WorldWideScience

Sample records for providing independent detector

  1. Nucleonic coal detector with independent, hydropneumatic suspension

    Science.gov (United States)

    Jones, E. W.; Handy, K.

    1977-01-01

    The design of a nucleonic, coal interface detector which measures the depth of coal on the roof and floor of a coal mine is presented. The nucleonic source and the nucleonic detector are on independent hydropneumatic suspensions to reduce the measurement errors due to air gap.

  2. A new experiment-independent mechanism to persistify and serve the detector geometry of ATLAS

    Science.gov (United States)

    Bianchi, Riccardo Maria; Boudreau, Joseph; Vukotic, Ilija

    2017-10-01

    The complex geometry of the whole detector of the ATLAS experiment at LHC is currently stored only in custom online databases, from which it is built on-the-fly on request. Accessing the online geometry guarantees accessing the latest version of the detector description, but requires the setup of the full ATLAS software framework “Athena”, which provides the online services and the tools to retrieve the data from the database. This operation is cumbersome and slows down the applications that need to access the geometry. Moreover, all applications that need to access the detector geometry need to be built and run on the same platform as the ATLAS framework, preventing the usage of the actual detector geometry in stand-alone applications. Here we propose a new mechanism to persistify (in software development in general, and in HEP computing in particular, persistifying means taking an object which lives in memory only - for example because it was built on-the-fly while processing the experimental data, - serializing it and storing it on disk as a persistent object) and serve the geometry of HEP experiments. The new mechanism is composed by a new file format and the modules to make use of it. The new file format allows to store the whole detector description locally in a file, and it is especially optimized to describe large complex detectors with the minimum file size, making use of shared instances and storing compressed representations of geometry transformations. Then, the detector description can be read back in, to fully restore the in-memory geometry tree. Moreover, a dedicated REST API is being designed and developed to serve the geometry in standard exchange formats like JSON, to let users and applications download specific partial geometry information. With this new geometry persistification a new generation of applications could be developed, which can use the actual detector geometry while being platform-independent and experiment-independent.

  3. Analysis of parameter-independent PLLs with bang-bang phase-detectors

    CERN Document Server

    Toifl, Thomas H; Marchioro, A; Placidi, P

    1998-01-01

    The parameter-independent design of Phase-Locked Loops (PLLs) is investigated for the case that a bang-bang phase-detector is used. Two self-biased CMOS PLL structures are proposed and compared, one l eading to a completely parameter- and frequency independent behavior. If the PLL frequency operation is constant and known in advance, however, both structures can be made independent of the transisto r Vt and b parameters.

  4. Psychological Resilience Provides No Independent Protection From Suicidal Risk.

    Science.gov (United States)

    Liu, Danica W Y; Fairweather-Schmidt, A Kate; Burns, Richard; Roberts, Rachel M; Anstey, Kaarin J

    2016-03-01

    Little is known about the role of resilience in the likelihood of suicidal ideation (SI) over time. We examined the association between resilience and SI in a young-adult cohort over 4 years. Our objectives were to determine whether resilience was associated with SI at follow-up or, conversely, whether SI was associated with lowered resilience at follow-up. Participants were selected from the Personality and Total Health (PATH) Through Life Project from Canberra and Queanbeyan, Australia, aged 28-32 years at the first time point and 32-36 at the second. Multinomial, linear, and binary regression analyses explored the association between resilience and SI over two time points. Models were adjusted for suicidality risk factors. While unadjusted analyses identified associations between resilience and SI, these effects were fully explained by the inclusion of other suicidality risk factors. Despite strong cross-sectional associations, resilience and SI appear to be unrelated in a longitudinal context, once risk/resilience factors are controlled for. As independent indicators of psychological well-being, suicidality and resilience are essential if current status is to be captured. However, the addition of other factors (e.g., support, mastery) makes this association tenuous. Consequently, resilience per se may not be protective of SI.

  5. Outcomes after intrauterine insemination are independent of provider type

    Science.gov (United States)

    Goldman, Randi H.; Batsis, Maria; Hacker, Michele R.; Souter, Irene; Petrozza, John C.

    2015-01-01

    OBJECTIVE We sought to determine whether the success of intrauterine insemination (IUI) varies based on the type of health care provider performing the procedure. STUDY DESIGN This was a retrospective cohort study set at an infertility clinic at an academic institution. The patients who comprised this study were 1575 women who underwent 3475 IUI cycles from late 2003 through early 2012. Cycles were stratified into 3 groups according to the type of provider who performed the procedure: attending physician, fellow physician, or registered nurse (RN). The primary outcome was live birth. Additional outcomes of interest included positive pregnancy test and clinical pregnancy. Repeated measures log binomial regression was used to estimate the risk ratios (RR) and 95% confidence intervals (CI) for the outcomes and to evaluate the effect of potential confounders. All tests were 2-sided, and P values < .05 were considered statistically significant. RESULTS Of the 3475 IUI cycles, 2030 (58.4%) were gonadotropin stimulated, 929 (26.7%) were clomiphene citrate stimulated, and 516 (14.9%) were natural. The incidences of clinical pregnancy and live birth among all cycles were 11.8% and 8.8%, respectively. After adjusting for female age, male partner age, and cycle type, the incidence of live birth was similar for RNs compared with attending physicians (RR, 0.80; 95% CI, 0.58–1.1) and fellow physicians compared with attending physicians (RR, 0.84; 95% CI, 0.58–1.2). Similar results were seen for positive pregnancy test and clinical pregnancy. CONCLUSION There was no significant difference in live birth following IUI cycles in which the procedure was performed by a fellow physician or RN compared with an attending physician. PMID:24881820

  6. Freezing of Gait Detection in Parkinson's Disease: A Subject-Independent Detector Using Anomaly Scores.

    Science.gov (United States)

    Pham, Thuy T; Moore, Steven T; Lewis, Simon John Geoffrey; Nguyen, Diep N; Dutkiewicz, Eryk; Fuglevand, Andrew J; McEwan, Alistair L; Leong, Philip H W

    Freezing of gait (FoG) is common in Parkinsonian gait and strongly relates to falls. Current clinical FoG assessments are patients' self-report diaries and experts' manual video analysis. Both are subjective and yield moderate reliability. Existing detection algorithms have been predominantly designed in subject-dependent settings. In this paper, we aim to develop an automated FoG detector for subject independent. After extracting highly relevant features, we apply anomaly detection techniques to detect FoG events. Specifically, feature selection is performed using correlation and clusterability metrics. From a list of 244 feature candidates, 36 candidates were selected using saliency and robustness criteria. We develop an anomaly score detector with adaptive thresholding to identify FoG events. Then, using accuracy metrics, we reduce the feature list to seven candidates. Our novel multichannel freezing index was the most selective across all window sizes, achieving sensitivity (specificity) of (). On the other hand, freezing index from the vertical axis was the best choice for a single input, achieving sensitivity (specificity) of () for ankle and () for back sensors. Our subject-independent method is not only significantly more accurate than those previously reported, but also uses a much smaller window (e.g., versus ) and/or lower tolerance (e.g., versus ).Freezing of gait (FoG) is common in Parkinsonian gait and strongly relates to falls. Current clinical FoG assessments are patients' self-report diaries and experts' manual video analysis. Both are subjective and yield moderate reliability. Existing detection algorithms have been predominantly designed in subject-dependent settings. In this paper, we aim to develop an automated FoG detector for subject independent. After extracting highly relevant features, we apply anomaly detection techniques to detect FoG events. Specifically, feature selection is performed using correlation and clusterability metrics. From

  7. Precision Neutron Time-of-Flight Detectors Provide Insight into NIF Implosion Dynamics

    Science.gov (United States)

    Schlossberg, David; Eckart, M. J.; Grim, G. P.; Hartouni, E. P.; Hatarik, R.; Moore, A. S.; Waltz, C. S.

    2017-10-01

    During inertial confinement fusion, higher-order moments of neutron time-of-flight (nToF) spectra can provide essential information for optimizing implosions. The nToF diagnostic suite at the National Ignition Facility (NIF) was recently upgraded to include novel, quartz Cherenkov detectors. These detectors exploit the rapid Cherenkov radiation process, in contrast with conventional scintillator decay times, to provide high temporal-precision measurements that support higher-order moment analyses. Preliminary measurements have been made on the NIF during several implosions and initial results are presented here. Measured line-of-sight asymmetries, for example in ion temperatures, will be discussed. Finally, advanced detector optimization is shown to advance accessible physics, with possibilities for energy discrimination, gamma source identification, and further reduction in quartz response times. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  8. A comparative and combined study of EMIS and GPR detectors by the use of Independent Component Analysis

    DEFF Research Database (Denmark)

    Morgenstjerne, Axel; Karlsen, Brian; Larsen, Jan

    2005-01-01

    Independent Component Analysis (ICA) is applied to classify unexploded ordnance (UXO) on laboratory UXO test-field data, acquired by stand-off detection. The data are acquired by an Electromagnetic Induction Spectroscopy (EMIS) metal detector and a ground penetrating radar (GPR) detector. The metal...... detector is a GEM-3, which is a monostatic sensor measuring the response of the environment on a multi-frequency constant wave excitation field (300 Hz to 25 kHz), and the GPR detector is a stepped-frequency GPR with a monostatic bow-tie antenna (500MHz to 2.5GHz). For both sensors the in...... are processed by the use of statistical signal processing based on ICA. An unsupervised method based on ICA to detect, discriminate, and classify the UXOs from clutter is suggested. The approach is studied on GPR and EMIS data, separately and compared. The potential is an improved ability: to detect the UXOs...

  9. Movement and change: independent sector domiciliary care providers between 1995 and 1999.

    Science.gov (United States)

    Ware, P; Matosevic, T; Forder, J; Hardy, B; Kendall, J; Knapp, M; Wistow, G

    2001-11-01

    Promoting the development of a flourishing independent sector alongside good quality public services was a key objective of the community care reforms of the last decade. This paper charts some of the ways the independent domiciliary care sector is changing, as local authorities shift the balance of their provision toward independent sector providers and away from a reliance on in-house services. Two surveys of independent domiciliary care providers were carried out in 1995 and 1999. The aims of the studies were to describe the main features of provider organisations, such as size of business, client group and funding sources; to examine the nature of provider motivations and their past and future plans; to consider how local authorities manage the supply side of social care markets; and to examine the effects on providers of the development of the mixed economy. The first survey in 1995 was conducted in eight local authority areas, which by 1999 had increased to 11 because of the creation of three new unitary authorities. The findings are based on 261 postal surveys together with 111 interviews between the two studies. The research illustrates a domiciliary care market that is still relatively young with many small but growing businesses. There are considerable differences in the split between in-house and independent sector services in individual authorities and a common perception among independent providers that in-house services receive favourable treatment and conditions. Spot or call-off contracts continue to be the most common form of contract although there are moves toward greater levels of guaranteed service and more sophisticated patterns of contracting arrangements. There remains an ongoing need to share information between local authorities and independent providers so that good working relationships can develop with proven and competent providers.

  10. Role of small-scale independent providers in water and sanitation

    NARCIS (Netherlands)

    M.P. van Dijk (Meine Pieter)

    2008-01-01

    textabstractSmall-scale independent providers (SSIPs) and households are good for 10–69% of the household water supply and sometimes up to 95% of the sanitation solutions in cities in developing countries. Different types of SSIP can be distinguished. They could be allowed to make a more important

  11. A comparative and combined study of EMIS and GPR detectors by the use of independent component analysis

    Science.gov (United States)

    Morgenstjerne, Axel; Karlsen, Brian; Larsen, Jan; Sorensen, Helge B. D.; Jakobsen, Kaj B.

    2005-06-01

    Independent Component Analysis (ICA) is applied to classify unexploded ordnance (UXO) on laboratory UXO test-field data, acquired by stand-off detection. The data are acquired by an Electromagnetic Induction Spectroscopy (EMIS) metal detector and a ground penetrating radar (GPR) detector. The metal detector is a GEM-3, which is a monostatic sensor measuring the response of the environment on a multi-frequency constant wave excitation field (300 Hz 25 kHz), and the GPR detector is a stepped-frequency GPR with a monostatic bow-tie antenna (500 MHz 2.5 GHz). For both sensors the in-phase and the quadrature responses are measured at each frequency. The test field is a box of soil where a wide range of UXOs are placed at selected positions. The position and movement of both of the detectors are controlled by a 2D-scanner. Thus the data are acquired at well-defined measurement points. The data are processed by the use of statistical signal processing based on ICA. An unsupervised method based on ICA to detect, discriminate, and classify the UXOs from clutter is suggested. The approach is studied on GPR and EMIS data, both separately and combined. The potential is an improved ability: to detect the UXOs, to evaluate the related characteristics, and to reduce the number of false alarms from harmless objects and clutter.

  12. Role of small-scale independent providers in water and sanitation

    OpenAIRE

    Dijk, Meine Pieter van

    2008-01-01

    textabstractSmall-scale independent providers (SSIPs) and households are good for 10–69% of the household water supply and sometimes up to 95% of the sanitation solutions in cities in developing countries. Different types of SSIP can be distinguished. They could be allowed to make a more important contribution to drinking water and sanitation in a situation where many governments cannot be the only one to supply drinking water and sanitary services. Theoretical and practical arguments are use...

  13. Male facial attractiveness and masculinity may provide sex- and culture-independent cues to semen quality.

    Science.gov (United States)

    Soler, C; Kekäläinen, J; Núñez, M; Sancho, M; Álvarez, J G; Núñez, J; Yaber, I; Gutiérrez, R

    2014-09-01

    Phenotype-linked fertility hypothesis (PLFH) predicts that male secondary sexual traits reveal honest information about male fertilization ability. However, PLFH has rarely been studied in humans. The aim of the present study was to test PLFH in humans and to investigate whether potential ability to select fertile partners is independent of sex or cultural background. We found that on the contrary to the hypothesis, facial masculinity was negatively associated with semen quality. As increased levels of testosterone have been demonstrated to impair sperm production, this finding may indicate a trade-off between investments in secondary sexual signalling (i.e. facial masculinity) and fertility or status-dependent differences in investments in semen quality. In both sexes and nationalities (Spanish and Colombian), ranked male facial attractiveness predicted male semen quality. However, Spanish males and females estimated facial images generally more attractive (gave higher ranks) than Colombian raters, and in both nationalities, males gave higher ranks than females. This suggests that male facial cues may provide culture- and sex-independent information about male fertility. However, our results also indicate that humans may be more sensitive to facial attractiveness cues within their own populations and also that males may generally overestimate the attractiveness of other men to females. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  14. Multiplex Amplification Refractory Mutation System PCR (ARMS-PCR) provides sequencing independent typing of canine parvovirus.

    Science.gov (United States)

    Chander, Vishal; Chakravarti, Soumendu; Gupta, Vikas; Nandi, Sukdeb; Singh, Mithilesh; Badasara, Surendra Kumar; Sharma, Chhavi; Mittal, Mitesh; Dandapat, S; Gupta, V K

    2016-12-01

    Canine parvovirus-2 antigenic variants (CPV-2a, CPV-2b and CPV-2c) ubiquitously distributed worldwide in canine population causes severe fatal gastroenteritis. Antigenic typing of CPV-2 remains a prime focus of research groups worldwide in understanding the disease epidemiology and virus evolution. The present study was thus envisioned to provide a simple sequencing independent, rapid, robust, specific, user-friendly technique for detecting and typing of presently circulating CPV-2 antigenic variants. ARMS-PCR strategy was employed using specific primers for CPV-2a, CPV-2b and CPV-2c to differentiate these antigenic types. ARMS-PCR was initially optimized with reference positive controls in two steps; where first reaction was used to differentiate CPV-2a from CPV-2b/CPV-2c. The second reaction was carried out with CPV-2c specific primers to confirm the presence of CPV-2c. Initial validation of the ARMS-PCR was carried out with 24 sequenced samples and the results were matched with the sequencing results. ARMS-PCR technique was further used to screen and type 90 suspected clinical samples. Randomly selected 15 suspected clinical samples that were typed with this technique were sequenced. The results of ARMS-PCR and the sequencing matched exactly with each other. The developed technique has a potential to become a sequencing independent method for simultaneous detection and typing of CPV-2 antigenic variants in veterinary disease diagnostic laboratories globally. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Decay-mode independent searches for new scalar bosons with the OPAL detector at LEP

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Bloodworth, I.J.; Boeriu, O.; Bock, P.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Cammin, J.; Campana, S.; Carnegie, R.K.; Caron, B.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Cohen, I.; Csilling, A.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Dallison, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Elfgren, E.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauschild, M.; Hauschildt, J.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Homer, R.J.; Horvath, D.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Klute, M.; Kluth, S.; Kobayashi, T.; Kobel, M.; Kokott, T.P.; Komamiya, S.; Kormos, Laura L.; Kowalewski, Robert V.; Kramer, T.; Kress, T.; Krieger, P.; von Krogh, J.; Krop, D.; Kupper, M.; Kyberd, P.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Leins, A.; Lellouch, D.; Letts, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, J.; Macpherson, A.; Mader, W.; Marcellini, S.; Marchant, T.E.; Martin, A.J.; Martin, J.P.; Masetti, G.; Mashimo, T.; Mattig, Peter; McDonald, W.J.; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Mendez-Lorenzo, P.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Rick, H.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharoe-Hansen, P.; Schieck, J.; Schoerner-Sadenius, Thomas; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Spano, F.; Stahl, A.; Stephens, K.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Taylor, R.J.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trefzger, T.; Tricoli, A.; Trigger, I.; Trocsnyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vachon, B.; Vollmer, C.F.; Vannerem, P.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zacek, V.; Zer-Zion, D.; Zivkovic, Lidija

    2003-01-01

    This paper describes topological searches for neutral scalar bosons S0 produced in association with a Z0 boson via the Bjorken process e+e- -> S0Z0 at centre-of-mass energies of 91 GeV and 183-209 GeV. These searches are based on studies of the recoil mass spectrum of Z0 -> e+e- and mu+mu- events on a search for S0Z0 with Z0 -> nunu bar and S0 -> e+e- or photons. They cover the decays of the S0 into an arbitrary combination of hadrons, leptons, photons and invisible particles as well as the possibility that it might be stable. No indication for a signal is found in the data and upper limits on the cross section of the Bjorken process are calculated. Cross-section limits are given in terms of a scale factor k with respect to the Standrad Model cross section for the Higgs-strahlung process e+e- -> H0smZ0. These results can be interpreted in general scenarios independently of the decay modes of the S0. The examples considered here are the production of a single new scalar particle with a decay width smaller than...

  16. A novel measurand independent of the distance between the source and detector for continuous wave near-infrared spectroscopy

    Science.gov (United States)

    Kiguchi, Masashi; Funane, Tsukasa; Sato, Hiroki

    2017-06-01

    A new measurand is proposed for use in continuous wave near-infrared spectroscopy (cw-NIRS). The conventional measurand of cw-NIRS is l△c, which is the product of the change in the hemoglobin concentration (△c) and the partial path lengh (l), which depends on the source-detector (SD) distance (d). The SD distance must remain constant during cw-NIRS measurements, and we cannot compare the l△c value with that obtained using a different SD distance. In addition, the conventional measurand obtained using the standard measurement style sometimes includes a contribution from the human scalp. The SD distance independent (SID) measurand obtained using multi-SD distances is proportional to the product of the change in hemoglobin concentration and the derivative of the partial path length for the deep region with no scalp contribution under the assumption of a layer model. The principle of SID was validated by the layered phantom study. In order to check the limitation of assumption, a human study was conducted. The value of the SID measurand for the left side of the forehead during working memory task was approximately independent of the SD distance between 16 and 32 mm. The SID measurand and the standardized optode arrangement using flexible SD distances in a head coordinate system must be helpful for comparing the data in a population study.

  17. Model independent search for new particles in two-dimensional mass space using events with missing energy, two jets and two leptons with the CMS detector

    CERN Document Server

    AUTHOR|(CDS)2080070; Hebbeker, Thomas

    2017-07-07

    The discovery of a new particle consistent with the standard model Higgs boson at the Large Hadron Collider in 2012 completed the standard model of particle physics (SM). Despite its remarkable success many questions remain unexplained. Numerous theoretical models, predicting the existence of new heavy particles, provide answers to these unresolved questions and are tested at high energy experiments such as the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC). In this thesis a model independent search method for new particles in two-dimensional mass space in events with missing transverse energy is presented using 19.7 $\\mbox{fb}^{-1}$ of proton-proton collision data recorded by the CMS detector at a centre of mass energy $\\sqrt{s}$ = 8 TeV at the LHC. The analysis searches for signatures of pair-produced new heavy particles $\\mbox{T}^\\prime$ which decay further into unknown heavy particles $\\mbox{W}^\\prime$ and SM quarks $q$ ($\\mbox{T}^\\prime\\overline{\\mbox{T}^\\prime} \\rightarrow {...

  18. Enhanced tumor contrast during breast lumpectomy provided by independent component analysis of localized reflectance measures

    Science.gov (United States)

    Eguizabal, Alma; Laughney, Ashley M.; Garcia Allende, Pilar Beatriz; Krishnaswamy, Venkataramanan; Wells, Wendy A.; Paulsen, Keith D.; Pogue, Brian W.; Lopez-Higuera, Jose M.; Conde, Olga M.

    2012-03-01

    A spectral analysis technique to enhance tumor contrast during breast conserving surgery is proposed. A set of 29 surgically-excised breast tissues have been imaged in local reflectance geometry. Measures of broadband reflectance are directly analyzed using Principle Component Analysis (PCA), on a per sample basis, to extract areas of maximal spectral variation. A dynamic selection threshold has been applied to obtain the final number of principal components, accounting for inter-patient variability. A blind separation technique based on Independent Component Analysis (ICA) is then applied to extract diagnostically powerful results. ICA application reveals that the behavior of one independent component highly correlates with the pathologic diagnosis and it surpasses the contrast obtained using empirical models. Moreover, blind detection characteristics (no training, no comparisons with training reference data) and no need for parameterization makes the automated diagnosis simple and time efficient, favoring its translation to the clinical practice. Correlation coefficient with model-based results up to 0.91 has been achieved.

  19. The Tea Tree Genome Provides Insights into Tea Flavor and Independent Evolution of Caffeine Biosynthesis.

    Science.gov (United States)

    Xia, En-Hua; Zhang, Hai-Bin; Sheng, Jun; Li, Kui; Zhang, Qun-Jie; Kim, Changhoon; Zhang, Yun; Liu, Yuan; Zhu, Ting; Li, Wei; Huang, Hui; Tong, Yan; Nan, Hong; Shi, Cong; Shi, Chao; Jiang, Jian-Jun; Mao, Shu-Yan; Jiao, Jun-Ying; Zhang, Dan; Zhao, Yuan; Zhao, You-Jie; Zhang, Li-Ping; Liu, Yun-Long; Liu, Ben-Ying; Yu, Yue; Shao, Sheng-Fu; Ni, De-Jiang; Eichler, Evan E; Gao, Li-Zhi

    2017-06-05

    Tea is the world's oldest and most popular caffeine-containing beverage with immense economic, medicinal, and cultural importance. Here, we present the first high-quality nucleotide sequence of the repeat-rich (80.9%), 3.02-Gb genome of the cultivated tea tree Camellia sinensis. We show that an extraordinarily large genome size of tea tree is resulted from the slow, steady, and long-term amplification of a few LTR retrotransposon families. In addition to a recent whole-genome duplication event, lineage-specific expansions of genes associated with flavonoid metabolic biosynthesis were discovered, which enhance catechin production, terpene enzyme activation, and stress tolerance, important features for tea flavor and adaptation. We demonstrate an independent and rapid evolution of the tea caffeine synthesis pathway relative to cacao and coffee. A comparative study among 25 Camellia species revealed that higher expression levels of most flavonoid- and caffeine- but not theanine-related genes contribute to the increased production of catechins and caffeine and thus enhance tea-processing suitability and tea quality. These novel findings pave the way for further metabolomic and functional genomic refinement of characteristic biosynthesis pathways and will help develop a more diversified set of tea flavors that would eventually satisfy and attract more tea drinkers worldwide. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. A cohesin-independent role for NIPBL at promoters provides insights in CdLS.

    Directory of Open Access Journals (Sweden)

    Jessica Zuin

    2014-02-01

    Full Text Available The cohesin complex is crucial for chromosome segregation during mitosis and has recently also been implicated in transcriptional regulation and chromatin architecture. The NIPBL protein is required for the loading of cohesin onto chromatin, but how and where cohesin is loaded in vertebrate cells is unclear. Heterozygous mutations of NIPBL were found in 50% of the cases of Cornelia de Lange Syndrome (CdLS, a human developmental syndrome with a complex phenotype. However, no defects in the mitotic function of cohesin have been observed so far and the links between NIPBL mutations and the observed developmental defects are unclear. We show that NIPBL binds to chromatin in somatic cells with a different timing than cohesin. Further, we observe that high-affinity NIPBL binding sites localize to different regions than cohesin and almost exclusively to the promoters of active genes. NIPBL or cohesin knockdown reduce transcription of these genes differently, suggesting a cohesin-independent role of NIPBL for transcription. Motif analysis and comparison to published data show that NIPBL co-localizes with a specific set of other transcription factors. In cells derived from CdLS patients NIPBL binding levels are reduced and several of the NIPBL-bound genes have previously been observed to be mis-expressed in CdLS. In summary, our observations indicate that NIPBL mutations might cause developmental defects in different ways. First, defects of NIPBL might lead to cohesin-loading defects and thereby alter gene expression and second, NIPBL deficiency might affect genes directly via its role at the respective promoters.

  1. The demand attributes of assurance services providers and the role of independent accountants

    NARCIS (Netherlands)

    Knechel, W.R.; Wallage, P.; Eilifsen, A.; van Praag, B.

    2006-01-01

    This study reports on desirable attributes of assurance services providers for assurance services based on responses from a sample of Dutch senior accounting and financial officers. In general, overall expertise and objectivity are perceived as the most important attributes for selecting an

  2. The ICMJE and URM: Providing Independent Advice for the Conduct of Biomedical Research and Publication

    OpenAIRE

    Van der Weyden, Martin B

    2007-01-01

    The International Committee of Medical Journal Editors (ICMJE) is a working group of editors of selected medical journals that meets annually. Founded in Vancouver, Canada, in 1978, it currently consists of 11 member journals and a representative of the US National Library of Medicine. The major purpose of the Committee is to address and provide guidance for the conduct and publishing of biomedical research and the ethical tenets underpinning these activities. This advice is detailed in the C...

  3. Radiation-Resistant Photon-Counting Detector Package Providing Sub-ps Stability for Laser Time Transfer in Space

    Science.gov (United States)

    Prochzaka, Ivan; Kodat, Jan; Blazej, Josef; Sun, Xiaoli (Editor)

    2015-01-01

    We are reporting on a design, construction and performance of photon-counting detector packages based on silicon avalanche photodiodes. These photon-counting devices have been optimized for extremely high stability of their detection delay. The detectors have been designed for future applications in fundamental metrology and optical time transfer in space. The detectors have been qualified for operation in space missions. The exceptional radiation tolerance of the detection chip itself and of all critical components of a detector package has been verified in a series of experiments.

  4. Transaction of long-term power purchasing contract by independent power providers in wholesale and retail competitive system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Hoon [Korea Energy Economics Institute, Euiwang (Korea)

    1998-12-01

    In general, the restructuring starts with separation and division of power sector from the existing monopolist as the cases of Thailand and Malaysia. When the power provider is separated and divided, it becomes an independent power provider. The existing regional electricity provider carries out the supplying function to end-users buying electricity from several separated and divided providers. Therefore, the existing regional electricity providers give up the power generation business but become a demand monopolist in wholesale market. The competition system capable of applying during the separation period is the Generation Pool. With the Generation Pool, it is able to promote competition of power generation sector effectively and there is no need to have an extra step such as long-term power purchasing contract. In fact, Latin America and Chile have been managed the power market for more than 10 years with the competition system by the Generation Pool. 9 refs.

  5. SU-E-T-571: Newly Emerging Integrated Transmission Detector Systems Provide Online Quality Assurance of External Beam Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, D; Chung, E; Hess, C; Stern, R; Benedict, S [UC Davis Cancer Center, Sacramento, CA (United States)

    2015-06-15

    Purpose: Two newly emerging transmission detectors positioned upstream from the patient have been evaluated for online quality assurance of external beam radiotherapy. The prototype for the Integral Quality Monitor (IQM), developed by iRT Systems GmbH (Koblenz, Germany) is a large-area ion chamber mounted on the linac accessory tray to monitor photon fluence, energy, beam shape, and gantry position during treatment. The ion chamber utilizes a thickness gradient which records variable response dependent on beam position. The prototype of Delta4 Discover™, developed by ScandiDos (Uppsala, Sweden) is a linac accessory tray mounted 4040 diode array that measures photon fluence during patient treatment. Both systems are employable for patient specific QA prior to treatment delivery. Methods: Our institution evaluated the reproducibility of measurements using various beam types, including VMAT treatment plans with both the IQM ion chamber and the Delta4 Discover diode array. Additionally, the IQM’s effect on photon fluence, dose response, simulated beam error detection, and the accuracy of the integrated barometer, thermometer, and inclinometer were characterized. The evaluated photon beam errors are based on the annual tolerances specified in AAPM TG-142. Results: Repeated VMAT treatments were measured with 0.16% reproducibility by the IQM and 0.55% reproducibility by the Delta4 Discover. The IQM attenuated 6, 10, and 15 MV photon beams by 5.43±0.02%, 4.60±0.02%, and 4.21±0.03% respectively. Photon beam profiles were affected <1.5% in the non-penumbra regions. The IQM’s ion chamber’s dose response was linear and the thermometer, barometer, and inclinometer agreed with other calibrated devices. The device detected variations in monitor units delivered (1%), field position (3mm), single MLC leaf positions (13mm), and photon energy. Conclusion: We have characterized two new transmissions detector systems designed to provide in-vivo like measurements upstream

  6. Continuing effects of Medicare Part D on rural independent pharmacies who are the sole retail provider in their community.

    Science.gov (United States)

    Radford, Andrea; Mason, Michelle; Richardson, Indira; Rutledge, Stephen; Poley, Stephanie; Mueller, Keith; Slifkin, Rebecca

    2009-03-01

    The Medicare Prescription Drug, Improvement, and Modernization Act of 2003 established funding to allow Medicare beneficiaries to enroll in plans providing outpatient prescription drug coverage beginning in January 2006. The Medicare Part D program has changed the means by which beneficiaries purchase prescription drugs, impacting the business operations of pharmacies. To describe the experiences of rural independently owned pharmacies that are the sole retail pharmacy in their community 1 year after implementation of Medicare Part D, in order to learn if the initial financial and administrative problems associated with the implementation of the program in 2006 resolved over time. A semistructured interview protocol was used in telephone interviews with 51 pharmacist owners of rural sole community pharmacies in 27 states who were identified through a random sampling process. The sole community pharmacists interviewed continue to face challenges directly related to Medicare Part D. Dealing with Part D plans and working with patients during enrollment periods remains administratively burdensome. Reimbursement amounts, complexity of dealing with multiple plans, and timeliness of payments continue to be cited as problems which could threaten the viability of independently owned pharmacies who are the sole retail providers in their communities. Actions should be considered to help sole community pharmacies deal with the ongoing administrative and financial challenges of Part D. To ensure full choice for rural Medicare beneficiaries and full access to pharmaceuticals through the ongoing presence of a local pharmacy, the development of a mechanism to structure prescription reimbursement so that drug acquisition costs and related overhead are covered and a reasonable profit margin provided should be considered. Further study is needed to determine how existing policies and regulations can be modified to ensure reasonable access to pharmacy services for rural Medicare and

  7. The abrogation of condensin function provides independent evidence for defining the self-renewing population of pluripotent stem cells.

    Science.gov (United States)

    Lai, Alvina G; Kosaka, Nobuyoshi; Abnave, Prasad; Sahu, Sounak; Aboobaker, A Aziz

    2017-07-28

    Heterogeneity of planarian stem cells has been categorised on the basis of single cell expression analyses and subsequent experiments to demonstrate lineage relationships. Some data suggest that despite heterogeneity in gene expression amongst cells in the cell cycle, in fact only one sub-population, known as sigma neoblasts, can self-renew. Without the tools to perform live in vivo lineage analysis, we instead took an alternative approach to provide independent evidence for defining the self-renewing stem cell population. We exploited the role of highly conserved condensin family genes to functionally assay neoblast self-renewal properties. Condensins are involved in forming properly condensed chromosomes to allow cell division to proceed during mitosis, and their abrogation inhibits mitosis and can lead to repeated endoreplication of the genome in cells that make repeated attempts to divide. We find that planarians possess only the condensin I complex, and that this is required for normal stem cell function. Abrogation of condensin function led to rapid stem cell depletion accompanied by the appearance of 'giant' cells with increased DNA content. Using previously discovered markers of heterogeneity we show that enlarged cells are always from the sigma-class of the neoblast population and we never observe evidence for endoreplication for the other neoblast subclasses. Overall, our data establish that condensins are essential for stem cell maintenance and provide independent evidence that only sigma-neoblasts are capable of multiple rounds of cell division and hence self-renewal. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. SU-E-T-298: Small Field Total Scatter Factors Using a Commercial Scintillator Detector: Calibration Parameters Are Not Independent of Field Size

    Energy Technology Data Exchange (ETDEWEB)

    Jornet, N; Carrasco de Fez, P; Jordi, O; Latorre-Musoll, A; Eudaldo, T; Ruiz-Martinez, A; Ribas Morales, M [Hospital de la Santa Creu i Sant Pau, Barcelona, Barcelona (Spain)

    2014-06-01

    Purpose: To evaluate the accuracy in total scatter factor (Sc,p) determination for small fields using commercial plastic scintillator detector (PSD). The manufacturer's spectral discrimination method to subtract Cerenkov light from the signal is discussed. Methods: Sc,p for field sizes ranging from 0.5 to 10 cm were measured using PSD Exradin (Standard Imaging) connected to two channel electrometer measuring the signals in two different spectral regions to subtract the Cerenkov signal from the PSD signal. A Pinpoint ionisation chamber 31006 (PTW) and a non-shielded semiconductor detector EFD (Scanditronix) were used for comparison. Measures were performed for a 6 MV X-ray beam. The Sc,p are measured at 10 cm depth in water for a SSD=100 cm and normalized to a 10'10 cm{sup 2} field size at the isocenter. All detectors were placed with their symmetry axis parallel to the beam axis.We followed the manufacturer's recommended calibration methodology to subtract the Cerenkov contribution to the signal as well as a modified method using smaller field sizes. The Sc,p calculated by using both calibration methodologies were compared. Results: Sc,p measured with the semiconductor and the PinPoint detectors agree, within 1.5%, for field sizes between 10'10 and 1'1 cm{sup 2}. Sc,p measured with the PSD using the manufacturer's calibration methodology were systematically 4% higher than those measured with the semiconductor detector for field sizes smaller than 5'5 cm{sup 2}. By using a modified calibration methodology for smalls fields and keeping the manufacturer calibration methodology for fields larger than 5'5cm{sup 2} field Sc,p matched semiconductor results within 2% field sizes larger than 1.5 cm. Conclusion: The calibration methodology proposed by the manufacturer is not appropriate for dose measurements in small fields. The calibration parameters are not independent of the incident radiation spectrum for this PSD. This work was

  9. The transformer genes in the fig wasp Ceratosolen solmsi provide new evidence for duplications independent of complementary sex determination.

    Science.gov (United States)

    Jia, L-Y; Xiao, J-H; Xiong, T-L; Niu, L-M; Huang, D-W

    2016-06-01

    Transformer (tra) is the key gene that turns on the sex-determination cascade in Drosophila melanogaster and in some other insects. The honeybee Apis mellifera has two duplicates of tra, one of which (complementary sex determiner, csd) is the primary signal for complementary sex-determination (CSD), regulating the other duplicate (feminizer). Two tra duplicates have been found in some other hymenopteran species, resulting in the assumption that a single ancestral duplication of tra took place in the Hymenoptera. Here, we searched for tra homologues and pseudogenes in the Hymenoptera, focusing on five newly published hymenopteran genomes. We found three tra copies in the fig wasp Ceratosolen solmsi. Further evolutionary and expression analyses also showed that the two duplicates (Csoltra-B and Csoltra-C) are under positive selection, and have female-specific expression, suggesting possible sex-related functions. Moreover, Aculeata species exhibit many pseudogenes generated by lineage-specific duplications. We conclude that phylogenetic reconstruction and pseudogene screening provide novel evidence supporting the hypothesis of independent duplications rather an ancestral origin of multiple tra paralogues in the Hymenoptera. The case of C. solmsi is the first example of a non-CSD species with duplicated tra, contrary to the previous assumption that derived tra paralogues function as the CSD locus. © 2016 The Royal Entomological Society.

  10. Nine-degrees-of-freedom flexmap for a cone-beam computed tomography imaging device with independently movable source and detector.

    Science.gov (United States)

    Keuschnigg, Peter; Kellner, Daniel; Fritscher, Karl; Zechner, Andrea; Mayer, Ulrich; Huber, Philipp; Sedlmayer, Felix; Deutschmann, Heinz; Steininger, Philipp

    2017-01-01

    Couch-mounted cone-beam computed tomography (CBCT) imaging devices with independently rotatable x-ray source and flat-panel detector arms for acquisitions of arbitrary regions of interest (ROI) have recently been introduced in image-guided radiotherapy (IGRT). This work analyzes mechanical limitations and gravity-induced effects influencing the geometric accuracy of images acquired with arbitrary angular constellations of source and detector in nonisocentric trajectories, which is considered essential for IGRT. In order to compensate for geometric inaccuracies of this modality, a 9-degrees-of-freedom (9-DOF) flexmap correction approach is presented, focusing especially on the separability of the flexmap parameters of the independently movable components of the device. The 9-DOF comprise a 3D translation of the x-ray source focal spot, a 3D translation of the flat-panel's active area center and three Euler-rotations of the detector's row and column vectors. The flexmap parameters are expressed with respect to the angular position of each of the devices arms. Estimation of the parameters is performed, using a CT-based structure set of a table-mounted, cylindrical ball-bearing phantom. Digitally reconstructed radiograph (DRR) patches are derived from the structure set followed by local 2D in-plane registration and subsequent 3D transform estimation by nonlinear regression with outlier detection. Flexmap parameter evaluations for the factory-calibrated system in clockwise and counter-clockwise rotation direction have shown only minor differences for the overall set of flexmap parameters. High short-term reproducibility of the flexmap parameters has been confirmed by experiments over 10 acquisitions for both directions, resulting in standard deviation values of ≤0.183 mm for translational components and ≤0.0219 deg for rotational components, respectively. A comparison of isocentric and nonisocentric flexmap evaluations showed that the mean differences of the

  11. A model-independent general search for new phenomena with the ATLAS detector at $\\sqrt{s}$ = 13 TeV

    CERN Document Server

    Schouwenberg, Jeroen; The ATLAS collaboration

    2017-01-01

    A model-independent general search for new physics is performed using 3.2 fb$^{-1}$ of proton-proton collision data at a centre-of-mass energy of 13 TeV collected with the ATLAS detector at the LHC. Event topologies involving isolated leptons (electrons and muons), photons, jets, b-tagged jets and missing transverse momentum, leading to 639 different final states, are investigated. For each final state, a search algorithm tests the compatibility of data against the Monte Carlo simulated background in two kinematic variables sensitive to new physics effects. The expected frequency of the maximal significance observed in each channel is estimated using pseudo-experiments generated assuming the Standard Model prediction. No significant deviation of the data from the Standard Model expectation is found. The largest observed discrepancy, with a local p-value of 5·10$^{−4}$ , corresponds to a global significance of less than one sigma.

  12. A model independent general search for new phenomena with the ATLAS detector at $\\sqrt{s} = 13\\;\\mbox{TeV}$

    CERN Document Server

    The ATLAS collaboration

    2017-01-01

    This note presents results of a model-independent general search for new physics using 3.2 fb$^{-1}$ of proton-proton collision data at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Event topologies involving isolated leptons (electrons and muons), photons, jets, $b$-tagged jets and missing transverse momentum, leading to 639 different final states, are investigated. For each final state, a search algorithm tests the compatibility of data against the Monte Carlo simulated background in two kinematic variables sensitive to new physics effects. The expected frequency and the maximal local significance in each channel is estimated using pseudo-experiments generated assuming the Standard Model prediction. The largest observed discrepancy, with a local $p_0$-value of $5\\cdot 10^{-4}$, corresponds to a global significance of less than one sigma.

  13. Combined Culture-Based and Culture-Independent Approaches Provide Insights into Diversity of Jakobids, an Extremely Plesiomorphic Eukaryotic Lineage.

    Science.gov (United States)

    Pánek, Tomáš; Táborský, Petr; Pachiadaki, Maria G; Hroudová, Miluše; Vlček, Čestmír; Edgcomb, Virginia P; Čepička, Ivan

    2015-01-01

    We used culture-based and culture-independent approaches to discover diversity and ecology of anaerobic jakobids (Excavata: Jakobida), an overlooked, deep-branching lineage of free-living nanoflagellates related to Euglenozoa. Jakobids are among a few lineages of nanoflagellates frequently detected in anoxic habitats by PCR-based studies, however only two strains of a single jakobid species have been isolated from those habitats. We recovered 712 environmental sequences and cultured 21 new isolates of anaerobic jakobids that collectively represent at least ten different species in total, from which four are uncultured. Two cultured species have never been detected by environmental, PCR-based methods. Surprisingly, culture-based and culture-independent approaches were able to reveal a relatively high proportion of overall species diversity of anaerobic jakobids-60 or 80%, respectively. Our phylogenetic analyses based on SSU rDNA and six protein-coding genes showed that anaerobic jakobids constitute a clade of morphologically similar, but genetically and ecologically diverse protists-Stygiellidae fam. nov. Our investigation combines culture-based and environmental molecular-based approaches to capture a wider extent of species diversity and shows Stygiellidae as a group that ordinarily inhabits anoxic, sulfide- and ammonium-rich marine habitats worldwide.

  14. Electronic detectors for electron microscopy.

    Science.gov (United States)

    Faruqi, A R; Henderson, R

    2007-10-01

    Due to the increasing popularity of electron cryo-microscopy (cryoEM) in the structural analysis of large biological molecules and macro-molecular complexes and the need for simple, rapid and efficient readout, there is a persuasive need for improved detectors. Commercial detectors, based on phosphor/fibre optics-coupled CCDs, provide adequate performance for many applications, including electron diffraction. However, due to intrinsic light scattering within the phosphor, spatial resolution is limited. Careful measurements suggest that CCDs have superior performance at lower resolution while all agree that film is still superior at higher resolution. Consequently, new detectors are needed based on more direct detection, thus avoiding the intermediate light conversion step required for CCDs. Two types of direct detectors are discussed in this review. First, there are detectors based on hybrid technology employing a separate pixellated sensor and readout electronics connected with bump bonds-hybrid pixel detectors (HPDs). Second, there are detectors, which are monolithic in that sensor and readout are all in one plane (monolithic active pixel sensor, MAPS). Our discussion is centred on the main parameters of interest to cryoEM users, viz. detective quantum efficiency (DQE), resolution or modulation transfer function (MTF), robustness against radiation damage, speed of readout, signal-to-noise ratio (SNR) and the number of independent pixels available for a given detector.

  15. Software architecture as a freedom for 3D content providers and users along with independency on purposes and used devices

    Science.gov (United States)

    Sultana, Razia; Christ, Andreas; Meyrueis, Patrick

    2014-05-01

    The improvements in the hardware and software of communication devices have allowed running Virtual Reality (VR) and Augmented Reality (AR) applications on those. Nowadays, it is possible to overlay synthetic information on real images, or even to play 3D on-line games on smart phones or some other mobile devices. Hence the use of 3D data for business and specially for education purposes is ubiquitous. Due to always available at hand and always ready to use properties of mobile phones, those are considered as most potential communication devices. The total numbers of mobile phone users are increasing all over the world every day and that makes mobile phones the most suitable device to reach a huge number of end clients either for education or for business purposes. There are different standards, protocols and specifications to establish the communication among different communication devices but there is no initiative taken so far to make it sure that the send data through this communication process will be understood and used by the destination device. Since all the devices are not able to deal with all kind of 3D data formats and it is also not realistic to have different version of the same data to make it compatible with the destination device, it is necessary to have a prevalent solution. The proposed architecture in this paper describes a device and purpose independent 3D data visibility any time anywhere to the right person in suitable format. There is no solution without limitation. The architecture is implemented in a prototype to make an experimental validation of the architecture which also shows the difference between theory and practice.

  16. HBB-Next: Providing independent content recommendations in a next-generation hybrid broadcast broadband TV ecosystem

    NARCIS (Netherlands)

    Deventer, M.O. van; Wit, J.J. de; Gerrits, B.M.; Guelbahar, M.; Probst, M.

    2012-01-01

    The European FP7 project HBB-Next envisions a future in which connected televisions and hybrid broadcast broadband (HbbTV) offer consumers access to large amounts of scheduled and on demand content. Companion screens provide access to auxiliary content that may, or may not, be related to the content

  17. MS Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Koppenaal, David W.; Barinaga, Charles J.; Denton, M Bonner B.; Sperline, Roger P.; Hieftje, Gary M.; Schilling, G. D.; Andrade, Francisco J.; Barnes IV., James H.

    2005-11-01

    Good eyesight is often taken for granted, a situation that everyone appreciates once vision begins to fade with age. New eyeglasses or contact lenses are traditional ways to improve vision, but recent new technology, i.e. LASIK laser eye surgery, provides a new and exciting means for marked vision restoration and improvement. In mass spectrometry, detectors are the 'eyes' of the MS instrument. These 'eyes' have also been taken for granted. New detectors and new technologies are likewise needed to correct, improve, and extend ion detection and hence, our 'chemical vision'. The purpose of this report is to review and assess current MS detector technology and to provide a glimpse towards future detector technologies. It is hoped that the report will also serve to motivate interest, prompt ideas, and inspire new visions for ion detection research.

  18. Serum peptide/protein profiling by mass spectrometry provides diagnostic information independently of CA125 in women with an ovarian tumor

    DEFF Research Database (Denmark)

    Callesen, Anne; Madsen, Jonna S; Iachina, Maria

    2010-01-01

    In the present study, the use of a robust and sensitive mass spectrometry based protein profiling analysis was tested as diagnostic tools for women with an ovarian tumor. The potential additional diagnostic value of serum protein profiles independent of the information provided by CA125 were also...... investigated. Protein profiles of 113 serum samples from women with an ovarian tumor (54 malign and 59 benign) were generated using MALDI-TOF MS. A total of 98 peaks with a significant difference (povarian tumors were identified. After...... average linkage clustering, a profile of 46 statistical significant mass peaks was identified to distinguish malignant tumors and benign tumors/cysts. In the subgroup of women with normal CA125 values (

  19. The NIF 4.5-m nTOF Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Moran, M J; Bond, E J; Clancy, T J; Eckart, M J; Khater, H Y; Glebov, V Y

    2012-05-07

    The first several campaigns of laser fusion experiments at the National Ignition Facility (NIF) included a family of high-sensitivity scintillator/photodetector neutron-time-of-flight (nTOF) detectors for measuring DD and DT neutron yields. The detectors provided consistent neutron yield benchmarks from below 1E9 (DD) to nearly 1E15 (DT). The detectors demonstrated DT yield measurement precisions better than 5%, but the absolute accuracy relies on cross calibration with independent measurements of absolute neutron yield. The 4.5-m nTOF data have provided a useful testbed for testing improvements in nTOF data processing, especially with respect to improving the accuracies of the detector impulse response functions. The resulting improvements in data analysis methods have produced more accurate results. In summary, results from the NIF 4.5-m nTOF detectors have provided consistent measurements of DD and DT neutron yields from laser-fusion implosions.

  20. Characterization and application of UV detector spore films: the sensitivity curve of a new detector system provides good similarity to the action spectrum for UV-induced erythema in human skin.

    Science.gov (United States)

    Quintern, L E; Furusawa, Y; Fukutsu, K; Holtschmidt, H

    1997-01-01

    The UV action spectra of two different biologically weighting UV photofilms (spore films), produced with Bacillus subtilis spores (wild-type and DNA repair-deficient strains), were determined at the Okasaki large spectrograph (OLS) within the level of wavelength range 254-400 nm. The action spectrum of the mutant strain film was modified with a cut-off filter, yielding a sensitivity curve similar to the action spectrum for erythemal induction in human skin. The detector system was tested in a field study and in a study using lamps with different UV spectral compositions. The system demonstrated its applicability over the spectral region lambda = 290 nm to the visible light. The system could be calibrated to give the minimal erythemal dose.

  1. Subspace Detectors: Efficient Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Harris, D B; Paik, T

    2006-07-26

    The optimum detector for a known signal in white Gaussian background noise is the matched filter, also known as a correlation detector [Van Trees, 1968]. Correlation detectors offer exquisite sensitivity (high probability of detection at a fixed false alarm rate), but require perfect knowledge of the signal. The sensitivity of correlation detectors is increased by the availability of multichannel data, something common in seismic applications due to the prevalence of three-component stations and arrays. When the signal is imperfectly known, an extension of the correlation detector, the subspace detector, may be able to capture much of the performance of a matched filter [Harris, 2006]. In order to apply a subspace detector, the signal to be detected must be known to lie in a signal subspace of dimension d {ge} 1, which is defined by a set of d linearly-independent basis waveforms. The basis is constructed to span the range of signals anticipated to be emitted by a source of interest. Correlation detectors operate by computing a running correlation coefficient between a template waveform (the signal to be detected) and the data from a window sliding continuously along a data stream. The template waveform and the continuous data stream may be multichannel, as would be true for a three-component seismic station or an array. In such cases, the appropriate correlation operation computes the individual correlations channel-for-channel and sums the result (Figure 1). Both the waveform matching that occurs when a target signal is present and the cross-channel stacking provide processing gain. For a three-component station processing gain occurs from matching the time-history of the signals and their polarization structure. The projection operation that is at the heart of the subspace detector can be expensive to compute if implemented in a straightforward manner, i.e. with direct-form convolutions. The purpose of this report is to indicate how the projection can be

  2. Implementation of a model-independent search for new physics with the CMS detector exploiting the world-wide LHC Computing Grid

    CERN Document Server

    Hof, Carsten

    With this year's start of CERN's Large Hadron Collider (LHC) it will be possible for the first time to directly probe the physics at the TeV-scale at a collider experiment. At this scale the Standard Model of particle physics will reach its limits and new physical phenomena are expected to appear. This study performed with one of the LHC's experiments, namely the Compact Muon Solenoid (CMS), is trying to quantify the understanding of the Standard Model and is hunting for deviations from the expectation by investigating a large fraction of the CMS data. While the classical approach for searches of physics beyond the Standard Model assumes a specific theoretical model and tries to isolate events with a certain signature characteristic for the new theory, this thesis follows a model-independent approach. The method relies only on the knowledge of the Standard Model and is suitable to spot deviations from this model induced by particular theoretical models but also theories not yet thought of. Future data are to ...

  3. The AFP Detector Control System

    CERN Document Server

    Oleiro Seabra, Luis Filipe; The ATLAS collaboration

    2017-01-01

    The ATLAS Forward Proton (AFP) detector is one of the forward detectors of the ATLAS experiment at CERN aiming at measuring momenta and angles of diffractively scattered protons. Silicon Tracking and Time-of-Flight detectors are located inside Roman Pot stations inserted into beam pipe aperture. The AFP detector is composed of two stations on each side of the ATLAS interaction point and is under commissioning. The detector is provided with high and low voltage distribution systems. Each station has vacuum and cooling systems, movement control and all the required electronics for signal processing. Monitoring of environmental parameters, like temperature and radiation, is also available. The Detector Control System (DCS) provides control and monitoring of the detector hardware and ensures the safe and reliable operation of the detector, assuring good data quality. Comparing with DCS systems of other detectors, the AFP DCS main challenge is to cope with the large variety of AFP equipment. This paper describes t...

  4. ALFA Detector Control System

    CERN Document Server

    Oleiro Seabra, Luis Filipe; The ATLAS collaboration

    2015-01-01

    ALFA (Absolute Luminosity For ATLAS) is one of the sub-detectors of ATLAS/LHC. The ALFA system is composed by two stations installed in the LHC tunnel 240 m away from each side of the ATLAS interaction point. Each station has a vacuum and ventilation system, movement control and all the required electronic for signal processing. The Detector Control System (DCS) provides control and monitoring of several components and ensures the safe operation of the detector contributing to good Data Quality. This paper describes the ALFA DCS system including a detector overview, operation aspects and hardware control through a SCADA system, WinCC OA.

  5. ALFA Detector Control System

    CERN Document Server

    Oleiro Seabra, Luis Filipe; The ATLAS collaboration

    2015-01-01

    ALFA (Absolute Luminosity For ATLAS) is one of the sub-detectors of ATLAS (A Toroidal LHC Apparatus). The ALFA system is composed by four stations installed in the LHC tunnel 240 m away from the ATLAS interaction point. Each station has a vacuum and ventilation system, movement control and all the required electronics for signal processing. The Detector Control System (DCS) provides control and monitoring of several components and ensures the safe operation of the detector contributing to good Data Quality. This paper describes the ALFA DCS system including a detector overview, operation aspects and hardware control through a SCADA system, WinCC OA.

  6. Atmospheric Neutrinos in the MINOS Far Detector

    Energy Technology Data Exchange (ETDEWEB)

    Howcroft, Caius Leo Frederick [Univ. of Cambridge (United Kingdom)

    2004-12-01

    The phenomenon of flavour oscillations of neutrinos created in the atmosphere was first reported by the Super-Kamiokande collaboration in 1998 and since then has been confirmed by Soudan 2 and MACRO. The MINOS Far Detector is the first magnetized neutrino detector able to study atmospheric neutrino oscillations. Although it was designed to detect neutrinos from the NuMI beam, it provides a unique opportunity to measure the oscillation parameters for neutrinos and anti-neutrinos independently. The MINOS Far Detector was completed in August 2003 and since then has collected 2.52 kton-years of atmospheric data. Atmospheric neutrino interactions contained within the volume of the detector are separated from the dominant background from cosmic ray muons. Thirty seven events are selected with an estimated background contamination of less than 10%. Using the detector's magnetic field, 17 neutrino events and 6 anti-neutrino events are identified, 14 events have ambiguous charge. The neutrino oscillation parameters for vμ and $\\bar{v}$μ are studied using a maximum likelihood analysis. The measurement does not place constraining limits on the neutrino oscillation parameters due to the limited statistics of the data set analysed. However, this thesis represents the first observation of charge separated atmospheric neutrino interactions. It also details the techniques developed to perform atmospheric neutrino analyses in the MINOS Far Detector.

  7. Particle detectors

    CERN Multimedia

    CERN. Geneva

    1999-01-01

    Introduction, interaction of radiation with matter measurement of momentum of charged particles, of energy of e/gamma, hadrons, identification of particles. Design of HEP detectors. Principle of operation and performance of tracking sub-detectors, calorimeters and muon system.

  8. Detector Unit

    CERN Multimedia

    1960-01-01

    Original detector unit of the Instituut voor Kernfysisch Onderzoek (IKO) BOL project. This detector unit shows that silicon detectors for nuclear physics particle detection were already developed and in use in the 1960's in Amsterdam. Also the idea of putting 'strips' onto the silicon for high spatial resolution of a particle's impact on the detector were implemented in the BOL project which used 64 of these detector units. The IKO BOL project with its silicon particle detectors was designed, built and operated from 1965 to roughly 1977. Detector Unit of the BOL project: These detectors, notably the ‘checkerboard detector’, were developed during the years 1964-1968 in Amsterdam, The Netherlands, by the Natuurkundig Laboratorium of the N.V. Philips Gloeilampen Fabrieken. This was done in close collaboration with the Instituut voor Kernfysisch Onderzoek (IKO) where the read-out electronics for their use in the BOL Project was developed and produced.

  9. 3D Simulation and Modeling of Ultra-fast 3D Silicon Detectors

    Directory of Open Access Journals (Sweden)

    Liu Manwen

    2017-01-01

    Full Text Available 3D detectors with very small electrode spacing can provide ultra-fast detection due to their extremely small charge collection time. Since the detector full depletion voltage and charge collection time are independent to the detector thickness, ultra-fast 3D detectors can be made relatively thick (or not too thin, ~200 μm to ensure a large signal. The results of the 3D simulations and modeling of 3D silicon detectors with very small electrode spacing and relatively large thickness will be shown in this paper. The column spacing LP is in the range of 5 μm to 10 μm. At a bias voltage of only a few volts, the electric field in the detector can be large enough to ensure the carrier saturation drift velocity in most volume of the detector, and the detector charge collection time there can be as short as 10’s of ps. In this paper, we will analysis the simulated electrical characteristics of this detector structure through systematic 3D simulations using the Silvaco’s TCAD tool. Profiles of detector electric potential and electric field will be presented. We will investigate the region of low electric field (the “slow region” in the detector. We will also exam whether the detector reach the breakdown condition at operation voltages suggested in this work.

  10. Infrared detectors

    CERN Document Server

    Rogalski, Antonio

    2010-01-01

    This second edition is fully revised and reorganized, with new chapters concerning third generation and quantum dot detectors, THz detectors, cantilever and antenna coupled detectors, and information on radiometry and IR optics materials. Part IV concerning focal plane arrays is significantly expanded. This book, resembling an encyclopedia of IR detectors, is well illustrated and contains many original references … a really comprehensive book.-F. Sizov, Institute of Semiconductor Physics, National Academy of Sciences, Kiev, Ukraine

  11. Gaseous Detectors: Charged Particle Detectors - Particle Detectors and Detector Systems

    CERN Document Server

    Hilke, H J

    2011-01-01

    Gaseous Detectors in 'Charged Particle Detectors - Particle Detectors and Detector Systems', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B1: Detectors for Particles and Radiation. Part 1: Principles and Methods'. This document is part of Part 1 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Subsection '3.1.2 Gaseous Detectors' of Section '3.1 Charged Particle Detectors' of Chapter '3 Particle Detectors and Detector Systems' with the content: 3.1.2 Gaseous Detectors 3.1.2.1 Introduction 3.1.2.2 Basic Processes 3.1.2.2.1 Gas ionization by charged particles 3.1.2.2.1.1 Primary clusters 3.1.2.2.1.2 Cluster size distribution 3.1.2.2.1.3 Total number of ion pairs 3.1.2.2.1.4 Dependence of energy deposit on particle velocity 3.1.2.2.2 Transport of...

  12. Divergent oestrogen receptor-specific breast cancer trends in Ireland (2004-2013): Amassing data from independent Western populations provide etiologic clues.

    Science.gov (United States)

    Mullooly, Maeve; Murphy, Jeanne; Gierach, Gretchen L; Walsh, Paul M; Deady, Sandra; Barron, Thomas I; Sherman, Mark E; Rosenberg, Philip S; Anderson, William F

    2017-11-01

    The aetiology and clinical behaviour of breast cancers vary by oestrogen receptor (ER) expression, HER2 expression and over time. Data from the United States and Denmark show rising incidence rates for ER+ and falling incidence rates for ER- breast cancers. Given that Ireland is a somewhat similar Western population but with distinctive risk exposures (especially for lactation), we analysed breast cancer trends by ER status; and for the first time, by the joint expression of ER±/HER2±. We assessed invasive breast cancers (n = 24,845; 2004-2013) within the population-based National Cancer Registry of Ireland. The population at risk was obtained from the Irish Central Statistics Office (n = 10,401,986). After accounting for missing ER and HER2 data, we assessed receptor-specific secular trends in age-standardised incidence rates (ASRs) with the estimated annual percentage change (EAPC) and corresponding 95% confidence intervals (95% CI). Age-period-cohort models were also fitted to further characterise trends accounting for age, calendar-period and birth-cohort interactions. ASRs increased for ER+ (EAPC: 2.2% per year [95% CI: 0.97, 3.45%/year]) and decreased for ER- cancers (EAPC: -3.43% per year [95% CI: -5.05, -1.78%/year]), as well as for specific age groups at diagnosis (Ireland were like those previously observed. Stratification by HER2± expression did not substantively alter ER± trends. The divergence of ER± incidence rates among independent Western populations likely reflects calendar-period and/or risk factor changes with differential effects for ER+ and ER- breast cancers. Published by Elsevier Ltd.

  13. Culture-independent analysis of bacterial fuel contamination provides insight into the level of concordance with the standard industry practice of aerobis cultivation.

    Energy Technology Data Exchange (ETDEWEB)

    White, J.; Gilbert, J. A.; Hill, G.; Hill, E.; Huse, S. M.; Weightman, A. J.; Mahenthiralingam, E. (CLS-CI); (Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University); (ECHA Microbiology Ltd.); (Josephine Bay Paul Centre for Comparative Molecular Biology and Evolution)

    2011-07-01

    Bacterial diversity in contaminated fuels has not been systematically investigated using cultivation-independent methods. The fuel industry relies on phenotypic cultivation-based contaminant identification, which may lack accuracy and neglect difficult-to-culture taxa. By the use of industry practice aerobic cultivation, 16S rRNA gene sequencing, and strain genotyping, a collection of 152 unique contaminant isolates from 54 fuel samples was assembled, and a dominance of Pseudomonas (21%), Burkholderia (7%), and Bacillus (7%) was demonstrated. Denaturing gradient gel electrophoresis (DGGE) of 15 samples revealed Proteobacteria and Firmicutes to be the most abundant phyla. When 16S rRNA V6 gene pyrosequencing of four selected fuel samples (indicated by 'JW') was performed, Betaproteobacteria (42.8%) and Gammaproteobacteria (30.6%) formed the largest proportion of reads; the most abundant genera were Marinobacter (15.4%; JW57), Achromobacter (41.6%; JW63), Burkholderia (80.7%; JW76), and Halomonas (66.2%; JW78), all of which were also observed by DGGE. However, the Clostridia (38.5%) and Deltaproteobacteria (11.1%) identified by pyrosequencing in sample JW57 were not observed by DGGE or aerobic culture. Genotyping revealed three instances where identical strains were found: (i) a Pseudomonas sp. strain recovered from 2 different diesel fuel tanks at a single industrial site; (ii) a Mangroveibacter sp. strain isolated from 3 biodiesel tanks at a single refinery site; and (iii) a Burkholderia vietnamiensis strain present in two unrelated automotive diesel samples. Overall, aerobic cultivation of fuel contaminants recovered isolates broadly representative of the phyla and classes present but lacked accuracy by overrepresenting members of certain groups such as Pseudomonas.

  14. ERK1/2 signalling protects against apoptosis following endoplasmic reticulum stress but cannot provide long-term protection against BAX/BAK-independent cell death

    Science.gov (United States)

    Darling, Nicola J.; Balmanno, Kathryn

    2017-01-01

    Disruption of protein folding in the endoplasmic reticulum (ER) causes ER stress. Activation of the unfolded protein response (UPR) acts to restore protein homeostasis or, if ER stress is severe or persistent, drive apoptosis, which is thought to proceed through the cell intrinsic, mitochondrial pathway. Indeed, cells that lack the key executioner proteins BAX and BAK are protected from ER stress-induced apoptosis. Here we show that chronic ER stress causes the progressive inhibition of the extracellular signal-regulated kinase (ERK1/2) signalling pathway. This is causally related to ER stress since reactivation of ERK1/2 can protect cells from ER stress-induced apoptosis whilst ERK1/2 pathway inhibition sensitises cells to ER stress. Furthermore, cancer cell lines harbouring constitutively active BRAFV600E are addicted to ERK1/2 signalling for protection against ER stress-induced cell death. ERK1/2 signalling normally represses the pro-death proteins BIM, BMF and PUMA and it has been proposed that ER stress induces BIM-dependent cell death. We found no evidence that ER stress increased the expression of these proteins; furthermore, BIM was not required for ER stress-induced death. Rather, ER stress caused the PERK-dependent inhibition of cap-dependent mRNA translation and the progressive loss of pro-survival proteins including BCL2, BCLXL and MCL1. Despite these observations, neither ERK1/2 activation nor loss of BAX/BAK could confer long-term clonogenic survival to cells exposed to ER stress. Thus, ER stress induces cell death by at least two biochemically and genetically distinct pathways: a classical BAX/BAK-dependent apoptotic response that can be inhibited by ERK1/2 signalling and an alternative ERK1/2- and BAX/BAK-independent cell death pathway. PMID:28931068

  15. ATLAS ITk Pixel detector

    CERN Document Server

    Gemme, Claudia; The ATLAS collaboration

    2016-01-01

    The high luminosity upgrade of the LHC (HL-LHC) in 2026 will provide new challenge to the ATLAS tracker. The current inner detector will be replaced with a whole silicon tracker which will consist of a five barrel layer Pixel detector surrounded by a four barrel layer Strip detector. The expected high radiation level are requiring the development of upgraded silicon sensors as well as new a front-end chip. The dense tracking environment will require finer granularity detectors. The data rates will require new technologies for high bandwidth data transmission and handling. The current status of the HL-LHC ATLA Pixel detector developments as well as the various layout options will be reviewed.

  16. ATLAS Detector Interface Group

    CERN Multimedia

    Mapelli, L

    Originally organised as a sub-system in the DAQ/EF-1 Prototype Project, the Detector Interface Group (DIG) was an information exchange channel between the Detector systems and the Data Acquisition to provide critical detector information for prototype design and detector integration. After the reorganisation of the Trigger/DAQ Project and of Technical Coordination, the necessity to provide an adequate context for integration of detectors with the Trigger and DAQ lead to organisation of the DIG as one of the activities of Technical Coordination. Such an organisation emphasises the ATLAS wide coordination of the Trigger and DAQ exploitation aspects, which go beyond the domain of the Trigger/DAQ project itself. As part of Technical Coordination, the DIG provides the natural environment for the common work of Trigger/DAQ and detector experts. A DIG forum for a wide discussion of all the detector and Trigger/DAQ integration issues. A more restricted DIG group for the practical organisation and implementation o...

  17. Detector Systems at CLIC

    CERN Document Server

    Simon, Frank

    2011-01-01

    The Compact Linear Collider CLIC is designed to deliver e+e- collisions at a center of mass energy of up to 3 TeV. The detector systems at this collider have to provide highly efficient tracking and excellent jet energy resolution and hermeticity for multi-TeV final states with multiple jets and leptons. In addition, the detector systems have to be capable of distinguishing physics events from large beam-induced background at a crossing frequency of 2 GHz. Like for the detector concepts at the ILC, CLIC detectors are based on event reconstruction using particle flow algorithms. The two detector concepts for the ILC, ILD and SID, were adapted for CLIC using calorimeters with dense absorbers limiting leakage through increased compactness, as well as modified forward and vertex detector geometries and precise time stamping to cope with increased background levels. The overall detector concepts for CLIC are presented, with particular emphasis on the main detector and engineering challenges, such as: the ultra-thi...

  18. Integrability detectors

    Indian Academy of Sciences (India)

    2015-10-29

    Oct 29, 2015 ... Abstract. In this short review, we present some applications and historical facts about the integrability detectors: Painlevé analysis, singularity confinement and algebraic entropy.

  19. Space Radiation Detector with Spherical Geometry

    Science.gov (United States)

    Wrbanek, John D. (Inventor); Fralick, Gustave C. (Inventor); Wrbanek, Susan Y. (Inventor)

    2012-01-01

    A particle detector is provided, the particle detector including a spherical Cherenkov detector, and at least one pair of detector stacks. In an embodiment of the invention, the Cherenkov detector includes a sphere of ultraviolet transparent material, coated by an ultraviolet reflecting material that has at least one open port. The Cherenkov detector further includes at least one photodetector configured to detect ultraviolet light emitted from a particle within the sphere. In an embodiment of the invention, each detector stack includes one or more detectors configured to detect a particle traversing the sphere.

  20. 4D tracking with ultra-fast silicon detectors

    Science.gov (United States)

    F-W Sadrozinski, Hartmut; Seiden, Abraham; Cartiglia, Nicolò

    2018-02-01

    The evolution of particle detectors has always pushed the technological limit in order to provide enabling technologies to researchers in all fields of science. One archetypal example is the evolution of silicon detectors, from a system with a few channels 30 years ago, to the tens of millions of independent pixels currently used to track charged particles in all major particle physics experiments. Nowadays, silicon detectors are ubiquitous not only in research laboratories but in almost every high-tech apparatus, from portable phones to hospitals. In this contribution, we present a new direction in the evolution of silicon detectors for charge particle tracking, namely the inclusion of very accurate timing information. This enhancement of the present silicon detector paradigm is enabled by the inclusion of controlled low gain in the detector response, therefore increasing the detector output signal sufficiently to make timing measurement possible. After providing a short overview of the advantage of this new technology, we present the necessary conditions that need to be met for both sensor and readout electronics in order to achieve 4D tracking. In the last section, we present the experimental results, demonstrating the validity of our research path.

  1. Radiation detectors laboratory; Laboratorio de detectores de radiacion

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez J, F.J. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    The Radiation detectors laboratory was established with the assistance of the International Atomic Energy Agency which gave this the responsibility to provide its services at National and regional level for Latin America and it is located at the ININ. The more expensive and delicate radiation detectors are those made of semiconductor, so it has been put emphasis in the use and repairing of these detectors type. The supplied services by this laboratory are: selection consultant, detectors installation and handling and associated systems. Installation training, preventive and corrective maintenance of detectors and detection systems calibration. (Author)

  2. Health care reform and the scope of independence in decision making by environmental/family nurses. III. New concept of health care and currently provided scope of services.

    Science.gov (United States)

    Ksykiewicz-Dorota, Anna; Kamińska, Beata

    2003-01-01

    Until recently, corrective medicine and narrowly-understood prophylaxis have remained the focus of attention of health care staff. Various factors influenced the modification of current health activities. Providers of medical services, especially those engaged in PHC should react to the change in the concept of health care by expanding the present services offered. According to the WHO concept, dealing with healthy people is not a waste of time. Therefore, an attempt was undertaken to discover whether in the practice of environmental/family nurses, tasks were proposed to patients in the area of health promotion and prophylaxis. The studies covered 110 environmental/family nurses from the Bialystok Region. The material obtained in two groups of health care units--public and non-public--was then compared. Significant statistical differences with respect to 'very frequent' realization of health promotion programmes were observed between nurses employed in public health care units and those from non-public units. These programmes most often concerned breast feeding, and care of mother and child. In the area of prophylaxis, however, both groups undertook a 'very small' scope of actions on behalf of environment protection and prevention of three of the health problems recognized: prevention of faulty posture, dental caries and counteracting accidents, injuries and poisonings. Prophylactic tasks concerning cardiovascular system diseases, cancer, addictions and contagious diseases were more often realized.

  3. Optical Detectors

    Science.gov (United States)

    Tabbert, Bernd; Goushcha, Alexander

    Optical detectors are applied in all fields of human activities from basic research to commercial applications in communication, automotive, medical imaging, homeland security, and other fields. The processes of light interaction with matter described in other chapters of this handbook form the basis for understanding the optical detectors physics and device properties.

  4. Vapor Detector

    Science.gov (United States)

    Waddell, H. M.; Garrard, G. C.; Houston, D. W.

    1982-01-01

    Detector eliminates need for removing covers to take samples. Detector is canister consisting of screw-in base and clear plastic tube that contains two colors of silica gel. Monoethylhydrazine and nitrogen tetroxide vapors are visually monitored with canister containing color-changing gels.

  5. Directional radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Dowell, Jonathan L.

    2017-09-12

    Directional radiation detectors and systems, methods, and computer-readable media for using directional radiation detectors to locate a radiation source are provided herein. A directional radiation detector includes a radiation sensor. A radiation attenuator partially surrounds the radiation sensor and defines an aperture through which incident radiation is received by the radiation sensor. The aperture is positioned such that when incident radiation is received directly through the aperture and by the radiation sensor, a source of the incident radiation is located within a solid angle defined by the aperture. The radiation sensor senses at least one of alpha particles, beta particles, gamma particles, or neutrons.

  6. Layered semiconductor neutron detectors

    Science.gov (United States)

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  7. Two-dimensional microstrip detector for neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Oed, A. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    Because of their robust design, gas microstrip detectors, which were developed at ILL, can be assembled relatively quickly, provided the prefabricated components are available. At the beginning of 1996, orders were received for the construction of three two-dimensional neutron detectors. These detectors have been completed. The detectors are outlined below. (author). 2 refs.

  8. Micro-channel plate detector

    Science.gov (United States)

    Elam, Jeffrey W.; Lee, Seon W.; Wang, Hsien -Hau; Pellin, Michael J.; Byrum, Karen; Frisch, Henry J.

    2015-09-22

    A method and system for providing a micro-channel plate detector. An anodized aluminum oxide membrane is provided and includes a plurality of nanopores which have an Al coating and a thin layer of an emissive oxide material responsive to incident radiation, thereby providing a plurality of radiation sensitive channels for the micro-channel plate detector.

  9. The HERMES recoil detector

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [Giessen Univ. (Germany). Physikalisches Inst.; Michigan Univ., Ann Arbor, MI (United States). Randall Laboratory of Physics; Aschenauer, E.C. [DESY, Zeuthen (Germany); Belostotski, S. [B.P. Konstantinov Petersburg Nuclear Physics Insitute, Gatchina (Russian Federation)] [and others; Collaboration: HERMES Recoil Detector Group

    2013-02-15

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct measurement of the four-momentum of the recoiling particle. It consisted of three components: two layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic field with an integrated field strength of 1Tm. The recoil detector was installed in late 2005. After the commissioning of all components was finished in September 2006, it operated stably until the end of data taking at HERA end of June 2007. The present paper gives a brief overview of the physics processes of interest and the general detector design. The recoil detector components, their calibration, the momentum reconstruction of charged particles, and the event selection are described in detail. The paper closes with a summary of the performance of the detection system.

  10. The Belle II Detector

    Science.gov (United States)

    Piilonen, Leo; Belle Collaboration, II

    2017-01-01

    The Belle II detector is now under construction at the KEK laboratory in Japan. This project represents a substantial upgrade of the Belle detector (and the KEKB accelerator). The Belle II experiment will record 50 ab-1 of data, a factor of 50 more than that recorded by Belle. This large data set, combined with the low backgrounds and high trigger efficiencies characteristic of an e+e- experiment, should provide unprecedented sensitivity to new physics signatures in B and D meson decays, and in τ lepton decays. The detector comprises many forefront subsystems. The vertex detector consists of two inner layers of silicon DEPFET pixels and four outer layers of double-sided silicon strips. These layers surround a beryllium beam pipe having a radius of only 10 mm. Outside of the vertex detector is a large-radius, small-cell drift chamber, an ``imaging time-of-propagation'' detector based on Cerenkov radiation for particle identification, and scintillating fibers and resistive plate chambers used to identify muons. The detector will begin commissioning in 2017.

  11. The HERMES recoil detector

    Science.gov (United States)

    Airapetian, A.; Aschenauer, E. C.; Belostotski, S.; Borisenko, A.; Bowles, J.; Brodski, I.; Bryzgalov, V.; Burns, J.; Capitani, G. P.; Carassiti, V.; Ciullo, G.; Clarkson, A.; Contalbrigo, M.; De Leo, R.; De Sanctis, E.; Diefenthaler, M.; Di Nezza, P.; Düren, M.; Ehrenfried, M.; Guler, H.; Gregor, I. M.; Hartig, M.; Hill, G.; Hoek, M.; Holler, Y.; Hristova, I.; Jo, H. S.; Kaiser, R.; Keri, T.; Kisselev, A.; Krause, B.; Krauss, B.; Lagamba, L.; Lehmann, I.; Lenisa, P.; Lu, S.; Lu, X.-G.; Lumsden, S.; Mahon, D.; Martinez de la Ossa, A.; Murray, M.; Mussgiller, A.; Nowak, W.-D.; Naryshkin, Y.; Osborne, A.; Pappalardo, L. L.; Perez-Benito, R.; Petrov, A.; Pickert, N.; Prahl, V.; Protopopescu, D.; Reinecke, M.; Riedl, C.; Rith, K.; Rosner, G.; Rubacek, L.; Ryckbosch, D.; Salomatin, Y.; Schnell, G.; Seitz, B.; Shearer, C.; Shutov, V.; Statera, M.; Steijger, J. J. M.; Stenzel, H.; Stewart, J.; Stinzing, F.; Trzcinski, A.; Tytgat, M.; Vandenbroucke, A.; Van Haarlem, Y.; Van Hulse, C.; Varanda, M.; Veretennikov, D.; Vilardi, I.; Vikhrov, V.; Vogel, C.; Yaschenko, S.; Ye, Z.; Yu, W.; Zeiler, D.; Zihlmann, B.

    2013-05-01

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct measurement of the four-momentum of the recoiling particle. It consisted of three components: two layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic field with a field strength of 1T. The recoil detector was installed in late 2005. After the commissioning of all components was finished in September 2006, it operated stably until the end of data taking at HERA end of June 2007. The present paper gives a brief overview of the physics processes of interest and the general detector design. The recoil detector components, their calibration, the momentum reconstruction of charged particles, and the event selection are described in detail. The paper closes with a summary of the performance of the detection system.

  12. Gaseous Detectors

    Science.gov (United States)

    Titov, Maxim

    Since long time, the compelling scientific goals of future high-energy physics experiments were a driving factor in the development of advanced detector technologies. A true innovation in detector instrumentation concepts came in 1968, with the development of a fully parallel readout for a large array of sensing elements - the Multi-Wire Proportional Chamber (MWPC), which earned Georges Charpak a Nobel prize in physics in 1992. Since that time radiation detection and imaging with fast gaseous detectors, capable of economically covering large detection volumes with low mass budget, have been playing an important role in many fields of physics. Advances in photolithography and microprocessing techniques in the chip industry during the past decade triggered a major transition in the field of gas detectors from wire structures to Micro-Pattern Gas Detector (MPGD) concepts, revolutionizing cell-size limitations for many gas detector applications. The high radiation resistance and excellent spatial and time resolution make them an invaluable tool to confront future detector challenges at the next generation of colliders. The design of the new micro-pattern devices appears suitable for industrial production. Novel structures where MPGDs are directly coupled to the CMOS pixel readout represent an exciting field allowing timing and charge measurements as well as precise spatial information in 3D. Originally developed for the high-energy physics, MPGD applications have expanded to nuclear physics, photon detection, astroparticle and neutrino physics, neutron detection, and medical imaging.

  13. The STAR Vertex Position Detector

    Energy Technology Data Exchange (ETDEWEB)

    Llope, W.J., E-mail: llope@rice.edu [Rice University, Houston, TX 77005 (United States); Zhou, J.; Nussbaum, T. [Rice University, Houston, TX 77005 (United States); Hoffmann, G.W. [University of Texas, Austin, TX 78712 (United States); Asselta, K. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Brandenburg, J.D.; Butterworth, J. [Rice University, Houston, TX 77005 (United States); Camarda, T.; Christie, W. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Crawford, H.J. [University of California, Berkeley, CA 94720 (United States); Dong, X. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Engelage, J. [University of California, Berkeley, CA 94720 (United States); Eppley, G.; Geurts, F. [Rice University, Houston, TX 77005 (United States); Hammond, J. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Judd, E. [University of California, Berkeley, CA 94720 (United States); McDonald, D.L. [Rice University, Houston, TX 77005 (United States); Perkins, C. [University of California, Berkeley, CA 94720 (United States); Ruan, L.; Scheblein, J. [Brookhaven National Laboratory, Upton, NY 11973 (United States); and others

    2014-09-21

    The 2×3 channel pseudo Vertex Position Detector (pVPD) in the STAR experiment at RHIC has been upgraded to a 2×19 channel detector in the same acceptance, called the Vertex Position Detector (VPD). This detector is fully integrated into the STAR trigger system and provides the primary input to the minimum-bias trigger in Au+Au collisions. The information from the detector is used both in the STAR Level-0 trigger and offline to measure the location of the primary collision vertex along the beam pipe and the event “start time” needed by other fast-timing detectors in STAR. The offline timing resolution of single detector channels in full-energy Au+Au collisions is ∼100 ps, resulting in a start time resolution of a few tens of picoseconds and a resolution on the primary vertex location of ∼1 cm.

  14. DUMAND detector

    CERN Multimedia

    This object is one of the 256 other detectors of the DUMAND (Deep Underwater Muon And Neutrino Detection) experiment. The goal of the experiment was the construction of the first deep ocean high energy neutrino detector, to be placed at 4800 m depth in the Pacific Ocean off Keahole Point on the Big Island of Hawaii. A few years ago, a European conference with Cosmic experiments was organized at CERN as they were projects like DUMAND in Hawaii. Along with the conference, a temporary exhibition was organised as well. It was a collaboration of institutions from Germany, Japan, Switzerland and the U.S.A. CERN had borrowed equipment and objects from different institutes around the world, including this detector of the DUMAND experiment. Most of the equipment were sent back to the institutes, however this detector sphere was offered to a CERN member of the personnel.

  15. The CLIC Detector Concept

    CERN Document Server

    Pitters, Florian Michael

    2016-01-01

    CLIC is a concept for a future linear collider that would provide e+e- collisions at up to 3 TeV. The physics aims require a detector system with excellent jet energy and track momentum resolution, highly efficient flavour-tagging and lepton identification capabilities, full geometrical coverage extending to low polar angles and timing information in the order of nanoseconds to reject beam-induced background. To deal with those requirements, an extensive R&D programme is in place to overcome current technological limits. The CLIC detector concept includes a low-mass all-silicon vertex and tracking detector system and fine-grained calorimeters designed for particle flow analysis techniques, surrounded by a 4 T solenoid magnet. An overview of the requirements and design optimisations for the CLIC detector concept is presented.

  16. Emission detectors

    CERN Document Server

    Bolozdynya, Alexander I

    2010-01-01

    After decades of research and development, emission detectors have recently become the most successful instrumentation used in modern fundamental experiments searching for cold dark matter, and are also considered for neutrino coherent scattering and magnetic momentum neutrino measurement. This book is the first monograph exclusively dedicated to emission detectors. Properties of two-phase working media based on noble gases, saturated hydrocarbon, ion crystals and semiconductors are reviewed.

  17. Detectors course

    CERN Multimedia

    CERN. Geneva HR-RFA

    2006-01-01

    This lecture series on detectors, will give a general, although somewhat compressed, introduction to particle interaction with matter and magnetic fields. Tracking detectors and calorimeters will also be covered as well as particle identification systems. The lectures will start out with a short review of particle interaction with fields and then we will discuss particle detection. At the end some common composite detection systems will be described.

  18. The DELPHI Detector (DEtector with Lepton Photon and Hadron Identification)

    CERN Multimedia

    Crawley, B; Munich, K; Mckay, R; Matorras, F; Joram, C; Malychev, V; Behrmann, A; Van dam, P; Drees, J K; Stocchi, A; Adam, W; Booth, P; Bilenki, M; Rosenberg, E I; Morton, G; Rames, J; Hahn, S; Cosme, G; Ventura, L; Marco, J; Tortosa martinez, P; Monge silvestri, R; Moreno, S; Phillips, H; Alekseev, G; Boudinov, E; Martinez rivero, C; Gitarskiy, L; Davenport, M; De clercq, C; Firestone, A; Myagkov, A; Belous, K; Haider, S; Hamilton, K M; Lamsa, J; Rahmani, M H; Malek, A; Hughes, G J; Peralta, L; Carroll, L; Fuster verdu, J A; Cossutti, F; Gorn, L; Yi, J I; Bertrand, D; Myatt, G; Richard, F; Shapkin, M; Hahn, F; Ferrer soria, A; Reinhardt, R; Renton, P; Sekulin, R; Timmermans, J; Baillon, P

    2002-01-01

    % DELPHI The DELPHI Detector (Detector with Lepton Photon and Hadron Identification) \\\\ \\\\DELPHI is a general purpose detector for physics at LEP on and above the Z$^0$, offering three-dimensional information on curvature and energy deposition with fine spatial granularity as well as identification of leptons and hadrons over most of the solid angle. A superconducting coil provides a 1.2~T solenoidal field of high uniformity. Tracking relies on the silicon vertex detector, the inner detector, the Time Projection Chamber (TPC), the outer detector and forward drift chambers. Electromagnetic showers are measured in the barrel with high granularity by the High Density Projection Chamber (HPC) and in the endcaps by $ 1 ^0 $~x~$ 1 ^0 $ projective towers composed of lead glass as active material and phototriode read-out. Hadron identification is provided mainly by liquid and gas Ring Imaging Counters (RICH). The instrumented magnet yoke serves for hadron calorimetry and as filter for muons, which are identified in t...

  19. Advanced Space Radiation Detector Technology Development

    Science.gov (United States)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at the NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  20. ALICE Transition Radiation Detector

    CERN Multimedia

    Pachmayer, Y

    2013-01-01

    The Transition Radiation Detector (TRD) is the main electron detector in ALICE. In conduction with the TPC and the ITS, it provides the necessary electron identification capability to study: - Production of light and heavy vector mesons as well as the continuum in the di-electron channel, - Semi leptonic decays of hadrons with open charm and open beauty via the single-electron channel using the displaced vertex information provided by the ITS, - Correlated DD and BB pairs via coincidences of electrons in the central barrel and muons in the forward muon arm, - Jets with high Pτ tracks in one single TRD stack.

  1. MPX Detectors as LHC Luminosity Monitor

    CERN Document Server

    Sopczak, Andre; Asbah, Nedaa; Bergmann, Benedikt; Bekhouche, Khaled; Caforio, Davide; Campbell, Michael; Heijne, Erik; Leroy, Claude; Lipniacka, Anna; Nessi, Marzio; Pospisil, Stanislav; Seifert, Frank; Solc, Jaroslav; Soueid, Paul; Suk, Michal; Turecek, Daniel; Vykydal, Zdenek

    2015-01-01

    A network of 16 Medipix-2 (MPX) silicon pixel devices was installed in the ATLAS detector cavern at CERN. It was designed to measure the composition and spectral characteristics of the radiation field in the ATLAS experiment and its surroundings. This study demonstrates that the MPX network can also be used as a self-sufficient luminosity monitoring system. The MPX detectors collect data independently of the ATLAS data-recording chain, and thus they provide independent measurements of the bunch-integrated ATLAS/LHC luminosity. In particular, the MPX detectors located close enough to the primary interaction point are used to perform van der Meer calibration scans with high precision. Results from the luminosity monitoring are presented for 2012 data taken at sqrt(s) = 8 TeV proton-proton collisions. The characteristics of the LHC luminosity reduction rate are studied and the effects of beam-beam (burn-off) and beam-gas (single bunch) interactions are evaluated. The systematic variations observed in the MPX lum...

  2. MPX detectors as LHC luminosity monitor

    Energy Technology Data Exchange (ETDEWEB)

    Sopczak, Andre; Ali, Babar; Bergmann, Benedikt; Caforio, Davide; Heijne, Erik; Pospisil, Stanislav; Seifert, Frank; Solc, Jaroslav; Suk, Michal; Turecek, Daniel [IEAP CTU in Prague (Czech Republic); Ashba, Nedaa; Leroy, Claude; Soueid, Paul [University of Montreal (Canada); Bekhouche, Khaled [Biskra University (Algeria); Campbell, Michael; Nessi, Marzio [CERN (Switzerland); Lipniacka, Anna [Bergen University (Norway)

    2016-07-01

    A network of 16 Medipix-2 (MPX) silicon pixel devices was installed in the ATLAS detector cavern at CERN. It was designed to measure the composition and spectral characteristics of the radiation field in the ATLAS experiment and its surroundings. This study demonstrates that the MPX network can also be used as a self-sufficient luminosity monitoring system. The MPX detectors collect data independently of the ATLAS data-recording chain, and thus they provide independent measurements of the bunch-integrated ATLAS/LHC luminosity. In particular, the MPX detectors located close enough to the primary interaction point are used to perform van der Meer calibration scans with high precision. Results from the luminosity monitoring are presented for 2012 data taken at √(s) =8 TeV proton-proton collisions. The characteristics of the LHC luminosity reduction rate are studied and the effects of beam-beam (burn-off) and beam-gas (single bunch) interactions are evaluated. The systematic variations observed in the MPX luminosity measurements are below 0.3% for one minute intervals.

  3. Pixel detectors

    CERN Document Server

    Passmore, M S

    2001-01-01

    positions on the detector. The loss of secondary electrons follows the profile of the detector and increases with higher energy ions. studies of the spatial resolution predict a value of 5.3 lp/mm. The image noise in photon counting systems is investigated theoretically and experimentally and is shown to be given by Poisson statistics. The rate capability of the LAD1 was measured to be 250 kHz per pixel. Theoretical and experimental studies of the difference in contrast for ideal charge integrating and photon counting imaging systems were carried out. It is shown that the contrast differs and that for the conventional definition (contrast = (background - signal)/background) the photon counting device will, in some cases, always give a better contrast than the integrating system. Simulations in MEDICI are combined with analytical calculations to investigate charge collection efficiencies (CCE) in semiconductor detectors. Different pixel sizes and biasing conditions are considered. The results show charge shari...

  4. Energy Independence

    Science.gov (United States)

    Abelson, Philip H.

    1973-01-01

    Discusses President Nixon's proposed national endeavor for energy self-sufficiency in the United States by 1980, to be known as Project Independence. Examines some of the factors that will be involved in attempting to attain energy independence. (JR)

  5. Independent suspension

    National Research Council Canada - National Science Library

    Chaikin, Don

    1992-01-01

    ... independent suspension. INDEPENDENCE! An independent system is simply one in which each of the vehicle's wheels is free to react totally separate from any of the other wheels. If the right rear wheel hits a bump, the left rear wheel is undisturbed. Since the whole car does not bounce and shake every time one of the wheels hits a potho...

  6. Pixel Detectors

    CERN Document Server

    Wermes, Norbert

    2005-01-01

    Pixel detectors for precise particle tracking in high energy physics have been developed to a level of maturity during the past decade. Three of the LHC detectors will use vertex detectors close to the interaction point based on the hybrid pixel technology which can be considered the state of the art in this field of instrumentation. A development period of almost 10 years has resulted in pixel detector modules which can stand the extreme rate and timing requirements as well as the very harsh radiation environment at the LHC without severe compromises in performance. From these developments a number of different applications have spun off, most notably for biomedical imaging. Beyond hybrid pixels, a number of monolithic or semi-monolithic developments, which do not require complicated hybridization but come as single sensor/IC entities, have appeared and are currently developed to greater maturity. Most advanced in terms of maturity are so called CMOS active pixels and DEPFET pixels. The present state in the ...

  7. Performance of the DELPHI detector

    CERN Document Server

    Abreu, P; Adye, T; Agasi, E; Ajinenko, I; Aleksan, Roy; Alekseev, G D; Alemany, R; Allport, P P; Almehed, S; Alvsvaag, S J; Amaldi, Ugo; Amato, S; Andreazza, A; Andrieux, M L; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barate, R; Barbiellini, Guido; Bardin, Dimitri Yuri; Baroncelli, A; Bärring, O; Barrio, J A; Bartl, Walter; Bates, M J; Battaglia, Marco; Baubillier, M; Baudot, J; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Benvenuti, Alberto C; Berggren, M; Bertrand, D; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bloch, D; Blume, M; Blyth, S; Bolognese, T; Bonesini, M; Bonivento, W; Booth, P S L; Borisov, G; Bosio, C; Bosworth, S; Botner, O; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozzo, M; Branchini, P; Brand, K D; Brenke, T; Brenner, R A; Bricman, C; Brillault, L; Brown, R C A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Buys, A; Cabrera, S; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Cankocak, K; Cao, F; Carena, F; Carrilho, P; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Cerrito, L; Chabaud, V; Charpentier, P; Chaussard, L; Chauveau, J; Checchia, P; Chelkov, G A; Chen, M; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Chudoba, J; Cindro, V; Collins, P; Contreras, J L; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Dahl-Jensen, Erik; Dahm, J; D'Almagne, B; Dam, M; Damgaard, G; Dauncey, P D; Davenport, Martyn; Da Silva, W; Defoix, C; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; La Vaissière, C de; De Lotto, B; De Min, A; De Paula, L S; De Saint-Jean, C; Dijkstra, H; Di Ciaccio, Lucia; Djama, F; Dolbeau, J; Dönszelmann, M; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Dufour, Y; Dupont, F; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Elsing, M; Engel, J P; Ershaidat, N; Erzen, B; Espirito-Santo, M C; Falaleev, V P; Falk, E; Fassouliotis, D; Feindt, Michael; Fenyuk, A; Ferrer, A; Filippas-Tassos, A; Firestone, A; Fischer, P A; Föth, H; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frenkiel, P; Fries, D E C; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gerdyukov, L N; Gibbs, M; Gokieli, R; Golob, B; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Graziani, E; Grosdidier, G; Grzelak, K; Gumenyuk, S A; Gunnarsson, P; Günther, M; Guy, J; Hahn, F; Hahn, S; Hajduk, Z; Hallgren, A; Hamacher, K; Hao, W; Harris, F J; Hedberg, V; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Higón, E; Hilke, Hans Jürgen; Hill, T S; Holmgren, S O; Holt, P J; Holthuizen, D J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, L B; Jönsson, P E; Joram, Christian; Juillot, P; Kaiser, M; Kapusta, F; Karafasoulis, K; Karlsson, M; Karvelas, E; Karyukhin, A N; Katsanevas, S; Katsoufis, E C; Keränen, R; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klein, H; Klovning, A; Kluit, P M; Köne, B; Kokkinias, P; Koratzinos, M; Kourkoumelis, C; Kuznetsov, O; Kramer, P H; Krammer, Manfred; Kreuter, C; Kronkvist, I J; Krumshtein, Z; Krupinski, W; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lacasta, C; Laktineh, I; Lamblot, S; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Lapin, V; Last, I; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Legan, C K; Leitner, R; Lemoigne, Y; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Liko, D; Lindner, R; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; López, J M; López-Aguera, M A; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Maehlum, G; Maio, A; Malychev, V; Mandl, F; Marco, J; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Maron, T; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Masik, J; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; Medbo, J; Meroni, C; Meyer, S; Meyer, W T; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Morettini, P; Müller, H; Mundim, L M; Murray, J; Muryn, B; Myatt, Gerald; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Niss, P; Nomerotski, A; Normand, Ainsley; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Österberg, K; Ouraou, A; Paganini, P; Paganoni, M; Pagès, P; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Passeri, A; Pegoraro, M; Peralta, L; Perevozchikov, V; Pernegger, H; Perrotta, A; Petridou, C; Petrolini, A; Petrovykh, M; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Pindo, M; Plaszczynski, S; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Prest, M; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rames, J; Ratoff, P N; Read, A L; Reale, M; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Renton, P B; Resvanis, L K; Richard, F; Richardson, J; Rídky, J; Rinaudo, G; Ripp, I; Romero, A; Roncagliolo, I; Ronchese, P; Roos, L; Rosenberg, E I; Rosso, E; Roudeau, Patrick; Rovelli, T; Rückstuhl, W; Ruhlmann-Kleider, V; Ruiz, A; Rybicki, K; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sánchez, J; Sannino, M; Schimmelpfennig, M; Schneider, H; Schwickerath, U; Schyns, M A E; Sciolla, G; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Seitz, A; Sekulin, R L; Shellard, R C; Siccama, I; Siegrist, P; Simonetti, S; Simonetto, F; Sissakian, A N; Sitár, B; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Solovyanov, O; Sosnowski, R; Souza-Santos, D; Spiriti, E; Sponholz, P; Squarcia, S; Stanescu, C; Stapnes, Steinar; Stavitski, I; Stichelbaut, F; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tavernet, J P; Chikilev, O G; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Toet, D Z; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Trischuk, W; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tyndel, M; Tzamarias, S; Überschär, B; Ullaland, O; Valenti, G; Vallazza, E; Van der Velde, C; van Apeldoorn, G W; van Dam, P; Van Doninck, W K; Van Eldik, J; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Vilanova, D; Vincent, P; Vitale, L; Vlasov, E; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Weierstall, M; Weilhammer, Peter; Weiser, C; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Witek, M; Woschnagg, K; Yip, K; Zach, F; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zito, M; Zontar, D; Zuberi, R; Zucchelli, G C; Zumerle, G; Belokopytov, Yu; Charpentier, Ph; Gavillet, Ph; Gouz, Yu; Jarlskog, Ch

    1996-01-01

    DELPHI (DEtector with Lepton, Photon and Hadron Identification) is a detector for e^+e^- physics, designed to provide high granularity over a 4\\pi solid angle, allowing an effective particle identification. It has been operating at the LEP (Large Electron-Positron) collider at CERN since 1989. This article reviews its performance.

  8. Are Independent Probes Truly Independent?

    Science.gov (United States)

    Camp, Gino; Pecher, Diane; Schmidt, Henk G.; Zeelenberg, Rene

    2009-01-01

    The independent cue technique has been developed to test traditional interference theories against inhibition theories of forgetting. In the present study, the authors tested the critical criterion for the independence of independent cues: Studied cues not presented during test (and unrelated to test cues) should not contribute to the retrieval…

  9. Neutron detector

    Science.gov (United States)

    Stephan, Andrew C [Knoxville, TN; Jardret,; Vincent, D [Powell, TN

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  10. Plasma-panel based detectors

    Science.gov (United States)

    Friedman, Peter

    2017-09-01

    The plasma panel sensor (PPS) is a novel micropattern gas detector inspired by plasma display panels (PDPs), the core component of plasma-TVs. A PDP comprises millions of discrete cells per square meter, each of which, when provided with a signal pulse, can initiate and sustain a plasma discharge. Configured as a detector, a pixel or cell is biased to discharge when a free-electron is generated in the gas. The PPS consists of an array of small plasma discharge pixels, and can be configured to have either an ``open-cell'' or ``closed-cell'' structure, operating with high gain in the Geiger region. We describe both configurations and their application to particle physics. The open-cell PPS lends itself to ultra-low-mass, ultrathin structures, whereas the closed-cell microhexcavity PPS is capable of higher performance. For the ultrathin-PPS, we are fabricating 3-inch devices based on two types of extremely thin, inorganic, transparent, substrate materials: one being 8-10 µm thick, and the other 25-27 µm thick. These gas-filled ultrathin devices are designed to operate in a beam-line vacuum environment, yet must be hermetically-sealed and gas-filled in an ambient environment at atmospheric pressure. We have successfully fabricated high resolution, submillimeter pixel electrodes on both types of ultrathin substrates. We will also report on the fabrication, staging and operation of the first microhexcavity detectors (µH-PPS). The first µH-PPS prototype devices have a 16 by 16 matrix of closed packed hexagon pixels, each having a 2 mm width. Initial tests of these detectors, conducted with Ne based gases at atmospheric pressure, indicate that each pixel responds independent of its neighboring cells, producing volt level pulse amplitudes in response to ionizing radiation. Results will include the hit rate response to a radioactive beta source, cosmic ray muons, the background from spontaneous discharge, pixel isolation and uniformity, and efficiency measurements. This

  11. Acquisition System and Detector Interface for Power Pulsed Detectors

    CERN Document Server

    Cornat, R

    2012-01-01

    A common DAQ system is being developed within the CALICE collaboration. It provides a flexible and scalable architecture based on giga-ethernet and 8b/10b serial links in order to transmit either slow control data, fast signals or read out data. A detector interface (DIF) is used to connect detectors to the DAQ system based on a single firmware shared among the collaboration but targeted on various physical implementations. The DIF allows to build, store and queue packets of data as well as to control the detectors providing USB and serial link connectivity. The overall architecture is foreseen to manage several hundreds of thousands channels.

  12. Conceptual design of MCP based particle detector

    Science.gov (United States)

    Barnyakov, A. Yu.; Barnyakov, M. Yu.; Blinov, V. E.; Bobrovnikov, V. S.; Bykov, A. V.; Ivanov, V. Ya.; Katcin, A. A.; Mamoshkina, E. V.; Ovtin, I. V.; Pivovarov, S. G.; Prisekin, V. G.; Pyata, E. E.

    2017-08-01

    A time-of-flight detector based on microchannel plates (MCP) is under development. The main goal of this work is the creation of a radiation hard large area detector providing 10 ps time resolution in strong magnetic field. The conceptual detector design is described in details.

  13. 21 CFR 872.6350 - Ultraviolet detector.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultraviolet detector. 872.6350 Section 872.6350...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6350 Ultraviolet detector. (a) Identification. An ultraviolet detector is a device intended to provide a source of ultraviolet light which is used...

  14. A novel segmented-scintillator antineutrino detector

    OpenAIRE

    Abreu, Y.; Amhis, Y.; Arnold, L; Ban, G.; Beaumont, W.; Bongrand, M.; Boursette, D.; Buhour, J. M.; Castle, B.C.; Clark, K.; Coupé, B; Cucoanes, A.S.; Cussans, D; De Roeck, A.; D'Hondt, J.

    2017-01-01

    The next generation of very-short-baseline reactor experiments will require compact detectors operating at surface level and close to a nuclear reactor. This paper presents a new detector concept based on a composite solid scintillator technology. The detector target uses cubes of polyvinyltoluene interleaved with 6LiF:ZnS(Ag) phosphor screens to detect the products of the inverse beta decay reaction. A multi-tonne detector system built from these individual cells can provide precise localisa...

  15. A novel segmented-scintillator antineutrino detector

    OpenAIRE

    Abreu, Y.; Amhis, Y.; Arnold, L; Ban, G.; Beaumont, W.; Bongrand, M.; Boursette, D.; Buhour, J. M.; Castle, B.C.; Clark, K.; Coupé, B; Cucoanes, A.S.; Cussans, D; De Roeck, A.; D'Hondt, J.

    2017-01-01

    The next generation of very-short-baseline reactor experiments will require compact detectors operating at surface level and close to a nuclear reactor. This paper presents a new detector concept based on a composite solid scintillator technology. The detector target uses cubes of polyvinyltoluene interleaved with (6)LiF:ZnS(Ag) phosphor screens to detect the products of the inverse beta decay reaction. A multi-tonne detector system built from these individual cells can provide precise locali...

  16. ACORDE - A Cosmic Ray Detector for ALICE

    CERN Document Server

    INSPIRE-00247175; Pagliarone, C.

    2006-01-01

    ACORDE, the ALICE COsmic Ray DEtector is one of the ALICE detectors, presently under construction. It consists of an array of plastic scintillator counters placed on the three upper faces of the ALICE magnet. This array will act as Level 0 cosmic ray trigger and, together with other ALICE sub-detectors, will provide precise information on cosmic rays with primary energies around $10^{15-17}$ eV. In this paper we will describe the ACORDE detector, trigger design and electronics.

  17. The LUCID-2 Detector

    CERN Document Server

    Pinfold, James; The ATLAS collaboration

    2017-01-01

    The LUCID-2 detector is the main online and offline luminosity provider of the ATLAS experiment. It provides over 100 different luminosity measurements from different algorithms for each of the 2808/3546 filled/total LHC bunches. LUCID was entirely redesigned in preparation for LHC Run 2: both the detector and the electronics were upgraded in order to cope with the challenging conditions expected at the LHC center of mass energy of 13 TeV with only 25 ns bunch-spacing. While LUCID-1 used gas as a Cherenkov medium, the LUCID-2 detector is in a new unique way using the quartz windows of small photomultipliers as the Cherenkov medium. The main challenge for a luminometer is to keep the efficiency constant during years of data-taking. LUCID-2 is using an innovative calibration system based on radioactive 207 Bi sources deposited on the quartz window of the readout photomultipliers. This makes it possible to accurately monitor and control the gain of the photomultipliers so that the detector efficiency can be kept...

  18. The LUCID-2 Detector

    CERN Document Server

    Soluk, Richard; The ATLAS collaboration

    2017-01-01

    The LUCID-2 detector is the main online and offline luminosity provider of the ATLAS experiment. It provides over 100 different luminosity measurements from different algorithms for each of the 2808 LHC bunches. LUCID was entirely redesigned in preparation for LHC Run 2: both the detector and the electronics were upgraded in order to cope with the challenging conditions expected at the LHC center of mass energy of 13 TeV with only 25 ns bunch-spacing. While LUCID-1 used gas as a Cherenkov medium, the LUCID-2 detector is in a new unique way using the quartz windows of small photomultipliers as the Cherenkov medium. The main challenge for a luminometer is to keep the efficiency constant during years of data-taking. LUCID-2 is using an innovative calibration system based on radioactive 207 Bi sources deposited on the quartz window of the readout photomultipliers. This makes it possible to accurately monitor and control the gain of the photomultipliers so that the detector efficiency can be kept stable at a perce...

  19. Detector Fundamentals for Reachback Analysts

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Myers, Steven Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-03

    This presentation is a part of the DHS LSS spectroscopy course and provides an overview of the following concepts: detector system components, intrinsic and absolute efficiency, resolution and linearity, and operational issues and limits.

  20. Detector Physics of Resistive Plate Chambers

    CERN Document Server

    Lippmann, Christian; Riegler, W

    2003-01-01

    Resistive Plate Chambers (RPCs) are gaseous parallel plate avalanche detectors that implement electrodes made from a material with a high volume resistivity between 10^7 and 10^12 Ohm cm. Large area RPCs with 2mm single gaps operated in avalanche mode provide above 98% efficiency and a time resolution of around 1ns up to a flux of several kHz/cm2. These Trigger RPCs will, as an example, equip the muon detector system of the ATLAS experiment at CERN on an area of 3650m2 and with 355.000 independent read out channels. Timing RPCs with a gas gap of 0.2 to 0.3mm are widely used in multi gap configurations and provide 99% efficiency and time resolution down to 50ps. While their performance is comparable to existing scintillator-based Time-Of-Flight (TOF) technology, Timing RPCs feature a significantly, up to an order of magnitude, lower price per channel. They will for example equip the 176m2 TOF barrel of the ALICE experiment at CERN with 160.000 independent read out cells. RPCs were originally operated in stream...

  1. Organizing Independent Student Work

    Directory of Open Access Journals (Sweden)

    Zhadyra T. Zhumasheva

    2015-03-01

    Full Text Available This article addresses issues in organizing independent student work. The author defines the term “independence”, discusses the concepts of independent learner work and independent learner work under the guidance of an instructor, proposes a classification of assignments to be done independently, and provides methodological recommendations as to the organization of independent student work. The article discusses the need for turning the student from a passive consumer of knowledge into an active creator of it, capable of formulating a problem, analyzing the ways of solving it, coming up with an optimum outcome, and proving its correctness. The preparation of highly qualified human resources is the primary condition for boosting Kazakhstan’s competitiveness. Independent student work is a means of fostering the professional competence of future specialists. The primary form of self-education is independent work.

  2. Independent Directors

    DEFF Research Database (Denmark)

    Ringe, Wolf-Georg

    2013-01-01

    that they did not prevent firms' excessive risk taking; further, these directors sometimes showed serious deficits in understanding the business they were supposed to control, and remained passive in addressing structural problems. A closer look reveals that under the surface of seemingly unanimous consensus......This paper re-evaluates the corporate governance concept of ‘board independence’ against the disappointing experiences during the 2007-08 financial crisis. Independent or outside directors had long been seen as an essential tool to improve the monitoring role of the board. Yet the crisis revealed...... about board independence in Western jurisdictions, a surprising disharmony prevails about the justification, extent and purpose of independence requirements. These considerations lead me to question the benefits of the current system. Instead, this paper proposes a new, ‘functional’ concept of board...

  3. Exposure of Plastic Track Detectors to Relativistic Pb Beam for the Purpose of Providing Calibration for the DUBLIN-ESTEC Ultra Heavy Cosmic Ray Experiment Which was Exposed for Sixty-Nine Months in Earth Orbit

    CERN Multimedia

    2002-01-01

    % WA100 \\\\ \\\\ Solid state nuclear track detectors which formed part of the Dublin-ESTEC ultra heavy~cosmic~ray experiment aboard LDEF (Long Duration Exposure Facility) and which was deployed in Earth orbit for sixty-nine months, will be exposed to relativistic Pb ions. The experiment was the largest of its kind ever undertaken in space and has successfully accumulated more than fifteen times the world sample of cosmic ray nuclei in the region above Z~=~70. The data include the first significant sample of cosmic ray actinide elements and is of major astrophysical importance. The total number of ultra heavy nuclei (Z~$>$~70) in the Dublin-ESTEC sample is $\\sim$~2800. \\\\ \\\\The exposure will be very simple. A stack of detectors (20.5~cm~x~26~cm x~3~cm in size) will be irradiated with a low density beam of Pb ions (a few hundred per cm$^2$ would be ideal, but a wide range of densities and areas could be tolerated). The response of the detectors to these ions of known charge and velocity will be measured and the da...

  4. Measurement-device-independent quantum digital signatures

    Science.gov (United States)

    Puthoor, Ittoop Vergheese; Amiri, Ryan; Wallden, Petros; Curty, Marcos; Andersson, Erika

    2016-08-01

    Digital signatures play an important role in software distribution, modern communication, and financial transactions, where it is important to detect forgery and tampering. Signatures are a cryptographic technique for validating the authenticity and integrity of messages, software, or digital documents. The security of currently used classical schemes relies on computational assumptions. Quantum digital signatures (QDS), on the other hand, provide information-theoretic security based on the laws of quantum physics. Recent work on QDS Amiri et al., Phys. Rev. A 93, 032325 (2016);, 10.1103/PhysRevA.93.032325 Yin, Fu, and Zeng-Bing, Phys. Rev. A 93, 032316 (2016), 10.1103/PhysRevA.93.032316 shows that such schemes do not require trusted quantum channels and are unconditionally secure against general coherent attacks. However, in practical QDS, just as in quantum key distribution (QKD), the detectors can be subjected to side-channel attacks, which can make the actual implementations insecure. Motivated by the idea of measurement-device-independent quantum key distribution (MDI-QKD), we present a measurement-device-independent QDS (MDI-QDS) scheme, which is secure against all detector side-channel attacks. Based on the rapid development of practical MDI-QKD, our MDI-QDS protocol could also be experimentally implemented, since it requires a similar experimental setup.

  5. Radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Taleyarkhan, Rusi P.

    2017-06-27

    Alpha particle detecting devices are disclosed that have a chamber that can hold a fluid in a tensioned metastable state. The chamber is tuned with a suitable fluid and tension such that alpha emitting materials such as radon and one or more of its decay products can be detected. The devices can be portable and can be placed in areas, such as rooms in dwellings or laboratories and used to measure radon in these areas, in situ and in real time. The disclosed detectors can detect radon at and below 4 pCi/L in air; also, at and below 4,000 pCi/L or 300 pCi/L in water.

  6. Independent preferences

    DEFF Research Database (Denmark)

    Vind, Karl

    1991-01-01

    A simple mathematical result characterizing a subset of a product set is proved and used to obtain additive representations of preferences. The additivity consequences of independence assumptions are obtained for preferences which are not total or transitive. This means that most of the economic...

  7. Nanowire-based detector

    Science.gov (United States)

    Berggren, Karl K; Hu, Xiaolong; Masciarelli, Daniele

    2014-06-24

    Systems, articles, and methods are provided related to nanowire-based detectors, which can be used for light detection in, for example, single-photon detectors. In one aspect, a variety of detectors are provided, for example one including an electrically superconductive nanowire or nanowires constructed and arranged to interact with photons to produce a detectable signal. In another aspect, fabrication methods are provided, including techniques to precisely reproduce patterns in subsequently formed layers of material using a relatively small number of fabrication steps. By precisely reproducing patterns in multiple material layers, one can form electrically insulating materials and electrically conductive materials in shapes such that incoming photons are redirected toward a nearby electrically superconductive materials (e.g., electrically superconductive nanowire(s)). For example, one or more resonance structures (e.g., comprising an electrically insulating material), which can trap electromagnetic radiation within its boundaries, can be positioned proximate the nanowire(s). The resonance structure can include, at its boundaries, electrically conductive material positioned proximate the electrically superconductive nanowire such that light that would otherwise be transmitted through the sensor is redirected toward the nanowire(s) and detected. In addition, electrically conductive material can be positioned proximate the electrically superconductive nanowire (e.g. at the aperture of the resonant structure), such that light is directed by scattering from this structure into the nanowire.

  8. LUCID: The ATLAS Luminosity Detector

    CERN Document Server

    Cabras, Grazia; The ATLAS collaboration

    2017-01-01

    The LUCID detector is the main luminosity provider of the ATLAS experiment and the only one able to provide a reliable luminosity determination in all beam configurations, luminosity ranges and at bunch-crossing level. LUCID was entirely redesigned in preparation for Run II: both the detector and the electronics were upgraded in order to cope with the challenging conditions expected at the LHC center of mass energy of 13 TeV and with 25 ns bunch-spacing. An innovative calibration system based on radioactive 207Bi sources deposited on the quartz window of the readout photomultipliers was implemented, resulting in the ability to control the detectors long time stability at few percent level. A description of the detector and its readout electronics will be given as well as preliminary results on the ATLAS luminosity measurement and related systematic uncertainties.

  9. CLIC Detector Power Requirements

    CERN Document Server

    Gaddi, A

    2013-01-01

    An estimate for the CLIC detector power requirements is outlined starting from the available data on power consumptions of the four LHC experiments and considering the differences between a typical LHC Detector (CMS) and the CLIC baseline detector concept. In particular the impact of the power pulsing scheme for the CLIC Detector electronics on the overall detector consumption is considered. The document will be updated with the requirements of the sub-detector electronics once they are more defined.

  10. Keep the Independent Student Independent

    Science.gov (United States)

    Morris, Roger

    1973-01-01

    Libraries are getting involved with open university programs. Some of them are so structured however, that they contradict the concept of independent learning. Problems to be considered include: 1) should librarians adopt the role of teachers? 2) should participants be recruited? 3) what are funding priorities? (DH)

  11. Summary of activity. Topic I: detectors and experiments. [High-energy detectors for use at ISABELLE

    Energy Technology Data Exchange (ETDEWEB)

    Marx, J; Ozaki, S

    1978-01-01

    Results of a workshop studying detectors for Isabelle experimental halls are described. The detectors must be very reliable. Spatial resolution of the tracking detectors must be high to provide accurate measurements of angle and momentum, retain a short resolving time, and show excellent multiparticle handling capability. Included in the study were hodoscopes, drift chambers, proportional chambers, time projection chambers, Cherenkov counters, electromagnetic shower detectors, and hadron calorimeters. Data handling methods were also included in the studies. (FS)

  12. Error detection capability of a novel transmission detector: a validation study for online VMAT monitoring

    Science.gov (United States)

    Pasler, Marlies; Michel, Kilian; Marrazzo, Livia; Obenland, Michael; Pallotta, Stefania; Björnsgard, Mari; Lutterbach, Johannes

    2017-09-01

    The purpose of this study was to characterize a new single large-area ionization chamber, the integral quality monitor system (iRT, Germany), for online and real-time beam monitoring. Signal stability, monitor unit (MU) linearity and dose rate dependence were investigated for static and arc deliveries and compared to independent ionization chamber measurements. The dose verification capability of the transmission detector system was evaluated by comparing calculated and measured detector signals for 15 volumetric modulated arc therapy plans. The error detection sensitivity was tested by introducing MLC position and linac output errors. Deviations in dose distributions between the original and error-induced plans were compared in terms of detector signal deviation, dose-volume histogram (DVH) metrics and 2D γ-evaluation (2%/2 mm and 3%/3 mm). The detector signal is linearly dependent on linac output and shows negligible (metrics and detector signal deviation was found (e.g. PTV D mean: R 2  =  0.97). Positional MLC errors of 1 mm and errors in linac output of 2% were identified with the transmission detector system. The extensive tests performed in this investigation show that the new transmission detector provides a stable and sensitive cumulative signal output and is suitable for beam monitoring during patient treatment.

  13. Reconstructing the direction of reactor antineutrinos via electron scattering in Gd-doped water Cherenkov detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hellfeld, D., E-mail: dhellfeld@berkeley.edu [Department of Nuclear Engineering, University of California, Berkeley, Berkeley, CA 94720 (United States); Bernstein, A. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Dazeley, S., E-mail: dazeley2@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Marianno, C. [Department of Nuclear Engineering, Texas A& M University, College Station, TX 77843 (United States)

    2017-01-01

    The potential of elastic antineutrino-electron scattering in a Gd-doped water Cherenkov detector to determine the direction of a nuclear reactor antineutrino flux was investigated using the recently proposed WATCHMAN antineutrino experiment as a baseline model. The expected scattering rate was determined assuming a 13-km standoff from a 3.758-GWt light water nuclear reactor and the detector response was modeled using a Geant4-based simulation package. Background was estimated via independent simulations and by scaling published measurements from similar detectors. Background contributions were estimated for solar neutrinos, misidentified reactor-based inverse beta decay interactions, cosmogenic radionuclides, water-borne radon, and gamma rays from the photomultiplier tubes (PMTs), detector walls, and surrounding rock. We show that with the use of low background PMTs and sufficient fiducialization, water-borne radon and cosmogenic radionuclides pose the largest threats to sensitivity. Directional sensitivity was then analyzed as a function of radon contamination, detector depth, and detector size. The results provide a list of experimental conditions that, if satisfied in practice, would enable antineutrino directional reconstruction at 3σ significance in large Gd-doped water Cherenkov detectors with greater than 10-km standoff from a nuclear reactor.

  14. Reconstructing the direction of reactor antineutrinos via electron scattering in Gd-doped water Cherenkov detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hellfeld, D. [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering; Bernstein, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dazeley, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marianno, C. [Texas A & M Univ., College Station, TX (United States). Dept. of Nuclear Engineering

    2017-01-01

    The potential of elastic antineutrino-electron scattering (ν¯e + e → ν¯e + e) in a Gd-doped water Cherenkov detector to determine the direction of a nuclear reactor antineutrino flux was investigated using the recently proposed WATCHMAN antineutrino experiment as a baseline model. The expected scattering rate was determined assuming a 13 km standoff from a 3.758 GWt light water nuclear reactor. Background was estimated via independent simulations and by appropriately scaling published measurements from similar detectors. Many potential backgrounds were considered, including solar neutrinos, misidentified reactor-based inverse beta decay interactions, cosmogenic radionuclide and water-borne radon decays, and gamma rays from the photomultiplier tubes, detector walls, and surrounding rock. The detector response was modeled using a GEANT4-based simulation package. The results indicate that with the use of low radioactivity PMTs and sufficient fiducialization, water-borne radon and cosmogenic radionuclides pose the largest threats to sensitivity. The directional sensitivity was then analyzed as a function of radon contamination, detector depth, and detector size. Lastly, the results provide a list of theoretical conditions that, if satisfied in practice, would enable nuclear reactor antineutrino directionality in a Gd-doped water Cherenkov detector approximately 10 km from a large power reactor.

  15. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez

    Since September, the muon alignment system shifted from a mode of hardware installation and commissioning to operation and data taking. All three optical subsystems (Barrel, Endcap and Link alignment) have recorded data before, during and after CRAFT, at different magnetic fields and during ramps of the magnet. This first data taking experience has several interesting goals: •    study detector deformations and movements under the influence of the huge magnetic forces; •    study the stability of detector structures and of the alignment system over long periods, •    study geometry reproducibility at equal fields (specially at 0T and 3.8T); •    reconstruct B=0T geometry and compare to nominal/survey geometries; •    reconstruct B=3.8T geometry and provide DT and CSC alignment records for CMSSW. However, the main goal is to recons...

  16. MUON DETECTOR

    CERN Multimedia

    F. Gasparini

    DT As announced in the previous Bulletin MU DT completed the installation of the vertical chambers of barrel wheels 0, +1 and +2. 242 DT and RPC stations are now installed in the negative barrel wheels. The missing 8 (4 in YB-1 and 4 in YB-2) chambers can be installed only after the lowering of the two wheels into the UX cavern, which is planned for the last quarter of the year. Cabling on the surface of the negative wheels was finished in May after some difficulties with RPC cables. The next step was to begin the final commissioning of the wheels with the final trigger and readout electronics. Priority was giv¬en to YB0 in order to check everything before the chambers were covered by cables and services of the inner detectors. Commissioning is not easy since it requires both activity on the central and positive wheels underground, as well as on the negative wheels still on the surface. The DT community is requested to commission the negative wheels on surface to cope with a possible lack of time a...

  17. Detector simulation needs for detector designers

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, G.G.

    1987-11-01

    Computer simulation of the components of SSC detectors and of the complete detectors will be very important for the designs of the detectors. The ratio of events from interesting physics to events from background processes is very low, so detailed understanding of detector response to the backgrounds is needed. Any large detector for the SSC will be very complex and expensive and every effort must be made to design detectors which will have excellent performance and will not have to undergo major rebuilding. Some areas in which computer simulation is particularly needed are pattern recognition in tracking detectors and development of shower simulation code which can be trusted as an aid in the design and optimization of calorimeters, including their electron identification performance. Existing codes require too much computer time to be practical and need to be compared with test beam data at energies of several hundred GeV. Computer simulation of the processing of the data, including electronics response to the signals from the detector components, processing of the data by microprocessors on the detector, the trigger, and data acquisition will be required. In this report we discuss the detector simulation needs for detector designers.

  18. Microscopic Simulation of Particle Detectors

    CERN Document Server

    Schindler, Heinrich

    Detailed computer simulations are indispensable tools for the development and optimization of modern particle detectors. The interaction of particles with the sensitive medium, giving rise to ionization or excitation of atoms, is stochastic by its nature. The transport of the resulting photons and charge carriers, which eventually generate the observed signal, is also subject to statistical fluctuations. Together with the readout electronics, these processes - which are ultimately governed by the atomic cross-sections for the respective interactions - pose a fundamental limit to the achievable detector performance. Conventional methods for calculating electron drift lines based on macroscopic transport coefficients used to provide an adequate description for traditional gas-based particle detectors such as wire chambers. However, they are not suitable for small-scale devices such as micropattern gas detectors, which have significantly gained importance in recent years. In this thesis, a novel approach, bas...

  19. Signal processing for radiation detectors

    CERN Document Server

    Nakhostin, Mohammad

    2018-01-01

    This book provides a clear understanding of the principles of signal processing of radiation detectors. It puts great emphasis on the characteristics of pulses from various types of detectors and offers a full overview on the basic concepts required to understand detector signal processing systems and pulse processing techniques. Signal Processing for Radiation Detectors covers all of the important aspects of signal processing, including energy spectroscopy, timing measurements, position-sensing, pulse-shape discrimination, and radiation intensity measurement. The book encompasses a wide range of applications so that readers from different disciplines can benefit from all of the information. In addition, this resource: * Describes both analog and digital techniques of signal processing * Presents a complete compilation of digital pulse processing algorithms * Extrapolates content from more than 700 references covering classic papers as well as those of today * Demonstrates concepts with more than 340 origin...

  20. Low-Power Multi-Aspect Space Radiation Detector System

    Science.gov (United States)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave; Freeman, Jon C.; Burkebile, Stephen P.

    2012-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of all of these detector technologies will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the deep space radiation field.

  1. The MAC detector

    Energy Technology Data Exchange (ETDEWEB)

    Allaby, J.V.; Ash, W.W.; Band, H.R.; Baksay, L.A.; Blume, H.T.; Bosman, M.; Camporesi, T.; Chadwick, G.B.; Clearwater, S.H.; Coombes, R.W.; Delfino, M.C.; De Sangro, R.; Faissler, W.L.; Fernandez, E.; Ford, W.T.; Gettner, M.W.; Goderre, G.P.; Goldschmidt-Clermont, Y.; Gottschalk, B.; Groom, D.E.; Heltsley, B.K.; Hurst, R.B.; Johnson, J.R.; Kaye, H.S.; Lau, K.H.; Lavine, T.L.; Lee, H.Y.; Leedy, R.E.; Leung, S.P.; Lippi, I.; Loh, E.C.; Lynch, H.L.; Marini, A.; Marsh, J.S.; Maruyama, T.; Messner, R.L.; Meyer, O.A.; Michaloswki, S.J.; Morcos, S.; Moromisato, J.H.; Morse, R.M.; Moss, L.J.; Muller, F.; Nelson, H.N.; Peruzzi, I.; Piccolo, M.; Prepost, R.; Pyrlik, J.; Qi, N.; Read, A.L. Jr.; Rich, K.; Ritson, D.M.; Ronga, F.; Rosenberg, L.J.; Shambroom, W.D.; Sleeman, J.C.; Smith, J.G.; Venuti, J.P.; Verdini, P.G.; Goeler, E. von; Wald, H.B.; Weinstein, R.; Wiser, D.E.; Zdarko, R.W. (Colorado Univ., Boulder (USA). Dept. of Physics; Istituto Nazionale di Fisica Nucleare, Frascati (Italy). Lab.

    1989-09-01

    The MAC detector at PEP recorded data for an integrated luminosity of 335 pb{sup -1} between 1980 and 1986. The design of this low-cost MAgnetic Calorimeter was optimized for electron and muon identification, as well as for the measurement of hadronic energy flow. Muon identification is available over 96% of the solid angle, and MAC was the first detector to make large-scale use of gas-sampling calorimetry. Electromagnetic calorimetry in the central selection employs alternating layers of lead and proportional wire chambers (PWCs), and hadron and the remaining electromagnetic calorimetry is accomplished with iron plate and PWC layers. A relatively small central drift chamber in an axial magnetic field provides pattern recognition and modest momentum determination. An outer blanket of drift tubes completes the muon identification system. During the latter two years of operation an innovative 'soda straw' vertex chamber made more precise lifetime measurements possible. With an evolving trigger system and highly automated data acquisition system, this modest detector has exceeded most of its designers' expectations and has produced a gratifying spectrum of physics results. (orig.).

  2. MUON DETECTORS: RPC

    CERN Multimedia

    P. Paolucci

    2011-01-01

    RPC detector calibration, HV scan Thanks to the high LHC luminosity and to the corresponding high number of muons created in the first part of the 2011 the RPC community had, for the first time, the possibility to calibrate every single detector element (roll).The RPC steering committee provided the guidelines for both data-taking and data analysis and a dedicated task force worked from March to April on this specific issue. The main goal of the RPC calibration was to study the detector efficiency as a function of high-voltage working points, fit the obtained “plateau curve” with a sigmoid function and determine the “best” high-voltage working point of every single roll. On 18th and 19th March, we had eight runs at different voltages. On 27th March, the full analysis was completed, showing that 60% of the rolls had already a very good fit with an average efficiency greater than 93% in the plateau region. To improve the fit we decided to take three more runs (15th April...

  3. Borehole Muon Detector Development

    Science.gov (United States)

    Bonneville, A.; Flygare, J.; Kouzes, R.; Lintereur, A.; Yamaoka, J. A. K.; Varner, G. S.

    2015-12-01

    Increasing atmospheric CO2 concentrations have spurred investigation into carbon sequestration methods. One of the possibilities being considered, storing super-critical CO2 in underground reservoirs, has drawn more attention and pilot projects are being supported worldwide. Monitoring of the post-injection fate of CO2 is of utmost importance. Generally, monitoring options are active methods, such as 4D seismic reflection or pressure measurements in monitoring wells. We propose here to develop a 4-D density tomography of subsurface CO2 reservoirs using cosmic-ray muon detectors deployed in a borehole. Muon detection is a relatively mature field of particle physics and there are many muon detector designs, though most are quite large and not designed for subsurface measurements. The primary technical challenge preventing deployment of this technology in the subsurface is the lack of miniaturized muon-tracking detectors capable of fitting in standard boreholes and that will resist the harsh underground conditions. A detector with these capabilities is being developed by a collaboration supported by the U.S. Department of Energy. Current simulations based on a Monte Carlo modeling code predict that the incoming muon angle can be resolved with an error of approximately two degrees, using either underground or sea level spectra. The robustness of the design comes primarily from the use of scintillating rods as opposed to drift tubes. The rods are arrayed in alternating layers to provide a coordinate scheme. Preliminary testing and measurements are currently being performed to test and enhance the performance of the scintillating rods, in both a laboratory and a shallow underground facility. The simulation predictions and data from the experiments will be presented.

  4. The two sides of silicon detectors

    CERN Document Server

    Devine, S R

    2001-01-01

    /p/n sup + and essentially two p-n junctions within one device. With increasing bias voltage, as the electric field is extending into the detector bulk from opposite sides of the silicon detector, there are two distinct depletion regions that collect charge signal independently. Summing the signal charge from the two regions, one is able to reconstruct the initial energy of the incident particle. From Transient Current measurements it is apparent that E-field manipulation is possible by excess carrier injection, enabling a high enough E-field to extend across the width of the detector, allowing for efficient charge collection. Results are presented on in situ irradiation of silicon detector's at cryogenic temperature. The results show that irradiation at cryogenic temperatures does not detrimentally effect a silicon detectors performance when compared to its irradiation at room temperature. Operation of silicon devices at cryogenic temperatures offers the advantage of reducing radiation-induced leakage curren...

  5. Design and Characterisation of a Fast Architecture Providing Zero Suppressed Digital Output Integrated in a High Resolution CMOS Pixel Sensor for the STAR Vertex Detector and the EUDET Beam Telescope

    CERN Document Server

    Hu-guo, C

    2008-01-01

    CMOS Monolithic Active Pixel Sensors (MAPS) have demonstrated their strong potential for tracking devices, particularly for flavour tagging. They are foreseen to equip several vertex detectors and beam telescopes. Most applications require high read-out speed, imposing sensors to feature digital output with integrated zero suppression. The most recent development of MAPS at IPHC and IRFU addressing this issue will be reviewed. An architecture will be presented, combining a pixel array, column-level discriminators and zero suppression circuits. Each pixel features a preamplifier and a correlated double sampling (CDS) micro-circuit reducing the temporal and fixed pattern noises. The sensor is fully programmable and can be monitored. It will equip experimental apparatus starting data taking in 2009/2010.

  6. Probabilistic conditional independence structures

    CERN Document Server

    Studeny, Milan

    2005-01-01

    Probabilistic Conditional Independence Structures provides the mathematical description of probabilistic conditional independence structures; the author uses non-graphical methods of their description, and takes an algebraic approach.The monograph presents the methods of structural imsets and supermodular functions, and deals with independence implication and equivalence of structural imsets.Motivation, mathematical foundations and areas of application are included, and a rough overview of graphical methods is also given.In particular, the author has been careful to use suitable terminology, and presents the work so that it will be understood by both statisticians, and by researchers in artificial intelligence.The necessary elementary mathematical notions are recalled in an appendix.

  7. New class of neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Czirr, J.B.

    1997-09-01

    An optimized neutron scattering instrument design must include all significant components, including the detector. For example, useful beam intensity is limited by detector dead time; detector pixel size determines the optimum beam diameter, sample size, and sample to detector distance; and detector efficiency vs. wavelength determines the available energy range. As an example of the next generation of detectors that could affect overall instrumentation design, we will describe a new scintillator material that is potentially superior to currently available scintillators. We have grown and tested several small, single crystal scintillators based upon the general class of cerium-activated lithium lanthanide borates. The outstanding characteristic of these materials is the high scintillation efficiency-as much as five times that of Li-glass scintillators. This increase in light output permits the practical use of the exothermic B (n, alpha) reaction for low energy neutron detection. This reaction provides a four-fold increase in capture cross section relative to the Li (n, alpha) reaction, and the intriguing possibility of demanding a charged-particle/gamma ray coincidence to reduce background detection rates. These new materials will be useful in the thermal and epithermal energy ran at reactors and pulsed neutron sources.

  8. Portable humanitarian mine detector overview

    Science.gov (United States)

    Allsopp, David J.; Dibsdall, Ian M.

    2002-08-01

    This paper will present an overview and early results of the QinetiQ Portable Humanitarian Mine Detector project, funded by the UK Treasury Capital Modernization Fund. The project aims to develop a prototype multi-sensor man-portable detector for humanitarian demining, drawing on experience from work for UK MoD. The project runs from July 2000 to October 2002. The project team have visited mined areas and worked closely with a number of demining organizations and a manufacturer of metal detectors used in the field. The primary objective is to reduce the number of false alarms resulting from metallic ground clutter. An analysis of such clutter items found during actual demining has shown a large proportion to be very small when compared with anti-personnel mines. The planned system integrates: a lightweight multi-element pseudo-random-code ground penetrating radar array; a pulse induction metal detector and a capacitive sensor. Data from the GPR array and metal detector are fused to provide a simple audio-visual operator interface. The capacitive sensor provides information to aid processing of the radar responses and to provide feedback to the operator of the position of the sensors above the ground. At the time of presentation the project should be in the final stages of build, prior to tests and field trials, which QinetiQ hope to carry out under the International Test and Evaluation Project (ITEP) banner.

  9. Novel Charge Sensitive Amplifier Design Methodology suitable for Large Detector Capacitance Applications

    CERN Document Server

    Thomas Noulis a,; Gerard Sarrabayrouse b,c and; Laurent Bary b,c

    2009-01-01

    Current mode charge sensitive amplifier (CSA) topology and related methodology for use as pre-amplification block in radiation detection read out front end IC systems is proposed1. It is based on the use of a suitably configured current conveyor topology providing advantageous noise performance characteristics in comparison to the typical used CSA structures. In the proposed architecture the noise at the output of the CSA is independent of the detector capacitance value, allowing the use of large area detectors without affecting the system noise performance. Theoretical analysis and simulation analysis are performed concerning the operation – performance of the proposed topology. Measurement results on a current mode CSA prototype fabricated with a 0.35 μm CMOS process by Austriamicrosystems are provided supporting the theoretical and simulation results and confirming the performance mainly in terms of the noise performance dependency on the detector capacitance value.

  10. A ruggedized ZnS(Ag)/epoxy alpha scintillation detector

    Science.gov (United States)

    McElhaney, S. A.; Ramsey, J. A.; Bauer, M. L.; Chiles, M. M.

    1990-12-01

    An alpha scintillation survey instrument has been developed which is more rugged and efficient than conventional alpha scintillation detectors that use aluminized Mylar radiation entrance windows. This new detector consists of a mixture of ZnS(Ag) phosphor and optically transparent epoxy. The scintillator mixture is poured into a preformed mold to provide a thin layer of phosphor after the particles settle to the clear epoxy surface. After partial curing, an optically transparent light pipe is coupled to the ZnS(Ag)/epoxy film by using an additional thin epoxy layer, forming a monolithic scintillator assembly. Experimental results indicate that the new probe is 44% efficient (2π) for a large-area 239Pu alpha source; resistant to scratches, tears, and corrosives; watertight; and temperature independent between -20°C and 54°C. Mylar is a trademark of E.I. du Pont de Nemours & Co., Inc., Wilmington, DE, USA.

  11. GADRAS Detector Response Function.

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Dean J.; Harding, Lee; Thoreson, Gregory G; Horne, Steven M.

    2014-11-01

    The Gamma Detector Response and Analysis Software (GADRAS) applies a Detector Response Function (DRF) to compute the output of gamma-ray and neutron detectors when they are exposed to radiation sources. The DRF is fundamental to the ability to perform forward calculations (i.e., computation of the response of a detector to a known source), as well as the ability to analyze spectra to deduce the types and quantities of radioactive material to which the detectors are exposed. This document describes how gamma-ray spectra are computed and the significance of response function parameters that define characteristics of particular detectors.

  12. The DEPFET Mini-matrix Particle Detector

    Directory of Open Access Journals (Sweden)

    J. Scheirich

    2010-01-01

    Full Text Available The DEPFET is new type of active pixel particle detector. A MOSFET is integrated in each pixel, providing the first amplification stage of the readout electronics. Excellent noise parameters are obtained with this layout. The DEPFET detector will be integrated as an inner detector in the BELLE II and ILC experiment. A flexible measuring system with a wide control cycle range and minimal noise was designed for testing small detector prototypes.Noise of 60 electrons of the equivalent input charge was achieved during the first measurements on the system.

  13. Signal development in irradiated silicon detectors

    CERN Document Server

    Kramberger, Gregor; Mikuz, Marko

    2001-01-01

    This work provides a detailed study of signal formation in silicon detectors, with the emphasis on detectors with high concentration of irradiation induced defects in the lattice. These defects give rise to deep energy levels in the band gap. As a consequence, the current induced by charge motion in silicon detectors is signifcantly altered. Within the framework of the study a new experimental method, Charge correction method, based on transient current technique (TCT) was proposed for determination of effective electron and hole trapping times in irradiated silicon detectors. Effective carrier trapping times were determined in numerous silicon pad detectors irradiated with neutrons, pions and protons. Studied detectors were fabricated on oxygenated and non-oxygenated silicon wafers with different bulk resistivities. Measured effective carrier trapping times were found to be inversely proportional to fuence and increase with temperature. No dependence on silicon resistivity and oxygen concentration was observ...

  14. Report on Advanced Detector Development

    Energy Technology Data Exchange (ETDEWEB)

    James K. Jewell

    2012-09-01

    Neutron, gamma and charged particle detection improvements are key to supporting many of the foreseen measurements and systems envisioned in the R&D programs and the future fuel cycle requirements, such as basic nuclear physics and data, modeling and simulation, reactor instrumentation, criticality safety, materials management and safeguards. This task will focus on the developmental needs of the FCR&D experimental programs, such as elastic/inelastic scattering, total cross sections and fission neutron spectra measurements, and will leverage a number of existing neutron detector development efforts and programs, such as those at LANL, PNNL, INL, and IAC as well as those at many universities, some of whom are funded under NE grants and contracts. Novel materials and fabrication processes combined with state-of-the-art electronics and computing provide new opportunities for revolutionary detector systems that will be able to meet the high precision needs of the program. This work will be closely coordinated with the Nuclear Data Crosscut. The Advanced Detector Development effort is a broadly-focused activity that supports the development of improved nuclear data measurements and improved detection of nuclear reactions and reactor conditions. This work supports the design and construction of large-scale, multiple component detectors to provide nuclear reaction data of unprecedented quality and precision. Examples include the Time Projection Chamber (TPC) and the DANCE detector at LANL. This work also supports the fabrication and end-user application of novel scintillator materials detection and monitoring.

  15. The ATLAS Detector Safety System

    CERN Multimedia

    Helfried Burckhart; Kathy Pommes; Heidi Sandaker

    The ATLAS Detector Safety System (DSS) has the mandate to put the detector in a safe state in case an abnormal situation arises which could be potentially dangerous for the detector. It covers the CERN alarm severity levels 1 and 2, which address serious risks for the equipment. The highest level 3, which also includes danger for persons, is the responsibility of the CERN-wide system CSAM, which always triggers an intervention by the CERN fire brigade. DSS works independently from and hence complements the Detector Control System, which is the tool to operate the experiment. The DSS is organized in a Front- End (FE), which fulfills autonomously the safety functions and a Back-End (BE) for interaction and configuration. The overall layout is shown in the picture below. ATLAS DSS configuration The FE implementation is based on a redundant Programmable Logical Crate (PLC) system which is used also in industry for such safety applications. Each of the two PLCs alone, one located underground and one at the s...

  16. LArSoft: toolkit for simulation, reconstruction and analysis of liquid argon TPC neutrino detectors

    Science.gov (United States)

    Snider, E. L.; Petrillo, G.

    2017-10-01

    LArSoft is a set of detector-independent software tools for the simulation, reconstruction and analysis of data from liquid argon (LAr) neutrino experiments The common features of LAr time projection chambers (TPCs) enable sharing of algorithm code across detectors of very different size and configuration. LArSoft is currently used in production simulation and reconstruction by the ArgoNeuT, DUNE, LArlAT, MicroBooNE, and SBND experiments. The software suite offers a wide selection of algorithms and utilities, including those for associated photo-detectors and the handling of auxiliary detectors outside the TPCs. Available algorithms cover the full range of simulation and reconstruction, from raw waveforms to high-level reconstructed objects, event topologies and classification. The common code within LArSoft is contributed by adopting experiments, which also provide detector-specific geometry descriptions, and code for the treatment of electronic signals. LArSoft is also a collaboration of experiments, Fermilab and associated software projects which cooperate in setting requirements, priorities, and schedules. In this talk, we outline the general architecture of the software and the interaction with external libraries and detector-specific code. We also describe the dynamics of LArSoft software development between the contributing experiments, the projects supporting the software infrastructure LArSoft relies on, and the core LArSoft support project.

  17. Drift Chambers detectors; Detectores de deriva

    Energy Technology Data Exchange (ETDEWEB)

    Duran, I.; Martinez laso, L.

    1989-07-01

    We present here a review of High Energy Physics detectors based on drift chambers. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysed, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author) 115 refs.

  18. Alpine Pixel Detector Layout

    CERN Document Server

    Delebecque, P; The ATLAS collaboration; Geffroy, N; Massol, N; Rambure, T; Todorov, T

    2013-01-01

    A description of an optimized layout of pixel sensors based on a stave that combines both barrel and endcap module orientations. The mechanical stiffness of the structure is provided by carbon fiber shells spaced by carbon foam. The cooling of the modules is provided by two-phase $CO_{2}$ flowing in a thin titanium pipe glued inside the carbon fiber foam. The electrical services of all modules are provided by a single stave flex. This layout eliminates the need for separate barrel and endcap detector structures, and therefore the barrel services material in front of the endcap. The transition from barrel to endcap module orientation is optimized separately for each layer in order to minimize the active pixel area and the traversed material. The sparse module spacing in the endcap part of the stave allows for multiple fixation points, and for a stiff overall structure composed only of staves interconnected by stiff disks.

  19. Thermal kinetic inductance detector

    Science.gov (United States)

    Cecil, Thomas; Gades, Lisa; Miceli, Antonio; Quaranta, Orlando

    2016-12-20

    A microcalorimeter for radiation detection that uses superconducting kinetic inductance resonators as the thermometers. The detector is frequency-multiplexed which enables detector systems with a large number of pixels.

  20. The LDC detector concept

    Indian Academy of Sciences (India)

    ), the large detector concept (LDC) is being developed. The main points of the LDC are a large volume gaseous tracking system, combined with high precision vertex detector and an extremely granular calorimeter. The main design force ...

  1. Pixelated CdZnTe drift detectors

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl

    2005-01-01

    A technique, the so-called Drift Strip Method (DSM), for improving the CdZnTe detector energy response to hard X-rays and gamma-rays was applied as a pixel geometry. First tests have confirmed that this detector type provides excellent energy resolution and imaging performance. We specifically...

  2. Gaseous Electron Multiplier (GEM) Detectors

    Science.gov (United States)

    Gnanvo, Kondo

    2017-09-01

    Gaseous detectors have played a pivotal role as tracking devices in the field of particle physics experiments for the last fifty years. Recent advances in photolithography and micro processing techniques have enabled the transition from Multi Wire Proportional Chambers (MWPCs) and Drift Chambers to a new family of gaseous detectors refer to as Micro Pattern Gaseous Detectors (MPGDs). MPGDs combine the basic gas amplification principle with micro-structure printed circuits to provide detectors with excellent spatial and time resolution, high rate capability, low material budget and high radiation tolerance. Gas Electron Multiplier (GEMs) is a well-established MPGD technology invented by F. Sauli at CERN in 1997 and deployed various high energy physics (HEP) and nuclear NP experiment for tracking systems of current and future NP experiments. GEM detector combines an exceptional high rate capability (1 MHz / mm2) and robustness against harsh radiation environment with excellent position and timing resolution performances. Recent breakthroughs over the past decade have allowed the possibility for large area GEMs, making them cost effective and high-performance detector candidates to play pivotal role in current and future particle physics experiments. After a brief introduction of the basic principle of GEM technology, I will give a brief overview of the GEM detectors used in particle physics experiments over the past decades and especially in the NP community at Thomas Jefferson National Laboratory (JLab) and Brookhaven National Laboratory (BNL). I will follow by a review of state of the art of the new GEM development for the next generation of colliders such as Electron Ion Collider (EIC) or High Luminosity LHC and future Nuclear Physics experiments. I will conclude with a presentation of the CERN-based RD51 collaboration established in 2008 and its major achievements regarding technological developments and applications of MPGDs.

  3. Independent technical review, handbook

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    Purpose Provide an independent engineering review of the major projects being funded by the Department of Energy, Office of Environmental Restoration and Waste Management. The independent engineering review will address questions of whether the engineering practice is sufficiently developed to a point where a major project can be executed without significant technical problems. The independent review will focus on questions related to: (1) Adequacy of development of the technical base of understanding; (2) Status of development and availability of technology among the various alternatives; (3) Status and availability of the industrial infrastructure to support project design, equipment fabrication, facility construction, and process and program/project operation; (4) Adequacy of the design effort to provide a sound foundation to support execution of project; (5) Ability of the organization to fully integrate the system, and direct, manage, and control the execution of a complex major project.

  4. Position-sensitive radiation detector..

    NARCIS (Netherlands)

    Van Eijk, C.W.E.; Schooneveld, E.

    1990-01-01

    Abstract of EP 0383389 (A1) Position-sensitive radiation detector provided with a semiconductor structure comprising a wafer of semiconductor material of a first conductivity type having two principal-surfaces situated at relatively short distances from each other, the dimensions of which are

  5. Microradiography with Semiconductor Pixel Detectors

    Science.gov (United States)

    Jakubek, Jan; Cejnarova, Andrea; Dammer, Jiří; Holý, Tomáš; Platkevič, Michal; Pospíšil, Stanislav; Vavřík, Daniel; Vykydal, Zdeněk

    2007-11-01

    High resolution radiography (with X-rays, neutrons, heavy charged particles, …) often exploited also in tomographic mode to provide 3D images stands as a powerful imaging technique for instant and nondestructive visualization of fine internal structure of objects. Novel types of semiconductor single particle counting pixel detectors offer many advantages for radiation imaging: high detection efficiency, energy discrimination or direct energy measurement, noiseless digital integration (counting), high frame rate and virtually unlimited dynamic range. This article shows the application and potential of pixel detectors (such as Medipix2 or TimePix) in different fields of radiation imaging.

  6. LHCb Level-0 Trigger Detectors

    CERN Document Server

    Sarti, Alessio

    2006-01-01

    The calorimeter and muon systems are essential components to provide a trigger for the LHCb experiment. The calorimeter system comprises a scintillating pad detector and pre-shower, followed by electromagnetic and hadronic calorimeters. The calorimeter system allows photons, electrons and hadrons to be identified, and their energy to be measured. The muon system consists of five measuring stations equipped with Multi-Wire Proportional Chambers (MWPCs) and triple-Gas Electron Multiplier (GEM) detectors, separated by iron filters. It allows the muons identification and transverse momentum measurement. The status of the two systems and their expected performance is presented.

  7. Silicon Detector Letter of Intent

    Energy Technology Data Exchange (ETDEWEB)

    Aihara, H.; Burrows, P.; Oreglia, M.

    2010-05-26

    This document presents the current status of SiD's effort to develop an optimized design for an experiment at the International Linear Collider. It presents detailed discussions of each of SiD's various subsystems, an overview of the full GEANT4 description of SiD, the status of newly developed tracking and calorimeter reconstruction algorithms, studies of subsystem performance based on these tools, results of physics benchmarking analyses, an estimate of the cost of the detector, and an assessment of the detector R&D needed to provide the technical basis for an optimised SiD.

  8. Independence in appearance

    DEFF Research Database (Denmark)

    Warming-Rasmussen, Bent; Quick, Reiner; Liempd, Dennis van

    2011-01-01

    article presents research contributions to the question whether the auditor is to continue to provide both audit and non-audit services (NAS) to an audit client. Research results show that this double function for the same audit client is a problem for stakeholders' confidence in auditor independence...

  9. Gold detector: modular CCD area detector for macromolecular crystallography

    Science.gov (United States)

    Naday, Istvan; Ross, Stephan W.; Kanyo, Miklos; Westbrook, Mary L.; Westbrook, Edwin M.; Phillips, Walter C.; Stanton, Martin J.; O'Mara, Daniel M.

    1995-04-01

    We have designed, fabricated, and tested a modular CCD area detector system for macromolecular crystallography at synchrotron x-ray sources, code-named the `gold' detector system. The sensitive area of the detector is 150 mm X 150 mm, with 3,072 X 3,072 pixel sampling, resulting in roughly a 50 micrometers pixel raster. The x-ray image formed on the face of the detector is converted to visible light by a thin phosphor layer. This image is transferred optically to nine CCD sensors by nine square fiberoptic tapers (one for each CCD), arranged in a 3 X 3 array. Each taper demagnifies the image by a factor of approximately 2. Each CCD has a 1,024 X 1,024 pixel raster and is read out through two independent data channels. After each x-ray exposure period the x-ray shutter is closed and the electronic image is digitized (16-bit) and read out in 1.8s. Alteratively, the image may be binned 2 X 2 during readout, resulting in a 1,536 X 1,536 raster of 100 micrometers pixels; this image can be read out in 0.4s. The CCD sensors are operated at -40 degree(s)C to reduce electronic noise. The detector is operated under full computer control: all operational parameters (readout rates, CCD temperature, etc.) can be adjusted from the console. The image data (18 MByte/image) are transferred via a fast VME system to a control processor and ultimately to disk storage. During April 1994 we carried out a complete set of measurements at the Stanford Synchrotron Radiation Laboratory (SSRL) for a full characterization of the gold detector. Characterization includes quantitative evaluation of the instrument's conversion gain (signal level/x-ray photon); detective quantum efficiency (DQE); point-spread function; sensitivity as a function of x-ray energy; geometrical distortion of images; spatial uniformity; read noise; and dark image and dark image noise. Characterization parameters derived from these measurements show that this detector will be extraordinarily valuable for macromolecular

  10. Physics in Next Geoneutrino Detectors

    Science.gov (United States)

    Suzuki, Atsuto

    2006-12-01

    The KamLAND liquid scintillator detector demonstrated the detection of antineutrinos produced by natural radioactivities in the Earth, so-called geoneutrinos. Although this first result of geoneutrinos is consistent with current geophysical models, more accurate measurements are essential to provide a new window for exploring the inside of the Earth. In this article I would like to discuss the future prospects of KamLAND geoneutrino detection, and the possibility of directional measurement of incoming geoneutrinos. It is interesting to consider the application of geoneutrino detectors to measurements of other neutrino signals. The possibility of detecting the solar 7Be, pep and CNO neutrinos is discussed. A new type detector concept is proposed not only to explore the precise measurement of reactor neutrino oscillations but also to enable us to realize the neutrino tomography inside the Earth.

  11. Ionization-based detectors for gas chromatography.

    Science.gov (United States)

    Poole, Colin F

    2015-11-20

    The gas phase ionization detectors are the most widely used detectors for gas chromatography. The column and makeup gases commonly used in gas chromatography are near perfect insulators. This facilitates the detection of a minute number of charge carriers facilitating the use of ionization mechanisms of low efficiency while providing high sensitivity. The main ionization mechanism discussed in this report are combustion in a hydrogen diffusion flame (flame ionization detector), surface ionization in a plasma (thermionic ionization detector), photon ionization (photoionization detector and pulsed discharge helium ionization detector), attachment of thermal electrons (electron-capture detector), and ionization by collision with metastable helium species (helium ionization detector). The design, response characteristics, response mechanism, and suitability for fast gas chromatography are the main features summarized in this report. Mass spectrometric detection and atomic emission detection, which could be considered as ionization detectors of a more sophisticated and complex design, are not discussed in this report. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. The BaBar LST Detector High Voltage System: Design And Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Benelli, G.; Honscheid, K.; Lewis, E.A.; Regensburger, J.J.; Smith, D.S.; /Ohio State U.

    2006-08-18

    In 2004, the first two sextants of the new Limited Streamer Tube (LST) detector were installed in the BABAR experiment to replace the ageing Resistive Plate Chambers (RPCs) as active detectors for the BABAR Instrumented Flux Return (IFR) muon system. Each streamer tube of the new detector consists of 8 cells. The cell walls are coated with graphite paint and a 100 {micro}m wire forms the anode. These wires are coupled in pairs inside the tubes resulting in 4 independent two-cell segments per LST. High voltage (HV) is applied to the 4 segments through a custom connector that also provides the decoupling capacitor to pick up the detector signals from the anode wires. The BABAR LST detector is operated at 5.5 kV. The high voltage system for the LST detector was designed and built at The Ohio State University (OSU HVPS). Each of the 25 supplies built for BaBar provides 80 output channels with individual current monitoring and overcurrent protection. For each group of 20 channels the HV can be adjusted between 0 and 6 kV. A 4-fold fan-out is integrated in the power supplies to provide a total of 320 outputs. The power supplies are controlled through built-in CANbus and Ethernet (TCP/IP) interfaces. In this presentation we will discuss the design and novel features of the OSU HVPS system and its integration into the BABAR EPICS detector control framework. Experience with the supplies operation during the LST extensive quality control program and their performance during the initial data taking period will be discussed.

  13. Advanced interferometric gravitational-wave detectors

    CERN Document Server

    Saulson, Peter R

    2019-01-01

    Gravitational waves are one of the most exciting and promising emerging areas of physics and astrophysics today. The detection of gravitational waves will rank among the most significant physics discoveries of the 21st century.Advanced Interferometric Gravitational-Wave Detectors brings together many of the world's top experts to deliver an authoritative and in-depth treatment on current and future detectors. Volume I is devoted to the essentials of gravitational-wave detectors, presenting the physical principles behind large-scale precision interferometry, the physics of the underlying noise sources that limit interferometer sensitivity, and an explanation of the key enabling technologies that are used in the detectors. Volume II provides an in-depth look at the Advanced LIGO and Advanced Virgo interferometers that have just finished construction, as well as examining future interferometric detector concepts. This two-volume set will provide students and researchers the comprehensive background needed to und...

  14. MUON DETECTORS: DT

    CERN Multimedia

    Marco Dallavalle

    2012-01-01

      Although the year 2012 is the third year without access to the chambers and the Front-End electronics, the fraction of good channels is still very high at 99.1% thanks also to the constant care provided by the on-site operation team. The downtime caused to CMS as a consequence of DT failures is to-date <2%. The intervention on the LV power supplies, which required a large number of CAEN modules (137 A3050, 13 A3100, and 3 MAO) to be removed from the detector, reworked and tested during this Year-End Technical Stop, can now, after a few months of stable operation of the LV, be declared to have solved once-and-for-all the persistent problem with the overheating LV Anderson connectors. Another piece of very good news is that measurements of the noise from single-hit rate outside the drift-time box as a function of the LHC luminosity show that the noise rate and distribution are consistent with expectations of the simulations in the Muon TDR, which have guided the detector design and constru...

  15. Silicon detectors at the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Brau, James E. [University of Oregon, Eugene, OR 97405-1274 (United States)], E-mail: jimbrau@uoregon.edu; Breidenbach, Martin [Stanford Linear Accelerator Center, Menlo Park, CA 94025 (United States); Baltay, Charles [Yale University, New Haven, CT 06520-8120 (United States); Frey, Raymond E.; Strom, David M. [University of Oregon, Eugene, OR 97405-1274 (United States)

    2007-09-01

    Silicon detectors are being developed for several applications in ILC detectors. These include vertex detection, tracking, electromagnetic calorimetry, and forward detectors. The advantages of silicon detector technology have been incorporated into a full detector design, SiD (the Silicon Detector). A brief overview of this effort is presented.

  16. Quantum detector tomography of a time-multiplexed superconducting nanowire single-photon detector at telecom wavelengths.

    Science.gov (United States)

    Natarajan, Chandra M; Zhang, Lijian; Coldenstrodt-Ronge, Hendrik; Donati, Gaia; Dorenbos, Sander N; Zwiller, Val; Walmsley, Ian A; Hadfield, Robert H

    2013-01-14

    Superconducting nanowire single-photon detectors (SNSPDs) are widely used in telecom wavelength optical quantum information science applications. Quantum detector tomography allows the positive-operator-valued measure (POVM) of a single-photon detector to be determined. We use an all-fiber telecom wavelength detector tomography test bed to measure detector characteristics with respect to photon flux and polarization, and hence determine the POVM. We study the SNSPD both as a binary detector and in an 8-bin, fiber based, Time-Multiplexed (TM) configuration at repetition rates up to 4 MHz. The corresponding POVMs provide an accurate picture of the photon number resolving capability of the TM-SNSPD.

  17. High-energy detector

    Science.gov (United States)

    Bolotnikov, Aleksey E [South Setauket, NY; Camarda, Giuseppe [Farmingville, NY; Cui, Yonggang [Upton, NY; James, Ralph B [Ridge, NY

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  18. Can administrative claim file review be used to gather physical therapy, occupational therapy, and psychology payment data and functional independence measure scores? Implications for rehabilitation providers in the private health sector.

    Science.gov (United States)

    Riis, Viivi; Jaglal, Susan; Boschen, Kathryn; Walker, Jan; Verrier, Molly

    2011-01-01

    Rehabilitation costs for spinal-cord injury (SCI) are increasingly borne by Canada's private health system. Because of poor outcomes, payers are questioning the value of their expenditures, but there is a paucity of data informing analysis of rehabilitation costs and outcomes. This study evaluated the feasibility of using administrative claim file review to extract rehabilitation payment data and functional status for a sample of persons with work-related SCI. Researchers reviewed 28 administrative e-claim files for persons who sustained a work-related SCI between 1996 and 2000. Payment data were extracted for physical therapy (PT), occupational therapy (OT), and psychology services. Functional Independence Measure (FIM) scores were targeted as a surrogate measure for functional outcome. Feasibility was tested using an existing approach for evaluating health services data. The process of administrative e-claim file review was not practical for extraction of the targeted data. While administrative claim files contain some rehabilitation payment and outcome data, in their present form the data are not suitable to inform rehabilitation services research. A new strategy to standardize collection, recording, and sharing of data in the rehabilitation industry should be explored as a means of promoting best practices.

  19. Detector Simulations with DD4hep

    Science.gov (United States)

    Petrič, M.; Frank, M.; Gaede, F.; Lu, S.; Nikiforou, N.; Sailer, A.

    2017-10-01

    Detector description is a key component of detector design studies, test beam analyses, and most of particle physics experiments that require the simulation of more and more different detector geometries and event types. This paper describes DD4hep, which is an easy-to-use yet flexible and powerful detector description framework that can be used for detector simulation and also extended to specific needs for a particular working environment. Linear collider detector concepts ILD, SiD and CLICdp as well as detector development collaborations CALICE and FCal have chosen to adopt the DD4hep geometry framework and its DDG4 pathway to Geant4 as its core simulation and reconstruction tools. The DDG4 plugins suite includes a wide variety of input formats, provides access to the Geant4 particle gun or general particles source and allows for handling of Monte Carlo truth information, eg. by linking hits and the primary particle that caused them, which is indispensable for performance and efficiency studies. An extendable array of segmentations and sensitive detectors allows the simulation of a wide variety of detector technologies. This paper shows how DD4hep allows to perform complex Geant4 detector simulations without compiling a single line of additional code by providing a palette of sub-detector components that can be combined and configured via compact XML files. Simulation is controlled either completely via the command line or via simple Python steering files interpreted by a Python executable. It also discusses how additional plugins and extensions can be created to increase the functionality.

  20. CASSINI HIGH RATE DETECTOR V17.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Rate Detector (HRD) from the University of Chicago is an independent part of the CDA instrument on the Cassini Orbiter that measures the dust flux and...

  1. CASSINI HIGH RATE DETECTOR V2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Rate Detector (HRD) from the University of Chicago is an independent part of the CDA instrument on the Cassini Orbiter that measures the dust flux and...

  2. CASSINI HIGH RATE DETECTOR V12.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Rate Detector (HRD) from the University of Chicago is an independent part of the CDA instrument on the Cassini Orbiter that measures the dust flux and...

  3. CASSINI HIGH RATE DETECTOR V8.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Rate Detector (HRD) from the University of Chicago is an independent part of the CDA instrument on the Cassini Orbiter that measures the dust flux and...

  4. CASSINI HIGH RATE DETECTOR V10.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Rate Detector (HRD) from the University of Chicago is an independent part of the CDA instrument on the Cassini Orbiter that measures the dust flux and...

  5. CASSINI HIGH RATE DETECTOR V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Rate Detector (HRD) from the University of Chicago is an independent part of the CDA instrument on the Cassini Orbiter that measures the dust flux and...

  6. CASSINI HIGH RATE DETECTOR V13.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Rate Detector (HRD) from the University of Chicago is an independent part of the CDA instrument on the Cassini Orbiter that measures the dust flux and...

  7. CASSINI HIGH RATE DETECTOR V9.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Rate Detector (HRD) from the University of Chicago is an independent part of the CDA instrument on the Cassini Orbiter that measures the dust flux and...

  8. CASSINI HIGH RATE DETECTOR V3.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Rate Detector (HRD) from the University of Chicago is an independent part of the CDA instrument on the Cassini Orbiter that measures the dust flux and...

  9. CASSINI HIGH RATE DETECTOR V7.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Rate Detector (HRD) from the University of Chicago is an independent part of the CDA instrument on the Cassini Orbiter that measures the dust flux and...

  10. CASSINI HIGH RATE DETECTOR V4.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Rate Detector (HRD) from the University of Chicago is an independent part of the CDA instrument on the Cassini Orbiter that measures the dust flux and...

  11. CASSINI HIGH RATE DETECTOR V11.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Rate Detector (HRD) from the University of Chicago is an independent part of the CDA instrument on the Cassini Orbiter that measures the dust flux and...

  12. CASSINI HIGH RATE DETECTOR V14.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Rate Detector (HRD) from the University of Chicago is an independent part of the CDA instrument on the Cassini Orbiter that measures the dust flux and...

  13. CASSINI HIGH RATE DETECTOR V5.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Rate Detector (HRD) from the University of Chicago is an independent part of the CDA instrument on the Cassini Orbiter that measures the dust flux and...

  14. CASSINI HIGH RATE DETECTOR V6.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Rate Detector (HRD) from the University of Chicago is an independent part of the CDA instrument on the Cassini Orbiter that measures the dust flux and...

  15. X-ray imaging detectors for synchrotron and XFEL sources

    OpenAIRE

    Takaki Hatsui; Heinz Graafsma

    2015-01-01

    Current trends for X-ray imaging detectors based on hybrid and monolithic detector technologies are reviewed. Hybrid detectors with photon-counting pixels have proven to be very powerful tools at synchrotrons. Recent developments continue to improve their performance, especially for higher spatial resolution at higher count rates with higher frame rates. Recent developments for X-ray free-electron laser (XFEL) experiments provide high-frame-rate integrating detectors with both high sensitivit...

  16. A low noise infrared spot scanner for testing detector arrays

    Science.gov (United States)

    Puetter, R. C.; Brissenden, P.; Casler, J.; Hier, R. G.; Jones, B.

    1984-01-01

    A low noise spot scanner has been built for use in testing the performance of infrared detector arrays for NASA's IR detector technology development program and the University of California's MICRO program. The scanner provides a convenient low noise detector test environment and a wide range of test conditions including versatile temperature control of the detector, ambient background, and blackbody source temperature and control of spot size, color, and brightness.

  17. Medicare Provider Data - Hospice Providers

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Hospice Utilization and Payment Public Use File provides information on services provided to Medicare beneficiaries by hospice providers. The Hospice PUF...

  18. Model-independent confirmation of the $Z(4430)^-$ state

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassen, Rolf; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Balagura, Vladislav; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Bauer, Thomas; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belogurov, Sergey; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Bjørnstad, Pål Marius; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brambach, Tobias; van den Brand, Johannes; Bressieux, Joël; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Brown, Henry; Bursche, Albert; Busetto, Giovanni; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Camboni, Alessandro; Campana, Pierluigi; Campora Perez, Daniel; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carranza-Mejia, Hector; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Ciba, Krzystof; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pascal; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Di Canto, Angelo; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Giani', Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, Vladimir; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gordon, Hamish; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; Hartmann, Thomas; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Hunt, Philip; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jaton, Pierre; Jawahery, Abolhassan; Jezabek, Marek; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kaballo, Michael; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Kelsey, Matthew; Kenyon, Ian; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kozlinskiy, Alexandr; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanciotti, Elisa; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leo, Sabato; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Liu, Guoming; Lohn, Stefan; Longstaff, Iain; Lopes, Jose; Lopez-March, Neus; Lowdon, Peter; Lu, Haiting; Lucchesi, Donatella; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Manca, Giulia; Mancinelli, Giampiero; Manzali, Matteo; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martens, Aurelien; Martín Sánchez, Alexandra; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Moggi, Niccolò; Molina Rodriguez, Josue; Monteil, Stephane; Moran, Dermot; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Katharina; Muresan, Raluca; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Nicol, Michelle; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Oggero, Serena; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Orlandea, Marius; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Arantza; Pal, Bilas Kanti; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Parkes, Christopher; Parkinson, Christopher John; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pazos Alvarez, Antonio; Pearce, Alex; Pellegrino, Antonio; Pepe Altarelli, Monica; Perazzini, Stefano; Perez Trigo, Eliseo; Perret, Pascal; Perrin-Terrin, Mathieu; Pescatore, Luca; Pesen, Erhan; Petridis, Konstantin; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poluektov, Anton; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Powell, Andrew; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Alexander; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Roa Romero, Diego; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruffini, Fabrizio; Ruiz, Hugo; Ruiz Valls, Pablo; Sabatino, Giovanni; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sapunov, Matvey; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Savrie, Mauro; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Seco, Marcos; Semennikov, Alexander; Senderowska, Katarzyna; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Sparkes, Ailsa; Spinella, Franco; Spradlin, Patrick; Stagni, Federico; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Subbiah, Vijay Kartik; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szilard, Daniela; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Tran, Minh Tâm; Tresch, Marco; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; Voss, Helge; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Whitehead, Mark; Wicht, Jean; Wiedner, Dirk; Wilkinson, Guy; Williams, Matthew; Williams, Mike; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wu, Suzhi; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Feng; Zhang, Liming; Zhang, Wen Chao; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zvyagin, Alexander

    2015-01-01

    The decay $B^0\\to \\psi(2S) K^+\\pi^-$ is analyzed using $\\rm 3~fb^{-1}$ of $pp$ collision data collected with the LHCb detector. A model-independent description of the $\\psi(2S) \\pi$ mass spectrum is obtained, using as input the $K\\pi$ mass spectrum and angular distribution derived directly from data, without requiring a theoretical description of resonance shapes or their interference. The hypothesis that the $\\psi(2S)\\pi$ mass spectrum can be described in terms of $K\\pi$ reflections alone is rejected with more than 8$\\sigma$ significance. This provides confirmation, in a model-independent way, of the need for an additional resonant component in the mass region of the $Z(4430)^-$ exotic state.

  19. Upgrade of ATLAS ITk Pixel Detector

    CERN Document Server

    Huegging, Fabian; The ATLAS collaboration

    2017-01-01

    The high luminosity upgrade of the LHC (HL-LHC) in 2026 will provide new challenges to the ATLAS tracker. The current inner detector will be replaced with an entirely-silicon inner tracker (ITk) which will consist of a five barrel layer Pixel detector surrounded by a four barrel layer Strip detector. The expected high radiation levels are requiring the development of upgraded silicon sensors as well as new a front-end chip. The dense tracking environment will require finer granularity detectors and low mass global and local support structures. The data rates will require new technologies for high bandwidth data transmission and handling. The current status of the ITk ATLAS Pixel detector developments as well as different layout options will be reviewed.

  20. Neutron Position Sensitive Detectors for the ESS

    CERN Document Server

    Kirstein, Oliver; Stefanescu, Irina; Etxegarai, Maddi; Anastasopoulos, Michail; Fissum, Kevin; Gulyachkina, Anna; Höglund, Carina; Imam, Mewlude; Kanaki, Kalliopi; Khaplanov, Anton; Kittelmann, Thomas; Kolya, Scott; Nilsson, Björn; Ortega, Luis; Pfeiffer, Dorothea; Piscitelli, Francesco; Ramos, Judith Freita; Robinson, Linda; Scherzinger, Julius

    2014-01-01

    The European Spallation Source (ESS) in Lund, Sweden will become the world's leading neutron source for the study of materials. The instruments are being selected from conceptual proposals submitted by groups from around Europe. These instruments present numerous challenges for detector technology in the absence of the availability of Helium-3, which is the default choice for detectors for instruments built until today and due to the extreme rates expected across the ESS instrument suite. Additionally a new generation of source requires a new generation of detector technologies to fully exploit the opportunities that this source provides. The detectors will be sourced from partners across Europe through numerous in-kind arrangements; a process that is somewhat novel for the neutron scattering community. This contribution presents briefly the current status of detectors for the ESS, and outlines the timeline to completion. For a conjectured instrument suite based upon instruments recommended for construction, ...

  1. Plastic scintillator detector for pulsed flux measurements

    Science.gov (United States)

    Kadilin, V. V.; Kaplun, A. A.; Taraskin, A. A.

    2017-01-01

    A neutron detector, providing charged particle detection capability, has been designed. The main purpose of the detector is to measure pulsed fluxes of both charged particles and neutrons during scientific experiments. The detector consists of commonly used neutron-sensitive ZnS(Ag) / 6LiF scintillator screens wrapping a layer of polystyrene based scintillator (BC-454, EJ-254 or equivalent boron loaded plastic). This type of detector design is able to log a spatial distribution of events and may be scaled to any size. Different variations of the design were considered and modelled in specialized toolkits. The article presents a review of the detector design features as well as simulation results.

  2. The Tilecal/ATLAS detector control system

    CERN Document Server

    Tomasio Pina, João Antonio

    2004-01-01

    Tilecal is the barrel hadronic calorimeter of the ATLAS detector that is presently being built at CERN to operate at the LHC accelerator. The main task of the Tilecal detector control system (DCS) is to enable the coherent and safe operation of the detector. All actions initiated by the operator and all errors, warnings, and alarms concerning the hardware of the detector are handled by DCS. The DCS has to continuously monitor all operational parameters, give warnings and alarms concerning the hardware of the detector. The DCS architecture consists of a distributed back-end (BE) system running on PC's and different front-end (FE) systems. The implementation of the BE will he achieved with a commercial supervisory control and data acquisition system (SCADA) and the FE instrumentation will consist on a wide variety of equipment. The connection between the FE and BE is provided by fieldbus or L

  3. New detectors of neutron, gamma- and X-radiations

    CERN Document Server

    Lobanov, N S

    2002-01-01

    Paper presents new detectors to record absorbed doses of neutron, gamma- and X-ray radiations within 0-1500 Mrad range. DBF dosimeter is based on dibutyl phthalate. EDS dosimeter is based on epoxy (epoxide) resin, while SD 5-40 detector is based on a mixture of dibutyl phthalate and epoxy resin. Paper describes experimental techniques to calibrate and interprets the measurement results of absorbed doses for all detectors. All three detectors cover 0-30000 Mrad measured does range. The accuracy of measurements is +- 10% independent (practically) of irradiation dose rates within 20-2000 rad/s limits under 20-80 deg C temperature

  4. Noble Gas Detectors

    CERN Document Server

    Aprile, Elena; Bolozdynya, Alexander I; Doke, Tadayoshi

    2006-01-01

    This book discusses the physical properties of noble fluids, operational principles of detectors based on these media, and the best technical solutions to the design of these detectors. Essential attention is given to detector technology: purification methods and monitoring of purity, information readout methods, electronics, detection of hard ultra-violet light emission, selection of materials, cryogenics etc.The book is mostly addressed to physicists and graduate students involved in the preparation of fundamental next generation experiments, nuclear engineers developing instrumentation

  5. Plastic neutron detectors.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Tiffany M.S; King, Michael J.; Doty, F. Patrick

    2008-12-01

    This work demonstrated the feasibility and limitations of semiconducting {pi}-conjugated organic polymers for fast neutron detection via n-p elastic scattering. Charge collection in conjugated polymers in the family of substituted poly(p-phenylene vinylene)s (PPV) was evaluated using band-edge laser and proton beam ionization. These semiconducting materials can have high H/C ratio, wide bandgap, high resistivity and high dielectric strength, allowing high field operation with low leakage current and capacitance noise. The materials can also be solution cast, allowing possible low-cost radiation detector fabrication and scale-up. However, improvements in charge collection efficiency are necessary in order to achieve single particle detection with a reasonable sensitivity. The work examined processing variables, additives and environmental effects. Proton beam exposure was used to verify particle sensitivity and radiation hardness to a total exposure of approximately 1 MRAD. Conductivity exhibited sensitivity to temperature and humidity. The effects of molecular ordering were investigated in stretched films, and FTIR was used to quantify the order in films using the Hermans orientation function. The photoconductive response approximately doubled for stretch-aligned films with the stretch direction parallel to the electric field direction, when compared to as-cast films. The response was decreased when the stretch direction was orthogonal to the electric field. Stretch-aligned films also exhibited a significant sensitivity to the polarization of the laser excitation, whereas drop-cast films showed none, indicating improved mobility along the backbone, but poor {pi}-overlap in the orthogonal direction. Drop-cast composites of PPV with substituted fullerenes showed approximately a two order of magnitude increase in photoresponse, nearly independent of nanoparticle concentration. Interestingly, stretch-aligned composite films showed a substantial decrease in

  6. The LHC detector challenge

    CERN Document Server

    Virdee, Tejinder S

    2004-01-01

    The Large Hadron Collider (LHC) from CERN, scheduled to come online in 2007, is a multi-TeV proton-proton collider with vast detectors. Two of the more significant detectors for LHC are ATLAS and CMS. Currently, both detectors are more than 65% complete in terms of financial commitment, and the experiments are being assembled at an increasing pace. ATLAS is being built directly in its underground cavern, whereas CMS is being assembled above ground. When completed, both detectors will aid researchers in determining what lies at the high-energy frontier, in particular the mechanism by which particles attain mass. (Edited abstract).

  7. LHCb Detector Performance

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassen, Rolf; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belogurov, Sergey; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Bjørnstad, Pål Marius; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brambach, Tobias; Bressieux, Joël; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Brown, Henry; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Ciba, Krzystof; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pascal; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Di Canto, Angelo; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Geraci, Angelo; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Gianì, Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, V.V.; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Hunt, Philip; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jaton, Pierre; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kelsey, Matthew; Kenyon, Ian; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kozlinskiy, Alexandr; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leo, Sabato; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Lohn, Stefan; Longstaff, Iain; Lopes, Jose; Lopez-March, Neus; Lowdon, Peter; Lucchesi, Donatella; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martens, Aurelien; Martín Sánchez, Alexandra; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Moggi, Niccolò; Molina Rodriguez, Josue; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Katharina; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Nicol, Michelle; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Oggero, Serena; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Orlandea, Marius; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Arantza; Pal, Bilas Kanti; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parkes, Christopher; Parkinson, Christopher John; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Perrin-Terrin, Mathieu; Pescatore, Luca; Pesen, Erhan; Pessina, Gianluigi; Petridis, Konstantin; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruiz, Hugo; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skillicorn, Ian; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Sparkes, Ailsa; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Subbiah, Vijay Kartik; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Tran, Minh Tâm; Tresch, Marco; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Whitehead, Mark; Wicht, Jean; Wiedner, Dirk; Wilkinson, Guy; Williams, Matthew; Williams, Mike; Wilschut, Hans; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Wen Chao; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zvyagin, Alexander

    2015-03-05

    The LHCb detector is a forward spectrometer at the Large Hadron Collider (LHC) at CERN. The experiment is designed for precision measurements of CP violation and rare decays of beauty and charm hadrons. In this paper the performance of the various LHCb sub-detectors and the trigger system are described, using data taken from 2010 to 2012. It is shown that the design criteria of the experiment have been met. The excellent performance of the detector has allowed the LHCb collaboration to publish a wide range of physics results, demonstrating LHCb's unique role, both as a heavy flavour experiment and as a general purpose detector in the forward region.

  8. Airborne detector improvement. [Phoswich spectrometer for aerial prospecting

    Energy Technology Data Exchange (ETDEWEB)

    Schneid, E.J.; Swanson, F.R.; Kamykowski, E.A.; Mendelsohn, A.

    1977-03-01

    Airborne Phoswich detector systems can provide approximately a factor of two increase in detection sensitivity for uranium when compared to existing NaI systems. In this study, experimental and theoretical comparisons were conducted between a large volume NaI detector and a large volume collimated Phoswich detector. Laboratory experiments were conducted to establish the ability of the existing Phoswich detector to provide background and Compton distribution suppression in the 1-3 MeV energy region of interest for this application. These measurements also serve to verify the analytical models used for Phoswich detector design studies. During this study, the two detectors were flown to obtain simultaneous measurements of the potassium, uranium, and thorium concentrations in the vicinity of Lake Winnipesaukee, New Hampshire. The correlation of the flight results with the experimental and computer predictions support the conclusion that a Phoswich detector system can provide approximately a factor of two increase in detection sensitivity.

  9. Verification of the CNGS Timing System using Ultra-Fast Diamond Detectors

    CERN Document Server

    Jansen, H; Bart Pedersen, S; Dehning, B; Dobos, D; Effinger, E; Ferrari, A; Griesmayer, E; Gschwendtner, E; Kozsar, I; Missiaen, D; Pernegger, H; Sala, P R; Serrano, J; Ward, C

    2012-01-01

    A new ultra-fast diagnostic tool was installed in the CNGS facility in 2011 following the neutrino time-of-flight results published by OPERA in September 2011. Several polycrystalline CVD diamond detectors were placed in the secondary beam line about 1200m downstream of the CNGS target in order to measure the time structure of the muons which are produced together with the muon neutrinos. This allows an accurate measurement of the GPS timing of individual secondary particle bunches crossing these detectors, and provides an independent timing measurement at CERN, which has previously been based solely on the fast beam current transformers installed in the primary proton beam line upstream of the CNGS target. Both the position of the detectors, and the time between the detection of the particles at the beam current transformer and the diamond detectors have been measured very carefully and a sound analysis of the detector signals was done. This allows comparison of the measurements between the beam current tran...

  10. Single photon detector design features

    Science.gov (United States)

    Zaitsev, Sergey V.; Kurochkin, Vladimir L.; Kurochkin, Yury V.

    2016-12-01

    In the report are discussed the laboratory test results of SPAD detectors with InGaAs / InP avalanche photodiodes, operating in Geiger mode. Device operating in synchronous mode with the dead timer setting for proper working conditions of photodiodes. The report materials will showing the functional block diagram of the detector, real operating signals in the receiver path and clock circuits and main results of measurements. The input signal of the synchronous detector is the clock, which determines the time positions of expected photons arrival. Increasing the clock speed 1-300 MHz or getting more time positions of the time grid, we provide increased capacity for time position code of signals, when QKD information transmitted over the nets. At the same time, the maximum attainable speed of photon reception is limited by diode dead time. Diode quantum noise are minimized by inclusion of a special time interval - dead time 0.1-10 usec, after each received and registered a photon. The lowest attainable value of the dead time is determined as a compromise between transients in electrical circuits, passive avalanche «quenching» circuit and thermal transients cooling crystal diode, after each avalanche pass though photodiode. Achievable time and speed parameters are discussed with specific examples of detectors.

  11. Detector decoy quantum key distribution

    Energy Technology Data Exchange (ETDEWEB)

    Moroder, Tobias; Luetkenhaus, Norbert [Quantum Information Theory Group, Institute of Theoretical Physics I, University Erlangen-Nuremberg, Staudtstrasse 7/B2, 91058 Erlangen (Germany); Curty, Marcos [ETSI Telecomunicacion, Department of Signal Theory and Communications, University of Vigo, Campus Universitario, E-36310 Vigo (Spain)], E-mail: tmoroder@iqc.ca

    2009-04-15

    Photon number resolving detectors can enhance the performance of many practical quantum cryptographic setups. In this paper, we employ a simple method to estimate the statistics provided by such a photon number resolving detector using only a threshold detector together with a variable attenuator. This idea is similar in spirit to that of the decoy state technique, and is especially suited to those scenarios where only a few parameters of the photon number statistics of the incoming signals have to be estimated. As an illustration of the potential applicability of the method in quantum communication protocols, we use it to prove security of an entanglement-based quantum key distribution scheme with an untrusted source without the need for a squash model and by solely using this extra idea. In this sense, this detector decoy method can be seen as a different conceptual approach to adapt a single-photon security proof to its physical, full optical implementation. We show that in this scenario, the legitimate users can now even discard the double click events from the raw key data without compromising the security of the scheme, and we present simulations on the performance of the BB84 and the 6-state quantum key distribution protocols.

  12. Independence of the judiciary

    Directory of Open Access Journals (Sweden)

    Arjana LLANO

    2013-12-01

    Full Text Available There are many factors which influence the independence of the judiciary. In a decision making process, judges, at any rate, must be able to act independently of any direct or indirect restriction, improper influence, inducement, pressure, threatening or obstacle. The law should provide explicit punishment measures against anyone who tries to impose any of the above means upon the judges. Any judge should possess the inviolable freedom of judging impartially, by his/her consciousness and interpretation, and pursuant to law. However, this is often impossible for judges are frequently put under various pressures that should be avoided. I have employed theoretical and practical methods for the purposes of this article. In conclusion, the research results have shown a heavy infringement of the independence of the judiciary in our country. There is a quite frequent tendency to influence the judges’ decisions. Common violations of law and judicial independence, to a large extent, remain unnoticed and unpunished. A considerable number of judges think that such tendencies have no significant influence on the management of justice.

  13. The Detector Control System for ALICE Architecture and Implementation

    CERN Document Server

    Swoboda, Detlef

    1999-01-01

    Presentation made at LEB99, Snowmass, Colorado, 20-24 September 1999The Alice experiment will include more than 10 individual detectors of different technologies and with specific operating conditions. The instrumentation required to run and control the operation of each sub-detector will include commercial and custom hardware of various standards. The detector control system (DCS) for the ALICE experiment will allow a hierarchical consolidation of the participating systems to obtain a fully integrated detector operation. This goal will be achieved by clearly defined interfaces between system layers. In addition, sub-detectors will continue to be able to access their equipment independently from other sub-detectors for maintenance, upgrading and debugging. The architecture will, therefore, be based on partitioning into self-contained sub-systems, which can be separately developed, maintained and operated. Horizontal communication between sub-systems will consequently be avoided. The DCS will use, where possib...

  14. ALICE Photon Multiplicity Detector

    CERN Multimedia

    Nayak, T

    2013-01-01

    Photon Multiplicity Detector (PMD) measures the multiplicity and spatial distribution of photons in the forward region of ALICE on a event-by-event basis. PMD is a pre-shower detector having fine granularity and full azimuthal coverage in the pseudo-rapidity region 2.3 < η < 3.9.

  15. ALICE Silicon Strip Detector

    CERN Multimedia

    Nooren, G

    2013-01-01

    The Silicon Strip Detector (SSD) constitutes the two outermost layers of the Inner Tracking System (ITS) of the ALICE Experiment. The SSD plays a crucial role in the tracking of the particles produced in the collisions connecting the tracks from the external detectors (Time Projection Chamber) to the ITS. The SSD also contributes to the particle identification through the measurement of their energy loss.

  16. Pixel detector readout chip

    CERN Multimedia

    1991-01-01

    Close-up of a pixel detector readout chip. The photograph shows an aera of 1 mm x 2 mm containing 12 separate readout channels. The entire chip contains 1000 readout channels (around 80 000 transistors) covering a sensitive area of 8 mm x 5 mm. The chip has been mounted on a silicon detector to detect high energy particles.

  17. The LDC detector concept

    Indian Academy of Sciences (India)

    Abstract. In preparation of the experimental program at the international linear collider. (ILC), the large detector concept (LDC) is being developed. The main points of the LDC are a large volume gaseous tracking system, combined with high precision vertex detector and an extremely granular calorimeter. The main design ...

  18. CMS Detector Posters

    CERN Multimedia

    2016-01-01

    CMS Detector posters (produced in 2000): CMS installation CMS collaboration From the Big Bang to Stars LHC Magnetic Field Magnet System Trackering System Tracker Electronics Calorimetry Eletromagnetic Calorimeter Hadronic Calorimeter Muon System Muon Detectors Trigger and data aquisition (DAQ) ECAL posters (produced in 2010, FR & EN): CMS ECAL CMS ECAL-Supermodule cooling and mechatronics CMS ECAL-Supermodule assembly

  19. CHERENKOV RADIATION DETECTOR

    African Journals Online (AJOL)

    ES Obe

    1981-03-01

    Mar 1, 1981 ... Most of Radiation detectors based on the Cherenkov Effect are essentially very bulky and expensive for schools and colleges. An inexpensive yet very compact radiation detector is designed, built and tested. It is used to measure the Cherenkov angles for natural radioactivity from sources as. Cs137.

  20. STYX. Bringing new life into old detectors

    Energy Technology Data Exchange (ETDEWEB)

    Zarkh, Elena [Physikalisches Institut, Bonn Univ. (Germany)

    2015-07-01

    STYX stands for Straw Tube Young student eXperiment and is a part of the master laboratory course at the University of Bonn. The experiment use muons from the secondary cosmic rays and aims to provide a basic understanding of the cosmic radiation, gas detectors, tracking of charged particles, readout electronics and computer-based data analysis. The heart of the experiment is a gaseous straw tube detector, built from the decommissioned ZEUS detector at DESY, and as a trigger system two photomultipliers are used. The setup of the experiment and recent developments are presented.

  1. The forward Detectors of the ATLAS experiment

    CERN Document Server

    Vittori, Camilla; The ATLAS collaboration

    2017-01-01

    In this poster, a review of the ATLAS forward detectors operating in the 2015-2016 data taking is given. This includes a description of LUCID, the preferred ATLAS luminosity provider; of the ALFA detector, aimed to measure elastically scattered protons at small angle for the total proton-proton cross section measurement; of the ATLAS Forward Proton project AFP, which was partially installed and took the first data in 2015, and of the Zero Degree Calorimeter ZDC built for the ATLAS Heavy Ions physics program. The near future plans for these detectors will also be addressed.

  2. Superconducting detectors in astronomy

    Science.gov (United States)

    Rahman, F.

    2006-08-01

    Radiation detectors based on superconducting phenomena are becoming increasingly important for observational astronomy. Recent developments in this important field, together with relevant background, are described here. After a general introduction to superconductivity and the field of superconductor-based radiation sensors, the main detector types are examined with regard to their physical form, operating principles and principal advantages. All major forms of superconducting detectors used in contemporary research such as tunnelling detectors, mixers, hot-electron bolometers and transition edge sensitive devices are discussed with an emphasis on how more recent developments are overcoming the shortcomings of the previous device generations. Also, discussed are new ideas in superconducting detector technology that may find applications in the coming years.

  3. Nanomechanical resonance detector

    Science.gov (United States)

    Grossman, Jeffrey C; Zettl, Alexander K

    2013-10-29

    An embodiment of a nanomechanical frequency detector includes a support structure and a plurality of elongated nanostructures coupled to the support structure. Each of the elongated nanostructures has a particular resonant frequency. The plurality of elongated nanostructures has a range of resonant frequencies. An embodiment of a method of identifying an object includes introducing the object to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the object. An embodiment of a method of identifying a molecular species of the present invention includes introducing the molecular species to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the molecular species.

  4. Semiconductor radiation detectors. Device physics

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, G. [Max-Planck-Institut fuer Physik, Muenchen (Germany)]|[Max-Planck-Institut fuer Extraterrestrische Physik, Garching (Germany). Semiconductor Lab.

    1999-07-01

    The following topics were dealt with: semiconductor radiation detectors, basic semiconductor structures, semiconductors, energy measurement, radiation-level measurement, position measurement, electronics of the readout function, detectors with intrinsic amplification, detector technology, device stability, radiation hardness and device simulation.

  5. 18th International Workshop on Radiation Imaging Detectors

    CERN Document Server

    2016-01-01

    The International Workshops on Radiation Imaging Detectors are held yearly and provide an international forum for discussing current research and developments in the area of position sensitive detectors for radiation imaging, including semiconductor detectors, gas and scintillator-based detectors. Topics include processing and characterization of detector materials, hybridization and interconnect technologies, design of counting or integrating electronics, readout and data acquisition systems, and applications in various scientific and industrial fields. The workshop will have plenary sessions with invited and contributed papers presented orally and in poster sessions. The invited talks will be chosen to review recent advances in different areas covered in the workshop.

  6. Antimonide type-II superlattice barrier infrared detectors

    Science.gov (United States)

    Ting, David Z.; Soibel, Alexander; Khoshakhlagh, Arezou; Höglund, Linda; Keo, Sam A.; Rafol, B., , Sir; Hill, Cory J.; Fisher, Anita M.; Luong, Edward M.; Nguyen, Jean; Liu, John K.; Mumolo, Jason M.; Pepper, Brian J.; Gunapala, Sarath D.

    2017-02-01

    We provide a brief overview of recent progress in III-V semiconductor infrared photodetectors resulting from advances in infrared detector materials, including type-II superlattices (T2SL) and InAsSb alloy, and the unipolar detector architecture. We summarize T2SL unipolar barrier infrared detector and focal plane array development at the NASA Jet Propulsion Laboratory in support of the Vital Infrared Sensor Technology Acceleration (VISTA) Program. We also comment on the connection of T2SL barrier infrared detector to MCT infrared detectors.

  7. Single-Band and Dual-Band Infrared Detectors

    Science.gov (United States)

    Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor); Soibel, Alexander (Inventor); Nguyen, Jean (Inventor); Khoshakhlagh, Arezou (Inventor)

    2017-01-01

    Bias-switchable dual-band infrared detectors and methods of manufacturing such detectors are provided. The infrared detectors are based on a back-to-back heterojunction diode design, where the detector structure consists of, sequentially, a top contact layer, a unipolar hole barrier layer, an absorber layer, a unipolar electron barrier, a second absorber, a second unipolar hole barrier, and a bottom contact layer. In addition, by substantially reducing the width of one of the absorber layers, a single-band infrared detector can also be formed.

  8. Providing Independent Reading Comprehension Strategy Practice through Workstations

    Science.gov (United States)

    Young, Chase

    2014-01-01

    This article describes an action research project undertaken by a second grade teacher looking for research-based ways to increase his students' reading comprehension. He designed fifteen comprehension workstations and evaluated their effect on his second graders' reading comprehension scores as measured by district Imagination Station…

  9. WIMP search and a Cherenkov detector prototype for ILC polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, Christoph

    2011-10-15

    The planned International Linear Collider (ILC) will be an essential experiment to precisely determine the properties and structure of physics at the TeV scale. An important feature of the ILC is the possibility to use polarized electrons and positrons. In part 1 of this thesis, a model independent search for Weakly Interacting Massive Particles (WIMPs) at ILC is presented. The signal channel under study is direct WIMP pair production with associated Initial State Radiation (ISR), e{sup +}e{sup -} {yields} {chi}{chi}{gamma}, where the WIMPs leave the detector without any further interaction, and only the emitted photon is detected. From the energy spectrum of the detected photons the coupling structure, cross sections, masses and the quantum number of the dominant partial wave in the production process can be inferred. The analysis includes the dominant SM, as well as machine-induced backgrounds, and is performed using a full simulation of the ILD detector concept. For an integrated luminosity of L=500 fb{sup -1}, the signal cross sections can be measured to a precision of 3%, dominated by systematic uncertainties on the polarization measurement of the initial electrons and positrons. Masses can be measured to a precision of up to 2% by a comparison of the data photon spectrum to parametrized template spectra. In part 2 of this thesis, a Cherenkov detector prototype for Compton polarimetry at ILC is presented. For the polarization measurement a systematic uncertainty of {delta} P/P = 0.25% or better is envisioned. To achieve this goal, the Cherenkov detector has to be precisely aligned with the fan of Compton scattered electrons and its signal response needs to be highly linear. For the detector prototype data driven alignment strategies have been developed by comparing data recorded at the Elsa accelerator in Bonn, Germany, with detailed Geant4 simulations. With the use of multi-anode photomultipliers, data driven alignment strategies promise to provide the

  10. Status of the CDF silicon detector

    Energy Technology Data Exchange (ETDEWEB)

    Grinstein, Sebastian; /Harvard U.

    2006-05-01

    The CDF Run II silicon micro-strip detector is an essential part of the heavy flavor tagging and forward tracking capabilities of the experiment. Since the commissioning period ended in 2002, about 85% of the 730 k readout channels have been consistently provided good data. A summary of the recent improvements in the DAQ system as well as experience of maintaining and operating such a large, complex detector are presented.

  11. Electron gas grid semiconductor radiation detectors

    Science.gov (United States)

    Lee, Edwin Y.; James, Ralph B.

    2002-01-01

    An electron gas grid semiconductor radiation detector (EGGSRAD) useful for gamma-ray and x-ray spectrometers and imaging systems is described. The radiation detector employs doping of the semiconductor and variation of the semiconductor detector material to form a two-dimensional electron gas, and to allow transistor action within the detector. This radiation detector provides superior energy resolution and radiation detection sensitivity over the conventional semiconductor radiation detector and the "electron-only" semiconductor radiation detectors which utilize a grid electrode near the anode. In a first embodiment, the EGGSRAD incorporates delta-doped layers adjacent the anode which produce an internal free electron grid well to which an external grid electrode can be attached. In a second embodiment, a quantum well is formed between two of the delta-doped layers, and the quantum well forms the internal free electron gas grid to which an external grid electrode can be attached. Two other embodiments which are similar to the first and second embodiment involve a graded bandgap formed by changing the composition of the semiconductor material near the first and last of the delta-doped layers to increase or decrease the conduction band energy adjacent to the delta-doped layers.

  12. Cherenkov Detectors for Precision Parity Experiments

    Science.gov (United States)

    Kutz, Tyler; Prex Collaboration; Moller Collaboration

    2017-09-01

    Fused silica Cherenkov detectors are ideal for measuring high-rate fluxes of charged particles. The parity program at Jefferson Lab relies on these detectors to measure cross section asymmetries, some of which are predicted to be on the order of tens of parts per billion. Given the required precision of such experiments, it is important that the resolution of these detectors is minimized. Detectors must be optimized while conforming to the physics and engineering constraints of a specific experiment. Two upcoming JLab experiments that will utilize Cherenkov detectors are the Lead (Pb) Radius EXperiment (PREX) and Measurement Of a Lepton-Lepton Electroweak Reaction (MOLLER). PREX will constrain the neutron equation of state by measuring the neutron skin thickness of 208Pb. MOLLER will test the Standard Model by providing the most precise low-energy measurement of the weak mixing angle. Several detector prototypes have been designed, tested, and simulated to meet the demands of PREX and MOLLER. Presented here is a summary of ongoing work to design state-of-the-art Cherenkov detectors for precision parity experiments.

  13. Detector simulations with DD4hep

    CERN Document Server

    AUTHOR|(SzGeCERN)668365; Frank, Markus; Gaede, Frank-Dieter; Lu, Shaojun; Nikiforou, Nikiforos; Sailer, Andre

    2017-01-01

    Detector description is a key component of detector design studies, test beam analyses, and most of particle physics experiments that require the simulation of more and more different detector geometries and event types. This paper describes DD4hep, which is an easy-to-use yet flexible and powerful detector description framework that can be used for detector simulation and also extended to specific needs for a particular working environment. Linear collider detector concepts ILD, SiD and CLICdp as well as detector development collaborations CALICE and FCal have chosen to adopt the DD4hep geometry framework and its DDG4 pathway to Geant4 as its core simulation and reconstruction tools. The DDG4 plugins suite includes a wide variety of input formats, provides access to the Geant4 particle gun or general particles source and allows for handling of Monte Carlo truth information, e.g. by linking hits and the primary particle that caused them, which is indispensable for performance and efficiency studies. An extend...

  14. Photoacoustic tomography using integrating line detectors

    Science.gov (United States)

    Burgholzer, P.; Berer, T.; Gruen, H.; Roitner, H.; Bauer-Marschallinger, J.; Nuster, R.; Paltauf, G.

    2010-03-01

    Photoacoustic Imaging (also known as thermoacoustic or optoacoustic imaging) is a novel imaging method which combines the advantages of Diffuse Optical Imaging (high contrast) and Ultrasonic Imaging (high spatial resolution). In photoacoustic imaging, a short laser pulse excites the sample. The absorbed energy causes a thermoelastic expansion and thereby launches a broadband ultrasonic wave (photoacoustic signal). This way one can measure the optical contrast of a sample with ultrasonic resolution. For collecting photoacoustic signals our group introduced so called integrating detectors a few years ago. Such integrating detectors integrate the pressure in one or two dimensions (line or plane detectors). Thereby the three dimensional imaging problem is reduced to a two or a one dimensional problem for the pressure projections for line or plane detectors, respectively. Several reconstruction methods like Fourier or F-SAFT reconstruction or back projection are used for the two dimensional first step, but the model-based time reversal method shows a significant advantage: acoustical heterogeneity and attenuation, which both cause blurring of reconstructions, can be directly implemented in the reconstruction method. The integrating detectors are mainly optical detectors and thus can provide a high bandwidth up to several 100 MHz. Using these detectors the resolution is often limited by the acoustic attenuation in the sample itself, because attenuation increases with higher frequencies. For thin layers, small cylinders, and small spherical inclusions the effect of attenuation in human fat is simulated and the influence of dispersion on image reconstruction is shown.

  15. Smile detectors correlation

    Science.gov (United States)

    Yuksel, Kivanc; Chang, Xin; Skarbek, Władysław

    2017-08-01

    The novel smile recognition algorithm is presented based on extraction of 68 facial salient points (fp68) using the ensemble of regression trees. The smile detector exploits the Support Vector Machine linear model. It is trained with few hundreds exemplar images by SVM algorithm working in 136 dimensional space. It is shown by the strict statistical data analysis that such geometric detector strongly depends on the geometry of mouth opening area, measured by triangulation of outer lip contour. To this goal two Bayesian detectors were developed and compared with SVM detector. The first uses the mouth area in 2D image, while the second refers to the mouth area in 3D animated face model. The 3D modeling is based on Candide-3 model and it is performed in real time along with three smile detectors and statistics estimators. The mouth area/Bayesian detectors exhibit high correlation with fp68/SVM detector in a range [0:8; 1:0], depending mainly on light conditions and individual features with advantage of 3D technique, especially in hard light conditions.

  16. The Phenix Detector magnet subsystem

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, R.M.; Bowers, J.M.; Harvey, A.R. [Lawrence Livermore National Lab., CA (United States)] [and others

    1995-05-19

    The PHENIX [Photon Electron New Heavy Ion Experiment] Detector is one of two large detectors presently under construction for RHIC (Relativistic Heavy Ion Collider) located at Brookhaven National Laboratory. Its primary goal is to detect a new phase of matter; the quark-gluon plasma. In order to achieve this objective, the PHENIX Detector utilizes a complex magnet subsystem which is comprised of two large magnets identified as the Central Magnet (CM) and the Muon Magnet (MM). Muon Identifier steel is also included as part of this package. The entire magnet subsystem stands over 10 meters tall and weighs in excess of 1900 tons (see Fig. 1). Magnet size alone provided many technical challenges throughout the design and fabrication of the project. In addition, interaction with foreign collaborators provided the authors with new areas to address and problems to solve. Russian collaborators would fabricate a large fraction of the steel required and Japanese collaborators would supply the first coil. This paper will describe the overall design of the PHENIX magnet subsystem and discuss its present fabrication status.

  17. Microfluidic Scintillation Detectors

    CERN Multimedia

    Microfluidic scintillation detectors are devices of recent introduction for the detection of high energy particles, developed within the EP-DT group at CERN. Most of the interest for such technology comes from the use of liquid scintillators, which entails the possibility of changing the active material in the detector, leading to an increased radiation resistance. This feature, together with the high spatial resolution and low thickness deriving from the microfabrication techniques used to manufacture such devices, is desirable not only in instrumentation for high energy physics experiments but also in medical detectors such as beam monitors for hadron therapy.

  18. The Silicon Cube detector

    Energy Technology Data Exchange (ETDEWEB)

    Matea, I.; Adimi, N. [Centre d' Etudes Nucleaires de Bordeaux Gradignan - Universite Bordeaux 1 - UMR 5797, CNRS/IN2P3, Chemin du Solarium, BP 120, F-33175 Gradignan Cedex (France); Blank, B. [Centre d' Etudes Nucleaires de Bordeaux Gradignan - Universite Bordeaux 1 - UMR 5797, CNRS/IN2P3, Chemin du Solarium, BP 120, F-33175 Gradignan Cedex (France)], E-mail: blank@cenbg.in2p3.fr; Canchel, G.; Giovinazzo, J. [Centre d' Etudes Nucleaires de Bordeaux Gradignan - Universite Bordeaux 1 - UMR 5797, CNRS/IN2P3, Chemin du Solarium, BP 120, F-33175 Gradignan Cedex (France); Borge, M.J.G.; Dominguez-Reyes, R.; Tengblad, O. [Insto. Estructura de la Materia, CSIC, Serrano 113bis, E-28006 Madrid (Spain); Thomas, J.-C. [GANIL, CEA/DSM - CNRS/IN2P3, BP 55027, F-14076 Caen Cedex 5 (France)

    2009-08-21

    A new experimental device, the Silicon Cube detector, consisting of six double-sided silicon strip detectors placed in a compact geometry was developed at CENBG. Having a very good angular coverage and high granularity, it allows simultaneous measurements of energy and angular distributions of charged particles emitted from unbound nuclear states. In addition, large-volume Germanium detectors can be placed close to the collection point of the radioactive species to be studied. The setup is ideally suited for isotope separation on-line (ISOL)-type experiments to study multi-particle emitters and was tested during an experiment at the low-energy beam line of SPIRAL at GANIL.

  19. Dynamic imaging in spectroscopy with digital detector; Imagen dinamica en fluoroscopia con detector digital

    Energy Technology Data Exchange (ETDEWEB)

    Gracia, M. A.; Ojeda, C.; Santin, J.

    2006-07-01

    The Flat Detector technology allows systems to be designed for covering the complete range of cardiovascular applications. Requirements from some medical applications translate into design requirements of the detector. This affects spatial and temporal resolution, sensitivity, DQE and signal to noise ratio. The current technology of choice for the actual dynamic flat detector is the combination of a scintillator of Thallium doped Csl with an amorphous silicon photodiode array with TFT. The flat panel is connected to dedicated electronics, which provides low noise column readout and multiplexing into an electrical signal, which is digitalized to provide a direct digital image output. (Author) 13 refs.

  20. X-ray imaging detectors for synchrotron and XFEL sources

    Directory of Open Access Journals (Sweden)

    Takaki Hatsui

    2015-05-01

    Full Text Available Current trends for X-ray imaging detectors based on hybrid and monolithic detector technologies are reviewed. Hybrid detectors with photon-counting pixels have proven to be very powerful tools at synchrotrons. Recent developments continue to improve their performance, especially for higher spatial resolution at higher count rates with higher frame rates. Recent developments for X-ray free-electron laser (XFEL experiments provide high-frame-rate integrating detectors with both high sensitivity and high peak signal. Similar performance improvements are sought in monolithic detectors. The monolithic approach also offers a lower noise floor, which is required for the detection of soft X-ray photons. The link between technology development and detector performance is described briefly in the context of potential future capabilities for X-ray imaging detectors.

  1. Differential Phase Detector for Precise Phase Alignment

    CERN Document Server

    Olexa, Jakub

    2016-01-01

    This paper presents a differential phase detector circuit, whose phase-to-voltage characteristic has an extremum when its two input signals are exactly in phase. In this condition all its digital signals are of 50 % duty cycle so that the circuit characteristic does not have a dead zone. This feature allows a precise indication of the zero-phase condition, which is independent of the detector power supply and the offset of its ADC readout. Such a detector is used for a phase alignment of two reference clock signals with frequency about 11 kHz in front-ends processing signals from beam position monitors of the Large Hadron Collider (LHC) at CERN. The detector output voltage is digitized with a 24-bit ADC at the rate of the reference signals. The resulting samples are processed in the front-end FPGA and transmitted to the control system using an Ethernet data stream. After a detailed description of the differential phase detector its performance is demonstrated with laboratory measurements. The results show tha...

  2. MUON DETECTORS: RPC

    CERN Multimedia

    G. Pugliese

    2010-01-01

    In the second half of 2010 run, the overall behavior of the RPC system has been very satisfactory, both in terms of detector and trigger performance. This result was achieved through interventions by skilled personnel and fine-tuned analysis procedures. The hardware was quite stable: both gas and power systems did not present significant problems during the data-taking period, confirming the high reliability achieved. Only few interventions on some HV or LV channels were necessary during the periodical technical accesses. The overall result is given by the stable percentage of active channels at about 98.5%. The single exception was at beginning of the ion collisions, when it dipped to 97.4% because of the failure of one LV module, although this was recovered after a few days. The control and monitoring software is now more robust and efficient, providing prompt diagnostics on the status of the entire system. Significant efforts were made in collaboration with the CMS cooling team to secure proper working ...

  3. MUON DETECTORS: RPC

    CERN Multimedia

    G. Iaselli

    2010-01-01

    During the technical stop, the RPC team was part of the CMS task force team working on bushing replacements in the Endcap cooling system, also validating the repairs in terms of connectivity (HV, LV and signal cables), and gas leak, on RE chambers. In parallel, the RPC team profited from the opportunity to cure several known problems: six chambers with HV problems (1 off + 5 single gaps) were recovered on both gaps; four known HV problems were localized at chamber level; additional temperature sensors were installed on cooling pipes on negative REs; one broken LV module in RE-1 was replaced. During the last month, the RPC group has made big improvements in the operations tools. New trigger supervisor software has substantially reduced the configuration time. Monitoring is now more robust and more efficient in providing prompt diagnostics. The detector has been under central DCS control for two weeks. Improvements have been made to both functionality and documentation and no major problems were found. Beam s...

  4. Improved CO [lidar detector

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, P.L.; Busch, G.E.; Thompson, D.C.; Remelius, D.K.; Wells, F.D.

    1999-07-18

    A high sensitivity, CO{sub 2} lidar detector, based on recent advances in ultra-low noise, readout integrated circuits (ROIC), is being developed. This detector will combine a high speed, low noise focal plane array (FPA) with a dispersive grating spectrometer. The spectrometer will filter the large background flux, thereby reducing the limiting background photon shot noise. In order to achieve the desired low noise levels, the HgCdTe FPA will be cooled to {approximately}50K. High speed, short pulse operation of the lidar system should enable the detector to operate with the order of a few noise electrons in the combined detector/ ROIC output. Current receiver design concepts will be presented, along with their expected noise performance.

  5. Hybrid photon detectors

    CERN Document Server

    D'Ambrosio, C

    2003-01-01

    Hybrid photon detectors detect light via vacuum photocathodes and accelerate the emitted photoelectrons by an electric field towards inversely polarized silicon anodes, where they are absorbed, thus producing electron-hole pairs. These, in turn, are collected and generate electronic signals on their ohmic contacts. This review first describes the characteristic properties of the main components of hybrid photon detectors: light entrance windows, photocathodes, and silicon anodes. Then, essential relations describing the trajectories of photoelectrons in electric and magnetic fields and their backscattering from the silicon anodes are derived. Depending on their anode configurations, three families of hybrid photon detectors are presented: hybrid photomultiplier tubes with single anodes for photon counting with high sensitivity and for gamma spectroscopy; multi-anode photon detector tubes with anodes subdivided into square or hexagonal pads for position-sensitive photon detection; imaging silicon pixel array t...

  6. Infrared Detectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The end goal of this project is to develop proof-of-concept infrared detectors which can be integrated in future infrared instruments engaged in remote...

  7. Europe plans megaton detector

    CERN Multimedia

    Cartlidge, Edwin

    2004-01-01

    A group of French and Italian particle physicists hopes to carry on the long tradition of building large underground detectors by constructing a device deep under the Alps containing a million tonnes of extremely pure water.

  8. ALICE Silicon Pixel Detector

    CERN Multimedia

    2003-01-01

    The Silicon Pixel Detector (SPD) is part of the Inner Tracking System (ITS) of the ALICE experiment : . SPD Structure . Bump Bonding . Test beam . ALICE1LHCb Readout Chip . Chip Tests . Data from the SPD

  9. ALICE Forward Multiplicity Detector

    CERN Multimedia

    Christensen, C

    2013-01-01

    The Forward Multiplicity Detector (FMD) extends the coverage for multiplicity of charge particles into the forward regions - giving ALICE the widest coverage of the 4 LHC experiments for these measurements.

  10. Detector Control System for the ATLAS Forward Proton detector

    CERN Document Server

    Czekierda, Sabina; The ATLAS collaboration

    2017-01-01

    The ATLAS Forward Proton (AFP) is a forward detector using a Roman Pot technique, recently installed in the LHC tunnel. It is aiming at registering protons that were diffractively or electromagnetically scattered in soft and hard processes. Infrastructure of the detector consists of hardware placed both in the tunnel and in the control room USA15 (about 330 meters from the Roman Pots). AFP detector, like the other detectors of the ATLAS experiment, uses the Detector Control System (DCS) to supervise the detector and to ensure its safe and coherent operation, since the incorrect detector performance may influence the physics results. The DCS continuously monitors the detector parameters, subset of which is stored in data bases. Crucial parameters are guarded by alarm system. A detector representation as a hierarchical tree-like structure of well-defined subsystems built with the use of the Finite State Machine (FSM) toolkit allows for overall detector operation and visualization. Every node in the hierarchy is...

  11. Development of the ATHENA vertex detector

    Science.gov (United States)

    Riedler, P.

    2000-12-01

    The ATHENA experiment [1] is a new experiment at the anti-proton decelerator (AD) at CERN. Its goal is the production, detection and spectroscopic investigation of anti-hydrogen in a magneto-static trap. The experimental technique used will allow to compare the atomic structure of matter and anti-matter to a level of 10-15 and thus provides a test for CPT conservation. In order to unambiguously detect the annihilation of anti-hydrogen atoms a detector system consisting of double sided silicon strip detectors and CsI-crystals was developed. The complete vertex detector has to be operated at 77 K. An overview of the experiment is given and the development of the vertex detector is presented.

  12. Neutron detectors for the ESS diffractometers

    DEFF Research Database (Denmark)

    Stefanescu, I.; Christensen, Mogens; Fenske, J.

    2017-01-01

    that reflect our current level of knowledge and understanding of the ESS project. We apply this method to make predictions for the future diffraction instruments, and thus provide additional information that can help the instrument teams with the optimisation of the detector designs....... by the Scientific Advisory Committee to advance into the phase of preliminary engineering design. We discuss the available detector technologies suitable for this particular instrument class and their major challenges. The detector technologies selected by the instrument teams to collect the diffraction patterns...... are briefly discussed. Analytical calculations, Monte-Carlo simulations, and real experimental data are used to develop a generic method to esti- mate the event rate in the diffraction detectors. The proposed approach is based upon conservative assumptions that use information and input parameters...

  13. Development of the ATHENA vertex detector

    CERN Document Server

    Riedler, P

    2000-01-01

    The ATHENA experiment [2000] is a new experiment at the antiproton decelerator (AD) at CERN. Its goal is the production, detection and spectroscopic investigation of antihydrogen in a magnetostatic trap. The experimental technique used will allow to compare the atomic structure of matter and antimatter to a level of 10/sup -15/ and thus provides a test for CPT conservation. In order to unambiguously detect the annihilation of antihydrogen atoms, a detector system consisting of double sided silicon strip detectors and CsI-crystals was developed. The complete vertex detector has to be operated at 77 K. An overview of the experiment is given and the development of the vertex detector is presented. (4 refs).

  14. Characteristics of the ATLAS and CMS detectors

    CERN Document Server

    Seiden, Abraham

    2012-01-01

    The goal for the detection of new physics processes in particle collisions at Large Hadron Collider energies, combined with the broad spectrum of possibilities for how the physics might be manifest, leads to detectors of unprecedented scope and size for particle physics experiments at colliders. The resulting two detectors, ATLAS (A Toroidal LHC ApparatuS) and CMS (compact muon spectrometer), must search for the new physics processes within very complex events arising from the very high-energy collisions. The two experiments share many basic design features—in particular, the need for very selective triggering to weed out the bulk of the uninteresting events; the order in which detector types are arrayed in order to provide maximum information about each event; and the very large angular coverage required to constrain the energy carried by any non-interacting particles. However, within these basic constraints, the detectors are quite different given the different emphases placed on issues such as resolution...

  15. Fiber optic detector

    Energy Technology Data Exchange (ETDEWEB)

    Partin, J.K.; Ward, T.E.; Grey, A.E.

    1990-12-31

    This invention is comprised of a portable fiber optic detector that senses the presence of specific target chemicals by exchanging the target chemical for a fluorescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.

  16. ATLAS Inner Detector (Pixel Detector and Silicon Tracker)

    CERN Multimedia

    ATLAS Outreach

    2006-01-01

    To raise awareness of the basic functions of the Pixel Detector and Silicon Tracker in the ATLAS detector on the LHC at CERN. This colorful 3D animation is an excerpt from the film "ATLAS-Episode II, The Particles Strike Back." Shot with a bug's eye view of the inside of the detector. The viewer is taken on a tour of the inner workings of the detector, seeing critical pieces of the detector and hearing short explanations of how each works.

  17. Gamma ray detector modules

    Science.gov (United States)

    Capote, M. Albert (Inventor); Lenos, Howard A. (Inventor)

    2009-01-01

    A radiation detector assembly has a semiconductor detector array substrate of CdZnTe or CdTe, having a plurality of detector cell pads on a first surface thereof, the pads having a contact metallization and a solder barrier metallization. An interposer card has planar dimensions no larger than planar dimensions of the semiconductor detector array substrate, a plurality of interconnect pads on a first surface thereof, at least one readout semiconductor chip and at least one connector on a second surface thereof, each having planar dimensions no larger than the planar dimensions of the interposer card. Solder columns extend from contacts on the interposer first surface to the plurality of pads on the semiconductor detector array substrate first surface, the solder columns having at least one solder having a melting point or liquidus less than 120 degrees C. An encapsulant is disposed between the interposer circuit card first surface and the semiconductor detector array substrate first surface, encapsulating the solder columns, the encapsulant curing at a temperature no greater than 120 degrees C.

  18. Modelling semiconductor pixel detectors

    CERN Document Server

    Mathieson, K

    2001-01-01

    expected after 200 ps in most cases. The effect of reducing the charge carrier lifetime and examining the charge collection efficiency has been utilised to explore how these detectors would respond in a harsh radiation environment. It is predicted that over critical carrier lifetimes (10 ps to 0.1 ns) an improvement of 40 % over conventional detectors can be expected. This also has positive implications for fabricating detectors, in this geometry, from materials which might otherwise be considered substandard. An analysis of charge transport in CdZnTe pixel detectors has been performed. The analysis starts with simulation studies into the formation of contacts and their influence on the internal electric field of planar detectors. The models include a number of well known defect states and these are balanced to give an agreement with a typical experimental I-V curve. The charge transport study extends to the development of a method for studying the effect of charge sharing in highly pixellated detectors. The ...

  19. The TOTEM Detector at LHC

    CERN Document Server

    Ruggiero, G; Aspell, P; Atanassov, I; Avati, V; Berardi, V; Berretti, M; Bozzo, M; Brücken, E; Buzzo, A; Cafagna, F; Calicchio, M; Catanesi, M G; Ciocci, M A; Csanád, M; Csörgö, T; Deile, M; Dénes, E; Dimovasili, E; Doubek, M; Eggert, K; Ferro, F; Garcia, F; Giani, S; Greco, V; Grzanka, L; Heino, J; Hilden, T; Janda, M; Kaspar, J; Kopal, J; Kundrát, V; Kurvinen, K; Lami, S; Latino, G; Lauhakangas, R; Lippmaa, E; Lokajícek, M; Lo Vetere, M; Lucas Rodriguez, F; Macrí, M; Magazzù, G; Minutoli, S; Niewiadomski, H; Notarnicola, G; Novak, T; Oliveri, E; Oljemark, F; Orava, R; Oriunno, M; Österberg, K; Pedreschi, E; Petäjäjärvi, J; Quinto, M; Radermacher, E; Radicioni, E; Ravotti, F; Robutti, E; Ropelewski, L; Rummel, A; Saarikko, H; Sanguinetti, G; Santroni, A; Scribano, A; Sette, G; Snoeys, W; Spearman, W; Spinella, F; Ster, A; Taylor, C; Trummal, A; Turini, N; Vacek, V; Vitek, M; Whitmore, J; Wu, J

    2010-01-01

    The TOTEM experiment, small in size compared to the others at the LHC, is dedicated to the measurement of the total proton-proton cross-section with the luminosity-independent method and to the study of elastic and diffractive scattering. To achieve optimum forward coverage for charged particles emitted by the pp collisions in the interaction point IP5, two tracking telescopes, T1 and T2, are installed on each side in the pseudo-rapidity region between 3.1 and 6.5, and Roman Pot (RP) stations are placed at distances of 147m and 220m from IP5. The telescope closest to the interaction point (T1, centered at z = 9 m) consists of Cathode Strip Chambers (CSC), while the second one (T2, centered at 13.5 m), makes use of Gas Electron Multipliers (GEM). The proton detectors in the RPs are silicon devices designed by TOTEM with the specific objective of reducing down to a few tens of microns the insensitive area at the edge. High efficiency as close as possible to the physical detector boundary is an essential feature...

  20. The TOTEM Detector at LHC

    CERN Document Server

    Ruggiero, G; Aspell, P; Atanassov, I; Avati, V; Berardi, V; Berretti, M; Bozzo, M; Brücken, E; Buzzo, A; Cafagna, F; Calicchio, M; Catanesi, M G; Ciocci, M A; Csanád, M; Csörgö, T; Deile, M; Dénes, E; Dimovasili, E; Doubek, M; Eggert, K; Ferro, F; Garcia, F; Giani, S; Greco, V; Grzanka, L; Heino, J; Hilden, T; Janda, M; Kaspar, J; Kopal, J; Kundrát, V; Kurvinen, K; Lami, S; Latino, G; Lauhakangas, R; Lippmaa, E; Lokajícek, M; Lo Vetere, M; Lucas Rodriguez, F; Macrí, M; Magazzù, G; Minutoli, S; Niewiadomski, H; Notarnicola, G; Novak, T; Oliveri, E; Oljemark, F; Orava, R; Oriunno, M; Österberg, K; Palazzi, P; Pedreschi, E; Petäjäjärvi, J; Quinto, M; Radermacher, E; Radicioni, E; Ravotti, F; Robutti, E; Ropelewski, L; Rummel, A; Saarikko, H; Sanguinetti, G; Santroni, A; Scribano, A; Sette, G; Snoeys, W; Spearman, W; Spinella, F; Ster, A; Taylor, C; Trummal, A; Turini, N; Vacek, V; Vitek, M; Whitmore, J; Wu, J

    2010-01-01

    The TOTEM experiment, small in size compared to the others at the LHC, is dedicated to the measurement of the total proton–proton cross-sections with a luminosity-independent method and to the study of elastic and diffractive scattering at the LHC. To achieve optimum forward coverage for charged particles emitted by the pp collisions in the IP5 interaction point, two tracking telescopes, T1 and T2, will be installed on each side in the pseudo-rapidity region between 3.1 and 6.5, and Roman Pot stations will be placed at distances of 147 and 220 m from IP5. The telescope closest to the interaction point (T1, centred at z=9 m) consists of Cathode Strip Chambers (CSC), while the second one (T2, centred at 13.5 m), makes use of Gas Electron Multipliers (GEM). The proton detectors in the Roman Pots are silicon devices designed by TOTEM with the specific objective of reducing down to a few tens of microns the insensitive area at the edge. High efficiency as close as possible to the physical detector boundary is an...

  1. Silicon technologies for the CLIC vertex detector

    Science.gov (United States)

    Spannagel, S.

    2017-06-01

    CLIC is a proposed linear e+e- collider designed to provide particle collisions at center-of-mass energies of up to 3 TeV. Precise measurements of the properties of the top quark and the Higgs boson, as well as searches for Beyond the Standard Model physics require a highly performant CLIC detector. In particular the vertex detector must provide a single point resolution of only a few micrometers while not exceeding the envisaged material budget of around 0.2% X0 per layer. Beam-beam interactions and beamstrahlung processes impose an additional requirement on the timestamping capabilities of the vertex detector of about 10 ns. These goals can only be met by using novel techniques in the sensor and ASIC design as well as in the detector construction. The R&D program for the CLIC vertex detector explores various technologies in order to meet these demands. The feasibility of planar sensors with a thickness of 50-150 μm, including different active edge designs, are evaluated using Timepix3 ASICs. First prototypes of the CLICpix readout ASIC, implemented in 65 nm CMOS technology and with a pixel size of 25×25μm 2, have been produced and tested in particle beams. An updated version of the ASIC with a larger pixel matrix and improved precision of the time-over-threshold and time-of-arrival measurements has been submitted. Different hybridization concepts have been developed for the interconnection between the sensor and readout ASIC, ranging from small-pitch bump bonding of planar sensors to capacitive coupling of active HV-CMOS sensors. Detector simulations based on Geant 4 and TCAD are compared with experimental results to assess and optimize the performance of the various designs. This contribution gives an overview of the R&D program undertaken for the CLIC vertex detector and presents performance measurements of the prototype detectors currently under investigation.

  2. The ALICE forward multiplicity detector

    DEFF Research Database (Denmark)

    Holm Christensen, Christian; Gulbrandsen, Kristjan; Sogaard, Carsten

    2007-01-01

    The ALICE Forward Multiplicity Detector (FMD) is a silicon strip detector with 51,200 strips arranged in 5 rings, covering the range $-3.4......The ALICE Forward Multiplicity Detector (FMD) is a silicon strip detector with 51,200 strips arranged in 5 rings, covering the range $-3.4...

  3. Detectors for scanning video imagers

    Science.gov (United States)

    Webb, Robert H.; Hughes, George W.

    1993-11-01

    In scanning video imagers, a single detector sees each pixel for only 100 ns, so the bandwidth of the detector needs to be about 10 MHz. How this fact influences the choice of detectors for scanning systems is described here. Some important parametric quantities obtained from manufacturer specifications are related and it is shown how to compare detectors when specified quantities differ.

  4. Vacuum-Ultraviolet Photovoltaic Detector.

    Science.gov (United States)

    Zheng, Wei; Lin, Richeng; Ran, Junxue; Zhang, Zhaojun; Ji, Xu; Huang, Feng

    2018-01-23

    Over the past two decades, solar- and astrophysicists and material scientists have been researching and developing new-generation semiconductor-based vacuum ultraviolet (VUV) detectors with low power consumption and small size for replacing traditional heavy and high-energy-consuming microchannel-detection systems, to study the formation and evolution of stars. However, the most desirable semiconductor-based VUV photovoltaic detector capable of achieving zero power consumption has not yet been achieved. With high-crystallinity multistep epitaxial grown AlN as a VUV-absorbing layer for photogenerated carriers and p-type graphene (with unexpected VUV transmittance >96%) as a transparent electrode to collect excited holes, we constructed a heterojunction device with photovoltaic detection for VUV light. The device exhibits an encouraging VUV photoresponse, high external quantum efficiency (EQE) and extremely fast tempera response (80 ns, 10 4 -10 6 times faster than that of the currently reported VUV photoconductive devices). This work has provided an idea for developing zero power consumption and integrated VUV photovoltaic detectors with ultrafast and high-sensitivity VUV detection capability, which not only allows future spacecraft to operate with longer service time and lower launching cost but also ensures an ultrafast evolution of interstellar objects.

  5. Detector technologies for LHC experiments

    CERN Document Server

    Hansl-Kozanecka, Traudl

    1999-01-01

    Abstract The Large Hadron Collider (LHC) at CERN will provide proton-proton collisions ata centre-of-mass energy of 14 TeV with a design luminosity of 10^34cm^-2s^-1. The exploitation of the rich physics potential is illustrated using the expected performance of the two general-purpose detectors ATLAS and CMS.The lecture introduces the physics motivation for experiments at the LHC energy.The design parameters and expected performance of the LHC machine are then discussed, followed by the design objectives for the detectors. The technical solutions are presented for each detector system (calorimetry, muon system, inner tracker, trigger). For each system the requirements, the technology choices and the achieved and expected performance are discussed. Lectures given at Herbstschule fu:r Hochenergiephysik, Maria Laach, 1999Copies of the transparencies are available in reduced format (black-and-white) from the secretariats of ATLAS and CMS (1999-093 Talk). A full-size colour version is available for consultation.e...

  6. Assessment of MODIS RSB Detector Uniformity Using Deep Convective Clouds

    Science.gov (United States)

    Chang, Tiejun; Xiong, Xiaoxiong (Jack); Angal, Amit; Mu, Qiaozhen

    2016-01-01

    For satellite sensor, the striping observed in images is typically associated with the relative multiple detector gain difference derived from the calibration. A method using deep convective cloud (DCC) measurements to assess the difference among detectors after calibration is proposed and demonstrated for select reflective solar bands (RSBs) of the Moderate Resolution Imaging Spectroradiometer (MODIS). Each detector of MODIS RSB is calibrated independently using a solar diffuser (SD). Although the SD is expected to accurately characterize detector response, the uncertainties associated with the SD degradation and characterization result in inadequacies in the estimation of each detector's gain. This work takes advantage of the DCC technique to assess detector uniformity and scan mirror side difference for RSB. The detector differences for Terra MODIS Collection 6 are less than 1% for bands 1, 3-5, and 18 and up to 2% for bands 6, 19, and 26. The largest difference is up to 4% for band 7. Most Aqua bands have detector differences less than 0.5% except bands 19 and 26 with up to 1.5%. Normally, large differences occur for edge detectors. The long-term trending shows seasonal oscillations in detector differences for some bands, which are correlated with the instrument temperature. The detector uniformities were evaluated for both unaggregated and aggregated detectors for MODIS band 1 and bands 3-7, and their consistencies are verified. The assessment results were validated by applying a direct correction to reflectance images. These assessments can lead to improvements to the calibration algorithm and therefore a reduction in striping observed in the calibrated imagery.

  7. Detectors on the drawing board

    CERN Multimedia

    Katarina Anthony

    2011-01-01

    Linear collider detector developers inside and outside CERN are tackling the next generation of detector technology. While their focus has centred on high-energy linear collider detectors, their innovative concepts and designs will be applicable to any future detector.   A simulated event display in one of the new generation detectors. “While the LHC experiments remain the pinnacle of detector technology, you may be surprised to realise that the design and expertise behind them is well over 10 years old,” says Lucie Linssen, CERN’s Linear Collider Detector (LCD) project manager whose group is pushing the envelope of detector design. “The next generation of detectors will have to surpass the achievements of the LHC experiments. It’s not an easy task but, by observing detectors currently in operation and exploiting a decade’s worth of technological advancements, we’ve made meaningful progress.” The LCD team is curr...

  8. ATLAS Detector Control System Data Viewer

    CERN Document Server

    Tsarouchas, Charilaos; Roe, S; Bitenc, U; Fehling-Kaschek, ML; Winkelmann, S; D’Auria, S; Hoffmann, D; Pisano, O

    2011-01-01

    The ATLAS experiment at CERN is one of the four Large Hadron Collider experiments. DCS Data Viewer (DDV) is a web interface application that provides access to historical data of ATLAS Detector Control System [1] (DCS) parameters written to the database (DB). It has a modular andflexible design and is structured using a clientserver architecture. The server can be operated stand alone with a command-line interface to the data while the client offers a user friendly, browser independent interface. The selection of the metadata of DCS parameters is done via a column-tree view or with a powerful search engine. The final visualisation of the data is done using various plugins such as “value over time” charts, data tables, raw ASCII or structured export to ROOT. Excessive access or malicious use of the database is prevented by dedicated protection mechanisms, allowing the exposure of the tool to hundreds of inexperienced users. The metadata selection and data output features can be used separately by XML con...

  9. Gain stabilization in Micro Pattern Gaseous Detectors: methodology and results

    Science.gov (United States)

    Shaked Renous, D.; Roy, A.; Breskin, A.; Bressler, S.

    2017-09-01

    The phenomenon of avalanche-gain variations over time, particularly in Micro Pattern Gaseous Detectors (MPGD) incorporating insulator materials, have been generally attributed to electric-field modifications resulting from "charging-up" effects of the insulator. A robust methodology for characterization of gain-transients in such detectors is presented. It comprises three guidelines: detector initialization, long gain-stabilization monitoring and imposing transients by applying abrupt changes in operation conditions. Using THWELL and RPWELL detectors, we validated the proposed methodology by assessing a charging-up/charging-down model describing the governing processes of gain stabilization. The results provide a deeper insight into these processes, reflected by different transients upon abrupt variations of detector gain or the irradiation rate. This methodology provides a handle for future investigations of the involved physics phenomena in MPGD detectors comprising insulating components.

  10. A novel segmented-scintillator antineutrino detector

    Science.gov (United States)

    Abreu, Y.; Amhis, Y.; Arnold, L.; Ban, G.; Beaumont, W.; Bongrand, M.; Boursette, D.; Buhour, J. M.; Castle, B. C.; Clark, K.; Coupé, B.; Cucoanes, A. S.; Cussans, D.; De Roeck, A.; D'Hondt, J.; Durand, D.; Fallot, M.; Fresneau, S.; Ghys, L.; Giot, L.; Guillon, B.; Guilloux, G.; Ihantola, S.; Janssen, X.; Kalcheva, S.; Kalousis, L. N.; Koonen, E.; Labare, M.; Lehaut, G.; Mermans, J.; Michiels, I.; Moortgat, C.; Newbold, D.; Park, J.; Petridis, K.; Piñera, I.; Pommery, G.; Popescu, L.; Pronost, G.; Rademacker, J.; Reynolds, A.; Ryckbosch, D.; Ryder, N.; Saunders, D.; Shitov, Yu. A.; Schune, M.-H.; Scovell, P. R.; Simard, L.; Vacheret, A.; Van Dyck, S.; Van Mulders, P.; van Remortel, N.; Vercaemer, S.; Waldron, A.; Weber, A.; Yermia, F.

    2017-04-01

    The next generation of very-short-baseline reactor experiments will require compact detectors operating at surface level and close to a nuclear reactor. This paper presents a new detector concept based on a composite solid scintillator technology. The detector target uses cubes of polyvinyltoluene interleaved with 6LiF:ZnS(Ag) phosphor screens to detect the products of the inverse beta decay reaction. A multi-tonne detector system built from these individual cells can provide precise localisation of scintillation signals, making efficient use of the detector volume. Monte Carlo simulations indicate that a neutron capture efficiency of over 70 % is achievable with a sufficient number of 6LiF:ZnS(Ag) screens per cube and that an appropriate segmentation enables a measurement of the positron energy which is not limited by γ-ray leakage. First measurements of a single cell indicate that a very good neutron-gamma discrimination and high neutron detection efficiency can be obtained with adequate triggering techniques. The light yield from positron signals has been measured, showing that an energy resolution of 14%/√E(MeV) is achievable with high uniformity. A preliminary neutrino signal analysis has been developed, using selection criteria for pulse shape, energy, time structure and energy spatial distribution and showing that an antineutrino efficiency of 40% can be achieved. It also shows that the fine segmentation of the detector can be used to significantly decrease both correlated and accidental backgrounds.

  11. A Portable Classroom Cosmic Ray Detector

    Science.gov (United States)

    Matis, Howard

    2012-03-01

    Normally, one has to work at an accelerator to demonstrate the principles of particle physics. We have developed a portable cosmic ray detector, the Berkeley Lab Detector, that can bring high energy physics experimentation into the classroom. The detector, which is powered by either batteries or AC power, consists of two scintillator paddles with a printed circuit board. The printed circuit board takes the analog signals from the paddles, compares them, and determines whether the pulses arrived at the same time. It has a visual display and a computer output. The output is compatible with commonly found probes in high schools and colleges. A bright high school student can assemble it. Teachers and students have used a working detector on six of the world's continents. These activities have included cross country trips, science projects, and classroom demonstrations. A complete description can be found at the web site: cosmic.lbl.gov. Besides, basic particle physics, the detector can be used to teach statistics and also to provide an opportunity where students have to determine how much data are taken. In this presentation, we will demonstrate the detector and describe some of the projects that teachers and students have completed with it.

  12. Multi-spectrozonal detectors for temporal-resolved SR experiments

    CERN Document Server

    Fedotov, M G

    2001-01-01

    This paper considers the structure of the special integrating-mode X-ray detectors allowing the division of the range of their working energies into a few relatively independent sub-ranges. The recording of signals for all sub-ranges is carried out simultaneously (during one bunch passing in the SR source) and from the same area of the detector. It is expected that the application of such detectors for the studies of short-time processes will permit estimation of the variation of the spectrum of the recorded radiation, which violently simplifies the interpretation of the results.

  13. Tracking and Alignment Performance of the LHCb silicon detectors

    OpenAIRE

    Borghi, Silvia

    2011-01-01

    The LHCb experiment is primarily dedicated to the study of new physics through the heavy flavour decays. The tracking system of LHCb is composed of a silicon micro-strip vertex detector, two silicon strip tracker detectors and straw-tube drift chambers in front of and behind a dipole generating a magnetic field. This system provides precise measure of the vertex position and high momentum resolution. The performances of the silicon tracking subdetectors in terms of hit resolution and detector...

  14. Introduction to powering schemes for the CLIC detectors

    CERN Document Server

    Blanchot, G

    2011-01-01

    The CLIC detector designs together with the CLIC beam properties impose strong constraints in terms of power distribution for the front-end electronics. The definition of periodic active and idle times in the detector operation allows implementing a pulsed powering scheme that will result in a significant reduction of dissipated power. This note provides an introduction to the different power pulsing schemes applicable to the CLIC detectors electronics.

  15. ATLAS muon detector

    CERN Multimedia

    Muon detectors from the outer layer of the ATLAS experiment at the Large Hadron Collider. Over a million individual detectors combine to make up the outer layer of ATLAS. All of this is exclusively to track the muons, the only detectable particles to make it out so far from the collision point. How the muon’s path curves in the magnetic field depends on how fast it is travelling. A fast muon curves only a very little, a slower one curves a lot. Together with the calorimeters, the muon detectors play an essential role in deciding which collisions to store and which to ignore. Certain signals from muons are a sure sign of exciting discoveries. To make sure the data from these collisions is not lost, some of the muon detectors react very quickly and trigger the electronics to record. The other detectors take a little longer, but are much more precise. Their job is to measure exactly where the muons have passed, calculating the curvature of their tracks in the magnetic field to the nearest five hundredths of a ...

  16. Detectors in Extreme Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Blaj, G. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Carini, G. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Carron, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Haller, G. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hart, P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hasi, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Herrmann, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Kenney, C. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Segal, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Tomada, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-06

    Free Electron Lasers opened a new window on imaging the motion of atoms and molecules. At SLAC, FEL experiments are performed at LCLS using 120Hz pulses with 1012 - 1013 photons in 10 femtoseconds (billions of times brighter than the most powerful synchrotrons). This extreme detection environment raises unique challenges, from obvious to surprising. Radiation damage is a constant threat due to accidental exposure to insufficiently attenuated beam, focused beam and formation of ice crystals reflecting the beam onto the detector. Often high power optical lasers are also used (e.g., 25TW), increasing the risk of damage or impeding data acquisition through electromagnetic pulses (EMP). The sample can contaminate the detector surface or even produce shrapnel damage. Some experiments require ultra high vacuum (UHV) with strict design, surface contamination and cooling requirements - also for detectors. The setup is often changed between or during experiments with short turnaround times, risking mechanical and ESD damage, requiring work planning, training of operators and sometimes continuous participation of the LCLS Detector Group in the experiments. The detectors used most often at LCLS are CSPAD cameras for hard x-rays and pnCCDs for soft x-rays.

  17. Experimental measurement-device-independent quantum digital signatures over a metropolitan network

    Science.gov (United States)

    Yin, Hua-Lei; Wang, Wei-Long; Tang, Yan-Lin; Zhao, Qi; Liu, Hui; Sun, Xiang-Xiang; Zhang, Wei-Jun; Li, Hao; Puthoor, Ittoop Vergheese; You, Li-Xing; Andersson, Erika; Wang, Zhen; Liu, Yang; Jiang, Xiao; Ma, Xiongfeng; Zhang, Qiang; Curty, Marcos; Chen, Teng-Yun; Pan, Jian-Wei

    2017-04-01

    Quantum digital signatures (QDSs) provide a means for signing electronic communications with information-theoretic security. However, all previous demonstrations of quantum digital signatures assume trusted measurement devices. This renders them vulnerable against detector side-channel attacks, just like quantum key distribution. Here we exploit a measurement-device-independent (MDI) quantum network, over a metropolitan area, to perform a field test of a three-party MDI QDS scheme that is secure against any detector side-channel attack. In so doing, we are able to successfully sign a binary message with a security level of about 10-7. Remarkably, our work demonstrates the feasibility of MDI QDSs for practical applications.

  18. Tuneable Current Mode RMS Detector

    Science.gov (United States)

    Petrović, Predrag B.

    2015-01-01

    A new realization of RMS detector, employing two CCCIIs (controlled current conveyors), metal-oxide-semiconductor transistors and single grounded capacitor is present in this paper, without any external resistors and components matching requirements. The proposed circuit can be applied in measuring the RMS value of periodic, band-limited signals. The proposed circuit is very appropriate to further develop into integrated circuits. The errors related to the signal processing and errors bound were investigated and provided. To verify the theoretical analysis, the circuit PSpice simulations have also been included, showing good agreement with the theory.

  19. Neutron and X-ray Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Carini, Gabriella [SLAC National Accelerator Lab., Menlo Park, CA (United States); Denes, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gruener, Sol [Cornell Univ., Ithaca, NY (United States); Lessner, Elianne [Dept. of Energy (DOE), Washington DC (United States). Office of Science Office of Basic Energy Sciences

    2012-08-01

    work flows: Standardize the format of metadata that accompanies detector data and describes the experimental setup and conditions. Develop a standardized user interface and software framework for analysis and data management. The diversity of detector improvements required is necessarily as broad as the range of scientific experimentation at BES facilities. This workshop identified a variety of avenues by which detector R&D can enable enhanced science at BES facilities. The Research Directions listed above will be addressed by focused R&D and detector engineering, both of which require specialized infrastructure and skills. While U.S. leadership in neutron and X-ray detectors lags behind other countries in several areas, significant talent exists across the complex. A forum of technical experts, facilities management, and BES could be a venue to provide further definition.

  20. Improving the gas gain monitoring system in multiwire proportional chambers for MUON detector of LHCb experiment.

    CERN Document Server

    Ruvinskaia, Ekaterina

    2016-01-01

    The gas gain monitoring system in multi-wire proportional chambers for MUON detector of LHCb has been constructed and commissioned. It includes an online- monitoring, tools for analysis the archived data and an alarm system on the quality of the gas mixture. Finally, it will be implemented in the main ECS of LHCb for MUON detector and as a part of safety system of LHCb as a permanent online monitor of the quality of the gas mixture in MWPCs. The main advantage of this setup is a monitoring of Gas Gain (GG) in MWPCs with radioactive sources independently from the presence of beam at LHC. It also provides an option for prompt reaction in case of a problem with the gas.

  1. High precision detector robot arm system

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Deming; Chu, Yong

    2017-01-31

    A method and high precision robot arm system are provided, for example, for X-ray nanodiffraction with an X-ray nanoprobe. The robot arm system includes duo-vertical-stages and a kinematic linkage system. A two-dimensional (2D) vertical plane ultra-precision robot arm supporting an X-ray detector provides positioning and manipulating of the X-ray detector. A vertical support for the 2D vertical plane robot arm includes spaced apart rails respectively engaging a first bearing structure and a second bearing structure carried by the 2D vertical plane robot arm.

  2. Real-time verification of HDR brachytherapy source location: implementation of detector redundancy

    Science.gov (United States)

    Nakano, T.; Suchowerska, N.; McKenzie, D. R.; Bilek, M. M.

    2005-01-01

    Independent treatment verification for high dose rate (HDR) brachytherapy is needed to ensure that the treatment proceeds as prescribed. In this paper, we investigate the feasibility of a proposed real-time source position verification process. This process provides immediate confirmation of the source position during the treatment, so that the treatment can be aborted and modified if necessary. We show that an array of dosimeters placed on the patient's skin can independently verify the position in three dimensions. This verification was demonstrated by using a diamond detector placed in several locations on the surface of an anthropomorphic phantom. A mathematical algorithm was constructed to estimate the location of the source given a measured data set in the presence of tissue heterogeneity. The accuracy of the source localization was found to increase with the number of detectors used to compute the estimation of the source position. The resolution to which the 12 detectors can identify the location of the source was within 3 mm.

  3. The detector system of the Daya Bay reactor neutrino experiment

    Science.gov (United States)

    An, F. P.; Bai, J. Z.; Balantekin, A. B.; Band, H. R.; Beavis, D.; Beriguete, W.; Bishai, M.; Blyth, S.; Brown, R. L.; Butorov, I.; Cao, D.; Cao, G. F.; Cao, J.; Carr, R.; Cen, W. R.; Chan, W. T.; Chan, Y. L.; Chang, J. F.; Chang, L. C.; Chang, Y.; Chasman, C.; Chen, H. Y.; Chen, H. S.; Chen, M. J.; Chen, Q. Y.; Chen, S. J.; Chen, S. M.; Chen, X. C.; Chen, X. H.; Chen, X. S.; Chen, Y. X.; Chen, Y.; Cheng, J. H.; Cheng, J.; Cheng, Y. P.; Cherwinka, J. J.; Chidzik, S.; Chow, K.; Chu, M. C.; Cummings, J. P.; de Arcos, J.; Deng, Z. Y.; Ding, X. F.; Ding, Y. Y.; Diwan, M. V.; Dong, L.; Dove, J.; Draeger, E.; Du, X. F.; Dwyer, D. A.; Edwards, W. R.; Ely, S. R.; Fang, S. D.; Fu, J. Y.; Fu, Z. W.; Ge, L. Q.; Ghazikhanian, V.; Gill, R.; Goett, J.; Gonchar, M.; Gong, G. H.; Gong, H.; Gornushkin, Y. A.; Grassi, M.; Greenler, L. S.; Gu, W. Q.; Guan, M. Y.; Guo, R. P.; Guo, X. H.; Hackenburg, R. W.; Hahn, R. L.; Han, R.; Hans, S.; He, M.; He, Q.; He, W. S.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Hinrichs, P.; Ho, T. H.; Hoff, M.; Hor, Y. K.; Hsiung, Y. B.; Hu, B. Z.; Hu, L. M.; Hu, L. J.; Hu, T.; Hu, W.; Huang, E. C.; Huang, H. Z.; Huang, H. X.; Huang, P. W.; Huang, X.; Huang, X. T.; Huber, P.; Hussain, G.; Isvan, Z.; Jaffe, D. E.; Jaffke, P.; Jen, K. L.; Jetter, S.; Ji, X. P.; Ji, X. L.; Jiang, H. J.; Jiang, W. Q.; Jiao, J. B.; Johnson, R. A.; Joseph, J.; Kang, L.; Kettell, S. H.; Kohn, S.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Lai, C. Y.; Lai, W. C.; Lai, W. H.; Langford, T. J.; Lau, K.; Lebanowski, L.; Lee, J.; Lee, M. K. P.; Lei, R. T.; Leitner, R.; Leung, J. K. C.; Lewis, C. A.; Li, B.; Li, C.; Li, D. J.; Li, F.; Li, G. S.; Li, J.; Li, N. Y.; Li, Q. J.; Li, S. F.; Li, S. C.; Li, W. D.; Li, X. B.; Li, X. N.; Li, X. Q.; Li, Y.; Li, Y. F.; Li, Z. B.; Liang, H.; Liang, J.; Lin, C. J.; Lin, G. L.; Lin, P. Y.; Lin, S. X.; Lin, S. K.; Lin, Y. C.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, B. J.; Liu, C.; Liu, D. W.; Liu, H.; Liu, J. L.; Liu, J. C.; Liu, S.; Liu, S. S.; Liu, X.; Liu, Y. B.; Lu, C.; Lu, H. Q.; Lu, J. S.; Luk, A.; Luk, K. B.; Luo, T.; Luo, X. L.; Ma, L. H.; Ma, Q. M.; Ma, X. Y.; Ma, X. B.; Ma, Y. Q.; Mayes, B.; McDonald, K. T.; McFarlane, M. C.; McKeown, R. D.; Meng, Y.; Mitchell, I.; Mohapatra, D.; Monari Kebwaro, J.; Morgan, J. E.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Newsom, C.; Ngai, H. Y.; Ngai, W. K.; Nie, Y. B.; Ning, Z.; Ochoa-Ricoux, J. P.; Olshevskiy, A.; Pagac, A.; Pan, H.-R.; Patton, S.; Pearson, C.; Pec, V.; Peng, J. C.; Piilonen, L. E.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Raper, N.; Ren, B.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Sands, W. R.; Seilhan, B.; Shao, B. B.; Shih, K.; Song, W. Y.; Steiner, H.; Stoler, P.; Stuart, M.; Sun, G. X.; Sun, J. L.; Tagg, N.; Tam, Y. H.; Tanaka, H. K.; Tang, W.; Tang, X.; Taychenachev, D.; Themann, H.; Torun, Y.; Trentalange, S.; Tsai, O.; Tsang, K. V.; Tsang, R. H. M.; Tull, C. E.; Tung, Y. C.; Viaux, N.; Viren, B.; Virostek, S.; Vorobel, V.; Wang, C. H.; Wang, L. S.; Wang, L. Y.; Wang, L. Z.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, T.; Wang, W.; Wang, W. W.; Wang, X. T.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Webber, D. M.; Wei, H. Y.; Wei, Y. D.; Wen, L. J.; Wenman, D. L.; Whisnant, K.; White, C. G.; Whitehead, L.; Whitten, C. A.; Wilhelmi, J.; Wise, T.; Wong, H. C.; Wong, H. L. H.; Wong, J.; Wong, S. C. F.; Worcester, E.; Wu, F. F.; Wu, Q.; Xia, D. M.; Xia, J. K.; Xiang, S. T.; Xiao, Q.; Xing, Z. Z.; Xu, G.; Xu, J. Y.; Xu, J. L.; Xu, J.; Xu, W.; Xu, Y.; Xue, T.; Yan, J.; Yang, C. G.; Yang, L.; Yang, M. S.; Yang, M. T.; Ye, M.; Yeh, M.; Yeh, Y. S.; Yip, K.; Young, B. L.; Yu, G. Y.; Yu, Z. Y.; Zeng, S.; Zhan, L.; Zhang, C.; Zhang, F. H.; Zhang, H. H.; Zhang, J. W.; Zhang, K.; Zhang, Q. X.; Zhang, Q. M.; Zhang, S. H.; Zhang, X. T.; Zhang, Y. C.; Zhang, Y. H.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Y. M.; Zhang, Z. J.; Zhang, Z. Y.; Zhang, Z. P.; Zhao, J.; Zhao, Q. W.; Zhao, Y. F.; Zhao, Y. B.; Zheng, L.; Zhong, W. L.; Zhou, L.; Zhou, N.; Zhou, Z. Y.; Zhuang, H. L.; Zimmerman, S.; Zou, J. H.

    2016-03-01

    The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of νbare oscillations over km-baselines. Subsequent data has provided the world's most precise measurement of sin2 2θ13 and the effective mass splitting Δ mee2. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world's most prolific sources of electron antineutrinos. Multiple antineutrino detectors are deployed in three underground water pools at different distances from the reactor cores to search for deviations in the antineutrino rate and energy spectrum due to neutrino mixing. Instrumented with photomultiplier tubes, the water pools serve as shielding against natural radioactivity from the surrounding rock and provide efficient muon tagging. Arrays of resistive plate chambers over the top of each pool provide additional muon detection. The antineutrino detectors were specifically designed for measurements of the antineutrino flux with minimal systematic uncertainty. Relative detector efficiencies between the near and far detectors are known to better than 0.2%. With the unblinding of the final two detectors' baselines and target masses, a complete description and comparison of the eight antineutrino detectors can now be presented. This paper describes the Daya Bay detector systems, consisting of eight antineutrino detectors in three instrumented water pools in three underground halls, and their operation through the first year of eight detector data-taking.

  4. The LHCb Detector Upgrade

    CERN Document Server

    Schindler, H

    2013-01-01

    The LHCb collaboration presented a Letter of Intent (LOI) to the LHCC in March 2011 for a major upgrading of the detector during Long Shutdown 2 (2018) and intends to collect a data sample of 50/fb in the LHC and High-Luminosity-LHC eras. The aim is to operate the experiment at an instantaneous luminosity 2.5 times above the present operational luminosity, which has already been pushed to twice the design value. Reading out the detector at 40MHz allows to increase the trigger efficiencies especially for the hadronic decay modes. The physics case and the strategy for the upgrade have been endorsed by the LHCC. This paper presents briefly the physics motivations for the LHCb upgrade and the proposed changes to the detector and trigger.

  5. Cryogenic Tracking Detectors

    CERN Multimedia

    Luukka, P R; Tuominen, E M; Mikuz, M

    2002-01-01

    The recent advances in Si and diamond detector technology give hope of a simple solution to the radiation hardness problem for vertex trackers at the LHC. In particular, we have recently demonstrated that operating a heavily irradiated Si detector at liquid nitrogen (LN$_2$) temperature results in significant recovery of Charge Collection Efficiency (CCE). Among other potential benefits of operation at cryogenic temperatures are the use of large low-resistivity wafers, simple processing, higher and faster electrical signal because of higher mobility and drift velocity of carriers, and lower noise of the readout circuit. A substantial reduction in sensor cost could result The first goal of the approved extension of the RD39 program is to demonstrate that irradiation at low temperature in situ during operation does not affect the results obtained so far by cooling detectors which were irradiated at room temperature. In particular we shall concentrate on processes and materials that could significantly reduce th...

  6. Transition Radiation Detectors

    CERN Document Server

    Andronic, A

    2012-01-01

    We review the basic features of transition radiation and how they are used for the design of modern Transition Radiation Detectors (TRD). The discussion will include the various realizations of radiators as well as a discussion of the detection media and aspects of detector construction. With regard to particle identification we assess the different methods for efficient discrimination of different particles and outline the methods for the quantification of this property. Since a number of comprehensive reviews already exist, we predominantly focus on the detectors currently operated at the LHC. To a lesser extent we also cover some other TRDs, which are planned or are currently being operated in balloon or space-borne astro-particle physics experiments.

  7. Refining Radchem Detectors: Iridium

    Science.gov (United States)

    Arnold, C. W.; Bredeweg, T. A.; Vieira, D. J.; Bond, E. M.; Jandel, M.; Rusev, G.; Moody, W. A.; Ullmann, J. L.; Couture, A. J.; Mosby, S.; O'Donnell, J. M.; Haight, R. C.

    2013-10-01

    Accurate determination of neutron fluence is an important diagnostic of nuclear device performance, whether the device is a commercial reactor, a critical assembly or an explosive device. One important method for neutron fluence determination, generally referred to as dosimetry, is based on exploiting various threshold reactions of elements such as iridium. It is possible to infer details about the integrated neutron energy spectrum to which the dosimetry sample or ``radiochemical detector'' was exposed by measuring specific activation products post-irradiation. The ability of radchem detectors like iridium to give accurate neutron fluence measurements is limited by the precision of the cross-sections in the production/destruction network (189Ir-193Ir). The Detector for Advanced Neutron Capture Experiments (DANCE) located at LANSCE is ideal for refining neutron capture cross sections of iridium isotopes. Recent results from a measurement of neutron capture on 193-Ir are promising. Plans to measure other iridium isotopes are underway.

  8. JSATS Detector Field Manual

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eric Y. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Flory, Adam E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lamarche, Brian L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weiland, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-06-01

    The Juvenile Salmon Acoustic Telemetry System (JSATS) Detector is a software and hardware system that captures JSATS Acoustic Micro Transmitter (AMT) signals. The system uses hydrophones to capture acoustic signals in the water. This analog signal is then amplified and processed by the Analog to Digital Converter (ADC) and Digital Signal Processor (DSP) board in the computer. This board digitizes and processes the acoustic signal to determine if a possible JSATS tag is present. With this detection, the data will be saved to the computer for further analysis. This document details the features and functionality of the JSATS Detector software. The document covers how to install the software, setup and run the detector software. The document will also go over the raw binary waveform file format and CSV files containing RMS values

  9. Are Independent Fiscal Institutions Really Independent?

    Directory of Open Access Journals (Sweden)

    Slawomir Franek

    2015-08-01

    Full Text Available In the last decade the number of independent fiscal institutions (known also as fiscal councils has tripled. They play an important oversight role over fiscal policy-making in democratic societies, especially as they seek to restore public finance stability in the wake of the recent financial crisis. Although common functions of such institutions include a role in analysis of fiscal policy, forecasting, monitoring compliance with fiscal rules or costing of spending proposals, their roles, resources and structures vary considerably across countries. The aim of the article is to determine the degree of independence of such institutions based on the analysis of the independence index of independent fiscal institutions. The analysis of this index values may be useful to determine the relations between the degree of independence of fiscal councils and fiscal performance of particular countries. The data used to calculate the index values will be derived from European Commission and IMF, which collect sets of information about characteristics of activity of fiscal councils.

  10. Intelligent Detector Design

    Energy Technology Data Exchange (ETDEWEB)

    Graf, N.; Cassell, R.; Johnson, T.; McCormick, J.; /SLAC; Magill, S.; Kuhlmann, S.; /Argonne

    2007-02-13

    At a future e+e- linear collider, precision measurements of jets will be required in order to understand physics at and beyond the electroweak scale. Calorimetry will be used with other detectors in an optimal way to reconstruct particle 4-vectors with unprecedented precision. This Particle Flow Algorithm (PFA) approach is seen as the best way to achieve particle mass resolutions from dijet measurements in the range of {approx} 30%/{radical}E, resulting in innovative methods for choosing the calorimeter technology and optimizing the detector design.

  11. Semiconductor neutron detector

    Science.gov (United States)

    Ianakiev, Kiril D [Los Alamos, NM; Littlewood, Peter B [Cambridge, GB; Blagoev, Krastan B [Arlington, VA; Swinhoe, Martyn T [Los Alamos, NM; Smith, James L [Los Alamos, NM; Sullivan, Clair J [Los Alamos, NM; Alexandrov, Boian S [Los Alamos, NM; Lashley, Jason Charles [Santa Fe, NM

    2011-03-08

    A neutron detector has a compound of lithium in a single crystal form as a neutron sensor element. The lithium compound, containing improved charge transport properties, is either lithium niobate or lithium tantalate. The sensor element is in direct contact with a monitor that detects an electric current. A signal proportional to the electric current is produced and is calibrated to indicate the neutrons sensed. The neutron detector is particularly useful for detecting neutrons in a radiation environment. Such radiation environment may, e.g. include gamma radiation and noise.

  12. Edgeless silicon pad detectors

    Energy Technology Data Exchange (ETDEWEB)

    Perea Solano, B. [CERN, CH-1211 Geneva 23 (Switzerland)]. E-mail: blanca.perea.solano@cern.ch; Abreu, M.C. [LIP and University of Algarve, 8000 Faro (Portugal); Avati, V. [CERN, CH-1211 Geneva 23 (Switzerland); Boccali, T. [INFN Sez. di Pisa and Scuola Normale Superiore, Pisa (Italy); Boccone, V. [INFN Sez. di Genova and Universita di Genova, Genoa (Italy); Bozzo, M. [INFN Sez. di Genova and Universita di Genova, Genoa (Italy); Capra, R. [INFN Sez. di Genova and Universita di Genova, Genoa (Italy); Casagrande, L. [INFN Sez. di Roma 2 and Universita di Roma 2, Rome (Italy); Chen, W. [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Eggert, K. [CERN, CH-1211 Geneva 23 (Switzerland); Heijne, E. [CERN, CH-1211 Geneva 23 (Switzerland); Klauke, S. [CERN, CH-1211 Geneva 23 (Switzerland); Li, Z. [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Maeki, T. [Helsinki Institute of Physics, Helsinki (Finland); Mirabito, L. [CERN, CH-1211 Geneva 23 (Switzerland); Morelli, A. [INFN Sez. di Genova and Universita di Genova, Genoa (Italy); Niinikoski, T.O. [CERN, CH-1211 Geneva 23 (Switzerland); Oljemark, F. [Helsinki Institute of Physics, Helsinki (Finland); Palmieri, V.G. [Helsinki Institute of Physics, Helsinki (Finland); Rato Mendes, P. [LIP and University of Algarve, 8000 Faro (Portugal); Rodrigues, S. [LIP and University of Algarve, 8000 Faro (Portugal); Siegrist, P. [CERN, CH-1211 Geneva 23 (Switzerland); Silvestris, L. [INFN Sez. Di Bari, Bari (Italy); Sousa, P. [LIP and University of Algarve, 8000 Faro (Portugal); Tapprogge, S. [Helsinki Institute of Physics, Helsinki (Finland); Trocme, B. [Institut de Physique Nucleaire, Villeurbanne (France)

    2006-05-01

    We report measurements in a high-energy pion beam of the sensitivity of the edge region in 'edgeless' planar silicon pad diode detectors diced through their contact implants. A large surface current on such an edge prevents the normal reverse biasing of the device, but the current can be sufficiently reduced by the use of a suitable cutting method, followed by edge treatment, and by operating the detector at low temperature. The depth of the dead layer at the diced edge is measured to be (12.5{+-}8{sub stat.}.{+-}6{sub syst.}) {mu}m.

  13. Edgeless silicon pad detectors

    Science.gov (United States)

    Perea Solano, B.; Abreu, M. C.; Avati, V.; Boccali, T.; Boccone, V.; Bozzo, M.; Capra, R.; Casagrande, L.; Chen, W.; Eggert, K.; Heijne, E.; Klauke, S.; Li, Z.; Mäki, T.; Mirabito, L.; Morelli, A.; Niinikoski, T. O.; Oljemark, F.; Palmieri, V. G.; Rato Mendes, P.; Rodrigues, S.; Siegrist, P.; Silvestris, L.; Sousa, P.; Tapprogge, S.; Trocmé, B.

    2006-05-01

    We report measurements in a high-energy pion beam of the sensitivity of the edge region in "edgeless" planar silicon pad diode detectors diced through their contact implants. A large surface current on such an edge prevents the normal reverse biasing of the device, but the current can be sufficiently reduced by the use of a suitable cutting method, followed by edge treatment, and by operating the detector at low temperature. The depth of the dead layer at the diced edge is measured to be (12.5±8 stat..±6 syst.) μm.

  14. The Upgraded D0 detector

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, D.L.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahmed, S.N.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G.A.; Anastasoaie, M.; Andeen, T.; Anderson, J.T.; Anderson, S.; /Buenos Aires U. /Rio de Janeiro, CBPF /Sao Paulo, IFT /Alberta U.

    2005-07-01

    The D0 experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid-argon calorimeters and central muon detector, remaining from Run I, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to D0.

  15. Reducing the radiation dose during excretory urography: flat-panel silicon x-ray detector versus computed radiography.

    Science.gov (United States)

    Zähringer, M; Hesselmann, V; Schulte, O; Kamm, K F; Braun, W; Haupt, G; Krug, B; Lackner, K

    2003-10-01

    The purpose of the study was to examine the possibilities for reducing radiation exposure in uroradiology using digital flat-panel silicon X-ray detector radiography. We compared the subjectively determined image quality of abdominal radiographs and urograms obtained on a digital flat-panel detector radiography system with those obtained on a computed radiography system. SUBJECTS AND METHODS. Fifty patients who had a clinical indication for urography underwent unenhanced abdominal imaging that was alternately performed using flat-panel silicon X-ray detector radiography or computed radiography. For patients who required a second radiograph with contrast medium, the examination modality was changed to avoid exposing the patients to excess radiation. The images obtained on flat-panel X-ray detector radiography were obtained at half the radiation dose of the images obtained on computed radiography (800 speed vs 400 speed). The resulting 50 pairs of images were interpreted by four independent observers who rated the detectability of structures of bone and the efferent urinary tract relevant to diagnosis and compared the image quality. At half the radiation dose, digital flat-panel X-ray detector radiography provided equivalent image quality of the liver and spleen, lumbar vertebrae 2 and 5, pelvis, and psoas margin on abdominal radiographs. The image quality obtained with digital flat-panel X-ray detector radiography of the kidneys, the hollow cavities of the upper efferent urinary tract, and the urinary bladder was judged to be statistically better than those obtained with computed radiography. With half the exposure dose of computed radiography, the flat-panel X-ray detector produced urograms with an image quality equivalent to or better than computed radiography.

  16. The slip-and-slide algorithm: a refinement protocol for detector geometry.

    Science.gov (United States)

    Ginn, Helen Mary; Stuart, David Ian

    2017-11-01

    Geometry correction is traditionally plagued by mis-fitting of correlated parameters, leading to local minima which prevent further improvements. Segmented detectors pose an enhanced risk of mis-fitting: even a minor confusion of detector distance and panel separation can prevent improvement in data quality. The slip-and-slide algorithm breaks down effects of the correlated parameters and their associated target functions in a fundamental shift in the approach to the problem. Parameters are never refined against the components of the data to which they are insensitive, providing a dramatic boost in the exploitation of information from a very small number of diffraction patterns. This algorithm can be applied to exploit the adherence of the spot-finding results prior to indexing to a given lattice using unit-cell dimensions as a restraint. Alternatively, it can be applied to the predicted spot locations and the observed reflection positions after indexing from a smaller number of images. Thus, the indexing rate can be boosted by 5.8% using geometry refinement from only 125 indexed patterns or 500 unindexed patterns. In one example of cypovirus type 17 polyhedrin diffraction at the Linac Coherent Light Source, this geometry refinement reveals a detector tilt of 0.3° (resulting in a maximal Z-axis error of ∼0.5 mm from an average detector distance of ∼90 mm) whilst treating all panels independently. Re-indexing and integrating with updated detector geometry reduces systematic errors providing a boost in anomalous signal of sulfur atoms by 20%. Due to the refinement of decoupled parameters, this geometry method also reaches convergence.

  17. Towards a Total Cross Section Measurement with the ALFA Detector at ATLAS

    CERN Document Server

    Trzebiński, Maciej

    2013-01-01

    The main goals of the Absolute Luminosity For ATLAS (ALFA) detector is to provide an absolute luminosity and total cross section measurement. The measurement method used, the detector alignment and the quality of the collected data are discussed.

  18. Measurement of the total cross section with ALFA Detector at ATLAS

    CERN Document Server

    Trzebinski, M; The ATLAS collaboration

    2017-01-01

    The main goals of the Absolute Luminosity For ATLAS (ALFA) detector is to provide an absolute luminosity and total cross section measurement. The measurement method used, the detector alignment and the quality of the collected data are discussed.

  19. Novel Front-end Electronics for Time Projection Chamber Detectors

    CERN Document Server

    García García, Eduardo José

    This work has been carried out in the European Organization for Nuclear Research (CERN) and it was supported by the European Union as part of the research and development towards the European detector the (EUDET) project, specifically for the International Linear Collider (ILC). In particle physics there are several different categories of particle detectors. The presented design is focused on a particular kind of tracking detector called Time Projection Chamber (TPC). The TPC provides a three dimensional image of electrically charged particles crossing a gaseous volume. The thesis includes a study of the requirements for future TPC detectors summarizing the parameters that the front-end readout electronics must fulfill. In addition, these requirements are compared with respect to the readouts used in existing TPC detectors. It is concluded that none of the existing front-end readout designs fulfill the stringent requirements. The main requirements for future TPC detectors are high integration, an increased n...

  20. Online calibrations and performance of the ATLAS Pixel Detector

    CERN Document Server

    Keil, M; The ATLAS collaboration

    2010-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN. It consists of 1744 silicon sensors equipped with approximately 80 M electronic channels, providing typically three measurement points with high resolution for particles emerging from the beam-interaction region, thus allowing measuring particle tracks and secondary vertices with very high precision. The readout system of the Pixel Detector is based on a bi-directional optical data transmission system between the detector and the data acquisition system with an individual link for each of the 1744 modules. Signal conversion components are located on both ends, approximately 80 m apart. The talk will give an overview of the calibration and performance of both the detector and its optical readout. The most basic parameter to be tuned and calibrated for the detector electronics is the readout threshold of the individual pixel channels. These need to be carefully tuned to optimise position resolution a...

  1. Silicon Technologies for the CLIC Vertex Detector

    CERN Document Server

    Spannagel, Simon

    2017-01-01

    CLIC is a proposed linear e$^+$e$^−$ collider designed to provide particle collisions at center-of-mass energies of up to 3 TeV. Precise measurements of the properties of the top quark and the Higgs boson, as well as searches for Beyond the Standard Model physics require a highly performant CLIC detector. In particular the vertex detector must provide a single point resolution of only a few micrometers while not exceeding the envisaged material budget of around 0.2%$~X_0$ per layer. Beam-beam interactions and beamstrahlung processes impose an additional requirement on the timestamping capabilities of the vertex detector of about 10 ns. These goals can only be met by using novel techniques in the sensor and ASIC design as well as in the detector construction. The R&D program for the CLIC vertex detector explores various technologies in order to meet these demands. The feasibility of planar sensors with a thickness of 50–150$~\\mu$m, including different active edge designs, are evaluated using Timepix3 A...

  2. Central Bank independence

    Directory of Open Access Journals (Sweden)

    Vasile DEDU

    2012-08-01

    Full Text Available In this paper we present the key aspects regarding central bank’s independence. Most economists consider that the factor which positively influences the efficiency of monetary policy measures is the high independence of the central bank. We determined that the National Bank of Romania (NBR has a high degree of independence. NBR has both goal and instrument independence. We also consider that the hike of NBR’s independence played an important role in the significant disinflation process, as headline inflation dropped inside the targeted band of 3% ± 1 percentage point recently.

  3. Performance of the Muon Identification with the Atlas Detector in 2010 LHC pp Collision Data

    CERN Document Server

    Le Menedeu, E; The ATLAS collaboration; Castaneda-Miranda, E; Colon, G; Kessoku, K; Liu, J; Liu, L; Mountricha, E; Ottersbach, J P; Ruckstuhl, N M; Schmieden, K; Van der Poel, E; Vanadia, M

    2011-01-01

    Measurements of the muon reconstruction efficiency and misidentification rate as well as the muon momentum resolution have been carried out with collision data at √s = 7 TeV recorded by the ATLAS experiment in 2010. The muon efficiency is determined with dimuon decays of J/ψ mesons and Z bosons. The momentum resolution is extracted from the width of the dimuon mass distribution in Z → µµ decays and the comparison of the independent measurements of muons from Z → µµ and W → µν decays provided by the ATLAS tracking systems, the inner detector and the muon spectrometer.

  4. Photovoltaic radiation detector element

    Science.gov (United States)

    Agouridis, D.C.

    1980-12-17

    A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein in the edge of which closely approaches but is spaced from the current collector strips.

  5. Electromagnetic radiation detector

    Science.gov (United States)

    Benson, Jay L.; Hansen, Gordon J.

    1976-01-01

    An electromagnetic radiation detector including a collimating window, a cathode member having a photoelectric emissive material surface angularly disposed to said window whereby radiation is impinged thereon at acute angles, an anode, separated from the cathode member by an evacuated space, for collecting photoelectrons emitted from the emissive cathode surface, and a negatively biased, high transmissive grid disposed between the cathode member and anode.

  6. MUON DETECTORS: RPC

    CERN Multimedia

    P. Paolucci

    2012-01-01

    The RPC system is operating with a very high uptime, an average chamber efficiency of about 95% and an average cluster size around 1.8. The average number of active channels is 97.7%. Eight chambers are disconnected and forty are working in single-gap mode due to high-voltage problems. The total luminosity lost due to RPCs in 2012 is 88.46 pb–1. One of the main goals of 2012 was to improve the stability of the endcap trigger that is strongly correlated to the performances of the detector, due to the 3-out-3 trigger logic. At beginning of 2011 the instability of the detector efficiency was about 10%. Detailed studies found that this was mainly due to the strong correlation between the performance of the detector and the atmospheric pressure (P). Figure XXY shows the linear correlation between the average cluster size of the endcap chamber versus P. This effect is expected for gaseous detectors and can be reduced by correcting the applied high-voltage working point (HVapp) according to the followi...

  7. Performance of GLD detector

    Indian Academy of Sciences (India)

    Most of the important physics processes to be studied in the international linear collider (ILC) experiment have multi-jets in the final state. In order to achieve better jet energy resolution, the so-called particle flow algorithm (PFA) will be employed and there is a general consensus that PFA derives overall ILC detector design.

  8. Directional gamma detector

    Science.gov (United States)

    LeVert, Francis E.; Cox, Samson A.

    1981-01-01

    An improved directional gamma radiation detector has a collector sandwiched etween two layers of insulation of varying thicknesses. The collector and insulation layers are contained within an evacuated casing, or emitter, which releases electrons upon exposure to gamma radiation. Delayed electrons and electrons entering the collector at oblique angles are attenuated as they pass through the insulation layers on route to the collector.

  9. Ionic smoke detectors

    CERN Document Server

    2002-01-01

    Ionic smoke detectors are products incorporating radioactive material. This article summarises the process for their commercialization and marketing, and how the activity is controlled, according to regulations establishing strict design and production requisites to guarantee the absence of radiological risk associated both with their use and their final handling as conventional waste. (Author)

  10. Choosing a Motion Detector.

    Science.gov (United States)

    Ballard, David M.

    1990-01-01

    Examines the characteristics of three types of motion detectors: Doppler radar, infrared, and ultrasonic wave, and how they are used on school buses to prevent students from being killed by their own school bus. Other safety devices cited are bus crossing arms and a camera monitor system. (MLF)

  11. ALICE Silicon Pixel Detector

    CERN Multimedia

    Manzari, V

    2013-01-01

    The Silicon Pixel Detector (SPD) forms the innermost two layers of the 6-layer barrel Inner Tracking System (ITS). The SPD plays a key role in the determination of the position of the primary collision and in the reconstruction of the secondary vertices from particle decays.

  12. Superconducting Single Photon Detectors

    NARCIS (Netherlands)

    Dorenbos, S.N.

    2011-01-01

    This thesis is about the development of a detector for single photons, particles of light. New techniques are being developed that require high performance single photon detection, such as quantum cryptography, single molecule detection, optical radar, ballistic imaging, circuit testing and

  13. The BABAR Detector

    Energy Technology Data Exchange (ETDEWEB)

    Luth, Vera G

    2001-05-18

    BABAR, the detector for the SLAC PEP-II asymmetric e{sup +}e{sup -} B Factory operating at the {Upsilon}(4S) resonance, was designed to allow comprehensive studies of CP-violation in B-meson decays. Charged particle tracks are measured in a multi-layer silicon vertex tracker surrounded by a cylindrical wire drift chamber. Electromagentic showers from electrons and photons are detected in an array of CsI crystals located just inside the solenoidal coil of a superconducting magnet. Muons and neutral hadrons are identified by arrays of resistive plate chambers inserted into gaps in the steel flux return of the magnet. Charged hadrons are identified by dE/dx measurements in the tracking detectors and in a ring-imaging Cherenkov detector surrounding the drift chamber. The trigger, data acquisition and data-monitoring systems, VME- and network-based, are controlled by custom-designed online software. Details of the layout and performance of the detector components and their associated electronics and software are presented.

  14. Gaseous wire detectors

    Energy Technology Data Exchange (ETDEWEB)

    Va' vra, J.

    1997-08-01

    This article represents a series of three lectures describing topics needed to understand the design of typical gaseous wire detectors used in large high energy physics experiments; including the electrostatic design, drift of electrons in the electric and magnetic field, the avalanche, signal creation, limits on the position accuracy as well as some problems one encounters in practical operations.

  15. Pixel detector insertion

    CERN Multimedia

    CMS

    2015-01-01

    Insertion of the Pixel Tracker, the 66-million-channel device used to pinpoint the vertex of each colliding proton pair, located at the heart of the detector. The geometry of CMS is a cylinder lying on its side (22 meters long and 15 meters high in dia

  16. First ALICE detectors installed!

    CERN Multimedia

    2006-01-01

    Detectors to track down penetrating muon particles are the first to be placed in their final position in the ALICE cavern. The Alice muon spectrometer: in the foreground the trigger chamber is positioned in front of the muon wall, with the dipole magnet in the background. After the impressive transport of its dipole magnet, ALICE has begun to fill the spectrometer with detectors. In mid-July, the ALICE muon spectrometer team achieved important milestones with the installation of the trigger and the tracking chambers of the muon spectrometer. They are the first detectors to be installed in their final position in the cavern. All of the eight half planes of the RPCs (resistive plate chambers) have been installed in their final position behind the muon filter. The role of the trigger detector is to select events containing a muon pair coming, for instance, from the decay of J/ or Y resonances. The selection is made on the transverse momentum of the two individual muons. The internal parts of the RPCs, made o...

  17. The CLIC Vertex Detector

    CERN Document Server

    Dannheim, D

    2015-01-01

    The precision physics needs at TeV-scale linear electron-positron colliders (ILC and CLIC) require a vertex-detector system with excellent flavour-tagging capabilities through a meas- urement of displaced vertices. This is essential, for example, for an explicit measurement of the Higgs decays to pairs of b-quarks, c-quarks and gluons. Efficient identification of top quarks in the decay t → W b will give access to the ttH-coupling measurement. In addition to those requirements driven by physics arguments, the CLIC bunch structure calls for hit tim- ing at the few-ns level. As a result, the CLIC vertex-detector system needs to have excellent spatial resolution, full geometrical coverage extending to low polar angles, extremely low material budget, low occupancy facilitated by time-tagging, and sufficient heat removal from sensors and readout. These considerations challenge current technological limits. A detector concept based on hybrid pixel-detector technology is under development for the CLIC ver- tex det...

  18. Multielement detector for gas chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Sklarew, D.S.; Evans, J.C.; Olsen, K.B.

    1988-11-01

    This report describes the results of a study to improve the capabilities of a gas chromatography-microwave-induced plasma (GC- MIP) detector system, determine the feasibility of empirical formula determination for simple mixtures containing elements of interest to fossil fuel analysis and, subsequently, explore applications for analysis of the complex mixtures associated with fossil fuels. The results of this study indicate that the GC-MIP system is useful as a specific-element detector that provides excellent elemental specificity for a number of elements of interest to the analysis of fossil fuels. It has reasonably good sensitivity for carbon, hydrogen, sulfur, and nickel, and better sensitivity for chlorine and fluorine. Sensitivity is poor for nitrogen and oxygen, however, probably because of undetected leaks or erosion of the plasma tube. The GC-MIP can also provide stoichiometric information about components of simple mixtures. If this powerful technique is to be available for complex mixtures, it will be necessary to greatly simplify the chromatograms by chemical fractionation. 38 refs., 46 figs., 16 tabs.

  19. Fire Emulator/Detector Evaluator

    Data.gov (United States)

    Federal Laboratory Consortium — Description:The fire emulator/detector evaluator (FE/DE) is a computer-controlled flow tunnel used to re-create the environments surrounding detectors in the early...

  20. The status of BAT detector

    Science.gov (United States)

    Lien, Amy; Markwardt, Craig B.; Krimm, Hans Albert; Barthelmy, Scott D.; Cenko, Bradley

    2018-01-01

    We will present the current status of the Swift/BAT detector. In particular, we will report the updated detector gain calibration, the number of enable detectors, and the global bad time intervals with potential calibration issues. We will also summarize the results of the yearly BAT calibration using the Crab nebula. Finally, we will discuss the effects on the BAT survey, such as the sensitivity, localization, and spectral analysis, due to the changes in detector status.

  1. Workshops on radiation imaging detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sochinskii, N.V.; Sun, G.C.; Kostamo, P.; Silenas, A.; Saynatjoki, A.; Grant, J.; Owens, A.; Kozorezov, A.G.; Noschis, E.; Van Eijk, C.; Nagarkar, V.; Sekiya, H.; Pribat, D.; Campbell, M.; Lundgren, J.; Arques, M.; Gabrielli, A.; Padmore, H.; Maiorino, M.; Volpert, M.; Lebrun, F.; Van der Putten, S.; Pickford, A.; Barnsley, R.; Anton, M.E.G.; Mitschke, M.; Gros d' Aillon, E.; Frojdh, C.; Norlin, B.; Marchal, J.; Quattrocchi, M.; Stohr, U.; Bethke, K.; Bronnimann, C.H.; Pouvesle, J.M.; Hoheisel, M.; Clemens, J.C.; Gallin-Martel, M.L.; Bergamaschi, A.; Redondo-Fernandez, I.; Gal, O.; Kwiatowski, K.; Montesi, M.C.; Smith, K

    2005-07-01

    This document gathers the transparencies that were presented at the international workshop on radiation imaging detectors. 9 sessions were organized: 1) materials for detectors and detector structure, 2) front end electronics, 3) interconnected technologies, 4) space, fusion applications, 5) the physics of detection, 6) industrial applications, 7) synchrotron radiation, 8) X-ray sources, and 9) medical and other applications.

  2. Characterizations of GEM detector prototype

    CERN Document Server

    INSPIRE-00522505; Rudra, Sharmili; Bhattacharya, P.; Sahoo, Sumanya Sekhar; Biswas, S.; Mohanty, B.; Nayak, T.K.; Sahu, P.K.; Sahu, S.

    2016-01-01

    At NISER-IoP detector laboratory an initiative is taken to build and test Gas Electron Multiplier (GEM) detectors for ALICE experiment. The optimisation of the gas flow rate and the long-term stability test of the GEM detector are performed. The method and test results are presented.

  3. Characterisations of GEM detector prototype

    Energy Technology Data Exchange (ETDEWEB)

    Patra, Rajendra Nath [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064, West Bengal (India); Nanda, Amit [School of Physical Sciences, National Institute of Science Education and Research, Jatni 752050 (India); Rudra, Sharmili [Department of Applied Physics, CU, 92, APC Road, Kolkata 700009, West Bengal (India); Bhattacharya, P.; Sahoo, Sumanya Sekhar [School of Physical Sciences, National Institute of Science Education and Research, Jatni 752050 (India); Biswas, S., E-mail: saikat.ino@gmail.com [School of Physical Sciences, National Institute of Science Education and Research, Jatni 752050 (India); Mohanty, B. [School of Physical Sciences, National Institute of Science Education and Research, Jatni 752050 (India); Nayak, T.K. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064, West Bengal (India); Sahu, P.K.; Sahu, S. [Institute of Physics, Sachivalaya Marg, P.O.: Sainik School, Bhubaneswar 751005, Odisha (India)

    2016-07-11

    At NISER-IoP detector laboratory an initiative is taken to build and test Gas Electron Multiplier (GEM) detectors for ALICE experiment. The optimisation of the gas flow rate and the long-term stability test of the GEM detector are performed. The method and test results are presented.

  4. The ALICE Forward Multiplicity Detector

    CERN Document Server

    Christensen, Christian Holm; Gulbrandsen, Kristjan; Nielsen, Borge Svane; Sogaard, Carsten

    2007-01-01

    The ALICE Forward Multiplicity Detector (FMD) is a silicon strip detector with 51,200 strips arranged in 5 rings, covering the range $-3.4 < \\eta < 5.1$. It is placed around the beam pipe at small angles to extend the charged particle acceptance of ALICE into the forward regions, not covered by the central barrel detectors.

  5. Diamond detector technology: status and perspectives

    CERN Document Server

    Kagan, Harris; Artuso, M; Bachmair, F; Bäni, L; Bartosik, M; Beacham, J; Beck, H P; Bellini,, V; Belyaev, V; Bentele, B; Berdermann, E; Bergonzo, P; Bes, A; Brom, J-M; Bruzzi, M; Cerv, M; Chiodini, G; Chren, D; Cindro, V; Claus, G; Collot, J; Cumalat, J; Dabrowski, A; D'Alessandro, R; De Boer, W; Dehning, B; Dorfer, C; Dunser, M; Eremin, V; Eusebi, R; Forcolin, G; Forneris, J; Frais-Kölbl, H; Gan, K K; Gastal, M; Giroletti, C; Goffe, M; Goldstein, J; Golubev, A; Gorišek, A; Grigoriev, E; Grosse-Knetter, J; Grummer, A; Gui, B; Guthoff, M; Haughton, I; Hiti, B; Hits, D; Hoeferkamp, M; Hofmann, T; Hosslet, J; Hostachy, J-Y; Hügging, F; Hutton, C; Jansen, H; Janssen, J; Kanxheri, K; Kasieczka, G; Kass, R; Kassel, F; Kis, M; Kramberger, G; Kuleshov, S; Lacoste, A; Lagomarsino, S; Lo Giudice, A; Lukosi, E; Maazouzi, C; Mandic, I; Mathieu, C; Mcfadden, N; Menichelli, M; Mikuž, M; Morozzi, A; Moss, J; Mountain, R; Murphy, S; Muškinja, M; Oh, A; Oliviero, P; Passeri, D; Pernegger, H; Perrino, R; Picollo, F; Pomorski, M; Potenza, R; Quadt, A; Re, A; Reichmann, M; Riley, G; Roe, S; Sanz, D; Scaringella, M; Schaefer, D; Schmidt, C J; Schnetzer, S; Schreiner, T; Sciortino, S; Scorzoni, A; Seidel, S; Servoli, L; Sopko, B; Sopko, V; Spagnolo, S; Spanier, S; Stenson, K; Stone, R; Sutera, C; Taylor, Aaron; Traeger, M; Tromson, D; Trischuk, W; Tuve, C; Uplegger, L; Velthuis, J; Venturi, N; Vittone, E; Wagner, Stephen; Wallny, R; Wang, J C; Weingarten, J; Weiss, C; Wengler, T; Wermes, N; Yamouni, M; Zavrtanik, M

    2017-01-01

    The status of material development of poly-crystalline chemical vapor deposition (CVD) diamond is presented. We also present beam test results on the independence of signal size on incident par-ticle rate in charged particle detectors based on un-irradiated and irradiated poly-crystalline CVD diamond over a range of particle fluxes from 2 kHz/cm2 to 10 MHz/cm2. The pulse height of the sensors was measured with readout electronics with a peaking time of 6 ns. In addition the first beam test results from 3D detectors made with poly-crystalline CVD diamond are presented. Finally the first analysis of LHC data from the ATLAS Diamond Beam Monitor (DBM) which is based on pixelated poly-crystalline CVD diamond sensors bump-bonded to pixel readout elec-tronics is shown.

  6. On recall rate of interest point detectors

    DEFF Research Database (Denmark)

    Aanæs, Henrik; Lindbjerg Dahl, Anders; Pedersen, Kim Steenstrup

    2010-01-01

    , and for each scene we have 119 precisely located camera positions obtained from a camera mounted on an industrial robot arm. The scene surfaces have been scanned using structured light, providing precise 3D ground truth. We have investigated a number of the most popular interest point detectors where we...

  7. On Recall Rate of Interest Point Detectors

    DEFF Research Database (Denmark)

    Aanæs, Henrik; Dahl, Anders Lindbjerg; Pedersen, Kim Steenstrup

    2010-01-01

    , and for each scene we have 119 precisely located camera positions obtained from a camera mounted on an industrial robot arm. The scene surfaces have been scanned using structured light, providing precise 3D ground truth. We have investigated a number of the most popular interest point detectors. This is done...

  8. Commissioning of the ATLAS pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    ATLAS Collaboration; Golling, Tobias

    2008-09-01

    The ATLAS pixel detector is a high precision silicon tracking device located closest to the LHC interaction point. It belongs to the first generation of its kind in a hadron collider experiment. It will provide crucial pattern recognition information and will largely determine the ability of ATLAS to precisely track particle trajectories and find secondary vertices. It was the last detector to be installed in ATLAS in June 2007, has been fully connected and tested in-situ during spring and summer 2008, and is ready for the imminent LHC turn-on. The highlights of the past and future commissioning activities of the ATLAS pixel system are presented.

  9. Proton Straggling in Thick Silicon Detectors

    Science.gov (United States)

    Selesnick, R. S.; Baker, D. N.; Kanekal, S. G.

    2017-01-01

    Straggling functions for protons in thick silicon radiation detectors are computed by Monte Carlo simulation. Mean energy loss is constrained by the silicon stopping power, providing higher straggling at low energy and probabilities for stopping within the detector volume. By matching the first four moments of simulated energy-loss distributions, straggling functions are approximated by a log-normal distribution that is accurate for Vavilov k is greater than or equal to 0:3. They are verified by comparison to experimental proton data from a charged particle telescope.

  10. NICER instrument detector subsystem: description and performance

    Science.gov (United States)

    Prigozhin, Gregory; Gendreau, Keith; Doty, John P.; Foster, Richard; Remillard, Ronald; Malonis, Andrew; LaMarr, Beverly; Vezie, Michael; Egan, Mark; Villasenor, Jesus; Arzoumanian, Zaven; Baumgartner, Wayne; Scholze, Frank; Laubis, Christian; Krumrey, Michael; Huber, Alan

    2016-07-01

    An instrument called Neutron Star Interior Composition ExploreR (NICER) will be placed on-board the Inter- national Space Station in 2017. It is designed to detect soft X-ray emission from compact sources and to provide both spectral and high resolution timing information about the incoming ux. The focal plane is populated with 56 customized Silicon Drift Detectors. The paper describes the detector system architecture, the electronics and presents the results of the laboratory testing of both ight and engineering units, as well as some of the calibration results obtained with synchrotron radiation in the laboratory of PTB at BESSY II.

  11. The MiniBooNE detector

    Science.gov (United States)

    Aguilar-Arevalo, A. A.; Anderson, C. E.; Bartoszek, L. M.; Bazarko, A. O.; Brice, S. J.; Brown, B. C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J. M.; Cox, D. C.; Curioni, A.; Djurcic, Z.; Finley, D. A.; Fleming, B. T.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Green, C.; Green, J. A.; Hart, T. L.; Hawker, E.; Imlay, R.; Johnson, R. A.; Karagiorgi, G.; Kasper, P.; Katori, T.; Kobilarcik, T.; Kourbanis, I.; Koutsoliotas, S.; Laird, E. M.; Linden, S. K.; Link, J. M.; Liu, Y.; Liu, Y.; Louis, W. C.; Mahn, K. B. M.; Marsh, W.; Martin, P. S.; McGregor, G.; Metcalf, W.; Meyer, H.-O.; Meyers, P. D.; Mills, F.; Mills, G. B.; Monroe, J.; Moore, C. D.; Nelson, R. H.; Nguyen, V. T.; Nienaber, P.; Nowak, J. A.; Ouedraogo, S.; Patterson, R. B.; Perevalov, D.; Polly, C. C.; Prebys, E.; Raaf, J. L.; Ray, H.; Roe, B. P.; Russell, A. D.; Sandberg, V.; Sands, W.; Schirato, R.; Schofield, G.; Schmitz, D.; Shaevitz, M. H.; Shoemaker, F. C.; Smith, D.; Soderberg, M.; Sorel, M.; Spentzouris, P.; Stancu, I.; Stefanski, R. J.; Sung, M.; Tanaka, H. A.; Tayloe, R.; Tzanov, M.; Van de Water, R.; Wascko, M. O.; White, D. H.; Wilking, M. J.; Yang, H. J.; Zeller, G. P.; Zimmerman, E. D.; MiniBooNE Collaboration

    2009-02-01

    The MiniBooNE neutrino detector was designed and built to look for ν→ν oscillations in the (sin 2θ,Δm) parameter space region where the LSND experiment reported a signal. The MiniBooNE experiment used a beam energy and baseline that were an order of magnitude larger than those of LSND so that the backgrounds and systematic errors would be completely different. This paper provides a detailed description of the design, function, and performance of the MiniBooNE detector.

  12. Detector and System Developments for LHC Detector Upgrades

    CERN Document Server

    Mandelli, Beatrice; Guida, Roberto; Rohne, Ole; Stapnes, Steinar

    2015-05-12

    The future Large Hadron Collider (LHC) Physics program and the consequent improvement of the LHC accelerator performance set important challenges to all detector systems. This PhD thesis delineates the studies and strategies adopted to improve two different types of detectors: the replacement of precision trackers with ever increasingly performing silicon detectors, and the improvement of large gaseous detector systems by optimizing their gas mixtures and operation modes. Within the LHC tracker upgrade programs, the ATLAS Insertable B-layer (IBL) is the first major upgrade of a silicon-pixel detector. Indeed the overall ATLAS Pixel Detector performance is expected to degrade with the increase of luminosity and the IBL will recover the performance by adding a fourth innermost layer. The IBL Detector makes use of new pixel and front-end electronics technologies as well as a novel thermal management approach and light support and service structures. These innovations required complex developments and Quality Ass...

  13. X-ray detectors for digital radiography

    Energy Technology Data Exchange (ETDEWEB)

    Yaffe, M.J.; Rowlands, J.A. [Imaging Research Program, Sunnybrook Health Science Centre, University of Toronto, Toronto, ON (Canada)

    1997-01-01

    Digital radiography offers the potential of improved image quality as well as providing opportunities for advances in medical image management, computer-aided diagnosis and teleradiology. Image quality is intimately inked to the precise and accurate acquisition of information from the x-ray beam transmitted by the patient, i.e. to the performance of the x-ray detector. Detectors for digital radiography must meet the needs of the specific radiological procedure where they will be used. Key parameters are partial resolution, uniformity of response, contrast sensitivity, dynamic range, acquisition speed and frame rate. The underlying physical considerations defining the performance of x-ray detectors for radiography will be reviewed. Some of the more promising existing and experimental detector technologies which may be suitable for digital radiography will be considered. Devices that can be employed in full-area detectors and also those more appropriate for scanning x-ray systems will be discussed. These include various approaches based on phosphor x-ray converters, where light quanta are produced as an intermediate stage, as well as direct -ray-to-charge conversion materials such as zinc cadmium telluride, amorphous selenium and crystalline silicon. (author)

  14. CLIC vertex detector R&D

    CERN Document Server

    Redford, S

    2014-01-01

    In order to achieve its primary objectives of heavy-flavour tagging and tau lepton identification, the CLIC vertex detector must precisely reconstruct displaced vertices. This re- quires accurate determination of the impact parameter and charge of tracks originating from the secondary vertex. Excellent spatial resolution must therefore be provided down to low polar angles, whilst maintaining low occupancy, low mass and low power dissipation. These requirements chal- lenge current technological limits, and demand a broad programme of R&D. A detector concept is currently under development, comprising a hybrid pixel detector of small-pitch readout ASICs implemented in 65nm CMOS technology (CLICpix) combined with ultra-thin sensors. The read- out chips are low-power, and power-pulsing is used to reduce further their power dissipation. This enables a forced gas cooling system in the vertex detector region. In this paper, the CLIC vertex detector requirements are reviewed and the current status of R&D on se...

  15. Complementary Barrier Infrared Detector

    Science.gov (United States)

    Ting, David Z.; Bandara, Sumith V.; Hill, Cory J.; Gunapala, Sarath D.

    2009-01-01

    The complementary barrier infrared detector (CBIRD) is designed to eliminate the major dark current sources in the superlattice infrared detector. The concept can also be applied to bulk semiconductor- based infrared detectors. CBIRD uses two different types of specially designed barriers: an electron barrier that blocks electrons but not holes, and a hole barrier that blocks holes but not electrons. The CBIRD structure consists of an n-contact, a hole barrier, an absorber, an electron barrier, and a p-contact. The barriers are placed at the contact-absorber junctions where, in a conventional p-i-n detector structure, there normally are depletion regions that produce generation-recombination (GR) dark currents due to Shockley-Read- Hall (SRH) processes. The wider-bandgap complementary barriers suppress G-R dark current. The barriers also block diffusion dark currents generated in the diffusion wings in the neutral regions. In addition, the wider gap barriers serve to reduce tunneling dark currents. In the case of a superlattice-based absorber, the superlattice itself can be designed to suppress dark currents due to Auger processes. At the same time, the barriers actually help to enhance the collection of photo-generated carriers by deflecting the photo-carriers that are diffusing in the wrong direction (i.e., away from collectors) and redirecting them toward the collecting contacts. The contact layers are made from materials with narrower bandgaps than the barriers. This allows good ohmic contacts to be made, resulting in lower contact resistances. Previously, THALES Research and Technology (France) demonstrated detectors with bulk InAsSb (specifically InAs0.91Sb0.09) absorber lattice-matched to GaSb substrates. The absorber is surrounded by two wider bandgap layers designed to minimize impedance to photocurrent flow. The wide bandgap materials also serve as contacts. The cutoff wavelength of the InAsSb absorber is fixed. CBIRD may be considered as a modified

  16. A Cherenkov Detector for Monitoring ATLAS Luminosity

    CERN Document Server

    Sbrizzi, A; The ATLAS collaboration

    2010-01-01

    LUCID (LUminosity Cherenkov Integrating Detector) is the monitor of the luminosity delivered by the LHC accelerator to the ATLAS experiment. The detector is made of two symmetric arms deployed at about 17 m from the ATLAS interaction point. Each arm consists of an aluminum vessel containing 20 tubes, 15 mm diameter and 1500 mm length, and a Cherenkov gaseous radiator (C4F10) at about 1.1 bar absolute. The light generated by charged particles above the Cherenkov threshold is collected by photomultiplier tubes (PMT) directly placed at the tubes end. Thanks to an intrinsically fast response and to its custom readout electronics, LUCID estimates the number of interactions per LHC bunch crossing and provides an interaction trigger to the ATLAS experiment. The relevant details of the detector design and the expexted performance based on Monte Carlo simulations are presented, together with the first results obtained with pp collisions produced by LHC.

  17. System qualification of Digital Detector Array (DDA)

    Energy Technology Data Exchange (ETDEWEB)

    Azeredo, Soraia R.; Oliveira, Davi F.; Nascimento, Joseilson R.; Lopes, Ricardo T., E-mail: soraia@lin.ufrj.br [Coordenacao dos Programas de Pos-Graducao em Engenharia (LIN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Instrumentacao Nuclear

    2013-07-01

    Digital Detector Arrays (DDAs) should be characterized to establish the operating conditions of the system prior to perform a NDT (Nondestructive Testing). The image quality in digital radiography depends on the exposure conditions and the properties of the digital detectors. Quantitative definitions of DDA characterization parameters are important to discussions about achieved image quality of a particular type of DDA and also contribute to quantitative comparison of DDAs so that an appropriate digital detector is selected to meet NDT requirements. Evaluations of DDA factors were performed as defined by the standard practice for manufacturing characterization of DDAs, ASTM E2597-07. The evaluations provided quantitative results of some characteristic parameters. The factors evaluated were: basic spatial resolution, achievable contrast sensitivity, specific material thickness range and image lag. The results of measurements of characterization parameters are presented and related with the definitions in ASTM E2597-07. (author)

  18. A Very High Momentum Particle Identification Detector

    CERN Document Server

    Acconcia, T V; Barile, F; Barnafoldi, G G; Bellwied, R; Bencedi, G; Bencze, G; Berenyi, D; Boldizsar, L; Chattopadhyay, S; Cindolo, F; Chinellato, D D; D'Ambrosio, S; Das, D; Das-Bose, L; Dash, A K; De Cataldo, G; De Pasquale, S; Di Bari, D; Di Mauro, A; Futo, E; Garcia, E; Hamar, G; Harton, A; Iannone, G; Jimenez, R T; Kim, D W; Kim, J S; Knospe, A; Kovacs, L; Levai, P; Nappi, E; Markert, C; Martinengo, P; Mayani, D; Molnar, L; Olah, L; Paic, G; Pastore, C; Patimo, G; Patino, M E; Peskov, V; Pinsky, L; Piuz F; Pochybova, S; Sgura, I; Sinha, T; Song, J; Takahashi, J; Timmins, A; Van Beelen, J B; Varga, D; Volpe, G; Weber, M; Xaplanteris, L; Yi, J; Yoo, I K

    2014-01-01

    The construction of a new detector is proposed to extend the capabilities of ALICE in the high transverse momentum (pT) region. This Very High Momentum Particle Identification Detector (VHMPID) performs charged hadron identification on a track-by-track basis in the 5 GeV/c < p < 25 GeV/c momentum range and provides ALICE with new opportunities to study parton-medium interactions at LHC energies. The VHMPID covers up to 30% of the ALICE central barrel and presents sufficient acceptance for triggered- and tagged-jet studies, allowing for the first time identified charged hadron measurements in jets. This Letter of Intent summarizes the physics motivations for such a detector as well as its layout and integration into ALICE.

  19. Gravity Independent Compressor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop and demonstrate a small, gravity independent, vapor compression refrigeration system using a linear motor compressor which effectively...

  20. Compound Semiconductor Radiation Detectors

    CERN Document Server

    Owens, Alan

    2012-01-01

    Although elemental semiconductors such as silicon and germanium are standard for energy dispersive spectroscopy in the laboratory, their use for an increasing range of applications is becoming marginalized by their physical limitations, namely the need for ancillary cooling, their modest stopping powers, and radiation intolerance. Compound semiconductors, on the other hand, encompass such a wide range of physical and electronic properties that they have become viable competitors in a number of applications. Compound Semiconductor Radiation Detectors is a consolidated source of information on all aspects of the use of compound semiconductors for radiation detection and measurement. Serious Competitors to Germanium and Silicon Radiation Detectors Wide-gap compound semiconductors offer the ability to operate in a range of hostile thermal and radiation environments while still maintaining sub-keV spectral resolution at X-ray wavelengths. Narrow-gap materials offer the potential of exceeding the spectral resolutio...

  1. Semiconductor radiation detector

    Science.gov (United States)

    Bell, Zane W.; Burger, Arnold

    2010-03-30

    A semiconductor detector for ionizing electromagnetic radiation, neutrons, and energetic charged particles. The detecting element is comprised of a compound having the composition I-III-VI.sub.2 or II-IV-V.sub.2 where the "I" component is from column 1A or 1B of the periodic table, the "II" component is from column 2B, the "III" component is from column 3A, the "IV" component is from column 4A, the "V" component is from column 5A, and the "VI" component is from column 6A. The detecting element detects ionizing radiation by generating a signal proportional to the energy deposited in the element, and detects neutrons by virtue of the ionizing radiation emitted by one or more of the constituent materials subsequent to capture. The detector may contain more than one neutron-sensitive component.

  2. The LUCID detector

    CERN Document Server

    Lasagni Manghi, Federico; The ATLAS collaboration

    2015-01-01

    Starting from 2015 LHC will perform a new run, at higher center of mass energy (13 TeV) and with 25 ns bunch-spacing. The ATLAS luminosity monitor LUCID has been completely renewed, both on detector design and in the electronics, in order to cope with the new running conditions. The new detector electronics is presented, featuring a new read-out board (LUCROD), for signal acquisition and digitization, PMT-charge integration and single-side luminosity measurements, and the revisited LUMAT board for side A–side C combination. The contribution covers the new boards design, the firmware and software developments, the implementation of luminosity algorithms, the optical communication between boards and the integration into the ATLAS TDAQ system.

  3. Scintillation Particle Detectors Based on Plastic Optical Fibres and Microfluidics

    CERN Document Server

    Mapelli, Alessandro; Renaud, Philippe

    2011-01-01

    This thesis presents the design, development, and experimental validation of two types of scintillation particle detectors with high spatial resolution. The first one is based on the well established scintillating fibre technology. It will complement the ATLAS (A Toroidal Large ApparatuS) detector at the CERN Large Hadron Collider (LHC). The second detector consists in a microfabricated device used to demonstrate the principle of operation of a novel type of scintillation detector based on microfluidics. The first part of the thesis presents the work performed on a scintillating fibre tracking system for the ATLAS experiment. It will measure the trajectory of protons elastically scattered at very small angles to determine the absolute luminosity of the CERN LHC collider at the ATLAS interaction point. The luminosity of an accelerator characterizes its performance. It is a process-independent parameter that is completely determined by the properties of the colliding beams and it relates the cross section of a ...

  4. What HERA May Provide?

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hannes; /DESY; De Roeck, Albert; /CERN; Bartels, Jochen; /Hamburg U., Inst. Theor. Phys. II; Behnke, Olaf; Blumlein, Johannes; /DESY; Brodsky, Stanley; /SLAC /Durham U., IPPP; Cooper-Sarkar, Amanda; /Oxford U.; Deak, Michal; /DESY; Devenish, Robin; /Oxford U.; Diehl, Markus; /DESY; Gehrmann, Thomas; /Zurich U.; Grindhammer, Guenter; /Munich, Max Planck Inst.; Gustafson, Gosta; /CERN /Lund U., Dept. Theor. Phys.; Khoze, Valery; /Durham U., IPPP; Knutsson, Albert; /DESY; Klein, Max; /Liverpool U.; Krauss, Frank; /Durham U., IPPP; Kutak, Krzysztof; /DESY; Laenen, Eric; /NIKHEF, Amsterdam; Lonnblad, Leif; /Lund U., Dept. Theor. Phys.; Motyka, Leszek; /Hamburg U., Inst. Theor. Phys. II /Birmingham U. /Southern Methodist U. /DESY /Piemonte Orientale U., Novara /CERN /Paris, LPTHE /Hamburg U. /Penn State U.

    2011-11-10

    More than 100 people participated in a discussion session at the DIS08 workshop on the topic What HERA may provide. A summary of the discussion with a structured outlook and list of desirable measurements and theory calculations is given. The HERA accelerator and the HERA experiments H1, HERMES and ZEUS stopped running in the end of June 2007. This was after 15 years of very successful operation since the first collisions in 1992. A total luminosity of {approx} 500 pb{sup -1} has been accumulated by each of the collider experiments H1 and ZEUS. During the years the increasingly better understood and upgraded detectors and HERA accelerator have contributed significantly to this success. The physics program remains in full swing and plenty of new results were presented at DIS08 which are approaching the anticipated final precision, fulfilling and exceeding the physics plans and the previsions of the upgrade program. Most of the analyses presented at DIS08 were still based on the so called HERA I data sample, i.e. data taken until 2000, before the shutdown for the luminosity upgrade. This sample has an integrated luminosity of {approx} 100 pb{sup -1}, and the four times larger statistics sample from HERA II is still in the process of being analyzed.

  5. Noble gas detectors

    National Research Council Canada - National Science Library

    Aprile, Elena

    2006-01-01

    ... that is reflected in the high-quality discussions of principles and devices that will be found throughout the book. Noble gases in compressed or liquid form are regarded as an attractive detection medium from several standpoints. Detector volume is not limited by the need for crystal growth required in many alternative approaches, and the statistical limit on energy resolution is quite small due to moderate values for average ionization energy and a relatively low Fano factor. These media ...

  6. The Upgraded DØ detector

    Czech Academy of Sciences Publication Activity Database

    Abazov, V. M.; Abbott, B.; Abolins, M.; Kupčo, Alexander; Lokajíček, Miloš; Šimák, Vladislav

    2006-01-01

    Roč. 565, - (2006), s. 463-537 ISSN 0168-9002 R&D Projects: GA MŠk 1P04LA210; GA MŠk 1P05LA257 Institutional research plan: CEZ:AV0Z10100502 Keywords : Fermilab * DZero * DØ * detector Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.185, year: 2006

  7. LEAR Crystal Barrel Detector

    Energy Technology Data Exchange (ETDEWEB)

    Braune, K.; Keh, S.; Montanet, L.; Zoll, J.; Beckmann, R.; Friedrich, J.; Heinsius, H.; Kiel, T.; Lewendel, B.; Pegel, C.; and others

    1988-11-20

    The features of the Crystal Barrel Detector which is in preparation for LEAR at CERN, are discussed. The physics aims include q-barq- and exotics-spectroscopy and a detailed investigation of yet unknown p-barp-anihilation channels. An eventual later use on the PSI-B-Meson-Factory is discussed. The paper finishes with a description of the present status of the project.

  8. ALICE detector upgrades

    CERN Document Server

    Peitzmann, Thomas

    2011-01-01

    The LHC with its unprecedented energy offers unique opportunities for groundbreaking measurements in p+p, p+A and A+A collisions even beyond the baseline experimental designs. ALICE is setting up a program of detector upgrades, which could to a large extent be installed in the LHC shutdown planned for 2017/18, to address the new scientific challenges. We will discuss examples of the scientific frontiers and will present the corresponding upgrade projects under study for the ALICE experiment.

  9. The LHCb detector upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, H., E-mail: heinrich.schindler@cern.ch

    2013-12-21

    The upgrade of the LHCb experiment, with its installation scheduled for the second long shutdown (LS2) of the Large Hadron Collider (LHC), will transform the data acquisition and processing architecture to a triggerless readout at 40 MHz with subsequent software-based event selection in a CPU farm. In this contribution, an overview of the detector technology options under consideration and the associated challenges is given and selected highlights of the ongoing R and D programme are presented.

  10. Biological detector and method

    Science.gov (United States)

    Sillerud, Laurel; Alam, Todd M; McDowell, Andrew F

    2013-02-26

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  11. LHCb velo detector

    CERN Multimedia

    Patrice Loïez

    2001-01-01

    Photo 01 : L. to r.: D. Malinon, Summer Student, J. Libby, Fellow, J. Harvey, Head of CERN LHCb group, D. Schlatter, Head of the EP Division in front of the LHCb velo detector test beam (on the right). Photo 02 : L. to r.: J. Harvey, D. Schlatter, W. Riegler (staff), H.J. Hilke, LHCb Technical Coordinator in front of the muon chamber test beam

  12. The LHCb detector upgrade

    CERN Document Server

    Schindler, H

    2013-01-01

    The upgrade of the LHCb experiment, with its installation scheduled for the second long shutdown (LS2) of the Large Hadron Collider (LHC), will transform the data acquisition and processing architecture to a triggerless readout at 40 MHz with subsequent software-based event selection in a CPU farm. In this contribution, an overview of the detector technology options under consideration and the associated challenges is given and selected highlights of the ongoing R&D programme are presented

  13. The ALEPH detector

    CERN Multimedia

    1988-01-01

    For detecting the direction and momenta of charged particles with extreme accuracy, the ALEPH detector had at its core a time projection chamber, for years the world's largest. In the foreground from the left, Jacques Lefrancois, Jack Steinberger, Lorenzo Foa and Pierre Lazeyras. ALEPH was an experiment on the LEP accelerator, which studied high-energy collisions between electrons and positrons from 1989 to 2000.

  14. Measurements of fast neutrons by bubble detectors

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, F.; Martinez, H. [Laboratorio de Espectroscopia, Instituto de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Apartado Postal 48-3, 62251, Cuernavaca Morelos (Mexico); Leal, B. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, 04510, Ciudad Universitaria, Mexico D. F. (Mexico); Rangel, J. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, 04510, Ciudad Universitaria, Mexico D. F (Mexico); Reyes, P. G. [Facultad de Ciencias, Universidad Autonoma del Estado de Mexico, Instituto Literario 100, Col. Centro, 50000, Toluca Estado de Mexico (Mexico)

    2013-07-03

    Neutron bubble detectors have been studied using Am-Be and D-D neuron sources, which give limited energy information. The Bubble Detector Spectrometer (BDS) have six different energy thresholds ranging from 10 KeV to 10 Mev. The number of bubbles obtained in each measurement is related to the dose (standardized response R) equivalent neutrons through sensitivity (b / {mu}Sv) and also with the neutron flux (neutrons per unit area) through a relationship that provided by the manufacturer. Bubble detectors were used with six different answers (0.11 b/ {mu}Sv, 0093 b/{mu}Sv, 0.14 b/{mu}Sv, 0.17 b/{mu}Sv, 0051 b/{mu}Sv). To test the response of the detectors (BDS) radiate a set of six of them with different energy threshold, with a source of Am-Be, placing them at a distance of one meter from it for a few minutes. Also, exposed to dense plasma focus Fuego Nuevo II (FN-II FPD) of ICN-UNAM, apparatus which produces fusion plasma, generating neutrons by nuclear reactions of neutrons whose energy emitting is 2.45 MeV. In this case the detectors were placed at a distance of 50 cm from the pinch at 90 Degree-Sign this was done for a certain number of shots. In both cases, the standard response is reported (Dose in {mu}Sv) for each of the six detectors representing an energy range, this response is given by the expression R{sub i}= B{sub i} / S{sub i} where B{sub i} is the number of bubbles formed in each and the detector sensitivity (S{sub i}) is given for each detector in (b / {mu}Sv). Also, reported for both cases, the detected neutron flux (n cm{sup -2}), by a given ratio and the response involves both standardized R, as the average cross section sigma. The results obtained have been compared with the spectrum of Am-Be source. From these measurements it can be concluded that with a combination of bubble detectors, with different responses is possible to measure the equivalent dose in a range of 10 to 100 {mu}Sv fields mixed neutron and gamma, and pulsed generated fusion

  15. MUON DETECTORS: DT

    CERN Multimedia

    M. Dallavalle.

    The DT system is ready for the LHC start up. The status of detector hardware, control and safety, of the software for calibration and monitoring and of people has been reviewed at several meetings, starting with the CMS Action Matrix Review and with the Muon Barrel Workshop (October 5 to 7). The disconnected HV channels are at a level of about 0.1%. The loss in detector acceptance because of failures in the Read-Out and Trigger electronics is about 0.5%. The electronics failure rate has been lower this year: next year will tell us whether the rate has stabilised and hopefully will confirm that the number of spares is adequate for ten years operation. Although the detector safety control is very accurate and robust, incidents have happened. In particular the DT system suffered from a significant water leak, originated in the top part of YE+1, that generated HV trips in eighteen chambers going transversely down from the top sector in YB+2 to the bottom sector in YB-2. All chambers recovered and all t...

  16. UA1 prototype detector

    CERN Document Server

    1980-01-01

    Prototype of UA1 central detector inside a plexi tube. The UA1 experiment ran at CERN's Super Proton Synchrotron and made the Nobel Prize winning discovery of W and Z particles in 1983. The UA1 central detector was crucial to understanding the complex topology of proton-antiproton events. It played a most important role in identifying a handful of Ws and Zs among billions of collisions. The detector was essentially a wire chamber - a 6-chamber cylindrical assembly 5.8 m long and 2.3 m in diameter, the largest imaging drift chamber of its day. It recorded the tracks of charged particles curving in a 0.7 Tesla magnetic field, measuring their momentum, the sign of their electric charge and their rate of energy loss (dE/dx). Atoms in the argon-ethane gas mixture filling the chambers were ionised by the passage of charged particles. The electrons which were released drifted along an electric field shaped by field wires and were collected on sense wires. The geometrical arrangement of the 17000 field wires and 6...

  17. MUON DETECTORS: RPC

    CERN Multimedia

    P. Paolucci

    2011-01-01

    During data-taking in 2010 the RPC system behaviour was very satisfactory for both the detector and trigger performances. Most of the data analyses are now completed and many results and plots have been approved in order to be published in the muon detector paper. A very detailed analysis of the detector efficiency has been performed using 60 million muon events taken with the dedicated RPC monitor stream. The results have shown that the 96.3% of the system was working properly with an average efficiency of 95.4% at 9.35 kV in the Barrel region and 94.9% at 9.55 kV in the Endcap. Cluster size goes from 1.6 to 2.2 showing a clear and well-known correlation with the strip pitch. Average noise in the Barrel is less than 0.4 Hz/cm2 and about 98% of full system has averaged noise less then 1 Hz/cm2. A linear dependence of the noise versus the luminosity has been preliminary observed and is now under study. Detailed chamber efficiency maps have shown a few percent of chambers with a non-uniform efficiency distribu...

  18. American Independence. Fifth Grade.

    Science.gov (United States)

    Crosby, Annette

    This fifth grade teaching unit covers early conflicts between the American colonies and Britain, battles of the American Revolutionary War, and the Declaration of Independence. Knowledge goals address the pre-revolutionary acts enforced by the British, the concepts of conflict and independence, and the major events and significant people from the…

  19. MUON DETECTORS: DT

    CERN Multimedia

    M. Dallavalle

    2012-01-01

      It is three years without access to the chambers and their front-end electronics, and the DT collaboration is preparing for a substantial work of maintenance and upgrade during LS1 in 2013/14. Even though, thanks to the constant care provided by the on-site operation team, the fraction of good channels is still very high at 98.8% and the downtime caused to CMS as a consequence of DT failures is to-date <1%, the original robustness of the system has deteriorated and many small local interventions are needed to restore it. The excellent stability and linearity with luminosity of the DT trigger rates has been
exploited and currently DT rates are published as an additional online luminometer in WBM.
The calibration is calculated from the correlation with pixel luminosity for 2011 data while
a preliminary independent calibration for 2012 data based on the analysis of Van der Meer scan data
 (project of CERN summer student Jessica Turner) has to be refined i...

  20. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez

    Since December, the muon alignment community has focused on analyzing the data recorded so far in order to produce new DT and CSC Alignment Records for the second reprocessing of CRAFT data. Two independent algorithms were developed which align the DT chambers using global tracks, thus providing, for the first time, a relative alignment of the barrel with respect to the tracker. These results are an important ingredient for the second CRAFT reprocessing and allow, for example, a more detailed study of any possible mis-modelling of the magnetic field in the muon spectrometer. Both algorithms are constructed in such a way that the resulting alignment constants are not affected, to first order, by any such mis-modelling. The CSC chambers have not yet been included in this global track-based alignment due to a lack of statistics, since only a few cosmics go through the tracker and the CSCs. A strategy exists to align the CSCs using the barrel as a reference until collision tracks become available. Aligning the ...

  1. Overview of multi-element monolithic germanium detectors for XAFS experiments at diamond light source

    Energy Technology Data Exchange (ETDEWEB)

    Chatterji, S.; Dennis, G. J.; Dent, A.; Diaz-Moreno, S.; Cibin, G.; Tartoni, N. [Diamond Light Source Ltd, Oxfordshire (United Kingdom); Helsby, W. I. [STFC Daresbury Laboratory, Warrington (United Kingdom)

    2016-07-27

    An overview of multi-element monolithic germanium detectors being used at the X-ray absorption spectroscopy (XAS) beam lines at Diamond Light Source (DLS) is being reported. The hardware details and a summary of the performance of these detectors have also been provided. Recent updates about various ongoing projects being worked on to improve the performance of these detectors are summarized.

  2. Verification of the dosimetric properties of a new scintillation detector: Exradin W1; Verificacion de las propiedades dosimetricas de un nuevo detector de centelleo: Exradin W1

    Energy Technology Data Exchange (ETDEWEB)

    Calvo Carrillo, S.; Garcia Romero, A.; Millan Cebrian, E.; Villa Gazulla, D.; Alba Escorihuela, V.; Ortega Pardina, P.; Hernandez Vitoria, A.; Canellas Anoz, M.

    2014-07-01

    The purpose of this work is to verify the properties of a new scintillation detector. The Exradin W1 Scintillator of Standard Imaging is a plastic scintillating fiber detector designed to dosimetry for megavoltage beams in radiotherapy. Its most important documented characteristics are: high spatial resolution, near water equivalence, angular independence, temperature independence and energy independence (within the MeV range). Different measurements were performed for 6 MV and 15 MV photon beams in an ONCOR Impression Plus linac (Siemens Medical Solutions). Percentage depth dose, output factors and dose delivered to a point in intensity modulated radiation therapy treatment plan were analyzed and compared with ionization chamber and diode measurements. As a result we found that scintillator performance is similar to other detectors. In conclusion, the Exradin W1 can be used in dosimetry as a high spatial resolution detector. (Author)

  3. Low-crosstalk bifurcation detectors for coupled flux qubits

    NARCIS (Netherlands)

    De Groot, P.C.; Van Loo, A.F.; Lisenfeld, J.; Schouten, R.N.; Lupa?cu, A.; Harmans, C.J.P.M.; Mooij, J.E.

    2010-01-01

    We present experimental results on the crosstalk between two ac-operated dispersive bifurcation detectors, implemented in a circuit for high-fidelity readout of two strongly coupled flux qubits. Both phase-dependent and phase-independent contributions to the crosstalk are analyzed. For proper tuning

  4. Nano structural anodes for radiation detectors

    Science.gov (United States)

    Cordaro, Joseph V.; Serkiz, Steven M.; McWhorter, Christopher S.; Sexton, Lindsay T.; Retterer, Scott T.

    2015-07-07

    Anodes for proportional radiation counters and a process of making the anodes is provided. The nano-sized anodes when present within an anode array provide: significantly higher detection efficiencies due to the inherently higher electric field, are amenable to miniaturization, have low power requirements, and exhibit a small electromagnetic field signal. The nano-sized anodes with the incorporation of neutron absorbing elements (e.g., .sup.10B) allow the use of neutron detectors that do not use .sup.3He.

  5. Detector Mount Design for IGRINS

    Directory of Open Access Journals (Sweden)

    Jae Sok Oh

    2014-06-01

    Full Text Available The Immersion Grating Infrared Spectrometer (IGRINS is a near-infrared wide-band high-resolution spectrograph jointly developed by the Korea Astronomy and Space Science Institute and the University of Texas at Austin. IGRINS employs three HAWAII-2RG Focal Plane Array (H2RG FPA detectors. We present the design and fabrication of the detector mount for the H2RG detector. The detector mount consists of a detector housing, an ASIC housing, a Field Flattener Lens (FFL mount, and a support base frame. The detector and the ASIC housing should be kept at 65 K and the support base frame at 130 K. Therefore they are thermally isolated by the support made of GFRP material. The detector mount is designed so that it has features of fine adjusting the position of the detector surface in the optical axis and of fine adjusting yaw and pitch angles in order to utilize as an optical system alignment compensator. We optimized the structural stability and thermal characteristics of the mount design using computer-aided 3D modeling and finite element analysis. Based on the structural and thermal analysis, the designed detector mount meets an optical stability tolerance and system thermal requirements. Actual detector mount fabricated based on the design has been installed into the IGRINS cryostat and successfully passed a vacuum test and a cold test.

  6. Department of Radiation Detectors - Overview

    Energy Technology Data Exchange (ETDEWEB)

    Piekoszewski, J. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1997-12-31

    Work carried out in 1996 in the Department of Radiation Detectors concentrated on three subjects: (i) Semiconductor Detectors (ii) X-ray Tube Generators (iii) Material Modification Using Ion and Plasma Beams. The Departamental objectives are: a search for new types of detectors, adapting modern technologies (especially of industrial microelectronics) to detector manufacturing, producing unique detectors tailored for physics experiments, manufacturing standard detectors for radiation measuring instruments. These objectives were accomplished in 1996 by: research on unique detectors for nuclear physics (e.g. a spherical set of particle detectors silicon ball), detectors for particle identification), development of technology of high-resistivity silicon detectors HRSi (grant proposal), development of thermoelectric cooling systems (grant proposal), research on p-i-n photodiode-based personal dosimeters, study of applicability of industrial planar technology in producing detectors, manufacturing detectors developed in previous years, re-generating and servicing customer detectors of various origin. The Department conducts research on the design and technology involved in producing X-ray generators based on X-ray tubes of special construction. Various tube models and their power supplies were developed. Some work has also been devoted to the detection and dosimetry of X-rays. X-ray tube generators are applied to non-destructive testing and are components of analytical systems such as: X-ray fluorescence chemical composition analysis, gauges of layer thickness and composition stress measurements, on-line control of processes, others where an X-ray tube may replace a radio-isotope source. In 1996, the Department: reviewed the domestic demand for X-ray generators, developed an X-ray generator for diagnosis of ostheroporosis of human limbs, prepared a grant proposal for the development of a new instrument for radiotherapy, the so-called needle-like X-ray tube. (author).

  7. A silicon pixel detector prototype for the CLIC vertex detector

    CERN Multimedia

    Vicente Barreto Pinto, Mateus

    2017-01-01

    A silicon pixel detector prototype for CLIC, currently under study for the innermost detector surrounding the collision point. The detector is made of a High-Voltage CMOS sensor (top) and a CLICpix2 readout chip (bottom) that are glued to each other. Both parts have a size of 3.3 x 4.0 $mm^2$ and consist of an array of 128 x 128 pixels of 25 x 25 $\\micro m^2$ size.

  8. 6Li foil thermal neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Ianakiev, Kiril D [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Favalli, Andrea [Los Alamos National Laboratory; Chung, Kiwhan [Los Alamos National Laboratory; Macarthur, Duncan W [Los Alamos National Laboratory

    2010-01-01

    In this paper we report on the design of a multilayer thermal neutron detector based on {sup 6}Li reactive foil and thin film plastic scintillators. The {sup 6}Li foils have about twice the intrinsic efficiency of {sup 10}B films and about four times higher light output due to a unique combination of high energy of reaction particles, low self absorption, and low ionization density of tritons. The design configuration provides for double sided readout of the lithium foil resulting in a doubling of the efficiency relative to a classical reactive film detector and generating a pulse height distribution with a valley between neutron and gamma signals similar to {sup 3}He tubes. The tens of microns thickness of plastic scintillator limits the energy deposited by gamma rays, which provides the necessary neutron/gamma discrimination. We used MCNPX to model a multilayer Li foil detector design and compared it with the standard HLNCC-II (18 {sup 3}He tubes operated at 4 atm). The preliminary results of the {sup 6}Li configuration show higher efficiency and one third of the die-away time. These properties, combined with the very short dead time of the plastic scintillator, offer the potential of a very high performance detector.

  9. Improved Scintillator Materials For Compact Electron Antineutrino Detectors

    NARCIS (Netherlands)

    Dijkstra, Peter; Wortche, Heinrich J.; Browne, Wesley R.

    2012-01-01

    Recent developments provide new components holding the potential to improve the performance of liquid scintillation electron antineutrino detectors used as nuclear reactors monitors. Current systems raise issues regarding size, quantum efficiency, stability, and spatial resolution of the vertex

  10. Sensitivity comparison of intrinsic germanium detectors with various efficiencies

    Energy Technology Data Exchange (ETDEWEB)

    Buker, L.M.L.

    1990-12-01

    Scientists today are being asked to measure concentrations of radionuclides at increasingly lower levels. This creates a demand for better resolution detectors with larger efficiencies that can provide the necessary sensitivity to accurately determine low levels of radioactivity. This study has acquired a large volume of empirical data for a wide range of relative efficiency germanium detectors. The purpose was to determine the sensitivity of various efficiency high-purity (P-type) germanium detectors produced by a single manufacturer. Selecting efficiency as the only variable and essentially all other variables remaining constant narrowed the field of detectors to 30. This investigation compares the response for the lower limit of detection (LLD), figure-of-merit (FOM), and minimum detectable activity (MDA) versus efficiency. In addition to the efficiency, the resolution, background, peak-to-Compton (P/C), and crystal shape of a p-type detector are of particular importance when considering the parameters of a detectors performance. A concise summary of the results is that the detector of choice for low energy measurements would be a 25% detector with resolution better than 1.8 keV FWHM for the 1.332 keV energy of Co-60. The detector of choice for energy levels greater than 500 keV would be a high efficiency low background detector. If the entire energy range is of interest, then a 70% low background detector with a high P/C and a resolution better than 1.9 keV would yield the lowest MDA and assure the most efficient counting times. 9 refs., 25 figs., 6 tabs.

  11. The Phase-1 upgrade of the CMS silicon pixel detector

    CERN Document Server

    Menichelli, Mauro

    2015-01-01

    The present CMS pixel detector will be replaced in the shutdown period 2016/17 by an upgraded version due to the following reasons: increased luminosity at reduced bunch spacing ( from 7 x 10 33 cm - 2 s - 1 at 50 ns bunch spacing to 2 x 10 34 cm - 2 s - 1 at 25 ns bunch spacing) in the LHC , and radiation damage effects that will significantly degrade the present detector. The new upgraded detector will have higher tracking efficiency and lower mass with four barrel layer and three forward/backward disks to provide higher hit pixel coverage out to pseudorapidities of ±2.5. In this paper we will describe the new pixel detector focus ing mostly on the barrel detector design, construction and expected performances

  12. Advanced Detectors for Nuclear, High Energy and Astroparticle Physics

    CERN Document Server

    Das, Supriya; Ghosh, Sanjay

    2018-01-01

    The book presents high-quality papers presented at a national conference on ‘Advanced Detectors for Nuclear, High Energy and Astroparticle Physics’. The conference was organized to commemorate 100 years of Bose Institute. The book is based on the theme of the conference and provides a clear picture of basics and advancement of detectors for nuclear physics, high-energy physics and astroparticle physics together. The topics covered in the book include detectors for accelerator-based high energy physics; detectors for non-accelerator particle physics; nuclear physics detectors; detection techniques in astroparticle physics and dark matter; and applications and simulations. The book will be a good reference for researchers and industrial personnel working in the area of nuclear and astroparticle physics.

  13. MAJORANA Collaboration's Experience with Germanium Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Mertens, S. [Lawrence Berkeley National Laboratory (LBNL); Abgrall, N. [Lawrence Berkeley National Laboratory (LBNL); Avignone, III, F. T. [University of South Carolina/Oak Ridge National Laboratory (ORNL); Barabash, A.S. [Institute of Theoretical & Experimental Physics (ITEP), Moscow, Russia; Bertrand, F. E. [Oak Ridge National Laboratory (ORNL); Efremenko, Yuri [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL); Galindo-Uribarri, A [Oak Ridge National Laboratory (ORNL); Radford, D. C. [Oak Ridge National Laboratory (ORNL); Romero-Romero, E. [UTK/ORNL; Varner, R. L. [Oak Ridge National Laboratory (ORNL); White, B. R. [Oak Ridge National Laboratory (ORNL); Wilkerson, J. F. [UNC/Triangle Univ. Nucl. Lab, Durham, NC/ORNL; Yu, C.-H. [Oak Ridge National Laboratory (ORNL); Majorana, [MAJORANA Collaboration

    2015-01-01

    The goal of the Majorana Demonstrator project is to search for 0v beta beta decay in Ge-76. Of all candidate isotopes for 0v beta beta, Ge-76 has some of the most favorable characteristics. Germanium detectors are a well established technology, and in searches for 0v beta beta, the high purity germanium crystal acts simultaneously as source and detector. Furthermore, p-type germanium detectors provide excellent energy resolution and a specially designed point contact geometry allows for sensitive pulse shape discrimination. This paper will summarize the experiences the MAJORANA collaboration made with enriched germanium detectors manufactured by ORTEC (R)(R). The process from production, to characterization and integration in MAJORANA mounting structure will be described. A summary of the performance of all enriched germanium detectors will be given.

  14. Online calibration and performance of the ATLAS Pixel Detector

    Energy Technology Data Exchange (ETDEWEB)

    Keil, Markus, E-mail: markus.keil@cern.ch [CERN, 1211 Geneva 23 (Switzerland); II. Physikalisches Institut, Universitaet Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany)

    2011-09-11

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN. It consists of 1744 silicon sensors equipped with approximately 80 million electronic channels, providing typically three measurement points with high resolution for particles emerging from the beam-interaction region, thus allowing measuring particle tracks and secondary vertices with very high precision. The readout system of the Pixel Detector is based on a bi-directional optical data transmission system between the detector and the data acquisition system with an individual link for each of the 1744 modules. Signal conversion components are located on both ends, approximately 80 m apart. This paper describes the tuning and calibration of the optical links and the detector modules, including measurements of threshold, noise, charge measurement, timing performance and the sensor leakage current.

  15. A new transition radiation detector for cosmic ray nuclei

    Science.gov (United States)

    Lheureux, J.; Meyer, P.; Muller, D.; Swordy, S.

    1981-01-01

    Test measurements on materials for transition radiation detectors at a low Lorentz factor are reported. The materials will be based on board Spacelab-2 for determining the composition and energy spectra of nuclear cosmic rays in the 1 TeV/nucleon range. The transition radiation detectors consist of a sandwich of radiator-photon detector combinations. The radiators emit X-rays and are composed of polyolefin fibers used with Xe filled multiwired proportional chamber (MWPC) detectors capable of detecting particle Lorentz factors of several hundred. The sizing of the detectors is outlined, noting the requirement of a thickness which provides a maximum ratio of transition radiation to total signal in the chambers. The fiber radiator-MWPC responses were tested at Fermilab and in an electron cyclotron. An increase in transition radiation detection was found as a square power law of Z, and the use of six radiator-MWPC on board the Spacelab-2 is outlined.

  16. Online Calibration and Performance of the ATLAS Pixel Detector

    CERN Document Server

    Keil, M

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN. It consists of 1744 silicon sensors equipped with approximately 80 million electronic channels, providing typically three measurement points with high resolution for particles emerging from the beam-interaction region, thus allowing measuring particle tracks and secondary vertices with very high precision. The readout system of the Pixel Detector is based on a bi-directional optical data transmission system between the detector and the data acquisition system with an individual link for each of the 1744 modules. Signal conversion components are located on both ends, approximately 80 m apart. This paper describes the tuning and calibration of the optical links and the detector modules, including measurements of threshold, noise, charge measurement, timing performance and the sensor leakage current.

  17. Characterization of Bismuth Germanate Detectors for Reaction Studies

    Science.gov (United States)

    Carls, A.; Kozub, R. L.; Chipps, K. A.; Pain, S. D.; Hertz-Kintish, D.; Thompson, P.; Waddell, D.

    2015-10-01

    Nuclear reactions utilizing radioactive ion beams emit particles and electromagnetic radiation that can provide useful information about reaction mechanisms, nuclear structure, and nuclear astrophysics. Owing to their high density and high Z, Bismuth Germanate (BGO) detectors are used in γ-ray decay studies where high efficiency is required. An array of such detectors will be used for future γ-ray studies with the new gas jet target JENSA (Jet Experiments in Nuclear Structure and Astrophysics), and the properties of each detector must be well known to better understand the data collected with them. Using the γ-ray sources 137Cs and 60Co along with background radiation, several BGO detectors were characterized by measuring their resolutions and efficiencies as functions of distance between source and detector. A detailed description of the procedure and results will be presented. This work is supported in part by the U.S. Department of Energy and the National Science Foundation.

  18. CALDER: Cryogenic light detectors for background-free searches

    Science.gov (United States)

    Di Domizio, S.; Bellini, F.; Cardani, L.; Casali, N.; Castellano, M. G.; Colantoni, I.; Cosmelli, C.; Cruciani, A.; D'Addabbo, A.; Martinez, M.; Minutolo, L.; Tomei, C.; Vignati, M.

    2018-01-01

    CALDER is a R&D project for the development of cryogenic light detectors with an active surface of 5x5cm2 and an energy resolution of 20 eV RMS for visible and UV photons. These devices can enhance the sensitivity of next generation large mass bolometric detectors for rare event searches, providing an active background rejection method based on particle discrimination. A CALDER detector is composed by a large area Si absorber substrate with superconducting kinetic inductance detectors (KIDs) deposited on it. The substrate converts the incoming light into athermal phonons, that are then sensed by the KIDs. KID technology combine fabrication simplicity with natural attitude to frequency-domain multiplexing, making it an ideal candidate for a large scale bolometric experiments. We will give an overview of the CALDER project and show the performances obtained with prototype detectors both in terms of energy resolution and efficiency.

  19. Fission-fragment detector for DANCE based on thin scintillating films

    Science.gov (United States)

    Rusev, G.; Roman, A. R.; Daum, J. K.; Springs, R. K.; Bond, E. M.; Jandel, M.; Baramsai, B.; Bredeweg, T. A.; Couture, A.; Favalli, A.; Ianakiev, K. D.; Iliev, M. L.; Mosby, S.; Ullmann, J. L.; Walker, C. L.

    2015-12-01

    A fission-fragment detector based on thin scintillating films has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing 4 π detection of the fission fragments. The scintillation photons were registered with silicon photomultipliers. A measurement of the 235U (n , f) reaction with this detector at DANCE revealed a correct time-of-flight spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described.

  20. The STEIN Particle Detector

    Science.gov (United States)

    2015-02-27

    of FPGA modules is shown in figure 9. The IIB shown in this figure referes to the instrument interface board that was the primary interface for...determined elsewhere. Likewise the FPGA is able to output control voltage to a high voltage power supply to modulate the voltage found on the electrostatic...D., “IDeF-X ECLAIRs: A CMOS ASIC for the Readout of CdTe and CdZnTe Detectors for High Resolution Spectroscopy,” Nuclear Science, IEEE Tran, 10.1109

  1. Scintillating fiber detector

    CERN Document Server

    Vozak, Matous

    2016-01-01

    NA61 is one of the physics experiments at CERN dedicated to study hadron states coming from interactions of SPS beams with various targets. To determine the position of a secondary beam, three proportional chambers are placed along the beamline. However, these chambers tend to have slow response. In order to obtain more precise time information, use of another detector is being considered. Fast response and compact size is making scintillation fiber (SciFi) with silicon photomultiplier (Si-PM) read out a good candidate. This report is focused on analysing data from SciFi collected in a test beam at the beginning of July 2016.

  2. A search for low-mass dark matter with the cryogenic dark matter search and the development of highly multiplexed phonon-mediated particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Moore, David Craig [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2012-01-01

    A wide variety of astrophysical observations indicate that approximately 85% of the matter in the universe is nonbaryonic and nonluminous. Understanding the nature of this "dark matter" is one of the most important outstanding questions in cosmology. Weakly Interacting Massive Particles (WIMPs) are a leading candidate for dark matter since they would be thermally produced in the early universe in the correct abundance to account for the observed relic density of dark matter. If WIMPs account for the dark matter, then rare interactions from relic WIMPs should be observable in terrestrial detectors. Recently, unexplained excess events in the DAMA/LIBRA, CoGeNT, and CRESST-II experiments have been interpreted as evidence of scattering from WIMPs with masses ~10 GeV and spin-independent scattering cross sections of 10-41-10-40 cm2. The Cryogenic Dark Matter Search (CDMS II) attempts to identify WIMP interactions using an array of cryogenic germanium and silicon particle detectors located at the Soudan Underground Laboratory in northern Minnesota. In this dissertation, data taken by CDMS II are reanalyzed using a 2 keV recoil energy threshold to increase the sensitivity to WIMPs with masses ~10 GeV. These data disfavor an explanation for the DAMA/LIBRA, CoGeNT, and CRESST-II results in terms of spin-independent elastic scattering of WIMPs with masses ≲12 GeV, under standard assumptions. At the time of publication, they provided the strongest constraints on spin-independent elastic scattering from 5-9 GeV, ruling out previously unexplored parameter space. To detect WIMPs or exclude the remaining parameter space favored by the most popular models will ultimately require detectors with target masses ≳1 ton, requiring an increase in mass by more than two orders of magnitude over CDMS II. For cryogenic detectors such as CDMS, scaling to such large target masses will require individual detector elements to be fabricated more quickly and cheaply, while

  3. A detector for neutron imaging

    CERN Document Server

    Britton, C L; Wintenberg, A L; Warmack, R J; McKnight, T E; Frank, S S; Cooper, R G; Dudney, N J; Veith, G M; Stephan, A C

    2004-01-01

    A bright neutron source such as the Spallation Neutron Source (SNS) places extreme requirements on detectors including excellent 2-D spatial imaging and high dynamic range. Present imaging detectors have either shown position resolutions that are less than acceptable or they exhibit excessive paralyzing dead times due to the brightness of the source. High neutron detection efficiency with good neutron- gamma discrimination is critical for applications in neutron scattering research where the usefulness of the data is highly dependent on the statistical uncertainty associated with each detector pixel.. A detector concept known as MicroMegas (MicroMEsh GAseous Structure) has been developed at CERN in Geneva for high- energy physics charged-particle tracking applications and has shown great promise for handling high data rates with a rather low-cost structure. We are attempting to optimize the MicroMegas detector concept for thermal neutrons and have designed a 1-D neutron strip detector which we have tested In ...

  4. Cascaded systems analysis of photon counting detectors.

    Science.gov (United States)

    Xu, J; Zbijewski, W; Gang, G; Stayman, J W; Taguchi, K; Lundqvist, M; Fredenberg, E; Carrino, J A; Siewerdsen, J H

    2014-10-01

    0.50) by ∼30% with corresponding improvement in DQE. The range in exposure and additive noise for which PCDs yield intrinsically higher DQE was quantified, showing performance advantages under conditions of very low-dose, high additive noise, and high fidelity rejection of coincident photons. The model for PCD signal and noise performance agreed with measurements of detector signal, MTF, and NPS and provided a useful basis for understanding complex dependencies in PCD imaging performance and the potential advantages (and disadvantages) in comparison to EIDs as well as an important guide to task-based optimization in developing new PCD imaging systems.

  5. Particle Identification: Time-of-Flight, Cherenkov and Transition Radiation Detectors - Particle Detectors and Detector Systems

    CERN Document Server

    Ullaland, O

    2011-01-01

    Particle Identification: Time-of-Flight, Cherenkov and Transition Radiation Detectors in 'Particle Detectors and Detector Systems', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B1: Detectors for Particles and Radiation. Part 1: Principles and Methods'. This document is part of Part 1 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Section '3.3 Particle Identification: Time-of-Flight, Cherenkov and Transition Radiation Detectors' of Chapter '3 Particle Detectors and Detector Systems' with the content: 3.3 Particle Identification: Time-of-Flight, Cherenkov and Transition Radiation Detectors 3.3.1 Introduction 3.3.2 Time of Flight Measurements 3.3.2.1 Scintillator hodoscopes 3.3.2.2 Parallel plate ToF detectors 3.3.3 Cherenkov Radiation 3.3.3.1 ...

  6. First detectors at the ISR

    CERN Multimedia

    CERN PhotoLab

    1971-01-01

    Some of the first detectors at the ISR. A CERN/Rome team was looking at proton scattering at very small angles to the beam direction. A detector known as a "Roman pot" is in the foreground on the left. An Aachen/CERN/Genoa/Harvard/Turin team was looking at wider angles with the detectors seen branching off from the rings on the right.

  7. The CMS detector before closure

    CERN Multimedia

    Patrice Loiez

    2006-01-01

    The CMS detector before testing using muon cosmic rays that are produced as high-energy particles from space crash into the Earth's atmosphere generating a cascade of energetic particles. After closing CMS, the magnets, calorimeters, trackers and muon chambers were tested on a small section of the detector as part of the magnet test and cosmic challenge. This test checked the alignment and functionality of the detector systems, as well as the magnets.

  8. Loss-tolerant measurement-device-independent quantum private queries

    Science.gov (United States)

    Zhao, Liang-Yuan; Yin, Zhen-Qiang; Chen, Wei; Qian, Yong-Jun; Zhang, Chun-Mei; Guo, Guang-Can; Han, Zheng-Fu

    2017-01-01

    Quantum private queries (QPQ) is an important cryptography protocol aiming to protect both the user’s and database’s privacy when the database is queried privately. Recently, a variety of practical QPQ protocols based on quantum key distribution (QKD) have been proposed. However, for QKD-based QPQ the user’s imperfect detectors can be subjected to some detector- side-channel attacks launched by the dishonest owner of the database. Here, we present a simple example that shows how the detector-blinding attack can damage the security of QKD-based QPQ completely. To remove all the known and unknown detector side channels, we propose a solution of measurement-device-independent QPQ (MDI-QPQ) with single- photon sources. The security of the proposed protocol has been analyzed under some typical attacks. Moreover, we prove that its security is completely loss independent. The results show that practical QPQ will remain the same degree of privacy as before even with seriously uncharacterized detectors.

  9. A detector module with highly efficient surface-alpha event rejection operated in CRESST-II Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, R. [Max-Planck-Institut fuer Physik, Munich (Germany); Technische Universitaet Muenchen, Physik-Department, Garching (Germany); Angloher, G.; Ferreiro, N.; Hauff, D.; Kiefer, M.; Petricca, F.; Proebst, F.; Reindl, F.; Seidel, W.; Stodolsky, L.; Tanzke, A.; Wuestrich, M. [Max-Planck-Institut fuer Physik, Munich (Germany); Bento, A. [Universidade de Coimbra, CIUC, Departamento de Fisica, Coimbra (Portugal); Bucci, C.; Canonica, L.; Gorla, P.; Schaeffner, K. [Laboratori Nazionali del Gran Sasso, INFN, Assergi (Italy); Erb, A. [Technische Universitaet Muenchen, Physik-Department, Garching (Germany); Walther-Meissner-Institut fuer Tieftemperaturforschung, Garching (Germany); Feilitzsch, F. von; Guetlein, A.; Lanfranchi, J.C.; Muenster, A.; Potzel, W.; Roth, S.; Schoenert, S.; Stanger, M.; Ulrich, A.; Wawoczny, S.; Willers, M.; Zoeller, A. [Technische Universitaet Muenchen, Physik-Department, Garching (Germany); Jochum, J.; Loebell, J.; Rottler, K.; Sailer, C.; Scholl, S.; Strandhagen, C.; Uffinger, M.; Usherov, I. [Eberhard-Karls-Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Kluck, H. [Institut fuer Hochenergiephysik der Oesterreichischen Akademie der Wissenschaften, Wien (Austria); Vienna University of Technology, Atominstitut, Wien (Austria); Kraus, H. [University of Oxford, Department of Physics, Oxford (United Kingdom); Schieck, J. [Institut fuer Hochenergiephysik der Oesterreichischen Akademie der Wissenschaften, Wien (Austria); Sivers, M. von [Technische Universitaet Muenchen, Physik-Department, Garching (Germany); University of Bern, Albert Einstein Center for Fundamental Physics, Bern (Switzerland)

    2015-08-15

    The cryogenic dark matter experiment CRESSTII aims at the direct detection of WIMPs via elastic scattering off nuclei in scintillating CaWO{sub 4} crystals. We present a new, highly improved, detector design installed in the current run of CRESST-II Phase 2 with an efficient active rejection of surface-alpha backgrounds. Using CaWO{sub 4} sticks instead of metal clamps to hold the target crystal, a detector housing with fully-scintillating inner surface could be realized. The presented detector (TUM40) provides an excellent threshold of ∝0.60 keV and a resolution of σ ∼ 0.090 keV (at 2.60 keV).With significantly reduced background levels, TUM40 sets stringent limits on the spin-independent WIMP nucleon scattering cross section and probes a new region of parameter space for WIMP masses below 3GeV/c{sup 2}. In this paper, we discuss the novel detector design and the surface-alpha event rejection in detail. (orig.)

  10. Ground calibration of the Silicon Drift Detectors for NICER

    Science.gov (United States)

    LaMarr, Beverly; Prigozhin, Gregory; Remillard, Ronald; Malonis, Andrew; Gendreau, Keith C.; Arzoumanian, Zaven; Markwardt, Craig B.; Baumgartner, Wayne H.

    2016-07-01

    The Neutron star Interior Composition ExploreR (NICER) is set to be deployed on the International Space Station (ISS) in early 2017. It will use an array of 56 Silicon Drift Detectors (SDDs) to detect soft X-rays (0.2 - 12 keV) with 100 nanosecond timing resolution. Here we describe the effort to calibrate the detectors in the lab primarily using a Modulated X-ray Source (MXS). The MXS that was customized for NICER provides more than a dozen emission lines spread over the instrument bandwidth, providing calibration measurements for detector gain and spectral resolution. In addition, the fluorescence source in the MXS was pulsed at high frequency to enable measurement of the delay due to charge collection in the silicon and signal processing in the detector electronics. A second chamber, designed to illuminate detectors with either 55Fe, an optical LED, or neither, provided additional calibration of detector response, optical blocking, and effectiveness of background rejection techniques. The overall ground calibration achieved total operating time that was generally in the range of 500-1500 hours for each of the 56 detectors.

  11. Black Body Detector Temperature from Gall and Planck Perspectives

    Science.gov (United States)

    Gall, Clarence A.

    2009-05-01

    The laws of Gall (http://sites.google.com/site/purefieldphysics) and Planck are generally defined with zero intensity at 0 K. However actual measurements involve detectors above absolute zero. These detectors must also be treated as approximate black body radiators. The zero intensity reference point is thus defined by the radiated intensity at the detector temperature. Planck's law thus becomes ( IP=c1λ^51e^c2λT;-1-c1λ^51e^c2λTd;-1) where Td is the detector temperature. Provided that T>Td;;;IP;is;always>0. Thus from a Planck perspective, wavelength increase should not be a factor in defining detector temperature. The corresponding expression for Gall's law is ( IG=σT^6b^2λe^-λTb-σTd^6b^2λe^-λTdb) . Above the crossover wavelength (http://absimage.aps.org/image/MWSMAR09-2008-000004.pdf), even though T>Td;;;IG<0. From a Gall perspective, this sets a limit on the long wavelength range for a given detector temperature. Longer wavelength measurements require lower detector temperatures. For a 6000 K black body radiator, the long wavelength crossover limits for detectors at 300 K, 100 K and 4 K are 9.138, 12.066 and 21.206 microns respectively.

  12. VNR CMS Pixel detector replacement

    CERN Multimedia

    2017-01-01

    Joel Butler, spokesperson of the CMS collaboration explains how a team from many different partner institutes installed a new detector in CMS. This detector is the silicon pixel detector and they’ve been working on it for about five years, to replace one of our existing detectors. This detectors measures particles closer to the beam than any of the other components of this huge detector behind me. It gives us the most precise picture of tracks as they come out of the collisions and expand and travel through the detector. This particular device has twice as many pixels, 120 million, as opposed to about 68 million in the old detector and it can take data faster and pump it out to the analysis more quickly. 00’53’’ Images of the descent, insertion and installation of first piece of the Pixel detector on Tue Feb 28. Images of the descent, insertion and installation of second piece of the Pixel and the two cylinders being joined.

  13. SU-D-213-01: Transparent Photon Detector For The Online Monitoring Of IMRT Beams

    Energy Technology Data Exchange (ETDEWEB)

    Delorme, R; Arnoud, Y; Fabbro, R; Boyer, B; Rossetto, O; Gallin-Martel, L; Gallin-Martel, M; Pelissier, A; Fonteille, I [LPSC, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Grenoble INP, Grenoble (France); Giraud, J [Centre Hospitalier Universitaire de Grenoble, Inserm U836, La Tronche (France)

    2015-06-15

    Purpose: An innovative Transparent Detector for Radiotherapy (TraDeRa) has been developed. The detector aims at real-time monitoring of modulated beam ahead of the patient during delivery sessions, with a field cover up to 40×40 cm {sup 2}. Methods: TraDeRa consists in a pixelated matrix of ionization chambers with a patented electrodes design. An in-house designed specific integrated circuit allows to extract the signal and provides a real-time map of beam intensity and shape, at the linac pulse-scale. The measurements under irradiation are made with a 6 MV clinical X-Ray beam. Dose calculations are performed with the Monte Carlo code PENELOPE, modeling the full accelerator head and the TraDeRa detector. Results: A 2 % attenuation of the beam was measured in the presence of TraDeRa and the PENELOPE dosimetric study showed no significant modification of the photon beam properties. TraDeRa detects error leaf position as small as 1 mm compared to a reference field, for both static and modulated fields. In addition, measurements are accurate over a large dynamic range from low intensity signals, as inter-leaves leaks, to very high intensities as obtained on the medical line of the European Synchrotron Radiation Facility. The detector is fully operational for conventional and high dose rate beams as FFF modes (up to 2400 MU/min). Conclusion: The current version of TraDeRa shows promising results for IMRT quality assurance (QA), allowing pulse-scale monitoring of the beam and high sensitivity for errors detection. The attenuation is small enough not to hinder the irradiation while keeping the beam upstream of the patient under constant control. A final prototype under development will include 1600 independent electrodes, half of them with a high resolution centered on the beam axis. This compact detector provides an independent set of measurements for a better QA. Funding support : This work was supported by the LABEX PRIMES (ANR-11-LABX-0063) of Universite de Lyon

  14. Development and validation of a model for the response of the Belle II vertex detector

    CERN Document Server

    Schwenker, Benjamin

    The future super flavour factory SuperKEKB with its detector system Belle II offers precision physics measurements to test the Standard Model or probe undiscovered phenomena. The physics goals of Belle II require a very precise detection of the decay point, or vertex, of B mesons from their low momentum decay products. A novel, two layer vertex detector composed of very thin, high resolution silicon pixel detectors based on Depleted Field Effect Transistors (DEPFET) is in production for Belle II. A realistic and experimentally validated simulation for DEPFET pixel detectors is a crucial tool to optimize the resolution of the vertex detector well before construction. In this thesis, a detailed detector simulation for the response of thin DEPFET pixel detectors to charged particles is presented. The detector simulation provides a description of the straggling of particles in silicon, the drift, diffusion and collection of the signal and the response of the read-out electronics. The model yields a precise predic...

  15. MUON DETECTORS: RPC

    CERN Multimedia

    G. Iaselli.

    Substantial progress has been made on the RPC system resulting in a high standard of operation. Impressive improvements have been made in the online software and DCS PVSS protocols that ensure robustness of the configuration phase and reliability of the detector monitoring tasks. In parallel, an important upgrade of CCU ring connectivity was pursued to avoid noise pick-up and consequent  data transmission errors during operation with magnetic field. While the barrel part is already well synchronized thanks to the long cosmics runs, some refinements are still required on the forward part. The "beam splashes" have been useful to cross check  the existing delay constants, but further efforts will be made as soon as a substantial sample of beam-halo events is available. Progress has been made on early detector performance studies. The RPC DQM tool is being extensively used and minor bugs have been found. More plots have been added and more people have been tr...

  16. MUON DETECTORS: RPC

    CERN Multimedia

    P. Paolucci

    2011-01-01

    The RPC muon detector and trigger are working very well, contributing positively to the high quality of CMS data. Most of 2011 has been used to improve the stability of our system and the monitoring tools used online and offline by the shifters and experts. The high-voltage working point is corrected, chamber-by-chamber, for pressure variation since July 2011. Corrections are applied at PVSS level during the stand-by mode (no collision) and are not changed until the next fill. The single detector calibration, HV scan, of February and the P-correction described before were very important steps towards fine-tuning the stability of the RPC performances. A very detailed analysis of the RPC performances is now ongoing and from preliminary results we observe an important improvements of the cluster size stability in time. The maximum oscillation of the cluster size run by run is now about 1%. At the same time we are not observing the same stability in the detection efficiency that shows an oscillation of about ...

  17. MUON DETECTORS: DT

    CERN Multimedia

    Marco Dallavalle

    2013-01-01

    The DT group is undertaking substantial work both for detector maintenance and for detec-tor upgrade. Maintenance interventions on chambers and minicrates require close collaboration between DT, RPC and HO, and are difficult because they depend on the removal of thermal shields and cables on the front and rear of the chambers in order to gain access. The tasks are particularly critical on the central wheel due to the presence of fixed services. Several interventions on the chambers require extraction of the DT+RPC package: a delicate operation due to the very limited space for handling the big chambers, and the most dangerous part of the DT maintenance campaign. The interventions started in July 2013 and will go on until spring 2014. So far out of the 16 chambers with HV problems, 13 have been already repaired, with a global yield of 217 recovered channels. Most of the observed problems were due to displacement of impurities inside the gaseous volume. For the minicrates and FE, repairs occurred on 22 chambe...

  18. MUON DETECTORS: RPC

    CERN Document Server

    G. Iaselli

    During the last 3 months the RPC group has made impressive improvements in the refinement of the operation tools and understanding of the detector. The full barrel and part of the plus end cap participated systematically to global runs producing millions of trigger on cosmics. The main monitoring tools were robust and efficient in controlling the detector and in diagnosis of problems. After the refinement of the synchronization procedure, detailed studies of the chamber performances, as a function of high voltage and front-end threshold, were pursued. In parallel, new tools for the prompt analysis were developed which have enabled a fast check of the data at the CMS Centre. This effort has been very valuable since it has helped in discovering many minor bugs in the reconstruction software and database which are now being fixed. Unfortunately, a large part of the RE2 station has developed increasing operational current. Some preliminary investigation leads to the conclusion that the serial gas circulation e...

  19. Commissioning the SNO+ Detector

    Science.gov (United States)

    Caden, E.; Coulter, I.; SNO+ Collaboration

    2017-09-01

    SNO+ is a multipurpose liquid scintillator neutrino experiment based at SNOLAB in Sudbury, Ontario, Canada. The experiment’s main physics goal is a search for neutrinoless double beta decay in Tellurium-130, but SNO+ will also study low energy solar neutrinos, geo- and reactor-antineutrinos, among other topics. We are reusing much of the hardware from the original SNO experiment, but significant work has taken place to transform the heavy water detector into a liquid scintillator detector. We present upgrades and improvements to the read-out electronics and trigger system to handle the higher data rates expected by a scintillator experiment. We show the successful installation and testing of a hold-down rope net for the acrylic vessel to counter-act the buoyancy of organic liquid scintillator. We also describe the new scintillator process plant and cover gas systems that have been constructed to achieve the purification necessary to meet our physics goals. We are currently commissioning the experiment with ultra-pure water in preparation for filling with scintillator in early 2017 and present the current status of this work.

  20. MUON DETECTORS: DT

    CERN Multimedia

    C. Fernandez Bedoya and M. Dallavalle

    2010-01-01

    The DT system operation since the 2010 LHC start up is remarkably smooth.
 All parts of the system have behaved very satisfactorily in the last two months of operation with LHC pp collisions. Disconnected HV channels remain at the level of 0.1%, and the loss in detector acceptance because of failures in the readout and Trigger electronics is about 0.4%. The DT DCS-LHC handshake mechanism, which was strengthened after the short 2009 LHC run, operates without major problems. A problem arose with the opto-receivers of the trigger links connecting the detector to USC; the receivers would unlock from transmission for specific frequencies of the LHC lock, in particular during the LHC ramp. For relocking the TX and RX a “re-synch” command had to be issued. The source of the problem has been isolated and cured in the Opto-RX boards and now the system is stable. The Theta trigger chain also has been commissioned and put in operation. Several interventions on the system have been made, pro...

  1. MUON DETECTORS: CSC

    CERN Multimedia

    J. Hauser

    2011-01-01

    The earliest collision data in 2011 already show that the CSC detector performance is very similar to that seen in 2010. That is discussed in the DPG write-up elsewhere in this Bulletin. This report focuses on a few operational developments, the ME1/1 electronics replacement project, and the preparations at CERN for building the fourth station of CSC chambers ME4/2. During the 2010 LHC run, the CSC detector ran smoothly for the most part and yielded muon triggers and data of excellent quality. Moreover, no major operational problems were found that needed to be fixed during the Extended Technical Stop. Several improvements to software and configuration were however made. One such improvement is the automation of recovery from chamber high-voltage trips. The algorithm, defined by chamber experts, uses the so-called "Expert System" to analyse the trip signals sent from DCS and, based on the frequency and the timing of the signals, respond appropriately. This will make the central DCS shifters...

  2. MUON DETECTORS: CSC

    CERN Multimedia

    Richard Breedon

    Following the opening of the CMS detector, commissioning of the cathode strip chamber (CSC) system resumed in earnest. Some on-chamber electronics problems could be fixed on the positive endcap when each station became briefly accessible as the steel yokes were peeled off. There was no opportunity to work on the negative endcap chambers during opening; this had to wait instead until the yokes were again separated and the stations accessible during closing. In March, regular detector-operating shifts were resumed every weekday evening during which Local Runs were taken using cosmic rays to monitor and validate repairs and improvements that had taken place during the day. Since April, the CSC system has been collecting cosmic data under shift supervision 24 hours a day on weekdays, and 24/7 operation began in early June. The CSC system arranged shifts for continuous running in the entire first half of 2009. One reward of this effort is that every chamber of the CSC system is alive and recording events. There...

  3. CALIFA Barrel prototype detector characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Pietras, B., E-mail: benjamin.pietras@usc.es [Universidade de Santiago de Compostela, E-15782 (Spain); Gascón, M. [Universidade de Santiago de Compostela, E-15782 (Spain); Lawrence Berkeley National Laboratory, 1 Cyclotron Rd. Berkeley, CA 94701 (United States); Álvarez-Pol, H. [Universidade de Santiago de Compostela, E-15782 (Spain); Bendel, M. [Technische Universität München, 80333 (Germany); Bloch, T. [Technische Universität Darmstadt, D-64289 Darmstadt (Germany); Casarejos, E. [Universidade de Vigo, E-36310 (Spain); Cortina-Gil, D.; Durán, I. [Universidade de Santiago de Compostela, E-15782 (Spain); Fiori, E. [Gesellschaft für Schwerionenforschung (GSI), D-64291 Darmstadt (Germany); Gernhäuser, R. [Technische Universität München, 80333 (Germany); González, D. [Universidade de Santiago de Compostela, E-15782 (Spain); Kröll, T. [Technische Universität Darmstadt, D-64289 Darmstadt (Germany); Le Bleis, T. [Technische Universität München, 80333 (Germany); Montes, N. [Universidade de Santiago de Compostela, E-15782 (Spain); Nácher, E. [Instituto de Estructura de la Materia, CSIC, E-28006 Madrid (Spain); Robles, M. [Universidade de Santiago de Compostela, E-15782 (Spain); Perea, A. [Instituto de Estructura de la Materia, CSIC, E-28006 Madrid (Spain); Vilán, J.A. [Universidade de Vigo, E-36310 (Spain); Winkel, M. [Technische Universität München, 80333 (Germany)

    2013-11-21

    Well established in the field of scintillator detection, Caesium Iodide remains at the forefront of scintillators for use in modern calorimeters. Recent developments in photosensor technology have lead to the production of Large Area Avalanche Photo Diodes (LAAPDs), a huge advancement on traditional photosensors in terms of high internal gain, dynamic range, magnetic field insensitivity, high quantum efficiency and fast recovery time. The R{sup 3}B physics programme has a number of requirements for its calorimeter, one of the most challenging being the dual functionality as both a calorimeter and a spectrometer. This involves the simultaneous detection of ∼300MeV protons and gamma rays ranging from 0.1 to 20 MeV. This scintillator – photosensor coupling provides an excellent solution in this capacity, in part due to the near perfect match of the LAAPD quantum efficiency peak to the light output wavelength of CsI(Tl). Modern detector development is guided by use of Monte Carlo simulations to predict detector performance, nonetheless it is essential to benchmark these simulations against real data taken with prototype detector arrays. Here follows an account of the performance of two such prototypes representing different polar regions of the Barrel section of the forthcoming CALIFA calorimeter. Measurements were taken for gamma–ray energies up to 15.1 MeV (Maier-Leibnitz Laboratory, Garching, Germany) and for direct irradiation with a 180 MeV proton beam (The Svedberg Laboratoriet, Uppsala, Sweden). Results are discussed in light of complementary GEANT4 simulations. -- Highlights: •Prototypes corresponding to different sections of the forthcoming CALIFA Barrel calorimeter were tested. •The response to both high energy gamma rays and high energy protons was observed. •This response was reproduced by use of R3BROOT simulations, the geometry extrapolated to predict performance of the complete calorimeter. •Effects such as energy straggling of wrapping

  4. Compensating for Channel Fading in DS-CDMA Communication Systems Employing ICA Neural Network Detectors

    Directory of Open Access Journals (Sweden)

    David Overbye

    2005-06-01

    Full Text Available In this paper we examine the impact of channel fading on the bit error rate of a DS-CDMA communication system. The system employs detectors that incorporate neural networks effecting methods of independent component analysis (ICA, subspace estimation of channel noise, and Hopfield type neural networks. The Rayleigh fading channel model is used. When employed in a Rayleigh fading environment, the ICA neural network detectors that give superior performance in a flat fading channel did not retain this superior performance. We then present a new method of compensating for channel fading based on the incorporation of priors in the ICA neural network learning algorithms. When the ICA neural network detectors were compensated using the incorporation of priors, they give significantly better performance than the traditional detectors and the uncompensated ICA detectors. Keywords: CDMA, Multi-user Detection, Rayleigh Fading, Multipath Detection, Independent Component Analysis, Prior Probability Hebbian Learning, Natural Gradient

  5. Implementation of a Large Scale Control System for a High-Energy Physics Detector: The CMS Silicon Strip Tracker

    CERN Document Server

    Masetti, Lorenzo; Fischer, Peter

    2011-01-01

    Control systems for modern High-Energy Physics (HEP) detectors are large distributed software systems managing a significant data volume and implementing complex operational procedures. The control software for the LHC experiments at CERN is built on top of a commercial software used in industrial automation. However, HEP specific requirements call for extended functionalities. This thesis focuses on the design and implementation of the control system for the CMS Silicon Strip Tracker but presents some general strategies that have been applied in other contexts. Specific design solutions are developed to ensure acceptable response times and to provide the operator with an effective summary of the status of the devices. Detector safety is guaranteed by proper configuration of independent hardware systems. A software protection mechanism is used to avoid the widespread intervention of the hardware safety and to inhibit dangerous commands. A wizard approach allows non expert operators to recover error situations...

  6. NuLat: 3D Event Reconstruction of a ROL Detector for Neutrino Detection and Background Rejection

    Science.gov (United States)

    Yokley, Zachary; NuLat Collaboration

    2015-04-01

    NuLat is a proposed very-short baseline reactor antineutrino experiment that employs a unique detector design, a Ragahavan Optical Lattice (ROL), developed for the LENS solar neutrino experiment. The 3D lattice provides high spatial and temporal resolution and allows for energy deposition in each voxel to be determined independently of other voxels, as well as the time sequence associated with each voxel energy deposition. This unique feature arises from two independent means to spatially locate energy deposits: via timing and via optical channeling. NuLat, the first application of a ROL detector targeting physics results, will measure the reactor antineutrino flux at very short baselines via inverse beta decay (IBD). The ROL design of NuLat makes possible the reconstruction of positron energy with little contamination due to the annihilation gammas which smear the positron energy resolution in a traditional detector. IBD events are cleanly tagged via temporal and spatial coincidence of neutron capture in the vertex voxel or nearest neighbors. This talk will present work on IBD event reconstruction in NuLat and its likely impact on sterile neutrino detection via operation in higher background locations enabled by its superior rejection of backgrounds. This research has been funded in part by the National Science Foundation on Award Numbers 1001394 and 1001078.

  7. Characterization of the CMS Pixel Detectors

    CERN Document Server

    Gu, Weihua

    2002-01-01

    In 2005 the Large Hadron Collider (LHC) will start the pp collisions at a high luminosity and at a center of mass energy of 14 TeV. The primary goal of the experimental programme is the search of the Higgs boson(s) and the supersymmetric particles. The programme is also proposed to detect a range of diverse signatures in order to provide guidance for future physics. The pixel detector system makes up the innermost part of the CMS experiment, which is one of the two general purpose detectors at the LHC. The main tasks of the system are vertex detection and flavor tagging. The high luminosity and the high particle multiplicity as well as the small bunch spacing at the LHC impose great challenges on the pixel detectors: radiation hardness of sensors and electronics, fast signal processing and a high granularity are the essential requirements. This thesis concentrates on the study of the suitability of two test stands, which are implemented to characterize the CMS pixel detectors: one is con-cerned with test puls...

  8. Independent School Libraries Perspectives on excellence

    CERN Document Server

    HAND, DORCAS

    2010-01-01

    Independent School Libraries: Perspectives on Excellence offers readers insights into best practices in library services for school communities, using examples drawn from independent schools of various sizes, descriptions, and locations across the United States. Two overview essays introduce a statistical analysis of independent schools. Each of the remaining essays provides perspective on a different aspect of library practice, including staffing, advocacy, assessment, technology, collaboration, programs beyond the curriculum, intellectual freedom and privacy, budgeting, accreditation, disast

  9. PET detector modules based on novel detector technologies

    Energy Technology Data Exchange (ETDEWEB)

    Moses, W.W.; Derenzo, S.E.; Budinger, T.F.

    1994-05-01

    A successful PET detector module must identify 511 keV photons with: high efficiency (>85%), high spatial resolution (<5 mm fwhm), low cost (<$600 / in{sup 2}), low dead time (<4 {mu}s in{sup 2}), good timing resolution (<5 ns fwhm for conventional PET, <200 ps fwhm for time of flight), and good energy resolution (<100 keV fwhm), where these requirements are listed in decreasing order of importance. The ``high efficiency`` requirement also implies that the detector modules must pack together without inactive gaps. Several novel and emerging radiation detector technologies could improve the performance of PET detectors. Avalanche photodiodes, PIN photodiodes, metal channel dynode photomultiplier tubes, and new scintillators all have the potential to improve PET detectors significantly.

  10. Distro’: Independent Creativity for Independent Industr

    Directory of Open Access Journals (Sweden)

    Wiwik Sri Wulandari

    2014-11-01

    Full Text Available To shortened this introduction, ‘Distro’ is one of cultural phenomenon in theyoung generation nowadays. The word of ‘Distro’ is the shortened of DistributionOutlet. The phenomenon of ‘Distro’ has been some kind of new trends inproducing and distributing creative design products of goods amongst theyoungsters independently, in an independence industry that open for challengingand competitiveness for everyone. This field research has been done in the city ofYogyakarta, reknown as the second city in creative design products after the cityof Bandung. Yogyakarta is welknown as the students’ city as well as the capital cityof culture of Indonesia. As a students’ city it is normal that Yogyakarta is growingin numbers of young people who pursued to study here and enriched the cultureof the city to become more multicultural and the varieties of pluralism as well.This sociocultural phenomenon not only brought some dynamic changing tosociety, economy and cultural life of the city, but also social problems that needsto be overcome. My first research question then is about how the existence of‘Distro’ in Yogyakarta can be a positive answer for social problems that may arisesfrom the hegemony of globalization markets domestically? My second questionis how the creative product designs are being made and distributed creatively inindependent industry? Lastly, my third question is dealling with the genres ofthe design products and how it can be a new trend in art expression? ‘Distro’ is aproduct of culture and it is also creating cultural change in some aspects of the lifeof the youngsters who are ‘Distro’ enthusiasts. ‘Distro’ phenomenon basically is anoffensive to the hegemony of internationally branded product design which turnsto become more over-dominated to the domestic markets and industry and thus,‘Distro’ has the spirit of survival whilts at the same time producing opportunity ofenterpreneurship

  11. Towards a data and detector characterization robot for gravitational wave detectors

    CERN Document Server

    Mohanty, S D

    2002-01-01

    A change of non-astrophysical origin in the detector state or in the statistical nature of data while an interferometer is in lock reflects an abnormality. The change can manifest itself in many forms: transients, drifts in noise power spectral density, change in cross correlation between channels, etc. We advance the idea of an algorithm for detecting such change points whose design goal is reliable performance, i.e. a known false alarm rate, even when statistically unmodelled data such as those from the physical environmental monitors are included. Reliability is important since following up on such change points could be fairly labour intensive. Such an algorithm need not be simply a collection of isolated independent monitors running in parallel. We present the first design steps towards building this detector characterization robot along with some preliminary results and outline some possibilities for the future.

  12. Data for First Responder Use of Photoionization Detectors for Vapor Chemical Constituents

    Energy Technology Data Exchange (ETDEWEB)

    Keith A. Daum; Matthew G. Watrous; M. Dean Neptune; Daniel I. Michael; Kevin J. Hull; Joseph D. Evans

    2006-11-01

    First responders need appropriate measurement technologies for evaluating incident scenes. This report provides information about photoionization detectors (PIDs), obtained from manufacturers and independent laboratory tests, and the use of PIDs by first responders, obtained from incident commanders in the United States and Canada. PIDs are valued for their relatively low cost, light weight, rapid detection response, and ease of use. However, it is clear that further efforts are needed to provide suitable instruments and decision tools to incident commanders and first responders for assessing potential hazardous chemical releases. Information provided in this report indicates that PIDs should always be part of a decision-making context in which other qualitative and more definitive tests and instruments are used to confirm a finding. Possible amelioratory actions ranging from quick and relatively easy fixes to those requiring significant additional effort are outlined in the report.

  13. Determining dose rate with a semiconductor detector - Monte Carlo calculations of the detector response

    Energy Technology Data Exchange (ETDEWEB)

    Nordenfors, C

    1999-02-01

    To determine dose rate in a gamma radiation field, based on measurements with a semiconductor detector, it is necessary to know how the detector effects the field. This work aims to describe this effect with Monte Carlo simulations and calculations, that is to identify the detector response function. This is done for a germanium gamma detector. The detector is normally used in the in-situ measurements that is carried out regularly at the department. After the response function is determined it is used to reconstruct a spectrum from an in-situ measurement, a so called unfolding. This is done to be able to calculate fluence rate and dose rate directly from a measured (and unfolded) spectrum. The Monte Carlo code used in this work is EGS4 developed mainly at Stanford Linear Accelerator Center. It is a widely used code package to simulate particle transport. The results of this work indicates that the method could be used as-is since the accuracy of this method compares to other methods already in use to measure dose rate. Bearing in mind that this method provides the nuclide specific dose it is useful, in radiation protection, since knowing what the relations between different nuclides are and how they change is very important when estimating the risks

  14. Calorimetry of the CMD-3 detector

    Science.gov (United States)

    Akhmetshin, R. R.; Anisenkov, A. V.; Aulchenko, V. M.; Bashtovoy, N. S.; Epifanov, D. A.; Epshteyn, L. B.; Erofeev, A. L.; Grebenuk, A. A.; Grigoriev, D. N.; Kazanin, V. F.; Kovalenko, O. A.; Kozyrev, A. N.; Kuzmenko, A. E.; Kuzmin, A. S.; Logashenko, I. B.; Mikhailov, K. Yu; Okhapkin, V. S.; Razuvaev, G. P.; Ruban, A. A.; Shebalin, V. E.; Shwartz, B. A.; Titov, V. M.; Talyshev, A. A.; Yudin, Yu V.

    2017-11-01

    The CMD-3 detector has been collecting data since 2010 at the e + e ‑ collider VEPP-2000 in the Budker Institute of Nuclear Physics. VEPP-2000 uses the novel round beam technique and provides high luminosity in a wide c.m.energy range from 0.32 to 2 GeV. The physics goal of the CMD-3 experiment is a study of the e + e ‑ annihilation into hadrons. CMD-3 is a general-purpose detector, which provides high efficiency for both charged and neutral particles. The electromagnetic calorimeter consists of the barrel calorimeter based on liquid xenon and CsI crystals, and the endcap calorimeter based on BGO crystals. The main parameters of the calorimeters are presented.

  15. The energetic NeUtral Atom Detector Unit (NUADU) for China's Double Star Mission and its calibration

    Energy Technology Data Exchange (ETDEWEB)

    McKenna-Lawlor, Susan E-mail: stil@may.ie; Balaz, Jan; Strharsky, Igor; Barabash, Stas; Brinkfeldt, Klas; Li Lu; Shen Chao; Shi Jiankui; Zong Qingang; Kudela, Karel; Fu Suiyan; Roelof, E.C.; Brandt, Pontus C. son; Dandouras, Iannis

    2004-09-11

    An account is provided of an advanced Energetic NeUtral Atom Detector Unit (NUADU) designed for China's Double Star Mission. Special emphasis is given to describing the detector head of the instrument and its calibration.

  16. Baby-MIND neutrino detector

    Science.gov (United States)

    Mefodiev, A. V.; Kudenko, Yu. G.; Mineev, O. V.; Khotjantsev, A. N.

    2017-11-01

    The main objective of the Baby-MIND detector (Magnetized Iron Neutrino Detector) is the study of muon charge identification efficiency for muon momenta from 0.3 to 5 GeV/ c. This paper presents the results of measurement of the Baby-MIND parameters.

  17. R& D for Future Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Brau, J.

    2004-12-13

    Research and development of detector technology are critical to the future particle physics program. The goals of the International Linear Collider, in particular, require advances that are challenging, despite the progress driven in recent years by the needs of the Large Hadron Collider. The ILC detector goals and challenges are described and the program to address them is summarized.

  18. Fast Timing for Collider Detectors

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Advancements in fast timing particle detectors have opened up new possibilities to design collider detectors that fully reconstruct and separate event vertices and individual particles in the time domain. The applications of these techniques are considered for the physics at HL-LHC.

  19. ALICE Time Of Flight Detector

    CERN Multimedia

    Alici, A

    2013-01-01

    Charged particles in the intermediate momentum range are identified in ALICE by the Time Of Flight (TOF) detector. The time measurement with the TOF, in conjunction with the momentum and track length measured by the tracking detector, is used to calculate the particle mass.

  20. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    Z. Szillasi and G. Gomez.

    2013-01-01

    When CMS is opened up, major components of the Link and Barrel Alignment systems will be removed. This operation, besides allowing for maintenance of the detector underneath, is needed for making interventions that will reinforce the alignment measurements and make the operation of the alignment system more reliable. For that purpose and also for their general maintenance and recalibration, the alignment components will be transferred to the Alignment Lab situated in the ISR area. For the track-based alignment, attention is focused on the determination of systematic uncertainties, which have become dominant, since now there is a large statistics of muon tracks. This will allow for an improved Monte Carlo misalignment scenario and updated alignment position errors, crucial for high-momentum muon analysis such as Z′ searches.

  1. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez

    2011-01-01

    A new set of muon alignment constants was approved in August. The relative position between muon chambers is essentially unchanged, indicating good detector stability. The main changes concern the global positioning of the barrel and of the endcap rings to match the new Tracker geometry. Detailed studies of the differences between track-based and optical alignment of DTs have proven to be a valuable tool for constraining Tracker alignment weak modes, and this information is now being used as part of the alignment procedure. In addition to the “split-cosmic” analysis used to investigate the muon momentum resolution at high momentum, a new procedure based on reconstructing the invariant mass of di-muons from boosted Zs is under development. Both procedures show an improvement in the momentum precision of Global Muons with respect to Tracker-only Muons. Recent developments in track-based alignment include a better treatment of the tails of residual distributions and accounting for correla...

  2. Future Atmospheric Neutrino Detectors

    CERN Document Server

    Geiser, A

    2000-01-01

    Future experiments focusing on atmospheric neutrino detection are reviewed. One of the main goals of these experiments is the detection of an unambiguous oscillation pattern (nu_mu reappearance) to prove the oscillation hypothesis. Further goals include the discrimination of nu_mu - nu_tau and nu_mu - nu_sterile oscillations, and the detection of a potential small nu_mu - nu_e contribution. The search for matter effects in three or more flavour oscillations can be used to constrain hybrid oscillation models and potentially measure the sign of delta m^2. The detectors and measurement techniques proposed to achieve these goals are described, and their physics reach is discussed.

  3. Radiation detector with spodumene

    Energy Technology Data Exchange (ETDEWEB)

    D' Amorim, Raquel Aline P.O.; Lima, Hestia Raissa B.R.; Souza, Susana O. [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Dept. de Fisica; Sasaki, Jose M., E-mail: sasaki@fisica.ufc.b [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Fisica; Caldas, Linda V.E., E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    In this work, {beta}-spodumene potentiality as a radiation detector was evaluated by making use of thermoluminescence (TL) and thermally stimulated exoelectron emission (TSEE) techniques. The pellets were obtained from the {beta}-spodumene powder mixed with Teflon followed by a sintering process of thermal treatments of 300 deg/30 min and 400 deg/1.5 h. The samples were irradiated in standard gamma radiation beams with doses between 5 Gy and 10 kGy. The TL emission curve showed a prominent peak at 160 deg and in the case of TSEE a prominent peak at 145 Celsius approximately. Initial results show that the material is promising for high-dose dosimetry. (author)

  4. Tracking and Alignment Performance of the LHCb silicon detectors

    CERN Document Server

    Borghi, Silvia

    2011-01-01

    The LHCb experiment is primarily dedicated to the study of new physics through the heavy flavour decays. The tracking system of LHCb is composed of a silicon micro-strip vertex detector, two silicon strip tracker detectors and straw-tube drift chambers in front of and behind a dipole generating a magnetic field. This system provides precise measure of the vertex position and high momentum resolution. The performances of the silicon tracking subdetectors in terms of hit resolution and detector efficiencies, as well as on the overall track reconstruction performance and the alignment status, are reported.

  5. Simulations with the PANDA micro-vertex-detector

    Energy Technology Data Exchange (ETDEWEB)

    Kliemt, Ralf

    2013-07-17

    The PANDA experiment will be built at the upcoming FAIR facility at GSI in Darmstadt, featuring antiproton-proton reactions hadron physics in a medium energy range. Charm physics will play an important role and therefore secondary decays relatively close to the interaction zone as well. The MVD will be the detector closest to these and will provide high-quality vertex position measurements. Alongside the detector layout and hardware development a detailed detector simulation and reconstruction software is required. This work contains the detailed description and the performance studies of the software developed for the MVD. Furthermore, vertexing tools are introduced and their performance is studied for the MVD.

  6. New Generation of Superconducting Nanowire Single-Photon Detectors

    Directory of Open Access Journals (Sweden)

    Goltsman G.N.

    2015-01-01

    Full Text Available We present an overview of recent results for new generation of infrared and optical superconducting nanowire single-photon detectors (SNSPDs that has already demonstrated a performance that makes them devices-of-choice for many applications. SNSPDs provide high efficiency for detecting individual photons while keeping dark counts and timing jitter minimal. Besides superior detection performance over a broad optical bandwidth, SNSPDs are also compatible with an integrated optical platform as a crucial requirement for applications in emerging quantum photonic technologies. By embedding SNSPDs in nanophotonic circuits we realize waveguide integrated single photon detectors which unite all desirable detector properties in a single device.

  7. New fission-fragment detector for experiments at DANCE

    Science.gov (United States)

    Rusev, G.; Roman, A. R.; Daum, J. K.; Springs, R. K.; Bond, E. M.; Jandel, M.; Baramsai, B.; Bredeweg, T. A.; Couture, A.; Favalli, A.; Ianakiev, K. D.; Iliev, M. L.; Mosby, S.; Ullmann, J. L.; Walker, C. L.

    2015-10-01

    A fission-fragment detector based on thin scintillating films has been built to serve as a veto/trigger detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing a 4 π detection of the fission fragments. The scintillation events caused by the fission fragment interactions in the films are registered with silicon photomultipliers. Design of the detector and test measurements are described. Work supported by the U.S. Department of Energy through the LANL/LDRD Program and the U.S. Department of Energy, Office of Science, Nuclear Physics under the Early Career Award No. LANL20135009.

  8. 256-slice wide-detector computed tomography.

    Science.gov (United States)

    2007-11-01

    This article provides opinions and predictions about an emerging technology-256-slice wide-detector computed tomography-to help healthcare facilities decide whether the technology is worth tracking and when it might be ready for adoption. We believe 256-slice CT is worth monitoring based on its predicted clinical and business impact. We consider it unlikely, however, that more than a few select facilities will begin adopting this technology within the next three years.

  9. Detectors for MUSE

    Science.gov (United States)

    Hirschman, Jack; Muon Scattering Experiment (MUSE) Collaboration

    2017-09-01

    Until recently, it was thought that the proton radius was known with an uncertainty of 1%. However, experiments carried-out at the Paul Scherrer Institute (PSI) involving muonic hydrogen yielded a radius 4% smaller with an uncertainty of .1%, a 7.9 σ inconsistency. This problem of properly measuring the radius now requires new and different measurements. The Muon Scattering Experiment (MUSE) will thus be the first to utilize elastic muon scattering with sufficient precision to address the proton radius measurement. MUSE will run in PSI's PiM1 beamline, using a stack of GEM chambers and thin scintillation detectors to identify and track the beam particle species in this mixed e, pi, mu beam. Scattered particles will be measured in two arms with ten layers of Straw Tube Tracking (STT) detectors and a double plastic scintillator wall for timing of and triggering on scattered particles. The STT chambers will employ the anti-Proton Annihilations at Darmstadt (PANDA) design. Each straw consists of a thin wire with high voltage surrounded by an aluminized Mylar tube inflated with a mix of Argon and Carbon Dioxide, the ratio of which is important for optimal operation. The Argon gas, ionized by incoming charged particles, releases electrons which attract to the central wire. The CO2 acts as a quencher, taking-up electrons to prevent an unstable avalanche effect. This project will investigate the effects of altering the gas mixture in the STTs on signal size and timing. This material is based upon work supported by the National Science Foundation under Grant No. OISE-1358175, PHY-1614850, and PHY-1614938. Thank you to the teams at HUJI and PSI, in particular, Dr. G. Ron, Dr. T. Rostomyan, Dr. K. Dieters, and D. Cohen.

  10. Space-based detectors

    Science.gov (United States)

    Sesana, A.; Weber, W. J.; Killow, C. J.; Perreur-Lloyd, M.; Robertson, D. I.; Ward, H.; Fitzsimons, E. D.; Bryant, J.; Cruise, A. M.; Dixon, G.; Hoyland, D.; Smith, D.; Bogenstahl, J.; McNamara, P. W.; Gerndt, R.; Flatscher, R.; Hechenblaikner, G.; Hewitson, M.; Gerberding, O.; Barke, S.; Brause, N.; Bykov, I.; Danzmann, K.; Enggaard, A.; Gianolio, A.; Vendt Hansen, T.; Heinzel, G.; Hornstrup, A.; Jennrich, O.; Kullmann, J.; Møller-Pedersen, S.; Rasmussen, T.; Reiche, J.; Sodnik, Z.; Suess, M.; Armano, M.; Sumner, T.; Bender, P. L.; Akutsu, T.; Sathyaprakash, B. S.

    2014-12-01

    The parallel session C5 on Space-Based Detectors gave a broad overview over the planned space missions related to gravitational wave detection. Overviews of the revolutionary science to be expected from LISA was given by Alberto Sesana and Sasha Buchman. The launch of LISA Pathfinder (LPF) is planned for 2015. This mission and its payload "LISA Technology Package" will demonstrate key technologies for LISA. In this context, reference masses in free fall for LISA, and gravitational physics in general, was described by William Weber, laser interferometry at the pico-metre level and the optical bench of LPF was presented by Christian Killow and the performance of the LPF optical metrology system by Paul McNamara. While LPF will not yet be sensitive to gravitational waves, it may nevertheless be used to explore fundamental physics questions, which was discussed by Michele Armano. Some parts of the LISA technology that are not going to be demonstrated by LPF, but under intensive development at the moment, were presented by Oliver Jennrich and Oliver Gerberding. Looking into the future, Japan is studying the design of a mid-frequency detector called DECIGO, which was discussed by Tomotada Akutsu. Using atom interferometry for gravitational wave detection has also been recently proposed, and it was critically reviewed by Peter Bender. In the nearer future, the launch of GRACE Follow-On (for Earth gravity observation) is scheduled for 2017, and it will include a Laser Ranging Interferometer as technology demonstrator. This will be the first inter-spacecraft laser interferometer and has many aspects in common with the LISA long arm, as discussed by Andrew Sutton.

  11. A gas microstrip wide angle X-ray detector for application in synchrotron radiation experiments

    CERN Document Server

    Bateman, J E; Derbyshire, G E; Duxbury, D M; Lipp, J; Mir, J A; Simmons, J E; Spill, E J; Stephenson, R; Dobson, B R; Farrow, R C; Helsby, W I; Mutikainen, R; Suni, I

    2002-01-01

    The Gas Microstrip Detector has counting rate capabilities several orders of magnitude higher than conventional wire proportional counters while providing the same (or better) energy resolution for X-rays. In addition the geometric flexibility provided by the lithographic process combined with the self-supporting properties of the substrate offers many exciting possibilities for X-ray detectors, particularly for the demanding experiments carried out on Synchrotron Radiation Sources. Using experience obtained in designing detectors for Particle Physics we have developed a detector for Wide Angle X-ray Scattering studies. The detector has a fan geometry which makes possible a gas detector with high detection efficiency, sub-millimetre spatial resolution and good energy resolution over a wide range of X-ray energy. The detector is described together with results of experiments carried out at the Daresbury Laboratory Synchrotron Radiation Source.

  12. CPP Detector Design Using MVA

    Science.gov (United States)

    Lawrence, David

    2017-09-01

    The Charged Pion Polarizability(CPP) experiment is approved to run in Hall-D at Jefferson Lab using the GlueX detector. CPP requires that π+π- production events be distinguished from μ+μ- to better than 99% accuracy. This drives the design of a new MWPC-based detector capable of separating the π events from the μ events. A multivariate analysis of simulated data was initially done to study the feasibility of a detector with this level of performance. More recently, the design parameters of the detector have been refined using a similar technique. Details on the initial study and how machine learning has contributed to the detector design will be presented.

  13. The PHOBOS detector at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Back, B.B. E-mail: back@phy.anl.gov; Baker, M.D.; Barton, D.S.; Basilev, S.; Baum, R.; Betts, R.R.; Bialas, A.; Bindel, R.; Bogucki, W.; Budzanowski, A.; Busza, W.; Carroll, A.; Ceglia, M.; Chang, Y.-H.; Chen, A.E.; Coghen, T.; Connor, C.; Czyz, W.; Dabrowski, B.; Decowski, M.P.; Despet, M.; Fita, P.; Fitch, J.; Friedl, M.; Galuszka, K.; Ganz, R.; Garcia, E.; George, N.; Godlewski, J.; Gomes, C.; Griesmayer, E.; Gulbrandsen, K.; Gushue, S.; Halik, J.; Halliwell, C.; Haridas, P.; Hayes, A.; Heintzelman, G.A.; Henderson, C.; Hollis, R.; Holynski, R.; Hofman, D.; Holzman, B.; Johnson, E.; Kane, J.; Katzy, J.; Kita, W.; Kotula, J.; Kraner, H.; Kucewicz, W.; Kulinich, P.; Law, C.; Lemler, M.; Ligocki, J.; Lin, W.T.; Manly, S.; McLeod, D.; Michalowski, J.; Mignerey, A.; Muelmenstaedt, J.; Neal, M.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I.C.; Patel, M.; Pernegger, H.; Plesko, M.; Reed, C.; Remsberg, L.P.; Reuter, M.; Roland, C.; Roland, G.; Ross, D.; Rosenberg, L.; Ryan, J.; Sanzgiri, A.; Sarin, P.; Sawicki, P.; Scaduto, J.; Shea, J.; Sinacore, J.; Skulski, W.; Steadman, S.G.; Stephans, G.S.F.; Steinberg, P.; Straczek, A.; Stodulski, M.; Strek, M.; Stopa, Z.; Sukhanov, A.; Surowiecka, K.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; Nieuwenhuizen, G.J. van; Verdier, R.; Wadsworth, B.; Wolfs, F.L.H.; Wosiek, B.; Wozniak, K.; Wuosmaa, A.H.; Wyslouch, B.; Zalewski, K.; Zychowski, P

    2003-03-01

    This manuscript contains a detailed description of the PHOBOS experiment as it is configured for the Year 2001 running period. It is capable of detecting charged particles over the full solid angle using a multiplicity detector and measuring identified charged particles near mid-rapidity in two spectrometer arms with opposite magnetic fields. Both of these components utilize silicon pad detectors for charged particle detection. The minimization of material between the collision vertex and the first layers of silicon detectors allows for the detection of charged particles with very low transverse momenta, which is a unique feature of the PHOBOS experiment. Additional detectors include a time-of-flight wall which extends the particle identification range for one spectrometer arm, as well as sets of scintillator paddle and Cherenkov detector arrays for event triggering and centrality selection.

  14. Flat structure cooled detector assembly

    Science.gov (United States)

    Reeb, Nathalie; Coutures, Bernard; Gerin, Nicolas; Reale, S.; Guille, B.

    1994-07-01

    Long wavelength IR detectors need to be cooled at cryogenic temperature to achieve high performances. This specific need makes it difficult to integrate the detector because of high cost of dewar and cooling device designed to fulfill severe vibration conditions. A new era for IR detection could begin with flat structures allowing intrinsic vibration resistance for detectors to be plugged on electronics board. Sofradir has carried out a study about feasibility of detector dewar assembly including a flat Joule-Thomson cooler with porous heat exchanger in cooperation with Air Liquide. The aim of this paper is to put forward the interest of such a product. The very good results achieved demonstrate a promising future for such flat structure detector assembly.

  15. Caring about Independent Lives

    Science.gov (United States)

    Christensen, Karen

    2010-01-01

    With the rhetoric of independence, new cash for care systems were introduced in many developed welfare states at the end of the 20th century. These systems allow local authorities to pay people who are eligible for community care services directly, to enable them to employ their own careworkers. Despite the obvious importance of the careworker's…

  16. Model-Independent Diffs

    DEFF Research Database (Denmark)

    Könemann, Patrick

    just contain a list of strings, one for each line, whereas the structure of models is defined by their meta models. There are tools available which are able to compute the diff between two models, e.g. RSA or EMF Compare. However, their diff is not model-independent, i.e. it refers to the models...

  17. All Those Independent Variables.

    Science.gov (United States)

    Meacham, Merle L.

    This paper presents a case study of a sixth grade remedial math class which illustrates the thesis that only the "experimental attitude," not the "experimental method," is appropriate in the classroom. The thesis is based on the fact that too many independent variables exist in a classroom situation to allow precise measurement. The case study…

  18. A dark-matter search using the final CDMS II dataset and a novel detector of surface radiocontamination

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Zeeshan [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2012-01-01

    Substantial evidence from galaxies, galaxy clusters, and cosmological scales suggests that ~85% of the matter of our universe is invisible. The missing matter, or "dark matter" is likely composed of non-relativistic, non-baryonic particles, which have very rare interactions with baryonic matter and with one another. Among dark matter candidates, Weakly Interacting Massive Particles (WIMPs) are particularly well motivated. In the early universe, thermally produced particles with weak-scale mass and interactions would `freeze out’ at the correct density to be dark matter today. Extensions to the Standard Model of particle physics, such as Supersymmetry, which solve gauge hierarchy and coupling unification problems, naturally provide such particles. Interactions of WIMPs with baryons are expected to be rare, but might be detectable in low-noise detectors. The Cryogenic Dark Matter Search (CDMS) experiment uses ionization- and phonon- sensitive germanium particle detectors to search for such interactions. CDMS detectors are operated at the Soudan Underground Laboratory in Minnesota, within a shielded environment to lower cosmogenic and radioactive background. The combination of phonon and ionization signatures from the detectors provides excellent residual-background rejection. This dissertation presents improved techniques for phonon calibration of CDMS II detectors and the analysis of the final CDMS II dataset with 612 kg-days of exposure. We set a limit of 3.8x10$^{-}$44 cm$^{2}$ on WIMP-nucleon spin-independent scattering cross section for a WIMP mass of 70 GeV/c$^{2}$. At the time this analysis was published, these data presented the most stringent limits on WIMP scattering for WIMP masses over 42 GeV/c$^{2}$, ruling out previously unexplored parameter space. Next-generation rare-event searches such as SuperCDMS, COUPP, and CLEAN will be limited in sensitivity, unless they achieve stringent control of the surface radioactive contamination on their detectors. Low

  19. The STAR silicon vertex tracker: a large area silicon drift detector

    CERN Document Server

    Lynn, D; Beuttenmüller, Rolf H; Caines, H; Chen, W; Dimassimo, D; Dyke, H; Elliot, D; Eremin, V; Grau, M; Hoffmann, G W; Humanic, T; Ilyashenko, Yu S; Kotov, I; Kraner, H W; Kuczewski, P; Leonhardt, B; Li, Z; Liaw, C J; Lo Curto, G; Middelkamp, P; Minor, R; Munhoz, M; Ott, G; Pandey, S U; Pruneau, C A; Rykov, V L; Schambach, J; Sedlmeir, J; Soja, B; Sugarbaker, E R; Takahashi, J; Wilson, K; Wilson, R

    2000-01-01

    The Solenoidal Tracker At RHIC-Silicon Vertex Tracker (STAR-SVT) is a three barrel microvertex detector based upon silicon drift detector technology. As designed for the STAR-SVT, silicon drift detectors (SDDs) are capable of providing unambiguous two-dimensional hit position measurements with resolutions on the order of 20 mu m in each coordinate. Achievement of such resolutions, particularly in the drift direction coordinate, depends upon certain characteristics of silicon and drift detector geometry that are uniquely critical for silicon drift detectors hit measurements. Here we describe features of the design of the STAR-SVT SDDs and the front-end electronics that are motivated by such characteristics.

  20. Primary Numbers Database for ATLAS Detector Description Parameters

    CERN Document Server

    Vaniachine, A; Malon, D; Nevski, P; Wenaus, T

    2003-01-01

    We present the design and the status of the database for detector description parameters in ATLAS experiment. The ATLAS Primary Numbers are the parameters defining the detector geometry and digitization in simulations, as well as certain reconstruction parameters. Since the detailed ATLAS detector description needs more than 10,000 such parameters, a preferred solution is to have a single verified source for all these data. The database stores the data dictionary for each parameter collection object, providing schema evolution support for object-based retrieval of parameters. The same Primary Numbers are served to many different clients accessing the database: the ATLAS software framework Athena, the Geant3 heritage framework Atlsim, the Geant4 developers framework FADS/Goofy, the generator of XML output for detector description, and several end-user clients for interactive data navigation, including web-based browsers and ROOT. The choice of the MySQL database product for the implementation provides addition...

  1. Simulation framework and XML detector description for the CMS experiment

    CERN Document Server

    Arce, P; Boccali, T; Case, M; de Roeck, A; Lara, V; Liendl, M; Nikitenko, A N; Schröder, M; Strässner, A; Wellisch, H P; Wenzel, H

    2003-01-01

    Currently CMS event simulation is based on GEANT3 while the detector description is built from different sources for simulation and reconstruction. A new simulation framework based on GEANT4 is under development. A full description of the detector is available, and the tuning of the GEANT4 performance and the checking of the ability of the physics processes to describe the detector response is ongoing. Its integration on the CMS mass production system and GRID is also currently under development. The Detector Description Database project aims at providing a common source of information for Simulation, Reconstruction, Analysis, and Visualisation, while allowing for different representations as well as specific information for each application. A functional prototype, based on XML, is already released. Also examples of the integration of DDD in the GEANT4 simulation and in the reconstruction applications are provided.

  2. The HERMES dual-radiator ring imaging Cherenkov detector

    CERN Document Server

    Akopov, N; Bailey, K; Bernreuther, S; Bianchi, N; Capitani, G P; Carter, P; Cisbani, E; De Leo, R; De Sanctis, E; De Schepper, D; Dzhordzhadze, V; Filippone, B W; Frullani, S; Garibaldi, F; Hansen, J O; Hommez, B; Iodice, M; Jackson, H E; Jung, P; Kaiser, R; Kanesaka, J; Kowalczyk, R; Lagamba, L; Maas, A; Muccifora, V; Nappi, E; Negodaeva, K; Nowak, Wolf-Dieter; O'Connor, T; O'Neill, T G; Potterveld, D H; Ryckbosch, D; Sakemi, Y; Sato, F; Schwind, A; Shibata, T A; Suetsugu, K; Thomas, E; Tytgat, M; Urciuoli, G M; Van De Kerckhove, K; Van De Vyver, R; Yoneyama, S; Zhang, L F; Zohrabyan, H G

    2002-01-01

    The construction and use of a dual radiator Ring Imaging Cherenkov (RICH) detector is described. This instrument was developed for the HERMES experiment at DESY which emphasises measurements of semi-inclusive deep-inelastic scattering. It provides particle identification for pions, kaons, and protons in the momentum range from 2 to 15 GeV, which is essential to these studies. The instrument uses two radiators, C sub 4 F sub 1 sub 0 , a heavy fluorocarbon gas, and a wall of silica aerogel tiles. The use of aerogel in a RICH detector has only recently become possible with the development of clear, large, homogeneous and hydrophobic aerogel. A lightweight mirror was constructed using a newly perfected technique to make resin-coated carbon-fiber surfaces of optical quality. The photon detector consists of 1934 photomultiplier tubes (PMT) for each detector half, held in a soft steel matrix to provide shielding against the residual field of the main spectrometer magnet.

  3. A Soft Detector with Good Performance/Complexity Trade-Off for a MIMO System

    Directory of Open Access Journals (Sweden)

    Jianhua Liu

    2004-08-01

    Full Text Available We present a hybrid soft detector that has a good performance/complexity trade-off for a multiple-input multiple-output (MIMO wireless communication system with known channel information. The new soft detector combines the merits of a simple unstructured least-squares (LS-based soft detector and a list sphere decoder (LSD-based soft detector for data bit detection. The former is computationally much more efficient than the latter at the cost of poorer performance. The poor performance of the former occurs mainly when the channel matrix is ill-conditioned. Whenever this happens, we use the LSD-based soft detector in the hybrid soft detector; otherwise, we use the LS-based one. Moreover, we provide a tight radius for a sphere decoder, a hard detector, via using the output of an LS-based hard detector. These two hard detectors are needed to determine if LS or LSD should be used in the hybrid soft detector. As an application example, we consider doubling the maximum data rate of the IEEE 802.11a conformable wireless local area networks by a MIMO system with two transmit and two receive antennas. For this application, the new soft detector is about 10 times faster than the LSD-based one and is about 10 times slower than the LS-based one. Yet the packet error rate due to using the new soft detector is quite close to that of using the LSD-based one.

  4. Quantitative comparison using generalized relative object detectability (G-ROD) metrics of an amorphous selenium detector with high resolution microangiographic fluoroscopes (MAF) and standard flat panel detectors (FPD)

    Science.gov (United States)

    Russ, M.; Shankar, A.; Jain, A.; Setlur Nagesh, S. V.; Ionita, C. N.; Scott, C.; Karim, K. S.; Bednarek, D. R.; Rudin, S.

    2016-03-01

    A novel amorphous selenium (a-Se) direct detector with CMOS readout has been designed, and relative detector performance investigated. The detector features include a 25μm pixel pitch, and 1000μm thick a-Se layer operating at 10V/μm bias field. A simulated detector DQE was determined, and used in comparative calculations of the Relative Object Detectability (ROD) family of prewhitening matched-filter (PWMF) observer and non-pre-whitening matched filter (NPWMF) observer model metrics to gauge a-Se detector performance against existing high resolution micro-angiographic fluoroscopic (MAF) detectors and a standard flat panel detector (FPD). The PWMF-ROD or ROD metric compares two x-ray imaging detectors in their relative abilities in imaging a given object by taking the integral over spatial frequencies of the Fourier transform of the detector DQE weighted by an object function, divided by the comparable integral for a different detector. The generalized-ROD (G-ROD) metric incorporates clinically relevant parameters (focal- spot size, magnification, and scatter) to show the degradation in imaging performance for detectors that are part of an imaging chain. Preliminary ROD calculations using simulated spheres as the object predicted superior imaging performance by the a-Se detector as compared to existing detectors. New PWMF-G-ROD and NPWMF-G-ROD results still indicate better performance by the a-Se detector in an imaging chain over all sphere sizes for various focal spot sizes and magnifications, although a-Se performance advantages were degraded by focal spot blurring. Nevertheless, the a-Se technology has great potential to provide break- through abilities such as visualization of fine details including of neuro-vascular perforator vessels and of small vascular devices.

  5. Quantum independent increment processes

    CERN Document Server

    Franz, Uwe

    2006-01-01

    This is the second of two volumes containing the revised and completed notes of lectures given at the school "Quantum Independent Increment Processes: Structure and Applications to Physics". This school was held at the Alfried-Krupp-Wissenschaftskolleg in Greifswald in March, 2003, and supported by the Volkswagen Foundation. The school gave an introduction to current research on quantum independent increment processes aimed at graduate students and non-specialists working in classical and quantum probability, operator algebras, and mathematical physics. The present second volume contains the following lectures: "Random Walks on Finite Quantum Groups" by Uwe Franz and Rolf Gohm, "Quantum Markov Processes and Applications in Physics" by Burkhard Kümmerer, Classical and Free Infinite Divisibility and Lévy Processes" by Ole E. Barndorff-Nielsen, Steen Thorbjornsen, and "Lévy Processes on Quantum Groups and Dual Groups" by Uwe Franz.

  6. Quantum independent increment processes

    CERN Document Server

    Franz, Uwe

    2005-01-01

    This volume is the first of two volumes containing the revised and completed notes lectures given at the school "Quantum Independent Increment Processes: Structure and Applications to Physics". This school was held at the Alfried-Krupp-Wissenschaftskolleg in Greifswald during the period March 9 – 22, 2003, and supported by the Volkswagen Foundation. The school gave an introduction to current research on quantum independent increment processes aimed at graduate students and non-specialists working in classical and quantum probability, operator algebras, and mathematical physics. The present first volume contains the following lectures: "Lévy Processes in Euclidean Spaces and Groups" by David Applebaum, "Locally Compact Quantum Groups" by Johan Kustermans, "Quantum Stochastic Analysis" by J. Martin Lindsay, and "Dilations, Cocycles and Product Systems" by B.V. Rajarama Bhat.

  7. Field Independent Cosmic Evolution

    Directory of Open Access Journals (Sweden)

    Nayem Sk

    2013-01-01

    Full Text Available It has been shown earlier that Noether symmetry does not admit a form of corresponding to an action in which is coupled to scalar-tensor theory of gravity or even for pure theory of gravity taking anisotropic model into account. Here, we prove that theory of gravity does not admit Noether symmetry even if it is coupled to tachyonic field and considering a gauge in addition. To handle such a theory, a general conserved current has been constructed under a condition which decouples higher-order curvature part from the field part. This condition, in principle, solves for the scale-factor independently. Thus, cosmological evolution remains independent of the form of the chosen field, whether it is a scalar or a tachyon.

  8. CdZnTe array detectors for synchrotron radiation applications.

    Science.gov (United States)

    Yoo, S S; Jennings, G; Montano, P A

    1998-11-01

    An X-ray linear-array detector was fabricated using high-pressure Bridgman-grown CdZnTe. The detector area was 175 x 800 microm and the pitch size was 250 microm. The measured dark current for the test 16-element detector was as low as 0.1 pA at 800 V cm(-1) with excellent uniformity. Energy spectra were measured using a 57Co radiation source. Both a small-pixel effect and charge sharing were observed. For the arrays, an average 5.8% full width at half-maximum (FWHM) at the 122 keV photopeak was obtained with a standard deviation of 0.2%. A large-area detector (1 x 1 cm) of the same material before fabrication exhibited a low-energy tail at the photopeak, which limits the photopeak FWHM to 8%, typically due to hole trapping. At energies below 60 keV, charge sharing between elements was observed. The charge sharing was greatly reduced by providing a path to ground for unwanted charges. A prototype readout electronic system for an eight-channel array detector was developed. A readout system intended for a multielement solid-state detector system was also used. The array detector will be used for high-energy diffraction and Compton scattering measurements at the Advanced Photon Source.

  9. The LHCb RICH system; detector description and operation

    Energy Technology Data Exchange (ETDEWEB)

    Papanestis, A., E-mail: antonis.papanestis@stfc.ac.uk

    2014-12-01

    Two RICH detectors provide positive charged hadron identification in the LHCb experiment at the Large Hadron Collider at CERN. RICH 1 covers the full acceptance of the spectrometer and contains two radiators: aerogel and C{sub 4}F{sub 10}. RICH 2 covers half the acceptance and uses CF{sub 4} as a Cherenkov radiator. Photon detection is performed by the Hybrid Photon Detectors (HPDs), with silicon pixel sensors and bump-bonded readout encapsulated in a vacuum tube for efficient, low-noise single photon detection. The LHCb RICH detectors form a complex system of three radiators, 120 mirrors and 484 photon detectors operating in the very challenging environment of the LHC. The high performance of the system in pion and kaon identification in the momentum range of 2–100 GeV/c is reached only after careful calibration of many parameters. Operational efficiency above 99% was achieved by a high level of automatization in the operation of the detectors, from switching-on to error recovery. The challenges of calibrating and operating such a system will be presented. - Highlights: • This paper describes the operation and calibration of the LHCb RICH detectors. • The scintillation of CF{sub 4} was successfully suppressed with CO{sub 2}. • The refractive index of the gas radiators was calibrated with data to an accuracy better than 0.1%. • The Hybrid Photons Detectors were calibrated for operation in a magnetic field without loss of resolution.

  10. A novel muon detector for borehole density tomography

    Energy Technology Data Exchange (ETDEWEB)

    Bonneville, Alain; Kouzes, Richard T.; Yamaoka, Jared; Rowe, Charlotte; Guardincerri, Elena; Durham, J. Matthew; Morris, Christopher L.; Poulson, Daniel C.; Plaud-Ramos, Kenie; Morley, Deborah J.; Bacon, Jeffrey D.; Bynes, James; Cercillieux, Julien; Ketter, Chris; Le, Khanh; Mostafanezhad, Isar; Varner, Gary; Flygare, Joshua; Lintereur, Azaree T.

    2017-04-01

    Muons can be used to image the density of materials through which they pass, including geological structures. Subsurface applications of the technology include tracking fluid migration during injection or production, with increasing concern regarding such timely issues as induced seismicity or chemical leakage into aquifers. Geological carbon storage, natural gas storage, enhanced oil recovery, compressed air storage, aquifer storage and recovery, waste water storage and oil and gas production are examples of application areas. It is thus crucial to monitor in quasi-real time the behavior of these fluids, and several monitoring techniques can be used. Among them, those that track density changes in the subsurface are the most relevant. Current density monitoring options include gravimetric data collection and active or passive seismic surveys. One alternative, or complement, to these methods is the development of a muon detector that is sufficiently compact and robust for deployment in a borehole. Such a muon detector can enable tomographic imaging of density structure to monitor small changes in density – a proxy for fluid migration – at depths up to 1500 m. Such a detector has been developed, and Monte Carlo modeling methods applied to simulate the anticipated detector response. The robustness of the detector design comes primarily from the use of polystyrene scintillating rods arrayed in alternating layers to provide a coordinate scheme. Testing and measurements using a prototype detector in the laboratory and shallow underground facilities demonstrated robust response. A satisfactory comparison with a large drift tube-based muon detector is also presented.

  11. TPO-independent megakaryocytopoiesis.

    Science.gov (United States)

    Zheng, Cuiling; Yang, Renchi; Han, Zhongchao; Zhou, Bin; Liang, Lu; Lu, Min

    2008-03-01

    Megakaryocytopoiesis is a continuous developmental process of platelet production. In this process, a complex network of hemopoietic growth factors are involved, among which TPO (thrombopoietin) is the most thoroughly investigated regulator of MKs (megakaryocytes). In addition to TPO, other regulators also have non-negligible effects on megakaryocytopoiesis. The majority of their effects are independent of TPO signaling. To date, TPO-independent megakaryocytopoiesis forms a regulatory system that includes four signals and (an) unknown signaling pathway(s). These four pathways are the gp 130 (glycoprotein 130)-dependent signaling pathway, the Notch pathway, NMDA (N-methyl-d-aspartate) receptor-mediated signaling, and the SDF-1 (stromal cell-derived factor-1)/FGF-4 (fibroblast growth factor-4) paradigm. Understanding of the TPO-independent regulatory system is important because the system may offer additional opportunities to understand the developmental process and the mechanisms of disorders characterized by abnormal MK and platelet production, such as thrombocytopenia and thrombocythemia, and to advance the development of therapeutics.

  12. Simulation and real-time analysis of pulse shapes from segmented HPGe-detectors

    Energy Technology Data Exchange (ETDEWEB)

    Schlarb, Michael Christian

    2009-11-17

    The capabilities of future HPGe arrays consisting of highly segmented detectors, like AGATA will depend heavily on the performance of {gamma}-ray tracking. The most crucial component in the whole concept is the pulse shape analysis (PSA). The working principle of PSA is to compare the experimental signal shape with signals available from a basis set with known interaction locations. The efficiency of the tracking algorithm hinges on the ability of the PSA to reconstruct the interaction locations accurately, especially for multiple {gamma}-interactions. Given the size of the arrays the PSA algorithm must be run in a real-time environment. A prerequisite to a successful PSA is an accurate knowledge of the detectors response. Making a full coincidence scan of a single AGATA detector, however takes between two and three months, which is too long to produce an experimental signal basis for all detector elements. A straight forward possibility is to use a precise simulation of the detector and to provide a basis of simulated signals. For this purpose the Java Agata Signal Simulation (JASS) was developed in the course of this thesis. The geometry of the detector is given with numerical precision and models describing the anisotropic mobilities of the charge carriers in germanium were taken from the literature. The pulse shapes of the transient and net-charge signals are calculated using weighting potentials on a finite grid. Special care was taken that the interpolation routine not only reproduces the weighting potentials precisely in the highly varying areas of the segment boundaries but also that its performance is independent of the location within the detector. Finally data from a coincidence scan and a pencil beam experiment were used to verify JASS. The experimental signals are reproduced accurately by the simulation. Pulse Shape Analysis (PSA) reconstructs the positions of the individual interactions and the corresponding energy deposits within the detector. This

  13. MCP detector development for use in Nab detector characterization

    Science.gov (United States)

    Klassen, Wolfgang; Nab Collaboration

    2016-09-01

    The ``Nab'' collaboration will perform a precise measurement of the neutron beta decay parameters ``a'' and ``b'', which constitutes a test for physics beyond the standard model. The experiment makes use of the fundamental physics cold neutron beamline at the Spallation Neutron Source at the Fundamental Neutron Physics Beam Line. This experiment requires very efficient and precise detection of low energy (30 keV) protons with large area Si detectors. To this end, a 30 keV proton source has been built at the University of Manitoba to characterize the Si detector with respect to a custom large area (150mm x 150mm) microchannel plate detector, with know detection efficiency. This poster will present the development of the microchannel plate detector, the theory behind its operation, and its implementation at the University of Manitoba.

  14. Status of the CMS Detector Control System

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Gerry; et al.

    2012-01-01

    The Compact Muon Solenoid (CMS) is a CERN multi-purpose experiment that exploits the physics of the Large Hadron Collider (LHC). The Detector Control System (DCS) is responsible for ensuring the safe, correct and efficient operation of the experiment, and has contributed to the recording of high quality physics data. The DCS is programmed to automatically react to the LHC operational mode. CMS sub-detectors bias voltages are set depending on the machine mode and particle beam conditions. An operator provided with a small set of screens supervises the system status summarized from the approximately 6M monitored parameters. Using the experience of nearly two years of operation with beam the DCS automation software has been enhanced to increase the system efficiency by minimizing the time required by sub-detectors to prepare for physics data taking. From the infrastructure point of view the DCS will be subject to extensive modifications in 2012. The current rack mounted control PCs will be replaced by a redundant pair of DELL Blade systems. These blade servers are a high-density modular solution that incorporates servers and networking into a single chassis that provides shared power, cooling and management. This infrastructure modification associated with the migration to blade servers will challenge the DCS software and hardware factorization capabilities. The on-going studies for this migration together with the latest modifications are discussed in the paper.

  15. Digital Acquisition Development for Fast Neutron Detectors

    Science.gov (United States)

    Seagren, T.; Mosby, S.; Mona Collaboration; Lansce P-27 Team

    2015-10-01

    The use of the Modular Neutron Array (MoNA) at FRIB requires a thorough understanding of how neutrons propagate through the array. This leads to the increasing importance of accuracy in detector response simulations, particularly in the case of FRIB's higher beam energies. An upcoming experiment at the LANSCE facility at Los Alamos National Lab will benchmark neutron propagation through the MoNA array and provide a more complete validation of the simulation software. LANSCE also hosts the Chi-Nu experiment, which seeks to measure fission output neutrons using the high-intensity neutron beams there. In both experiments, the instantaneous rate on the detectors involved is expected to be very high, due to the LANSCE/WNR beam structure. Therefore, waveform digitizers with on-board processing are required in order for the experiments to succeed. These digitizers provide on-board timing algorithms using FPGA firmware, and several tests were preformed in order to determine what the optimal timing filter settings were for a variety of detectors, including the plastic and liquid scintillators to be used in MoNA and Chi-Nu respectively. This work will inform the execution of the MoNA and Chi-Nu experiments at LANSCE. The details of the methods used and results will be presented. Supported by funding through Los Alamos National Lab and NSF Grant PHY-1506402.

  16. Thermoluminescent Detectors in Mixed Fields

    CERN Document Server

    Mala, P; Biskup, B; Roeed, K

    2012-01-01

    This note reports on using of thermoluminescent detectors for radiation monitoring in the LHC tunnel and in the shielded areas around the tunnel. The accumulated annual doses in these areas vary a lot so a dosimeter used there should cover a large dose range. TL detectors can measure dose from 0.1 mGy to few kGy (with a recently proposed new technique which needs more studies up to 1 MGy). This report presents studies of these detectors in mixed fields similar to radiation field in the LHC and the possible usage of their results for calculation of high energy hadron and thermal neutron fluence.

  17. CLIC Detector and Physics Status

    CERN Document Server

    AUTHOR|(SzGeCERN)627941

    2017-01-01

    This contribution to LCWS2016 presents recent developments within the CLICdp collaboration. An updated scenario for the staged operation of CLIC has been published; the accelerator will operate at 380 GeV, 1.5 TeV and 3 TeV. The lowest energy stage is optimised for precision Higgs and top physics, while the higher energy stages offer extended Higgs and BSM physics sensitivity. The detector models CLIC_SiD and CLIC_ILD have been replaced by a single optimised detector; CLICdet. Performance studies and R&D in technologies to meet the requirements for this detector design are ongoing.

  18. ATLAS Forward Detectors and Physics

    CERN Document Server

    Soni, N

    2010-01-01

    In this communication I describe the ATLAS forward physics program and the detectors, LUCID, ZDC and ALFA that have been designed to meet this experimental challenge. In addition to their primary role in the determination of ATLAS luminosity these detectors - in conjunction with the main ATLAS detector - will be used to study soft QCD and diffractive physics in the initial low luminosity phase of ATLAS running. Finally, I will briefly describe the ATLAS Forward Proton (AFP) project that currently represents the future of the ATLAS forward physics program.

  19. The CDF Silicon Vertex Detector

    Energy Technology Data Exchange (ETDEWEB)

    Tkaczyk, S.; Carter, H.; Flaugher, B. [and others

    1993-09-01

    A silicon strip vertex detector was designed, constructed and commissioned at the CDF experiment at the Tevatron collider at Fermilab. The mechanical design of the detector, its cooling and monitoring are presented. The front end electronics employing a custom VLSI chip, the readout electronics and various components of the SVX system are described. The system performance and the experience with the operation of the detector in the radiation environment are discussed. The device has been taking colliding beams data since May of 1992, performing at its best design specifications and enhancing the physics program of CDF.

  20. Seal system with integral detector

    Science.gov (United States)

    Fiarman, Sidney

    1985-01-01

    There is disclosed a seal system for materials where security is of the essence, such as nuclear materials, which is tamper-indicating, which indicates changes in environmental conditions that evidence attempts to by-pass the seal, which is unique and cost effective, said seal system comprised of a seal where an optical signal is transmitted through a loop, with a detector to read said signal, and one or more additional detectors designed to detect environmental changes, these detectors being operatively associated with the seal so that detection of a break in the optical signal or detection of environmental changes will cause an observable change in the seal.

  1. Requirements on high resolution detectors

    Energy Technology Data Exchange (ETDEWEB)

    Koch, A. [European Synchrotron Radiation Facility, Grenoble (France)

    1997-02-01

    For a number of microtomography applications X-ray detectors with a spatial resolution of 1 {mu}m are required. This high spatial resolution will influence and degrade other parameters of secondary importance like detective quantum efficiency (DQE), dynamic range, linearity and frame rate. This note summarizes the most important arguments, for and against those detector systems which could be considered. This article discusses the mutual dependencies between the various figures which characterize a detector, and tries to give some ideas on how to proceed in order to improve present technology.

  2. The ATLAS Forward Proton Detector (AFP)

    Science.gov (United States)

    Grinstein, S.; AFP Collaboration

    2016-04-01

    The ATLAS Forward Proton (AFP) detector will identify events in which one or two protons emerge intact from the proton-proton collisions at the LHC. Tracking and timing detectors will be placed 2-3 mm from the beam, 210 m away from the ATLAS interaction point. The silicon-based tracker will provide momentum measurement, while the time of flight system is used to reduce the background from multiple proton-proton collisions. The study of soft and hard diffractive events at low luminosities (μ ≈ 1) is the core of the AFP physics program. This paper presents an overview of the project with particular emphasis on the qualification of the pixel and timing systems.

  3. Fundamentals of interferometric gravitational wave detectors

    CERN Document Server

    Saulson, Peter R

    2017-01-01

    LIGO's recent discovery of gravitational waves was headline news around the world. Many people will want to understand more about what a gravitational wave is, how LIGO works, and how LIGO functions as a detector of gravitational waves.This book aims to communicate the basic logic of interferometric gravitational wave detectors to students who are new to the field. It assumes that the reader has a basic knowledge of physics, but no special familiarity with gravitational waves, with general relativity, or with the special techniques of experimental physics. All of the necessary ideas are developed in the book.The first edition was published in 1994. Since the book is aimed at explaining the physical ideas behind the design of LIGO, it stands the test of time. For the second edition, an Epilogue has been added; it brings the treatment of technical details up to date, and provides references that would allow a student to become proficient with today's designs.

  4. The Collider Detector at Fermilab (CDF)

    Science.gov (United States)

    CDF Collaboration; Jensen, Hans B.

    1986-02-01

    A description of the Collider Detector at Fermilab (CDF) is given. It is a calorimetric detector, which covers almost the complete solid angle around the interaction region with segmented calorimeter "towers". A 1.5 Tesla superconducting solenoid, 3m in diameter and 5m long, provides a uniform magnetic field in the central region for magnetic analysis of charged particles. The magnetic field volume is filled with a large cylindrical drift chamber and a set of Time Projection Chambers. Muon detection is accomplished with drift chambers outside the calorimeters in the central region and with large magnetized steel toroids and associated drift chambers in the forward-backward regions. The electronics has a large dynamic range to allow measurement of both high energy clusters and small energy depositions made by penetrating muons. Interesting events are identified by a trigger system which, together with the rest of the data acquisition system, is FASTBUS based.

  5. Development of Interconnect Technologies for Particle Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Mani [Univ. of California, Davis, CA (United States)

    2015-01-29

    This final report covers the three years of this grant, for the funding period 9/1/2010 - 8/31/2013. The project consisted of generic detector R&D work at UC Davis, with an emphasis on developing interconnect technologies for applications in HEP. Much of the work is done at our Facility for Interconnect Technologies (FIT) at UC Davis. FIT was established using ARRA funds, with further studies supported by this grant. Besides generic R&D work at UC Davis, FIT is engaged in providing bump bonding help to several DOE supported detector R&D efforts. Some of the developmental work was also supported by funding from other sources: continuing CMS project funds and the Linear Collider R&D funds. The latter program is now terminated. The three year program saw a good deal of progress on several fronts, which are reported here.

  6. Theoretical response of a ZnS(Ag) scintillation detector to alpha-emitting sources and suggested applications.

    Science.gov (United States)

    Skrable, K W; Phoenix, K A; Chabot, G E; French, C S; Jo, M; Falo, G A

    1991-03-01

    The classic problem of alpha absorption is discussed in terms of the quantitative determination of the activity of "weightless" alpha sources and the specific alpha activity of extended sources accounting for absorption in the source medium and the window of a large area ZnS(Ag) scintillation detector. The relationship for the expected counting rate gamma of a monoenergetic source of active area A, specific alpha activity C, and thickness H that exceeds the effective mass density range Rs of the alpha particle in the source medium can be expressed by a quadratic equation in the window thickness x when this source is placed in direct contact with the window of the ZnS(Ag) detector. This expression also gives the expected counting rate of a finite detector of sensitive area A exposed to an infinite homogeneous source medium. Counting rates y obtained for a source separated from a ZnS(Ag) detector by different thicknesses x of window material can be used to estimate parameter values in the quadratic equation, y = a + bx + cx2. The experimental value determined for the coefficient b provides a direct estimation of the specific activity C. This coefficient, which depends on the ratio of the ranges in the source medium and detector window and not the ranges themselves, is essentially independent of the energy of the alpha particle. Although certain experimental precautions must be taken, this method for estimating the specific activity C is essentially an absolute method that does not require the use of standards, special calibrations, or complicated radiochemical procedures. Applications include the quantitative determination of Rn and progeny in air, water, and charcoal, and the measurement of the alpha activity in soil and on air filter samples.

  7. New design features of gas ionization detectors used for elastic recoil detection

    CERN Document Server

    Timmers, H; Ophel, T R

    2000-01-01

    Several alternative design features of large acceptance, gas ionization detectors have proven to be successful for application to elastic recoil detection analysis (ERDA). In particular, effects due to the distortion of the entrance field by a large area window have been eliminated in a simple fashion, to allow measurement of the initial rate of energy loss and to provide an energy- and species-independent cathode signal. No less importantly, use of a divided electrode in the anode plane has enabled a more straightforward means of determining the scattering angle that is required for kinematic corrections. An intermediate grid was found to provide a direct and true total energy signal, with only slightly diminished resolution compared with that of the summed total anode equivalent.

  8. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    S. Szillasi

    2013-01-01

    The CMS detector has been gradually opened and whenever a wheel became exposed the first operation was the removal of the MABs, the sensor structures of the Hardware Barrel Alignment System. By the last days of June all 36 MABs have arrived at the Alignment Lab at the ISR where, as part of the Alignment Upgrade Project, they are refurbished with new Survey target holders. Their electronic checkout is on the way and finally they will be recalibrated. During LS1 the alignment system will be upgraded in order to allow more precise reconstruction of the MB4 chambers in Sector 10 and Sector 4. This requires new sensor components, so called MiniMABs (pictured below), that have already been assembled and calibrated. Image 6: Calibrated MiniMABs are ready for installation For the track-based alignment, the systematic uncertainties of the algorithm are under scrutiny: this study will enable the production of an improved Monte Carlo misalignment scenario and to update alignment position errors eventually, crucial...

  9. MUON DETECTORS: RPC

    CERN Multimedia

    P. Paolucci

    2013-01-01

    During LS1, the Resistive Plate Chamber (RPC) collaboration is focusing its efforts on installation and commissioning of the fourth endcap station (RE4) and on the reparation and maintenance of the present system (1100 detectors). The 600 bakelite gaps, needed to build 200 double-gap RE4 chambers are being produced in Korea. Chamber construction and testing sites are located at CERN, in Ghent University, and at BARC (India). At present, 42 chambers have been assembled, 32 chambers have been successfully tested with cosmic rays runs and 7 Super Modules, made by two chambers, have been built at CERN by a Bulgarian/Georgian/Italian team and are now ready to be installed in the positive endcap. The 36 Super Modules needed to complete the positive endcap will be ready in September and installation is scheduled for October 2013. The Link-Board system for RE4 is under construction in Naples. Half of the system has been delivered at CERN in June. Six crates (Link-Board Boxes) and 75 boards, needed to instrument t...

  10. MUON DETECTORS: DT

    CERN Multimedia

    C. Fernandez Bedoya

    2012-01-01

      The major activity of the DT group during this Year-End Technical Stop has been the reworking of LV modules. It has been a large campaign, carefully planned, to try to solve, once and for all, the long-standing problem of Anderson Power connectors overheating. The solution involved removing the 140 CAEN modules from the detector (6.5 kg each), soldering of “pigtails” in a temporary workshop in USC, and thorough testing of all the modules in a local system installed in USC. The operation has been satisfactorily smooth, taking into account the magnitude of the intervention. The system is now back in good shape and ready for commissioning. In addition, HV boards have been cleaned up, HV USC racks have been equipped with water detection cables, and the gas and HV have been switched back on smoothly. Other significant activities have also taken place during this YETS, such as the installation of a new and faster board for the Minicrates secondary link and the migration to Scienti...

  11. MUON DETECTORS: RPC

    CERN Multimedia

    Pierluigi Paolucci

    2013-01-01

    In the second part of 2013 the two main activities of the RPC project are the reparation and maintenance of the present system and the construction and installation of the RE4 system. Since the opening of the barrel, repair activities on the gas, high-voltage and electronic systems are being done in parallel, in agreement with the CMS schedule. In YB0, the maintenance of the RPC detector was in the shadow of other interventions, nevertheless the scaffolding turned out to be a good solution for our gas leaks searches. Here we found eight leaking channels for about 100 l/h in total. 10 RPC/DT modules were partially extracted –– 90 cm –– in YB0, YB–1 and YB–2 to allow for the replacement of FE and LV distribution boards. Intervention was conducted on an additional two chambers on the positive endcap to solve LV and threshold control problems. Until now we were able to recover 0.67% of the total number of RPC electronic channels (1.5% of the channels...

  12. MUON DETECTORS: RPC

    CERN Multimedia

    G. Iaselli

    The RPC group has invested a large effort in the study of trigger spikes observed during CRAFT data taking. The chambers are susceptible to noise generated by the flickering of fluorescent and projector lamps in the cavern (with magnetic field on). Soon after the end of CRAFT, it was possible to reproduce the phenomena using a waveform generator and to study possible modifications to be implemented in the grounding schema. Hardware actions have been already taken in order to reduce the detector sensitivity: star washers on the chamber front panels and additional shielding have been added where possible. During the shutdown maintenance activity many different problems were tackled on the barrel part. A few faulty high voltage connector/cable problems were fixed; now only two RPC chambers are left with single-gap mode operation. One chamber in YB+2 was replaced due to gas leakage. All the front-end electronic boards were replaced in 3 chambers (stations MB2 and MB3 in YB-2), that had been damaged after the coo...

  13. MUON DETECTORS: CSC

    CERN Multimedia

    R. Breedon

    Figure 2: Five ME4/2 chambers mounted on the +endcap. At the end of June, five large, outer cathode strip chambers (CSC) that were produced as spares during the original production were mounted on part of the disk space reserved for ME4/2 on the positive endcap (Fig. 2). The chambers were cabled, attached to services, and fully integrated and commissioned into the CSC DAQ and trigger systems. Comprising almost a full trigger sector, CMS will be able to test the significant improvement the trigger efficiency of the EMU system that the presence of the full ME4/2 ring is expected to bring. The return of beam in November was observed as “splash” events in the CSCs in which the detectors were showered with a huge number of particles at the same time. Although the CSCs were operating at a lower standby voltage the multiple hits on a strips could not be individually distinguished.&am...

  14. MUON DETECTORS: RPC

    CERN Multimedia

    P. Paolucci

    2012-01-01

      2011 data-taking was very satisfactory for both the RPC detector and trigger. The RPC system ran very smoothly in 2011, showing an excellent stability and very high data-tacking efficiency. Data loss for RPC was about 0.37%, corresponding to 19 pb−1. Most of the performance studies, based on 2011 data, are now completed and the results have been already approved by CMS to be presented at the RPC 2012 conference (February 2012 at LNF). During 2011, the number of disconnected chambers increased from six to eight corresponding to 0.8% of the full system, while the single-gap-mode chambers increased from 28 to 31. Most of the problematic chambers are due to bad high-voltage connection and electronic failures that can be solved only during the 2013-2014 Long Shutdown. 98.4% of the electronic channels were operational. The average detection efficiency in 2011 was about 95%, which was the same value measured during the HV scan done at the beginning of the 2011 data-taking. Efficiency has be...

  15. MUON DETECTORS: DT

    CERN Multimedia

    I. Redondo

    2011-01-01

    During the second quarter of 2011, the DT system has continued to operate successfully with a high fraction of good channels (>99 %) and causing extremely little downtime to CMS. The high fraction of operated channels did not come for free: DT requested 18 short UXC accesses in the 3 months from March to May 2011. The dominant causes for these interventions were HV related interventions (7), which typically affect a small fraction of a chamber, and interventions for dealing with overheated LV Anderson connectors (7), whose failure could affect larger fractions of the detector (a whole chamber, half a wheel). With respect to the CMS downtime, a successful effort with colleagues from the DT Track Finder of the Level-1 Trigger system allowed to overcome a relatively relevant source of downtime from DTTF FED Out-Of-Sync errors, which would appear randomly during data-taking. The DT group developed a system configuration that would make it possible to reproduce the error without beam, thereby sparing lumin...

  16. ATLAS Detector Upgrade Prospects

    CERN Document Server

    Dobre, Monica; The ATLAS collaboration

    2016-01-01

    After the successful operation at the center-of-mass energies of 7 and 8 TeV in 2010 - 2012, the LHC is ramped up and successfully took data at the center-of-mass energies of 13 TeV in 2015. Meanwhile, plans are actively advancing for a series of upgrades of the accelerator, culminating roughly ten years from now in the high-luminosity LHC (HL-LHC) project, delivering of the order of five times the LHC nominal instantaneous luminosity along with luminosity leveling. The ultimate goal is to extend the dataset from about few hundred fb−1 expected for LHC running to 3000 fb−1 by around 2035 for ATLAS and CMS. The challenge of coping with the HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for a new all-silicon tracker, significant upgrades of the calorimeter and muon systems, as well as improved triggers and data acquisition. ATLAS is also examining potential benefits of extens...

  17. MUON DETECTORS: DT

    CERN Multimedia

    M. Dallavalle

    2013-01-01

    The DT collaboration is undertaking substantial work both for detector maintenance – after three years since the last access to the chambers and their front-end electronics – and upgrade. The most critical maintenance interventions are chambers and Minicrate repairs, which have not begun yet, because they need proper access to each wheel of the CMS barrel, meaning space for handling the big chambers in the few cases where they have to be extracted, and, more in general, free access from cables and thermal shields in the front and back side of the chambers. These interventions are planned for between the coming Autumn until next spring. Meanwhile, many other activities are happening, like the “pigtail” intervention on the CAEN AC/DC converters which has just taken place. The upgrade activities continue to evolve in good accordance with the schedule, both for the theta Trigger Board (TTRB) replacement and for the Sector Collector (SC) relocation from the UXC to the US...

  18. The CMS detector magnet

    CERN Document Server

    Hervé, A

    2000-01-01

    CMS (Compact Muon Solenoid) is a general-purpose detector designed to run in mid-2005 at the highest luminosity at the LHC at CERN. Its distinctive features include a 6 m free bore diameter, 12.5 m long, 4 T superconducting solenoid enclosed inside a 10,000 tonne return yoke. The magnet will be assembled and tested on the surface by the end of 2003 before being transferred by heavy lifting means to a 90 m deep underground experimental area. The design and construction of the magnet is a `common project' of the CMS Collaboration. It is organized by a CERN based group with strong technical and contractual participation by CEA Saclay, ETH Zurich, Fermilab Batavia IL, INFN Geneva, ITEP Moscow, University of Wisconsin and CERN. The return yoke, 21 m long and 14 m in diameter, is equivalent to 1.5 m of saturated iron interleaved with four muon stations. The yoke and the vacuum tank are being manufactured. The indirectly-cooled, pure- aluminium-stabilized coil is made up from five modules internally wound with four ...

  19. MUON DETECTORS: DT

    CERN Multimedia

    I. Redondo Fernandez

    2011-01-01

    The DT system has operated successfully during the entire 2011 data-taking: the fraction of good channels was always >99.4 % and the downtime caused to CMS amounts to a few inverse picobarns. This excellent performance does not come without a price: the DT group requested more than 30 short accesses to the underground experimental cavern (UXC).  A large fraction of interventions was for dealing with overheated LV Anderson connectors, whose failure can affect larger sections of the detector (a whole chamber, or half a wheel of the CMS barrel, etc.). A crash programme for reworking those connections will take place during the Year-End Technical Stop. The system of six vd chambers (VDC) that were installed on the DT exhaust gas line have operated successfully. The VDCs are small drift chambers the size of a shoebox that measure the drift velocity every 10 minutes. Possible deviations from the nominal value could be caused by a contamination of the gas mixture or changes in pressure or temperat...

  20. MUON DETECTORS: DT

    CERN Multimedia

    C. Fernandez Bedova and M. Dallavalle

    2010-01-01

    After successful operation during the 2009 LHC run, a number of fixes and improvements were carried out on the DT system the winter shutdown. The main concern was related with the impact of the extensive water leak that happened in October in YE+1. Opening of CMS end-caps allowed the DT crew to check if any Minicrates (containing the first level of readout and trigger electronics) in YB+2 and YB-2 were flooded with water. The affected region from top sectors in YB+2 reaches down to the bottom sectors in YB-2 following the water path in the barrel from end to end. No evidence of water penetration was observed, though the passage of water left oxidation and white streaks on the iron and components. In particular, large signs of oxidation have been seen on the YB-2 MB1 top and bottom stations. Review of the impact in YB+1 remains for future openings of CMS wheels, and at present, effort is focused on setting up the water leak detection system in the detector. Another important issue during this shutd...

  1. MUON DETECTORS: DT

    CERN Multimedia

    M. Dallavalle

    In the past months, the DT electronics has run in a stable and reliable way, demonstrated again through the CRAFT exercise. Operation when the CMS magnetic field was on has been satisfactory. The detector safety control and monitoring is improving constantly as the DT group accumulates running experience. The DT DAQ and DCS systems proved very stable during the intensive CRAFT period. The few issues that were identified by the DCS and on-line monitoring did not prevent the run to continue, so that the record of the DT in the data taking efficiency was very good. The long running period was also used to continue the transition from a system run by experts to one run by shifters, which was in the large part successful. Improvements, mostly in consolidation of error reporting, were identified and will be addressed in the coming shut-down. During the CRAFT data taking, DT triggered about 300 million cosmics with the magnet at 3.8T and the silicon strip tracker in the readout. Although a dedicated configuratio...

  2. Transmission diamond imaging detector

    Energy Technology Data Exchange (ETDEWEB)

    Smedley, John, E-mail: smedley@bnl.gov; Pinelli, Don; Gaoweia, Mengjia [Brookhaven National Laboratory, Upton, NY (United States); Muller, Erik; Ding, Wenxiang; Zhou, Tianyi [Stony Brook University, Stony Brook, NY (United States); Bohon, Jen [Case Center for Synchrotron Biosciences, Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH (United States)

    2016-07-27

    Many modern synchrotron techniques are trending toward use of high flux beams and/or beams which require enhanced stability and precise understanding of beam position and intensity from the front end of the beamline all the way to the sample. For high flux beams, major challenges include heat load management in optics (including the vacuum windows) and a mechanism of real-time volumetric measurement of beam properties such as flux, position, and morphology. For beam stability in these environments, feedback from such measurements directly to control systems for optical elements or to sample positioning stages would be invaluable. To address these challenges, we are developing diamond-based instrumented vacuum windows with integrated volumetric x-ray intensity, beam profile and beam-position monitoring capabilities. A 50 µm thick single crystal diamond has been lithographically patterned to produce 60 µm pixels, creating a >1kilopixel free-standing transmission imaging detector. This device, coupled with a custom, FPGA-based readout, has been used to image both white and monochromatic x-ray beams and capture the last x-ray photons at the National Synchrotron Light Source (NSLS). This technology will form the basis for the instrumented end-station window of the x-ray footprinting beamline (XFP) at NSLS-II.

  3. MUON DETECTORS: DT

    CERN Multimedia

    R.Carlin

    2010-01-01

    DT operation during 2010 LHC collisions, both in proton-proton and heavy ions, has been outstanding. The DT downtime has been below 0.1% throughout the whole year, mainly caused by the manual Resync commands that took around a minute for being processed. An automatic resynchronisation procedure has been enabled by August 27 and since then the downtime has been negligible (though constantly monitored). The need for these Resync commands is related to sporadic noise events that occasionally fill the RO buffers or unlock the readout links. Their rate is low, in the order of a few per week. Besides that, only one pp collisions run (1 hour 30 minutes run) has been marked as bad for DT, because of an incident with a temperature sensor that triggered a false alarm and powered off one wheel. Nevertheless, quite a large number of interventions (>30) have been made in the cavern during the year, in order to keep such a large fraction of the detector operational. Most of those are due to the overheating of the ...

  4. Optical transcutaneous bilirubin detector

    Energy Technology Data Exchange (ETDEWEB)

    Kronberg, J.W.

    1991-03-04

    This invention consists of a transcutaneous bilirubin detector comprising a source of light having spectral components absorbable and not absorbable by bilirubin, a handle assembly, electronic circuitry and a fiber optic bundle connecting the assembly to the light source and circuitry. Inside the assembly is a prism that receives the light from one end of the fiber optic bundle and directs it onto the skin and directs the reflected light back into the bundle. The other end of the bundle is trifucated, with one end going to the light source and the other two ends going to circuitry that determines how much light of each kind has been reflected. A relatively greater amount absorbed by the skin from the portion of the spectrum absorbable by bilirubin may indicate the presence of the illness. Preferably, two measurements are made, one on the kneecap and one on the forehead, and compared to determine the presence of bilirubin. To reduce the impact of light absorption by hemoglobin in the blood carried by the skin, pressure is applied with a plunger and spring in the handle assembly, the pressure limited by points of a button slidably carried in the assembly that are perceived by touch when the pressure applied is sufficient.

  5. Commissioning a Hodoscope Detector

    Science.gov (United States)

    Lulis, Andrew; Merhi, Abdul; Frank, Nathan; Bazin, Daniel; Smith, Jenna; Thoennessen, Michael; MoNA Collaboration

    2013-10-01

    Experiments on neutron-rich nuclei are interesting since they test the limits of current nuclear theory. One method to populate neutron-rich nuclei is to utilize the (d,p) reaction in which the beam nucleus picks up a neutron from the target. This heavier nucleus immediately emits a neutron resulting in the same nucleus as the beam but with lower energy. One challenge is to discriminate decay products from unreacted beam particles by their difference in energy. A hodoscope was recently installed at the National Superconducting Cyclotron Laboratory (NSCL) as part of the MoNA-LISA-Sweeper setup to make experiments using a (d,p) reaction possible. The hodoscope is a 5 × 5 scintillator array consisting of CsI(Na) crystals with a resolution of better than 1%. This presentation will describe the recently commissioned detector and the results of the first data analysis using this device. Work supported by Augustana College and the National Science Foundation grant #0969173.

  6. MUON DETECTORS: CSC

    CERN Multimedia

    J. Hauser

    2011-01-01

    The CSC detector continued to operate well during the March-June 2011 period. As the luminosity has climbed three orders of magnitude, the currents drawn in the CSC high-voltage system have risen correspondingly, and the current trip thresholds have been increased from 1 μA to 5 μA (and 20 in ME1/1 chambers). A possible concern is that a long-lasting and undesirable corona is capable of drawing about 1 μA, and thus may not be detected by causing current trips; on the other hand it is easily dealt with by cycling HV when detected. To better handle coronas, software is being developed to better detect them, although a stumbling block is the instability of current measurements in some of the channels of the CAEN supplies used in ME1/1. A survey of other issues faced by the CSC Operations team was discussed at the 8th June 2011 CSC Operations/DPG meeting (Rakness). The most important issues, i.e. those that have caused a modest amount of downtime, are all being actively addressed. These are:...

  7. Independent Component Analysis of Textures

    Science.gov (United States)

    Manduchi, Roberto; Portilla, Javier

    2000-01-01

    A common method for texture representation is to use the marginal probability densities over the outputs of a set of multi-orientation, multi-scale filters as a description of the texture. We propose a technique, based on Independent Components Analysis, for choosing the set of filters that yield the most informative marginals, meaning that the product over the marginals most closely approximates the joint probability density function of the filter outputs. The algorithm is implemented using a steerable filter space. Experiments involving both texture classification and synthesis show that compared to Principal Components Analysis, ICA provides superior performance for modeling of natural and synthetic textures.

  8. POSSuMUS: a position sensitive scintillating muon SiPM detector

    CERN Document Server

    Ruschke, Alexander

    The development of a modular designed large scale scintillation detector with a two-dimensional position sensitivity is presented in this thesis. This novel POsition Sensitive Scintillating MUon SiPM Detector is named POSSuMUS. The POSSuMUS detector is capable to determine the particle’s position in two space dimensions with a fast trigger capability. Each module is constructed from two trapezoidal shaped plastic scintillators to form one rectangular shaped detector module. Both trapezoids are optically insulated against each other. In both trapezoids the scintillation light is collected by plastic fibers and guided towards silicon photomultipliers (SiPMs). SiPMs are light sensors which are capable to detect even smallest amounts of light. By combining several detector modules, position sensitive areas from 100 cm2 to few m2 are achievable with few readout channels. Therefore, POSSuMUS provides a cost effective detector concept. The position sensitivity along the trapezoidal geometry of one detector module ...

  9. The SNAP near infrared detectors

    Energy Technology Data Exchange (ETDEWEB)

    Tarle, G.; Akerlof, C.; Aldering, G.; Amanullah, R.; Astier, P.; Barrelet, E.; Bebek, C.; Bergstrom, L.; Bercovitz, J.; Bernstein, G.; Bester, M.; Bonissent, A.; Bower, C.; Carithers, W.; Commins, E.D.; Day, C.; Deustua, S.; DiGennaro, R.; Ealet, Anne; Ellis, R.S.; Eriksson, M.; Fruchter, A.; Genat, J.-F.; Goldhaber, G.; Goobar, A.; Groom, D.; Harris, S.; Harvey, P.; Heetderks, H.; Holland, S.; Huterer, D.; Karcher, A.; Kim, A.; Kolbe, W.; Krieger, B.; Lafever, R.; Lamoureux, J.; Lampton, M.; Levi, M.E.; Levin, D.; Linder, E.; Loken, S.; Malina, R.; Massey, R.; Miguel, R.; McKay, T.; McKee, S.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Nugent, P.; Oluseyi, H.; Pain, R.; Palaio, N.; Pankow, D.; Perlmutter, S.; Pratt, R.; Prieto, E.; Refregier, A.; Rhodes, J.; Robinson, K.; Roe, N.; Sholl, M.; Schubnell, M.; Smadja, G.; Smoot, G.; Spadafora, A.; Tomasch, A.; von der Lippe, H.; Vincent, R.; Walder, J.; Wang, G.

    2002-07-29

    The SuperNova/Acceleration Probe (SNAP) will measure precisely the cosmological expansion history over both the acceleration and deceleration epochs and thereby constrain the nature of the dark energy that dominates our universe today. The SNAP focal plane contains equal areas of optical CCDs and NIR sensors and an integral field spectrograph. Having over 150 million pixels and a field-of-view of 0.34 square degrees, the SNAP NIR system will be the largest yet constructed. With sensitivity in the range 0.9-1.7 {micro}m, it will detect Type Ia supernovae between z = 1 and 1.7 and will provide follow-up precision photometry for all supernovae. HgCdTe technology, with a cut-off tuned to 1.7 {micro}m, will permit passive cooling at 140 K while maintaining noise below zodiacal levels. By dithering to remove the effects of intrapixel variations and by careful attention to other instrumental effects, we expect to control relative photometric accuracy below a few hundredths of a magnitude. Because SNAP continuously revisits the same fields we will be able to achieve outstanding statistical precision on the photometry of reference stars in these fields, allowing precise monitoring of our detectors. The capabilities of the NIR system for broadening the science reach of SNAP are discussed.

  10. Model-independent differences

    DEFF Research Database (Denmark)

    Könemann, Patrick

    2009-01-01

    is fundamentally different. This paper reports on our ongoing work on model-independent diffs, i.e. a diff that does not directly refer to the models it was created from. Based on that, we present an idea of how the diff could be generalized, e.g. many atomic diffs are merged to a new, generalized diff. One use...... of these concepts could be a patch for models as it already exists for text files. The advantage of such a generalized diff compared to dasianormalpsila diffs is that it is applicable to a higher variety of models....

  11. Informació independent?

    OpenAIRE

    Salvat Masdéu, Jordina

    2014-01-01

    Condiciona el poder polític en el tracte que se li ha donat des dels informatius públics al tema de la independència catalana? En aquest treball es realitza un estudi comparatiu dels informatius diaris de TV3 i TVE durant la jornada prèvia, posterior i la coincident a la Diada de Catalunya, data que ha estat escollida des de l'Assemblea Nacional Catalana per fer les reivindicacions d'independentisme més rellevants de la història de Catalunya. S'analitzarà l'evolució del tracte informatiu en a...

  12. Simple dynamic electromagnetic radiation detector

    Science.gov (United States)

    Been, J. F.

    1972-01-01

    Detector monitors gamma dose rate at particular position in a radiation facility where a mixed neutron-gamma environment exists, thus determining reactor power level changes. Device also maps gamma intensity profile across a neutron-gamma beam.

  13. A gas secondary electron detector

    CERN Document Server

    Drouart, A; Alamanos, N; Auger, F; Besson, P; Bougamont, E; Bourgeois, P; Lobo, G; Pollacco, E C; Riallot, M

    2002-01-01

    A new Secondary Electron gas Detector (SED) is under development to be used in conjunction with an emissive foil to detect low energy heavy ions as an alternative to micro-channel plates. It could measure position and time of flight. Secondary electrons are accelerated to 10 keV so that they can cross through the 0.9 mu m Mylar entrance window. The electrons then are multiplied in the isobutane gas of the detector at 4-10 Torr. A time resolution of 150 ps and a spatial resolution of 3 mm have been obtained by using californium fission fragments on a prototype detector of 7x7 cm sup 2. The advantage of the SED against MCP is that its size is not limited. Our final goal is to build a large size detector (15x40 cm sup 2) that will operate at the focal plane of the VAMOS magnetic spectrometer at GANIL.

  14. A Rapid Coliform Detector Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC, in collaboration with Lucigen, proposes a rapid genetic detector for spaceflight water systems to enable real-time detection of E-coli with minimal...

  15. LHC luminosity upgrade detector challenges

    CERN Multimedia

    CERN. Geneva; de Roeck, Albert; Bortoletto, Daniela; Wigmans, Richard; Riegler, Werner; Smith, Wesley H

    2006-01-01

    LHC luminosity upgrade: detector challenges The upgrade of the LHC machine towards higher luminosity (1035 cm -2s-1) has been studied over the last few years. These studies have investigated scenarios to achieve the increase in peak luminosity by an order of magnitude, as well as the physics potential of such an upgrade and the impact of a machine upgrade on the LHC DETECTORS. This series of lectures will cover the following topics: • Physics motivation and machine scenarios for an order of magnitude increase in the LHC peak luminosity (lecture 1) • Detector challenges including overview of ideas for R&D programs by the LHC experiments: tracking and calorimetry, other new detector developments (lectures 2-4) • Electronics, trigger and data acquisition challenges (lecture 5) Note: the much more ambitious LHC energy upgrade will not be covered

  16. Characterization of Czochralski Silicon Detectors

    CERN Document Server

    Luukka, Panja-Riina

    2012-01-01

    This thesis describes the characterization of irradiated and non-irradiated segmenteddetectors made of high-resistivity (>1 kΩcm) magnetic Czochralski (MCZ) silicon. It isshown that the radiation hardness (RH) of the protons of these detectors is higher thanthat of devices made of traditional materials such as Float Zone (FZ) silicon or DiffusionOxygenated Float Zone (DOFZ) silicon due to the presence of intrinsic oxygen (> 5 x1017 cm-3). The MCZ devices therefore present an interesting alternative for future highenergy physics experiments. In the large hadron collider (LHC), the RH of the detectorsis a critical issue due to the high luminosity (1034 cm-2s-1) corresponding to the expectedtotal fluencies of fast hadrons above 1015 cm-2. This RH improvement is important sinceradiation damage in the detector bulk material reduces the detector performance andbecause some of the devices produced from standard detector-grade silicon, e.g. FZsilicon with negligible oxygen concentration, might not survive the plann...

  17. Rapid Multiplex Microbial Detector Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC, in collaboration with Lucigen, proposes a rapid nucleic acid-based detector for spaceflight water systems to enable simultaneous quantification of multiple...

  18. Prototype Neutron Portal Monitor Detector

    Science.gov (United States)

    Schier, W.

    2014-05-01

    A very large drum-shaped neutron detector which could replace the 3He neutron portal monitor detector is under development. Detection is based on the 6Li(n,3H)4He reaction. 6Li metal is evaporated onto aluminum plates then covered with 22-cm x 27-cm ZnS(Ag) scintillation sheets and sealed about the edges. The equivalent of 40 detector plates will be arrayed in the 80-cm diameter drum housing and viewed by a single 20-cm diameter hemispherical photomultiplier tube without the use of light guides. Presently 25 detector plates are installed. Light collection tests are performed with a bare 210Po alpha source on a ZnS(Ag) disk. Neutron detection studies include neutrons from a 2-curie PuBe source and from a 0.255-gram 240Pu source.

  19. Wafer-scale pixelated detector system

    Energy Technology Data Exchange (ETDEWEB)

    Fahim, Farah; Deptuch, Grzegorz; Zimmerman, Tom

    2017-10-17

    A large area, gapless, detection system comprises at least one sensor; an interposer operably connected to the at least one sensor; and at least one application specific integrated circuit operably connected to the sensor via the interposer wherein the detection system provides high dynamic range while maintaining small pixel area and low power dissipation. Thereby the invention provides methods and systems for a wafer-scale gapless and seamless detector systems with small pixels, which have both high dynamic range and low power dissipation.

  20. Measuring fluence of fast neutrons with planar silicon detectors

    Science.gov (United States)

    Zamyatin, N. I.; Cheremukhin, A. E.; Shafronovskaya, A. I.

    2017-09-01

    The results of measurements of 1-MeV (Si) equivalent fast neutron fluence with silicon planar detectors are reported. The measurement method is based on the linear dependence of the reverse detector current increment on the neutron fluence: ΔI = α I × Φ × V. This technique provides an opportunity to measure the equivalent fluence in a wide dynamic range from 108 to 1016 cm-2 with an unknown neutron energy spectrum and without detector calibration. The proposed method was used for monitoring in radiation resistance tests of different detector types at channel no. 3 of IBR-2 and for determining the fluence of fission and leakage neutrons at the KVINTA setup.

  1. Status of the CMS Phase I Pixel Detector Upgrade

    CERN Document Server

    Spannagel, Simon

    2016-09-21

    A new pixel detector for the CMS experiment is being built, owing to the instantaneous luminosities anticipated for the Phase~I Upgrade of the LHC. The new CMS pixel detector provides four-hit tracking while featuring a significantly reduced material budget as well as new cooling and powering schemes. A new front-end readout chip mitigates buffering and bandwidth limitations, and comprises a low-threshold comparator. These improvements allow the new pixel detector to sustain and improve the efficiency of the current pixel tracker at the increased requirements imposed by high luminosities and pile-up. This contribution gives an overview of the design of the upgraded pixel detector and the status of the upgrade project, and presents test beam performance measurements of the production read-out chip.

  2. Coordinate-sensitive charged particle detector for spectroscopy

    Directory of Open Access Journals (Sweden)

    Sidorenko V. P.

    2016-10-01

    Full Text Available The authors have designed, manufactured and tested a coordinate-sensitive detector for charged particle spectroscopy. The detector can be used in the devices for the elemental analysis of materials, providing simultaneous analysis of all the elemental composition with high sensitivity and precision. The designed device is based on an integrated circuit (IC and a microchannel plate (MCP electron multiplier. The IC is mounted on a ceramic substrate. Ions fall on the MCP mounted above the IC. Giving rise to a pulse which typically exceeds 106 electrons, each ion falls on the detector electrodes and these pulses are counted. In this research, a two stage stack of MCPs (Hamamatsu was used. The MCPs have a channel diameter of 12 μm on a 15 μm pitch. The results of tests carried out in a mass spectrometer are presented. The designed detector is small, light, and low-power.

  3. Spectroscopic X-ray imaging with photon counting pixel detectors

    CERN Document Server

    Tlustos, L

    2010-01-01

    Single particle counting hybrid pixel detectors simultaneously provide low noise, high granularity and high readout speed and make it possible to build detector systems offering high spatial resolution paired with good energy resolution. A limiting factor for the spectroscopic performance of such detector systems is charge sharing between neighbouring pixels in the sensor part of the detector. The signal spectrum at the collection electrodes of the readout electronics deviates significantly from the photonic spectrum when planar segmented sensor geometries are used. The Medipix3 implements a novel, distributed signal processing architecture linking neighbouring pixels and aims at eliminating the spectral distortion produced in the sensor by charge sharing and at reducing the impact of fluorescence photons generated in the sensor itself. Preliminary results from the very first Medipix3 readouts bump bonded to 300 pm Si sensor are presented. Material reconstruction is a possible future application of spectrosco...

  4. Inner Detector Track Reconstruction and Alignment at the ATLAS Experiment

    CERN Document Server

    Danninger, Matthias; The ATLAS collaboration

    2017-01-01

    The Inner Detector of the ATLAS experiment at the LHC is responsible for reconstructing the trajectories of charged particles (‘tracks’) with high efficiency and accuracy. It consists of three subdetectors, each using a different technology to provide measurements points. An overview of the use of each of these subdetectors in track reconstruction, as well as the algorithmic approaches taken to the specific tasks of pattern recognition and track fitting, is given. The performance of the Inner Detector tracking will be summarised. Of crucial importance for optimal tracking performance is precise knowledge of the relative positions of the detector elements. ATLAS uses a sophisticated, highly granular software alignment procedure to determine and correct for the positions of the sensors, including time-dependent effects appearing within single data runs. This alignment procedure will be discussed in detail, and its effect on Inner Detector tracking for LHC Run 2 proton-proton collision data highlighted.

  5. Breast computed tomography with the PICASSO detector: A feasibility study

    Science.gov (United States)

    Rigon, Luigi; Tapete, Federica; Dreossi, Diego; Arfelli, Fulvia; Bergamaschi, Anna; Chen, Rong-Chang; Longo, Renata; Menk, Ralf-Hendrik; Schmitt, Bernd; Vallazza, Erik; Castelli, Edoardo

    2011-02-01

    The SYRMEP (Synchrotron Radiation for Medical Physics) collaboration has performed, for the first time in the world, a clinical program of mammography with synchrotron radiation. This program provided excellent results, although utilizing a commercial screen-film system as a detector. The PICASSO (Phase Imaging for Clinical Application with Silicon detector and Synchrotron radiation) project has developed a detector prototype capable of fully exploiting the peculiar characteristics of the synchrotron source, utilizing silicon microstrip sensors illuminated in the edge-on geometry and operated in single-photon counting. In this paper the potential of the PICASSO detector in breast computed tomography was evaluated by means of custom phantoms. Very encouraging results have been obtained with severe dose constrains as far as both spatial and contrast resolution are concerned. Moreover, the capability of detecting phase contrast effects was demonstrated, albeit with a higher delivered dose.

  6. First test of cold edgeless silicon microstrip detectors

    Science.gov (United States)

    Avati, V.; Boccone, V.; Borer, K.; Bozzo, M.; Capra, R.; Casagrande, L.; Eggert, K.; Heijne, E.; Klauke, S.; Li, Z.; Mäki, T.; Morelli, A.; Oljemark, F.; Palmieri, V. G.; Perea-Solano, B.; Tapprogge, S.

    2004-02-01

    Silicon microstrip detectors will provide the forward tracking in the TOTEM experiment at the LHC. To allow efficient tracking closest to the beam (≈1 mm) these detectors should be sensitive up to their physical edge (i.e. edgeless). Edgeless (without guard rings) microstrip planar detectors can be operated at cryogenic temperatures (about 130° K) where leakage currents due to the active edge are drastically reduced. A silicon microstrip prototype, cut perpendicular to the strips, has been tested with a pion beam at CERN to study its efficiency close to the edge by using reference tracks from a simple silicon telescope. Results indicate that the detector measures tracks with good efficiency up to the physical edge of the silicon.

  7. First test of cold edgeless silicon microstrip detectors

    CERN Document Server

    Avati, V; Borer, K; Bozzo, M; Capra, R; Casagrande, L; Eggert, Karsten; Heijne, Erik H M; Klauke, S; Li, Z; Mäki, T; Morelli, A; Oljemark, F; Palmieri, V G; Perea-Solano, B; Tapprogge, Stefan

    2004-01-01

    Silicon microstrip detectors will provide the forward tracking in the TOTEM experiment at the LHC. To allow efficient tracking closest to the beam ( approximately equals 1 mm) these detectors should be sensitive up to their physical edge (i.e. edgeless). Edgeless (without guard rings) microstrip planar detectors can be operated at cryogenic temperatures (about 130 degree K) where leakage currents due to the active edge are drastically reduced. A silicon microstrip prototype, cut perpendicular to the strips, has been tested with a pion beam at CERN to study its efficiency close to the edge by using reference tracks from a simple silicon telescope. Results indicate that the detector measures tracks with good efficiency up to the physical edge of the silicon.

  8. First test of cold edgeless silicon microstrip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Avati, V.; Boccone, V.; Borer, K.; Bozzo, M. E-mail: marco.bozzo@cern.ch; Capra, R.; Casagrande, L.; Eggert, K.; Heijne, E.; Klauke, S.; Li, Z.; Maeki, T.; Morelli, A.; Oljemark, F.; Palmieri, V.G.; Perea-Solano, B.; Tapprogge, S

    2004-02-01

    Silicon microstrip detectors will provide the forward tracking in the TOTEM experiment at the LHC. To allow efficient tracking closest to the beam ({approx}1 mm) these detectors should be sensitive up to their physical edge (i.e. edgeless). Edgeless (without guard rings) microstrip planar detectors can be operated at cryogenic temperatures (about 130 deg. K) where leakage currents due to the active edge are drastically reduced. A silicon microstrip prototype, cut perpendicular to the strips, has been tested with a pion beam at CERN to study its efficiency close to the edge by using reference tracks from a simple silicon telescope. Results indicate that the detector measures tracks with good efficiency up to the physical edge of the silicon.

  9. The ATLAS tracker Pixel detector for HL-LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00214676; The ATLAS collaboration

    2017-01-01

    The high luminosity upgrade of the LHC (HL-LHC) in 2026 will provide new challenges to the ATLAS tracker. The current Inner Detector will be replaced with an all-silicon tracker which will consist of a five barrel layer Pixel detector surrounded by a four barrel layer Strip detector. The expected dense tracking environment and high radiation levels require the development of higher granularity radiation hard silicon sensors and a new front-end readout chip. The data rates require new technologies for high bandwidth data transmission and handling. The current status of the HL-LHC ATLAS Pixel detector developments as well as the various layout options are presented in this paper.

  10. TRTViewer: the ATLAS TRT detector monitoring and diagnostics tool

    CERN Document Server

    Smirnov, S.Yu.

    2013-01-01

    The Transition Radiation Tracker (TRT) is the outermost of the three sub-systems of the ATLAS Inner Detector at the LargeHadron Collider (LHC) at CERN. It is designed to combine the drift tube tracker with transition radiation detector, providing an important contribution to the charged particles precise momentum measurement and particle (mainly electron) identification. The TRT consists of a barrel section at small pseudo rapidity (eta) and two separate end-cap partitions at large eta. The detector performance and its operational conditions were permanently monitored during all commissioning and data-taking stages using various software tools, one of which -- TRTViewer -- is described in the present paper. The TRTViewer is the dedicated program for monitoring the TRT raw data quality and detector performance at different hardware levels: individual straws, readout chips and electronic boards. The data analysis results can be presented on the event-by-event basis or in the form of color maps representing the ...

  11. submitter The TORCH detector R&D;: Status and perspectives

    CERN Document Server

    Gys, T; Castillo García, L; Cussans, D; Föhl, K; Forty, R; Frei, C; Gao, R; Harnew, N; Piedigrossi, D; Rademacker, J; Ros García, A; van Dijk, M

    2017-01-01

    TORCH (Timing Of internally Reflected CHerenkov photons) is a time-of-flight detector for particle identification at low momentum. It has been originally proposed for the LHCb experiment upgrade. TORCH is using plates of quartz radiator in a modular design. A fraction of the Cherenkov photons produced by charged particles passing through this radiator propagate by total internal reflection, they emerge at the edges and are subsequently focused onto fast, position-sensitive single-photon detectors. The recorded position and arrival time of the photons are used to precisely reconstruct their trajectory and propagation time in the quartz. The on-going R&D; programme aims at demonstrating the TORCH basic concept through the realization of a full detector module and has been organized on the following main development lines: micro-channel plate photon detectors featuring the required granularity and lifetime, dedicated fast front-end electronics preserving the picosecond timing information provided by single p...

  12. Results from the Commissioning of the ATLAS Pixel Detector

    CERN Document Server

    Strandberg, S

    2009-01-01

    The ATLAS pixel detector is a high resolution, silicon based, tracking detector with its innermost layer located only 5 cm away from the ATLAS interaction point. It is designed to provide good hit resolution and low noise, both important qualities for pattern recognition and for finding secondary vertices originating from decays of long-lived particles. The pixel detector has 80 million readout channels and is built up of three barrel layers and six disks, three on each side of the barrel. The detector was installed in the center of ATLAS in June 2007 and is currently being calibrated and commissioned. Details from the installation, commissioning and calibration are presented together with the current status.

  13. Axial shape index calculation for the 3-level excore detector

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han Gon; Kim, Yong Hee; Kim, Byung Sop; Lee, Sang Hee; Cho, Sung Jae [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    A new method based on the alternating conditional expectation (ACE) algorithm is developed to calculate axial shape index (ASI) for the 3-level excore detector. The ACE algorithm, a type of nonparametric regression algorithms, yields an optimal relationship between a dependent variable and multiple independent variables. In this study, the simple correlation between ASI and excore detector signals is developed using the Younggwang nuclear power plant unit 3 (YGN-3) data without any preprocessing on the relationships between independent variables and dependent variable. The numerical results show that simple correlations exist between the three excore signals and ASI of the core. The accuracy of the new method is much better than those of the current CPC and COLSS algorithms. 5 refs., 2 figs., 2 tabs. (Author)

  14. Dark matter sensitivity of multi-ton liquid xenon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, Marc; Bütikofer, Lukas [Albert Einstein Center for Fundamental Physics, Universität Bern, Sidlerstrasse 5, 3012 Bern (Switzerland); Baudis, Laura; Kish, Alexander [Physik-Institut, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich (Switzerland); Selvi, Marco, E-mail: marc.schumann@lhep.unibe.ch, E-mail: lbaudis@physik.uzh.ch, E-mail: lukas.buetikofer@lhep.unibe.ch, E-mail: alexkish@physik.uzh.ch, E-mail: marco.selvi@bo.infn.it [INFN—Sezione di Bologna, Via Irnerio 46, 40126 Bologna (Italy)

    2015-10-01

    We study the sensitivity of multi ton-scale time projection chambers using a liquid xenon target, e.g., the proposed DARWIN instrument, to spin-independent and spin-dependent WIMP-nucleon scattering interactions. Taking into account realistic backgrounds from the detector itself as well as from neutrinos, we examine the impact of exposure, energy threshold, background rejection efficiency and energy resolution on the dark matter sensitivity. With an exposure of 200 t × y and assuming detector parameters which have been already demonstrated experimentally, spin-independent cross sections as low as 2.5 × 10{sup −49} cm{sup 2} can be probed for WIMP masses around 40 GeV/c{sup 2}. Additional improvements in terms of background rejection and exposure will further increase the sensitivity, while the ultimate WIMP science reach will be limited by neutrinos scattering coherently off the xenon nuclei.

  15. Electronic detectors for electron microscopy.

    Science.gov (United States)

    Faruqi, A R; McMullan, G

    2011-08-01

    Electron microscopy (EM) is an important tool for high-resolution structure determination in applications ranging from condensed matter to biology. Electronic detectors are now used in most applications in EM as they offer convenience and immediate feedback that is not possible with film or image plates. The earliest forms of electronic detector used routinely in transmission electron microscopy (TEM) were charge coupled devices (CCDs) and for many applications these remain perfectly adequate. There are however applications, such as the study of radiation-sensitive biological samples, where film is still used and improved detectors would be of great value. The emphasis in this review is therefore on detectors for use in such applications. Two of the most promising candidates for improved detection are: monolithic active pixel sensors (MAPS) and hybrid pixel detectors (of which Medipix2 was chosen for this study). From the studies described in this review, a back-thinned MAPS detector appears well suited to replace film in for the study of radiation-sensitive samples at 300 keV, while Medipix2 is suited to use at lower energies and especially in situations with very low count rates. The performance of a detector depends on the energy of electrons to be recorded, which in turn is dependent on the application it is being used for; results are described for a wide range of electron energies ranging from 40 to 300 keV. The basic properties of detectors are discussed in terms of their modulation transfer function (MTF) and detective quantum efficiency (DQE) as a function of spatial frequency.

  16. Directional detector of gamma rays

    Science.gov (United States)

    Cox, Samson A.; Levert, Francis E.

    1979-01-01

    A directional detector of gamma rays comprises a strip of an electrical cuctor of high atomic number backed with a strip of a second electrical conductor of low atomic number. These elements are enclosed within an electrical conductor that establishes an electrical ground, maintains a vacuum enclosure and screens out low-energy gamma rays. The detector exhibits a directional sensitivity marked by an increased output in the favored direction by a factor of ten over the output in the unfavored direction.

  17. Radiation hardening of silicon detectors

    CERN Document Server

    Lemeilleur, F

    1999-01-01

    The radiation hardness of high grade silicon detectors is summarized in terms of an increase of the diode reverse current and evolution of the full depletion voltage and charge collection efficiency. With the aim of improving their radiation tolerance, detectors have been produced from non-standard, float-zone silicon containing various atomic impurities and from epitaxial silicon materials. Some recent results concerning their radiation hardness are presented. (15 refs).

  18. STAR Vertex Detector Upgrade Development

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, Leo C.; Matis, Howard S.; Stezelberger, Thorsten; Vu,Chinh Q.; Wieman, Howard; Szelezniak, Michal; Sun, Xiangming

    2008-01-28

    We report on the development and prototyping efforts undertaken with the goal of producing a micro-vertex detector for the STAR experiment at the RHIC accelerator at BNL. We present the basic detector requirements and show a sensor development path, conceptual mechanical design candidates and readout architecture. Prototyping and beam test results with current generation MimoSTAR-2 sensors and a readout system featuring FPGA based on-the-fly hit finding and data sparsification are also presented.

  19. L3 detector: BGO assembly

    CERN Multimedia

    CERN

    1989-01-01

    Explanation and presentation of its construction ( Feb-March 1989). The detector is a multi-layered cylindrical set of different devices, each of them measuring physical quantities relevant to the reconstruction of the collision under study. The three main outer layers are the electro-magnetic calorimeter (also called BGO because it's made of Bismuth Germanium Oxide), the hadronic calorimeter (HCAL) and the muon detector.

  20. Next decade in infrared detectors

    Science.gov (United States)

    Rogalski, A.

    2017-10-01

    Fundamental and technological issues associated with the development and exploitation of the most advanced infrared technologies is discussed. In these classes of detectors both photon and thermal detectors are considered. Special attention is directed to HgCdTe ternary alloys, type II superlattices (T2SLs), barrier detectors, quantum wells, extrinsic detectors, and uncooled thermal bolometers. The sophisticated physics associated with the antimonide-based bandgap engineering will give a new impact and interest in development of infrared detector structures. Important advantage of T2SLs is the high quality, high uniformity and stable nature of the material. In general, III-V semiconductors are more robust than their II-VI counterparts due to stronger, less ionic chemical bonding. As a result, III-V-based FPAs excel in operability, spatial uniformity, temporal stability, scalability, producibility, and affordability - the so-called "ibility" advantages. In well established uncooled imaging, microbolometer arrays are clearly the most used technology. The microbolometer detectors are now produced in larger volumes than all other IR array technologies together. Present state-of-the-art microbolometers are based on polycrystalline or amorphous materials, typically vanadium oxide (VOx) or amorphous silicon (a-Si), with only modest temperature sensitivity and noise properties. Basic efforts today are mainly focused on pixel reduction and performance enhancement.