrin (DEP) domain-containing protein 5 (DEPDC5) is a protein subunit of the GTPase-activating proteins towards Rags 1 (GATOR1) complex. GATOR1 is a recently identified modulator of mechanistic target of rapamycin (mTOR) activity. mTOR is a key regulator of cell proliferation and metabolism; disruption of the mTOR pathway is implicated in focal epilepsy, both acquired and genetic. Tuberous sclerosis is the prototypic mTOR genetic syndrome with epilepsy, however GATOR1 gene mutations have recently been shown to cause lesional and non-lesional focal epilepsy. Areas covered: This review summarizes the mTOR pathway, including regulators and downstream effectors, emphasizing recent developments in the understanding of the complex role of the GATOR1 complex. We review the epilepsy types associated with mTOR overactivity, including tuberous sclerosis, polyhydramnios megalencephaly symptomatic epilepsy, cortical dysplasia, non-lesional focal epilepsy and post-traumatic epilepsy. Currently available mTOR inhibitors are discussed, primarily rapamycin analogs and ATP competitive mTOR inhibitors. Expert opinion: DEPDC5 is an attractive therapeutic target in focal epilepsy, as effects of DEPDC5 agonists would likely be anti-epileptogenic and more selective than currently available mTOR inhibitors. Therapeutic effects might be synergistic with certain existing dietary therapies, including the ketogenic diet.

  9. Molecular mechanism and potential targets for bone metastasis

    International Nuclear Information System (INIS)

    Iguchi, Haruo

    2007-01-01

    The incidence of bone metastasis has been increasing in all cancers in recent years. Bone metastasis is associated with substantial morbidity, including bone pain, pathological fracture, neurological deficit and/or hypercalcemia. Thus, the management of bone metastasis in patients is a clinically significant issue. In the process of bone metastasis, the primary mechanism responsible for bone destruction is cancer cell-mediated stimulation of osteoclastic bone resorption, which results in osteolysis and release of various growth factors from the bone matrix. These growth factors are prerequisites for successful colonization and subsequent invasive growth of cancer cells in bone, which is called a 'vicious cycle.' Thus, it is important to elucidate what molecules are involved in this step of bone destruction, and the understanding of these molecular mechanisms could lead to develop molecular-target therapies for bone metastasis. Bisphosphonates introduced in the treatment for bone metastasis have been shown to reduce skeletal morbidity. In Japan, the most potent bisphosphonate, zoledronate (ZOMETA), was introduced in this past April, and a phase III clinical trial of humanized anti-receptor activator of NF-κB ligand (RANKL) monoclonal antibody (Denosumab) against bone metastasis is under way as a global study. These new agents, which are targeted to osteoclasts, are considered to be standard management in the care of bone metastasis patients in combination with chemotherapy and/or hormone therapy. (author)

  10. Identification of polycystic ovary syndrome potential drug targets based on pathobiological similarity in the protein-protein interaction network

    Science.gov (United States)

    Li, Wan; Wei, Wenqing; Li, Yiran; Xie, Ruiqiang; Guo, Shanshan; Wang, Yahui; Jiang, Jing; Chen, Binbin; Lv, Junjie; Zhang, Nana; Chen, Lina; He, Weiming

    2016-01-01

    Polycystic ovary syndrome (PCOS) is one of the most common endocrinological disorders in reproductive aged women. PCOS and Type 2 Diabetes (T2D) are closely linked in multiple levels and possess high pathobiological similarity. Here, we put forward a new computational approach based on the pathobiological similarity to identify PCOS potential drug target modules (PPDT-Modules) and PCOS potential drug targets in the protein-protein interaction network (PPIN). From the systems level and biological background, 1 PPDT-Module and 22 PCOS potential drug targets were identified, 21 of which were verified by literatures to be associated with the pathogenesis of PCOS. 42 drugs targeting to 13 PCOS potential drug targets were investigated experimentally or clinically for PCOS. Evaluated by independent datasets, the whole PPDT-Module and 22 PCOS potential drug targets could not only reveal the drug response, but also distinguish the statuses between normal and disease. Our identified PPDT-Module and PCOS potential drug targets would shed light on the treatment of PCOS. And our approach would provide valuable insights to research on the pathogenesis and drug response of other diseases. PMID:27191267

  11. Intracerebral Event-related Potentials to Subthreshold Target Stimuli

    Czech Academy of Sciences Publication Activity Database

    Brázdil, M.; Rektor, I.; Daniel, P.; Dufek, M.; Jurák, Pavel

    2001-01-01

    Roč. 112, č. 4 (2001), s. 650-661 ISSN 1388-2457 R&D Projects: GA ČR GA309/98/0490 Institutional research plan: CEZ:AV0Z2065902 Keywords : event-related potentials * intracerebral recordings * oddball paradigm Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 1.922, year: 2001

  12. Assessing potential peptide targeting ligands by quantification of cellular adhesion of model nanoparticles under flow conditions.

    Science.gov (United States)

    Broda, Ellen; Mickler, Frauke Martina; Lächelt, Ulrich; Morys, Stephan; Wagner, Ernst; Bräuchle, Christoph

    2015-09-10

    Sophisticated drug delivery systems are coated with targeting ligands to improve the specific adhesion to surface receptors on diseased cells. In our study, we developed a method with which we assessed the potential of peptide ligands to specifically bind to receptor overexpressing target cells. Therefore, a microfluidic setup was used where the cellular adhesion of nanoparticles with ligand and of control nanoparticles was observed in parallel under the same experimental conditions. The effect of the ligand on cellular binding was quantified by counting the number of adhered nanoparticles with ligand and differently labeled control nanoparticles on single cells after incubation under flow conditions. To provide easy-to-synthesize, stable and reproducible nanoparticles which mimic the surface characteristics of drug delivery systems and meet the requirements for quantitative analysis, latex beads based on amine-modified polystyrene were used as model nanoparticles. Two short peptides were tested to serve as targeting ligand on the beads by increasing the specific binding to HuH7 cells. The c-Met binding peptide cMBP2 was used for hepatocyte growth factor receptor (c-Met) targeting and the peptide B6 for transferrin receptor (TfR) targeting. The impact of the targeting peptide on binding was investigated by comparing the beads with ligand to different internal control beads: 1) without ligand and tailored surface charge (electrostatic control) and 2) with scrambled peptide and similar surface charge, but a different amino acid sequence (specificity control). Our results demonstrate that the method is very useful to select suitable targeting ligands for specific nanoparticle binding to receptor overexpressing tumor cells. We show that the cMBP2 ligand specifically enhances nanoparticle adhesion to target cells, whereas the B6 peptide mediates binding to tumor cells mainly by nonspecific interactions. All together, we suggest that cMBP2 is a suitable choice for

  13. Intermolecular interaction of thiosemicarbazone derivatives to solvents and a potential Aedes aegypti target

    Science.gov (United States)

    da Silva, João Bosco P.; Hallwass, Fernando; da Silva, Aluizio G.; Moreira, Diogo Rodrigo; Ramos, Mozart N.; Espíndola, José Wanderlan P.; de Oliveira, Ana Daura T.; Brondani, Dalci José; Leite, Ana Cristina L.; Merz, Kenneth M.

    2015-08-01

    DFT calculations were used to access information about structure, energy and electronic properties of series of phenyl- and phenoxymethyl-(thio)semicarbazone derivatives with demonstrated activity against the larvae of Aedes aegypti in stage L4. The way as the thiosemicarbazone derivatives can interact with solvents like DMSO and water were analyzed from the comparison between calculated and experimental 1H NMR chemical shifts. The evidences of thiosemicarbazone derivatives making H-bond interaction to solvent have provide us insights on how they can interact with a potential A. aegypti's biological target, the Sterol Carrier Protein-2.

  14. The Endocannabinoid System as a Potential Therapeutic Target for Pain Modulation

    Directory of Open Access Journals (Sweden)

    Ahmet Ulugöl

    2014-06-01

    Full Text Available Although cannabis has been used for pain management for millennia, very few approved cannabinoids are indicated for the treatment of pain and other medical symptoms. Cannabinoid therapy re-gained attention only after the discovery of endocannabinoids and fatty acid amide hydrolase (FAAH and monoacylglycerol lipase (MAGL, the enzymes playing a role in endocannabinoid metabolism. Nowadays, research has focused on the inhibition of these degradative enzymes and the elevation of endocannabinoid tonus locally; special emphasis is given on multi-target analgesia compounds, where one of the targets is the endocannabinoid degrading enzyme. In this review, I provide an overview of the current understanding about the processes accounting for the biosynthesis, transport and metabolism of endocannabinoids, and pharmacological approaches and potential therapeutic applications in this area, regarding the use of drugs elevating endocannabinoid levels in pain conditions.

  15. Sugammadex to reverse neuromuscular blockade and provide optimal conditions for motor-evoked potential monitoring

    Directory of Open Access Journals (Sweden)

    Mehdi Trifa

    2017-01-01

    Full Text Available Sugammadex is a novel pharmacologic agent, which reverses neuromuscular blockade (NMB via a mechanism that differs completely from acetylcholinesterase inhibitors. By encapsulating rocuronium, sugammadex can provide recovery of neuromuscular function even when there is a profound degree of NMB. We report anecdotal experience with the use of sugammadex to reverse NMB to facilitate intraoperative neurophysiological monitoring (motor evoked potentials in an adolescent with scoliosis during posterior spinal fusion. Its potential application in this unique clinical scenario is discussed, and potential dosing schemes are reviewed.

  16. Targeted treatment for chronic lymphocytic leukemia: clinical potential of obinutuzumab

    Directory of Open Access Journals (Sweden)

    Smolej L

    2014-12-01

    Full Text Available Lukáš Smolej 4th Department of Internal Medicine – Hematology, University Hospital Hradec Králové and Charles University in Prague, Faculty of Medicine in Hradec Králové, Hradec Králové, Czech Republic Abstract: Introduction of targeted agents revolutionized the treatment of chronic lymphocytic leukemia (CLL in the past decade. Addition of chimeric monoclonal anti-CD20 antibody rituximab to chemotherapy significantly improved efficacy including overall survival (OS in untreated fit patients; humanized anti-CD52 antibody alemtuzumab and fully human anti-CD20 antibody ofatumumab lead to improvement in refractory disease. Novel small molecule inhibitors such as ibrutinib and idelalisib demonstrated excellent activity and were very recently licensed in relapsed/refractory CLL. Obinutuzumab (GA101 is the newest monoclonal antibody approved for the treatment of CLL. This novel, glycoengineered, type II humanized anti-CD20 antibody is characterized by enhanced antibody-dependent cellular cytotoxicity and direct induction of cell death compared to type I antibodies. Combination of obinutuzumab and chlorambucil yielded significantly better OS in comparison to chlorambucil monotherapy in untreated comorbid patients. These results led to approval of obinuzutumab for the treatment of CLL. Numerous clinical trials combining obinutuzumab with other cytotoxic drugs and novel small molecules are currently under way. This review focuses on the role of obinutuzumab in the treatment of CLL. Keywords: chronic lymphocytic leukemia, anti-CD20 antibodies, chlorambucil, rituximab, ofatumumab, obinutuzumab, overall survival

  17. Regulatory T Cells As Potential Targets for HIV Cure Research

    Science.gov (United States)

    Kleinman, Adam J.; Sivanandham, Ranjit; Pandrea, Ivona; Chougnet, Claire A.; Apetrei, Cristian

    2018-01-01

    T regulatory cells (Tregs) are a key component of the immune system, which maintain a delicate balance between overactive responses and immunosuppression. As such, Treg deficiencies are linked to autoimmune disorders and alter the immune control of pathogens. In HIV infection, Tregs play major roles, both beneficial and detrimental. They regulate the immune system such that inflammation and spread of virus through activated T cells is suppressed. However, suppression of immune activation also limits viral clearance and promotes reservoir formation. Tregs can be directly targeted by HIV, thereby harboring a fraction of the viral reservoir. The vital role of Tregs in the pathogenesis and control of HIV makes them a subject of interest for manipulation in the search of an HIV cure. Here, we discuss the origin and generation, homeostasis, and functions of Tregs, particularly their roles and effects in HIV infection. We also present various Treg manipulation strategies, including Treg depletion techniques and interventions that alter Treg function, which may be used in different cure strategies, to simultaneously boost HIV-specific immune responses and induce reactivation of the latent virus.

  18. Zebrafish neurotransmitter systems as potential pharmacological and toxicological targets.

    Science.gov (United States)

    Rico, E P; Rosemberg, D B; Seibt, K J; Capiotti, K M; Da Silva, R S; Bonan, C D

    2011-01-01

    Recent advances in neurobiology have emphasized the study of brain structure and function and its association with numerous pathological and toxicological events. Neurotransmitters are substances that relay, amplify, and modulate electrical signals between neurons and other cells. Neurotransmitter signaling mediates rapid intercellular communication by interacting with cell surface receptors, activating second messenger systems and regulating the activity of ion channels. Changes in the functional balance of neurotransmitters have been implicated in the failure of central nervous system function. In addition, abnormalities in neurotransmitter production or functioning can be induced by several toxicological compounds, many of which are found in the environment. The zebrafish has been increasingly used as an animal model for biomedical research, primarily due to its genetic tractability and ease of maintenance. These features make this species a versatile tool for pre-clinical drug discovery and toxicological investigations. Here, we present a review regarding the role of different excitatory and inhibitory neurotransmitter systems in zebrafish, such as dopaminergic, serotoninergic, cholinergic, purinergic, histaminergic, nitrergic, glutamatergic, glycinergic, and GABAergic systems, and emphasizing their features as pharmacological and toxicological targets. The increase in the global knowledge of neurotransmitter systems in zebrafish and the elucidation of their pharmacological and toxicological aspects may lead to new strategies and appropriate research priorities to offer insights for biomedical and environmental research. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Hedgehog pathway as a potential treatment target in human cholangiocarcinoma.

    Science.gov (United States)

    Riedlinger, Dorothee; Bahra, Marcus; Boas-Knoop, Sabine; Lippert, Steffen; Bradtmöller, Maren; Guse, Katrin; Seehofer, Daniel; Bova, Roberta; Sauer, Igor M; Neuhaus, Peter; Koch, Arend; Kamphues, Carsten

    2014-08-01

    Innovative treatment concepts targeting essential signaling pathways may offer new chances for patients suffering from cholangiocarcinoma (CCC). For that, we performed a systematic molecular genetic analysis concerning the Hedgehog activity in human CCC samples and analyzed the effect of Hh inhibition on CCC cells in vitro and in vivo. Activation of the Hh pathway was analyzed in 50 human CCC samples using quantitative polymerase chain reaction (qPCR). The efficacy of Hh inhibition using cyclopamine and BMS-833923 was evaluated in vitro. In addition, the effect of BMS-833923, alone or in combination with gemcitabine, was analyzed in vivo in a murine subcutaneous xenograft model. Expression analysis revealed a significant activation of the Hh-signaling pathway in nearly 50% of CCCs. Hh inhibition resulted in a significant decrease in cell proliferation of CCC cells. Moreover, a distinct inhibition of tumor growth could be seen as a result of a combined therapy with BMS-833923 and gemcitabine in CCC xenografts. The results of our study suggest that the Hh pathway plays a relevant role at least in a subset of human CCC. Inhibition of this pathway may represent a possible treatment option for CCC patients in which the Hh pathway is activated. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  20. Improving the Therapeutic Potential of Human Granzyme B for Targeted Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Georg Melmer

    2013-01-01

    Full Text Available Conventional cancer treatments lack specificity and often cause severe side effects. Targeted therapeutic approaches are therefore preferred, including the use of immunotoxins (ITs that comprise cell-binding and cell death-inducing components to allow the direct and specific delivery of pro-apoptotic agents into malignant cells. The first generation of ITs consisted of toxins derived from bacteria or plants, making them immunogenic in humans. The recent development of human cytolytic fusion proteins (hCFP consisting of human effector enzymes offers the prospect of highly-effective targeted therapies with minimal side effects. One of the most promising candidates is granzyme B (GrB and this enzyme has already demonstrated its potential for targeted cancer therapy. However, the clinical application of GrB may be limited because it is inactivated by the overexpression in tumors of its specific inhibitor serpin B9 (PI-9. It is also highly charged, which means it can bind non-specifically to the surface of non-target cells. Furthermore, human enzymes generally lack an endogenous translocation domain, thus the endosomal release of GrB following receptor-mediated endocytosis can be inefficient. In this review we provide a detailed overview of these challenges and introduce promising solutions to increase the cytotoxic potency of GrB for clinical applications.

  1. Targeting c-Met in Cancer by MicroRNAs: Potential Therapeutic Applications in Hepatocellular Carcinoma.

    Science.gov (United States)

    Karagonlar, Zeynep F; Korhan, Peyda; Atabey, Neşe

    2015-11-01

    Preclinical Research Cancer is one of the world's deadliest diseases, with very low survival rates and increased occurrence in the future. Successfully developed target-based therapies have significantly changed cancer treatment. However, primary and/or acquired resistance in the tumor is a major challenge in current therapies and novel combinational therapies are required. RNA interference-mediated gene inactivation, alone or in combination with other current therapies, provides novel promising therapeutics that can improve cure rate and overcome resistance mechanisms to conventional therapeutics. Hepatocyte Growth Factor/c-Met signaling is one of the most frequently dysregulated pathways in human cancers and abnormal c-Met activation is correlated with poor clinical outcomes and drug resistance in hepatocellular carcinoma (HCC). In recent years, a growing number of studies have identified several inhibitors and microRNAs (miRNAs), specifically targeting c-Met in various cancers, including HCC. In this review, we discuss current knowledge regarding miRNAs, focusing on their involvement in cancer and their potential as research tools and therapeutics. Then, we focus on the potential use of c-Met targeting miRNAs for suppressing aberrant c-Met signaling in HCC treatment. © 2015 Wiley Periodicals, Inc.

  2. GPNMB expression in uveal melanoma: a potential for targeted therapy.

    Science.gov (United States)

    Williams, Michelle D; Esmaeli, Bita; Soheili, Aydin; Simantov, Ronit; Gombos, Dan S; Bedikian, Agop Y; Hwu, Patrick

    2010-06-01

    Uveal melanoma is an aggressive disease without effective adjuvant therapy for metastases. Despite genomic differences between cutaneous and uveal melanomas, therapies based on shared biological factors could be effective against both tumor types. High expression of glycoprotein-NMB (GPNMB) in cutaneous melanomas led to the development of CDX-011 (glembatumumab vedotin), a fully human monoclonal antibody against the extracellular domain of GPNMB conjugated to the cytotoxic microtubule toxin monomethylauristatin E. Ongoing phase II trials suggest that CDX-011 has activity against advanced cutaneous melanomas. To determine the potential role of CDX-011 in uveal melanomas, we studied their GPNMB expression. Paraffin-embedded tissues from 22 uveal melanomas treated by enucleation from 2004-2007 at one institution were evaluated immunohistochemically for expression of GPNMB using biotinylated CDX-011 (unconjugated) antibody. Melanoma cells were evaluated for percentage and intensity of expression. Spectral imaging was used in one case with high melanin content. Clinical data were reviewed. Twelve women and 10 men with a median age of 58.7 years (range: 28-83 years) were included. Eighteen of 21 tumors evaluated immunohistochemically (85.7%) expressed GPNMB in 10-90% of tumor cells with variable intensity (5 tumors, 1+; 11, 2+; and 2, 3+). Eleven of 18 tumors (61.1%) expressed GPNMB in >or=50% of cells. Spectral imaging showed diffuse CDX-011 (unconjugated) reactivity in the remaining case. Uveal melanoma, like cutaneous melanoma, commonly expresses GPNMB. Ongoing clinical trials of CDX-011 should be extended to patients with metastatic uveal melanoma to determine potential efficacy in this subset of patients with melanoma.

  3. DTMiner: identification of potential disease targets through biomedical literature mining.

    Science.gov (United States)

    Xu, Dong; Zhang, Meizhuo; Xie, Yanping; Wang, Fan; Chen, Ming; Zhu, Kenny Q; Wei, Jia

    2016-12-01

    Biomedical researchers often search through massive catalogues of literature to look for potential relationships between genes and diseases. Given the rapid growth of biomedical literature, automatic relation extraction, a crucial technology in biomedical literature mining, has shown great potential to support research of gene-related diseases. Existing work in this field has produced datasets that are limited both in scale and accuracy. In this study, we propose a reliable and efficient framework that takes large biomedical literature repositories as inputs, identifies credible relationships between diseases and genes, and presents possible genes related to a given disease and possible diseases related to a given gene. The framework incorporates name entity recognition (NER), which identifies occurrences of genes and diseases in texts, association detection whereby we extract and evaluate features from gene-disease pairs, and ranking algorithms that estimate how closely the pairs are related. The F1-score of the NER phase is 0.87, which is higher than existing studies. The association detection phase takes drastically less time than previous work while maintaining a comparable F1-score of 0.86. The end-to-end result achieves a 0.259 F1-score for the top 50 genes associated with a disease, which performs better than previous work. In addition, we released a web service for public use of the dataset. The implementation of the proposed algorithms is publicly available at http://gdr-web.rwebox.com/public_html/index.php?page=download.php The web service is available at http://gdr-web.rwebox.com/public_html/index.php CONTACT: jenny.wei@astrazeneca.com or kzhu@cs.sjtu.edu.cn Supplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  4. Unintended Sunburn: A Potential Target for Sun Protection Messages

    Directory of Open Access Journals (Sweden)

    Geraldine F. H. McLeod

    2017-01-01

    Full Text Available New Zealand (NZ has the highest melanoma incidence rate in the world. Primary prevention efforts focus on reducing sunburn incidence and increasing sun protective practices in the population. However, sunburn from excessive ultraviolet radiation (UVR remains common. To reduce sunburn incidence, it is important to examine those individuals who experience unintended sunburn. This study aims to use data from the NZ Triennial Sun Protection Survey to describe respondents who were not intending to tan but were sunburnt after outdoor UVR exposure. Information on sociodemographics, concurrent weather conditions, sun protection attitudes and knowledge, and outdoor behaviour was also collected. The results showed 13.5% of respondents’ experienced unintended sunburn during the survey weekend but had not attempted to obtain a tan that summer. Respondents who reported unintended sunburn were more likely than others to have been near water and in unshaded areas, used sunscreen, had higher SunSmart knowledge scores, had lower positive attitudes towards tanning, and were outdoors for a longer duration with less body coverage. As sunburn was unintended these respondents’ outdoor sun protective behaviours may be amenable to change. Future public health initiatives should focus on increasing sun protection (clothing and shade and reducing potential barriers to sun protection.

  5. Unintended Sunburn: A Potential Target for Sun Protection Messages.

    Science.gov (United States)

    McLeod, Geraldine F H; Reeder, Anthony I; Gray, Andrew R; McGee, Rob

    2017-01-01

    New Zealand (NZ) has the highest melanoma incidence rate in the world. Primary prevention efforts focus on reducing sunburn incidence and increasing sun protective practices in the population. However, sunburn from excessive ultraviolet radiation (UVR) remains common. To reduce sunburn incidence, it is important to examine those individuals who experience unintended sunburn. This study aims to use data from the NZ Triennial Sun Protection Survey to describe respondents who were not intending to tan but were sunburnt after outdoor UVR exposure. Information on sociodemographics, concurrent weather conditions, sun protection attitudes and knowledge, and outdoor behaviour was also collected. The results showed 13.5% of respondents' experienced unintended sunburn during the survey weekend but had not attempted to obtain a tan that summer. Respondents who reported unintended sunburn were more likely than others to have been near water and in unshaded areas, used sunscreen, had higher SunSmart knowledge scores, had lower positive attitudes towards tanning, and were outdoors for a longer duration with less body coverage. As sunburn was unintended these respondents' outdoor sun protective behaviours may be amenable to change. Future public health initiatives should focus on increasing sun protection (clothing and shade) and reducing potential barriers to sun protection.

  6. Regulatory T Cells: Potential Target in Anticancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    Chi-Mou Juang

    2007-09-01

    Full Text Available The concept of regulatory T cells was first described in the early 1970s, and regulatory T cells were called suppressive T cells at that time. Studies that followed have demonstrated that these suppressive T cells negatively regulated tumor immunity and contributed to tumor growth in mice. Despite the importance of these studies, there was extensive skepticism about the existence of these cells, and the concept of suppressive T cells left the center stage of immunologic research for decades. Interleukin-2 receptor α-chain, CD25, was first demonstrated in 1995 to serve as a phenotypic marker for CD4+ regulatory cells. Henceforth, research of regulatory T cells boomed. Regulatory T cells are involved in the pathogenesis of cancer, autoimmune disease, transplantation immunology, and immune tolerance in pregnancy. Recent evidence has demonstrated that regulatory T cellmediated immunosuppression is one of the crucial tumor immune evasion mechanisms and the main obstacle of successful cancer immunotherapy. The mechanism and the potential clinical application of regulatory T cells in cancer immunotherapy are discussed.

  7. Identification of the epigenetic reader CBX2 as a potential drug target in advanced prostate cancer.

    Science.gov (United States)

    Clermont, Pier-Luc; Crea, Francesco; Chiang, Yan Ting; Lin, Dong; Zhang, Amy; Wang, James Z L; Parolia, Abhijit; Wu, Rebecca; Xue, Hui; Wang, Yuwei; Ding, Jiarui; Thu, Kelsie L; Lam, Wan L; Shah, Sohrab P; Collins, Colin C; Wang, Yuzhuo; Helgason, Cheryl D

    2016-01-01

    While localized prostate cancer (PCa) can be effectively cured, metastatic disease inevitably progresses to a lethal state called castration-resistant prostate cancer (CRPC). Emerging evidence suggests that aberrant epigenetic repression by the polycomb group (PcG) complexes fuels PCa progression, providing novel therapeutic opportunities. In the search for potential epigenetic drivers of CRPC, we analyzed the molecular profile of PcG members in patient-derived xenografts and clinical samples. Overall, our results identify the PcG protein and methyl-lysine reader CBX2 as a potential therapeutic target in advanced PCa. We report that CBX2 was recurrently up-regulated in metastatic CRPC and that elevated CBX2 expression was correlated with poor clinical outcome in PCa cohorts. Furthermore, CBX2 depletion abrogated cell viability and induced caspase 3-mediated apoptosis in metastatic PCa cell lines. Mechanistically explaining this phenotype, microarray analysis in CBX2-depleted cells revealed that CBX2 controls the expression of many key regulators of cell proliferation and metastasis. Taken together, this study provides the first evidence that CBX2 inhibition induces cancer cell death, positioning CBX2 as an attractive drug target in lethal CRPC.

  8. Enhanced Delivery of Gold Nanoparticles with Therapeutic Potential for Targeting Human Brain Tumors

    Science.gov (United States)

    Etame, Arnold B.

    The blood brain barrier (BBB) remains a major challenge to the advancement and application of systemic anti-cancer therapeutics into the central nervous system. The structural and physiological delivery constraints of the BBB significantly limit the effectiveness of conventional chemotherapy, thereby making systemic administration a non-viable option for the vast majority of chemotherapy agents. Furthermore, the lack of specificity of conventional systemic chemotherapy when applied towards malignant brain tumors remains a major shortcoming. Hence novel therapeutic strategies that focus both on targeted and enhanced delivery across the BBB are warranted. In recent years nanoparticles (NPs) have emerged as attractive vehicles for efficient delivery of targeted anti-cancer therapeutics. In particular, gold nanoparticles (AuNPs) have gained prominence in several targeting applications involving systemic cancers. Their enhanced permeation and retention within permissive tumor microvasculature provide a selective advantage for targeting. Malignant brain tumors also exhibit transport-permissive microvasculature secondary to blood brain barrier disruption. Hence AuNPs may have potential relevance for brain tumor targeting. However, the permeation of AuNPs across the BBB has not been well characterized, and hence is a potential limitation for successful application of AuNP-based therapeutics within the central nervous system (CNS). In this dissertation, we designed and characterized AuNPs and assessed the role of polyethylene glycol (PEG) on the physical and biological properties of AuNPs. We established a size-dependent permeation profile with respect to core size as well as PEG length when AuNPs were assessed through a transport-permissive in-vitro BBB. This study was the first of its kind to systematically examine the influence of design on permeation of AuNPs through transport-permissive BBB. Given the significant delivery limitations through the non

  9. Assessing Potential Impact of Bt Eggplants on Non-Target Arthropods in the Philippines

    Science.gov (United States)

    Navasero, Mario V.; Candano, Randolph N.; Hautea, Desiree M.; Hautea, Randy A.; Shotkoski, Frank A.; Shelton, Anthony M.

    2016-01-01

    Studies on potential adverse effects of genetically engineered crops are part of an environmental risk assessment that is required prior to the commercial release of these crops. Of particular concern are non-target organisms (NTOs) that provide important ecosystem services. Here, we report on studies conducted in the Philippines over three cropping seasons with Bt eggplants expressing Cry1Ac for control of the eggplant fruit and shoot borer (EFSB), Leucinodes orbonalis, to examine potential effects on field abundance, community composition, structure and biodiversity of NTO’s, particularly non-target arthropod (NTA) communities. We document that many arthropod taxa are associated with Bt eggplants and their non-Bt comparators and that the number of taxa and their densities varied within season and across trials. However, we found few significant differences in seasonal mean densities of arthropod taxa between Bt and non-Bt eggplants. As expected, a lower abundance of lepidopteran pests was detected in Bt eggplants. Higher abundance of a few non-target herbivores was detected in non-Bt eggplants as were a few non-target beneficials that might control them. Principal Response Curve (PRC) analyses showed no statistically significant impact of Bt eggplants on overall arthropod communities through time in any season. Furthermore, we found no significant adverse impacts of Bt eggplants on species abundance, diversity and community dynamics, particularly for beneficial NTAs. These results support our previous studies documenting that Bt eggplants can effectively and selectively control the main pest of eggplant in Asia, the EFSB. The present study adds that it can do so without adverse effects on NTAs. Thus, Bt eggplants can be a foundational component for controlling EFSB in an Integrated Pest Management (IPM) program and dramatically reduce dependence on conventional insecticides. PMID:27798662

  10. A resource of potential drug targets and strategic decision-making for obstructive sleep apnoea pharmacotherapy.

    Science.gov (United States)

    Horner, Richard L; Grace, Kevin P; Wellman, Andrew

    2017-07-01

    There is currently no pharmacotherapy for obstructive sleep apnoea (OSA) but there is no principled a priori reason why there should not be one. This review identifies a rational decision-making strategy with the necessary logical underpinnings that any reasonable approach would be expected to navigate to develop a viable pharmacotherapy for OSA. The process first involves phenotyping an individual to quantify and characterize the critical predisposing factor(s) to their OSA pathogenesis and identify, a priori, if the patient is likely to benefit from a pharmacotherapy that targets those factors. We then identify rational strategies to manipulate those critical predisposing factor(s), and the barriers that have to be overcome for success of any OSA pharmacotherapy. A new analysis then identifies candidate drug targets to manipulate the upper airway motor circuitry for OSA pharmacotherapy. The first conclusion is that there are two general pharmacological approaches for OSA treatment that are of the most potential benefit and are practically realistic, one being fairly intuitive but the second perhaps less so. The second conclusion is that after identifying the critical physiological obstacles to OSA pharmacotherapy, there are current therapeutic targets of high interest for future development. The final analysis provides a tabulated resource of 'druggable' targets that are relatively restricted to the circuitry controlling the upper airway musculature, with these candidate targets being of high priority for screening and further study. We also emphasize that a pharmacotherapy may not cure OSA per se, but may still be a useful adjunct to improve the effectiveness of, and adherence to, other treatment mainstays. © 2017 The Authors. Respirology published by John Wiley & Sons Australia, Ltd on behalf of Asian Pacific Society of Respirology.

  11. Upregulation of MARCKS in kidney cancer and its potential as a therapeutic target.

    Science.gov (United States)

    Chen, C-H; Fong, L W R; Yu, E; Wu, R; Trott, J F; Weiss, R H

    2017-06-22

    Targeted therapeutics, such as those abrogating hypoxia inducible factor (HIF)/vascular endothelial growth factor signaling, are initially effective against kidney cancer (or renal cell carcinoma, RCC); however, drug resistance frequently occurs via subsequent activation of alternative pathways. Through genome-scale integrated analysis of the HIF-α network, we identified the major protein kinase C substrate MARCKS (myristoylated alanine-rich C kinase substrate) as a potential target molecule for kidney cancer. In a screen of nephrectomy samples from 56 patients with RCC, we found that MARCKS expression and its phosphorylation are increased and positively correlate with tumor grade. Genetic and pharmacologic suppression of MARCKS in high-grade RCC cell lines in vitro led to a decrease in cell proliferation and migration. We further demonstrated that higher MARCKS expression promotes growth and angiogenesis in vivo in an RCC xenograft tumor. MARCKS acted upstream of the AKT/mTOR pathway, activating HIF-target genes, notably vascular endothelial growth factor-A. Following knockdown of MARCKS in RCC cells, the IC50 of the multikinase inhibitor regorafenib was reduced. Surprisingly, attenuation of MARCKS using the MPS (MARCKS phosphorylation site domain) peptide synergistically interacted with regorafenib treatment and decreased survival of kidney cancer cells through inactivation of AKT and mTOR. Our data suggest a major contribution of MARCKS to kidney cancer growth and provide an alternative therapeutic strategy of improving the efficacy of multikinase inhibitors.

  12. Review article: transient receptor potential channels as possible therapeutic targets in irritable bowel syndrome.

    Science.gov (United States)

    Beckers, A B; Weerts, Z Z R M; Helyes, Z; Masclee, A A M; Keszthelyi, D

    2017-11-01

    Abdominal pain in irritable bowel syndrome (IBS) remains challenging to treat effectively. Researchers have attempted to elucidate visceral nociceptive processes in order to guide treatment development. Transient receptor potential (TRP) channels have been implied in the generation (TRPV1, TRPV4, TRPA1) and inhibition (TRPM8) of visceral pain signals. Pathological changes in their functioning have been demonstrated in inflammatory conditions, and appear to be present in IBS as well. To provide a comprehensive review of the current literature on TRP channels involved in visceral nociception. In particular, we emphasise the clinical implications of these nociceptors in the treatment of IBS. Evidence to support this review was obtained from an electronic database search via PubMed using the search terms "visceral nociception," "visceral hypersensitivity," "irritable bowel syndrome" and "transient receptor potential channels." After screening the abstracts the articles deemed relevant were cross-referenced for additional manuscripts. Recent studies have resulted in significant advances in our understanding of TRP channel mediated visceral nociception. The diversity of TRP channel sensitization pathways is increasingly recognised. Endogenous TRP agonists, including poly-unsaturated fatty acid metabolites and hydrogen sulphide, have been implied in augmented visceral pain generation in IBS. New potential targets for treatment development have been identified (TRPA1 and TRPV4,) and alternative means of affecting TRP channel signalling (partial antagonists, downstream targeting and RNA-based therapy) are currently being explored. The improved understanding of mechanisms involved in visceral nociception provides a solid basis for the development of new treatment strategies for abdominal pain in IBS. © 2017 John Wiley & Sons Ltd.

  13. Targeted Evolution of Embedded Librarian Services: Providing Mobile Reference and Instruction Services Using iPads.

    Science.gov (United States)

    Stellrecht, Elizabeth; Chiarella, Deborah

    2015-01-01

    The University at Buffalo Health Sciences Library provides reference and instructional services to support research, curricular, and clinical programs of the University at Buffalo. With funding from an NN/LM MAR Technology Improvement Award, the University at Buffalo Health Sciences Library (UBHSL) purchased iPads to develop embedded reference and educational services. Usage statistics were collected over a ten-month period to measure the frequency of iPad use for mobile services. While this experiment demonstrates that the iPad can be used to meet the library user's needs outside of the physical library space, this article will also offer advice for others who are considering implementing their own program.

  14. Integrated network analysis reveals potentially novel molecular mechanisms and therapeutic targets of refractory epilepsies.

    Directory of Open Access Journals (Sweden)

    Hongwei Chu

    Full Text Available Epilepsy is a complex neurological disorder and a significant health problem. The pathogenesis of epilepsy remains obscure in a significant number of patients and the current treatment options are not adequate in about a third of individuals which were known as refractory epilepsies (RE. Network medicine provides an effective approach for studying the molecular mechanisms underlying complex diseases. Here we integrated 1876 disease-gene associations of RE and located those genes to human protein-protein interaction (PPI network to obtain 42 significant RE-associated disease modules. The functional analysis of these disease modules showed novel molecular pathological mechanisms of RE, such as the novel enriched pathways (e.g., "presynaptic nicotinic acetylcholine receptors", "signaling by insulin receptor". Further analysis on the relationships between current drug targets and the RE-related disease genes showed the rational mechanisms of most antiepileptic drugs. In addition, we detected ten potential novel drug targets (e.g., KCNA1, KCNA4-6, KCNC3, KCND2, KCNMA1, CAMK2G, CACNB4 and GRM1 located in three RE related disease modules, which might provide novel insights into the new drug discovery for RE therapy.

  15. PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database.

    Science.gov (United States)

    Wang, Xia; Shen, Yihang; Wang, Shiwei; Li, Shiliang; Zhang, Weilin; Liu, Xiaofeng; Lai, Luhua; Pei, Jianfeng; Li, Honglin

    2017-07-03

    The PharmMapper online tool is a web server for potential drug target identification by reversed pharmacophore matching the query compound against an in-house pharmacophore model database. The original version of PharmMapper includes more than 7000 target pharmacophores derived from complex crystal structures with corresponding protein target annotations. In this article, we present a new version of the PharmMapper web server, of which the backend pharmacophore database is six times larger than the earlier one, with a total of 23 236 proteins covering 16 159 druggable pharmacophore models and 51 431 ligandable pharmacophore models. The expanded target data cover 450 indications and 4800 molecular functions compared to 110 indications and 349 molecular functions in our last update. In addition, the new web server is united with the statistically meaningful ranking of the identified drug targets, which is achieved through the use of standard scores. It also features an improved user interface. The proposed web server is freely available at http://lilab.ecust.edu.cn/pharmmapper/. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. The MCT4 Gene: A Novel, Potential Target for Therapy of Advanced Prostate Cancer.

    Science.gov (United States)

    Choi, Stephen Yiu Chuen; Xue, Hui; Wu, Rebecca; Fazli, Ladan; Lin, Dong; Collins, Colin C; Gleave, Martin E; Gout, Peter W; Wang, Yuzhuo

    2016-06-01

    The management of castration-resistant prostate cancer (CRPC) is a major challenge in the clinic. Androgen receptor signaling-directed strategies are not curative in CRPC therapy, and new strategies targeting alternative, key cancer properties are needed. Using reprogrammed glucose metabolism (aerobic glycolysis), cancer cells typically secrete excessive amounts of lactic acid into their microenvironment, promoting cancer development, survival, and progression. Cellular lactic acid secretion is thought to be predominantly mediated by MCT4, a plasma membrane transporter protein. As such, the MCT4 gene provides a unique, potential therapeutic target for cancer. A tissue microarray of various Gleason grade human prostate cancers was stained for MCT4 protein. Specific, MCT4-targeting antisense oligonucleotides (MCT4 ASO) were designed and candidate MCT4 ASOs checked for effects on (i) MCT4 expression, lactic acid secretion/content, glucose consumption, glycolytic gene expression, and proliferation of human CRPC cells and (ii) growth of PC-3 tumors in nude mice. Elevated MCT4 expression was associated with human CRPC and an earlier time to relapse. The treatment of PC-3, DU145, and C4-2 CRPC cultures with candidate MCT4 ASOs led to marked inhibition of MCT4 expression, lactic acid secretion, to increased intracellular lactic acid levels, and markedly reduced aerobic glycolysis and cell proliferation. Treatment of PC-3 tumor-bearing nude mice with the MCT4 ASOs markedly inhibited tumor growth without inducing major host toxicity. MCT4-targeting ASOs that inhibit lactic acid secretion may be useful for therapy of CRPC and other cancers, as they can interfere with reprogrammed energy metabolism of cancers, an emerging hallmark of cancer. Clin Cancer Res; 22(11); 2721-33. ©2016 AACR. ©2016 American Association for Cancer Research.

  17. Identification of thioaptamer ligand against E-selectin: potential application for inflamed vasculature targeting.

    Directory of Open Access Journals (Sweden)

    Aman P Mann

    Full Text Available Active targeting of a drug carrier to a specific target site is crucial to provide a safe and efficient delivery of therapeutics and imaging contrast agents. E-selectin expression is induced on the endothelial cell surface of vessels in response to inflammatory stimuli but is absent in the normal vessels. Thus, E-selectin is an attractive molecular target, and high affinity ligands for E-selectin could be powerful tools for the delivery of therapeutics and/or imaging agents to inflamed vessels. In this study, we identified a thiophosphate modified aptamer (thioaptamer, TA against E-selectin (ESTA-1 by employing a two-step selection strategy: a recombinant protein-based TA binding selection from a combinatorial library followed by a cell-based TA binding selection using E-selectin expressing human microvascular endothelial cells. ESTA-1 selectively bound to E-selectin with nanomolar binding affinity (K(D = 47 nM while exhibiting minimal cross reactivity to P- and L-selectin. Furthermore, ESTA-1 binding to E-selectin on the endothelial cells markedly antagonized the adhesion (over 75% inhibition of sLe(x positive HL-60 cells at nanomolar concentration. ESTA-1 also bound specifically to the inflamed tumor-associated vasculature of human carcinomas derived from breast, ovarian, and skin but not to normal organs, and this binding was highly associated with the E-selectin expression level. Similarly, intravenously injected ESTA-1 demonstrated distinct binding to the tumor vasculature in a breast cancer xenograft model. Together, our data substantiates the discovery of a thioaptamer (ESTA-1 that binds to E-selectin with high affinity and specificity, thereby highlighting the potential application of ESTA-1 for E-selectin targeted delivery.

  18. Plasma biomarkers in juvenile marine fish provide evidence for endocrine modulation potential of organotin compounds.

    Science.gov (United States)

    Min, Byung Hwa; Kim, Bo-Mi; Kim, Moonkoo; Kang, Jung-Hoon; Jung, Jee-Hyun; Rhee, Jae-Sung

    2018-08-01

    Organotin compounds, such as tributyltin (TBT) and triphenyltin (TPT), have been widely used to control marine fouling. Here, we show that organotin stimulation reduces the hormone levels in the plasma of two economically important aquaculture fish. Blood plasma samples were collected from juvenile red seabream and black rockfish exposed to environmentally realistic concentrations of TBT and TPT for 14 days. The levels of two plasma biomarkers, namely the yolk protein precursor vitellogenin (VTG) and the sex steroid 17β-estradiol (E2), were measured to determine the endocrine disrupting potential of the organotin compounds. Both organotin compounds were dose-dependently accumulated in the blood of two fish. Exposure to waterborne TBT and TBT significantly decreased the plasma VTG levels in both the juvenile fish in a dose-dependent manner. In contrast, the treatment with E2, a well-known VTG inducer, significantly increased the plasma VTG levels in both the fish. In addition, the mRNA levels of vtg were also downregulated in the liver tissues of both the fish at 100 and/or 1000 ng L -1 of TBT or TPT exposure. The plasma E2 titers were significantly suppressed at 100 and/or 1000 ng L -1 of TBT or TPT exposure for 14 days compared to their titer in the control. Since estrogen directly regulates vtg gene expression and VTG synthesis, our results reveal the endocrine disrupting potential of organotin compounds, and subsequently the endocrine modulation at early stage of fish can trigger further fluctuations in sexual differentiation, maturation, sex ration or egg production. In addition, the results demonstrate their effects on non-target organisms, particularly on animals reared in aquaculture and fisheries. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. [Willingness of potential service suppliers to provide cancer screening in urban China].

    Science.gov (United States)

    Mao, A Y; Shi, J F; Qiu, W Q; Dong, P; Sun, Z X; Huang, H Y; Sun, X J; Liu, G X; Wang, D B; Bai, Y N; Liao, X Z; Ren, J S; Guo, L W; Lan, L; Zhou, Q; Zhou, J Y; Yang, L; Wang, J L; Qin, M F; Zhang, Y Z; Song, B B; Xing, X J; Zhu, L; Mai, L; Du, L B; Liu, Y Q; Lou, P A; Cai, B; Sun, X H; Wu, S L; Qi, X; Zhang, K; He, J; Dai, M

    2018-02-10

    Objective: Based on the investment for potential suppliers of cancer screening services, we assessed the reasons that affecting their participation motivation related to the long-term sustainability of cancer screening in China. Methods: Hospitals that had never been involved in any national level cancer screening project were selected by using the convenient sampling method within the 16 project cities of Cancer Screening Program in Urban China (CanSPUC) with 1 or 2 hospitals for each city. All the managers from the institutional/department level and professional staff working and providing screening services in these hospitals, were interviewed by paper-based questionnaire. SAS 9.4 was used for logical verification and data analysis. Results: A total of 31 hospitals (18 hospitals at the third level and, 13 hospitals at the second level) and 2 201 staff (508 hospital and clinic unit managers, 1 693 professional staff) completed the interview. All the hospitals guaranteed their potential capacity in service providing. 92.5% hospital managers showed strong willingness in providing cancer screening services, while 68.3% of them declared that the project fund-raising function was the responsibility of the government. For professional staff, their prospect gains from providing screening service would include development on professional skills (72.4%) and material rewards (46.8%). Their main worries would include extra work for CanSPUC might interfere their routine work (42.1%) plus inadequate compensation (41.8%). Medians of the prospect compensation for extra work ran between 20 to 90 Chinese Yuan per screening item respectively. For all the screening items, workers from the third-level hospitals expected their compensation to be twice as much of those working at the second level hospitals. Conclusion: Professional capacity building and feasible material incentive seemed to be the two key factors that influenced the sustainability and development of the programs.

  20. Directional R-Loop Formation by the CRISPR-Cas Surveillance Complex Cascade Provides Efficient Off-Target Site Rejection

    Directory of Open Access Journals (Sweden)

    Marius Rutkauskas

    2015-03-01

    Full Text Available CRISPR-Cas systems provide bacteria and archaea with adaptive immunity against foreign nucleic acids. In type I CRISPR-Cas systems, invading DNA is detected by a large ribonucleoprotein surveillance complex called Cascade. The crRNA component of Cascade is used to recognize target sites in foreign DNA (protospacers by formation of an R-loop driven by base-pairing complementarity. Using single-molecule supercoiling experiments with near base-pair resolution, we probe here the mechanism of R-loop formation and detect short-lived R-loop intermediates on off-target sites bearing single mismatches. We show that R-loops propagate directionally starting from the protospacer-adjacent motif (PAM. Upon reaching a mismatch, R-loop propagation stalls and collapses in a length-dependent manner. This unambiguously demonstrates that directional zipping of the R-loop accomplishes efficient target recognition by rapidly rejecting binding to off-target sites with PAM-proximal mutations. R-loops that reach the protospacer end become locked to license DNA degradation by the auxiliary Cas3 nuclease/helicase without further target verification.

  1. Potential prospects of nanomedicine for targeted therapeutics in inflammatory bowel diseases.

    Science.gov (United States)

    Pichai, Madharasi V A; Ferguson, Lynnette R

    2012-06-21

    Inflammatory bowel diseases (IBDs) such as Crohn's disease are highly debilitating. There are inconsistencies in response to and side effects in the current conventional medications, failures in adequate drug delivery, and the lack of therapeutics to offer complete remission in the presently available treatments of IBD. This suggests the need to explore beyond the horizons of conventional approaches in IBD therapeutics. This review examines the arena of the evolving IBD nanomedicine, studied so far in animal and in vitro models, before comprehensive clinical testing in humans. The investigations carried out so far in IBD models have provided substantial evidence of the nanotherapeutic approach as having the potential to overcome some of the current drawbacks to conventional IBD therapy. We analyze the pros and cons of nanotechnology in IBD therapies studied in different models, aimed at different targets and mechanisms of IBD pathogenesis, in an attempt to predict its possible impact in humans.

  2. Local self-government potential in sustainable development of region providing

    Directory of Open Access Journals (Sweden)

    O. Y. Bobrovska

    2016-06-01

    Full Text Available Ongoing decentralization of power in Ukraine enhances abilities of each region to independently choose their development path and use their own resources. It requires reviewing and updating of mechanisms and instruments of local government and public administration projected to increase the sustainability of development. This necessitates further research of issues of this extremely complex phenomenon. The problem of sustainable development of the regions and their internal capacities over the past decades has attracted the attention of many Ukrainian scientists. They considered the question of the essence and characteristics of this phenomenon, categorical apparatus, and formed approaches to the assessment of the state etc. Existing scientific researchers provided an opportunity for better understanding and deepening of the issues of processes of development formation, becoming the basis for further research. The purpose of the article is the definition of the potential of local governments in the sustainable development of the region, finding approaches for improving management and rational use of resources to enhance the regional development. Development of regions is the scope of display of results and public nature of local self-government. However, the results which are achieved by regional development and its level of sustainability do not meet the needs of society. The results of ongoing reforms, their economic, environmental and social significance do not correspond to spent resources and efforts of society. Strategies of regions for the transition to sustainable development are not systematic. To search for answers and ways to address the issues of the article attempts to identify common root causes in the organization of local government, the underlying increase its impact in the direction of creating conditions and ensure the flow of sustainable regional development through research and their potential influential factors. It is

  3. Assessing a nephrology-focused YouTube channel's potential to educate health care providers.

    Science.gov (United States)

    Desai, Tejas; Sanghani, Vivek; Fang, Xiangming; Christiano, Cynthia; Ferris, Maria

    2013-01-01

    YouTube has emerged as a potential teaching tool. Studies of the teaching potential of YouTube videos have not addressed health care provider (HCP) satisfaction; a necessary prerequisite for any teaching tool. We conducted a 4-month investigation to determine HCP satisfaction with a nephrology-specific YouTube channel. The Nephrology On-Demand YouTube channel was analyzed from January 1 through April 30, 2011. Sixty-minute nephrology lectures at East Carolina University were compressed into 10-minute videos and uploaded to the channel. HCPs were asked to answer a 5-point Likert questionnaire regarding the accuracy, currency, objectivity and usefulness of the digital format of the teaching videos. Means, standard deviations and 2-sided chi-square testing were performed to analyze responses. Over 80% of HCPs considered the YouTube channel to be accurate, current and objective. A similar percentage considered the digital format useful despite the compression of videos and lack of audio. The nephrology-specific YouTube channel has the potential to educate HCPs of various training backgrounds. Additional studies are required to determine if such specialty-specific channels can improve knowledge acquisition and retention.

  4. Potential Diagnostic, Prognostic and Therapeutic Targets of MicroRNAs in Human Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Ming-Ming Tsai

    2016-06-01

    Full Text Available Human gastric cancer (GC is characterized by a high incidence and mortality rate, largely because it is normally not identified until a relatively advanced stage owing to a lack of early diagnostic biomarkers. Gastroscopy with biopsy is the routine method for screening, and gastrectomy is the major therapeutic strategy for GC. However, in more than 30% of GC surgical patients, cancer has progressed too far for effective medical resection. Thus, useful biomarkers for early screening or detection of GC are essential for improving patients’ survival rate. MicroRNAs (miRNAs play an important role in tumorigenesis. They contribute to gastric carcinogenesis by altering the expression of oncogenes and tumor suppressors. Because of their stability in tissues, serum/plasma and other body fluids, miRNAs have been suggested as novel tumor biomarkers with suitable clinical potential. Recently, aberrantly expressed miRNAs have been identified and tested for clinical application in the management of GC. Aberrant miRNA expression profiles determined with miRNA microarrays, quantitative reverse transcription-polymerase chain reaction and next-generation sequencing approaches could be used to establish sample specificity and to identify tumor type. Here, we provide an up-to-date summary of tissue-based GC-associated miRNAs, describing their involvement and that of their downstream targets in tumorigenic and biological processes. We examine correlations among significant clinical parameters and prognostic indicators, and discuss recurrence monitoring and therapeutic options in GC. We also review plasma/serum-based, GC-associated, circulating miRNAs and their clinical applications, focusing especially on early diagnosis. By providing insights into the mechanisms of miRNA-related tumor progression, this review will hopefully aid in the identification of novel potential therapeutic targets.

  5. Kallikrein-related peptidase 7 is a potential target for the treatment of pancreatic cancer

    Science.gov (United States)

    Zheng, Jun; Zhang, Ding; Liu, Wei; Zheng, Wei Hong; Li, Xiao Song; Yao, Ru Cheng; Wang, Fangyu; Liu, Sen; Tan, Xiao

    2018-01-01

    Pancreatic cancer is one of the deadliest cancers with very poor prognosis, and the five-year survival rate of the patients is less than 5% after diagnosis. Kallikrein-related peptidases (KLKs) belong to a serine protease family with 15 members that play important roles in cellular physiological behavior and diseases. The high expression level of KLK7 in pancreatic cancer tissues is considered to be a marker for the poor prognosis of this disease. In this work, we set out to investigate whether KLK7 could be a target for the treatment of pancreatic cancer. Short hairpin RNAs (shRNAs) were designed and constructed in lentivirus to knock down KLK7 in pancreatic cancer cell line PANC-1, and the real time cellular analysis (RTCA) was used to evaluate cell proliferation, migration and invasion abilities. Small molecules inhibiting KLK7 were discovered by computer-aided drug screening and used to inhibit PANC-1 cells. Our results confirmed that KLK7 is significantly up-regulated in pancreatic cancer tissue, and knocking down or inhibiting KLK7 efficiently inhibited the proliferation, migration and invasion of pancreatic cancer cells. This study suggested that KLK7 could be a potential chemotherapy target for treatment of pancreatic cancer, which would provide us a novel strategy for the treatment of this disease. PMID:29560118

  6. Inflammatory cell phenotypes in AAAs: their role and potential as targets for therapy.

    Science.gov (United States)

    Dale, Matthew A; Ruhlman, Melissa K; Baxter, B Timothy

    2015-08-01

    Abdominal aortic aneurysms (AAAs) are characterized by chronic inflammatory cell infiltration. AAA is typically an asymptomatic disease and caused ≈15 000 deaths annually in the United States. Previous studies have examined both human and murine aortic tissue for the presence of various inflammatory cell types. Studies show that in both human and experimental AAAs, prominent inflammatory cell infiltration, such as CD4(+) T cells and macrophages, occurs in the damaged aortic wall. These cells have the ability to undergo phenotypic modulation based on microenvironmental cues, potentially influencing disease progression. Proinflammatory CD4(+) T cells and classically activated macrophages dominate the landscape of aortic infiltrates. The skew to proinflammatory phenotypes alters disease progression and plays a role in causing chronic inflammation. The local cytokine production and presence of inflammatory mediators, such as extracellular matrix breakdown products, influence the uneven balance of the inflammatory infiltrate phenotypes. Understanding and developing new strategies that target the proinflammatory phenotype could provide useful therapeutic targets for a disease with no current pharmacological intervention. © 2015 American Heart Association, Inc.

  7. Inflammatory cell phenotypes in AAAs; their role and potential as targets for therapy

    Science.gov (United States)

    Dale, Matthew A; Ruhlman, Melissa K.; Baxter, B. Timothy

    2015-01-01

    Abdominal aortic aneurysms are characterized by chronic inflammatory cell infiltration. AAA is typically an asymptomatic disease and caused approximately 15,000 deaths annually in the U.S. Previous studies have examined both human and murine aortic tissue for the presence of various inflammatory cell types. Studies show that in both human and experimental AAAs, prominent inflammatory cell infiltration, such as CD4+ T cells and macrophages, occurs in the damaged aortic wall. These cells have the ability to undergo phenotypic modulation based on microenvironmental cues, potentially influencing disease progression. Pro-inflammatory CD4+ T cells and classically activated macrophages dominate the landscape of aortic infiltrates. The skew to pro-inflammatory phenotypes alters disease progression and plays a role in causing chronic inflammation. The local cytokine production and presence of inflammatory mediators, such as extracellular matrix breakdown products, influence the uneven balance of the inflammatory infiltrate phenotypes. Understanding and developing new strategies that target the pro-inflammatory phenotype could provide useful therapeutic targets for a disease with no current pharmacological intervention. PMID:26044582

  8. A calcium-dependent protease as a potential therapeutic target for Wolfram syndrome.

    Science.gov (United States)

    Lu, Simin; Kanekura, Kohsuke; Hara, Takashi; Mahadevan, Jana; Spears, Larry D; Oslowski, Christine M; Martinez, Rita; Yamazaki-Inoue, Mayu; Toyoda, Masashi; Neilson, Amber; Blanner, Patrick; Brown, Cris M; Semenkovich, Clay F; Marshall, Bess A; Hershey, Tamara; Umezawa, Akihiro; Greer, Peter A; Urano, Fumihiko

    2014-12-09

    Wolfram syndrome is a genetic disorder characterized by diabetes and neurodegeneration and considered as an endoplasmic reticulum (ER) disease. Despite the underlying importance of ER dysfunction in Wolfram syndrome and the identification of two causative genes, Wolfram syndrome 1 (WFS1) and Wolfram syndrome 2 (WFS2), a molecular mechanism linking the ER to death of neurons and β cells has not been elucidated. Here we implicate calpain 2 in the mechanism of cell death in Wolfram syndrome. Calpain 2 is negatively regulated by WFS2, and elevated activation of calpain 2 by WFS2-knockdown correlates with cell death. Calpain activation is also induced by high cytosolic calcium mediated by the loss of function of WFS1. Calpain hyperactivation is observed in the WFS1 knockout mouse as well as in neural progenitor cells derived from induced pluripotent stem (iPS) cells of Wolfram syndrome patients. A small-scale small-molecule screen targeting ER calcium homeostasis reveals that dantrolene can prevent cell death in neural progenitor cells derived from Wolfram syndrome iPS cells. Our results demonstrate that calpain and the pathway leading its activation provides potential therapeutic targets for Wolfram syndrome and other ER diseases.

  9. Dystrophin Expressing Chimeric (DEC) Human Cells Provide a Potential Therapy for Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Siemionow, Maria; Cwykiel, Joanna; Heydemann, Ahlke; Garcia, Jesus; Marchese, Enza; Siemionow, Krzysztof; Szilagyi, Erzsebet

    2018-06-01

    Duchenne Muscular Dystrophy (DMD) is a progressive and lethal disease caused by mutations of the dystrophin gene. Currently no cure exists. Stem cell therapies targeting DMD are challenged by limited engraftment and rejection despite the use of immunosuppression. There is an urgent need to introduce new stem cell-based therapies that exhibit low allogenic profiles and improved cell engraftment. In this proof-of-concept study, we develop and test a new human stem cell-based approach to increase engraftment, limit rejection, and restore dystrophin expression in the mdx/scid mouse model of DMD. We introduce two Dystrophin Expressing Chimeric (DEC) cell lines created by ex vivo fusion of human myoblasts (MB) derived from two normal donors (MB N1 /MB N2 ), and normal and DMD donors (MB N /MB DMD ). The efficacy of fusion was confirmed by flow cytometry and confocal microscopy based on donor cell fluorescent labeling (PKH26/PKH67). In vitro, DEC displayed phenotype and genotype of donor parent cells, expressed dystrophin, and maintained proliferation and myogenic differentiation. In vivo, local delivery of both DEC lines (0.5 × 10 6 ) restored dystrophin expression (17.27%±8.05-MB N1 /MB N2 and 23.79%±3.82-MB N /MB DMD ) which correlated with significant improvement of muscle force, contraction and tolerance to fatigue at 90 days after DEC transplant to the gastrocnemius muscles (GM) of dystrophin-deficient mdx/scid mice. This study establishes DEC as a potential therapy for DMD and other types of muscular dystrophies.

  10. Crosstalk between bone niche and immune system: osteoimmunology signaling as a potential target for cancer treatment.

    Science.gov (United States)

    Criscitiello, Carmen; Viale, Giulia; Gelao, Lucia; Esposito, Angela; De Laurentiis, Michele; De Placido, Sabino; Santangelo, Michele; Goldhirsch, Aron; Curigliano, Giuseppe

    2015-02-01

    There is a well recognized link between the bone and the immune system and in recent years there has been a major effort to elucidate the multiple functions of the molecules expressed in both bone and immune cells. Several molecules that were initially identified and studied in the immune system have been shown to have essential functions also in the bone. An interdisciplinary field embracing immune and bone biology has been brought together and called "osteoimmunology". The co-regulation of the skeletal and immune systems strikingly exemplifies the extreme complexity of such an interaction. Their interdependency must be considered in designing therapeutic approaches for either of the two systems. In other words, it is necessary to think of the osteoimmune system as a complex physiological unit. Denosumab was originally introduced to specifically target bone resorption, but it is now under evaluation for its effect on the long term immune response. Similarly, our current and still growing knowledge of the intimate link between the immune system and bone will be beneficial for the safety of drugs targeting either of these integrated systems. Given the large number of molecules exerting functions on both the skeletal and immune systems, osteoimmunological understanding is becoming increasingly important. Both bone and immune systems are frequently disrupted in cancer; and they may be crucial in regulating tumor growth and progression. Some therapies - such as bisphosphonates and receptor activator of NF-κB ligand (RANKL) targeted drugs - that aim at reducing pathologic osteolysis in cancer may interact with the immune system, thus providing potential favorable effects on survival. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. A framework provided an outline toward the proper evaluation of potential screening strategies.

    Science.gov (United States)

    Adriaensen, Wim J; Matheï, Cathy; Buntinx, Frank J; Arbyn, Marc

    2013-06-01

    Screening tests are often introduced into clinical practice without proper evaluation, despite the increasing awareness that screening is a double-edged sword that can lead to either net benefits or harms. Our objective was to develop a comprehensive framework for the evaluation of new screening strategies. Elaborating on the existing concepts proposed by experts, a stepwise framework is proposed to evaluate whether a potential screening test can be introduced as a screening strategy into clinical practice. The principle of screening strategy evaluation is illustrated for cervical cancer, which is a template for screening because of the existence of an easily detectable and treatable precursor lesion. The evaluation procedure consists of six consecutive steps. In steps 1-4, the technical accuracy, place of the test in the screening pathway, diagnostic accuracy, and longitudinal sensitivity and specificity of the screening test are assessed. In steps 5 and 6, the impact of the screening strategy on the patient and population levels, respectively, is evaluated. The framework incorporates a harm and benefit trade-off and cost-effectiveness analysis. Our framework provides an outline toward the proper evaluation of potential screening strategies before considering implementation. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Identification of Cell Surface Proteins as Potential Immunotherapy Targets in 12 Pediatric Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Orentas, Rimas J. [Immunology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States); Yang, James J. [Immunology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States); Oncogenomics Section, Advanced Technology Center, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Gaithersburg, MD (United States); Wen, Xinyu; Wei, Jun S. [Oncogenomics Section, Advanced Technology Center, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Gaithersburg, MD (United States); Mackall, Crystal L. [Immunology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States); Khan, Javed, E-mail: rimas.orentas@nih.gov [Oncogenomics Section, Advanced Technology Center, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Gaithersburg, MD (United States)

    2012-12-17

    Technological advances now allow us to rapidly produce CARs and other antibody-derived therapeutics targeting cell surface receptors. To maximize the potential of these new technologies, relevant extracellular targets must be identified. The Pediatric Oncology Branch of the NCI curates a freely accessible database of gene expression data for both pediatric cancers and normal tissues, through which we have defined discrete sets of over-expressed transcripts in 12 pediatric cancer subtypes as compared to normal tissues. We coupled gene expression profiles to current annotation databases (i.e., Affymetrix, Gene Ontology, Entrez Gene), in order to categorize transcripts by their sub-cellular location. In this manner we generated a list of potential immune targets expressed on the cell surface, ranked by their difference from normal tissue. Global differences from normal between each of the pediatric tumor types studied varied, indicating that some malignancies expressed transcript sets that were more highly diverged from normal tissues than others. The validity of our approach is seen by our findings for pre-B cell ALL, where targets currently in clinical trials were top-ranked hits (CD19, CD22). For some cancers, reagents already in development could potentially be applied to a new disease class, as exemplified by CD30 expression on sarcomas. Moreover, several potential new targets shared among several pediatric solid tumors are herein identified, such as MCAM (MUC18), metadherin (MTDH), and glypican-2 (GPC2). These targets have been identified at the mRNA level and are yet to be validated at the protein level. The safety of targeting these antigens has yet to be demonstrated and therefore the identified transcripts should be considered preliminary candidates for new CAR and therapeutic antibody targets. Prospective candidate targets will be evaluated by proteomic analysis including Westerns and immunohistochemistry of normal and tumor tissues.

  13. Metabolic analysis of radioresistant medulloblastoma stem-like clones and potential therapeutic targets.

    Directory of Open Access Journals (Sweden)

    Lue Sun

    Full Text Available Medulloblastoma is a fatal brain tumor in children, primarily due to the presence of treatment-resistant medulloblastoma stem cells. The energy metabolic pathway is a potential target of cancer therapy because it is often different between cancer cells and normal cells. However, the metabolic properties of medulloblastoma stem cells, and whether specific metabolic pathways are essential for sustaining their stem cell-like phenotype and radioresistance, remain unclear. We have established radioresistant medulloblastoma stem-like clones (rMSLCs by irradiation of the human medulloblastoma cell line ONS-76. Here, we assessed reactive oxygen species (ROS production, mitochondria function, oxygen consumption rate (OCR, energy state, and metabolites of glycolysis and tricarboxylic acid cycle in rMSLCs and parental cells. rMSLCs showed higher lactate production and lower oxygen consumption rate than parental cells. Additionally, rMSLCs had low mitochondria mass, low endogenous ROS production, and existed in a low-energy state. Treatment with the metabolic modifier dichloroacetate (DCA resulted in mitochondria dysfunction, glycolysis inhibition, elongated mitochondria morphology, and increased ROS production. DCA also increased radiosensitivity by suppression of the DNA repair capacity through nuclear oxidization and accelerated the generation of acetyl CoA to compensate for the lack of ATP. Moreover, treatment with DCA decreased cancer stem cell-like characters (e.g., CD133 positivity and sphere-forming ability in rMSLCs. Together, our findings provide insights into the specific metabolism of rMSLCs and illuminate potential metabolic targets that might be exploited for therapeutic benefit in medulloblastoma.

  14. HA/CD44 interactions as potential targets for cancer therapy

    Science.gov (United States)

    Misra, Suniti; Heldin, Paraskevi; Hascall, Vincent C.; Karamanos, Nikos K.; Skandalis, Spyros S.; Markwald, Roger R.; Ghatak, Shibnath

    2011-01-01

    It is becoming increasingly clear that signals generated in tumor microenvironments are crucial to tumor cell behavior, such as, survival progression, and metastasis. The establishment of these malignant behaviors requires that tumor cells acquire novel adhesion and migration properties to detach from their original sites for localizing into distant organs. CD44, an adhesion/homing molecule is a major receptor for the glycosaminoglycan hyaluronan, which is one of the major components of the tumor extracellular matrix (ECM). CD44, a multi structural and multifunctional molecule, detects changes in ECM components, and thus is well positioned to provide appropriate responses to changes in the microenvironment, i.e. engagement in cell-cell and cell-ECM interactions, cell traffic, lymph node homing, and presentation of growth factors/cytokines/chemokines to co-ordinate signaling events that enable the cell responses that change in the tissue environment. The potential involvement of CD44variants (CD44v), especially CD44v4-v7 and CD44v6-v9 in tumor progression was confirmed for many tumor types in numerous clinical studies. Down regulation of the standard CD44 isoform (CD44s) in colon cancer is postulated to result in increased tumorigenicity. CD44v-specific functions could be due to their higher binding affinity for hyaluronan than CD44s. Alternatively, CD44v-specific functions could be due to differences in associating molecules, which may bind selectively to the CD44v exon. This review summarizes how the interaction between hyaluronan and CD44v can serve as a potential target for cancer therapy, in particular how silencing the CD44v can target multiple metastatic tumors. PMID:21362138

  15. Assessing the economic potential of electric vehicles to provide ancillary services. The case of Germany

    Energy Technology Data Exchange (ETDEWEB)

    Schuller, Alexander; Rieger, Fabian [Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2013-09-15

    The Vehicle-to-Grid (V2G) concept is a promising possibility for the integration of electric vehicles (EVs) into the power grid. This article presents an economic evaluation of EVs participating in the ancillary service market (primary, secondary and tertiary regulation) for the case of Germany, based on a price data set from 2011 and 2012. We examine the economic potential of nine general options to participate in the regulation market based on real-life EV specifications, connection powers and regulation energy prices. Results show that in the most profitable case a maximum average yearly profit of 730.31 Euro per vehicle is possible for negative regulation with payment direction TSO to provider in the secondary regulation market. Furthermore a sensitivity analysis is performed for all of the analyzed participation scenarios in order to identify crucial parameters for a possible V2G implementation. Major parameters for the successful implementation of V2G are the provided power per vehicle, the time an EV is available to the grid and the variable energy storage costs it incurs.

  16. Development and evaluation of camptothecin loaded polymer stabilized nanoemulsion: Targeting potential in 4T1-breast tumour xenograft model.

    Science.gov (United States)

    Sugumaran, Abimanyu; Ponnusamy, Chandrasekar; Kandasamy, Palanivel; Krishnaswami, Venkateshwaran; Palanichamy, Rajaguru; Kandasamy, Ruckmani; Lakshmanan, Manikandan; Natesan, Subramanian

    2018-04-30

    Targeted delivery of anticancer agents is poised to improve cancer therapy, for which polymers can serve as targeting ligands or nanocarriers for chemotherapeutic agents. In this study, we have developed and evaluated the efficacy of a camptothecin (CPT)-loaded polymer stabilized nanoemulsion (PSNE) for the passive targeted delivery to breast cancer. Based on the pseudo-ternary phase diagrams, PSNEs were developed using capmul MCM:poloxamer 407 (4:1), solutol HS 15:simulsol P23 (1:2) and water. CPT polymer mixture was developed by solvent evaporation technique. The PSNEs were characterized for droplet size distribution, plasma protein adsorption, drug release, in-vivo targeting potential, hemolytic potential, cytotoxicity, genotoxicity, in-vivo biodistribution and CPT lactone ring stability. The developed PSNEs showed uniform droplet distribution, extended drug release (76.59±6.12% at 24h), acceptable hemolytic potential, significant cytotoxicity (IC 50 =176±4.3ng/mL) and genotoxicity against MCF-7 cancer cells but low DNA damage potential in human peripheral blood lymphocytes. The efficiency of PSNEs for the targeted delivery of CPT into the tumour regions was documented in 4T1-breast tumour xenografted BALB/c mice. In-vivo biodistribution study shows that 7105.84±568.46ng/g of CPT was passively targeted from PSNE to breast cancer tissue. About 80% of the lactone form was stable for 24h. Taken together, our study provides a promising strategy for developing PSNE-targeted drug delivery system for the breast cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Triggering receptor expressed on myeloid cells 2 (TREM2): a potential therapeutic target for Alzheimer disease?

    Science.gov (United States)

    Deming, Yuetiva; Li, Zeran; Benitez, Bruno A; Cruchaga, Carlos

    2018-06-20

    There are currently no effective therapeutics for Alzheimer disease (AD). Clinical trials targeting amyloid beta thus far have shown very little benefit and only in the earliest stages of disease. These limitations have driven research to identify alternative therapeutic targets, one of the most promising is the triggering receptor expressed on myeloid cells 2 (TREM2). Areas covered: Here, we review the literature to-date and discuss the potentials and pitfalls for targeting TREM2 as a potential therapeutic for AD. We focus on research in animal and cell models for AD and central nervous system injury models which may help in understanding the role of TREM2 in disease. Expert opinion: Studies suggest TREM2 plays a key role in AD pathology; however, results have been conflicting about whether TREM2 is beneficial or harmful. More research is necessary before designing TREM2-targeting therapies. Successful therapeutics will most likely be administered early in disease.

  18. Clinically targeted screening for congenital CMV - potential for integration into the National Hearing Screening Programme.

    Science.gov (United States)

    Kadambari, S; Luck, S; Davis, A; Williams, Ej; Berrington, J; Griffiths, Pd; Sharland, M

    2013-10-01

    Screening for a condition should only be undertaken if certain strict criteria are met. Congenital CMV (cCMV) is a leading cause of sensorineuronal hearing loss (SNHL) and meets many of these criteria, but is not currently screened for in the UK. Ganciclovir reduces CMV-induced progressive SNHL if treatment is begun in the first month of life. The Newborn Hearing Screening Programme (NHSP) has been shown to identify SNHL at the earliest possible age. The potential of integrating screening for cCMV into the NHSP is discussed to consolidate the link between screening, early diagnosis and management. The early diagnosis and treatment of cCMV may prevent a small proportion of late SNHL. In the absence of any screening programme, we provide evidence that clinically targeted screening through the NHSP is a potential option in the UK, enhancing the diagnostic pathway and enabling appropriate early treatment to reduce long-term morbidity. ©2013 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  19. Targeting Staphylococcus aureus Toxins: A Potential form of Anti-Virulence Therapy

    Directory of Open Access Journals (Sweden)

    Cin Kong

    2016-03-01

    Full Text Available Staphylococcus aureus is an opportunistic pathogen and the leading cause of a wide range of severe clinical infections. The range of diseases reflects the diversity of virulence factors produced by this pathogen. To establish an infection in the host, S. aureus expresses an inclusive set of virulence factors such as toxins, enzymes, adhesins, and other surface proteins that allow the pathogen to survive under extreme conditions and are essential for the bacteria’s ability to spread through tissues. Expression and secretion of this array of toxins and enzymes are tightly controlled by a number of regulatory systems. S. aureus is also notorious for its ability to resist the arsenal of currently available antibiotics and dissemination of various multidrug-resistant S. aureus clones limits therapeutic options for a S. aureus infection. Recently, the development of anti-virulence therapeutics that neutralize S. aureus toxins or block the pathways that regulate toxin production has shown potential in thwarting the bacteria’s acquisition of antibiotic resistance. In this review, we provide insights into the regulation of S. aureus toxin production and potential anti-virulence strategies that target S. aureus toxins.

  20. Identification of potential target genes of ROR-alpha in THP1 and HUVEC cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Gulec, Cagri, E-mail: cagri.gulec@gmail.com; Coban, Neslihan, E-mail: neslic@istanbul.edu.tr; Ozsait-Selcuk, Bilge, E-mail: ozsaitb@istanbul.edu.tr; Sirma-Ekmekci, Sema, E-mail: semasirma@gmail.com; Yildirim, Ozlem, E-mail: ozlm-yildirim@hotmail.com; Erginel-Unaltuna, Nihan, E-mail: nihanerginel@yahoo.com

    2017-04-01

    ROR-alpha is a nuclear receptor, activity of which can be modulated by natural or synthetic ligands. Due to its possible involvement in, and potential therapeutic target for atherosclerosis, we aimed to identify ROR-alpha target genes in monocytic and endothelial cell lines. We performed chromatin immunoprecipitation (ChIP) followed by tiling array (ChIP-on-chip) for ROR-alpha in monocytic cell line THP1 and endothelial cell line HUVEC. Following bioinformatic analysis of the array data, we tested four candidate genes in terms of dependence of their expression level on ligand-mediated ROR-alpha activity, and two of them in terms of promoter occupancy by ROR-alpha. Bioinformatic analyses of ChIP-on-chip data suggested that ROR-alpha binds to genomic regions near the transcription start site (TSS) of more than 3000 genes in THP1 and HUVEC. Potential ROR-alpha target genes in both cell types seem to be involved mainly in membrane receptor activity, signal transduction and ion transport. While SPP1 and IKBKA were shown to be direct target genes of ROR-alpha in THP1 monocytes, inflammation related gene HMOX1 and heat shock protein gene HSPA8 were shown to be potential target genes of ROR-alpha. Our results suggest that ROR-alpha may regulate signaling receptor activity, and transmembrane transport activity through its potential target genes. ROR-alpha seems also to play role in cellular sensitivity to environmental substances like arsenite and chloroprene. Although, the expression analyses have shown that synthetic ROR-alpha ligands can modulate some of potential ROR-alpha target genes, functional significance of ligand-dependent modulation of gene expression needs to be confirmed with further analyses.

  1. Critical analysis of the potential for therapeutic targeting of mammalian target of rapamycin (mTOR in gastric cancer

    Directory of Open Access Journals (Sweden)

    Inokuchi M

    2014-04-01

    Full Text Available Mikito Inokuchi,1 Keiji Kato,1 Kazuyuki Kojima,2 Kenichi Sugihara1 1Department of Surgical Oncology, 2Department of Minimally Invasive Surgery, Tokyo Medical and Dental University, Tokyo, Japan Abstract: Multidisciplinary treatment including chemotherapy has become the global standard of care for patients with metastatic gastric cancer (mGC; nonetheless, survival remains poor. Although many molecular-targeted therapies have been developed for various cancers, only anti-HER2 treatment has produced promising results in patients with mGC. Mammalian target of rapamycin (mTOR plays a key role in cell proliferation, antiapoptosis, and metastasis in signaling pathways from the tyrosine kinase receptor, and its activation has been demonstrated in gastric cancer (GC cells. This review discusses the clinical relevance of mTOR in GC and examines its potential as a therapeutic target in patients with mGC. Preclinical studies in animal models suggest that suppression of the mTOR pathway inhibits the proliferation of GC cells and delays tumor progression. The mTOR inhibitor everolimus has been evaluated as second- or third-line treatment in clinical trials. Adverse events were well tolerated although the effectiveness of everolimus alone was limited. Everolimus is now being evaluated in combination with chemotherapy in Phase III clinical studies in this subgroup of patients. Two Phase III studies include exploratory biomarker research designed to evaluate the predictive value of the expression or mutation of molecules related to the Akt/mTOR signaling pathway. These biomarker studies may lead to the realization of targeted therapy for selected patients with mGC in the future. Keywords: gastric cancer, mTOR, everolimus

  2. Do insulin cartridges really provide a lower risk of potential diabetes complications than traditional vials?

    Science.gov (United States)

    Al-Sharayri, Mohammad G; Aljbori, Tariq M; Migdadi, Qusai M; Al-Omoush, Marwa B; Jaarah, Ayman R

    2014-09-01

    Recently, many publicly funded healthcare organizations suffered from an economical crisis. This forced some organizations to utilize less costly alternatives where possible. Insulin cartridges and vials are examples. Many patients are questioning the difference between the two alternatives as they contain the same active ingredient. To find out if insulin cartridges really provide a lower risk of potential diabetes complications than traditional vials. A questionnaire was used to ask two random samples of diabetic patients about the development of some diabetes complications. The first sample (n = 41) consisted of patients using cartridges; the second sample (n = 40) consisted of patients using vials. Patients were randomly selected from the endocrine clinic and the out-patient pharmacy in Al-Hussein Hospital in King Hussein Medical Center in Amman- Jordan. 44% of respondents in the first sample did not suffer from any complication; on the other hand, the percentage was only 15% of respondents in the second sample. All respondents (100%) in the first sample suffered from only 2 complications or less; however, 25% of the respondents in the second sample suffered from 3 or more complications. Nephropathy complications, were slightly higher in the first sample; 22% compared to 15% in the second sample. On the other hand, all complications reported in the second sample were higher; 30% for neuropathy, 65% for retinopathy complications and 42.5% for extremities damage compared to only 9.7%, 7.3% and 26.8% respectively in the first sample. In general, respondents who were using cartridges reported a lesser incidence of diabetes complications. Although many organizations suffered from an economical crisis, the cost-effectiveness aspect should be taken into consideration when purchasing medical alternatives. This will provide higher quality of life for patients and eventually lower hidden and future costs for the organizations.

  3. Targeted dual-color silica nanoparticles provide univocal identification of micrometastases in preclinical models of colorectal cancer

    Directory of Open Access Journals (Sweden)

    Soster M

    2012-09-01

    Full Text Available Marco Soster,1,* Riccardo Juris,2,* Sara Bonacchi,2 Damiano Genovese,2 Marco Montalti,2 Enrico Rampazzo,2 Nelsi Zaccheroni,2 Paolo Garagnani,2 Federico Bussolino,3,4 Luca Prodi,2 Serena Marchiò1,4 1Institute for Cancer Research and Treatment, Laboratory of Tumor Microenvironment and University of Torino, Department of Oncological Sciences, Candiolo, 2University of Bologna, Department of Chemistry "G.Ciamician", Bologna, 3Institute for Cancer Research and Treatment, Laboratory of Vascular Oncology and University of Torino, Department of Oncological Sciences, Candiolo, 4APAvadis Biotechnologies, BioIndustry Park S Fumero, Colleretto Giacosa, Italy*These authors equally contributed to the workBackground and methods: Despite the recent introduction of targeted bio-drugs, the scarcity of successful therapeutic options for advanced colorectal cancer remains a limiting factor in patient management. The efficacy of curative surgical interventions can only be extended through earlier detection of metastatic foci, which is dependent on both the sensitivity and specificity of the diagnostic tools.Results: We propose a high-performance imaging platform based on silica-poly(ethylene glycol nanoparticles doped with rhodamine B and cyanine 5. Simultaneous detection of these dyes is the basis for background subtraction and signal amplification, thus providing high-sensitivity imaging. The functionalization of poly(ethylene glycol tails on the external face of the nanoparticles with metastasis-specific peptides guarantees their homing to and accumulation at target tissues, resulting in specific visualization, even of submillimetric metastases.Conclusions: The results reported here demonstrate that our rationally designed modular nanosystems have the ability to produce a breakthrough in the detection of micrometastases for subsequent translation to clinics in the immediate future.Keywords: colorectal cancer, imaging platform, luminescent targeting

  4. Methodology for estimation of potential for solar water heating in a target area

    International Nuclear Information System (INIS)

    Pillai, Indu R.; Banerjee, Rangan

    2007-01-01

    Proper estimation of potential of any renewable energy technology is essential for planning and promotion of the technology. The methods reported in literature for estimation of potential of solar water heating in a target area are aggregate in nature. A methodology for potential estimation (technical, economic and market potential) of solar water heating in a target area is proposed in this paper. This methodology links the micro-level factors and macro-level market effects affecting the diffusion or adoption of solar water heating systems. Different sectors with end uses of low temperature hot water are considered for potential estimation. Potential is estimated at each end use point by simulation using TRNSYS taking micro-level factors. The methodology is illustrated for a synthetic area in India with an area of 2 sq. km and population of 10,000. The end use sectors considered are residential, hospitals, nursing homes and hotels. The estimated technical potential and market potential are 1700 m 2 and 350 m 2 of collector area, respectively. The annual energy savings for the technical potential in the area is estimated as 110 kW h/capita and 0.55 million-kW h/sq. km. area, with an annual average peak saving of 1 MW. The annual savings is 650-kW h per m 2 of collector area and accounts for approximately 3% of the total electricity consumption of the target area. Some of the salient features of the model are the factors considered for potential estimation; estimation of electrical usage pattern for typical day, amount of electricity savings and savings during the peak load. The framework is general and enables accurate estimation of potential of solar water heating for a city, block. Energy planners and policy makers can use this framework for tracking and promotion of diffusion of solar water heating systems. (author)

  5. An integrative genomic and transcriptomic analysis reveals potential targets associated with cell proliferation in uterine leiomyomas.

    Directory of Open Access Journals (Sweden)

    Priscila Daniele Ramos Cirilo

    Full Text Available Uterine Leiomyomas (ULs are the most common benign tumours affecting women of reproductive age. ULs represent a major problem in public health, as they are the main indication for hysterectomy. Approximately 40-50% of ULs have non-random cytogenetic abnormalities, and half of ULs may have copy number alterations (CNAs. Gene expression microarrays studies have demonstrated that cell proliferation genes act in response to growth factors and steroids. However, only a few genes mapping to CNAs regions were found to be associated with ULs.We applied an integrative analysis using genomic and transcriptomic data to identify the pathways and molecular markers associated with ULs. Fifty-one fresh frozen specimens were evaluated by array CGH (JISTIC and gene expression microarrays (SAM. The CONEXIC algorithm was applied to integrate the data.The integrated analysis identified the top 30 significant genes (P<0.01, which comprised genes associated with cancer, whereas the protein-protein interaction analysis indicated a strong association between FANCA and BRCA1. Functional in silico analysis revealed target molecules for drugs involved in cell proliferation, including FGFR1 and IGFBP5. Transcriptional and protein analyses showed that FGFR1 (P = 0.006 and P<0.01, respectively and IGFBP5 (P = 0.0002 and P = 0.006, respectively were up-regulated in the tumours when compared with the adjacent normal myometrium.The integrative genomic and transcriptomic approach indicated that FGFR1 and IGFBP5 amplification, as well as the consequent up-regulation of the protein products, plays an important role in the aetiology of ULs and thus provides data for potential drug therapies development to target genes associated with cellular proliferation in ULs.

  6. Ground glass hepatocytes provide targets for therapy or prevention of hepatitis B virus-related hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Hong-Yi Chang

    2018-03-01

    Full Text Available Ground glass hepatocyte (GGH represents a histologic hallmark of chronic hepatitis B virus (HBV infection and is characterized by the accumulation of pre-S mutant surface antigens in the endoplasmic reticulum (ER. In the past decade, GGHs have been recognized as pre-neoplastic lesions of hepatocellular carcinoma (HCC. The accumulation of pre-S mutant protein in ER may induce a misfolded protein response or ER stress signals with activation of VEGF/Akt/mTOR and COX-2/NF-κB signals, leading to oxidative DNA damage, aneuploidy, and genomic instability. Molecular studies revealed clonal HBV DNA integration in type II GGHs which continue to express and secrete surface antigens, representing the sustained surface antigens in the serum after NA antiviral treatment. The persistence of GGHs in the liver after anti-viral therapy not only constitute the challenge to eliminate HBV infection but also carry the high risk to develop HCC. DNA chip and ELISA kit are designing to detect the pre-S mutants in serum. Novel or second generation anti-HBV drugs are under phase II development and include the combination of anti-virals, immunomodulators, agents for host DNA damage, and siRNA to target at the transcription of HBsAg gene in cccDNA or integrated HBV DNA. In the past years, we explored the possibility to provide drugs or natural agents targeting at ER stress signals in GGHs to prevent HCC development. In a transgenic mice model of pre-S mutant and HBx, a combination of silymarin and resveratrol targeting at mTOR and NF-κB signals could reduce a 80% of HCC development. In a pilot clinical trial, liposomal curcumin (Meriva® combined with anti-virals and immumodulators P1101 have been designed and attempted to eliminate the serum surface antigen and hence the recurrence of HCC after surgical resection. Therefore, the detection of pre-S mutants in serum or GGHs in the liver should provide rational target design for therapy or prevention of HCC in these high

  7. Theoretical aspects of the definition of market potential and targeting by domestic companies

    OpenAIRE

    T.А. Zaychuk

    2012-01-01

    The article deals with methodological approaches to determine market potential, which are used in world practice. Based on analysis of existing scientific approaches to the selection of target market it is developed the methodology of assessment of market segments attractiveness adapted to the needs and capabilities of domestic enterprises.

  8. Deepening of floating potential for tungsten target plate on the way to nanostructure formation

    International Nuclear Information System (INIS)

    Takamura, Shuichi; Miyamoto, Takanori; Ohno, Noriyasu

    2010-01-01

    Deepening of floating potential has been observed on the tungsten target plate immersed in high-density helium plasma with hot electron component on the way to nanostructure formation. The physical mechanism is thought to be a reduction of secondary electron emission from such a complex nano fiber-form structure on the tungsten surface. (author)

  9. Learning networks as an enabler for informed decisions to target energy-efficiency potentials in companies

    NARCIS (Netherlands)

    Wohlfarth, Katharina; Eichhammer, W.A.; Schlomann, Barbara; Mielicke, Ursula

    2017-01-01

    his paper deals with possibilities of targeting energy efficiency potentials in German companies by delivering information and support within a cooperative management system “Learning Energy Efficiency Networks” (LEEN). Information deficits are pointed out as a relevant barrier to implementing

  10. siRNAs targeting PB2 and NP genes potentially inhibit replication

    Indian Academy of Sciences (India)

    % and has caused the death or culling of millions of poultry since 2003. In this study, we have designed three siRNAs (PB2-2235, PB2-479 and NP-865) targeting PB2 and NP genes of avian influenza virus and evaluated their potential, ...

  11. Assessment of Pseudomonas aeruginosa N5,N10-methylenetetrahydrofolate dehydrogenase-cyclohydrolase as a potential antibacterial drug target.

    Directory of Open Access Journals (Sweden)

    Thomas C Eadsforth

    Full Text Available The bifunctional enzyme methylenetetrahydrofolate dehydrogenase - cyclohydrolase (FolD is identified as a potential drug target in Gram-negative bacteria, in particular the troublesome Pseudomonas aeruginosa. In order to provide a comprehensive and realistic assessment of the potential of this target for drug discovery we generated a highly efficient recombinant protein production system and purification protocol, characterized the enzyme, carried out screening of two commercial compound libraries by differential scanning fluorimetry, developed a high-throughput enzyme assay and prosecuted a screening campaign against almost 80,000 compounds. The crystal structure of P. aeruginosa FolD was determined at 2.2 Å resolution and provided a template for an assessment of druggability and for modelling of ligand complexes as well as for comparisons with the human enzyme. New FolD inhibitors were identified and characterized but the weak levels of enzyme inhibition suggest that these compounds are not optimal starting points for future development. Furthermore, the close similarity of the bacterial and human enzyme structures suggest that selective inhibition might be difficult to attain. In conclusion, although the preliminary biological data indicates that FolD represents a valuable target for the development of new antibacterial drugs, indeed spurred us to investigate it, our screening results and structural data suggest that this would be a difficult enzyme to target with respect to developing the appropriate lead molecules required to underpin a serious drug discovery effort.

  12. General Approach to Identifying Potential Targets for Cancer Imaging by Integrated Bioinformatics Analysis of Publicly Available Genomic Profiles

    Directory of Open Access Journals (Sweden)

    Yongliang Yang

    2011-03-01

    Full Text Available Molecular imaging has moved to the forefront of drug development and biomedical research. The identification of appropriate imaging targets has become the touchstone for the accurate diagnosis and prognosis of human cancer. Particularly, cell surface- or membrane-bound proteins are attractive imaging targets for their aberrant expression, easily accessible location, and unique biochemical functions in tumor cells. Previously, we published a literature mining of potential targets for our in-house enzyme-mediated cancer imaging and therapy technology. Here we present a simple and integrated bioinformatics analysis approach that assembles a public cancer microarray database with a pathway knowledge base for ascertaining and prioritizing upregulated genes encoding cell surface- or membrane-bound proteins, which could serve imaging targets. As examples, we obtained lists of potential hits for six common and lethal human tumors in the prostate, breast, lung, colon, ovary, and pancreas. As control tests, a number of well-known cancer imaging targets were detected and confirmed by our study. Further, by consulting gene-disease and protein-disease databases, we suggest a number of significantly upregulated genes as promising imaging targets, including cell surface-associated mucin-1, prostate-specific membrane antigen, hepsin, urokinase plasminogen activator receptor, and folate receptors. By integrating pathway analysis, we are able to organize and map “focused” interaction networks derived from significantly dysregulated entity pairs to reflect important cellular functions in disease processes. We provide herein an example of identifying a tumor cell growth and proliferation subnetwork for prostate cancer. This systematic mining approach can be broadly applied to identify imaging or therapeutic targets for other human diseases.

  13. Glycogen metabolism has a key role in the cancer microenvironment and provides new targets for cancer therapy.

    Science.gov (United States)

    Zois, Christos E; Harris, Adrian L

    2016-02-01

    Metabolic reprogramming is a hallmark of cancer cells and contributes to their adaption within the tumour microenvironment and resistance to anticancer therapies. Recently, glycogen metabolism has become a recognised feature of cancer cells since it is upregulated in many tumour types, suggesting that it is an important aspect of cancer cell pathophysiology. Here, we provide an overview of glycogen metabolism and its regulation, with a focus on its role in metabolic reprogramming of cancer cells under stress conditions such as hypoxia, glucose deprivation and anticancer treatment. The various methods to detect glycogen in tumours in vivo as well as pharmacological modulators of glycogen metabolism are also reviewed. Finally, we discuss the therapeutic value of targeting glycogen metabolism as a strategy for combinational approaches in cancer treatment.

  14. Changes of ticagrelor formulary tiers in the USA: targeting private insurance providers away from government-funded plans.

    Science.gov (United States)

    Serebruany, Victor L; Dinicolantonio, James J

    2013-01-01

    Ticagrelor (Brilinta®) is a new oral reversible antiplatelet agent approved by the FDA in July 2011 based on the results of the PLATO (Platelet Inhibition and Patient Outcomes) trial. However, despite very favorable and broad indications, the current clinical utilization of ticagrelor is woefully small. We aimed to compare ticagrelor formulary tiers for major private (n = 8) and government-funded (n = 4) insurance providers for 2012-2013. Over the last year, ticagrelor placement improved, becoming a preferred drug (from Tier 3 in 2012 to Tier 2 in 2013) for Medco, moving from Tier 4 (with a prior approval requirement) to Tier 3 (no prior approval) for the United Health Care Private Plan and achieving Tier 3 status for Apex in 2013. In contrast, ticagrelor placement did not improve for New York Medicaid, retaining Tier 3 status. In addition, many Medicare Part D formularies have significantly worse coverage than most private plans. For example, Humana Medicare Part D has Tier 3 status requiring step therapy and quantity limits, SilverScript (CVS Caremark) Part D is Tier 3 and the American Association of Retired Persons (United Health Care) Medicare Part D is Tier 4 requiring prior approval. Ticagrelor formulary placement is significantly better for most private providers than for government-funded plans, which may possibly be due to the selective targeting of private insurance providers and the simultaneous avoidance of government-funded plans. © 2013 S. Karger AG, Basel.

  15. Potential impact of miR-137 and its targets in schizophrenia

    Directory of Open Access Journals (Sweden)

    Carrie eWright

    2013-04-01

    Full Text Available The significant impact of microRNAs (miRNAs on disease pathology is becoming increasingly evident. These small non-coding RNAs have the ability to post-transcriptionally silence the expression of thousands of genes. Therefore, dysregulation of even a single miRNA could confer a large polygenic effect. Schizophrenia is a genetically complex illness thought to involve multiple genes each contributing a small risk. Large genome-wide association studies identified miR-137, a miRNA shown to be involved in neuronal maturation, as one of the top risk genes. To assess the potential mechanism of impact of miR-137 in this disorder and identify its targets, we used a combination of literature searches, Ingenuity Pathway Analysis (IPA, and freely accessible bioinformatics resources. Using TargetScan and the Schizophrenia Gene Resource (SZGR database, we found that in addition to CSMD1, C10orf26, CACNA1C, TCF4, and ZNF804A, five schizophrenia risk genes whose transcripts are also validated miR-137 targets, there are other schizophrenia-associated genes that may be targets of miR-137, including ERBB4, GABRA1, GRIN2A, GRM5, GSK3B, NRG2 and HTR2C. IPA analyses of all the potential targets identified several nervous system functions as the top canonical pathways including synaptic long-term potentiation, a process implicated in learning and memory mechanisms and recently shown to be altered in patients with schizophrenia. Among the subset of targets involved in nervous system development and function, the top scoring pathways were ephrin receptor signaling and axonal guidance, processes that are critical for proper circuitry formation and were shown to be disrupted in schizophrenia. These results suggest that miR-137 may indeed play a substantial role in the genetic etiology of schizophrenia by regulating networks involved in neural development and brain function.

  16. Potential For Plug-In Electric Vehicles To Provide Grid Support Services

    Energy Technology Data Exchange (ETDEWEB)

    Dias, F. G.; Luo, Y.; Mohanpurkar, M.; Hovsapian, R.; Scoffield, D.

    2017-04-01

    Since the modern-day introduction of plug-in electric vehicles (PEVs), scientists have proposed leveraging PEV battery packs as distributed energy resources for the electric grid. PEV charging can be controlled not only to provide energy for transportation but also to provide grid services and to facilitate the integration of renewable energy generation. With renewable generation increasing at an unprecedented rate, most of which is non-dispatchable and intermittent, the concept of using PEVs as controllable loads is appealing to electric utilities. This additional functionality could also provide value to PEV owners and drive PEV adoption. It has been widely proposed that PEVs can provide valuable grid services, such as load shifting to provide voltage regulation. The objective this work is to address the degree to which PEVs can provide grid services and mutually benefit the electric utilities, PEV owners, and auto manufacturers.

  17. Systems integration of biodefense omics data for analysis of pathogen-host interactions and identification of potential targets.

    Directory of Open Access Journals (Sweden)

    Peter B McGarvey

    2009-09-01

    Full Text Available The NIAID (National Institute for Allergy and Infectious Diseases Biodefense Proteomics program aims to identify targets for potential vaccines, therapeutics, and diagnostics for agents of concern in bioterrorism, including bacterial, parasitic, and viral pathogens. The program includes seven Proteomics Research Centers, generating diverse types of pathogen-host data, including mass spectrometry, microarray transcriptional profiles, protein interactions, protein structures and biological reagents. The Biodefense Resource Center (www.proteomicsresource.org has developed a bioinformatics framework, employing a protein-centric approach to integrate and support mining and analysis of the large and heterogeneous data. Underlying this approach is a data warehouse with comprehensive protein + gene identifier and name mappings and annotations extracted from over 100 molecular databases. Value-added annotations are provided for key proteins from experimental findings using controlled vocabulary. The availability of pathogen and host omics data in an integrated framework allows global analysis of the data and comparisons across different experiments and organisms, as illustrated in several case studies presented here. (1 The identification of a hypothetical protein with differential gene and protein expressions in two host systems (mouse macrophage and human HeLa cells infected by different bacterial (Bacillus anthracis and Salmonella typhimurium and viral (orthopox pathogens suggesting that this protein can be prioritized for additional analysis and functional characterization. (2 The analysis of a vaccinia-human protein interaction network supplemented with protein accumulation levels led to the identification of human Keratin, type II cytoskeletal 4 protein as a potential therapeutic target. (3 Comparison of complete genomes from pathogenic variants coupled with experimental information on complete proteomes allowed the identification and

  18. Sonic hedgehog signaling inhibition provides opportunities for targeted therapy by sulforaphane in regulating pancreatic cancer stem cell self-renewal.

    Directory of Open Access Journals (Sweden)

    Mariana Rodova

    Full Text Available Dysregulation of the sonic hedgehog (Shh signaling pathway has been associated with cancer stem cells (CSC and implicated in the initiation of pancreatic cancer. Pancreatic CSCs are rare tumor cells characterized by their ability to self-renew, and are responsible for tumor recurrence accompanied by resistance to current therapies. The lethality of these incurable, aggressive and invasive pancreatic tumors remains a daunting clinical challenge. Thus, the objective of this study was to investigate the role of Shh pathway in pancreatic cancer and to examine the molecular mechanisms by which sulforaphane (SFN, an active compound in cruciferous vegetables, inhibits self-renewal capacity of human pancreatic CSCs. Interestingly, we demonstrate here that Shh pathway is highly activated in pancreatic CSCs and plays important role in maintaining stemness by regulating the expression of stemness genes. Given the requirement for Hedgehog in pancreatic cancer, we investigated whether hedgehog blockade by SFN could target the stem cell population in pancreatic cancer. In an in vitro model, human pancreatic CSCs derived spheres were significantly inhibited on treatment with SFN, suggesting the clonogenic depletion of the CSCs. Interestingly, SFN inhibited the components of Shh pathway and Gli transcriptional activity. Interference of Shh-Gli signaling significantly blocked SFN-induced inhibitory effects demonstrating the requirement of an active pathway for the growth of pancreatic CSCs. SFN also inhibited downstream targets of Gli transcription by suppressing the expression of pluripotency maintaining factors (Nanog and Oct-4 as well as PDGFRα and Cyclin D1. Furthermore, SFN induced apoptosis by inhibition of BCL-2 and activation of caspases. Our data reveal the essential role of Shh-Gli signaling in controlling the characteristics of pancreatic CSCs. We propose that pancreatic cancer preventative effects of SFN may result from inhibition of the Shh pathway

  19. MicroRNAs in Renal Diseases: A Potential Novel Therapeutic Target.

    Science.gov (United States)

    Petrillo, Federica; Iervolino, Anna; Zacchia, Miriam; Simeoni, Adelina; Masella, Cristina; Capolongo, Giovanna; Perna, Alessandra; Capasso, Giovambattista; Trepiccione, Francesco

    2017-12-01

    MicroRNAs (miRNAs) are a family of short noncoding RNAs that play important roles in posttranscriptional gene regulation. miRNAs inhibit target gene expression by blocking protein translation or by inducing mRNA degradation and therefore have the potential to modulate physiological and pathological processes. In the kidney, miRNAs play a role in the organogenesis and in the pathogenesis of several diseases, including renal carcinoma, diabetic nephropathy, cystogenesis, and glomerulopathies. Indeed, podocytes, but also the parietal cells of the Bowman capsule are severely affected by miRNA deregulation. In addition, several miRNAs have been found involved in the development of renal fibrosis. These experimental lines of evidence found a counterpart also in patients affected by diabetic and Ig-A nephropathies, opening the possibility of their use as biomarkers. Finally, the possibility to direct target-specific miRNA to prevent the development of renal fibrosis is encouraging potential novel therapies based on miRNA mimicking or antagonism. This review reports the main studies that investigate the role of miRNAs in the kidneys, in particular highlighting the experimental models used, their potential role as biomarkers and, finally, the most recent data on the miRNA-based therapy. miRNAs are crucial regulators of cell function. They are easy to detect and represent potentially good targets for novel therapies.

  20. Natural antigenic differences in the functionally equivalent extracellular DNABII proteins of bacterial biofilms provide a means for targeted biofilm therapeutics

    Science.gov (United States)

    Rocco, Christopher J.; Davey, Mary Ellen; Bakaletz, Lauren O.; Goodman, Steven D.

    2016-01-01

    SUMMARY Bacteria that persist in the oral cavity exist within complex biofilm communities. A hallmark of biofilms is the presence of an extracellular polymeric substance (EPS), which consists of polysaccharides, extracellular DNA (eDNA), and proteins, including the DNABII family of proteins. The removal of DNABII proteins from a biofilm results in the loss of structural integrity of the eDNA and the collapse of the biofilm structure. We examined the role of DNABII proteins in the biofilm structure of the periodontal pathogen Porphyromonas gingivalis and the oral commensal Streptococcus gordonii. Co-aggregation with oral streptococci is thought to facilitate the establishment of P. gingivalis within the biofilm community. We demonstrate that DNABII proteins are present in the EPS of both S. gordonii and P. gingivalis biofilms, and that these biofilms can be disrupted through the addition of antisera derived against their respective DNABII proteins. We provide evidence that both eDNA and DNABII proteins are limiting in S. gordonii but not in P. gingivalis biofilms. In addition, these proteins are capable of complementing one another functionally. We also found that while antisera derived against most DNABII proteins are capable of binding a wide variety of DNABII proteins, the P. gingivalis DNABII proteins are antigenically distinct. The presence of DNABII proteins in the EPS of these biofilms and the antigenic uniqueness of the P. gingivalis proteins provide an opportunity to develop therapies that are targeted to remove P. gingivalis and biofilms that contain P. gingivalis from the oral cavity. PMID:26988714

  1. Targeting ILK and β4 integrin abrogates the invasive potential of ovarian cancer

    International Nuclear Information System (INIS)

    Choi, Yoon Pyo; Kim, Baek Gil; Gao, Ming-Qing; Kang, Suki; Cho, Nam Hoon

    2012-01-01

    Highlights: ► The potential of targeting ILK and integrins for highly aggressive ovarian cancer. ► Unanticipated synergistic effect for the combination of ILK/β4 integrin. ► Combination of ILK/β4 integrin effectively inhibited the PI3K/Akt/Rac1 cascade. ► Targeting of β4 integrin/ILK had potent inhibitory effects in ovarian cancer. -- Abstract: Integrins and integrin-linked kinase (ILK) are essential to cancerous invasion because they mediate physical interactions with the extracellular matrix, and regulate oncogenic signaling pathways. The purpose of our study is to determine whether deletion of β1 and β4 integrin and ILK, alone or in combination, has antitumoral effects in ovarian cancer. Expression of β1 and β4 integrin and ILK was analyzed by immunohistochemistry in 196 ovarian cancer tissue samples. We assessed the effects of depleting these molecules with shRNAs in ovarian cancer cells by Western blot, conventional RT-PCR, cell proliferation, migration, invasion, and in vitro Rac1 activity assays, and in vivo xenograft formation assays. Overexpression of β4 integrin and ILK in human ovarian cancer specimens was found to correlate with tumor aggressiveness. Depletion of these targets efficiently suppresses ovarian cancer cell proliferation, migration, and invasion in vitro and xenograft tumor formation in vivo. We also demonstrated that single depletion of ILK or combination depletion of β4 integrin/ILK inhibits phosphorylation of downstream signaling targets, p-Ser 473 Akt and p-Thr202/Tyr204 Erk1/2, and activation of Rac1, as well as reduce expression of MMP-2 and MMP-9 and increase expression of caspase-3 in vitro. In conclusion, targeting β4 integrin combined with ILK can instigate the latent tumorigenic potential and abrogate the invasive potential in ovarian cancer.

  2. Targeting ILK and {beta}4 integrin abrogates the invasive potential of ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yoon Pyo; Kim, Baek Gil [BK21 Project for Medical Science, Yonsei University College of Medicine, Seoul (Korea, Republic of); Department of Pathology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Gao, Ming-Qing; Kang, Suki [Department of Pathology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Cho, Nam Hoon, E-mail: cho1988@yuhs.ac [BK21 Project for Medical Science, Yonsei University College of Medicine, Seoul (Korea, Republic of); Department of Pathology, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer The potential of targeting ILK and integrins for highly aggressive ovarian cancer. Black-Right-Pointing-Pointer Unanticipated synergistic effect for the combination of ILK/{beta}4 integrin. Black-Right-Pointing-Pointer Combination of ILK/{beta}4 integrin effectively inhibited the PI3K/Akt/Rac1 cascade. Black-Right-Pointing-Pointer Targeting of {beta}4 integrin/ILK had potent inhibitory effects in ovarian cancer. -- Abstract: Integrins and integrin-linked kinase (ILK) are essential to cancerous invasion because they mediate physical interactions with the extracellular matrix, and regulate oncogenic signaling pathways. The purpose of our study is to determine whether deletion of {beta}1 and {beta}4 integrin and ILK, alone or in combination, has antitumoral effects in ovarian cancer. Expression of {beta}1 and {beta}4 integrin and ILK was analyzed by immunohistochemistry in 196 ovarian cancer tissue samples. We assessed the effects of depleting these molecules with shRNAs in ovarian cancer cells by Western blot, conventional RT-PCR, cell proliferation, migration, invasion, and in vitro Rac1 activity assays, and in vivo xenograft formation assays. Overexpression of {beta}4 integrin and ILK in human ovarian cancer specimens was found to correlate with tumor aggressiveness. Depletion of these targets efficiently suppresses ovarian cancer cell proliferation, migration, and invasion in vitro and xenograft tumor formation in vivo. We also demonstrated that single depletion of ILK or combination depletion of {beta}4 integrin/ILK inhibits phosphorylation of downstream signaling targets, p-Ser 473 Akt and p-Thr202/Tyr204 Erk1/2, and activation of Rac1, as well as reduce expression of MMP-2 and MMP-9 and increase expression of caspase-3 in vitro. In conclusion, targeting {beta}4 integrin combined with ILK can instigate the latent tumorigenic potential and abrogate the invasive potential in ovarian cancer.

  3. Lactoferrin bioconjugated solid lipid nanoparticles: a new drug delivery system for potential brain targeting.

    Science.gov (United States)

    Singh, Indu; Swami, Rajan; Pooja, Deep; Jeengar, Manish Kumar; Khan, Wahid; Sistla, Ramakrishna

    2016-01-01

    Delivery of drugs to brain is a subtle task in the therapy of many severe neurological disorders. Solid lipid nanoparticles (SLN) easily diffuse the blood-brain barrier (BBB) due to their lipophilic nature. Furthermore, ligand conjugation on SLN surface enhances the targeting efficiency. Lactoferin (Lf) conjugated SLN system is first time attempted for effective brain targeting in this study. Preparation of Lf-modified docetaxel (DTX)-loaded SLN for proficient delivery of DTX to brain. DTX-loaded SLN were prepared using emulsification and solvent evaporation method and conjugation of Lf on SLN surface (C-SLN) was attained through carbodiimide chemistry. These lipidic nanoparticles were evaluated by DLS, AFM, FTIR, XRD techniques and in vitro release studies. Colloidal stability study was performed in biologically simulated environment (normal saline and serum). These lipidic nanoparticles were further evaluated for its targeting mechanism for uptake in brain tumour cells and brain via receptor saturation studies and distribution studies in brain, respectively. Particle size of lipidic nanoparticles was found to be optimum. Surface morphology (zeta potential, AFM) and surface chemistry (FTIR) confirmed conjugation of Lf on SLN surface. Cytotoxicity studies revealed augmented apoptotic activity of C-SLN than SLN and DTX. Enhanced cytotoxicity was demonstrated by receptor saturation and uptake studies. Brain concentration of DTX was elevated significantly with C-SLN than marketed formulation. It is evident from the cytotoxicity, uptake that SLN has potential to deliver drug to brain than marketed formulation but conjugating Lf on SLN surface (C-SLN) further increased the targeting potential for brain tumour. Moreover, brain distribution studies corroborated the use of C-SLN as a viable vehicle to target drug to brain. Hence, C-SLN was demonstrated to be a promising DTX delivery system to brain as it possessed remarkable biocompatibility, stability and efficacy than

  4. A Network Pharmacology Approach to Determine the Active Components and Potential Targets of Curculigo Orchioides in the Treatment of Osteoporosis.

    Science.gov (United States)

    Wang, Nani; Zhao, Guizhi; Zhang, Yang; Wang, Xuping; Zhao, Lisha; Xu, Pingcui; Shou, Dan

    2017-10-27

    BACKGROUND Osteoporosis is a complex bone disorder with a genetic predisposition, and is a cause of health problems worldwide. In China, Curculigo orchioides (CO) has been widely used as a herbal medicine in the prevention and treatment of osteoporosis. However, research on the mechanism of action of CO is still lacking. The aim of this study was to identify the absorbable components, potential targets, and associated treatment pathways of CO using a network pharmacology approach. MATERIAL AND METHODS We explored the chemical components of CO and used the five main principles of drug absorption to identify absorbable components. Targets for the therapeutic actions of CO were obtained from the PharmMapper server database. Pathway enrichment analysis was performed using the Comparative Toxicogenomics Database (CTD). Cytoscape was used to visualize the multiple components-multiple target-multiple pathways-multiple disease network for CO. RESULTS We identified 77 chemical components of CO, of which 32 components could be absorbed in the blood. These potential active components of CO regulated 83 targets and affected 58 pathways. Data analysis showed that the genes for estrogen receptor alpha (ESR1) and beta (ESR2), and the gene for 11 beta-hydroxysteroid dehydrogenase type 1, or cortisone reductase (HSD11B1) were the main targets of CO. Endocrine regulatory factors and factors regulating calcium reabsorption, steroid hormone biosynthesis, and metabolic pathways were related to these main targets and to ten corresponding compounds. CONCLUSIONS The network pharmacology approach used in our study has attempted to explain the mechanisms for the effects of CO in the prevention and treatment of osteoporosis, and provides an alternative approach to the investigation of the effects of this complex compound.

  5. Cost of education and earning potential for non-physician anesthesia providers.

    Science.gov (United States)

    MacIntyre, Philip; Stevens, Bradley; Collins, Shawn; Hewer, Ian

    2014-02-01

    Potential non-physician anesthesia students gauge many different aspects of a graduate program prior to applying, but cost of education and earning potential are typically high priorities for students. Our analysis evaluated the cost of tuition for all certified registered nurse anesthetist (CRNA) and anesthesiologist assistant (AA) programs in the United States, as well as earning potential for both professions. We collected educational cost data from school websites and salary data from the Medical Group Management Association's Physician Compensation and Production Survey: 2012 Report in order to compare the two groups. We found that the median cost of public CRNA programs is $40,195 and the median cost of private programs is $60,941, with an overall median of $51,720. Mean compensation for CRNAs in 2011 was $156,642. The median cost of public AA programs is $68,210 compared with $77,155 for private AA education, and an overall median cost of $76,037. Average compensation for AAs in 2011 was $123,328. Considering these factors, nurse anesthesia school is a better choice for candidates who already possess a nursing license; however, for those prospective students who are not nurses, AA school may be a more economical choice, depending on the type and location of practice desired.

  6. Prevention of hepatocellular carcinoma: potential targets, experimental models, and clinical challenges

    Science.gov (United States)

    Hoshida, Yujin; Fuchs, Bryan C.; Tanabe, Kenneth K.

    2013-01-01

    Chronic fibrotic liver diseases such as viral hepatitis eventually develop liver cirrhosis, which causes occurrence of hepatocellular carcinoma (HCC). Given the limited therapeutic efficacy in advanced HCC, prevention of HCC development could be an effective strategy for improving patient prognosis. However, there is still no established therapy to meet the goal. Studies have elucidated a wide variety of molecular mechanisms and signaling pathways involved in HCC development. Genetically-engineered or chemically-treated experimental models of cirrhosis and HCC have been developed and shown their potential value in investigating molecular therapeutic targets and diagnostic biomarkers for HCC prevention. In this review, we overview potential targets of prevention and currently available experimental models, and discuss strategies to translate the findings into clinical practice. PMID:22873223

  7. Adipokines: Potential Therapeutic Targets for Vascular Dysfunction in Type II Diabetes Mellitus and Obesity

    Directory of Open Access Journals (Sweden)

    Mostafa Wanees Ahmed El husseny

    2017-01-01

    Full Text Available Adipokines are bioactive molecules that regulate several physiological functions such as energy balance, insulin sensitization, appetite regulation, inflammatory response, and vascular homeostasis. They include proinflammatory cytokines such as adipocyte fatty acid binding protein (A-FABP and anti-inflammatory cytokines such as adiponectin, as well as vasodilator and vasoconstrictor molecules. In obesity and type II diabetes mellitus (DM, insulin resistance causes impairment of the endocrine function of the perivascular adipose tissue, an imbalance in the secretion of vasoconstrictor and vasodilator molecules, and an increased production of reactive oxygen species. Recent studies have shown that targeting plasma levels of adipokines or the expression of their receptors can increase insulin sensitivity, improve vascular function, and reduce the risk of cardiovascular morbidity and mortality. Several reviews have discussed the potential of adipokines as therapeutic targets for type II DM and obesity; however, this review is the first to focus on their therapeutic potential for vascular dysfunction in type II DM and obesity.

  8. Genome-wide gene expression dataset used to identify potential therapeutic targets in androgenetic alopecia

    Directory of Open Access Journals (Sweden)

    R. Dey-Rao

    2017-08-01

    Full Text Available The microarray dataset attached to this report is related to the research article with the title: “A genomic approach to susceptibility and pathogenesis leads to identifying potential novel therapeutic targets in androgenetic alopecia” (Dey-Rao and Sinha, 2017 [1]. Male-pattern hair loss that is induced by androgens (testosterone in genetically predisposed individuals is known as androgenetic alopecia (AGA. The raw dataset is being made publicly available to enable critical and/or extended analyses. Our related research paper utilizes the attached raw dataset, for genome-wide gene-expression associated investigations. Combined with several in silico bioinformatics-based analyses we were able to delineate five strategic molecular elements as potential novel targets towards future AGA-therapy.

  9. Cloud infrastructure for providing tools as a service: quality attributes and potential solutions

    DEFF Research Database (Denmark)

    Chauhan, Muhammad Aufeef; Ali Babar, Muhammad

    2012-01-01

    Cloud computing is being increasingly adopted in various domains for providing on-demand infrastructure and Software as a service (SaaS) by leveraging the utility computing model and virtualization technologies. One of the domains, where cloud computing is expected to gain huge traction is Global...... Software Development (GSD) that has emerged as a popular software development model. Despite several promised benefits, GSD is characterized by not only technical issues but also the complexities associated with its processes. One of the key challenges of GSD is to provide appropriate tools more...... efficiently and cost-effectively. Moreover, variations in tools available/used by different GSD team members can also pose challenges. We assert that providing Tools as a Service (TaaS) to GSD teams through a cloud-based infrastructure can be a promising solution to address the tools related challenges in GSD...

  10. Internal combustion engine run on biogas is a potential solution to meet Indonesia emission target

    Science.gov (United States)

    Ambarita, Himsar

    2017-09-01

    Indonesia has released two different Greenhouse Gas (GHG) emissions reduction targets. The first target, released in 2009, is reduction GHG emissions 26% from Business-as-Usual (BAU) level using own budget and up 41% if supported international aids by 2020. The second target is reduction 29% and 41% from BAU by 2030 using own budget and with international support, respectively. In this paper, the BAU emissions and emissions reduction target of these two targets are elaborated. In addition, the characteristics of emissions from transportation sector are discussed. One of the potential mitigation actions is switching fuel in transportation sector. The results the most promising mitigation action in the transportation is switching oil fuel with biofuel. The Government of Indonesia (GoI) focuses on using biodiesel and bioethanol to run internal combustion engine in transportation sector and biogas is aimed to fuel power plant unit. However, there is very limited of success stories on using biogas in the power plant. The barriers and challenges will be discussed here. It is suggested to run internal combustion engine with biogas.

  11. RNAi phenotype profiling of kinases identifies potential therapeutic targets in Ewing's sarcoma.

    Science.gov (United States)

    Arora, Shilpi; Gonzales, Irma M; Hagelstrom, R Tanner; Beaudry, Christian; Choudhary, Ashish; Sima, Chao; Tibes, Raoul; Mousses, Spyro; Azorsa, David O

    2010-08-18

    Ewing's sarcomas are aggressive musculoskeletal tumors occurring most frequently in the long and flat bones as a solitary lesion mostly during the teen-age years of life. With current treatments, significant number of patients relapse and survival is poor for those with metastatic disease. As part of novel target discovery in Ewing's sarcoma, we applied RNAi mediated phenotypic profiling to identify kinase targets involved in growth and survival of Ewing's sarcoma cells. Four Ewing's sarcoma cell lines TC-32, TC-71, SK-ES-1 and RD-ES were tested in high throughput-RNAi screens using a siRNA library targeting 572 kinases. Knockdown of 25 siRNAs reduced the growth of all four Ewing's sarcoma cell lines in replicate screens. Of these, 16 siRNA were specific and reduced proliferation of Ewing's sarcoma cells as compared to normal fibroblasts. Secondary validation and preliminary mechanistic studies highlighted the kinases STK10 and TNK2 as having important roles in growth and survival of Ewing's sarcoma cells. Furthermore, knockdown of STK10 and TNK2 by siRNA showed increased apoptosis. In summary, RNAi-based phenotypic profiling proved to be a powerful gene target discovery strategy, leading to successful identification and validation of STK10 and TNK2 as two novel potential therapeutic targets for Ewing's sarcoma.

  12. The potential of predictive analytics to provide clinical decision support in depression treatment planning.

    Science.gov (United States)

    Kessler, Ronald C

    2018-01-01

    To review progress developing clinical decision support tools for personalized treatment of major depressive disorder (MDD). Over the years, a variety of individual indicators ranging from biomarkers to clinical observations and self-report scales have been used to predict various aspects of differential MDD treatment response. Most of this work focused on predicting remission either with antidepressant medications versus psychotherapy, some antidepressant medications versus others, some psychotherapies versus others, and combination therapies versus monotherapies. However, to date, none of the individual predictors in these studies has been strong enough to guide optimal treatment selection for most patients. Interest consequently turned to decision support tools made up of multiple predictors, but the development of such tools has been hampered by small study sample sizes. Design recommendations are made here for future studies to address this problem. Recommendations include using large prospective observational studies followed by pragmatic trials rather than smaller, expensive controlled treatment trials for preliminary development of decision support tools; basing these tools on comprehensive batteries of inexpensive self-report and clinical predictors (e.g., self-administered performance-based neurocognitive tests) versus expensive biomarkers; and reserving biomarker assessments for targeted studies of patients not well classified by inexpensive predictor batteries.

  13. Action Potential Dynamics in Fine Axons Probed with an Axonally Targeted Optical Voltage Sensor.

    Science.gov (United States)

    Ma, Yihe; Bayguinov, Peter O; Jackson, Meyer B

    2017-01-01

    The complex and malleable conduction properties of axons determine how action potentials propagate through extensive axonal arbors to reach synaptic terminals. The excitability of axonal membranes plays a major role in neural circuit function, but because most axons are too thin for conventional electrical recording, their properties remain largely unexplored. To overcome this obstacle, we used a genetically encoded hybrid voltage sensor (hVOS) harboring an axonal targeting motif. Expressing this probe in transgenic mice enabled us to monitor voltage changes optically in two populations of axons in hippocampal slices, the large axons of dentate granule cells (mossy fibers) in the stratum lucidum of the CA3 region and the much finer axons of hilar mossy cells in the inner molecular layer of the dentate gyrus. Action potentials propagated with distinct velocities in each type of axon. Repetitive firing broadened action potentials in both populations, but at an intermediate frequency the degree of broadening differed. Repetitive firing also attenuated action potential amplitudes in both mossy cell and granule cell axons. These results indicate that the features of use-dependent action potential broadening, and possible failure, observed previously in large nerve terminals also appear in much finer unmyelinated axons. Subtle differences in the frequency dependences could influence the propagation of activity through different pathways to excite different populations of neurons. The axonally targeted hVOS probe used here opens up the diverse repertoire of neuronal processes to detailed biophysical study.

  14. Attacking the Obesity Epidemic: The Potential Health Benefits of Providing Nutrition Information in Restaurants

    Science.gov (United States)

    Burton, Scot; Creyer, Elizabeth H.; Kees, Jeremy; Huggins, Kyle

    2006-01-01

    Objectives. Requiring restaurants to present nutrition information on menus is under consideration as a potential way to slow the increasing prevalence of obesity. Using a survey methodology, we examined how accurately consumers estimate the nutrient content of typical restaurant meals. Based on these results, we then conducted an experiment to address how the provision of nutrition information on menus influences purchase intentions and reported preferences. Methods. For both the survey and experiment, data were analyzed using analysis of variance techniques. Results. Survey results showed that levels of calories, fat, and saturated fat in less-healthful restaurant items were significantly underestimated by consumers. Actual fat and saturated fat levels were twice consumers’ estimates and calories approached 2 times more than what consumers expected. In the subsequent experiment, for items for which levels of calories, fat, and saturated fat substantially exceeded consumers’ expectations, the provision of nutrition information had a significant influence on product attitude, purchase intention, and choice. Conclusions. Most consumers are unaware of the high levels of calories, fat, saturated fat, and sodium found in many menu items. Provision of nutrition information on restaurant menus could potentially have a positive impact on public health by reducing the consumption of less-healthful foods. PMID:16873758

  15. Cytosolic Phospholipase A2-α: A Potential Therapeutic Target for Prostate Cancer

    Science.gov (United States)

    Patel, Manish I.; Singh, Jaskirat; Niknami, Marzieh; Kurek, Caroline; Yao, Mu; Lu, Sasa; Maclean, Fiona; King, Nicholas J.C.; Gelb, Michael H.; Scott, Kieran F.; Russell, Pamela J.; Boulas, John; Dong., Qihan

    2008-01-01

    Purpose Cytosolic Phospholipase A2-α (cPLA2-α) provides intracellular arachidonic acid to supply both cyclooxygenase and lipoxygenase pathways. We aim to determine the expression and activation of cPLA2-α in prostate cancer (PC) cell line and tissue and the effect of targeting cPLA2-α in-vitro and in-vivo. Experimental Design The expression of cPLA2-α was determined in PC cells by RT-PCR, Western blot and immunocytochemistry. Growth inhibition, apoptosis and cPLA2-α activity were determined after inhibition with cPLA2-α siRNA or inhibitor (Wyeth-1). cPLA2-α inhibitor or vehicle was also administered to PC xenograft mouse models. Finally the expression of phospho-cPLA2-α was determined by immunohistochemistry in human normal, androgen sensitive and insensitive PC specimens. Results cPLA2-α is present in all PC cells lines, but increased in androgen insensitive cells. Inhibition with siRNA or Wyeth-1 results in significant reductions in PC cell numbers, as a result of reduced proliferation as well as increased apoptosis and this was also associated with a reduction in cPLA2-α activity. Expression of cyclin D1 and phosphorylation of Akt were also observed to decrease. Wyeth-1 inhibited PC3 xenograft growth by approximately 33% and again, also reduced cyclin D1. Immunohistochemistry of human prostate tissue revealed that phospho-cPLA2-α is increased when hormone refractory is reached. Conclusions cPLA2-α expression and activation is increased in the androgen insensitive cancer cell line and tissue. Inhibition of cPLA2-α results in cells and xenograft tumor growth inhibition and serves as a potentially effective therapy for hormone refractory PC. PMID:19088022

  16. The Economic Potential of Three Nuclear-Renewable Hybrid Energy Systems Providing Thermal Energy to Industry

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cutler, Dylan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores-Espino, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stark, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jenkin, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-12-01

    This report is one of a series of reports that Idaho National Laboratory and National Renewable Energy Laboratory are producing to investigate the technical and economic aspects of nuclear-renewable hybrid energy systems (N-R HESs). Previous reports provided results of an analysis of two N-R HES scenarios. This report builds that analysis with a Texas-synthetic gasoline scenario providing the basis in which the N-R HES sells heat directly to an industrial customer. Subsystems were included that convert electricity to heat, thus allowing the renewable energy subsystem to generate heat and benefit from that revenue stream. Nuclear and renewable energy sources are important to consider in the energy sector's evolution because both are considered to be clean and non-carbon-emitting energy sources.

  17. The Economic Potential of Three Nuclear-Renewable Hybrid Energy Systems Providing Thermal Energy to Industry

    International Nuclear Information System (INIS)

    Ruth, Mark; Cutler, Dylan; Flores-Espino, Francisco; Stark, Greg; Jenkin, Thomas

    2016-01-01

    This report is one of a series of reports that Idaho National Laboratory and National Renewable Energy Laboratory are producing to investigate the technical and economic aspects of nuclear-renewable hybrid energy systems (N-R HESs). Previous reports provided results of an analysis of two N-R HES scenarios. This report builds that analysis with a Texas-synthetic gasoline scenario providing the basis in which the N-R HES sells heat directly to an industrial customer. Subsystems were included that convert electricity to heat, thus allowing the renewable energy subsystem to generate heat and benefit from that revenue stream. Nuclear and renewable energy sources are important to consider in the energy sector's evolution because both are considered to be clean and non-carbon-emitting energy sources.

  18. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential.

    Science.gov (United States)

    Zhang, Gengyun; Liu, Xin; Quan, Zhiwu; Cheng, Shifeng; Xu, Xun; Pan, Shengkai; Xie, Min; Zeng, Peng; Yue, Zhen; Wang, Wenliang; Tao, Ye; Bian, Chao; Han, Changlei; Xia, Qiuju; Peng, Xiaohua; Cao, Rui; Yang, Xinhua; Zhan, Dongliang; Hu, Jingchu; Zhang, Yinxin; Li, Henan; Li, Hua; Li, Ning; Wang, Junyi; Wang, Chanchan; Wang, Renyi; Guo, Tao; Cai, Yanjie; Liu, Chengzhang; Xiang, Haitao; Shi, Qiuxiang; Huang, Ping; Chen, Qingchun; Li, Yingrui; Wang, Jun; Zhao, Zhihai; Wang, Jian

    2012-05-13

    Foxtail millet (Setaria italica), a member of the Poaceae grass family, is an important food and fodder crop in arid regions and has potential for use as a C(4) biofuel. It is a model system for other biofuel grasses, including switchgrass and pearl millet. We produced a draft genome (∼423 Mb) anchored onto nine chromosomes and annotated 38,801 genes. Key chromosome reshuffling events were detected through collinearity identification between foxtail millet, rice and sorghum including two reshuffling events fusing rice chromosomes 7 and 9, 3 and 10 to foxtail millet chromosomes 2 and 9, respectively, that occurred after the divergence of foxtail millet and rice, and a single reshuffling event fusing rice chromosome 5 and 12 to foxtail millet chromosome 3 that occurred after the divergence of millet and sorghum. Rearrangements in the C(4) photosynthesis pathway were also identified.

  19. When to Stop CPR and When to Perform Rhythm Analysis: Potential Confusion Among ACLS Providers.

    Science.gov (United States)

    Giberson, Brandon; Uber, Amy; F Gaieski, David; Miller, Joseph B; Wira, Charles; Berg, Katherine; Giberson, Tyler; Cocchi, Michael N; S Abella, Benjamin; Donnino, Michael W

    2016-09-01

    Health care providers nationwide are routinely trained in Advanced Cardiac Life Support (ACLS), an American Heart Association program that teaches cardiac arrest management. Recent changes in the ACLS approach have de-emphasized routine pulse checks in an effort to promote uninterrupted chest compressions. We hypothesized that this new ACLS algorithm may lead to uncertainty regarding the appropriate action following detection of a pulse during a cardiac arrest. We conducted an observational study in which a Web-based survey was sent to ACLS-trained medical providers at 4 major urban tertiary care centers in the United States. The survey consisted of 5 multiple-choice, scenario-based ACLS questions, including our question of interest. Adult staff members with a valid ACLS certification were included. A total of 347 surveys were analyzed. The response rate was 28.1%. The majority (53.6%) of responders were between 18 and 32 years old, and 59.9% were female. The majority (54.2%) of responders incorrectly stated that they would continue CPR and possibly administer additional therapies when a team member detects a pulse immediately following defibrillation. Secondarily, only 51.9% of respondents correctly chose to perform a rhythm check following 2 minutes of CPR. The other 3 survey questions were correctly answered an average of 89.1% of the time. Confusion exists regarding whether or not CPR and cardiac medications should be continued in the presence of a pulse. Education may be warranted to emphasize avoiding compressions and medications when a palpable pulse is detected. © The Author(s) 2014.

  20. Scientific Opinion on the assessment of potential impacts of genetically modified plants on non-target organisms

    DEFF Research Database (Denmark)

    Arpaia, Salvatore; Bartsch, Detlef; Delos, Marc

    The European Food Safety Authority (EFSA) asked the Panel on Genetically Modified Organisms to establish a self-tasking Working Group with the aim of (1) producing a scientific review of the current guidance of the GMO Panel for Environmental Risk Assessment (ERA), focusing on the potential impacts...... of GM plants on Non-Target Organisms (NTOs), (2) proposing criteria for NTOs selection, and (3) providing advise on standardized testing methodology. This initiative was undertaken in response to a need and request from a wide range of stakeholders, including the European Commission and Member States....... In first instance, the self-tasking Working Group on Non-Target Organisms (EFSA NTO WG) mainly considered impacts of GM plants on invertebrate species, but also took account of ecosystem functions that could be altered. The EFSA NTO WG considered the necessity for clear and objective protection goals...

  1. PEGylated Polyamidoamine dendrimer conjugated with tumor homing peptide as a potential targeted delivery system for glioma.

    Science.gov (United States)

    Jiang, Yan; Lv, Lingyan; Shi, Huihui; Hua, Yabing; Lv, Wei; Wang, Xiuzhen; Xin, Hongliang; Xu, Qunwei

    2016-11-01

    Glioblastoma multiforme (GBM) is the most common and aggressive primary central nervous system (CNS) tumor with a short survival time. The failure of chemotherapy is ascribed to the low transport of chemotherapeutics across the Blood Brain Tumor Barrier (BBTB) and poor penetration into tumor tissue. In order to overcome the two barriers, small nanoparticles with active targeted capability are urgently needed for GBM drug delivery. In this study, we proposed PEGylated Polyamidoamine (PAMAM) dendrimer nanoparticles conjugated with glioma homing peptides (Pep-1) as potential glioma targeting delivery system (Pep-PEG-PAMAM), where PEGylated PAMAM dendrimer nanoparticle was utilized as carrier due to its small size and perfect penetration into tumor and Pep-1 was used to overcome BBTB via interleukin 13 receptor α2 (IL-13Rα2) mediated endocytosis. The preliminary availability and safety of Pep-PEG-PAMAM as a nanocarrier for glioma was evaluated. In vitro results indicated that a significantly higher amount of Pep-PEG-PAMAM was endocytosed by U87 MG cells. In vivo fluorescence imaging of U87MG tumor-bearing mice confirmed that the fluorescence intensity at glioma site of targeted group was 2.02 folds higher than that of untargeted group (**p<0.01), and glioma distribution experiment further revealed that Pep-PEG-PAMAM exhibited a significantly enhanced accumulation and improved penetration at tumor site. In conclusion, Pep-1 modified PAMAM was a promising nanocarrier for targeted delivery of brain glioma. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Sodium dependent multivitamin transporter (SMVT): a potential target for drug delivery.

    Science.gov (United States)

    Vadlapudi, Aswani Dutt; Vadlapatla, Ramya Krishna; Mitra, Ashim K

    2012-06-01

    Sodium dependent multivitamin transporter (SMVT; product of the SLC5A6 gene) is an important transmembrane protein responsible for translocation of vitamins and other essential cofactors such as biotin, pantothenic acid and lipoic acid. Hydropathy plot (Kyte-Dolittle algorithm) revealed that human SMVT protein consists of 635 amino acids and 12 transmembrane domains with both amino and carboxyl termini oriented towards the cytoplasm. SMVT is expressed in various tissues such as placenta, intestine, brain, liver, lung, kidney, cornea, retina and heart. This transporter displays broad substrate specificity and excellent capacity for utilization in drug delivery. Drug absorption is often limited by the presence of physiological (epithelial tight junctions), biochemical (efflux transporters and enzymatic degradation) and chemical (size, lipophilicity, molecular weight, charge etc.) barriers. These barriers may cause many potential therapeutics to be dropped from the preliminary screening portfolio and subsequent entry into the market. Transporter targeted delivery has become a powerful approach to deliver drugs to target tissues because of the ability of the transporter to translocate the drug to intracellular organelles at a higher rate. This review highlights studies employing SMVT transporter as a target for drug delivery to improve bioavailability and investigate the feasibility of developing SMVT targeted drug delivery systems.

  3. Cellular Signaling Pathway Alterations and Potential Targeted Therapies for Medullary Thyroid Carcinoma

    Directory of Open Access Journals (Sweden)

    Serena Giunti

    2013-01-01

    Full Text Available Parafollicular C-cell-derived medullary thyroid cancer (MTC comprises 3% to 4% of all thyroid cancers. While cytotoxic treatments have been shown to have limited efficacy, targeted molecular therapies that inhibit rearranged during transfection (RET and other tyrosine kinase receptors that are mainly involved in angiogenesis have shown great promise in the treatment of metastatic or locally advanced MTC. Multi-tyrosine kinase inhibitors such as vandetanib, which is already approved for the treatment of progressive MTC, and cabozantinib have shown distinct advantages with regard to rates of disease response and control. However, these types of tyrosine kinase inhibitor compounds are able to concurrently block several types of targets, which limits the understanding of RET as a specific target. Moreover, important resistances to tyrosine kinase inhibitors can occur, which limit the long-term efficacy of these treatments. Deregulated cellular signaling pathways and genetic alterations in MTC, particularly the activation of the RAS/mammalian target of rapamycin (mTOR cascades and RET crosstalk signaling, are now emerging as novel and potentially promising therapeutic treatments for aggressive MTC.

  4. Characterisation of the Candida albicans Phosphopantetheinyl Transferase Ppt2 as a Potential Antifungal Drug Target.

    Directory of Open Access Journals (Sweden)

    Katharine S Dobb

    Full Text Available Antifungal drugs acting via new mechanisms of action are urgently needed to combat the increasing numbers of severe fungal infections caused by pathogens such as Candida albicans. The phosphopantetheinyl transferase of Aspergillus fumigatus, encoded by the essential gene pptB, has previously been identified as a potential antifungal target. This study investigated the function of its orthologue in C. albicans, PPT2/C1_09480W by placing one allele under the control of the regulatable MET3 promoter, and deleting the remaining allele. The phenotypes of this conditional null mutant showed that, as in A. fumigatus, the gene PPT2 is essential for growth in C. albicans, thus fulfilling one aspect of an efficient antifungal target. The catalytic activity of Ppt2 as a phosphopantetheinyl transferase and the acyl carrier protein Acp1 as a substrate were demonstrated in a fluorescence transfer assay, using recombinant Ppt2 and Acp1 produced and purified from E.coli. A fluorescence polarisation assay amenable to high-throughput screening was also developed. Therefore we have identified Ppt2 as a broad-spectrum novel antifungal target and developed tools to identify inhibitors as potentially new antifungal compounds.

  5. Investigation of potential targets of Porphyromonas CRISPRs among the genomes of Porphyromonas species.

    Science.gov (United States)

    Watanabe, Takayasu; Shibasaki, Masaki; Maruyama, Fumito; Sekizaki, Tsutomu; Nakagawa, Ichiro

    2017-01-01

    The oral bacterial species Porphyromonas gingivalis, a periodontal pathogen, has plastic genomes that may be driven by homologous recombination with exogenous deoxyribonucleic acid (DNA) that is incorporated by natural transformation and conjugation. However, bacteriophages and plasmids, both of which are main resources of exogenous DNA, do not exist in the known P. gingivalis genomes. This could be associated with an adaptive immunity system conferred by clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated (cas) genes in P. gingivalis as well as innate immune systems such as a restriction-modification system. In a previous study, few immune targets were predicted for P. gingivalis CRISPR/Cas. In this paper, we analyzed 51 P. gingivalis genomes, which were newly sequenced, and publicly available genomes of 13 P. gingivalis and 46 other Porphyromonas species. We detected 6 CRISPR/Cas types (classified by sequence similarity of repeat) in P. gingivalis and 12 other types in the remaining species. The Porphyromonas CRISPR spacers with potential targets in the genus Porphyromonas were approximately 23 times more abundant than those with potential targets in other genus taxa (1,720/6,896 spacers vs. 74/6,896 spacers). Porphyromonas CRISPR/Cas may be involved in genome plasticity by exhibiting selective interference against intra- and interspecies nucleic acids.

  6. Epidermal growth factor (EGF) as a potential targeting agent for delivery of boron to malignant gliomas

    International Nuclear Information System (INIS)

    Capala, J.; Barth, R.F.; Adams, D.M.; Bailey, M.Q.; Soloway, A.H.; Carlsson, J.

    1994-01-01

    The majority of high grade gliomas express an amplified epidermal growth factor receptor (EGFR) gene, and this often is associated with an increase in cell surface receptor expression. The rapid internalization and degradation of EGF-EGFR complexes, as well as their high affinity make EGF a potential targeting agent for delivery of 10 B to tumor cells with an amplified number of EGFR. Human glioma cells can expresses as many as 10 5 -10 6 EGF receptors per cell, and if these could be saturated with boronated EGF, then > 10 8 boron atoms would be delivered per cell. Since EGF has a comparatively low molecular weight (∼ 6 kD), this has allowed us to construct relatively small bioconjugates containing ∼ 900 boron atoms per EGF molecule 3 , which also had high affinity for EGFR on tumor cells. In the present study, the feasibility of using EGF receptors as a potential target for therapy of gliomas was investigated by in vivo scintigraphic studies using 131 I- or 99m T c -labeled EGF in a rat brain tumor model. Our results indicate that intratumorally delivered boron- EGF conjugates might be useful for targeting EGFR on glioma cells if the boron containing moiety of the conjugates persisted intracellularly. Further studies are required, however, to determine if this approach can be used for BNCT of the rat glioma

  7. Tumor blood flow modifying effects of electrochemotherapy. A potential vascular targeted mechanism

    International Nuclear Information System (INIS)

    Sersa, G.; Cemazar, M.; Miklavcic, D.

    2003-01-01

    Background. The aim of this study was to determine the tumor blood flow modifying, and potential vascular targeted effect of electrochemotherapy with bleomycin or cisplatin. Materials and methods. Electrochemotherapy was performed by application of short intense electric pulses to the tumors after systemic administration of bleomycin or cisplatin. Evaluated were antitumor effectiveness of electrochemotherapy by tumor measurement, tumor blood flow modifying effect by Patent blue staining technique, and sensitivity of endothelial and tumor cells to the drugs and electrochemotherapy by clonogenicity assay. Results. Electrochemotherapy was effective in treatment of SA-1 tumors in A/J mice resulting in substantial tumor growth delay and also tumor cures. Tumor blood flow reduction following electrochemotherapy correlated well with its antitumor effectiveness. Virtually complete shut down of the tumor blood flow was observed already at 24 h after electrochemotherapy with bleomycin whereas only 50% reduction was observed after electrochemotherapy with cisplatin. Sensitivity of human endothelial HMEC-1 cells to electrochemotherapy suggests a vascular targeted effect for electrochemotherapy in vivo with bleomycin as well as with cisplatin. Conclusion. These results show that, in addition to direct electroporation of tumor cells, other vascular targeted mechanisms are involved in electrochemotherapy with bleomycin or cisplatin, potentially mediated by tumor blood flow reduction, and enhanced tumor cell death as a result of endothelial damage by electrochemotherapy. (author)

  8. Exploring the potential of a structural alphabet-based tool for mining multiple target conformations and target flexibility insight.

    Science.gov (United States)

    Regad, Leslie; Chéron, Jean-Baptiste; Triki, Dhoha; Senac, Caroline; Flatters, Delphine; Camproux, Anne-Claude

    2017-01-01

    Protein flexibility is often implied in binding with different partners and is essential for protein function. The growing number of macromolecular structures in the Protein Data Bank entries and their redundancy has become a major source of structural knowledge of the protein universe. The analysis of structural variability through available redundant structures of a target, called multiple target conformations (MTC), obtained using experimental or modeling methods and under different biological conditions or different sources is one way to explore protein flexibility. This analysis is essential to improve the understanding of various mechanisms associated with protein target function and flexibility. In this study, we explored structural variability of three biological targets by analyzing different MTC sets associated with these targets. To facilitate the study of these MTC sets, we have developed an efficient tool, SA-conf, dedicated to capturing and linking the amino acid and local structure variability and analyzing the target structural variability space. The advantage of SA-conf is that it could be applied to divers sets composed of MTCs available in the PDB obtained using NMR and crystallography or homology models. This tool could also be applied to analyze MTC sets obtained by dynamics approaches. Our results showed that SA-conf tool is effective to quantify the structural variability of a MTC set and to localize the structural variable positions and regions of the target. By selecting adapted MTC subsets and comparing their variability detected by SA-conf, we highlighted different sources of target flexibility such as induced by binding partner, by mutation and intrinsic flexibility. Our results support the interest to mine available structures associated with a target using to offer valuable insight into target flexibility and interaction mechanisms. The SA-conf executable script, with a set of pre-compiled binaries are available at http://www.mti.univ-paris-diderot.fr/recherche/plateformes/logiciels.

  9. Exploring the potential of a structural alphabet-based tool for mining multiple target conformations and target flexibility insight.

    Directory of Open Access Journals (Sweden)

    Leslie Regad

    Full Text Available Protein flexibility is often implied in binding with different partners and is essential for protein function. The growing number of macromolecular structures in the Protein Data Bank entries and their redundancy has become a major source of structural knowledge of the protein universe. The analysis of structural variability through available redundant structures of a target, called multiple target conformations (MTC, obtained using experimental or modeling methods and under different biological conditions or different sources is one way to explore protein flexibility. This analysis is essential to improve the understanding of various mechanisms associated with protein target function and flexibility. In this study, we explored structural variability of three biological targets by analyzing different MTC sets associated with these targets. To facilitate the study of these MTC sets, we have developed an efficient tool, SA-conf, dedicated to capturing and linking the amino acid and local structure variability and analyzing the target structural variability space. The advantage of SA-conf is that it could be applied to divers sets composed of MTCs available in the PDB obtained using NMR and crystallography or homology models. This tool could also be applied to analyze MTC sets obtained by dynamics approaches. Our results showed that SA-conf tool is effective to quantify the structural variability of a MTC set and to localize the structural variable positions and regions of the target. By selecting adapted MTC subsets and comparing their variability detected by SA-conf, we highlighted different sources of target flexibility such as induced by binding partner, by mutation and intrinsic flexibility. Our results support the interest to mine available structures associated with a target using to offer valuable insight into target flexibility and interaction mechanisms. The SA-conf executable script, with a set of pre-compiled binaries are available at

  10. Metatranscriptome Analysis of Fig Flowers Provides Insights into Potential Mechanisms for Mutualism Stability and Gall Induction.

    Directory of Open Access Journals (Sweden)

    Ellen O Martinson

    Full Text Available A striking property of the mutualism between figs and their pollinating wasps is that wasps consistently oviposit in the inner flowers of the fig syconium, which develop into galls that house developing larvae. Wasps typically do not use the outer ring of flowers, which develop into seeds. To better understand differences between gall and seed flowers, we used a metatranscriptomic approach to analyze eukaryotic gene expression within fig flowers at the time of oviposition choice and early gall development. Consistent with the unbeatable seed hypothesis, we found significant differences in gene expression between gall- and seed flowers in receptive syconia prior to oviposition. In particular, transcripts assigned to flavonoids and carbohydrate metabolism were significantly up-regulated in gall flowers relative to seed flowers. In response to oviposition, gall flowers significantly up-regulated the expression of chalcone synthase, which previously has been connected to gall formation in other plants. We propose several genes encoding proteins with signal peptides or associations with venom of other Hymenoptera as candidate genes for gall initiation or growth. This study simultaneously evaluates the gene expression profile of both mutualistic partners in a plant-insect mutualism and provides insight into a possible stability mechanism in the ancient fig-fig wasp association.

  11. The Potential for Energy Storage to Provide Peaking Capacity in California under Increased Penetration of Solar Photovoltaics: Report Summary

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, Paul L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margolis, Robert M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-03-12

    Opportunities to provide peaking capacity with low-cost energy storage are emerging. But adding storage changes the ability of subsequent storage additions to meet peak demand. Increasing photovoltaic (PV) deployment also affects storage's ability to provide peak capacity. This study examines storage's potential to replace conventional peak capacity in California.

  12. Photopatternable Magnetic Hollowbots by Nd-Fe-B Nanocomposite for Potential Targeted Drug Delivery Applications

    Directory of Open Access Journals (Sweden)

    Hui Li

    2018-04-01

    Full Text Available In contrast to traditional drug administration, targeted drug delivery can prolong, localize, target and have a protected drug interaction with the diseased tissue. Drug delivery carriers, such as polymeric micelles, liposomes, dendrimers, nanotubes, and so on, are hard to scale-up, costly, and have short shelf life. Here we show the novel fabrication and characterization of photopatternable magnetic hollow microrobots that can potentially be utilized in microfluidics and drug delivery applications. These magnetic hollowbots can be fabricated using standard ultraviolet (UV lithography with low cost and easily accessible equipment, which results in them being easy to scale up, and inexpensive to fabricate. Contact-free actuation of freestanding magnetic hollowbots were demonstrated by using an applied 900 G external magnetic field to achieve the movement control in an aqueous environment. According to the movement clip, the average speed of the magnetic hollowbots was estimated to be 1.9 mm/s.

  13. Potential functional and pathological side effects related to off-target pharmacological activity.

    Science.gov (United States)

    Lynch, James J; Van Vleet, Terry R; Mittelstadt, Scott W; Blomme, Eric A G

    2017-09-01

    Most pharmaceutical companies test their discovery-stage proprietary molecules in a battery of in vitro pharmacology assays to try to determine off-target interactions. During all phases of drug discovery and development, various questions arise regarding potential side effects associated with such off-target pharmacological activity. Here we present a scientific literature curation effort undertaken to determine and summarize the most likely functional and pathological outcomes associated with interactions at 70 receptors, enzymes, ion channels and transporters with established links to adverse effects. To that end, the scientific literature was reviewed using an on-line database, and the most commonly reported effects were summarized in tabular format. The resultant table should serve as a practical guide for research scientists and clinical investigators for the prediction and interpretation of adverse side effects associated with molecules interacting with components of this screening battery. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Leveraging Algal Omics to Reveal Potential Targets for Augmenting TAG Accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Guarnieri, Michael T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pienkos, Philip T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Arora, Neha [Indian Institute of Technology Roorkee; Pruthi, Vikas [Indian Institute of Technology Roorkee; Poluri, Krishna Mohan [Indian Institute of Technology Roorkee

    2018-04-18

    Ongoing global efforts to commercialize microalgal biofuels have expedited the use of multi-omics techniques to gain insights into lipid biosynthetic pathways. Functional genomics analyses have recently been employed to complement existing sequence-level omics studies, shedding light on the dynamics of lipid synthesis and its interplay with other cellular metabolic pathways, thus revealing possible targets for metabolic engineering. Here, we review the current status of algal omics studies to reveal potential targets to augment TAG accumulation in various microalgae. This review specifically aims to examine and catalog systems level data related to stress-induced TAG accumulation in oleaginous microalgae and inform future metabolic engineering strategies to develop strains with enhanced bioproductivity, which could pave a path for sustainable green energy.

  15. Medicinal plants growing in the Judea region: network approach for searching potential therapeutic targets

    Directory of Open Access Journals (Sweden)

    Arie Budovsky

    2012-09-01

    Full Text Available Plants growing in the Judea region are widely used in traditional medicine of the Levant region. Nevertheless, they have not so far been sufficiently analyzed and their medicinal potential has not been evaluated. This study is the first attempt to fill the gap in the knowledge of the plants growing in the region. Comprehensive data mining of online botanical databases and peer-reviewed scientific literature including ethno-pharmacological surveys from the Levant region was applied to compile a full list of plants growing in the Judea region, with the focus on their medicinal applications. Around 1300 plants growing in the Judea region were identified. Of them, 25% have medicinal applications which were analyzed in this study. Screening for chemical-protein interactions, together with the network-based analysis of potential targets, will facilitate discovery and therapeutic applications of the Judea region plants. Such an approach could also be applied as an integrative platform for further searching the potential therapeutic targets of plants growing in other regions of the world.

  16. Evaluation of radioiodinated curcumin for its potential as a tumor-targeting radiopharmaceutical

    International Nuclear Information System (INIS)

    Kumar, Chandan; Subramanian, Suresh; Samuel, Grace

    2016-01-01

    Curcumin, a component of the spice turmeric has widely reported anticancer properties in several types of cancer. The differential accumulation and mechanism of its action in normal and cancer cells have proven its potential in targeting tumor. Therefore, it was of interest to label curcumin with a suitable radionuclide and explore its potential for use in nuclear medicine. Curcumin was labeled with "1"2"5I by iodogen method. The radiochemical purity was analyzed by paper electrophoresis and high-performance liquid chromatography (HPLC) method. Cell binding was carried out in murine lymphoma and melanoma cell lines. Bioevaluation and pharmacokinetics of radioiodinated curcumin was carried out in lymphoma-bearing mice for various time points (1, 3, 24, and 48 h). The efficiency of labeling was >75% and the radiochemical purity postpurification was >95%. The maximum uptake (∼7% at 2 h, 37°C using 5 X 10"5 cells) was observed in EL4 cells. Significant tumor uptake in lymphoma-bearing mice was observed at 180 min (3.3 ± 0.76% ID/g). In addition, pharmacokinetics of radioiodinated curcumin is fast, with the majority of the preparation out of the bloodstream in 3 h. The results of these studies suggest that curcumin has the potential for targeting lymphomas, which may be used as diagnostic/therapeutic agent by labeling with other radionuclides. (author)

  17. A novel nanobody specific for respiratory surfactant protein A has potential for lung targeting

    Directory of Open Access Journals (Sweden)

    Wang SM

    2015-04-01

    Full Text Available Shan-Mei Wang,1,* Xian He,2,* Nan Li,1,* Feng Yu,3 Yang Hu,1 Liu-Sheng Wang,1 Peng Zhang,4 Yu-Kui Du,1 Shan-Shan Du,1 Zhao-Fang Yin,1 Ya-Ru Wei,1 Xavier Mulet,5 Greg Coia,6 Dong Weng,1 Jian-Hua He,3 Min Wu,7 Hui-Ping Li1 1Department of Respiratory Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 2School of Medicine, Suzhou University, SuZhou, 3Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 4Department of Chest Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China; 5CSIRO (Commonwealth Scientific and Industrial Research Materials Science and Engineering, Clayton, 6CSIRO Materials Science and Engineering, Parkville, Melbourne, VIC, Australia; 7Department of Basic Sciences, University of North Dakota, Grand Forks, ND, USA *These authors contributed equally to this work Abstract: Lung-targeting drugs are thought to be potential therapies of refractory lung diseases by maximizing local drug concentrations in the lung to avoid systemic circulation. However, a major limitation in developing lung-targeted drugs is the acquirement of lung-specific ligands. Pulmonary surfactant protein A (SPA is predominantly synthesized by type II alveolar epithelial cells, and may serve as a potential lung-targeting ligand. Here, we generated recombinant rat pulmonary SPA (rSPA as an antigen and immunized an alpaca to produce two nanobodies (the smallest naturally occurring antibodies specific for rSPA, designated Nb6 and Nb17. To assess these nanobodies’ potential for lung targeting, we evaluated their specificity to lung tissue and toxicity in mice. Using immunohistochemistry, we demonstrated that these anti-rSPA nanobodies selectively bound to rat lungs with high affinity. Furthermore, we intravenously injected fluorescein isothiocyanate-Nb17 in nude mice and observed its preferential accumulation in the lung to other tissues, suggesting high

  18. Eph receptor A10 has a potential as a target for a prostate cancer therapy

    International Nuclear Information System (INIS)

    Nagano, Kazuya; Yamashita, Takuya; Inoue, Masaki; Higashisaka, Kazuma; Yoshioka, Yasuo; Abe, Yasuhiro; Mukai, Yohei; Kamada, Haruhiko

    2014-01-01

    Highlights: • EphA10 mRNA is overexpressed in breast, prostate and colon cancer cell lines. • EphA10 is overexpressed in clinical prostate tumors at mRNA and protein levels. • Anti-EphA10 antibodies were cytotoxic on EphA10-positive prostate cancer cells. - Abstract: We recently identified Eph receptor A10 (EphA10) as a novel breast cancer-specific protein. Moreover, we also showed that an in-house developed anti-EphA10 monoclonal antibody (mAb) significantly inhibited proliferation of breast cancer cells, suggesting EphA10 as a promising target for breast cancer therapy. However, the only other known report for EphA10 was its expression in the testis at the mRNA level. Therefore, the potency of EphA10 as a drug target against cancers other than the breast is not known. The expression of EphA10 in a wide variety of cancer cells was studied and the potential of EphA10 as a drug target was evaluated. Screening of EphA10 mRNA expression showed that EphA10 was overexpressed in breast cancer cell lines as well as in prostate and colon cancer cell lines. Thus, we focused on prostate cancers in which EphA10 expression was equivalent to that in breast cancers. As a result, EphA10 expression was clearly shown in clinical prostate tumor tissues as well as in cell lines at the mRNA and protein levels. In order to evaluate the potential of EphA10 as a drug target, we analyzed complement-dependent cytotoxicity effects of anti-EphA10 mAb and found that significant cytotoxicity was mediated by the expression of EphA10. Therefore, the idea was conceived that the overexpression of EphA10 in prostate cancers might have a potential as a target for prostate cancer therapy, and formed the basis for the studies reported here

  19. Changing the paradigm: the potential for targeted therapy in laryngeal squamous cell carcinoma

    International Nuclear Information System (INIS)

    Ludwig, Megan L.; Birkeland, Andrew C.; Hoesli, Rebecca; Swiecicki, Paul; Spector, Matthew E.; Brenner, J. Chad

    2016-01-01

    Laryngeal squamous cell carcinoma (LSCC) remains a highly morbid and fatal disease. Historically, it has been a model example for organ preservation and treatment stratification paradigms. Unfortunately, survival for LSCC has stagnated over the past few decades. As the era of next-generation sequencing and personalized treatment for cancer approaches, LSCC may be an ideal disease for consideration of further treatment stratification and personalization. Here, we will discuss the important history of LSCC as a model system for organ preservation, unique and potentially targetable genetic signatures of LSCC, and methods for bringing stratified, personalized treatment strategies to the 21 st century

  20. EBNA1: Oncogenic Activity, Immune Evasion and Biochemical Functions Provide Targets for Novel Therapeutic Strategies against Epstein-Barr Virus- Associated Cancers

    Directory of Open Access Journals (Sweden)

    Joanna B. Wilson

    2018-04-01

    Full Text Available The presence of the Epstein-Barr virus (EBV-encoded nuclear antigen-1 (EBNA1 protein in all EBV-carrying tumours constitutes a marker that distinguishes the virus-associated cancer cells from normal cells and thereby offers opportunities for targeted therapeutic intervention. EBNA1 is essential for viral genome maintenance and also for controlling viral gene expression and without EBNA1, the virus cannot persist. EBNA1 itself has been linked to cell transformation but the underlying mechanism of its oncogenic activity has been unclear. However, recent data are starting to shed light on its growth-promoting pathways, suggesting that targeting EBNA1 can have a direct growth suppressing effect. In order to carry out its tasks, EBNA1 interacts with cellular factors and these interactions are potential therapeutic targets, where the aim would be to cripple the virus and thereby rid the tumour cells of any oncogenic activity related to the virus. Another strategy to target EBNA1 is to interfere with its expression. Controlling the rate of EBNA1 synthesis is critical for the virus to maintain a sufficient level to support viral functions, while at the same time, restricting expression is equally important to prevent the immune system from detecting and destroying EBNA1-positive cells. To achieve this balance EBNA1 has evolved a unique repeat sequence of glycines and alanines that controls its own rate of mRNA translation. As the underlying molecular mechanisms for how this repeat suppresses its own rate of synthesis in cis are starting to be better understood, new therapeutic strategies are emerging that aim to modulate the translation of the EBNA1 mRNA. If translation is induced, it could increase the amount of EBNA1-derived antigenic peptides that are presented to the major histocompatibility (MHC class I pathway and thus, make EBV-carrying cancers better targets for the immune system. If translation is further suppressed, this would provide another

  1. Therapeutic potential of mGluR5 targeting in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Anil eKumar

    2015-06-01

    Full Text Available Decades of research dedicated towards Alzheimer's disease (AD has culminated in much of the current understanding of the neurodegeneration associated with disease. However, delineating the pathophysiology and finding a possible cure for the disease is still wanting. This is in part due to the lack of knowledge pertaining to the connecting link between neurodegenerative and neuroinflammatory pathways. Consequently, the inefficacy and ill-effects of the drugs currently available for AD encourage the need for alternative and safe therapeutic intervention. In this review we highlight the potential of mGluR5, a metabotropic glutamatergic receptor, in understanding the mechanism underlying the neuronal death and neuroinflammation in AD. We also discuss the role of mGlu5 receptor in mediating the neuron-glia interaction in the disease. Finally, we discuss the potential of mGluR5 as target for treating AD.

  2. The gut-kidney axis in chronic renal failure: A new potential target for therapy.

    Science.gov (United States)

    Khoury, Tawfik; Tzukert, Keren; Abel, Roy; Abu Rmeileh, Ayman; Levi, Ronen; Ilan, Yaron

    2017-07-01

    Evidence is accumulating to consider the gut microbiome as a central player in the gut-kidney axis. Microbiome products, such as advanced glycation end products, phenols, and indoles, are absorbed into the circulation but are cleared by normal-functioning kidneys. These products then become toxic and contribute to the uremic load and to the progression of chronic kidney failure. In this review, we discuss the gut-kidney interaction under the state of chronic kidney failure as well as the potential mechanisms by which a change in the gut flora (termed gut dysbiosis) in chronic kidney disease (CKD) exacerbates uremia and leads to further progression of CKD and inflammation. Finally, the potential therapeutic interventions to target the gut microbiome in CKD are discussed. © 2016 International Society for Hemodialysis.

  3. Oligopeptide Targeting Sortase A as Potential Anti-infective Therapy for Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Jianfeng Wang

    2018-02-01

    Full Text Available Sortase A (SrtA-catalyzed anchorage of surface proteins in most Gram-positive bacteria is indispensable for their virulence, suggesting that this transpeptidase is a promising target for antivirulence therapy. Here, an oligopeptide, LPRDA, was identified as an effective inhibitor of SrtA via virtual screening based on the LPXTG substrate sequence, and it was found to inhibit SrtA activity in vitro and in vivo (IC50 = 10.61 μM by competitively occupying the active site of SrtA. Further, the oligopeptide treatment had no anti-Staphylococcus aureus activity, but it provided protection against S. aureus-induced mastitis in a mouse model. These findings indicate that the oligopeptide could be used as an effective anti-infective agent for the treatment of infection caused by S. aureus or other Gram-positive bacteria via the targeting of SrtA.

  4. Inhibition of Glutamine Synthetase: A Potential Drug Target in Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Sherry L. Mowbray

    2014-08-01

    Full Text Available Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis. Globally, tuberculosis is second only to AIDS in mortality and the disease is responsible for over 1.3 million deaths each year. The impractically long treatment schedules (generally 6–9 months and unpleasant side effects of the current drugs often lead to poor patient compliance, which in turn has resulted in the emergence of multi-, extensively- and totally-drug resistant strains. The development of new classes of anti-tuberculosis drugs and new drug targets is of global importance, since attacking the bacterium using multiple strategies provides the best means to prevent resistance. This review presents an overview of the various strategies and compounds utilized to inhibit glutamine synthetase, a promising target for the development of drugs for TB therapy.

  5. Drug design with Cdc7 kinase: a potential novel cancer therapy target

    Directory of Open Access Journals (Sweden)

    Masaaki Sawa

    2008-11-01

    Full Text Available Masaaki Sawa1, Hisao Masai21Carna Biosciences, Inc., Kobe, Japan; 2Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, JapanAbstract: Identification of novel molecular targets is critical in development of new and efficient cancer therapies. Kinases are one of the most common drug targets with a potential for cancer therapy. Cell cycle progression is regulated by a number of kinases, some of which are being developed to treat cancer. Cdc7 is a serine-threonine kinase originally discovered in budding yeast, which has been shown to be necessary to initiate the S phase. Inhibition of Cdc7 in cancer cells retards the progression of the S phase, accumulates DNA damage, and induces p53-independent cell death, but the same treatment in normal cells does not significantly affect viability. Low-molecular-weight compounds that inhibit Cdc7 kinase with an IC50 of less than 10 nM have been identified, and shown to be effective in the inhibition of tumor growth in animal models. Thus Cdc7 kinase can be recognized as a novel molecular target for cancer therapy.Keywords: Cdc7 kinase, cell cycle, replication fork, genome stability, DNA damages, ATP-binding pocket, kinase inhibitor

  6. Physical Properties of Asteroid (10302) 1989 ML, a Potential Spacecraft Target, from Spitzer Observations

    Science.gov (United States)

    Mueller, Michael; Harris, A. W.

    2006-09-01

    We report on results from recent Spitzer observations of near-Earth asteroid (10302) 1989 ML, which is among the lowest-ranking objects in terms of the specific momentum Δv required to reach it from Earth. It was originally considered as a target for Hayabusa and is now under consideration as a target of the planned ESA mission Don Quijote. Unfortunately, little is known about the physical properties of 1989 ML, in particular its size and albedo are unknown. Its exhibits an X type reflection spectrum, so depending on its albedo, 1989 ML may be an E, M, or P type asteroid. Provisional results from thermal-infrared observations carried out with Spitzer indicate that the albedo of 1989 ML is compatible with an M- or E-type classification. We will discuss our results and their implications for the physical properties and the rotation period of 1989 ML, and its importance as a potential spacecraft target. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA.

  7. In vivo therapeutic potential of Dicer-hunting siRNAs targeting infectious hepatitis C virus.

    Science.gov (United States)

    Watanabe, Tsunamasa; Hatakeyama, Hiroto; Matsuda-Yasui, Chiho; Sato, Yusuke; Sudoh, Masayuki; Takagi, Asako; Hirata, Yuichi; Ohtsuki, Takahiro; Arai, Masaaki; Inoue, Kazuaki; Harashima, Hideyoshi; Kohara, Michinori

    2014-04-23

    The development of RNA interference (RNAi)-based therapy faces two major obstacles: selecting small interfering RNA (siRNA) sequences with strong activity, and identifying a carrier that allows efficient delivery to target organs. Additionally, conservative region at nucleotide level must be targeted for RNAi in applying to virus because hepatitis C virus (HCV) could escape from therapeutic pressure with genome mutations. In vitro preparation of Dicer-generated siRNAs targeting a conserved, highly ordered HCV 5' untranslated region are capable of inducing strong RNAi activity. By dissecting the 5'-end of an RNAi-mediated cleavage site in the HCV genome, we identified potent siRNA sequences, which we designate as Dicer-hunting siRNAs (dh-siRNAs). Furthermore, formulation of the dh-siRNAs in an optimized multifunctional envelope-type nano device inhibited ongoing infectious HCV replication in human hepatocytes in vivo. Our efforts using both identification of optimal siRNA sequences and delivery to human hepatocytes suggest therapeutic potential of siRNA for a virus.

  8. The potential of AR-V7 as a therapeutic target.

    Science.gov (United States)

    Uo, Takuma; Plymate, Stephen R; Sprenger, Cynthia C

    2018-03-01

    The androgen receptor variant AR-V7 is gaining attention as a potential predictive marker for as well as one of the resistance mechanisms to the most current anti-androgen receptor (AR) therapies in castration-resistant prostate cancer (CRPC). Accordingly, development of next-generation drugs that directly or indirectly target AR-V7 signaling is urgently needed. Areas covered: We review proposed mechanisms of drug resistance in relation to AR-V7 status, the mechanisms of generation of AR-V7, and its transcriptome, cistrome, and interactome. Pharmacological agents that interfere with these processes are being developed to counteract pan AR and AR-V7-specific signaling. Also, we address the current status of the preclinical and clinical studies targeting AR-V7 signaling. Expert opinion: AR-V7 is considered a true therapeutic target, however, it remains to be determined if AR-V7 is a principal driver or merely a bystander requiring heterodimerization with co-expressed full-length AR or other variants to drive CRPC progression. While untangling AR-V7 biology, multiple strategies are being developed to counteract drug resistance, including selective blockade of AR-V7 signaling as well as inhibition of pan-AR signaling. Ideally anti-AR therapies will be combined with agents preventing activation and enrichment of AR negative tumor cells that are otherwise depressed by AR activity axis.

  9. The Potential for Energy Storage to Provide Peaking Capacity in California Under Increased Penetration of Solar Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, Paul L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margolis, Robert M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-03-14

    In this report, we examine the potential for replacing conventional peaking capacity in California with energy storage, including analysis of the changing technical potential with increased storage deployment and the effect of PV deployment. We examine nine years of historic load data, a range of storage durations (2-8 hours), and a range of PV penetration levels (0%-30%). We demonstrate how PV increases the ability of storage to reduce peak net demand. In the scenarios analyzed, the expected penetration of PV in California in 2020 could more than double the potential for 4-hour energy storage to provide capacity services.

  10. Targeting dysfunctional beta-cell signaling for the potential treatment of type 1 diabetes mellitus.

    Science.gov (United States)

    Fenske, Rachel J; Kimple, Michelle E

    2018-03-01

    Since its discovery and purification by Frederick Banting in 1921, exogenous insulin has remained almost the sole therapy for type 1 diabetes mellitus. While insulin alleviates the primary dysfunction of the disease, many other aspects of the pathophysiology of type 1 diabetes mellitus are unaffected. Research aimed towards the discovery of novel type 1 diabetes mellitus therapeutics targeting different cell signaling pathways is gaining momentum. The focus of these efforts has been almost entirely on the impact of immunomodulatory drugs, particularly those that have already received FDA-approval for other autoimmune diseases. However, these drugs can often have severe side effects, while also putting already immunocompromised individuals at an increased risk for other infections. Potential therapeutic targets in the insulin-producing beta-cell have been largely ignored by the type 1 diabetes mellitus field, save the glucagon-like peptide 1 receptor. While there is preliminary evidence to support the clinical exploration of glucagon-like peptide 1 receptor-based drugs as type 1 diabetes mellitus adjuvant therapeutics, there is a vast space for other putative therapeutic targets to be explored. The alpha subunit of the heterotrimeric G z protein (Gα z ) has been shown to promote beta-cell inflammation, dysfunction, death, and failure to replicate in the context of diabetes in a number of mouse models. Genetic loss of Gα z or inhibition of the Gα z signaling pathway through dietary interventions is protective against the development of insulitis and hyperglycemia. The multifaceted effects of Gα z in regards to beta-cell health in the context of diabetes make it an ideal therapeutic target for further study. It is our belief that a low-risk, effective therapy for type 1 diabetes mellitus will involve a multidimensional approach targeting a number of regulatory systems, not the least of which is the insulin-producing beta-cell. Impact statement The expanding

  11. Tumor imaging and targeting potential of an Hsp70-derived 14-mer peptide.

    Directory of Open Access Journals (Sweden)

    Mathias Gehrmann

    Full Text Available We have previously used a unique mouse monoclonal antibody cmHsp70.1 to demonstrate the selective presence of a membrane-bound form of Hsp70 (memHsp70 on a variety of leukemia cells and on single cell suspensions derived from solid tumors of different entities, but not on non-transformed cells or cells from corresponding 'healthy' tissue. This antibody can be used to image tumors in vivo and target them for antibody-dependent cellular cytotoxicity. Tumor-specific expression of memHsp70 therefore has the potential to be exploited for theranostic purposes. Given the advantages of peptides as imaging and targeting agents, this study assessed whether a 14-mer tumor penetrating peptide (TPP; TKDNNLLGRFELSG, the sequence of which is derived from the oligomerization domain of Hsp70 which is expressed on the cell surface of tumor cells, can also be used for targeting membrane Hsp70 positive (memHsp70+ tumor cells, in vitro.The specificity of carboxy-fluorescein (CF- labeled TPP (TPP to Hsp70 was proven in an Hsp70 knockout mammary tumor cell system. TPP specifically binds to different memHsp70+ mouse and human tumor cell lines and is rapidly taken up via endosomes. Two to four-fold higher levels of CF-labeled TPP were detected in MCF7 (82% memHsp70+ and MDA-MB-231 (75% memHsp70+ cells compared to T47D cells (29% memHsp70+ that exhibit a lower Hsp70 membrane positivity. After 90 min incubation, TPP co-localized with mitochondrial membranes in memHsp70+ tumors. Although there was no evidence that any given vesicle population was specifically localized, fluorophore-labeled cmHsp70.1 antibody and TPP preferentially accumulated in the proximity of the adherent surface of cultured cells. These findings suggest a potential association between membrane Hsp70 expression and cytoskeletal elements that are involved in adherence, the establishment of intercellular synapses and/or membrane reorganization.This study demonstrates the specific binding and rapid

  12. Type I IL-1 Receptor (IL-1RI as Potential New Therapeutic Target for Bronchial Asthma

    Directory of Open Access Journals (Sweden)

    Jyh-Hong Lee

    2010-01-01

    Full Text Available The IL-1R/TLR family has been receiving considerable attention as potential regulators of inflammation through their ability to act as either activators or suppressors of inflammation. Asthma is a chronic inflammatory disease characterized by airway hyperresponsiveness, allergic inflammation, elevated serum total, allergen-specific IgE levels, and increased Th2 cytokine production. The discovery that the IL-1RI–IL-1 and ST2–IL-33 pathways are crucial for allergic inflammation has raised interest in these receptors as potential targets for developing new therapeutic strategies for bronchial asthma. This paper discusses the current use of neutralizing mAb or soluble receptor constructs to deplete cytokines, the use of neutralizing mAb or recombinant receptor antagonists to block cytokine receptors, and gene therapy from experimental studies in asthma. Targeting IL-1RI–IL-1 as well as ST2–IL-33 pathways may promise a disease-modifying approach in the future.

  13. The periplasmic protein TolB as a potential drug target in Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Alessandra Lo Sciuto

    Full Text Available The Gram-negative bacterium Pseudomonas aeruginosa is one of the most dreaded pathogens in the hospital setting, and represents a prototype of multi-drug resistant "superbug" for which effective therapeutic options are very limited. The identification and characterization of new cellular functions that are essential for P. aeruginosa viability and/or virulence could drive the development of anti-Pseudomonas compounds with novel mechanisms of action. In this study we investigated whether TolB, the periplasmic component of the Tol-Pal trans-envelope protein complex of Gram-negative bacteria, represents a potential drug target in P. aeruginosa. By combining conditional mutagenesis with the analysis of specific pathogenicity-related phenotypes, we demonstrated that TolB is essential for P. aeruginosa growth, both in laboratory and clinical strains, and that TolB-depleted P. aeruginosa cells are strongly defective in cell-envelope integrity, resistance to human serum and several antibiotics, as well as in the ability to cause infection and persist in an insect model of P. aeruginosa infection. The essentiality of TolB for P. aeruginosa growth, resistance and pathogenicity highlights the potential of TolB as a novel molecular target for anti-P. aeruginosa drug discovery.

  14. Mutational Profiling of Malignant Mesothelioma Revealed Potential Therapeutic Targets in EGFR and NRAS

    Directory of Open Access Journals (Sweden)

    Jeong Eun Kim

    2018-04-01

    Full Text Available Pemetrexed and platinum (PP combination chemotherapy is the current standard first-line therapy for treatment of malignant mesothelioma (MM. However, a useful predictive biomarker for PP therapy is yet to be found. Here, we performed targeted exome sequencing to profile somatic mutations and copy number variations in 12 MM patients treated with PP therapy. We identified 187 somatic mutations in 12 patients (65 synonymous, 102 missense, 2 nonsense, 5 splice site, and 13 small coding insertions/deletions. We identified somatic mutations in 23 genes including BAP1, TP53, NRAS, and EGFR. Interestingly, rare NRAS p.Q61K and EGFR exon 19 deletions were observed in 2 patients. We also found somatic chromosomal copy number deletions in CDKN2A and CDKN2B genes. Genetic alteration related to response after PP therapy was not found. Somatic mutation profiling in MM patients receiving PP therapy revealed genetic alterations in potential therapeutic targets such as NRAS and EGFR. No alterations in genes with potential predictive role for PP therapy were found.

  15. Mutational Profiling of Malignant Mesothelioma Revealed Potential Therapeutic Targets in EGFR and NRAS.

    Science.gov (United States)

    Kim, Jeong Eun; Kim, Deokhoon; Hong, Yong Sang; Kim, Kyu-Pyo; Yoon, Young Kwang; Lee, Dae Ho; Kim, Sang-We; Chun, Sung-Min; Jang, Se Jin; Kim, Tae Won

    2018-04-01

    Pemetrexed and platinum (PP) combination chemotherapy is the current standard first-line therapy for treatment of malignant mesothelioma (MM). However, a useful predictive biomarker for PP therapy is yet to be found. Here, we performed targeted exome sequencing to profile somatic mutations and copy number variations in 12 MM patients treated with PP therapy. We identified 187 somatic mutations in 12 patients (65 synonymous, 102 missense, 2 nonsense, 5 splice site, and 13 small coding insertions/deletions). We identified somatic mutations in 23 genes including BAP1, TP53, NRAS, and EGFR. Interestingly, rare NRAS p.Q61K and EGFR exon 19 deletions were observed in 2 patients. We also found somatic chromosomal copy number deletions in CDKN2A and CDKN2B genes. Genetic alteration related to response after PP therapy was not found. Somatic mutation profiling in MM patients receiving PP therapy revealed genetic alterations in potential therapeutic targets such as NRAS and EGFR. No alterations in genes with potential predictive role for PP therapy were found. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Target-directed Dynamic Combinatorial Chemistry: A Study on Potentials and Pitfalls as Exemplified on a Bacterial Target.

    Science.gov (United States)

    Frei, Priska; Pang, Lijuan; Silbermann, Marleen; Eriş, Deniz; Mühlethaler, Tobias; Schwardt, Oliver; Ernst, Beat

    2017-08-25

    Target-directed dynamic combinatorial chemistry (DCC) is an emerging technique for the efficient identification of inhibitors of pharmacologically relevant targets. In this contribution, we present an application for a bacterial target, the lectin FimH, a crucial virulence factor of uropathogenic E. coli being the main cause of urinary tract infections. A small dynamic library of acylhydrazones was formed from aldehydes and hydrazides and equilibrated at neutral pH in presence of aniline as nucleophilic catalyst. The major success factors turned out to be an accordingly adjusted ratio of scaffolds and fragments, an adequate sample preparation prior to HPLC analysis, and the data processing. Only then did the ranking of the dynamic library constituents correlate well with affinity data. Furthermore, as a support of DCC applications especially to larger libraries, a new protocol for improved hit identification was established. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Transcriptome-wide identification of Rauvolfia serpentina microRNAs and prediction of their potential targets.

    Science.gov (United States)

    Prakash, Pravin; Rajakani, Raja; Gupta, Vikrant

    2016-04-01

    MicroRNAs (miRNAs) are small non-coding RNAs of ∼ 19-24 nucleotides (nt) in length and considered as potent regulators of gene expression at transcriptional and post-transcriptional levels. Here we report the identification and characterization of 15 conserved miRNAs belonging to 13 families from Rauvolfia serpentina through in silico analysis of available nucleotide dataset. The identified mature R. serpentina miRNAs (rse-miRNAs) ranged between 20 and 22nt in length, and the average minimal folding free energy index (MFEI) value of rse-miRNA precursor sequences was found to be -0.815 kcal/mol. Using the identified rse-miRNAs as query, their potential targets were predicted in R. serpentina and other plant species. Gene Ontology (GO) annotation showed that predicted targets of rse-miRNAs include transcription factors as well as genes involved in diverse biological processes such as primary and secondary metabolism, stress response, disease resistance, growth, and development. Few rse-miRNAs were predicted to target genes of pharmaceutically important secondary metabolic pathways such as alkaloids and anthocyanin biosynthesis. Phylogenetic analysis showed the evolutionary relationship of rse-miRNAs and their precursor sequences to homologous pre-miRNA sequences from other plant species. The findings under present study besides giving first hand information about R. serpentina miRNAs and their targets, also contributes towards the better understanding of miRNA-mediated gene regulatory processes in plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The insect ecdysone receptor is a good potential target for RNAi-based pest control.

    Science.gov (United States)

    Yu, Rong; Xu, Xinping; Liang, Yongkang; Tian, Honggang; Pan, Zhanqing; Jin, Shouheng; Wang, Na; Zhang, Wenqing

    2014-01-01

    RNA interference (RNAi) has great potential for use in insect pest control. However, some significant challenges must be overcome before RNAi-based pest control can become a reality. One challenge is the proper selection of a good target gene for RNAi. Here, we report that the insect ecdysone receptor (EcR) is a good potential target for RNAi-based pest control in the brown planthopper Nilaparvata lugens, a serious insect pest of rice plants. We demonstrated that the use of a 360 bp fragment (NlEcR-c) that is common between NlEcR-A and NlEcR-B for feeding RNAi experiments significantly decreased the relative mRNA expression levels of NlEcR compared with those in the dsGFP control. Feeding RNAi also resulted in a significant reduction in the number of offspring per pair of N. lugens. Consequently, a transgenic rice line expressing NlEcR dsRNA was constructed by Agrobacterium- mediated transformation. The results of qRT-PCR showed that the total copy number of the target gene in all transgenic rice lines was 2. Northern blot analysis showed that the small RNA of the hairpin dsNlEcR-c was successfully expressed in the transgenic rice lines. After newly hatched nymphs of N. lugens fed on the transgenic rice lines, effective RNAi was observed. The NlEcR expression levels in all lines examined were decreased significantly compared with the control. In all lines, the survival rate of the nymphs was nearly 90%, and the average number of offspring per pair in the treated groups was significantly less than that observed in the control, with a decrease of 44.18-66.27%. These findings support an RNAi-based pest control strategy and are also important for the management of rice insect pests.

  19. Dipeptidyl peptidase IV as a potential target for selective prodrug activation and chemotherapeutic action in cancers.

    Science.gov (United States)

    Dahan, Arik; Wolk, Omri; Yang, Peihua; Mittal, Sachin; Wu, Zhiqian; Landowski, Christopher P; Amidon, Gordon L

    2014-12-01

    The efficacy of chemotherapeutic drugs is often offset by severe side effects attributable to poor selectivity and toxicity to normal cells. Recently, the enzyme dipeptidyl peptidase IV (DPPIV) was considered as a potential target for the delivery of chemotherapeutic drugs. The purpose of this study was to investigate the feasibility of targeting chemotherapeutic drugs to DPPIV as a strategy to enhance their specificity. The expression profile of DPPIV was obtained for seven cancer cell lines using DNA microarray data from the DTP database, and was validated by RT-PCR. A prodrug was then synthesized by linking the cytotoxic drug melphalan to a proline-glycine dipeptide moiety, followed by hydrolysis studies in the seven cell lines with a standard substrate, as well as the glycyl-prolyl-melphalan (GP-Mel). Lastly, cell proliferation studies were carried out to demonstrate enzyme-dependent activation of the candidate prodrug. The relative RT-PCR expression levels of DPPIV in the cancer cell lines exhibited linear correlation with U95Av2 Affymetrix data (r(2) = 0.94), and with specific activity of a standard substrate, glycine-proline-p-nitroanilide (r(2) = 0.96). The significantly higher antiproliferative activity of GP-Mel in Caco-2 cells (GI₅₀ = 261 μM) compared to that in SK-MEL-5 cells (GI₅₀ = 807 μM) was consistent with the 9-fold higher specific activity of the prodrug in Caco-2 cells (5.14 pmol/min/μg protein) compared to SK-MEL-5 cells (0.68 pmol/min/μg protein) and with DPPIV expression levels in these cells. Our results demonstrate the great potential to exploit DPPIV as a prodrug activating enzyme for efficient chemotherapeutic drug targeting.

  20. Potential implications of the bystander effect on TCP and EUD when considering target volume dose heterogeneity.

    Science.gov (United States)

    Balderson, Michael J; Kirkby, Charles

    2015-01-01

    In light of in vitro evidence suggesting that radiation-induced bystander effects may enhance non-local cell killing, there is potential for impact on radiotherapy treatment planning paradigms such as the goal of delivering a uniform dose throughout the clinical target volume (CTV). This work applies a bystander effect model to calculate equivalent uniform dose (EUD) and tumor control probability (TCP) for external beam prostate treatment and compares the results with a more common model where local response is dictated exclusively by local absorbed dose. The broad assumptions applied in the bystander effect model are intended to place an upper limit on the extent of the results in a clinical context. EUD and TCP of a prostate cancer target volume under conditions of increasing dose heterogeneity were calculated using two models: One incorporating bystander effects derived from previously published in vitro bystander data ( McMahon et al. 2012 , 2013a); and one using a common linear-quadratic (LQ) response that relies exclusively on local absorbed dose. Dose through the CTV was modelled as a normal distribution, where the degree of heterogeneity was then dictated by changing the standard deviation (SD). Also, a representative clinical dose distribution was examined as cold (low dose) sub-volumes were systematically introduced. The bystander model suggests a moderate degree of dose heterogeneity throughout a target volume will yield as good or better outcome compared to a uniform dose in terms of EUD and TCP. For a typical intermediate risk prostate prescription of 78 Gy over 39 fractions maxima in EUD and TCP as a function of increasing SD occurred at SD ∼ 5 Gy. The plots only dropped below the uniform dose values for SD ∼ 10 Gy, almost 13% of the prescribed dose. Small, but potentially significant differences in the outcome metrics between the models were identified in the clinically-derived dose distribution as cold sub-volumes were introduced. In terms of

  1. hTe exciting potential of nanotherapy in brain-tumor targeted drug delivery approaches

    Institute of Scientific and Technical Information of China (English)

    Vivek Agrahari

    2017-01-01

    Delivering therapeutics to the central nervous system (CNS) and brain-tumor has been a major challenge. hTe current standard treatment approaches for the brain-tumor comprise of surgical resection followed by immunotherapy, radiotherapy, and chemotherapy. However, the current treatments are limited in provid-ing signiifcant beneifts to the patients and despite recent technological advancements; brain-tumor is still challenging to treat. Brain-tumor therapy is limited by the lack of effective and targeted strategies to deliver chemotherapeutic agents across the blood-brain barrier (BBB). hTe BBB is the main obstacle that must be overcome to allow compounds to reach their targets in the brain. Recent advances have boosted the nan-otherapeutic approaches in providing an attractive strategy in improving the drug delivery across the BBB and into the CNS. Compared to conventional formulations, nanoformulations offer signiifcant ad vantages in CNS drug delivery approaches. Considering the above facts, in this review, the physiological/anatomical features of the brain-tumor and the BBB are brielfy discussed. hTe drug transport mechanisms at the BBB are outlined. hTe approaches to deliver chemotherapeutic drugs across the CNS into the brain-tumor using nanocarriers are summarized. In addition, the challenges that need to be addressed in nanotherapeutic ap-proaches for their enhanced clinical application in brain-tumor therapy are discussed.

  2. Plasma membrane proteomics of human breast cancer cell lines identifies potential targets for breast cancer diagnosis and treatment.

    Directory of Open Access Journals (Sweden)

    Yvonne S Ziegler

    Full Text Available The use of broad spectrum chemotherapeutic agents to treat breast cancer results in substantial and debilitating side effects, necessitating the development of targeted therapies to limit tumor proliferation and prevent metastasis. In recent years, the list of approved targeted therapies has expanded, and it includes both monoclonal antibodies and small molecule inhibitors that interfere with key proteins involved in the uncontrolled growth and migration of cancer cells. The targeting of plasma membrane proteins has been most successful to date, and this is reflected in the large representation of these proteins as targets of newer therapies. In view of these facts, experiments were designed to investigate the plasma membrane proteome of a variety of human breast cancer cell lines representing hormone-responsive, ErbB2 over-expressing and triple negative cell types, as well as a benign control. Plasma membranes were isolated by using an aqueous two-phase system, and the resulting proteins were subjected to mass spectrometry analysis. Overall, each of the cell lines expressed some unique proteins, and a number of proteins were expressed in multiple cell lines, but in patterns that did not always follow traditional clinical definitions of breast cancer type. From our data, it can be deduced that most cancer cells possess multiple strategies to promote uncontrolled growth, reflected in aberrant expression of tyrosine kinases, cellular adhesion molecules, and structural proteins. Our data set provides a very rich and complex picture of plasma membrane proteins present on breast cancer cells, and the sorting and categorizing of this data provides interesting insights into the biology, classification, and potential treatment of this prevalent and debilitating disease.

  3. Evaluation of potential internal target volume of liver tumors using cine-MRI.

    Science.gov (United States)

    Akino, Yuichi; Oh, Ryoong-Jin; Masai, Norihisa; Shiomi, Hiroya; Inoue, Toshihiko

    2014-11-01

    Four-dimensional computed tomography (4DCT) is widely used for evaluating moving tumors, including lung and liver cancers. For patients with unstable respiration, however, the 4DCT may not visualize tumor motion properly. High-speed magnetic resonance imaging (MRI) sequences (cine-MRI) permit direct visualization of respiratory motion of liver tumors without considering radiation dose exposure to patients. Here, the authors demonstrated a technique for evaluating internal target volume (ITV) with consideration of respiratory variation using cine-MRI. The authors retrospectively evaluated six patients who received stereotactic body radiotherapy (SBRT) to hepatocellular carcinoma. Before acquiring planning CT, sagittal and coronal cine-MRI images were acquired for 30 s with a frame rate of 2 frames/s. The patient immobilization was conducted under the same condition as SBRT. Planning CT images were then acquired within 15 min from cine-MRI image acquisitions, followed by a 4DCT scan. To calculate tumor motion, the motion vectors between two continuous frames of cine-MRI images were calculated for each frame using the pyramidal Lucas-Kanade method. The target contour was delineated on one frame, and each vertex of the contour was shifted and copied onto the following frame using neighboring motion vectors. 3D trajectory data were generated with the centroid of the contours on sagittal and coronal images. To evaluate the accuracy of the tracking method, the motion of clearly visible blood vessel was analyzed with the motion tracking and manual detection techniques. The target volume delineated on the 50% (end-exhale) phase of 4DCT was translated with the trajectory data, and the distribution of the occupancy probability of target volume was calculated as potential ITV (ITV Potential). The concordance between ITV Potential and ITV estimated with 4DCT (ITV 4DCT) was evaluated using the Dice's similarity coefficient (DSC). The distance between blood vessel positions

  4. Evaluation of potential internal target volume of liver tumors using cine-MRI

    Energy Technology Data Exchange (ETDEWEB)

    Akino, Yuichi, E-mail: akino@radonc.med.osaka-u.ac.jp [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 5650871, Japan and Miyakojima IGRT Clinic, Miyakojima-ku, Osaka 5340021 (Japan); Oh, Ryoong-Jin; Masai, Norihisa; Shiomi, Hiroya; Inoue, Toshihiko [Miyakojima IGRT Clinic, Miyakojima-ku, Osaka 5340021 (Japan)

    2014-11-01

    Purpose: Four-dimensional computed tomography (4DCT) is widely used for evaluating moving tumors, including lung and liver cancers. For patients with unstable respiration, however, the 4DCT may not visualize tumor motion properly. High-speed magnetic resonance imaging (MRI) sequences (cine-MRI) permit direct visualization of respiratory motion of liver tumors without considering radiation dose exposure to patients. Here, the authors demonstrated a technique for evaluating internal target volume (ITV) with consideration of respiratory variation using cine-MRI. Methods: The authors retrospectively evaluated six patients who received stereotactic body radiotherapy (SBRT) to hepatocellular carcinoma. Before acquiring planning CT, sagittal and coronal cine-MRI images were acquired for 30 s with a frame rate of 2 frames/s. The patient immobilization was conducted under the same condition as SBRT. Planning CT images were then acquired within 15 min from cine-MRI image acquisitions, followed by a 4DCT scan. To calculate tumor motion, the motion vectors between two continuous frames of cine-MRI images were calculated for each frame using the pyramidal Lucas–Kanade method. The target contour was delineated on one frame, and each vertex of the contour was shifted and copied onto the following frame using neighboring motion vectors. 3D trajectory data were generated with the centroid of the contours on sagittal and coronal images. To evaluate the accuracy of the tracking method, the motion of clearly visible blood vessel was analyzed with the motion tracking and manual detection techniques. The target volume delineated on the 50% (end-exhale) phase of 4DCT was translated with the trajectory data, and the distribution of the occupancy probability of target volume was calculated as potential ITV (ITV {sub Potential}). The concordance between ITV {sub Potential} and ITV estimated with 4DCT (ITV {sub 4DCT}) was evaluated using the Dice’s similarity coefficient (DSC). Results

  5. Tumor Cells and Tumor-Associated Macrophages: Secreted Proteins as Potential Targets for Therapy

    Science.gov (United States)

    Baay, Marc; Brouwer, Anja; Pauwels, Patrick; Peeters, Marc; Lardon, Filip

    2011-01-01

    Inflammatory pathways, meant to defend the organism against infection and injury, as a byproduct, can promote an environment which favors tumor growth and metastasis. Tumor-associated macrophages (TAMs), which constitute a significant part of the tumor-infiltrating immune cells, have been linked to the growth, angiogenesis, and metastasis of a variety of cancers, most likely through polarization of TAMs to the M2 (alternative) phenotype. The interaction between tumor cells and macrophages provides opportunities for therapy. This paper will discuss secreted proteins as targets for intervention. PMID:22162712

  6. Tumor Cells and Tumor-Associated Macrophages: Secreted Proteins as Potential Targets for Therapy

    Directory of Open Access Journals (Sweden)

    Marc Baay

    2011-01-01

    Full Text Available Inflammatory pathways, meant to defend the organism against infection and injury, as a byproduct, can promote an environment which favors tumor growth and metastasis. Tumor-associated macrophages (TAMs, which constitute a significant part of the tumor-infiltrating immune cells, have been linked to the growth, angiogenesis, and metastasis of a variety of cancers, most likely through polarization of TAMs to the M2 (alternative phenotype. The interaction between tumor cells and macrophages provides opportunities for therapy. This paper will discuss secreted proteins as targets for intervention.

  7. Direct Keap1-Nrf2 disruption as a potential therapeutic target for Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Fiona Kerr

    2017-03-01

    Full Text Available Nrf2, a transcriptional activator of cell protection genes, is an attractive therapeutic target for the prevention of neurodegenerative diseases, including Alzheimer's disease (AD. Current Nrf2 activators, however, may exert toxicity and pathway over-activation can induce detrimental effects. An understanding of the mechanisms mediating Nrf2 inhibition in neurodegenerative conditions may therefore direct the design of drugs targeted for the prevention of these diseases with minimal side-effects. Our study provides the first in vivo evidence that specific inhibition of Keap1, a negative regulator of Nrf2, can prevent neuronal toxicity in response to the AD-initiating Aβ42 peptide, in correlation with Nrf2 activation. Comparatively, lithium, an inhibitor of the Nrf2 suppressor GSK-3, prevented Aβ42 toxicity by mechanisms independent of Nrf2. A new direct inhibitor of the Keap1-Nrf2 binding domain also prevented synaptotoxicity mediated by naturally-derived Aβ oligomers in mouse cortical neurons. Overall, our findings highlight Keap1 specifically as an efficient target for the re-activation of Nrf2 in AD, and support the further investigation of direct Keap1 inhibitors for the prevention of neurodegeneration in vivo.

  8. Exploring the Potential Emotional and Behavioural Impact of Providing Personalised Genomic Risk Information to the Public: A Focus Group Study.

    Science.gov (United States)

    Smit, Amelia K; Keogh, Louise A; Newson, Ainsley J; Hersch, Jolyn; Butow, Phyllis; Cust, Anne E

    2015-01-01

    To explore the potential emotional and behavioural impact of providing information on personalised genomic risk to the public, using melanoma as an example, to aid research translation. We conducted four focus groups in which 34 participants were presented with a hypothetical scenario of an individual's lifetime genomic risk of melanoma (using the term 'genetic risk'). We asked about understanding of genetic risk, who would choose to receive this risk information, potential emotional and behavioural impacts, and other concerns or potential benefits. Data were analysed thematically. Participants thought this risk information could potentially motivate preventive behaviours such as sun protection and related it to screening for other diseases including breast cancer. Factors identified as influencing the decision to receive genetic risk information included education level, children, age and gender. Participants identified potential negative impacts on the recipient such as anxiety and worry, and proposed that this could be mitigated by providing additional explanatory and prevention information, and contact details of a health professional for further discussion. Participants' concerns included workplace and insurance discrimination. Participants recognised the potential for both positive and negative emotional and behavioural impacts related to receiving information on the personalised genomic risk of melanoma. © 2015 S. Karger AG, Basel.

  9. Education Websites and Their Benefits to Potential International Students: A Case Study of Higher Education Service Providers in Malaysia

    Science.gov (United States)

    Ooi, Teik Chooi; Ho, Henry Wai Leong; Amri, Siti

    2010-01-01

    This paper looks at criteria on how education service providers' websites could benefit their potential students from overseas. Effective design of education website is important as web users are typically fastidious and want information fast--this serves as the background of this study. The study focuses on three selected education institutions'…

  10. P2X receptors in the cardiovascular system and their potential as therapeutic targets in disease.

    Science.gov (United States)

    Ralevic, Vera

    2015-01-01

    This review considers the expression and roles of P2X receptors in the cardiovascular system in health and disease and their potential as therapeutic targets. P2X receptors are ligand gated ion channels which are activated by the endogenous ligand ATP. They are formed from the assembly of three P2X subunit proteins from the complement of seven (P2X1-7), which can associate to form homomeric or heteromeric P2X receptors. The P2X1 receptor is widely expressed in the cardiovascular system, being located in the heart, in the smooth muscle of the majority of blood vessels and in platelets. P2X1 receptors expressed in blood vessels can be activated by ATP coreleased with noradrenaline as a sympathetic neurotransmitter, leading to smooth muscle depolarisation and contraction. There is evidence that the purinergic component of sympathetic neurotransmission is increased in hypertension, identifying P2X1 receptors as a possible therapeutic target in this disorder. P2X3 and P2X2/3 receptors are expressed on cardiac sympathetic neurones and may, through positive feedback of neuronal ATP at this prejunctional site, amplify sympathetic neurotransmission. Activation of P2X receptors expressed in the heart increases cardiac myocyte contractility, and an important role of the P2X4 receptor in this has been identified. Deletion of P2X4 receptors in the heart depresses contractile performance in models of heart failure, while overexpression of P2X4 receptors has been shown to be cardioprotective, thus P2X4 receptors may be therapeutic targets in the treatment of heart disease. P2X receptors have been identified on endothelial cells. Although immunoreactivity for all P2X1-7 receptor proteins has been shown on the endothelium, relatively little is known about their function, with the exception of the endothelial P2X4 receptor, which has been shown to mediate endothelium-dependent vasodilatation to ATP released during shear stress. The potential of P2X receptors as therapeutic targets

  11. Potential advantages of DNA methyltransferase 1 (DNMT1)-targeted inhibition for cancer therapy.

    Science.gov (United States)

    Jung, Yeonjoo; Park, Jinah; Kim, Tai Young; Park, Jung-Hyun; Jong, Hyun-Soon; Im, Seock-Ah; Robertson, Keith D; Bang, Yung-Jue; Kim, Tae-You

    2007-10-01

    The deoxyribonucleic acid (DNA) methyltransferase (DNMT) inhibitor 5-aza-2'-deoxycytidine (5-aza-dC) has been used as a drug in a part of cancer therapy. However, because of its incorporation into DNA during DNA synthesis, 5-aza-dC can cause DNA damage, mutagenesis, and cytotoxicity. In view of the adverse effects of 5-aza-dC, DNMT-targeted inhibition may be a more effective approach than treatment with 5-aza-dC. To address the possibility of DNMT-targeted cancer therapy, we compared the effects of treatment with small interfering ribonucleic acids (siRNAs) specific for DNMT1 or DNMT3b and treatment with 5-aza-dC on transcription, cell growth, and DNA damage in gastric cancer cells. We found that DNMT1-targeted inhibition induced the re-expression and reversed DNA methylation of five (CDKN2A, RASSF1A, HTLF, RUNX3, and AKAP12B) out of seven genes examined, and 5-aza-dC reactivated and demethylated all seven genes. In contrast, DNMT3b siRNAs did not show any effect. Furthermore, the double knockdown of DNMT1 and DNMT3b did not show a synergistic effect on gene re-expression and demethylation. In addition, DNMT1 siRNAs showed an inhibitory effect of cell proliferation in the cancer cells and the induction of cell death without evidence of DNA damage, whereas treatment with 5-aza-dC caused DNA damage as demonstrated by the comet assay. These results provide a rationale for the development of a DNMT1-targeted strategy as an effective epigenetic cancer therapy.

  12. The exciting potential of nanotherapy in brain-tumor targeted drug delivery approaches

    Directory of Open Access Journals (Sweden)

    Vivek Agrahari

    2017-01-01

    Full Text Available Delivering therapeutics to the central nervous system (CNS and brain-tumor has been a major challenge. The current standard treatment approaches for the brain-tumor comprise of surgical resection followed by immunotherapy, radiotherapy, and chemotherapy. However, the current treatments are limited in providing significant benefits to the patients and despite recent technological advancements; brain-tumor is still challenging to treat. Brain-tumor therapy is limited by the lack of effective and targeted strategies to deliver chemotherapeutic agents across the blood-brain barrier (BBB. The BBB is the main obstacle that must be overcome to allow compounds to reach their targets in the brain. Recent advances have boosted the nanotherapeutic approaches in providing an attractive strategy in improving the drug delivery across the BBB and into the CNS. Compared to conventional formulations, nanoformulations offer significant advantages in CNS drug delivery approaches. Considering the above facts, in this review, the physiological/anatomical features of the brain-tumor and the BBB are briefly discussed. The drug transport mechanisms at the BBB are outlined. The approaches to deliver chemotherapeutic drugs across the CNS into the brain-tumor using nanocarriers are summarized. In addition, the challenges that need to be addressed in nanotherapeutic approaches for their enhanced clinical application in brain-tumor therapy are discussed.

  13. Differential Expression of FosB Proteins and Potential Target Genes in Select Brain Regions of Addiction and Depression Patients.

    Directory of Open Access Journals (Sweden)

    Paula A Gajewski

    Full Text Available Chronic exposure to stress or drugs of abuse has been linked to altered gene expression throughout the body, and changes in gene expression in discrete brain regions are thought to underlie many psychiatric diseases, including major depressive disorder and drug addiction. Preclinical models of these disorders have provided evidence for mechanisms of this altered gene expression, including transcription factors, but evidence supporting a role for these factors in human patients has been slow to emerge. The transcription factor ΔFosB is induced in the prefrontal cortex (PFC and hippocampus (HPC of rodents in response to stress or cocaine, and its expression in these regions is thought to regulate their "top down" control of reward circuitry, including the nucleus accumbens (NAc. Here, we use biochemistry to examine the expression of the FosB family of transcription factors and their potential gene targets in PFC and HPC postmortem samples from depressed patients and cocaine addicts. We demonstrate that ΔFosB and other FosB isoforms are downregulated in the HPC but not the PFC in the brains of both depressed and addicted individuals. Further, we show that potential ΔFosB transcriptional targets, including GluA2, are also downregulated in the HPC but not PFC of cocaine addicts. Thus, we provide the first evidence of FosB gene expression in human HPC and PFC in these psychiatric disorders, and in light of recent findings demonstrating the critical role of HPC ΔFosB in rodent models of learning and memory, these data suggest that reduced ΔFosB in HPC could potentially underlie cognitive deficits accompanying chronic cocaine abuse or depression.

  14. The Multidimensional Therapeutic Potential of Targeting the Brain Oxytocin System for the Treatment of Substance Use Disorders.

    Science.gov (United States)

    Bowen, Michael T; Neumann, Inga D

    2017-09-24

    The neuropeptide oxytocin is released both into the blood and within the brain in response to reproductive stimuli, such as birth, suckling and sex, but also in response to social interaction and stressors. Substance use disorders, or addictions, are chronic, relapsing brain disorders and are one of the major causes of global burden of disease. Unfortunately, current treatment options for substance use disorders are extremely limited and a treatment breakthrough is sorely needed. There is mounting preclinical evidence that targeting the brain oxytocin system may provide that breakthrough. Substance use disorders are characterised by a viscous cycle of bingeing and intoxication, followed by withdrawal and negative affect, and finally preoccupation and anticipation that triggers relapse and further consumption. Administration of oxytocin has been shown to have a potential therapeutic benefit at each stage of this addiction cycle for numerous drugs of abuse. This multidimensional therapeutic utility is likely due to oxytocin's interactions with key biological systems that underlie the development and maintenance of addiction. Only a few human trials of oxytocin in addicted populations have been completed with the results thus far being mixed. There are numerous other trials underway, and the results are eagerly awaited. However, the ability to fully harness the potential therapeutic benefit of targeting the brain oxytocin system may depend on the development of molecules that selectively stimulate the oxytocin system, but that have superior pharmacokinetic properties to oxytocin itself.

  15. Concise Review: Cell Surface N-Linked Glycoproteins as Potential Stem Cell Markers and Drug Targets.

    Science.gov (United States)

    Boheler, Kenneth R; Gundry, Rebekah L

    2017-01-01

    Stem cells and their derivatives hold great promise to advance regenerative medicine. Critical to the progression of this field is the identification and utilization of antibody-accessible cell-surface proteins for immunophenotyping and cell sorting-techniques essential for assessment and isolation of defined cell populations with known functional and therapeutic properties. Beyond their utility for cell identification and selection, cell-surface proteins are also major targets for pharmacological intervention. Although comprehensive cell-surface protein maps are highly valuable, they have been difficult to define until recently. In this review, we discuss the application of a contemporary targeted chemoproteomic-based technique for defining the cell-surface proteomes of stem and progenitor cells. In applying this approach to pluripotent stem cells (PSCs), these studies have improved the biological understanding of these cells, led to the enhanced use and development of antibodies suitable for immunophenotyping and sorting, and contributed to the repurposing of existing drugs without the need for high-throughput screening. The utility of this latter approach was first demonstrated with human PSCs (hPSCs) through the identification of small molecules that are selectively toxic to hPSCs and have the potential for eliminating confounding and tumorigenic cells in hPSC-derived progeny destined for research and transplantation. Overall, the cutting-edge technologies reviewed here will accelerate the development of novel cell-surface protein targets for immunophenotyping, new reagents to improve the isolation of therapeutically qualified cells, and pharmacological studies to advance the treatment of intractable diseases amenable to cell-replacement therapies. Stem Cells Translational Medicine 2017;6:131-138. © 2016 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  16. Modulation of actin dynamics as potential macrophage subtype-targeting anti-tumour strategy.

    Science.gov (United States)

    Pergola, Carlo; Schubert, Katrin; Pace, Simona; Ziereisen, Jana; Nikels, Felix; Scherer, Olga; Hüttel, Stephan; Zahler, Stefan; Vollmar, Angelika M; Weinigel, Christina; Rummler, Silke; Müller, Rolf; Raasch, Martin; Mosig, Alexander; Koeberle, Andreas; Werz, Oliver

    2017-01-30

    Tumour-associated macrophages mainly comprise immunosuppressive M2 phenotypes that promote tumour progression besides anti-tumoural M1 subsets. Selective depletion or reprogramming of M2 may represent an innovative anti-cancer strategy. The actin cytoskeleton is central for cellular homeostasis and is targeted for anti-cancer chemotherapy. Here, we show that targeting G-actin nucleation using chondramide A (ChA) predominantly depletes human M2 while promoting the tumour-suppressive M1 phenotype. ChA reduced the viability of M2, with minor effects on M1, but increased tumour necrosis factor (TNF)α release from M1. Interestingly, ChA caused rapid disruption of dynamic F-actin filaments and polymerization of G-actin, followed by reduction of cell size, binucleation and cell division, without cellular collapse. In M1, but not in M2, ChA caused marked activation of SAPK/JNK and NFκB, with slight or no effects on Akt, STAT-1/-3, ERK-1/2, and p38 MAPK, seemingly accounting for the better survival of M1 and TNFα secretion. In a microfluidically-supported human tumour biochip model, circulating ChA-treated M1 markedly reduced tumour cell viability through enhanced release of TNFα. Together, ChA may cause an anti-tumoural microenvironment by depletion of M2 and activation of M1, suggesting induction of G-actin nucleation as potential strategy to target tumour-associated macrophages in addition to neoplastic cells.

  17. Bone Tumor Environment as a Potential Therapeutic Target in Ewing Sarcoma.

    Science.gov (United States)

    Redini, Françoise; Heymann, Dominique

    2015-01-01

    Ewing sarcoma is the second most common pediatric bone tumor, with three cases per million worldwide. In clinical terms, Ewing sarcoma is an aggressive, rapidly fatal malignancy that mainly develops not only in osseous sites (85%) but also in extra-skeletal soft tissue. It spreads naturally to the lungs, bones, and bone marrow with poor prognosis in the two latter cases. Bone lesions from primary or secondary (metastases) tumors are characterized by extensive bone remodeling, more often due to osteolysis. Osteoclast activation and subsequent bone resorption are responsible for the clinical features of bone tumors, including pain, vertebral collapse, and spinal cord compression. Based on the "vicious cycle" concept of tumor cells and bone resorbing cells, drugs, which target osteoclasts, may be promising agents as adjuvant setting for treating bone tumors, including Ewing sarcoma. There is also increasing evidence that cellular and molecular protagonists present in the bone microenvironment play a part in establishing a favorable "niche" for tumor initiation and progression. The purpose of this review is to discuss the potential therapeutic value of drugs targeting the bone tumor microenvironment in Ewing sarcoma. The first part of the review will focus on targeting the bone resorbing function of osteoclasts by means of bisphosphonates or drugs blocking the pro-resorbing cytokine receptor activator of NF-kappa B ligand. Second, the role of this peculiar hypoxic microenvironment will be discussed in the context of resistance to chemotherapy, escape from the immune system, or neo-angiogenesis. Therapeutic interventions based on these specificities could be then proposed in the context of Ewing sarcoma.

  18. Classification tree analyses reveal limited potential for early targeted prevention against childhood overweight.

    Science.gov (United States)

    Beyerlein, Andreas; Kusian, Dennis; Ziegler, Anette-Gabriele; Schaffrath-Rosario, Angelika; von Kries, Rüdiger

    2014-02-01

    Whether specific combinations of risk factors in very early life might allow identification of high-risk target groups for overweight prevention programs was examined. Data of n = 8981 children from the German KiGGS study were analyzed. Using a classification tree approach, predictive risk factor combinations were assessed for overweight in 3-6, 7-10, and 11-17-year-old children. In preschool children, the subgroup with the highest overweight risk were migrant children with at least one obese parent, with a prevalence of 36.6 (95% confidence interval or CI: 22.9, 50.4)%, compared to an overall prevalence of 10.0 (8.9, 11.2)%. The prevalence of overweight increased from 18.3 (16.8, 19.8)% to 57.9 (46.6, 69.3)% in 7-10-year-old children, if at least one parent was obese and the child had been born large-for-gestational-age. In 11-17-year-olds, the overweight risk increased from 20.1 (18.9, 21.3)% to 63.0 (46.4, 79.7)% in the highest risk group. However, high prevalence ratios were found only in small subgroups, containing <10% of all overweight cases in the respective age group. Our results indicate only a limited potential for early targeted preventions against overweight in children and adolescents. Copyright © 2013 The Obesity Society.

  19. Nucleotide excision repair is a potential therapeutic target in multiple myeloma

    Science.gov (United States)

    Szalat, R; Samur, M K; Fulciniti, M; Lopez, M; Nanjappa, P; Cleynen, A; Wen, K; Kumar, S; Perini, T; Calkins, A S; Reznichenko, E; Chauhan, D; Tai, Y-T; Shammas, M A; Anderson, K C; Fermand, J-P; Arnulf, B; Avet-Loiseau, H; Lazaro, J-B; Munshi, N C

    2018-01-01

    Despite the development of novel drugs, alkylating agents remain an important component of therapy in multiple myeloma (MM). DNA repair processes contribute towards sensitivity to alkylating agents and therefore we here evaluate the role of nucleotide excision repair (NER), which is involved in the removal of bulky adducts and DNA crosslinks in MM. We first evaluated NER activity using a novel functional assay and observed a heterogeneous NER efficiency in MM cell lines and patient samples. Using next-generation sequencing data, we identified that expression of the canonical NER gene, excision repair cross-complementation group 3 (ERCC3), significantly impacted the outcome in newly diagnosed MM patients treated with alkylating agents. Next, using small RNA interference, stable knockdown and overexpression, and small-molecule inhibitors targeting xeroderma pigmentosum complementation group B (XPB), the DNA helicase encoded by ERCC3, we demonstrate that NER inhibition significantly increases sensitivity and overcomes resistance to alkylating agents in MM. Moreover, inhibiting XPB leads to the dual inhibition of NER and transcription and is particularly efficient in myeloma cells. Altogether, we show that NER impacts alkylating agents sensitivity in myeloma cells and identify ERCC3 as a potential therapeutic target in MM. PMID:28588253

  20. The centrosome protein NEDD1 as a potential pharmacological target to induce cell cycle arrest

    Directory of Open Access Journals (Sweden)

    Etievant Chantal

    2009-02-01

    Full Text Available Abstract Background NEDD1 is a protein that binds to the gamma-tubulin ring complex, a multiprotein complex at the centrosome and at the mitotic spindle that mediates the nucleation of microtubules. Results We show that NEDD1 is expressed at comparable levels in a variety of tumor-derived cell lines and untransformed cells. We demonstrate that silencing of NEDD1 expression by treatment with siRNA has differential effects on cells, depending on their status of p53 expression: p53-positive cells arrest in G1, whereas p53-negative cells arrest in mitosis with predominantly aberrant monopolar spindles. However, both p53-positive and -negative cells arrest in mitosis if treated with low doses of siRNA against NEDD1 combined with low doses of the inhibitor BI2536 against the mitotic kinase Plk1. Simultaneous reduction of NEDD1 levels and inhibition of Plk1 act in a synergistic manner, by potentiating the anti-mitotic activity of each treatment. Conclusion We propose that NEDD1 may be a promising target for controlling cell proliferation, in particular if targeted in combination with Plk1 inhibitors.

  1. Acid-Sensing Ion Channels as Potential Pharmacological Targets in Peripheral and Central Nervous System Diseases.

    Science.gov (United States)

    Radu, Beatrice Mihaela; Banciu, Adela; Banciu, Daniel Dumitru; Radu, Mihai

    2016-01-01

    Acid-sensing ion channels (ASICs) are widely expressed in the body and represent good sensors for detecting protons. The pH drop in the nervous system is equivalent to ischemia and acidosis, and ASICs are very good detectors in discriminating slight changes in acidity. ASICs are important pharmacological targets being involved in a variety of pathophysiological processes affecting both the peripheral nervous system (e.g., peripheral pain, diabetic neuropathy) and the central nervous system (e.g., stroke, epilepsy, migraine, anxiety, fear, depression, neurodegenerative diseases, etc.). This review discusses the role played by ASICs in different pathologies and the pharmacological agents acting on ASICs that might represent promising drugs. As the majority of above-mentioned pathologies involve not only neuronal dysfunctions but also microvascular alterations, in the next future, ASICs may be also considered as potential pharmacological targets at the vasculature level. Perspectives and limitations in the use of ASICs antagonists and modulators as pharmaceutical agents are also discussed. © 2016 Elsevier Inc. All rights reserved.

  2. Rho-Kinase/ROCK as a Potential Drug Target for Vitreoretinal Diseases

    Directory of Open Access Journals (Sweden)

    Muneo Yamaguchi

    2017-01-01

    Full Text Available Rho-associated kinase (Rho-kinase/ROCK was originally identified as an effector protein of the G protein Rho. Its involvement in various diseases, particularly cancer and cardiovascular disease, has been elucidated, and ROCK inhibitors have already been applied clinically for cerebral vasospasm and glaucoma. Vitreoretinal diseases including diabetic retinopathy, age-related macular degeneration, and proliferative vitreoretinoapthy are still a major cause of blindness. While anti-VEGF therapy has recently been widely used for vitreoretinal disorders due to its efficacy, attention has been drawn to new unmet needs. The importance of ROCK in pathological vitreoretinal conditions has also been elucidated and is attracting attention as a potential therapeutic target. ROCK is involved in angiogenesis and hyperpermeability and also in the pathogenesis of various pathologies such as inflammation and fibrosis. It has been expected that ROCK inhibitors will become new molecular target drugs for vitreoretinal diseases. This review summarizes the recent progress on the mechanisms of action of ROCK and their applications in disease treatment.

  3. Cytokines and cytokine networks target neurons to modulate long-term potentiation.

    Science.gov (United States)

    Prieto, G Aleph; Cotman, Carl W

    2017-04-01

    Cytokines play crucial roles in the communication between brain cells including neurons and glia, as well as in the brain-periphery interactions. In the brain, cytokines modulate long-term potentiation (LTP), a cellular correlate of memory. Whether cytokines regulate LTP by direct effects on neurons or by indirect mechanisms mediated by non-neuronal cells is poorly understood. Elucidating neuron-specific effects of cytokines has been challenging because most brain cells express cytokine receptors. Moreover, cytokines commonly increase the expression of multiple cytokines in their target cells, thus increasing the complexity of brain cytokine networks even after single-cytokine challenges. Here, we review evidence on both direct and indirect-mediated modulation of LTP by cytokines. We also describe novel approaches based on neuron- and synaptosome-enriched systems to identify cytokines able to directly modulate LTP, by targeting neurons and synapses. These approaches can test multiple samples in parallel, thus allowing the study of multiple cytokines simultaneously. Hence, a cytokine networks perspective coupled with neuron-specific analysis may contribute to delineation of maps of the modulation of LTP by cytokines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Benzothiophen-pyrazine scaffold as a potential membrane targeting drug carrier

    International Nuclear Information System (INIS)

    Mazuryk, Olga; Niemiec, Elżbieta; Stochel, Grażyna; Gillaizeau, Isabelle; Brindell, Małgorzata

    2013-01-01

    The fluorescent properties of 2,5-di(benzo[b]thiophen-2-yl)pyrazine as a potential membrane targeting drug carrier were characterized and it was shown that its fluorescence intensity was much higher in organic solvent than in water. The embedding of studied compound by liposomes leads to ca. 2 orders of magnitude increase in its fluorescence intensity, suggesting its preferential accumulation in membranes. Preliminary biological studies showed its ability to accumulate in cells, and the concentration of 10 μM was sufficient for homogeneous staining of cells. The treatment of mouse carcinoma CT26 cells with studied compound up to 200 μM resulted in decreasing of viable cells by ca. 30%. Its reactivity towards albumin was found to be moderate with an association constant of 6×10 4 M −1 , while no interaction with DNA was observed. Our findings encourage for further studies on functionalization of this molecule to obtain a new class of anticancer drugs targeting membrane. Highlights: ► The fluorescence of 2,5-di(benzo[b]thiophen-2-yl)pyrazine is solvent dependent. ► Weak fluorescence is found in water while high in organic solvents (DMSO, chloroform). ► Embedding of compound in liposomes remarkably increased its fluorescence. ► No interaction with DNA is observed but moderate reactivity towards albumin is found. ► Homogeneous staining of cells is feasible using nontoxic dose of compound

  5. Biomarkers as Potential Treatment Targets in Inflammatory Bowel Disease: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Travis B Murdoch

    2015-01-01

    Full Text Available There is increasing interest in the concept of ‘treat-to-target’ in inflammatory bowel disease as a mechanism to standardize management and prevent complications. While clinical, radiographic and endoscopic treatment end points will figure prominently in this promising management paradigm, the role that noninvasive biomarkers will play is currently undefined. The goal of the present systematic review was to investigate the potential value of biomarkers as treatment targets in inflammatory bowel disease, with particular focus on those best studied: serum C-reactive protein (CRP and fecal calprotectin. In Crohn disease, elevated CRP levels at baseline predict response to anti-tumour necrosis factor agents, and normalization is usually associated with clinical and endoscopic remission. CRP and hemoglobin levels can be used to help predict clinical relapse in the context of withdrawal of therapy. Ultimately, the authors conclude that currently available biomarkers should not be used as treatment targets in inflammatory bowel disease because they have inadequate operational characteristics to make them safe surrogates for clinical, endoscopic and radiographic evaluation. However, CRP and fecal calprotectin are important adjunctive measures that help alert the clinician to pursue further investigation.

  6. Uncoupling Protein 2: A Key Player and a Potential Therapeutic Target in Vascular Diseases

    Directory of Open Access Journals (Sweden)

    Giorgia Pierelli

    2017-01-01

    Full Text Available Uncoupling protein 2 (UCP2 is an inner mitochondrial membrane protein that belongs to the uncoupling protein family and plays an important role in lowering mitochondrial membrane potential and dissipating metabolic energy with prevention of oxidative stress accumulation. In the present article, we will review the evidence that UCP2, as a consequence of its roles within the mitochondria, represents a critical player in the predisposition to vascular disease development in both animal models and in humans, particularly in relation to obesity, diabetes, and hypertension. The deletion of the UCP2 gene contributes to atherosclerosis lesion development in the knockout mice, also showing significantly shorter lifespan. The UCP2 gene downregulation is a key determinant of higher predisposition to renal and cerebrovascular damage in an animal model of spontaneous hypertension and stroke. In contrast, UCP2 overexpression improves both hyperglycemia- and high-salt diet-induced endothelial dysfunction and ameliorates hypertensive target organ damage in SHRSP. Moreover, drugs (fenofibrate and sitagliptin and several vegetable compounds (extracts from Brassicaceae, berberine, curcumin, and capsaicin are able to induce UCP2 expression level and to exert beneficial effects on the occurrence of vascular damage. As a consequence, UCP2 becomes an interesting therapeutic target for the treatment of common human vascular diseases.

  7. Alteration of SHP-1/p-STAT3 Signaling: A Potential Target for Anticancer Therapy

    Directory of Open Access Journals (Sweden)

    Tzu-Ting Huang

    2017-06-01

    Full Text Available The Src homology 2 (SH2 domain-containing protein tyrosine phosphatase 1 (SHP-1, a non-receptor protein tyrosine phosphatase, has been reported as a negative regulator of phosphorylated signal transducer and activator of transcription 3 (STAT3 and linked to tumor development. In this present review, we will discuss the importance and function of SHP-1/p-STAT3 signaling in nonmalignant conditions as well as malignancies, its cross-talk with other pathways, the current clinical development and the potential role of inhibitors of this pathway in anticancer therapy and clinical relevance of SHP-1/p-STAT3 in cancers. Lastly, we will summarize and highlight work involving novel drugs/compounds targeting SHP-1/p-STAT3 signaling and combined strategies that were/are discovered in our and our colleagues’ laboratories.

  8. Connexin: a potential novel target for protecting the central nervous system?

    Directory of Open Access Journals (Sweden)

    Hong-yan Xie

    2015-01-01

    Full Text Available Connexin subunits are proteins that form gap junction channels, and play an important role in communication between adjacent cells. This review article discusses the function of connexins/hemichannels/gap junctions under physiological conditions, and summarizes the findings regarding the role of connexins/hemichannels/gap junctions in the physiological and pathological mechanisms underlying central nervous system diseases such as brain ischemia, traumatic brain and spinal cord injury, epilepsy, brain and spinal cord tumor, migraine, neuroautoimmune disease, Alzheimer′s disease, Parkinson′s disease, X-linked Charcot-Marie-Tooth disease, Pelizaeus-Merzbacher-like disease, spastic paraplegia and maxillofacial dysplasia. Connexins are considered to be a potential novel target for protecting the central nervous system.

  9. Differential proteomics of human seminal plasma: A potential target for searching male infertility marker proteins.

    Science.gov (United States)

    Tomar, Anil Kumar; Sooch, Balwinder Singh; Singh, Sarman; Yadav, Savita

    2012-04-01

    The clinical fertility tests, available in the market, fail to define the exact cause of male infertility in almost half of the cases and point toward a crucial need of developing better ways of infertility investigations. The protein biomarkers may help us toward better understanding of unknown cases of male infertility that, in turn, can guide us to find better therapeutic solutions. Many clinical attempts have been made to identify biomarkers of male infertility in sperm proteome but only few studies have targeted seminal plasma. Human seminal plasma is a rich source of proteins that are essentially required for development of sperm and successful fertilization. This viewpoint article highlights the importance of human seminal plasma proteome in reproductive physiology and suggests that differential proteomics integrated with functional analysis may help us in searching potential biomarkers of male infertility. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Naringenin and quercetin--potential anti-HCV agents for NS2 protease targets.

    Science.gov (United States)

    Lulu, S Sajitha; Thabitha, A; Vino, S; Priya, A Mohana; Rout, Madhusmita

    2016-01-01

    Nonstructural proteins of hepatitis C virus had drawn much attention for the scientific fraternity in drug discovery due to its important role in the disease. 3D structure of the protein was predicted using molecular modelling protocol. Docking studies of 10 medicinal plant compounds and three drugs available in the market (control) with NS2 protease were employed by using rigid docking approach of AutoDock 4.2. Among the molecules tested for docking study, naringenin and quercetin revealed minimum binding energy of - 7.97 and - 7.95 kcal/mol with NS2 protease. All the ligands were docked deeply within the binding pocket region of the protein. The docking study results showed that these compounds are potential inhibitors of the target; and also all these docked compounds have good inhibition constant, vdW+Hbond+desolv energy with best RMSD value.

  11. Chondroitin Sulfate Proteoglycan 4 and Its Potential As an Antibody Immunotherapy Target across Different Tumor Types

    Directory of Open Access Journals (Sweden)

    Kristina M. Ilieva

    2018-01-01

    Full Text Available Overexpression of the chondroitin sulfate proteoglycan 4 (CSPG4 has been associated with the pathology of multiple types of such as melanoma, breast cancer, squamous cell carcinoma, mesothelioma, neuroblastoma, adult and pediatric sarcomas, and some hematological cancers. CSPG4 has been reported to exhibit a role in the growth and survival as well as in the spreading and metastasis of tumor cells. CSPG4 is overexpressed in several malignant diseases, while it is thought to have restricted and low expression in normal tissues. Thus, CSPG4 has become the target of numerous anticancer treatment approaches, including monoclonal antibody-based therapies. This study reviews key potential anti-CSPG4 antibody and immune-based therapies and examines their direct antiproliferative/metastatic and immune activating mechanisms of action.

  12. c-Met in esophageal squamous cell carcinoma: an independent prognostic factor and potential therapeutic target.

    Science.gov (United States)

    Ozawa, Yohei; Nakamura, Yasuhiro; Fujishima, Fumiyoshi; Felizola, Saulo J A; Takeda, Kenichiro; Okamoto, Hiroshi; Ito, Ken; Ishida, Hirotaka; Konno, Takuro; Kamei, Takashi; Miyata, Go; Ohuchi, Noriaki; Sasano, Hironobu

    2015-06-03

    c-Met is widely known as a poor prognostic factor in various human malignancies. Previous studies have suggested the involvement of c-Met and/or its ligand, hepatocyte growth factor (HGF), in esophageal squamous cell carcinoma (ESCC), but the correlation between c-Met status and clinical outcome remains unclear. Furthermore, the identification of a novel molecular therapeutic target might potentially help improve the clinical outcome of ESCC patients. The expression of c-Met and HGF was immunohistochemically assessed in 104 surgically obtained tissue specimens. The correlation between c-Met/HGF expression and patients' clinicopathological features, including survival, was evaluated. We also investigated changes in cell functions and protein expression of c-Met and its downstream signaling pathway components under treatments with HGF and/or c-Met inhibitor in ESCC cell lines. Elevated expression of c-Met was significantly correlated with tumor depth and pathological stage. Patients with high c-Met expression had significantly worse survival. In addition, multivariate analysis identified the high expression of c-Met as an independent prognostic factor. Treatment with c-Met inhibitor under HGF stimulation significantly inhibited the invasive capacity of an ESCC cell line with elevated c-Met mRNA expression. Moreover, c-Met and its downstream signaling inactivation was also detected after treatment with c-Met inhibitor. The results of our study identified c-Met expression as an independent prognostic factor in ESCC patients and demonstrated that c-Met could be a potential molecular therapeutic target for the treatment of ESCC with elevated c-Met expression.

  13. Novel drugs that target the estrogen-related receptor alpha: their therapeutic potential in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    May, Felicity EB, E-mail: F.E.B.May@ncl.ac.uk [Northern Institute for Cancer Research and Department of Pathology, Faculty of Medical Sciences, University of Newcastle upon Tyne, Newcastle upon Tyne (United Kingdom)

    2014-05-23

    The incidence of breast cancer continues to rise: 1.7 million women were diagnosed with and 521,000 women died from breast cancer in 2012. This review considers first current treatment options: surgery; radiotherapy; and systemic endocrine, anti-biological, and cytotoxic therapies. Clinical management includes prevention, early detection by screening, treatment with curative intent, management of chronic disease, and palliative control of advanced breast cancer. Next, the potential of novel drugs that target DNA repair, growth factor dependence, intracellular and intercellular signal transduction, and cell cycle are considered. Estrogen-related receptor alpha has attracted attention as a therapeutic target in triple-negative breast cancers with de novo resistance to, and in breast cancers with acquired resistance to, endocrine therapies such as antiestrogens and aromatase inhibitors. Estrogen-related receptor alpha is an orphan receptor and transcription factor. Its activity is regulated by coregulator proteins and posttranslational modification. It is an energy sensor that controls adaptation to energy demand and may facilitate glycolytic metabolism and mitochondrial oxidative respiration in breast cancer cells. Estrogen-related receptor alpha increases breast cancer cell migration, proliferation, and tumor development. It is expressed at high levels in estrogen receptor-negative tumors, and is proposed to activate estrogen-responsive genes in endocrine-resistant tumors. The structures and functions of the ligand-binding domains of estrogen receptor alpha and estrogen-related receptor alpha, their ability to bind estrogens, phytoestrogens, and synthetic ligands, and the effects of ligand agonists, antagonists, and inverse agonists on biological activity, are evaluated. Synthetic ligands of estrogen-related receptor alpha have activity in preclinical models of metabolic disorders, diabetes, osteoporosis, and oncology. The clinical settings in which these novel

  14. Novel drugs that target the estrogen-related receptor alpha: their therapeutic potential in breast cancer

    International Nuclear Information System (INIS)

    May, Felicity EB

    2014-01-01

    The incidence of breast cancer continues to rise: 1.7 million women were diagnosed with and 521,000 women died from breast cancer in 2012. This review considers first current treatment options: surgery; radiotherapy; and systemic endocrine, anti-biological, and cytotoxic therapies. Clinical management includes prevention, early detection by screening, treatment with curative intent, management of chronic disease, and palliative control of advanced breast cancer. Next, the potential of novel drugs that target DNA repair, growth factor dependence, intracellular and intercellular signal transduction, and cell cycle are considered. Estrogen-related receptor alpha has attracted attention as a therapeutic target in triple-negative breast cancers with de novo resistance to, and in breast cancers with acquired resistance to, endocrine therapies such as antiestrogens and aromatase inhibitors. Estrogen-related receptor alpha is an orphan receptor and transcription factor. Its activity is regulated by coregulator proteins and posttranslational modification. It is an energy sensor that controls adaptation to energy demand and may facilitate glycolytic metabolism and mitochondrial oxidative respiration in breast cancer cells. Estrogen-related receptor alpha increases breast cancer cell migration, proliferation, and tumor development. It is expressed at high levels in estrogen receptor-negative tumors, and is proposed to activate estrogen-responsive genes in endocrine-resistant tumors. The structures and functions of the ligand-binding domains of estrogen receptor alpha and estrogen-related receptor alpha, their ability to bind estrogens, phytoestrogens, and synthetic ligands, and the effects of ligand agonists, antagonists, and inverse agonists on biological activity, are evaluated. Synthetic ligands of estrogen-related receptor alpha have activity in preclinical models of metabolic disorders, diabetes, osteoporosis, and oncology. The clinical settings in which these novel

  15. c-Met in esophageal squamous cell carcinoma: an independent prognostic factor and potential therapeutic target

    International Nuclear Information System (INIS)

    Ozawa, Yohei; Nakamura, Yasuhiro; Fujishima, Fumiyoshi; Felizola, Saulo JA; Takeda, Kenichiro; Okamoto, Hiroshi; Ito, Ken; Ishida, Hirotaka; Konno, Takuro; Kamei, Takashi; Miyata, Go; Ohuchi, Noriaki; Sasano, Hironobu

    2015-01-01

    c-Met is widely known as a poor prognostic factor in various human malignancies. Previous studies have suggested the involvement of c-Met and/or its ligand, hepatocyte growth factor (HGF), in esophageal squamous cell carcinoma (ESCC), but the correlation between c-Met status and clinical outcome remains unclear. Furthermore, the identification of a novel molecular therapeutic target might potentially help improve the clinical outcome of ESCC patients. The expression of c-Met and HGF was immunohistochemically assessed in 104 surgically obtained tissue specimens. The correlation between c-Met/HGF expression and patients’ clinicopathological features, including survival, was evaluated. We also investigated changes in cell functions and protein expression of c-Met and its downstream signaling pathway components under treatments with HGF and/or c-Met inhibitor in ESCC cell lines. Elevated expression of c-Met was significantly correlated with tumor depth and pathological stage. Patients with high c-Met expression had significantly worse survival. In addition, multivariate analysis identified the high expression of c-Met as an independent prognostic factor. Treatment with c-Met inhibitor under HGF stimulation significantly inhibited the invasive capacity of an ESCC cell line with elevated c-Met mRNA expression. Moreover, c-Met and its downstream signaling inactivation was also detected after treatment with c-Met inhibitor. The results of our study identified c-Met expression as an independent prognostic factor in ESCC patients and demonstrated that c-Met could be a potential molecular therapeutic target for the treatment of ESCC with elevated c-Met expression. The online version of this article (doi:10.1186/s12885-015-1450-3) contains supplementary material, which is available to authorized users

  16. Identification of chemokines associated with the recruitment of decidual leukocytes in human labour: potential novel targets for preterm labour.

    Directory of Open Access Journals (Sweden)

    Sarah A Hamilton

    . The current study provides compelling evidence that chemokines regulate decidual leukocyte recruitment during labour. The 6 chemokines identified represent potential novel therapeutic targets to block PTL.

  17. Identification of polycystic ovary syndrome potential drug targets based on pathobiological similarity in the protein-protein interaction network

    OpenAIRE

    Huang, Hao; He, Yuehan; Li, Wan; Wei, Wenqing; Li, Yiran; Xie, Ruiqiang; Guo, Shanshan; Wang, Yahui; Jiang, Jing; Chen, Binbin; Lv, Junjie; Zhang, Nana; Chen, Lina; He, Weiming

    2016-01-01

    Polycystic ovary syndrome (PCOS) is one of the most common endocrinological disorders in reproductive aged women. PCOS and Type 2 Diabetes (T2D) are closely linked in multiple levels and possess high pathobiological similarity. Here, we put forward a new computational approach based on the pathobiological similarity to identify PCOS potential drug target modules (PPDT-Modules) and PCOS potential drug targets in the protein-protein interaction network (PPIN). From the systems level and biologi...

  18. Receptor tyrosine kinase (c-Kit inhibitors: a potential therapeutic target in cancer cells

    Directory of Open Access Journals (Sweden)

    Abbaspour Babaei M

    2016-08-01

    Full Text Available Maryam Abbaspour Babaei,1 Behnam Kamalidehghan,2,3 Mohammad Saleem,4–6 Hasniza Zaman Huri,1,7 Fatemeh Ahmadipour1 1Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; 2Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB, Shahrak-e Pajoohesh, 3Medical Genetics Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; 4Department of Urology, 5Department of Laboratory Medicine and Pathology, Masonic Cancer Center, University of Minnesota, 6Section of Molecular Therapeutics & Cancer Health Disparity, The Hormel Institute, Austin, MN, USA; 7Clinical Investigation Centre, University Malaya Medical Centre, Lembah Pantai, Kuala Lumpur, Malaysia Abstract: c-Kit, a receptor tyrosine kinase, is involved in intracellular signaling, and the mutated form of c-Kit plays a crucial role in occurrence of some cancers. The function of c-Kit has led to the concept that inhibiting c-Kit kinase activity can be a target for cancer therapy. The promising results of inhibition of c-Kit for treatment of cancers have been observed in some cancers such as gastrointestinal stromal tumor, acute myeloid leukemia, melanoma, and other tumors, and these results have encouraged attempts toward improvement of using c-Kit as a capable target for cancer therapy. This paper presents the findings of previous studies regarding c-Kit as a receptor tyrosine kinase and an oncogene, as well as its gene targets and signaling pathways in normal and cancer cells. The c-Kit gene location, protein structure, and the role of c-Kit in normal cell have been discussed. Comprehending the molecular mechanism underlying c-Kit-mediated tumorogenesis is consequently essential and may lead to the identification of future novel drug targets. The potential mechanisms by which c-Kit induces cellular transformation have been described. This study aims to elucidate the function of c

  19. A nanomedicine-promising approach to provide an appropriate colon-targeted drug delivery system for 5-fluorouracil

    Directory of Open Access Journals (Sweden)

    Singh S

    2015-11-01

    Full Text Available Sima Singh,1,* Niranjan G Kotla,2,* Sonia Tomar,3 Balaji Maddiboyina,4 Thomas J Webster,5,6 Dinesh Sharma,7 Omprakash Sunnapu2 1Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 2Technologies for the Advancement of Science, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, Karnataka, 3Department of Pharmaceutics, Ram Gopal College of Pharmacy, Rohtak, Haryana, 4Department of Pharmaceutics, Maharishi Markandeshwar University, Mullana, Ambala, Haryana, India; 5Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 6Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia; 7Ranbaxy Laboratory Ltd, Gurgaon, Haryana, India *These authors contributed equally to this work Abstract: Targeted drug delivery plays a significant role in disease treatment associated with the colon, affording therapeutic responses for a prolonged period of time with low side effects. Colorectal cancer is the third most common cancer in both men and women with an estimated 102,480 cases of colon cancer and 40,340 cases of rectal cancer in 2013 as reported by the American Cancer Society. In the present investigation, we developed an improved oral delivery system for existing anticancer drugs meant for colon cancer via prebiotic and probiotic approaches. The system comprises three components, namely, nanoparticles of drug coated with natural materials such as guar gum, xanthan gum (that serve as prebiotics, and probiotics. The natural gums play a dual role of protecting the drug in the gastric as well as intestinal conditions to allow its release only in the colon. In vitro results obtained from these experiments indicated the successful targeted delivery of 5-fluorouracil to the colon. Electron microscopy results demonstrated that the prepared nanoparticles were spherical in shape and 200 nm in size. The in vitro release data

  20. Targeted next-generation sequencing provides novel clues for associated epilepsy and cardiac conduction disorder/SUDEP.

    Directory of Open Access Journals (Sweden)

    Monica Coll

    Full Text Available Sudden unexpected death in epilepsy is an unpredicted condition in patients with a diagnosis of epilepsy, and autopsy does not conclusively identify cause of death. Although the pathophysiological mechanisms that underlie this entity remain unknown, the fact that epilepsy can affect cardiac function is not surprising. The genetic factors involving ion channels co-expressed in the heart and brain and other candidate genes have been previously described. In the present study, 20 epilepsy patients with personal or family history of heart rhythm disturbance/cardiac arrhythmias/sudden death were sequenced using a custom re-sequencing panel. Twenty-six relatives were genetically analysed to ascertain the family segregation in ten individuals. Four subjects revealed variants with positive genotype-phenotype segregation: four missense variants in the CDKL5, CNTNAP2, GRIN2A and ADGRV1 genes and one copy number variant in KCNQ1. The potential pathogenic role of variants in new candidate genes will need further studies in larger cohorts, and the evaluation of the potential pathogenic role in the cardio-cerebral mechanisms requires in vivo/in vitro studies. In addition to family segregation, evaluation of the potential pathogenic roles of these variants in cardio-cerebral mechanisms by in vivo/in vitro studies should also be performed. The potential pathogenic role of variants in new candidate genes will need further studies in larger cohorts.

  1. The potential impact of case-area targeted interventions in response to cholera outbreaks: A modeling study.

    Science.gov (United States)

    Finger, Flavio; Bertuzzo, Enrico; Luquero, Francisco J; Naibei, Nathan; Touré, Brahima; Allan, Maya; Porten, Klaudia; Lessler, Justin; Rinaldo, Andrea; Azman, Andrew S

    2018-02-01

    Cholera prevention and control interventions targeted to neighbors of cholera cases (case-area targeted interventions [CATIs]), including improved water, sanitation, and hygiene, oral cholera vaccine (OCV), and prophylactic antibiotics, may be able to efficiently avert cholera cases and deaths while saving scarce resources during epidemics. Efforts to quickly target interventions to neighbors of cases have been made in recent outbreaks, but little empirical evidence related to the effectiveness, efficiency, or ideal design of this approach exists. Here, we aim to provide practical guidance on how CATIs might be used by exploring key determinants of intervention impact, including the mix of interventions, "ring" size, and timing, in simulated cholera epidemics fit to data from an urban cholera epidemic in Africa. We developed a micro-simulation model and calibrated it to both the epidemic curve and the small-scale spatiotemporal clustering pattern of case households from a large 2011 cholera outbreak in N'Djamena, Chad (4,352 reported cases over 232 days), and explored the potential impact of CATIs in simulated epidemics. CATIs were implemented with realistic logistical delays after cases presented for care using different combinations of prophylactic antibiotics, OCV, and/or point-of-use water treatment (POUWT) starting at different points during the epidemics and targeting rings of various radii around incident case households. Our findings suggest that CATIs shorten the duration of epidemics and are more resource-efficient than mass campaigns. OCV was predicted to be the most effective single intervention, followed by POUWT and antibiotics. CATIs with OCV started early in an epidemic focusing on a 100-m radius around case households were estimated to shorten epidemics by 68% (IQR 62% to 72%), with an 81% (IQR 69% to 87%) reduction in cases compared to uncontrolled epidemics. These same targeted interventions with OCV led to a 44-fold (IQR 27 to 78) reduction in

  2. Application of local singularity in prospecting potential oil/gas Targets

    Directory of Open Access Journals (Sweden)

    Zhengyu Bao

    2007-06-01

    Full Text Available Together with generalized self-similarity and the fractal spectrum, local singularity analysis has been introduced as one part of the new 3S principle and technique for mineral resource assessment based on multifractal modeling, which has been demonstrated to be useful for anomaly delineation. Local singularity is used in this paper to characterize the property of multifractal distribution patterns of geochemical indexes to delineate potential areas for oil/gas exploration using the advanced GeoDAS GIS technology. Geochemical data of four oil/gas indexes, consisting of acid-extracted methane (SC1, ethane (SC2, propane (SC3, and secondary carbonate (ΔC, from 9637 soil samples amassed within a large area of 11.2×104 km2 in the Songpan-Aba district, Sichuan Province, southwestern China, were analyzed. By eliminating the interference of geochemical oil/gas data with the method of media-modification and Kriging, the prospecting area defined by the local singularity model is better identified and the results show that the subareas with higher singularity exponents for the four oil/gas indexes are potential targets for oil/gas exploration. These areas in the shape of rings or half-rings are spatially associated with the location of the known producing drilling well in this area. The spatial relationship between the anomalies delineated by oil/gas geochemical data and distribution patterns of local singularity exponents is confirmed by using the stable isotope of δ13C.

  3. Microtubule affinity-regulating kinases are potential druggable targets for Alzheimer's disease.

    Science.gov (United States)

    Annadurai, Narendran; Agrawal, Khushboo; Džubák, Petr; Hajdúch, Marián; Das, Viswanath

    2017-11-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects normal functions of the brain. Currently, AD is one of the leading causes of death in developed countries and the only one of the top ten diseases without a means to prevent, cure, or significantly slow down its progression. Therefore, newer therapeutic concepts are urgently needed to improve survival and the quality of life of AD patients. Microtubule affinity-regulating kinases (MARKs) regulate tau-microtubule binding and play a crucial role in neurons. However, their role in hyperphosphorylation of tau makes them potential druggable target for AD therapy. Despite the relevance of MARKs in AD pathogenesis, only a few small molecules are known to have anti-MARK activity and not much has been done to progress these compounds into therapeutic candidates. But given the diverse role of MARKs, the specificity of novel inhibitors is imperative for their successful translation from bench to bedside. In this regard, a recent co-crystal structure of MARK4 in association with a pyrazolopyrimidine-based inhibitor offers a potential scaffold for the development of more specific MARK inhibitors. In this manuscript, we review the biological role of MARKs in health and disease, and draw attention to the largely unexplored area of MARK inhibitors for AD.

  4. Identification of Pathways in Liver Repair Potentially Targeted by Secretory Proteins from Human Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Sandra Winkler

    2016-07-01

    Full Text Available Background: The beneficial impact of mesenchymal stem cells (MSC on both acute and chronic liver diseases has been confirmed, although the molecular mechanisms behind it remain elusive. We aim to identify factors secreted by undifferentiated and hepatocytic differentiated MSC in vitro in order to delineate liver repair pathways potentially targeted by MSC. Methods: Secreted factors were determined by protein arrays and related pathways identified by biomathematical analyses. Results: MSC from adipose tissue and bone marrow expressed a similar pattern of surface markers. After hepatocytic differentiation, CD54 (intercellular adhesion molecule 1, ICAM-1 increased and CD166 (activated leukocyte cell adhesion molecule, ALCAM decreased. MSC secreted different factors before and after differentiation. These comprised cytokines involved in innate immunity and growth factors regulating liver regeneration. Pathway analysis revealed cytokine-cytokine receptor interactions, chemokine signalling pathways, the complement and coagulation cascades as well as the Januskinase-signal transducers and activators of transcription (JAK-STAT and nucleotide-binding oligomerization domain-like receptor (NOD-like receptor signalling pathways as relevant networks. Relationships to transforming growth factor β (TGF-β and hypoxia-inducible factor 1-α (HIF1-α signalling seemed also relevant. Conclusion: MSC secreted proteins, which differed depending on cell source and degree of differentiation. The factors might address inflammatory and growth factor pathways as well as chemo-attraction and innate immunity. Since these are prone to dysregulation in most liver diseases, MSC release hepatotropic factors, potentially supporting liver regeneration.

  5. Exosomes As Potential Biomarkers and Targeted Therapy in Colorectal Cancer: A Mini-Review

    Directory of Open Access Journals (Sweden)

    Kha Wai Hon

    2017-08-01

    Full Text Available The number of colorectal cancer (CRC cases have increased gradually year by year. In fact, CRC is one of the most widely diagnosed cancer in men and women today. This disease is usually diagnosed at a later stage of the development, and by then, the chance of survival has declined significantly. Even though substantial progress has been made in understanding the basic molecular mechanism of CRC, there is still a lack of understanding in using the available information for diagnosing CRC effectively. Liquid biopsies are minimally invasive and have become the epitome of a good screening source for stage-specific diagnosis, measuring drug response and severity of the disease. There are various circulating entities that can be found in biological fluids, and among them, exosomes, have been gaining considerable attention. Exosomes can be found in almost all biological fluids including serum, urine, saliva, and breast milk. Furthermore, exosomes carry valuable molecular information such as proteins and nucleic acids that directly reflects the source of the cells. Nevertheless, the inconsistent yield and isolation process and the difficulty in obtaining pure exosomes have become major obstacles that need to be addressed. The potential usage of exosomes as biomarkers have not been fully validated and explored yet. This review attempts to uncover the potential molecules that can be derived from CRC-exosomes as promising biomarkers or molecular targets for effective diagnosing of CRC.

  6. PPARs: Key Regulators of Airway Inflammation and Potential Therapeutic Targets in Asthma

    Directory of Open Access Journals (Sweden)

    Asoka Banno

    2018-01-01

    Full Text Available Asthma affects approximately 300 million people worldwide, significantly impacting quality of life and healthcare costs. While current therapies are effective in controlling many patients' symptoms, a large number continue to experience exacerbations or treatment-related adverse effects. Alternative therapies are thus urgently needed. Accumulating evidence has shown that the peroxisome proliferator-activated receptor (PPAR family of nuclear hormone receptors, comprising PPARα, PPARβ/δ, and PPARγ, is involved in asthma pathogenesis and that ligand-induced activation of these receptors suppresses asthma pathology. PPAR agonists exert their anti-inflammatory effects primarily by suppressing pro-inflammatory mediators and antagonizing the pro-inflammatory functions of various cell types relevant to asthma pathophysiology. Experimental findings strongly support the potential clinical benefits of PPAR agonists in the treatment of asthma. We review current literature, highlighting PPARs' key role in asthma pathogenesis and their agonists' therapeutic potential. With additional research and rigorous clinical studies, PPARs may become attractive therapeutic targets in this disease.

  7. Biotin-Pt (IV)-indomethacin hybrid: A targeting anticancer prodrug providing enhanced cancer cellular uptake and reversing cisplatin resistance.

    Science.gov (United States)

    Hu, Weiwei; Fang, Lei; Hua, Wuyang; Gou, Shaohua

    2017-10-01

    A Pt(IV) prodrug (2) composed of cancer-targeting biotin and nonsteroidal anti-inflammatory drug indomethacin in the axial positions of the six-coordinated octahedral geometry derived from cisplatin was developed, which could be highly accumulated in cancer cells more than normal ones and activated by endogenous reducing molecules to release cisplatin and indomethacin moieties simultaneously to inhibit tumor progression synergistically. In vitro assays revealed that 2 exhibited significantly selective inhibition to the tested cancer cell lines and sensitivity to cisplatin resistant cancer cells. Moreover, 2 presented cyclooxygenases inhibition properties to reduce tumor-associated inflammation, reduced the invasiveness of the highly aggressive PC-3 cells, and disrupted capillary-like tube formation in EA.hy926 cells. In all, this study offers a new strategy to enhance sensitivity and reduce toxicity of cisplatin. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Bystander protein protects potential vaccine-targeting ligands against intestinal proteolysis.

    Science.gov (United States)

    Reuter, Fabian; Bade, Steffen; Hirst, Timothy R; Frey, Andreas

    2009-07-20

    Endowing mucosal vaccines with ligands that target antigen to mucosal lymphoid tissues may improve immunization efficacy provided that the ligands withstand the proteolytic environment of the gastro-intestinal tract until they reach their destination. Our aim was to investigate whether and how three renowned ligands - Ulex europaeus agglutinin I and the B subunits of cholera toxin and E. coli heat-labile enterotoxin - master this challenge. We assessed the digestive power of natural murine intestinal fluid (natIF) using assays for trypsin, chymotrypsin and pancreatic elastase along with a test for nonspecific proteolysis. The natIF was compared with simulated murine intestinal fluid (simIF) that resembled the trypsin, chymotrypsin and elastase activities of its natural counterpart but lacked or contained albumins as additional protease substrates. The ligands were exposed to the digestive fluids and degradation was determined. The studies revealed that (i) the three pancreatic endoproteases constitute only one third of the total protease activity of natIF and (ii) the ligands resist proteolysis in natIF and protein-enriched simIF over 3 h but (iii) are partially destroyed in simIF that lacks additional protease substrate. We assume that the proteins of natIF are preferred substrates for the intestinal proteases and thus can protect vaccine-targeting ligands from destruction.

  9. A clip-based protocol for breast boost radiotherapy provides clear target visualisation and demonstrates significant volume reduction over time

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Lorraine [Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales (Australia); Cox, Jennifer [Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales (Australia); Faculty of Health Sciences, University of Sydney, Sydney, New South Wales (Australia); Morgia, Marita [Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales (Australia); Atyeo, John [Faculty of Health Sciences, University of Sydney, Sydney, New South Wales (Australia); Lamoury, Gillian [Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales (Australia)

    2015-09-15

    The clinical target volume (CTV) for early stage breast cancer is difficult to clearly identify on planning computed tomography (CT) scans. Surgical clips inserted around the tumour bed should help to identify the CTV, particularly if the seroma has been reabsorbed, and enable tracking of CTV changes over time. A surgical clip-based CTV delineation protocol was introduced. CTV visibility and its post-operative shrinkage pattern were assessed. The subjects were 27 early stage breast cancer patients receiving post-operative radiotherapy alone and 15 receiving post-operative chemotherapy followed by radiotherapy. The radiotherapy alone (RT/alone) group received a CT scan at median 25 days post-operatively (CT1rt) and another at 40 Gy, median 68 days (CT2rt). The chemotherapy/RT group (chemo/RT) received a CT scan at median 18 days post-operatively (CT1ch), a planning CT scan at median 126 days (CT2ch), and another at 40 Gy (CT3ch). There was no significant difference (P = 0.08) between the initial mean CTV for each cohort. The RT/alone cohort showed significant CTV volume reduction of 38.4% (P = 0.01) at 40 Gy. The Chemo/RT cohort had significantly reduced volumes between CT1ch: median 54 cm{sup 3} (4–118) and CT2ch: median 16 cm{sup 3}, (2–99), (P = 0.01), but no significant volume reduction thereafter. Surgical clips enable localisation of the post-surgical seroma for radiotherapy targeting. Most seroma shrinkage occurs early, enabling CT treatment planning to take place at 7 weeks, which is within the 9 weeks recommended to limit disease recurrence.

  10. A clip-based protocol for breast boost radiotherapy provides clear target visualisation and demonstrates significant volume reduction over time

    International Nuclear Information System (INIS)

    Lewis, Lorraine; Cox, Jennifer; Morgia, Marita; Atyeo, John; Lamoury, Gillian

    2015-01-01

    The clinical target volume (CTV) for early stage breast cancer is difficult to clearly identify on planning computed tomography (CT) scans. Surgical clips inserted around the tumour bed should help to identify the CTV, particularly if the seroma has been reabsorbed, and enable tracking of CTV changes over time. A surgical clip-based CTV delineation protocol was introduced. CTV visibility and its post-operative shrinkage pattern were assessed. The subjects were 27 early stage breast cancer patients receiving post-operative radiotherapy alone and 15 receiving post-operative chemotherapy followed by radiotherapy. The radiotherapy alone (RT/alone) group received a CT scan at median 25 days post-operatively (CT1rt) and another at 40 Gy, median 68 days (CT2rt). The chemotherapy/RT group (chemo/RT) received a CT scan at median 18 days post-operatively (CT1ch), a planning CT scan at median 126 days (CT2ch), and another at 40 Gy (CT3ch). There was no significant difference (P = 0.08) between the initial mean CTV for each cohort. The RT/alone cohort showed significant CTV volume reduction of 38.4% (P = 0.01) at 40 Gy. The Chemo/RT cohort had significantly reduced volumes between CT1ch: median 54 cm 3 (4–118) and CT2ch: median 16 cm 3 , (2–99), (P = 0.01), but no significant volume reduction thereafter. Surgical clips enable localisation of the post-surgical seroma for radiotherapy targeting. Most seroma shrinkage occurs early, enabling CT treatment planning to take place at 7 weeks, which is within the 9 weeks recommended to limit disease recurrence

  11. Cross species association examination of UCN3 and CRHR2 as potential pharmacological targets for antiobesity drugs.

    Directory of Open Access Journals (Sweden)

    Zhihua Jiang

    Full Text Available BACKGROUND: Obesity now constitutes a leading global public health problem. Studies have shown that insulin resistance affiliated with obesity is associated with intramyocellular lipid (IMCL accumulation. Therefore, identification of genes associated with the phenotype would provide a clear target for pharmaceutical intervention and care for the condition. We hypothesized that urocortin 3 (UCN3 and corticotropin-releasing hormone receptor 2 (CRHR2 are associated with IMCL and subcutaneous fat depth (SFD, because the corticotropin-releasing hormone family of peptides are capable of strong anorectic and thermogenic effects. METHODOLOGY/PRINCIPAL FINDINGS: We annotated both bovine UCN3 and CRHR2 genes and identified 12 genetic mutations in the former gene and 5 genetic markers in the promoter region of the latter gene. Genotyping of these 17 markers on Wagyu times Limousin F(2 progeny revealed significant associations between promoter polymorphisms and SFD (P = 0.0203-0.0685 and between missense mutations of exon 2 and IMCL (P = 0.0055-0.0369 in the bovine UCN3 gene. The SFD associated promoter SNPs caused a gain/loss of 12 potential transcription regulatory binding sites, while the IMCL associated coding SNPs affected the secondary structure of UCN3 mRNA. However, none of five polymorphisms in CRHR2 gene clearly co-segregated with either trait in the population (P>0.6000. CONCLUSIONS/SIGNIFICANCE: Because UCN3 is located on human chromosome 10p15.1 where quantitative trait loci for obesity have been reported, our cross species study provides further evidence that it could be proposed as a potential target for developing antiobesity drugs. None of the markers in CRHR2 was associated with obesity-type traits in cattle, which is consistent with findings in human. Therefore, CRHR2 does not lend itself to the development of antiobesity drugs.

  12. Improving support for parents of children with hearing loss: provider training on use of targeted communication strategies.

    Science.gov (United States)

    Muñoz, Karen; Nelson, Lauri; Blaiser, Kristina; Price, Tanner; Twohig, Michael

    2015-02-01

    When proper protocols are followed, children who are identified with a permanent hearing loss early in life have opportunities to develop language on par with their typical hearing peers. Young children with hearing loss are dependent on their parents to manage intervention during early years critical to their development, and parents' ability to effectively integrate recommendations in daily life is foundational for intervention success. Audiologists and early intervention professionals not only need to provide current evidence-based services, but also must address parents' emotional and learning needs related to their child's hearing loss. This study explored practice patterns related to education and support provided to parents of children with hearing loss and the influence of an in-service training on provider attitudes. This study used a prepost design with a self-report questionnaire to identify practice patterns related to communication skills and support used by providers when working with parents of children with hearing loss. A total of 45 participants (21 professionals and 24 graduate students) currently working with children completed the pretraining questionnaire, and 29 participants (13 professionals and 16 graduate students) completed the postquestionnaire. Data were collected using an online questionnaire before the training and 1 mo after training. Descriptive analyses were done to identify trends, and paired-samples t-tests were used to determine changes pretraining to posttraining. Findings revealed that professionals most frequently teach skills to mothers (91%) and infrequently teach skills to fathers (19%) and other caregivers (10%). Professionals reported frequently collaborating with other intervention providers (76%) and infrequently collaborating with primary care physicians (19%). One-third of the professionals reported addressing symptoms of depression and anxiety as an interfering factor with the ability to implement management

  13. Strategies for targeting tetraspanin proteins: potential therapeutic applications in microbial infections.

    Science.gov (United States)

    Hassuna, Noha; Monk, Peter N; Moseley, Gregory W; Partridge, Lynda J

    2009-01-01

    The identification of novel targets and strategies for therapy of microbial infections is an area of intensive research due to the failure of conventional vaccines or antibiotics to combat both newly emerging diseases (e.g. viruses such as severe acute respiratory syndrome (SARS) and new influenza strains, and antibiotic-resistant bacteria) and entrenched, pandemic diseases exemplified by HIV. One clear approach to this problem is to target processes of the host organism rather than the microbe. Recent data have indicated that members of the tetraspanin superfamily, proteins with a widespread distribution in eukaryotic organisms and 33 members in humans, may provide such an approach. Tetraspanins traverse the membrane four times, but are distinguished from other four-pass membrane proteins by the presence of conserved charged residues in the transmembrane domains and a defining 'signature' motif in the larger of the two extracellular domains (the EC2). They characteristically form promiscuous associations with one another and with other membrane proteins and lipids to generate a specialized type of microdomain: the tetraspanin-enriched microdomain (TEM). TEMs are integral to the main role of tetraspanins as 'molecular organizers' involved in functions such as membrane trafficking, cell-cell fusion, motility, and signaling. Increasing evidence demonstrates that tetraspanins are used by intracellular pathogens as a means of entering and replicating within human cells. Although previous investigations focused mainly on viruses such as hepatitis C and HIV, it is now becoming clear that other microbes associate with tetraspanins, using TEMs as a 'gateway' to infection. In this article we review the properties and functions of tetraspanins/TEMs that are relevant to infective processes and discuss the accumulating evidence that shows how different pathogens exploit these properties in infection and in the pathogenesis of disease. We then investigate the novel and exciting

  14. Metabotropic glutamate receptor 5 as a potential target for smoking cessation.

    Science.gov (United States)

    Chiamulera, Cristiano; Marzo, Claudio Marcello; Balfour, David J K

    2017-05-01

    Most habitual smokers find it difficult to quit smoking because they are dependent upon the nicotine present in tobacco smoke. Tobacco dependence is commonly treated pharmacologically using nicotine replacement therapy or drugs, such as varenicline, that target the nicotinic receptor. Relapse rates, however, remain high, and there remains a need to develop novel non-nicotinic pharmacotherapies for the dependence that are more effective than existing treatments. The purpose of this paper is to review the evidence from preclinical and clinical studies that drugs that antagonise the metabotropic glutamate receptor 5 (mGluR5) in the brain are likely to be efficacious as treatments for tobacco dependence. Imaging studies reveal that chronic exposure to tobacco smoke reduces the density of mGluR5s in human brain. Preclinical results demonstrate that negative allosteric modulators (NAMs) at mGluR5 attenuate both nicotine self-administration and the reinstatement of responding evoked by exposure to conditioned cues paired with nicotine delivery. They also attenuate the effects of nicotine on brain dopamine pathways implicated in addiction. Although mGluR5 NAMs attenuate most of the key facets of nicotine dependence, they potentiate the symptoms of nicotine withdrawal. This may limit their value as smoking cessation aids. The NAMs that have been employed most widely in preclinical studies of nicotine dependence have too many "off-target" effects to be used clinically. However, newer mGluR5 NAMs have been developed for clinical use in other indications. Future studies will determine if these agents can also be used effectively and safely to treat tobacco dependence.

  15. Defining Potential Vaccine Targets of Haemophilus ducreyi Trimeric Autotransporter Adhesin DsrA.

    Science.gov (United States)

    Fusco, William G; Choudhary, Neelima R; Stewart, Shelley M; Alam, S Munir; Sempowski, Gregory D; Elkins, Christopher; Leduc, Isabelle

    2015-04-01

    Haemophilus ducreyi is the causative agent of the sexually transmitted genital ulcer disease chancroid. Strains of H. ducreyi are grouped in two classes (I and II) based on genotypic and phenotypic differences, including those found in DsrA, an outer membrane protein belonging to the family of multifunctional trimeric autotransporter adhesins. DsrA is a key serum resistance factor of H. ducreyi that prevents binding of natural IgM at the bacterial surface and functions as an adhesin to fibronectin, fibrinogen, vitronectin, and human keratinocytes. Monoclonal antibodies (MAbs) were developed to recombinant DsrA (DsrA(I)) from prototypical class I strain 35000HP to define targets for vaccine and/or therapeutics. Two anti-DsrAI MAbs bound monomers and multimers of DsrA from genital and non-genital/cutaneous H. ducreyi strains in a Western blot and reacted to the surface of the genital strains; however, these MAbs did not recognize denatured or native DsrA from class II strains. In a modified extracellular matrix protein binding assay using viable H. ducreyi, one of the MAbs partially inhibited binding of fibronectin, fibrinogen, and vitronectin to class I H. ducreyi strain 35000HP, suggesting a role for anti-DsrA antibodies in preventing binding of H. ducreyi to extracellular matrix proteins. Standard ELISA and surface plasmon resonance using a peptide library representing full-length, mature DsrAI revealed the smallest nominal epitope bound by one of the MAbs to be MEQNTHNINKLS. Taken together, our findings suggest that this epitope is a potential target for an H. ducreyi vaccine.

  16. Surface localization of glucosylceramide during Cryptococcus neoformans infection allows targeting as a potential antifungal.

    Directory of Open Access Journals (Sweden)

    Ryan Rhome

    Full Text Available Cryptococcus neoformans (Cn is a significant human pathogen that, despite current treatments, continues to have a high morbidity rate especially in sub-Saharan Africa. The need for more tolerable and specific therapies has been clearly shown. In the search for novel drug targets, the gene for glucosylceramide synthase (GCS1 was deleted in Cn, resulting in a strain (Δgcs1 that does not produce glucosylceramide (GlcCer and is avirulent in mouse models of infection. To understand the biology behind the connection between virulence and GlcCer, the production and localization of GlcCer must be characterized in conditions that are prohibitive to the growth of Δgcs1 (neutral pH and high CO(2. These prohibitive conditions are physiologically similar to those found in the extracellular spaces of the lung during infection. Here, using immunofluorescence, we have shown that GlcCer localization to the cell surface is significantly increased during growth in these conditions and during infection. We further seek to exploit this localization by treatment with Cerezyme (Cz, a recombinant enzyme that metabolizes GlcCer, as a potential treatment for Cn. Cz treatment was found to reduce the amount of GlcCer in vitro, in cultures, and in Cn cells inhabiting the mouse lung. Treatment with Cz induced a membrane integrity defect in wild type Cn cells similar to Δgcs1. Cz treatment also reduced the in vitro growth of Cn in a dose and condition dependent manner. Finally, Cz treatment was shown to have a protective effect on survival in mice infected with Cn. Taken together, these studies have established the legitimacy of targeting the GlcCer and other related sphingolipid systems in the development of novel therapeutics.

  17. A Promising Approach to Provide Appropriate Colon Target Drug Delivery Systems of Vancomycin HCL: Pharmaceutical and Microbiological Studies

    Directory of Open Access Journals (Sweden)

    Kadria A. Elkhodairy

    2014-01-01

    Full Text Available Vancomycin HCl was prepared as orally administered colon target drug delivery tablets for systemic therapy. Tablet matrices containing 10–60% of tablet weight of guar gum (F1–F6 were prepared by direct compression and subjected to in vitro release studies to explore their sustained release in the colon. Various synthetic and natural polymers were incorporated to F6 to modify the drug release rate. Different 15 matrix tablet formulations (F6–F20 were enteric coated with hydroxypropyl methyl cellulose phthalate. F6, F13 and F20 showed promising sustained release results having median dissolution time (MDT values: 8.25, 7.97, and 7.64, respectively. Microbiological assay was performed to test the efficacy of F6, F13, and F20 to inhibit clinical Staphylococcus aureus (SA isolates. Bactericidal activity of F6 was reached after 2, 4, and 24 hours of incubation against MSSA 18, MRSA 29, and MRSA 11 strains, respectively, while it was reached within 6–8 hours in case of F13, and F20 against all strains tested. F13 enhanced log microbial reduction by 1.74, 0.65 and 2.4 CFU/mL compared to F6 while it was 1, 2.57 and 1.57 compared to F20 against MSSA18, MRSA11 and MRSA29, respectively. Vancomycin HCl tablets displayed a promising sustained release in vitro and microbiological inhibitory action on all isolates tested.

  18. A promising approach to provide appropriate colon target drug delivery systems of vancomycin HCL: pharmaceutical and microbiological studies.

    Science.gov (United States)

    Elkhodairy, Kadria A; Afifi, Samar A; Zakaria, Azza S

    2014-01-01

    Vancomycin HCl was prepared as orally administered colon target drug delivery tablets for systemic therapy. Tablet matrices containing 10-60% of tablet weight of guar gum (F1-F6) were prepared by direct compression and subjected to in vitro release studies to explore their sustained release in the colon. Various synthetic and natural polymers were incorporated to F6 to modify the drug release rate. Different 15 matrix tablet formulations (F6-F20) were enteric coated with hydroxypropyl methyl cellulose phthalate. F6, F13 and F20 showed promising sustained release results having median dissolution time (MDT) values: 8.25, 7.97, and 7.64, respectively. Microbiological assay was performed to test the efficacy of F6, F13, and F20 to inhibit clinical Staphylococcus aureus (SA) isolates. Bactericidal activity of F6 was reached after 2, 4, and 24 hours of incubation against MSSA 18, MRSA 29, and MRSA 11 strains, respectively, while it was reached within 6-8 hours in case of F13, and F20 against all strains tested. F13 enhanced log microbial reduction by 1.74, 0.65 and 2.4 CFU/mL compared to F6 while it was 1, 2.57 and 1.57 compared to F20 against MSSA18, MRSA11 and MRSA29, respectively. Vancomycin HCl tablets displayed a promising sustained release in vitro and microbiological inhibitory action on all isolates tested.

  19. c-MPL provides tumor-targeted T-cell receptor-transgenic T cells with costimulation and cytokine signals.

    Science.gov (United States)

    Nishimura, Christopher D; Brenner, Daniel A; Mukherjee, Malini; Hirsch, Rachel A; Ott, Leah; Wu, Meng-Fen; Liu, Hao; Dakhova, Olga; Orange, Jordan S; Brenner, Malcolm K; Lin, Charles Y; Arber, Caroline

    2017-12-21

    Adoptively transferred T-cell receptor (TCR)-engineered T cells depend on host-derived costimulation and cytokine signals for their full and sustained activation. However, in patients with cancer, both signals are frequently impaired. Hence, we developed a novel strategy that combines both essential signals in 1 transgene by expressing the nonlymphoid hematopoietic growth factor receptor c-MPL (myeloproliferative leukemia), the receptor for thrombopoietin (TPO), in T cells. c-MPL signaling activates pathways shared with conventional costimulatory and cytokine receptor signaling. Thus, we hypothesized that host-derived TPO, present in the tumor microenvironment, or pharmacological c-MPL agonists approved by the US Food and Drug Administration could deliver both signals to c-MPL-engineered TCR-transgenic T cells. We found that c-MPL + polyclonal T cells expand and proliferate in response to TPO, and persist longer after adoptive transfer in immunodeficient human TPO-transgenic mice. In TCR-transgenic T cells, c-MPL activation enhances antitumor function, T-cell expansion, and cytokine production and preserves a central memory phenotype. c-MPL signaling also enables sequential tumor cell killing, enhances the formation of effective immune synapses, and improves antileukemic activity in vivo in a leukemia xenograft model. We identify the type 1 interferon pathway as a molecular mechanism by which c-MPL mediates immune stimulation in T cells. In conclusion, we present a novel immunotherapeutic strategy using c-MPL-enhanced transgenic T cells responding to either endogenously produced TPO (a microenvironment factor in hematologic malignancies) or c-MPL-targeted pharmacological agents. © 2017 by The American Society of Hematology.

  20. Myofibrillogenesis regulator 1 (MR-1 is a novel biomarker and potential therapeutic target for human ovarian cancer

    Directory of Open Access Journals (Sweden)

    Feng Jingjing

    2011-06-01

    Full Text Available Abstract Background Myofibrillogenesis regulator 1 (MR-1 is overexpressed in human cancer cells and plays an essential role in cancer cell growth. However, the significance of MR-1 in human ovarian cancer has not yet been explored. The aim of this study was to examine whether MR-1 is a predictor of ovarian cancer and its value as a therapeutic target in ovarian cancer patients. Methods Reverse-transcription polymerase chain reaction (PCR and quantitative real-time PCR were used to detect MR-1 mRNA levels in tissue samples from 26 ovarian cancer patients and 25 controls with benign ovarian disease. Anti-MR-1 polyclonal antibodies were prepared, tested by ELISA and western blotting, and then used for immunohistochemical analysis of the tissue samples. Adhesion and invasion of 292T cells was also examined after transfection of a pMX-MR-1 plasmid. Knockdown of MR-1 expression was achieved after stable transfection of SKOV3 cells with a short hairpin DNA pGPU6/GFP/Neo plasmid against the MR-1 gene. In addition, SKOV3 cells were treated with paclitaxel and carboplatin, and a potential role for MR-1 as a therapeutic target was evaluated. Results MR-1 was overexpressed in ovarian cancer tissues and SKOV3 cells. 293T cells overexpressed MR-1, and cellular spread and invasion were enhanced after transfection of the pMX-MR-1 plasmid, suggesting that MR-1 is critical for ovarian cancer cell growth. Knockdown of MR-1 expression inhibited cell adhesion and invasion, and treatment with anti-cancer drugs decreased its expression in cancer cells. Taken together, these results provide the first evidence of the cellular and molecular mechanisms by which MR-1 might serve as a novel biological marker and potential therapeutic target for ovarian cancer. Conclusions MR-1 may be a biomarker for diagnosis of ovarian cancer. It may also be useful for monitoring of the effects of anti-cancer therapies. Further studies are needed to clarify whether MR-1 is an early

  1. Human synthetic lethal inference as potential anti-cancer target gene detection

    Directory of Open Access Journals (Sweden)

    Solé Ricard V

    2009-12-01

    Full Text Available Abstract Background Two genes are called synthetic lethal (SL if mutation of either alone is not lethal, but mutation of both leads to death or a significant decrease in organism's fitness. The detection of SL gene pairs constitutes a promising alternative for anti-cancer therapy. As cancer cells exhibit a large number of mutations, the identification of these mutated genes' SL partners may provide specific anti-cancer drug candidates, with minor perturbations to the healthy cells. Since existent SL data is mainly restricted to yeast screenings, the road towards human SL candidates is limited to inference methods. Results In the present work, we use phylogenetic analysis and database manipulation (BioGRID for interactions, Ensembl and NCBI for homology, Gene Ontology for GO attributes in order to reconstruct the phylogenetically-inferred SL gene network for human. In addition, available data on cancer mutated genes (COSMIC and Cancer Gene Census databases as well as on existent approved drugs (DrugBank database supports our selection of cancer-therapy candidates. Conclusions Our work provides a complementary alternative to the current methods for drug discovering and gene target identification in anti-cancer research. Novel SL screening analysis and the use of highly curated databases would contribute to improve the results of this methodology.

  2. Tweaking Dendrimers and Dendritic Nanoparticles for Controlled Nano-bio Interactions: Potential Nanocarriers for Improved Cancer Targeting

    Science.gov (United States)

    Bugno, Jason; Hsu, Hao-Jui; Hong, Seungpyo

    2016-01-01

    Nanoparticles have shown great promise in the treatment of cancer, with a demonstrated potential in targeted drug delivery. Among a myriad of nanocarriers that have been recently developed, dendrimers have attracted a great deal of scientific interests due to their unique chemical and structural properties that allow for precise engineering of their characteristics. Despite this, the clinical translation of dendrimers has been hindered due to their drawbacks, such as scale-up issues, rapid systemic elimination, inefficient tumor accumulation, and limited drug loading. In order to overcome these limitations, a series of reengineered dendrimers have been recently introduced using various approaches, including: i) modifications of structure and surfaces; ii) integration with linear polymers; and iii) hybridization with other types of nanocarriers. Chemical modifications and surface engineering have tailored dendrimers to improve their pharmacokinetics and tissue permeation. Copolymerization of dendritic polymers with linear polymers has resulted in various amphiphilic copolymers with self-assembly capabilities and improved drug loading efficiencies. Hybridization with other nanocarriers integrates advantageous characteristics of both systems, which includes prolonged plasma circulation times and enhanced tumor targeting. This review provides a comprehensive summary of the newly emerging drug delivery systems that involve reengineering of dendrimers in an effort to precisely control their nano-bio interactions, mitigating their inherent weaknesses. PMID:26453160

  3. Peroxisome Proliferator-Activated Receptor-γ Ligands: Potential Pharmacological Agents for Targeting the Angiogenesis Signaling Cascade in Cancer

    Directory of Open Access Journals (Sweden)

    Costas Giaginis

    2008-01-01

    Full Text Available Peroxisome proliferator-activated receptor-γ (PPAR-γ has currently been considered as molecular target for the treatment of human metabolic disorders. Experimental data from in vitro cultures, animal models, and clinical trials have shown that PPAR-γ ligand activation regulates differentiation and induces cell growth arrest and apoptosis in a variety of cancer types. Tumor angiogenesis constitutes a multifaceted process implicated in complex downstream signaling pathways that triggers tumor growth, invasion, and metastasis. In this aspect, accumulating in vitro and in vivo studies have provided extensive evidence that PPAR-γ ligands can function as modulators of the angiogenic signaling cascade. In the current review, the crucial role of PPAR-γ ligands and the underlying mechanisms participating in tumor angiogenesis are summarized. Targeting PPAR-γ may prove to be a potential therapeutic strategy in combined treatments with conventional chemotherapy; however, special attention should be taken as there is also substantial evidence to support that PPAR-γ ligands can enhance angiogenic phenotype in tumoral cells.

  4. Salinity critical threshold values for photosynthesis of two cosmopolitan seaweed species: providing baselines for potential shifts on seaweed assemblages.

    Science.gov (United States)

    Scherner, Fernando; Ventura, Robson; Barufi, José Bonomi; Horta, Paulo Antunes

    2013-10-01

    Climate change has increased precipitation in several South American regions leading to higher freshwater inputs into marine systems with potential to cause salinity declines along the coast. The current salinity profile on the southern coast of Brazil was surveyed during four years providing a baseline of the current salinity pattern in the region. Additionally, the effects of salinity decreases on the photosynthesis of the seaweeds Ulva lactuca and Sargassum stenophyllum were investigated in laboratory. Seaweeds were cultured at salinities 5, 15 and 34 and at the mean winter and summer temperatures. Photosynthetic performance was measured following 24 and 96 h from the beginning of experiment. U. lactuca remained practically unaltered by low salinities while S. stenophyllum presented declines of important photosynthetic parameters. This is due to the different regulation abilities of energy distribution at the PSII of the two species. These differences have potential to lead to seaweed community shifts. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. The potential medicinal value of plants from Asteraceae family with antioxidant defense enzymes as biological targets.

    Science.gov (United States)

    Koc, Suheda; Isgor, Belgin S; Isgor, Yasemin G; Shomali Moghaddam, Naznoosh; Yildirim, Ozlem

    2015-05-01

    Plants and most of the plant-derived compounds have long been known for their potential pharmaceutical effects. They are well known to play an important role in the treatment of several diseases from diabetes to various types of cancers. Today most of the clinically effective pharmaceuticals are developed from plant-derived ancestors in the history of medicine. The aim of this study was to evaluate the free radical scavenging activity and total phenolic and flavonoid contents of methanol, ethanol, and acetone extracts from flowers and leaves of Onopordum acanthium L., Carduus acanthoides L., Cirsium arvense (L.) Scop., and Centaurea solstitialis L., all from the Asteraceae family, for investigating their potential medicinal values of biological targets that are participating in the antioxidant defense system such as catalase (CAT), glutathione S-transferase (GST), and glutathione peroxidase (GPx). In this study, free radical scavenging activity and total phenolic and flavonoid contents of the plant samples were assayed by DPPH, Folin-Ciocalteu, and aluminum chloride colorimetric methods. Also, the effects of extracts on CAT, GST, and GPx enzyme activities were investigated. The highest phenolic and flavonoid contents were detected in the acetone extract of C. acanthoides flowers, with 90.305 mg GAE/L and 185.43 mg Q/L values, respectively. The highest DPPH radical scavenging was observed with the methanol leaf extracts of C. arvense with an IC50 value of 366 ng/mL. The maximum GPx and GST enzyme inhibition activities were observed with acetone extracts from the flower of C. solstitialis with IC50 values of 79 and 232 ng/mL, respectively.

  6. Transient receptor potential (TRP) channels as drug targets for diseases of the digestive system

    Science.gov (United States)

    Holzer, Peter

    2011-01-01

    Approximately 20 of the 30 mammalian transient receptor potential (TRP) channel subunits are expressed by specific neurons and cells within the alimentary canal. They subserve important roles in taste, chemesthesis, mechanosensation, pain and hyperalgesia and contribute to the regulation of gastrointestinal motility, absorptive and secretory processes, blood flow, and mucosal homeostasis. In a cellular perspective, TRP channels operate either as primary detectors of chemical and physical stimuli, as secondary transducers of ionotropic or metabotropic receptors, or as ion transport channels. The polymodal sensory function of TRPA1, TRPM5, TRPM8, TRPP2, TRPV1, TRPV3 and TRPV4 enables the digestive system to survey its physical and chemical environment, which is relevant to all processes of digestion. TRPV5 and TRPV6 as well as TRPM6 and TRPM7 contribute to the absorption of Ca2+ and Mg2+, respectively. TRPM7 participates in intestinal pacemaker activity, and TRPC4 transduces muscarinic acetylcholine receptor activation to smooth muscle contraction. Changes in TRP channel expression or function are associated with a variety of diseases/disorders of the digestive system, notably gastro-esophageal reflux disease, inflammatory bowel disease, pain and hyperalgesia in heartburn, functional dyspepsia and irritable bowel syndrome, cholera, hypomagnesemia with secondary hypocalcemia, infantile hypertrophic pyloric stenosis, esophageal, gastrointestinal and pancreatic cancer, and polycystic liver disease. These implications identify TRP channels as promising drug targets for the management of a number of gastrointestinal pathologies. As a result, major efforts are put into the development of selective TRP channel agonists and antagonists and the assessment of their therapeutic potential. PMID:21420431

  7. Vaccination of Sheep with a Methanogen Protein Provides Insight into Levels of Antibody in Saliva Needed to Target Ruminal Methanogens.

    Directory of Open Access Journals (Sweden)

    Supatsak Subharat

    Full Text Available Methane is produced in the rumen of ruminant livestock by methanogens and is a major contributor to agricultural greenhouse gases. Vaccination against ruminal methanogens could reduce methane emissions by inducing antibodies in saliva which enter the rumen and impair ability of methanogens to produce methane. Presently, it is not known if vaccination can induce sufficient amounts of antibody in the saliva to target methanogen populations in the rumen and little is known about how long antibody in the rumen remains active. In the current study, sheep were vaccinated twice at a 3-week interval with a model methanogen antigen, recombinant glycosyl transferase protein (rGT2 formulated with one of four adjuvants: saponin, Montanide ISA61, a chitosan thermogel, or a lipid nanoparticle/cationic liposome adjuvant (n = 6/formulation. A control group of sheep (n = 6 was not vaccinated. The highest antigen-specific IgA and IgG responses in both saliva and serum were observed with Montanide ISA61, which promoted levels of salivary antibodies that were five-fold higher than the second most potent adjuvant, saponin. A rGT2-specific IgG standard was used to determine the level of rGT2-specific IgG in serum and saliva. Vaccination with GT2/Montanide ISA61 produced a peak antibody concentration of 7 × 1016 molecules of antigen-specific IgG per litre of saliva, and it was estimated that in the rumen there would be more than 104 molecules of antigen-specific IgG for each methanogen cell. Both IgG and IgA in saliva were shown to be relatively stable in the rumen. Salivary antibody exposed for 1-2 hours to an in vitro simulated rumen environment retained approximately 50% of antigen-binding activity. Collectively, the results from measuring antibody levels and stablility suggest a vaccination-based mitigation strategy for livestock generated methane is in theory feasible.

  8. Inflammatory and immune responses in the cochlea: potential therapeutic targets for sensorineural hearing loss

    Directory of Open Access Journals (Sweden)

    Masato eFujioka

    2014-12-01

    Full Text Available The inner ear was previously assumed to be an immune-privileged organ due to the existence of its tight junction-based blood-labyrinth barrier. However, studies performed during the past decade revealed that the mesenchymal region of the cochlea, including its lateral wall, is a common site of inflammation. Neutrophils do not enter this region, which is consistent with the old dogma; however, bone marrow-derived resident macrophages are always present in the spiral ligament of the lateral wall and are activated in response to various types of insults, including noise exposure, ischemia, mitochondrial damage and surgical stress. Recent studies have also revealed another type of immune cell, called perivascular melanocyte-like macrophages (PVM/Ms, in the stria vascularis. These dedicated antigen-presenting cells also control vascular contraction and permeability. This review discusses a series of reports regarding inflammatory/immune cells in the cochlear lateral wall, the pathways involved in cochlear damage and their potential as therapeutic targets.

  9. Galectin-3 as a Potential Therapeutic Target in Tumors Arising from Malignant Endothelia

    Directory of Open Access Journals (Sweden)

    Kim D. Johnson

    2007-08-01

    Full Text Available Angiosarcoma (ASA in humans, hemangiosarcoma (HSA in dogs are deadly neoplastic diseases characterized by an aggressive growth of malignant cells with endothelial phenotype, widespread metastasis, poor response to chemotherapy. Galectin-3 (Gal-3, a p-galactoside-binding lectin implicated in tumor progression, metastasis, endothelial cell biology, angiogenesis, regulation of apoptosis, neoplastic cell response to cytotoxic drugs, has not been studied before in tumors arising from malignant endothelia. Here, we tested the hypothesis that Gal-3 could be widely expressed in human ASA, canine HSA, could play an important role in malignant endothelial cell biology. Immunohistochemical analysis demonstrated that 100% of the human ASA (10 of 10, canine HSA (17 of 17 samples analyzed expressed Gal-3. Two carbohydrate-based Gal-3 inhibitors, modified citrus pectin (MCP, lactulosyl-l-leucine (LL, caused a dose-dependent reduction of SVR murine ASA cell clonogenic survival through the inhibition of Gal-3 antiapoptotic function. Furthermore, both MCP, LL sensitized SVR cells to the cytotoxic drug doxorubicin to a degree sufficient to reduce the in vitro IC50 of doxorubicin by 10.7-fold, 3.64old, respectively. These results highlight the important role of Gal-3 in the biology of ASA, identify Gal-3 as a potential therapeutic target in tumors arising from malignant endothelial cells.

  10. [Medication regularity and potential targets of Professor XU Jing-fan's prescription for treating ulcerative colitis].

    Science.gov (United States)

    Ning, Li-Qin; Ye, Bai; Shen, Hong; Lu, Wei-Min; Xu, Dan-Hua; Yan, Jing; Tan, Chang; Tang, De-Cai

    2018-03-01

    Ulcerative colitis (UC) is a chronic nonspecific inflammation mainly involving rectum and colon mucosa, which seriously affects the health and quality of life of patients, and is listed as one of modern refractory diseases by WHO. Professor XU Jing-fan, a great master of traditional Chinese medicine, has accumulated rich experiences in the treatment of UC. The study collected Professor XU's 77 prescriptions of treating UC, analyzed the frequency of traditional Chinese medicines and there categories, and investigated the medication regularity by the system clustering method. The findings showed that the most frequently used drugs were clearing-heat herbs, which were followed by hemostatic herbs, excreting-dampness herbs, improving-digestion herbs and tonifying-Qi herbs. At the same time, the commonly combined drugs were excavated. Finally, in order to analyze potential molecular targets of the frequently used herbs, GO enrichment analysis and KEGG signal pathway enrichment analysis were performed with bioinformatics analysis tool for molecular mechanism of traditional Chinese medicine (BATMAN-TCM). The results indicated that Chinese herbal compounds may treat UC by activating PPAR-γ pathway and regulating intestinal inflammation. The exact mechanisms shall be verified through subsequent molecular biological experiments. Copyright© by the Chinese Pharmaceutical Association.

  11. Modulation of Lipid Droplet Metabolism—A Potential Target for Therapeutic Intervention in Flaviviridae Infections

    Directory of Open Access Journals (Sweden)

    Jingshu Zhang

    2017-11-01

    Full Text Available Lipid droplets (LDs are endoplasmic reticulum (ER-related dynamic organelles that store and regulate fatty acids and neutral lipids. They play a central role in cellular energy storage, lipid metabolism and cellular homeostasis. It has become evident that viruses have co-evolved in order to exploit host lipid metabolic pathways. This is especially characteristic of the Flaviviridae family, including hepatitis C virus (HCV and several flaviviruses. Devoid of an appropriate lipid biosynthetic machinery of their own, these single-strand positive-sense RNA viruses can induce dramatic changes in host metabolic pathways to establish a favorable environment for viral multiplication and acquire essential components to facilitate their assembly and traffic. Here we have reviewed the current knowledge on the intracellular life cycle of those from the Flaviviridae family, with particular emphasis on HCV and dengue virus (DENV, and their association with the biosynthesis and metabolism of LDs, with the aim to identify potential antiviral targets for development of novel therapeutic interventions.

  12. Clinical investigation of TROP-2 as an independent biomarker and potential therapeutic target in colon cancer.

    Science.gov (United States)

    Zhao, Peng; Yu, Hai-Zheng; Cai, Jian-Hui

    2015-09-01

    Colon cancer is associated with a severe demographic and economic burden worldwide. The pathogenesis of colon cancer is highly complex and involves sequential genetic and epigenetic mechanisms. Despite extensive investigation, the pathogenesis of colon cancer remains to be elucidated. As the third most common type of cancer worldwide, the treatment options for colon cancer are currently limited. Human trophoblast cell‑surface marker (TROP‑2), is a cell‑surface transmembrane glycoprotein overexpressed by several types of epithelial carcinoma. In addition, TROP‑2 has been demonstrated to be associated with tumorigenesis and invasiveness in solid types of tumor. The aim of the present study was to investigate the protein expression of TROP‑2 in colon cancer tissues, and further explore the association between the expression of TROP‑2 and clinicopathological features of patients with colon cancer. The expression and localization of the TROP‑2 protein was examined using western blot analysis and immunofluorescence staining. Finally, the expression of TROP‑2 expression was correlated to conventional clinicopathological features of colon cancer using a χ2 test. The results revealed that TROP‑2 protein was expressed at high levels in the colon cancer tissues, which was associated with the development and pathological process of colon cancer. Therefore, TROP‑2 may be used as a biomarker to determine the clinical prognosis, and as a potential therapeutic target in colon cancer.

  13. Conotoxins Targeting Neuronal Voltage-Gated Sodium Channel Subtypes: Potential Analgesics?

    Directory of Open Access Journals (Sweden)

    Jeffrey R. McArthur

    2012-11-01

    Full Text Available Voltage-gated sodium channels (VGSC are the primary mediators of electrical signal amplification and propagation in excitable cells. VGSC subtypes are diverse, with different biophysical and pharmacological properties, and varied tissue distribution. Altered VGSC expression and/or increased VGSC activity in sensory neurons is characteristic of inflammatory and neuropathic pain states. Therefore, VGSC modulators could be used in prospective analgesic compounds. VGSCs have specific binding sites for four conotoxin families: μ-, μO-, δ- and ί-conotoxins. Various studies have identified that the binding site of these peptide toxins is restricted to well-defined areas or domains. To date, only the μ- and μO-family exhibit analgesic properties in animal pain models. This review will focus on conotoxins from the μ- and μO-families that act on neuronal VGSCs. Examples of how these conotoxins target various pharmacologically important neuronal ion channels, as well as potential problems with the development of drugs from conotoxins, will be discussed.

  14. Identification of potential pathway mediation targets in Toll-like receptor signaling.

    Directory of Open Access Journals (Sweden)

    Fan Li

    2009-02-01

    Full Text Available Recent advances in reconstruction and analytical methods for signaling networks have spurred the development of large-scale models that incorporate fully functional and biologically relevant features. An extended reconstruction of the human Toll-like receptor signaling network is presented herein. This reconstruction contains an extensive complement of kinases, phosphatases, and other associated proteins that mediate the signaling cascade along with a delineation of their associated chemical reactions. A computational framework based on the methods of large-scale convex analysis was developed and applied to this network to characterize input-output relationships. The input-output relationships enabled significant modularization of the network into ten pathways. The analysis identified potential candidates for inhibitory mediation of TLR signaling with respect to their specificity and potency. Subsequently, we were able to identify eight novel inhibition targets through constraint-based modeling methods. The results of this study are expected to yield meaningful avenues for further research in the task of mediating the Toll-like receptor signaling network and its effects.

  15. Targeting methionine cycle as a potential therapeutic strategy for immune disorders.

    Science.gov (United States)

    Li, Heng; Lu, Huimin; Tang, Wei; Zuo, Jianping

    2017-08-23

    Methionine cycle plays an essential role in regulating many cellular events, especially transmethylation reactions, incorporating the methyl donor S-adenosylmethionine (SAM). The transmethylations and substances involved in the cycle have shown complicated effects and mechanisms on immunocytes developments and activations, and exert crucial impacts on the pathological processes in immune disorders. Areas covered: Methionine cycle has been considered as an effective means of drug developments. This review discussed the role of methionine cycle in immune responses and summarized the potential therapeutic strategies based on the cycle, including SAM analogs, methyltransferase inhibitors, S-adenosylhomocysteine hydrolase (SAHH) inhibitors, adenosine receptors specific agonists or antagonists and homocysteine (Hcy)-lowering reagents, in treating human immunodeficiency virus (HIV) infections, systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), multiple sclerosis (MS), systemic sclerosis (SSc) and other immune disorders. Expert opinion: New targets and biomarkers grown out of methionine cycle have developed rapidly in the past decades. However, impacts of epigenetic regulations on immune disorders are unclear and whether the substances in methionine cycle can be clarified as biomarkers remains controversial. Therefore, further elucidation on the role of epigenetic regulations and substances in methionine cycle may contribute to exploring the cycle-derived biomarkers and drugs in immune disorders.

  16. Versican is a potential therapeutic target in docetaxel-resistant prostate cancer

    Science.gov (United States)

    Arichi, Naoko; Mitsui, Yozo; Hiraki, Miho; Nakamura, Sigenobu; Hiraoka, Takeo; Sumura, Masahiro; Hirata, Hiroshi; Tanaka, Yuichiro; Dahiya, Rajvir; Yasumoto, Hiroaki; Shiina, Hiroaki

    2015-01-01

    In the current study, we investigated a combination of docetaxel and thalidomide (DT therapy) in castration-resistant prostate cancer (CRPC) patients. We identified marker genes that predict the effect of DT therapy. Using an androgen-insensitive PC3 cell line, we established a docetaxel-resistant PC-3 cell line (DR-PC3). In DR-PC3 cells, DT therapy stronger inhibited proliferation/viability than docetaxel alone. Based on gene ontology analysis, we found versican as a selective gene. This result with the findings of cDNA microarray and validated by quantitative RT-PCR. In addition, the effect of DT therapy on cell viability was the same as the effect of docetaxel plus versican siRNA. In other words, silencing of versican can substitute for thalidomide. In the clinical setting, versican expression in prostate biopsy samples (before DT therapy) correlated with PSA reduction after DT therapy (p<0.05). Thus targeting versican is a potential therapeutic strategy in docetaxel-resistant prostate cancer. PMID:25859560

  17. ABCC4/MRP4: a MYCN-regulated transporter and potential therapeutic target in neuroblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Huynh, Tony; Norris, Murray D.; Haber, Michelle; Henderson, Michelle J., E-mail: mhenderson@ccia.unsw.edu.au [Experimental Therapeutics Program, Lowy Cancer Research Centre, Children’s Cancer Institute Australia for Medical Research, University of New South Wales and Sydney Children’s Hospital, Sydney, NSW (Australia)

    2012-12-19

    Resistance to cytotoxic drugs is thought to be a major cause of treatment failure in childhood neuroblastoma, and members of the ATP-binding cassette (ABC) transporter superfamily may contribute to this phenomenon by active efflux of chemotherapeutic agents from cancer cells. As a member of the C subfamily of ABC transporters, multidrug resistance-associated protein MRP4/ABCC4 has the ability to export a variety of endogenous and exogenous substances across the plasma membrane. In light of its capacity for chemotherapeutic drug efflux, MRP4 has been studied in the context of drug resistance in a number of cancer cell types. However, MRP4 also influences cancer cell biology independently of chemotherapeutic drug exposure, which highlights the potential importance of endogenous MRP4 substrates in cancer biology. Furthermore, MRP4 is a direct transcriptional target of Myc family oncoproteins and expression of this transporter is a powerful independent predictor of clinical outcome in neuroblastoma. Together, these features suggest that inhibition of MRP4 may be an attractive therapeutic approach for neuroblastoma and other cancers that rely on MRP4. In this respect, existing options for MRP4 inhibition are relatively non-selective and thus development of more specific anti-MRP4 compounds should be a major focus of future work in this area.

  18. ABCC4/MRP4: a MYCN-regulated transporter and potential therapeutic target in neuroblastoma

    International Nuclear Information System (INIS)

    Huynh, Tony; Norris, Murray D.; Haber, Michelle; Henderson, Michelle J.

    2012-01-01

    Resistance to cytotoxic drugs is thought to be a major cause of treatment failure in childhood neuroblastoma, and members of the ATP-binding cassette (ABC) transporter superfamily may contribute to this phenomenon by active efflux of chemotherapeutic agents from cancer cells. As a member of the C subfamily of ABC transporters, multidrug resistance-associated protein MRP4/ABCC4 has the ability to export a variety of endogenous and exogenous substances across the plasma membrane. In light of its capacity for chemotherapeutic drug efflux, MRP4 has been studied in the context of drug resistance in a number of cancer cell types. However, MRP4 also influences cancer cell biology independently of chemotherapeutic drug exposure, which highlights the potential importance of endogenous MRP4 substrates in cancer biology. Furthermore, MRP4 is a direct transcriptional target of Myc family oncoproteins and expression of this transporter is a powerful independent predictor of clinical outcome in neuroblastoma. Together, these features suggest that inhibition of MRP4 may be an attractive therapeutic approach for neuroblastoma and other cancers that rely on MRP4. In this respect, existing options for MRP4 inhibition are relatively non-selective and thus development of more specific anti-MRP4 compounds should be a major focus of future work in this area.

  19. [Cell signaling pathways interaction in cellular proliferation: Potential target for therapeutic interventionism].

    Science.gov (United States)

    Valdespino-Gómez, Víctor Manuel; Valdespino-Castillo, Patricia Margarita; Valdespino-Castillo, Víctor Edmundo

    2015-01-01

    Nowadays, cellular physiology is best understood by analysing their interacting molecular components. Proteins are the major components of the cells. Different proteins are organised in the form of functional clusters, pathways or networks. These molecules are ordered in clusters of receptor molecules of extracellular signals, transducers, sensors and biological response effectors. The identification of these intracellular signaling pathways in different cellular types has required a long journey of experimental work. More than 300 intracellular signaling pathways have been identified in human cells. They participate in cell homeostasis processes for structural and functional maintenance. Some of them participate simultaneously or in a nearly-consecutive progression to generate a cellular phenotypic change. In this review, an analysis is performed on the main intracellular signaling pathways that take part in the cellular proliferation process, and the potential use of some components of these pathways as target for therapeutic interventionism are also underlined. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  20. Overexpressed BAG3 is a potential therapeutic target in chronic lymphocytic leukemia.

    Science.gov (United States)

    Zhu, Huayuan; Wu, Wei; Fu, Yuan; Shen, Wenyi; Miao, Kourong; Hong, Min; Xu, Wei; Young, Ken H; Liu, Peng; Li, Jianyong

    2014-03-01

    Bcl-2-associated athanogene 3 (BAG3), a member of BAG family, is shown to sustain cell survival and underlie resistance to chemotherapy in human neoplastic cells. We aimed to determine the exact role and underlying mechanisms of BAG3 in human chronic lymphocytic leukemia (CLL). One hundred human CLL samples and 20 normal B-cell samples from healthy controls were collected. We measured the BAG3 expression in these cells and explored its relationship with known prognostic factors for CLL. The roles of BAG3 in cell apoptosis and migration were evaluated by small interfering RNA-mediated knockdown of BAG3 in primary CLL cells. We showed that BAG3 expression level was increased in CLL cells compared with normal B cells. Moreover, BAG3 expression was particularly upregulated in CD38 positive, unmutated immunoglobulin heavy-chain patients and those with lymphadenopathy and/or splenomegaly. Importantly, patients with increased BAG3 expression level have poor overall survival in subgroups with positive ZAP-70 or those without any "p53 abnormality". In addition, knocking down of BAG3 expression resulted in increased apoptotic ratio and decreased migration in primary CLL cells. Our data indicate that BAG3 is a marker of poor prognostic in specific subgroups of CLL patients and may be a potential therapeutic target for this disease.

  1. Long-term potentiation in spinal nociceptive pathways as a novel target for pain therapy

    Directory of Open Access Journals (Sweden)

    Liu Xian-Guo

    2011-03-01

    Full Text Available Abstract Long-term potentiation (LTP in nociceptive spinal pathways shares several features with hyperalgesia and has been proposed to be a cellular mechanism of pain amplification in acute and chronic pain states. Spinal LTP is typically induced by noxious input and has therefore been hypothesized to contribute to acute postoperative pain and to forms of chronic pain that develop from an initial painful event, peripheral inflammation or neuropathy. Under this assumption, preventing LTP induction may help to prevent the development of exaggerated postoperative pain and reversing established LTP may help to treat patients who have an LTP component to their chronic pain. Spinal LTP is also induced by abrupt opioid withdrawal, making it a possible mechanism of some forms of opioid-induced hyperalgesia. Here, we give an overview of targets for preventing LTP induction and modifying established LTP as identified in animal studies. We discuss which of the various symptoms of human experimental and clinical pain may be manifestations of spinal LTP, review the pharmacology of these possible human LTP manifestations and compare it to the pharmacology of spinal LTP in rodents.

  2. Potential translational targets revealed by linking mouse grooming behavioral phenotypes to gene expression using public databases.

    Science.gov (United States)

    Roth, Andrew; Kyzar, Evan J; Cachat, Jonathan; Stewart, Adam Michael; Green, Jeremy; Gaikwad, Siddharth; O'Leary, Timothy P; Tabakoff, Boris; Brown, Richard E; Kalueff, Allan V

    2013-01-10

    Rodent self-grooming is an important, evolutionarily conserved behavior, highly sensitive to pharmacological and genetic manipulations. Mice with aberrant grooming phenotypes are currently used to model various human disorders. Therefore, it is critical to understand the biology of grooming behavior, and to assess its translational validity to humans. The present in-silico study used publicly available gene expression and behavioral data obtained from several inbred mouse strains in the open-field, light-dark box, elevated plus- and elevated zero-maze tests. As grooming duration differed between strains, our analysis revealed several candidate genes with significant correlations between gene expression in the brain and grooming duration. The Allen Brain Atlas, STRING, GoMiner and Mouse Genome Informatics databases were used to functionally map and analyze these candidate mouse genes against their human orthologs, assessing the strain ranking of their expression and the regional distribution of expression in the mouse brain. This allowed us to identify an interconnected network of candidate genes (which have expression levels that correlate with grooming behavior), display altered patterns of expression in key brain areas related to grooming, and underlie important functions in the brain. Collectively, our results demonstrate the utility of large-scale, high-throughput data-mining and in-silico modeling for linking genomic and behavioral data, as well as their potential to identify novel neural targets for complex neurobehavioral phenotypes, including grooming. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. ABCC4/MRP4: a MYCN-regulated transporter and potential therapeutic target in neuroblastoma.

    Directory of Open Access Journals (Sweden)

    Tony eHuynh

    2012-12-01

    Full Text Available Resistance to cytotoxic drugs is thought to be a major cause of treatment failure in childhood neuroblastoma, and members of the ATP-binding cassette (ABC transporter superfamily may contribute to this phenomenon by active efflux of chemotherapeutic agents from cancer cells. As a member of the C subfamily of ABC transporters, multidrug resistance-associated protein MRP4/ABCC4 has the ability to export a variety of endogenous and exogenous substances across the plasma membrane. In light of its capacity for chemotherapeutic drug efflux, MRP4 has been studied in the context of drug resistance in a number of cancer cell types. However, MRP4 also influences cancer cell biology independently of chemotherapeutic drug exposure, which highlights the potential importance of endogenous MRP4 substrates in cancer biology. Furthermore, MRP4 is a direct transcriptional target of Myc family oncoproteins and expression of this transporter is a powerful independent predictor of clinical outcome in neuroblastoma. Together these features suggest that inhibition of MRP4 may be an attractive therapeutic approach for neuroblastoma and other cancers that rely on MRP4. In this respect, existing options for MRP4 inhibition are relatively non-selective and thus development of more specific anti-MRP4 compounds should be a major focus of future work in this area.

  4. Polylysine as a vehicle for extracellular matrix-targeted local drug delivery, providing high accumulation and long-term retention within the vascular wall

    NARCIS (Netherlands)

    Sakharov, D.V.; Jie, A.F.H.; Bekkers, M.E.A.; Emeis, J.J.; Rijken, D.C.

    2001-01-01

    We present the first steps in the elaboration of an approach of extracellular matrix-targeted local drug delivery (ECM-LDD), designed to provide a high concentration, ubiquitous distribution, and long-term retention of a drug within the vessel wall after local intravascular delivery. The approach is

  5. Targeted gene panels and microbiota analysis provide insight into the effects of effects of alternative production diet formulations on channel catfish nutritional physiology

    Science.gov (United States)

    The present research evaluated targeted gene panels and microbiota analysis to provide greater insight into the effects of alternatively-sourced dietary ingredients on production indices, gut health, changes in the gut microbiota and genes involved in the regulation of appetite, growth, metabolism, ...

  6. Influence of different gaps among the split targets with gradient potential to the discharge effects generated by hypervelocity impact

    Science.gov (United States)

    Tang, Enling; Zhao, Liangliang; Han, Yafei; Zhang, Qingming; Wang, Ruizhi; He, Liping; Liu, Shuhua

    2018-04-01

    Due to the actual situation of spacecraft surface' charging, such as convex corners, weld line, whalebone and a multiple-interfaces with different materials, all these are main factors leading to uneven charging of spacecraft surface, even creating gradient potential. If the charging spacecraft surface is impacted by debris or micrometeor, discharge effect induced by impacting will pose a serious threat to spacecraft in orbit. So realizing spacecraft charging surface with different potential differences and grasping discharge characteristics are a decisive importance at the different experimental conditions in laboratory. To simulate the spacecraft surface with a gradient potential in laboratory, spacecraft surface is split into different parts, which different gaps reserved in 2 adjacent surface is added resistance to create different potential surfaces, and the high potential surface as a impact target in the split targets. Charging circuit system realizing different gradient potential and discharge test system are built by ourselves, combining with two-stage light gas gun loading system, six sets of experiments have been performed about hypervelocity impact on 2A12 aluminum split targets with gradient potentials. In the experiments, gaps of 2A12 aluminum target are the same among different parts in every experiments, the gaps of the split targets are 2mm, 3mm, 5mm, 7mm and 10mm in the experiments, respectively. And the applied voltage is 300V in all the experiments and high-potential 2A12 aluminum plate as the impact target. The experiments have been performed at the impact velocity of about 3km/s and the incidence angles of 60o and 90o (between projectile flying trajectory and target plane), respectively. Voltage probe and current probes are used for acquiring discharge voltages and currents during the process of the impact. The experimental results showed that the discharge induced by impact plasma were generated among high and low-potential target by forming

  7. Influence of different gaps among the split targets with gradient potential to the discharge effects generated by hypervelocity impact

    Directory of Open Access Journals (Sweden)

    Enling Tang

    2018-04-01

    Full Text Available Due to the actual situation of spacecraft surface’ charging, such as convex corners, weld line, whalebone and a multiple-interfaces with different materials, all these are main factors leading to uneven charging of spacecraft surface, even creating gradient potential. If the charging spacecraft surface is impacted by debris or micrometeor, discharge effect induced by impacting will pose a serious threat to spacecraft in orbit. So realizing spacecraft charging surface with different potential differences and grasping discharge characteristics are a decisive importance at the different experimental conditions in laboratory. To simulate the spacecraft surface with a gradient potential in laboratory, spacecraft surface is split into different parts, which different gaps reserved in 2 adjacent surface is added resistance to create different potential surfaces, and the high potential surface as a impact target in the split targets. Charging circuit system realizing different gradient potential and discharge test system are built by ourselves, combining with two-stage light gas gun loading system, six sets of experiments have been performed about hypervelocity impact on 2A12 aluminum split targets with gradient potentials. In the experiments, gaps of 2A12 aluminum target are the same among different parts in every experiments, the gaps of the split targets are 2mm, 3mm, 5mm, 7mm and 10mm in the experiments, respectively. And the applied voltage is 300V in all the experiments and high-potential 2A12 aluminum plate as the impact target. The experiments have been performed at the impact velocity of about 3km/s and the incidence angles of 60o and 90o (between projectile flying trajectory and target plane, respectively. Voltage probe and current probes are used for acquiring discharge voltages and currents during the process of the impact. The experimental results showed that the discharge induced by impact plasma were generated among high and low-potential

  8. Identification of potential target genes for the tomato fruit-ripening regulator RIN by chromatin immunoprecipitation

    Directory of Open Access Journals (Sweden)

    Nakano Toshitsugu

    2011-01-01

    Full Text Available Abstract Background During ripening, climacteric fruits increase their ethylene level and subsequently undergo various physiological changes, such as softening, pigmentation and development of aroma and flavor. These changes occur simultaneously and are caused by the highly synchronized expression of numerous genes at the onset of ripening. In tomatoes, the MADS-box transcription factor RIN has been regarded as a key regulator responsible for the onset of ripening by acting upstream of both ethylene- and non-ethylene-mediated controls. However, except for LeACS2, direct targets of RIN have not been clarified, and little is known about the transcriptional cascade for ripening. Results Using immunoprecipitated (IPed DNA fragments recovered by chromatin immunoprecipitation (ChIP with anti-RIN antibody from ripening tomato fruit, we analyzed potential binding sites for RIN (CArG-box sites in the promoters of representative ripening-induced genes by quantitative PCR. Results revealed nearly a 5- to 20-fold enrichment of CArG boxes in the promoters of LeACS2, LeACS4, PG, TBG4, LeEXP1, and LeMAN4 and of RIN itself, indicating direct interaction of RIN with their promoters in vivo. Moreover, sequence analysis and genome mapping of 51 cloned IPed DNAs revealed potential RIN binding sites. Quantitative PCR revealed that four of the potential binding sites were enriched 4- to 17-fold in the IPed DNA pools compared with the controls, indicating direct interaction of RIN with these sites in vivo. Near one of the four CArG boxes we found a gene encoding a protein similar to thioredoxin y1. An increase in the transcript level of this gene was observed with ripening in normal fruit but not in the rin mutant, suggesting that RIN possibly induces its expression. Conclusions The presented results suggest that RIN controls fruit softening and ethylene production by the direct transcriptional regulation of cell-wall-modifying genes and ethylene biosynthesis genes

  9. Identification of potential target genes for the tomato fruit-ripening regulator RIN by chromatin immunoprecipitation.

    Science.gov (United States)

    Fujisawa, Masaki; Nakano, Toshitsugu; Ito, Yasuhiro

    2011-01-30

    During ripening, climacteric fruits increase their ethylene level and subsequently undergo various physiological changes, such as softening, pigmentation and development of aroma and flavor. These changes occur simultaneously and are caused by the highly synchronized expression of numerous genes at the onset of ripening. In tomatoes, the MADS-box transcription factor RIN has been regarded as a key regulator responsible for the onset of ripening by acting upstream of both ethylene- and non-ethylene-mediated controls. However, except for LeACS2, direct targets of RIN have not been clarified, and little is known about the transcriptional cascade for ripening. Using immunoprecipitated (IPed) DNA fragments recovered by chromatin immunoprecipitation (ChIP) with anti-RIN antibody from ripening tomato fruit, we analyzed potential binding sites for RIN (CArG-box sites) in the promoters of representative ripening-induced genes by quantitative PCR. Results revealed nearly a 5- to 20-fold enrichment of CArG boxes in the promoters of LeACS2, LeACS4, PG, TBG4, LeEXP1, and LeMAN4 and of RIN itself, indicating direct interaction of RIN with their promoters in vivo. Moreover, sequence analysis and genome mapping of 51 cloned IPed DNAs revealed potential RIN binding sites. Quantitative PCR revealed that four of the potential binding sites were enriched 4- to 17-fold in the IPed DNA pools compared with the controls, indicating direct interaction of RIN with these sites in vivo. Near one of the four CArG boxes we found a gene encoding a protein similar to thioredoxin y1. An increase in the transcript level of this gene was observed with ripening in normal fruit but not in the rin mutant, suggesting that RIN possibly induces its expression. The presented results suggest that RIN controls fruit softening and ethylene production by the direct transcriptional regulation of cell-wall-modifying genes and ethylene biosynthesis genes during ripening. Moreover, the binding of RIN to its own

  10. Oxotechnetium and Oxorhenium 3+1 mixed ligand complexes as potential melanoma targeting gents

    International Nuclear Information System (INIS)

    Rey, A.; Giglio, J.; Leon, E.; Paolino, A.; Fernandez, R.; Manta, E.; Leon, A.; Pirmettis, I.; Papadopoulos, M.; Schreiber, F.; Chabalgoity, J.

    2005-01-01

    Tc-99m '3+1' mixed ligand complexes with potential affinity for melanoma have been designed by an integrated approach using N-alkyl substituted benzamides as leader structure. This paper presents the preparation of a series of complexes with general formula Tc-99m O[(CH 3 CH 2 ) 2 N(CH 2 ) 2 N (CH 2 CH 2 ) 2 S) 2 ][RS] and their 'in vivo' evaluation as potential melanoma targeting agents. Tc-99m complexes Tc1, Tc2, Tc3 and Tc4 were prepared by combining the tridentate ligand N,N-bis(2-mercaptoethyl)-N',N'-diethylethylenediamine with 4 different modentate thiols. Labelling was performed by substitution using Tc-99m-glucoheptonate as precursor. All complexes were obtained with high yield ( 85%) and high radiochemical purity (90%). Identity of Tc compounds was corroborated by HPLC coinjection with the analogous rhenium complexes. Biodistribution studies were performed on the murine C57B16 mouse melanoma model obtained by subcutaneous inoculation of melanoma cells B16F1. After intravenous injection, all complexes showed high initial blood, lung and liver uptake but clearance after 12-24 hours was almost complete. Initial tumour uptake was relatively high (0.83.4% dose/g at 2 hrs. post-injection) and retention until 24 hours significant (0.450.88% dose/g). Tumour/blood and tumour/muscle ratios were favourable from 6 to 24 hours after injection due to fast blood and soft tissue clearance. Complex Tc2 showed the best tumour/blood and tumour/muscle ratios at 12 and 24 hours post-injection (1.9-2.4 and 7.5-12.0, respectively). Early and late static gamma-camera images acquired for this compound allowed delineation of the tumour with tumour/soft tissue ratios 7.4 at 12 hours. post/inj.) Complex Tc2 was also administered subcutaneously in the peritumoral region of melanoma bearing mice, in order to avoid high liver and hepatobiliary doses. In this condition, a very high percentage of the injected dose remained in the tumour, even after 24 hours (21.5%/g) with considerably

  11. HN125: A Novel Immunoadhesin Targeting MUC16 with Potential for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Xinran Xiang, Mingqian Feng, Mildred Felder, Joseph P. Connor, Yan-gao Man, Manish S. Patankar, Mitchell Ho

    2011-01-01

    Full Text Available Background: The mucin MUC16 expresses the repeating peptide epitope CA125 that has been known for decades to be a well-validated cancer marker that is overexpressed on the cell surface of ovarian cancers and other malignant tumors. In spite of recent efforts to make mouse monoclonal antibodies to MUC16 to treat ovarian cancer, a human monoclonal antibody against this mucin has not been described. MUC16 interacts with mesothelin, a protein that mediates heterotypic cancer cell adhesion, indicating that MUC16 and mesothelin play an important role in the peritoneal implantation and metastasis of ovarian tumors. Therefore, a suitable candidate for therapeutic targeting of MUC16 would functionally block the interaction of MUC16 and mesothelin.Methodology/Principal Findings: Here we report the generation of a novel immunoadhesin, HN125, against MUC16 that consists of a functional MUC16 binding domain of mesothelin (IAB and the Fc portion of a human antibody IgG1. The yield for purified HN125 proteins is over 100 µg/mL of HEK-293 culture supernatant. We show that HN125 has high and specific affinity for MUC16-expressing cancer cells by flow cytometry and immunohistochemistry. HN125 has the ability to disrupt the heterotypic cancer cell adhesion mediated by the MUC16-mesothelin interaction. Moreover, it elicits strong antibody-dependent cell mediated cytotoxicity against MUC16-positive cancer cells in vitro.Conclusion/Significance: This report describes a novel human immunotherapeutic agent highly specific for MUC16 with potential for treating ovarian cancer and other MUC16-expressing tumors. Because of its lower immunogenicity in patients, a fully human protein is the most desirable format for clinical applications. We believe that the methods developed here may apply to the generation of other tumor-targeting immunoadhesins when it is difficult to obtain a human monoclonal antibody to a given antigen for clinical applications. The resultant

  12. Novel VEGF decoy receptor fusion protein conbercept targeting multiple VEGF isoforms provide remarkable anti-angiogenesis effect in vivo.

    Directory of Open Access Journals (Sweden)

    Qin Wang

    Full Text Available VEGF family factors are known to be the principal stimulators of abnormal angiogenesis, which play a fundamental role in tumor and various ocular diseases. Inhibition of VEGF is widely applied in antiangiogenic therapy. Conbercept is a novel decoy receptor protein constructed by fusing VEGF receptor 1 and VEGF receptor 2 extracellular domains with the Fc region of human immunoglobulin. In this study, we systematically evaluated the binding affinity of conbercept with VEGF isoforms and PlGF by using anti-VEGF antibody (Avastin as reference. BIACORE and ELISA assay results indicated that conbercept could bind different VEGF-A isoforms with higher affinity than reference. Furthermore, conbercept could also bind VEGF-B and PlGF, whereas Avastin showed no binding. Oxygen-induced retinopathy model showed that conbercept could inhibit the formation of neovasularizations. In tumor-bearing nude mice, conbercept could also suppress tumor growth very effectively in vivo. Overall, our study have demonstrated that conbercept could bind with high affinity to multiple VEGF isoforms and consequently provide remarkable anti-angiogenic effect, suggesting the possibility to treat angiogenesis-related diseases such as cancer and wet AMD etc.

  13. Reduced Treatment-Emergent Sexual Dysfunction as a Potential Target in the Development of New Antidepressants

    Directory of Open Access Journals (Sweden)

    David S. Baldwin

    2013-01-01

    Full Text Available Pleasurable sexual activity is an essential component of many human relationships, providing a sense of physical, psychological, and social well-being. Epidemiological and clinical studies show that depressive symptoms and depressive illness are associated with impairments in sexual function and satisfaction, both in untreated and treated patients. The findings of randomized placebo-controlled trials demonstrate that most of the currently available antidepressant drugs are associated with the development or worsening of sexual dysfunction, in a substantial proportion of patients. Sexual difficulties during antidepressant treatment often resolve as depression lifts but can endure over long periods and may reduce self-esteem and affect mood and relationships adversely. Sexual dysfunction during antidepressant treatment is typically associated with many possible causes, but the risk and type of dysfunction vary with differing compounds and should be considered when making decisions about the relative merits and drawbacks of differing antidepressants. A range of interventions can be considered when managing patients with sexual dysfunction associated with antidepressants, including the prescription of phosphodiesterase-5 inhibitors, but none of these approaches can be considered “ideal.” As treatment-emergent sexual dysfunction is less frequent with certain drugs, presumably related to differences in their pharmacological properties, and because current management approaches are less than ideal, a reduced burden of treatment-emergent sexual dysfunction represents a tolerability target in the development of novel antidepressants.

  14. Guanylyl cyclase C in colorectal cancer: susceptibility gene and potential therapeutic target.

    Science.gov (United States)

    Lin, Jieru E; Li, Peng; Pitari, Giovanni M; Schulz, Stephanie; Waldman, Scott A

    2009-05-01

    Colorectal cancer is one of the leading causes of tumor-related morbidity and mortality worldwide. While mechanisms underlying this disease have been elucidated over the past two decades, these molecular insights have failed to translate into efficacious therapy. The oncogenomic view of cancer suggests that terminal transformation reflects the sequential corruption of signal transduction circuits regulating key homeostatic mechanisms, whose multiplicity underlies the therapeutic resistance of most tumors to interventions targeting individual pathways. Conversely, the paucity of mechanistic insights into proximal pathophysiological processes that initiate and amplify oncogenic circuits preceding accumulation of mutations and transformation impedes development of effective prevention and therapy. In that context, guanylyl cyclase C (GCC), the intestinal receptor for the paracrine hormones guanylin and uroguanylin, whose early loss characterizes colorectal transformation, has emerged as a component of lineage-specific homeostatic programs organizing spatiotemporal patterning along the crypt-surface axis. Dysregulation of GCC signaling, reflecting hormone loss, promotes tumorigenesis through reprogramming of replicative and bioenergetic circuits and genomic instability. Compensatory upregulation of GCC in response to hormone loss provides a unique translational opportunity for prevention and treatment of colorectal tumors by hormone-replacement therapy.

  15. Potential prostate cancer drug target: bioactivation of androstanediol by conversion to dihydrotestosterone.

    Science.gov (United States)

    Mohler, James L; Titus, Mark A; Wilson, Elizabeth M

    2011-09-15

    High-affinity binding of dihydrotestosterone (DHT) to the androgen receptor (AR) initiates androgen-dependent gene activation, required for normal male sex development in utero, and contributes to prostate cancer development and progression in men. Under normal physiologic conditions, DHT is synthesized predominantly by 5α-reduction of testosterone, the major circulating androgen produced by the testis. During androgen deprivation therapy, intratumoral androgen production is sufficient for AR activation and prostate cancer growth, even though circulating testicular androgen levels are low. Recent studies indicate that the metabolism of 5α-androstane-3α, 17β-diol by 17β-hydroxysteroid dehydrogenase 6 in benign prostate and prostate cancer cells is a major biosynthetic pathway for intratumoral synthesis of DHT, which binds AR and initiates transactivation to promote prostate cancer growth during androgen deprivation therapy. Drugs that target the so-called backdoor pathway of DHT synthesis provide an opportunity to enhance clinical response to luteinizing-hormone-releasing hormone (LHRH) agonists or antagonists, AR antagonists, and inhibitors of 5α-reductase enzymes (finasteride or dutasteride), and other steroid metabolism enzyme inhibitors (ketoconazole or the recently available abiraterone acetate). ©2011 AACR.

  16. Structural Insights into the Quadruplex-Duplex 3' Interface Formed from a Telomeric Repeat: A Potential Molecular Target.

    Science.gov (United States)

    Russo Krauss, Irene; Ramaswamy, Sneha; Neidle, Stephen; Haider, Shozeb; Parkinson, Gary N

    2016-02-03

    We report here on an X-ray crystallographic and molecular modeling investigation into the complex 3' interface formed between putative parallel stranded G-quadruplexes and a duplex DNA sequence constructed from the human telomeric repeat sequence TTAGGG. Our crystallographic approach provides a detailed snapshot of a telomeric 3' quadruplex-duplex junction: a junction that appears to have the potential to form a unique molecular target for small molecule binding and interference with telomere-related functions. This unique target is particularly relevant as current high-affinity compounds that bind putative G-quadruplex forming sequences only rarely have a high degree of selectivity for a particular quadruplex. Here DNA junctions were assembled using different putative quadruplex-forming scaffolds linked at the 3' end to a telomeric duplex sequence and annealed to a complementary strand. We successfully generated a series of G-quadruplex-duplex containing crystals, both alone and in the presence of ligands. The structures demonstrate the formation of a parallel folded G-quadruplex and a B-form duplex DNA stacked coaxially. Most strikingly, structural data reveals the consistent formation of a TAT triad platform between the two motifs. This triad allows for a continuous stack of bases to link the quadruplex motif with the duplex region. For these crystal structures formed in the absence of ligands, the TAT triad interface occludes ligand binding at the 3' quadruplex-duplex interface, in agreement with in silico docking predictions. However, with the rearrangement of a single nucleotide, a stable pocket can be produced, thus providing an opportunity for the binding of selective molecules at the interface.

  17. Small Molecules from Nature Targeting G-Protein Coupled Cannabinoid Receptors: Potential Leads for Drug Discovery and Development

    Directory of Open Access Journals (Sweden)

    Charu Sharma

    2015-01-01

    Full Text Available The cannabinoid molecules are derived from Cannabis sativa plant which acts on the cannabinoid receptors types 1 and 2 (CB1 and CB2 which have been explored as potential therapeutic targets for drug discovery and development. Currently, there are numerous cannabinoid based synthetic drugs used in clinical practice like the popular ones such as nabilone, dronabinol, and Δ9-tetrahydrocannabinol mediates its action through CB1/CB2 receptors. However, these synthetic based Cannabis derived compounds are known to exert adverse psychiatric effect and have also been exploited for drug abuse. This encourages us to find out an alternative and safe drug with the least psychiatric adverse effects. In recent years, many phytocannabinoids have been isolated from plants other than Cannabis. Several studies have shown that these phytocannabinoids show affinity, potency, selectivity, and efficacy towards cannabinoid receptors and inhibit endocannabinoid metabolizing enzymes, thus reducing hyperactivity of endocannabinoid systems. Also, these naturally derived molecules possess the least adverse effects opposed to the synthetically derived cannabinoids. Therefore, the plant based cannabinoid molecules proved to be promising and emerging therapeutic alternative. The present review provides an overview of therapeutic potential of ligands and plants modulating cannabinoid receptors that may be of interest to pharmaceutical industry in search of new and safer drug discovery and development for future therapeutics.

  18. Roles of protein kinase R in cancer: Potential as a therapeutic target.

    Science.gov (United States)

    Watanabe, Takao; Imamura, Takeshi; Hiasa, Yoichi

    2018-04-01

    Double-stranded (ds) RNA-dependent protein kinase (PKR) is a ubiquitously expressed serine/threonine protein kinase. It was initially identified as an innate immune antiviral protein induced by interferon (IFN) and activated by dsRNA. PKR is recognized as a key executor of antiviral host defense. Moreover, it contributes to inflammation and immune regulation through several signaling pathways. In addition to IFN and dsRNA, PKR is activated by multiple stimuli and regulates various signaling pathways including the mitogen-activated protein kinase (MAPK) and nuclear factor kappa-light-chain-enhancer of activated B cells pathways. PKR was initially thought to be a tumor suppressor as a result of its ability to suppress cell growth and interact with major tumor suppressor genes. However, in several types of malignant disease, such as colon and breast cancers, its role remains controversial. In hepatocellular carcinoma, hepatitis C virus (HCV) is the main cause of liver cancer, and PKR inhibits HCV replication, indicating its role as a tumor suppressor. However, PKR is overexpressed in cirrhotic patients, and acts as a tumor promoter through enhancement of cancer cell growth by mediating MAPK or signal transducer and activator of transcription pathways. Moreover, PKR is reportedly required for the activation of inflammasomes and influences metabolic disorders. In the present review, we introduce the multifaceted roles of PKR such as antiviral function, tumor cell growth, regulation of inflammatory immune responses, and maintaining metabolic homeostasis; and discuss future perspectives on PKR biology including its potential as a therapeutic target for liver cancer. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  19. Diversity of Physicians’ Handwriting and Name Stamp in Chemotherapy Prescriptions: Potential Target for Fraud

    Directory of Open Access Journals (Sweden)

    Asiyeh Amouei

    2018-02-01

    Full Text Available BBackgrounds: Verification and authentication of the paper-based handwritten prescriptions is of great importance for antineoplastic medications that are good targets for forgery and fraud. Pharmacists usually investigate handwriting, signature and name stamp of prescribers to verify prescriptions in Iran. Anecdotal reports of variations in handwriting and name stamp of physicians who wrote antineoplastic prescriptions raised concerns in this regard. The aim of the study was to investigate the reported diversity and evaluate the quality of writing physician identity and required items in antineoplastic prescriptions.Methods: All insured hand-written prescriptions contained at least one antineoplastic medication and were dispensed by four main authorized community pharmacies dispensing antineoplastic medications in Tehran during one month were included. Prescriptions that were written by specialties other than oncology-related fields were excluded. Prescriptions of each physician were evaluated considering handwriting and name stamp by experienced pharmacy staff and the frequency of detected handwriting and name stamp types was recorded.Results: Of the 11022 included prescriptions, 10944 were eligible and written by 241 physicians. Median (third quartile number of physicians’ prescriptions was 17 (51. Maximum number of observed handwriting and name stamp types were eight and six respectively. High prescribers tended to have several handwriting and name stamp types.Conclusion: The observed diversity and variation in handwriting and name stamp of the physicians in antineoplastic prescriptions may facilitate the entrance of forged prescription and makes fraud detection difficult. Administrative and regulatory interventions in addition to notification of health care professionals about the observed potential might be necessary.

  20. Focal Adhesion Kinase as a Potential Target in AML and MDS.

    Science.gov (United States)

    Carter, Bing Z; Mak, Po Yee; Wang, Xiangmeng; Yang, Hui; Garcia-Manero, Guillermo; Mak, Duncan H; Mu, Hong; Ruvolo, Vivian R; Qiu, Yihua; Coombes, Kevin; Zhang, Nianxiang; Ragon, Brittany; Weaver, David T; Pachter, Jonathan A; Kornblau, Steven; Andreeff, Michael

    2017-06-01

    Although overexpression/activation of focal adhesion kinase (FAK) is widely known in solid tumors to control cell growth, survival, invasion, metastasis, gene expression, and stem cell self-renewal, its expression and function in myeloid leukemia are not well investigated. Using reverse-phase protein arrays in large cohorts of newly diagnosed acute myeloid leukemia (AML) and myeloid dysplastic syndrome (MDS) samples, we found that high FAK expression was associated with unfavorable cytogenetics ( P = 2 × 10 -4 ) and relapse ( P = 0.02) in AML. FAK expression was significantly lower in patients with FLT3 -ITD ( P = 0.0024) or RAS ( P = 0.05) mutations and strongly correlated with p-SRC and integrinβ3 levels. FAK protein levels were significantly higher in CD34 + ( P = 5.42 × 10 -20 ) and CD34 + CD38 - MDS ( P = 7.62 × 10 -9 ) cells compared with normal CD34 + cells. MDS patients with higher FAK in CD34 + cells tended to have better overall survival ( P = 0.05). FAK expression was significantly higher in MDS patients who later transformed to compared with those who did not transform to AML and in AML patients who transformed from MDS compared with those with de novo AML. Coculture with mesenchymal stromal cells (MSC) increased FAK expression in AML cells. Inhibition of FAK decreased MSC-mediated adhesion/migration and viability of AML cells and prolonged survival in an AML xenograft murine model. Our results suggest that FAK regulates leukemia-stromal interactions and supports leukemia cell survival; hence, FAK is a potential therapeutic target in myeloid leukemia. Mol Cancer Ther; 16(6); 1133-44. ©2017 AACR . ©2017 American Association for Cancer Research.

  1. Aminopeptidase N/CD13 as a Potential Therapeutic Target in Malignant Pleural Mesothelioma.

    Science.gov (United States)

    Otsuki, Takahiko; Nakashima, Taku; Hamada, Hironobu; Takayama, Yusuke; Akita, Shin; Masuda, Takeshi; Horimasu, Yasushi; Miyamoto, Shintaro; Iwamoto, Hiroshi; Fujitaka, Kazunori; Miyata, Yoshihiro; Miyake, Masayuki; Kohno, Nobuoki; Okada, Morihito; Hattori, Noboru

    2018-03-08

    Angiogenesis is a crucial factor in the progression of malignant pleural mesothelioma (MPM), and antiangiogenic strategies might be effective against MPM. Aminopeptidase N/CD13 (APN/CD13) promotes tumour angiogenesis and is associated with poor prognosis; however, its clinical significance in MPM remains unclear.In 37 consecutive patients with surgically resected MPM, we evaluated the association between immunohistochemical APN/CD13 expression in resected tumours and survival. Additionally, the antitumour and antiangiogenic effects of MT95-4, a fully humanized anti-APN/CD13 monoclonal antibody, were evaluated in mice orthotopically implanted with EHMES-10 (abundantly expressing APN/CD13) and MSTO-211H (scarcely expressing APN/CD13) MPM cells.High tumour APN/CD13 expression was associated with poor prognosis in MPM patients ( P =0.04), and MT95-4 treatment reduced tumour growth and angiogenesis in mice harbouring EHMES-10, but not MSTO-211H, cells. Furthermore, in mice harbouring EHMES-10 cells, MT95-4 combined with cisplatin more effectively suppressed tumour progression than cisplatin alone.Taken together these results suggested that APN/CD13 is implicated in the aggressiveness of MPM. Here, MT95-4 treatment reduced tumour progression likely by inhibiting angiogenesis, suggesting APN/CD13 as a potential molecular target for MPM treatment. Additionally, combination treatment with MT95-4 and cisplatin could represent a promising approach to treating MPM exhibiting high APN/CD13 expression. Copyright ©ERS 2018.

  2. Perceptions of nonsurgical permanent contraception among potential users, providers, and influencers in Wardha district and New Delhi, India: Exploratory research.

    Science.gov (United States)

    Aengst, Jennifer C; Harrington, Elizabeth K; Bahulekar, Pramod; Shivkumar, Poonam; Jensen, Jeffrey T; Garg, B S

    2017-01-01

    New permanent contraceptive methods are in development, including nonsurgical permanent contraception (NSPC). In the present study, perceptions of NSPC in India among married women, married men, mothers-in-law, providers, and health advocates in Eastern Maharashtra (Wardha district) and New Delhi were examined. We conducted semi-structured interviews with 40 married women and 20 mothers-in-law; surveys with 150 married men; and focus group discussions with obstetrics/gynecology providers and advocates. Transcripts were coded and analyzed using a grounded theory approach, where emerging themes are analyzed during the data collection period. The majority of female respondents expressed support of permanent contraception and interest in NSPC, stating the importance of avoiding surgery and minimizing recovery time. They expressed concerns about safety and efficacy; many felt that a confirmation test would be necessary regardless of the failure rate. Most male respondents were supportive of female permanent contraception (PC) and preferred NSPC to a surgical method, as long as it was safe and effective. Providers were interested in NSPC yet had specific concerns about safety, efficacy, cost, uptake, and government pressure. They also had concerns that a nonsurgical approach could undermine the inherent seriousness of choosing PC. Advocates were interested in NSPC but had concerns about safety and potential misuse in the Indian context. Although perceptions of NSPC were varied, all study populations indicated interest in NSPC. Concerns about safety, efficacy, appropriate patient counseling, and ethics emerged from the present study and should be considered as NSPC methods continue to be developed.

  3. mTOR in squamous cell carcinoma of the oesophagus: a potential target for molecular therapy?

    NARCIS (Netherlands)

    Boone, J.; ten Kate, F. J. W.; Offerhaus, G. J. A.; van Diest, P. J.; Borel Rinkes, I. H. M.; van Hillegersberg, R.

    2008-01-01

    AIMS: The mammalian target of rapamycin (mTOR), an important regulator of protein translation and cell proliferation, is activated in various malignancies. In a randomised controlled trial of advanced renal cell carcinoma patients, targeted therapy to mTOR by means of rapamycin analogues has been

  4. Therapeutic potential of CAR-T cell-derived exosomes: a cell-free modality for targeted cancer therapy.

    Science.gov (United States)

    Tang, Xiang-Jun; Sun, Xu-Yong; Huang, Kuan-Ming; Zhang, Li; Yang, Zhuo-Shun; Zou, Dan-Dan; Wang, Bin; Warnock, Garth L; Dai, Long-Jun; Luo, Jie

    2015-12-29

    Chimeric antigen receptor (CAR)-based T-cell adoptive immunotherapy is a distinctively promising therapy for cancer. The engineering of CARs into T cells provides T cells with tumor-targeting capabilities and intensifies their cytotoxic activity through stimulated cell expansion and enhanced cytokine production. As a novel and potent therapeutic modality, there exists some uncontrollable processes which are the potential sources of adverse events. As an extension of this impactful modality, CAR-T cell-derived exosomes may substitute CAR-T cells to act as ultimate attackers, thereby overcoming some limitations. Exosomes retain most characteristics of parent cells and play an essential role in intercellular communications via transmitting their cargo to recipient cells. The application of CAR-T cell-derived exosomes will make this cell-based therapy more clinically controllable as it also provides a cell-free platform to diversify anticancer mediators, which responds effectively to the complexity and volatility of cancer. It is believed that the appropriate application of both cellular and exosomal platforms will make this effective treatment more practicable.

  5. Satellite provided customer premise services: A forecast of potential domestic demand through the year 2000. Volume 2: Technical report

    Science.gov (United States)

    Kratochvil, D.; Bowyer, J.; Bhushan, C.; Steinnagel, K.; Al-Kinani, G.

    1983-08-01

    The potential United States domestic telecommunications demand for satellite provided customer premises voice, data and video services through the year 2000 were forecast, so that this information on service demand would be available to aid in NASA program planning. To accomplish this overall purpose the following objectives were achieved: development of a forecast of the total domestic telecommunications demand, identification of that portion of the telecommunications demand suitable for transmission by satellite systems, identification of that portion of the satellite market addressable by Computer premises services systems, identification of that portion of the satellite market addressabble by Ka-band CPS system, and postulation of a Ka-band CPS network on a nationwide and local level. The approach employed included the use of a variety of forecasting models, a market distribution model and a network optimization model. Forecasts were developed for; 1980, 1990, and 2000; voice, data and video services; terrestrial and satellite delivery modes; and C, Ku and Ka-bands.

  6. Screening of potential diagnostic markers and therapeutic targets against colorectal cancer

    Directory of Open Access Journals (Sweden)

    Tian XQ

    2015-07-01

    Full Text Available XiaoQing Tian, DanFeng Sun, ShuLiang Zhao, Hua Xiong, JingYuan Fang Department of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, People’s Republic of China Objective: To identify genes with aberrant promoter methylation for developing novel diagnostic markers and therapeutic targets against primary colorectal cancer (CRC. Methods: Two paired CRC and adjacent normal tissues were collected from two CRC patients. A Resi: MBD2b protein-sepharose-4B column was used to enrich the methylated DNA fragments. Difference in the average methylation level of each DNA methylation region between the tumor and control samples was determined by log2 fold change (FC in each patient to screen the differentially methylated DNA regions. Genes with log2FC value ≥4 or ≤-4 were identified to be hypermethylated and hypomethylated, respectively. Then, the underlying functions of methylated genes were speculated by Gene Ontology database and pathway enrichment analyses. Furthermore, a protein–protein interaction network was built using Search Tool for the Retrieval of Interacting Genes/Proteins database, and the transcription factor binding sites were screened via the Encyclopedia of DNA Elements (ENCODE database. Results: Totally, 2,284 and 1,142 genes were predicted to have aberrant promoter hypermethylation or hypomethylation, respectively. MAP3K5, MAP3K8, MAPK14, and MAPK9 with promoter hypermethylation functioned via MAPK signaling pathway, focal adhesion, or Wnt signaling pathway, whereas MAP2K1, MAPK3, MAPK11, and MAPK7 with promoter hypomethylation functioned via TGF-beta signaling pathway, neurotrophin signaling pathway, and chemokine signaling pathway. CREBBP, PIK3R1, MAPK14, APP, ESR1, MAPK3, and HRAS were the seven hubs in the constructed protein–protein interaction network. RPL22, RPL36, RPLP2, RPS7, and RPS9 were commonly regulated by

  7. Exploring the Trypanosoma brucei Hsp83 potential as a target for structure guided drug design.

    Directory of Open Access Journals (Sweden)

    Juan Carlos Pizarro

    Full Text Available Human African trypanosomiasis is a neglected parasitic disease that is fatal if untreated. The current drugs available to eliminate the causative agent Trypanosoma brucei have multiple liabilities, including toxicity, increasing problems due to treatment failure and limited efficacy. There are two approaches to discover novel antimicrobial drugs--whole-cell screening and target-based discovery. In the latter case, there is a need to identify and validate novel drug targets in Trypanosoma parasites. The heat shock proteins (Hsp, while best known as cancer targets with a number of drug candidates in clinical development, are a family of emerging targets for infectious diseases. In this paper, we report the exploration of T. brucei Hsp83--a homolog of human Hsp90--as a drug target using multiple biophysical and biochemical techniques. Our approach included the characterization of the chemical sensitivity of the parasitic chaperone against a library of known Hsp90 inhibitors by means of differential scanning fluorimetry (DSF. Several compounds identified by this screening procedure were further studied using isothermal titration calorimetry (ITC and X-ray crystallography, as well as tested in parasite growth inhibitions assays. These experiments led us to the identification of a benzamide derivative compound capable of interacting with TbHsp83 more strongly than with its human homologs and structural rationalization of this selectivity. The results highlight the opportunities created by subtle structural differences to develop new series of compounds to selectively target the Trypanosoma brucei chaperone and effectively kill the sleeping sickness parasite.

  8. Potential for reducing air-pollutants while achieving 2 °C global temperature change limit target.

    Science.gov (United States)

    Hanaoka, Tatsuya; Akashi, Osamu; Fujiwara, Kazuya; Motoki, Yuko; Hibino, Go

    2014-12-01

    This study analyzes the potential to reduce air pollutants while achieving the 2 °C global temperature change limit target above pre-industrial levels, by using the bottom-up optimization model, AIM/Enduse[Global]. This study focuses on; 1) estimating mitigation potentials and costs for achieving 2 °C, 2.5 °C, and 3 °C target scenarios, 2) assessing co-benefits of reducing air pollutants such as NOx, SO2, BC, PM, and 3) analyzing features of sectoral attributions in Annex I and Non-Annex I groups of countries. The carbon tax scenario at 50 US$/tCO2-eq in 2050 can reduce GHG emissions more than the 3 °C target scenario, but a higher carbon price around 400 US$/tCO2-eq in 2050 is required to achieve the 2 °C target scenario. However, there is also a co-benefit of large reduction potential of air pollutants, in the range of 60-80% reductions in 2050 from the reference scenario while achieving the 2 °C target. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Identification and Initial Characterization of the Effectors of an Anther Smut Fungus and Potential Host Target Proteins

    Directory of Open Access Journals (Sweden)

    Venkata S. Kuppireddy

    2017-11-01

    Full Text Available (1 Background: Plant pathogenic fungi often display high levels of host specificity and biotrophic fungi; in particular, they must manipulate their hosts to avoid detection and to complete their obligate pathogenic lifecycles. One important strategy of such fungi is the secretion of small proteins that serve as effectors in this process. Microbotryum violaceum is a species complex whose members infect members of the Caryophyllaceae; M. lychnidis-dioicae, a parasite on Silene latifolia, is one of the best studied interactions. We are interested in identifying and characterizing effectors of the fungus and possible corresponding host targets; (2 Methods: In silico analysis of the M. lychnidis-dioicae genome and transcriptomes allowed us to predict a pool of small secreted proteins (SSPs with the hallmarks of effectors, including a lack of conserved protein family (PFAM domains and also localized regions of disorder. Putative SSPs were tested for secretion using a yeast secretion trap method. We then used yeast two-hybrid analyses for candidate-secreted effectors to probe a cDNA library from a range of growth conditions of the fungus, including infected plants; (3 Results: Roughly 50 SSPs were identified by in silico analysis. Of these, 4 were studied further and shown to be secreted, as well as examined for potential host interactors. One of the putative effectors, MVLG_01732, was found to interact with Arabidopsis thaliana calcium-dependent lipid binding protein (AtCLB and with cellulose synthase interactive protein 1 orthologues; and (4 Conclusions: The identification of a pool of putative effectors provides a resource for functional characterization of fungal proteins that mediate the delicate interaction between pathogen and host. The candidate targets of effectors, e.g., AtCLB, involved in pollen germination suggest tantalizing insights that could drive future studies.

  10. Fragment-Based Screening of a Natural Product Library against 62 Potential Malaria Drug Targets Employing Native Mass Spectrometry

    Science.gov (United States)

    2018-01-01

    Natural products are well known for their biological relevance, high degree of three-dimensionality, and access to areas of largely unexplored chemical space. To shape our understanding of the interaction between natural products and protein targets in the postgenomic era, we have used native mass spectrometry to investigate 62 potential protein targets for malaria using a natural-product-based fragment library. We reveal here 96 low-molecular-weight natural products identified as binding partners of 32 of the putative malarial targets. Seventy-nine (79) fragments have direct growth inhibition on Plasmodium falciparum at concentrations that are promising for the development of fragment hits against these protein targets. This adds a fragment library to the published HTS active libraries in the public domain. PMID:29436819

  11. Using virtual reality to provide health care information to people with intellectual disabilities: acceptability, usability, and potential utility.

    Science.gov (United States)

    Hall, Valerie; Conboy-Hill, Suzanne; Taylor, Dave

    2011-11-14

    People with intellectual disabilities have poor access to health care, which may be further compromised by a lack of accessible health information. To be effective, health information must be easily understood and remembered. People with intellectual disabilities learn better from multimodal information sources, and virtual reality offers a 3-dimensional (3D) computer-generated environment that can be used for providing information and learning. To date, research into virtual reality experiences for people with intellectual disabilities has been limited to skill-based training and leisure opportunities within the young to mid age ranges. This study assessed the acceptability, usability, and potential utility of a virtual reality experience as a means of providing health care-related information to people with intellectual disabilities. We designed a prototype multimodal experience based on a hospital scenario and situated on an island in the Second Life 3D virtual world. We wanted to know how people of different ages and with varying levels of cognitive function would participate in the customized virtual environment, what they understood from being there, and what they remembered a week later. The study drew on qualitative data. We used a participatory research approach that involved working alongside people with intellectual disabilities and their supporters in a community setting. Cognitive function was assessed, using the Matrix Analogies Test and the British Picture Vocabulary Scale, to describe the sample. Participants, supported by facilitators, were video recorded accessing and engaging with the virtual environment. We assessed recall 1 week later, using a specialized interview technique. Data were downloaded into NVivo 8 and analyzed using the framework analysis technique. Study participants were 20 people aged between 20 and 80 years with mild to severe intellectual disabilities. All participants were able to access the environment and voluntarily stayed

  12. Using Virtual Reality to Provide Health Care Information to People With Intellectual Disabilities: Acceptability, Usability, and Potential Utility

    Science.gov (United States)

    Conboy-Hill, Suzanne; Taylor, Dave

    2011-01-01

    Background People with intellectual disabilities have poor access to health care, which may be further compromised by a lack of accessible health information. To be effective, health information must be easily understood and remembered. People with intellectual disabilities learn better from multimodal information sources, and virtual reality offers a 3-dimensional (3D) computer-generated environment that can be used for providing information and learning. To date, research into virtual reality experiences for people with intellectual disabilities has been limited to skill-based training and leisure opportunities within the young to mid age ranges. Objective This study assessed the acceptability, usability, and potential utility of a virtual reality experience as a means of providing health care-related information to people with intellectual disabilities. We designed a prototype multimodal experience based on a hospital scenario and situated on an island in the Second Life 3D virtual world. We wanted to know how people of different ages and with varying levels of cognitive function would participate in the customized virtual environment, what they understood from being there, and what they remembered a week later. Methods The study drew on qualitative data. We used a participatory research approach that involved working alongside people with intellectual disabilities and their supporters in a community setting. Cognitive function was assessed, using the Matrix Analogies Test and the British Picture Vocabulary Scale, to describe the sample. Participants, supported by facilitators, were video recorded accessing and engaging with the virtual environment. We assessed recall 1 week later, using a specialized interview technique. Data were downloaded into NVivo 8 and analyzed using the framework analysis technique. Results Study participants were 20 people aged between 20 and 80 years with mild to severe intellectual disabilities. All participants were able to access

  13. Comparison of epidermal keratinocytes and dermal fibroblasts as potential target cells for somatic gene therapy of phenylketonuria

    DEFF Research Database (Denmark)

    Christensen, Rikke; Güttler, Flemming; Jensen, Thomas G

    2002-01-01

    Phenylketonuria (PKU) is caused by deficiency of phenylalanine hydroxylase (PAH) and increased levels of phenylalanine. PAH requires the cofactor BH(4) to function and the rate-limiting step in the synthesis of BH(4) is GTP cyclohydrolase I (GTP-CH). The skin is a potential target tissue for PKU...

  14. Novel modeling of combinatorial miRNA targeting identifies SNP with potential role in bone density.

    Directory of Open Access Journals (Sweden)

    Claudia Coronnello

    Full Text Available MicroRNAs (miRNAs are post-transcriptional regulators that bind to their target mRNAs through base complementarity. Predicting miRNA targets is a challenging task and various studies showed that existing algorithms suffer from high number of false predictions and low to moderate overlap in their predictions. Until recently, very few algorithms considered the dynamic nature of the interactions, including the effect of less specific interactions, the miRNA expression level, and the effect of combinatorial miRNA binding. Addressing these issues can result in a more accurate miRNA:mRNA modeling with many applications, including efficient miRNA-related SNP evaluation. We present a novel thermodynamic model based on the Fermi-Dirac equation that incorporates miRNA expression in the prediction of target occupancy and we show that it improves the performance of two popular single miRNA target finders. Modeling combinatorial miRNA targeting is a natural extension of this model. Two other algorithms show improved prediction efficiency when combinatorial binding models were considered. ComiR (Combinatorial miRNA targeting, a novel algorithm we developed, incorporates the improved predictions of the four target finders into a single probabilistic score using ensemble learning. Combining target scores of multiple miRNAs using ComiR improves predictions over the naïve method for target combination. ComiR scoring scheme can be used for identification of SNPs affecting miRNA binding. As proof of principle, ComiR identified rs17737058 as disruptive to the miR-488-5p:NCOA1 interaction, which we confirmed in vitro. We also found rs17737058 to be significantly associated with decreased bone mineral density (BMD in two independent cohorts indicating that the miR-488-5p/NCOA1 regulatory axis is likely critical in maintaining BMD in women. With increasing availability of comprehensive high-throughput datasets from patients ComiR is expected to become an essential

  15. Opposite Interplay Between the Canonical WNT/β-Catenin Pathway and PPAR Gamma: A Potential Therapeutic Target in Gliomas.

    Science.gov (United States)

    Vallée, Alexandre; Lecarpentier, Yves; Guillevin, Rémy; Vallée, Jean-Noël

    2018-06-01

    In gliomas, the canonical Wingless/Int (WNT)/β-catenin pathway is increased while peroxisome proliferator-activated receptor gamma (PPAR-γ) is downregulated. The two systems act in an opposite manner. This review focuses on the interplay between WNT/β-catenin signaling and PPAR-γ and their metabolic implications as potential therapeutic target in gliomas. Activation of the WNT/β-catenin pathway stimulates the transcription of genes involved in proliferation, invasion, nucleotide synthesis, tumor growth, and angiogenesis. Activation of PPAR-γ agonists inhibits various signaling pathways such as the JAK/STAT, WNT/β-catenin, and PI3K/Akt pathways, which reduces tumor growth, cell proliferation, cell invasiveness, and angiogenesis. Nonsteroidal anti-inflammatory drugs, curcumin, antipsychotic drugs, adiponectin, and sulforaphane downregulate the WNT/β-catenin pathway through the upregulation of PPAR-γ and thus appear to provide an interesting therapeutic approach for gliomas. Temozolomide (TMZ) is an antiangiogenic agent. The downstream action of this opposite interplay may explain the TMZ-resistance often reported in gliomas.

  16. Satellite provided customer promises services, a forecast of potential domestic demand through the year 2000. Volume 4: Sensitivity analysis

    Science.gov (United States)

    Kratochvil, D.; Bowyer, J.; Bhushan, C.; Steinnagel, K.; Kaushal, D.; Al-Kinani, G.

    1984-03-01

    The overall purpose was to forecast the potential United States domestic telecommunications demand for satellite provided customer promises voice, data and video services through the year 2000, so that this information on service demand would be available to aid in NASA program planning. To accomplish this overall purpose the following objectives were achieved: (1) development of a forecast of the total domestic telecommunications demand; (2) identification of that portion of the telecommunications demand suitable for transmission by satellite systems; (3) identification of that portion of the satellite market addressable by consumer promises service (CPS) systems; (4) identification of that portion of the satellite market addressable by Ka-band CPS system; and (5) postulation of a Ka-band CPS network on a nationwide and local level. The approach employed included the use of a variety of forecasting models, a parametric cost model, a market distribution model and a network optimization model. Forecasts were developed for: 1980, 1990, and 2000; voice, data and video services; terrestrial and satellite delivery modes; and C, Ku and Ka-bands.

  17. Global Peak in Atmospheric Radiocarbon Provides a Potential Definition for the Onset of the Anthropocene Epoch in 1965.

    Science.gov (United States)

    Turney, Chris S M; Palmer, Jonathan; Maslin, Mark A; Hogg, Alan; Fogwill, Christopher J; Southon, John; Fenwick, Pavla; Helle, Gerhard; Wilmshurst, Janet M; McGlone, Matt; Bronk Ramsey, Christopher; Thomas, Zoë; Lipson, Mathew; Beaven, Brent; Jones, Richard T; Andrews, Oliver; Hua, Quan

    2018-02-19

    Anthropogenic activity is now recognised as having profoundly and permanently altered the Earth system, suggesting we have entered a human-dominated geological epoch, the 'Anthropocene'. To formally define the onset of the Anthropocene, a synchronous global signature within geological-forming materials is required. Here we report a series of precisely-dated tree-ring records from Campbell Island (Southern Ocean) that capture peak atmospheric radiocarbon ( 14 C) resulting from Northern Hemisphere-dominated thermonuclear bomb tests during the 1950s and 1960s. The only alien tree on the island, a Sitka spruce (Picea sitchensis), allows us to seasonally-resolve Southern Hemisphere atmospheric 14 C, demonstrating the 'bomb peak' in this remote and pristine location occurred in the last-quarter of 1965 (October-December), coincident with the broader changes associated with the post-World War II 'Great Acceleration' in industrial capacity and consumption. Our findings provide a precisely-resolved potential Global Stratotype Section and Point (GSSP) or 'golden spike', marking the onset of the Anthropocene Epoch.

  18. Conserved B-cell epitopes among human bocavirus species indicate potential diagnostic targets.

    Directory of Open Access Journals (Sweden)

    Zhuo Zhou

    Full Text Available BACKGROUND: Human bocavirus species 1-4 (HBoV1-4 have been associated with respiratory and enteric infections in children. However, the immunological mechanisms in response to HBoV infections are not fully understood. Though previous studies have shown cross-reactivities between HBoV species, the epitopes responsible for this phenomenon remain unknown. In this study, we used genomic and immunologic approaches to identify the reactive epitopes conserved across multiple HBoV species and explored their potential as the basis of a novel diagnostic test for HBoVs. METHODOLOGY/PRINCIPAL FINDINGS: We generated HBoV1-3 VP2 gene fragment phage display libraries (GFPDLs and used these libraries to analyze mouse antisera against VP2 protein of HBoV1, 2, and 3, and human sera positive for HBoVs. Using this approach, we mapped four epitope clusters of HBoVs and identified two immunodominant peptides--P1 (¹MSDTDIQDQQPDTVDAPQNT²⁰, and P2 (¹⁶²EHAYPNASHPWDEDVMPDL¹⁸⁰--that are conserved among HBoV1-4. To confirm epitope immunogenicity, we immunized mice with the immunodominant P1 and P2 peptides identified in our screen and found that they elicited high titer antibodies in mice. These two antibodies could only recognize the VP2 of HBoV 1-4 in Western blot assays, rather than those of the two other parvoviruses human parvovirus B19 and human parvovirus 4 (PARV4. Based on our findings, we evaluated epitope-based peptide-IgM ELISAs as potential diagnostic tools for HBoVs IgM antibodies. We found that the P1+P2-IgM ELISA showed a higher sensitivity and specificity in HBoVs IgM detection than the assays using a single peptide. CONCLUSIONS/SIGNIFICANCE: The identification of the conserved B-cell epitopes among human bocavirus species contributes to our understanding of immunological cross-reactivities of HBoVs, and provides important insights for the development of HBoV diagnostic tools.

  19. Physical Properties of Asteroid (10302) 1989 ML, a Potential Spacecraft Target, from Spitzer Observations

    NARCIS (Netherlands)

    Mueller, Michael; Harris, A. W.

    2006-01-01

    We report on results from recent Spitzer observations of near-Earth asteroid (10302) 1989 ML, which is among the lowest-ranking objects in terms of the specific momentum Δv required to reach it from Earth. It was originally considered as a target for Hayabusa and is now under consideration as a

  20. The Spatial Distribution of Poverty in Vietnam and the Potential for Targeting

    OpenAIRE

    Minot, Nicholas; Baulch, Bob

    2002-01-01

    The authors combine household survey and census data to construct a provincial poverty map of Vietnam and evaluate the accuracy of geographically targeted antipoverty programs. First, they estimate per capita expenditure as a function of selected household and geographic characteristics using the 1998 Vietnam Living Standards Survey. Next, they combine the results with data on the same hou...

  1. Children of mothers being released from incarceration : Characteristics and potential targets for intervention

    NARCIS (Netherlands)

    Menting, Ankie T A; Orobio de Castro, Bram; Matthys, Walter

    2016-01-01

    Incarcerated mothers and their children may face a multitude of problems. To identify possible targets for intervention, more clarity is needed about characteristics of these children and their mothers. This study examined children’s life events, behaviour problems and social cognitions and mothers’

  2. Proteins with complex architecture as potential targets for drug design: a case study of Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Bálint Mészáros

    2011-07-01

    Full Text Available Lengthy co-evolution of Homo sapiens and Mycobacterium tuberculosis, the main causative agent of tuberculosis, resulted in a dramatically successful pathogen species that presents considerable challenge for modern medicine. The continuous and ever increasing appearance of multi-drug resistant mycobacteria necessitates the identification of novel drug targets and drugs with new mechanisms of action. However, further insights are needed to establish automated protocols for target selection based on the available complete genome sequences. In the present study, we perform complete proteome level comparisons between M. tuberculosis, mycobacteria, other prokaryotes and available eukaryotes based on protein domains, local sequence similarities and protein disorder. We show that the enrichment of certain domains in the genome can indicate an important function specific to M. tuberculosis. We identified two families, termed pkn and PE/PPE that stand out in this respect. The common property of these two protein families is a complex domain organization that combines species-specific regions, commonly occurring domains and disordered segments. Besides highlighting promising novel drug target candidates in M. tuberculosis, the presented analysis can also be viewed as a general protocol to identify proteins involved in species-specific functions in a given organism. We conclude that target selection protocols should be extended to include proteins with complex domain architectures instead of focusing on sequentially unique and essential proteins only.

  3. Sindbis Virus-Pseudotyped Lentiviral Vectors Carrying VEGFR2-Specific Nanobody for Potential Transductional Targeting of Tumor Vasculature.

    Science.gov (United States)

    Ahani, Roshank; Roohvand, Farzin; Cohan, Reza Ahangari; Etemadzadeh, Mohammad Hossein; Mohajel, Nasir; Behdani, Mahdi; Shahosseini, Zahra; Madani, Navid; Azadmanesh, Kayhan

    2016-11-01

    Introduction of selectivity/specificity into viral-based gene delivery systems, such as lentiviral vectors (LVs), is crucial in their systemic administration for cancer gene therapy. The pivotal role of tumor-associated endothelial cells (TAECs) in tumor angiogenesis and overexpression of vascular endothelial growth factor receptor-2 (VEGFR2 or KDR) in TAECs makes them a potent target in cancer treatment. Herein, we report the development of VEGFR2-targeted LVs pseudotyped with chimeric sindbis virus E2 glycoprotein (cSVE2s). For this purpose, either sequence of a VEGFR2-specific nanobody or its natural ligand (VEGF 121 ) was inserted into the binding site of sindbis virus E2 glycoprotein. In silico modeling data suggested that the inserted targeting motifs were exposed in the context of cSVE2s. Western blot analysis of LVs indicated the incorporation of cSVE2s into viral particles. Capture ELISA demonstrated the specificity/functionality of the incorporated cSVE2s. Transduction of 293/KDR (expressing VEGFR2) or 293T cells (negative control) by constructed LVs followed by fluorescent microscopy and flow cytometric analyses indicated selective transduction of 293/KDR cells (30 %) by both targeting motifs compared to 293T control cells (1-2 %). These results implied similar targeting properties of VEGFR2-specific nanobody compared to the VEGF 121 and indicated the potential for transductional targeting of tumor vasculature by the nanobody displaying LVs.

  4. TRAIL, Wnt, Sonic Hedgehog, TGFβ, and miRNA Signalings Are Potential Targets for Oral Cancer Therapy.

    Science.gov (United States)

    Farooqi, Ammad Ahmad; Shu, Chih-Wen; Huang, Hurng-Wern; Wang, Hui-Ru; Chang, Yung-Ting; Fayyaz, Sundas; Yuan, Shyng-Shiou F; Tang, Jen-Yang; Chang, Hsueh-Wei

    2017-07-14

    Clinical studies and cancer cell models emphasize the importance of targeting therapies for oral cancer. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is highly expressed in cancer, and is a selective killing ligand for oral cancer. Signaling proteins in the wingless-type mouse mammary tumor virus (MMTV) integration site family (Wnt), Sonic hedgehog (SHH), and transforming growth factor β (TGFβ) pathways may regulate cell proliferation, migration, and apoptosis. Accordingly, the genes encoding these signaling proteins are potential targets for oral cancer therapy. In this review, we focus on recent advances in targeting therapies for oral cancer and discuss the gene targets within TRAIL, Wnt, SHH, and TGFβ signaling for oral cancer therapies. Oncogenic microRNAs (miRNAs) and tumor suppressor miRNAs targeting the genes encoding these signaling proteins are summarized, and the interactions between Wnt, SHH, TGFβ, and miRNAs are interpreted. With suitable combination treatments, synergistic effects are expected to improve targeting therapies for oral cancer.

  5. TRAIL, Wnt, Sonic Hedgehog, TGFβ, and miRNA Signalings Are Potential Targets for Oral Cancer Therapy

    Science.gov (United States)

    Farooqi, Ammad Ahmad; Shu, Chih-Wen; Huang, Hurng-Wern; Wang, Hui-Ru; Chang, Yung-Ting; Fayyaz, Sundas; Yuan, Shyng-Shiou F.; Tang, Jen-Yang

    2017-01-01

    Clinical studies and cancer cell models emphasize the importance of targeting therapies for oral cancer. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is highly expressed in cancer, and is a selective killing ligand for oral cancer. Signaling proteins in the wingless-type mouse mammary tumor virus (MMTV) integration site family (Wnt), Sonic hedgehog (SHH), and transforming growth factor β (TGFβ) pathways may regulate cell proliferation, migration, and apoptosis. Accordingly, the genes encoding these signaling proteins are potential targets for oral cancer therapy. In this review, we focus on recent advances in targeting therapies for oral cancer and discuss the gene targets within TRAIL, Wnt, SHH, and TGFβ signaling for oral cancer therapies. Oncogenic microRNAs (miRNAs) and tumor suppressor miRNAs targeting the genes encoding these signaling proteins are summarized, and the interactions between Wnt, SHH, TGFβ, and miRNAs are interpreted. With suitable combination treatments, synergistic effects are expected to improve targeting therapies for oral cancer. PMID:28708091

  6. Maximum flow approach to prioritize potential drug targets of Mycobacterium tuberculosis H37Rv from protein-protein interaction network.

    Science.gov (United States)

    Melak, Tilahun; Gakkhar, Sunita

    2015-12-01

    In spite of the implementations of several strategies, tuberculosis (TB) is overwhelmingly a serious global public health problem causing millions of infections and deaths every year. This is mainly due to the emergence of drug-resistance varieties of TB. The current treatment strategies for the drug-resistance TB are of longer duration, more expensive and have side effects. This highlights the importance of identification and prioritization of targets for new drugs. This study has been carried out to prioritize potential drug targets of Mycobacterium tuberculosis H37Rv based on their flow to resistance genes. The weighted proteome interaction network of the pathogen was constructed using a dataset from STRING database. Only a subset of the dataset with interactions that have a combined score value ≥770 was considered. Maximum flow approach has been used to prioritize potential drug targets. The potential drug targets were obtained through comparative genome and network centrality analysis. The curated set of resistance genes was retrieved from literatures. Detail literature review and additional assessment of the method were also carried out for validation. A list of 537 proteins which are essential to the pathogen and non-homologous with human was obtained from the comparative genome analysis. Through network centrality measures, 131 of them were found within the close neighborhood of the centre of gravity of the proteome network. These proteins were further prioritized based on their maximum flow value to resistance genes and they are proposed as reliable drug targets of the pathogen. Proteins which interact with the host were also identified in order to understand the infection mechanism. Potential drug targets of Mycobacterium tuberculosis H37Rv were successfully prioritized based on their flow to resistance genes of existing drugs which is believed to increase the druggability of the targets since inhibition of a protein that has a maximum flow to

  7. Allosteric Binding in the Serotonin Transporter - Pharmacology, Structure, Function and Potential Use as a Novel Drug Target

    DEFF Research Database (Denmark)

    Loland, Claus J.; Sanchez, Connie; Plenge, Per

    2017-01-01

    The serotonin transporter (SERT) is an important drug target and the majority of currently used antidepressants are potent inhibitors of SERT, binding primarily to the substrate binding site. However, even though the existence of an allosteric modulator site was realized more than 30 years ago......, the research into this mechanism is still in its early days. The current knowledge about the allosteric site with respect to pharmacology, structure and function, and pharmacological tool compounds, is reviewed and a perspective is given on its potential as a drug target....

  8. Does Prevention Pay? Costs and Potential Cost-savings of School Interventions Targeting Children with Mental Health Problems.

    Science.gov (United States)

    Wellander, Lisa; Wells, Michael B; Feldman, Inna

    2016-06-01

    In Sweden, the local government is responsible for funding schools in their district. One funding initiative is for schools to provide students with mental health problems with additional support via extra teachers, personal assistants, and special education classes. There are evidence-based preventive interventions delivered in schools, which have been shown to decrease the levels of students' mental health problems. However, little is known about how much the local government currently spends on students' mental health support and if evidence-based interventions could be financially beneficial. The aim of this study was to estimate the costs of providing additional support for students' mental health problems and the potential cost-offsets, defined as reduced school-based additional support, if two evidence-based school interventions targeting children's mental health problems were implemented in routine practice. This study uses data on the additional support students with mental health problems received in schools. Data was collected from one school district for students aged 6 to 16 years. We modeled two Swedish school interventions, Comet for Teachers and Social and Emotional Training (SET), which both had evidence of reducing mental health problems. We used a cost-offset analysis framework, assuming both interventions were fully implemented throughout the whole school district. Based on the published studies, the expected effects and the costs of the interventions were calculated. We defined the cost-offsets as the amount of predicted averted additional support for students with ongoing mental health problems who might no longer require receiving services such as one-on-one time with an extra teacher, a personal assistant, or to be placed in a special education classroom. A cost-offset analysis, from a payer's perspective (the local government responsible for school financing), was conducted comparing the costs of both interventions with the potential cost

  9. Targeting kit activation: a potential therapeutic approach in the treatment of allergic inflammation

    DEFF Research Database (Denmark)

    Jensen, Bettina M; Metcalfe, Dean D; Gilfillan, Alasdair M

    2007-01-01

    The prevalence of allergic diseases is increasing worldwide. Hence, there is continued need for novel pharmacological therapies for the treatment of these disorders. As the mast cell is one of the essential cells that contributes to the inflammation associated with allergic diseases, this cell type......E-receptor) on the cell surface. These mediators also contribute to the late and chronic stages of allergic inflammation. Thus, the IgE/antigen response has been a major focus in the development of new drugs targeting mast cells. The essential role that stem cell factor (SCF) and its receptor, Kit, play in mast cell...... remains an attractive target for such pharmacological intervention. Mast cells are major players in the early phase of the allergic response since they generate and release a variety of inflammatory mediators following antigen-dependent aggregation of IgE-bound FcepsilonRI (high affinity Ig...

  10. Plant-Pathogen Interaction-Related MicroRNAs and Their Targets Provide Indicators of Phytoplasma Infection in Paulownia tomentosa × Paulownia fortunei.

    Directory of Open Access Journals (Sweden)

    Guoqiang Fan

    Full Text Available Paulownia witches' broom (PaWB caused by a phytoplasma, has caused extensive losses in the yields of paulownia timber and resulted in significant economic losses. However, the molecular mechanisms in Paulownia that underlie the phytoplasma stress are poorly characterized. In this study, we use an Illumina platform to sequence four small RNA libraries and four degradome sequencing libraries derived from healthy, PaWB-infected, and PaWB-infected 15 mg·L-1 and 30 mg·L-1 methyl methane sulfonate (MMS-treated plants. In total, 125 conserved and 118 novel microRNAs (miRNAs were identified and 33 miRNAs responsive to PaWB disease were discovered. Furthermore, 166 target genes for 18 PaWB disease-related miRNAs were obtained, and found to be involved in plant-pathogen interaction and plant hormone signal transduction metabolic pathways. Eleven miRNAs and target genes responsive to PaWB disease were examined by a quantitative real-time PCR approach. Our findings will contribute to studies on miRNAs and their targets in Paulownia, and provide new insights to further understand plant-phytoplasma interactions.

  11. Fetal Alcohol Spectrum Disorder (FASD) Associated Neural Defects: Complex Mechanisms and Potential Therapeutic Targets.

    Science.gov (United States)

    Muralidharan, Pooja; Sarmah, Swapnalee; Zhou, Feng C; Marrs, James A

    2013-06-19

    Fetal alcohol spectrum disorder (FASD), caused by prenatal alcohol exposure, can result in craniofacial dysmorphism, cognitive impairment, sensory and motor disabilities among other defects. FASD incidences are as high as 2% to 5 % children born in the US, and prevalence is higher in low socioeconomic populations. Despite various mechanisms being proposed to explain the etiology of FASD, the molecular targets of ethanol toxicity during development are unknown. Proposed mechanisms include cell death, cell signaling defects and gene expression changes. More recently, the involvement of several other molecular pathways was explored, including non-coding RNA, epigenetic changes and specific vitamin deficiencies. These various pathways may interact, producing a wide spectrum of consequences. Detailed understanding of these various pathways and their interactions will facilitate the therapeutic target identification, leading to new clinical intervention, which may reduce the incidence and severity of these highly prevalent preventable birth defects. This review discusses manifestations of alcohol exposure on the developing central nervous system, including the neural crest cells and sensory neural placodes, focusing on molecular neurodevelopmental pathways as possible therapeutic targets for prevention or protection.

  12. Fetal Alcohol Spectrum Disorder (FASD Associated Neural Defects: Complex Mechanisms and Potential Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    James A. Marrs

    2013-06-01

    Full Text Available Fetal alcohol spectrum disorder (FASD, caused by prenatal alcohol exposure, can result in craniofacial dysmorphism, cognitive impairment, sensory and motor disabilities among other defects. FASD incidences are as high as 2% to 5 % children born in the US, and prevalence is higher in low socioeconomic populations. Despite various mechanisms being proposed to explain the etiology of FASD, the molecular targets of ethanol toxicity during development are unknown. Proposed mechanisms include cell death, cell signaling defects and gene expression changes. More recently, the involvement of several other molecular pathways was explored, including non-coding RNA, epigenetic changes and specific vitamin deficiencies. These various pathways may interact, producing a wide spectrum of consequences. Detailed understanding of these various pathways and their interactions will facilitate the therapeutic target identification, leading to new clinical intervention, which may reduce the incidence and severity of these highly prevalent preventable birth defects. This review discusses manifestations of alcohol exposure on the developing central nervous system, including the neural crest cells and sensory neural placodes, focusing on molecular neurodevelopmental pathways as possible therapeutic targets for prevention or protection.

  13. Intranasal delivery of nanoparticle encapsulated tarenflurbil: A potential brain targeting strategy for Alzheimer's disease.

    Science.gov (United States)

    Muntimadugu, Eameema; Dhommati, Raju; Jain, Anjali; Challa, Venu Gopala Swami; Shaheen, M; Khan, Wahid

    2016-09-20

    Poor brain penetration of tarenflurbil (TFB) was one of the major reasons for its failure in phase III clinical trials conducted on Alzheimer's patients. Thus there is a tremendous need of developing efficient delivery systems for TFB. This study was designed with the aim of improving drug delivery to brain through intranasally delivered nanocarriers. TFB was loaded into two different nanocarriers i.e., poly (lactide-co-glycolide) nanoparticles (TFB-NPs) and solid lipid nanoparticles (TFB-SLNs). Particle size of both the nanocarriers (targeting site. Pharmacokinetics suggested improved circulation behavior of nanoparticles and the absolute bioavailabilities followed this order: TFB-NPs (i.n.)>TFB-SLNs (i.n.)>TFB solution (i.n.)>TFB suspension (oral). Brain targeting efficiency was determined in terms of %drug targeting efficiency (%DTE) and drug transport percentage (DTP). The higher %DTE (287.24) and DTP (65.18) were observed for TFB-NPs followed by TFB-SLNs (%DTE: 183.15 and DTP: 45.41) among all other tested groups. These encouraging results proved that therapeutic concentrations of TFB could be transported directly to brain via olfactory pathway after intranasal administration of polymeric and lipidic nanoparticles. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Locked nucleoside analogues expand the potential of DNAzymes to cleave structured RNA targets

    Directory of Open Access Journals (Sweden)

    Wengel Jesper

    2006-06-01

    Full Text Available Abstract Background DNAzymes cleave at predetermined sequences within RNA. A prerequisite for cleavage is that the DNAzyme can gain access to its target, and thus the DNAzyme must be capable of unfolding higher-order structures that are present in the RNA substrate. However, in many cases the RNA target sequence is hidden in a region that is too tightly structured to be accessed under physiological conditions by DNAzymes. Results We investigated how incorporation of LNA (locked nucleic acid monomers into DNAzymes improves their ability to gain access and cleave at highly-structured RNA targets. The binding arms of DNAzymes were varied in length and were substituted with up to three LNA and α-L-LNA monomers (forming LNAzymes. For one DNAzyme, the overall cleavage reaction proceeded fifty times faster after incorporation of two α-L-LNA monomers per binding arm (kobs increased from 0.014 min-1 to 0.78 min-1. Conclusion The data demonstrate how hydrolytic performance can be enhanced by design of LNAzymes, and indicate that there are optimal lengths for the binding arms and for the number of modified LNA monomers.

  15. Microglial KCa3.1 Channels as a Potential Therapeutic Target for Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Izumi Maezawa

    2012-01-01

    Full Text Available There exists an urgent need for new target discovery to treat Alzheimer’s disease (AD; however, recent clinical trials based on anti-Aβ and anti-inflammatory strategies have yielded disappointing results. To expedite new drug discovery, we propose reposition targets which have been previously pursued by both industry and academia for indications other than AD. One such target is the calcium-activated potassium channel KCa3.1 (KCNN4, which in the brain is primarily expressed in microglia and is significantly upregulated when microglia are activated. We here review the existing evidence supporting that KCa3.1 inhibition could block microglial neurotoxicity without affecting their neuroprotective phagocytosis activity and without being broadly immunosuppressive. The anti-inflammatory and neuroprotective effects of KCa3.1 blockade would be suitable for treating AD as well as cerebrovascular and traumatic brain injuries, two well-known risk factors contributing to the dementia in AD patients presenting with mixed pathologies. Importantly, the pharmacokinetics and pharmacodynamics of several KCa3.1 blockers are well known, and a KCa3.1 blocker has been proven safe in clinical trials. It is therefore promising to reposition old or new KCa3.1 blockers for AD preclinical and clinical trials.

  16. Targeting the Hippo Pathway Is a New Potential Therapeutic Modality for Malignant Mesothelioma.

    Science.gov (United States)

    Sekido, Yoshitaka

    2018-03-22

    Malignant mesothelioma (MM) constitutes a very aggressive tumor that arises from the pleural or peritoneal cavities and is highly refractory to conventional therapies. Several key genetic alterations are associated with the development and progression of MM including mutations of the CDKN2A/ARF , NF2 , and BAP1 tumor-suppressor genes. Notably, activating oncogene mutations are very rare; thus, it is difficult to develop effective inhibitors to treat MM. The NF2 gene encodes merlin, a protein that regulates multiple cell-signaling cascades including the Hippo pathway. MMs also exhibit inactivation of Hippo pathway components including LATS1/2, strongly suggesting that merlin-Hippo pathway dysregulation plays a key role in the development and progression of MM. Furthermore, Hippo pathway inactivation has been shown to result in constitutive activation of the YAP1/TAZ transcriptional coactivators, thereby conferring malignant phenotypes to mesothelial cells. Critical YAP1/TAZ target genes, including prooncogenic CCDN1 and CTGF , have also been shown to enhance the malignant phenotypes of MM cells. Together, these data indicate the Hippo pathway as a therapeutic target for the treatment of MM, and support the development of new strategies to effectively target the activation status of YAP1/TAZ as a promising therapeutic modality for this formidable disease.

  17. Evaluation of plasma membrane calcium/calmodulin-dependent ATPase isoform 4 as a potential target for fertility control.

    Science.gov (United States)

    Cartwright, Elizabeth J; Neyses, Ludwig

    2010-01-01

    The array of contraceptives currently available is clearly inadequate and does not meet consumer demands since it is estimated that up to a quarter of all pregnancies worldwide are unintended. There is, therefore, an overwhelming global need to develop new effective, safe, ideally non-hormonal contraceptives for both male and female use. The contraceptive field, unlike other areas such as cancer, has a dearth of new targets. We have addressed this issue and propose that isoform 4 of the plasma membrane calcium ATPase is a potentially exciting novel target for fertility control. The plasma membrane calcium ATPase is a ubiquitously expressed calcium pump whose primary function in the majority of cells is to extrude calcium to the extracellular milieu. Two isoforms of this gene family, PMCA1 and PMCA4, are expressed in spermatozoa, with PMCA4 being the predominant isoform. Although this gene is ubiquitously expressed, its function is highly tissue-specific. Genetic deletion of PMCA4, in PMCA4 knockout mice, led to 100% infertility specifically in the male mutant mice due to a selective defect in sperm motility. It is important to note that the gene deletion did not affect normal mating characteristics in these mice. This phenotype was mimicked in wild-type sperm treated with the non-specific PMCA inhibitor 5-(and 6-) carboxyeosin diacetate succinimidyl ester; a proof-of-principle that inhibition of PMCA4 has potential importance in the control of fertility. This review outlines the potential for PMCA4 to be a novel target for fertility control by acting to inhibit sperm motility. It will outline the characteristics that make this target drugable and will describe methodologies to identify and validate novel inhibitors of this target.

  18. The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota

    DEFF Research Database (Denmark)

    Lagkouvardos, Ilias; Pukall, Rüdiger; Abt, Birte

    2016-01-01

    species are specific to the mouse intestine and that a minimal consortium of 18 strains covered 50-75% of the known functional potential of metagenomes. The present work will sustain future research on microbiota-host interactions in health and disease, as it will facilitate targeted colonization...

  19. Cancer: Towards a general theory of the target: All successful cancer therapies, actual or potential, are reducible to either (or both) of two fundamental strategies.

    Science.gov (United States)

    Vincent, Mark D

    2017-09-01

    General theories (GT) are reductionist explications of apparently independent facts. Here, in reviewing the literature, I develop a GT to simplify the cluttered landscape of cancer therapy targets by revealing they cluster parsimoniously according to only a few underlying principles. The first principle is that targets can be only exploited by either or both of two fundamentally different approaches: causality-inhibition, and 'acausal' recognition of some marker or signature. Nonetheless, each approach must achieve both of two separate goals, efficacy (reduction in cancer burden) and selectivity (sparing of normal cells); if the mechanisms are known, this provides a definition of rational treatment. The second principle is target fragmentation, whereby the target may perform up to three categoric functions (cytoreduction, modulation, cytoprotection), potentially mediated by physically different target molecules, even on different cell types, or circulating freely. This GT remains incomplete until the minimal requirements for cure, or alternatively, proof that cure is impossible, become predictable. © 2017 The Authors. BioEssays Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  20. Low-dose radiation potentiates the therapeutic efficacy of folate receptor-targeted hapten therapy.

    Science.gov (United States)

    Sega, Emanuela I; Lu, Yingjuan; Ringor, Michael; Leamon, Christopher P; Low, Philip S

    2008-06-01

    Human cancers frequently overexpress a high-affinity cell-surface receptor for the vitamin folic acid. Highly immunogenic haptens can be targeted to folate receptor-expressing cell surfaces by administration of folate-hapten conjugates, rendering the decorated tumor cell surfaces more recognizable by the immune system. Treatment of antihapten-immunized mice with folate-hapten constructs results in elimination of moderately sized tumors by the immune system. However, when subcutaneous tumors exceed 300 mm(3) before initiation of therapy, antitumor activity is significantly decreased. In an effort to enhance the efficacy of folate-targeted hapten immunotherapy (FTHI) against large tumors, we explored the combination of targeted hapten immunotherapy with low-dose radiotherapy. Mice bearing 300-mm(3) subcutaneous tumors were treated concurrently with FTHI (500 nmol/kg of folate conjugated to fluorescein isothiocyanate, 20,000 U/dose of interleukin 2, and 25,000 U/dose of interferon alpha) and low-dose radiotherapy (3 Gy/dose focused directly on the desired tumor mass). The efficacy of therapy was evaluated by measuring tumor volume. Tumor growth analyses show that radiotherapy synergizes with FTHI in antihapten-immunized mice, thereby allowing for cures of animals bearing tumors greater than 300 mm(3). More importantly, nonirradiated distal tumor masses in animals containing locally irradiated tumors also showed improved response to hapten immunotherapy, suggesting that not all tumor lesions must be identified and irradiated to benefit from the combination therapy. These results suggest that simultaneous treatment with FTHI and radiation therapy can enhance systemic antitumor activity in tumor-bearing mice.

  1. Low-Dose Radiation Potentiates the Therapeutic Efficacy of Folate Receptor-Targeted Hapten Therapy

    International Nuclear Information System (INIS)

    Sega, Emanuela I.; Lu Yingjuan; Ringor, Michael; Leamon, Christopher P.; Low, Philip S.

    2008-01-01

    Purpose: Human cancers frequently overexpress a high-affinity cell-surface receptor for the vitamin folic acid. Highly immunogenic haptens can be targeted to folate receptor-expressing cell surfaces by administration of folate-hapten conjugates, rendering the decorated tumor cell surfaces more recognizable by the immune system. Treatment of antihapten-immunized mice with folate-hapten constructs results in elimination of moderately sized tumors by the immune system. However, when subcutaneous tumors exceed 300 mm 3 before initiation of therapy, antitumor activity is significantly decreased. In an effort to enhance the efficacy of folate-targeted hapten immunotherapy (FTHI) against large tumors, we explored the combination of targeted hapten immunotherapy with low-dose radiotherapy. Methods and Materials: Mice bearing 300-mm 3 subcutaneous tumors were treated concurrently with FTHI (500 nmol/kg of folate conjugated to fluorescein isothiocyanate, 20,000 U/dose of interleukin 2, and 25,000 U/dose of interferon α) and low-dose radiotherapy (3 Gy/dose focused directly on the desired tumor mass). The efficacy of therapy was evaluated by measuring tumor volume. Results: Tumor growth analyses show that radiotherapy synergizes with FTHI in antihapten-immunized mice, thereby allowing for cures of animals bearing tumors greater than 300 mm 3 . More importantly, nonirradiated distal tumor masses in animals containing locally irradiated tumors also showed improved response to hapten immunotherapy, suggesting that not all tumor lesions must be identified and irradiated to benefit from the combination therapy. Conclusions: These results suggest that simultaneous treatment with FTHI and radiation therapy can enhance systemic antitumor activity in tumor-bearing mice

  2. Potential efficacy of therapies targeting intrahepatic lesions after sorafenib treatment of patients with hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Terashima, Takeshi; Yamashita, Tatsuya; Horii, Rika; Arai, Kuniaki; Kawaguchi, Kazunori; Kitamura, Kazuya; Yamashita, Taro; Sakai, Yoshio; Mizukoshi, Eishiro; Honda, Masao; Kaneko, Shuichi

    2016-01-01

    We investigated the contribution of subsequent therapy for advanced hepatocellular carcinoma refractory or intolerant to sorafenib. Further, we investigated the impact of sorafenib on overall survival using individual data. We reviewed the medical records of patients with advanced hepatocellular carcinoma treated with sorafenib. Survival after sorafenib treatment and overall survival were defined as the time when we discovered that patients were either refractory or intolerant to sorafenib and the period from the start of sorafenib treatment, respectively, until death during the study. We compared patients’ prognoses according to their subsequent treatment as follows: group A, therapies targeting intrahepatic lesions; group B, systemic therapies alone; group C, no subsequent therapy. We used linear regression analysis to determine whether there was an association with survival after sorafenib treatment and with overall survival. Of 79 patients, 63 (79.7 %) received one or more subsequent therapies (44 and 19 patients in groups A and B, respectively). The five patients who survived more than two years after sorafenib treatment was discontinued responded to therapies targeting intrahepatic lesions. The median survival times of groups A, B, and C were 11.9 months, 5.8 months, and 3.6 months, respectively. Multivariate analysis revealed that group A, Child-Pugh score, serum α-fetoprotein level, and cause of failure of sorafenib treatment were independent prognostic factors for survival after sorafenib treatment. Individual survival after sorafenib treatment correlated highly with overall survival. Targeting intrahepatic lesions may be useful for treating patients with advanced hepatocellular carcinoma patients after sorafenib treatment is discontinued. The online version of this article (doi:10.1186/s12885-016-2380-4) contains supplementary material, which is available to authorized users

  3. Analyzing a potential drug target N-myristoyltransferase of Plasmodium falciparum through in silico approaches

    Directory of Open Access Journals (Sweden)

    Amit Kumar Banerjee

    2012-01-01

    Full Text Available Background: Despite concerted global efforts to combat malaria, malaria elimination is still a remote dream. Fast evolution rate of malarial parasite along with its ability to respond quickly to any drug resulting in partial or complete resistance has been a cause of concern among researcher communities. Materials and Methods: Molecular modeling approach was adopted to gain insight about the structure and various analyses were performed. Modeller 9v3, Protparam, Protscale, MEME, NAMD and other tools were employed for this study. PROCHECK and other tools were used for stereo-chemical quality evaluation. Results and Conclusion: It was observed during the course of study that this protein contains 32.2% of aliphatic amino acids among which Leucine (9.5% is predominant. Theoretical pI of 8.39 identified the protein as basic in nature and most of the amino acids present in N-Myristoyltransferase are hydrophobic (46.1%. Secondary structure analysis shows predominance of alpha helices and random coils. Motif analyses revealed that this target protein contains 2 signature motifs, i.e., EVNFLCVHK and KFGEGDG. Apart from motif search, three-dimensional model was generated and validated and the stereo-chemical quality check confirmed that 97.7% amino acid residues fall in the core region of Ramachandran plot. Molecular dynamics simulation resulted in maximum 1.3 Å Root Mean Square Deviation (RMSD between the initial structure and the trajectories obtained later on. The template and the target molecule has shown 1.5 Å RMSD for the C alpha trace. A docking study was also conducted with various ligand molecules among which specific benzofuran compounds turned out to be effective. This derived information will help in designing new inhibitor molecules for this target protein as well in better understanding the parasite protein.

  4. ExploreNEOs. III. PHYSICAL CHARACTERIZATION OF 65 POTENTIAL SPACECRAFT TARGET ASTEROIDS

    International Nuclear Information System (INIS)

    Mueller, Michael; Delbo', M.; Hora, J. L.; Fazio, G.; Smith, H. A.; Spahr, T. B.; Trilling, D. E.; Thomas, C. A.; Bhattacharya, B.; Bottke, W. F.; Chesley, S.; Mainzer, A.; Emery, J. P.; Harris, A. W.; Mommert, M.; Penprase, B.; Stansberry, J. A.

    2011-01-01

    Space missions to near-Earth objects (NEOs) are being planned at all major space agencies, and recently a manned mission to an NEO was announced as a NASA goal. Efforts to find and select suitable targets (plus backup targets) are severely hampered by our lack of knowledge of the physical properties of dynamically favorable NEOs. In particular, current mission scenarios tend to favor primitive low-albedo objects. For the vast majority of NEOs, the albedo is unknown. Here we report new constraints on the size and albedo of 65 NEOs with rendezvous Δv -1 . Our results are based on thermal-IR flux data obtained in the framework of our ongoing (2009-2011) ExploreNEOs survey using NASA's 'Warm-Spitzer' space telescope. As of 2010 July 14, we have results for 293 objects in hand (including the 65 low-Δv NEOs presented here); before the end of 2011, we expect to have measured the size and albedo of ∼700 NEOs (including probably ∼160 low-Δv NEOs). While there are reasons to believe that primitive volatile-rich materials are universally low in albedo, the converse need not be true: the orbital evolution of some dark objects likely has caused them to lose their volatiles by coming too close to the Sun. For all our targets, we give the closest perihelion distance they are likely to have reached (using orbital integrations from Marchi et al. 2009) and corresponding upper limits on the past surface temperature. Low-Δv objects for which both albedo and thermal history may suggest a primitive composition include (162998) 2001 SK162, (68372) 2001 PM9, and (100085) 1992 UY4.

  5. Targeting of detoxification potential of microorganisms and plants for cleaning environment polluted by organochlorine pesticides

    Directory of Open Access Journals (Sweden)

    M.V. Kurashvili

    2016-09-01

    Full Text Available The goal of presented work is the development phytoremediation method targeted to cleaning environment polluted with organochlorine pesticides, based on joint application of specially selected plants and microorganisms. Initial degradation of pesticides carry out by microorganisms; the forming dehalogenated products easily uptake by the plants and undergo oxidative degradation via plant detoxification enzymes. This approach can complete degradation of toxicants and their mineralization into nontoxic compounds. In the presented work the results of using selected strains from genera Pseudomonas and plants phytoremediators in the model experiments are given. It has been shown that the using developed technological approach effectively decreased degree of pollution in artificially polluted soil samples.

  6. Eicosanoids and Respiratory Viral Infection: Coordinators of Inflammation and Potential Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    Mary K. McCarthy

    2012-01-01

    Full Text Available Viruses are frequent causes of respiratory infection, and viral respiratory infections are significant causes of hospitalization, morbidity, and sometimes mortality in a variety of patient populations. Lung inflammation induced by infection with common respiratory pathogens such as influenza and respiratory syncytial virus is accompanied by increased lung production of prostaglandins and leukotrienes, lipid mediators with a wide range of effects on host immune function. Deficiency or pharmacologic inhibition of prostaglandin and leukotriene production often results in a dampened inflammatory response to acute infection with a respiratory virus. These mediators may, therefore, serve as appealing therapeutic targets for disease caused by respiratory viral infection.

  7. Identification of treatment response predictors and potential molecular targets for chemo preventive and antiangiogenic therapies

    International Nuclear Information System (INIS)

    Pfeffer, U.; Albini, A.

    2009-01-01

    The aims of the project were: To evaluate the cellular responses to anti-inflammatory and anti-angiogenic natural or synthetic compounds (chemo preventives, inhibitors of cell survival and inflammation related signal transduction). To identify bio markers for treatment response through the selection of targets that are common to or specific for anti-inflammatory and anti-angiogenic activities. To analyze the regulation of the key tumor-promotion pathways Akt, HIF1α, NFκB. We focused our studies on the antiapoptotic role of the AKT survival pathway, which is involved in prostate tumor progression to an androgen-independent phenotype

  8. Inositol metabolism in Trypanosoma cruzi: potential target for chemotherapy against Chagas' disease

    Directory of Open Access Journals (Sweden)

    MECIA M. OLIVEIRA

    2000-09-01

    Full Text Available Chagas' disease is a debilitating and often fatal disease caused by the protozoan parasite Trypanosoma cruzi. The great majority of surface molecules in trypanosomes are either inositol-containing phospholipids or glycoproteins that are anchored into the plasma membrane by glycosylphosphatidylinositol anchors. The polyalcohol myo-inositol is the precursor for the biosynthesis of these molecules. In this brief review, recent findings on some aspects of the molecular and cellular fate of inositol in T. cruzi life cycle are discussed and identified some points that could be targets for the development of parasite-specific therapeutic agents.

  9. Prediction of Host-Derived miRNAs with the Potential to Target PVY in Potato Plants

    Science.gov (United States)

    Iqbal, Muhammad S.; Hafeez, Muhammad N.; Wattoo, Javed I.; Ali, Arfan; Sharif, Muhammad N.; Rashid, Bushra; Tabassum, Bushra; Nasir, Idrees A.

    2016-01-01

    Potato virus Y has emerged as a threatening problem in all potato growing areas around the globe. PVY reduces the yield and quality of potato cultivars. During the last 30 years, significant genetic changes in PVY strains have been observed with an increased incidence associated with crop damage. In the current study, computational approaches were applied to predict Potato derived miRNA targets in the PVY genome. The PVY genome is approximately 9 thousand nucleotides, which transcribes the following 6 genes:CI, NIa, NIb-Pro, HC-Pro, CP, and VPg. A total of 343 mature miRNAs were retrieved from the miRBase database and were examined for their target sequences in PVY genes using the minimum free energy (mfe), minimum folding energy, sequence complementarity and mRNA-miRNA hybridization approaches. The identified potato miRNAs against viral mRNA targets have antiviral activities, leading to translational inhibition by mRNA cleavage and/or mRNA blockage. We found 86 miRNAs targeting the PVY genome at 151 different sites. Moreover, only 36 miRNAs potentially targeted the PVY genome at 101 loci. The CI gene of the PVY genome was targeted by 32 miRNAs followed by the complementarity of 26, 19, 18, 16, and 13 miRNAs. Most importantly, we found 5 miRNAs (miR160a-5p, miR7997b, miR166c-3p, miR399h, and miR5303d) that could target the CI, NIa, NIb-Pro, HC-Pro, CP, and VPg genes of PVY. The predicted miRNAs can be used for the development of PVY-resistant potato crops in the future. PMID:27683585

  10. Prediction of host-derived miRNAs with the potential to target PVY in potato plants

    Directory of Open Access Journals (Sweden)

    Muhammad Shahzad Iqbal

    2016-09-01

    Full Text Available Potato virus Y has emerged as a threatening problem in all potato growing areas around the globe PVY reduces the yield and quality of potato cultivars. During last 30 years, significant genetic changes in PVY strains have been observed with an increased incidence associated with crop damage. In the current study, computational approaches were applied to predict Potato derived miRNA targets in PVY genome. PVY genome is about 9 thousand nucleotides approximately which transcribes 6 genes CI, NIa, NIb-Pro, HC-Pro, CP and VPg. A total of 343 mature miRNAs were retrieved from miRbase database and searched for their target sequences in PVY genes using minimum free energy (mfe, minimum folding energy, sequence complementarity and mRNA-miRNA hybridization approaches. Identified Potato miRNAs against viral mRNA targets have antiviral activities leading to either translational inhibition by mRNA cleavage/mRNA blockage or both. We have found 86 miRNAs targeting PVY genome at 151 different sites on PVY genome. Moreover, only 36 miRNA potentially targeted the PVY genome at 101 loci. CI gene of PVY genome was targeted by 32 miRNAs followed by complementarity by 26, 19, 18, 16 and 13 miRNAs respectively. Most importantly, we found 5 miRNAs (miR160a-5p, miR7997b, miR166c-3p, miR399h and miR5303d could target CI, NIa, NIb-Pro, HC-Pro, CP and VPg genes of PVY. The predicted miRNAs can be used for development of PVY resistant potato crops in future.

  11. Comparative Proteomic Analysis Provides insight into the Key Proteins as Possible Targets Involved in Aspirin Inhibiting Biofilm Formation of Staphylococcus xylosus

    Directory of Open Access Journals (Sweden)

    Chang-Geng Xu

    2017-08-01

    Full Text Available Staphylococcus xylosus is an opportunistic pathogen that causes infection in humans and cow mastitis. And S. xylosus possesses a strong ability to form biofilms in vitro. As biofilm formation facilitates resistance to antimicrobial agents, the discovery of new medicinal properties for classic drugs is highly desired. Aspirin, which is the most common active component of non-steroidal anti-inflammatory compounds, affects the biofilm-forming capacity of various bacterial species. We have found that aspirin effectively inhibits biofilm formation of S. xylosus by Crystal violet (CV staining and scanning electron microscopy analyses. The present study sought to elucidate possible targets of aspirin in suppressing S. xylosus biofilm formation. Based on an isobaric tag for relative and absolute quantitation (iTRAQ fold-change of >1.2 or <0.8 (P-value < 0.05, 178 differentially expressed proteins, 111 down-regulated and 67 up-regulated, were identified after application of aspirin to cells at a 1/2 minimal inhibitory concentration. Gene ontology analysis indicated enrichment in metabolic processes for the majority of the differentially expressed proteins. We then used the Kyoto Encyclopedia of Genes and Genomes (KEGG pathway database to analyze a large number of differentially expressed proteins and identified genes involved in biosynthesis of amino acids pathway, carbon metabolism (pentose phosphate and glycolytic pathways, tricarboxylic acid cycle and nitrogen metabolism (histidine metabolism. These novel proteins represent candidate targets in aspirin-mediated inhibition of S. xylosus biofilm formation at sub-MIC levels. The findings lay the foundation for further studies to identify potential aspirin targets.

  12. Chitin synthases from Saprolegnia are involved in tip growth and represent a potential target for anti-oomycete drugs.

    Directory of Open Access Journals (Sweden)

    Gea Guerriero

    cell wall component in oomycetes. Our results provide important fundamental information on cell wall biogenesis in economically important species, and demonstrate the potential of targeting oomycete chitin synthases for disease control.

  13. Using Market Research to Characterize College Students and Identify Potential Targets for Influencing Health Behaviors

    Science.gov (United States)

    Berg, Carla J.; Ling, Pamela M.; Guo, Hongfei; Windle, Michael; Thomas, Janet L.; Ahluwalia, Jasjit S.; An, Lawrence C.

    2013-01-01

    Marketing campaigns, such as those developed by the tobacco industry, are based on market research, which defines segments of a population by assessing psychographic characteristics (i.e., attitudes, interests). This study uses a similar approach to define market segments of college smokers, to examine differences in their health behaviors (smoking, drinking, binge drinking, exercise, diet), and to determine the validity of these segments. A total of 2,265 undergraduate students aged 18–25 years completed a 108-item online survey in fall 2008 assessing demographic, psychographic (i.e., attitudes, interests), and health-related variables. Among the 753 students reporting past 30-day smoking, cluster analysis was conducted using 21 psychographic questions and identified three market segments – Stoic Individualists, Responsible Traditionalists, and Thrill-Seeking Socializers. We found that segment membership was related to frequency of alcohol use, binge drinking, and limiting dietary fat. We then developed three messages targeting each segment and conducted message testing to validate the segments on a subset of 73 smokers representing each segment in spring 2009. As hypothesized, each segment indicated greater relevance and salience for their respective message. These findings indicate that identifying qualitatively different subgroups of young adults through market research may inform the development of engaging interventions and health campaigns targeting college students. PMID:25264429

  14. PPARγ as a Potential Target to Treat Airway Mucus Hypersecretion in Chronic Airway Inflammatory Diseases

    Directory of Open Access Journals (Sweden)

    Yongchun Shen

    2012-01-01

    Full Text Available Airway mucus hypersecretion (AMH is a key pathophysiological feature of chronic airway inflammatory diseases such as bronchial asthma, cystic fibrosis, and chronic obstructive pulmonary disease. AMH contributes to the pathogenesis of chronic airway inflammatory diseases, and it is associated with reduced lung function and high rates of hospitalization and mortality. It has been suggested that AMH should be a target in the treatment of chronic airway inflammatory diseases. Recent evidence suggests that a key regulator of airway inflammation, hyperresponsiveness, and remodeling is peroxisome proliferator-activated receptor gamma (PPARγ, a ligand-activated transcription factor that regulates adipocyte differentiation and lipid metabolism. PPARγ is expressed in structural, immune, and inflammatory cells in the lung. PPARγ is involved in mucin production, and PPARγ agonists can inhibit mucin synthesis both in vitro and in vivo. These findings suggest that PPARγ is a novel target in the treatment of AMH and that further work on this transcription factor may lead to new therapies for chronic airway inflammatory diseases.

  15. Insights on ornithine decarboxylase silencing as a potential strategy for targeting retinoblastoma.

    Science.gov (United States)

    Muthukumaran, Sivashanmugam; Bhuvanasundar, Renganathan; Umashankar, Vetrivel; Sulochana, K N

    2018-02-01

    Ornithine Decarboxylase (ODC) is a key enzyme involved in polyamine synthesis and is reported to be up regulated in several cancers. However, the effect of ODC gene silencing in retinoblastoma is to be understood for utilization in therapeutic applications. Hence, in this study, a novel siRNA (small interference RNA) targeting ODC was designed and validated in Human Y79 retinoblastoma cells for its effects on intracellular polyamine levels, Matrix Metalloproteinase 2 & 9 activity and Cell cycle. The designed siRNA showed efficient silencing of ODC mRNA expression and protein levels in Y79 cells. It also showed significant reduction of intracellular polyamine levels and altered levels of oncogenic LIN28b expression. By this study, a regulatory loop is proposed, wherein, ODC silencing in Y79 cells to result in decreased polyamine levels, thereby, leading to altered protein levels of Lin28b, MMP-2 and MMP-9, which falls in line with earlier studies in neuroblastoma. Thus, by this study, we propose ODC silencing as a prospective strategy for targeting retinoblastoma. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Pannus growth regulators as potential targets for biological therapy in rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    A. S. Mikhaylova

    2018-01-01

    Full Text Available The main goal of treatment for rheumatoid arthritis (RA is to suppress inflammation using basic and symptomatic therapies. At the same time, the above strategy does not significantly stop joint  destruction that leads to disability in patients. The review analyzes  publications dealing with a search for intercellular interaction  regulators among the main effector cells in the pannus – fibroblast- like synoviocytes (FLSs. It assesses the influence of FLS aggression  factors on invasive pannus behavior, the possibility of their targeted deactivation during biological therapy, and the preliminary  results of similar treatment by the examples of animal models. It is  shown that the most promising targets for biological therapy may be FLS adhesion molecules, such as transmembrane receptor cadherin  11, integrins α5/β1, and VCAM1, ICAM1, which actively participate in the attachment of FLSs to the cartilage surface and activate their production of cytokines, growth factors and aggression factors.

  17. Poly ADP-ribose polymerase-1 as a potential therapeutic target in Merkel cell carcinoma.

    Science.gov (United States)

    Ferrarotto, Renata; Cardnell, Robert; Su, Shirley; Diao, Lixia; Eterovic, A Karina; Prieto, Victor; Morrisson, William H; Wang, Jing; Kies, Merrill S; Glisson, Bonnie S; Byers, Lauren Averett; Bell, Diana

    2018-03-23

    Patients with metastatic Merkel cell carcinoma are treated similarly to small cell lung cancer (SCLC). Poly ADP-ribose polymerase-1 (PARP1) is overexpressed in SCLC and response to PARP inhibitors have been reported in patients with SCLC. Our study explores PARP as a therapeutic target in Merkel cell carcinoma. We evaluated PARP1 expression and Merkel cell polyomavirus (MCPyV) in 19 patients with Merkel cell carcinoma. Target exome-sequencing was performed in 14 samples. Sensitivity to olaparib was tested in 4 Merkel cell carcinoma cell lines. Most Merkel cell carcinomas (74%) express PARP1 at high levels. Mutations in DNA-damage repair genes were identified in 9 samples (64%), occurred exclusively in head neck primaries, and correlated with TP53/RB1 mutations. The TP53/RB1 mutations were more frequent in MCPyV-negative tumors. Sensitivity to olaparib was seen in the Merkel cell carcinoma line with highest PARP1 expression. Based on PARP1 overexpression, DNA-damage repair gene mutations, platinum sensitivity, and activity of olaparib in a Merkel cell carcinoma line, clinical trials with PARP inhibitors are warranted in Merkel cell carcinoma. © 2018 Wiley Periodicals, Inc.

  18. Polo-like Kinase 1 as a potential therapeutic target in Diffuse Intrinsic Pontine Glioma

    International Nuclear Information System (INIS)

    Amani, Vladimir; Prince, Eric W; Alimova, Irina; Balakrishnan, Ilango; Birks, Diane; Donson, Andrew M.; Harris, Peter; Levy, Jean M. Mulcahy; Handler, Michael; Foreman, Nicholas K.; Venkataraman, Sujatha; Vibhakar, Rajeev

    2016-01-01

    Diffuse intrinsic pontine gliomas (DIPGs) are highly aggressive, fatal, childhood tumors that arise in the brainstem. DIPGs have no effective treatment, and their location and diffuse nature render them inoperable. Radiation therapy remains the only standard of care for this devastating disease. New therapeutic targets are needed to develop novel therapy for DIPG. We examined the expression of PLK1 mRNA in DIPG tumor samples through microarray analysis and found it to be up regulated versus normal pons. Using the DIPG tumor cells, we inhibited PLK1 using a clinically relevant specific inhibitor BI 6727 and evaluated the effects on, proliferation, apoptosis, induction of DNA damage and radio sensitization of the DIPG tumor cells. Treatment of DIPG cell lines with BI 6727, a new generation, highly selective inhibitor of PLK1, resulted in decreased cell proliferation and a marked increase in cellular apoptosis. Cell cycle analysis showed a significant arrest in G2-M phase and a substantial increase in cell death. Treatment also resulted in an increased γH2AX expression, indicating induction of DNA damage. PLK1 inhibition resulted in radiosensitization of DIPG cells. These findings suggest that targeting PLK1 with small-molecule inhibitors, in combination with radiation therapy, will hold a novel strategy in the treatment of DIPG that warrants further investigation

  19. Pediatric providers and radiology examinations. Knowledge and comfort levels regarding ionizing radiation and potential complications of imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wildman-Tobriner, Benjamin; Maxfield, Charles M. [Duke University Hospital, Department of Radiology, Durham, NC (United States); Parente, Victoria M. [Duke University Hospital, Department of Pediatrics, Durham, NC (United States)

    2017-12-15

    Pediatric providers should understand the basic risks of the diagnostic imaging tests they order and comfortably discuss those risks with parents. Appreciating providers' level of understanding is important to guide discussions and enhance relationships between radiologists and pediatric referrers. To assess pediatric provider knowledge of diagnostic imaging modalities that use ionizing radiation and to understand provider concerns about risks of imaging. A 6-question survey was sent via email to 390 pediatric providers (faculty, trainees and midlevel providers) from a single academic institution. A knowledge-based question asked providers to identify which radiology modalities use ionizing radiation. Subjective questions asked providers about discussions with parents, consultations with radiologists, and complications of imaging studies. One hundred sixty-nine pediatric providers (43.3% response rate) completed the survey. Greater than 90% of responding providers correctly identified computed tomography (CT), fluoroscopy and radiography as modalities that use ionizing radiation, and ultrasound and magnetic resonance imaging (MRI) as modalities that do not. Fewer (66.9% correct, P<0.001) knew that nuclear medicine utilizes ionizing radiation. A majority of providers (82.2%) believed that discussions with radiologists regarding ionizing radiation were helpful, but 39.6% said they rarely had time to do so. Providers were more concerned with complications of sedation and cost than they were with radiation-induced cancer, renal failure or anaphylaxis. Providers at our academic referral center have a high level of basic knowledge regarding modalities that use ionizing radiation, but they are less aware of ionizing radiation use in nuclear medicine studies. They find discussions with radiologists helpful and are concerned about complications of sedation and cost. (orig.)

  20. Pediatric providers and radiology examinations: knowledge and comfort levels regarding ionizing radiation and potential complications of imaging.

    Science.gov (United States)

    Wildman-Tobriner, Benjamin; Parente, Victoria M; Maxfield, Charles M

    2017-12-01

    Pediatric providers should understand the basic risks of the diagnostic imaging tests they order and comfortably discuss those risks with parents. Appreciating providers' level of understanding is important to guide discussions and enhance relationships between radiologists and pediatric referrers. To assess pediatric provider knowledge of diagnostic imaging modalities that use ionizing radiation and to understand provider concerns about risks of imaging. A 6-question survey was sent via email to 390 pediatric providers (faculty, trainees and midlevel providers) from a single academic institution. A knowledge-based question asked providers to identify which radiology modalities use ionizing radiation. Subjective questions asked providers about discussions with parents, consultations with radiologists, and complications of imaging studies. One hundred sixty-nine pediatric providers (43.3% response rate) completed the survey. Greater than 90% of responding providers correctly identified computed tomography (CT), fluoroscopy and radiography as modalities that use ionizing radiation, and ultrasound and magnetic resonance imaging (MRI) as modalities that do not. Fewer (66.9% correct, Pionizing radiation. A majority of providers (82.2%) believed that discussions with radiologists regarding ionizing radiation were helpful, but 39.6% said they rarely had time to do so. Providers were more concerned with complications of sedation and cost than they were with radiation-induced cancer, renal failure or anaphylaxis. Providers at our academic referral center have a high level of basic knowledge regarding modalities that use ionizing radiation, but they are less aware of ionizing radiation use in nuclear medicine studies. They find discussions with radiologists helpful and are concerned about complications of sedation and cost.

  1. The Mechanisms to Consolidate Staff Efforts in the Targeting of Increasing the Competitive Potential of Enterprise

    Directory of Open Access Journals (Sweden)

    Legominova Svitlana V.

    2017-10-01

    Full Text Available The topicality of focusing efforts to improve the competitive potential of enterprise through intellectualization of its staff, using continuous training in accordance with technological regimes and modern trends, has been rationalized. The author has analyzed the structural features of intellectual capital, determining the need for their efficient interaction to gain competitive value. A combination of behavioristic and cognitive approaches has been proposed, using a holistic model of human resources management in order to ensure efficient management and consideration of specific characteristics of cognitive behavior. It has been proven that the competitive potential of enterprise is directly dependent on the accumulation and diffusion of knowledge, should be of permanent nature, ensuring a stable increase in the competitive potential of enterprise and creating the ground for the formation of leadership positions, thus determining the basic mainstreams of development.

  2. Peroxisome proliferator-activated receptor-gamma as a potential therapeutic target in the treatment of preeclampsia.

    LENUS (Irish Health Repository)

    McCarthy, Fergus P

    2012-01-31

    Preeclampsia is a multisystemic disorder of pregnancy characterized by hypertension, proteinuria, and maternal endothelial dysfunction. It is a major cause of maternal and perinatal morbidity and mortality and is thought to be attributable, in part, to inadequate trophoblast invasion. Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is a ligand-activated transcription factor expressed in trophoblasts, and the vasculature of which activation has been shown to improve endothelium-dependent vasodilatation in hypertensive conditions. We investigated the effects of the administration of a PPAR-gamma agonist using the reduced uterine perfusion pressure (RUPP) rat model of preeclampsia. The selective PPAR-gamma agonist, rosiglitazone, was administered to pregnant rats that had undergone RUPP surgery. To investigate whether any observed beneficial effects of PPAR-gamma activation were mediated by the antioxidant enzyme, heme oxygenase 1, rosiglitazone was administered in combination with the heme oxygenase 1 inhibitor tin-protoporphyrin IX. RUPP rats were characterized by hypertension, endothelial dysfunction, and elevated microalbumin:creatinine ratios. Rosiglitazone administration ameliorated hypertension, improved vascular function, and reduced the elevated microalbumin:creatinine ratio in RUPP rats. With the exception of microalbumin:creatinine ratio, these beneficial effects were abrogated in the presence of the heme oxygenase 1 inhibitor. Administration of a PPAR-gamma agonist prevented the development of several of the pathophysiological characteristics associated with the RUPP model of preeclampsia, via a heme oxygenase 1-dependent pathway. The findings from this study provide further insight into the underlying etiology of preeclampsia and a potential therapeutic target for the treatment of preeclampsia.

  3. Wnt pathway reprogramming during human embryonal carcinoma differentiation and potential for therapeutic targeting

    International Nuclear Information System (INIS)

    Snow, Grace E; Kasper, Allison C; Busch, Alexander M; Schwarz, Elisabeth; Ewings, Katherine E; Bee, Thomas; Spinella, Michael J; Dmitrovsky, Ethan; Freemantle, Sarah J

    2009-01-01

    Testicular germ cell tumors (TGCTs) are classified as seminonas or non-seminomas of which a major subset is embryonal carcinoma (EC) that can differentiate into diverse tissues. The pluripotent nature of human ECs resembles that of embryonic stem (ES) cells. Many Wnt signalling species are regulated during differentiation of TGCT-derived EC cells. This study comprehensively investigated expression profiles of Wnt signalling components regulated during induced differentiation of EC cells and explored the role of key components in maintaining pluripotency. Human embryonal carcinoma cells were stably infected with a lentiviral construct carrying a canonical Wnt responsive reporter to assess Wnt signalling activity following induced differentiation. Cells were differentiated with all-trans retinoic acid (RA) or by targeted repression of pluripotency factor, POU5F1. A Wnt pathway real-time-PCR array was used to evaluate changes in gene expression as cells differentiated. Highlighted Wnt pathway genes were then specifically repressed using siRNA or stable shRNA and transfected EC cells were assessed for proliferation, differentiation status and levels of core pluripotency genes. Canonical Wnt signalling activity was low basally in undifferentiated EC cells, but substantially increased with induced differentiation. Wnt pathway gene expression levels were compared during induced differentiation and many components were altered including ligands (WNT2B), receptors (FZD5, FZD6, FZD10), secreted inhibitors (SFRP4, SFRP1), and other effectors of Wnt signalling (FRAT2, DAAM1, PITX2, Porcupine). Independent repression of FZD5, FZD7 and WNT5A using transient as well as stable methods of RNA interference (RNAi) inhibited cell growth of pluripotent NT2/D1 human EC cells, but did not appreciably induce differentiation or repress key pluripotency genes. Silencing of FZD7 gave the greatest growth suppression in all human EC cell lines tested including NT2/D1, NT2/D1-R1, Tera-1 and 833

  4. Identification and analysis of potential targets in Streptococcus sanguinis using computer aided protein data analysis

    Directory of Open Access Journals (Sweden)

    Chowdhury MRH

    2014-11-01

    Full Text Available Md Rabiul Hossain Chowdhury,1 Md IqbalKaiser Bhuiyan,2 Ayan Saha,2 Ivan MHAI Mosleh,2 Sobuj Mondol,2 C M Sabbir Ahmed3 1Department of Pharmacy, University of Science and Technology Chittagong, Chittagong, Bangladesh; 2Department of Genetic Engineering and Biotechnology, University of Chittagong, Chittagong, Bangladesh; 3Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh Purpose: Streptococcus sanguinis is a Gram-positive, facultative aerobic bacterium that is a member of the viridans streptococcus group. It is found in human mouths in dental plaque, which accounts for both dental cavities and bacterial endocarditis, and which entails a mortality rate of 25%. Although a range of remedial mediators have been found to control this organism, the effectiveness of agents such as penicillin, amoxicillin, trimethoprim–sulfamethoxazole, and erythromycin, was observed. The emphasis of this investigation was on finding substitute and efficient remedial approaches for the total destruction of this bacterium. Materials and methods: In this computational study, various databases and online software were used to ascertain some specific targets of S. sanguinis. Particularly, the Kyoto Encyclopedia of Genes and Genomes databases were applied to determine human nonhomologous proteins, as well as the metabolic pathways involved with those proteins. Different software such as Phyre2, CastP, DoGSiteScorer, the Protein Function Predictor server, and STRING were utilized to evaluate the probable active drug binding site with its known function and protein–protein interaction. Results: In this study, among 218 essential proteins of this pathogenic bacterium, 81 nonhomologous proteins were accrued, and 15 proteins that are unique in several metabolic pathways of S. sanguinis were isolated through metabolic pathway analysis. Furthermore, four essentially membrane-bound unique proteins that are involved in distinct metabolic

  5. The way forward in biochar research: targeting trade-offs between the potential wins

    NARCIS (Netherlands)

    Jeffery, S.; Bezemer, T.M.; Cornelissen, G.; Kuyper, T.W.; Lehmann, J.; Mommer, Liesje; Sohi, S.; Van de Voorde, T.F.J.; Wardle, D.A.; Van Groenigen, J.W.

    2015-01-01

    Biochar application to soil is currently widely advocated for a variety of reasons related to sustainability. Typically, soil amelioration with biochar is presented as a multiple-‘win’ strategy, although it is also associated with potential risks such as environmental contamination. The most often

  6. Personal Communication Device Use by Nurses Providing In-Patient Care: Survey of Prevalence, Patterns, and Distraction Potential.

    Science.gov (United States)

    McBride, Deborah L; LeVasseur, Sandra A

    2017-04-13

    Coincident with the proliferation of employer-provided mobile communication devices, personal communication devices, including basic and enhanced mobile phones (smartphones) and tablet computers that are owned by the user, have become ubiquitous among registered nurses working in hospitals. While there are numerous benefits of personal communication device use by nurses at work, little is known about the impact of these devices on in-patient care. Our aim was to examine how hospital-registered nurses use their personal communication devices while doing both work-related and non‒work-related activities and to assess the impact of these devices on in-patient care. A previously validated survey was emailed to 14,797 members of two national nursing organizations. Participants were asked about personal communication device use and their opinions about the impact of these devices on their own and their colleagues' work. Of the 1268 respondents (8.57% response rate), only 5.65% (70/1237) never used their personal communication device at work (excluding lunch and breaks). Respondents self-reported using their personal communication devices at work for work-related activities including checking or sending text messages or emails to health care team members (29.02%, 363/1251), as a calculator (25.34%, 316/1247), and to access work-related medical information (20.13%, 251/1247). Fewer nurses reported using their devices for non‒work-related activities including checking or sending text messages or emails to friends and family (18.75%, 235/1253), shopping (5.14%, 64/1244), or playing games (2.73%, 34/1249). A minority of respondents believe that their personal device use at work had a positive effect on their work including reducing stress (29.88%, 369/1235), benefiting patient care (28.74%, 357/1242), improving coordination of patient care among the health care team (25.34%, 315/1243), or increasing unit teamwork (17.70%, 220/1243). A majority (69.06%, 848/1228) of

  7. Drug addiction: targeting dynamic neuroimmune receptor interactions as a potential therapeutic strategy.

    Science.gov (United States)

    Jacobsen, Jonathan Henry W; Hutchinson, Mark R; Mustafa, Sanam

    2016-02-01

    Drug addiction and dependence have proven to be difficult psychiatric disorders to treat. The limited efficacy of neuronally acting medications, such as acamprosate and naltrexone, highlights the need to identify novel targets. Recent research has underscored the importance of the neuroimmune system in many behavioural manifestations of drug addiction. In this review, we propose that our appreciation for complex phenotypes such as drug addiction and dependence will come with a greater understanding that these disorders are the result of intricate, interconnected signalling pathways that are, if only partially, determined at the receptor level. The idea of receptor heteromerisation and receptor mosaics will be introduced to explain cross talk between the receptors and signalling molecules implicated in neuroimmune signalling pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Nuclear trafficking of proteins from RNA viruses: potential target for antivirals?

    Science.gov (United States)

    Caly, Leon; Wagstaff, Kylie M; Jans, David A

    2012-09-01

    A key aspect of the infectious cycle of many viruses is the transport of specific viral proteins into the host cell nucleus to perturb the antiviral response. Examples include a number of RNA viruses that are significant human pathogens, such as human immunodeficiency virus (HIV)-1, influenza A, dengue, respiratory syncytial virus and rabies, as well agents that predominantly infect livestock, such as Rift valley fever virus and Venezuelan equine encephalitis virus. Inhibiting the nuclear trafficking of viral proteins as a therapeutic strategy offers an attractive possibility, with important recent progress having been made with respect to HIV-1 and dengue. The results validate nuclear protein import as an antiviral target, and suggest the identification and development of nuclear transport inhibitors as a viable therapeutic approach for a range of human and zoonotic pathogenic viruses. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Regulation of DDAH1 as a Potential Therapeutic Target for Treating Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Xiaoyu Liu

    2013-01-01

    Full Text Available Asymmetric dimethylarginine (ADMA is an endogenous nitric oxide synthase inhibitor that blocks nitric oxide production, while congestive heart failure is associated with increased plasma and tissue ADMA content. Increased plasma ADMA is a strong and independent predictor of all-cause mortality in the community and the strongest predictor of mortality in patients after myocardial infarction. Recent studies demonstrated that dimethylarginine dimethylaminohydrolase-1 (DDAH1 is the critical enzyme for ADMA degradation and thereby plays an important role in maintaining cardiovascular nitric oxide bioavailability. Interestingly, activation of the farnesoid X receptor (FXR through the bile acid ursodeoxycholic acid (UDCA or synthetic FXR agonists, such as GW4064, can increase DDAH1 expression. Thus, modulating DDAH1 activity through FXR receptor agonists such as UDCA could be a therapeutic target for treating reduced nitric oxide bioavailability in congestive heart failure and other cardiovascular diseases.

  10. Claudins Overexpression in Ovarian Cancer: Potential Targets for Clostridium Perfringens Enterotoxin (CPE Based Diagnosis and Therapy

    Directory of Open Access Journals (Sweden)

    Diana P. English

    2013-05-01

    Full Text Available Claudins are a family of tight junction proteins regulating paracellular permeability and cell polarity with different patterns of expression in benign and malignant human tissues. There are approximately 27 members of the claudin family identified to date with varying cell and tissue-specific expression. Claudins-3, -4 and -7 represent the most highly differentially expressed claudins in ovarian cancer. While their exact role in ovarian tumors is still being elucidated, these proteins are thought to be critical for ovarian cancer cell invasion/dissemination and resistance to chemotherapy. Claudin-3 and claudin-4 are the natural receptors for the Clostridium perfringens enterotoxin (CPE, a potent cytolytic toxin. These surface proteins may therefore represent attractive targets for the detection and treatment of chemotherapy-resistant ovarian cancer and other aggressive solid tumors overexpressing claudin-3 and -4 using CPE-based theranostic agents.

  11. Disease-Associated Particulates and Joint Inflammation; Mechanistic Insights and Potential Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    Olwyn R. Mahon

    2018-05-01

    Full Text Available It is now well established that intra-articular deposition of endogenous particulates, such as osteoarthritis-associated basic calcium phosphate crystals, gout-associated monosodium urate crystals, and calcium deposition disease-associated calcium pyrophosphate crystals, contributes to joint destruction through the production of cartilage-degrading enzymes and pro-inflammatory cytokines. Furthermore, exogenous wear-debris particles, generated from prosthetic implants, drive periprosthetic osteolysis which impacts on the longevity of total joint replacements. Over the last few years, significant insight has been gained into the mechanisms through which these particulates exert their effects. Not only has this increased our understanding of the pathological processes associated with crystal deposition but it has also led to the identification of a number of therapeutic targets to treat particulate-associated disease. In this review, we discuss recent developments regarding the cellular events triggered by joint-associated particulates, as well as future directions in therapy for particulate-related arthropathies.

  12. MicroRNAs: Potential Biomarkers and Therapeutic Targets for Alveolar Bone Loss in Periodontal Disease

    Directory of Open Access Journals (Sweden)

    Tadayoshi Kagiya

    2016-08-01

    Full Text Available Periodontal disease is an inflammatory disease caused by bacterial infection of tooth-supporting structures, which results in the destruction of alveolar bone. Osteoclasts play a central role in bone destruction. Osteoclasts are tartrate-resistant acid phosphatase (TRAP-positive multinucleated giant cells derived from hematopoietic stem cells. Recently, we and other researchers revealed that microRNAs are involved in osteoclast differentiation. MicroRNAs are novel, single-stranded, non-coding, small (20–22 nucleotides RNAs that act in a sequence-specific manner to regulate gene expression at the post-transcriptional level through cleavage or translational repression of their target mRNAs. They regulate various biological activities such as cellular differentiation, apoptosis, cancer development, and inflammatory responses. In this review, the roles of microRNAs in osteoclast differentiation and function during alveolar bone destruction in periodontal disease are described.

  13. p53, SKP2, and DKK3 as MYCN Target Genes and Their Potential Therapeutic Significance

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lindi; Tweddle, Deborah A., E-mail: deborah.tweddle@ncl.ac.uk [Newcastle Cancer Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle (United Kingdom)

    2012-11-28

    Neuroblastoma is the most common extra-cranial solid tumor of childhood. Despite significant advances, it currently still remains one of the most difficult childhood cancers to cure, with less than 40% of patients with high-risk disease being long-term survivors. MYCN is a proto-oncogene implicated to be directly involved in neuroblastoma development. Amplification of MYCN is associated with rapid tumor progression and poor prognosis. Novel therapeutic strategies which can improve the survival rates whilst reducing the toxicity in these patients are therefore required. Here we discuss genes regulated by MYCN in neuroblastoma, with particular reference to p53, SKP2, and DKK3 and strategies that may be employed to target them.

  14. Therapeutic Role and Drug Delivery Potential of Neuroinflammation as a Target in Neurodegenerative Disorders.

    Science.gov (United States)

    Singh, Abhijeet; Chokriwal, Ankit; Sharma, Madan Mohan; Jain, Devendra; Saxena, Juhi; Stephen, Bjorn John

    2017-08-16

    Neuroinflammation, the condition associated with the hyperactivity of immune cells within the CNS (central nervous system), has recently been linked to a host range of neurodegenerative disorders. Targeting neuroinflammation could be of prime importance as recent research highlights the beneficial aspects associated with modulating the inflammatory mediators associated with the CNS. One of the main obstructions in neuroinflammatory treatments is the hindrance posed by the blood-brain barrier for the delivery of drugs. Hence, research has focused on novel modes of transport for drugs to cross the barrier through drug delivery and nanotechnology approaches. In this Review, we highlight the therapeutic advancement made in the field of neurodegenerative disorders by focusing on the effect neuroinflammation treatment has on these conditions.

  15. Potential proteins targeted by let-7f-5p in HeLa cells.

    Science.gov (United States)

    Wang, Yu; Chen, Xiujuan; Zhang, Yi; Song, Jiandong

    2017-07-24

    MicroRNAs are a class of small, endogenous, non-coding RNAs mediating posttranscriptional gene silencing. The current authors hypothesized that let-7f-5p is likely involved in cell invasion and proliferation by regulating the expression of target genes. The current study combined let-7f-5p with iTRAQ to assess its effect on gene expression in HeLa cells. Results indicated that 164 proteins were expressed at different levels in HeLa cells overexpressing let-7f-5p and negative controls and that 172 proteins were expressed at different levels in let-7f-5p-silenced HeLa cells and negative controls. Results indicated that let-7f-5p may suppress insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) in HeLa cells.

  16. Assessing potential targets of calcium action in light-modulated gravitropism

    Science.gov (United States)

    Roux, S. J.

    1995-01-01

    Light, through the mediation of the pigment phytochrome, modulates the gravitropic response of the shoots and roots of many plants. The transduction of both light and gravity stimuli appears to involve Ca(2+)-regulated steps, one or more of which may represent points of intersection between the two transduction chains. To be confident that Ca2+ plays a critical role in stimulus-response coupling for gravitropism, it will be important to identify specific targets of Ca2+ action whose function can be clearly linked to the regulation of growth. Calcium typically exerts its influence on cell metabolism through binding to and activating key regulatory proteins. The three best characterized of these proteins in plants are the calmodulins, calcium-dependent protein kinases, and annexins. In this review we summarize what is known about the structure and function of these proteins and speculate on how their activation by Ca2+ could influence the differential growth response of gravitropism.

  17. RANK ligand as a potential target for breast cancer prevention in BRCA1-mutation carriers.

    Science.gov (United States)

    Nolan, Emma; Vaillant, François; Branstetter, Daniel; Pal, Bhupinder; Giner, Göknur; Whitehead, Lachlan; Lok, Sheau W; Mann, Gregory B; Rohrbach, Kathy; Huang, Li-Ya; Soriano, Rosalia; Smyth, Gordon K; Dougall, William C; Visvader, Jane E; Lindeman, Geoffrey J

    2016-08-01

    Individuals who have mutations in the breast-cancer-susceptibility gene BRCA1 (hereafter referred to as BRCA1-mutation carriers) frequently undergo prophylactic mastectomy to minimize their risk of breast cancer. The identification of an effective prevention therapy therefore remains a 'holy grail' for the field. Precancerous BRCA1(mut/+) tissue harbors an aberrant population of luminal progenitor cells, and deregulated progesterone signaling has been implicated in BRCA1-associated oncogenesis. Coupled with the findings that tumor necrosis factor superfamily member 11 (TNFSF11; also known as RANKL) is a key paracrine effector of progesterone signaling and that RANKL and its receptor TNFRSF11A (also known as RANK) contribute to mammary tumorigenesis, we investigated a role for this pathway in the pre-neoplastic phase of BRCA1-mutation carriers. We identified two subsets of luminal progenitors (RANK(+) and RANK(-)) in histologically normal tissue of BRCA1-mutation carriers and showed that RANK(+) cells are highly proliferative, have grossly aberrant DNA repair and bear a molecular signature similar to that of basal-like breast cancer. These data suggest that RANK(+) and not RANK(-) progenitors are a key target population in these women. Inhibition of RANKL signaling by treatment with denosumab in three-dimensional breast organoids derived from pre-neoplastic BRCA1(mut/+) tissue attenuated progesterone-induced proliferation. Notably, proliferation was markedly reduced in breast biopsies from BRCA1-mutation carriers who were treated with denosumab. Furthermore, inhibition of RANKL in a Brca1-deficient mouse model substantially curtailed mammary tumorigenesis. Taken together, these findings identify a targetable pathway in a putative cell-of-origin population in BRCA1-mutation carriers and implicate RANKL blockade as a promising strategy in the prevention of breast cancer.

  18. Identification and analysis of potential targets in Streptococcus sanguinis using computer aided protein data analysis.

    Science.gov (United States)

    Chowdhury, Md Rabiul Hossain; Bhuiyan, Md IqbalKaiser; Saha, Ayan; Mosleh, Ivan Mhai; Mondol, Sobuj; Ahmed, C M Sabbir

    2014-01-01

    Streptococcus sanguinis is a Gram-positive, facultative aerobic bacterium that is a member of the viridans streptococcus group. It is found in human mouths in dental plaque, which accounts for both dental cavities and bacterial endocarditis, and which entails a mortality rate of 25%. Although a range of remedial mediators have been found to control this organism, the effectiveness of agents such as penicillin, amoxicillin, trimethoprim-sulfamethoxazole, and erythromycin, was observed. The emphasis of this investigation was on finding substitute and efficient remedial approaches for the total destruction of this bacterium. In this computational study, various databases and online software were used to ascertain some specific targets of S. sanguinis. Particularly, the Kyoto Encyclopedia of Genes and Genomes databases were applied to determine human nonhomologous proteins, as well as the metabolic pathways involved with those proteins. Different software such as Phyre2, CastP, DoGSiteScorer, the Protein Function Predictor server, and STRING were utilized to evaluate the probable active drug binding site with its known function and protein-protein interaction. In this study, among 218 essential proteins of this pathogenic bacterium, 81 nonhomologous proteins were accrued, and 15 proteins that are unique in several metabolic pathways of S. sanguinis were isolated through metabolic pathway analysis. Furthermore, four essentially membrane-bound unique proteins that are involved in distinct metabolic pathways were revealed by this research. Active sites and druggable pockets of these selected proteins were investigated with bioinformatic techniques. In addition, this study also mentions the activity of those proteins, as well as their interactions with the other proteins. Our findings helped to identify the type of protein to be considered as an efficient drug target. This study will pave the way for researchers to develop and discover more effective and specific

  19. Identification and analysis of potential targets in Streptococcus sanguinis using computer aided protein data analysis

    Science.gov (United States)

    Chowdhury, Md Rabiul Hossain; Bhuiyan, Md IqbalKaiser; Saha, Ayan; Mosleh, Ivan MHAI; Mondol, Sobuj; Ahmed, C M Sabbir

    2014-01-01

    Purpose Streptococcus sanguinis is a Gram-positive, facultative aerobic bacterium that is a member of the viridans streptococcus group. It is found in human mouths in dental plaque, which accounts for both dental cavities and bacterial endocarditis, and which entails a mortality rate of 25%. Although a range of remedial mediators have been found to control this organism, the effectiveness of agents such as penicillin, amoxicillin, trimethoprim–sulfamethoxazole, and erythromycin, was observed. The emphasis of this investigation was on finding substitute and efficient remedial approaches for the total destruction of this bacterium. Materials and methods In this computational study, various databases and online software were used to ascertain some specific targets of S. sanguinis. Particularly, the Kyoto Encyclopedia of Genes and Genomes databases were applied to determine human nonhomologous proteins, as well as the metabolic pathways involved with those proteins. Different software such as Phyre2, CastP, DoGSiteScorer, the Protein Function Predictor server, and STRING were utilized to evaluate the probable active drug binding site with its known function and protein–protein interaction. Results In this study, among 218 essential proteins of this pathogenic bacterium, 81 nonhomologous proteins were accrued, and 15 proteins that are unique in several metabolic pathways of S. sanguinis were isolated through metabolic pathway analysis. Furthermore, four essentially membrane-bound unique proteins that are involved in distinct metabolic pathways were revealed by this research. Active sites and druggable pockets of these selected proteins were investigated with bioinformatic techniques. In addition, this study also mentions the activity of those proteins, as well as their interactions with the other proteins. Conclusion Our findings helped to identify the type of protein to be considered as an efficient drug target. This study will pave the way for researchers to

  20. Visual encoding and fixation target selection in free viewing: presaccadic brain potentials

    Directory of Open Access Journals (Sweden)

    Andrey R Nikolaev

    2013-06-01

    Full Text Available In scrutinizing a scene, the eyes alternate between fixations and saccades. During a fixation, two component processes can be distinguished: visual encoding and selection of the next fixation target. We aimed to distinguish the neural correlates of these processes in the electrical brain activity prior to a saccade onset. Participants viewed color photographs of natural scenes, in preparation for a change detection task. Then, for each participant and each scene we computed an image heat map, with temperature representing the duration and density of fixations. The temperature difference between the start and end points of saccades was taken as a measure of the expected task-relevance of the information concentrated in specific regions of a scene. Visual encoding was evaluated according to whether subsequent change was correctly detected. Saccades with larger temperature difference were more likely to be followed by correct detection than ones with smaller temperature differences. The amplitude of presaccadic activity over anterior brain areas was larger for correct detection than for detection failure. This difference was observed for short scrutinizing but not for long explorative saccades, suggesting that presaccadic activity reflects top-down saccade guidance. Thus, successful encoding requires local scanning of scene regions which are expected to be task-relevant. Next, we evaluated fixation target selection. Saccades moving up in temperature were preceded by presaccadic activity of higher amplitude than those moving down. This finding suggests that presaccadic activity reflects attention deployed to the following fixation location. Our findings illustrate how presaccadic activity can elucidate concurrent brain processes related to the immediate goal of planning the next saccade and the larger-scale goal of constructing a robust representation of the visual scene.

  1. Role of Saudi universities in achieving the solar potential 2030 target

    International Nuclear Information System (INIS)

    Alyahya, Sulaiman; Irfan, Mohammad A.

    2016-01-01

    In Saudi Arabia, domestic consumption of fossil fuel is expected to grow from 3.4 MBOE (Million Barrels of Oil Equivalent) to 8.3 MBOE by 2028; peak power demand from 55 GW to 121 GW by 2030. About 61 GW of demand appears unmet by the output of planned projects. In response, KACARE (King Abdullah City for Atomic and Renewable Energy, the nation’s energy policy maker) has announced the target of installing 41 GW of solar capacity by 2030 (24 GW by 2020). Deployment of so much solar power requires a substantial, locally trained, technical workforce. A lower bound estimate of 8.9 persons/MW of Solar PV and 3.04 persons/MW of Solar Thermal can be taken for manufacturing, operations and maintenance. This conservative figure would mean employment for 218,650 workers by 2030. This would require the 24 local universities to graduate 14,577 technically qualified workers annually for the next 15 years (607 graduates per year per university). Even assuming a 50% import of technical manpower, the above estimate can be revised as 303 graduates per university per year. The need for so many technical workers makes it imperative for local universities to immediately ramp up their capacity to graduate technical workforce. - Highlights: •A review was made for manpower requirement of solar projects. •Manpower requirement was suggested for the Solar Target 2030 of 41 GW for Saudi Arabia. •Role of universities was elaborated in achieving tis manpower requirement.

  2. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential

    DEFF Research Database (Denmark)

    Zhang, Gengyun; Liu, Xin; Quan, Zhiwu

    2012-01-01

    Foxtail millet (Setaria italica), a member of the Poaceae grass family, is an important food and fodder crop in arid regions and has potential for use as a C(4) biofuel. It is a model system for other biofuel grasses, including switchgrass and pearl millet. We produced a draft genome (∼423 Mb) an...

  3. Realizing the therapeutic potential of rare earth elements in designing nanoparticles to target and treat glioblastoma.

    Science.gov (United States)

    Lu, Victor M; McDonald, Kerrie L; Townley, Helen E

    2017-10-01

    The prognosis of brain cancer glioblastoma (GBM) is poor, and despite intense research, there have been no significant improvements within the last decade. This stasis implicates the need for more novel therapeutic investigation. One such option is the use of nanoparticles (NPs), which can be beneficial due to their ability to penetrate the brain, overcome the blood-brain barrier and take advantage of the enhanced permeation and retention effect of GBM to improve specificity. Rare earth elements possess a number of interesting natural properties due to their unique electronic configuration, which may prove therapeutically advantageous in an NP formulation. The underexplored exciting potential for rare earth elements to augment the therapeutic potential of NPs in GBM treatment is discussed in this review.

  4. Synaptic neurochemistry: Potential targets for the development of new tracer imaging methods

    International Nuclear Information System (INIS)

    Frey, K.A.

    1991-01-01

    Radiotracer techniques for measuring biochemical and pharmacologic processes unique to the synapse and to chemically defined neuronal populations are now under investigation. These methods make use of neuronal biochemical specializations determined by invasive animal experiments and confirmed by human biopsy and autopsy. Early investigators focused on determination of neurotransmitter receptors. More recently, attention has turned to evaluation of presynaptic markers such as steps in neurotransmitter synthesis, storage and degradation, and to the potential evaluation of new postsynaptic markers, including chemical second-messenger activities and receptor-grated ion channel distributions. In this review, synaptic neurochemistry is presented with attention to potential radiotracer imaging methods. Strategies for selecting and applying neuropharmacologic methods to disorders of the human brain are outlined. The methodological requirements of new radiotracer imaging techniques are summarized according to their desired application. Finally, distinctions between in vitro and in vivo measurements of these processes are outlined, along with strategies for detecting such differences

  5. Therapeutic Potential of Thymoquinone in Glioblastoma Treatment: Targeting Major Gliomagenesis Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Fabliha Ahmed Chowdhury

    2018-01-01

    Full Text Available Glioblastoma multiforme (GBM is one of the most devastating brain tumors with median survival of one year and presents unique challenges to therapy because of its aggressive behavior. Current treatment strategy involves surgery, radiotherapy, immunotherapy, and adjuvant chemotherapy even though optimal management requires a multidisciplinary approach and knowledge of potential complications from both the disease and its treatment. Thymoquinone (TQ, the main bioactive component of Nigella sativa L., has exhibited anticancer effects in numerous preclinical studies. Due to its multitargeting nature, TQ interferes in a wide range of tumorigenic processes and counteract carcinogenesis, malignant growth, invasion, migration, and angiogenesis. TQ can specifically sensitize tumor cells towards conventional cancer treatments and minimize therapy-associated toxic effects in normal cells. Its potential to enter brain via nasal pathway due to volatile nature of TQ adds another advantage in overcoming blood-brain barrier. In this review, we summarized the potential role of TQ in different signaling pathways in GBM that have undergone treatment with standard therapeutic modalities or with TQ. Altogether, we suggest further comprehensive evaluation of TQ in preclinical and clinical level to delineate its implied utility as novel therapeutics to combat the challenges for the treatment of GBM.

  6. Extracellular matrix in uterine leiomyoma pathogenesis: a potential target for future therapeutics.

    Science.gov (United States)

    Islam, Md Soriful; Ciavattini, Andrea; Petraglia, Felice; Castellucci, Mario; Ciarmela, Pasquapina

    2018-01-01

    Uterine leiomyoma (also known as fibroid or myoma) is the most common benign tumor of the uterus found in women of reproductive age. It is not usually fatal but can produce serious clinical symptoms, including excessive uterine bleeding, pelvic pain or pressure, infertility and pregnancy complications. Due to lack of effective medical treatments surgery has been a definitive choice for the management of this tumor. Extracellular matrix (ECM) accumulation and remodeling are thought to be crucial for fibrotic diseases such as uterine leiomyoma. Indeed, ECM plays important role in forming the bulk structure of leiomyoma, and the ECM-rich rigid structure within these tumors is thought to be a cause of abnormal bleeding and pelvic pain. Therefore, a better understanding of ECM accumulation and remodeling is critical for developing new therapeutics for uterine leiomyoma. PubMed and Google Scholar were searched for all original and review articles/book chapters related to ECM and medical treatments of uterine leiomyoma published in English until May 2017. This review discusses the involvement of ECM in leiomyoma pathogenesis as well as current and future medical treatments that target ECM directly or indirectly. Uterine leiomyoma is characterized by elevated levels of collagens, fibronectin, laminins and proteoglycans. They can induce the mechanotransduction process, such as activation of the integrin-Rho/p38 MAPK/ERK pathway, resulting in cellular responses that are involved in pathogenesis and altered bidirectional signaling between leiomyoma cells and the ECM. ECM accumulation is affected by growth factors (TGF-β, activin-A and PDGF), cytokines (TNF-α), steroid hormones (estrogen and progesterone) and microRNAs (miR-29 family, miR-200c and miR-93/106b). Among these, TGF-βs (1 and 3) and activin-A have been suggested as key players in the accumulation of excessive ECM (fibrosis) in leiomyoma. The presence of elevated levels of ECM and myofibroblasts in leiomyoma

  7. The synthesis and biological evaluation of integrin receptor targeting molecules as potential radiopharmaceuticals

    Science.gov (United States)

    Pellegrini, Paul

    This thesis reports on the synthesis, characterisation and biological evaluation of a number of metal complexes designed to interact with the alphavbeta3 integrin receptor, an important biological target that is heavily involved in angiogenesis, and thus cancer related processes. Two approaches were used to synthesise the integrin-avid targets. The first was to attach a variety of bifunctional chelators (BFC's) for the incorporation of different metal centres to a known integrin antagonist, L-748,415, developed by Merck. The BFC's used were the hydrazinonicotinamide (HYNIC) and monoamine monoamide dithiol (MAMA) systems for coordination to Tc-99m and rhenium of which was used as a characterization surrogate for the unstable Tc core. The 1,4,7,10-tetraazacyclotridecanetetraacetic acid (TRITA) BFC was attached for the inclusion of copper and lutetium. This 'conjugate' approach was designed to yield information on how the BFC and the linker length would affect the affinity for the integrin receptor. The second approach was an 'integrated' method where the chelation moiety was integral to the biologically relevant part of the molecule, which in the case of the alphavbeta3 integrin receptor, is the arginine-glycine-aspartic acid (RGD) mimicking sequence. Two complexes were created with a modified MAMA derivative placed between a benzimidazole moiety (arginine mimick) and the aspartic acid mimicking terminal carboxylic acid to see how it would affect binding while keeping the molecular weight relatively low. The molecules were tested in vitro against purified human alphavbeta3 integrin receptor protein in a solid phase receptor binding assay to evaluate their inhibition constants against a molecule of known high affinity and selectivity in [I125]L-775,219, the I125 labelled alphavbeta3 integrin antagonist. The radiolabelled analogues were also tested in vivo against the A375 human melanoma cell line transplanted into balb/c nude mice as well as Fischer rats implanted

  8. Lysine biosynthesis in bacteria: a metallodesuccinylase as a potential antimicrobial target

    OpenAIRE

    Gillner, Danuta M.; Becker, Daniel P.; Holz, Richard C.

    2012-01-01

    In this review, we summarize the recent literature on dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) enzymes, with an emphasis on structure–function studies that provide insight into the catalytic mechanism. Crystallographic data have also provided insight into residues that might be involved in substrate and hence inhibitor recognition and binding. These data have led to the design and synthesis of several new DapE inhibitors, which are described along with what is know...

  9. Lysine biosynthesis in bacteria: a metallodesuccinylase as a potential antimicrobial target.

    Science.gov (United States)

    Gillner, Danuta M; Becker, Daniel P; Holz, Richard C

    2013-02-01

    In this review, we summarize the recent literature on dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) enzymes, with an emphasis on structure-function studies that provide insight into the catalytic mechanism. Crystallographic data have also provided insight into residues that might be involved in substrate and hence inhibitor recognition and binding. These data have led to the design and synthesis of several new DapE inhibitors, which are described along with what is known about how inhibitors interact with the active site of DapE enzymes, including the efficacy of a moderately strong DapE inhibitor.

  10. Is TNF-a-targeted short hairpin RNA (shRNA) a novel potential therapeutic tool in psoriasis treatment?

    DEFF Research Database (Denmark)

    Stenderup, Karin; Jakobsen, Maria; Rosada, Cecilia

    2008-01-01

      TNF-α is a well known target in psoriasis treatment and biological treatments targeting TNF-a are already clinically used against psoriasis and psoriasis arthritis. Attention is however given to a novel therapeutic tool: RNA interference that controls gene silencing. This study investigates...... the efficiency of targeting TNF-a with specific short hairpin RNA (shRNA) and explores its potential in treating psoriasis. ShRNAs targeting human TNF-α mRNA were generated. Their efficiency in down-regulating TNF-a protein expression was evaluated using a Renilla luciferase screening-assay and a transient co...... TNF-a shRNA was used to transduce HEK293 cells and verify vector-derived TNF-a knockdown in vitro. In vivo, psoriasis skin was exposed to lentiviral TNF-a shRNAs by a single intra-dermal injection. Psoriasis skin for the in vivo study was obtained from psoriatic plaque skin biopsies that were...

  11. BRCA1, FANCD2 and Chk1 are potential molecular targets for the modulation of a radiation-induced DNA damage response in bystander cells.

    Science.gov (United States)

    Burdak-Rothkamm, Susanne; Rothkamm, Kai; McClelland, Keeva; Al Rashid, Shahnaz T; Prise, Kevin M

    2015-01-28

    Radiotherapy is an important treatment option for many human cancers. Current research is investigating the use of molecular targeted drugs in order to improve responses to radiotherapy in various cancers. The cellular response to irradiation is driven by both direct DNA damage in the targeted cell and intercellular signalling leading to a broad range of bystander effects. This study aims to elucidate radiation-induced DNA damage response signalling in bystander cells and to identify potential molecular targets to modulate the radiation induced bystander response in a therapeutic setting. Stalled replication forks in T98G bystander cells were visualised via bromodeoxyuridine (BrdU) nuclear foci detection at sites of single stranded DNA. γH2AX co-localised with these BrdU foci. BRCA1 and FANCD2 foci formed in T98G bystander cells. Using ATR mutant F02-98 hTERT and ATM deficient GM05849 fibroblasts it could be shown that ATR but not ATM was required for the recruitment of FANCD2 to sites of replication associated DNA damage in bystander cells whereas BRCA1 bystander foci were ATM-dependent. Phospho-Chk1 foci formation was observed in T98G bystander cells. Clonogenic survival assays showed moderate radiosensitisation of directly irradiated cells by the Chk1 inhibitor UCN-01 but increased radioresistance of bystander cells. This study identifies BRCA1, FANCD2 and Chk1 as potential targets for the modulation of radiation response in bystander cells. It adds to our understanding of the key molecular events propagating out-of-field effects of radiation and provides a rationale for the development of novel molecular targeted drugs for radiotherapy optimisation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Lung cancer, caring for the caregivers. A qualitative study of providing pro-active social support targeted to the carers of patients with lung cancer.

    Science.gov (United States)

    Ryan, P J; Howell, V; Jones, J; Hardy, E J

    2008-04-01

    Carers of patients with lung cancer often have a short time to access the support they require. The Macmillan Carers Project (MCP) was set up to provide non-clinical social support targeted in the community to the carers of patients with lung cancer and this study describes its evaluation. Prospective case study using interviews with the carers, project workers and health and social care professionals to obtain qualitative data for thematic analysis. 81 patients' carers received support from the MCP; 20 carers, 2 MCP workers and their manager and 10 other professionals (chest consultant physician, lung cancer clinical nurse specialist, GP, four Macmillan nurses, hospice social worker and two community social workers) were interviewed. Patients were predominantly male (62%), mean age 71 years and carers were predominantly female (70%) mean age 63 years. Carers identified the MCP as providing emotional support, more time, practical help, financial advice, information and back-up for a myriad of problems. Although there was some overlap with other services, the MCP was valued by carers and professionals as filling a gap in social care. The unique aspect of this study was support targeted to the carers of a single cancer site (lung) rather than generic cancer support. As lung cancer may progress rapidly, patients and their carers have a short time to gather new information, access services and adjust to their new circumstances and roles. By focusing on the needs of carers from the time of lung cancer diagnosis, we have shown that the MCP was a valued additional service, well received by carers, patients and professionals.

  13. Apoptotic Pathways Linked to Endocrine System as Potential Therapeutic Targets for Benign Prostatic Hyperplasia.

    Science.gov (United States)

    Minutoli, Letteria; Rinaldi, Mariagrazia; Marini, Herbert; Irrera, Natasha; Crea, Giovanni; Lorenzini, Cesare; Puzzolo, Domenico; Valenti, Andrea; Pisani, Antonina; Adamo, Elena B; Altavilla, Domenica; Squadrito, Francesco; Micali, Antonio

    2016-08-11

    Benign prostatic hyperplasia (BPH) is a chronic condition common in older men that can result in bothersome lower urinary tract symptoms. The molecular mechanisms and networks underlying the development and the progression of the disease are still far from being fully understood. BPH results from smooth muscle cell and epithelial cell proliferation, primarily within the transition zone of the prostate. Apoptosis and inflammation play important roles in the control of cell growth and in the maintenance of tissue homeostasis. Disturbances in molecular mechanisms of apoptosis machinery have been linked to BPH. Increased levels of the glycoprotein Dickkopf-related protein 3 in BPH cause an inhibition of the apoptosis machinery through a reduction in B cell lymphoma (Bcl)-2 associated X protein (Bax) expression. Inhibitors of apoptosis proteins influence cell death by direct inhibition of caspases and modulation of the transcription factor nuclear factor-κB. Current pharmacotherapy targets either the static component of BPH, including finasteride and dutasteride, or the dynamic component of BPH, including α-adrenoceptor antagonists such as tamsulosin and alfuzosin. Both these classes of drugs significantly interfere with the apoptosis machinery. Furthermore, phytotherapic supplements and new drugs may also modulate several molecular steps of apoptosis.

  14. Apoptotic Pathways Linked to Endocrine System as Potential Therapeutic Targets for Benign Prostatic Hyperplasia

    Science.gov (United States)

    Minutoli, Letteria; Rinaldi, Mariagrazia; Marini, Herbert; Irrera, Natasha; Crea, Giovanni; Lorenzini, Cesare; Puzzolo, Domenico; Valenti, Andrea; Pisani, Antonina; Adamo, Elena B.; Altavilla, Domenica; Squadrito, Francesco; Micali, Antonio

    2016-01-01

    Benign prostatic hyperplasia (BPH) is a chronic condition common in older men that can result in bothersome lower urinary tract symptoms. The molecular mechanisms and networks underlying the development and the progression of the disease are still far from being fully understood. BPH results from smooth muscle cell and epithelial cell proliferation, primarily within the transition zone of the prostate. Apoptosis and inflammation play important roles in the control of cell growth and in the maintenance of tissue homeostasis. Disturbances in molecular mechanisms of apoptosis machinery have been linked to BPH. Increased levels of the glycoprotein Dickkopf-related protein 3 in BPH cause an inhibition of the apoptosis machinery through a reduction in B cell lymphoma (Bcl)-2 associated X protein (Bax) expression. Inhibitors of apoptosis proteins influence cell death by direct inhibition of caspases and modulation of the transcription factor nuclear factor-κB. Current pharmacotherapy targets either the static component of BPH, including finasteride and dutasteride, or the dynamic component of BPH, including α-adrenoceptor antagonists such as tamsulosin and alfuzosin. Both these classes of drugs significantly interfere with the apoptosis machinery. Furthermore, phytotherapic supplements and new drugs may also modulate several molecular steps of apoptosis. PMID:27529214

  15. Apoptotic Pathways Linked to Endocrine System as Potential Therapeutic Targets for Benign Prostatic Hyperplasia

    Directory of Open Access Journals (Sweden)

    Letteria Minutoli

    2016-08-01

    Full Text Available Benign prostatic hyperplasia (BPH is a chronic condition common in older men that can result in bothersome lower urinary tract symptoms. The molecular mechanisms and networks underlying the development and the progression of the disease are still far from being fully understood. BPH results from smooth muscle cell and epithelial cell proliferation, primarily within the transition zone of the prostate. Apoptosis and inflammation play important roles in the control of cell growth and in the maintenance of tissue homeostasis. Disturbances in molecular mechanisms of apoptosis machinery have been linked to BPH. Increased levels of the glycoprotein Dickkopf-related protein 3 in BPH cause an inhibition of the apoptosis machinery through a reduction in B cell lymphoma (Bcl-2 associated X protein (Bax expression. Inhibitors of apoptosis proteins influence cell death by direct inhibition of caspases and modulation of the transcription factor nuclear factor-κB. Current pharmacotherapy targets either the static component of BPH, including finasteride and dutasteride, or the dynamic component of BPH, including α-adrenoceptor antagonists such as tamsulosin and alfuzosin. Both these classes of drugs significantly interfere with the apoptosis machinery. Furthermore, phytotherapic supplements and new drugs may also modulate several molecular steps of apoptosis.

  16. GSK3-mediated MAF phosphorylation in multiple myeloma as a potential therapeutic target

    International Nuclear Information System (INIS)

    Herath, N I; Rocques, N; Garancher, A; Eychène, A; Pouponnot, C

    2014-01-01

    Multiple myeloma (MM) is an incurable haematological malignancy characterised by the proliferation of mature antibody-secreting plasma B cells in the bone marrow. MM can arise from initiating translocations, of which the musculoaponeurotic fibrosarcoma (MAF) family is implicated in ∼5%. MMs bearing Maf translocations are of poor prognosis. These translocations are associated with elevated Maf expression, including c-MAF, MAFB and MAFA, and with t(14;16) and t(14;20) translocations, involving c-MAF and MAFB, respectively. c-MAF is also overexpressed in MM through MEK/ERK activation, bringing the number of MMs driven by the deregulation of a Maf gene close to 50%. Here we demonstrate that MAFB and c-MAF are phosphorylated by the Ser/Thr kinase GSK3 in human MM cell lines. We show that LiCl-induced GSK3 inhibition targets these phosphorylations and specifically decreases proliferation and colony formation of Maf-expressing MM cell lines. Interestingly, bortezomib induced stabilisation of Maf phosphorylation, an observation that could explain, at least partially, the low efficacy of bortezomib for patients carrying Maf translocations. Thus, GSK3 inhibition could represent a new therapeutic approach for these patients

  17. Adaptive evolution and elucidating the potential inhibitor against schizophrenia to target DAOA (G72) isoforms.

    Science.gov (United States)

    Sehgal, Sheikh Arslan; Mannan, Shazia; Kanwal, Sumaira; Naveed, Ishrat; Mir, Asif

    2015-01-01

    Schizophrenia (SZ), a chronic mental and heritable disorder characterized by neurophysiological impairment and neuropsychological abnormalities, is strongly associated with D-amino acid oxidase activator (DAOA, G72). Research studies emphasized that overexpression of DAOA may be responsible for improper functioning of neurotransmitters, resulting in neurological disorders like SZ. In the present study, a hybrid approach of comparative modeling and molecular docking followed by inhibitor identification and structure modeling was employed. Screening was performed by two-dimensional similarity search against selected inhibitor, keeping in view the physiochemical properties of the inhibitor. Here, we report an inhibitor compound which showed maximum binding affinity against four selected isoforms of DAOA. Docking studies revealed that Glu-53, Thr-54, Lys-58, Val-85, Ser-86, Tyr-87, Leu-88, Glu-90, Leu-95, Val-98, Ser-100, Glu-112, Tyr-116, Lys-120, Asp-121, and Arg-122 are critical residues for receptor-ligand interaction. The C-terminal of selected isoforms is conserved, and binding was observed on the conserved region of isoforms. We propose that selected inhibitor might be more potent on the basis of binding energy values. Further analysis of this inhibitor through site-directed mutagenesis could be helpful for exploring the details of ligand-binding pockets. Overall, the findings of this study may be helpful in designing novel therapeutic targets to cure SZ.

  18. Adolescent transformations of behavioral and neural processes as potential targets for prevention.

    Science.gov (United States)

    Eldreth, Dana; Hardin, Michael G; Pavletic, Nevia; Ernst, Monique

    2013-06-01

    Adolescence is a transitional period in development that is marked by a distinct, typical behavioral profile of high rates of exploration, novelty-seeking, and emotional lability. While these behaviors generally assist the adolescent transition to independence, they can also confer vulnerability for excessive risk-taking and psychopathology, particularly in the context of specific environmental or genetic influences. As prevention research depends on the identification of targets of vulnerability, the following review will discuss the interplay among motivational systems including reward-related, avoidance-related, and regulatory processes in typical and atypical adolescent development. Each set of processes will be discussed in relation to their underlying neural correlates and distinct developmental trajectories. Evidence suggests that typical adolescent behavior and the risk for atypical development are mediated by heightened adolescent responsiveness of reward-related and avoidance-related systems under specific conditions, concurrent with poor modulation by immature regulatory processes. Finally, we will propose strategies to exploit heightened reward processing to reinforce inhibitory control, which is an essential component of regulatory processes in prevention interventions.

  19. Molecular Targets of Nutraceuticals Derived from Dietary Spices: Potential Role in Suppression of Inflammation and Tumorigenesis

    Science.gov (United States)

    Aggarwal, Bharat B.; Van Kuiken, Michelle E.; Iyer, Laxmi H.; Harikumar, Kuzhuvelil B.; Sung, Bokyung

    2011-01-01

    Despite the fact cancer is primarily a preventable disease, recent statistics indicate cancer will become the number one killer worldwide in 2010. Since certain cancers are more prevalent in the people of some countries than others, suggests the role of lifestyle. For instance cancer incidence among people from the Indian subcontinent, where most spices are consumed, is much lower than that in the Western World. Spices have been consumed for centuries for a variety of purposes—as flavoring agents, colorants, and preservatives. However, there is increasing evidence for the importance of plant-based foods in regular diet to lowering the risk of most chronic diseases, so spices are now emerging as more than just flavor aids, but as agents that can not only prevent but may even treat disease. In this article, we discuss the role of 41 common dietary spices with over 182 spice-derived nutraceuticals for their effects against different stages of tumorigenesis. Besides suppressing inflammatory pathways, spice-derived nutraceuticals can suppress survival, proliferation, invasion, and angiogenesis of tumor cells. We discuss how spice-derived nutraceuticals mediate such diverse effects and what their molecular targets are. Overall our review suggests “adding spice to your life” may serve as a healthy and delicious way to ward off cancer and other chronic diseases. PMID:19491364

  20. Cancer Therapy Targeting the HER2-PI3K Pathway: Potential Impact on the Heart

    Directory of Open Access Journals (Sweden)

    Giannoula Lakka Klement

    2012-06-01

    Full Text Available The HER2-PI3K pathway is the one of the most mutated pathways in cancer. Several drugs targeting the major kinases of this pathway have been approved by the Food and Drug Administration and many are being tested in clinical trials for the treatment of various cancers. However, the HER2-PI3K pathway is also pivotal for maintaining the physiological function of the heart, especially in the presence of cardiac stress. Clinical studies have shown that in patients treated with doxorubicin concurrently with Trastuzumab, a monoclonal antibody that blocks the HER2 receptor, the New York Heart Association class III/IV heart failure was significantly increased compared to those who were treated with doxorubicin alone (16 vs. 3%. Studies in transgenic mice have also shown that other key kinases of this pathway, such as PI3Kα, PDK1, Akt and mTOR, are important for protecting the heart from ischemia-reperfusion and aortic stenosis induced cardiac dysfunction. Studies, however, have also shown that inhibition of PI3Kγ improve cardiac function of a failing heart. In addition, results from transgenic mouse models are not always consistent with the outcome of the pharmacological inhibition of this pathway. Here, we will review these findings and discuss how we can address the cardiac side-effects caused by inhibition of this important pathway in both cancer and cardiac biology.

  1. Differential effect of CLK SR Kinases on HIV-1 gene expression: potential novel targets for therapy

    Directory of Open Access Journals (Sweden)

    Dobson Wendy

    2011-06-01

    Full Text Available Abstract Background RNA processing plays a critical role in the replication of HIV-1, regulated in part through the action of host SR proteins. To explore the impact of modulating SR protein activity on virus replication, the effect of increasing or inhibiting the activity of the Cdc2-like kinase (CLK family of SR protein kinases on HIV-1 expression and RNA processing was examined. Results Despite their high homology, increasing individual CLK expression had distinct effects on HIV-1, CLK1 enhancing Gag production while CLK2 inhibited the virus. Parallel studies on the anti-HIV-1 activity of CLK inhibitors revealed a similar discrepant effect on HIV-1 expression. TG003, an inhibitor of CLK1, 2 and 4, had no effect on viral Gag synthesis while chlorhexidine, a CLK2, 3 and 4 inhibitor, blocked virus production. Chlorhexidine treatment altered viral RNA processing, decreasing levels of unspliced and single spliced viral RNAs, and reduced Rev accumulation. Subsequent experiments in the context of HIV-1 replication in PBMCs confirmed the capacity of chlorhexidine to suppress virus replication. Conclusions Together, these findings establish that HIV-1 RNA processing can be targeted to suppress virus replication as demonstrated by manipulating individual CLK function and identified chlorhexidine as a lead compound in the development of novel anti-viral therapies.

  2. EGFR targeted therapy in non-small cell lung cancer: potential role of cetuximab

    Directory of Open Access Journals (Sweden)

    Chad A Reade

    2009-05-01

    Full Text Available Chad A Reade1, Apar Kishor Ganti1,21Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA; 2Section of Oncology-Hematology, Department of internal Medicine, VA Medical Center, Omaha, NE, USAAbstract: Chemotherapy alone has limited ability to significantly improve survival in non-small lung cancer (NSCLC beyond what has already been achieved. The epidermal growth factor (EGF pathway plays a vital role in the pathogenesis and progression of NSCLC. Two classes of drugs inhibit the EGF receptor (EGFR pathway: small molecules that inhibit the intracellular tyrosine kinase activity of the receptor, and monoclonal antibodies that target the extracellular domain in the ligand-binding region. Cetuximab is a human – mouse chimeric immunoglobulin G1 class monoclonal antibody directed against EGFR. Preclinical studies with cetuximab suggested that there was inhibition of growth of human NSCLC cell lines. Cetuximab is currently the focus of intense investigation in various patient populations with NSCLC. This review focuses on clinical trials of cetuximab in NSCLC and identifies future directions with this agent.Keywords: non-small cell lung cancer, EGFR, cetuximab, monoclonal antibodies

  3. Cell Surface Glycoprotein of Reactive Stromal Fibroblasts as a Potential Antibody Target in Human Epithelial Cancers

    Science.gov (United States)

    Garin-Chesa, Pilar; Old, Lloyd J.; Rettig, Wolfgang J.

    1990-09-01

    The F19 antigen is a cell surface glycoprotein (M_r, 95,000) of human sarcomas and proliferating, cultured fibroblasts that is absent from resting fibroblasts in normal adult tissues. Normal and malignant epithelial cells are also F19^-. The present immunohistochemical study describes induction of F19 in the reactive mesenchyme of epithelial tumors. F19^+ fibroblasts were found in primary and metastatic carcinomas, including colorectal (18 of 18 cases studied), breast (14/14), ovarian (21/21), bladder (9/10), and lung carcinomas (13/13). In contrast, the stroma of benign colorectal adenomas, fibrocystic disease and fibroadenomas of breast, benign prostate hyperplasia, in situ bladder carcinomas, and benign ovarian tumors showed no or only moderate numbers of F19^+ fibroblasts. Analysis of dermal incision wounds revealed that F19 is strongly induced during scar formation. Comparison of F19 with the extracellular matrix protein tenascin, a putative marker of tumor mesenchyme, showed a cellular staining pattern for F19 vs. the extracellular matrix pattern for tenascin and widespread expression of tenascin in F19^- normal tissues and benign tumors. Our results suggest that the F19^+ phenotype correlates with specialized fibroblast functions in wound healing and malignant tumor growth. Because of its abundance in tumor mesenchyme, F19 may serve as a target for antibodies labeled with radioisotopes or toxic agents, or inflammatogenic antibodies, in carcinoma patients.

  4. Are vesicular neurotransmitter transporters potential treatment targets for temporal lobe epilepsy?

    Directory of Open Access Journals (Sweden)

    Joeri eVan Liefferinge

    2013-08-01

    Full Text Available The vesicular neurotransmitter transporters (VNTs are small proteins responsible for packing synaptic vesicles with neurotransmitters thereby determining the amount of neurotransmitter released per vesicle through fusion in both neurons and glial cells. Each transporter subtype was classically seen as a specific neuronal marker of the respective nerve cells containing that particular neurotransmitter or structurally related neurotransmitters. More recently, however, it has become apparent that common neurotransmitters can also act as co-transmitters, adding complexity to neurotransmitter release and suggesting intriguing roles for VNTs therein. We will first describe the current knowledge on vesicular glutamate transporters (VGLUT1/2/3, the vesicular excitatory amino acid transporter (VEAT, the vesicular nucleotide transporter (VNUT, vesicular monoamine transporters (VMAT1/2, the vesicular acetylcholine transporter (VAChT and the vesicular γ-aminobutyric acid (GABA transporter (VGAT in the brain. We will focus on evidence regarding transgenic mice with disruptions in VNTs in different models of seizures and epilepsy. We will also describe the known alterations and reorganizations in the expression levels of these VNTs in rodent models for temporal lobe epilepsy (TLE and in human tissue resected for epilepsy surgery. Finally, we will discuss perspectives on opportunities and challenges for VNTs as targets for possible future epilepsy therapies.

  5. Liposomes as potential carrier system for targeted delivery of polyene antibiotics.

    Science.gov (United States)

    Naik, Suresh R; Desai, Sandhya K; Shah, Priyank D; Wala, Santosh M

    2013-09-01

    The development of new therapeutic modalities involves the use of drug carrier, such as liposomes, which can modify pharmacokinetic and bio-distribution of drug profile. Polyene antibiotics incorporation into liposomes improves its availability at the site, bio-distribution and therapeutic index mainly through the engulfment of liposomes by circulating monocytes/macrophages and transportation to the site of infection. Polyene antibiotics (AmB, SJA-95, HA-1-92) and other antibiotics (streptomycin, tobramycin, quinolones, anti-tubercular and anti-cancer drugs), liposomal preparations are described with possible advantages from therapeutic efficacy and toxicity point of view. The polyene macrolide antibiotics liposomal preparations proved to be more effective in the treatment of systemic mycosis. The AmB-cyclodextrin derivatives inclusion complex is a major breakthrough in liposomal preparation which can be converted into aqueous phase of liposome. Liposomal drug incorporated preparation has been one of the important areas of research for developing the existing polyene antibiotics into useful chemotherapeutic agents in clinical medicine. In recent past other antibiotics have also been incorporated into liposomes using wide variety of materials, phosphatidylethanolamine derivatives (pegylated liposomes, enzyme sensitive conjugates, fluidosomes of anti-cancer drugs and poly lactic/glycolic acid microspheres for anti-tuberculosis drugs). In addition, attempts were also made to extend the receptor mediated drug targeting and to review some relevant patents.

  6. PPARα is a potential therapeutic target of drugs to treat circadian rhythm sleep disorders

    International Nuclear Information System (INIS)

    Shirai, Hidenori; Oishi, Katsutaka; Kudo, Takashi; Shibata, Shigenobu; Ishida, Norio

    2007-01-01

    Recent progress at the molecular level has revealed that nuclear receptors play an important role in the generation of mammalian circadian rhythms. To examine whether peroxisome proliferator-activated receptor alpha (PPARα) is involved in the regulation of circadian behavioral rhythms in mammals, we evaluated the locomotor activity of mice administered with the hypolipidemic PPARα ligand, bezafibrate. Circadian locomotor activity was phase-advanced about 3 h in mice given bezafibrate under light-dark (LD) conditions. Transfer from LD to constant darkness did not change the onset of activity in these mice, suggesting that bezafibrate advanced the phase of the endogenous clock. Surprisingly, bezafibrate also advanced the phase in mice with lesions of the suprachiasmatic nucleus (SCN; the central clock in mammals). The circadian expression of clock genes such as period2, BMAL1, and Rev-erbα was also phase-advanced in various tissues (cortex, liver, and fat) without affecting the SCN. Bezafibrate also phase-advanced the activity phase that is delayed in model mice with delayed sleep phase syndrome (DSPS) due to a Clock gene mutation. Our results indicated that PPARα is involved in circadian clock control independently of the SCN and that PPARα could be a potent target of drugs to treat circadian rhythm sleep disorders including DSPS

  7. Spinal microglia: A potential target in the treatment of chronic visceral pain

    Directory of Open Access Journals (Sweden)

    Ching-Liang Lu

    2014-01-01

    Full Text Available Chronic visceral pain is the predominant symptom of functional gastrointestinal disorders and chronic pancreatitis. Such pain can impair the patients' quality of life, and can also serve as one of the principal reasons for these patients to seek medical help. Nevertheless, the underlying mechanisms of chronic visceral pain have remained unclear, and much of what we know about visceral pain has been derived from studies of somatic nociception. Current treatment of chronic visceral pain has continued to be unsatisfactory, because of unclear pathophysiology. However, recent progress in pain research has identified the important role of spinal microglia in the development of somatic nociception. For visceral pain, several animal studies have demonstrated that spinal cord microglia is activated during the development of visceral hyperalgesia, which can be induced by neonatal colorectal irritation, psychological stress, and trinitrobenzene sulfonic acid-induced pancreatitis. This visceral hyperalgesia is also associated with elevated phosphorylation of p38 mitogen-activated protein kinase. Minocycline (a microglia inhibitor reversed the hyperalgesia in rat models of chronic visceral pain, whereas fractalkine (FKN, a microglia activator reproduced the visceral nociception in naïve rats. These preliminary results support the pronociceptive role of spinal microglia in mediating visceral hyperalgesia. Consequently, spinal microglia may serve as a promising target for controlling the chronic visceral pain.

  8. The lymphotoxin β receptor is a potential therapeutic target in renal inflammation.

    Science.gov (United States)

    Seleznik, Gitta; Seeger, Harald; Bauer, Judith; Fu, Kai; Czerkowicz, Julie; Papandile, Adrian; Poreci, Uriana; Rabah, Dania; Ranger, Ann; Cohen, Clemens D; Lindenmeyer, Maja; Chen, Jin; Edenhofer, Ilka; Anders, Hans J; Lech, Maciej; Wüthrich, Rudolf P; Ruddle, Nancy H; Moeller, Marcus J; Kozakowski, Nicolas; Regele, Heinz; Browning, Jeffrey L; Heikenwalder, Mathias; Segerer, Stephan

    2016-01-01

    Accumulation of inflammatory cells in different renal compartments is a hallmark of progressive kidney diseases including glomerulonephritis (GN). Lymphotoxin β receptor (LTβR) signaling is crucial for the formation of lymphoid tissue, and inhibition of LTβR signaling has ameliorated several non-renal inflammatory models. Therefore, we tested whether LTβR signaling could also have a role in renal injury. Renal biopsies from patients with GN were found to express both LTα and LTβ ligands, as well as LTβR. The LTβR protein and mRNA were localized to tubular epithelial cells, parietal epithelial cells, crescents, and cells of the glomerular tuft, whereas LTβ was found on lymphocytes and tubular epithelial cells. Human tubular epithelial cells, mesangial cells, and mouse parietal epithelial cells expressed both LTα and LTβ mRNA upon stimulation with TNF in vitro. Several chemokine mRNAs and proteins were expressed in response to LTβR signaling. Importantly, in a murine lupus model, LTβR blockade improved renal function without the reduction of serum autoantibody titers or glomerular immune complex deposition. Thus, a preclinical mouse model and human studies strongly suggest that LTβR signaling is involved in renal injury and may be a suitable therapeutic target in renal diseases. Copyright © 2015 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  9. Critical analysis of the potential for the therapeutic targeting of the Sp1 transcription factor in pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Jutooru I

    2014-06-01

    Full Text Available Indira Jutooru,1 Gayathri Chadalapaka,1 Stephen Safe1,21Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA; 2Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USAAbstract: Pancreatic ductal adenocarcinoma (PDAC is a major cause of cancer-related deaths in developed countries and, in 2013, it is estimated that in excess of 45,220 new cases were diagnosed in the United States. PDAC is a highly aggressive disease that invariably evades early diagnosis. The mean survival time for patients with metastatic disease is only 3–6 months, and only 20%–30% of pancreatic cancer patients are alive after 12 months. Because pancreatic cancers are frequently detected at an advanced stage, treatments have provided very limited improvements in tumor regression and overall survival times after diagnosis. 5-Fluorouracil alone or in combination with other drugs has been extensively used for treatment of advanced pancreatic cancer, and gemcitabine has partially replaced 5-fluorouracil as a treatment for pancreatic cancer. Gemcitabine provides increased clinical benefits in terms of response rate; however, future studies need to focus on developing treatment modalities that will improve the survival rate for pancreatic cancer patients. Specificity protein 1 (Sp1 is overexpressed in PDAC patients, and high expression is associated with poor prognosis, lymph node metastasis, and low survival. Knockdown studies have shown that Sp1 plays an important role in cell growth, angiogenesis, inflammation, survival, and metastasis. Sp1 expression is low in normal tissue when compared to tumor tissue, which makes Sp1 a potential target for development of new mechanism-based drugs for treatment of pancreatic cancer. Several drugs such as tolfenamic acid, betulinic acid, and methyl-2-cyano3,12-dioxooleana-1,9(11-dien-28-oate are shown to downregulate Sp1 expression through various pathways

  10. Integrated analysis of epigenomic and genomic changes by DNA methylation dependent mechanisms provides potential novel biomarkers for prostate cancer.

    Science.gov (United States)

    White-Al Habeeb, Nicole M A; Ho, Linh T; Olkhov-Mitsel, Ekaterina; Kron, Ken; Pethe, Vaijayanti; Lehman, Melanie; Jovanovic, Lidija; Fleshner, Neil; van der Kwast, Theodorus; Nelson, Colleen C; Bapat, Bharati

    2014-09-15

    Epigenetic silencing mediated by CpG methylation is a common feature of many cancers. Characterizing aberrant DNA methylation changes associated with tumor progression may identify potential prognostic markers for prostate cancer (PCa). We treated two PCa cell lines, 22Rv1 and DU-145 with the demethylating agent 5-Aza 2'-deoxycitidine (DAC) and global methylation status was analyzed by performing methylation-sensitive restriction enzyme based differential methylation hybridization strategy followed by genome-wide CpG methylation array profiling. In addition, we examined gene expression changes using a custom microarray. Gene Set Enrichment Analysis (GSEA) identified the most significantly dysregulated pathways. In addition, we assessed methylation status of candidate genes that showed reduced CpG methylation and increased gene expression after DAC treatment, in Gleason score (GS) 8 vs. GS6 patients using three independent cohorts of patients; the publically available The Cancer Genome Atlas (TCGA) dataset, and two separate patient cohorts. Our analysis, by integrating methylation and gene expression in PCa cell lines, combined with patient tumor data, identified novel potential biomarkers for PCa patients. These markers may help elucidate the pathogenesis of PCa and represent potential prognostic markers for PCa patients.

  11. Campylobacter fetus subspecies: Comparative genomics and prediction of potential virulence targets

    DEFF Research Database (Denmark)

    Ali, Amjad; Soares, Siomar C.; Santos, Anderson R.

    2012-01-01

    . The potential candidate factors identified for attenuation and/or subunit vaccine development against C. fetus subspecies contain: nucleoside diphosphate kinase (Ndk), type IV secretion systems (T4SS), outer membrane proteins (OMP), substrate binding proteins CjaA and CjaC, surface array proteins, sap gene......, and cytolethal distending toxin (CDT). Significantly, many of those genes were found in genomic regions with signals of horizontal gene transfer and, therefore, predicted as putative pathogenicity islands. We found CRISPR loci and dam genes in an island specific for C. fetus subsp. fetus, and T4SS and sap genes...

  12. Large protein as a potential target for use in rabies diagnostics.

    Science.gov (United States)

    Santos Katz, I S; Dias, M H; Lima, I F; Chaves, L B; Ribeiro, O G; Scheffer, K C; Iwai, L K

    Rabies is a zoonotic viral disease that remains a serious threat to public health worldwide. The rabies lyssavirus (RABV) genome encodes five structural proteins, multifunctional and significant for pathogenicity. The large protein (L) presents well-conserved genomic regions, which may be a good alternative to generate informative datasets for development of new methods for rabies diagnosis. This paper describes the development of a technique for the identification of L protein in several RABV strains from different hosts, demonstrating that MS-based proteomics is a potential method for antigen identification and a good alternative for rabies diagnosis.

  13. CD47 is a Potential Target for the Treatment of Laryngeal Squamous Cell Carcinoma

    OpenAIRE

    ChunPing Yang; ShuFeng Gao; HaiZhen Zhang; Lian Xu; JianGuo Liu; Meiqun Wang; ShaoRong Zhang

    2016-01-01

    Background/Aims: This study aims to investigate the effect of CD47 on the development of laryngeal squamous cell carcinoma (LSCC) and the therapeutic potential of monoclonal antibody against CD47 and its ligand SIRPα in the treatment of LSCC. Methods: We firstly detected the expressions of CD47 mRNA and protein in LSCC and para-carcinoma tissues, introduced the most efficient CD47siRNA sequence into LSCC cells by lentiviral transfection and employed three monoclonal antibodies to evaluate the...

  14. Physical and chemical characterization of the pulp of different varieties of avocado targeting oil extraction potential

    Directory of Open Access Journals (Sweden)

    Edinéia Dotti Mooz

    2012-06-01

    Full Text Available The aim of this study was to evaluate the physicochemical properties of avocado pulp of four different varieties (Avocado, Guatemala, Dickinson, and Butter pear and to identify which has the greatest potential for oil extraction. Fresh avocado pulp was characterized by moisture, protein, fat, ash, carbohydrates and energy contents were determined. The carotenoids and chlorophyll contents were determined by the organic solvent extraction method. The results showed significant differences in the composition of the fruit when varieties are compared. However, the striking feature in all varieties is high lipid content; Avocado and Dickinson are the most suitable varieties for oil extraction, taking into account moisture content and the levels of lipids in the pulp. Moreover, it could be said that the variety Dickinson is the most affected by the parameters evaluated in terms of overall quality. Chlorophyll and carotenoids, fat-soluble pigments, showed a negative correlation with respect to lipids since it could be related to its function in the fruit. The varieties Avocado and Dickinson are an alternative to oil extraction having great commercial potential to be exploited thus avoiding waste and increasing farmers’ income.

  15. Invasion-Related Factors as Potential Diagnostic and Therapeutic Targets in Oral Squamous Cell Carcinoma—A Review

    Science.gov (United States)

    Siriwardena, Samadarani B. S. M.; Tsunematsu, Takaaki; Qi, Guangying; Ishimaru, Naozumi; Kudo, Yasusei

    2018-01-01

    It is well recognized that the presence of cervical lymph node metastasis is the most important prognostic factor in oral squamous cell carcinoma (OSCC). In solid epithelial cancer, the first step during the process of metastasis is the invasion of cancer cells into the underlying stroma, breaching the basement membrane (BM)—the natural barrier between epithelium and the underlying extracellular matrix (ECM). The ability to invade and metastasize is a key hallmark of cancer progression, and the most complicated and least understood. These topics continue to be very active fields of cancer research. A number of processes, factors, and signaling pathways are involved in regulating invasion and metastasis. However, appropriate clinical trials for anti-cancer drugs targeting the invasion of OSCC are incomplete. In this review, we summarize the recent progress on invasion-related factors and emerging molecular determinants which can be used as potential for diagnostic and therapeutic targets in OSCC. PMID:29758011

  16. Compounds From Celastraceae Targeting Cancer Pathways and Their Potential Application in Head and Neck Squamous Cell Carcinoma: A Review.

    Science.gov (United States)

    Hernandes, Camila; Pereira, Ana Maria Soares; Severino, Patricia

    2017-02-01

    Squamous cell carcinoma of the head and neck is one of the most common cancer types worldwide. It initiates on the epithelial lining of the upper aerodigestive tract, at most instances as a consequence of tobacco and alcohol consumption. Treatment options based on conventional therapies or targeted therapies under development have limited efficacy due to multiple genetic alterations typically found in this cancer type. Natural products derived from plants often possess biological activities that may be valuable in the development of new therapeutic agents for cancer treatment. Several genera from the family Celastraceae have been studied in this context. This review reports studies on chemical constituents isolated from species from the Celastraceae family targeting cancer mechanisms studied to date. These results are then correlated with molecular characteristics of head and neck squamous cell carcinoma in an attempt to identify constituents with potential application in the treatment of this complex disease at the molecular level.

  17. PsOr1, a potential target for RNA interference-based pest management.

    Science.gov (United States)

    Zhao, Y Y; Liu, F; Yang, G; You, M S

    2011-02-01

    Insect pests cause billions of dollars in agricultural losses, and attempts to kill them have resulted in growing threats from insecticide resistance, dietary pesticide pollution and environmental destruction. New approaches to control refractory insect pests are therefore needed. The host-plant preferences of insect pests rely on olfaction and are mediated via a seven transmembrane-domain odorant receptor (Or) family. The present study reports the cloning and characterization of PsOr1, the first candidate member of the Or gene family from Phyllotreta striolata, a devastating beetle pest that causes damage worldwide. PsOr1 is remarkably well conserved with respect to other insect orthologues, including DmOr83b from Drosophila melanogaster. These insect orthologues form an essential non-conventional Or sub-family and may play an important and generalized role in insect olfaction. We designed double-stranded (ds) RNA directly against the PsOr1 gene and exploited RNA interference (RNAi) to control P. striolata. The chemotactic behavioural measurements showed that adult beetles were unable to sense the attractant or repellent odour stimulus after microinjection of dsRNA against PsOr1. Reverse Transcription (RT)-PCR analysis showed specific down-regulation of mRNA transcript levels for this gene. Furthermore, host-plant preference experiments confirmed that silencing PsOr1 by RNAi treatment impaired the host-plant preferences of P. striolata for cruciferous vegetables. These results demonstrate that this insect control approach of using RNAi to target PsOr1 and its orthologues might be effective in blocking host-plant-seeking behaviours in diverse insect pests. The results also support the theory that this unique receptor type plays an essential general role in insect olfaction. © 2010 Fujian Agriculture and Forestry University. Insect Molecular Biology © 2010 The Royal Entomological Society.

  18. Targeting survivin as a potential new treatment for chondrosarcoma of bone

    Science.gov (United States)

    de Jong, Y; van Oosterwijk, J G; Kruisselbrink, A B; Briaire-de Bruijn, I H; Agrogiannis, G; Baranski, Z; Cleven, A H G; Cleton-Jansen, A-M; van de Water, B; Danen, E H J; Bovée, J V M G

    2016-01-01

    Chondrosarcomas are malignant cartilage-forming bone tumors, which are intrinsically resistant to chemo- and radiotherapy, leaving surgical removal as the only curative treatment option. Therefore, our aim was to identify genes involved in chondrosarcoma cell survival that could serve as a target for therapy. siRNA screening for 51 apoptosis-related genes in JJ012 chondrosarcoma cells identified BIRC5, encoding survivin, as essential for chondrosarcoma survival. Using immunohistochemistry, nuclear as well as cytoplasmic survivin expression was analyzed in 207 chondrosarcomas of different subtypes. Nuclear survivin has been implicated in cell-cycle regulation while cytoplasmic localization is important for its anti-apoptotic function. RT–PCR was performed to determine expression of the most common survivin isoforms. Sensitivity to YM155, a survivin inhibitor currently in phase I/II clinical trial for other tumors, was examined in 10 chondrosarcoma cell lines using viability assay, apoptosis assay and cell-cycle analysis. Survivin expression was found in all chondrosarcoma patient samples. Higher expression of nuclear and cytoplasmic survivin was observed with increasing histological grade in central chondrosarcomas. Inhibition of survivin using YM155 showed that especially TP53 mutant cell lines were sensitive, but no caspase 3/7 or PARP cleavage was observed. Rather, YM155 treatment resulted in a block in S phase in two out of three chondrosarcoma cell lines, indicating that survivin is more involved in cell-cycle regulation than in apoptosis. Thus, survivin is important for chondrosarcoma survival and chondrosarcoma patients might benefit from survivin inhibition using YM155, for which TP53 mutational status can serve as a predictive biomarker. PMID:27159675

  19. Adaptive evolution and elucidating the potential inhibitor against schizophrenia to target DAOA (G72 isoforms

    Directory of Open Access Journals (Sweden)

    Sehgal SA

    2015-07-01

    Full Text Available Sheikh Arslan Sehgal,1,2 Shazia Mannan,2,* Sumaira Kanwal,2,* Ishrat Naveed,1 Asif Mir1 1Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan; 2Department of Biosciences, COMSATS Institute of Information Technology, Sahiwal, Pakistan *These authors contributed equally to this work Abstract: Schizophrenia (SZ, a chronic mental and heritable disorder characterized by neurophysiological impairment and neuropsychological abnormalities, is strongly associated with d-amino acid oxidase activator (DAOA, G72. Research studies emphasized that overexpression of DAOA may be responsible for improper functioning of neurotransmitters, resulting in neurological disorders like SZ. In the present study, a hybrid approach of comparative modeling and molecular docking followed by inhibitor identification and structure modeling was employed. Screening was performed by two-dimensional similarity search against selected inhibitor, keeping in view the physiochemical properties of the inhibitor. Here, we report an inhibitor compound which showed maximum binding affinity against four selected isoforms of DAOA. Docking studies revealed that Glu-53, Thr-54, Lys-58, Val-85, Ser-86, Tyr-87, Leu-88, Glu-90, Leu-95, Val-98, Ser-100, Glu-112, Tyr-116, Lys-120, Asp-121, and Arg-122 are critical residues for receptor–ligand interaction. The C-terminal of selected isoforms is conserved, and binding was observed on the conserved region of isoforms. We propose that selected inhibitor might be more potent on the basis of binding energy values. Further analysis of this inhibitor through site-directed mutagenesis could be helpful for exploring the details of ligand-binding pockets. Overall, the findings of this study may be helpful in designing novel therapeutic targets to cure SZ. Keywords: schizophrenia, bioinformatics, modeling, docking, DAOA, G72, DAO, computer-aided drug designing, phylogenetic analysis, d-amino acid oxidase

  20. Learned helplessness activates hippocampal microglia in rats: A potential target for the antidepressant imipramine.

    Science.gov (United States)

    Iwata, Masaaki; Ishida, Hisahito; Kaneko, Koichi; Shirayama, Yukihiko

    An accumulating body of evidence has demonstrated that inflammation is associated with the pathology of depression. We recently found that psychological stress induces inflammation in the hippocampus of the rat brain through the inflammasome, a component of the innate immune system. Microglia, the resident macrophages in the brain, play a central role in the innate immune system and express inflammasomes; thus, we hypothesized that hippocampal microglia would be key mediators in the development of depression via stress-induced inflammation. To test this hypothesis and to determine how antidepressants modulate microglial function, we used immunohistochemistry to examine the morphological changes that occur in the hippocampal microglia of rats exposed to the learned helplessness (LH) paradigm. We noted significantly increased numbers of activated microglia in the granule cell layer, hilus, CA1, and CA3 regions of the hippocampi of LH rats. Conversely, administering imipramine to LH rats for 7days produced a significant decrease in the number of activated microglia in the hilus, but not in the other examined regions. Nonetheless, there were no significant differences in the combined number of activated and non-activated microglia either in LH or LH+imipramine rats relative to control rats. In addition, treating the naïve rats with imipramine or fluvoxamine produced no discernible microglial changes. These data suggest that stress activates hippocampal microglia, while certain antidepressants decrease the number of activated microglia in the hilus, but not in other hippocampal regions. Therefore, the hilus represents a candidate target region for the antidepressant imipramine. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Drylands face potential threat under 2 °C global warming target

    Science.gov (United States)

    Huang, Jianping; Yu, Haipeng; Dai, Aiguo; Wei, Yun; Kang, Litai

    2017-06-01

    The Paris Agreement aims to limit global mean surface warming to less than 2 °C relative to pre-industrial levels. However, we show this target is acceptable only for humid lands, whereas drylands will bear greater warming risks. Over the past century, surface warming over global drylands (1.2-1.3 °C) has been 20-40% higher than that over humid lands (0.8-1.0 °C), while anthropogenic CO2 emissions generated from drylands (~230 Gt) have been only ~30% of those generated from humid lands (~750 Gt). For the twenty-first century, warming of 3.2-4.0 °C (2.4-2.6 °C) over drylands (humid lands) could occur when global warming reaches 2.0 °C, indicating ~44% more warming over drylands than humid lands. Decreased maize yields and runoff, increased long-lasting drought and more favourable conditions for malaria transmission are greatest over drylands if global warming were to rise from 1.5 °C to 2.0 °C. Our analyses indicate that ~38% of the world's population living in drylands would suffer the effects of climate change due to emissions primarily from humid lands. If the 1.5 °C warming limit were attained, the mean warming over drylands could be within 3.0 °C therefore it is necessary to keep global warming within 1.5 °C to prevent disastrous effects over drylands.

  2. Immune mechanisms in polymyositis and dermatomyositis and potential targets for therapy.

    Science.gov (United States)

    Venalis, Paulius; Lundberg, Ingrid E

    2014-03-01

    PM and DM are characterized clinically by weakness and low endurance of skeletal muscle. Other organs are frequently involved, suggesting that idiopathic inflammatory myopathies (IIMs) are systemic inflammatory diseases. Involvement of immune mechanisms in IIMs is supported by the presence of T cells, macrophages and dendritic cells in muscle tissue, by the presence of autoantibodies and by HLA-DR being a strong genetic risk factor. T cells may have direct and indirect toxic effects on muscle fibres, causing muscle fibre necrosis and muscle weakness, but the target of the immune reaction is not known. A newly identified T cell subset, CD28(null) T cells, may have cytotoxic effects in the CD4(+) and CD8(+) T cell phenotype. These cells are apoptosis resistant and may contribute to treatment resistance. Several myositis-specific autoantibodies have been identified, but they are all directed against ubiquitously expressed autoantigens and the specificity of the T cell reactivity is not known. These autoantibodies are associated with distinct clinical phenotypes and some with distinct molecular pathways; e.g. sera from patients with anti-Jo-1 autoantibodies may activate the type I IFN system and these sera also contain high levels of B cell activating factor compared with other IIM subsets. The characterization of patients into subgroups based on autoantibody profiles seems to be a promising way to learn more about the specificities of the immune reactions. Careful phenotyping of infiltrating immune cells in muscle tissue before and after specific therapies and relating the molecular findings to clinical outcome measures may be another way to improve knowledge on specific immune mechanism in IIMs. Such information will be important for the development of new therapies.

  3. Focal adhesion kinase a potential therapeutic target for pancreatic cancer and malignant pleural mesothelioma.

    Science.gov (United States)

    Kanteti, Rajani; Mirzapoiazova, Tamara; Riehm, Jacob J; Dhanasingh, Immanuel; Mambetsariev, Bolot; Wang, Jiale; Kulkarni, Prakash; Kaushik, Garima; Seshacharyulu, Parthasarathy; Ponnusamy, Moorthy P; Kindler, Hedy L; Nasser, Mohd W; Batra, Surinder K; Salgia, Ravi

    2018-04-03

    The non-receptor cytoplasmic tyrosine kinase, Focal Adhesion Kinase (FAK) is known to play a key role in a variety of normal and cancer cellular functions such as survival, proliferation, migration and invasion. It is highly active and overexpressed in various cancers including Pancreatic Ductal Adenocarcinoma (PDAC) and Malignant Pleural Mesothelioma (MPM). Here, initially, we demonstrate that FAK is overexpressed in both PDAC and MPM cell lines. Then we analyze effects of two small molecule inhibitors PF-573228, and PF-431396, which are dual specificity inhibitors of FAK and proline rich tyrosine kinase 2 (PYK2), as well as VS-6063, another small molecule inhibitor that specifically inhibits FAK but not PYK2 for cell growth, motility and invasion of PDAC and MPM cell lines. Treatment with PF-573228, PF-431396 and VS-6063 cells resulted in a dose-dependent inhibition of growth and anchorage-independent colony formation in both cancer cell lines. Furthermore, these compounds suppressed the phosphorylation of FAK at its active site, Y397, and functionally induced significant apoptosis and cell cycle arrest in both cell lines. Using the ECIS (Electric cell-substrate impedance sensing) system, we found that treatment of both PF compounds suppressed adherence and migration of PDAC cells on fibronectin. Interestingly, 3D-tumor organoids derived from autochthonous KC (Kras;PdxCre) mice treated with PF-573228 revealed a significant decrease in tumor organoid size and increase in organoid cell death. Taken together, our results show that FAK is an important target for mesothelioma and pancreatic cancer therapy that merit further translational studies.

  4. Leucine and its transporter provide protection against cigarette smoke-induced cell death: A potential therapy for emphysema

    Directory of Open Access Journals (Sweden)

    Bannhi Das

    2014-01-01

    Full Text Available Cigarette smoke (CS is a major risk factor for emphysematous changes in the lungs and the underlying mechanism involves CS-induced cell death. In the present study we investigated the ability of nutrients to rescue CS-induced cell death. We observed that pre-treatment with excess leucine can partially rescue CS extract-induced cell death in Saccharomyces cerevisiae and alveolar epithelial A549 cells. Excess dietary leucine was also effective in alleviating effects of CS in guinea pig lungs. Further investigation to understand the underlying mechanism showed that CS exposure causes downregulation of leucine transporter that results in inactivation of mTOR, which is a positive regulator of protein synthesis and cell proliferation. Notably, leucine supplemented diet ameliorated even existing CS-induced emphysematous changes in guinea pig lung, a condition hitherto thought to be irreversible. Thus the current study documents a new mechanism by which CS affects cellular physiology wherein leucine transporter is a key target.

  5. Knowledge and practice related to gestational diabetes among primary health care providers in Morocco: Potential for a defragmentation of care?

    Science.gov (United States)

    Utz, Bettina; Assarag, Bouchra; Essolbi, Amina; Barkat, Amina; Delamou, Alexandre; De Brouwere, Vincent

    2017-08-01

    The objective of this study was to assess knowledge and practices of general practitioners, nurses and midwives working at primary health care facilities in Morocco regarding screening and management of gestational diabetes (GDM). Structured interviews with 100 doctors, midwives and nurses at 44 randomly selected public health care centers were conducted in Marrakech and Al Haouz. All data were descriptively analyzed. Ethical approval for the study was granted by the institutional review boards in Belgium and Morocco. Public primary health care providers have a basic understanding of gestational diabetes but screening and management practices are not uniform. Although 56.8% of the doctors had some pre-service training on gestational diabetes, most nurses and midwives lack such training. After diagnosing GDM, 88.5% of providers refer patients to specialists, only 11.5% treat them as outpatients. Updating knowledge and skills of providers through both pre- and in-service-training needs to be supported by uniform national standards enabling first line health care workers to manage women with GDM and thus increase access and provide a continuity in care. Findings of this study will be used to pilot a model of GDM screening and initial management through the primary level of care. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  6. Formation of potential radiation risk groups to render timely targeted medical care: Lessons of Chernobyl

    International Nuclear Information System (INIS)

    Ivanov, V. K.; Kashcheev, V. V.; Zamulaeva, I. A.; Saenko, A. S.; Orlova, N. V.; Smirnova, S. G.; Korelo, A. M.; Gorsky, A. I.; Maksioutov, M. A.

    2012-01-01

    The paper discusses technology for establishing potential cancer risk groups, based on methods of molecular and radiation epidemiology. Assay of gene mutations at the T-cell receptor (TCR) locus as the method of molecular epidemiology was used for measuring the frequency of TCR-mutations in 320 nuclear workers of the Inst. of Physics and Power Engineering (IPPE). The method of radiation epidemiology was applied to the estimation of attributable risk fraction (ARF) for solid cancers in these groups. The main estimates of radiation risk after the Chernobyl accident are in close agreement with the International Commission on Radiological Protection (ICRP) Publication, 103 models published in 2007. In nuclear workers of the IPPE with ARF ≥ 10%, the increased level of TCR-mutations occurs more often (risk ratio=9.7; 95% CI: 2.9; 32.1). (authors)

  7. CD47 is a Potential Target for the Treatment of Laryngeal Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    ChunPing Yang

    2016-11-01

    Full Text Available Background/Aims: This study aims to investigate the effect of CD47 on the development of laryngeal squamous cell carcinoma (LSCC and the therapeutic potential of monoclonal antibody against CD47 and its ligand SIRPα in the treatment of LSCC. Methods: We firstly detected the expressions of CD47 mRNA and protein in LSCC and para-carcinoma tissues, introduced the most efficient CD47siRNA sequence into LSCC cells by lentiviral transfection and employed three monoclonal antibodies to evaluate their anti-LSCC effects in vitro and in vivo. Results: We observed that the mRNA and protein expressions of CD47 in LSCC tissue had significant increase in LSCC tissues compared with those in para-carcinoma tissue (p Conclusion: The results suggested a critical role of CD47 in LSCC development and the promising treatment of antiCD47/SIRPα and/or CD47siRNA in LSCC.

  8. GD2-targeted immunotherapy and potential value of circulating microRNAs in neuroblastoma.

    Science.gov (United States)

    Gholamin, Sharareh; Mirzaei, Hamed; Razavi, Seyed-Mostafa; Hassanian, Seyed Mahdi; Saadatpour, Leila; Masoudifar, Aria; ShahidSales, Soodabeh; Avan, Amir

    2018-02-01

    Neuroblastoma (NB) with various clinical presentation is a known childhood malignancy. Despite significant progress in treatment of NB afflicted patients, high risk disease is usually associated with poor outcome, resulting in long-term survival of less that 50%. Known as a disease most commonly originated form the nerve roots, the variants involved in NB imitation and progression remain to be elucidated. The outcome of low to intermediate risk disease is favorable whereas the high risk NB disease with dismal prognosis, positing the necessity of novel approaches for early detection and prognostication of advanced disease. Tailored immunotherapy approaches have shown significant improvement in high-risk NB patients. It has found a link between Gangliosides and progression of NB. The vast majority of neuroblastoma tumors express elevated levels of GD2, opening new insight into using anti-GD2 drugs as potential treatments for NBs. Implication of anti-GD2 monoclonal antibodies for treatment of high risk NBs triggers further investigation to unearth novel biomarkers as prognostic and response biomarker to guide additional multimodal tailored treatment approaches. A growing body of evidence supports the usefulness of miRNAs to evaluate high risk NBs response to anti-GD2 drugs and further prevent drug-related toxicities in refractory or recurrent NBs. miRNAs and circulating proteins in body fluids (plasma and serum) present as potential biomarkers in early detection of NBs. Here, we summarize various biomarkers involved in diagnosis, prognosis and response to treatment in patients with NB. We further attempted to overview prognostic biomarkers in response to treatment with anti-GD2 drugs. © 2017 Wiley Periodicals, Inc.

  9. Kinase Gene Expression Profiling of Metastatic Clear Cell Renal Cell Carcinoma Tissue Identifies Potential New Therapeutic Targets.

    Directory of Open Access Journals (Sweden)

    Pooja Ghatalia

    Full Text Available Kinases are therapeutically actionable targets. Kinase inhibitors targeting vascular endothelial growth factor receptors (VEGFR and mammalian target of rapamycin (mTOR improve outcomes in metastatic clear cell renal cell carcinoma (ccRCC, but are not curative. Metastatic tumor tissue has not been comprehensively studied for kinase gene expression. Paired intra-patient kinase gene expression analysis in primary tumor (T, matched normal kidney (N and metastatic tumor tissue (M may assist in identifying drivers of metastasis and prioritizing therapeutic targets. We compared the expression of 519 kinase genes using NanoString in T, N and M in 35 patients to discover genes over-expressed in M compared to T and N tissue. RNA-seq data derived from ccRCC tumors in The Cancer Genome Atlas (TCGA were used to demonstrate differential expression of genes in primary tumor tissue from patients that had metastasis at baseline (n = 79 compared to those that did not develop metastasis for at least 2 years (n = 187. Functional analysis was conducted to identify key signaling pathways by using Ingenuity Pathway Analysis. Of 10 kinase genes overexpressed in metastases compared to primary tumor in the discovery cohort, 9 genes were also differentially expressed in TCGA primary tumors with metastasis at baseline compared to primary tumors without metastasis for at least 2 years: EPHB2, AURKA, GSG2, IKBKE, MELK, CSK, CHEK2, CDC7 and MAP3K8; p<0.001. The top pathways overexpressed in M tissue were pyridoxal 5'-phosphate salvage, salvage pathways of pyrimidine ribonucleotides, NF-kB signaling, NGF signaling and cell cycle control of chromosomal replication. The 9 kinase genes validated to be over-expressed in metastatic ccRCC may represent currently unrecognized but potentially actionable therapeutic targets that warrant functional validation.

  10. Potential actionable targets in appendiceal cancer detected by immunohistochemistry, fluorescent in situ hybridization, and mutational analysis

    Science.gov (United States)

    Millis, Sherri Z.; Kimbrough, Jeffery; Doll, Nancy; Von Hoff, Daniel; Ramanathan, Ramesh K.

    2017-01-01

    Background Appendiceal cancers are rare and consist of carcinoid, mucocele, pseudomyxoma peritonei (PMP), goblet cell carcinoma, lymphoma, and adenocarcinoma histologies. Current treatment involves surgical resection or debulking, but no standard exists for adjuvant chemotherapy or treatment for metastatic disease. Methods Samples were identified from approximately 60,000 global tumors analyzed at a referral molecular profiling CLIA-certified laboratory. A total of 588 samples with appendix primary tumor sites were identified (male/female ratio of 2:3; mean age =55). Sixty-two percent of samples were adenocarcinomas (used for analysis); the rest consisted of 9% goblet cell, 15% mucinous; 6% pseudomyxoma, and less than 5% carcinoids and 2% neuroendocrine. Tests included sequencing [Sanger, next generation sequencing (NGS)], protein expression/immunohistochemistry (IHC), and gene amplification [fluorescent in situ hybridization (FISH) or CISH]. Results Profiling across all appendiceal cancer histological subtypes for IHC revealed: 97% BRCP, 81% MRP1, 81% COX-2, 71% MGMT, 56% TOPO1, 5% PTEN, 52% EGFR, 40% ERCC1, 38% SPARC, 35% PDGFR, 35% TOPO2A, 25% RRM1, 21% TS, 16% cKIT, and 12% for TLE3. NGS revealed mutations in the following genes: 50.4% KRAS, 21.9% P53, 17.6% GNAS, 16.5% SMAD4, 10% APC, 7.5% ATM, 5.5% PIK3CA, 5.0% FBXW7, and 1.8% BRAF. Conclusions Appendiceal cancers show considerable heterogeneity with high levels of drug resistance proteins (BCRP and MRP1), which highlight the difficulty in treating these tumors and suggest an individualized approach to treatment. The incidence of low TS (79%) could be used as a backbone of therapy (using inhibitors such as 5FU/capecitabine or newer agents). Therapeutic options includeTOPO1 inhibitors (irinotecan/topotecan), EGFR inhibitors (erlotinib, cetuximab), PDGFR antagonists (regorafenib, axitinib), MGMT (temozolomide). Clinical trials targeting pathways involving KRAS, p53, GNAS, SMAD4, APC, ATM, PIK3CA, FBXW7, and

  11. Potential role of lycopene in targeting proprotein convertase subtilisin/kexin type-9 to combat hypercholesterolemia.

    Science.gov (United States)

    Sultan Alvi, Sahir; Ansari, Irfan A; Khan, Imran; Iqbal, Johar; Khan, M Salman

    2017-07-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK-9) is a serine protease of the proprotien convertase (PC) family that has profound effects on plasma low density lipoprotein cholesterol (LDL-C) levels, the major risk factor for coronary heart disease (CHD), through its ability to mediate LDL receptor (LDL-R) protein degradation and reduced recycling to the surface of hepatocytes. Thus, the current study was premeditated not only to evaluate the role of lycopene in targeting the inhibition of PCSK-9 via modulation of genes involved in cholesterol homeostasis in HFD rats but also to examine a correlation between HFD induced inflammatory cascades and subsequent regulation of PCSK-9 expression. Besides the effect of lycopene on hepatic PCSK-9 gene expression, PPI studies for PCSK-9-Lycopene complex and EGF-A of LDL-R were also performed via molecular informatics approach to assess the dual mode of action of lycopene in LDL-R recycling and increased removal of circulatory LDL-C. We for the first time deciphered that lycopene treatment significantly down-regulates the expression of hepatic PCSK-9 and HMGR, whereas, hepatic LDL-R expression was significantly up-regulated. Furthermore, lycopene ameliorated inflammation stimulated expression of PCSK-9 via suppressing the expression of inflammatory markers. The results from our molecular informatics studies confirmed that lycopene, while occupying the active site of PCSK-9 crystal structure, reduces the affinity of PCSK-9 to complex with EGF-A of LDL-R, whereas, atorvastatin makes PCSK-9-EGF-A complex formation more feasible than both of PCSK-9-EGF-A alone and Lycopene-PCSK-9-EGF-A complex. Based on above results, it can be concluded that lycopene exhibits potent hypolipidemic activities via molecular mechanisms that are either identical (HMGR inhibition) or distinct from that of statins (down-regulation of PCSK-9 mRNA synthesis). To the best of our knowledge, this is the first report that lycopene has this specific

  12. Marketed Drugs Can Inhibit Cytochrome P450 27A1, a Potential New Target for Breast Cancer Adjuvant Therapy.

    Science.gov (United States)

    Mast, Natalia; Lin, Joseph B; Pikuleva, Irina A

    2015-09-01

    Cytochrome P450 CYP27A1 is the only enzyme in humans converting cholesterol to 27-hydroxycholesterol, an oxysterol of multiple functions, including tissue-specific modulation of estrogen and liver X receptors. Both receptors seem to mediate adverse effects of 27-hydroxycholesterol in breast cancer when the levels of this oxysterol are elevated. The present work assessed druggability of CYP27A1 as a potential antibreast cancer target. We selected 26 anticancer and noncancer medications, most approved by the Food and Drug Administration, and evaluated them first in vitro for inhibition of purified recombinant CYP27A1 and binding to the enzyme active site. Six strong CYP27A1 inhibitors/binders were identified. These were the two antibreast cancer pharmaceuticals anastrozole and fadrozole, antiprostate cancer drug bicalutamide, sedative dexmedetomidine, and two antifungals ravuconazole and posaconazole. Anastrozole was then tested in vivo on mice, which received subcutaneous drug injections for 1 week. Mouse plasma and hepatic 27-hydroxycholesterol levels were decreased 2.6- and 1.6-fold, respectively, whereas plasma and hepatic cholesterol content remained unchanged. Thus, pharmacologic CYP27A1 inhibition is possible in the whole body and individual organs, but does not negatively affect cholesterol elimination. Our results enhance the potential of CYP27A1 as an antibreast cancer target, could be of importance for the interpretation of Femara versus Anastrozole Clinical Evaluation Trial, and bring attention to posaconazole as a potential complementary anti-breast cancer medication. More medications on the US market may have unanticipated off-target inhibition of CYP27A1, and we propose strategies for their identification. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  13. The RON receptor tyrosine kinase in pancreatic cancer pathogenesis and its potential implications for future targeted therapies.

    Science.gov (United States)

    Kang, Chang Moo; Babicky, Michele L; Lowy, Andrew M

    2014-03-01

    Pancreatic cancer remains a devastating disease with a mortality rate that has not changed substantially in decades. Novel therapies are therefore desperately needed. The RON receptor tyrosine kinase has been identified as an important mediator of KRAS oncogene addiction and is overexpressed in the majority of pancreatic cancers. Preclinical studies show that inhibition of RON function decreases pancreatic cancer cell migration, invasion, and survival and can sensitize pancreatic cancer cells to chemotherapy. This article reviews the current state of knowledge regarding RON biology and pancreatic cancer and discusses its potential as a therapeutic target.

  14. Appearance traits in fish farming: progress from classical genetics to genomics, providing insight into current and potential genetic improvement

    Directory of Open Access Journals (Sweden)

    Nelson eColihueque

    2014-08-01

    Full Text Available Appearance traits in fish, those external body characteristics that influence consumer acceptance at point of sale, have come to the forefront of commercial fish farming, as culture profitability is closely linked to management of these traits. Appearance traits comprise mainly body shape and skin pigmentation. Analysis of the genetic basis of these traits in different fish reveals significant genetic variation within populations, indicating potential for their genetic improvement. Work into ascertaining the minor or major genes underlying appearance traits for commercial fish is emerging, with substantial progress in model fish in terms of identifying genes that control body shape and skin colors. In this review, we describe research progress to date, especially with regard to commercial fish, and discuss genomic findings in model fish in order to better address the genetic basis of the traits. Given that appearance traits are important in commercial fish, the genomic information related to this issue promises to accelerate the selection process in coming years.

  15. Appearance traits in fish farming: progress from classical genetics to genomics, providing insight into current and potential genetic improvement

    Science.gov (United States)

    Colihueque, Nelson; Araneda, Cristian

    2014-01-01

    Appearance traits in fish, those external body characteristics that influence consumer acceptance at point of sale, have come to the forefront of commercial fish farming, as culture profitability is closely linked to management of these traits. Appearance traits comprise mainly body shape and skin pigmentation. Analysis of the genetic basis of these traits in different fish reveals significant genetic variation within populations, indicating potential for their genetic improvement. Work into ascertaining the minor or major genes underlying appearance traits for commercial fish is emerging, with substantial progress in model fish in terms of identifying genes that control body shape and skin colors. In this review, we describe research progress to date, especially with regard to commercial fish, and discuss genomic findings in model fish in order to better address the genetic basis of the traits. Given that appearance traits are important in commercial fish, the genomic information related to this issue promises to accelerate the selection process in coming years. PMID:25140172

  16. Opinion - Thyroid (dysfunction in heart failure: is it a potential target for medical treatment?

    Directory of Open Access Journals (Sweden)

    Alessandro Pingitore

    2005-07-01

    Full Text Available Alessandro Pingitore, Giorgio IervasiInstitute of Clinical Physiology, CNR, Pisa, ItalyIntroductionCurrently, there is little doubt that activation of the neuroendocrine (NE system is predominately responsible for the progressive decline of heart function in heart failure (HF. This is due to the complex action of neurotransmitters, hormonal factors, and/or immunological pathways. Evidence that supports this point of view is the clear prognostic benefit and the reduction of HF progression by using NE-guided therapeutic approaches (SOLVD investigators 1992; Eichhorn and Bristow 1996; Packer et al 1996; Opie 2004; Solomon et al 2004. However, the fact that HF represents one of the major causes of morbidity and mortality in Western countries also suggests that the current portfolio of NE antagonists fails to completely explain and possibly counteract disease progression (Guyatt and Deveraux 2004. In this context, interest in the relationship between thyroid hormones (THs and HF is increasingly gaining prominence. The chief reason for the latter is the emerging novel actions of THs on the cardiovascular system and, more specifically, the role of TH as a prognostic biomarker of cardiac disease as well as the potential benefit of TH administration in patients with HF.

  17. NMDA receptors are important regulators of pancreatic cancer and are potential targets for treatment

    Directory of Open Access Journals (Sweden)

    North WG

    2017-07-01

    Full Text Available William G North,1,2 Fuli Liu,1 Liz Z Lin,1 Ruiyang Tian,2 Bonnie Akerman1 1Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, 2Woomera Therapeutics Inc, Lebanon, NH, USA Abstract: Pancreatic cancer, particularly adenocarcinoma of the pancreas, is a common disease with a poor prognosis. In this study, the importance of N-methyl-D-aspartate (NMDA receptors for the growth and survival of pancreatic cancer was investigated. Immunohistochemistry performed with antibodies against GluN1 and GluN2B revealed that all invasive adenocarcinoma and neuroendocrine pancreatic tumors likely express these two NMDA receptor proteins. These proteins were found to be membrane components of pancreatic cancer cell lines, and both channel-blocker antagonist and GluN2B antagonist significantly reduced cell viability in vitro. Both types of antagonists caused an internalization of the receptors. Dizocilpine maleate (MK-801 and ifenprodil hemitartrate both significantly inhibited the growth of pancreatic tumor xenografts in nu/nu mice. These findings predict that, as for other solid tumors investigated by us, pancreatic cancer could be successfully treated, alone or in combination, with NMDA receptor antagonists or other receptor-inhibiting blocking agents. Keywords: pancreatic cancer, NMDA receptors, inhibitors, potential therapy

  18. Telomerase as a potential anticancer target: growth inhibition and genomic instability.

    Science.gov (United States)

    Faraoni, Isabella; Graziani, Grazia

    2000-02-01

    Stabilization of telomere length in chromosomes by an RNA-dependent DNA polymerase (telomerase) appears to be responsible for the replicative immortality of cancer cells. These findings provide the rational basis for generating experimental models to develop anti-telomerase drugs. However, there is conflicting evidence in the literature about the outcome of telomerase inhibition. While tumor cytostatic and cytotoxic effects associated with telomerase inhibition have been described, absence of telomerase has been associated with genetic instability and tumor development. Therefore, a therapeutic strategy based on telomerase inhibition will likely have to cope with problems related to innate or acquired mechanisms of drug resistance and possibly to therapy-related tumors. Copyright 2000 Harcourt Publishers Ltd.

  19. Targeting imported malaria through social networks: a potential strategy for malaria elimination in Swaziland.

    Science.gov (United States)

    Koita, Kadiatou; Novotny, Joseph; Kunene, Simon; Zulu, Zulizile; Ntshalintshali, Nyasatu; Gandhi, Monica; Gosling, Roland

    2013-06-27

    Swaziland has made great progress towards its goal of malaria elimination by 2015. However, malaria importation from neighbouring high-endemic Mozambique through Swaziland's eastern border remains a major factor that could prevent elimination from being achieved. In order to reach elimination, Swaziland must rapidly identify and treat imported malaria cases before onward transmission occurs. A nationwide formative assessment was conducted over eight weeks to determine if the imported cases of malaria identified by the Swaziland National Malaria Control Programme could be linked to broader social networks and to explore methods to access these networks. Using a structured format, interviews were carried out with malaria surveillance agents (6), health providers (10), previously identified imported malaria cases (19) and people belonging to the networks identified through these interviews (25). Most imported malaria cases were Mozambicans (63%, 12/19) making a living in Swaziland and sustaining their families in Mozambique. The majority of imported cases (73%, 14/19) were labourers and self-employed contractors who travelled frequently to Mozambique to visit their families and conduct business. Social networks of imported cases with similar travel patterns were identified through these interviews. Nearly all imported cases (89%, 17/19) were willing to share contact information to enable network members to be interviewed. Interviews of network members and key informants revealed common congregation points, such as the urban market places in Manzini and Malkerns, as well as certain bus stations, where people with similar travel patterns and malaria risk behaviours could be located and tested for malaria. This study demonstrated that imported cases of malaria belonged to networks of people with similar travel patterns. This study may provide novel methods for screening high-risk groups of travellers using both snowball sampling and time-location sampling of networks to

  20. Nanobodies targeting norovirus capsid reveal functional epitopes and potential mechanisms of neutralization.

    Directory of Open Access Journals (Sweden)

    Anna D Koromyslova

    2017-11-01

    potential to function as novel therapeutic agents against human noroviruses.

  1. Nanobodies targeting norovirus capsid reveal functional epitopes and potential mechanisms of neutralization

    Science.gov (United States)

    2017-01-01

    Norovirus is the leading cause of gastroenteritis worldwide. Despite recent developments in norovirus propagation in cell culture, these viruses are still challenging to grow routinely. Moreover, little is known on how norovirus infects the host cells, except that histo-blood group antigens (HBGAs) are important binding factors for infection and cell entry. Antibodies that bind at the HBGA pocket and block attachment to HBGAs are believed to neutralize the virus. However, additional neutralization epitopes elsewhere on the capsid likely exist and impeding the intrinsic structural dynamics of the capsid could be equally important. In the current study, we investigated a panel of Nanobodies in order to probe functional epitopes that could trigger capsid rearrangement and/ or interfere with HBGA binding interactions. The precise binding sites of six Nanobodies (Nano-4, Nano-14, Nano-26, Nano-27, Nano-32, and Nano-42) were identified using X-ray crystallography. We showed that these Nanobodies bound on the top, side, and bottom of the norovirus protruding domain. The impact of Nanobody binding on norovirus capsid morphology was analyzed using electron microscopy and dynamic light scattering. We discovered that distinct Nanobody epitopes were associated with varied changes in particle structural integrity and assembly. Interestingly, certain Nanobody-induced capsid morphological changes lead to the capsid protein degradation and viral RNA exposure. Moreover, Nanobodies employed multiple inhibition mechanisms to prevent norovirus attachment to HBGAs, which included steric obstruction (Nano-14), allosteric interference (Nano-32), and violation of normal capsid morphology (Nano-26 and Nano-85). Finally, we showed that two Nanobodies (Nano-26 and Nano-85) not only compromised capsid integrity and inhibited VLPs attachment to HBGAs, but also recognized a broad panel of norovirus genotypes with high affinities. Consequently, Nano-26 and Nano-85 have a great potential to

  2. Identification of oxidized protein hydrolase as a potential prodrug target in prostate cancer

    International Nuclear Information System (INIS)

    McGoldrick, Christopher A; Jiang, Yu-Lin; Paromov, Victor; Brannon, Marianne; Krishnan, Koyamangalath; Stone, William L

    2014-01-01

    Esterases are often overexpressed in cancer cells and can have chiral specificities different from that of the corresponding normal tissues. For this reason, ester prodrugs could be a promising approach in chemotherapy. In this study, we focused on the identification and characterization of differentially expressed esterases between non-tumorigenic and tumorigenic prostate epithelial cells. Cellular lysates from LNCaP, DU 145, and PC3 prostate cancer cell lines, tumorigenic RWPE-2 prostate epithelial cells, and non-tumorigenic RWPE-1 prostate epithelial cells were separated by native polyacrylamide gel electrophoresis (n-PAGE) and the esterase activity bands visualized using α-naphthyl acetate or α-naphthyl-N-acetylalaninate (ANAA) chiral esters and Fast Blue RR salt. The esterases were identified using nanospray LC/MS-MS tandem mass spectrometry and confirmed by Western blotting, native electroblotting, inhibition assays, and activity towards a known specific substrate. The serine protease/esterase oxidized protein hydrolase (OPH) was overexpressed in COS-7 cells to verify our results. The major esterase observed with the ANAA substrates within the n-PAGE activity bands was identified as OPH. OPH (EC 3.4.19.1) is a serine protease/esterase and a member of the prolyl oligopeptidase family. We found that LNCaP lysates contained approximately 40% more OPH compared to RWPE-1 lysates. RWPE-2, DU145 and PC3 cell lysates had similar levels of OPH activity. OPH within all of the cell lysates tested had a chiral preference for the S-isomer of ANAA. LNCaP cells were stained more intensely with ANAA substrates than RWPE-1 cells and COS-7 cells overexpressing OPH were found to have a higher activity towards the ANAA and AcApNA than parent COS-7 cells. These data suggest that prodrug derivatives of ANAA and AcApNA could have potential as chemotherapeutic agents for the treatment of prostate cancer tumors that overexpress OPH

  3. Predictors of Depression Stigma in Medical Students: Potential Targets for Prevention and Education.

    Science.gov (United States)

    Wimsatt, Leslie A; Schwenk, Thomas L; Sen, Ananda

    2015-11-01

    Suicide rates are higher among U.S. physicians than the general population. Untreated depression is a major risk factor, yet depression stigma presents a barrier to treatment. This study aims to identify early career indications of stigma among physicians-in-training and to inform the design of stigma-reduction programs. A cross-sectional student survey administered at a large, Midwestern medical school in fall 2009 included measures of depression symptoms, attitudes toward mental health, and potential sources of depression stigma. Principal components factor analysis and linear regression were used to examine stigma factors associated with depression in medical students. The response rate was 65.7%, with 14.7% students reporting a previous depression diagnosis. Most students indicated that, if depressed, they would feel embarrassed if classmates knew. Many believed that revealing depression could negatively affect professional advancement. Factor analyses revealed three underlying stigma constructs: personal weakness, public devaluation, and social/professional discrimination. Students associating personal weakness with depression perceived medication as less efficacious and the academic environment as more competitive. Those endorsing public stigma viewed medication and counseling as less efficacious and associated depression with an inability to cope. Race, gender, and diagnosis of past/current depression also related to beliefs about stigma. Depression measures most strongly predicted stigma associated with personal weakness and social/professional discrimination. Recommendations for decreasing stigma among physicians-in-training include consideration of workplace perceptions, depression etiology, treatment efficacy, and personal attributes in the design of stigma reduction programs that could facilitate help-seeking behavior among physicians throughout their career. Copyright © 2015 American Journal of Preventive Medicine. Published by Elsevier Inc. All

  4. The Feasibility of Enzyme Targeted Activation for Amino Acid/Dipeptide Monoester Prodrugs of Floxuridine; Cathepsin D as a Potential Targeted Enzyme

    Directory of Open Access Journals (Sweden)

    Gordon L. Amidon

    2012-03-01

    Full Text Available The improvement of therapeutic efficacy for cancer agents has been a big challenge which includes the increase of tumor selectivity and the reduction of adverse effects at non-tumor sites. In order to achieve those goals, prodrug approaches have been extensively investigated. In this report, the potential activation enzymes for 5¢-amino acid/dipeptide monoester floxuridine prodrugs in pancreatic cancer cells were selected and the feasibility of enzyme specific activation of prodrugs was evaluated. All prodrugs exhibited the range of 3.0–105.7 min of half life in Capan-2 cell homogenate with the presence and the absence of selective enzyme inhibitors. 5¢-O-L-Phenylalanyl-L-tyrosyl-floxuridine exhibited longer half life only with the presence of pepstatin A. Human cathepsin B and D selectively hydrolized 5¢-O-L-phenylalanyl-L-tyrosylfloxuridine and 5¢-O-L-phenylalanyl-L-glycylfloxuridine compared to the other tested prodrugs. The wide range of growth inhibitory effect by floxuridine prodrugs in Capan-2 cells was observed due to the different affinities of prodrug promoieties to enyzmes. In conclusion, it is feasible to design prodrugs which are activated by specific enzymes. Cathepsin D might be a good candidate as a target enzyme for prodrug activation and 5¢-O-L-phenylalanyl-L-tyrosylfloxuridine may be the best candidate among the tested floxuridine prodrugs.

  5. The feasibility of enzyme targeted activation for amino acid/dipeptide monoester prodrugs of floxuridine; cathepsin D as a potential targeted enzyme.

    Science.gov (United States)

    Tsume, Yasuhiro; Amidon, Gordon L

    2012-03-26

    The improvement of therapeutic efficacy for cancer agents has been a big challenge which includes the increase of tumor selectivity and the reduction of adverse effects at non-tumor sites. In order to achieve those goals, prodrug approaches have been extensively investigated. In this report, the potential activation enzymes for 5'-amino acid/dipeptide monoester floxuridine prodrugs in pancreatic cancer cells were selected and the feasibility of enzyme specific activation of prodrugs was evaluated. All prodrugs exhibited the range of 3.0-105.7 min of half life in Capan-2 cell homogenate with the presence and the absence of selective enzyme inhibitors. 5'-O-L-Phenylalanyl-L-tyrosyl-floxuridine exhibited longer half life only with the presence of pepstatin A. Human cathepsin B and D selectively hydrolized 5'-O-L-phenylalanyl-L-tyrosylfloxuridine and 5'-O-L-phenylalanyl-L-glycylfloxuridine compared to the other tested prodrugs. The wide range of growth inhibitory effect by floxuridine prodrugs in Capan-2 cells was observed due to the different affinities of prodrug promoieties to enzymes. In conclusion, it is feasible to design prodrugs which are activated by specific enzymes. Cathepsin D might be a good candidate as a target enzyme for prodrug activation and 5'-O-L-phenylalanyl-L-tyrosylfloxuridine may be the best candidate among the tested floxuridine prodrugs.

  6. The Metaboloepigenetic Dimension of Cancer Stem Cells: Evaluating the Market Potential for New Metabostemness-Targeting Oncology Drugs.

    Science.gov (United States)

    Menendez, Javier A

    2015-01-01

    The current global portfolio of oncology drugs is unlikely to produce durable disease remission for millions of cancer patients worldwide. This is due, in part, to the existence of so-called cancer stem cells (CSCs), a particularly aggressive type of malignant cell that is capable of indefinite self-replication, is refractory to conventional treatments, and is skilled at spreading and colonizing distant organs. To date, no drugs from big-league Pharma companies are capable of killing CSCs. Why? Quite simply, a classic drug development approach based on mutated genes and pathological protein products cannot efficiently target the plastic, epigenetic proclivity of cancer tissues to generate CSCs. Recent studies have proposed that certain elite metabolites (oncometabolites) and other common metabolites can significantly influence the establishment and maintenance of epigenetic signatures of stemness and cancer. Consequently, cellular metabolism and the core epigenetic codes, DNA methylation and histone modification, can be better viewed as an integrated metaboloepigenetic dimension of CSCs, which we have recently termed cancer metabostemness. By targeting weaknesses in the bridge connecting metabolism and epigenetics, a new generation of metabostemnessspecific drugs can be generated for potent and long-lasting elimination of life-threatening CSCs. Here I evaluate the market potential of re-modeling the oncology drug pipeline by discovering and developing new metabolic approaches able to target the apparently undruggable epigenetic programs that dynamically regulate the plasticity of non-CSC and CSC cellular states.

  7. Identification of MALT1 as both a prognostic factor and a potential therapeutic target of regorafenib in cholangiocarcinoma patients.

    Science.gov (United States)

    Yeh, Chun-Nan; Chang, Yu-Chan; Su, Yeu; Shin-Shian Hsu, Dennis; Cheng, Chi-Tung; Wu, Ren-Chin; Chung, Yi-Hsiu; Chiang, Kun-Chun; Yeh, Ta-Sen; Lu, Meng-Lun; Liu, Chun-Yu; Mu-Hsin Chang, Peter; Chen, Ming-Han; Huang, Chi-Ying F; Hsiao, Michael; Chen, Ming-Huang

    2017-12-26

    Intrahepatic cholangiocarcinoma (CCA) is an aggressive cancer that lacks an effective targeted therapy. Here, we assessed the therapeutic efficacy of regorafenib in CCA, as well as elucidated its underlying mechanism. We first demonstrated that regorafenib not only inhibited growth but also induced apoptosis in human CCA cells. Subsequently, we used in silico approaches to identify MALT1 (Mucosa-associated lymphoid tissue protein 1), which plays an important role in activating NF-κB, as a potential target of regorafenib. Overexpression of Elk-1, but not Ets-1, in HuCCT1 cells markedly reduced their sensitivity to regorafenib, which might be attributed to a significant increase in MALT1 levels. Our results further demonstrated that this drug drastically inhibited MALT1 expression by suppressing the Raf/Erk/Elk-1 pathway. The efficacy of regorafenib in decreasing in vivo CCA growth was confirmed in animal models. Regorafenib efficacy was observed in two MALT1-positive CCA patients who failed to respond to several other lines of therapy. Finally, MALT1 was also identified as an independent poor prognostic factor for patients with intrahepatic CCA. In conclusion, our study identified MALT1 to be a downstream mediator of the Raf/Erk/Elk-1 pathway and suggested that MALT1 may be a new therapeutic target for successful treatment of CCA by regorafenib.

  8. A Lipidomics Approach in the Characterization of Zika-Infected Mosquito Cells: Potential Targets for Breaking the Transmission Cycle.

    Directory of Open Access Journals (Sweden)

    Carlos Fernando Odir Rodrigues Melo

    Full Text Available Recent outbreaks of Zika virus in Oceania and Latin America, accompanied by unexpected clinical complications, made this infection a global public health concern. This virus has tropism to neural tissue, leading to microcephaly in newborns in a significant proportion of infected mothers. The clinical relevance of this infection, the difficulty to perform accurate diagnosis and the small amount of data in literature indicate the necessity of studies on Zika infection in order to characterize new biomarkers of this infection and to establish new targets for viral control in vertebrates and invertebrate vectors. Thus, this study aims at establishing a lipidomics profile of infected mosquito cells compared to a control group to define potential targets for viral control in mosquitoes. Thirteen lipids were elected as specific markers for Zika virus infection (Brazilian strain, which were identified as putatively linked to the intracellular mechanism of viral replication and/or cell recognition. Our findings bring biochemical information that may translate into useful targets for breaking the transmission cycle.

  9. The Endothelin Type A Receptor as a Potential Therapeutic Target in Preeclampsia.

    Science.gov (United States)

    Bakrania, Bhavisha; Duncan, Jeremy; Warrington, Junie P; Granger, Joey P

    2017-02-28

    Preeclampsia (PE) is a disorder of pregnancy typically characterized by new onset hypertension after gestational week 20 and proteinuria. Although PE is one of the leading causes of maternal and perinatal morbidity and death worldwide, the mechanisms of the pathogenesis of the disease remain unclear and treatment options are limited. However, there is increasing evidence to suggest that endothelin-1 (ET-1) plays a critical role in the pathophysiology of PE. Multiple studies report that ET-1 is increased in PE and some studies report a positive correlation between ET-1 and the severity of symptoms. A number of experimental models of PE are also associated with elevated tissue levels of prepro ET-1 mRNA. Moreover, experimental models of PE (placental ischemia, sFlt-1 infusion, Tumor necrosis factor (TNF) -α infusion, and Angiotensin II type 1 receptor autoantibody (AT1-AA) infusion) have proven to be susceptible to Endothelin Type A (ET A ) receptor antagonism. While the results are promising, further work is needed to determine whether ET antagonists could provide an effective therapy for the management of preeclampsia.

  10. Schwann Cell Precursors from Human Pluripotent Stem Cells as a Potential Therapeutic Target for Myelin Repair.

    Science.gov (United States)

    Kim, Han-Seop; Lee, Jungwoon; Lee, Da Yong; Kim, Young-Dae; Kim, Jae Yun; Lim, Hyung Jin; Lim, Sungmin; Cho, Yee Sook

    2017-06-06

    Schwann cells play a crucial role in successful nerve repair and regeneration by supporting both axonal growth and myelination. However, the sources of human Schwann cells are limited both for studies of Schwann cell development and biology and for the development of treatments for Schwann cell-associated diseases. Here, we provide a rapid and scalable method to produce self-renewing Schwann cell precursors (SCPs) from human pluripotent stem cells (hPSCs), using combined sequential treatment with inhibitors of the TGF-β and GSK-3 signaling pathways, and with neuregulin-1 for 18 days under chemically defined conditions. Within 1 week, hPSC-derived SCPs could be differentiated into immature Schwann cells that were functionally confirmed by their secretion of neurotrophic factors and their myelination capacity in vitro and in vivo. We propose that hPSC-derived SCPs are a promising, unlimited source of functional Schwann cells for treating demyelination disorders and injuries to the peripheral nervous system. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Citrus fruits as a treasure trove of active natural metabolites that potentially provide benefits for human health.

    Science.gov (United States)

    Lv, Xinmiao; Zhao, Siyu; Ning, Zhangchi; Zeng, Honglian; Shu, Yisong; Tao, Ou; Xiao, Cheng; Lu, Cheng; Liu, Yuanyan

    2015-01-01

    Citrus fruits, which are cultivated worldwide, have been recognized as some of the most high-consumption fruits in terms of energy, nutrients and health supplements. What is more, a number of these fruits have been used as traditional medicinal herbs to cure diseases in several Asian countries. Numerous studies have focused on Citrus secondary metabolites as well as bioactivities and have been intended to develop new chemotherapeutic or complementary medicine in recent decades. Citrus-derived secondary metabolites, including flavonoids, alkaloids, limonoids, coumarins, carotenoids, phenolic acids and essential oils, are of vital importance to human health due to their active properties. These characteristics include anti-oxidative, anti-inflammatory, anti-cancer, as well as cardiovascular protective effects, neuroprotective effects, etc. This review summarizes the global distribution and taxonomy, numerous secondary metabolites and bioactivities of Citrus fruits to provide a reference for further study. Flavonoids as characteristic bioactive metabolites in Citrus fruits are mainly introduced.

  12. [Cost analysis of radiotherapy provided in inpatient setting -  testing potential predictors for a new prospective payment system].

    Science.gov (United States)

    Sedo, J; Bláha, M; Pavlík, T; Klika, P; Dušek, L; Büchler, T; Abrahámová, J; Srámek, V; Slampa, P; Komínek, L; Pospíšil, P; Sláma, O; Vyzula, R

    2014-01-01

    As a part of the development of a new prospective payment model for radiotherapy we analyzed data on costs of care provided by three comprehensive cancer centers in the Czech Republic. Our aim was to find a combination of variables (predictors) which could be used to sort hospitalization cases into groups according to their costs, with each group having the same reimbursement rate. We tested four variables as possible predictors -  number of fractions, stage of disease, radiotherapy technique and diagnostic group. We analyzed 7,440 hospitalization cases treated in three comprehensive cancer centers from 2007 to 2011. We acquired data from the I COP database developed by Institute of Biostatistics and Analyses of Masaryk University in cooperation with oncology centers that contains records from the National Oncological Registry along with data supplied by healthcare providers to insurance companies for the purpose of retrospective reimbursement. When comparing the four variables mentioned above we found that number of fractions and radiotherapy technique were much stronger predictors than the other two variables. Stage of disease did not prove to be a relevant indicator of cost distinction. There were significant differences in costs among diagnostic groups but these were mostly driven by the technique of radiotherapy and the number of fractions. Within the diagnostic groups, the distribution of costs was too heterogeneous for the purpose of the new payment model. The combination of number of fractions and radiotherapy technique appears to be the most appropriate cost predictors to be involved in the prospective payment model proposal. Further analysis is planned to test the predictive value of intention of radiotherapy in order to determine differences in costs between palliative and curative treatment.

  13. Small RNA Transcriptome of Hibiscus Syriacus Provides Insights into the Potential Influence of microRNAs in Flower Development and Terpene Synthesis.

    Science.gov (United States)

    Kim, Taewook; Park, June Hyun; Lee, Sang-Gil; Kim, Soyoung; Kim, Jihyun; Lee, Jungho; Shin, Chanseok

    2017-08-01

    MicroRNAs (miRNAs) are essential small RNA molecules that regulate the expression of target mRNAs in plants and animals. Here, we aimed to identify miRNAs and their putative targets in Hibiscus syriacus , the national flower of South Korea. We employed high-throughput sequencing of small RNAs obtained from four different tissues ( i.e. , leaf, root, flower, and ovary) and identified 33 conserved and 30 novel miRNA families, many of which showed differential tissue-specific expressions. In addition, we computationally predicted novel targets of miRNAs and validated some of them using 5' rapid amplification of cDNA ends analysis. One of the validated novel targets of miR477 was a terpene synthase, the primary gene involved in the formation of disease-resistant terpene metabolites such as sterols and phytoalexins. In addition, a predicted target of conserved miRNAs, miR396, is SHORT VEGETATIVE PHASE , which is involved in flower initiation and is duplicated in H. syriacus . Collectively, this study provides the first reliable draft of the H. syriacus miRNA transcriptome that should constitute a basis for understanding the biological roles of miRNAs in H. syriacus.

  14. The heme biosynthetic pathway of the obligate Wolbachia endosymbiont of Brugia malayi as a potential anti-filarial drug target.

    Directory of Open Access Journals (Sweden)

    Bo Wu

    2009-07-01

    Full Text Available Filarial parasites (e.g., Brugia malayi, Onchocerca volvulus, and Wuchereria bancrofti are causative agents of lymphatic filariasis and onchocerciasis, which are among the most disabling of neglected tropical diseases. There is an urgent need to develop macro-filaricidal drugs, as current anti-filarial chemotherapy (e.g., diethylcarbamazine [DEC], ivermectin and albendazole can interrupt transmission predominantly by killing microfilariae (mf larvae, but is less effective on adult worms, which can live for decades in the human host. All medically relevant human filarial parasites appear to contain an obligate endosymbiotic bacterium, Wolbachia. This alpha-proteobacterial mutualist has been recognized as a potential target for filarial nematode life cycle intervention, as antibiotic treatments of filarial worms harboring Wolbachia result in the loss of worm fertility and viability upon antibiotic treatments both in vitro and in vivo. Human trials have confirmed this approach, although the length of treatments, high doses required and medical counter-indications for young children and pregnant women warrant the identification of additional anti-Wolbachia drugs.Genome sequence analysis indicated that enzymes involved in heme biosynthesis might constitute a potential anti-Wolbachia target set. We tested different heme biosynthetic pathway inhibitors in ex vivo B. malayi viability assays and report a specific effect of N-methyl mesoporphyrin (NMMP, which targets ferrochelatase (FC, the last step. Our phylogenetic analysis indicates evolutionarily significant divergence between Wolbachia heme genes and their human homologues. We therefore undertook the cloning, overexpression and analysis of several enzymes of this pathway alongside their human homologues, and prepared proteins for drug targeting. In vitro enzyme assays revealed a approximately 600-fold difference in drug sensitivities to succinyl acetone (SA between Wolbachia and human 5

  15. Control of sand flies with attractive toxic sugar baits (ATSB) and potential impact on non-target organisms in Morocco.

    Science.gov (United States)

    Qualls, Whitney A; Müller, Gunter C; Khallaayoune, Khalid; Revay, Edita E; Zhioua, Elyes; Kravchenko, Vasiliy D; Arheart, Kristopher L; Xue, Rui-De; Schlein, Yosef; Hausmann, Axel; Kline, Daniel L; Beier, John C

    2015-02-08

    The persistence and geographical expansion of leishmaniasis is a major public health problem that requires the development of effective integrated vector management strategies for sand fly control. Moreover, these strategies must be economically and environmentally sustainable approaches that can be modified based on the current knowledge of sand fly vector behavior. The efficacy of using attractive toxic sugar baits (ATSB) for sand fly control and the potential impacts of ATSB on non-target organisms in Morocco was investigated. Sand fly field experiments were conducted in an agricultural area along the flood plain of the Ourika River. Six study sites (600 m x 600 m); three with "sugar rich" (with cactus hedges bearing countless ripe fruits) environments and three with "sugar poor" (green vegetation only suitable for plant tissue feeding) environments were selected to evaluate ATSB, containing the toxin, dinotefuran. ATSB applications were made either with bait stations or sprayed on non-flowering vegetation. Control sites were established in both sugar rich and sugar poor environments. Field studies evaluating feeding on vegetation treated with attractive (non-toxic) sugar baits (ASB) by non-target arthropods were conducted at both sites with red stained ASB applied to non-flowering vegetation, flowering vegetation, or on bait stations. At both the sites, a single application of ATSB either applied to vegetation or bait stations significantly reduced densities of both female and male sand flies (Phlebotomus papatasi and P. sergenti) for the five-week trial period. Sand fly populations were reduced by 82.8% and 76.9% at sugar poor sites having ATSB applied to vegetation or presented as a bait station, respectively and by 78.7% and 83.2%, respectively at sugar rich sites. The potential impact of ATSB on non-targets, if applied on green non-flowering vegetation and bait stations, was low for all non-target groups as only 1% and 0.7% were stained with non-toxic bait

  16. Computing the Free Energy Barriers for Less by Sampling with a Coarse Reference Potential while Retaining Accuracy of the Target Fine Model.

    Science.gov (United States)

    Plotnikov, Nikolay V

    2014-08-12

    Proposed in this contribution is a protocol for calculating fine-physics (e.g., ab initio QM/MM) free-energy surfaces at a high level of accuracy locally (e.g., only at reactants and at the transition state for computing the activation barrier) from targeted fine-physics sampling and extensive exploratory coarse-physics sampling. The full free-energy surface is still computed but at a lower level of accuracy from coarse-physics sampling. The method is analytically derived in terms of the umbrella sampling and the free-energy perturbation methods which are combined with the thermodynamic cycle and the targeted sampling strategy of the paradynamics approach. The algorithm starts by computing low-accuracy fine-physics free-energy surfaces from the coarse-physics sampling in order to identify the reaction path and to select regions for targeted sampling. Thus, the algorithm does not rely on the coarse-physics minimum free-energy reaction path. Next, segments of high-accuracy free-energy surface are computed locally at selected regions from the targeted fine-physics sampling and are positioned relative to the coarse-physics free-energy shifts. The positioning is done by averaging the free-energy perturbations computed with multistep linear response approximation method. This method is analytically shown to provide results of the thermodynamic integration and the free-energy interpolation methods, while being extremely simple in implementation. Incorporating the metadynamics sampling to the algorithm is also briefly outlined. The application is demonstrated by calculating the B3LYP//6-31G*/MM free-energy barrier for an enzymatic reaction using a semiempirical PM6/MM reference potential. These modifications allow computing the activation free energies at a significantly reduced computational cost but at the same level of accuracy compared to computing full potential of mean force.

  17. Melanin-targeting antibody as a potential agent for radioimmunotherapy of melanoma

    International Nuclear Information System (INIS)

    Dadachova, E.; Nosanchuk, J.D.; Shi, L.; Casadevall, A.

    2002-01-01

    of 188 Re-6D2 mAb demonstrated in vivo stability of 188 Re-6D2 with only negligible radioactivity found in the stomach, while tumor/blood ID/g ratio was significantly higher for 188 Re-6D2 (0.76±0.12 and 4.07±0.69 at 5 and 24 h p.i., respectively) than for irrelevant 188 Re-IgM (0.33±0.01 and 0.88±0.04 at 5 and 24 h p.i., respectively). Conclusion: The in vitro and in vivo binding of anti-fungal melanin antibody 6D2 to human pigmented melanoma cells has proved to be melanin-specific. Thus, anti-melanin antibodies have a potential for development into the agents for RIT of pigmented melanoma

  18. Targeting study of gelatin adsorbed clodronate in reticuloendothelial system and its potential application in immune thrombocytopenic purpura of rat model

    International Nuclear Information System (INIS)

    Li, P.; Tan, Z.; Zhu, Y.

    2007-01-01

    Full text: Depletion of splenic and hepatic macrophages has potentials to alleviate hemorrhage in patients who suffered from immune thrombocytopenic purpura (ITP). This investigation was aimed to assess whether nanotechnology can play a role in this clinical setting by absorbing bisphosphonate clodronate (CLOD) to type A gelatin nanospheres (GNS) to form CLOD-GNS. First, the stability of CLOD-GNS was assessed in- vitro and up to 6 mg CLOD can be adsorbed in 1 mg GNS. The ability of CLOD-GNS to target the spleen and the liver was then evaluated by biodistribution assay and 99mTc-CLOD-GNS scintigraphy in rats. It showed that up to 70.6% of CLOD-GNS could be accumulated in the liver and spleen. The survival of the macrophages in vitro and the phagocytic ability of hepatic and splenic macrophage in vivo were reduced and later demonstrated by99mTc-phytic colloid scintigraphy. In rats with induced ITP, administration of CLOD-GNS successfully prevented peripheral platelet levels from decreasing. Our preliminary data demonstrate that CLOD-GNS can effectively target the reticuloendothelial system and has potentials in the treatment of ITP warrants further study. (author)

  19. Potential of Start Codon Targeted (SCoT) markers for DNA fingerprinting of newly synthesized tritordeums and their respective parents.

    Science.gov (United States)

    Cabo, Sandra; Ferreira, Luciana; Carvalho, Ana; Martins-Lopes, Paula; Martín, António; Lima-Brito, José Eduardo

    2014-08-01

    Hexaploid tritordeum (H(ch)H(ch)AABB; 2n = 42) results from the cross between Hordeum chilense (H(ch)H(ch); 2n = 14) and cultivated durum wheat (Triticum turgidum ssp. durum (AABB; 2n = 28). Morphologically, tritordeum resembles the wheat parent, showing promise for agriculture and wheat breeding. Start Codon Targeted (SCoT) polymorphism is a recently developed technique that generates gene-targeted markers. Thus, we considered it interesting to evaluate its potential for the DNA fingerprinting of newly synthesized hexaploid tritordeums and their respective parents. In this study, 60 SCoT primers were tested, and 18 and 19 of them revealed SCoT polymorphisms in the newly synthesized tritordeum lines HT27 and HT22, respectively, and their parents. An analysis of the presence/absence of bands among tritordeums and their parents revealed three types of polymorphic markers: (i) shared by tritordeums and one of their parents, (ii) exclusively amplified in tritordeums, and (iii) exclusively amplified in the parents. No polymorphism was detected among individuals of each parental species. Three SCoT markers were exclusively amplified in tritordeums of lines HT22 and HT27, being considered as polyploidization-induced rearrangements. About 70% of the SCoT markers of H. chilense origin were not transmitted to the allopolyploids of both lines, and most of the SCoTs scored in the newly synthesized allopolyploids originated from wheat, reinforcing the potential use of tritordeum as an alternative crop.

  20. Mesoscale Assessment of CO2 Storage Potential and Geological Suitability for Target Area Selection in the Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Yujie Diao

    2017-01-01

    Full Text Available In China, south of the Yangtze River, there are a large number of carbon sources, while the Sichuan Basin is the largest sedimentary basin; it makes sense to select the targets for CO2 geological storage (CGUS early demonstration. For CO2 enhanced oil and gas, coal bed methane recovery (CO2-EOR, EGR, and ECBM, or storage in these depleted fields, the existing oil, gas fields, or coal seams could be the target areas in the mesoscale. This paper proposed a methodology of GIS superimposed multisource information assessment of geological suitability for CO2 enhanced water recovery (CO2-EWR or only storage in deep saline aquifers. The potential per unit area of deep saline aquifers CO2 storage in Central Sichuan is generally greater than 50 × 104 t/km2 at P50 probability level, with Xujiahe group being the main reservoir. CO2 storage potential of depleted gas fields is 53.73 × 108 t, while it is 33.85 × 108 t by using CO2-EGR technology. This paper recommended that early implementation of CGUS could be carried out in the deep saline aquifers and depleted gas fields in the Sichuan Basin, especially that of the latter because of excellent traps, rich geological data, and well-run infrastructures.