WorldWideScience

Sample records for provide additional hydrogen

  1. BWR hydrogen addition for IGSCC

    International Nuclear Information System (INIS)

    Anderson, D.S.

    1985-01-01

    Mitigation of intergranular stress corrosion cracking (IGSCC) in austenitic stainless steel piping and other components exposed to the primary coolant in boiling water reactors has become a major industry challenge. Hydrogen water chemistry (HWC) has become a very popular recommended method of slowing the propagation of IGSCC and is a desirable alternative to material replacement. Although HWC is a reasonable solution for controlling IGSCC, it is not without significant drawbacks for some plants. Carolina Power and Light's (CP and L's) Brunswick Unit 2 is one of these plants where the use of HWC for the mitigation of IGSCC could have a major impact on the current operating philosophy

  2. Novel Electrolyzer Applications: Providing More Than Just Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Eichman, J.; Harrison, K.; Peters, M.

    2014-09-01

    Hydrogen can be used for many different applications and can be integrated into many different system architectures. One of the methods for producing the hydrogen is to use an electrolyzer. This work explores the flexibility of electrolyzers to behave as responsive loads. Experimental tests were performed for a proton exchange membrane (PEM) and an alkaline electrolyzer to assess the operational flexibility of electrolyzers to behave as responsive loads. The results are compared to the operational requirements to participate in end-user facility energy management, transmission and distribution system support, and wholesale electricity market services. Electrolyzers begin changing their electricity demand within milliseconds of a set-point change. The settling time after a set-point change is on the order of seconds. It took 6.5 minutes for the PEM unit to execute a cold start and 1 minute to turn off. In addition, a frequency disturbance correction test was performed and electrolyzers were able to accelerate the speed that the grid frequency can be restored. Electrolyzers acting as demand response devices can respond sufficiently fast and for a long enough duration to participate in all of the applications explored. Furthermore, electrolyzers can be operated to support a variety of applications while also providing hydrogen for industrial processes, transportation fuel, or heating fuel. Additionally, favorable operating properties and a variety of potential system architectures showcase the flexibility of electrolyzer systems.

  3. Effect of hydrogen addition on autoignited methane lifted flames

    KAUST Repository

    Choin, Byung Chul

    2012-01-01

    Autoignited lifted flames in laminar jets with hydrogen-enriched methane fuels have been investigated experimentally in heated coflow air. The results showed that the autoignited lifted flame of the methane/hydrogen mixture, which had an initial temperature over 920 K, the threshold temperature for autoignition in methane jets, exhibited features typical of either a tribrachial edge or mild combustion depending on fuel mole fraction and the liftoff height increased with jet velocity. The liftoff height in the hydrogen-assisted autoignition regime was dependent on the square of the adiabatic ignition delay time for the addition of small amounts of hydrogen, as was the case for pure methane jets. When the initial temperature was below 920 K, where the methane fuel did not show autoignition behavior, the flame was autoignited by the addition of hydrogen, which is an ignition improver. The liftoff height demonstrated a unique feature in that it decreased nonlinearly as the jet velocity increased. The differential diffusion of hydrogen is expected to play a crucial role in the decrease in the liftoff height with increasing jet velocity.

  4. Hydrogen atom addition to the surface of graphene nanoflakes: A density functional theory study

    Energy Technology Data Exchange (ETDEWEB)

    Tachikawa, Hiroto, E-mail: hiroto@eng.hokudai.ac.jp

    2017-02-28

    Highlights: • The reaction pathway of the hydrogen addition to graphene surface was determined by the DFT method. • Binding energies of atomic hydrogen to graphene surface were determined. • Absorption spectrum of hydrogenated graphene was theoretically predicted. • Hyperfine coupling constant of hydrogenated graphene was theoretically predicted. - Abstract: Polycyclic aromatic hydrocarbons (PAHs) provide a 2-dimensional (2D) reaction surface in 3-dimensional (3D) interstellar space and have been utilized as a model of graphene surfaces. In the present study, the reaction of PAHs with atomic hydrogen was investigated by means of density functional theory (DFT) to systematically elucidate the binding nature of atomic hydrogen to graphene nanoflakes. PAHs with n = 4–37 were chosen, where n indicates the number of benzene rings. Activation energies of hydrogen addition to the graphene surface were calculated to be 5.2–7.0 kcal/mol at the CAM-B3LYP/6-311G(d,p) level, which is almost constant for all PAHs. The binding energies of hydrogen atom were slightly dependent on the size (n): 14.8–28.5 kcal/mol. The absorption spectra showed that a long tail is generated at the low-energy region after hydrogen addition to the graphene surface. The electronic states of hydrogenated graphenes were discussed on the basis of theoretical results.

  5. Hydrogen addition reactions of aliphatic hydrocarbons in comets

    Science.gov (United States)

    Kobayashi, Hitomi; Watanabe, N.; Watanabe, Y.; Fukushima, T.; Kawakita, H.

    2013-10-01

    Comets are thought as remnants of early solar nebula. Their chemical compositions are precious clue to chemical and physical evolution of the proto-planetary disk. Some hydrocarbons such as C2H6, C2H2 and CH4 in comets have been observed by using near-infrared spectroscopy. Although the compositions of C2H6 were about 1% relative to the water in normal comets, there are few reports on the detection of C2H6 in ISM. Some formation mechanisms of C2H6 in ISM have been proposed, and there are two leading hypotheses; one is the dimerizations of CH3 and another is the hydrogen addition reactions of C2H2 on cold icy grains. To evaluate these formation mechanisms for cometary C2H6 quantitatively, it is important to search the C2H4 in comets, which is the intermediate product of the hydrogen addition reactions toward C2H6. However, it is very difficult to detect the C2H4 in comets in NIR (3 microns) regions because of observing circumstances. The hydrogen addition reactions of C2H2 at low temperature conditions are not well characterized both theoretically and experimentally. For example, there are no reports on the reaction rate coefficients of those reaction system. To determine the production rates of those hydrogen addition reactions, we performed the laboratory experiments of the hydrogenation of C2H2 and C2H4. We used four types of the initial composition of the ices: pure C2H4, pure C2H2, C2H2 on amorphous solid water (ASW) and C2H4 on ASW at three different temperatures of 10, 20, and 30K. We found 1) reactions are more efficient when there are ASW in the initial compositions of the ice; 2) hydrogenation of C2H4 occur more rapid than that of C2H2.

  6. The use of additives for reducing hydrogen yield in mortar containing slag and chloride salts

    International Nuclear Information System (INIS)

    Lewis, M.A.; Warren, D.W.

    1989-01-01

    Cementitious waste forms are being considered for immobilizing nuclear waste before disposal. In earlier work, it was found that irradiation of a mortar formulation consisting of slag, portland cement, fly ash, water, and up to 10 wt% KCl endash LiCl salt resulted in the generation of hydrogen. Yields were relatively high and the rates of generation were constant for the irradiation period investigated. The addition of small amounts of oxygen-rich electron scavengers to the mortar was investigated as a means for reducing hydrogen yields. The addition of NaNO 3 reduced the hydrogen yield; changed the radiolytic products from hydrogen to a mixture of hydrogen, nitrogen, and N 2 O; and reduced the pressurization rate after exposure to 400 Mrads. The addition of NaIO 4 and KMnO 4 reduced hydrogen yields slightly while the addition of Ag 2 O increased the yield. Moreover, the addition of FeS to a non-slag mortar changed the radiolysis mechanism but the addition of FeO did not. The results of these experiments provided an insight into the nature of the radiolytic reactions occurring in the mortar formulations and indicated that the radiolytic generation of gases might be controlled with the proper choice of additive. 14 refs., 3 figs., 2 tabs

  7. Effect of hydrogen addition on autoignited methane lifted flames

    KAUST Repository

    Choin, Byung Chul; Chung, Suk-Ho

    2012-01-01

    Autoignited lifted flames in laminar jets with hydrogen-enriched methane fuels have been investigated experimentally in heated coflow air. The results showed that the autoignited lifted flame of the methane/hydrogen mixture, which had an initial

  8. Build platform that provides mechanical engagement with additive manufacturing prints

    Science.gov (United States)

    Elliott, Amelia M.

    2018-03-06

    A build platform and methods of fabricating an article with such a platform in an extrusion-type additive manufacturing machine are provided. A platform body 202 includes features 204 that extend outward from the body 202. The features 204 define protrusive areas 206 and recessive areas 208 that cooperate to mechanically engage the extruded material that forms the initial layers 220 of an article when the article is being fabricated by a nozzle 12 of the additive manufacturing machine 10.

  9. Hydrogen atom addition to the surface of graphene nanoflakes: A density functional theory study

    Science.gov (United States)

    Tachikawa, Hiroto

    2017-02-01

    Polycyclic aromatic hydrocarbons (PAHs) provide a 2-dimensional (2D) reaction surface in 3-dimensional (3D) interstellar space and have been utilized as a model of graphene surfaces. In the present study, the reaction of PAHs with atomic hydrogen was investigated by means of density functional theory (DFT) to systematically elucidate the binding nature of atomic hydrogen to graphene nanoflakes. PAHs with n = 4-37 were chosen, where n indicates the number of benzene rings. Activation energies of hydrogen addition to the graphene surface were calculated to be 5.2-7.0 kcal/mol at the CAM-B3LYP/6-311G(d,p) level, which is almost constant for all PAHs. The binding energies of hydrogen atom were slightly dependent on the size (n): 14.8-28.5 kcal/mol. The absorption spectra showed that a long tail is generated at the low-energy region after hydrogen addition to the graphene surface. The electronic states of hydrogenated graphenes were discussed on the basis of theoretical results.

  10. Hydrogen bond donor–acceptor–donor organocatalysis for conjugate addition of benzylidene barbiturates via complementary DAD– ADA hydrogen bonding

    NARCIS (Netherlands)

    Leung, King-Chi; Cui, Jian-Fang; Hui, Tsz-Wai; Zhou, Zhong-Yuan; Wong, Man-Kin

    2014-01-01

    A new class of hydrogen bond donor-acceptor-donor (HB-DAD) organocatalysts has been developed for conjugate addition of benzylidene barbiturates. HB-DAD organocatalyst 1a (featuring para-chloro-pyrimidine as the hydrogen bond acceptor (HBA), N-H as the hydrogen bond donor (HBD) and a trifluoroacetyl

  11. JNC's experience of complementary accesses provided by the additional protocol

    International Nuclear Information System (INIS)

    Miura, Yasushi

    2001-01-01

    JNC (Japan Nuclear Cycle Development Institute) examined problems on implementation of the Additional Protocol to Japan/IAEA Safeguards Agreement with the Government of Japan and International Atomic Energy Agency through trials performed at Oarai Engineering Center before it entered into force. On December 16th 1999, the Additional Protocol entered into force, and in last January JNC provided the first JNC site information to STA. Then our Government provided it of all Japan to IAEA in last June. Also in this January, we sent the additional information changed from old one to MEXT (Ministry of Education, Culture, Sports, Science and Technology). The first Complementary Access of not only JNC but also Japan was implemented on JNC Ningyo-Toge Environmental Engineering Center on the end of last November. Since then, we have had over 10 times experience of Complementary Accesses for about one year especially on Tokai works and Ningyo-Toge. JNC's experience of Complementary Accesses will be introduced. (author)

  12. Hydrogen storage material and process using graphite additive with metal-doped complex hydrides

    Science.gov (United States)

    Zidan, Ragaiy [Aiken, SC; Ritter, James A [Lexington, SC; Ebner, Armin D [Lexington, SC; Wang, Jun [Columbia, SC; Holland, Charles E [Cayce, SC

    2008-06-10

    A hydrogen storage material having improved hydrogen absorbtion and desorption kinetics is provided by adding graphite to a complex hydride such as a metal-doped alanate, i.e., NaAlH.sub.4. The incorporation of graphite into the complex hydride significantly enhances the rate of hydrogen absorbtion and desorption and lowers the desorption temperature needed to release stored hydrogen.

  13. Release enhancement of tritium from graphite by addition of hydrogen

    International Nuclear Information System (INIS)

    Saeki, Masakatsu; Masaki, N.M.

    1989-01-01

    The release behavior of tritium from graphite was studied in pure He and He + H 2 atmosphere. The release from powdered graphite was significantly enhanced in hydrogen environment. Apparent diffusion coefficients of tritium in graphite also became much higher in an atmosphere containing hydrogen than values obtained in pure helium atmosphere. A careful investigation of the release processes resulted in the conclusion that the most important process of tritium behaviour in graphite was diffusion, but the desorption process of tritium from the surface played a significant role. The enhancement of the desorption process was controlled by atomic hydrogen. (orig.)

  14. Orbital simulation life tests of nickel hydrogen batteries with additional non-eclipse cycles

    Science.gov (United States)

    Johnson, P. J.; Donley, S. W.; Verrier, D. C.

    Nickel-hydrogen battery technology has established itself as the system of choice to provide energy storage on board Earth orbiting satellites. In addition to providing electrical power for the satellite during the periods the satellite's solar arrays are eclipsed by the Earth, applications are evolving (such as ion propulsion) where the battery is required to supplement the power supplied to the spacecraft by the solar panels in order to meet the peak power demands. In this paper, the results of a four-year accelerated life test programme, equivalent to more than 20 years in orbit, are reported. Additional non-eclipse cycles were added to both the eclipse and solstice seasons of each simulated spacecraft year. The results show that the additional discharges do not significantly effect the rates of performance degradation of the batteries.

  15. Effect of hydrogen addition on the microstructure of TC21 alloy

    International Nuclear Information System (INIS)

    Zhu Tangkui; Li Miaoquan

    2010-01-01

    Research highlights: → The aim of this paper is to study the effect of hydrogen content (0-0.887 wt.%H) on microstructure, phase composition, microhardness and β transus temperature of TC21 alloy. The results show that, with increasing hydrogen content, the β phase increases, the α/β interfaces of lamellar transformed β phase disappear, the lattice parameter of β phase increases and the β transus temperature decreases for the hydrogenated TC21 alloy. In comparison to the as-received TC21 alloy, the contrasts of primary α phase and transformed β phase under optical microscope in the TC21 alloy with high hydrogen content are reversed completely. Furthermore, the γ and δ hydrides are detected in the hydrogenated TC21 alloy. In addition, the variations of phase compositions for the hydrogenated TC21 alloy have influence on microhardness and β transus temperature. → In conclusion, this paper shows some significant rules about the influence of hydrogen on TC21 alloy. - Abstract: TC21 alloy was hydrogenated at 750 deg. C with different hydrogen contents ranging from 0 to 0.873 wt.%H, and its microstructural evolution and phase transformations were investigated by optical microscopy (OM) and X-ray diffraction (XRD). The microhardness and the β transus temperature for the hydrogenated TC21 alloy were determined by microhardness testing and metallographical approach, respectively. The results show that, hydrogen addition has a noticeable influence on microstructure, phase composition, microhardness and β transus temperature of TC21 alloy. With increasing hydrogen content, the β phase increases, the α/β interfaces of lamellar transformed β phase disappear, the lattice parameter of β phase increases and the β transus temperature decreases for the hydrogenated TC21 alloy. In comparison to the as-received TC21 alloy, the contrasts of primary α phase and transformed β phase under optical microscope in the hydrogenated TC21 alloy with high hydrogen

  16. Modelling of flame propagation in the gasoline fuelled Wankel rotary engine with hydrogen additives

    Science.gov (United States)

    Fedyanov, E. A.; Zakharov, E. A.; Prikhodkov, K. V.; Levin, Y. V.

    2017-02-01

    Recently, hydrogen has been considered as an alternative fuel for a vehicles power unit. The Wankel engine is the most suitable to be adapted to hydrogen feeding. A hydrogen additive helps to decrease incompleteness of combustion in the volumes near the apex of the rotor. Results of theoretical researches of the hydrogen additives influence on the flame propagation in the combustion chamber of the Wankel rotary engine are presented. The theoretical research shows that the blend of 70% gasoline with 30% hydrogen could accomplish combustion near the T-apex in the stoichiometric mixture and in lean one. Maps of the flame front location versus the angle of rotor rotation and hydrogen fraction are obtained. Relations of a minimum required amount of hydrogen addition versus the engine speed are shown on the engine modes close to the average city driving cycle. The amount of hydrogen addition that could be injected by the nozzle with different flow sections is calculated in order to analyze the capacity of the feed system.

  17. Influence of hydrogen additions on high-temperature superplasticity of titanium alloys

    International Nuclear Information System (INIS)

    Lederich, R.J.; Sastry, S.M.L.

    1982-01-01

    The effects of the addition of up to 1.0 wt pct hydrogen as a transient alloying element on the superplastic formability (SPF) of fine-grained, equiaxed Ti-6Al-4V (Ti-64) and duplex-annealed Ti-6Al-2Sn-4Zr-2Mo (Ti-6242) were determined. Small amounts of internal hydrogen greatly improve the SPF of the alloys. Formability at 720-900 C was evaluated by an instrumented cone-forming test with continuous monitoring of strain with time. Argon/1 pct hydrogen and argon/4 pct hydrogen gas mixtures were used for charging the alloys with hydrogen as well as for superplastic forming. Hydrogen additions lower the beta-transus temperature of alpha-beta titanium alloys, and the proportions of the alpha and beta phases required for optimum superplasticity can thus be obtained at lower temperatures in hydrogen-modified alloys than in standard alloys. The increased amount of beta phase in the hydrogen-modified titanium alloys reduces the grain growth rates at forming temperature, thus reducing the time-dependent decrease in superplastic strain rate at constant stress or the increase in flow stress at constant strain rate. Process parameters for superplastic forming of Ti-64 and Ti-6242 using argon-hydrogen gas mixtures were determined. 8 references

  18. Experimental investigations of the hydrogen addition effects on diesel engine performance

    Science.gov (United States)

    Mirica, I.; Pana, C.; Negurescu, N.; Cernat, A.; Nutu, C.

    2016-08-01

    In the global content regarding the impact on the environmental of the gases emissions resulted from the fossil fuels combustion, an interest aspect discussed on the 21st Session of the Conference of the Parties from the 2015 Paris Climate Conference and the gradual diminution of the worldwide oil reserves contribute to the necessity of searching of alternative energy from durable and renewable resources. At the use of hydrogen as addition in air to diesel engine, the level of CO, HC and smoke from the exhaust gases will decrease due to the improvement of the combustion process. At low and medium partial loads and low hydrogen energetic ratios used the NOX emission level can decrease comparative to classic diesel engine. The hydrogen use as fuel for diesel engine leads to the improving of the energetic and emissions performance of the engine due to combustion improvement and reduction of carbon content. The paper presents, in a comparative way, results of the experimental researches carried on a truck compression ignition engine fuelled with diesel fuel and with hydrogen diesel fuel and hydrogen as addition in air at different engine operation regimes. The results obtained during experimental investigations show better energetic and pollution performance of the engine fuelled with hydrogen as addition in air comparative to classic engine. The influences of hydrogen addition on engine operation are shown.

  19. Two step novel hydrogen system using additives to enhance hydrogen release from the hydrolysis of alane and activated aluminum

    Science.gov (United States)

    Zidan, Ragaiy; Teprovich, Joseph A.; Motyka, Theodore

    2015-12-01

    A system for the generation of hydrogen for use in portable power systems is set forth utilizing a two-step process that involves the thermal decomposition of AlH.sub.3 (10 wt % H.sub.2) followed by the hydrolysis of the activated aluminum (Al*) byproduct to release additional H.sub.2. Additionally, a process in which water is added directly without prior history to the AlH.sub.3:PA composite is also disclosed.

  20. Study of Supported Nickel Catalysts Prepared by Aqueous Hydrazine Method. Hydrogenating Properties and Hydrogen Storage: Support Effect. Silver Additive Effect

    International Nuclear Information System (INIS)

    Wojcieszak, R.

    2006-06-01

    We have studied Ni or NiAg nano-particles obtained by the reduction of nickel salts (acetate or nitrate) by hydrazine and deposited by simple or EDTA-double impregnation on various supports (γ-Al 2 O 3 , amorphous or crystallized SiO 2 , Nb 2 O 5 , CeO 2 and carbon). Prepared catalysts were characterized by different methods (XRD, XPS, low temperature adsorption and desorption of N 2 , FTIR and FTIR-Pyridine, TEM, STEM, EDS, H 2 -TPR, H 2 -adsorption, H 2 -TPD, isopropanol decomposition) and tested in the gas phase hydrogenation of benzene or as carbon materials in the hydrogen storage at room temperature and high pressure. The catalysts prepared exhibited better dispersion and activity than classical catalysts. TOF's of NiAg/SiO 2 or Ni/carbon catalysts were similar to Pt catalysts in benzene hydrogenation. Differences in support acidity or preparation method and presence of Ag as metal additive play a crucial role in the chemical reduction of Ni by hydrazine and in the final properties of the materials. Ni/carbon catalysts could store significant amounts of hydrogen at room temperature and high pressure (0.53%/30 bars), probably through the hydrogen spillover effect. (author)

  1. A Fluorescent Molecular Probe for the Detection of Hydrogen Based on Oxidative Addition Reactions with Crabtree-Type Hydrogenation Catalysts.

    Science.gov (United States)

    Kos, Pavlo; Plenio, Herbert

    2015-11-02

    A Crabtree-type Ir(I) complex tagged with a fluorescent dye (bodipy) was synthesized. The oxidative addition of H2 converts the weakly fluorescent Ir(I) complex (Φ=0.038) into a highly fluorescent Ir(III) species (Φ=0.51). This fluorogenic reaction can be utilized for the detection of H2 and to probe the oxidative addition step in the catalytic hydrogenation of olefins. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Formation of H a - hydrogen centers upon additive coloration of alkaline-earth fluoride crystals

    Science.gov (United States)

    Radzhabov, E. A.; Egranov, A. V.; Shendrik, R. Yu.

    2017-06-01

    The mechanism of coloration of alkaline-earth fluoride crystals CaF2, SrF2, and BaF2 in calcium vapors in an autoclave with a cold zone is studied. It was found that the pressure in the autoclave upon constant evacuation by a vacuum pump within the temperature range of 500-800°C increases due to evaporation of metal calcium. In addition to the optical-absorption bands of color centers in the additively colored undoped crystals or to the bands of divalent ions in the crystals doped with rare-earth Sm, Yb, and Tm elements, there appear intense bands in the vacuum ultraviolet region at 7.7, 7.0, and 6.025 eV in CaF2, SrF2, and BaF2, respectively. These bands belong to the Ha - hydrogen centers. The formation of hydrogen centers is also confirmed by the appearance of the EPR signal of interstitial hydrogen atoms after X-ray irradiation of the additively colored crystals. Grinding of the outer edges of the colored crystals leads to a decrease in the hydrogen absorption-band intensity with depth to complete disappearance. The rate of hydrogen penetration inside the crystal is lower than the corresponding rate of color centers (anion vacancies) by a factor of tens. The visible color density of the outer regions of the hydrogen-containing crystals is several times lower than that of the inner region due to the competition between the color centers and hydrogen centers.

  3. Improved hydrogen absorption and desorption kinetics of magnesium-based alloy via addition of yttrium

    Science.gov (United States)

    Yang, Tai; Li, Qiang; Liu, Ning; Liang, Chunyong; Yin, Fuxing; Zhang, Yanghuan

    2018-02-01

    Yttrium (Y) is selected to modify the microstructure of magnesium (Mg) to improve the hydrogen storage performance. Thereby, binary alloys with the nominal compositions of Mg24Yx (x = 1-5) are fabricated by inexpensive casting technique. Their microstructure and phase transformation during hydriding and dehydriding process are characterized by using X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy analysis. The isothermal hydrogen absorption and desorption kinetics are also measured by a Sievert's-type apparatus at various temperatures. Typical multiphase structures of binary alloy can be clearly observed. All of these alloys can reversibly absorb and desorb large amount of hydrogen at proper temperatures. The addition of Y markedly promotes the hydrogen absorption kinetics. However, it results in a reduction of reversible hydrogen storage capacity. A maximum value of dehydrogenation rate is observed with the increase of Y content. The Mg24Y3 alloy has the optimal desorption kinetic performance, and it can desorb about 5.4 wt% of hydrogen at 380 °C within 12 min. Combining Johnson-Mehl-Avrami kinetic model and Arrhenius equation, the dehydrogenation activation energy of the alloys are evaluated. The Mg24Y3 alloy also has the lowest dehydrogenation activation energy (119 kJ mol-1).

  4. F/Cl + C2H2 reactions: Are the addition and hydrogen abstraction direct processes?

    International Nuclear Information System (INIS)

    Li Jilai; Geng Caiyun; Huang Xuri; Zhan Jinhui; Sun Chiachung

    2006-01-01

    The reactions of atomic radical F and Cl with acetylene have been studied theoretically using ab initio quantum chemistry methods and transition state theory. The doublet potential energy surfaces were calculated at the CCSD(T)/aug-cc-pVDZ//CCSD/6-31G(d,p), CCSD(T)/aug-cc-pVDZ//UMP2/6-311++G(d,p) and compound method Gaussian-3 levels. Two reaction mechanisms including the addition-elimination and the hydrogen abstraction reaction mechanisms are considered. In the addition-elimination reactions, the halogen atoms approach C 2 H 2 , perpendicular to the C≡C triple bond, forming the pre-reactive complex C1 at the reaction entrance. C1 transforms to intermediate isomer I1 via transition state TSC1/1 with a negative/small barrier for C 2 H 2 F/C 2 H 2 Cl system, which can proceed by further eliminating H atom endothermally. While the hydrogen abstraction reactions also involve C1 for the fluorine atom abstraction of hydrogen, yet the hydrogen abstraction by chlorine atom first forms a collinear hydrogen-bonded complex C2. The other reaction pathways on the doublet PES are less competitive due to thermodynamical or kinetic factors. According to our results, the presence of pre-reactive complexes indicates that the simple hydrogen abstraction and addition in the halogen atoms reaction with unsaturated hydrocarbon should be more complex. Furthermore, based on the analysis of the kinetics of all channels through which the addition and abstraction reactions proceed, we expect that the actual feasibility of the reaction channels may depend on the reaction conditions in the experiment. The present study may be helpful for probing the mechanisms of the title reactions and understanding the halogen chemistry

  5. Hydrogen Addition for Improved Lean Burn Capability on Natural Gas Engine

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Tobias [Lund Inst. of Technology (Sweden). Dept. of Heat and Power Engineering

    2002-12-01

    Lean burn spark ignition (SI) engines powered by natural gas is an attractive alternative to the Diesel engine, especially in urban traffic, where reduction of tailpipe emissions are of great importance. A major benefit is the large reduction in soot (PM). Lean burn spark ignition (SI) engines yield high fuel conversion efficiency and also relatively low NO{sub x} emissions at full load. In order to improve the engine operating characteristics at lower loads, the {lambda}-value is normally reduced to some degree, with increased NO{sub x} emissions and reduced efficiency as a result. This is a drawback for the lean burn engines, especially in urban applications such as in city buses and distribution trucks for urban use. So, it is desirable to find ways to extend the lean limit at low loads. One way to improve these part load properties is to add hydrogen to the natural gas in order to improve the combustion characteristics of the fuel. It is possible to extend the lean limit of a natural gas engine by addition of hydrogen to the primary fuel. This report presents measurements made on a single cylinder 1.6 liter natural gas engine. Two combustion chambers, one slow and one fast burning, were tested with various amounts of hydrogen (0 to 20 %-vol) added to natural gas. Three operating conditions were investigated for each combustion chamber and each hydrogen content level; idle, wide open throttle (WOT) and a high load condition (simulated turbo charging). For all three operating conditions, the air/fuel ratio was varied between stoichiometric and the lean limit. For each operating point, the ignition timing was swept in order to find maximum brake torque (MBT) timing. In some cases were the ignition timing limited by knock. Heat release rate calculations were made in order to assess the influence of hydrogen addition on burn rate. Addition of hydrogen showed an increase in burn rate for both combustion chambers, resulting in more stable combustion close to the lean

  6. Effects of Molybdenum Addition on Hydrogen Desorption of TiC Precipitation-Hardened Steel

    Science.gov (United States)

    Song, Eun Ju; Baek, Seung-Wook; Nahm, Seung Hoon; Suh, Dong-Woo

    2018-03-01

    The hydrogen-trap states in TiC and MoC that have coherent interfaces with ferrite were investigated using first-principles calculation. The trapping sites of TiC were the interfaces and interstitial sites of ferrite. On the other hand, the trapping sites of MoC were ferrite interstitial sites; the interface had a negative binding energy with H. Thermal desorption analysis confirms that the amounts of diffusible hydrogen were significantly reduced by addition of Mo in Ti-bearing steel.

  7. Corrosion resistance improvement of ferritic steels through hydrogen additions to the BWR coolant

    International Nuclear Information System (INIS)

    Gordon, B.M.; Jewett, C.W.; Pickett, A.E.; Indig, M.E.

    1984-01-01

    Motivated by the success of oxygen suppression for mitigation of intergranular stress corrosion cracking (IGSCC) in weld sensitized austenitic materials used in Boiling Water Reactors (BWRs), oxygen suppression, through hydrogen additions to the feedwater was investigated to determine its affect on the corrosion resistance of ferritic and martensitic BWR structural materials. The results of these investigations are presented in this paper, where particular emphasis is placed on the corrosion performance of BWR pressure vessel low alloy steels, carbon steel piping materials and martensitic pump materials. It is important to note that the corrosion resistance of these materials in the BWR environment is excellent. Consequently this investigation was also motivated to determine whether there were any detrimental effects of hydrogen additions, as well as to identify any additional margin in ferritic/martensitic materials corrosion performance

  8. Experimental study of hydrogen as a fuel additive in internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Saanum, Inge

    2008-07-01

    Combustion of hydrocarbons in internal combustion engines results in emissions that can be harmful both to human health and to the environment. Although the engine technology is improving, the emissions of NO{sub x}, PM and UHC are still challenging. Besides, the overall consumption of fossil fuel and hence the emissions of CO{sub 2} are increasing because of the increasing number of vehicles. This has lead to a focus on finding alternative fuels and alternative technologies that may result in lower emissions of harmful gases and lower CO{sub 2} emissions. This thesis treats various topics that are relevant when using blends of fuels in different internal combustion engine technologies, with a particular focus on using hydrogen as a fuel additive. The topics addressed are especially the ones that impact the environment, such as emissions of harmful gases and thermal efficiency (fuel consumption). The thesis is based on experimental work performed at four different test rigs: 1. A dynamic combustion rig with optical access to the combustion chamber where spark ignited premixed combustion could be studied by means of a Schlieren optical setup and a high speed video camera. 2. A spark ignition natural gas engine rig with an optional exhaust gas recycling system. 3. A 1-cylinder diesel engine prepared for homogeneous charge compression ignition combustion. 4. A 6-cylinder standard diesel engine The engine rigs were equipped with cylinder pressure sensors, engine dynamometers, exhaust gas analyzers etc. to enable analyses of the effects of different fuels. The effect of hydrogen blended with methane and natural gas in spark ignited premixed combustion was investigated in the dynamic combustion rig and in a natural gas engine. In the dynamic combustion rig, the effect of hydrogen added to methane on the flame speed and the flame structure was investigated at elevated pressure and temperature. A considerable increase in the flame speed was observed when adding 30 vol

  9. Bromate Formation Characteristics of UV Irradiation, Hydrogen Peroxide Addition, Ozonation, and Their Combination Processes

    Directory of Open Access Journals (Sweden)

    Naoyuki Kishimoto

    2012-01-01

    Full Text Available Bromate formation characteristics of six-physicochemical oxidation processes, UV irradiation, single addition of hydrogen peroxide, ozonation, UV irradiation with hydrogen peroxide addition (UV/H2O2, ozonation with hydrogen peroxide addition (O3/H2O2, and ozonation with UV irradiation (O3/UV were investigated using 1.88 μM of potassium bromide solution with or without 6.4 μM of 4-chlorobenzoic acid. Bromate was not detected during UV irradiation, single addition of H2O2, and UV/H2O2, whereas ozone-based treatments produced . Hydroxyl radicals played more important role in bromate formation than molecular ozone. Acidification and addition of radical scavengers such as 4-chlorobenzoic acid were effective in inhibiting bromate formation during the ozone-based treatments because of inhibition of hydroxyl radical generation and consumption of hydroxyl radicals, respectively. The H2O2 addition was unable to decompose 4-chlorobenzoic acid, though O3/UV and O3/H2O2 showed the rapid degradation, and UV irradiation and UV/H2O2 showed the slow degradation. Consequently, if the concentration of organic contaminants is low, the UV irradiation and/or UV/H2O2 are applicable to organic contaminants removal without bromate formation. However, if the concentration of organic contaminants is high, O3/H2O2 and O3/UV should be discussed as advanced oxidation processes because of their high organic removal efficiency and low bromate formation potential at the optimum condition.

  10. Addition of titanium as a potential catalyst for a high-capacity hydrogen storage medium (abstract only)

    International Nuclear Information System (INIS)

    Zuliani, F; Baerends, E J

    2008-01-01

    In recent years there has been increased interest in the characterization of titanium as a catalyst for high-capacity hydrogen storage materials. A first-principles study (Yildirim and Ciraci 2005 Phys. Rev. Lett. 94 175501) demonstrated that a single Ti atom coated on a single-walled nanotube (SWNT) binds up to four hydrogen molecules. The bonding was claimed to be an 'unusual combination of chemisorption and physisorption'. We report an ab initio study by means of the ADF program, which provides a complete insight into the donation/back-donation mechanism characterizing the bond between the Ti atom and the four H 2 molecules, and a full understanding of the catalytic role played by the Ti atom. In addition, we found that the same amount of adsorbed hydrogen can be stored using benzene support for Ti in place of the SWNT, due to the dominant local contribution of the hexagonal carbon ring surrounding the Ti atom. The benzene-Ti-H 2 bonding is discussed on the basis of molecular orbital interaction schemes as provided by ADF. This result advances our insight into the role of titanium as a catalyst and suggests new routes to better storage through different combinations of supports and catalysts

  11. Effect of Hydrogen Addition on Methane HCCI Engine Ignition Timing and Emissions Using a Multi-zone Model

    Science.gov (United States)

    Wang, Zi-han; Wang, Chun-mei; Tang, Hua-xin; Zuo, Cheng-ji; Xu, Hong-ming

    2009-06-01

    Ignition timing control is of great importance in homogeneous charge compression ignition engines. The effect of hydrogen addition on methane combustion was investigated using a CHEMKIN multi-zone model. Results show that hydrogen addition advances ignition timing and enhances peak pressure and temperature. A brief analysis of chemical kinetics of methane blending hydrogen is also performed in order to investigate the scope of its application, and the analysis suggests that OH radical plays an important role in the oxidation. Hydrogen addition increases NOx while decreasing HC and CO emissions. Exhaust gas recirculation (EGR) also advances ignition timing; however, its effects on emissions are generally the opposite. By adjusting the hydrogen addition and EGR rate, the ignition timing can be regulated with a low emission level. Investigation into zones suggests that NOx is mostly formed in core zones while HC and CO mostly originate in the crevice and the quench layer.

  12. The Effect of Hydrogen Addition on the Combustion Characteristics of RP-3 Kerosene/Air Premixed Flames

    Directory of Open Access Journals (Sweden)

    Wen Zeng

    2017-07-01

    Full Text Available Experimental studies have been performed to investigate the effects of hydrogen addition on the combustion characteristics of Chinese No.3 jet fuel (RP-3 kerosene/air premixed flames. Experiments were carried out in a constant volume chamber and the influences of the initial temperatures of 390 and 420 K, initial pressures of 0.1 and 0.3 MPa, equivalence ratios of 0.6–1.6 and hydrogen additions of 0.0–0.5 on the laminar burning velocities, and Markstein numbers of Hydrogen (H2/RP-3/air mixtures were investigated. The results show that the flame front surfaces of RP-3/air mixtures remain smooth throughout the entire flame propagation process at a temperature of 390 K, pressure of 0.3 MPa, equivalence ratio of 1.3 and without hydrogen addition, but when the hydrogen addition increases from 0.0 to 0.5 under the same conditions, flaws and protuberances occur at the flame surfaces. It was also found that with the increase of the equivalence ratio from 0.9 to 1.5, the laminar burning velocities of the mixtures increase at first and then decrease, and the highest laminar burning velocity was measured at an equivalence ratio of 1.2. Meanwhile, with the increase of hydrogen addition, laminar burning velocities of H2/RP-3/air mixtures increase. However, the Markstein numbers of H2/RP-3/air mixtures decrease with the increase of hydrogen addition, which means that the flames of H2/RP-3/air mixtures become unstable with the increase of hydrogen addition.

  13. Effect of hydrogen addition on combustion and emissions performance of a gasoline rotary engine at part load and stoichiometric conditions

    International Nuclear Information System (INIS)

    Ji, Changwei; Su, Teng; Wang, Shuofeng; Zhang, Bo; Yu, Menghui; Cong, Xiaoyu

    2016-01-01

    Highlights: • The performance of a H_2-blended gasoline rotary engine was studied. • The p, Bmep, T_m_a_x and η_b increased after H_2 blending. • Both the CA0-10 and CA10-90 were shortened by the H_2 addition. • H_2 addition resulted in the reduced HC, CO and CO_2 emissions. - Abstract: The rotary engines may encounter high fuel consumption and emissions due to its narrow and long combustion chamber design. The low ignition energy and high flame speed of hydrogen may help improve the combustion of rotary engines. In this paper, a gasoline rotary engine equipped with gasoline and hydrogen injectors was developed to investigate the combustion and emissions of hydrogen-blended gasoline rotary engines. The engine was run at 3000 rpm and a manifolds absolute pressure of 37.5 kPa with the stoichiometric excess air ratio. The spark timing was set to be 25°CA before the top dead center. The engine was first fueled with the pure gasoline and then blended with the hydrogen. The hydrogen volume fractions in the intake were gradually increased from 0% to 5.2%. The results showed that the combustion pressure, brake mean effective pressure, cylinder temperature and thermal efficiency were simultaneously increased after the hydrogen blending. The crank angle of peak pressure was advanced with the hydrogen addition. The hydrogen enrichment was effective on reducing flame development and propagation periods. HC emissions were reduced by 44.8% when the hydrogen volume fraction in the intake was raised from 0% to 5.2%, CO and CO_2 emissions were also reduced after the hydrogen blending.

  14. Highly conducting p-type nanocrystalline silicon thin films preparation without additional hydrogen dilution

    Science.gov (United States)

    Patra, Chandralina; Das, Debajyoti

    2018-04-01

    Boron doped nanocrystalline silicon thin film has been successfully prepared at a low substrate temperature (250 °C) in planar inductively coupled RF (13.56 MHz) plasma CVD, without any additional hydrogen dilution. The effect of B2H6 flow rate on structural and electrical properties of the films has been studied. The p-type nc-Si:H films prepared at 5 ≤ B2H6 (sccm) ≤ 20 retains considerable amount of nanocrystallites (˜80 %) with high conductivity ˜101 S cm-1 and dominant crystallographic orientation which has been correlated with the associated increased ultra- nanocrystalline component in the network. Such properties together make the material significantly effective for utilization as p-type emitter layer in heterojunction nc-Si solar cells.

  15. Benefits of carbon addition on the hydrogen absorption properties of Mg-based thin films grown by Pulsed Laser Deposition

    International Nuclear Information System (INIS)

    Darok, X.; Rougier, A.; Bhat, V.; Aymard, L.; Dupont, L.; Laffont, L.; Tarascon, J.-M.

    2006-01-01

    Mg-Ni thin films were grown using Pulsed Laser Deposition. In situ optical changes from shiny metallic to transparent states were observed for films deposited in vacuum and under an Ar/H 2 gas mixture (93/7%), respectively. Optical changes were also achieved by ex situ hydrogenation under hydrogen gas pressure of 15 bars at 200 deg. C. However, after ex situ hydrogenation, the optical transmittance of the Mg-based hydrogenated thin films did not exceed 25%. Such limitation was attributed to oxygen contamination, as deduced by High Resolution Transmission Electron Microscopy observations, showing the co-existence of both Mg-based and MgO phases for as-deposited films. A significant decrease in oxygen contamination was successfully achieved with the addition of carbon, leading to the preparation of (Mg-based)-C x (x < 20%) thin films showing a faster and easier hydrogenation

  16. Enhancement of hydrogen production during waste activated sludge anaerobic fermentation by carbohydrate substrate addition and pH control.

    Science.gov (United States)

    Chen, Yinguang; Xiao, Naidong; Zhao, Yuxiao; Mu, Hui

    2012-06-01

    The effects of carbohydrate/protein ratio (CH/Pr) and pH on hydrogen production from waste activated sludge (WAS) were investigated. Firstly, the optimal pH value for hydrogen production was influenced by the CH/Pr ratio, which was pH 10, 9, 8, 8, 8 and 6 at the CH/Pr ratio (COD based) of 0.2 (sole sludge), 1, 2.4, 3.8, 5 and 6.6, respectively. The maximal hydrogen production (100.6 mL/g-COD) was achieved at CH/Pr of 5 and pH 8, which was due to the synergistic effect of carbohydrate addition on hydrogen production, the enhancement of sludge protein degradation and protease and amylase activities, and the suitable fermentation pathway for hydrogen production. As hydrogen consumption was observed at pH 8, in order to further increase hydrogen production a two-step pH control strategy (pH 8+pH 10) was developed and the hydrogen production was further improved by 17.6%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Effects of hydrogen addition and nitrogen dilution on the laminar flame characteristics of premixed methane-air flames

    Energy Technology Data Exchange (ETDEWEB)

    Tahtouh, T.; Halter, F.; Mounaim-Rousselle, C. [Institut PRISME, Universite d' Orleans, 8 rue Leonard de Vinci-45072, Orleans Cedex 2 (France); Samson, E. [PSA Peugeot Citroen (France)

    2009-10-15

    The effect of hydrogen addition and nitrogen dilution on laminar flame characteristics was investigated. The spherical expanding flame technique, in a constant volume bomb, was employed to extract laminar flame characteristics. The mole fraction of hydrogen in the methane-hydrogen mixture was varied from 0 to 1 and the mole fraction of nitrogen in the total mixture (methane-hydrogen-air-diluent) from 0 to 0.35. Measurements were performed at an initial pressure of 0.1 MPa and an initial temperature of 300 K. The mixtures investigated were under stoichiometric conditions. Based on experimental measurements, a new correlation for calculating the laminar burning velocity of methane-hydrogen-air-nitrogen mixtures is proposed. The laminar burning velocity was found to increase linearly with hydrogen mass fraction for all dilution ratios while the burned gas Markstein length decreases with the increase in hydrogen amount in the mixture except for high hydrogen mole fractions (>0.6). Nitrogen dilution has a nonlinear reducing effect on the laminar burning velocity and an increasing effect on the burned gas Markstein length. The experimental results and the proposed correlation obtained are in good agreement with literature values. (author)

  18. Effects of Nd-addition on the structural, hydrogen storage, and electrochemical properties of C14 metal hydride alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wong, D.F. [BASF/Battery Materials-Ovonic, 2983 Waterview Drive, Rochester Hills, MI 48309 (United States); Department of Chemical Engineering, Wayne State University, Detroit, MI 48202 (United States); Young, K., E-mail: kwo.young@basf.com [BASF/Battery Materials-Ovonic, 2983 Waterview Drive, Rochester Hills, MI 48309 (United States); Department of Chemical Engineering, Wayne State University, Detroit, MI 48202 (United States); Nei, J.; Wang, L. [BASF/Battery Materials-Ovonic, 2983 Waterview Drive, Rochester Hills, MI 48309 (United States); Ng, K.Y.S. [Department of Chemical Engineering, Wayne State University, Detroit, MI 48202 (United States)

    2015-10-25

    Nd-addition to the AB{sub 2}-based alloy Ti{sub 12}Zr{sub 22.8−x}V{sub 10}Cr{sub 7.5}Mn{sub 8.1}Co{sub 7.0}Ni{sub 32.2}Al{sub 0.4}Nd{sub x} is studied for its effects on the structure, gaseous-phase hydrogen storage, and electrochemical properties. This study follows a series of Cu, Mo, Fe, Y, Si, and La doping studies in similar AB{sub 2}-based alloys. Limited solubility of Nd in the main Laves phase promotes the formation of secondary phases (AB and Zr{sub 7}Ni{sub 10}) to provide catalytic effects and synergies for improved capacity and high-rate dischargeability (HRD) performance. The main C14 storage phase has smaller lattice constants and cell volumes, and these effects reduce the storage capacity at higher Nd levels. Different hydrogen absorption mechanisms can occur in these multi-component, multi-phase alloys depending on the interfaces of the phases, and they have effects on the alloy properties. Higher Nd-levels improve the HRD performance despite having lower bulk diffusion and surface exchange current. Magnetic susceptibility measurements indicate large percentage of larger metallic nickel clusters are present in the surface oxide of alloys with higher Nd-content, and AC impedance studies show very low charge-transfer resistance with high catalytic capability in the alloys. The −40 °C charge-transfer resistance of 8.9 Ω g in this Nd-series of alloys is the lowest measured out of the studies investigating doped AB{sub 2}-based MH alloys for improved low-temperature characteristics. The improvement in HRD and low-temperature performance appears to be related to the proportion of the highly catalytic NdNi-phase at the surface, which must offset the increased bulk diffusion resistance in the alloy. - Graphical abstract: Schematics of hydrogen flow and corresponding PCT isotherms in funneling mode. - Highlights: • Structural and hydrogen storage properties of Nd-substituted AB{sub 2} metal hydride are reported. • Nd contributes to the lowest

  19. The Origin of the Non-Additivity in Resonance-Assisted Hydrogen Bond Systems.

    Science.gov (United States)

    Lin, Xuhui; Zhang, Huaiyu; Jiang, Xiaoyu; Wu, Wei; Mo, Yirong

    2017-11-09

    The concept of resonance-assisted hydrogen bond (RAHB) has been widely accepted, and its impact on structures and energetics can be best studied computationally using the block-localized wave function (BLW) method, which is a variant of ab initio valence bond (VB) theory and able to derive strictly electron-localized structures self-consistently. In this work, we use the BLW method to examine a few molecules that result from the merging of two malonaldehyde molecules. As each of these molecules contains two hydrogen bonds, these intramolecular hydrogen bonds may be cooperative or anticooperative, depended on their relative orientations, and compared with the hydrogen bond in malonaldehyde. Apart from quantitatively confirming the concept of RAHB, the comparison of the computations with and without π resonance shows that both σ-framework and π-resonance contribute to the nonadditivity in these RAHB systems with multiple hydrogen bonds.

  20. Enhanced dark hydrogen fermentation by addition of ferric oxide nanoparticles using Enterobacter aerogenes.

    Science.gov (United States)

    Lin, Richen; Cheng, Jun; Ding, Lingkan; Song, Wenlu; Liu, Min; Zhou, Junhu; Cen, Kefa

    2016-05-01

    Ferric oxide nanoparticles (FONPs) were used to facilitate dark hydrogen fermentation using Enterobacter aerogenes. The hydrogen yield of glucose increased from 164.5±2.29 to 192.4±1.14mL/g when FONPs concentration increased from 0 to 200mg/L. SEM images of E. aerogenes demonstrated the existence of bacterial nanowire among cells, suggesting FONPs served as electron conduits to enhance electron transfer. TEM showed cellular internalization of FONPs, indicating hydrogenase synthesis and activity was potentially promoted due to the released iron element. When further increasing FONPs concentration to 400mg/L, the hydrogen yield of glucose decreased to 147.2±2.54mL/g. Soluble metabolic products revealed FONPs enhanced acetate pathway of hydrogen production, but weakened ethanol pathway. This shift of metabolic pathways allowed more nicotinamide adenine dinucleotide for reducing proton to hydrogen. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Insights into the Electronic Structure of Ozone and Sulfur Dioxide from Generalized Valence Bond Theory: Addition of Hydrogen Atoms.

    Science.gov (United States)

    Lindquist, Beth A; Takeshita, Tyler Y; Dunning, Thom H

    2016-05-05

    Ozone (O3) and sulfur dioxide (SO2) are valence isoelectronic species, yet their properties and reactivities differ dramatically. In particular, O3 is highly reactive, whereas SO2 is chemically relatively stable. In this paper, we investigate serial addition of hydrogen atoms to both the terminal atoms of O3 and SO2 and to the central atom of these species. It is well-known that the terminal atoms of O3 are much more amenable to bond formation than those of SO2. We show that the differences in the electronic structure of the π systems in the parent triatomic species account for the differences in the addition of hydrogen atoms to the terminal atoms of O3 and SO2. Further, we find that the π system in SO2, which is a recoupled pair bond dyad, facilitates the addition of hydrogen atoms to the sulfur atom, resulting in stable HSO2 and H2SO2 species.

  2. Effectiveness of oxygen enriched hydrogen-HHO gas addition on DI diesel engine performance, emission and combustion characteristics

    Directory of Open Access Journals (Sweden)

    Premkartikkumar S.R.

    2014-01-01

    Full Text Available Nowadays, more researches focus on protecting the environment. Present investigation concern with the effectiveness of Oxygen Enriched hydrogen- HHO gas addition on performance, emission and combustion characteristics of a DI diesel engine. Here the Oxygen Enriched hydrogen-HHO gas was produced by the process of water electrolysis. When potential difference is applied across the anode and cathode electrodes of the electrolyzer, water is transmuted into Oxygen Enriched hydrogen-HHO gas. The produced gas was aspirated into the cylinder along with intake air at the flow rates of 1 lpm and 3.3 lpm. The results show that when Oxygen Enriched hydrogen-HHO gas was inducted, the brake thermal efficiency of the engine increased by 11.06%, Carbon monoxide decreased by 15.38%, Unburned hydrocarbon decreased by 18.18%, Carbon dioxide increased by 6.06%, however, the NOX emission increased by 11.19%.

  3. The Addition of Several Mineral Sources on Growing Media of Fluorescent Pseudomonad for the Biosynthesis of Hydrogen Cyanide

    Science.gov (United States)

    Advinda, L.; Fifendy, M.; Anhar, A.

    2018-04-01

    All Fluorescent pseudomonad is a group of rhyzobacteria which these days often utilized on plant disease control. The growing media is an absolute requirement which needs to be considered for the growth and cultivation of bacteria. The mineral source contained in growing media of bacteria may affect the production of hydrogen cyanide compound. The objectives of the research were to obtain the best source of minerals for biosynthesis of cyanide acid compounds by fluorescent pseudomonad isolates PfPj1, PfPb1, PfPj2, Kd7, Cas, Cas3, and LAHp2. This research is a qualitative experimental research including observation of hydrogen cyanide compound produced after the growing media of fluorescent pseudomonad bacteria added with several mineral sources. The treatments were given: A = ZnSO4.7H2O 0.5 mM addition, B = CoCl2.6H2O 0.5 mM addition, and C = Fe2SO4.7H2O 0.5 mM addition. From the result of the research, it was concluded that the addition of ZnSO4.7H2O mineral resources on the growing media of fluorescent pseudomonad isolate Cas and Cas3 produced the best hydrogen cyanide. Whereas addition of CoCl2.6H2O mineral source on the growing media showed poor hydrogen cyanide production for all fluorescent pseudomonad isolates

  4. Wustite-based photoelectrodes with lithium, hydrogen, sodium, magnesium, manganese, zinc and nickel additives

    Science.gov (United States)

    Carter, Emily Ann; Toroker, Maytal Caspary

    2017-08-15

    A photoelectrode, photovoltaic device and photoelectrochemical cell and methods of making are disclosed. The photoelectrode includes an electrode at least partially formed of FeO combined with at least one of lithium, hydrogen, sodium, magnesium, manganese, zinc, and nickel. The electrode may be doped with at least one of lithium, hydrogen, and sodium. The electrode may be alloyed with at least one of magnesium, manganese, zinc, and nickel.

  5. Role of point defects and additives in kinetics of hydrogen storage materials

    Science.gov (United States)

    van de Walle, Chris

    2010-03-01

    First-principles computational studies of hydrogen interactions with storage materials can provide direct insight into the processes of H uptake and release, and may help in developing guidelines for designing storage media with improved storage capacity and kinetics. One important conclusion is that the defects involved in kinetics of semiconducting or insulating H-storage materials are charged, and hence their formation energy is Fermi-level dependent and can be affected by the presence of impurities that change the Fermi level [1,2]. This provides an explanation for the role played by transition-metal impurities in the kinetics of NaAlH4 and related materials. Desorption of H and decomposition of NaAlH4 requires not only mass transport of H but also of Al and/or Na. This process is mediated by native defects. We have investigated the structure, stability, and migration enthalpy of native defects based on density functional theory. The results allow us to estimate diffusion activation energies for the defects that may be involved in mass transport. Most of the relevant defects exist in charge states other than neutral, and consideration of these charge states is essential for a proper description of kinetics. We propose specific new mechanisms to explain the observed activation energies and their dependence on the presence of impurities. We have also expanded our studies to materials other than NaAlH4. In the case of LiBH4 and Li4BN3H10 we have found that the calculations have predictive power in terms of identifying which impurities will actually enhance kinetics. Other complex hydrides that we are currently investigating include Li2NH and LiNH2. [4pt] [1] A. Peles and C. G. Van de Walle, Phys. Rev. B 76, 214101 (2007). [0pt] [2] C. G. Van de Walle, A. Peles, A. Janotti, and G. B. Wilson-Short, Physica B 404, 793 (2009).

  6. Development of Thin Film Amorphous Silicon Tandem Junction Based Photocathodes Providing High Open-Circuit Voltages for Hydrogen Production

    Directory of Open Access Journals (Sweden)

    F. Urbain

    2014-01-01

    Full Text Available Hydrogenated amorphous silicon thin film tandem solar cells (a-Si:H/a-Si:H have been developed with focus on high open-circuit voltages for the direct application as photocathodes in photoelectrochemical water splitting devices. By temperature variation during deposition of the intrinsic a-Si:H absorber layers the band gap energy of a-Si:H absorber layers, correlating with the hydrogen content of the material, can be adjusted and combined in a way that a-Si:H/a-Si:H tandem solar cells provide open-circuit voltages up to 1.87 V. The applicability of the tandem solar cells as photocathodes was investigated in a photoelectrochemical cell (PEC measurement set-up. With platinum as a catalyst, the a-Si:H/a-Si:H based photocathodes exhibit a high photocurrent onset potential of 1.76 V versus the reversible hydrogen electrode (RHE and a photocurrent of 5.3 mA/cm2 at 0 V versus RHE (under halogen lamp illumination. Our results provide evidence that a direct application of thin film silicon based photocathodes fulfills the main thermodynamic requirements to generate hydrogen. Furthermore, the presented approach may provide an efficient and low-cost route to solar hydrogen production.

  7. Role of copper and aluminum additions on the hydrogen embrittlement susceptibility of austenitic Fe-Mn-C TWIP steels

    International Nuclear Information System (INIS)

    Dieudonne, T.; Chene, J.; Marchetti, L.; Wery, M.; Allely, C.; Cugy, P.; Scott, C.P.

    2014-01-01

    The role of alloying elements on the hydrogen embrittlement (HE) susceptibility of a Fe-18Mn-0.6C alloy was investigated by in situ tensile tests and characterized by the ductility loss associated with intergranular fracture. Under cathodic polarization an improvement of HE resistance is related to the SFE increase with Cu or Al additions reducing the stress-strain and H localization at grain boundaries, which prevents H-induced intergranular cracking. At rest potential, beneficial effects of Cu and Al are related to their influence on hydrogen absorption during the corrosion process. However, residual phosphorus strongly reduces the beneficial effect of aluminum. (authors)

  8. Influence of ni addition to a low-loaded palladium catalyst on the selective hydrogenation of 1-heptyne

    Directory of Open Access Journals (Sweden)

    Cecilia R. Lederhos

    2010-01-01

    Full Text Available Semi-hydrogenation of alkynes has industrial and academic relevance on a large scale. To increase the activity, selectivity and lifetime of monometallic catalysts, the development of bimetallic catalysts has been investigated. 1-Heptyne hydrogenation over low-loaded Pd and Ni monometallic and PdNi bimetallic catalysts was studied in liquid phase at mild conditions. XPS results suggest that nickel addition to Pd modifies the electronic state of palladium as nickel loading is increased. Low-loaded Pd catalysts showed the highest selectivities (> 95%. The most active prepared catalyst, PdNi(1%, was more selective than the Lindlar catalyst.

  9. A study for providing additional storage spaces to ET-RR-1 spent fuel

    International Nuclear Information System (INIS)

    El-Kady, A.; Ashoub, N.; Saleh, H.G.

    1995-01-01

    The ET-RR-1 reactor spent fuel storage pool is a trapezoidal aluminum tank concrete shield and of capacity 10 m 3 . It can hold up to 60 fuel assemblies. The long operation history of the ET-RR-1 reactor resulted in a partially filled spent fuel storage with the remaining spaces not enough to host a complete load from the reactor. This work have been initiated to evaluate possible alternative solutions for providing additional storage spaces to host the available EK-10 fuel elements after irradiation and any foreseen fuel in case of reactor upgrading. Several alternate solutions have been reviewed and decision on the most suitable one is under study. These studies include criticality calculation of some suggested alternatives like reracking the present spent fuel storage pool and double tiering by the addition of a second level storage rack above the existing rack. The two levels may have different factor. Criticality calculation of the double tiering possible accident was also studied. (author)

  10. Effect of hydrogen addition on burning rate and surface density of turbulent lean premixed methane-air flames

    International Nuclear Information System (INIS)

    Guo, H.; Tayebi, B.; Galizzi, C.; Escudie, D.

    2009-01-01

    Hydrogen (H 2 ) is a clean burning component, but relatively expensive. Mixing a small amount of hydrogen with other fuels is an effective way to use H 2 . H 2 enriched combustion significantly improves fuel efficiency and reduces pollutant (nitrogen oxide and particulate matter) emissions. This presentation discussed the effect of hydrogen addition on burning rate and surface density of turbulent lean premixed methane-air flames. The presentation discussed flame configuration; the experimental methodology using laser tomography; and results for typical images, burning velocity, ratio of turbulent to laminar burning velocities, flame surface density, curvature, flame brush thickness, and integrated flame surface area. It was concluded that the increase of turbulent burning velocity was faster than that of laminar burning velocity, which contradicted traditional theory. figs.

  11. Expert panel on additional cross subsidisation. Considering arguments and providing expert opinion

    International Nuclear Information System (INIS)

    Faber, J.; Nelissen, D.; Lowe, S.; Mason, A.

    2007-10-01

    In the period end 2005 till September 2006 MVA London in cooperation with SEO Amsterdam was commissioned by the Dutch Ministry of Transport to perform an analysis of the economic and competition effects of the different proposals from the European Commission to include aviation in the European Emission Trading System (ETS). Roughly at the same time CE Delft was commissioned to study the overall impacts of this inclusion for the European Commission. Both studies considered the possibility that inclusion of aviation in the ETS could lead to the distortion of competition between airlines through cross-subsidisation. The studies concluded differently on additional possibilities for cross-subsidisation. As a result, both parties have different views on the possible distortion of the competitive market on routes where EU-based carriers compete directly with carriers based outside the EU. CE Delft concluded that 'none of the policy options considered in this study will significantly damage the competitive position of EU airlines relative to non-EU airlines'. In contrast, MVA and SEO (2006) concluded that 'effective cross-subsidisation by non-EU carriers in the Departing EU scope of the ETS appears to be more probable than cross-subsidisation by EU network carriers in the Intra-EU scope of the ETS'. In July 2007, the Dutch Ministry of Transport, DGTL commissioned CE Delft, MVA and SEO to study the causes for their different opinions and to see whether a further investigation could shed more light on the likelihood of additional cross-subsidisation. Formally, the aim of the work currently carried out is: (1) To determine whether it is possible to assess the impacts on the competitive market between EU based carriers and non-EU based carriers based on sound economic reasoning and analysis of empirical data; and, if so, (2) to determine whether the inclusion of aviation in ETS as proposed by the European Commission will offer non-EU airlines the opportunity to increase their

  12. New considerations on hydrogen peroxide and related substances as food additives in view of carcinogenicity.

    Science.gov (United States)

    Ito, R

    1982-01-01

    The use of hydrogen peroxide as a labile and safe food preservative in fish cake and boiled noodles has recently been restricted by the Japanese government, since hyperplasia has been found in the duodenum of mice after long-term peroral study. The action of compounds with resembling mode of action, potassium bromate as an improving agent in bread, and sodium chlorate as a weed killer are discussed in this paper in view of developmental and environmental pharmacology.

  13. Hydrolytic hydrogen generation using milled aluminum in water activated by Li, In, and Zn additives

    Energy Technology Data Exchange (ETDEWEB)

    Fan, M.Q.; Liu, S.; Wang, C.; Chen, D.; Shu, K.Y. [Department of Materials Science and Engineering, China Jiliang University, Hangzhou (China)

    2012-08-15

    A method for obtaining hydrogen through the hydrolytic reaction of highly activated aluminum (Al) alloy is investigated. The optimized Al-3 wt.% Li-4 wt.% In-7 wt.% Zn alloy significantly improves the maximum hydrogen generation rate and amount (137 mL g{sup -1} min{sup -1} and 1,243 mL g{sup -1}, respectively). An efficiency of 100% was reached within 1 h at 298 K. The synergistic catalytic effects of Li, In, and Zn, which stimulated Al hydrolysis through the formation of micro galvanic cells of In-Li and Al-In-Zn alloys in water, were observed. The reactions were analyzed using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and hydrolytic experiments. The In-Li alloy functions as an initial active center and produces LiOH in water, which further stimulates and changes the hydrolytic process of the Al-In-Zn alloy. The effects of alloy composition, milling time, and hydrolytic temperature were considered and discussed. The results indicate that the hydrolytic reaction of Al-Li-In-Zn alloy in water might be feasible for the production of inexpensive, pure, and safe hydrogen for micro fuel cells. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Carvacrol, a food-additive, provides neuroprotection on focal cerebral ischemia/reperfusion injury in mice.

    Directory of Open Access Journals (Sweden)

    Hailong Yu

    Full Text Available Carvacrol (CAR, a naturally occurring monoterpenic phenol and food additive, has been shown to have antimicrobials, antitumor, and antidepressant-like activities. A previous study demonstrated that CAR has the ability to protect liver against ischemia/reperfusion injury in rats. In this study, we investigated the protective effects of CAR on cerebral ischemia/reperfusion injury in a middle cerebral artery occlusion mouse model. We found that CAR (50 mg/kg significantly reduced infarct volume and improved neurological deficits after 75 min of ischemia and 24 h of reperfusion. This neuroprotection was in a dose-dependent manner. Post-treatment with CAR still provided protection on infarct volume when it was administered intraperitoneally at 2 h after reperfusion; however, intracerebroventricular post-treatment reduced infarct volume even when the mice were treated with CAR at 6 h after reperfusion. These findings indicated that CAR has an extended therapeutic window, but delivery strategies may affect the protective effects of CAR. Further, we found that CAR significantly decreased the level of cleaved caspase-3, a marker of apoptosis, suggesting the anti-apoptotic activity of CAR. Finally, our data indicated that CAR treatment increased the level of phosphorylated Akt and the neuroprotection of CAR was reversed by a PI3K inhibitor LY-294002, demonstrating the involvement of the PI3K/Akt pathway in the anti-apoptotic mechanisms of CAR. Due to its safety and wide use in the food industry, CAR is a promising agent to be translated into clinical trials.

  15. Modelling the average velocity of propagation of the flame front in a gasoline engine with hydrogen additives

    Science.gov (United States)

    Smolenskaya, N. M.; Smolenskii, V. V.

    2018-01-01

    The paper presents models for calculating the average velocity of propagation of the flame front, obtained from the results of experimental studies. Experimental studies were carried out on a single-cylinder gasoline engine UIT-85 with hydrogen additives up to 6% of the mass of fuel. The article shows the influence of hydrogen addition on the average velocity propagation of the flame front in the main combustion phase. The dependences of the turbulent propagation velocity of the flame front in the second combustion phase on the composition of the mixture and operating modes. The article shows the influence of the normal combustion rate on the average flame propagation velocity in the third combustion phase.

  16. Radiological analysis by the addition of hydrogen and noble metals in the reactors of the Laguna Verde central

    International Nuclear Information System (INIS)

    Padilla C, I.

    2006-01-01

    During the operation of the nuclear power stations there are metals that are subject to condition and agents that cause that these they present indications of intergranular corrosion and for their importance they are subject to a continuous surveillance to assure their integrity. During the time of operation, for the level of indications, it can be necessary the substitution of these. The internal components of the vessel and particularly those of the structure of the reactor core are exposed during the operation to a neutron flow that causes that these they are activated and, in consequence, before an eventual repair it will be necessary to face high radiation levels. At the moment a technique that controls exists and it reduces the growth rate of the indications in the metals and it increases its useful life: the addition of hydrogen. The addition of hydrogen it is an ALARA measure from long term when protecting the internals of the vessel that requires to establish radiological controls in the stage of their application to avoid unnecessary dose to the personnel. The addition of hydrogen to the primary system has as objective to reduce the growth of indications taken place by intergranular corrosion in metals of the reactor core and this is achieved when the electrochemical thresholds are reached. Hydrogen to interacting with the metal surfaces it generates reductive reactions causing in consequence an increment in the concentration of soluble cobalt in the coolant one and an increment in the nitrogen concentration. To reduce the magnitude of the radiological impact that in some NC reach up to factors 10, its are injected to the system noble metals as the rhodium and the platinum, to reduce the concentration of hydrogen to the system and to be below the threshold electrochemical potential necessary to protect the internals of the reactor vessel. The external and internal operational experience generated on this protection technique to the internals of the vessel

  17. Effects of molybdenum dithiocarbamate and zinc dialkyl dithiophosphate additives on tribological behaviors of hydrogenated diamond-like carbon coatings

    International Nuclear Information System (INIS)

    Yue, Wen; Liu, Chunyue; Fu, Zhiqiang; Wang, Chengbiao; Huang, Haipeng; Liu, Jiajun

    2014-01-01

    Highlights: • For MoDTC, DLC coating showed better anti-friction and worse anti-wear behaviors. • The improved anti-friction property was due to graphitization and MoS 2 . • Formation of MoO x resulted in a high wear volume. • For ZDDP, DLC coating showed the best anti-wear and the worst anti-friction behaviors. • Absence of friction reducing product and graphitized layer resulted in a higher friction. - Abstract: The tribological behaviors of hydrogenated diamond-like carbon (DLC) coatings under varied load conditions lubricated with polyalpha olefin (PAO), molybdenum dithiocarbamate (MoDTC) and zinc dialkyl dithiophosphate (ZDDP) additives were investigated in this paper. Hydrogenated DLC coatings were synthesized through the decomposition of acetylene by the ion source. The tribological performances were measured on a SRV tribometer. The morphologies and chemical structures of the DLC coatings were investigated by the scanning electron microscope (SEM), Raman spectrometer (Raman) and X-ray photoelectron spectroscope (XPS). It was shown that the low friction and high wear were achieved on the hydrogenated DLC coating under MoDTC lubrication, while low wear was found on the hydrogenated DLC coating lubricated by ZDDP. The primary reason was attributed to different tribofilms formed on the contact area and the formation of graphitic layer. Both factors working together leaded to quite different tribological behaviors

  18. Hydrogen.

    Science.gov (United States)

    Bockris, John O'M

    2011-11-30

    The idea of a "Hydrogen Economy" is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO₂ in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H₂ from the electrolyzer. Methanol made with CO₂ from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  19. Hydrogen and deuterium pellet injection into ohmically and additionally ECR-heated TFR plasmas

    International Nuclear Information System (INIS)

    Drawin, H.W.

    1987-01-01

    The ablation clouds of hydrogen and deuterium pellets injected into ohmically and electron cyclotron resonance heated (ECRH) plasmas of the Fontenay-aux-Roses tokamak TFR have been photographed, their emission has been measured photoelectrically. Without ECRH the pellets penetrate deeply into the plasma, the clouds are striated. Injection during ECRH leads to ablation in the outer plasma region. The position of the ECR layer has no influence on the penetration depth which is only a few centimeters. The ablation clouds show no particular structure when ECRH is applied

  20. Prey-predator dynamics with prey refuge providing additional food to predator

    International Nuclear Information System (INIS)

    Ghosh, Joydev; Sahoo, Banshidhar; Poria, Swarup

    2017-01-01

    Highlights: • The effects of interplay between prey refugia and additional food are reported. • Hopf bifurcation conditions are derived analytically. • Existence of unique limit cycle is shown analytically. • Predator extinction may be possible at very high prey refuge ecological systems. - Abstract: The impacts of additional food for predator on the dynamics of a prey-predator model with prey refuge are investigated. The equilibrium points and their stability behaviours are determined. Hopf bifurcation conditions are derived analytically. Most significantly, existence conditions for unique stable limit cycle in the phase plane are shown analytically. The analytical results are in well agreement with the numerical simulation results. Effects of variation of refuge level as well as the variation of quality and quantity of additional food on the dynamics are reported with the help of bifurcation diagrams. It is found that high quality and high quantity of additional food supports oscillatory coexistence of species. It is observed that predator extinction possibility in high prey refuge ecological systems may be removed by supplying additional food to predator population. The reported theoretical results may be useful to conservation biologist for species conservation in real world ecological systems.

  1. Decision support system of e-book provider selection for library using Simple Additive Weighting

    Science.gov (United States)

    Ciptayani, P. I.; Dewi, K. C.

    2018-01-01

    Each library has its own criteria and differences in the importance of each criterion in choosing an e-book provider for them. The large number of providers and the different importance levels of each criterion make the problem of determining the e-book provider to be complex and take a considerable time in decision making. The aim of this study was to implement Decision support system (DSS) to assist the library in selecting the best e-book provider based on their preferences. The way of DSS works is by comparing the importance of each criterion and the condition of each alternative decision. SAW is one of DSS method that is quite simple, fast and widely used. This study used 9 criteria and 18 provider to demonstrate how SAW work in this study. With the DSS, then the decision-making time can be shortened and the calculation results can be more accurate than manual calculations.

  2. Experimental investigation of the effects of simultaneous hydrogen and nitrogen addition on the emissions and combustion of a diesel engine

    OpenAIRE

    Megaritis, A

    2014-01-01

    This article is made available through the Brunel Open Access Publishing Fund. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-No Derivative Works License, which permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited. Copyright @ 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. Overcoming diesel engine emissions t...

  3. Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts

    Science.gov (United States)

    Jeon, Ki-Joon; Moon, Hoi Ri; Ruminski, Anne M.; Jiang, Bin; Kisielowski, Christian; Bardhan, Rizia; Urban, Jeffrey J.

    2011-04-01

    Hydrogen is a promising alternative energy carrier that can potentially facilitate the transition from fossil fuels to sources of clean energy because of its prominent advantages such as high energy density (142 MJ kg-1 ref. 1), great variety of potential sources (for example water, biomass, organic matter), light weight, and low environmental impact (water is the sole combustion product). However, there remains a challenge to produce a material capable of simultaneously optimizing two conflicting criteria—absorbing hydrogen strongly enough to form a stable thermodynamic state, but weakly enough to release it on-demand with a small temperature rise. Many materials under development, including metal-organic frameworks, nanoporous polymers, and other carbon-based materials, physisorb only a small amount of hydrogen (typically 1-2 wt%) at room temperature. Metal hydrides were traditionally thought to be unsuitable materials because of their high bond formation enthalpies (for example MgH2 has a ΔHf˜75 kJ mol-1), thus requiring unacceptably high release temperatures resulting in low energy efficiency. However, recent theoretical calculations and metal-catalysed thin-film studies have shown that microstructuring of these materials can enhance the kinetics by decreasing diffusion path lengths for hydrogen and decreasing the required thickness of the poorly permeable hydride layer that forms during absorption. Here, we report the synthesis of an air-stable composite material that consists of metallic Mg nanocrystals (NCs) in a gas-barrier polymer matrix that enables both the storage of a high density of hydrogen (up to 6 wt% of Mg, 4 wt% for the composite) and rapid kinetics (loading in <30 min at 200 °C). Moreover, nanostructuring of the Mg provides rapid storage kinetics without using expensive heavy-metal catalysts.

  4. Hydrogen

    Directory of Open Access Journals (Sweden)

    John O’M. Bockris

    2011-11-01

    Full Text Available The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan. Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  5. Biliary complications following orthotopic liver transplantation: May contrast-enhanced MR Cholangiography provide additional information?

    Directory of Open Access Journals (Sweden)

    Piero Boraschi

    2016-01-01

    Conclusions: Contrast-enhanced T1-weighted MR Cholangiography may improve the level of diagnostic confidence provided by conventional T2-weighted MR Cholangiography in the evaluation of biliary complications after orthotopic liver transplantation.

  6. Thermodynamic evaluation of hydrogen production for fuel cells by using bio-ethanol steam reforming: Effect of carrier gas addition

    Science.gov (United States)

    Hernández, Liliana; Kafarov, Viatcheslav

    Omitting the influence of the addition of carrier gas to the reaction system for hydrogen production by bio-ethanol steam reforming can lead to wrong conclusions, especially when it is going to be made to scale. The effect of carrier gas addition to produce hydrogen using bio-ethanol steam reforming to feed fuel cells was evaluated. Thermodynamic calculations in equilibrium conditions were made, however the analysis derived from them can also be applied to kinetic conditions. These calculations were made by using the Aspen-HYSYS software at atmospheric pressure and different values of temperature, water/ethanol molar ratios, and inert (argon)/(water/ethanol) molar ratios. The addition of inert carrier gas modifies the concentrations of the reaction products in comparison to those obtained without its presence. This behavior occurs because most of the reactions which take place in bio-ethanol steam reforming have a positive difference of moles. This fact enhances the system sensitivity to inert concentration at low and moderated temperatures (<700 °C). At high values of temperature, the inert addition does not influence the composition of the reaction products because of the predominant effect of inverse WGS reaction.

  7. Thermodynamic evaluation of hydrogen production for fuel cells by using bio-ethanol steam reforming: Effect of carrier gas addition

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Liliana; Kafarov, Viatcheslav [Universidad Industrial de Santander, Escuela de Ingenieria Quimica, Bucaramanga 678 (Colombia)

    2009-07-01

    Omitting the influence of the addition of carrier gas to the reaction system for hydrogen production by bio-ethanol steam reforming can lead to wrong conclusions, especially when it is going to be made to scale. The effect of carrier gas addition to produce hydrogen using bio-ethanol steam reforming to feed fuel cells was evaluated. Thermodynamic calculations in equilibrium conditions were made, however the analysis derived from them can also be applied to kinetic conditions. These calculations were made by using the Aspen-HYSYS software at atmospheric pressure and different values of temperature, water/ethanol molar ratios, and inert (argon)/(water/ethanol) molar ratios. The addition of inert carrier gas modifies the concentrations of the reaction products in comparison to those obtained without its presence. This behavior occurs because most of the reactions which take place in bio-ethanol steam reforming have a positive difference of moles. This fact enhances the system sensitivity to inert concentration at low and moderated temperatures (<700 C). At high values of temperature, the inert addition does not influence the composition of the reaction products because of the predominant effect of inverse WGS reaction. (author)

  8. Differential activation of an identified motor neuron and neuromodulation provide Aplysia's retractor muscle an additional function.

    Science.gov (United States)

    McManus, Jeffrey M; Lu, Hui; Cullins, Miranda J; Chiel, Hillel J

    2014-08-15

    To survive, animals must use the same peripheral structures to perform a variety of tasks. How does a nervous system employ one muscle to perform multiple functions? We addressed this question through work on the I3 jaw muscle of the marine mollusk Aplysia californica's feeding system. This muscle mediates retraction of Aplysia's food grasper in multiple feeding responses and is innervated by a pool of identified neurons that activate different muscle regions. One I3 motor neuron, B38, is active in the protraction phase, rather than the retraction phase, suggesting the muscle has an additional function. We used intracellular, extracellular, and muscle force recordings in several in vitro preparations as well as recordings of nerve and muscle activity from intact, behaving animals to characterize B38's activation of the muscle and its activity in different behavior types. We show that B38 specifically activates the anterior region of I3 and is specifically recruited during one behavior, swallowing. The function of this protraction-phase jaw muscle contraction is to hold food; thus the I3 muscle has an additional function beyond mediating retraction. We additionally show that B38's typical activity during in vivo swallowing is insufficient to generate force in an unmodulated muscle and that intrinsic and extrinsic modulation shift the force-frequency relationship to allow contraction. Using methods that traverse levels from individual neuron to muscle to intact animal, we show how regional muscle activation, differential motor neuron recruitment, and neuromodulation are key components in Aplysia's generation of multifunctionality. Copyright © 2014 the American Physiological Society.

  9. 42 CFR 424.516 - Additional provider and supplier requirements for enrolling and maintaining active enrollment...

    Science.gov (United States)

    2010-10-01

    ... on the type of services or supplies the provider or supplier type will furnish and bill Medicare. (3... the HHS Common Rule at 45 CFR part 76. (b) Reporting requirements Independent Diagnostic Testing... documentation includes written and electronic documents (including the NPI of the physician who ordered the home...

  10. A genomic island provides Acidithiobacillus ferrooxidans ATCC 53993 additional copper resistance: a possible competitive advantage.

    Science.gov (United States)

    Orellana, Luis H; Jerez, Carlos A

    2011-11-01

    There is great interest in understanding how extremophilic biomining bacteria adapt to exceptionally high copper concentrations in their environment. Acidithiobacillus ferrooxidans ATCC 53993 genome possesses the same copper resistance determinants as strain ATCC 23270. However, the former strain contains in its genome a 160-kb genomic island (GI), which is absent in ATCC 23270. This GI contains, amongst other genes, several genes coding for an additional putative copper ATPase and a Cus system. A. ferrooxidans ATCC 53993 showed a much higher resistance to CuSO(4) (>100 mM) than that of strain ATCC 23270 (<25 mM). When a similar number of bacteria from each strain were mixed and allowed to grow in the absence of copper, their respective final numbers remained approximately equal. However, in the presence of copper, there was a clear overgrowth of strain ATCC 53993 compared to ATCC 23270. This behavior is most likely explained by the presence of the additional copper-resistance genes in the GI of strain ATCC 53993. As determined by qRT-PCR, it was demonstrated that these genes are upregulated when A. ferrooxidans ATCC 53993 is grown in the presence of copper and were shown to be functional when expressed in copper-sensitive Escherichia coli mutants. Thus, the reason for resistance to copper of two strains of the same acidophilic microorganism could be determined by slight differences in their genomes, which may not only lead to changes in their capacities to adapt to their environment, but may also help to select the more fit microorganisms for industrial biomining operations. © Springer-Verlag 2011

  11. Computerized analysis of isometric tension studies provides important additional information about vasomotor activity

    Directory of Open Access Journals (Sweden)

    Vincent M.B.

    1997-01-01

    Full Text Available Concentration-response curves of isometric tension studies on isolated blood vessels are obtained traditionally. Although parameters such as Imax, EC50 and pA2 may be readily calculated, this method does not provide information on the temporal profile of the responses or the actual nature of the reaction curves. Computerized data acquisition systems can be used to obtain average data that represent a new source of otherwise inaccessible information, since early and late responses may be observed separately in detail

  12. 34 CFR 645.13 - What additional services do Upward Bound Math and Science Centers provide and how are they...

    Science.gov (United States)

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What additional services do Upward Bound Math and... Program? § 645.13 What additional services do Upward Bound Math and Science Centers provide and how are... provided under § 645.11(b), an Upward Bound Math and Science Center must provide— (1) Intensive instruction...

  13. Effect of soluble zinc additions on the SCC performance of nickel alloys in deaerated hydrogenated water

    International Nuclear Information System (INIS)

    Morton, D.S.; Thompson, C.D.; Gladding, D.; Schurman, M.K.

    1997-08-01

    Stress corrosion crack growth rates (SCCGR) of alloy 600, EN82H and X-750 were measured in deaerated hydrogenated water to determine if soluble zinc mitigates SCCGR. Constant load compact tension specimen tests were conducted. Two test strategies were used to discern a possible zinc effect. The first strategy employed separate SCCGR tests in zinc and non-zinc environments and compared the resulting crack growth rates. The second strategy varied zinc levels at the midterm of single specimen SCCGR tests and characterized the resulting crack growth rate effect through an electrical potential drop in-situ crack monitor. Results from the direct comparison and midterm changing chemistry tests did not discern a zinc influence; any apparent zinc influence is within test to test variability (∼1.5x change in crack growth rate). AEM, AUGER and ESCA crack tip fracture surface studies identified that zinc was not incorporated within crack tip oxides. These studies identified nickel rich crack tip oxides and spinel, with incorporated zinc, (∼5 atom percent) bulk surface oxides

  14. Microwave-Accelerated Iodination of Some Aromatic Amines, Using Urea-Hydrogen Peroxide Addition Compound (UHP as the Oxidant

    Directory of Open Access Journals (Sweden)

    Lech Skulski

    2002-12-01

    Full Text Available A fast and simple method for the oxidative iodination of some aromatic amines, under microwave irradiation, is reported, using diiodine and the the strongly Hbonded urea-hydrogen peroxide addition compound (H2NCONH2···H2O2, UHP as the oxidant. The reactions were carried out in boiling CHCl3 under a reflux condenser to afford, within 10 minutes, the purified monoiodinated products in 40-80% yields.

  15. Hydrogen Embrittlement

    Science.gov (United States)

    Woods, Stephen; Lee, Jonathan A.

    2016-01-01

    Hydrogen embrittlement (HE) is a process resulting in a decrease in the fracture toughness or ductility of a metal due to the presence of atomic hydrogen. In addition to pure hydrogen gas as a direct source for the absorption of atomic hydrogen, the damaging effect can manifest itself from other hydrogen-containing gas species such as hydrogen sulfide (H2S), hydrogen chloride (HCl), and hydrogen bromide (HBr) environments. It has been known that H2S environment may result in a much more severe condition of embrittlement than pure hydrogen gas (H2) for certain types of alloys at similar conditions of stress and gas pressure. The reduction of fracture loads can occur at levels well below the yield strength of the material. Hydrogen embrittlement is usually manifest in terms of singular sharp cracks, in contrast to the extensive branching observed for stress corrosion cracking. The initial crack openings and the local deformation associated with crack propagation may be so small that they are difficult to detect except in special nondestructive examinations. Cracks due to HE can grow rapidly with little macroscopic evidence of mechanical deformation in materials that are normally quite ductile. This Technical Memorandum presents a comprehensive review of experimental data for the effects of gaseous Hydrogen Environment Embrittlement (HEE) for several types of metallic materials. Common material screening methods are used to rate the hydrogen degradation of mechanical properties that occur while the material is under an applied stress and exposed to gaseous hydrogen as compared to air or helium, under slow strain rates (SSR) testing. Due to the simplicity and accelerated nature of these tests, the results expressed in terms of HEE index are not intended to necessarily represent true hydrogen service environment for long-term exposure, but rather to provide a practical approach for material screening, which is a useful concept to qualitatively evaluate the severity of

  16. Hydrogen sulfide suicide: a new trend and threat to healthcare providers.

    Science.gov (United States)

    Ruder, John B; Ward, Jeanette G; Taylor, Scott; Giles, Karon; Higgins, Thomas; Haan, James M

    2015-01-01

    First popularized in Japan, hydrogen sulfide (H2S) gas suicide is an underreported form of suicide with known risk for secondary disaster. Mortality rate commonly exceeds 90% because of the gas's lethal, noncontained nature. Instances in the United States are increasing, up from 2 cases in 2008 to 18 in 2010. Because H2S poisonings remain rare, there exists a lack of knowledge regarding the residual effects of gas venting after victim extrication. Identifying instances of the efficacious use of personal protection equipment (PPE) is critical in the effort to alleviate risks faced by hospital and rescue personnel. The current case demonstrates the effective use of PPEs after prolonged H2S exposure. In 2011, a 20-year-old man threatened suicide using H2S gas inside a vehicle on a remote rural highway. First responders identified a "rotten egg smell" and subsequently experienced low poisoning symptoms. After prolonged Hazmat-assisted extrication (4 hours) the patient was unconscious and experiencing seizures. He was decontaminated on-scene (20 minutes) and transported to the closest hospital (22 minutes). Ambulance personnel who wore PPE and used the ambulance's reverse ventilation system (RVS)reported no adverse effects. The patient was transferred to the authors' burn facility by helicopter (38 minutes). Life-flight personnel, who did not wear PPE (no ventilatory system available), complained of watery eyes, headache, and dizziness. Hospital personnel, who did not use PPE (or RVS), complained of watery eyes or headache. Exposed personnel demonstrated no deficits or residual effects. In spite of spontaneous movement, the patient began to seize and died. This case is unique given the multiple primary and secondary H2S gas exposures involved. Exposed personnel without RVS and not using PPE demonstrated moderate H2S symptoms. PPE (self-contained breathing apparatuses) and RVS were shown to be effective during an H2S emergency; however, there are currently limited data

  17. Hydrogen sulfide production by sulfate-reducing bacteria utilizing additives eluted from plastic resins.

    Science.gov (United States)

    Tsuchida, Daisuke; Kajihara, Yusuke; Shimidzu, Nobuhiro; Hamamura, Kengo; Nagase, Makoto

    2011-06-01

    In the present study it was demonstrated that organic additives eluted from plastic resins could be utilized as substrates by sulfate-reducing bacteria. Two laboratory-scale experiments, a microcosm experiment and a leaching experiment, were conducted using polyvinyl chloride (PVC) as a model plastic resin. In the former experiment, the conversion of sulfate to sulfide was evident in microcosms that received plasticized PVC as the sole carbon source, but not in those that received PVC homopolymer. Additionally, dissolved organic carbon accumulated only in microcosms that received plasticized PVC, indicating that the dissolved organic carbon originated from additives. In the leaching experiment, phenol and bisphenol A were found in the leached solutions. These results suggest that the disposal of waste plastics in inert waste landfills may result in the production of H(2)S.

  18. Experimental Study of Hydrogen Addition Effects on a Swirl-Stabilized Methane-Air Flame

    Directory of Open Access Journals (Sweden)

    Mao Li

    2017-11-01

    Full Text Available The effects of H2 addition on a premixed methane-air flame was studied experimentally with a swirl-stabilized gas turbine model combustor. Experiments with 0%, 25%, and 50% H2 molar fraction in the fuel mixture were conducted under atmospheric pressure. The primary objectives are to study the impacts of H2 addition on flame lean blowout (LBO limits, flame shapes and anchored locations, flow field characteristics, precessing vortex core (PVC instability, as well as the CO emission performance. The flame LBO limits were identified by gradually reducing the equivalence ratio until the condition where the flame physically disappeared. The time-averaged CH chemiluminescence was used to reveal the characteristics of flame stabilization, e.g., flame structure and stabilized locations. In addition, the inverse Abel transform was applied to the time-averaged CH results so that the distribution of CH signal on the symmetric plane of the flame was obtained. The particle image velocimetry (PIV was used to detect the characteristics of the flow field with a frequency of 2 kHz. The snapshot method of POD (proper orthogonal decomposition and fast Fourier transform (FFT were adopted to capture the most prominent coherent structures in the turbulent flow field. CO emission was monitored with an exhaust probe that was installed close to the combustor exit. The experimental results indicated that the H2 addition extended the flame LBO limits and the operation range of low CO emission. The influence of H2 addition on the flame shape, location, and flow field was observed. With the assistance of POD and FFT, the combustion suppression impacts on PVC was found.

  19. Transcriptomic profiling provides molecular insights into hydrogen peroxide-induced adventitious rooting in mung bean seedlings.

    Science.gov (United States)

    Li, Shi-Weng; Leng, Yan; Shi, Rui-Fang

    2017-02-17

    Hydrogen peroxide (H 2 O 2 ) has been known to function as a signalling molecule involved in the modulation of various physiological processes in plants. H 2 O 2 has been shown to act as a promoter during adventitious root formation in hypocotyl cuttings. In this study, RNA-Seq was performed to reveal the molecular mechanisms underlying H 2 O 2 -induced adventitious rooting. RNA-Seq data revealed that H 2 O 2 treatment greatly increased the numbers of clean reads and expressed genes and abundance of gene expression relative to the water treatment. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicated that a profound change in gene function occurred in the 6-h H 2 O 2 treatment and that H 2 O 2 mainly enhanced gene expression levels at the 6-h time point but reduced gene expression levels at the 24-h time point compared with the water treatment. In total, 4579 differentially expressed (2-fold change > 2) unigenes (DEGs), of which 78.3% were up-regulated and 21.7% were down-regulated; 3525 DEGs, of which 64.0% were up-regulated and 36.0% were down-regulated; and 7383 DEGs, of which 40.8% were up-regulated and 59.2% were down-regulated were selected in the 6-h, 24-h, and from 6- to 24-h treatments, respectively. The number of DEGs in the 6-h treatment was 29.9% higher than that in the 24-h treatment. The functions of the most highly regulated genes were associated with stress response, cell redox homeostasis and oxidative stress response, cell wall loosening and modification, metabolic processes, and transcription factors (TFs), as well as plant hormone signalling, including auxin, ethylene, cytokinin, gibberellin, and abscisic acid pathways. Notably, a large number of genes encoding for heat shock proteins (HSPs) and heat shock transcription factors (HSFs) were significantly up-regulated during H 2 O 2 treatments. Furthermore, real-time quantitative PCR (qRT-PCR) results showed that, during H 2 O 2 treatments

  20. Kinetics of Hydrogen Abstraction and Addition Reactions of 3-Hexene by ȮH Radicals.

    Science.gov (United States)

    Yang, Feiyu; Deng, Fuquan; Pan, Youshun; Zhang, Yingjia; Tang, Chenglong; Huang, Zuohua

    2017-03-09

    Rate coefficients of H atom abstraction and H atom addition reactions of 3-hexene by the hydroxyl radicals were determined using both conventional transition-state theory and canonical variational transition-state theory, with the potential energy surface (PES) evaluated at the CCSD(T)/CBS//BHandHLYP/6-311G(d,p) level and quantum mechanical effect corrected by the compounded methods including one-dimensional Wigner method, multidimensional zero-curvature tunneling method, and small-curvature tunneling method. Results reveal that accounting for approximate 70% of the overall H atom abstractions occur in the allylic site via both direct and indirect channels. The indirect channel containing two van der Waals prereactive complexes exhibits two times larger rate coefficient relative to the direct one. The OH addition reaction also contains two van der Waals complexes, and its submerged barrier results in a negative temperature coefficient behavior at low temperatures. In contrast, The OH addition pathway dominates only at temperatures below 450 K whereas the H atom abstraction reactions dominate overwhelmingly at temperature over 1000 K. All of the rate coefficients calculated with an uncertainty of a factor of 5 were fitted in a quasi-Arrhenius formula. Analyses on the PES, minimum reaction path and activation free Gibbs energy were also performed in this study.

  1. Network Physics - the only company to provide physics-based network management - secures additional funding and new executives

    CERN Multimedia

    2003-01-01

    "Network Physics, the only provider of physics-based network management products, today announced an additional venture round of $6 million in funding, as well as the addition of David Jones as president and CEO and Tom Dunn as vice president of sales and business development" (1 page).

  2. Influence of addition of hydrogen produced on board in the performance of a stationary diesel engine

    International Nuclear Information System (INIS)

    Rodríguez Matienzo, Jorge M.; Domínguez Valdés, Alejandro

    2017-01-01

    A commercial electrolytic cell is assessed for supplying HHO produced on board as additional fuel for a stationary diesel IC engine. The cell uses KOH as electrolytic and is fed by the own battery of the engine. First, different concentrations of KOH used as electrolytic were tested in order to obtain the adequate value for the performance of the cell regarding its temperature and HHO production. The cell plates were connected in different combinations looking for a good productivity. The engine was tested in several load regimes, measuring fuel consumption and others parameters. Results show variable fuel savings, depending on engine load and speed. (author)

  3. High temperature hydrogen sulfide adsorption on activated carbon - I. Effects of gas composition and metal addition

    Science.gov (United States)

    Cal, M.P.; Strickler, B.W.; Lizzio, A.A.

    2000-01-01

    Various types of activated carbon sorbents were evaluated for their ability to remove H2S from a simulated coal gas stream at a temperature of 550 ??C. The ability of activated carbon to remove H2S at elevated temperature was examined as a function of carbon surface chemistry (oxidation, thermal desorption, and metal addition), and gas composition. A sorbent prepared by steam activation, HNO3 oxidation and impregnated with Zn, and tested in a gas stream containing 0.5% H2S, 50% CO2 and 49.5% N2, had the greatest H2S adsorption capacity. Addition of H2, CO, and H2O to the inlet gas stream reduced H2S breakthrough time and H2S adsorption capacity. A Zn impregnated activated carbon, when tested using a simulated coal gas containing 0.5% H2S, 49.5% N2, 13% H2, 8.5% H2O, 21% CO, and 7.5% CO2, had a breakthrough time of 75 min, which was less than 25 percent of the length of breakthrough for screening experiments performed with a simplified gas mixture of 0.5% H2S, 50% CO2, and 49.5% N2.

  4. Catalytic effect of additional metallic phases on the hydrogen absorption behavior of a Zr-Based alloy

    International Nuclear Information System (INIS)

    Ruiz, F; Peretti, H; Castro, E; Real, S; Visitin, A; Triaca, W

    2005-01-01

    The electrochemical hydrogen absorption of electrodes containing Zr 0 .9Ti 0 .1(Ni 0 .5Mn 0 .25Cr 0 .20V 0 .05) 2 is studied in alkaline media by monitoring the activation and discharge capacity along charge-discharge cycling.The considered alloy is tested in both as melted and annealed condition in order to investigate the catalytic effect of small amounts of micro segregated secondary phases of the Zr-Ni system. Since these catalytic phases are only present in the as melted alloys, tests are also carried out using a composite material elaborated from powders of the annealed alloy with the addition of 18 wt.% of the suspected catalytic phases, melted separately.The hydrogen absorption-desorption behavior for the different cases is discussed and correlated with the metallurgical characterization of the materials.The catalytic effects are studied employing cyclic voltammetry and electrochemical impedance techniques. The results are analyzed in terms of a developed physicochemical model

  5. Role of hydrogen in Nd–Fe–B sintered magnets with DyH{sub x} addition

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pan [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Ma, Tianyu, E-mail: maty@zju.edu.cn [Key Laboratory of Novel Materials for Information Technology of Zhejiang Province, Zhejiang University, Hangzhou 310027 (China); Wang, Xinhua, E-mail: xinhwang@zju.edu.cn [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zhang, Yujing [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Yan, Mi [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Key Laboratory of Novel Materials for Information Technology of Zhejiang Province, Zhejiang University, Hangzhou 310027 (China)

    2015-04-15

    Highlights: • DyH{sub 2} and DyH{sub 3} fine powder were prepared. • Effect of DyH{sub x} on the magnetic properties of Nd–Fe–B sintered magnets was studied. • The effect mechanism of Dy hydrides was discussed. • The magnetic properties are greatly improved by DyH{sub 2} and DyH{sub 3} addition. - Abstract: In order to improve the coercivity of Nd–Fe–B sintered magnets, DyH{sub 2} and DyH{sub 3} fine powders were prepared and used as additive for preparing Nd–Fe–B sintered magnets. The effects of DyH{sub x} powders addition on the microstructures and the magnetic properties of the magnets have been investigated. It was found that hydrogen will react with oxygen of NdO{sub x} rich intergranular phases to form Nd rich phases by dysprosium hydride addition. The Nd-rich grain boundary phases are more homogenous and continuous because the volume fraction of Nd-rich grain boundary phases increases with respect to the Nd oxide phases. After desorption, fine dysprosium powders become more active and wrap matrix phases well so that the diffusion of dysprosium to the surface layer of matrix phases is convenient, so dysprosium decreases in grain boundary phases and aggregates in surface layer of matrix phases. Then, intrinsic coercivity of NdFeB sintered magnets is improved from 14.96 kOe to 20.5 kOe and 20.31 kOe by 2.0 wt.% DyH{sub 3} and 2.0 wt.% DyH{sub 2} addition, respectively. This study has shown that DyH{sub x} addition can reduce the content of oxygen in grain boundary phases. This can be an effective method for massive production.

  6. Effect of vital bleaching with solutions containing different concentrations of hydrogen peroxide and pineapple extract as an additive on human enamel using reflectance spectrophotometer: An in vitro study.

    Science.gov (United States)

    Vejai Vekaash, Chitra Janardhanan; Kumar Reddy, Tripuravaram Vinay; Venkatesh, Kondas Vijay

    2017-01-01

    This study aims to evaluate the color change in human enamel bleached with three different concentrations of hydrogen peroxide, containing pineapple extract as an additive in two different timings, using reflectance spectrophotometer. The study aimed to investigate the bleaching efficacy on natural teeth using natural enzymes. Baseline color values of 10 randomly selected artificially stained incisors were obtained. The specimens were divided into three groups of 20 teeth each: Group 1 - 30% hydrogen peroxide, Group II - 20% hydrogen peroxide, and Group III - 10% hydrogen peroxide. One half of the tooth was bleached with hydrogen peroxide, and other was bleached with hydrogen peroxide and pineapple extract for 20 min (Subgroup A) and 10 min (Subgroup B). The results were statistically analyzed using student's t -test. The mean ΔE values of Group IA (31.62 ± 0.9), Group IIA (29.85 ± 1.2), and Group IIIA (28.65 ± 1.2) showed statistically significant higher values when compared to the mean Δ E values of Group 1A (25.02 ± 1.2), Group IIA (22.86 ± 1.1), and Group IIIA (16.56 ± 1.1). Identical results were obtained in Subgroup B. The addition of pineapple extract to hydrogen peroxide resulted in effective bleaching.

  7. Enhancement of mercury capture by the simultaneous addition of hydrogen bromide (HBr) and fly ashes in a slipstream facility.

    Science.gov (United States)

    Cao, Yan; Wang, Quan-Hai; Li, Jun; Cheng, Jen-Chieh; Chan, Chia-Chun; Cohron, Marten; Pan, Wei-Ping

    2009-04-15

    Low halogen content in tested Powder River Basin (PRB) coals and low loss of ignition content (LOI) in PRB-derived fly ash were likely responsible for higher elemental mercury content (averaging about 75%) in the flue gas and also lower mercury capture efficiency by electrostatic precipitator (ESP) and wet-FGD. To develop a cost-effective approach to mercury capture in a full-scale coal-fired utility boiler burning PRB coal, experiments were conducted adding hydrogen bromide (HBr) or simultaneously adding HBr and selected fly ashes in a slipstream reactor (0.152 x 0.152 m) under real flue gas conditions. The residence time of the flue gas inside the reactorwas about 1.4 s. The average temperature of the slipstream reactor was controlled at about 155 degrees C. Tests were organized into two phases. In Phase 1, only HBr was added to the slipstream reactor, and in Phase 2, HBr and selected fly ash were added simultaneously. HBr injection was effective (>90%) for mercury oxidation at a low temperature (155 degrees C) with an HBr addition concentration of about 4 ppm in the flue gas. Additionally, injected HBr enhanced mercury capture by PRB fly ash in the low-temperature range. The mercury capture efficiency, attesting conditions of the slipstream reactor, reached about 50% at an HBr injection concentration of 4 ppm in the flue gas. Compared to only the addition of HBr, simultaneously adding bituminous-derived fly ash in a minimum amount (30 lb/MMacf), together with HBr injection at 4 ppm, could increase mercury capture efficiency by 30%. Injection of lignite-derived fly ash at 30 lb/MMacf could achieve even higher mercury removal efficiency (an additional 35% mercury capture efficiency compared to HBr addition alone).

  8. Metal-mediated aminocatalysis provides mild conditions: Enantioselective Michael addition mediated by primary amino catalysts and alkali-metal ions

    Directory of Open Access Journals (Sweden)

    Matthias Leven

    2013-01-01

    Full Text Available Four catalysts based on new amides of chiral 1,2-diamines and 2-sulfobenzoic acid have been developed. The alkali-metal salts of these betaine-like amides are able to form imines with enones, which are activated by Lewis acid interaction for nucleophilic attack by 4-hydroxycoumarin. The addition of 4-hydroxycoumarin to enones gives ee’s up to 83% and almost quantitative yields in many cases. This novel type of catalysis provides an effective alternative to conventional primary amino catalysis were strong acid additives are essential components.

  9. Reduction of hydrogen desorption temperature of ball-milled MgH2 by NbF5 addition

    International Nuclear Information System (INIS)

    Recham, N.; Bhat, V.V.; Kandavel, M.; Aymard, L.; Tarascon, J.-M.; Rougier, A.

    2008-01-01

    Enhanced sorption properties of ball-milled MgH 2 are reported by adding NbF 5 . Among various catalyst amounts, 2 mol% of NbF 5 reveals to be the optimum concentration leading to significant reduction of the desorption temperature as well as faster kinetics of ball-milled MgH 2 . At 200 deg. C, temperature at which MgH 2 does not show any activity, MgH 2NbF 5 /2mol% composite desorbs 3.2 wt.% of H 2 in 50 mins. Interestingly, the addition of NbF 5 is also associated with an increase in the desorption pressure. At 300 deg. C, MgH 2NbF 5 /2mol% composite starts to desorb hydrogen at 600 mbar in comparison with 1 mbar for MgH 2 . Further improvements were successfully achieved by pre-grinding NbF 5 prior to ball-milling the catalyst with MgH 2 . Such pre-ground NbF 5 catalyzed MgH 2 composite desorbs 3 wt.% of H 2 at 150 deg. C. Improved properties are associated with smaller activation energies down to values close to the enthalpy of formation of MgH 2 . Finally, the mechanism at the origin of the enhancement is discussed in terms of catalyst stability, MgF 2 formation and electronic density localization

  10. Hydrogen sensor

    Science.gov (United States)

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  11. Dependence of the length of the hydrogen bond on the covalent and cationic radii of hydrogen, and additivity of bonding distances

    Czech Academy of Sciences Publication Activity Database

    Heyrovská, Raji

    2006-01-01

    Roč. 432, č. 1-3 (2006), s. 348-351 ISSN 0009-2614 R&D Projects: GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z50040507 Keywords : length of the hydrogen bond * ionic radius * Golden ratio Subject RIV: BO - Biophysics Impact factor: 2.462, year: 2006

  12. Study on the effect of hydrogen addition on the variation of plasma parameters of argon-oxygen magnetron glow discharge for synthesis of TiO2 films

    Directory of Open Access Journals (Sweden)

    Partha Saikia

    2016-04-01

    Full Text Available We report the effect of hydrogen addition on plasma parameters of argon-oxygen magnetron glow discharge plasma in the synthesis of H-doped TiO2 films. The parameters of the hydrogen-added Ar/O2 plasma influence the properties and the structural phases of the deposited TiO2 film. Therefore, the variation of plasma parameters such as electron temperature (Te, electron density (ne, ion density (ni, degree of ionization of Ar and degree of dissociation of H2 as a function of hydrogen content in the discharge is studied. Langmuir probe and Optical emission spectroscopy are used to characterize the plasma. On the basis of the different reactions in the gas phase of the magnetron discharge, the variation of plasma parameters and sputtering rate are explained. It is observed that the electron and heavy ion density decline with gradual addition of hydrogen in the discharge. Hydrogen addition significantly changes the degree of ionization of Ar which influences the structural phases of the TiO2 film.

  13. Hydrogen Infrastructure Market Readiness: Opportunities and Potential for Near-term Cost Reductions; Proceedings of the Hydrogen Infrastructure Market Readiness Workshop and Summary of Feedback Provided through the Hydrogen Station Cost Calculator

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, M. W.; Steward, D.; Penev, M.; McQueen, S.; Jaffe, S.; Talon, C.

    2012-08-01

    Recent progress with fuel cell electric vehicles (FCEVs) has focused attention on hydrogen infrastructure as a critical commercialization barrier. With major automakers focused on 2015 as a target timeframe for global FCEV commercialization, the window of opportunity is short for establishing a sufficient network of hydrogen stations to support large-volume vehicle deployments. This report describes expert feedback on the market readiness of hydrogen infrastructure technology from two activities.

  14. Effect of multi-wall carbon nanotubes supported nano-nickel and TiF{sub 3} addition on hydrogen storage properties of magnesium hydride

    Energy Technology Data Exchange (ETDEWEB)

    Su, Wei; Zhu, Yunfeng, E-mail: yfzhu@njtech.edu.cn; Zhang, Jiguang; Liu, Yana; Yang, Yang; Mao, Qifeng; Li, Liquan

    2016-06-05

    Multi-wall carbon nanotubes supported nano-nickel (Ni/MWCNTs) with superior catalytic effects was introduced to magnesium hydride by the process of hydriding combustion synthesis (HCS) and mechanical milling (MM). The effect of different Ni/MWCNTs contents (5 wt.%, 10 wt.%, 15 wt.%, 20 wt.%) on the hydrogenation and dehydrogenation properties of the composite was investigated systematically. It is revealed that Mg{sub 85}-(Ni/MWCNTs){sub 15} composite shows the best comprehensive hydrogen storage properties, which absorbs 5.68 wt.% hydrogen within 100 s at 373 K and releases 4.31 wt.% hydrogen within 1800 s at 523 K under initial hydrogen pressures of 3.0 and 0.005 MPa, respectively. The in situ formed nano-Mg{sub 2}Ni and MWCNTs have excellent catalytic effect on the hydrogenation and dehydrogenation performances of MgH{sub 2}. To further improve the hydrogen absorption/desorption properties, TiF{sub 3} was added to the Mg–Ni/MWCNTs system. The result shows that TiF{sub 3} addition has little influence on the thermodynamic performance, but affects greatly the kinetic properties. The Mg{sub 85}-(Ni/MWCNTs){sub 15}-TiF{sub 3} composite exhibits an appreciably enhanced hydrogen desorption performance at low temperature, and the hydrogen desorption capacity within 1800 s at 473 K for the TiF{sub 3}-added composite is approximately four times the capacity of Mg{sub 85}-(Ni/MWCNTs){sub 15} under the same condition. The catalytic effects during hydrogenation and dehydrogenation have been discussed in the study. - Highlights: • The nanosized Ni/MWCNTs catalyst was successfully prepared. • Ni/MWCNTs shows superior catalytic effect on H absorption/desorption of Mg. • Mg{sub 85}-(Ni/MWCNTs){sub 15} composite shows the best hydrogen storage properties. • Ni/MWCNTs coupling with TiF{sub 3} improves the hydriding/dehydriding properties largely.

  15. Perfusion magnetic resonance imaging provides additional information as compared to anatomical imaging for decision-making in vestibular schwannoma

    International Nuclear Information System (INIS)

    Kleijwegt, M.C.; Mey, A.G.L. van der; Wiggers-deBruine, F.T.; Malessy, M.J.A; Osch, M.J.P. van

    2016-01-01

    •DSC/ASL-MRI can be acquired in growing VS with sufficient image quality.•In most patients DSC and ASL techniques provide similar qualitative scores.•These techniques can be of importance in future decision-making. DSC/ASL-MRI can be acquired in growing VS with sufficient image quality. In most patients DSC and ASL techniques provide similar qualitative scores. These techniques can be of importance in future decision-making. The added value of perfusion MRI for decision-making in vestibular schwannoma (VS) patients is unknown. MRI offers two perfusion methods: the first employing contrast agent (dynamic susceptibility contrast (DSC)-MRI) that provides information on cerebral blood volume (CBV) and cerebral blood flow (CBF), the second by magnetic labeling of blood (arterial spin labeling (ASL)-MRI), providing CBF-images. The goal of the current study is to investigate whether DSC and ASL perfusion MRI provides complimentary information to current anatomical imaging in treatment selection process of VS. Nine patients with growing VS with extrameatal diameter >9 mm were included (>2 mm/year and 20% volume expansion/year) and one patient with 23 mm extrameatal VS without growth. DSC and ASL perfusion MRI were obtained on 3 T MRI. Perfusion in VS was scored as hyperintense, hypointense or isointense compared to the contralateral region. Seven patients showed hyperintense signal on DSC and ASL sequences. Three patients showed iso- or hypointense signal on at least one perfusion map (1 patient hypointense on both DSC-MRI and ASL; 1 patient isointense on DSC-CBF; 1 patient isointense on ASL). All patients showed enhancement on post-contrast T1 anatomical scan. Perfusion MR provides additional information compared to anatomical imaging for decision-making in VS

  16. Hepatitis B virus vaccination booster does not provide additional protection in adolescents: a cross-sectional school-based study.

    Science.gov (United States)

    Chang, Yung-Chieh; Wang, Jen-Hung; Chen, Yu-Sheng; Lin, Jun-Song; Cheng, Ching-Feng; Chu, Chia-Hsiang

    2014-09-23

    Current consensus does not support the use of a universal booster of hepatitis B virus (HBV) vaccine because there is an anamnestic response in almost all children 15 years after universal infant HBV vaccination. We aimed to provide a booster strategy among adolescents as a result of their changes in lifestyle and sexual activity. This study comprised a series of cross-sectional serological surveys of HBV markers in four age groups between 2004 and 2012. The seropositivity rates of hepatitis B surface antigen (HBsAg) and its reciprocal antibody (anti-HBs) for each age group were collected. There were two parts to this study; age-specific HBV seroepidemiology and subgroup analysis, including effects of different vaccine types, booster response for immunogenicity at 15 years of age, and longitudinal follow-up to identify possible additional protection by HBV booster. Within the study period, data on serum anti-HBs and HBsAg in a total of 6950 students from four age groups were collected. The overall anti-HBs and HBsAg seropositivity rates were 44.3% and 1.2%, respectively. The anti-HBs seropositivity rate in the plasma-derived subgroup was significantly higher in both 15- and 18-year age groups. Overall response rate in the double-seronegative recipients at 15 years of age was 92.5% at 6 weeks following one recombinant HBV booster dose. Among the 24 recipients showing anti-HBs seroconversion at 6 weeks after booster, seven subjects (29.2%) had lost their anti-HBs seropositivity again within 3 years. Increased seropositivity rates and titers of anti-HBs did not provide additional protective effects among subjects comprehensively vaccinated against HBV in infancy. HBV booster strategy at 15 years of age was the main contributor to the unique age-related phenomenon of anti-HBs seropositivity rate and titer. No increase in HBsAg seropositivity rates within different age groups was observed. Vaccination with plasma-derived HBV vaccines in infancy provided higher

  17. Ball-milling and AlB2 addition effects on the hydrogen sorption properties of the CaH2 + MgB2 system

    International Nuclear Information System (INIS)

    Schiavo, B.; Girella, A.; Agresti, F.; Capurso, G.; Milanese, C.

    2011-01-01

    Research highlights: → Calcium hydride + magnesium-aluminum borides as candidates for hydrogen storage. → Long time ball milling improves hydrogen sorption kinetics of the CaH 2 +MgB 2 system. → Coexistence of MgB 2 and AlB 2 does not improve hydrogen sorption performances. → Total substitution of MgB 2 with AlB 2 improves the system kinetics and reversibility. → Below 400 deg. C almost the full hydrogen capacity of the CaH 2 + AlB 2 system is reached. - Abstract: Among the borohydrides proposed for solid state hydrogen storage, Ca(BH 4 ) 2 is particularly interesting because of its favourable thermodynamics and relatively cheap price. Composite systems, where other species are present in addition to the borohydride, show some advantages in hydrogen sorption properties with respect to the borohydrides alone, despite a reduction of the theoretical storage capacity. We have investigated the milling time influence on the sorption properties of the CaH 2 + MgB 2 system from which Ca(BH 4 ) 2 and MgH 2 can be synthesized by hydrogen absorption process. Manometric and calorimetric measurements showed better kinetics for long time milled samples. We found that the total substitution of MgB 2 with AlB 2 in the starting material can improve the sorption properties significantly, while the co-existence of both magnesium and aluminum borides in the starting mixture did not cause any improvement. Rietveld refinements of the X-ray powder diffraction spectra were used to confirm the hypothesized reactions.

  18. Influence of carbon monoxide additions on the sensitivity of the dry hydrogen-air mixtures to detonation

    International Nuclear Information System (INIS)

    Magzumov, A.E.; Kirillov, I.A.; Fridman, A.A.; Rusanov, V.D.

    1995-01-01

    Under severe accident conditions of water cooled nuclear reactors the hydrogen-air detonation represents one of the most hazardous events which can result in the reactor containment damage. An important factor related with the measure of gas mixture detonability is the detonation cell size which correlates with the critical tube diameter and detonation initiation energy. A numerical kinetic study is presented of the influence of carbon monoxide admixtures (from 0 vol.% to 40 vol.%) upon the sensitivity (detonation cell size) of the dry hydrogen-air gas mixtures to detonation in post-accident containment atmosphere. (author). 3 refs., 3 figs

  19. Effect of addition of water-soluble salts on the hydrogen generation of aluminum in reaction with hot water

    International Nuclear Information System (INIS)

    Razavi-Tousi, S.S.; Szpunar, J.A.

    2016-01-01

    Aluminum powder was ball milled for different durations of time with different weight percentages of water-soluble salts (NaCl and KCl). The hydrogen generation of each mixture in reaction with hot water was measured. A scanning electron microscope (SEM) as well as energy-dispersive spectroscopy (EDS) were used to investigate the morphology, surfaces and cross sections of the produced particles. The results show that the presence of salts in the microstructure of the aluminum considerably increases the hydrogen generation rate. At shorter milling times, the salt covers the aluminum particles and becomes embedded in layers within the aluminum matrix. At higher milling durations, salt and aluminum phases form composite particles. A higher percentage of the second phase significantly decreases the milling time needed for activation of the aluminum particles. Based on the EDS results from cross sections of the milled particles, a mechanism for improvement of the hydrogen generation rate in the presence of salts is suggested. - Highlights: • Milling and water soluble salts have a synergic effect on hydrogen generation. • Salt and aluminum form composite particles by milling. • Salt is dissolved in water leaving aluminum with much fresh surfaces for the reaction. • The chemical effect of salt on the reaction is negligible compared to its structural effect.

  20. Adiponectin provides additional information to conventional cardiovascular risk factors for assessing the risk of atherosclerosis in both genders.

    Directory of Open Access Journals (Sweden)

    Jin-Ha Yoon

    Full Text Available BACKGROUND: This study evaluated the relation between adiponectin and atherosclerosis in both genders, and investigated whether adiponectin provides useful additional information for assessing the risk of atherosclerosis. METHODS: We measured serum adiponectin levels and other cardiovascular risk factors in 1033 subjects (454 men, 579 women from the Korean Genomic Rural Cohort study. Carotid intima-media-thickness (CIMT was used as measure of atherosclerosis. Odds ratios (ORs with 95% confidence intervals (95% CI were calculated using multiple logistic regression, and receiver operating characteristic curves (ROC, the category-free net reclassification improvement (NRI and integrated discrimination improvement (IDI were calculated. RESULTS: After adjustment for conventional cardiovascular risk factors, such as age, waist circumference, smoking history, low-density and high-density lipoprotein cholesterol, triglycerides, systolic blood pressure and insulin resistance, the ORs (95%CI of the third tertile adiponectin group were 0.42 (0.25-0.72 in men and 0.47 (0.29-0.75 in women. The area under the curve (AUC on the ROC analysis increased significantly by 0.025 in men and 0.022 in women when adiponectin was added to the logistic model of conventional cardiovascular risk factors (AUC in men: 0.655 to 0.680, p = 0.038; AUC in women: 0.654 to 0.676, p = 0.041. The NRI was 0.32 (95%CI: 0.13-0.50, p<0.001, and the IDI was 0.03 (95%CI: 0.01-0.04, p<0.001 for men. For women, the category-free NRI was 0.18 (95%CI: 0.02-0.34, p = 0.031 and the IDI was 0.003 (95%CI: -0.002-0.008, p = 0.189. CONCLUSION: Adiponectin and atherosclerosis were significantly related in both genders, and these relationships were independent of conventional cardiovascular risk factors. Furthermore, adiponectin provided additional information to conventional cardiovascular risk factors regarding the risk of atherosclerosis.

  1. Dose Tc-99m MIBI scintimammography provide more information additive to contrast enhanced MRI in highly suspected breast cancer patients?

    International Nuclear Information System (INIS)

    Kim, Seong Jang; Kim, In Ju; Kim, Yong Ki; Bae, Young Tae

    2000-01-01

    The aim of this study was to investigate whether Tc-99m MIBI scintimammography (SMM) provide more information than contrast enhanced MRI in highly suspected breast cancer patients. This study included 32 breast lesions of 29 highly suspected patients having breast cancer. All patients were performed SMM and contrast enhanced MRI. The SMMs and contrast enhanced MRI were correlated with histopathologic results. Thirty breast lesions were diagnosed malignant diseases and 2 were diagnosed benign diseases. SMM showed 29 true positives (TP), 1 true negative (TN), 1 false positive (FP), and 1 false negative (FN). The sensitivity was 96.6%. Contrast enhanced MRI revealed 24 TP, 0 TN, 1 FP, 3 FN and 4 indeterminate cases. The sensitivity was 88.8%. In the assessment of axillary lymph node metastasis, SMM showed 9 TP, 10 TN, 0 FP, and 3 FN. The sensitivity and specificity were 75% and 100%. Contrast enhanced MRI revealed 6 TP, 9 TN, 1 FP, and 6 FN. The sensitivity and specificity were 50% and 90%. Among 4 indeterminate cases with MRI findings, SMM correctly diagnosed malignant breast diseases in 3 lesions. However, SMM showed false positive in 1 lesion. SMM could correctly diagnosed malignant breast diseases more 5 lesions than contrast enhanced MRI. SMM revealed higher sensitivity in detection of primary breast cancer and axillary LN metastasis than contrast enhanced MRI. SMMs could correctly diagnosed malignant breast diseases even if the MRI showed indeterminate findings. In highly suspected patients having breast cancer, SMM may provide additive information in detection of breast cancer if contrast enhanced MRI showed indeterminate findings but this is to be determined later by large population based study

  2. Example-based learning: comparing the effects of additionally providing three different integrative learning activities on physiotherapy intervention knowledge.

    Science.gov (United States)

    Dyer, Joseph-Omer; Hudon, Anne; Montpetit-Tourangeau, Katherine; Charlin, Bernard; Mamede, Sílvia; van Gog, Tamara

    2015-03-07

    Example-based learning using worked examples can foster clinical reasoning. Worked examples are instructional tools that learners can use to study the steps needed to solve a problem. Studying worked examples paired with completion examples promotes acquisition of problem-solving skills more than studying worked examples alone. Completion examples are worked examples in which some of the solution steps remain unsolved for learners to complete. Providing learners engaged in example-based learning with self-explanation prompts has been shown to foster increased meaningful learning compared to providing no self-explanation prompts. Concept mapping and concept map study are other instructional activities known to promote meaningful learning. This study compares the effects of self-explaining, completing a concept map and studying a concept map on conceptual knowledge and problem-solving skills among novice learners engaged in example-based learning. Ninety-one physiotherapy students were randomized into three conditions. They performed a pre-test and a post-test to evaluate their gains in conceptual knowledge and problem-solving skills (transfer performance) in intervention selection. They studied three pairs of worked/completion examples in a digital learning environment. Worked examples consisted of a written reasoning process for selecting an optimal physiotherapy intervention for a patient. The completion examples were partially worked out, with the last few problem-solving steps left blank for students to complete. The students then had to engage in additional self-explanation, concept map completion or model concept map study in order to synthesize and deepen their knowledge of the key concepts and problem-solving steps. Pre-test performance did not differ among conditions. Post-test conceptual knowledge was higher (P example and completion example strategies to foster intervention selection.

  3. Impact of adding additional providers to resident workload and the resident experience on a medical consultation rotation.

    Science.gov (United States)

    Fang, Michele; Linson, Eric; Suneja, Manish; Kuperman, Ethan F

    2017-02-22

    Excellence in Graduate Medical Education requires the right clinical environment with an appropriate workload where residents have enough patients to gain proficiency in medicine with optimal time for reflection. The Accreditation Council for Graduate Medical Education (ACGME) has focused more on work hours rather than workload; however, high resident workload has been associated with lower resident participation in education and fatigue-related errors. Recognizing the potential risks associated with high resident workload and being mindful of the costs of reducing resident workload, we sought to reduce residents' workload by adding an advanced practice provider (APP) to the surgical comanagement service (SCM) and study its effect on resident satisfaction and perceived educational value of the rotation. In Fiscal Year (FY) 2014 and 2015, an additional faculty member was added to the SCM rotation. In FY 2014, the faculty member was a staff physician, and in FY 2015, the faculty member was an APP.. Resident workload was assessed using billing data. We measured residents' perceptions of the rotation using an anonymous electronic survey tool. We compared FY2014-2015 data to the baseline FY2013. The number of patients seen per resident per day decreased from 8.0(SD 3.3) in FY2013 to 5.0(SD 1.9) in FY2014 (p value of the rotation (40.0%, 72.2%, 72.6% in FY2013, 2014, 2015 respectively, p perceived educational value and clinical experience of a medical consultation rotation.

  4. The drone as an additional risk factor due to conditions not provided for in radiological safety at major events

    International Nuclear Information System (INIS)

    Oliveira, Gilberto de Jesus

    2015-01-01

    Major international events are potential targets of terrorist actions, seeking instant publicity that events of this magnitude provide, with the intention of causing terror and disseminate its power to a large number of people worldwide. In this context, the critical analysis of additional risk factor linked to procedures and protocols adopted on radiation safety is important. The possibility of unforeseen situations of risk, especially those resulting from the current global technological development, is a fact. Radioactive material can be used in this type of terrorism in a wide range of devices and illicit trafficking of this material is a reality that worries the International Atomic Energy Agency. In the current technological development scenario of the world, the potential occurrence of terrorist acts using drones combined with radioactive material dispersal devices, is real. The recent history of drones incidents presents cases where, despite not having been necessarily terrorist motivation, their circumstances and characteristics favor the occurrence of malicious acts. This paper proposes to alert the need of updating the current security protocols, considering the potential association of this technology with radioactive dispersal devices. (author)

  5. Improvement of lean combustion characteristics of heavy-hydrocarbon fuels with hydrogen addition; Suiso tenka ni yoru kokyu tanka suisokei nenryo no kihaku nensho no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Y. [Saitama Institute of Technology, Saitama (Japan); Ishizuka, S. [Hiroshima University, Hiroshima (Japan). Faculty of Engineering

    1999-09-25

    The Lewis numbers of lean heavy-hydrocarbon fuels are larger than unity, and hence, their flames are prone to extinction in a shear flow, which occurs in a turbulent combustion. Here, propane is used as a representative fuel of heavy-hydrocarbon fuels because the Lewis number of lean propane/air mixtures is larger than unity, and an attempt to improve its combustion characteristics by hydrogen addition has been made. A tubular flame burner is used to evaluate its improvement, since a rotating, stretched vortex flow is established in the burner. The results show that with' hydrogen addition, the fuel concentration, the flame diameter and the flame temperature at extinction are reduced and its combustion characteristics are improved. However, it is found that the effective equivalence ration at extinction cannot become so small as that of lean methane/air mixture, which has a Lewis number less than unity. (author)

  6. When do anterior external or internal fixators provide additional stability in an unstable (Tile C) pelvic fracture? A biomechanical study.

    Science.gov (United States)

    Mcdonald, E; Theologis, A A; Horst, P; Kandemir, U; Pekmezci, M

    2015-12-01

    This study aimed at evaluating the additional stability that is provided by anterior external and internal fixators in an unstable pelvic fracture model (OTA 61-C). An unstable pelvic fracture (OTA 61-C) was created in 27 synthetic pelves by making a 5-mm gap through the sacral foramina (posterior injury) and an ipsilateral pubic rami fracture (anterior injury). The posterior injury was fixed with either a single iliosacral (IS) screw, a single trans-iliac, trans-sacral (TS) screw, or two iliosacral screws (S1S2). Two anterior fixation techniques were utilized: external fixation (Ex-Fix) and supra-acetabular external fixation and internal fixation (In-Fix); supra-acetabular pedicle screws connected with a single subcutaneous spinal rod. The specimens were tested using a nondestructive single-leg stance model. Peak-to-peak (P2P) displacement and rotation and conditioning displacement (CD) were calculated. The Ex-Fix group failed in 83.3 % of specimens with concomitant single-level posterior fixation (Total: 15/18-7 of 9 IS fixation, 8 of 9 TS fixation), and 0 % (0/9) of specimens with concomitant two-level (S1S2) posterior fixation. All specimens with the In-Fix survived testing except for two specimens treated with In-Fix combined with IS fixation. Trans-sacral fixation had higher pubic rotation and greater sacral and pubic displacement than S1S2 (p < 0.05). Rotation of the pubis and sacrum was not different between In-Fix constructs combined with single-level IS and TS fixation. In this model of an unstable pelvic fracture (OTA 61-C), anterior fixation with an In-Fix was biomechanically superior to an anterior Ex-Fix in the setting of single-level posterior fixation. There was no biomechanical difference between the In-Fix and Ex-Fix when each was combined with two levels of posterior sacral fixation.

  7. Hydrogen Filling Station

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water District’s land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for

  8. The perceptions of teachers and principals toward providing additional compensation to teachers in high-need subject areas

    Science.gov (United States)

    Longing, Jeffrey Lucian

    The purpose of this study was to determine possible differences in the perceptions of teachers teaching in high-need areas (i.e., math, science, special education, etc.) and teachers not teaching in high-need areas, (i.e., business education, physical education, etc.) as defined by the states of Arkansas and Louisiana, regarding higher compensation for high-need teachers. In addition, possible perception differences among principals and teachers were determined. The independent variables consisted of gender, position held, years of certified experience, and certification areas. The dependent variable was the perceptions of the participants on providing higher compensation for high-need teachers in order to attract and retain them. The data for all variables were collected using the Teacher Compensation Survey. The sample for this study was limited to teachers, grades 9 through 12, and principals of public high schools in south Arkansas and north Louisiana. Forty-four school districts in south Arkansas (Arkansas Department of Education, 2008a) and north Louisiana (Louisiana Department of Education, 2008a) met the criteria for this study. Twenty-two superintendents gave permission for their districts to participate in the research. A sample of 849 teachers and 38 principals were identified in these districts. Surveys were returned from 350 teachers, creating a 41% response rate. When the 31 principals that returned surveys were added to the total population, the response rate increased to 43% with 381 of the 887 surveyed responding. However, 42 of the teachers and two of the principals skipped some of the questions on the survey and were not included in the study. The researcher used a One-Way ANOVA and independent t-tests to determine the presence of statistical differences at the .05 level. The data showed that most math and science teachers agreed that high-need teachers should be compensated at a higher rate than teachers not teaching in high-need areas. The data

  9. Effect of Ce and Zr Addition to Ni/SiO2 Catalysts for Hydrogen Production through Ethanol Steam Reforming

    Directory of Open Access Journals (Sweden)

    Jose Antonio Calles

    2015-01-01

    Full Text Available A series of Ni/Ce\\(_{x}\\Zr\\(_{1-x}\\O\\(_{2}\\/SiO\\(_{2}\\ catalysts with different Zr/Ce mass ratios were prepared by incipient wetness impregnation. Ni/SiO\\(_{2}\\, Ni/CeO\\(_{2}\\ and Ni/ZrO\\(_{2}\\ were also prepared as reference materials to compare. Catalysts' performances were tested in ethanol steam reforming for hydrogen production and characterized by XRD, H\\(_{2}\\-temperature programmed reduction (TPR, NH\\(_{3}\\-temperature programmed desorption (TPD, TEM, ICP-AES and N\\(_{2}\\-sorption measurements. The Ni/SiO\\(_{2}\\ catalyst led to a higher hydrogen selectivity than Ni/CeO\\(_{2}\\ and Ni/ZrO\\(_{2}\\, but it could not maintain complete ethanol conversion due to deactivation. The incorporation of Ce or Zr prior to Ni on the silica support resulted in catalysts with better performance for steam reforming, keeping complete ethanol conversion over time. When both Zr and Ce were incorporated into the catalyst, Ce\\(_{x}\\Zr\\(_{1-x}\\O\\(_{2}\\ solid solution was formed, as confirmed by XRD analyses. TPR results revealed stronger Ni-support interaction in the Ce\\(_{x}\\Zr\\(_{1-x}\\O\\(_{2}\\-modified catalysts than in Ni/SiO\\(_{2}\\ one, which can be attributed to an increase of the dispersion of Ni species. All of the Ni/Ce\\(_{x}\\Zr\\(_{1-x}\\O\\(_{2}\\/SiO\\(_{2}\\ catalysts exhibited good catalytic activity and stability after 8 h of time on stream at 600°. The best catalytic performance in terms of hydrogen selectivity was achieved when the Zr/Ce mass ratio was three.

  10. Influence of hydrogen addition to a sweep gas on tritium behavior in a blanket module containing Li{sub 2}TiO{sub 3} pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, K., E-mail: kadzu@nucl.kyushu-u.ac.jp [Department of Advanced Energy Engineering Science, Kyushu University 6-1, Kasugakoen, Kasuga-shi, Fukuoka 816-8580 (Japan); Someya, Y.; Tobita, K. [National Institutes for Quantum and radiological Science and Technology, 2-166 Omotedate, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212 (Japan); Fukada, S. [Department of Advanced Energy Engineering Science, Kyushu University 6-1, Kasugakoen, Kasuga-shi, Fukuoka 816-8580 (Japan); Hatano, Y. [Hydrogen Isotope Research Center, University of Toyama, Gofuku 3190, Toyama 930-8555 (Japan); Chikada, T. [Department of Chemistry, Graduate school of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 (Japan)

    2016-12-15

    Highlights: • Mass balance equations of H{sub 2}, H{sub 2}O, T{sub 2} and T{sub 2}O in a Li{sub 2}TiO{sub 3} pebble bed were numerically calculated. • In the temperature rising process, the pebbles were exposed to water vapor of relatively high concentration. • Tritium permeation rate to cooling water reduced with increasing hydrogen concentration in the sweep gas. • Tritium inventory in the grain bulk and the grain surface occupied 99.6% of total inventory. - Abstract: Hydrogen addition to a sweep gas of a solid breeder blanket module has been proposed to enhance tritium recovery from the surface of the breeders. However, the influence of hydrogen addition on the bred tritium behavior is not understood completely. Tritium behavior in the simplified blanket module of Li{sub 2}TiO{sub 3} pebbles was numerically calculated considering diffusion in the grain bulk, surface reactions on the grain surface and permeation through the cooling pipe. Although a partial pressure of T{sub 2} increases with increasing a partial pressure of H{sub 2} in the sweep gas, it was estimated that tritium permeation rate to the cooling water decreases. Additionally, the release duration of water vapor generated by the reaction of the pebbles and hydrogen is shortened with increasing a partial pressure of H{sub 2}. Tritium inventory in the grain bulk and the grain surface occupies 99.6 % of total tritium inventory in the blanket module.

  11. 48 CFR 227.7009-4 - Additional clauses-contracts providing for payment of a running royalty.

    Science.gov (United States)

    2010-10-01

    ...-contracts providing for payment of a running royalty. 227.7009-4 Section 227.7009-4 Federal Acquisition... clauses—contracts providing for payment of a running royalty. The clauses set forth below are examples... desired to cover the subject matter thereof and the contract provides for payment of a running royalty. (a...

  12. Properties of Resistive Hydrogen Sensors as a Function of Additives of 3 D-Metals Introduced in the Volume of Thin Nanocrystalline SnO2 Films

    Science.gov (United States)

    Sevast'yanov, E. Yu.; Maksimova, N. K.; Potekaev, A. I.; Sergeichenko, N. V.; Chernikov, E. V.; Almaev, A. V.; Kushnarev, B. O.

    2017-11-01

    Analysis of the results of studying electrical and gas sensitive characteristics of the molecular hydrogen sensors based on thin nanocrystalline SnO2 films coated with dispersed Au layers and containing Au+Ni and Au+Co impurities in the bulk showed that the characteristics of these sensors are more stable under the prolonged exposure to hydrogen in comparison with Au/SnO2:Sb, Au films modified only with gold. It has been found that introduction of the nickel and cobalt additives increases the band bending at the grain boundaries of tin dioxide already in freshly prepared samples, which indicates an increase in the density Ni of the chemisorbed oxygen. It is important that during testing, the band bending eφs at the grain boundaries of tin dioxide additionally slightly increases. It can be assumed that during crystallization of films under thermal annealing, the 3d-metal atoms in the SnO2 volume partially segregate on the surface of microcrystals and form bonds with lattice oxygen, the superstoichiometric tin atoms are formed, and the density Ni increases. If the bonds of oxygen with nickel and cobalt are stronger than those with tin, then, under the prolonged tests, atomic hydrogen will be oxidized not by lattice oxygen, but mainly by the chemisorbed one. In this case, stability of the sensors' characteristics increases.

  13. 76 FR 59614 - Facilitating the Use of Microwave for Wireless Backhaul and Other Uses and Providing Additional...

    Science.gov (United States)

    2011-09-27

    ... requires ``complex electronics to coordinate the transmissions, with the additional disadvantage of... Service operators to utilize 60 and 80 megahertz channels, it will simplify the electronics, lowers costs... accordance with the Commission's ex parte rules. Persons making ex parte presentations must file a copy of...

  14. Catalyst Deactivation and Regeneration Processes in Biogas Tri-Reforming Process. The Effect of Hydrogen Sulfide Addition

    Directory of Open Access Journals (Sweden)

    Urko Izquierdo

    2018-01-01

    Full Text Available This work studies Ni-based catalyst deactivation and regeneration processes in the presence of H2S under a biogas tri-reforming process for hydrogen production, which is an energy vector of great interest. 25 ppm of hydrogen sulfide were continuously added to the system in order to provoke an observable catalyst deactivation, and once fully deactivated two different regeneration processes were studied: a self-regeneration and a regeneration by low temperature oxidation. For that purpose, several Ni-based catalysts and a bimetallic Rh-Ni catalyst supported on alumina modified with CeO2 and ZrO2 were used as well as a commercial Katalco 57-5 for comparison purposes. Ni/Ce-Al2O3 and Ni/Ce-Zr-Al2O3 catalysts almost recovered their initial activity. For these catalysts, after the regeneration under oxidative conditions at low temperature, the CO2 conversions achieved—79.5% and 86.9%, respectively—were significantly higher than the ones obtained before sulfur poisoning—66.7% and 45.2%, respectively. This effect could be attributed to the support modification with CeO2 and the higher selectivity achieved for the Reverse Water-Gas-Shift (rWGS reaction after catalysts deactivation. As expected, the bimetallic Rh-Ni/Ce-Al2O3 catalyst showed higher resistance to deactivation and its sulfur poisoning seems to be reversible. In the case of the commercial and Ni/Zr-Al2O3 catalysts, they did not recover their activity.

  15. Effect of dilution and L-malic acid addition on bio-hydrogen production with Rhodopseudomonas palustris from effluent of an acidogenic anaerobic reactor

    International Nuclear Information System (INIS)

    Azbar, N.; Tuba, F.; Dokgoz, C.

    2009-01-01

    In this study, H 2 was produced in a two-stage biological process: I) first stage; the dark fermentation of cheese whey wastewater, which is rich in lactose, by mixed anaerobic culture grown at thermophilic temperature in a continuously running fermentor and ii) second stage; the photo-fermentation of the residual medium by R. palustris strain (DSM 127) at 31 o C under illumination of 150 W in batch mode, respectively. In the first part of the study, the effluent from the dark fermentation reactor was used either as it is (no dilution) or after dilution with distilled water at varying ratios such as 1/2 , 1/5, 1/10 (1 volume effluent/5 volume distilled water) before used in photo-fermentation experiments. In the second part of the study, L-malic acid at varying amounts was added into the hydrogen production medium in order to have L-malic acid concentrations ranging from 0 to 4 g/l. Non-diluted and pre-diluted mediums with or without L-malic acid addition were also tested for comparison purpose (as controls). Prior to the hydrogen production experiments, all samples were subjected to pH adjustment, (pH 6.7) and sterilized by autoclave at 121 o C for 15 min. In regards to the experiments in which the effect of dilution of the effluent from dark fermentation was studied, it was observed that dilution of the effluent from dark fermentation resulted in much better hydrogen productions. Among the dilution rates used, the experiments operated with 1/5 dilution ratio produced the best hydrogen production (241 ml H 2 / g COD fed ). On the other hand, it was seen that the mixing the effluent with L-malic acid (0 - 4 g/l) at increasing ratios (studied from 0% L-malic acid up to 100% by volume in the mixture) had further positive effect and improved the hydrogen production. The bioreactors containing only L-malic acid media resulted in the best hydrogen production (438 ml H 2 / g COD fed ). It was found that, undiluted raw cheese whey wastewater effluent from dark hydrogen

  16. Effect of dilution and L-malic acid addition on bio-hydrogen production with Rhodopseudomonas palustris from effluent of an acidogenic anaerobic reactor

    Energy Technology Data Exchange (ETDEWEB)

    Azbar, N.; Tuba, F.; Dokgoz, C. [Bioengineering Dept., Faculty of Engineering, Ege Univ., Izmir (Turkey)], E-mail: nuri.azbar@ege.edu.tr

    2009-07-01

    In this study, H{sub 2} was produced in a two-stage biological process: I) first stage; the dark fermentation of cheese whey wastewater, which is rich in lactose, by mixed anaerobic culture grown at thermophilic temperature in a continuously running fermentor and ii) second stage; the photo-fermentation of the residual medium by R. palustris strain (DSM 127) at 31{sup o}C under illumination of 150 W in batch mode, respectively. In the first part of the study, the effluent from the dark fermentation reactor was used either as it is (no dilution) or after dilution with distilled water at varying ratios such as 1/2 , 1/5, 1/10 (1 volume effluent/5 volume distilled water) before used in photo-fermentation experiments. In the second part of the study, L-malic acid at varying amounts was added into the hydrogen production medium in order to have L-malic acid concentrations ranging from 0 to 4 g/l. Non-diluted and pre-diluted mediums with or without L-malic acid addition were also tested for comparison purpose (as controls). Prior to the hydrogen production experiments, all samples were subjected to pH adjustment, (pH 6.7) and sterilized by autoclave at 121{sup o}C for 15 min. In regards to the experiments in which the effect of dilution of the effluent from dark fermentation was studied, it was observed that dilution of the effluent from dark fermentation resulted in much better hydrogen productions. Among the dilution rates used, the experiments operated with 1/5 dilution ratio produced the best hydrogen production (241 ml H{sub 2}/ g COD{sub fed}). On the other hand, it was seen that the mixing the effluent with L-malic acid (0 - 4 g/l) at increasing ratios (studied from 0% L-malic acid up to 100% by volume in the mixture) had further positive effect and improved the hydrogen production. The bioreactors containing only L-malic acid media resulted in the best hydrogen production (438 ml H{sub 2} / g COD{sub fed}). It was found that, undiluted raw cheese whey wastewater

  17. runjags: An R Package Providing Interface Utilities, Model Templates, Parallel Computing Methods and Additional Distributions for MCMC Models in JAGS

    Directory of Open Access Journals (Sweden)

    Matthew J. Denwood

    2016-07-01

    Full Text Available The runjags package provides a set of interface functions to facilitate running Markov chain Monte Carlo models in JAGS from within R. Automated calculation of appropriate convergence and sample length diagnostics, user-friendly access to commonly used graphical outputs and summary statistics, and parallelized methods of running JAGS are provided. Template model specifications can be generated using a standard lme4-style formula interface to assist users less familiar with the BUGS syntax. Automated simulation study functions are implemented to facilitate model performance assessment, as well as drop-k type cross-validation studies, using high performance computing clusters such as those provided by parallel. A module extension for JAGS is also included within runjags, providing the Pareto family of distributions and a series of minimally-informative priors including the DuMouchel and half-Cauchy priors. This paper outlines the primary functions of this package, and gives an illustration of a simulation study to assess the sensitivity of two equivalent model formulations to different prior distributions.

  18. Effects of Ni-5%RExOy Composite Additives on Electrochemical Hydrogen Storage Performances of Mg2Ni

    Directory of Open Access Journals (Sweden)

    ZHANG Guo-fang

    2017-11-01

    Full Text Available The Ni-5%RExOy (CeO2, La2O3, Eu2O3 as composite additives, Mg2Ni-Ni-5%RExOy composites were prepared by the ball milling method. The effects of different additives on the structure, morphology, electrochemistry and kinetic properties of Mg2Ni alloy were studied systematically. The results show that composite additives can improve the proportion of amorphous and nanocrystalline structure of Mg2Ni alloy. The particle size is homogeneous but the agglomeration is observed in the sample with Ni-5%CeO2 additives. The composites with additives show higher maximum discharge capacity and better cycle stabilities. All of these three kinds of composite additives can improve the kinetic properties of the composites effectively, including optimizing the charge-transfer ability, the reversibility of the electrochemical reaction on the alloy surface, and enhancing the diffusion coefficients of H atoms in the bulk of alloy. Among these three kinds of additives, Ni-5%CeO2 additive shows the best catalysis effect on promoting the kinetic properties of the composites.

  19. Hydrogen Abstraction Acetylene Addition and Diels-Alder Mechanisms of PAH Formation:  A Detailed Study Using First Principles Calculations.

    Science.gov (United States)

    Kislov, V V; Islamova, N I; Kolker, A M; Lin, S H; Mebel, A M

    2005-09-01

    Extensive ab initio Gaussian-3-type calculations of potential energy surfaces (PES), which are expected to be accurate within 1-2 kcal/mol, combined with statistical theory calculations of reaction rate constants have been applied to study various possible pathways in the hydrogen abstraction acetylene addition (HACA) mechanism of naphthalene and acenaphthalene formation as well as Diels-Alder pathways to acenaphthalene, phenanthrene, and pyrene. The barrier heights; reaction energies; and molecular parameters of the reactants, products, intermediates, and transition states have been generated for all types of reactions involved in the HACA and Diels-Alder mechanisms, including H abstraction from various aromatic intermediates, acetylene addition to radical sites, ring closures leading to the formation of additional aromatic rings, elimination of hydrogen atoms, H disproportionation, C2H2 cycloaddition, and H2 loss. The reactions participating in various HACA sequences (e.g., Frenklach's, alternative Frenklach's, and Bittner and Howard's routes) are demonstrated to have relatively low barriers and high rate constants under combustion conditions. A comparison of the significance of different HACA mechanisms in PAH growth can be made in the future using PES and molecular parameters obtained in the present work. The results show that the Diels-Alder mechanism cannot compete with the HACA pathways even at high combustion temperatures, because of high barriers and consequently low reaction rate constants. The calculated energetic parameters and rate constants have been compared with experimental and theoretical data available in the literature.

  20. Additional electrodes on the Quartet™ LV lead provide more programmable pacing options than bipolar and tripolar equivalents.

    Science.gov (United States)

    O'Donnell, David; Sperzel, Johannes; Thibault, Bernard; Rinaldi, Christopher A; Pappone, Carlo; Gutleben, Klaus-Jürgen; Leclercq, Christopher; Razavi, Hedi; Ryu, Kyungmoo; Mcspadden, Luke C; Fischer, Avi; Tomassoni, Gery

    2017-04-01

    The aim of this study was to evaluate any benefits to the number of viable pacing vectors and maximal spatial coverage with quadripolar left ventricular (LV) leads when compared with tripolar and bipolar equivalents in patients receiving cardiac resynchronization therapy (CRT). A meta-analysis of five previously published clinical trials involving the Quartet™ LV lead (St Jude Medical, St Paul, MN, USA) was performed to evaluate the number of viable pacing vectors defined as capture thresholds ≤2.5 V and no phrenic nerve stimulation and maximal spatial coverage of viable vectors in CRT patients at pre-discharge (n = 370) and first follow-up (n = 355). Bipolar and tripolar lead configurations were modelled by systematic elimination of two and one electrode(s), respectively, from the Quartet lead. The Quartet lead with its four pacing electrodes exhibited the greatest number of pacing vectors per patient when compared with the best bipolar and the best tripolar modelled equivalents. Similarly, the Quartet lead provided the highest spatial coverage in terms of the distance between two furthest viable pacing cathodes when compared with the best bipolar and the best tripolar configurations (P tripolar configurations, elimination of the second proximal electrode (M3) resulted in the highest number of viable pacing options per patient. There were no significant differences observed between pre-discharge and first follow-up analyses. The Quartet lead with its four electrodes and the capability to pace from four anatomical locations provided the highest number of viable pacing vectors at pre-discharge and first follow-up visits, providing more flexibility in device programming and enabling continuation of CRT in more patients when compared with bipolar and tripolar equivalents. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  1. Use of additives to enhance the removal of phenols from water treated with horseradish and hydrogen peroxide.

    Science.gov (United States)

    Tonegawa, Masami; Dec, Jerzy; Bollag, Jean-Marc

    2003-01-01

    Use of additives, such as polyethylene glycol (PEG), selected surfactants, chitosan gel, or activated carbon, has been shown to enhance enzymatic treatment of water polluted with organic compounds. In this study, additives were used to facilitate the removal of 2,4-dichlorophenol (2,4-DCP) from water using minced horseradish (Armoracia rusticana P. Gaertn. et al.) as a carrier of peroxidase activity. The specific objectives of the study were to (i) enhance the pollutant removal activity of minced horseradish by the addition of PEG and other additives (e.g., Tween 20, Triton X-100, and rhamnolipid); (ii) eliminate colored reaction products by the addition of chitosan; and (iii) eliminate color by amending treated water with activated carbon. The disappearance of 2,4-DCP in horseradish-treated water samples amended with PEG or various surfactants (75-90%) was greatly increased over that observed in nonamended samples (29%). The effect of PEG depended on its average molecular weight. As indicated by visible spectrophotometry, enclosing horseradish pieces between two sealed chitosan films completely eliminated colored reaction products; however, the decolorization was accompanied by a reduction in 2,4-DCP removal (from 95 to 60%). On the other hand, commercially available activated carbon completely removed colored reaction products from the treated water without reducing the removal efficiency. Based on the results obtained, it can be concluded that the use of additives may considerably improve the quality of wastewater treated by plant materials.

  2. Effects of additions on AB{sub 5}-type hydrogen storage alloy in MH-Ni battery application

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiangdong; Feng, Hongwei; Tian, Xiao; Chi, Bo; Yan, Shufang [School of Material Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051 (China); Xu, Jin [Zhanjiang University of Radio and Television, Zhanjiang 524003 (China)

    2009-09-15

    The AB{sub 5}-type hydrogen storage alloy of Mm{sub 0.3}Ml{sub 0.7}Ni{sub 3.55}Co{sub 0.75}Mn{sub 0.4}Al{sub 0.3} were synthesized and mixed with PVA (Polyvinyl Alcohol) or different percentage Ni powder as the test samples. The cycle stabilities of the composites were tested in 6 M KOH electrolyte through electrochemical method. The results indicated that all the samples with Ni powder have better cycle stabilities and flatter discharge voltage platform. The sample of Mm{sub 0.3}Ml{sub 0.7}Ni{sub 3.55}Co{sub 0.7}5Mn{sub 0.4}Al{sub 0.3} + 200 wt.% Ni has the highest capacity conservation rate of 80.5% and the longest discharge time of 5.2 h. The SEM images show that the particle diameters of the alloy decreased by 2 {mu}m and the surface smoothed without sharp edges after adding Ni powder. It can be presumed that adding Ni can improve the cycle stability of the alloy of Mm{sub 0.3}Ml{sub 0.7}Ni{sub 3.55}Co{sub 0.7}5Mn{sub 0.4}Al{sub 0.3} in the alkaline electrolyte and enhance the reaction rate in the charge/discharge cycles. (author)

  3. Contrast-enhanced spectral mammography: Does mammography provide additional clinical benefits or can some radiation exposure be avoided?

    Science.gov (United States)

    Fallenberg, Eva Maria; Dromain, Clarisse; Diekmann, Felix; Renz, Diane M; Amer, Heba; Ingold-Heppner, Barbara; Neumann, Avidan U; Winzer, Klaus J; Bick, Ulrich; Hamm, Bernd; Engelken, Florian

    2014-07-01

    The purpose of this study was to compare contrast-enhanced spectral mammography (CESM) with mammography (MG) and combined CESM + MG in terms of detection and size estimation of histologically proven breast cancers in order to assess the potential to reduce radiation exposure. A total of 118 patients underwent MG and CESM and had final histological results. CESM was performed as a bilateral examination starting 2 min after injection of iodinated contrast medium. Three independent blinded radiologists read the CESM, MG, and CESM + MG images with an interval of at least 4 weeks to avoid case memorization. Sensitivity and size measurement correlation and differences were calculated, average glandular dose (AGD) levels were compared, and breast densities were reported. Fisher's exact and Wilcoxon tests were performed. A total of 107 imaging pairs were available for analysis. Densities were ACR1: 2, ACR2: 45, ACR3: 42, and ACR4: 18. Mean AGD was 1.89 mGy for CESM alone, 1.78 mGy for MG, and 3.67 mGy for the combination. In very dense breasts, AGD of CESM was significantly lower than MG. Sensitivity across readers was 77.9 % for MG alone, 94.7 % for CESM, and 95 % for CESM + MG. Average tumor size measurement error compared to postsurgical pathology was -0.6 mm for MG, +0.6 mm for CESM, and +4.5 mm for CESM + MG (p < 0.001 for CESM + MG vs. both modalities). CESM alone has the same sensitivity and better size assessment as CESM + MG and was significantly better than MG with only 6.2 % increase in AGD. The combination of CESM + MG led to systematic size overestimation. When a CESM examination is planned, additional MG can be avoided, with the possibility of saving up to 61 % of radiation dose, especially in patients with dense breasts.

  4. Additional Haptic Information Provided by Anchors Reduces Postural Sway in Young Adults Less Than Does Light Touch

    Directory of Open Access Journals (Sweden)

    Renato Moraes

    2018-06-01

    Full Text Available This study investigated the effect of adding haptic information to the control of posture, as well as comparing the effect of both the “light touch” (LT and “anchor system” (AS paradigms on postural sway. Additionally, it compared the effect of location and number of points of contact to the control of posture in young adults. The location consisted of using the anchors tied to the finger and held by the hands, and, for LT, the fingertip. For the number of points of contact, participants used two hands, and then separately the dominant hand, and the non-dominant hand, for both anchor and LT paradigms. Participants stood upright with feet-together and in tandem position while performing tasks that combined the use of anchors and LT, points of contact (hand grip and finger, and number of points of contact (two hands and one hand. In this study, the anchors consist of holding in each hand a flexible cable with the other end attached to the ground. The LT consists of slightly touching a rigid surface with the tip of the index finger. The results showed, first, that the anchors improved postural control less than did the LT. Second, they revealed that holding the anchors with the hands or with them tied to the fingertip resulted in a similar reduction in postural sway only in the tandem position. For the feet-together position, the anchors tied to the fingertip were ineffective. Similarly, the use of one or two hands did not affect the contribution of the anchors. However, using two hands in the LT condition was more effective than was one hand. Third, our results showed the presence of a temporal delay between force and center-of-pressure (COP for the anchors, only in the AP direction with feet-together. In conclusion, overall, the anchors were less effective in reducing postural sway than was the LT. The anchors attached to fingertips were as effective as the hand-held anchors in the tandem position, yet ineffective during foot

  5. The influence hydrogen atom addition has on charge switching during motion of the metal atom in endohedral Ca@C60H4 isomers

    Science.gov (United States)

    Raggi, G.; Besley, E.; Stace, A. J.

    2016-01-01

    Density functional theory has been applied in a study of charge transfer between an endohedral calcium atom and the fullerene cage in Ca@C60H4 and [Ca@C60H4]+ isomers. Previous calculations on Ca@C60 have shown that the motion of calcium within a fullerene is accompanied by large changes in electron density on the carbon cage. Based on this observation, it has been proposed that a tethered endohedral fullerene might form the bases of a nanoswitch. Through the addition of hydrogen atoms to one hemisphere of the cage it is shown that, when compared with Ca@C60, asymmetric and significantly reduced energy barriers can be generated with respect to motion of the calcium atom. It is proposed that hydrogen atom addition to a fullerene might offer a route for creating a bi-stable nanoswitch that can be fine-tuned through the selection of an appropriate isomer and number of atoms attached to the cage of an endohedral fullerene. This article is part of the themed issue ‘Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene’. PMID:27501967

  6. Hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    Pahwa, P.K.; Pahwa, Gulshan Kumar

    2013-10-01

    In the future, our energy systems will need to be renewable and sustainable, efficient and cost-effective, convenient and safe. Hydrogen has been proposed as the perfect fuel for this future energy system. The availability of a reliable and cost-effective supply, safe and efficient storage, and convenient end use of hydrogen will be essential for a transition to a hydrogen economy. Research is being conducted throughout the world for the development of safe, cost-effective hydrogen production, storage, and end-use technologies that support and foster this transition. This book discusses hydrogen economy vis-a-vis sustainable development. It examines the link between development and energy, prospects of sustainable development, significance of hydrogen energy economy, and provides an authoritative and up-to-date scientific account of hydrogen generation, storage, transportation, and safety.

  7. Catalyzed borohydrides for hydrogen storage

    Science.gov (United States)

    Au, Ming [Augusta, GA

    2012-02-28

    A hydrogen storage material and process is provided in which alkali borohydride materials are created which contain effective amounts of catalyst(s) which include transition metal oxides, halides, and chlorides of titanium, zirconium, tin, and combinations of the various catalysts. When the catalysts are added to an alkali borodydride such as a lithium borohydride, the initial hydrogen release point of the resulting mixture is substantially lowered. Additionally, the hydrogen storage material may be rehydrided with weight percent values of hydrogen at least about 9 percent.

  8. 14 CFR 61.419 - How do I obtain privileges to provide training in an additional category or class of light-sport...

    Science.gov (United States)

    2010-01-01

    ... training in an additional category or class of light-sport aircraft? 61.419 Section 61.419 Aeronautics and...: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Flight Instructors With a Sport Pilot Rating § 61.419 How do I obtain privileges to provide training in an additional category or class of light-sport...

  9. Study of Supported Nickel Catalysts Prepared by Aqueous Hydrazine Method. Hydrogenating Properties and Hydrogen Storage: Support Effect. Silver Additive Effect; Catalyseurs de nickel supportes prepares par la methode de l'hydrazine aqueuse. Proprietes hydrogenantes et stockage d'hydrogene. Effet du support. Effet de l'ajout d'argent

    Energy Technology Data Exchange (ETDEWEB)

    Wojcieszak, R

    2006-06-15

    We have studied Ni or NiAg nano-particles obtained by the reduction of nickel salts (acetate or nitrate) by hydrazine and deposited by simple or EDTA-double impregnation on various supports ({gamma}-Al{sub 2}O{sub 3}, amorphous or crystallized SiO{sub 2}, Nb{sub 2}O{sub 5}, CeO{sub 2} and carbon). Prepared catalysts were characterized by different methods (XRD, XPS, low temperature adsorption and desorption of N{sub 2}, FTIR and FTIR-Pyridine, TEM, STEM, EDS, H{sub 2}-TPR, H{sub 2}-adsorption, H{sub 2}-TPD, isopropanol decomposition) and tested in the gas phase hydrogenation of benzene or as carbon materials in the hydrogen storage at room temperature and high pressure. The catalysts prepared exhibited better dispersion and activity than classical catalysts. TOF's of NiAg/SiO{sub 2} or Ni/carbon catalysts were similar to Pt catalysts in benzene hydrogenation. Differences in support acidity or preparation method and presence of Ag as metal additive play a crucial role in the chemical reduction of Ni by hydrazine and in the final properties of the materials. Ni/carbon catalysts could store significant amounts of hydrogen at room temperature and high pressure (0.53%/30 bars), probably through the hydrogen spillover effect. (author)

  10. Structure determination of the Si(001)-(2 x 1)-H reconstruction by surface X-ray diffraction: Weakening of the dimer bond by the addition of hydrogen

    DEFF Research Database (Denmark)

    Lauridsen, E.M.; Baker, J.; Nielsen, M.

    2000-01-01

    The atomic structure of the monohydride Si(001)-(2 x 1)-H reconstruction has been investigated by surface X-ray diffraction. Atomic relaxations down to the eighth layer have been determined. The bond length of the hydrogenated silicon dimers was found to be 2.47 +/- 0.02 Angstrom. which is longer...... than the dimer bond of the clean (2 x 1)-reconstructed Si(001) surface and also 5% longer than the bulk bond length of 2.35 Angstrom. The differences to the (2 x 1) structure of the clean surface are discussed in terms of the elimination of the weak pi-bond character of the dimer bond by the addition...

  11. The role of the achiral template in enantioselective transformations. Radical conjugate additions to alpha-methacrylates followed by hydrogen atom transfer.

    Science.gov (United States)

    Sibi, Mukund P; Sausker, Justin B

    2002-02-13

    We have evaluated various achiral templates (1a-g, 10, and 16) in conjunction with chiral Lewis acids in the conjugate addition of nucleophilic radicals to alpha-methacrylates followed by enantioselective H-atom transfer. Of these, a novel naphthosultam template (10) gave high enantioselectivity in the H-atom-transfer reactions with ee's up to 90%. A chiral Lewis acid derived from MgBr(2) and bisoxazoline (2) gave the highest selectivity in the enantioselective hydrogen-atom-transfer reactions. Non-C(2) symmetric oxazolines (20-25) have also been examined as ligands, and of these, compound 25 gave optimal results (87% yield and 80% ee). Insights into rotamer control in alpha-substituted acrylates and the critical role of the tetrahedral sulfone moiety in realizing high selectivity are discussed.

  12. Effects of additive Pd on the structures and electrochemical hydrogen storage properties of Mg{sub 67}Co{sub 33}-based composites or alloys with BCC phase

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yao; Zhuang, Xiangyang [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China); Zhu, Yunfeng [College of Materials Science and Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009 (China); Zhan, Leyu [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China); Pu, Zhenggan [College of Materials Science and Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009 (China); Wan, Neng [SEU-FEI Nano Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electronics Science and Engineering, Southeast University, Nanjing 210096 (China); Li, Liquan [College of Materials Science and Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009 (China)

    2015-02-15

    Highlights: • Additive Pd in Mg{sub 67}Co{sub 33} benefits to form a ternary BCC alloy. • Introducing 5.0 at.% Pd in Mg{sub 67}Co{sub 33} lifts the initial discharge capacity from 10 mAh/g to maximum 530 mAh/g. • Exchange current density was increased due to the homogeneously dispersed Pd. • Additive Pd slightly enhances the hydrogen diffusion coefficient of Mg-Co-Pd composites or alloys. - Abstract: Mg{sub 67}Co{sub 33} and Mg{sub 67}Co{sub 33}-Pd composites/alloys prepared by ball milling for 120 h possess nano-crystalline with body-centered cubic (BCC) structure, which was verified by high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) analyses. The introduced 5.0 at.% Pd significantly lifts the initial discharge capacity from 10 mAh g{sup -1} of Mg{sub 67}Co{sub 33} to maximum 530 mAh g{sup -1}. Pd also drives the Mg{sub 67}Co{sub 33}-Pd composite forming a full BCC alloy during ball milling. The distribution of Pd gradually becomes homogeneous with the augmentation of the ball milling time according to the analyses by scanning electron microscopy-energy dispersive spectrometer (SEM-EDS). Exchange current density increased with the milling time and can be ascribed to the homogeneously dispersion of Pd over the surface. The introduced Pd also enhances the hydrogen diffusion coefficient of the Mg{sub 67}Co{sub 33}-Pd composites/alloys.

  13. Electron-microscopy studies of NaAlH{sub 4} with TiF{sub 3} additive: hydrogen-cycling effects

    Energy Technology Data Exchange (ETDEWEB)

    Andrei, C.M.; Holmestad, R. [Norwegian University of Science and Technology, Department of Physics, Trondheim (Norway); Walmsley, J.C. [SINTEF Materials and Chemistry, Trondheim (Norway); Brinks, H.W.; Hauback, B.C. [Institute for Energy Technology, P.O. Box 40, Kjeller (Norway); Srinivasan, S.S.; Jensen, C.M. [University of Hawaii, Department of Chemistry, Honolulu, HI (United States)

    2005-02-01

    NaAlH{sub 4} is a promising candidate material for hydrogen storage. Ti additives are effective in reducing the reaction temperatures and improving kinetics. In this work, the microstructure of NaAlH{sub 4} with 2% TiF{sub 3} has been studied in different conditions using a combination of transmission electron microscopy and scanning electron microscopy, both with energy-dispersive spectroscopic X-ray analysis. The effect of the additive on particle and grain size was examined after the initial ball-milling process and after 15 cycles. The additive has an uneven distribution in the sample after ball milling. Selected-area diffraction and high-resolution imaging confirmed the presence of TiF{sub 3}. This phase accounts for most of the Ti in the material at this stage and showed limited mixing with the alanate. The grain size within particles for TiF{sub 3} is larger than for the alanate particles. Diffraction from the latter was dominated by metallic aluminium. After cycling, the TiF{sub 3} has decomposed and energy-dispersive spectroscopic X-ray analysis maps showed some combination of Ti with the alanate phase. There is no significant change in the measurable grain size of the Al-containing alanate particles between the ball-milled and the 15-cycled samples, but more cycles result in agglomeration of the material. (orig.)

  14. Chemochromic Hydrogen Leak Detectors

    Science.gov (United States)

    Roberson, Luke; Captain, Janine; Williams, Martha; Smith, Trent; Tate, LaNetra; Raissi, Ali; Mohajeri, Nahid; Muradov, Nazim; Bokerman, Gary

    2009-01-01

    At NASA, hydrogen safety is a key concern for space shuttle processing. Leaks of any level must be quickly recognized and addressed due to hydrogen s lower explosion limit. Chemo - chromic devices have been developed to detect hydrogen gas in several embodiments. Because hydrogen is odorless and colorless and poses an explosion hazard, there is an emerging need for sensors to quickly and accurately detect low levels of leaking hydrogen in fuel cells and other advanced energy- generating systems in which hydrogen is used as fuel. The device incorporates a chemo - chromic pigment into a base polymer. The article can reversibly or irreversibly change color upon exposure to hydrogen. The irreversible pigment changes color from a light beige to a dark gray. The sensitivity of the pigment can be tailored to its application by altering its exposure to gas through the incorporation of one or more additives or polymer matrix. Furthermore, through the incorporation of insulating additives, the chemochromic sensor can operate at cryogenic temperatures as low as 78 K. A chemochromic detector of this type can be manufactured into any feasible polymer part including injection molded plastic parts, fiber-spun textiles, or extruded tapes. The detectors are simple, inexpensive, portable, and do not require an external power source. The chemochromic detectors were installed and removed easily at the KSC launch pad without need for special expertise. These detectors may require an external monitor such as the human eye, camera, or electronic detector; however, they could be left in place, unmonitored, and examined later for color change to determine whether there had been exposure to hydrogen. In one type of envisioned application, chemochromic detectors would be fabricated as outer layers (e.g., casings or coatings) on high-pressure hydrogen storage tanks and other components of hydrogen-handling systems to provide visible indications of hydrogen leaks caused by fatigue failures or

  15. Use of triphenyl phosphate as risk mitigant for metal amide hydrogen storage materials

    Science.gov (United States)

    Cortes-Concepcion, Jose A.; Anton, Donald L.

    2016-04-26

    A process in a resulting product of the process in which a hydrogen storage metal amide is modified by a ball milling process using an additive of TPP. The resulting product provides for a hydrogen storage metal amide having a coating that renders the hydrogen storage metal amide resistant to air, ambient moisture, and liquid water while improving useful hydrogen storage and release kinetics.

  16. Effect of boron addition on the microstructure and electrochemical performance of La2Mg(Ni0.85Co0.15)9 hydrogen storage alloy

    International Nuclear Information System (INIS)

    Zhang Yanghuan; Dong Xiaoping; Wang Guoqing; Guo Shihai; Ren Jiangyuan; Wang Xinlin

    2006-01-01

    In order to improve the electrochemical performances of La-Mg-Ni system (PuNi 3 -type) hydrogen storage alloy, a trace of boron was added in La 2 Mg(Ni 0.85 Co 0.15 ) 9 and rapid quenching techniques were used. La 2 Mg(Ni 0.85 Co 0.15 ) 9 B x (x = 0, 0.05, 0.1, 0.15, 0.2) hydrogen storage alloys were prepared by casting and rapid quenching. The microstructures and electrochemical performances of the as-cast and quenched alloys were determined and measured. The effects of the boron content and the quenching rate on the microstructures and electrochemical performances of the alloys were investigated in detail. The obtained results show that the as-cast and quenched alloys are composed of the (La, Mg)Ni 3 phase (PuNi 3 structure), the LaNi 5 phase and the LaNi 2 phase. A trace of the Ni 2 B phase exists in the as-cast alloys containing boron. The Ni 2 B phase in the alloys containing boron nearly disappears after rapid quenching and the relative amount of each phase in the alloys changes with the variety of the quenching rate. The addition of boron obviously enhances the cycle stability of the as-cast and quenched alloys. The effects of boron content on the capacities of the as-cast and quenched alloys are different. The capacities of the as-cast alloys monotonously decrease with the increase of boron content, whereas the capacities of the as-quenched alloys have a maximum value with the change of boron content. The as-cast and quenched alloys have an excellent activation performance

  17. Impact of High-Fidelity Simulation and Pharmacist-Specific Didactic Lectures in Addition to ACLS Provider Certification on Pharmacy Resident ACLS Performance.

    Science.gov (United States)

    Bartel, Billie J

    2014-08-01

    This pilot study explored the use of multidisciplinary high-fidelity simulation and additional pharmacist-focused training methods in training postgraduate year 1 (PGY1) pharmacy residents to provide Advanced Cardiovascular Life Support (ACLS) care. Pharmacy resident confidence and comfort level were assessed after completing these training requirements. The ACLS training requirements for pharmacy residents were revised to include didactic instruction on ACLS pharmacology and rhythm recognition and participation in multidisciplinary high-fidelity simulation ACLS experiences in addition to ACLS provider certification. Surveys were administered to participating residents to assess the impact of this additional education on resident confidence and comfort level in cardiopulmonary arrest situations. The new ACLS didactic and simulation training requirements resulted in increased resident confidence and comfort level in all assessed functions. Residents felt more confident in all areas except providing recommendations for dosing and administration of medications and rhythm recognition after completing the simulation scenarios than with ACLS certification training and the didactic components alone. All residents felt the addition of lectures and simulation experiences better prepared them to function as a pharmacist in the ACLS team. Additional ACLS training requirements for pharmacy residents increased overall awareness of pharmacist roles and responsibilities and greatly improved resident confidence and comfort level in performing most essential pharmacist functions during ACLS situations. © The Author(s) 2013.

  18. Transport Reactor Development Unit Modification to Provide a Syngas Slipstream at Elevated Conditions to Enable Separation of 100 LB/D of Hydrogen by Hydrogen Separation Membranes Year - 6 Activity 1.15 - Development of a National Center for Hydrogen Technology

    Energy Technology Data Exchange (ETDEWEB)

    Schlasner, Steven

    2012-03-01

    Gasification of coal when associated with carbon dioxide capture and sequestration has the potential to provide low-cost as well as low-carbon hydrogen for electric power, fuels or chemicals production. The key element to the success of this concept is inexpensive, effective separation of hydrogen from carbon dioxide in synthesis gas. Many studies indicate that membrane technology is one of the most, if not the most, economical means of accomplishing separation; however, the advancement of hydrogen separation membrane technology is hampered by the absence of experience or demonstration that the technology is effective economically and environmentally at larger scales. While encouraging performance has been observed at bench scale (less than 12 lb/d hydrogen), it would be imprudent to pursue a largescale demonstration without testing at least one intermediate scale, such as 100 lb/d hydrogen. Among its many gasifiers, the Energy & Environmental Research Center is home to the transport reactor demonstration unit (TRDU), a unit capable of firing 200—500 lb/hr of coal to produce 400 scfm of synthesis gas containing more than 200 lb/d of hydrogen. The TRDU and associated downstream processing equipment has demonstrated the capability of producing a syngas over a wide range of temperatures and contaminant levels — some of which approximate conditions of commercial-scale gasifiers. Until this activity, however, the maximum pressure of the TRDU’ s product syngas was 120 psig, well below the 400+ psig pressures of existing large gasifiers. This activity installed a high-temperature compressor capable of accepting the range of TRDU products up to 450°F and compressing them to 500 psig, a pressure comparable to some large scale gasifiers. Thus, with heating or cooling downstream of the TRDU compressor, the unit is now able to present a near-raw to clean gasifier synthesis gas containing more than 100 lb/d of hydrogen at up to 500 psig over a wide range of temperatures

  19. Hydrogen manufacturing using plasma reformers

    Energy Technology Data Exchange (ETDEWEB)

    Bromberg, L.; Cohn, D.R.; Rabinovich, A.; Hochgreb, S.; O`Brien, C. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1996-10-01

    Manufacturing of hydrogen from hydrocarbon fuels is needed for a variety of applications. These applications include fuel cells used in stationary electric power production and in vehicular propulsion. Hydrogen can also be used for various combustion engine systems. There is a wide range of requirements on the capacity of the hydrogen manufacturing system, the purity of the hydrogen fuel, and capability for rapid response. The overall objectives of a hydrogen manufacturing facility are to operate with high availability at the lowest possible cost and to have minimal adverse environmental impact. Plasma technology has potential to significantly alleviate shortcomings of conventional means of manufacturing hydrogen. These shortcomings include cost and deterioration of catalysts; limitations on hydrogen production from heavy hydrocarbons; limitations on rapid response; and size and weight requirements. In addition, use of plasma technology could provide for a greater variety of operating modes; in particular the possibility of virtual elimination of CO{sub 2} production by pyrolytic operation. This mode of hydrogen production may be of increasing importance due to recent additional evidence of global warming.

  20. The fusion-hydrogen energy system

    International Nuclear Information System (INIS)

    Williams, L.O.

    1994-01-01

    This paper will describe the structure of the system, from energy generation and hydrogen production through distribution to the end users. It will show how stationary energy users will convert to hydrogen and will outline ancillary uses of hydrogen to aid in reducing other forms of pollution. It will show that the adoption of the fusion hydrogen energy system will facilitate the use of renewable energy such as wind and solar. The development of highly efficient fuel cells for production of electricity near the user and for transportation will be outlined. The safety of the hydrogen fusion energy system is addressed. This paper will show that the combination of fusion generation combined with hydrogen distribution will provide a system capable of virtually eliminating the negative impact on the environment from the use of energy by humanity. In addition, implementation of the energy system will provide techniques and tools that can ameliorate environmental problems unrelated to energy use. (Author)

  1. Biomimetic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Krassen, Henning

    2009-05-15

    Hydrogenases catalyze the reduction of protons to molecular hydrogen with outstanding efficiency. An electrode surface which is covered with active hydrogenase molecules becomes a promising alternative to platinum for electrochemical hydrogen production. To immobilize the hydrogenase on the electrode, the gold surface was modified by heterobifunctional molecules. A thiol headgroup on one side allowed the binding to the gold surface and the formation of a self-assembled monolayer. The other side of the molecules provided a surface with a high affinity for the hydrogenase CrHydA1 from Chlamydomonas reinhardtii. With methylviologen as a soluble energy carrier, electrons were transferred from carboxy-terminated electrodes to CrHydA1 and conducted to the active site (H-cluster), where they reduce protons to molecular hydrogen. A combined approach of surface-enhanced infrared absorption spectroscopy, gas chromatography, and surface plasmon resonance allowed quantifying the hydrogen production on a molecular level. Hydrogen was produced with a rate of 85 mol H{sub 2} min{sup -1} mol{sup -1}. On a 1'- benzyl-4,4'-bipyridinum (BBP)-terminated surface, the electrons were mediated by the monolayer and no soluble electron carrier was necessary to achieve a comparable hydrogen production rate (approximately 50% of the former system). The hydrogen evolution potential was determined to be -335 mV for the BBP-bound hydrogenase and -290 mV for the hydrogenase which was immobilized on a carboxy-terminated mercaptopropionic acid SAM. Therefore, both systems significantly reduce the hydrogen production overpotential and allow electrochemical hydrogen production at an energy level which is close to the commercially applied platinum electrodes (hydrogen evolution potential of -270 mV). In order to couple hydrogen production and photosynthesis, photosystem I (PS1) from Synechocystis PCC 6803 and membrane-bound hydrogenase (MBH) from Ralstonia eutropha were bound to each other

  2. Medical Care Provided Under California's Workers' Compensation Program: Effects of the Reforms and Additional Opportunities to Improve the Quality and Efficiency of Care.

    Science.gov (United States)

    Wynn, Barbara O; Timbie, Justin W; Sorbero, Melony E

    2011-01-01

    Since 2004, significant changes have been made to the California workers' compensation (WC) system. The Commission on Health and Safety and Workers' Compensation (CHSWC) asked the RAND Corporation to examine the impact that these changes have on the medical care provided to injured workers. This study synthesizes findings from interviews and available information regarding the implementation of the changes affecting WC medical care and identifies areas in which additional changes might increase the quality and efficiency of care delivered under the WC system. To improve incentives for efficiently providing medically appropriate care, California should revise its fee schedule allowances for services provided by hospitals to inpatients, freestanding ambulatory surgery centers, and physicians, create nonmonetary incentives for providing medically appropriate care in the medical provider network (MPN) context through more-selective contracting with providers and reducing medical review requirements for high-performing physicians; reduce incentives for inappropriate prescribing practices by curtailing in-office physician dispensing; and implement pharmacy benefit network regulations. To increase accountability for performance, California should revise the MPN certification process to place accountability for meeting MPN standards on the entity contracting with the physician network; strengthen Division of Workers' Compensation (DWC) authorities to provide intermediate sanctions for failure to comply with MPN requirements; and modify the Labor Code to remove payers and MPNs from the definition of individually identifiable data so that performance on key measures can be publicly available. To facilitate monitoring and oversight, California should provide DWC with more flexibility to add needed data elements to medical data reporting and provide penalties for a claim administrator failing to comply with the data-reporting requirements; require that medical cost

  3. Service provider perceptions of telerehabilitation as an additional service delivery option within an Australian neurosurgical and orthopaedic physiotherapy screening clinic: A qualitative study.

    Science.gov (United States)

    Cottrell, Michelle A; Hill, Anne J; O'Leary, Shaun P; Raymer, Maree E; Russell, Trevor G

    2017-12-01

    The Neurosurgical & Orthopaedic Physiotherapy Screening Clinic and Multidisciplinary Service (N/OPSC&MDS) originated as a complementary, non-surgical pathway for patients referred to public neurosurgical and orthopaedic specialist services. Patient access to the N/OPSC&MDS could potentially be improved with the implementation of telerehabilitation as an additional method of service delivery. To evaluate service provider's views on (1) current barriers to patients' accessing N/OPSC & MD services, and (2) the implementation of telerehabilitation within the N/OPSC&MDS. Qualitative descriptive study design. Healthcare providers (n = 26) were recruited from six N/OPSC&MD services located throughout Queensland, Australia. Semi-structured interviews were conducted to explore service providers' views with respect to existing barriers to patients accessing the N/OPSC&MDS, and if telerehabilitation could be feasibly adopted to address current barriers. Template analysis resulted in six themes: (1) barriers to some patients' accessing current N/OPSC&MD services are complex & multifaceted; (2) telerehabilitation could improve patient access to appropriate management for their musculoskeletal condition; (3) telerehabilitation may have limitations when compared to face-to-face healthcare; (4) the delivery of telerehabilitation needs to be flexible; (5) perceived barriers, and (6) facilitators to the successful implementation of telerehabilitation within the N/OPSC&MDS. This study represents a critical step in determining the readiness of service providers for the implementation of telerehabilitation within the N/OPSC&MDS. Although cautious, service providers are overall accepting of the implementation of telerehabilitation, acknowledging that it could eliminate several current barriers, subsequently achieving more equitable access to the service. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  4. Hydrogen Exchange Mass Spectrometry

    Science.gov (United States)

    Mayne, Leland

    2018-01-01

    Hydrogen exchange (HX) methods can reveal much about the structure, energetics, and dynamics of proteins. The addition of mass spectrometry (MS) to an earlier fragmentation-separation HX analysis now extends HX studies to larger proteins at high structural resolution and can provide information not available before. This chapter discusses experimental aspects of HX labeling, especially with respect to the use of MS and the analysis of MS data. PMID:26791986

  5. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    International Nuclear Information System (INIS)

    Hindin, S. G.; Roberts, G. W.

    1980-01-01

    A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst

  6. EFFECT OF AN ADDITIONAL HYDROPHILIC VERSUS HYDROPHOBIC COAT ON THE QUALITY OF DENTINAL SEALING PROVIDED BY TWO-STEP ETCH-AND-RINSE ADHESIVES

    Science.gov (United States)

    Silva, Safira Marques de Andrade; Carrilho, Marcela Rocha de Oliveira; Marquezini, Luiz; Garcia, Fernanda Cristina Pimentel; Manso, Adriana Pigozzo; Alves, Marcelo Corrêa; de Carvalho, Ricardo Marins

    2009-01-01

    Objective: To test the hypothesis that the quality of the dentinal sealing provided by two-step etch-and-rinse adhesives cannot be altered by the addition of an extra layer of the respective adhesive or the application of a more hydrophobic, non-solvated resin. Material and Methods: full-crown preparations were acid-etched with phosphoric acid for 15 s and bonded with Adper Single Bond (3M ESPE), Excite DSC (Ivoclar/Vivadent) or Prime & Bond NT (Dentsply). The adhesives were used according to the manufacturers' instructions (control groups) or after application to dentin they were a) covered with an extra coat of each respective system or b) coated with a non-solvated bonding agent (Adper Scotchbond Multi-Purpose Adhesive, 3M ESPE). Fluid flow rate was measured before and after dentin surfaces were acid-etched and bonded with adhesives. Results: None of the adhesives or experimental treatments was capable to block completely the fluid transudation across the treated dentin. Application of an extra coat of the adhesive did not reduce the fluid flow rate of adhesive-bonded dentin (p>0.05). Conversely, the application of a more hydrophobic non-solvated resin resulted in significant reductions in the fluid flow rate (padhesives. Conclusions: The quality of the dentinal sealing provided by etch-and-rinse adhesives can be significantly improved by the application of a more hydrophobic, non-solvated bonding agent. PMID:19466248

  7. Florida Hydrogen Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Block, David L

    2013-06-30

    monitoring at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J

  8. Liquid hydrogen: back to basics

    Energy Technology Data Exchange (ETDEWEB)

    Sherif, S.A. [Dept. of Mechanical and Aerospace Engineering, Univ. of Florida, Florida (United States)

    2009-07-01

    'Full text': Liquid hydrogen is primarily used as a rocket fuel and is predestined for supersonic and hypersonic space vehicles to a large extent because it has the lowest boiling point density and the highest specific thrust of any known fuel. Its favorable characteristics include its high heating value per unit mass, its wide ignition range in hydrogen/oxygen or air mixtures, as well as its large flame speed and cooling capacity due to its high specific heat which permits very effective engine cooling and cooling the critical parts of the outer skin. Liquid hydrogen has some other important uses such as in high-energy nuclear physics and bubble chambers. The transport of hydrogen is vastly more economical when it is in liquid form even though cryogenic refrigeration and special Dewar vessels are required. Although liquid hydrogen can provide a lot of advantages, its uses are restricted in part because liquefying hydrogen by existing conventional methods consumes a large amount of energy (around 30% of its heating value). Liquefying 1 kg of hydrogen in a medium-size plant requires 10 to 13 kWh of electric energy. In addition, boil-off losses associated with the storage, transportation, and handling of liquid hydrogen can consume up to 40% of its available combustion energy. It is therefore important to search for ways that can improve the efficiency of the liquefiers and diminish the boil-off losses. This lecture gives an overview of the main issues associated with the production, storage, and handling of liquid hydrogen. Some discussion of promising ways of hydrogen liquefaction will also be presented. (author)

  9. Hydrogen. A small molecule with large impact

    Energy Technology Data Exchange (ETDEWEB)

    Gehrke, H.; Ruthardt, K.; Mathiak, J.; Roosen, C. [Uhde GmbH, Dortmund (Germany)

    2010-12-30

    The first section of the presentation will provide general information about hydrogen including physical data, natural abundance, production and consumption figures. This will be followed by detailed information about current industrial production routes for hydrogen. Main on-purpose production for hydrogen is by classical steam reforming (SR) of natural gas. A brief overview of most important steps in stream reforming is given including reforming section, CO conversion and gas purification. Also the use of heavier than methane feedstocks and refinery off-gases is discussed. Alternative routes for hydrogen production or production of synthesis gas are autothermal reforming (ATR) or partial oxidation (POX). Pros and Cons for each specific technology are given and discussed. Gasification, especially gasification of renewable feedstocks, is a further possibility to produce hydrogen or synthesis gas. New developments and current commercial processes are presented. Hydrogen from electrolysis plants has only a small share on the hydrogen production slate, but in some cases this hydrogen is a suitable feedstock for niche applications with future potential. Finally, production of hydrogen by solar power as a new route is discussed. The final section focuses on the use of hydrogen. Classical applications are hydrogenation reactions in refineries, like HDS, HDN, hydrocracking and hydrofinishing. But, with an increased demand for liquid fuels for transportation or power supply, hydrogen becomes a key player in future as an energy source. Use of hydrogen in synthesis gas for the production of liquid fuels via Fischer-Tropsch synthesis or coal liquefaction is discussed as well as use of pure hydrogen in fuel cells. Additional, new application for biomass-derived feedstocks are discussed. (orig.)

  10. Handbook of hydrogen energy

    CERN Document Server

    Sherif, SA; Stefanakos, EK; Steinfeld, Aldo

    2014-01-01

    ""This book provides an excellent overview of the hydrogen economy and a thorough and comprehensive presentation of hydrogen production and storage methods.""-Scott E. Grasman, Rochester Institute of Technology, New York, USA

  11. Hydrogenated fullerenes in space: FT-IR spectra analysis

    International Nuclear Information System (INIS)

    El-Barbary, A. A.

    2016-01-01

    Fullerenes and hydrogenated fullerenes are found in circumstellar and interstellar environments. But the determination structures for the detected bands in the interstellar and circumstellar space are not completely understood so far. For that purpose, the aim of this article is to provide all possible infrared spectra for C 20 and C 60 fullerenes and their hydrogenated fullerenes. Density Functional theory (DFT) is applied using B3LYP exchange-functional with basis set 6–31G(d, p). The Fourier transform infrared spectroscopy (FT-IR) is found to be capable of distinguishing between fullerenes, mono hydrogenated fullerenes and fully hydrogenated fullerenes. In addition, deposition of one hydrogen atom outside the fully hydrogenated fullerenes is found to be distinguished by forming H 2 molecule at peak around 4440 cm −1 . However, deposition of one hydrogen atom inside the fully hydrogenated fullerenes cannot be distinguished. The obtained spectral structures are analyzed and are compared with available experimental results.

  12. Hydrogen Technologies Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    Rivkin, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burgess, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Buttner, W. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-01-01

    The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

  13. ESR studies of Bunsen-type methane-air flames. II. The effects of the addition of halogenated compounds to the secondary air on the hydrogen atoms in the flame

    Energy Technology Data Exchange (ETDEWEB)

    Noda, S; Fujimoto, S; Claesson, O; Yoshida, H

    1983-09-01

    Hydrogen atoms in a methane-air Bunsen-type flame were detected by the flame-in-cavity ESR method. The addition of a halogenated compound to the secondary air reduced the H-atom concentration linearly with an increase in additive concentration. These 8 halogenated compounds examined showed increased effectiveness in scavenging H atoms in this order: hydrochloric acid < dichlorodifluoromethane < chloroform < methyl chloride < methylene chloride < trichlorofluoromethane < carbon tetrachlorie < methyl bromide. The chemical effects of these additives on the combustion reactions agree well with the inhibitor indices for these compounds. 14 references, 3 figures.

  14. Low-dose gamma irradiation following hot water immersion of papaya (Carica papaya linn.) fruits provides additional control of postharvest fungal infection to extend shelf life

    International Nuclear Information System (INIS)

    Rashid, M.H.A.; Grout, B.W.W.; Continella, A.; Mahmud, T.M.M.

    2015-01-01

    Low-dose gamma irradiation (0.08 kGy over 10 min), a level significantly below that required to satisfy the majority of international quarantine regulations, has been employed to provide a significant reduction in visible fungal infection on papaya fruit surfaces. This is appropriate for local and national markets in producer countries where levels of commercial acceptability can be retained despite surface lesions due to fungal infection. Irradiation alone and in combination with hot-water immersion (50 °C for 10 min) has been applied to papaya (Carica papaya L.) fruits at both the mature green and 1/3 yellow stages of maturity. The incidence and severity of surface fungal infections, including anthracnose, were significantly reduced by the combined treatment compared to irradiation or hot water treatment alone, extending storage at 11 °C by 13 days and retaining commercial acceptability. The combined treatment had no significant, negative impact on ripening, with quality characteristics such as surface and internal colour change, firmness, soluble solids, acidity and vitamin C maintained at acceptable levels. - Highlights: • Storage of papaya extended to 28 days whilst retaining commercial quality. • Additive effect of low gamma irradiation (0.08 kGy over 10 min) and hot-water treatment. • Significant reduction in surface fungal lesions. • No significant impact on colour change or flesh quality during storage

  15. Ultrahigh sensitivity endoscopic camera using a new CMOS image sensor: providing with clear images under low illumination in addition to fluorescent images.

    Science.gov (United States)

    Aoki, Hisae; Yamashita, Hiromasa; Mori, Toshiyuki; Fukuyo, Tsuneo; Chiba, Toshio

    2014-11-01

    We developed a new ultrahigh-sensitive CMOS camera using a specific sensor that has a wide range of spectral sensitivity characteristics. The objective of this study is to present our updated endoscopic technology that has successfully integrated two innovative functions; ultrasensitive imaging as well as advanced fluorescent viewing. Two different experiments were conducted. One was carried out to evaluate the function of the ultrahigh-sensitive camera. The other was to test the availability of the newly developed sensor and its performance as a fluorescence endoscope. In both studies, the distance from the endoscopic tip to the target was varied and those endoscopic images in each setting were taken for further comparison. In the first experiment, the 3-CCD camera failed to display the clear images under low illumination, and the target was hardly seen. In contrast, the CMOS camera was able to display the targets regardless of the camera-target distance under low illumination. Under high illumination, imaging quality given by both cameras was quite alike. In the second experiment as a fluorescence endoscope, the CMOS camera was capable of clearly showing the fluorescent-activated organs. The ultrahigh sensitivity CMOS HD endoscopic camera is expected to provide us with clear images under low illumination in addition to the fluorescent images under high illumination in the field of laparoscopic surgery.

  16. Reversible hydrogen storage materials

    Science.gov (United States)

    Ritter, James A [Lexington, SC; Wang, Tao [Columbia, SC; Ebner, Armin D [Lexington, SC; Holland, Charles E [Cayce, SC

    2012-04-10

    In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

  17. Hydrogen energy

    International Nuclear Information System (INIS)

    2005-03-01

    This book consists of seven chapters, which deals with hydrogen energy with discover and using of hydrogen, Korean plan for hydrogen economy and background, manufacturing technique on hydrogen like classification and hydrogen manufacture by water splitting, hydrogen storage technique with need and method, hydrogen using technique like fuel cell, hydrogen engine, international trend on involving hydrogen economy, technical current for infrastructure such as hydrogen station and price, regulation, standard, prospect and education for hydrogen safety and system. It has an appendix on related organization with hydrogen and fuel cell.

  18. Control in the Rate-Determining Step Provides a Promising Strategy To Develop New Catalysts for CO2 Hydrogenation: A Local Pair Natural Orbital Coupled Cluster Theory Study.

    Science.gov (United States)

    Mondal, Bhaskar; Neese, Frank; Ye, Shengfa

    2015-08-03

    The development of efficient catalysts with base metals for CO2 hydrogenation has always been a major thrust of interest. A series of experimental and theoretical work has revealed that the catalytic cycle typically involves two key steps, namely, base-promoted heterolytic H2 splitting and hydride transfer to CO2, either of which can be the rate-determining step (RDS) of the entire reaction. To explore the determining factor for the nature of RDS, we present herein a comparative mechanistic investigation on CO2 hydrogenation mediated by [M(H)(η(2)-H2)(PP3(Ph))](n+) (M = Fe(II), Ru(II), and Co(III); PP3(Ph) = tris(2-(diphenylphosphino)phenyl)phosphine) type complexes. In order to construct reliable free energy profiles, we used highly correlated wave function based ab initio methods of the coupled cluster type alongside the standard density functional theory. Our calculations demonstrate that the hydricity of the metal-hydride intermediate generated by H2 splitting dictates the nature of the RDS for the Fe(II) and Co(III) systems, while the RDS for the Ru(II) catalyst appears to be ambiguous. CO2 hydrogenation catalyzed by the Fe(II) complex that possesses moderate hydricity traverses an H2-splitting RDS, whereas the RDS for the high-hydricity Co(III) species is found to be the hydride transfer. Thus, our findings suggest that hydricity can be used as a practical guide in future catalyst design. Enhancing the electron-accepting ability of low-hydricity catalysts is likely to improve their catalytic performance, while increasing the electron-donating ability of high-hydricity complexes may speed up CO2 conversion. Moreover, we also established the active roles of base NEt3 in directing the heterolytic H2 splitting and assisting product release through the formation of an acid-base complex.

  19. The hydrogen village: building hydrogen and fuel cell opportunities

    International Nuclear Information System (INIS)

    Smith, R.

    2006-01-01

    fuel cells; Fuel cell powered fork lifts and refueling facilities at industrial sites; Fuel cell-based back up power system for an internet service provider; Fuel cell-based back up power system at a telecommunications switching station;Fuel cell powered delivery vehicles and hydrogen production/refueling station; Hydrogen FC powered utility vehicles and hydrogen production/refueling station in downtown core; and, Some 15 additional projects are under development representing all program areas. (author)

  20. K Basin Sludge Conditioning Process Testing Fate of PCBs During K Basin Sludge Dissolution in Nitric Acid and with Hydrogen Peroxide Addition

    International Nuclear Information System (INIS)

    Schmidt, A.J.; Thornton, B.M.; Hoppe, E.W.; Mong, G.M.; Pool, K.H.; Silvers, K.L.

    1999-01-01

    The work described in this report is part of the studies being performed to address the fate of polychlorinated biphenyls (PCBs) in K Basin sludge before the sludge can be transferred to the Tank Waste Remediation System (TWRS) double shell tanks. One set of tests examined the effect of hydrogen peroxide on the disposition of PCBs in a simulated K Basin dissolver solution containing 0.5 M nitric acid/1 M Fe(NO 3 ) 3 . A second series of tests examined the disposition of PCBs in a much stronger (∼10 M) nitric acid solution, similar to that likely to be encountered in the dissolution of the sludge

  1. Hydrogenation of passivated contacts

    Energy Technology Data Exchange (ETDEWEB)

    Nemeth, William; Yuan, Hao-Chih; LaSalvia, Vincenzo; Stradins, Pauls; Page, Matthew R.

    2018-03-06

    Methods of hydrogenation of passivated contacts using materials having hydrogen impurities are provided. An example method includes applying, to a passivated contact, a layer of a material, the material containing hydrogen impurities. The method further includes subsequently annealing the material and subsequently removing the material from the passivated contact.

  2. Nuclear electrolytic hydrogen

    International Nuclear Information System (INIS)

    Barnstaple, A.G.; Petrella, A.J.

    1982-05-01

    An extensive study of hydrogen supply has recently been carried out by Ontario Hydro which indicates that electrolytic hydrogen produced from nuclear electricity could offer the lowest cost option for any future large scale hydrogen supply in the Province of Ontario, Canada. This paper provides a synopsis of the Ontario Hydro study, a brief overview of the economic factors supporting the study conclusion and discussion of a number of issues concerning the supply of electrolytic hydrogen by electric power utilities

  3. Present status of research on hydrogen energy and perspective of HTGR hydrogen production system

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yoshiaki; Ogawa, Masuro; Akino, Norio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment] [and others

    2001-03-01

    A study was performed to make a clear positioning of research and development on hydrogen production systems with a High Temperature Gas-cooled Reactor (HTGR) under currently promoting at the Japan Atomic Energy Research Institute through a grasp of the present status of hydrogen energy, focussing on its production and utilization as an energy in future. The study made clear that introduction of safe distance concept for hydrogen fire and explosion was practicable for a HTGR hydrogen production system, including hydrogen properties and need to provide regulations applying to handle hydrogen. And also generalization of hydrogen production processes showed technical issues of the HTGR system. Hydrogen with HTGR was competitive to one with fossil fired system due to evaluation of production cost. Hydrogen is expected to be used as promising fuel of fuel cell cars in future. In addition, the study indicated that there were a large amount of energy demand alternative to high efficiency power generation and fossil fuel with nuclear energy through the structure of energy demand and supply in Japan. Assuming that hydrogen with HTGR meets all demand of fuel cell cars, an estimation would show introduction of the maximum number of about 30 HTGRs with capacity of 100 MWt from 2020 to 2030. (author)

  4. Limits on normal cochlear 'third' windows provided by previous investigations of additional sound paths into and out of the cat inner ear.

    Science.gov (United States)

    Rosowski, John J; Bowers, Peter; Nakajima, Hideko H

    2018-03-01

    While most models of cochlear function assume the presence of only two windows into the mammalian cochlea (the oval and round windows), a position that is generally supported by several lines of data, there is evidence for additional sound paths into and out of the inner ear in normal mammals. In this report we review the existing evidence for and against the 'two-window' hypothesis. We then determine how existing data and inner-ear anatomy restrict transmission of sound through these additional sound pathways in cat by utilizing a well-tested model of the cat inner ear, together with anatomical descriptions of the cat cochlear and vestibular aqueducts (potential additional windows to the cochlea). We conclude: (1) The existing data place limits on the size of the cochlear and vestibular aqueducts in cat and are consistent with small volume-velocities through these ducts during ossicular stimulation of the cochlea, (2) the predicted volume velocities produced by aqueducts with diameters half the size of the bony diameters match the functional data within ±10 dB, and (3) these additional volume velocity paths contribute to the inner ear's response to non-acoustic stimulation and conductive pathology. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Pomegranate extract and exercise provide additive benefits on improvement of immune function by inhibiting inflammation and oxidative stress in high-fat-diet-induced obesity in rats.

    Science.gov (United States)

    Zhao, Fei; Pang, Wentao; Zhang, Ziyi; Zhao, Jialong; Wang, Xin; Liu, Ye; Wang, Xun; Feng, Zhihui; Zhang, Yong; Sun, Wenyan; Liu, Jiankang

    2016-06-01

    Obesity is reported to be associated with immune dysfunction and a state of low-grade, chronic inflammation. Either pomegranate extract (PomE) or exercise (Ex) has been shown to have antiobesity, anti-inflammatory and antioxidant effects. Nevertheless, no study has addressed the additive benefits of PomE and Ex on the restoration of obesity-induced immune defects. The present work aims to study the effect of PomE and Ex as a combined intervention on immune function and the underlying mechanism involved in inflammation and oxidative stress in rats with high-fat-diet (HFD)-induced obesity. Our results demonstrate that the combination of PomE and Ex showed additive benefits on inhibition of HFD-induced body weight increase and improvement of HFD-induced immune dysfunction, including (a) attenuating the abnormality of histomorphology of the spleen, (b) increasing the ratio of the CD4+:CD8+ T cell subpopulations in splenocytes and peripheral blood mononuclear cells (PBMC), (c) inhibition of apoptosis in splenocytes and PBMC, (d) normalizing peritoneal macrophage phenotypes and (e) restoring immunomodulating factors in serum. We also find that immune dysfunction in HFD-fed rats was associated with increased inflammatory cytokine secretion and oxidative stress biomarkers, and that the combination of PomE and Ex effectively inhibited the inflammatory response and decreased oxidative damage. The effect of PomE and Ex as a combined intervention is greater than the effect of either PomE or Ex alone, showing that PomE and Ex may be additively effective in improving immune function in HFD-fed rats by inhibiting inflammation and decreasing oxidative stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Hydrogen from nuclear power

    International Nuclear Information System (INIS)

    Miller, A.I.

    2006-01-01

    A few years ago, one frequently heard the view that LNG would cap the price of natural gas in North America at around 5 or 6 US$/GJ just as soon as sufficient terminal capacity could be installed. Recent experience with international LNG prices suggests that this is unlikely. While oil and gas prices have proven almost impossible to predict it seems likely that the price of gas will in future broadly track its energy equivalent in oil. Consequently, planning for natural gas at 10 $/GJ would seem prudent. Using steam-methane reforming, this produces hydrogen at 1500 $/t. If CO 2 has to be sequestered, adding another 500 $/t H 2 is a likely additional cost. So is water electrolysis now competitive? Electrolysis would deliver hydrogen at 2000$/t if electricity costs 3.7 US cents/kWh. This is lower than the Alberta Pool average supply price but very close to AECL's estimated cost for power from a new reactor. However, electricity prices in deregulated markets vary hugely and there would be large leverage on the hydrogen price in delivering a mix of electricity (when the Pool price is high) and hydrogen (when it is low). The key to that possibility - as well as other issues of interruptibility - is low-cost cavern storage, similar to that used for natural gas. One long-standing example for hydrogen storage exists in the UK. The nuclear-electrolysis route offers long-term price stability. It also has co-product possibilities if a use can be found for oxygen (equivalent to about 300 $/t H 2 ) and to produce heavy water (provided the scale is at least 100 MW)

  7. The RooPfs study to assess whether improved housing provides additional protection against clinical malaria over current best practice in The Gambia

    DEFF Research Database (Denmark)

    Pinder, Margeret; Conteh, Lesong; Jeffries, David

    2016-01-01

    ) and prompt treatment in The Gambia, determine the incremental cost-effectiveness of the interventions, and analyze the housing market in The Gambia. Methods/design A two-armed, household, cluster-randomized, controlled study will be conducted to assess whether improved housing and LLINs combine to provide...

  8. High capacity hydrogen storage nanocomposite materials

    Science.gov (United States)

    Zidan, Ragaiy; Wellons, Matthew S.

    2017-12-12

    A novel hydrogen absorption material is provided comprising a mixture of a lithium hydride with a fullerene. The subsequent reaction product provides for a hydrogen storage material which reversibly stores and releases hydrogen at temperatures of about 270.degree. C.

  9. Systems and methods for facilitating hydrogen storage using naturally occurring nanostructure assemblies

    Science.gov (United States)

    Fliermans,; Carl, B [Augusta, GA

    2012-08-07

    Some or all of the needs above can be addressed by embodiments of the invention. According to embodiments of the invention, systems and methods for facilitating hydrogen storage using naturally occurring nanostructure assemblies can be implemented. In one embodiment, a method for storing hydrogen can be provided. The method can include providing diatoms comprising diatomaceous earth or diatoms from a predefined culture. In addition, the method can include heating the diatoms in a sealed environment in the presence of at least one of titanium, a transition metal, or a noble metal to provide a porous hydrogen storage medium. Furthermore, the method can include exposing the porous hydrogen storage medium to hydrogen. In addition, the method can include storing at least a portion of the hydrogen in the porous hydrogen storage medium.

  10. Modification of the sulphur resistance of platinum by addition of metals for aromatics hydrogenation; Modification de la thioresistance du platine par ajouts d'elements metalliques pour l'hydrogenation d'aromatiques

    Energy Technology Data Exchange (ETDEWEB)

    Guillon, E

    1999-09-15

    The aim of this study is based on the understanding of sulphur resistance of platinum catalytic systems. In this work, bimetallic systems (Pt-Ge, Pt-Au and Pt-Pd) supported on {gamma}-alumina have been studied. Preparation methods have been chosen to give the best control of the physicochemical properties of final system. Electronic and geometrical properties of the metallic phase were characterised by various techniques (TPR, infrared spectroscopy of adsorbed CO (IR(CO)), EXAFS, LEIS). Ortho-xylene hydrogenation in presence of 100 ppm of sulphur was used as model catalytic test in order to study the sulphur resistance of the catalysts. It has been shown that germanium and palladium act as electro-acceptors toward platinum. The ranking of catalytic activity in presence of sulphur is as followed: Pt-Pd > Pt-Au {approx_equal} Pt >> Pt-Ge {approx_equal} 0. The best sulphur resistance for Pt-Pd was obtained for the composition Pt{sub 20}Pd{sub 80} (Pd/Pt=4). An eggshell PdS structure with Pt (sulfur free) core is proposed. These works show that the sulphur resistance of platinum is not only linked with its electronic properties. They allow us to propose an original concept of sulphur resistant catalyst taking into account each catalytic parameters such as chemical bonding of S and aromatic compounds on the metallic site, physico-chemical characteristics of the bimetallic aggregates (particle size, structure, surface composition) and electronic modification of surface atoms in bimetallic catalysts. (author)

  11. Modification of the sulphur resistance of platinum by addition of metals for aromatics hydrogenation; Modification de la thioresistance du platine par ajouts d'elements metalliques pour l'hydrogenation d'aromatiques

    Energy Technology Data Exchange (ETDEWEB)

    Guillon, E.

    1999-09-15

    The aim of this study is based on the understanding of sulphur resistance of platinum catalytic systems. In this work, bimetallic systems (Pt-Ge, Pt-Au and Pt-Pd) supported on {gamma}-alumina have been studied. Preparation methods have been chosen to give the best control of the physicochemical properties of final system. Electronic and geometrical properties of the metallic phase were characterised by various techniques (TPR, infrared spectroscopy of adsorbed CO (IR(CO)), EXAFS, LEIS). Ortho-xylene hydrogenation in presence of 100 ppm of sulphur was used as model catalytic test in order to study the sulphur resistance of the catalysts. It has been shown that germanium and palladium act as electro-acceptors toward platinum. The ranking of catalytic activity in presence of sulphur is as followed: Pt-Pd > Pt-Au {approx_equal} Pt >> Pt-Ge {approx_equal} 0. The best sulphur resistance for Pt-Pd was obtained for the composition Pt{sub 20}Pd{sub 80} (Pd/Pt=4). An eggshell PdS structure with Pt (sulfur free) core is proposed. These works show that the sulphur resistance of platinum is not only linked with its electronic properties. They allow us to propose an original concept of sulphur resistant catalyst taking into account each catalytic parameters such as chemical bonding of S and aromatic compounds on the metallic site, physico-chemical characteristics of the bimetallic aggregates (particle size, structure, surface composition) and electronic modification of surface atoms in bimetallic catalysts. (author)

  12. Measurements of energy losses, distributions of energy loss and additivity of energy losses for 50 to 150 keV protons in hydrogen and nine hydrocarbon gases

    International Nuclear Information System (INIS)

    Thorngate, J.H.

    1976-05-01

    Measurements of energy-loss distributions were made for 51, 102, and 153 keV protons traversing hydrogen, methane, ethyne (acetylene), ethene (ethylene), ethane, propyne (methyl acetylene), propadiene (allene), propene (propylene), cyclopropane and propane. The objectives were to test the theories of energy-loss distribution in this energy range and to see if the type of carbon bonding in a hydrocarbon molecule affects the shape of the distribution. Stopping powers and stopping cross sections were also measured at these energies and at 76.5 and 127.5 keV to determine effects of chemical binding. All of the measurements were made at the gas density required to give a 4 percent energy loss. The mean energy, second central moment (a measure of the width of the distribution), and the third central moment (a measure of the skew) were calculated from the measured energy-loss distributions. Stopping power values, calculated using the mean energy, compared reasonably well with those calculated from the Bethe stopping power theory. For the second and third central moments, the best agreement between measurement and theory was when the classical scattering probability was used for the calculations, but even these did not agree well. In all cases, variations were found in the data that could be correlated to the type of carbon binding in the molecule. The differences were statistically significant at a 99 percent confidence interval for the stopping powers and second central moments measured with 51 keV protons. Similar trends were noted at other energies and for the third central moment, but the differences were not statistically significant at the 99 percent confidence interval

  13. Does additional support provided through e-mail or SMS in a Web-based Social Marketing program improve children's food consumption? A Randomized Controlled Trial.

    Science.gov (United States)

    Rangelov, Natalie; Della Bella, Sara; Marques-Vidal, Pedro; Suggs, L Suzanne

    2018-02-16

    The FAN Social Marketing program was developed to improve dietary and physical activity habits of families with children in Ticino, Switzerland. The aim of this study was to examine if the effects of the program on children's food intake differed by intervention group. Effects of the FAN program were tested through a Randomized Controlled Trial. The program lasted 8 weeks, during which participants received tailored communication about nutrition and physical activity. Families were randomly allocated to one of three groups, where the parent received the intervention by the Web (G1), Web + e-mail (G2) or Web + SMS (G3). Children in all groups received tailored print letters by post. Children's food consumption was assessed at baseline and immediate post intervention using a 7-day food diary. Generalized linear mixed models with child as a random effect and with time, treatment group, and the time by treatment interaction as fixed effects were used to test the impact of the intervention. Analyses were conducted with a sample of 608 children. After participating in FAN the marginal means of daily consumption of fruit changed from 0.95 to 1.12 in G1, from 0.82 to 0.94 in G2, and from 0.93 to 1.18 in G3. The margins of the daily consumption of sweets decreased in each group (1.67 to 1.56 in G1, 1.71 to 1.49 in G2, and 1.72 to 1.62 in G3). The change in vegetable consumption observed from pre to post intervention in G3 (from 1.13 to 1.21) was significantly different from that observed in G1 (from 1.21 to 1.17). A well-designed Web-based Social Marketing intervention complemented with print letters can help improve children's consumption of water, fruit, soft drinks, and sweets. The use of SMS to support greater behavior change, in addition to Web-based communication, resulted only in a small significant positive change for vegetables, while the use of e-mail in addition to Web did not result in any significant difference. The trial was retrospectively registered in the

  14. Hydrogen meter prooftesting

    International Nuclear Information System (INIS)

    McCown, J.J.; Mettler, G.W.

    1976-04-01

    Two diffusion type hydrogen meters have been tested on the Prototype Applications Loop (PAL). The ANL designed unit was used to monitor hydrogen in sodium during FFTF startup and over a wide range of hydrogen concentrations resulting from chemical additions to the sodium and cover gas. A commercially available meter was added and its performance compared with the ANL unit. Details of the test work are described

  15. Do wood-based panels made with agro-industrial residues provide environmentally benign alternatives? An LCA case study of sugarcane bagasse addition to particle board manufacturing

    DEFF Research Database (Denmark)

    Silva, Diogo Aparecido Lopes; Lahr, Francisco Antonio Rocco; Pavan, Ana Laura Raymundo

    2014-01-01

    environmental impacts? Could it substitute wood as raw material? Accordingly, this paper presents a life cycle assessment (LCA) study of particle board manufactured with sugarcane bagasse residues.The cradle-to-gate assessment of 1 m3 of particle board made with sugarcane bagasse (PSB) considered three main...... subsystem was 9.08 % (economic base). The potential environmental impact phase was assessed by applying the CML and USEtox methods. PSB was compared with the conventional particle board manufactured in Brazil by the categories of the CML and USETox, and including land use indicators. Finally, two scenarios......, it is suggested that the sugarcane bagasse be mixed up to 75 % during particle board manufacturing so that good quality properties and environmental performance of panels can be provided....

  16. Enzyme-polyelectrolyte complexes in water-ethanol mixtures: negatively charged groups artificially introduced into alpha-chymotrypsin provide additional activation and stabilization effects.

    Science.gov (United States)

    Kudryashova, E V; Gladilin, A K; Vakurov, A V; Heitz, F; Levashov, A V; Mozhaev, V V

    1997-07-20

    Formation of noncovalent complexes between alpha-chymotrypsin (CT) and a polyelectrolyte, polybrene (PB), has been shown to produce two major effects on enzymatic reactions in binary mixtures of polar organic cosolvents with water. (i) At moderate concentrations of organic cosolvents (10% to 30% v/v), enzymatic activity of CT is higher than in aqueous solutions, and this activation effect is more significant for CT in complex with PB (5- to 7-fold) than for free enzyme (1.5- to 2.5-fold). (ii) The range of cosolvent concentrations that the enzyme tolerates without complete loss of catalytic activity is much broader. For enhancement of enzyme stability in the complex with the polycation, the number of negatively charged groups in the protein has been artificially increased by using chemical modification with pyromellitic and succinic anhydrides. Additional activation effect at moderate concentrations of ethanol and enhanced resistance of the enzyme toward inactivation at high concentrations of the organic solvent have been observed for the modified preparations of CT in the complex with PB as compared with an analogous complex of the native enzyme. Structural changes behind alterations in enzyme activity in water-ethanol mixtures have been studied by the method of circular dichroism (CD). Protein conformation of all CT preparations has not changed significantly up to 30% v/v of ethanol where activation effects in enzymatic catalysis were most pronounced. At higher concentrations of ethanol, structural changes in the protein have been observed for different forms of CT that were well correlated with a decrease in enzymatic activity. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 267-277, 1997.

  17. Low-dose gamma irradiation following hot Water immersion of Papaya (Carica Papaya linn.) fruits provides additional control of postharvest fungal infection to extend shelf life

    DEFF Research Database (Denmark)

    Rashid, M.H.A.; Grout, Brian William Wilson; Continella, A.

    2015-01-01

    Low-dose gamma irradiation (0.08 kGy over 10 min), a level significantly below that required to satisfy the majority of international quarantine regulations, has been employed to provide a significant reduction in visible fungal infection on papaya fruit surfaces. This is appropriate for local an....... The combined treatment had no significant, negative impact on ripening, with quality characteristics such as surface and internal colour change, firmness, soluble solids, acidity and vitamin C maintained at acceptable levels....... and national markets in producer countries where levels of commercial acceptability can be retained despite surface lesions due to fungal infection. Irradiation alone and in combination with hot-water immersion (50 °C for 10 min) has been applied to papaya (Carica papaya L.) fruits at both the mature green...... and 1/3 yellow stages of maturity. The incidence and severity of surface fungal infections, including anthracnose, were significantly reduced by the combined treatment compared to irradiation or hot water treatment alone, extending storage at 11 °C by 13 days and retaining commercial acceptability...

  18. Combined parecoxib and I.V. paracetamol provides additional analgesic effect with better postoperative satisfaction in patients undergoing anterior cruciate ligament reconstruction

    Directory of Open Access Journals (Sweden)

    Zeinab Ahmed Elseify

    2011-01-01

    Full Text Available Background : Adequacy of postoperative analgesia is one of the most important factors that determine early hospital discharge and patients′ ability to resume their normal activities postoperatively. The optimal non-opioid analgesic technique for postoperative pain management would reduce pain and enhance patient satisfaction, and it also facilitates earlier mobilization and rehabilitation by reducing pain-related complications after surgery. The aim of this study was to evaluate the analgesic efficacy of intravenous paracetamol and parecoxib when used alone, or in combination. Methods : Sixty American Society of Anesthesiology (ASA physical status I and II adult patients who were scheduled for anterior cruciate ligament reconstruction were included in this study. Patients were allocated into three groups: group I patients received 1g intravenous paracetamol after induction and another 1 g 4 h later, group II received 40 mg parecoxib after induction, while group III received combination of both drugs (paracetamol 1 g and parecoxib 40 mg. Pain during rest and mobility was assessed in the immediate postoperative period, 2 h and 8 h successively using visual analog scale (VAS. Patient satisfaction was rated according to satisfaction score. Results : Total morphine requirements were lower in group III patients (6.9±2.7 mg in comparison to group I patients (12.6±3.6 mg or group II patients (9.8±2.8 mg. The least VAS scores were recorded during knee movement (3.8±1.1 in group III patients compared to group I (6.0±1.8 and group II patients (4.8±1.9. Eight hours postoperatively, group III patients were more satisfied regarding the postoperative pain management. Conclusion : Combination of intravenous paracetamol and parecoxib provided better analgesia and higher patient satisfaction than each drug when used separately.

  19. Hydrogen system (hydrogen fuels feasibility)

    International Nuclear Information System (INIS)

    Guarna, S.

    1991-07-01

    This feasibility study on the production and use of hydrogen fuels for industry and domestic purposes includes the following aspects: physical and chemical properties of hydrogen; production methods steam reforming of natural gas, hydrolysis of water; liquid and gaseous hydrogen transportation and storage (hydrogen-hydride technology); environmental impacts, safety and economics of hydrogen fuel cells for power generation and hydrogen automotive fuels; relevant international research programs

  20. Unusual hydrogen bonding in L-cysteine hydrogen fluoride.

    Science.gov (United States)

    Minkov, V S; Ghazaryan, V V; Boldyreva, E V; Petrosyan, A M

    2015-08-01

    L-Cysteine hydrogen fluoride, or bis(L-cysteinium) difluoride-L-cysteine-hydrogen fluoride (1/1/1), 2C3H8NO2S(+)·2F(-)·C3H7NO2S·HF or L-Cys(+)(L-Cys···L-Cys(+))F(-)(F(-)...H-F), provides the first example of a structure with cations of the 'triglycine sulfate' type, i.e. A(+)(A···A(+)) (where A and A(+) are the zwitterionic and cationic states of an amino acid, respectively), without a doubly charged counter-ion. The salt crystallizes in the monoclinic system with the space group P2(1). The dimeric (L-Cys···L-Cys(+)) cation and the dimeric (F(-)···H-F) anion are formed via strong O-H···O or F-H···F hydrogen bonds, respectively, with very short O···O [2.4438 (19) Å] and F···F distances [2.2676 (17) Å]. The F···F distance is significantly shorter than in solid hydrogen fluoride. Additionally, there is another very short hydrogen bond, of O-H···F type, formed by a L-cysteinium cation and a fluoride ion. The corresponding O···F distance of 2.3412 (19) Å seems to be the shortest among O-H···F and F-H···O hydrogen bonds known to date. The single-crystal X-ray diffraction study was complemented by IR spectroscopy. Of special interest was the spectral region of vibrations related to the above-mentioned hydrogen bonds.

  1. Dendritic silver nanostructures obtained via one-step electrosynthesis: effect of nonanesulfonic acid and polyvinylpyrrolidone as additives on the analytical performance for hydrogen peroxide sensing

    Energy Technology Data Exchange (ETDEWEB)

    Guadagnini, Lorella, E-mail: lorella.guadagnini2@unibo.it; Ballarin, Barbara, E-mail: barbara.ballarin@unibo.it; Tonelli, Domenica [University of Bologna, Department of Industrial Chemistry ' Toso Montanari' (Italy)

    2013-10-15

    The electrochemical deposition of silver nanodendrites (AgNDs) on pure graphite sheet (PGS) electrodes, both in the absence of surfactant/templates and in the presence of 1-nonanesulfonic acid (NS) or polyvinylpyrrolidone (PVP) additives, is reported. The synthesis carried out without additives and with NS produced a bigger amount of large size AgNDs (dimension of 1-5 {mu}m), with scarce influence played by NS, while the deposition with PVP favoured the formation of smaller spherical particles (with average diameter below 150 nm). The performances of the electrodes towards the electroreduction of H{sub 2}O{sub 2} were investigated by chronoamperometry at -0.4 V and at more cathodic applied potentials (-0.6 and -0.8 V). The electrodes fabricated without additives and in the presence of NS displayed similar performances, while those fabricated with PVP exhibited significantly lower sensitivity. This suggests that AgNDs present enhanced electrocatalytic activity in respect to the spherical aggregates, since the Ag amount deposited on PGS was practically the same. The best amperometric responses among those recorded at -0.4 V in PBS (pH 6.7) exhibited a linear range extending from 0.1 to 3.5 mM, a detection limit of about 20 {mu}M and a sensitivity close to 200 mA M{sup -1} cm{sup -2}. The proposed electrodes display sensitivities which are markedly better than those reported in the literature for similar Ag-based sensors.

  2. Purification of hydrogen sulfide

    International Nuclear Information System (INIS)

    Tsao, U.

    1978-01-01

    A process is described for purifying a hydrogen sulfide gas stream containing carbon dioxide, comprising (a) passing the gas stream through a bed of solid hydrated lime to form calcium hydrosulfide and calcium carbonate and (b) regenerating hydrogen sulfide from said calcium hydrosulfide by reacting the calcium hydrosulfide with additional carbon dioxide. The process is especially applicable for use in a heavy water recovery process wherein deuterium is concentrated from a feed water containing carbon dioxide by absorption and stripping using hydrogen sulfide as a circulating medium, and the hydrogen sulfide absorbs a small quantity of carbon dioxide along with deuterium in each circulation

  3. Method and system for hydrogen evolution and storage

    Science.gov (United States)

    Thorn, David L.; Tumas, William; Hay, P. Jeffrey; Schwarz, Daniel E.; Cameron, Thomas M.

    2012-12-11

    A method and system for storing and evolving hydrogen (H.sub.2) employ chemical compounds that can be hydrogenated to store hydrogen and dehydrogenated to evolve hydrogen. A catalyst lowers the energy required for storing and evolving hydrogen. The method and system can provide hydrogen for devices that consume hydrogen as fuel.

  4. Hail hydrogen

    International Nuclear Information System (INIS)

    Hairston, D.

    1996-01-01

    After years of being scorned and maligned, hydrogen is finding favor in environmental and process applications. There is enormous demand for the industrial gas from petroleum refiners, who need in creasing amounts of hydrogen to remove sulfur and other contaminants from crude oil. In pulp and paper mills, hydrogen is turning up as hydrogen peroxide, displacing bleaching agents based on chlorine. Now, new technologies for making hydrogen have the industry abuzz. With better capabilities of being generated onsite at higher purity levels, recycled and reused, hydrogen is being prepped for a range of applications, from waste reduction to purification of Nylon 6 and hydrogenation of specialty chemicals. The paper discusses the strong market demand for hydrogen, easier routes being developed for hydrogen production, and the use of hydrogen in the future

  5. Elucidation of hydrogen mobility in tetralin under coal liquefaction conditions using a tritium tracer method. Effects of the addition of H2S and H2O; Tritium tracer ho wo mochiita sekitan ekika hanno jokenka deno tetralin no suiso idosei hyoka. Ryuka suiso oyobi mizu no tenka koka

    Energy Technology Data Exchange (ETDEWEB)

    Kanbe, M.; Saito, M.; Ishihara, A.; Kabe, T. [Tokyo University of Agriculture and Technology, Tokyo (Japan)

    1996-10-28

    It was previously reported that the tritium tracer method is useful for the quantitative consideration of hydrogen behavior in coal during coal liquefaction reaction. Tetralin is excellent hydrogen donating solvent, and is considered as one of the model compounds of coal. In this study, effects of H2S and H2O on the hydrogen exchange reaction between tetralin and gaseous hydrogen labeled by tritium were investigated. It was suggested that the conversion of tetralin and the hydrogen exchange reaction between gaseous hydrogen and tetralin proceed through the radical reaction mechanism with a tetralyl radical as an intermediate product. When H2S existed in this reaction, the hydrogen exchange yield increased drastically without changing the conversion yield. This suggested that the hydrogen exchange reaction proceeds even in the reaction where radical does not give any effect. In the case of H2O addition, the conversion yield and hydrogen exchange rate decreased into a half or one-third. It was suggested that H2O inhibited the formation process of tetralyl radical. 6 refs., 4 figs.

  6. Hydrogen storage container

    Science.gov (United States)

    Wang, Jy-An John; Feng, Zhili; Zhang, Wei

    2017-02-07

    An apparatus and system is described for storing high-pressure fluids such as hydrogen. An inner tank and pre-stressed concrete pressure vessel share the structural and/or pressure load on the inner tank. The system and apparatus provide a high performance and low cost container while mitigating hydrogen embrittlement of the metal tank. System is useful for distributing hydrogen to a power grid or to a vehicle refueling station.

  7. The Role of Hydrogen Bonding on Laminar Burning Velocity of Hydrous and Anhydrous Ethanol Fuel with Small Addition of n-Heptane

    Directory of Open Access Journals (Sweden)

    I Made Suarta

    2016-01-01

    Full Text Available The molecular structure of mixed hydrous and anhydrous ethanol with up to 10% v n-heptane had been studied. The burning velocity was examined in a cylindrical explosion combustion chamber. The result showed that the burning velocity of hydrous ethanol is higher than anhydrous ethanol and n-heptane at stoichiometric, rich, and very rich mixtures. The burning velocity of hydrous ethanol with n-heptane drops drastically compared to the burning velocity of anhydrous ethanol with n-heptane. It is caused by two reasons. Firstly, there was a composition change of azeotropic hydrous ethanol molecules within the mixture of fuel. Secondly, at the same volume the number of ethanol molecules in hydrous ethanol was less than in anhydrous ethanol at the same composition of the n-heptane in the mixture. At the mixture of anhydrous ethanol with n-heptane, the burning velocity decreases proportionally to the addition of the n-heptane composition. The burning velocity is between the velocities of anhydrous ethanol and n-heptane. It shows that the burning velocity of anhydrous ethanol mixed with n-heptane is only influenced by the mixture composition.

  8. Solar driven technologies for hydrogen production

    Directory of Open Access Journals (Sweden)

    Medojević Milovan M.

    2016-01-01

    Full Text Available Bearing in mind that the production of hydrogen based on renewable energy sources, without doubt, is an important aspect to be taken into account when considering the potential of this gas, where as particularly interesting technologies stand out the ones which are based on the use of solar energy to produce hydrogen. The goal of this paper provides basic technological trajectories, with the possibility of combining, for solar driven hydrogen production, such as: electrochemical, photochemical and thermochemical process. Furthermore, the paper presents an analysis of those technologies from a technical as well as economic point of view. In addition, the paper aims to draw attention to the fact that the generation of hydrogen using renewable energy should be imposed as a logical and proper way to store solar energy in the form of chemical energy.

  9. Public perception related to a hydrogen hybrid internal combustion engine transit bus demonstration and hydrogen fuel

    International Nuclear Information System (INIS)

    Hickson, Allister; Phillips, Al; Morales, Gene

    2007-01-01

    Hydrogen has been widely considered as a potentially viable alternative to fossil fuels for use in transportation. In addition to price competitiveness with fossil fuels, a key to its adoption will be public perceptions of hydrogen technologies and hydrogen fuel. This paper examines public perceptions of riders of a hydrogen hybrid internal combustion engine bus and hydrogen as a fuel source

  10. H/CNG pathway to hydrogen

    International Nuclear Information System (INIS)

    Bugyra, W.J.; Martin, D.R.

    2004-01-01

    'Full text:' The addition of hydrogen to natural gas to produce a 'premium' fuel offers an ideal bridge to the hydrogen and fuel cell era. This pathway provides many of the expected benefits of hydrogen and fuel cells, reduces cost and risk, and facilitates the transition to hydrogen incrementally through existing infrastructure, technologies and channels. The H/CNG pathway is evaluated qualitatively and quantitatively in the context of: barriers to introducing hydrogen infrastructure and how they can be addressed; potential benefits (emissions, energy security) and drawbacks (range, technical compatibility) of H/CNG blended fuels; economics; and, comparative analysis to the use of ethanol in gasoline. Leveraging the NGV industry eases the transition to fuel cells by taking advantage of existing infrastructure, technologies, skills, codes and standards, and provides for incremental change that may be more acceptable to consumers, regulators and incumbent technology providers. The greatest benefits can be achieved through a two-track pathway. One would utilize small amounts of hydrogen in existing NGVs and installed power systems - much as ethanol is added to gasoline. The second introduce products designed specifically to operate on higher levels of H/CNG, like buses, in concentrations where the greatest emission benefits can be achieved. (author)

  11. Hydrogen detector

    International Nuclear Information System (INIS)

    Kumagaya, Hiromichi; Yoshida, Kazuo; Sanada, Kazuo; Chigira, Sadao.

    1994-01-01

    The present invention concerns a hydrogen detector for detecting water-sodium reaction. The hydrogen detector comprises a sensor portion having coiled optical fibers and detects hydrogen on the basis of the increase of light transmission loss upon hydrogen absorption. In the hydrogen detector, optical fibers are wound around and welded to the outer circumference of a quartz rod, as well as the thickness of the clad layer of the optical fiber is reduced by etching. With such procedures, size of the hydrogen detecting sensor portion can be decreased easily. Further, since it can be used at high temperature, diffusion rate is improved to shorten the detection time. (N.H.)

  12. Hydrogen evolution reaction catalyst

    Science.gov (United States)

    Subbaraman, Ram; Stamenkovic, Vojislav; Markovic, Nenad; Tripkovic, Dusan

    2016-02-09

    Systems and methods for a hydrogen evolution reaction catalyst are provided. Electrode material includes a plurality of clusters. The electrode exhibits bifunctionality with respect to the hydrogen evolution reaction. The electrode with clusters exhibits improved performance with respect to the intrinsic material of the electrode absent the clusters.

  13. Hydrogen highway

    International Nuclear Information System (INIS)

    Anon

    2008-01-01

    The USA Administration would like to consider the US power generating industry as a basis ensuring both the full-scale production of hydrogen and the widespread use of the hydrogen related technological processes into the economy [ru

  14. Micro hydrogen for portable power : generating opportunities for hydrogen and fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    A new fuel cell technology for portable applications was reviewed. Success for the fuel cell industry will be achieved primarily by supplanting lithium-ion batteries, and fuel cells for portable applications have clear advantages to batteries in addition to their known environmental benefits. Micro hydrogen {sup TM} is the integrated combination of hydrogen fuel cell, hydrogen storage and delivery, fluidic interconnects and power conditioning electronics required for creating high energy density portable power sources. The small size, low heat production, environmental sustainability and refueling flexibility of the systems provides enormous economic opportunities for the use of micro hydrogen in cell phone technology, personal digital assistants and other electronic gadgets. Details of a trial to test and evaluate micro hydrogen fuel cell powered bike lights were presented. Further programs are planned for external demonstrations of high-beam search and rescue lighting, flashlights for security personnel and portable hydrogen power sources that will be used by multiple organizations throughout British Columbia. It was concluded that fuel cell technology must match the lithium-ion battery's performance by providing fast recharge, high energy density, and adaptability. Issues concerning refueling and portable and disposable cartridges for micro hydrogen systems were also discussed. 8 figs.

  15. Additive Manufacturing a Liquid Hydrogen Rocket Engine

    Science.gov (United States)

    Jones, Carl P.; Robertson, Elizabeth H.; Koelbl, Mary Beth; Singer, Chris

    2016-01-01

    Space Propulsion is a 5 day event being held from 2nd May to the 6th May 2016 at the Rome Marriott Park Hotel in Rome, Italy. This event showcases products like Propulsion sub-systems and components, Production and manufacturing issues, Liquid, Solid, Hybrid and Air-breathing Propulsion Systems for Launcher and Upper Stages, Overview of current programmes, AIV issues and tools, Flight testing and experience, Technology building blocks for Future Space Transportation Propulsion Systems : Launchers, Exploration platforms & Space Tourism, Green Propulsion for Space Transportation, New propellants, Rocket propulsion & global environment, Cost related aspects of Space Transportation propulsion, Modelling, Pressure-Thrust oscillations issues, Impact of new requirements and regulations on design etc. in the Automotive, Manufacturing, Fabrication, Repair & Maintenance industries.

  16. Chemistry - Toward efficient hydrogen production at surfaces

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Christensen, Claus H.

    2006-01-01

    Calculations are providing a molecular picture of hydrogen production on catalytic surfaces and within enzymes, knowledge that may guide the design of new, more efficient catalysts for the hydrogen economy.......Calculations are providing a molecular picture of hydrogen production on catalytic surfaces and within enzymes, knowledge that may guide the design of new, more efficient catalysts for the hydrogen economy....

  17. Numerical analysis on hydrogen stratification and post-inerting of hydrogen risk

    International Nuclear Information System (INIS)

    Peng, Cheng; Tong, Lili; Cao, Xuewu

    2016-01-01

    Highlights: • A three-dimensional computational model was built and the applicability was discussed. • The formation of helium stratification was further studied. • Three influencing factors on the post-inerting of hydrogen risk were analyzed. - Abstract: In the case of severe accidents, the risk of hydrogen explosion threatens the integrity of the nuclear reactor containment. According to nuclear regulations, hydrogen control is required to ensure the safe operation of the nuclear reactor. In this study, the method of Computational Fluid Dynamics (CFD) has been applied to analyze process of hydrogen stratification and the post-inerting of hydrogen risk in the Large-Scale Gas Mixing Facility. A three-dimensional computational model was built and the applicability of different turbulence models was discussed. The result shows that the helium concentration calculated by the standard k–ε turbulence model is closest to the experiment data. Through analyzing the formation of helium stratification at different injection velocities, it is found that when the injection mass flow is constant and the injection velocity of helium increases, the mixture of helium and air is enhanced while there is rarely influence on the formation of helium stratification. In addition, the influences of mass flow rate, injection location and direction and inert gas on the post-inerting of hydrogen risk have been analyzed and the results are as follows: with the increasing of mass flow rate, the mitigation effect of nitrogen on hydrogen risk will be further improved; there is an obvious local difference between the mitigation effects of nitrogen on hydrogen risk in different injection directions and locations; when the inert gas is injected at the same mass flow rate, the mitigation effect of steam on hydrogen risk is better than that of nitrogen. This study can provide technical support for the mitigation of hydrogen risk in the small LWR containment.

  18. Hydrogen assisted diesel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Lilik, Gregory K.; Boehman, Andre L. [The EMS Energy Institute, The Pennsylvania State University, University Park, PA 16802 (United States); Zhang, Hedan; Haworth, Daniel C. [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Herreros, Jose Martin [Escuela Tecnica Superior de Ingenieros Industriales, Universidad de Castilla La-Mancha, Avda. Camilo Jose Cela s/n, 13071 Ciudad Real (Spain)

    2010-05-15

    Hydrogen assisted diesel combustion was investigated on a DDC/VM Motori 2.5L, 4-cylinder, turbocharged, common rail, direct injection light-duty diesel engine, with a focus on exhaust emissions. Hydrogen was substituted for diesel fuel on an energy basis of 0%, 2.5%, 5%, 7.5%, 10% and 15% by aspiration of hydrogen into the engine's intake air. Four speed and load conditions were investigated (1800 rpm at 25% and 75% of maximum output and 3600 rpm at 25% and 75% of maximum output). A significant retarding of injection timing by the engine's electronic control unit (ECU) was observed during the increased aspiration of hydrogen. The retarding of injection timing resulted in significant NO{sub X} emission reductions, however, the same emission reductions were achieved without aspirated hydrogen by manually retarding the injection timing. Subsequently, hydrogen assisted diesel combustion was examined, with the pilot and main injection timings locked, to study the effects caused directly by hydrogen addition. Hydrogen assisted diesel combustion resulted in a modest increase of NO{sub X} emissions and a shift in NO/NO{sub 2} ratio in which NO emissions decreased and NO{sub 2} emissions increased, with NO{sub 2} becoming the dominant NO{sub X} component in some combustion modes. Computational fluid dynamics analysis (CFD) of the hydrogen assisted diesel combustion process captured this trend and reproduced the experimentally observed trends of hydrogen's effect on the composition of NO{sub X} for some operating conditions. A model that explicitly accounts for turbulence-chemistry interactions using a transported probability density function (PDF) method was better able to reproduce the experimental trends, compared to a model that ignores the influence of turbulent fluctuations on mean chemical production rates, although the importance of the fluctuations is not as strong as has been reported in some other recent modeling studies. The CFD results confirm

  19. [Determination of the redox potential of water saturated with hydrogen].

    Science.gov (United States)

    Piskarev, I M; Ushkanov, V A; Aristova, N A; Likhachev, P P; Myslivets, T C

    2010-01-01

    It has been shown that the redox potential of water saturated with hydrogen is -500--700 mV. The time of the establishment of the potential is 24 h. The potential somewhat increases with increasing volume of hydrogen introduced to a reservoir with water and practically does not depend on the presence of additions in water, provided these additions are not reduced by hydrogen. The pH value of water does not change after the addition of water. In a glass vessel with a metallic cover resting on the side, no decrease in potential during the 2.5-month storage was observed. In plastic bottles, the content of hydrogen decreased; on storage for more than two weeks, it disappeared almost completely, and as a result, the potential increased after storage for three to four weeks to a level near zero. In an open vessel, the potential remained negative for two days.

  20. Photobiological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Seibert, M; Lien, S; Weaver, P F

    1979-01-01

    Hydrogen production by phototrophic organisms, which has been known since the 1930's, occurs at the expense of light energy and electron-donating substrates. Three classes of organisms, namely, photosynthetic bacteria, cyanobacteria, and algae carry out this function. The primary hydrogen-producing enzyme systems, hydrogenase and nitrogenase, will be discussed along with the manner in which they couple to light-driven electron transport. In addition, the feasibility of using in vivo and in vitro photobiological hydrogen producing systems in future solar energy conversion applications will be examined.

  1. Photobiological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Seibert, M.; Lien, S.; Weaver, P.F.

    1979-01-01

    Hydrogen production by phototrophic organisms, which has been known since the 1930's, occurs at the expense of light energy and electron-donating substrates. Three classes of organisms, namely, photosynthetic bacteria, cyanobacteria, and algae carry out this function. The primary hydrogen-producing enzyme systems, hydrogenase and nitrogenase, will be discussed along with the manner in which they couple to light-driven electron transport. In addition, the feasibility of using in vivo and in vitro photobiological hydrogen producing systems in future solar energy conversion applications will be examined.

  2. Chromatographic hydrogen isotope separation

    International Nuclear Information System (INIS)

    Aldridge, F.T.

    1983-01-01

    Intermetallic compounds with the CaCu5 type of crystal structure, particularly LaNiCo and CaNi5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation column. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale multi-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors

  3. Chromatographic hydrogen isotope separation

    International Nuclear Information System (INIS)

    Aldridge, F.T.

    1981-01-01

    Intermetallic compounds with the CaCu5 type of crystal structure , particularly LaNiCo and CaNi5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors

  4. Autothermal hydrogen storage and delivery systems

    Science.gov (United States)

    Pez, Guido Peter [Allentown, PA; Cooper, Alan Charles [Macungie, PA; Scott, Aaron Raymond [Allentown, PA

    2011-08-23

    Processes are provided for the storage and release of hydrogen by means of dehydrogenation of hydrogen carrier compositions where at least part of the heat of dehydrogenation is provided by a hydrogen-reversible selective oxidation of the carrier. Autothermal generation of hydrogen is achieved wherein sufficient heat is provided to sustain the at least partial endothermic dehydrogenation of the carrier at reaction temperature. The at least partially dehydrogenated and at least partially selectively oxidized liquid carrier is regenerated in a catalytic hydrogenation process where apart from an incidental employment of process heat, gaseous hydrogen is the primary source of reversibly contained hydrogen and the necessary reaction energy.

  5. Liquid hydrogen properties

    International Nuclear Information System (INIS)

    Choi, Jung Woon; Kim, Y. J.; Lee, K. H.; Kim, H. I.; Han, K. Y.; Park, J.H.

    2004-03-01

    The purpose of this report is to provide the input data, whose characteristic is thermodynamic and transport, in the form of equation for the thermo-hydraulic calculations using hydrogen as a working substance. The considered data in this report are particularly focused on the properties of para-hydrogen and of equilibrium-hydrogen around the working temperature range of the HANARO-CNS. The discussed properties of hydrogen are, in turn, the pressure of saturated vapors, the density, the heat of vaporization, thermal conductivity, viscosity, and heat capacity. Several equations to fit the above-mentioned experimental data allow calculating the various properties of liquid hydrogen with high accuracy at all considered temperatures

  6. Hydrogen safety

    International Nuclear Information System (INIS)

    Frazier, W.R.

    1991-01-01

    The NASA experience with hydrogen began in the 1950s when the National Advisory Committee on Aeronautics (NACA) research on rocket fuels was inherited by the newly formed National Aeronautics and Space Administration (NASA). Initial emphasis on the use of hydrogen as a fuel for high-altitude probes, satellites, and aircraft limited the available data on hydrogen hazards to small quantities of hydrogen. NASA began to use hydrogen as the principal liquid propellant for launch vehicles and quickly determined the need for hydrogen safety documentation to support design and operational requirements. The resulting NASA approach to hydrogen safety requires a joint effort by design and safety engineering to address hydrogen hazards and develop procedures for safe operation of equipment and facilities. NASA also determined the need for rigorous training and certification programs for personnel involved with hydrogen use. NASA's current use of hydrogen is mainly for large heavy-lift vehicle propulsion, which necessitates storage of large quantities for fueling space shots and for testing. Future use will involve new applications such as thermal imaging

  7. Composition and method for hydrogen storage

    Science.gov (United States)

    Mao, Wendy L. (Inventor); Mao, Ho-Kwang (Inventor)

    2004-01-01

    A method for hydrogen storage includes providing water and hydrogen gas to a containment volume, reducing the temperature of the water and hydrogen gas to form a hydrogen clathrate at a first cryogenic temperature and a first pressure and maintaining the hydrogen clathrate at second cryogenic temperature within a temperature range of up to 250 K to effect hydrogen storage. The low-pressure hydrogen hydrate includes H.sub.2 O molecules, H.sub.2 molecules and a unit cell including polyhedron cages of hydrogen-bonded frameworks of the H.sub.2 O molecules built around the H.sub.2 molecules.

  8. On the use of hydrogen in confined spaces: Results from the internal project InsHyde

    NARCIS (Netherlands)

    Venetsanos, A.G.; Adams, P.; Azkarate, I.; Bengaouer, A.; Brett, L.; Carcassi, M.N.; Engebø, A.; Gallego, E.; Gavrikov, A.I.; Hansen, O.R.; Hawksworth, S.; Jordan, T.; Kessler, A.; Kumar, S.; Molkov, V.; Nilsen, S.; Reinecke, E.; Stöcklin, M.; Schmidtchen, U.; Teodorczyk, A.; Tigreat, D.; Versloot, N.H.A.

    2011-01-01

    The paper presents an overview of the main achievements of the internal project InsHyde of the HySafe NoE. The scope of InsHyde was to investigate realistic small-medium indoor hydrogen leaks and provide recommendations for the safe use/storage of indoor hydrogen systems. Additionally, InsHyde

  9. Investigation of hydrogen-deformation interactions in β-21S titanium alloy using thermal desorption spectroscopy

    International Nuclear Information System (INIS)

    Tal-Gutelmacher, E.; Eliezer, D.; Boellinghaus, Th.

    2007-01-01

    The focus of this paper is the investigation of the combined influence of hydrogen and pre-plastic deformation on hydrogen's absorption/desorption behavior, the microstructure and microhardness of a single-phased β-21S alloy. In this study, thermal desorption analyses (TDS) evaluation of various desorption and trapping parameters provide further insight on the relationships between hydrogen absorption/desorption processes and deformation, and their mutual influence on the microstructure and the microhardness of β-21S alloy. TDS spectra were supported by other experimental techniques, such as X-ray diffraction, scanning and transmission electron microscopy, hydrogen quantity analyses and microhardness tests. Pre-plastic deformation, performed before the electrochemical hydrogenation of the alloy, increased significantly the hydrogen absorption capacity. Its influence was also evident on the notably expanded lattice parameter of β-21S alloy after hydrogenation. However, no hydride precipitation was observed. An interesting softening effect of the pre-deformed hydrogenated alloy was revealed by microhardness tests. TDS demonstrated the significant effect of pre-plastic deformation on the hydrogen evolution process. Hydrogen desorption temperature and the activation energy for hydrogen release increased, additional trap states were observed and the amount of desorbed hydrogen decreased

  10. Hydrogen millennium

    International Nuclear Information System (INIS)

    Bose, T.K.; Benard, P.

    2000-05-01

    The 10th Canadian Hydrogen Conference was held at the Hilton Hotel in Quebec City from May 28 to May 31, 2000. The topics discussed included current drivers for the hydrogen economy, the international response to these drivers, new initiatives, sustainable as well as biological and hydrocarbon-derived production of hydrogen, defense applications of fuel cells, hydrogen storage on metal hydrides and carbon nanostructures, stationary power and remote application, micro-fuel cells and portable applications, marketing aspects, fuel cell modeling, materials, safety, fuel cell vehicles and residential applications. (author)

  11. In vitro hydrogen production by glucose dehydrogenase and hydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, J. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    A new in vitro enzymatic pathway for the generation of molecular hydrogen from glucose has been demonstrated. The reaction is based upon the oxidation of glucose by Thermoplasma acidophilum glucose dehydrogenase with the concomitant oxidation of NADPH by Pyrococcus furiosus hydrogenase. Stoichiometric yields of hydrogen were produced from glucose with continuous cofactor recycle. This simple system may provide a method for the biological production of hydrogen from renewable sources. In addition, the other product of this reaction, gluconic acid, is a high-value commodity chemical.

  12. Controlled Hydrogen Fleet and Infrastructure Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Scott Staley

    2010-03-31

    the fuel provider, while viability of the vehicle requires an expected level of cost, comfort, safety and operation, especially driving range, that consumers require. This presents a classic 'chicken and egg' problem, which Ford believes can be solved with thoughtful implementation plans. The eighteen Ford Focus FCV vehicles that were operated for this demonstration project provided the desired real world experience. Some things worked better than expected. Most notable was the robustness and life of the fuel cell. This is thought to be the result of the full hybrid configuration of the drive system where the battery helps to overcome the performance reduction associated with time related fuel cell degradation. In addition, customer satisfaction surveys indicated that people like the cars and the concept and operated them with little hesitation. Although the demonstrated range of the cars was near 200 miles, operators felt constrained because of the lack of a number of conveniently located fueling stations. Overcoming this major concern requires overcoming a key roadblock, fuel storage, in a manner that permits sufficient quantity of fuel without sacrificing passenger or cargo capability. Fueling infrastructure, on the other hand, has been problematic. Only three of a planned seven stations were opened. The difficulty in obtaining public approval and local government support for hydrogen fuel, based largely on the fear of hydrogen that grew from past disasters and atomic weaponry, has inhibited progress and presents a major roadblock to implementation. In addition the cost of hydrogen production, in any of the methodologies used in this program, does not show a rapid reduction to commercially viable rates. On the positive side of this issue was the demonstrated safety of the fueling station, equipment and process. In the Ford program, there were no reported safety incidents.

  13. Selective purge for hydrogenation reactor recycle loop

    Science.gov (United States)

    Baker, Richard W.; Lokhandwala, Kaaeid A.

    2001-01-01

    Processes and apparatus for providing improved contaminant removal and hydrogen recovery in hydrogenation reactors, particularly in refineries and petrochemical plants. The improved contaminant removal is achieved by selective purging, by passing gases in the hydrogenation reactor recycle loop or purge stream across membranes selective in favor of the contaminant over hydrogen.

  14. National hydrogen energy roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2002-11-01

    This report was unveiled by Energy Secretary Spencer Abraham in November 2002 and provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy development. Based on the results of the government-industry National Hydrogen Energy Roadmap Workshop, held in Washington, DC on April 2-3, 2002, it displays the development of a roadmap for America's clean energy future and outlines the key barriers and needs to achieve the hydrogen vision goals defined in

  15. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications. Hydrogen vehicle safety report

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.E. [Directed Technologies, Inc., Arlington, VA (United States)

    1997-05-01

    This report reviews the safety characteristics of hydrogen as an energy carrier for a fuel cell vehicle (FCV), with emphasis on high pressure gaseous hydrogen onboard storage. The authors consider normal operation of the vehicle in addition to refueling, collisions, operation in tunnels, and storage in garages. They identify the most likely risks and failure modes leading to hazardous conditions, and provide potential countermeasures in the vehicle design to prevent or substantially reduce the consequences of each plausible failure mode. They then compare the risks of hydrogen with those of more common motor vehicle fuels including gasoline, propane, and natural gas.

  16. The Italian hydrogen programme

    International Nuclear Information System (INIS)

    Raffaele Vellone

    2001-01-01

    Hydrogen could become an important option in the new millennium. It provides the potential for a sustainable energy system as it can be used to meet most energy needs without harming the environment. In fact, hydrogen has the potential for contributing to the reduction of climate-changing emissions and other air pollutants as it exhibits clean combustion with no carbon or sulphur oxide emissions and very low nitrogen oxide emissions. Furthermore, it is capable of direct conversion to electricity in systems such as fuel cells without generating pollution. However, widespread use of hydrogen is not feasible today because of economic and technological barriers. In Italy, there is an ongoing national programme to facilitate the introduction of hydrogen as an energy carrier. This programme aims to promote, in an organic frame, a series of actions regarding the whole hydrogen cycle. It foresees the development of technologies in the areas of production, storage, transport and utilisation. Research addresses the development of technologies for separation and sequestration of CO 2 , The programme is shared by public organisations (research institutions and universities) and national industry (oil companies, electric and gas utilities and research institutions). Hydrogen can be used as a fuel, with significant advantages, both for electric energy generation/ co-generation (thermo-dynamic cycles and fuel cells) and transportation (internal combustion engine and fuel cells). One focus of research will be the development of fuel cell technologies. Fuel cells possess all necessary characteristics to be a key technology in a future economy based on hydrogen. During the initial phase of the project, hydrogen will be derived from fossil sources (natural gas), and in the second phase it will be generated from renewable electricity or nuclear energy. The presentation will provide a review of the hydrogen programme and highlight future goals. (author)

  17. Hydrogen exchange

    DEFF Research Database (Denmark)

    Jensen, Pernille Foged; Rand, Kasper Dyrberg

    2016-01-01

    Hydrogen exchange (HX) monitored by mass spectrometry (MS) is a powerful analytical method for investigation of protein conformation and dynamics. HX-MS monitors isotopic exchange of hydrogen in protein backbone amides and thus serves as a sensitive method for probing protein conformation...... and dynamics along the entire protein backbone. This chapter describes the exchange of backbone amide hydrogen which is highly quenchable as it is strongly dependent on the pH and temperature. The HX rates of backbone amide hydrogen are sensitive and very useful probes of protein conformation......, as they are distributed along the polypeptide backbone and form the fundamental hydrogen-bonding networks of basic secondary structure. The effect of pressure on HX in unstructured polypeptides (poly-dl-lysine and oxidatively unfolded ribonuclease A) and native folded proteins (lysozyme and ribonuclease A) was evaluated...

  18. The hydrogen highway

    International Nuclear Information System (INIS)

    Grigg, A.

    2004-01-01

    'Full text:' The Hydrogen Highway in British Columbia, Canada, is a coordinated, large-scale demonstration and deployment program aimed at accelerating the commercialization of hydrogen and fuel cell technologies and products. It will be a showcase for fuel cell vehicles, refuelling stations and stationary power systems leading up to the 2010 Olympic and Paralympic Winter Games in Whistler, BC. The Hydrogen Highway is designed to help address many of the challenges to commercialization identified in the Canadian Fuel Cell Commercialization Roadmap. The project will create an early adopter network of hydrogen and fuel cell microenvironments where technology developers and users can learn about the technical, economic, environmental and social impacts of products. The Hydrogen Highway will give the public and potential purchasers an opportunity to feel, touch and see the new technology, as well as provide the industry with a venue in which to develop industry standards and supply chains of materials and components. While demonstration and deployment programs are a recognized and necessary component in the process to commercialize hydrogen and fuel cell technologies, there is no handbook describing how it should be done. This paper will describe the history, objectives, project details and some of the challenges associated with establishing Canada's Hydrogen Highway. (author)

  19. The hydrogen highway

    Energy Technology Data Exchange (ETDEWEB)

    Grigg, A. [Fuel Cells Canada, Vancouver, British Columbia (Canada)

    2004-07-01

    'Full text:' The Hydrogen Highway in British Columbia, Canada, is a coordinated, large-scale demonstration and deployment program aimed at accelerating the commercialization of hydrogen and fuel cell technologies and products. It will be a showcase for fuel cell vehicles, refuelling stations and stationary power systems leading up to the 2010 Olympic and Paralympic Winter Games in Whistler, BC. The Hydrogen Highway is designed to help address many of the challenges to commercialization identified in the Canadian Fuel Cell Commercialization Roadmap. The project will create an early adopter network of hydrogen and fuel cell microenvironments where technology developers and users can learn about the technical, economic, environmental and social impacts of products. The Hydrogen Highway will give the public and potential purchasers an opportunity to feel, touch and see the new technology, as well as provide the industry with a venue in which to develop industry standards and supply chains of materials and components. While demonstration and deployment programs are a recognized and necessary component in the process to commercialize hydrogen and fuel cell technologies, there is no handbook describing how it should be done. This paper will describe the history, objectives, project details and some of the challenges associated with establishing Canada's Hydrogen Highway. (author)

  20. Hydrogen considerations in light-water power reactons

    International Nuclear Information System (INIS)

    Keilholtz, G.W.

    1976-02-01

    A critical review of the literature now available on hydrogen considerations in light-water power reactors (LWRs) and a bibliography of that literature are presented. The subject matter includes mechanisms for the generation of hydrogen-oxygen mixtures, a description of the fundamental properties of such mixtures, and their spontaneous ignition in both static and dynamic systems. The limits for hydrogen flammability and flame propagation are examined in terms of the effects of pressure, temperature, and additives; the emphasis is on the effects of steam and water vapor. The containment systems for pressurized-water reactors (PWRs) and boiling-water reactors (BWRs) are compared, and methods to control hydrogen and oxygen under the conditions of both normal operation and postulated accidents are reviewed. It is concluded that hydrogen can be controlled so that serious complications from the production of hydrogen will not occur. The bibliography contains abstracts from the computerized files of the Nuclear Safety Information Center. Key-word, author, and permuted-title indexes are provided. The bibliography includes responses to questions asked by the U. S. Nuclear Regulatory Commission (NRC) which relate to hydrogen, as well as information on normal operations and postulated accidents including generation of hydrogen from core sprays. Other topics included in the ten sections of the bibliography are metal-water reactions, containment atmosphere, radiolytic gas, and recombiners

  1. Hydrogen and the materials of a sustainable energy future

    Energy Technology Data Exchange (ETDEWEB)

    Zalbowitz, M. [ed.

    1997-02-01

    The National Educator`s Workshop (NEW): Update 96 was held October 27--30, 1996, and was hosted by Los Alamos National Laboratory. This was the 11th annual conference aimed at improving the teaching of material science, engineering and technology by updating educators and providing laboratory experiments on emerging technology for teaching fundamental and newly evolving materials concepts. The Hydrogen Education Outreach Activity at Los Alamos National Laboratory organized a special conference theme: Hydrogen and the Materials of a Sustainable Energy Future. The hydrogen component of the NEW:Update 96 offered the opportunity for educators to have direct communication with scientists in laboratory settings, develop mentor relationship with laboratory staff, and bring leading edge materials/technologies into the classroom to upgrade educational curricula. Lack of public education and understanding about hydrogen is a major barrier for initial implementation of hydrogen energy technologies and is an important prerequisite for acceptance of hydrogen outside the scientific/technical research communities. The following materials contain the papers and view graphs from the conference presentations. In addition, supplemental reference articles are also included: a general overview of hydrogen and an article on handling hydrogen safely. A resource list containing a curriculum outline, bibliography, Internet resources, and a list of periodicals often publishing relevant research articles can be found in the last section.

  2. Hydrogenated fullerenes in space: FT-IR spectra analysis

    Energy Technology Data Exchange (ETDEWEB)

    El-Barbary, A. A. [Physics Department, Faculty of Education, Ain-Shams University, Cairo, Egypt Physics Department, Faculty of Science, Jazan University, Jazan (Saudi Arabia)

    2016-06-10

    Fullerenes and hydrogenated fullerenes are found in circumstellar and interstellar environments. But the determination structures for the detected bands in the interstellar and circumstellar space are not completely understood so far. For that purpose, the aim of this article is to provide all possible infrared spectra for C{sub 20} and C{sub 60} fullerenes and their hydrogenated fullerenes. Density Functional theory (DFT) is applied using B3LYP exchange-functional with basis set 6–31G(d, p). The Fourier transform infrared spectroscopy (FT-IR) is found to be capable of distinguishing between fullerenes, mono hydrogenated fullerenes and fully hydrogenated fullerenes. In addition, deposition of one hydrogen atom outside the fully hydrogenated fullerenes is found to be distinguished by forming H{sub 2} molecule at peak around 4440 cm{sup −1}. However, deposition of one hydrogen atom inside the fully hydrogenated fullerenes cannot be distinguished. The obtained spectral structures are analyzed and are compared with available experimental results.

  3. Adsorption and diffusion of hydrogen in Zircaloy-4

    International Nuclear Information System (INIS)

    Torres, E.; Desquines, J.; Baietto, M.C.; Coret, M.; Wehling, F.; Blat-Yrieix, M.; Ambard, A.

    2015-01-01

    Hydrogen in zirconium alloys is considered in many nuclear safety issues. Below 500 Celsius degrees, rather limited knowledge is available on the combined hydrogen adsorption at the sample surface and diffusion in the metal. A modeling of hydrogen gaseous charging has been established starting with a set of relevant laws and parameters derived from open literature. Simulating the hydrogen charging process requires simultaneous analysis of gaseous surface adsorption, hydrogen solid-solution diffusion and precipitation, when exceeding the material solubility limit. The modeling has been extended to reproduce the solid-gas exchange. Gaseous charging experiments have been performed at 420 C. degrees on Stress Relieved Annealed (SRA) Zircaloy-4 cladding samples to validate the model. The sample hydrogen content has been systematically measured after charging and compared to the calculated value thus providing a validation of the adsorption modeling. Complementary tests have been carried out on Recrystallized Annealed (RXA) Zircaloy-4 rods to characterize the combined diffusion and adsorption process. The hydrogen concentration distribution has been characterized using an inverse technique based on destructive analyses of the samples. This additional set of data was relevant for the validation of the hydrogen combined adsorption/diffusion modeling up to 420 C. degrees. (authors)

  4. Thermodynamically Tuned Nanophase Materials for reversible Hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Ping Liu; John J. Vajo

    2010-02-28

    This program was devoted to significantly extending the limits of hydrogen storage technology for practical transportation applications. To meet the hydrogen capacity goals set forth by the DOE, solid-state materials consisting of light elements were developed. Many light element compounds are known that have high capacities. However, most of these materials are thermodynamically too stable, and they release and store hydrogen much too slowly for practical use. In this project we developed new light element chemical systems that have high hydrogen capacities while also having suitable thermodynamic properties. In addition, we developed methods for increasing the rates of hydrogen exchange in these new materials. The program has significantly advanced (1) the application of combined hydride systems for tuning thermodynamic properties and (2) the use of nanoengineering for improving hydrogen exchange. For example, we found that our strategy for thermodynamic tuning allows both entropy and enthalpy to be favorably adjusted. In addition, we demonstrated that using porous supports as scaffolds to confine hydride materials to nanoscale dimensions could improve rates of hydrogen exchange by > 50x. Although a hydrogen storage material meeting the requirements for commercial development was not achieved, this program has provided foundation and direction for future efforts. More broadly, nanoconfinment using scaffolds has application in other energy storage technologies including batteries and supercapacitors. The overall goal of this program was to develop a safe and cost-effective nanostructured light-element hydride material that overcomes the thermodynamic and kinetic barriers to hydrogen reaction and diffusion in current materials and thereby achieve > 6 weight percent hydrogen capacity at temperatures and equilibrium pressures consistent with DOE target values.

  5. Hydrogen retention properties of lithium film

    International Nuclear Information System (INIS)

    Kanaya, Koh; Yamauchi, Yuji; Hirohata, Yuko; Hino, Tomoaki; Mori, Kintaro

    1998-01-01

    Hydrogen retention properties of Li films and lithium oxide-lithium hydroxide (Li 2 O-LiOH) mixed films were investigated by two methods, hydrogen ion irradiation and hydrogen glow discharge. In a case of the hydrogen ion irradiation, thermal desorption spectrum of hydrogen retained in Li 2 O-LiOH film had two desorption peaks at around 470 K and 570 K. The ratio between retained hydrogen and Li atom was about 0.7. In a case of the hydrogen glow discharge, the hydrogen was also gettered in Li film during the discharge. The ratio of H/Li was almost 0.9. Most of gettered hydrogen desorbed by a baking with a temperature of 370 K. On the contrary, when the Li film exposed to the atmosphere was irradiated by the hydrogen plasma, the desorption of H 2 O was observed in addition to the adsorption of H 2 . (author)

  6. Performance Improvement of V-Fe-Cr-Ti Solid State Hydrogen Storage Materials in Impure Hydrogen Gas.

    Science.gov (United States)

    Ulmer, Ulrich; Oertel, Daria; Diemant, Thomas; Bonatto Minella, Christian; Bergfeldt, Thomas; Dittmeyer, Roland; Behm, R Jürgen; Fichtner, Maximilian

    2018-01-17

    Two approaches of engineering surface structures of V-Ti-based solid solution hydrogen storage alloys are presented, which enable improved tolerance toward gaseous oxygen (O 2 ) impurities in hydrogen (H 2 ) gas. Surface modification is achieved through engineering lanthanum (La)- or nickel (Ni)-rich surface layers with enhanced cyclic stability in an H 2 /O 2 mixture. The formation of a Ni-rich surface layer does not improve the cycling stability in H 2 /O 2 mixtures. Mischmetal (Mm, a mixture of La and Ce) agglomerates are observed within the bulk and surface of the alloy when small amounts of this material are added during arc melting synthesis. These agglomerates provide hydrogen-transparent diffusion pathways into the bulk of the V-Ti-Cr-Fe hydrogen storage alloy when the remaining oxidized surface is already nontransparent for hydrogen. Thus, the cycling stability of the alloy is improved in an O 2 -containing hydrogen environment as compared to the same alloy without addition of Mm. The obtained surface-engineered storage material still absorbs hydrogen after 20 cycles in a hydrogen-oxygen mixture, while the original material is already deactivated after 4 cycles.

  7. Hydrogen peroxide kinetics in water radiolysis

    Science.gov (United States)

    Iwamatsu, Kazuhiro; Sundin, Sara; LaVerne, Jay A.

    2018-04-01

    The kinetics of the formation and reaction of hydrogen peroxide in the long time γ- radiolysis of water is examined using a combination of experiment with model calculations. Escape yields of hydrogen peroxide on the microsecond time scale are easily measured with added radical scavengers even with substantial amounts of initial added hydrogen peroxide. The γ-radiolysis of aqueous hydrogen peroxide solutions without added radical scavengers reach a steady state limiting concentration of hydrogen peroxide with increasing dose, and that limit is directly proportional to the initial concentration of added hydrogen peroxide. The dose necessary to reach that limiting hydrogen peroxide concentration is also proportional to the initial concentration, but dose rate has a very small effect. The addition of molecular hydrogen to aqueous solutions of hydrogen peroxide leads to a decrease in the high dose limiting hydrogen peroxide concentration that is linear with the initial hydrogen concentration, but the amount of decrease is not stoichiometric. Proton irradiations of solutions with added hydrogen peroxide and hydrogen are more difficult to predict because of the decreased yields of radicals; however, with a substantial increase in dose rate there is a sufficient decrease in radical yields that hydrogen addition has little effect on hydrogen peroxide decay.

  8. Study of a pulsed discharge in hydrogen using the far ultraviolet emission of an additional element: electron temperature measurement; Etude d'une decharge pulsee dans l'hydrogene a partir de l'emission dans l'ultraviolet lointain d'un element additionnel: mesure de la temperature electronique

    Energy Technology Data Exchange (ETDEWEB)

    Schwob, J L [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1967-06-15

    Ionization and excitation of an additional element in a pulsed annular discharge in hydrogen at low pressure (T.A.2000) are described by means of a simple coronal type analytical model. This model allows us to interpret the time variation of the intensity of spectral lines observed in the vacuum ultraviolet region. From this analysis two methods of electron temperature determination are deduced. The first method is based on the apparition time measurement of the intensity maximum for the spectral lines emitted from successive ions of the additional element (nitrogen). In the second method the electron temperature is determined from the intensity ratio of two spectral lines of an alkali-like ion. The transition couples (2s-2p, 2s-3p) and (2s-2p, 3s-3p) of C IV, N V and O VI have been used. The results obtained with these two independent methods are in good agreement. The electron temperature varies from a few electron-volts at the beginning of the discharge, to 70 eV at the time of N V emission (at 55 {mu}s), before the current maximum in the discharge (at 170 {mu}s). (author) [French] On etudie l'ionisation et l'excitation d'un element additionnel dans une decharge annulaire pulsee dans l'hydrogene sous faible pression (T.A.2000) a ralde d'un modele analytique simple du type coronal. Ce modele permet d'interpreter l'evolution de l'intensite des raies spectrales observees dans l'ultraviolet lointain. On deduit de cette etude deux methodes de determination de la temperature electronique. La premiere est basee sur la meaure des temps d'apparition des maximums d'intensite des raies emises par les ions successifs de l'element additionnel (azote). Dans la deuxieme methode la temperature est determinee a partir du rapport d'intensite des deux raies d'un ion alcalinoide. On a utilise les couples de transitions (2s-2p, 2s-3p) et (2e-2p, 3s-3p) des ions C IV, N V et 0 VI. Les resultats obtenus par ces deux voies independantes montrent un assez bon accord. La temperature

  9. Hydrogen from biomass: state of the art and research challenges

    Energy Technology Data Exchange (ETDEWEB)

    Milne, Thomas A; Elam, Carolyn C; Evans, Robert J

    2002-02-01

    The report was prepared for the International Energy Agency (IEA) Agreement on the Production and Utilization of Hydrogen, Task 16, Hydrogen from Carbon-Containing Materials. Hydrogen's share in the energy market is increasing with the implementation of fuel cell systems and the growing demand for zero-emission fuels. Hydrogen production will need to keep pace with this growing market. In the near term, increased production will likely be met by conventional technologies, such as natural gas reforming. In these processes, the carbon is converted to CO2 and released to the atmosphere. However, with the growing concern about global climate change, alternatives to the atmospheric release of CO2 are being investigated. Sequestration of the CO2 is an option that could provide a viable near-term solution. Reducing the demand on fossil resources remains a significant concern for many nations. Renewable-based processes like solar- or wind-driven electrolysis and photobiological water splitting hold great promise for clean hydrogen production; however, advances must still be made before these technologies can be economically competitive. For the near-and mid-term, generating hydrogen from biomass may be the more practical and viable, renewable and potentially carbon-neutral (or even carbon-negative in conjunction with sequestration) option. Recently, the IEA Hydrogen Agreement launched a new task to bring together international experts to investigate some of these near- and mid-term options for producing hydrogen with reduced environmental impacts. This review of the state of the art of hydrogen production from biomass was prepared to facilitate in the planning of work that should be done to achieve the goal of near-term hydrogen energy systems. The relevant technologies that convert biomass to hydrogen, with emphasis on thermochemical routes are described. In evaluating the viability of the conversion routes, each must be put in the context of the availability of

  10. Photoelectrochemical hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, R.E.; Miller, E.; Misra, A. [Univ. of Hawaii, Honolulu, HI (United States)

    1996-10-01

    The large-scale production of hydrogen utilizing energy provided by a renewable source to split water is one of the most ambitious long-term goals of the U.S. Department of Energy`s Hydrogen Program. One promising option to meet this goal is direct photoelectrolysis in which light absorbed by semiconductor-based photoelectrodes produces electrical power internally to split water into hydrogen and oxygen. Under this program, direct solar-to-chemical conversion efficiencies as high as 7.8 % have been demonstrated using low-cost, amorphous-silicon-based photoelectrodes. Detailed loss analysis models indicate that solar-to-chemical conversion greater than 10% can be achieved with amorphous-silicon-based structures optimized for hydrogen production. In this report, the authors describe the continuing progress in the development of thin-film catalytic/protective coatings, results of outdoor testing, and efforts to develop high efficiency, stable prototype systems.

  11. Economic Assessment of Hydrogen Technologies Participating in California Electricity Markets

    Energy Technology Data Exchange (ETDEWEB)

    Eichman, Joshua [National Renewable Energy Lab. (NREL), Golden, CO (United States); Townsend, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Melaina, Marc [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-02-19

    As the electric sector evolves and increasing amounts of variable renewable generation are installed on the system, there are greater needs for system flexibility and sufficient capacity, and greater concern for overgeneration from renewable sources not well matched in time with electric loads. Hydrogen systems have the potential to support the grid in each of these areas. However, limited information is available about the economic competitiveness of hydrogen system configurations. This paper quantifies the value for hydrogen energy storage and demand response systems to participate in select California wholesale electricity markets using 2012 data. For hydrogen systems and conventional storage systems (e.g., pumped hydro, batteries), the yearly revenues from energy, ancillary service, and capacity markets are compared to the yearly cost to establish economic competitiveness. Hydrogen systems can present a positive value proposition for current markets. Three main findings include: (1) For hydrogen systems participating in California electricity markets, producing and selling hydrogen was found to be much more valuable than producing and storing hydrogen to later produce electricity; therefore systems should focus on producing and selling hydrogen and opportunistically providing ancillary services and arbitrage. (2) Tighter integration with electricity markets generates greater revenues (i.e., systems that participate in multiple markets receive the highest revenue). (3) More storage capacity, in excess of what is required to provide diurnal shifting, does not increase competitiveness in current California wholesale energy markets. As more variable renewable generation is installed, the importance of long duration storage may become apparent in the energy price or through additional markets, but currently, there is not a sufficiently large price differential between days to generate enough revenue to offset the cost of additional storage. Future work will involve

  12. Hydrogen converters

    International Nuclear Information System (INIS)

    Mondino, Angel V.

    2003-01-01

    The National Atomic Energy Commission of Argentina developed a process of 99 Mo production from fission, based on irradiation of uranium aluminide targets with thermal neutrons in the RA-3 reactor of the Ezeiza Atomic Centre. These targets are afterwards dissolved in an alkaline solution, with the consequent liberation of hydrogen as the main gaseous residue. This work deals with the use of a first model of metallic converter and a later prototype of glass converter at laboratory scale, adjusted to the requirements and conditions of the specific redox process. Oxidized copper wires were used, which were reduced to elementary copper at 400 C degrees and then regenerated by oxidation with hot air. Details of the bed structure and the operation conditions are also provided. The equipment required for the assembling in cells is minimal and, taking into account the operation final temperature and the purge with nitrogen, the procedure is totally safe. Finally, the results are extrapolated for the design of a converter to be used in a hot cell. (author)

  13. Future outlook of hydrogen market

    International Nuclear Information System (INIS)

    Ozmen, S.; Leprince, P.

    1976-01-01

    Up to now, hydrogen has been produced from hydrocarbons for chemical uses. In the future, it will have to find a new market for itself which will depend on the development of nuclear power plants. Through the use of electric or thermal energy available during off-peak hours, water decomposition by electrolytic or thermal methods (redox cycle) could produce hydrogen, a storable and transportable gas. In addition to hydrogen consumption for chemical uses (methanol and ammonia manufacturing, petroleum fraction processing, metallurgy, etc.) plans are being drawn up to use hydrogen as a vehicle for energy [fr

  14. Hydro Solar 21- A building energetic demand providing system based on renewable energies and hydrogen; Hydro Solar 21- Energias renovables e hidrogeno para el abastecimiento energetico de un edificio

    Energy Technology Data Exchange (ETDEWEB)

    Renilla Collado, R.; Ortega Izquierdo, M.

    2008-07-01

    Hydro Solar 21 is an energy innovation Project carried out in Burgos City to develop an energy production system based on renewable energies to satisfy light and air condition requirements of a restored building. Nocturnal light demand is satisfied with hydrogen consumption in fuel cells. This hydrogen is produced with an energy renewable system made up of two wind turbine generators and a photovoltaic system. The air conditioning demand is satisfied with an adsorption solar system which produces cold water using thermal solar energy. (Author) 8 refs.

  15. Mitigation of hydrogen hazards in water cooled power reactors

    International Nuclear Information System (INIS)

    2001-02-01

    Past considerations of hydrogen generated in containment buildings have tended to focus attention on design basis accidents (DBAs) where the extent of the in-core metal-water reaction is limited at low values by the operation of the emergency core cooling systems (ECCS). The radiolysis of water in the core and in the containment sump, together with the possible corrosion of metals and paints in the containment, are all relatively slow processes. Therefore, in DBAs the time scale involved for the generation of hydrogen allows sufficient time for initiation of measures to control the amount of hydrogen in the containment atmosphere and to prevent any burning. Provisions have been made in most plants to keep the local hydrogen concentration below its flammability limit (4% of volume) by means of mixing devices and thermal recombiners. Severe accidents, involving large scale core degradation and possibly even core concrete interactions, raise the possibility of hydrogen release rates greatly exceeding the capacity of conventional DBA hydrogen control measures. The accident at Three Mile Island illustrated the potential of unmitigated hydrogen accumulation to escalate the potential consequences of a severe accident. In a severe accident scenario, local high hydrogen concentrations can be reached in a short time, leading to flammable gas mixtures in containment. Another possibility is that local high steam concentrations will initially create an inert atmosphere and prevent burning for a limited time. While such temporary inerting provides additional time for mixing (dilution) of the hydrogen with containment air, depending on the quantity of hydrogen released, it prevents early intervention by deliberate ignition and sets up conditions for more severe combustion hazards after steam condensation eventually occurs, e.g., by spray initiation or the long term cooling down of the containment atmosphere. As the foregoing example indicates, analysis of the hydrogen threat in

  16. Cathodic hydrogen charging of zinc

    International Nuclear Information System (INIS)

    Panagopoulos, C.N.; Georgiou, E.P.; Chaliampalias, D.

    2014-01-01

    Highlights: •Incorporation of hydrogen into zinc and formation of zinc hydrides. •Investigation of surface residual stresses due to hydrogen diffusion. •Effect of hydrogen diffusion and hydride formation on mechanical properties of Zn. •Hydrogen embrittlement phenomena in zinc. -- Abstract: The effect of cathodic hydrogen charging on the structural and mechanical characteristics of zinc was investigated. Hardening of the surface layers of zinc, due to hydrogen incorporation and possible formation of ZnH 2 , was observed. In addition, the residual stresses brought about by the incorporation of hydrogen atoms into the metallic matrix, were calculated by analyzing the obtained X-ray diffraction patterns. Tensile testing of the as-received and hydrogen charged specimens revealed that the ductility of zinc decreased significantly with increasing hydrogen charging time, for a constant value of charging current density, and with increasing charging current density, for a constant value of charging time. However, the ultimate tensile strength of this material was slightly affected by the hydrogen charging procedure. The cathodically charged zinc exhibited brittle transgranular fracture at the surface layers and ductile intergranular fracture at the deeper layers of the material

  17. Questioning hydrogen

    International Nuclear Information System (INIS)

    Hammerschlag, Roel; Mazza, Patrick

    2005-01-01

    As an energy carrier, hydrogen is to be compared to electricity, the only widespread and viable alternative. When hydrogen is used to transmit renewable electricity, only 51% can reach the end user due to losses in electrolysis, hydrogen compression, and the fuel cell. In contrast, conventional electric storage technologies allow between 75% and 85% of the original electricity to be delivered. Even when hydrogen is extracted from gasified coal (with carbon sequestration) or from water cracked in high-temperature nuclear reactors, more of the primary energy reaches the end user if a conventional electric process is used instead. Hydrogen performs no better in mobile applications, where electric vehicles that are far closer to commercialization exceed fuel cell vehicles in efficiency, cost and performance. New, carbon-neutral energy can prevent twice the quantity of GHG's by displacing fossil electricity than it can by powering fuel cell vehicles. The same is true for new, natural gas energy. New energy resources should be used to displace high-GHG electric generation, not to manufacture hydrogen

  18. Complex hydrides for hydrogen storage

    Science.gov (United States)

    Zidan, Ragaiy

    2006-08-22

    A hydrogen storage material and process of forming the material is provided in which complex hydrides are combined under conditions of elevated temperatures and/or elevated temperature and pressure with a titanium metal such as titanium butoxide. The resulting fused product exhibits hydrogen desorption kinetics having a first hydrogen release point which occurs at normal atmospheres and at a temperature between 50.degree. C. and 90.degree. C.

  19. The United Kingdom Hydrogen Association Forms with International Collaboration in Mind

    International Nuclear Information System (INIS)

    Karen Hall; John Carolin; Ian Williamson

    2006-01-01

    In April 2006, the United Kingdom Hydrogen Association was launched. This paper will describe the context under which the need was established, and address the challenges and opportunities faced in creating the association. A UK Hydrogen Association can encourage information sharing among regional hydrogen efforts, and provide a mechanism for a larger, single voice on the national level. In addition, a UK Hydrogen Association can serve as a focal point for UK participation in EU activities such as the European Hydrogen and Fuel Cell Technology Platform (HFP), and other international activities such as IPHE and IEA. The results of the stake holder briefing and progress of a UK Hydrogen Association will be presented, with a focus on international collaboration. (authors)

  20. The United Kingdom Hydrogen Association Forms with International Collaboration in Mind

    International Nuclear Information System (INIS)

    Karen Hall; John Carolin; Ian Williamson

    2006-01-01

    In April 2006, the United Kingdom Hydrogen Association was launched. This paper will describe the context under which the need was established, and address the challenges and opportunities faced in creating the association. A UK Hydrogen Association can encourage information sharing among regional hydrogen efforts, and provide a mechanism for a larger, single voice on the national level. In addition, a UK Hydrogen Association can serve as a focal point for UK participation in EU activities such as the European Hydrogen and Fuel Cell Technology Platform (HFP), and other international activities such as IPHE and IEA. The results of the stakeholder briefing and progress of a UK Hydrogen Association will be presented, with a focus on international collaboration. (authors)

  1. Hydrogen isotope technology

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Hydrogen pumping speeds on panels of molecular sieve types 5A and Na-Y were compared for a variety of sieve (and chevron) temperatures between 10 and 30 K. Although pumping speeds declined with time, probably because of the slow diffusion of hydrogen from the surface of the sieve crystals into the internal regions, the different sieve materials and operating conditions could be compared using time-averaged pump speeds. The (average) pumping speeds declined with increasing temperature. Under some conditions, the Na-Y sieve performed much better than the 5A sieve. Studies of the effect of small concentrations (approx. 4%) of hydrogen on helium pumping indicate that compound cryopumps in fusion reactors will not have to provide complete screening of hydrogen from helium panels. The concentrations of hydrogen did not lower effective helium pumping speeds or shorten the helium operating period between instabilities. Studies of tritium recovery from blankets of liquid lithium focused on design and construction of a flowing-lithium test system and on ultimate removal of tritium from yttrium sorbents. At 505 0 C, tritium release from yttrium behaves as a diffusion-controlled process, but the release rates are very low. Apparently, higher temperatures will be required for effective sorbent regeneration. An innovative technique for separating hydrogen isotopes by using bipolar electrolysis with permeable electrodes was analyzed to determine its potential usefulness in multistage separation

  2. Electrochemical hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not

  3. Electrochemical hydrogen Storage Systems

    International Nuclear Information System (INIS)

    Macdonald, Digby

    2010-01-01

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the

  4. Demonstrative study on the production of hydrogen and aromatic compounds originated from biogas in the Dairy area

    International Nuclear Information System (INIS)

    Yukoh Shudo; Takashi Ohkubo; Yoshiaki Hideshima

    2006-01-01

    The biogas yielded by methane fermentation of cow slurry was provided for the experimental facilities and the refined methane was introduced to the methane direct reformer. Dehydrogenation and aromatization of methane generated hydrogen and aromatic compounds, such as benzene. In order to keep the conversion rate, pre-treatment and regeneration of the catalysts were carried out and in order to control coking at the catalysts, hydrogen was added to the material methane. Moreover a part of the un-reacted methane was introduced to the steam reformer and 99.99% pure hydrogen was produced by the pressure swing adsorption (PSA). With the result that, it was supposed that pre-treating by methane and hydrogen, repeating regeneration by hydrogen, and more than 9% hydrogen addition were needed to stabilize the formation of hydrogen and benzene. And furthermore, material balance of the experimental facilities was clarified. (authors)

  5. Actinic radiation-curable formulations from the reaction product of organic isocyanate, poly(alkylene oxide) polyol and an unsaturated addition-polymerizable monomeric compound having a single isocyanate-reactive hydrogen group

    International Nuclear Information System (INIS)

    Howard, D.D.

    1979-01-01

    Energy-curable compositions which can be cured in the presence of air by exposure to actinic radiation contain at least one unsaturated urethane oligomer. The oligomer comprises the reaction product of at least one poly(alkylene oxide) polyol, at least one polyisocyanate, and at least one unsaturated active hydrogen-containing compound

  6. Biogas and Hydrogen Systems Market Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Milbrandt, Anelia [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bush, Brian [National Renewable Energy Lab. (NREL), Golden, CO (United States); Melaina, Marc [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-31

    This analysis provides an overview of the market for biogas-derived hydrogen and its use in transportation applications. It examines the current hydrogen production technologies from biogas, capacity and production, infrastructure, potential and demand, as well as key market areas. It also estimates the production cost of hydrogen from biogas and provides supply curves at a national level and at point source.

  7. Hydrogen production from hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Docekal, J

    1986-01-01

    Hydrogen is an important feed stock for chemical and petroleum industries, in addition to being considered as the energy carrier of the future. At the present time the feed stock hydrogen is mainly manufactured from hydrocarbons using steam reforming. In steam reforming two processes are employed, the conventional process and PSA (pressure swing adsorption) process. These two processes are described and compared. The results show that the total costs and the maintenance costs are lower for the PSA process, the capital outlay is lower for the conventional process, and the operating costs are similar for the two processes.

  8. Solar hydrogen production: renewable hydrogen production by dry fuel reforming

    Science.gov (United States)

    Bakos, Jamie; Miyamoto, Henry K.

    2006-09-01

    SHEC LABS - Solar Hydrogen Energy Corporation constructed a pilot-plant to demonstrate a Dry Fuel Reforming (DFR) system that is heated primarily by sunlight focusing-mirrors. The pilot-plant consists of: 1) a solar mirror array and solar concentrator and shutter system; and 2) two thermo-catalytic reactors to convert Methane, Carbon Dioxide, and Water into Hydrogen. Results from the pilot study show that solar Hydrogen generation is feasible and cost-competitive with traditional Hydrogen production. More than 95% of Hydrogen commercially produced today is by the Steam Methane Reformation (SMR) of natural gas, a process that liberates Carbon Dioxide to the atmosphere. The SMR process provides a net energy loss of 30 to 35% when converting from Methane to Hydrogen. Solar Hydrogen production provides a 14% net energy gain when converting Methane into Hydrogen since the energy used to drive the process is from the sun. The environmental benefits of generating Hydrogen using renewable energy include significant greenhouse gas and criteria air contaminant reductions.

  9. Hydrogen economy: a little bit more effort

    International Nuclear Information System (INIS)

    Pauron, M.

    2008-01-01

    In few years, the use of hydrogen in economy has become a credible possibility. Today, billions of euros are invested in the hydrogen industry which is strengthened by technological advances in fuel cells development and by an increasing optimism. However, additional research efforts and more financing will be necessary to make the dream of an hydrogen-based economy a reality

  10. California Hydrogen Infrastructure Project

    Energy Technology Data Exchange (ETDEWEB)

    Heydorn, Edward C

    2013-03-12

    Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a real-world retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation's hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling

  11. Hydrogen program overview

    Energy Technology Data Exchange (ETDEWEB)

    Gronich, S. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies

    1997-12-31

    This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

  12. Solar hydrogen infrastructure of road and maritime traffic in Croatia

    International Nuclear Information System (INIS)

    Firak, M.

    2005-01-01

    In the next 10 to 20 years the world and national economy will be faced with the need to transition from traditional sources of primary energy (e.g., fossil fuels) to renewable energy resources, mainly solar and wind power. At the same time hydrogen will appear on the energy scene, so already today we discuss the coming 'Hydrogen Economy', i.e., the economy based on hydrogen use. Given such developments, the question is how and when Croatia will begin to keep up with this global scenario? One of possible answers is discussed in this paper. It starts with the fact that Croatia is a significant tourist destination, visited by 10 millions mainly motorized tourists a year. World Tourism Organization forecast the increase in foreign tourists' arrivals by 8.4 percent a year until 2020. More than 90 percent of tourists stay in the Adriatic coast and islands; 55 percent of them arrive in the two summer months. Hence, the visits occur mainly in the region where and during the season when solar energy is abundant. The other assumption is the so called Hart Report, a study addressing the introduction of hydrogen infrastructure in the European traffic road system. It projects the number of hydrogen-fueled vehicles on the roads of the EU until 2020. Based on these two assumptions estimated is the number of hydrogen-fueled vehicles that in this period could arrive to the Croatian coast and islands for which the hydrogen infrastructure should be provided. Since during the holiday season thousands of motorized vessels sail along the Croatian coast and islands and many of them have some of 'hydrogen options' installed, it will be an additional reason for development for hydrogen infrastructure on the islands. Considering the above the paper proposed the hydrogen infrastructure based on photo-voltaic technology of solar energy use and water electrolysis as hydrogen production technology. The suggestion is to connect these installations to the Croatian electricity production and

  13. To assess whether indoor residual spraying can provide additional protection against clinical malaria over current best practice of long-lasting insecticidal mosquito nets in The Gambia: study protocol for a two-armed cluster-randomised trial

    Directory of Open Access Journals (Sweden)

    Parker David

    2011-06-01

    Full Text Available Abstract Background Recently, there has been mounting interest in scaling-up vector control against malaria in Africa. It needs to be determined if indoor residual spraying (IRS with DDT will provide significant marginal protection against malaria over current best practice of long-lasting insecticidal nets (LLINs and prompt treatment in a controlled trial, given that DDT is currently the most persistent insecticide for IRS. Methods A 2 armed cluster-randomised controlled trial will be conducted to assess whether DDT IRS and LLINs combined provide better protection against clinical malaria in children than LLINs alone in rural Gambia. Each cluster will be a village, or a group of small adjacent villages; all clusters will receive LLINs and half will receive IRS in addition. Study children, aged 6 months to 13 years, will be enrolled from all clusters and followed for clinical malaria using passive case detection to estimate malaria incidence for 2 malaria transmission seasons in 2010 and 2011. This will be the primary endpoint. Exposure to malaria parasites will be assessed using light and exit traps followed by detection of Anopheles gambiae species and sporozoite infection. Study children will be surveyed at the end of each transmission season to estimate the prevalence of Plasmodium falciparum infection and the prevalence of anaemia. Discussion Practical issues concerning intervention implementation, as well as the potential benefits and risks of the study, are discussed. Trial Registration ISRCTN01738840 - Spraying And Nets Towards malaria Elimination (SANTE

  14. Analysis of combined hydrogen, heat, and power as a bridge to a hydrogen transition.

    Energy Technology Data Exchange (ETDEWEB)

    Mahalik, M.; Stephan, C. (Decision and Information Sciences)

    2011-01-18

    become worried that they would run out of fuel before encountering a facility, their motivation to purchase a hydrogen-powered vehicle decreases. At vehicle purchase time, they weigh this experience, as well as other factors such as social influence by their peers, fuel cost, and capital cost of a hydrogen vehicle. Investor agents build full-service hydrogen fueling stations (HFSs) at different locations along the highway network. They base their decision to build or not build a station on their (imperfect) estimates of the sales the station would immediately generate (based on hydrogen-powered vehicle traffic past the location and other factors), as well as the growth in hydrogen sales they could expect throughout their investment horizon. The interaction between driver and investor agents provides the basis for growth in both the number of hydrogen vehicles and number of hydrogen stations. For the present report, we have added to this mix smaller, 'bare-bones' hydrogen dispensing facilities (HDFs) of the type that owners of CHHP facilities could provide to the public. The locations of these stations were chosen to match existing facilities that might reasonably incorporate CHHP plants in the future. Unlike the larger commercial stations, these facilities are built according to exogenously supplied timetables, and no attempt has been made to model the financial basis for the facilities. Rather, our objective is to understand how the presence of these additional stations might facilitate the petroleum-to-hydrogen transition. We discuss a base case in which the HDFs are not present, and then investigate the effects of introducing HDFs in various numbers; according to different timetables; with various production capacities; and with hydrogen selling at prices above, equal to, and below the commercial stations selling price. We conclude that HDFs can indeed be helpful in accelerating a petroleum-to-hydrogen transition. Placed in areas where investors might not be

  15. Generation of hydrogen free radicals from water for fuels by electric field induction

    International Nuclear Information System (INIS)

    Nong, Guangzai; Chen, Yiyi; Li, Ming; Zhou, Zongwen

    2015-01-01

    Highlights: • Hydrogen free radicals are generated from water splitting. • Hydrogen fuel is generated from water by electric field induction. • Hydrocarbon fuel is generated from CO_2 and water by electric field induction. - Abstract: Water is the most abundant resource for generating hydrogen fuel. In addition to dissociating H"+ and "−OH ions, certain water molecules dissociate to radicals under an electric field are considered. Therefore, an electric field inducing reactor is constructed and operated to generate hydrogen free radicals in this paper. Hydrogen free radicals begin to be generated under a 1.0 V electric field, and increasing the voltage and temperature increases the number of hydrogen free radicals. The production rate of hydrogen free radicals is 0.245 mmol/(L h) at 5.0 V and room temperature. The generated hydrogen free radicals are converted to polymer fuel and hydrogen fuel at production rates of 0.0093 mmol/(L h) and 0.0038 mmol/(L h) respectively, under 5.0 V and 0.25 mA. The results provide a way to generate hydrogen free radicals, which might be used to generate hydrocarbon fuel in industrial manufacture.

  16. The hydrogen laminar jet

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Sanz, M. [Departamento de Motopropulsion y Termofluidomecanica, ETSI Aeronauticos, Universidad Politecnica de Madrid, 28040 Madrid (Spain); Rosales, M. [Department Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, 28911, Leganes (Spain); Instituto de Innovacion en Mineria y Metalurgia, Avenida del Valle 738, Santiago (Chile); Sanchez, A.L. [Department Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, 28911, Leganes (Spain)

    2010-04-15

    Numerical and asymptotic methods are used to investigate the structure of the hydrogen jet discharging into a quiescent air atmosphere. The analysis accounts in particular for the variation of the density and transport properties with composition. The Reynolds number of the flow R{sub j}, based on the initial jet radius a, the density {rho}{sub j} and viscosity {mu}{sub j} of the jet and the characteristic jet velocity u{sub j}, is assumed to take moderately large values, so that the jet remains slender and stable, and can be correspondingly described by numerical integration of the continuity, momentum and species conservation equations written in the boundary-layer approximation. The solution for the velocity and composition in the jet development region of planar and round jets, corresponding to streamwise distances of order R{sub j}a, is computed numerically, along with the solutions that emerge both in the near field and in the far field. The small value of the hydrogen-to-air molecular weight ratio is used to simplify the solution by considering the asymptotic limit of vanishing jet density. The development provides at leading-order explicit analytical expressions for the far-field velocity and hydrogen mass fraction that describe accurately the hydrogen jet near the axis. The information provided can be useful in particular to characterize hydrogen discharge processes from holes and cracks. (author)

  17. Microfabricated hydrogen sensitive membranes

    Energy Technology Data Exchange (ETDEWEB)

    Naddaf, A.; Kraetz, L. [Lehrstuhl fuer Thermische Verfahrenstechnik, Technische Universitaet Kaiserslautern (Germany); Detemple, P.; Schmitt, S.; Hessel, V. [Institut fuer Mikrotechnik Mainz GmbH, Mainz (Germany); Faqir, N. [University of Jordan, Amman (Jordan); Bart, H.J.

    2009-01-15

    Thin, defect-free palladium, palladium/copper and palladium/silver hydrogen absorbing membranes were microfabricated. A dual sputtering technique was used to deposit the palladium alloy membranes of only 1 {mu}m thickness on a nonporous silicon substrate. Advanced silicon etching (ASE) was applied on the backside to create a mechanically stable support structure for the thin films. Performance evaluation was carried out for different gases in a temperature range of 20 C to 298 C at a constant differential pressure of 110 kPa at the two sides of the membrane. The composite membranes show an excellent permeation rate of hydrogen, which appears to be 0.05 Pa m{sup 3} s{sup -1} and 0.01.10{sup -3} Pa m{sup 3} s{sup -1} at 20 C for the microfabricated 23 % silver and the 53 % copper composite membranes, respectively. The selectivity to hydrogen over a gas mixture containing, in addition to hydrogen, carbon monoxide, carbon dioxide and nitrogen was measured. The mass spectrometer did not detect any CO{sub 2} or CO, showing that the membrane is completely hydrogen selective. The microfabricated membranes exhibit both high mechanical strength (they easily withstand pressures up to 4 bar) and high thermal stability (up to 650 C). (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  18. Atomic hydrogen cleaning of EUV multilayer optics

    Science.gov (United States)

    Graham, Samuel, Jr.; Steinhaus, Charles A.; Clift, W. Miles; Klebanoff, Leonard E.; Bajt, Sasa

    2003-06-01

    Recent studies have been conducted to investigate the use of atomic hydrogen as an in-situ contamination removal method for EUV optics. In these experiments, a commercial source was used to produce atomic hydrogen by thermal dissociation of molecular hydrogen using a hot filament. Samples for these experiments consisted of silicon wafers coated with sputtered carbon, Mo/Si optics with EUV-induced carbon, and bare Si-capped and Ru-B4C-capped Mo/Si optics. Samples were exposed to an atomic hydrogen source at a distance of 200 - 500 mm downstream and angles between 0-90° with respect to the source. Carbon removal rates and optic oxidation rates were measured using Auger electron spectroscopy depth profiling. In addition, at-wavelength peak reflectance (13.4 nm) was measured using the EUV reflectometer at the Advanced Light Source. Data from these experiments show carbon removal rates up to 20 Å/hr for sputtered carbon and 40 Å/hr for EUV deposited carbon at a distance of 200 mm downstream. The cleaning rate was also observed to be a strong function of distance and angular position. Experiments have also shown that the carbon etch rate can be increased by a factor of 4 by channeling atomic hydrogen through quartz tubes in order to direct the atomic hydrogen to the optic surface. Atomic hydrogen exposures of bare optic samples show a small risk in reflectivity degradation after extended periods. Extended exposures (up to 20 hours) of bare Si-capped Mo/Si optics show a 1.2% loss (absolute) in reflectivity while the Ru-B4C-capped Mo/Si optics show a loss on the order of 0.5%. In order to investigate the source of this reflectivity degradation, optic samples were exposed to atomic deuterium and analyzed using low energy ion scattering direct recoil spectroscopy to determine any reactions of the hydrogen with the multilayer stack. Overall, the results show that the risk of over-etching with atomic hydrogen is much less than previous studies using RF discharge cleaning

  19. Measurement of dissolved hydrogen and hydrogen gas transfer in a hydrogen-producing reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shizas, I.; Bagley, D.M. [Toronto Univ., ON (Canada). Dept. of Civil Engineering

    2004-07-01

    This paper presents a simple method to measure dissolved hydrogen concentrations in the laboratory using standard equipment and a series of hydrogen gas transfer tests. The method was validated by measuring hydrogen gas transfer parameters for an anaerobic reactor system that was purged with 10 per cent carbon dioxide and 90 per cent nitrogen using a coarse bubble diffuser stone. Liquid samples from the reactor were injected into vials and hydrogen was allowed to partition between the liquid and gaseous phases. The concentration of dissolved hydrogen was determined by comparing the headspace injections onto a gas chromatograph and a standard curve. The detection limit was 1.0 x 10{sup -5} mol/L of dissolved hydrogen. The gas transfer rate for hydrogen in basal medium and anaerobic digester sludge was used to validate the method. Results were compared with gas transfer models. In addition to monitoring dissolved hydrogen in reactor systems, this method can help improve hydrogen production potential. 1 ref., 4 figs.

  20. Metal hydrides for hydrogen storage in nickel hydrogen batteries

    International Nuclear Information System (INIS)

    Bittner, H.F.; Badcock, C.C.; Quinzio, M.V.

    1984-01-01

    Metal hydride hydrogen storage in nickel hydrogen (Ni/H 2 ) batteries has been shown to increase battery energy density and improve battery heat management capabilities. However the properties of metal hydrides in a Ni/H 2 battery environment, which contains water vapor and oxygen in addition to the hydrogen, have not been well characterized. This work evaluates the use of hydrides in Ni/H 2 batteries by fundamental characterization of metal hydride properties in a Ni/H 2 cell environment. Hydrogen sorption properties of various hydrides have been measured in a Ni/H 2 cell environment. Results of detailed thermodynamic and kinetic studies of hydrogen sorption in LaNi 5 in a Ni/H 2 cell environment are presented. Long-term cycling studies indicate that degradation of the hydride can be minimized by cycling between certain pressure limits. A model describing the mechanism of hydride degradation is presented

  1. Metastable hydrogen

    International Nuclear Information System (INIS)

    Dose, V.

    1982-01-01

    This paper deals with the basic physical properties of the metastable 2 2 sub(1/2) state of atomic hydrogen. Applications relying on its special properties, including measurement of the Lamb shift, production of spin-polarized protons and the measurement of molecular electric moments, are discussed. (author)

  2. The drone as an additional risk factor due to conditions not provided for in radiological safety at major events; O drone como fator adicional de risco decorrente de condicoes nao previstas na seguranca radiologica em grandes eventos

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Gilberto de Jesus

    2015-07-01

    Major international events are potential targets of terrorist actions, seeking instant publicity that events of this magnitude provide, with the intention of causing terror and disseminate its power to a large number of people worldwide. In this context, the critical analysis of additional risk factor linked to procedures and protocols adopted on radiation safety is important. The possibility of unforeseen situations of risk, especially those resulting from the current global technological development, is a fact. Radioactive material can be used in this type of terrorism in a wide range of devices and illicit trafficking of this material is a reality that worries the International Atomic Energy Agency. In the current technological development scenario of the world, the potential occurrence of terrorist acts using drones combined with radioactive material dispersal devices, is real. The recent history of drones incidents presents cases where, despite not having been necessarily terrorist motivation, their circumstances and characteristics favor the occurrence of malicious acts. This paper proposes to alert the need of updating the current security protocols, considering the potential association of this technology with radioactive dispersal devices. (author)

  3. Advanced Hydrogen Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    Joesph Fadok

    2008-01-01

    Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the

  4. Hydrogen Process Coupling to Modular Helium Reactors

    International Nuclear Information System (INIS)

    Shenoy, Arkal; Richards, Matt; Buckingham, Robert

    2009-01-01

    The U.S. Department of Energy (DOE) has selected the helium-cooled High Temperature Gas-Cooled Reactor (HTGR) as the concept to be used for the Next Generation Nuclear Plant (NGNP), because it is the most advanced Generation IV concept with the capability to provide process heat at sufficiently high temperatures for production of hydrogen with high thermal efficiency. Concurrently with the NGNP program, the Nuclear Hydrogen Initiative (NHI) was established to develop hydrogen production technologies that are compatible with advanced nuclear systems and do not produce greenhouse gases. The current DOE schedule for the NGNP Project calls for startup of the NGNP plant by 2021. The General Atomics (GA) NGNP pre-conceptual design is based on the GA Gas Turbine Modular Helium Reactor (GT-MHR), which utilizes a direct Brayton cycle Power Conversion System (PCS) to produce electricity with a thermal efficiency of 48%. The nuclear heat source for the NGNP consists of a single 600-MW(t) MHR module with two primary coolant loops for transport of the high-temperature helium exiting the reactor core to a direct cycle PCS for electricity generation and to an Intermediate Heat Exchanger (IHX) for hydrogen production. The GA NGNP concept is designed to demonstrate hydrogen production using both the thermochemical sulfur-iodine (SI) process and high-temperature electrolysis (HTE). The two primary coolant loops can be operated independently or in parallel. The reactor design is essentially the same as that for the GT-MHR, but includes the additional primary coolant loop to transport heat to the IHX and other modifications to allow operation with a reactor outlet helium temperature of 950 .deg. C (vs. 850 .deg. C for the GT-MHR). The IHX transfers a nominal 65 MW(t) to the secondary heat transport loop that provides the high-temperature heat required by the SI-based and HTE-based hydrogen production facilities. Two commercial nuclear hydrogen plant variations were evaluated with

  5. Mercury free zinc alloy powder for alkaline manganese battery. 2. Effect of additive species to zinc particle on suppressing hydrogen gas evolution; Arukari mangan denchiyo mukoka aen gokin funmatsu. 2. Suiso gas hassei ni oyobosu aen ryushi eno tenka genso no yokusei koka

    Energy Technology Data Exchange (ETDEWEB)

    Yano, M.; Fujitani, S.; Nishio, K. [Sanyo electric Co. Ltd., Osaka (Japan); Akai, Y.; Kurimura, M. [Sanyo Excell Co. Ltd., Tottori (Japan)

    1997-08-05

    In order to make alkaline manganese batteries mercury-free and suppress hydrogen gas generation, investigations were given on the effect of additive species on modification of zinc particles present on negative electrode surface. Mercury with high hydrogen overvoltage has been added conventionally, but the mercury can cause an environmental problem. Surface modification by using indium exhibited hydrogen gas generation suppressing effect. With the surface modification amount of 0.10% by weight or more, the suppressing effect is saturated, reducing the effect to 50% of that of mercury. Surface-modifying the bismuth added zinc particles with indium showed greater suppressing effect than the case where each element is used independently. Zinc-indium (0.10% by weight) - bismuth (0.025% by weight) based alloy powder showed the same hydrogen generation suppressing effect as zinc-mercury (0.15% by weight) alloy powder. A sealed test battery using this alloy powder in negative active material exhibited a discharge capacity of 1700 mAh similarly to the initial stage even after having been stored for 20 days at 60 degC. Self-discharge characteristics equivalent to that of zinc-mercury (0.15% by weight) based alloy powder were obtained. An environment compatible dry cell battery containing no mercury whatsoever was developed successfully. 18 refs., 6 figs., 1 tab.

  6. Magnetic liquefier for hydrogen

    International Nuclear Information System (INIS)

    1992-01-01

    This document summarizes work done at the Astronautics Technology Center of the Astronautics Corporation of America (ACA) in Phase 1 of a four phase program leading to the development of a magnetic liquefier for hydrogen. The project involves the design, fabrication, installation, and operation of a hydrogen liquefier providing significantly reduced capital and operating costs, compared to present liquefiers. To achieve this goal, magnetic refrigeration, a recently developed, highly efficient refrigeration technology, will be used for the liquefaction process. Phase 1 project tasks included liquefier conceptual design and analysis, preliminary design of promising configurations, design selection, and detailed design of the selected design. Fabrication drawings and vendor specifications for the selected design were completed during detailed design. The design of a subscale, demonstration magnetic hydrogen liquefier represents a significant advance in liquefaction technology. The cost reductions that can be realized in hydrogen liquefaction in both the subscale and, more importantly, in the full-scale device are expected to have considerable impact on the use of liquid hydrogen in transportation, chemical, and electronic industries. The benefits to the nation from this technological advance will continue to have importance well into the 21st century

  7. Industrial implications of hydrogen

    International Nuclear Information System (INIS)

    Pressouyre, G.M.

    1982-01-01

    Two major industrial implications of hydrogen are examined: problems related to the effect of hydrogen on materials properties (hydrogen embrittlement), and problems related to the use and production of hydrogen as a future energy vector [fr

  8. Methanol from biomass and hydrogen

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    For Hawaii in the near term, the only liquid fuels indigenous sources will be those that can be made from biomass, and of these, methanol is the most promising. In addition, hydrogen produced by electrolysis can be used to markedly increase the yield of biomass methanol. This paper calculates cost of producing methanol by an integrated system including a geothermal electricity facility plus a plant producing methanol by gasifying biomass and adding hydrogen produced by electrolysis. Other studies cover methanol from biomass without added hydrogen and methanol from biomass by steam and carbon dioxide reforming. Methanol is made in a two-step process: the first is the gasification of biomass by partial oxidation with pure oxygen to produce carbon oxides and hydrogen, and the second is the reaction of gases to form methanol. Geothermal steam is used to generate the electricity used for the electrolysis to produce the added hydrogen

  9. Importance of international standards on hydrogen technologies

    International Nuclear Information System (INIS)

    Bose, T.K.; Gingras, S.

    2001-01-01

    This presentation provided some basic information regarding standards and the International Organization for Standardization (ISO). It also explained the importance of standardization activities, particularly ISO/TC 197 which applies to hydrogen technologies. Standards are established by consensus. They define the minimum requirements that will ensure that products and services are reliable and effective. Standards contribute to the elimination of technical barriers to trade (TBT). The harmonization of standards around the world is desirable in a free trade environment. The influence of the TBT on international standardization was discussed with particular reference to the objectives of ISO/TC 197 hydrogen technologies. One of the priorities for ISO/TC 197 is a hydrogen fuel infrastructure which includes refuelling stations, fuelling connectors, and storage technologies for gaseous and liquid hydrogen. Other priorities include an agreement between the International Electrotechnical Commission (IEC) and the ISO, in particular the IEC/TC 105 and ISO/TC 197 for the development of fuel cell standards. The international standards that have been published thus far include ISO 13984:1999 for liquid hydrogen, land vehicle fuelling system interface, and ISO 14687:1999 for hydrogen fuel product specification. Standards are currently under development for: liquid hydrogen; airport hydrogen fuelling facilities; gaseous hydrogen blends; basic considerations for the safety of hydrogen systems; gaseous hydrogen and hydrogen blends; and gaseous hydrogen for land vehicle filling connectors. It was concluded that the widespread use of hydrogen is dependent on international standardization

  10. The Energy Efficiency of Onboard Hydrogen Storage

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Vestbø, Andreas Peter; Li, Qingfeng

    2007-01-01

    A number of the most common ways of storing hydrogen are reviewed in terms of energy efficiency. Distinction is made between energy losses during regeneration and during hydrogen liberation. In the latter case, the energy might have to be provided by part of the released hydrogen, and the true...

  11. MIS-based sensors with hydrogen selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Li,; Dongmei, [Boulder, CO; Medlin, J William [Boulder, CO; McDaniel, Anthony H [Livermore, CA; Bastasz, Robert J [Livermore, CA

    2008-03-11

    The invention provides hydrogen selective metal-insulator-semiconductor sensors which include a layer of hydrogen selective material. The hydrogen selective material can be polyimide layer having a thickness between 200 and 800 nm. Suitable polyimide materials include reaction products of benzophenone tetracarboxylic dianhydride 4,4-oxydianiline m-phenylene diamine and other structurally similar materials.

  12. The Addition of Oxygen or Hydrogen Peroxide to Feedwater in Steam Power Plant. Thermodynamics and Morphology of Oxide-films on Iron in Neutral Aqueous Solution at Elevated Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Ahrnbom, Lars [AB Energikonsult/Aangpannefoereningen, S-104 20 Stockholm (SE); Lewis, Derek [AB Atomenergi, Nykoeping (Sweden)

    1977-07-01

    A study is reported of the oxidation of iron at temperatures up to 350 deg C in aqueous systems containing oxygen and hydrogen peroxide and in the region of acid-base neutrality. New theoretical data have been obtained for the iron-water system at elevated temperatures, these are presented in the form of pe(pH){sub T}-diagrams. They show that when pe (redox potential) is controlled by the couple O{sub 2}-H{sub 2}O{sub 2}, the thermodynamically stable form of iron at pH-values near 1/2log{sub T}K{sub W} is expected to be alpha-Fe{sub 3}O{sub 4}. Measurements have been made with oxygen and hydrogen peroxide electrodes. The results are consistent with the theoretical data. They also show that only when hydrogen peroxide is present is the redox potential buffered (poised) by a well-characterised electrode reaction with a relatively large exchange current. Adequate redox-buffering is essential if the nature of the oxide-film on iron is to be closely controlled. In experiments with mechanically polished iron-foil (99.99 % Fe), a thin film of a single spinel-phase forms on specimens exposed to dilute solutions of hydrogen peroxide in rigorously deionised water. The X-ray diffraction characteristics of this phase (a = 8.390 +- 0.003 A) are not, however, consistent with those of alpha-Fe{sub 3}O{sub 4} (a = 8.398 A) or of the defect spinel-type material designated gamma-Fe{sub 2}O{sub 3} (a = 8.381 to 8.399 A). These results are consistent with the view, advanced in other work, that the primary surface film formed on iron in water under conditions close to absolute neutrality is a defect spinel-phase stabilized by incorporated protons. This phase may correspond stoichiometrically to HFe{sub 5}O{sub 8}

  13. Development of Premacy Hydrogen RE Hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Wakayama, N. [Mazda Motor Corporation, Hiroshima (Japan)

    2010-07-01

    Hydrogen powered ICE (internal combustion engine) vehicles can play an important role as an automotive power source in the future, because of its higher reliability and cost performance than those of fuel cell vehicles. Combined with hydrogen, Mazda's unique rotary engine (RE) has merits such as a prevention of hydrogen pre-ignition. Mazda has been developing hydrogen vehicles with the hydrogen RE from the early 1990s. Premacy (Mazda5) Hydrogen RE Hybrid was developed and launched in 2009, following RX-8 Hydrogen RE delivered in 2006. A series hybrid system was adopted in Premacy Hydrogen RE Hybrid. A traction motor switches its windings while the vehicle is moving. This switching technology allows the motor to be small and high-efficient. The lithium-ion high voltage battery, which has excellent input-output characteristics, was installed. These features extend the hydrogen fuel driving range to 200 km and obtain excellent acceleration performance. The hydrogen RE can be also operated by gasoline (Dual Fuel System). The additional gasoline operation makes hydrogen vehicles possible to drive in non-hydrogen station area. With approval from the Japanese Ministry of Land Infrastructure and Transport, Mazda Premacy Hydrogen RE Hybrid was delivered successfully to the Japanese market in the form of leasing. (orig.)

  14. Creating load for new hydrogen production

    International Nuclear Information System (INIS)

    Smith, R.

    2006-01-01

    This presentation provides an update of the activities of the Hydrogen Village. The Hydrogen Village is a public-private partnership of approximately 40 companies with the goal of advancing awareness of the environmental, economic and social benefits of hydrogen and fuel cell technologies. The intent of the hydrogen village is to create a sustainable commercial market for these technologies within the Greater Toronto Area and to help to catalyze such markets in other areas

  15. The Norwegian hydrogen guide 2010

    Energy Technology Data Exchange (ETDEWEB)

    2010-07-01

    Hydrogen technologies are maturing at rapid speed, something we experience in Norway and around the globe every day as demonstration projects for vehicles and infrastructure expand at a rate unthinkable of only a few years ago. An example of this evolution happened in Norway in 2009 when two hydrogen filling stations were opened on May the 11th, making it possible to arrange the highly successful Viking Rally from Oslo to Stavanger with more than 40 competing teams. The Viking Rally demonstrated for the public that battery and hydrogen-electric vehicles are technologies that exist today and provide a real alternative for zero emission mobility in the future. The driving range of the generation of vehicles put into demonstration today is more than 450 km on a full hydrogen tank, comparable to conventional vehicles. As the car industry develops the next generation of vehicles for serial production within the next 4-5 years, we will see vehicles that are more robust, more reliable and cost effective. Also on the hydrogen production and distribution side progress is being made, and since renewable hydrogen from biomass and electrolysis is capable of making mobility basically emission free, hydrogen can be a key component in combating climate change and reducing local emissions. The research Council of Norway has for many years supported the development of hydrogen and fuel cell technologies, and The Research Council firmly believes that hydrogen and fuel cell technologies play a crucial role in the energy system of the future. Hydrogen is a flexible transportation fuel, and offers possibilities for storing and balancing intermittent electricity in the energy system. Norwegian companies, research organisations and universities have during the last decade developed strong capabilities in hydrogen and fuel cell technologies, capabilities it is important to further develop so that Norwegian actors can supply high class hydrogen and fuel cell technologies to global markets

  16. Hydrogen Storage in Metal-Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Long, Jeffrey R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-04-28

    The design and characterization of new materials for hydrogen storage is an important area of research, as the ability to store hydrogen at lower pressures and higher temperatures than currently feasible would lower operating costs for small hydrogen fuel cell vehicles. In particular, metal-organic frameworks (MOFs) represent promising materials for use in storing hydrogen in this capacity. MOFs are highly porous, three-dimensional crystalline solids that are formed via linkages between metal ions (e.g., iron, nickel, and zinc) and organic molecules. MOFs can store hydrogen via strong adsorptive interactions between the gas molecules and the pores of the framework, providing a high surface area for gas adsorption and thus the opportunity to store hydrogen at significantly lower pressures than with current technologies. By lowering the energy required for hydrogen storage, these materials hold promise in rendering hydrogen a more viable fuel for motor vehicles, which is a highly desirable outcome given the clean nature of hydrogen fuel cells (water is the only byproduct of combustion) and the current state of global climate change resulting from the combustion of fossil fuels. The work presented in this report is the result of collaborative efforts between researchers at Lawrence Berkeley National Lab (LBNL), the National Institute of Standards and Technology (NIST), and General Motors Corporation (GM) to discover novel MOFs promising for H2 storage and characterize their properties. Described herein are several new framework systems with improved gravimetric and volumetric capacity to strongly bind H2 at temperatures relevant for vehicle storage. These materials were rigorously characterized using neutron diffraction, to determine the precise binding locations of hydrogen within the frameworks, and high-pressure H2 adsorption measurements, to provide a comprehensive picture of H2 adsorption at all relevant pressures. A

  17. Medicare Provider Data - Hospice Providers

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Hospice Utilization and Payment Public Use File provides information on services provided to Medicare beneficiaries by hospice providers. The Hospice PUF...

  18. Additive manufacturing.

    Science.gov (United States)

    Mumith, A; Thomas, M; Shah, Z; Coathup, M; Blunn, G

    2018-04-01

    Increasing innovation in rapid prototyping (RP) and additive manufacturing (AM), also known as 3D printing, is bringing about major changes in translational surgical research. This review describes the current position in the use of additive manufacturing in orthopaedic surgery. Cite this article: Bone Joint J 2018;100-B:455-60.

  19. Hydrogen Temperature-Programmed Desorption in Platinum Catalysts: Decomposition and Isotopic Exchange by Spillover Hydrogen of Chemisorbed Ammonia.

    NARCIS (Netherlands)

    Koningsberger, D.C.; Miller, J.T.; Meyers, B.L.; Barr, M.K.; Modica, F.S.

    1996-01-01

    H{2}-TPD of Pt/alumina catalysts display multiple hydrogendesorptions. In addition to chemisorbed hydrogen (Peak I) atapproximately 175}o{C, there is a small hydrogen desorption (PeakII) at about 250}o{C and a large, irreversible hydrogen desorption(Peak III) at 450}o{C. The quantity of hydrogen

  20. Influence of metallurgical heterogeneities on the mechanisms of hydrogen diffusion and trapping of in nickel

    International Nuclear Information System (INIS)

    Oudriss, Abdelali

    2012-01-01

    A thorough investigation on the influence of several metallurgical defects on the hydrogen diffusion and trapping was conducted on nickel. This work was conducted towards two scientific orientations. A first approach was to assess the impact of intrinsic defects, especially grain boundaries and geometrically necessary dislocations on the hydrogen transport and segregation mechanisms. Combining microstructural characterizations with electrochemical permeation tests and thermal desorption spectroscopy, it has established that the grain boundaries with ordered structure called 'special grain boundaries' are preferential areas for hydrogen segregation. On the other hand, a second category of grain boundaries called 'general' or 'random' with high free volume and disordered structure are promoters for hydrogen diffusion, and they represent the main sources of the phenomena short circuit diffusion reported in the face-centered cubic materials. The second approach of this work consisted in the study of the interaction of hydrogen with the plastic deformation heterogeneities. The electrochemical permeation tests performed on microstructures obtained by deformation showed that for the traction monotonous, the equiaxed cells and walls of dislocations are the potential traps for hydrogen and they slow its transport, this latter is mainly provided by the interstitial diffusion mechanism. In addition, for fatigue microstructure, rapid diffusivity of hydrogen was recorded, and suggesting that a phenomenon similar to short-circuit diffusion is involved in the transport of hydrogen. On two approaches, the results suggest a contribution of hydrogen in the formation of vacancies. (author) [fr

  1. Trends in Hydrogen Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Hoevenaars, A.J.; Weeda, M. [ECN Hydrogen and Clean Fossil Fuels, Petten (Netherlands)

    2009-09-15

    This report intends to provide an update of the latest developments that have recently occurred within car industry within the field of Hydrogen powered fuel cell vehicles (FCVs) to date, October 2009. In attempts to provide a clear and logical overview, the report starts with an overview of the OEMs (Original Equipment Manufacturers) that are actually active within the Hydrogen vehicle business, and provides an overview of the intensity of FCV activity per OEM. This overview shows that there is a pool of distinctively most active OEMs, and that others have tried to create exposure for themselves, but have not seriously been involved in in-house technology development in support of FCV manufacturing. Furthermore, some manufacturers chose a different path when it comes to using hydrogen for vehicle propulsion and use Hydrogen gas as a fuel for a conventional Internal Combustion Engine (ICE). In the field of FCVs, Most FCV activities are displayed by Honda, Daimler, Opel/GM, Hyundai/Kia, Toyota, Nissan and Ford. Volkswagen has given less priority to FCV development and has not been profiling itself as a very Hydrogen-prone OEM. Mazda and BMW chose to put their efforts in the development of Hydrogen fuelled ICE vehicles. Also Ford has put efforts in Hydrogen fuelled ICE vehicles. After the active OEMs are mapped, an overview is given on how active they have been in terms of cars produced. It appeared difficult to come up with reliable estimations on the basis of numbers available for public. The sum of vehicles produced by all OEMs together was estimated on about 515 vehicles. This estimation however was much lower than the figures published by Fuel Cell Today (FCT). FCT projects accumulated vehicles shipped in 2009 around 1100 units, the double of the numbers found for this study. Communication with FCT learned us that FCT has access to confidential information from the OEMs. Especially the Asian OEMs do not provide transparency when it comes to FCVs shipped, however

  2. Trends in Hydrogen Vehicles

    International Nuclear Information System (INIS)

    Hoevenaars, A.J.; Weeda, M.

    2009-09-01

    This report intends to provide an update of the latest developments that have recently occurred within car industry within the field of Hydrogen powered fuel cell vehicles (FCVs) to date, October 2009. In attempts to provide a clear and logical overview, the report starts with an overview of the OEMs (Original Equipment Manufacturers) that are actually active within the Hydrogen vehicle business, and provides an overview of the intensity of FCV activity per OEM. This overview shows that there is a pool of distinctively most active OEMs, and that others have tried to create exposure for themselves, but have not seriously been involved in in-house technology development in support of FCV manufacturing. Furthermore, some manufacturers chose a different path when it comes to using hydrogen for vehicle propulsion and use Hydrogen gas as a fuel for a conventional Internal Combustion Engine (ICE). In the field of FCVs, Most FCV activities are displayed by Honda, Daimler, Opel/GM, Hyundai/Kia, Toyota, Nissan and Ford. Volkswagen has given less priority to FCV development and has not been profiling itself as a very Hydrogen-prone OEM. Mazda and BMW chose to put their efforts in the development of Hydrogen fuelled ICE vehicles. Also Ford has put efforts in Hydrogen fuelled ICE vehicles. After the active OEMs are mapped, an overview is given on how active they have been in terms of cars produced. It appeared difficult to come up with reliable estimations on the basis of numbers available for public. The sum of vehicles produced by all OEMs together was estimated on about 515 vehicles. This estimation however was much lower than the figures published by Fuel Cell Today (FCT). FCT projects accumulated vehicles shipped in 2009 around 1100 units, the double of the numbers found for this study. Communication with FCT learned us that FCT has access to confidential information from the OEMs. Especially the Asian OEMs do not provide transparency when it comes to FCVs shipped, however

  3. Hydrogen: Fueling the Future

    International Nuclear Information System (INIS)

    Leisch, Jennifer

    2007-01-01

    As our dependence on foreign oil increases and concerns about global climate change rise, the need to develop sustainable energy technologies is becoming increasingly significant. Worldwide energy consumption is expected to double by the year 2050, as will carbon emissions along with it. This increase in emissions is a product of an ever-increasing demand for energy, and a corresponding rise in the combustion of carbon containing fossil fuels such as coal, petroleum, and natural gas. Undisputable scientific evidence indicates significant changes in the global climate have occurred in recent years. Impacts of climate change and the resulting atmospheric warming are extensive, and know no political or geographic boundaries. These far-reaching effects will be manifested as environmental, economic, socioeconomic, and geopolitical issues. Offsetting the projected increase in fossil energy use with renewable energy production will require large increases in renewable energy systems, as well as the ability to store and transport clean domestic fuels. Storage and transport of electricity generated from intermittent resources such as wind and solar is central to the widespread use of renewable energy technologies. Hydrogen created from water electrolysis is an option for energy storage and transport, and represents a pollution-free source of fuel when generated using renewable electricity. The conversion of chemical to electrical energy using fuel cells provides a high efficiency, carbon-free power source. Hydrogen serves to blur the line between stationary and mobile power applications, as it can be used as both a transportation fuel and for stationary electricity generation, with the possibility of a distributed generation energy infrastructure. Hydrogen and fuel cell technologies will be presented as possible pollution-free solutions to present and future energy concerns. Recent hydrogen-related research at SLAC in hydrogen production, fuel cell catalysis, and hydrogen

  4. Probing hydrogen bonding interactions and proton transfer in proteins

    Science.gov (United States)

    Nie, Beining

    Scope and method of study. Hydrogen bonding is a fundamental element in protein structure and function. Breaking a single hydrogen bond may impair the stability of a protein. It is therefore important to probe dynamic changes in hydrogen bonding interactions during protein folding and function. Time-resolved Fourier transform infrared spectroscopy is highly sensitive to hydrogen bonding interactions. However, it lacks quantitative correlation between the vibrational frequencies and the number, type, and strength of hydrogen bonding interactions of ionizable and polar residues. We employ quantum physics theory based ab initio calculations to study the effects of hydrogen bonding interactions on vibrational frequencies of Asp, Glu, and Tyr residues and to develop vibrational spectral markers for probing hydrogen bonding interactions using infrared spectroscopy. In addition, proton transfer process plays a crucial role in a wide range of energy transduction, signal transduction, and enzymatic reactions. We study the structural basis for proton transfer using photoactive yellow protein as an excellent model system. Molecular dynamics simulation is employed to investigate the structures of early intermediate states. Quantum theory based ab initio calculations are used to study the impact of hydrogen bond interactions on proton affinity and proton transfer. Findings and conclusions. Our extensive density function theory based calculations provide rich structural, spectral, and energetic information on hydrogen bonding properties of protonated side chain groups of Asp/Glu and Tyr. We developed vibrational spectral markers and 2D FTIR spectroscopy for structural characterization on the number and the type of hydrogen bonding interactions of the COOH group of Asp/Glu and neutral phenolic group of Tyr. These developments greatly enhance the power of time-resolved FTIR spectroscopy as a major experimental tool for structural characterization of functionally important

  5. Saga of hydrogen civilization

    Energy Technology Data Exchange (ETDEWEB)

    Veziroglu, T.N. [Univ. of Miami, Coral Gables, FL (United States). Clean Energy Research Institute

    2008-09-30

    In the 1960s, air pollution in cities became an important issue hurting the health of people. The author became interested in environmental issues in general and air pollution in particular. He started studying possible vehicle fuels, with a view of determining the fuel which would cause little or no pollution. He particularly studied methanol, ethanol, ammonia and hydrogen as well as the gasohols (i.e., the mixtures of gasoline and methanol and/or ethanol). His investigation of fuels for transportation lasted five years (1967-1972). The result was that hydrogen is the cleanest fuel, and it is also the most efficient one. It would not produce CO (carbon monoxide), CO{sub 2} (carbon dioxide), SO{sub x}, hydrocarbons, soot and particulates. If hydrogen was burned in oxygen, it would not produce NO{sub x} either. If it burned in air, there would then be some NO{sub x} produced. Since the author has always believed that engineers and scientists should strive to find solutions to the problems facing humankind and the world, he established the Clean Energy Research Institute (CERI) at the University of Miami in 1973. The mission of the Institute was to find a solution or solutions to the energy problem, so the world economy can function properly and provide humankind with high living standards. To find clean forms of energy was also the mission of the Institute, so that they would not produce pollution and damage the health of flora, fauna and humans, as well as the environment of the planet Earth as a whole. CERI looked at all of the possible primary energy sources, including solar, wind, currents, waves, tides, geothermal, nuclear breeders and thermonuclear. Although they are much cleaner and would last much longer than fossil fuels, these sources were not practical for use. They were not storable or transportable by themselves, except nuclear. They could not be used as a fuel for transportation by themselves, except nuclear for marine transportation. In order to solve

  6. HUG - the Hydrogen Utility Group

    International Nuclear Information System (INIS)

    Tinkler, M.

    2006-01-01

    The Hydrogen Utility Group (HUG) was formally established in October 2005 by a group of leading electric utilities with a common interest in sharing hydrogen experiences and lessons learned. HUG's Mission Statement is: 'To accelerate utility integration of promising hydrogen energy related business applications through the coordinated efforts and actions of its members in collaboration with key stakeholders, including government agencies and utility support organizations.' In February 2006, HUG members presented a briefing to the US Senate Hydrogen and Fuel Cell Caucus in Washington, DC, outlining the significant role that the power industry should play in an emerging hydrogen economy. This presentation provides an overview of that briefing, summarizing the HUG's ongoing interests and activities

  7. Rapid Diffusion and Nanosegregation of Hydrogen in Magnesium Alloys from Exposure to Water.

    Science.gov (United States)

    Brady, Michael P; Ievlev, Anton V; Fayek, Mostafa; Leonard, Donovan N; Frith, Matthew G; Meyer, Harry M; Ramirez-Cuesta, Anibal J; Daemen, Luke L; Cheng, Yongqiang; Guo, Wei; Poplawsky, Jonathan D; Ovchinnikova, Olga S; Thomson, Jeffrey; Anovitz, Lawrence M; Rother, Gernot; Shin, Dongwon; Song, Guang-Ling; Davis, Bruce

    2017-11-01

    Hydrogen gas is formed when Mg corrodes in water; however, the manner and extent to which the hydrogen may also enter the Mg metal is poorly understood. Such knowledge is critical as stress corrosion cracking (SCC)/embrittlement phenomena limit many otherwise promising structural and functional uses of Mg. Here, we report via D 2 O/D isotopic tracer and H 2 O exposures with characterization by secondary ion mass spectrometry, inelastic neutron scattering vibrational spectrometry, electron microscopy, and atom probe tomography techniques direct evidence that hydrogen rapidly penetrated tens of micrometers into Mg metal after only 4 h of exposure to water at room temperature. Further, technologically important microalloying additions of mechanical properties of Mg significantly increased the extent of hydrogen ingress, whereas Al additions in the 2-3 wt % range did not. Segregation of hydrogen species was observed at regions of high Mg/Zr/Nd nanoprecipitate density and at Mg(Zr) metastable solid solution microstructural features. We also report evidence that this ingressed hydrogen was unexpectedly present in the alloy as nanoconfined, molecular H 2 . These new insights provide a basis for strategies to design Mg alloys to resist SCC in aqueous environments as well as potentially impact functional uses such as hydrogen storage where increased hydrogen uptake is desired.

  8. Nuclear hydrogen production and its safe handling

    International Nuclear Information System (INIS)

    Chung, Hongsuk; Paek, Seungwoo; Kim, Kwang-Rag; Ahn, Do-Hee; Lee, Minsoo; Chang, Jong Hwa

    2003-01-01

    An overview of the hydrogen related research presently undertaken at the Korea Atomic Energy Research Institute are presented. These encompass nuclear hydrogen production, hydrogen storage, and the safe handling of hydrogen, High temperature gas-cooled reactors can play a significant role, with respect to large-scale hydrogen production, if used as the provider of high temperature heat in fossil fuel conversion or thermochemical cycles. A variety of potential hydrogen production methods for high temperature gas-cooled reactors were analyzed. They are steam reforming of natural gas, thermochemical cycles, etc. The produced hydrogen should be stored safely. Titanium metal was tested primarily because its hydride has very low dissociation pressures at normal storage temperatures and a high capacity for hydrogen, it is easy to prepare and is non-reactive with air in the expected storage conditions. There could be a number of potential sources of hydrogen evolution risk in a nuclear hydrogen production facility. In order to reduce the deflagration detonation it is necessary to develop hydrogen control methods that are capable of dealing with the hydrogen release rate. A series of experiments were conducted to assess the catalytic recombination characteristics of hydrogen in an air stream using palladium catalysts. (author)

  9. Food additives

    Science.gov (United States)

    ... GO About MedlinePlus Site Map FAQs Customer Support Health Topics Drugs & Supplements Videos & Tools Español You Are Here: Home → Medical Encyclopedia → Food additives URL of this page: //medlineplus.gov/ency/article/ ...

  10. The hydrogen; L'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The hydrogen as an energy system represents nowadays a main challenge (in a scientific, economical and environmental point of view). The physical and chemical characteristics of hydrogen are at first given. Then, the challenges of an hydrogen economy are explained. The different possibilities of hydrogen production are described as well as the distribution systems and the different possibilities of hydrogen storage. Several fuel cells are at last presented: PEMFC, DMFC and SOFC. (O.M.)

  11. Sensor for Measuring Hydrogen Partial Pressure in Parabolic Trough Power Plant Expansion Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Glatzmaier, Greg C.; Cooney, Daniel A.

    2017-06-27

    The National Renewable Energy Laboratory and Acciona Energy North America are working together to design and implement a process system that provides a permanent solution to the issue of hydrogen buildup at parabolic trough power plants. We are pursuing a method that selectively removes hydrogen from the expansion tanks that serve as reservoirs for the heat transfer fluid (HTF) that circulates in the collector field and power block components. Our modeling shows that removing hydrogen from the expansion tanks at a design rate reduces and maintains dissolved hydrogen in the circulating HTF to a selected target level. Our collaborative work consists of several tasks that are needed to advance this process concept to a development stage, where it is ready for implementation at a commercial power plant. Our main effort is to design and evaluate likely process-unit operations that remove hydrogen from the expansion tanks at a specified rate. Additionally, we designed and demonstrated a method and instrumentation to measure hydrogen partial pressure and concentration in the expansion-tank headspace gas. We measured hydrogen partial pressure in the headspace gas mixture using a palladium-alloy membrane, which is permeable exclusively to hydrogen. The membrane establishes a pure hydrogen gas phase that is in equilibrium with the hydrogen in the gas mixture. We designed and fabricated instrumentation, and demonstrated its effectiveness in measuring hydrogen partial pressures over a range of three orders of magnitude. Our goal is to install this instrument at the Nevada Solar One power plant and to demonstrate its effectiveness in measuring hydrogen levels in the expansion tanks under normal plant operating conditions.

  12. SISGR - Hydrogen Caged in Carbon-Exploration of Novel Carbon-Hydrogen Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Lueking, Angela [Pennsylvania State Univ., State College, PA (United States); Badding, John [Pennsylvania State Univ., State College, PA (United States); Crespi, Vinent [Pennsylvania State Univ., State College, PA (United States)

    2015-12-01

    Hydrogen trapped in a carbon cage, captured through repulsive interactions, is a novel concept in hydrogen storage. Trapping hydrogen via repulsive interactions borrows an idea from macroscale hydrogen storage (i.e. compressed gas storage tanks) and reapplies these concepts on the nanoscale in specially designed molecular containers. Under extreme conditions of pressure, hydrogen solubility in carbon materials is expected to increase and carbon is expected to restructure to minimize volume via a mixed sp2/sp3 hydrogenated state. Thermodynamics dictate that pre-formed C-H structures will rearrange with increased pressure, yet the final carbon-hydrogen interactions may be dependent upon the mechanism by which hydrogen is introduced. Gas “trapping” is meant to denote gas present in a solid in a high density, adsorbed-like state, when the external pressure is much less than that necessary to provide a comparable fluid density. Trapping thus denotes a kinetically metastable state rather than thermodynamic equilibrium. This project probed mechanochemical means to polymerize select hydrocarbons in the presence of gases, in an attempt to form localized carbon cages that trap gases via repulsive interactions. Aromatic, polyaromatic, and hydroaromatic molecules expected to undergo cyclo-addition reactions were polymerized at high (~GPa) pressures to form extended hydrogenated amorphous carbon networks. Notably, aromatics with a pre-existing internal free volume (such as Triptycene) appeared to retain an internal porosity upon application of pressure. However, a high photoluminescence background after polymerization precluded in situ identification of trapped gases. No spectroscopic evidence was found after depressurization that would be indicative of pockets of trapped gases in a localized high-pressure environment. Control studies suggested this measurement may be insensitive to gases at low pressure. Similarly, no spectral fingerprint was found for gas-imbued spherical

  13. Synthesis of hydrogen-carbon clathrate material and hydrogen evolution therefrom at moderate temperatures and pressures

    Science.gov (United States)

    Lueking, Angela [State College, PA; Narayanan, Deepa [Redmond, WA

    2011-03-08

    A process for making a hydrogenated carbon material is provided which includes forming a mixture of a carbon source, particularly a carbonaceous material, and a hydrogen source. The mixture is reacted under reaction conditions such that hydrogen is generated and/or released from the hydrogen source, an amorphous diamond-like carbon is formed, and at least a portion of the generated and/or released hydrogen associates with the amorphous diamond-like carbon, thereby forming a hydrogenated carbon material. A hydrogenated carbon material including a hydrogen carbon clathrate is characterized by evolution of molecular hydrogen at room temperature at atmospheric pressure in particular embodiments of methods and compositions according to the present invention.

  14. Hydrogen Technical Analysis -- Dissemination of Information

    Energy Technology Data Exchange (ETDEWEB)

    George Kervitsky, Jr.

    2006-03-20

    SENTECH is a small energy and environmental consulting firm providing technical, analytical, and communications solutions to technology management issues. The activities proposed by SENTECH focused on gathering and developing communications materials and information, and various dissemination activities to present the benefits of hydrogen energy to a broad audience while at the same time establishing permanent communications channels to enable continued two-way dialog with these audiences in future years. Effective communications and information dissemination is critical to the acceptance of new technology. Hydrogen technologies face the additional challenge of safety preconceptions formed primarily as a result of the crash of the Hindenburg. Effective communications play a key role in all aspects of human interaction, and will help to overcome the perceptual barriers, whether of safety, economics, or benefits. As originally proposed SENTECH identified three distinct information dissemination activities to address three distinct but important audiences; these formed the basis for the task structure used in phases 1 and 2. The tasks were: (1) Print information--Brochures that target the certain segment of the population and will be distributed via relevant technical conferences and traditional distribution channels. (2) Face-to-face meetings--With industries identified to have a stake in hydrogen energy. The three industry audiences are architect/engineering firms, renewable energy firms, and energy companies that have not made a commitment to hydrogen (3) Educational Forums--The final audience is students--the future engineers, technicians, and energy consumers. SENTECH will expand on its previous educational work in this area. The communications activities proposed by SENTECH and completed as a result of this cooperative agreement was designed to compliment the research and development work funded by the DOE by presenting the technical achievements and validations

  15. HYDROGEN PRODUCTION AND DELIVERY INFRASTRUCTURE AS A COMPLEX ADAPTIVE SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Tolley, George S

    2010-06-29

    large enough to noticeably affect sales penetration. A tax of $116 per metric ton makes centrally produced hydrogen profitable in the very first year but results in only 64% penetration by year 20 as opposed to the 60% penetration in the benchmark case. Provision of 15 seed stations publicly provided at the beginning of the simulation, in addition to the 15 existing stations in the benchmark case, gives sales penetration rates very close to the benchmark after 20 years, namely, 63% and 59% depending on where they are placed.

  16. The hydrogen 700 project - 700 Bar Co

    International Nuclear Information System (INIS)

    Gambone, L.; Webster, C.

    2004-01-01

    'Full text:' Major automotive companies, including DaimlerChrysler, Ford, Hyundai, Nissan, PSA Peugeot-Citroen, and Toyota, are co-operating in the Hydrogen 700 project at Powertech to establish a global basis for high pressure hydrogen fuel systems for vehicles. The fuel systems will store compressed hydrogen on-board at pressures up to 700 bar (10,000psi). It is anticipated that the 700 bar storage pressure will provide hydrogen powered vehicles with a range comparable to the range of petroleum-fueled vehicles. The Hydrogen 700 project has contracted world leaders in high pressure technologies to provide 700 bar fuel system components for evaluation. The data from these tests will be used as the basis for the development of relevant standards and regulations. In a development that complements the Hydrogen 700 project, Powertech Labs has established the world's first 700 bar hydrogen station for fast filling operations. This prototype station will be used to evaluate the performance of the 700 bar vehicle fuel system components. The presentation will provide an overview of the Hydrogen 700 project. Safety issues surrounding the use of compressed hydrogen gas as a vehicle fuel, as well as the use of higher storage pressures, will be reviewed. Test data involving the fire testing of vehicles containing hydrogen fuel systems will be presented. The project is intended to result in the introduction of 700 bar fuel systems in the next generation of hydrogen powered vehicles. (author)

  17. INVESTIGATIONS ON BIOCHEMICAL PURIFICATION OF GROUND WATER FROM HYDROGEN SULFIDE

    Directory of Open Access Journals (Sweden)

    Yu. P. Sedlukho

    2015-01-01

    Full Text Available The paper considers problems and features of biochemical removal of hydrogen sulfide from ground water. The analysis of existing methods for purification of ground water from hydrogen sulfide has been given in the paper. The paper has established shortcomings of physical and chemical purification of ground water. While using aeration methods for removal of hydrogen sulfide formation of colloidal sulfur that gives muddiness and opalescence to water occurs due to partial chemical air oxidation. In addition to this violation of sulfide-carbonate equilibrium taking place in the process of aeration due to desorption of H2S and CO2, often leads to clogging of degasifier nozzles with formed CaCO3 that causes serious operational problems. Chemical methods require relatively large flow of complex reagent facilities, storage facilities and transportation costs.In terms of hydrogen sulfide ground water purification the greatest interest is given to the biochemical method. Factors deterring widespread application of the biochemical method is its insufficient previous investigation and necessity to execute special research in order to determine optimal process parameters while purifying groundwater of a particular water supply source. Biochemical methods for oxidation of sulfur compounds are based on natural biological processes that ensure natural sulfur cycle. S. Vinogradsky has established a two-stage mechanism for oxidation of hydrogen sulfide with sulfur bacteria (Beggiatoa. The first stage presupposes oxidation of hydrogen sulphide to elemental sulfur which is accumulating in the cytoplasm in the form of globules. During the second stage sulfur bacteria begin to oxidize intracellular sulfur to sulfuric acid due to shortage of hydrogen sulfide.The paper provides the results of technological tests of large-scale pilot plants for biochemical purification of groundwater from hydrogen sulfide in semi-industrial conditions. Dependences of water quality

  18. Passivation of hexagonal SiC surfaces by hydrogen termination

    International Nuclear Information System (INIS)

    Seyller, Thomas

    2004-01-01

    Surface hydrogenation is a well established technique in silicon technology. It is easily accomplished by wet-chemical procedures and results in clean and unreconstructed surfaces, which are extremely low in charged surface states and stable against oxidation in air, thus constituting an ideal surface preparation. As a consequence, methods for hydrogenation have been sought for preparing silicon carbide (SiC) surfaces with similar well defined properties. It was soon recognized, however, that due to different surface chemistry new ground had to be broken in order to find a method leading to the desired monatomic hydrogen saturation. In this paper the results of H passivation of SiC surfaces by high-temperature hydrogen annealing will be discussed, thereby placing emphasis on chemical, structural and electronic properties of the resulting surfaces. In addition to their unique properties, hydrogenated hexagonal SiC {0001} surfaces offer the interesting possibility of gaining insight into the formation of silicon- and carbon-rich reconstructions as well. This is due to the fact that to date hydrogenation is the only method providing oxygen-free surfaces with a C to Si ratio of 1:1. Last but not least, the electronic properties of hydrogen-free SiC {0001} surfaces will be alluded to. SiC {0001} surfaces are the only known semiconductor surfaces that can be prepared in their unreconstructed (1 x 1) state with one dangling bond per unit cell by photon induced hydrogen desorption. These surfaces give indications of a Mott-Hubbard surface band structure

  19. The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, Marc A.; Koohi-Fayegh, Seama [Ontario Univ., Oshawa, ON (Canada). Inst. of Technology

    2016-02-15

    Hydrogen is expected to play a key role as an energy carrier in future energy systems of the world. As fossil-fuel supplies become scarcer and environmental concerns increase, hydrogen is likely to become an increasingly important chemical energy carrier and eventually may become the principal chemical energy carrier. When most of the world's energy sources become non-fossil based, hydrogen and electricity are expected to be the two dominant energy carriers for the provision of end-use services. In such a ''hydrogen economy,'' the two complementary energy carriers, hydrogen and electricity, are used to satisfy most of the requirements of energy consumers. A transition era will bridge the gap between today's fossil-fuel economy and a hydrogen economy, in which non-fossil-derived hydrogen will be used to extend the lifetime of the world's fossil fuels - by upgrading heavy oils, for instance - and the infrastructure needed to support a hydrogen economy is gradually developed. In this paper, the role of hydrogen as an energy carrier and hydrogen energy systems' technologies and their economics are described. Also, the social and political implications of hydrogen energy are examined, and the questions of when and where hydrogen is likely to become important are addressed. Examples are provided to illustrate key points. (orig.)

  20. The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems

    International Nuclear Information System (INIS)

    Rosen, Marc A.; Koohi-Fayegh, Seama

    2016-01-01

    Hydrogen is expected to play a key role as an energy carrier in future energy systems of the world. As fossil-fuel supplies become scarcer and environmental concerns increase, hydrogen is likely to become an increasingly important chemical energy carrier and eventually may become the principal chemical energy carrier. When most of the world's energy sources become non-fossil based, hydrogen and electricity are expected to be the two dominant energy carriers for the provision of end-use services. In such a ''hydrogen economy,'' the two complementary energy carriers, hydrogen and electricity, are used to satisfy most of the requirements of energy consumers. A transition era will bridge the gap between today's fossil-fuel economy and a hydrogen economy, in which non-fossil-derived hydrogen will be used to extend the lifetime of the world's fossil fuels - by upgrading heavy oils, for instance - and the infrastructure needed to support a hydrogen economy is gradually developed. In this paper, the role of hydrogen as an energy carrier and hydrogen energy systems' technologies and their economics are described. Also, the social and political implications of hydrogen energy are examined, and the questions of when and where hydrogen is likely to become important are addressed. Examples are provided to illustrate key points. (orig.)

  1. Carbon material for hydrogen storage

    Science.gov (United States)

    Bourlinos, Athanasios; Steriotis, Theodore; Stubos, Athanasios; Miller, Michael A

    2016-09-13

    The present invention relates to carbon based materials that are employed for hydrogen storage applications. The material may be described as the pyrolysis product of a molecular precursor such as a cyclic quinone compound. The pyrolysis product may then be combined with selected transition metal atoms which may be in nanoparticulate form, where the metals may be dispersed on the material surface. Such product may then provide for the reversible storage of hydrogen. The metallic nanoparticles may also be combined with a second metal as an alloy to further improve hydrogen storage performance.

  2. Pionic hydrogen and friends

    Energy Technology Data Exchange (ETDEWEB)

    Gotta, D., E-mail: d.gotta@fz-juelich.de [Forschungszentrum Jülich GmbH and JHCP (Germany); Amaro, F. D. [Coimbra University, Department of Physics (Portugal); Anagnostopoulos, D. F. [University of Ioannina, Department of Materials Science and Engineering (Greece); Bühler, P. [Stefan Meyer Institut, Austrian Academy of Sciences (Austria); Gorke, H. [Forschungszentrum Jülich GmbH and JHCP (Germany); Covita, D. S. [Coimbra University, Department of Physics (Portugal); Fuhrmann, H.; Gruber, A. [Stefan Meyer Institut, Austrian Academy of Sciences (Austria); Hennebach, M. [Forschungszentrum Jülich GmbH and JHCP (Germany); Hirtl, A.; Ishiwatari, T. [Stefan Meyer Institut, Austrian Academy of Sciences (Austria); Indelicato, P. [LKB, UPMC-Paris 6, ENS, CNRS (France); Jensen, T. S. [Ringkjøbing Gymnasium (Denmark); Bigot, E.-O. Le [LKB, UPMC-Paris 6, ENS, CNRS (France); Markushin, V. E. [Paul Scherrer Institut (PSI) (Switzerland); Marton, J. [Stefan Meyer Institut, Austrian Academy of Sciences (Austria); Nekipelov, M. [Forschungszentrum Jülich GmbH and JHCP (Germany); Pomerantsev, V. N.; Popov, V. P. [Skobeltsyn Institut of Nuclear Physics, Lomonossov Moscow State University (Russian Federation); Santos, J. M. F. dos [Coimbra University, Department of Physics (Portugal); and others

    2015-08-15

    Pion-nucleon scattering lengths are directly related to the ground-state level shift and broadening in pionic hydrogen as well as to the pionic deuterium level shift. The level broadening in deuterium measures the strength of pion threshold-production in proton-proton reactions. However, collisional processes during the atomic de-excitation cascade considerably complicate the analysis of X-ray line shapes in order to extract the hadronic broadening. Therefore, additionally the purely electromagnetic twin system muonic hydrogen was studied. Results of these experiments performed at PSI by using a high-resolution crystal spectrometer are discussed in the context with a new analysis approach for the hadronic broadening.

  3. Water reactive hydrogen fuel cell power system

    Science.gov (United States)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  4. A fuzzy analytic hierarchy/data envelopment analysis approach for measuring the relative efficiency of hydrogen R and D programs in the sector of developing hydrogen energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seongkon; Kim, Jongwook [Korea Institute of Energy Research (Korea, Republic of). Energy Policy Research Center; Mogi, Gento [Tokyo Univ. (Japan). Graduate School of Engineering; Hui, K.S. [Hong Kong City Univ. (China). Manufacturing Engineering and Engineering Management

    2010-07-01

    list of evaluation criteria for assessing and prioritize hydrogen energy technologies in the sector of hydrogen ETRM with finite resources and R and D funds. The criteria are composed of economic impact, commercial potential, inner capacity, and technical spin-off. Hydrogen ETRM supplies primary energy technologies to be developed with a long-term view for the low carbon green growth. We suggest Korea's long-term direction and strategy for developing hydrogen energy technologies in the sector of hydrogen ETRM with the hydrogen economy. The main purpose of this research is to assess the priority of hydrogen energy technologies in the sector of hydrogen ETRM since we allocate and invest R and D budgets strategically as an extended research [1]. In this paper, we focus on the assessment of hydrogen energy technologies econometrically by using an integrated 2- stage approach, which is fuzzy analytic hierarchy (Fuzzy AHP) process and the data envelopment analysis (DEA) in the sector of hydrogen energy technologies. The research results suggest the most efficient hydrogen energy technology is selected by the multi-criteria decision making approach. In addition it also provides Korean hydrogen energy technology policymakers and decision makers with the right hydrogen energy technologies econometrically as they implement a strategic R and D plan. This extended abstract is composed as follows: Section 2 presents the fuzzy sets and numbers, Section 3 includes the Fuzzy AHP concepts. Section 4 presents the DEA approach. Section 5 shows the numerical examples. Finally, Section 6 presents the conclusions. (orig.)

  5. Hydrogen distribution in a containment with a high-velocity hydrogen-steam source

    International Nuclear Information System (INIS)

    Bloom, G.R.; Muhlestein, L.D.; Postma, A.K.; Claybrook, S.W.

    1982-09-01

    Hydrogen mixing and distribution tests are reported for a modeled high velocity hydrogen-steam release from a postulated small pipe break or release from a pressurizer relief tank rupture disk into the lower compartment of an Ice Condenser Plant. The tests, which in most cases used helium as a simulant for hydrogen, demonstrated that the lower compartment gas was well mixed for both hydrogen release conditions used. The gas concentration differences between any spatial locations were less than 3 volume percent during the hydrogen/steam release period and were reduced to less than 0.5 volume percent within 20 minutes after termination of the hydrogen source. The high velocity hydrogen/steam jet provided the dominant mixing mechanism; however, natural convection and forced air recirculation played important roles in providing a well mixed atmosphere following termination of the hydrogen source. 5 figures, 4 tables

  6. Wind-To-Hydrogen Energy Pilot Project

    Energy Technology Data Exchange (ETDEWEB)

    Ron Rebenitsch; Randall Bush; Allen Boushee; Brad G. Stevens; Kirk D. Williams; Jeremy Woeste; Ronda Peters; Keith Bennett

    2009-04-24

    WIND-TO-HYDROGEN ENERGY PILOT PROJECT: BASIN ELECTRIC POWER COOPERATIVE In an effort to address the hurdles of wind-generated electricity (specifically wind's intermittency and transmission capacity limitations) and support development of electrolysis technology, Basin Electric Power Cooperative (BEPC) conducted a research project involving a wind-to-hydrogen system. Through this effort, BEPC, with the support of the Energy & Environmental Research Center at the University of North Dakota, evaluated the feasibility of dynamically scheduling wind energy to power an electrolysis-based hydrogen production system. The goal of this project was to research the application of hydrogen production from wind energy, allowing for continued wind energy development in remote wind-rich areas and mitigating the necessity for electrical transmission expansion. Prior to expending significant funding on equipment and site development, a feasibility study was performed. The primary objective of the feasibility study was to provide BEPC and The U.S. Department of Energy (DOE) with sufficient information to make a determination whether or not to proceed with Phase II of the project, which was equipment procurement, installation, and operation. Four modes of operation were considered in the feasibility report to evaluate technical and economic merits. Mode 1 - scaled wind, Mode 2 - scaled wind with off-peak, Mode 3 - full wind, and Mode 4 - full wind with off-peak In summary, the feasibility report, completed on August 11, 2005, found that the proposed hydrogen production system would produce between 8000 and 20,000 kg of hydrogen annually depending on the mode of operation. This estimate was based on actual wind energy production from one of the North Dakota (ND) wind farms of which BEPC is the electrical off-taker. The cost of the hydrogen produced ranged from $20 to $10 per kg (depending on the mode of operation). The economic sensitivity analysis performed as part of the

  7. A nuclear based hydrogen economy

    International Nuclear Information System (INIS)

    Sandquist, G.M.; Tamm, G.; Kunze, J.

    2005-01-01

    Exhausting demands are being imposed upon the world's ability to extract and deliver oil to the nations demanding fluid fossil fuels. This paper analyzes these issues and concludes that there must be no delay in beginning the development of the 'hydrogen economy' using nuclear energy as the primary energy source to provide both the fluid fuel and electrical power required in the 21st century. Nuclear energy is the only proven technology that is abundant and available worldwide to provide the primary energy needed to produce adequate hydrogen fluid fuel supplies to replace oil. Most importantly, this energy transition can be accomplished in an economical and technically proven manner while lowering greenhouse gas emissions. Furthermore, a similar application of using wind and solar to produce hydrogen instead of electricity for the grid can pave the way for the much larger production scales of nuclear plants producing both electricity and hydrogen. (authors)

  8. Progress of Nuclear Hydrogen Program in Korea

    International Nuclear Information System (INIS)

    Lee, Won Jae

    2009-01-01

    To cope with dwindling fossil fuels and climate change, it is clear that a clean alternative energy that can replace fossil fuels is required. Hydrogen is considered a promising future energy solution because it is clean, abundant and storable and has a high energy density. As other advanced countries, the Korean government had established a long-term vision for transition to the hydrogen economy in 2005. One of the major challenges in establishing a hydrogen economy is how to produce massive quantities of hydrogen in a clean, safe and economical way. Among various hydrogen production methods, the massive, safe and economic production of hydrogen by water splitting using a very high temperature gas-cooled reactor (VHTR) can provide a success path to the hydrogen economy. Particularly in Korea, where usable land is limited, the nuclear production of hydrogen is deemed a practical solution due to its high energy density. To meet the expected demand for hydrogen, the Korea Atomic Energy Institute (KAERI) launched a nuclear hydrogen program in 2004 together with Korea Institute of Energy Research (KIER) and Korea Institute of Science and Technology (KIST). Then, the nuclear hydrogen key technologies development program was launched in 2006, which aims at the development and validation of key and challenging technologies required for the realization of the nuclear hydrogen production demonstration system. In 2008, Korean Atomic Energy Commission officially approved a long-term development plan of the nuclear hydrogen system technologies as in the figure below and now the nuclear hydrogen program became the national agenda. This presentation introduces the current status of nuclear hydrogen projects in Korea and the progress of the nuclear hydrogen key technologies development. Perspectives of nuclear process heat applications are also addressed

  9. Once-through hybrid sulfur process for nuclear hydrogen production

    International Nuclear Information System (INIS)

    Jeong, Y. H.

    2008-01-01

    Increasing concern about the global climate change spurs the development of low- or zero-carbon energy system. Nuclear hydrogen production by water electrolysis would be the one of the short-term solutions, but low efficiency and high production cost (high energy consumption) is the technical hurdle to be removed. In this paper the once-through sulfur process composed of the desulfurization and the water electrolysis systems is proposed. Electrode potential for the conventional water electrolysis (∼2.0 V) can be reduced significantly by the anode depolarization using sulfur dioxide: down to 0.6 V depending on the current density This depolarized electrolysis is the electrolysis step of the hybrid sulfur process originally proposed by the Westinghouse. However; recycling of sulfur dioxide requires a high temperature heat source and thus put another technical hurdle on the way to nuclear hydrogen production: the development of high temperature nuclear reactors and corresponding sulfuric acid decomposition system. By the once-through use of sulfur dioxide rather than the closed recycle, the hurdle can be removed. For the sulfur feed, the desulfurization system is integrated into the water electrolysis system. Fossil fuels include a few percent of sulfur by weight. During the refinement or energy conversion, most of the sulfur should be separated The separated sulfur can be fed to the water electrolysis system and the final product would be hydrogen and sulfuric acid, which is number one chemical in the world by volume. Lowered electrode potential and additional byproduct, the sulfuric acid, can provide economically affordable hydrogen. In this study, the once-through hybrid sulfur process for hydrogen production was proposed and the process was optimized considering energy consumption in electrolysis and sulfuric acid concentration. Economic feasibility of the proposed process was also discussed. Based on currently available experimental data for the electrode

  10. Hydrogenation properties of Zr films under various conditions of hydrogen plasma

    CERN Document Server

    Yan Guo Qiang; Zhou Zhu Ying; Zhao Guo Qing; Hu Pei Gang; Luo Shun Zhong; Peng Shu Ming; Ding Wei; Long Xing Gui

    2002-01-01

    The hydrogenation properties of Zr samples with and without an Ni overlayer under various plasma conditions were investigated by means of non-Rutherford backscattering and elastic recoil detection analysis. The theoretical maximum hydrogen capacity, 66.7 at%, could be achieved at a hydrogen absolute pressure of approx 2 Pa and a substrate temperature of approx 393K for a plasma irradiation of only 10 min; this was significantly greater than that for gas hydrogenation under the same hydrogen pressure and substrate temperature. It was also found that the C and O contamination on the sample surface strongly influences the hydrogenation, and that the maximum equilibrium hydrogen content drops dramatically with the increasing total contamination. In addition, the influence of the Ni overlayer on the plasma hydrogenation is discussed

  11. Negative hydrogen ion production mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Bacal, M. [UPMC, LPP, Ecole Polytechnique, UMR CNRS 7648, Palaiseau (France); Wada, M. [School of Science and Engineering, Doshisha University, Kyoto 610-0321 (Japan)

    2015-06-15

    Negative hydrogen/deuterium ions can be formed by processes occurring in the plasma volume and on surfaces facing the plasma. The principal mechanisms leading to the formation of these negative ions are dissociative electron attachment to ro-vibrationally excited hydrogen/deuterium molecules when the reaction takes place in the plasma volume, and the direct electron transfer from the low work function metal surface to the hydrogen/deuterium atoms when formation occurs on the surface. The existing theoretical models and reported experimental results on these two mechanisms are summarized. Performance of the negative hydrogen/deuterium ion sources that emerged from studies of these mechanisms is reviewed. Contemporary negative ion sources do not have negative ion production electrodes of original surface type sources but are operated with caesium with their structures nearly identical to volume production type sources. Reasons for enhanced negative ion current due to caesium addition to these sources are discussed.

  12. Early hCG addition to rFSH for ovarian stimulation in IVF provides better results and the cDNA copies of the hCG receptor may be an indicator of successful stimulation

    Directory of Open Access Journals (Sweden)

    Paraskevis Dimitris

    2009-10-01

    Full Text Available Abstract A simple, safe and cost-effective treatment protocol in ovarian stimulation is of great importance in IVF practice, especially in the case of previous unsuccessful attempts. hCG has been used as a substitute of LH because of the degree of homology between the two hormones. The main aim of this prospective randomized study was to determine, for the first time, whether low dose hCG added to rFSH for ovarian stimulation could produce better results compared to the addition of rLH in women entering IVF-ET, especially in those women that had previous IVF failures. An additional aim was to find an indicator that would allow us to follow-up ovarian stimulation and, possibly, modify it in order to achieve a better IVF outcome; and that indicator may be the cDNA copies of the LH/hCG receptor. Group A patients (n = 58 were administered hCG and Group B rLH (n = 56 in addition to rFSH in the first days of ovarian stimulation. The number of follicles and oocytes and, most importantly, implantation and pregnancy rates were shown to be statistically significantly higher in the hCG group. This study has also determined, for the first time to our best knowledge, m-RNA for LH/hCG receptors in the lymphocytes of peripheral blood 40 h before ovum pick-up. cDNA levels of the hCG receptor after ovarian stimulation were significantly higher among women receiving hCG compared to those receiving LH. In addition, higher levels were encountered among women with pregnancy compared to those without, although this was not statistically significant due to the small number of pregnancies. It seems that hCG permits a highly effective and more stable occupancy of rLH/hCG receptors and gives more follicles and more oocytes. The determination of cDNA copies could be, in the future, a marker during ovulation induction protocols and of course a predictor for the outcome of ART in the special subgroup of patients with previous failures.

  13. Destructive hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Terrisse, H; Dufour, L

    1929-01-21

    Oils of high boiling point, e.g. gas oil, lamp oil, schist oil, brown coal tar etc., are converted into motor benzine by heating them at 200 to 500/sup 0/C under pressure of 5 to 40 kilograms/cm/sup 2/ in the presence of ferrous chloride and gases such as hydrogen, or water gas, the desulfurization of the oils proceeding simultaneously. One kilogram of lamp oil and 100 g. ferrous chloride are heated in an autoclave in the presence of water gas under a pressure of 18 kg/cm/sup 2/ to 380 to 400/sup 0/C. The gaseous products are allowed to escape intermittently and are replaced by fresh water gas. A product distilling between 35 and 270/sup 0/C is obtained.

  14. CLEAN HYDROGEN TECHNOLOGY FOR 3-WHEEL TRANSPORTATION IN INDIA

    Energy Technology Data Exchange (ETDEWEB)

    Krishna Sapru

    2005-11-15

    Hydrogen is a clean burning, non-polluting transportation fuel. It is also a renewable energy carrier that can be produced from non-fossil fuel resources such as solar, wind and biomass. Utilizing hydrogen as an alternative fuel for vehicles will diversify the resources of energy, and reduce dependence on oil in the transportation sector. Additionally, clean burning hydrogen fuel will also alleviate air pollution that is a very severe problem in many parts of world, especially major metropolitan areas in developing countries, such as India and China. In our efforts to foster international collaborations in the research, development, and demonstration of hydrogen technologies, through a USAID/DOE cost-shared project, Energy Conversion Devices, Inc.,(www.ovonic.com) a leading materials and alternative energy company, in collaboration with Bajaj Auto Limited, India's largest three-wheeler taxi manufacturer, has successfully developed and demonstrated prototype hydrogen ICE three-wheelers in the United States and India. ECD's proprietary Ovonic solid-state hydrogen storage technology is utilized on-board to provide a means of compact, low pressure, and safe hydrogen fuel. These prototype hydrogen three-wheelers have demonstrated comparable performance to the original CNG version of the vehicle, achieving a driving range of 130 km. The hydrogen storage system capable of storing 1 kg hydrogen can be refilled to 80% of its capacity in about 15 minutes at a pressure of 300 psi. The prototype vehicles developed under this project have been showcased and made available for test rides to the public at exhibits such as the 16th NHA annual meeting in April 2005, Washington, DC, and the SIAM (Society of Indian Automotive Manufacturers) annual conference in August 2005, New Delhi, India. Passengers have included members of the automotive industry, founders of both ECD and Bajaj, members of the World Bank, the Indian Union Minister for Finance, the President of the Asia

  15. Multiscale Modeling of Hydrogen Embrittlement for Multiphase Material

    KAUST Repository

    Al-Jabr, Khalid A.

    2014-05-01

    Hydrogen Embrittlement (HE) is a very common failure mechanism induced crack propagation in materials that are utilized in oil and gas industry structural components and equipment. Considering the prediction of HE behavior, which is suggested in this study, is one technique of monitoring HE of equipment in service. Therefore, multi-scale constitutive models that account for the failure in polycrystalline Body Centered Cubic (BCC) materials due to hydrogen embrittlement are developed. The polycrystalline material is modeled as two-phase materials consisting of a grain interior (GI) phase and a grain boundary (GB) phase. In the first part of this work, the hydrogen concentration in the GI (Cgi) and the GB (Cgb) as well as the hydrogen distribution in each phase, were calculated and modeled by using kinetic regime-A and C, respectively. In the second part of this work, this dissertation captures the adverse effects of hydrogen concentration, in each phase, in micro/meso and macro-scale models on the mechanical behavior of steel; e.g. tensile strength and critical porosity. The models predict the damage mechanisms and the reduction in the ultimate strength profile of a notched, round bar under tension for different hydrogen concentrations as observed in the experimental data available in the literature for steels. Moreover, the study outcomes are supported by the experimental data of the Fractography and HE indices investigation. In addition to the aforementioned continuum model, this work employs the Molecular Dynamics (MD) simulations to provide information regarding bond formulation and breaking. The MD analyses are conducted for both single grain and polycrystalline BCC iron with different amounts of hydrogen and different size of nano-voids. The simulations show that the hydrogen atoms could form the transmission in materials configuration from BCC to FCC (Face Centered Cubic) and HCP (Hexagonal Close Packed). They also suggest the preferred sites of hydrogen for

  16. U.S. Department of Energy Hydrogen Storage Cost Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Law, Karen; Rosenfeld, Jeffrey; Han, Vickie; Chan, Michael; Chiang, Helena; Leonard, Jon

    2013-03-11

    The overall objective of this project is to conduct cost analyses and estimate costs for on- and off-board hydrogen storage technologies under development by the U.S. Department of Energy (DOE) on a consistent, independent basis. This can help guide DOE and stakeholders toward the most-promising research, development and commercialization pathways for hydrogen-fueled vehicles. A specific focus of the project is to estimate hydrogen storage system cost in high-volume production scenarios relative to the DOE target that was in place when this cost analysis was initiated. This report and its results reflect work conducted by TIAX between 2004 and 2012, including recent refinements and updates. The report provides a system-level evaluation of costs and performance for four broad categories of on-board hydrogen storage: (1) reversible on-board metal hydrides (e.g., magnesium hydride, sodium alanate); (2) regenerable off-board chemical hydrogen storage materials(e.g., hydrolysis of sodium borohydride, ammonia borane); (3) high surface area sorbents (e.g., carbon-based materials); and 4) advanced physical storage (e.g., 700-bar compressed, cryo-compressed and liquid hydrogen). Additionally, the off-board efficiency and processing costs of several hydrogen storage systems were evaluated and reported, including: (1) liquid carrier, (2) sodium borohydride, (3) ammonia borane, and (4) magnesium hydride. TIAX applied a bottom-up costing methodology customized to analyze and quantify the processes used in the manufacture of hydrogen storage systems. This methodology, used in conjunction with ® software and other tools, developed costs for all major tank components, balance-of-tank, tank assembly, and system assembly. Based on this methodology, the figure below shows the projected on-board high-volume factory costs of the various analyzed hydrogen storage systems, as designed. Reductions in the key cost drivers may bring hydrogen storage system costs closer to this DOE target

  17. Unravelling the pH-dependence of a molecular photocatalytic system for hydrogen production† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5sc01349f Click here for additional data file.

    Science.gov (United States)

    Pastor, Ernest; Gross, Manuela A.; Selim, Shababa

    2015-01-01

    Photocatalytic systems for the reduction of aqueous protons are strongly pH-dependent, but the origin of this dependency is still not fully understood. We have studied the effect of different degrees of acidity on the electron transfer dynamics and catalysis taking place in a homogeneous photocatalytic system composed of a phosphonated ruthenium tris(bipyridine) dye (RuP) and a nickel bis(diphosphine) electrocatalyst (NiP) in an aqueous ascorbic acid solution. Our approach is based on transient absorption spectroscopy studies of the efficiency of photo-reduction of RuP and NiP correlated with pH-dependent photocatalytic H2 production and the degree of catalyst protonation. The influence of these factors results in an observed optimum photoactivity at pH 4.5 for the RuP–NiP system. The electron transfer from photo-reduced RuP to NiP is efficient and independent of the pH value of the medium. At pH RuP photo-reduction by the sacrificial electron donor, ascorbic acid. At pH >4.5, the efficiency of the system is limited by the poor protonation of NiP, which inhibits its ability to reduce protons to hydrogen. We have therefore developed a rational strategy utilising transient absorption spectroscopy combined with bulk pH titration, electrocatalytic and photocatalytic experiments to disentangle the complex pH-dependent activity of the homogenous RuP–NiP photocatalytic system, which can be widely applied to other photocatalytic systems. PMID:28717491

  18. Integrated waste hydrogen utilization project

    International Nuclear Information System (INIS)

    Armstrong, C.

    2004-01-01

    'Full text:' The BC Hydrogen Highway's, Integrated Waste Hydrogen Utilization Project (IWHUP) is a multi-faceted, synergistic collaboration that will capture waste hydrogen and promote its use through the demonstration of 'Hydrogen Economy' enabling technologies developed by Canadian companies. IWHUP involves capturing and purifying a small portion of the 600 kg/hr of by-product hydrogen vented to the atmosphere at the ERCO's electrochemical sodium chlorate plant in North Vancouver, BC. The captured hydrogen will then be compressed so it is suitable for transportation on roadways and can be used as a fuel in transportation and stationary fuel cell demonstrations. In summary, IWHUP invests in the following; Facilities to produce up to 20kg/hr of 99.999% pure 6250psig hydrogen using QuestAir's leading edge Pressure Swing Absorption technology; Ultra high-pressure transportable hydrogen storage systems developed by Dynetek Industries, Powertech Labs and Sacre-Davey Engineering; A Mobile Hydrogen Fuelling Station to create Instant Hydrogen Infrastructure for light-duty vehicles; Natural gas and hydrogen (H-CNG) blending and compression facilities by Clean Energy for fueling heavy-duty vehicles; Ten hydrogen, internal combustion engine (H-ICE), powered light duty pick-up vehicles and a specialized vehicle training, maintenance, and emissions monitoring program with BC Hydro, GVRD and the District of North Vancouver; The demonstration of Westport's H-CNG technology for heavy-duty vehicles in conjunction with local transit properties and a specialized vehicle training, maintenance, and emissions monitoring program; The demonstration of stationary fuel cell systems that will provide clean power for reducing peak-load power demands (peak shaving), grid independence and water heating; A comprehensive communications and outreach program designed to educate stakeholders, the public, regulatory bodies and emergency response teams in the local community, Supported by industry

  19. Growth kinetics of hydrogen sulfide oxidizing bacteria in corroded concrete from sewers

    International Nuclear Information System (INIS)

    Jensen, Henriette Stokbro; Lens, Piet N.L.; Nielsen, Jeppe L.; Bester, Kai; Nielsen, Asbjorn Haaning; Hvitved-Jacobsen, Thorkild; Vollertsen, Jes

    2011-01-01

    Hydrogen sulfide oxidation by microbes present on concrete surfaces of sewer pipes is a key process in sewer corrosion. The growth of aerobic sulfur oxidizing bacteria from corroded concrete surfaces was studied in a batch reactor. Samples of corrosion products, containing sulfur oxidizing bacteria, were suspended in aqueous solution at pH similar to that of corroded concrete. Hydrogen sulfide was supplied to the reactor to provide the source of reduced sulfur. The removal of hydrogen sulfide and oxygen was monitored. The utilization rates of both hydrogen sulfide and oxygen suggested exponential bacterial growth with median growth rates of 1.25 d -1 and 1.33 d -1 as determined from the utilization rates of hydrogen sulfide and oxygen, respectively. Elemental sulfur was found to be the immediate product of the hydrogen sulfide oxidation. When exponential growth had been achieved, the addition of hydrogen sulfide was terminated leading to elemental sulfur oxidation. The ratio of consumed sulfur to consumed oxygen suggested that sulfuric acid was the ultimate oxidation product. To the knowledge of the authors, this is the first study to determine the growth rate of bacteria involved in concrete corrosion with hydrogen sulfide as source of reduced sulfur.

  20. Photodriven hydrogen evolution by molecular catalysts using Al2O3-protected perylene-3,4-dicarboximide on NiO electrodes† †Electronic supplementary information (ESI) available: Experimental details; additional electrochemical and photoelectrochemical characterization, UV-Vis spectra, and fsTA results; quantification of evolved hydrogen; and DFT-computed ground state structure of PMI diester. See DOI: 10.1039/c6sc02477g Click here for additional data file.

    Science.gov (United States)

    Kamire, Rebecca J.; Majewski, Marek B.; Hoffeditz, William L.; Phelan, Brian T.; Farha, Omar K.; Hupp, Joseph T.

    2017-01-01

    The design of efficient hydrogen-evolving photocathodes for dye-sensitized photoelectrochemical cells (DSPECs) requires the incorporation of molecular light absorbing chromophores that are capable of delivering reducing equivalents to molecular proton reduction catalysts at rates exceeding those of charge recombination events. Here, we report the functionalization and kinetic analysis of a nanostructured NiO electrode with a modified perylene-3,4-dicarboximide chromophore (PMI) that is stabilized against degradation by atomic layer deposition (ALD) of thick insulating Al2O3 layers. Following photoinduced charge injection into NiO in high yield, films with Al2O3 layers demonstrate longer charge separated lifetimes as characterized via femtosecond transient absorption spectroscopy and photoelectrochemical techniques. The photoelectrochemical behavior of the electrodes in the presence of Co(ii) and Ni(ii) molecular proton reduction catalysts is examined, revealing reduction of both catalysts. Under prolonged irradiation, evolved H2 is directly observed by gas chromatography supporting the applicability of PMI embedded in Al2O3 as a photocathode architecture in DSPECs. PMID:28616134

  1. Nondestructive hydrogen analysis of steam-oxidized Zircaloy-4 by wide-angle neutron scattering

    Science.gov (United States)

    Yan, Yong; Qian, Shuo; Garrison, Ben; Smith, Tyler; Kim, Peter

    2018-04-01

    A nondestructive neutron scattering method to precisely measure the hydrogen content in high-temperature steam-oxidized Zircaloy-4 cladding was developed. Zircaloy-4 cladding was used to produce hydrided specimens with hydrogen content up to ≈500 wppm. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentrations were selected for the neutron study. The hydrided samples were then oxidized in steam up to ≈6.0 wt. % at 1100 °C. Optical microscopy shows that our hydriding procedure results in uniform distribution of circumferential hydrides across the wall thickness, and uniform oxide layers were formed on the sample surfaces by the steam oxidation. Small- and wide-angle neutron scattering were simultaneously performed to provide a quick (less than an hour per sample) measurement of the hydrogen content in various types of hydrided and oxidized Zircaloy-4. Our study demonstrates that the hydrogen in pre-oxidized Zircaloy-4 cladding can be measured very accurately by both small- and wide-angle neutron scattering. For steam-oxidized samples, the small-angle neutron scattering is contaminated with coherent scattering from additional structural features induced by the steam oxidation. However, the scattering intensity of the wide-angle neutron scattering increases proportionally with the hydrogen charged in the samples. The hydrogen content and wide-angle neutron scattering intensity are highly linearly correlated for the oxidized cladding samples examined in this work, and can be used to precisely determine the hydrogen content in steam-oxidized Zircaloy-4 samples. Hydrogen contents determined by neutron scattering of oxidation samples were also found to be consistent with the results of chemical analysis within acceptable margins for error.

  2. Hydrogen and nuclear energy

    International Nuclear Information System (INIS)

    Duffey, R.B.; Miller, A.I.; Hancox, W.T.; Pendergast, D.R.

    1999-01-01

    The current world-wide emphasis on reducing greenhouse gas (GHG) emissions provides an opportunity to revisit how energy is produced and used, consistent with the need for human and economic growth. Both the scale of the problem and the efforts needed for its resolution are extremely large. We argue that GHG reduction strategies must include a greater penetration of electricity into areas, such as transportation, that have been the almost exclusive domain of fossil fuels. An opportunity for electricity to displace fossil fuel use is through electrolytic production of hydrogen. Nuclear power is the only large-scale commercially proven non-carbon electricity generation source, and it must play a key role. As a non-carbon power source, it can also provide the high-capacity base needed to stabilize electricity grids so that they can accommodate other non-carbon sources, namely low-capacity factor renewables such as wind and solar. Electricity can be used directly to power standalone hydrogen production facilities. In the special case of CANDU reactors, the hydrogen streams can be preprocessed to recover the trace concentrations of deuterium that can be re-oxidized to heavy water. World-wide experience shows that nuclear power can achieve high standards of public safety, environmental protection and commercially competitive economics, and must . be an integral part of future energy systems. (author)

  3. Hydrogen storage and integrated fuel cell assembly

    Science.gov (United States)

    Gross, Karl J.

    2010-08-24

    Hydrogen is stored in materials that absorb and desorb hydrogen with temperature dependent rates. A housing is provided that allows for the storage of one or more types of hydrogen-storage materials in close thermal proximity to a fuel cell stack. This arrangement, which includes alternating fuel cell stack and hydrogen-storage units, allows for close thermal matching of the hydrogen storage material and the fuel cell stack. Also, the present invention allows for tailoring of the hydrogen delivery by mixing different materials in one unit. Thermal insulation alternatively allows for a highly efficient unit. Individual power modules including one fuel cell stack surrounded by a pair of hydrogen-storage units allows for distribution of power throughout a vehicle or other electric power consuming devices.

  4. Variable composition hydrogen/natural gas mixtures for increased engine efficiency and decreased emissions

    Energy Technology Data Exchange (ETDEWEB)

    Sierens, R.; Rosseel, E.

    2000-01-01

    It is well known that adding hydrogen to natural gas extends the lean limit of combustion and that in this way extremely low emission levels can be obtained: even the equivalent zero emission vehicle (EZEV) requirements can be reached. The emissions reduction is especially important at light engine loads. In this paper results are presented for a GM V8 engine. Natural gas, pure hydrogen and different blends of these two fuels have been tested. The fuel supply system used provides natural gas/hydrogen mixtures in variable proportion, regulated independently of the engine operating condition. The influence of the fuel composition on the engine operating characteristics and exhaust emissions has been examined, mainly but not exclusively for 10 and 20% hydrogen addition. At least 10% hydrogen addition is necessary for a significant improvement in efficiency. Due to the conflicting requirements for low hydrocarbons and low NO{sub x} determining the optimum hythane composition is not straight-forward. For hythane mixtures with a high hydrogen fraction, it is found that a hydrogen content of 80% or less guarantees safe engine operation (no backfire nor knock), whatever the air excess factor. It is shown that to obtain maximum engine efficiency for the whole load range while taking low exhaust emissions into account, the mixture composition should be varied with respect to engine load.

  5. Canadian Hydrogen Association workshop on building Canadian strength with hydrogen systems. Proceedings

    International Nuclear Information System (INIS)

    2006-01-01

    The Canadian Hydrogen Association workshop on 'Building Canadian Strength with Hydrogen Systems' was held in Montreal, Quebec, Canada on October 19-20, 2006. Over 100 delegates attended the workshop and there were over 50 presentations made. The Canadian Hydrogen Association (CHA) promotes the development of a hydrogen infrastructure and the commercialization of new, efficient and economic methods that accelerate the adoption of hydrogen technologies that will eventually replace fossil-based energy systems to reduce greenhouse gas emissions. This workshop focused on defining the strategic direction of research and development that will define the future of hydrogen related energy developments across Canada. It provided a forum to strengthen the research, development and innovation linkages among government, industry and academia to build Canadian strength with hydrogen systems. The presentations described new technologies and the companies that are making small scale hydrogen and hydrogen powered vehicles. Other topics of discussion included storage issues, hydrogen safety, competition in the hydrogen market, hydrogen fuel cell opportunities, nuclear-based hydrogen production, and environmental impacts

  6. Hydrogen storage by physisorption on porous materials

    Energy Technology Data Exchange (ETDEWEB)

    Panella, B.

    2006-09-13

    A great challenge for commercializing hydrogen powered vehicles is on-board hydrogen storage using economic and secure systems. A possible solution is hydrogen storage in light-weight solid materials. Here three principle storage mechanisms can be distinguished: i) absorption of hydrogen in metals ii) formation of compounds with ionic character, like complex hydrides and iii) physisorption (or physical adsorption) of hydrogen molecules on porous materials. Physical adsorption exhibits several advantages over chemical hydrogen storage as for example the complete reversibility and the fast kinetics. Two classes of porous materials were investigated for physical hydrogen storage, i.e. different carbon nanostructures and crystalline metal-organic frameworks possessing extremely high specific surface area. Hydrogen adsorption isotherms were measured using a Sieverts' apparatus both at room temperature and at 77 K at pressures up to the saturation regime. Additionally, the adsorption sites of hydrogen in these porous materials were identified using thermal desorption spectroscopy extended to very low temperatures (down to 20 K). Furthermore, the adsorbed hydrogen phase was studied in various materials using Raman spectroscopy at different pressures and temperatures. The results show that the maximum hydrogen storage capacity of porous materials correlates linearly with the specific surface area and is independent of structure and composition. In addition the pore structure of the adsorbent plays an important role for hydrogen storage since the adsorption sites for H2 could be assigned to pores possessing different dimensions. Accordingly it was shown that small pores are necessary to reach high storage capacities already at low pressures. This new understanding may help to tailor and optimize new porous materials for hydrogen storage. (orig.)

  7. Hydrogen storage by physisorption on porous materials

    Energy Technology Data Exchange (ETDEWEB)

    Panella, B

    2006-09-13

    A great challenge for commercializing hydrogen powered vehicles is on-board hydrogen storage using economic and secure systems. A possible solution is hydrogen storage in light-weight solid materials. Here three principle storage mechanisms can be distinguished: i) absorption of hydrogen in metals ii) formation of compounds with ionic character, like complex hydrides and iii) physisorption (or physical adsorption) of hydrogen molecules on porous materials. Physical adsorption exhibits several advantages over chemical hydrogen storage as for example the complete reversibility and the fast kinetics. Two classes of porous materials were investigated for physical hydrogen storage, i.e. different carbon nanostructures and crystalline metal-organic frameworks possessing extremely high specific surface area. Hydrogen adsorption isotherms were measured using a Sieverts' apparatus both at room temperature and at 77 K at pressures up to the saturation regime. Additionally, the adsorption sites of hydrogen in these porous materials were identified using thermal desorption spectroscopy extended to very low temperatures (down to 20 K). Furthermore, the adsorbed hydrogen phase was studied in various materials using Raman spectroscopy at different pressures and temperatures. The results show that the maximum hydrogen storage capacity of porous materials correlates linearly with the specific surface area and is independent of structure and composition. In addition the pore structure of the adsorbent plays an important role for hydrogen storage since the adsorption sites for H2 could be assigned to pores possessing different dimensions. Accordingly it was shown that small pores are necessary to reach high storage capacities already at low pressures. This new understanding may help to tailor and optimize new porous materials for hydrogen storage. (orig.)

  8. Long term hydrogen production potential of concentrated photovoltaic (CPV) system in tropical weather of Singapore

    KAUST Repository

    Burhan, Muhammad

    2016-08-23

    Concentrated photovoltaic (CPV) system provides highest solar energy conversion efficiency among all the photovoltaic technologies and provides the most suitable option to convert solar energy into hydrogen, as future sustainable energy carrier. So far, only conventional flat plate PV systems are being used for almost all of the commercial applications. However, most of the studies have only shown the maximum efficiency of hydrogen production using CPV. In actual field conditions, the performance of CPV-Hydrogen system is affected by many parameter and it changes continuously during whole day operation. In this paper, the daily average and long term performances are proposed to analyze the real field potential of the CPV-Hydrogen system, which is of main interest for designers and consumers. An experimental setup is developed and a performance model is proposed to investigate the average and long term production potential of CPV-Hydrogen system. The study is carried out in tropical weather of Singapore. The maximum CPV efficiency of 27-28% and solar to hydrogen (STH) efficiency of 18%, were recorded. In addition, the CPV-Hydrogen system showed the long term average efficiency of 15.5%, for period of one year (12-months), with electrolyser rating of 47 kWh/kg and STH production potential of 218 kWh/kg. Based upon the DNI availability, the system showed hydrogen production potential of 0.153-0.553 kg/m/month, with average production of 0.43 kg/m/month. However, CPV-Hydrogen system has shown annual hydrogen production potential of 5.162 kg/m/year in tropical weather of Singapore.

  9. HNEI wind-hydrogen program

    International Nuclear Information System (INIS)

    Neill, D.; Holst, B.; Yu, C.; Huang, N.; Wei, J.

    1990-01-01

    This paper reports on wind powered hydrogen production which is promising for Hawaii because Hawaii's wind energy potential exceeds the state's current electrical energy requirements by more than twenty-fold. Wind energy costs are now approaching $0.06 to $0.08/kWh, and the U.S. Department of Energy has set a goal of $0.04/kWh. These conditions make wind power a good source for electrolytic production of hydrogen. HNEI's wind-hydrogen program, at the HNEI-Kahua Wind Energy Storage Test facility on the island of Hawaii, is developing energy storage and power electronic systems for intermittent wind and solar devices to provide firm power to the utility or to a stand-alone hybrid system. In mid 1990, the first wind-hydrogen production/storage/ generation system is scheduled for installation. HNEI's wind- hydrogen program will provide research, development, demonstration, and education on the great potential and benefits of hydrogen

  10. Hydrogen-based electrochemical energy storage

    Science.gov (United States)

    Simpson, Lin Jay

    2013-08-06

    An energy storage device (100) providing high storage densities via hydrogen storage. The device (100) includes a counter electrode (110), a storage electrode (130), and an ion conducting membrane (120) positioned between the counter electrode (110) and the storage electrode (130). The counter electrode (110) is formed of one or more materials with an affinity for hydrogen and includes an exchange matrix for elements/materials selected from the non-noble materials that have an affinity for hydrogen. The storage electrode (130) is loaded with hydrogen such as atomic or mono-hydrogen that is adsorbed by a hydrogen storage material such that the hydrogen (132, 134) may be stored with low chemical bonding. The hydrogen storage material is typically formed of a lightweight material such as carbon or boron with a network of passage-ways or intercalants for storing and conducting mono-hydrogen, protons, or the like. The hydrogen storage material may store at least ten percent by weight hydrogen (132, 134) at ambient temperature and pressure.

  11. Clean energy and the hydrogen economy.

    Science.gov (United States)

    Brandon, N P; Kurban, Z

    2017-07-28

    In recent years, new-found interest in the hydrogen economy from both industry and academia has helped to shed light on its potential. Hydrogen can enable an energy revolution by providing much needed flexibility in renewable energy systems. As a clean energy carrier, hydrogen offers a range of benefits for simultaneously decarbonizing the transport, residential, commercial and industrial sectors. Hydrogen is shown here to have synergies with other low-carbon alternatives, and can enable a more cost-effective transition to de-carbonized and cleaner energy systems. This paper presents the opportunities for the use of hydrogen in key sectors of the economy and identifies the benefits and challenges within the hydrogen supply chain for power-to-gas, power-to-power and gas-to-gas supply pathways. While industry players have already started the market introduction of hydrogen fuel cell systems, including fuel cell electric vehicles and micro-combined heat and power devices, the use of hydrogen at grid scale requires the challenges of clean hydrogen production, bulk storage and distribution to be resolved. Ultimately, greater government support, in partnership with industry and academia, is still needed to realize hydrogen's potential across all economic sectors.This article is part of the themed issue 'The challenges of hydrogen and metals'. © 2017 The Author(s).

  12. Hydrogen storage development

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.J.; Guthrie, S.E. [Sandia National Labs., Livermore, CA (United States)

    1998-08-01

    A summary of the hydride development efforts for the current program year (FY98) are presented here. The Mg-Al-Zn alloy system was studied at low Zn levels (2--4 wt%) and midrange Al contents (40--60 wt%). Higher plateau pressures were found with Al and Zn alloying in Mg and, furthermore, it was found that the hydrogen desorption kinetics were significantly improved with small additions of Zn. Results are also shown here for a detailed study of the low temperature properties of Mg{sub 2}NiH{sub 4}, and a comparison made between conventional melt cast alloy and the vapor process material.

  13. Additive Manufacturing Infrared Inspection

    Science.gov (United States)

    Gaddy, Darrell; Nettles, Mindy

    2015-01-01

    The Additive Manufacturing Infrared Inspection Task started the development of a real-time dimensional inspection technique and digital quality record for the additive manufacturing process using infrared camera imaging and processing techniques. This project will benefit additive manufacturing by providing real-time inspection of internal geometry that is not currently possible and reduce the time and cost of additive manufactured parts with automated real-time dimensional inspections which deletes post-production inspections.

  14. Potential use of thermophilic dark fermentation effluents in photofermentative hydrogen production by Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Ozgura, E.; Afsar, N.; Eroglu, I. [Middle East Technical University, Department of Chemical Engineering, 06531 Ankara (Turkey); De Vrije, T.; Claassen, P.A.M. [Wageningen UR, Agrotechnology and Food Sciences Group, Wageningen UR, P.O. Box 17, 6700 AA Wageningen (Netherlands); Yucel, M.; Gunduz, U. [Middle East Technical University, Department of Biology, 06531 Ankara (Turkey)

    2010-12-15

    Biological hydrogen production by a sequential operation of dark and photofermentation is a promising route to produce hydrogen. The possibility of using renewable resources, like biomass and agro-industrial wastes, provides a dual effect of sustainability in biohydrogen production and simultaneous waste removal. In this study, photofermentative hydrogen production on effluents of thermophilic dark fermentations on glucose, potato steam peels (PSP) hydrolysate and molasses was investigated in indoor, batch operated bioreactors. An extreme thermophile Caldicellulosiruptor saccharolyticus was used in the dark fermentation step, and Rhodobacter capsulatus (DSM1710) was used in the photofermentation step. Addition of buffer, Fe and Mo to dark fermentor effluents (DFEs) improved the overall efficiency of hydrogen production. The initial acetate concentration in the DFE needed to be adjusted to 30-40 mM by dilution to increase the yield of hydrogen in batch light-supported fermentations. The thermophilic DFEs are suitable for photofermentative hydrogen production, provided that they are supplemented with buffer and nutrients. The overall hydrogen yield of the two-step fermentations was higher than the yield of single step dark fermentations.

  15. Tailoring Thermodynamics and Kinetics for Hydrogen Storage in Complex Hydrides towards Applications.

    Science.gov (United States)

    Liu, Yongfeng; Yang, Yaxiong; Gao, Mingxia; Pan, Hongge

    2016-02-01

    Solid-state hydrogen storage using various materials is expected to provide the ultimate solution for safe and efficient on-board storage. Complex hydrides have attracted increasing attention over the past two decades due to their high gravimetric and volumetric hydrogen densities. In this account, we review studies from our lab on tailoring the thermodynamics and kinetics for hydrogen storage in complex hydrides, including metal alanates, borohydrides and amides. By changing the material composition and structure, developing feasible preparation methods, doping high-performance catalysts, optimizing multifunctional additives, creating nanostructures and understanding the interaction mechanisms with hydrogen, the operating temperatures for hydrogen storage in metal amides, alanates and borohydrides are remarkably reduced. This temperature reduction is associated with enhanced reaction kinetics and improved reversibility. The examples discussed in this review are expected to provide new inspiration for the development of complex hydrides with high hydrogen capacity and appropriate thermodynamics and kinetics for hydrogen storage. © 2015 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Hydrogen production by recombinant Escherichia coli strains

    Science.gov (United States)

    Maeda, Toshinari; Sanchez‐Torres, Viviana; Wood, Thomas K.

    2012-01-01

    Summary The production of hydrogen via microbial biotechnology is an active field of research. Given its ease of manipulation, the best‐studied bacterium Escherichia coli has become a workhorse for enhanced hydrogen production through metabolic engineering, heterologous gene expression, adaptive evolution, and protein engineering. Herein, the utility of E. coli strains to produce hydrogen, via native hydrogenases or heterologous ones, is reviewed. In addition, potential strategies for increasing hydrogen production are outlined and whole‐cell systems and cell‐free systems are compared. PMID:21895995

  17. Hydrogen in niobium-titanium alloys

    International Nuclear Information System (INIS)

    Silva, J.R.G. da; Cabral, F.A.O.; Florencio, O.

    1985-01-01

    High purity Nb-Ti polycrystalline alloys were doped with hydrogen in equilibrium with the gaseous atmosphere at a pressure of 80 torr. at different temperatures. The partial molar enthalpy and entropy of the hydrogen solution at high dilution, ΔH sup(-) 0 and ΔS sup(-) 0 , were calculated from the equilibrium solubility data. The ΔH sup(-) 0 values are compared with the electron screened proton model of metal-hydrogen solutions. The addition of titanium to niobium has the effect to increase the hydrogen solubility at a given equilibrium temperature. (Author) [pt

  18. Hydrogen adsorption in new carbon materials

    Energy Technology Data Exchange (ETDEWEB)

    Zubizarreta, L.; Arenillas, A.; Rubiera, F.; Pis, J.J. [Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain)

    2006-07-01

    Hydrogen physi-sorption on porous carbon materials is one among the different technologies which could be used for hydrogen storage. In addition hydrogen spillover on a carbon supports can enhance the hydrogen adsorption capacities obtained by physi-sorption. In this study two different carbon supports were synthesised: carbon gels and carbon microspheres. Carbon microspheres were doped with Ni(NO{sub 3}){sub 2} to study the hydrogen spillover on carbon support. The texture of the materials was characterised by CO{sub 2} adsorption at 0 C and their hydrogen storage capacity was evaluated at -196 and 10 C with a Micromeritics Tristar 3000, and at room temperature with a high pressure gravimetric analyser. (authors)

  19. Hydrogen adsorption in new carbon materials

    International Nuclear Information System (INIS)

    Zubizarreta, L.; Arenillas, A.; Rubiera, F.; Pis, J.J.

    2006-01-01

    Hydrogen physi-sorption on porous carbon materials is one among the different technologies which could be used for hydrogen storage. In addition hydrogen spillover on a carbon supports can enhance the hydrogen adsorption capacities obtained by physi-sorption. In this study two different carbon supports were synthesised: carbon gels and carbon microspheres. Carbon microspheres were doped with Ni(NO 3 ) 2 to study the hydrogen spillover on carbon support. The texture of the materials was characterised by CO 2 adsorption at 0 C and their hydrogen storage capacity was evaluated at -196 and 10 C with a Micromeritics Tristar 3000, and at room temperature with a high pressure gravimetric analyser. (authors)

  20. H2@Scale: Technical and Economic Potential of Hydrogen as an Energy Intermediate

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jadun, Paige [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pivovar, Bryan S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-09

    The H2@Scale concept is focused on developing hydrogen as an energy carrier and using hydrogen's properties to improve the national energy system. Specifically hydrogen has the abilities to (1) supply a clean energy source for industry and transportation and (2) increase the profitability of variable renewable electricity generators such as wind turbines and solar photovoltaic (PV) farms by providing value for otherwise potentially-curtailed electricity. Thus the concept also has the potential to reduce oil dependency by providing a low-carbon fuel for fuel cell electric vehicles (FCEVs), reduce emissions of carbon dioxide and pollutants such as NOx, and support domestic energy production, manufacturing, and U.S. economic competitiveness. The analysis reported here focuses on the potential market size and value proposition for the H2@Scale concept. It involves three analysis phases: 1. Initial phase estimating the technical potential for hydrogen markets and the resources required to meet them; 2. National-scale analysis of the economic potential for hydrogen and the interactions between willingness to pay by hydrogen users and the cost to produce hydrogen from various sources; and 3. In-depth analysis of spatial and economic issues impacting hydrogen production and utilization and the markets. Preliminary analysis of the technical potential indicates that the technical potential for hydrogen use is approximately 60 million metric tons (MMT) annually for light duty FCEVs, heavy duty vehicles, ammonia production, oil refining, biofuel hydrotreating, metals refining, and injection into the natural gas system. The technical potential of utility-scale PV and wind generation independently are much greater than that necessary to produce 60 MMT / year hydrogen. Uranium, natural gas, and coal reserves are each sufficient to produce 60 MMT / year hydrogen in addition to their current uses for decades to centuries. National estimates of the economic potential of

  1. Fractionated dosification of hydrogenated additives in the process of making green pads in the factory juzbado; Dosificacion fraccionada de aditivos hidrogenados en el proceso de fabricacion de pastillas verdes de la fabrica de Juzbado

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Marquez, J.; Zurron Cifuentes, O.; Escandon Ortiz, E.

    2011-07-01

    This project aims at identifying potential accident sequences in the operation of the facilities, identify the elements upon which depend the security to prevent such accidents or mitigate their consequences to an acceptable level, and describe the management measures that provide an acceptable guarantee of availability and reliability of these security features.

  2. Palladium alloys for hydrogen diffusion

    International Nuclear Information System (INIS)

    1977-01-01

    A palladium-base alloy with tin and/or a silicon addition and its use in the production of hydrogen from water via a cycle of chemical reactions, of which the decomposition of HI into H 2 and I 2 is the most important, is described

  3. Hydrogen management strategy for the Loviisa NPP

    International Nuclear Information System (INIS)

    Lundstrom, P.; Routamo, T.; Tuomisto, H.; Theofanous, T.G.

    1997-01-01

    A new hydrogen management scheme has been developed for the Loviisa ice condenser containment as a part of a comprehensive severe accident management (SAM) strategy. The scheme is based on providing sufficient mixing of the containment atmosphere, effective energy removal from the containment, and controlled removal of hydrogen through passive catalytic recombination. The objective of the paper is to demonstrate how this hydrogen management scheme works for a range of relevant severe accident scenarios. (author)

  4. Analysis of Hybrid Hydrogen Systems: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dean, J.; Braun, R.; Munoz, D.; Penev, M.; Kinchin, C.

    2010-01-01

    Report on biomass pathways for hydrogen production and how they can be hybridized to support renewable electricity generation. Two hybrid systems were studied in detail for process feasibility and economic performance. The best-performing system was estimated to produce hydrogen at costs ($1.67/kg) within Department of Energy targets ($2.10/kg) for central biomass-derived hydrogen production while also providing value-added energy services to the electric grid.

  5. Experimental Investigation of the Effect of Hydrogen Manifold Injection on the Performance of Compression Ignition Engines

    OpenAIRE

    Haroun A.K. Shahad; Nabeel Abdul-Hadi

    2011-01-01

    Experiments were carried out to evaluate the influence of the addition of hydrogen to the inlet air on the performance of a single cylinder direct injection diesel engine. Hydrogen was injected in the inlet manifold. The addition of hydrogen was done on energy replacement basis. It was found that the addition of hydrogen improves the combustion process due to superior combustion characteristics of hydrogen in comparison to conventional diesel fuels. It was also found that...

  6. Electric arc hydrogen heaters

    International Nuclear Information System (INIS)

    Zasypin, I.M.

    2000-01-01

    The experimental data on the electric arc burning in hydrogen are presented. Empirical and semiempirical dependences for calculating the arc characteristics are derived. An engineering method of calculating plasma torches for hydrogen heating is proposed. A model of interaction of a hydrogen arc with a gas flow is outlined. The characteristics of plasma torches for heating hydrogen and hydrogen-bearing gases are described. (author)

  7. Hydrogen energy for the transportation sector in China

    International Nuclear Information System (INIS)

    Zong Qiangmao

    2006-01-01

    Hydrogen is a promising energy carrier for providing a clean, reliable and affordable energy supply. This paper provides a blueprint for the hydrogen energy in the transportation sector in the future of China. This paper is divided into three parts. The first part answers this question: why is China interested in hydrogen energy? The second part describes the possibility of a hydrogen fuel cell engine and a hydrogen internal-combustion engine in the transportation in China in the near future. The final part describes the production of hydrogen in China. (author)

  8. Novel Methods of Hydrogen Leak Detection

    International Nuclear Information System (INIS)

    Pushpinder S Puri

    2006-01-01

    With the advent of the fuel cell technology and a drive for clean fuel, hydrogen gas is emerging as a leading candidate for the fuel of choice. For hydrogen to become a consumer fuel for automotive and domestic power generation, safety is paramount. It is, therefore, desired to have a method and system for hydrogen leak detection using odorant which can incorporate a uniform concentration of odorant in the hydrogen gas, when odorants are mixed in the hydrogen storage or delivery means. It is also desired to develop methods where the odorant is not added to the bulk hydrogen, keeping it free of the odorization additives. When odorants are not added to the hydrogen gas in the storage or delivery means, methods must be developed to incorporate odorant in the leaking gas so that leaks can be detected by small. Further, when odorants are not added to the stored hydrogen, it may also be desirable to observe leaks by sight by discoloration of the surface of the storage or transportation vessels. A series of novel solutions are proposed which address the issues raised above. These solutions are divided into three categories as follows: 1. Methods incorporating an odorant in the path of hydrogen leak as opposed to adding it to the hydrogen gas. 2. Methods where odorants are generated in-situ by chemical reaction with the leaking hydrogen 3. Methods of dispensing and storing odorants in high pressure hydrogen gas which release odorants to the gas at a uniform and predetermined rates. Use of one or more of the methods described here in conjunction with appropriate engineering solutions will assure the ultimate safety of hydrogen use as a commercial fuel. (authors)

  9. Metal hydride electrode and nickel hydrogen storage battery; Suiso kyuzo gokin denkyoku oyobi nikkeru-suiso chikudenchi

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Y.; Tamagawa, H. [Shin-Kobe Electric Machinery Co. Ltd., Tokyo (Japan); Ikawa, A.; Muranaka, R. [Hitachi Ltd., Ibaraki (Japan). Hitachi Research Lab.

    1996-04-16

    Water soluble polymers such as cellulose derivatives and polyvinylalcohol have been used conventionally as binders for metal hydride electrode used for nickel-hydrogen storage batteries. The shortcomings of those binders, however, are low flexibility, and poor binding property for hydrogen absorbing alloy powder and the conductive supporting substrate. This invention relates to the use of ethylene-vinyl copolymer with less than -10{degree}C Tg as the binder for hydrogen absorbing alloy powder. It is desirable that the ethylene-vinylacetate copolymer is selected out of ethylene-vinyl acetate-acryl copolymer and ethylene-vinyl acetate-long chain vinyl ester copolymer, and that the addition is larger than 0.1wt% and less than 1wt% against the weight of hydrogen absorbing alloy in the electrode. The use of this binder results in strong binding of hydrogen absorbing alloy powder to the conductive supporting substrate, providing flexibility as well. 4 figs., 5 tabs.

  10. Analysis of hydrogen as a Transportation Fuel FY17 Report

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Richard M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Luzi, Francesco [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wilcox Freeburg, Eric D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-09-30

    California drayage truck application with hybrid-hydrogen retrofits being repaid within seven years. Class 8 trucks could also take advantage of these low-cost, but regional hydrogen supplies. In addition, the IVYS electrolyzer-based hydrogen generation product showed the potential to deliver hydrogen economically in an urban or freeway off-ramp setting to a limited number of passenger vehicles in areas with low-cost electricity. These positive, manually developed results show the need to develop more advanced tools to provide an expanded evaluation of the economics of hydrogen-based fuel applications. The use cases evaluated showed significant potential for hydrogen-fueled vehicles to have a sustainable impact as a transportation fuel. The positive impact is not limited to transportation fuels, but also grid resilience and flexibility through the use of controllable and variable electrolyzer output to rapidly adjust to changing grid conditions and enable greater integration of solar and wind generated power. This capability would directly enable alternative fuel vehicles to impact energy consumption, GHG emissions, and the economy at the regional and national levels.

  11. Solid oxide fuel cells and hydrogen production

    International Nuclear Information System (INIS)

    Dogan, F.

    2009-01-01

    'Full text': A single-chamber solid oxide fuel cell (SC-SOFC), operating in a mixture of fuel and oxidant gases, provides several advantages over the conventional SOFC such as simplified cell structure (no sealing required). SC-SOFC allows using a variety of fuels without carbon deposition by selecting appropriate electrode materials and cell operating conditions. The operating conditions of single chamber SOFC was studied using hydrocarbon-air gas mixtures for a cell composed of NiO-YSZ / YSZ / LSCF-Ag. The cell performance and catalytic activity of the anode was measured at various gas flow rates. The results showed that the open-circuit voltage and the power density increased as the gas flow rate increased. Relatively high power densities up to 660 mW/cm 2 were obtained in a SC-SOFC using porous YSZ electrolytes instead of dense electrolytes required for operation of a double chamber SOFC. In addition to propane- or methane-air mixtures as a fuel source, the cells were also tested in a double chamber configuration using hydrogen-air mixtures by controlling the hydrogen/air ratio at the cathode and the anode. Simulation of single chamber conditions in double chamber configurations allows distinguishing and better understanding of the electrode reactions in the presence of mixed gases. Recent research efforts; the effect of hydrogen-air mixtures as a fuel source on the performance of anode and cathode materials in single-chamber and double-chamber SOFC configurations,will be presented. The presentation will address a review on hydrogen production by utilizing of reversible SOFC systems. (author)

  12. Hydrogen-Antihydrogen Collisions at Cold Temperatures

    Science.gov (United States)

    Zygelman, Bernard

    2001-05-01

    With the CERN anti-proton de-accelerator now on line, it is anticipated that antihydrogen ( \\overline H) atoms will be created, cooled, and stored in large numbers (M. H. Holzscheitner and M. Charlton, Rep. Prog. Phys. 62),1 (1999). It has recently been proposed that the introduction of cold, spin-polarized, hydrogen atoms into a gas of trapped anti-hydrogen could allow the sympathetic cooling of the anti-hydrogen into the sub-Kelvin regime (P. Froelich, S. Jonsell, A.Saenz, B. Zygelman, and A. Dalgarno, Phys. Rev. Lett. 84), 4577 (2000). In this talk we will present the results of calculations that estimate the rate of elastic scattering of H with \\overline H, and compare that to the rate in which the fragmentation reaction, H + \\overline H arrow p \\overline p + e^+ e^- occurs and limits the utility of sympathetic cooling. Unlike the ground state of the H2 system, the H \\overline H system possesses a non-vanishing electric dipole moment (B. Zygelman, A. Saenz, P. Froelich, S. Jonsell and A. Dalgarno, Phys. Rev. A, in Press (2001).) that allows for the additional inelastic reaction H + \\overline H arrow H\\overline H^* + h ν , where H \\overline H^* is a quasi-bound state of the hydrogen-antihydrogen complex. The rate for radiative association into quasi-bound states of the H \\overline H^* complex will be presented and we will explore the viability for the spectroscopic study of this novel four-body matter-antimatter system. Collaborators in this study include, A. Dalgarno, P. Froelich, A. Saenz and S. Jonsell. I wish to thank the Institute for Theoretical Atomic and Molecular Physics (ITAMP) for their hospitality and support during sabbatical leave where part of this work was done. Partial support was provided by NSF grants to the Smithsonian Institution and Harvard University for ITAMP.

  13. Hydrogen energy - Abundant, efficient, clean: A debate over the energy-system-of-change

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Carl-Jochen [International Association for Hydrogen Energy (IAHE), c/o ENERGON Carl-Jochen Winter e.K., Obere St.-Leonhardstr. 9, 88662 Ueberlingen (Germany)

    2009-07-15

    Both secondary energies, electricity and hydrogen, have much in common: they are technology driven; both are produced from any available primary energy; once produced both are environmentally and climatically clean over the entire length of their respective conversion chains, from production to utilization; they are electrochemically interchangeable via electrolyses and fuel cells; both rely on each other, e.g., when electrolyzers and liquefiers need electricity or when electricity-providing low temperature fuel cells need hydrogen; in cases of secondary energy transport over longer distances they compete with each other; in combined fossil fuel cycles both hydrogen and electricity are produced in parallel exergetically highly efficiently; hydrogen in addition to electricity helps exergizing the energy system and, thus, maximizing the available technical work. There are dissimilarities, too: electricity transports information, hydrogen does not; hydrogen stores and transports energy, electricity does not (in macroeconomic terms). The most obvious dissimilarity is their market presence, both in capacities and in availability: Electricity is globally ubiquitous (almost), whilst hydrogen energy is still used in only selected industrial areas and in much smaller capacities. The article describes in 15 chapters, 33 figures, 3 tables, and 2 Annexes the up-and-coming hydrogen energy economy, its environmental and climatic relevance, its exergizing influence on the energy system, its effect on decarbonizing fossil fueled power plants, the introduction of the novel non-heat-engine-related electrochemical energy converter fuel cell in portable electronics, in stationary and mobile applications. Hydrogen guarantees environmentally and climatically clean transportation on land, in air and space, and at sea. Hydrogen facilitates the electrification of vehicles with practically no range limits. (author)

  14. DAWN GRAND MAP CERES HYDROGEN MAP V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — A global map of the concentration of hydrogen within the regolith of asteroid 1 Ceres on twenty-degree quasi-equal-area pixels is provided. Hydrogen concentrations...

  15. DAWN GRAND MAP VESTA HYDROGEN ABUNDANCE V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — A global map of the abundance of hydrogen in micrograms/g within the regolith of asteroid 4 Vesta is provided for two-degree equal-angle pixels. Hydrogen abundances...

  16. Hydrogen evolution by a metal-free electrocatalyst

    KAUST Repository

    Zheng, Yao; Jiao, Yan; Zhu, Yihan; Li, Luhua; Han, Yu; Chen, Ying; Du, Aijun; Jaronieć, Mietek; Qiao, Shizhang

    2014-01-01

    Electrocatalytic reduction of water to molecular hydrogen via the hydrogen evolution reaction may provide a sustainable energy supply for the future, but its commercial application is hampered by the use of precious platinum catalysts. All

  17. The Hawaii hydrogen plan

    International Nuclear Information System (INIS)

    Takahashi, P.K.; McKinley, K.R.; Antal, M.J. Jr.; Kinoshita, C.M.; Neill, D.R.; Phillips, V.D.; Rocheleau, R.E.; Koehler, R.L.; Huang, N.

    1990-01-01

    Hawaii is the most energy-vulnerable state in the Union. Over the last 16 years the State has undertaken programs to reduce its energy needs and to provide alternatives to current usage tapping its abundant renewable energy resources. This paper describes the long-range research and development plans in Renewable Hydrogen for the State of Hawaii with special attention to the contributions of the Hawaii Natural Energy Institute of the University of Hawaii at Manoa. Current activities in production, storage, and utilization are detailed, and projections through the year 2000 are offered

  18. 21 CFR 573.530 - Hydrogenated corn syrup.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Hydrogenated corn syrup. 573.530 Section 573.530... Additive Listing § 573.530 Hydrogenated corn syrup. (a) Identity. The product is produced by hydrogenation of corn syrup over a nickel catalyst. (b) Specifications. The product contains 70 percent...

  19. Tailoring the Hydrogen Detection Properties of Metal Hydrides

    NARCIS (Netherlands)

    Boelsma, C.

    2017-01-01

    Hydrogen plays an essential role in many sectors of the industry. For example, hydrogen is necessary to produce ammonia, it can be used to determine the quality of products (hydrogen is produced during food ageing), or it can result in medical diagnostics (e.g. lactose intolerance). In addition,

  20. 21 CFR 173.275 - Hydrogenated sperm oil.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Hydrogenated sperm oil. 173.275 Section 173.275... CONSUMPTION Solvents, Lubricants, Release Agents and Related Substances § 173.275 Hydrogenated sperm oil. The food additive hydrogenated sperm oil may be safely used in accordance with the following prescribed...

  1. Global environmental impacts of the hydrogen economy

    International Nuclear Information System (INIS)

    Derwent, R.; Simmonds, P.; O'Doherty, S.; Manning, A.; Collins, W.; Stevenson, D.

    2006-01-01

    Hydrogen-based energy systems appear to be an attractive proposition in providing a future replacement for the current fossil-fuel based energy systems. Hydrogen is an important, though little studied, trace component of the atmosphere. It is present at the mixing ratio of about 510 ppb currently and has important man-made and natural sources. Because hydrogen reacts with tropospheric hydroxyl radicals, emissions of hydrogen to the atmosphere perturb the distributions of methane and ozone, the second and third most important greenhouse gases after carbon dioxide. Hydrogen is therefore an indirect greenhouse gas with a global warming potential GWP of 5.8 over a 100-year time horizon. A future hydrogen economy would therefore have greenhouse consequences and would not be free from climate perturbations. If a global hydrogen economy replaced the current fossil fuel-based energy system and exhibited a leakage rate of 1%, then it would produce a climate impact of 0.6% of the current fossil fuel based system. Careful attention must be given to reduce to a minimum the leakage of hydrogen from the synthesis, storage and use of hydrogen in a future global hydrogen economy if the full climate benefits are to be realised. (author)

  2. Do prehospital discharge pacemaker checks provide any additional clinical benefit?

    Science.gov (United States)

    Wheelan, Kevin R; Legge, Darlene M; Sakowski, Brent C; Bruce, Susan S; Roberts, David C; Johnston, L Murphy; Moore, B Jane; Beveridge, Thomas P; Wells, Peter J; Vallabahn, Ravi; Donsky, Michael S; Franklin, Jay O

    2005-08-01

    We performed a retrospective analysis of 250 records of consecutive, newly implanted, pacemaker patients from a single center to determine the rate of postimplant complications and observations discovered before and during the prehospital discharge evaluation. No observations occurred in 246 of 250 patients (98.4%) (1-sided 95% confidence interval 96.4%). Of the 250 patients, 4 had observations that were discovered at the prehospital discharge check and required reprogramming to increase the sensitivity safety margin (3 atrial and 1 ventricular). We documented only 1 complication that was discovered before the predischarge evaluation through telemetry and resulted in an atrial lead revision.

  3. Symbol addition by monkeys provides evidence for normalized quantity coding

    Science.gov (United States)

    Livingstone, Margaret S.; Pettine, Warren W.; Srihasam, Krishna; Moore, Brandon; Morocz, Istvan A.; Lee, Daeyeol

    2014-01-01

    Weber’s law can be explained either by a compressive scaling of sensory response with stimulus magnitude or by a proportional scaling of response variability. These two mechanisms can be distinguished by asking how quantities are added or subtracted. We trained Rhesus monkeys to associate 26 distinct symbols with 0–25 drops of reward, and then tested how they combine, or add, symbolically represented reward magnitude. We found that they could combine symbolically represented magnitudes, and they transferred this ability to a novel symbol set, indicating that they were performing a calculation, not just memorizing the value of each combination. The way they combined pairs of symbols indicated neither a linear nor a compressed scale, but rather a dynamically shifting, relative scaling. PMID:24753600

  4. Why hydrogen; Pourquoi l'hydrogene?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-02-01

    The energy consumption increase and the associated environmental risks, led to develop new energy sources. The authors present the potentialities of the hydrogen in this context of energy supply safety. They detail the today market and the perspectives, the energy sources for the hydrogen production (fossils, nuclear and renewable), the hydrogen transport, storage, distribution and conversion, the application domains, the associated risks. (A.L.B.)

  5. Investigation of hydrogen-burn damage in the Three Mile Island Unit 2 reactor building

    International Nuclear Information System (INIS)

    Alvares, N.J.; Beason, D.G.; Eidem, G.R.

    1982-06-01

    About 10 hours after the March 28, 1979 Loss-of-Coolant Accident began at Three Mile Island Unit 2, a hydrogen deflagration of undetermined extent occurred inside the reactor building. Examinations of photographic evidence, available from the first fifteen entries into the reactor building, yielded preliminary data on the possible extent and range of hydrogen burn damage. These data, although sparse, contributed to development of a possible damage path and to an estimate of the extent of damage to susceptible reactor building items. Further information gathered from analysis of additional photographs and samples can provide the means for estimating hydrogen source and production rate data crucial to developing a complete understanding of the TMI-2 hydrogen deflagration. 34 figures

  6. Simple and Efficient System for Combined Solar Energy Harvesting and Reversible Hydrogen Storage.

    Science.gov (United States)

    Li, Lu; Mu, Xiaoyue; Liu, Wenbo; Mi, Zetian; Li, Chao-Jun

    2015-06-24

    Solar energy harvesting and hydrogen economy are the two most important green energy endeavors for the future. However, a critical hurdle to the latter is how to safely and densely store and transfer hydrogen. Herein, we developed a reversible hydrogen storage system based on low-cost liquid organic cyclic hydrocarbons at room temperature and atmospheric pressure. A facile switch of hydrogen addition (>97% conversion) and release (>99% conversion) with superior capacity of 7.1 H2 wt % can be quickly achieved over a rationally optimized platinum catalyst with high electron density, simply regulated by dark/light conditions. Furthermore, the photodriven dehydrogenation of cyclic alkanes gave an excellent apparent quantum efficiency of 6.0% under visible light illumination (420-600 nm) without any other energy input, which provides an alternative route to artificial photosynthesis for directly harvesting and storing solar energy in the form of chemical fuel.

  7. Hydrogen fuel. Uses

    International Nuclear Information System (INIS)

    Darkrim-Lamari, F.; Malbrunot, P.

    2006-01-01

    Hydrogen is a very energetic fuel which can be used in combustion to generate heat and mechanical energy or which can be used to generate electricity and heat through an electrochemical reaction with oxygen. This article deals with the energy conversion, the availability and safety problems linked with the use of hydrogen, and with the socio-economical consequences of a generalized use of hydrogen: 1 - hydrogen energy conversion: hydrogen engines, aerospace applications, fuel cells (principle, different types, domains of application); 2 - hydrogen energy availability: transport and storage (gas pipelines, liquid hydrogen, adsorbed and absorbed hydrogen in solid materials), service stations; 3 - hazards and safety: flammability, explosibility, storage and transport safety, standards and regulations; 4 - hydrogen economy; 5 - conclusion. (J.S.)

  8. Hydrogen Analyses in the EPR

    International Nuclear Information System (INIS)

    Worapittayaporn, S.; Eyink, J.; Movahed, M.

    2008-01-01

    In severe accidents with core melting large amounts of hydrogen may be released into the containment. The EPR provides a combustible gas control system to prevent hydrogen combustion modes with the potential to challenge the containment integrity due to excessive pressure and temperature loads. This paper outlines the approach for the verification of the effectiveness and efficiency of this system. Specifically, the justification is a multi-step approach. It involves the deployment of integral codes, lumped parameter containment codes and CFD codes and the use of the sigma criterion, which provides the link to the broad experimental data base for flame acceleration (FA) and deflagration to detonation transition (DDT). The procedure is illustrated with an example. The performed analyses show that hydrogen combustion at any time does not lead to pressure or temperature loads that threaten the containment integrity of the EPR. (authors)

  9. The Role of Hydrogen-Enhanced Strain-Induced Lattice Defects on Hydrogen Embrittlement Susceptibility of X80 Pipeline Steel

    Science.gov (United States)

    Hattori, M.; Suzuki, H.; Seko, Y.; Takai, K.

    2017-08-01

    Studies to date have not completely determined the factors influencing hydrogen embrittlement of ferrite/bainite X80 pipeline steel. Hydrogen embrittlement susceptibility was evaluated based on fracture strain in tensile testing. We conducted a thermal desorption analysis to measure the amount of tracer hydrogen corresponding to that of lattice defects. Hydrogen embrittlement susceptibility and the amount of tracer hydrogen significantly increased with decreasing crosshead speed. Additionally, a significant increase in the formation of hydrogen-enhanced strain-induced lattice defects was observed immediately before the final fracture. In contrast to hydrogen-free specimens, the fracture surface of the hydrogen-charged specimens exhibited shallower dimples without nuclei, such as secondary phase particles. These findings indicate that the presence of hydrogen enhanced the formation of lattice defects, particularly just prior to the occurrence of final fracture. This in turn enhanced the formation of shallower dimples, thereby potentially causing premature fracture of X80 pipeline steel at lower crosshead speeds.

  10. Overview of North American Hydrogen Sensor Standards

    Energy Technology Data Exchange (ETDEWEB)

    O' Malley, Kathleen [SRA International, Inc., Colorado Springs, CO (United States); Lopez, Hugo [UL LLC, Chicago, IL (United States); Cairns, Julie [CSA Group, Cleveland, OH (United States); Wichert, Richard [Professional Engineering, Inc.. Citrus Heights, CA (United States); Rivkin, Carl [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Burgess, Robert [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Buttner, William [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-08-11

    An overview of the main North American codes and standards associated with hydrogen safety sensors is provided. The distinction between a code and a standard is defined, and the relationship between standards and codes is clarified, especially for those circumstances where a standard or a certification requirement is explicitly referenced within a code. The report identifies three main types of standards commonly applied to hydrogen sensors (interface and controls standards, shock and hazard standards, and performance-based standards). The certification process and a list and description of the main standards and model codes associated with the use of hydrogen safety sensors in hydrogen infrastructure are presented.

  11. Hydrogen producing method and device therefor

    International Nuclear Information System (INIS)

    Iwamura, Yasuhiro; Ito, Takehiko; Goto, Nobuo; Toyota, Ichiro; Tonegawa, Hiroshi.

    1997-01-01

    The present invention concerns a process for producing hydrogen from water by utilizing a γ · X ray radiation source such as spent nuclear fuels. Hydrogen is formed from water by combining a scintillator which uses a γ · X ray radiation source as an energy source to emit UV light and an optical catalyst or an optical catalyst electrode which undergoes UV light to decompose water into hydrogen and oxygen. The present invention provides a method of effectively using spent fuel assemblies which have not been used at present and capable of converting them into hydrogen as storable chemical energy. (N.H.)

  12. Hydrogen Storage for Aircraft Applications Overview

    Science.gov (United States)

    Colozza, Anthony J.; Kohout, Lisa (Technical Monitor)

    2002-01-01

    Advances in fuel cell technology have brought about their consideration as sources of power for aircraft. This power can be utilized to run aircraft systems or even provide propulsion power. One of the key obstacles to utilizing fuel cells on aircraft is the storage of hydrogen. An overview of the potential methods of hydrogen storage was compiled. This overview identifies various methods of hydrogen storage and points out their advantages and disadvantages relative to aircraft applications. Minimizing weight and volume are the key aspects to storing hydrogen within an aircraft. An analysis was performed to show how changes in certain parameters of a given storage system affect its mass and volume.

  13. A Failure Locus for Hydrogen Assisted Failure

    DEFF Research Database (Denmark)

    Fuentes-Alonso, Sandra; Harris, Zach D.; Burns, James T.

    2017-01-01

    of a hydrogen-dependent traction separation law. A special control algorithm is employed to overcome numerical instabilities intrinsically associated with cohesive zone formulations. The fracture energy is degraded by means of an experimentally-motivated hydrogen degradation relation. Numerical results provide...... important insight into the failure process, enabling to identify critical values of hydrogen concentration and remote stresses that trigger cracking. The work builds upon previous works by the authors and brings important insight into the technologically important problem of hydrogen assisted cracking....

  14. Hydrogen meter for service in liquid sodium

    International Nuclear Information System (INIS)

    McCown, J.J.

    1983-11-01

    This standard establishes the requirements for the design, materials, fabrication, quality assurance, examination, and acceptance testing of a hydrogen meter and auxiliary equipment for use in radioactive or nonradioactive liquid sodium service. The meter shall provide a continuous and accurate indication of the hydrogen impurity concentration over the range 0.03 to 10 ppM hydrogen in sodium at temperatures between 800 and 1000 0 F (427 and 538 0 C). The meter may also be used to rapidly monitor changes in hydrogen concentration, over the same concentration range, and, therefore can be used as a sensor for sodium-water reactions in LMFBR steam generators

  15. Hydrogen storage technology materials and applications

    CERN Document Server

    Klebanoff, Lennie

    2012-01-01

    Zero-carbon, hydrogen-based power technology offers the most promising long-term solution for a secure and sustainable energy infrastructure. With contributions from the world's leading technical experts in the field, Hydrogen Storage Technology: Materials and Applications presents a broad yet unified account of the various materials science, physics, and engineering aspects involved in storing hydrogen gas so that it can be used to provide power. The book helps you understand advanced hydrogen storage materials and how to build systems around them. Accessible to nonscientists, the first chapt

  16. Hydrogen Fuel Cell Analysis: Lessons Learned from Stationary Power Generation Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Scott E. Grasman; John W. Sheffield; Fatih Dogan; Sunggyu Lee; Umit O. Koylu; Angie Rolufs

    2010-04-30

    This study considered opportunities for hydrogen in stationary applications in order to make recommendations related to RD&D strategies that incorporate lessons learned and best practices from relevant national and international stationary power efforts, as well as cost and environmental modeling of pathways. The study analyzed the different strategies utilized in power generation systems and identified the different challenges and opportunities for producing and using hydrogen as an energy carrier. Specific objectives included both a synopsis/critical analysis of lessons learned from previous stationary power programs and recommendations for a strategy for hydrogen infrastructure deployment. This strategy incorporates all hydrogen pathways and a combination of distributed power generating stations, and provides an overview of stationary power markets, benefits of hydrogen-based stationary power systems, and competitive and technological challenges. The motivation for this project was to identify the lessons learned from prior stationary power programs, including the most significant obstacles, how these obstacles have been approached, outcomes of the programs, and how this information can be used by the Hydrogen, Fuel Cells & Infrastructure Technologies Program to meet program objectives primarily related to hydrogen pathway technologies (production, storage, and delivery) and implementation of fuel cell technologies for distributed stationary power. In addition, the lessons learned address environmental and safety concerns, including codes and standards, and education of key stakeholders.

  17. Thermomagnetic torque in hydrogen isotopes

    International Nuclear Information System (INIS)

    Cramer, J.A.

    1975-01-01

    The thermomagnetic torque has been measured in parahydrogen and ortho and normal deuterium for pressures from 0.10 to 2.0 torr and temperatures from 100 to 370 K. Since the torque depends on the precession of the molecular rotational magnetic moment around the field direction, coupling of the molecular nuclear spin to the rotational moment can affect the torque. Evidence of spin coupling effects is found for the torque in both deuterium modifications. In para hydrogen the torque at all temperatures and pressures exhibits behavior expected of a gas of zero nuclear spin molecules. Additionally, earlier data for hydrogen deuteride and for normal hydrogen from 105 to 374 K are evaluated and discussed. The high pressure limiting values of torque peak heights and positions for all these gases are compared with theory

  18. Electric hydrogen recombiner special tests

    International Nuclear Information System (INIS)

    Wilson, J.F.

    1975-12-01

    Westinghouse has produced an electric hydrogen recombiner to control hydrogen levels in reactor containments following a postulated loss-of-coolant accident. The recombiner underwent extensive testing for NRC qualification (see WCAP 7709-L and Supplements 1, 2, 3, 4). As a result, WCAP 7709-L and Supplements 1, 2, 3, and 4 have been accepted by the NRC for reference in applications not committed to IEEE-323-1974. Supplement 5 and the next supplement will demonstrate conformance to IEEE-323-1974. This supplement describes additional tests, beyond those necessary to qualify the system, which will be referenced in supplement 6. Each test has demonstrated a considerable margin of safety over required performance. Concurrently, the test results increased the fund of technical information on the electric hydrogen recombiner

  19. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M. [Princeton Univ., NJ (United States)] [and others

    1996-10-01

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  20. Additive Manufacturing for Affordable Rocket Engines

    Science.gov (United States)

    West, Brian; Robertson, Elizabeth; Osborne, Robin; Calvert, Marty

    2016-01-01

    Additive manufacturing (also known as 3D printing) technology has the potential to drastically reduce costs and lead times associated with the development of complex liquid rocket engine systems. NASA is using 3D printing to manufacture rocket engine components including augmented spark igniters, injectors, turbopumps, and valves. NASA is advancing the process to certify these components for flight. Success Story: MSFC has been developing rocket 3D-printing technology using the Selective Laser Melting (SLM) process. Over the last several years, NASA has built and tested several injectors and combustion chambers. Recently, MSFC has 3D printed an augmented spark igniter for potential use the RS-25 engines that will be used on the Space Launch System. The new design is expected to reduce the cost of the igniter by a factor of four. MSFC has also 3D printed and tested a liquid hydrogen turbopump for potential use on an Upper Stage Engine. Additive manufacturing of the turbopump resulted in a 45% part count reduction. To understanding how the 3D printed parts perform and to certify them for flight, MSFC built a breadboard liquid rocket engine using additive manufactured components including injectors, turbomachinery, and valves. The liquid rocket engine was tested seven times in 2016 using liquid oxygen and liquid hydrogen. In addition to exposing the hardware to harsh environments, engineers learned to design for the new manufacturing technique, taking advantage of its capabilities and gaining awareness of its limitations. Benefit: The 3D-printing technology promises reduced cost and schedule for rocket engines. Cost is a function of complexity, and the most complicated features provide the largest opportunities for cost reductions. This is especially true where brazes or welds can be eliminated. The drastic reduction in part count achievable with 3D printing creates a waterfall effect that reduces the number of processes and drawings, decreases the amount of touch

  1. Hydrogen-enriched fuels

    Energy Technology Data Exchange (ETDEWEB)

    Roser, R. [NRG Technologies, Inc., Reno, NV (United States)

    1998-08-01

    NRG Technologies, Inc. is attempting to develop hardware and infrastructure that will allow mixtures of hydrogen and conventional fuels to become viable alternatives to conventional fuels alone. This commercialization can be successful if the authors are able to achieve exhaust emission levels of less than 0.03 g/kw-hr NOx and CO; and 0.15 g/kw-hr NMHC at full engine power without the use of exhaust catalysts. The major barriers to achieving these goals are that the lean burn regimes required to meet exhaust emissions goals reduce engine output substantially and tend to exhibit higher-than-normal total hydrocarbon emissions. Also, hydrogen addition to conventional fuels increases fuel cost, and reduces both vehicle range and engine output power. Maintaining low emissions during transient driving cycles has not been demonstrated. A three year test plan has been developed to perform the investigations into the issues described above. During this initial year of funding research has progressed in the following areas: (a) a cost effective single-cylinder research platform was constructed; (b) exhaust gas speciation was performed to characterize the nature of hydrocarbon emissions from hydrogen-enriched natural gas fuels; (c) three H{sub 2}/CH{sub 4} fuel compositions were analyzed using spark timing and equivalence ratio sweeping procedures and finally; (d) a full size pick-up truck platform was converted to run on HCNG fuels. The testing performed in year one of the three year plan represents a baseline from which to assess options for overcoming the stated barriers to success.

  2. Hydrogen in metals

    CSIR Research Space (South Africa)

    Carter, TJ

    2001-04-01

    Full Text Available .J. Cartera,*, L.A. Cornishb aAdvanced Engineering & Testing Services, MATTEK, CSIR, Private Bag X28, Auckland Park 2006, South Africa bSchool of Process and Materials Engineering, University of the Witwatersrand, Private Bag 3, P.O. WITS 2050, South Africa... are contrasted, and an unusual case study of hydrogen embrittlement of an alloy steel is presented. 7 2001 Published by Elsevier Science Ltd. Keywords: Hydrogen; Hydrogen-assisted cracking; Hydrogen damage; Hydrogen embrittlement 1. Introduction Hydrogen suC128...

  3. Anhydrous hydrogen fluoride electrolyte battery. [Patent application

    Science.gov (United States)

    Not Available

    1972-06-26

    It is an object of the invention to provide a primary cell or battery using ammonium fluoride--anhydrous hydrogen fluoride electrolyte having improved current and power production capabilities at low temperatures. It is operable at temperatures substantially above the boiling point of hydrogen fluoride. (GRA)

  4. Exploring Hydrogen Evolution and the Overpotential

    Science.gov (United States)

    Lyon, Yana A.; Roberts, Adrienne A.; McMillin, David R.

    2015-01-01

    The laboratory experiment described provides insight into the energetics of hydrogen evolution at an electrode as well as the intrinsic barrier that typically impedes reaction. In the course of the exercise, students find that Sn(s) is thermodynamically capable of combining with protons to form hydrogen, but that the direct reaction occurs at a…

  5. Hyperfine splitting in ordinary and muonic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Tomalak, Oleksandr [Johannes Gutenberg Universitaet, Institut fuer Kernphysik and PRISMA Cluster of Excellence, Mainz (Germany)

    2018-01-15

    We provide an accurate evaluation of the two-photon exchange correction to the hyperfine splitting of S energy levels in muonic hydrogen exploiting the corresponding measurements in electronic hydrogen. The proton structure uncertainty in the calculation of α{sup 5} contribution is sizably reduced. (orig.)

  6. National FCEV and Hydrogen Fueling Station Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Bush, Brian; Melaina, Marc

    2016-06-09

    This presentation provides a summary of the FY16 activities and accomplishments for NREL's national fuel cell electric vehicle (FCEV) and hydrogen fueling station scenarios project. It was presented at the U.S. Department of Energy Hydrogen and Fuel Cells Program 2016 Annual Merit Review and Peer Evaluation Meeting on June 9, 2016, in Washington, D.C.

  7. Hydrogen, the phenomenon is reaching the Europe

    International Nuclear Information System (INIS)

    2001-01-01

    More and more contracts and research programs are decided in Europe to promote the hydrogen energy. The market is today still moderate but the forecasting are great in many domains. This paper provides some data and trends on the hydrogen market. (A.L.B.)

  8. Bio-oil Stabilization by Hydrogenation over Reduced Metal Catalysts at Low Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huamin; Lee, Suh-Jane; Olarte, Mariefel V.; Zacher, Alan H.

    2016-08-30

    Biomass fast pyrolysis integrated with bio-oil upgrading represents a very attractive approach for converting biomass to hydrocarbon transportation fuels. However, the thermal and chemical instability of bio-oils presents significant problems when they are being upgraded, and development of effective approaches for stabilizing bio-oils is critical to the success of the technology. Catalytic hydrogenation to remove reactive species in bio-oil has been considered as one of the most efficient ways to stabilize bio-oil. This paper provides a fundamental understanding of hydrogenation of actual bio-oils over a Ru/TiO2 catalyst under conditions relevant to practical bio-oil hydrotreating processes. Bio-oil feed stocks, bio-oils hydrogenated to different extents, and catalysts have been characterized to provide insights into the chemical and physical properties of these samples and to understand the correlation of the properties with the composition of the bio-oil and catalysts. The results indicated hydrogenation of various components of the bio-oil, including sugars, aldehydes, ketones, alkenes, aromatics, and carboxylic acids, over the Ru/TiO2 catalyst and 120 to 160oC. Hydrogenation of these species significantly changed the chemical and physical properties of the bio-oil and overall improved its thermal stability, especially by reducing the carbonyl content, which represented the content of the most reactive species (i.e., sugar, aldehydes, and ketones). The change of content of each component in response to increasing hydrogen additions suggests the following bio-oil hydrogenation reaction sequence: sugar conversion to sugar alcohols, followed by ketone and aldehyde conversion to alcohols, followed by alkene and aromatic hydrogenation, and then followed by carboxylic acid hydrogenation to alcohols. Hydrogenation of bio-oil samples with different sulfur contents or inorganic material contents suggested that sulfur poisoning of the reduced Ru metal catalysts was

  9. Decoration of carbon nano surfaces with hydrogen and hydrogen rich molecules

    International Nuclear Information System (INIS)

    Zöttl, S.

    2013-01-01

    The use of helium nano droplets as a matrix to investigate different atomic and molecular samples is a well established experimental technique. The unique properties of helium allow for different analytical methods and at the same time provide a stable ambient temperature. Cluster growth inside helium nano droplets can be accomplished by repeatedly doping the droplets with sample particles in a controlled environment. The experimental work represented in this thesis was performed using helium nano droplets to create clusters of fullerenes like C 60 and C 70 . The adsorption properties of these fullerene clusters regarding hydrogen and hydrogen rich molecules have been subject to investigation. The observed results suggest that curved carbon nano surfaces offer higher storage densities than planar graphite surfaces. The use of C 60 as a model carbon nano structure provides a well understood molecule for testing and evaluating computational methods to calculate surface properties of various carbon nano materials. The cost effective storage of hydrogen for mobile applications plays a key role in the development of alternatives to fossil fuels. For that reason, the application of carbon nano materials to store hydrogen by adsorption has attracted much scientific attention lately. The insights gained in the presented thesis contribute to the collective efforts and deliver more refined tools to estimate the adsorption properties of future carbon nano materials. In addition to the aforementioned, a time-of-flight mass spectrometer for educational purpose has been designed and constructed in the framework of my PhD thesis. The instrument is successfully used in various lab courses and information on the setup can be found in the Appendix of this work. (author) [de

  10. BWR zinc addition Sourcebook

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Giannelli, Joseph F.; Jarvis, Alfred J.

    2014-01-01

    Boiling Water Reactors (BWRs) have been injecting zinc into the primary coolant via the reactor feedwater system for over 25 years for the purpose of controlling primary system radiation fields. The BWR zinc injection process has evolved since the initial application at the Hope Creek Nuclear Station in 1986. Key transitions were from the original natural zinc oxide (NZO) to depleted zinc oxide (DZO), and from active zinc injection of a powdered zinc oxide slurry (pumped systems) to passive injection systems (zinc pellet beds). Zinc addition has continued through various chemistry regimes changes, from normal water chemistry (NWC) to hydrogen water chemistry (HWC) and HWC with noble metals (NobleChem™) for mitigation of intergranular stress corrosion cracking (IGSCC) of reactor internals and primary system piping. While past reports published by the Electric Power Research Institute (EPRI) document specific industry experience related to these topics, the Zinc Sourcebook was prepared to consolidate all of the experience gained over the past 25 years. The Zinc Sourcebook will benefit experienced BWR Chemistry, Operations, Radiation Protection and Engineering personnel as well as new people entering the nuclear power industry. While all North American BWRs implement feedwater zinc injection, a number of other BWRs do not inject zinc. This Sourcebook will also be a valuable resource to plants considering the benefits of zinc addition process implementation, and to gain insights on industry experience related to zinc process control and best practices. This paper presents some of the highlights from the Sourcebook. (author)

  11. Coupled hydrogen moderator optimization with ortho/para hydrogen ratio

    International Nuclear Information System (INIS)

    Kai, Tetsuya; Harada, Masahide; Teshigawara, Makoto; Watanabe, Noboru; Ikeda, Yujiro

    2004-01-01

    Neutronic performance of a coupled hydrogen moderator was studied as a function of para hydrogen concentration, moderator thickness and height, premoderator thickness, etc. for the J-PARC spallation neutron source. It was found that a thick (140 mm) moderator with 100% para-hydrogen was optimal to provide a high time- and energy-integrated neutron intensity below 15 meV and high pulse-peak intensities at lower energies. Distribution of the cold neutrons on a moderator viewed surface was studied and found to exhibit an intensity-enhanced region at the fringe part near the premoderator. This rather peculiar distribution suggested that the moderator and the viewed surface must be designed so as to take the full advantage of the brighter region near the premoderator

  12. Fuel Cell and Hydrogen Technologies Program | Hydrogen and Fuel Cells |

    Science.gov (United States)

    NREL Fuel Cell and Hydrogen Technologies Program Fuel Cell and Hydrogen Technologies Program Through its Fuel Cell and Hydrogen Technologies Program, NREL researches, develops, analyzes, and validates fuel cell and hydrogen production, delivery, and storage technologies for transportation

  13. Photoelectrochemical water splitting in separate oxygen and hydrogen cells

    Science.gov (United States)

    Landman, Avigail; Dotan, Hen; Shter, Gennady E.; Wullenkord, Michael; Houaijia, Anis; Maljusch, Artjom; Grader, Gideon S.; Rothschild, Avner

    2017-06-01

    Solar water splitting provides a promising path for sustainable hydrogen production and solar energy storage. One of the greatest challenges towards large-scale utilization of this technology is reducing the hydrogen production cost. The conventional electrolyser architecture, where hydrogen and oxygen are co-produced in the same cell, gives rise to critical challenges in photoelectrochemical water splitting cells that directly convert solar energy and water to hydrogen. Here we overcome these challenges by separating the hydrogen and oxygen cells. The ion exchange in our cells is mediated by auxiliary electrodes, and the cells are connected to each other only by metal wires, enabling centralized hydrogen production. We demonstrate hydrogen generation in separate cells with solar-to-hydrogen conversion efficiency of 7.5%, which can readily surpass 10% using standard commercial components. A basic cost comparison shows that our approach is competitive with conventional photoelectrochemical systems, enabling safe and potentially affordable solar hydrogen production.

  14. Dynamics of hydrogen in hydrogenated amorphous silicon

    Indian Academy of Sciences (India)

    is mobile and can easily move through the material). Hydrogen diffuses ... The determination of the relationship of light-enhanced hydrogen motion to ... term is negligible, and using the thermodynamic relation given below f(c) = kBT .... device-applications problematic but the normal state can be recovered by a thermal an-.

  15. Stuart Energy's experiences in developing 'Hydrogen Energy Station' infrastructure

    International Nuclear Information System (INIS)

    Crilly, B.

    2004-01-01

    'Full text:' With over 50 years experience, Stuart Energy is the global leader in the development, manufacture and integration of multi-use hydrogen infrastructure products that use the Company's proprietary IMET hydrogen generation water electrolysis technology. Stuart Energy offers its customers the power of hydrogen through its integrated Hydrogen Energy Station (HES) that provides clean, secure and distributed hydrogen. The HES can be comprised of five modules: hydrogen generation, compression, storage, fuel dispensing and / or power generation. This paper discusses Stuart Energy's involvement with over 10 stations installed in recent years throughout North America, Asia and Europe while examining the economic and environmental benefits of these systems. (author)

  16. Hydrogen production by Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Chaudhuri Surabhi

    2005-12-01

    Full Text Available Abstract The limited fossil fuel prompts the prospecting of various unconventional energy sources to take over the traditional fossil fuel energy source. In this respect the use of hydrogen gas is an attractive alternate source. Attributed by its numerous advantages including those of environmentally clean, efficiency and renew ability, hydrogen gas is considered to be one of the most desired alternate. Cyanobacteria are highly promising microorganism for hydrogen production. In comparison to the traditional ways of hydrogen production (chemical, photoelectrical, Cyanobacterial hydrogen production is commercially viable. This review highlights the basic biology of cynobacterial hydrogen production, strains involved, large-scale hydrogen production and its future prospects. While integrating the existing knowledge and technology, much future improvement and progress is to be done before hydrogen is accepted as a commercial primary energy source.

  17. Center for Hydrogen Storage.

    Science.gov (United States)

    2013-06-01

    The main goals of this project were to (1) Establish a Center for Hydrogen Storage Research at Delaware State University for the preparation and characterization of selected complex metal hydrides and the determination their suitability for hydrogen ...

  18. National Hydrogen Vision Meeting Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-11-01

    This document provides presentations and summaries of the notes from the National Hydrogen Vision Meeting''s facilitated breakout sessions. The Vision Meeting, which took place November 15-16, 2001, kicked off the public-private partnership that will pave the way to a more secure and cleaner energy future for America. These proceedings were compiled into a formal report, A National Vision of America''s Transition to a Hydrogen Economy - To 2030 and Beyond, which is also available online.

  19. Low Cost, High Efficiency, High Pressure Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Mark Leavitt

    2010-03-31

    A technical and design evaluation was carried out to meet DOE hydrogen fuel targets for 2010. These targets consisted of a system gravimetric capacity of 2.0 kWh/kg, a system volumetric capacity of 1.5 kWh/L and a system cost of $4/kWh. In compressed hydrogen storage systems, the vast majority of the weight and volume is associated with the hydrogen storage tank. In order to meet gravimetric targets for compressed hydrogen tanks, 10,000 psi carbon resin composites were used to provide the high strength required as well as low weight. For the 10,000 psi tanks, carbon fiber is the largest portion of their cost. Quantum Technologies is a tier one hydrogen system supplier for automotive companies around the world. Over the course of the program Quantum focused on development of technology to allow the compressed hydrogen storage tank to meet DOE goals. At the start of the program in 2004 Quantum was supplying systems with a specific energy of 1.1-1.6 kWh/kg, a volumetric capacity of 1.3 kWh/L and a cost of $73/kWh. Based on the inequities between DOE targets and Quantum’s then current capabilities, focus was placed first on cost reduction and second on weight reduction. Both of these were to be accomplished without reduction of the fuel system’s performance or reliability. Three distinct areas were investigated; optimization of composite structures, development of “smart tanks” that could monitor health of tank thus allowing for lower design safety factor, and the development of “Cool Fuel” technology to allow higher density gas to be stored, thus allowing smaller/lower pressure tanks that would hold the required fuel supply. The second phase of the project deals with three additional distinct tasks focusing on composite structure optimization, liner optimization, and metal.

  20. Hydrogen-metal systems

    International Nuclear Information System (INIS)

    Wenzl, H.; Springer, T.

    1976-01-01

    A survey is given on the alloys of metal crystals with hydrogen. The system niobium-hydrogen and its properties are especially dealt with: diffusion and heat of solution of hydrogen in the host crystal, phase diagram, coherent and incoherent phase separation, application of metal-hydrogen systems in technology. Furthermore, examples from research work in IFF (Institut fuer Festkoerperforschung) of the Nuclear Research Plant, Juelich, in the field of metal-H systems are given in summary form. (GSC) [de

  1. Visual hydrogen detector with variable reversibility

    Science.gov (United States)

    Muradov, Nazim (Inventor)

    2011-01-01

    Methods, processes and compositions are provided for a visual or chemochromic hydrogen-detector with variable or tunable reversible color change. The working temperature range for the hydrogen detector is from minus 100.degree. C. to plus 500.degree. C. A hydrogen-sensitive pigment, including, but not limited to, oxides, hydroxides and polyoxo-compounds of tungsten, molybdenum, vanadium, chromium and combinations thereof, is combined with nano-sized metal activator particles and preferably, coated on a porous or woven substrate. In the presence of hydrogen, the composition rapidly changes its color from white or light-gray or light-tan to dark gray, navy-blue or black depending on the exposure time and hydrogen concentration in the medium. After hydrogen exposure ceases, the original color of the hydrogen-sensitive pigment is restored, and the visual hydrogen detector can be used repeatedly. By changing the composition of the hydrogen-sensitive pigment, the time required for its complete regeneration is varied from a few seconds to several days.

  2. Visual hydrogen detector with variable reversibilty

    Science.gov (United States)

    Muradov, Nazim Z. (Inventor)

    2012-01-01

    Methods, processes and compositions are provided for a visual or chemochromic hydrogen-detector with variable or tunable reversible color change. The working temperature range for the hydrogen detector is from minus 100.degree. C. to plus 500.degree. C. A hydrogen-sensitive pigment, including, but not limited to, oxides, hydroxides and polyoxo-compounds of tungsten, molybdenum, vanadium, chromium and combinations thereof, is combined with nano-sized metal activator particles and preferably, coated on a porous or woven substrate. In the presence of hydrogen, the composition rapidly changes its color from white or light-gray or light-tan to dark gray, navy-blue or black depending on the exposure time and hydrogen concentration in the medium. After hydrogen exposure ceases, the original color of the hydrogen-sensitive pigment is restored, and the visual hydrogen detector can be used repeatedly. By changing the composition of the hydrogen-sensitive pigment, the time required for its complete regeneration is varied from a few seconds to several days.

  3. Revisiting the solar hydrogen alternative

    Energy Technology Data Exchange (ETDEWEB)

    Tomkiewicz, M. [Brooklyn College of CUNY, NY (United States)

    1996-09-01

    Research aimed at the development of technology to advance the solar-hydrogen alternative is per definition mission oriented. The priority that society puts on such research rise and fall with the priorities that we associate with the mission. The mission that we associate with the hydrogen economy is to provide a technological option for an indefinitely sustainable energy and material economies in which society is in equilibrium with its environment. In this paper we try to examine some global aspects of the hydrogen alternative and recommend formulation of a {open_quotes}rational{close_quotes} tax and regulatory system that is based on efforts needed to restore the ecological balance. Such a system, once entered into the price structure of the alternative energy schemes, will be used as a standard to compare energy systems that in turn will serve as a base for prioritization of publicly supported research and development.

  4. Hybrid Hydrogen and Mechanical Distributed Energy Storage

    Directory of Open Access Journals (Sweden)

    Stefano Ubertini

    2017-12-01

    Full Text Available Effective energy storage technologies represent one of the key elements to solving the growing challenges of electrical energy supply of the 21st century. Several energy storage systems are available, from ones that are technologically mature to others still at a research stage. Each technology has its inherent limitations that make its use economically or practically feasible only for specific applications. The present paper aims at integrating hydrogen generation into compressed air energy storage systems to avoid natural gas combustion or thermal energy storage. A proper design of such a hybrid storage system could provide high roundtrip efficiencies together with enhanced flexibility thanks to the possibility of providing additional energy outputs (heat, cooling, and hydrogen as a fuel, in a distributed energy storage framework. Such a system could be directly connected to the power grid at the distribution level to reduce power and energy intermittence problems related to renewable energy generation. Similarly, it could be located close to the user (e.g., office buildings, commercial centers, industrial plants, hospitals, etc.. Finally, it could be integrated in decentralized energy generation systems to reduce the peak electricity demand charges and energy costs, to increase power generation efficiency, to enhance the security of electrical energy supply, and to facilitate the market penetration of small renewable energy systems. Different configurations have been investigated (simple hybrid storage system, regenerate system, multistage system demonstrating the compressed air and hydrogen storage systems effectiveness in improving energy source flexibility and efficiency, and possibly in reducing the costs of energy supply. Round-trip efficiency up to 65% can be easily reached. The analysis is conducted through a mixed theoretical-numerical approach, which allows the definition of the most relevant physical parameters affecting the system

  5. Influence of fillers on hydrogen penetration properties and blister fracture of rubber composites for O-ring exposed to high-pressure hydrogen gas

    Energy Technology Data Exchange (ETDEWEB)

    Yamabe, Junichiro; Nishimura, Shin [Department of Mechanical Science Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Research Center for Hydrogen Industrial Use and Storage (HYDROGENIUS), National Institute of Advanced Industrial Science and Technology (AIST), 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan)

    2009-02-15

    Ethylene-propylene rubber (EPDM) and nitrile-butadiene rubber (NBR) composites having carbon black, silica, and no fillers were exposed to hydrogen gas at a maximum pressure of 10 MPa; then, blister tests and the measurement of hydrogen content were conducted. The hydrogen contents of the composites were proportional to the hydrogen pressure, i.e., the behavior of their hydrogen contents follows Henry's law. This implies that hydrogen penetrates into the composite as a hydrogen molecule. The addition of carbon black raised the hydrogen content of the composite, while the addition of silica did not. Based on observations, the blister damages of composites with silica were less pronounced, irrespective of the hydrogen pressures. This may be attributed to their lower hydrogen content and relatively better tensile properties than the others. (author)

  6. Process, including membrane separation, for separating hydrogen from hydrocarbons

    Science.gov (United States)

    Baker, Richard W.; Lokhandwala, Kaaeid A.; He, Zhenjie; Pinnau, Ingo

    2001-01-01

    Processes for providing improved methane removal and hydrogen reuse in reactors, particularly in refineries and petrochemical plants. The improved methane removal is achieved by selective purging, by passing gases in the reactor recycle loop across membranes selective in favor of methane over hydrogen, and capable of exhibiting a methane/hydrogen selectivity of at least about 2.5 under the process conditions.

  7. Hydrogen storage in the form of metal hydrides

    Science.gov (United States)

    Zwanziger, M. G.; Santana, C. C.; Santos, S. C.

    1984-01-01

    Reversible reactions between hydrogen and such materials as iron/titanium and magnesium/ nickel alloy may provide a means for storing hydrogen fuel. A demonstration model of an iron/titanium hydride storage bed is described. Hydrogen from the hydride storage bed powers a converted gasoline electric generator.

  8. Stable catalyst layers for hydrogen permeable composite membranes

    Science.gov (United States)

    Way, J. Douglas; Wolden, Colin A

    2014-01-07

    The present invention provides a hydrogen separation membrane based on nanoporous, composite metal carbide or metal sulfide coated membranes capable of high flux and permselectivity for hydrogen without platinum group metals. The present invention is capable of being operated over a broad temperature range, including at elevated temperatures, while maintaining hydrogen selectivity.

  9. Anelastic mechanical loss spectrometry of hydrogen in austenitic stainless steels

    International Nuclear Information System (INIS)

    Yagodzinskyy, Y.; Andronova, E.; Ivanchenko, M.; Haenninen, H.

    2009-01-01

    Atomic distribution of hydrogen, its elemental diffusion jumps and its interaction with dislocations in a number of austenitic stainless steels are studied with anelastic mechanical loss (AML) spectrometry in combination with the hydrogen thermal desorption method. Austenitic stainless steels of different chemical composition, namely, AISI 310, AISI 201, and AISI 301LN, as well as LDX 2101 duplex stainless steel are studied to clarify the role of different alloying elements on the hydrogen behavior. Activation analyses of the hydrogen Snoek-like peaks are performed with their decomposition to sets of Gaussian components. Fine structure of the composite hydrogen peaks is analyzed under the assumption that each component corresponds to diffusion transfer of hydrogen between octahedral positions with certain atomic compositions of the nearest neighbouring lattice sites. An additional component originating from hydrogen-dislocation interaction is considered. Binding energies for hydrogen-dislocation interaction are also estimated for the studied austenitic stainless steels.

  10. Confinement of hydrogen at high pressure in carbon nanotubes

    Science.gov (United States)

    Lassila, David H [Aptos, CA; Bonner, Brian P [Livermore, CA

    2011-12-13

    A high pressure hydrogen confinement apparatus according to one embodiment includes carbon nanotubes capped at one or both ends thereof with a hydrogen-permeable membrane to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough. A hydrogen confinement apparatus according to another embodiment includes an array of multi-walled carbon nanotubes each having first and second ends, the second ends being capped with palladium (Pd) to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough as a function of palladium temperature, wherein the array of carbon nanotubes is capable of storing hydrogen gas at a pressure of at least 1 GPa for greater than 24 hours. Additional apparatuses and methods are also presented.

  11. Hydrogen separation process

    Science.gov (United States)

    Mundschau, Michael [Longmont, CO; Xie, Xiaobing [Foster City, CA; Evenson, IV, Carl; Grimmer, Paul [Longmont, CO; Wright, Harold [Longmont, CO

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  12. Overview of interstate hydrogen pipeline systems

    International Nuclear Information System (INIS)

    Gillette, J.L.; Kolpa, R.L.

    2008-01-01

    . The following discussion will focus on the similarities and differences between the two pipeline networks. Hydrogen production is currently concentrated in refining centers along the Gulf Coast and in the Farm Belt. These locations have ready access to natural gas, which is used in the steam methane reduction process to make bulk hydrogen in this country. Production centers could possibly change to lie along coastlines, rivers, lakes, or rail lines, should nuclear power or coal become a significant energy source for hydrogen production processes. Should electrolysis become a dominant process for hydrogen production, water availability would be an additional factor in the location of production facilities. Once produced, hydrogen must be transported to markets. A key obstacle to making hydrogen fuel widely available is the scale of expansion needed to serve additional markets. Developing a hydrogen transmission and distribution infrastructure would be one of the challenges to be faced if the United States is to move toward a hydrogen economy. Initial uses of hydrogen are likely to involve a variety of transmission and distribution methods. Smaller users would probably use truck transport, with the hydrogen being in either the liquid or gaseous form. Larger users, however, would likely consider using pipelines. This option would require specially constructed pipelines and the associated infrastructure. Pipeline transmission of hydrogen dates back to late 1930s. These pipelines have generally operated at less than 1,000 pounds per square inch (psi), with a good safety record. Estimates of the existing hydrogen transmission system in the United States range from about 450 to 800 miles. Estimates for Europe range from about 700 to 1,100 miles (Mohipour et al. 2004; Amos 1998). These seemingly large ranges result from using differing criteria in determining pipeline distances. For example, some analysts consider only pipelines above a certain diameter as transmission lines

  13. Overview of interstate hydrogen pipeline systems.

    Energy Technology Data Exchange (ETDEWEB)

    Gillette, J .L.; Kolpa, R. L

    2008-02-01

    . The following discussion will focus on the similarities and differences between the two pipeline networks. Hydrogen production is currently concentrated in refining centers along the Gulf Coast and in the Farm Belt. These locations have ready access to natural gas, which is used in the steam methane reduction process to make bulk hydrogen in this country. Production centers could possibly change to lie along coastlines, rivers, lakes, or rail lines, should nuclear power or coal become a significant energy source for hydrogen production processes. Should electrolysis become a dominant process for hydrogen production, water availability would be an additional factor in the location of production facilities. Once produced, hydrogen must be transported to markets. A key obstacle to making hydrogen fuel widely available is the scale of expansion needed to serve additional markets. Developing a hydrogen transmission and distribution infrastructure would be one of the challenges to be faced if the United States is to move toward a hydrogen economy. Initial uses of hydrogen are likely to involve a variety of transmission and distribution methods. Smaller users would probably use truck transport, with the hydrogen being in either the liquid or gaseous form. Larger users, however, would likely consider using pipelines. This option would require specially constructed pipelines and the associated infrastructure. Pipeline transmission of hydrogen dates back to late 1930s. These pipelines have generally operated at less than 1,000 pounds per square inch (psi), with a good safety record. Estimates of the existing hydrogen transmission system in the United States range from about 450 to 800 miles. Estimates for Europe range from about 700 to 1,100 miles (Mohipour et al. 2004; Amos 1998). These seemingly large ranges result from using differing criteria in determining pipeline distances. For example, some analysts consider only pipelines above a certain diameter as transmission lines

  14. Hydrogen at the Rooftop: Compact CPV-Hydrogen system to Convert Sunlight to Hydrogen

    KAUST Repository

    Burhan, Muhammad

    2017-12-27

    Despite being highest potential energy source, solar intermittency and low power density make it difficult for solar energy to compete with the conventional power plants. Highly efficient concentrated photovoltaic (CPV) system provides best technology to be paired with the electrolytic hydrogen production, as a sustainable energy source with long term energy storage. However, the conventional gigantic design of CPV system limits its market and application to the open desert fields without any rooftop installation scope, unlike conventional PV. This makes CPV less popular among solar energy customers. This paper discusses the development of compact CPV-Hydrogen system for the rooftop application in the urban region. The in-house built compact CPV system works with hybrid solar tracking of 0.1° accuracy, ensured through proposed double lens collimator based solar tracking sensor. With PEM based electrolyser, the compact CPV-hydrogen system showed 28% CPV efficiency and 18% sunlight to hydrogen (STH) efficiency, for rooftop operation in tropical region of Singapore. For plant designers, the solar to hydrogen production rating of 217 kWh/kg has been presented with 15% STH daily average efficiency, recorded from the long term field operation of the system.

  15. Hydrogen at the Rooftop: Compact CPV-Hydrogen system to Convert Sunlight to Hydrogen

    KAUST Repository

    Burhan, Muhammad; Wakil Shahzad, Muhammad; Ng, Kim Choon

    2017-01-01

    Despite being highest potential energy source, solar intermittency and low power density make it difficult for solar energy to compete with the conventional power plants. Highly efficient concentrated photovoltaic (CPV) system provides best technology to be paired with the electrolytic hydrogen production, as a sustainable energy source with long term energy storage. However, the conventional gigantic design of CPV system limits its market and application to the open desert fields without any rooftop installation scope, unlike conventional PV. This makes CPV less popular among solar energy customers. This paper discusses the development of compact CPV-Hydrogen system for the rooftop application in the urban region. The in-house built compact CPV system works with hybrid solar tracking of 0.1° accuracy, ensured through proposed double lens collimator based solar tracking sensor. With PEM based electrolyser, the compact CPV-hydrogen system showed 28% CPV efficiency and 18% sunlight to hydrogen (STH) efficiency, for rooftop operation in tropical region of Singapore. For plant designers, the solar to hydrogen production rating of 217 kWh/kg has been presented with 15% STH daily average efficiency, recorded from the long term field operation of the system.

  16. Homogeneous Catalysis for Sustainable Hydrogen Storage in Formic Acid and Alcohols.

    Science.gov (United States)

    Sordakis, Katerina; Tang, Conghui; Vogt, Lydia K; Junge, Henrik; Dyson, Paul J; Beller, Matthias; Laurenczy, Gábor

    2018-01-24

    Hydrogen gas is a storable form of chemical energy that could complement intermittent renewable energy conversion. One of the main disadvantages of hydrogen gas arises from its low density, and therefore, efficient handling and storage methods are key factors that need to be addressed to realize a hydrogen-based economy. Storage systems based on liquids, in particular, formic acid and alcohols, are highly attractive hydrogen carriers as they can be made from CO 2 or other renewable materials, they can be used in stationary power storage units such as hydrogen filling stations, and they can be used directly as transportation fuels. However, to bring about a paradigm change in our energy infrastructure, efficient catalytic processes that release the hydrogen from these molecules, as well as catalysts that regenerate these molecules from CO 2 and hydrogen, are required. In this review, we describe the considerable progress that has been made in homogeneous catalysis for these critical reactions, namely, the hydrogenation of CO 2 to formic acid and methanol and the reverse dehydrogenation reactions. The dehydrogenation of higher alcohols available from renewable feedstocks is also described. Key structural features of the catalysts are analyzed, as is the role of additives, which are required in many systems. Particular attention is paid to advances in sustainable catalytic processes, especially to additive-free processes and catalysts based on Earth-abundant metal ions. Mechanistic information is also presented, and it is hoped that this review not only provides an account of the state of the art in the field but also offers insights into how superior catalytic systems can be obtained in the future.

  17. Solar Hydrogen Reaching Maturity

    Directory of Open Access Journals (Sweden)

    Rongé Jan

    2015-09-01

    Full Text Available Increasingly vast research efforts are devoted to the development of materials and processes for solar hydrogen production by light-driven dissociation of water into oxygen and hydrogen. Storage of solar energy in chemical bonds resolves the issues associated with the intermittent nature of sunlight, by decoupling energy generation and consumption. This paper investigates recent advances and prospects in solar hydrogen processes that are reaching market readiness. Future energy scenarios involving solar hydrogen are proposed and a case is made for systems producing hydrogen from water vapor present in air, supported by advanced modeling.

  18. Canada's hydrogen energy sector

    International Nuclear Information System (INIS)

    Kimmel, T.B.

    2009-01-01

    Canada produces the most hydrogen per capita of any Organization of Economic Cooperation and Development (OECD) country. The majority of this hydrogen is produced by steam methane reforming for industrial use (predominantly oil upgrading and fertilizer production). Canada also has a world leading hydrogen and fuel cell sector. This sector is seeking new methods for making hydrogen for its future energy needs. The paper will discuss Canada's hydrogen and fuel cell sector in the context of its capabilities, its demonstration and commercialization activities and its stature on the world stage. (author)

  19. Hydrogen Production from Nuclear Energy via High Temperature Electrolysis

    International Nuclear Information System (INIS)

    James E. O'Brien; Carl M. Stoots; J. Stephen Herring; Grant L. Hawkes

    2006-01-01

    This paper presents the technical case for high-temperature nuclear hydrogen production. A general thermodynamic analysis of hydrogen production based on high-temperature thermal water splitting processes is presented. Specific details of hydrogen production based on high-temperature electrolysis are also provided, including results of recent experiments performed at the Idaho National Laboratory. Based on these results, high-temperature electrolysis appears to be a promising technology for efficient large-scale hydrogen production

  20. Alternative transportation fuels in the USA: government hydrogen vehicle programs

    International Nuclear Information System (INIS)

    Cannon, J.S.

    1993-01-01

    The linkage between natural gas-based transportation and hydrogen-based transportation strategies, two clean burning gaseous fuels, provides a strong policy rationale for increased government sponsorship of hydrogen vehicle research and demonstration programs. Existing federal and state government hydrogen vehicle projects are discussed in this paper: research at the NREL, alternate-fueled buses, Renewable Hydrogen for the State of Hawaii program, New York state alternative transportation fuels program, Colorado program. 9 refs

  1. Hydrogen: Adding Value and Flexibility to the Nuclear Power Industry

    International Nuclear Information System (INIS)

    Lee, J.; Bhatt, V.; Friley, P.; Horak, W.; Reisman, A.

    2004-01-01

    The objective of this study was to assess potential synergies between the hydrogen economy and nuclear energy options. Specifically: to provide a market analysis of advanced nuclear energy options for hydrogen production in growing hydrogen demand; to conduct an impact evaluation of nuclear-based hydrogen production on the economics of the energy system, environmental emissions, and energy supply security; and to identify competing technologies and challenges to nuclear options

  2. Hydrogen-Assisted IC Engine Combustion as a Route to Hydrogen Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Andre Boehman; Daniel Haworth

    2008-09-30

    The 'Freedom Car' Initiative announced by the Bush Administration has placed a significant emphasis on development of a hydrogen economy in the United States. While the hydrogen-fueled fuel-cell vehicle that is the focus of the 'Freedom Car' program would rely on electrochemical energy conversion, and despite the large amount of resources being devoted to its objectives, near-term implementation of hydrogen in the transportation sector is not likely to arise from fuel cell cars. Instead, fuel blending and ''hydrogen-assisted'' combustion are more realizable pathways for wide-scale hydrogen utilization within the next ten years. Thus, a large potential avenue for utilization of hydrogen in transportation applications is through blending with natural gas, since there is an existing market for natural-gas vehicles of various classes, and since hydrogen can provide a means of achieving even stricter emissions standards. Another potential avenue is through use of hydrogen to 'assist' diesel combustion to permit alternate combustion strategies that can achieve lower emissions and higher efficiency. This project focused on developing the underlying fundamental information to support technologies that will facilitate the introduction of coal-derived hydrogen into the market. Two paths were envisioned for hydrogen utilization in transportation applications. One is for hydrogen to be mixed with other fuels, specifically natural gas, to enhance performance in existing natural gas-fueled vehicles (e.g., transit buses) and provide a practical and marketable avenue to begin using hydrogen in the field. A second is to use hydrogen to enable alternative combustion modes in existing diesel engines, such as homogeneous charge compression ignition, to permit enhanced efficiency and reduced emissions. Thus, this project on hydrogen-assisted combustion encompassed two major objectives: (1) Optimization of hydrogen-natural gas mixture

  3. Comparison of the performance of a spark-ignited gasoline engine blended with hydrogen and hydrogen-oxygen mixtures

    International Nuclear Information System (INIS)

    Wang, Shuofeng; Ji, Changwei; Zhang, Jian; Zhang, Bo

    2011-01-01

    This paper compared the effects of hydrogen and hydrogen-oxygen blends (hydroxygen) additions on the performance of a gasoline engine at 1400 rpm and a manifolds absolute pressure of 61.5 kPa. The tests were carried out on a 1.6 L gasoline engine equipped with a hydrogen and oxygen injection system. A hybrid electronic control unit was applied to adjust the hydrogen and hydroxygen volume fractions in the intake increasing from 0% to about 3% and keep the hydrogen-to-oxygen mole ratio at 2:1 in hydroxygen tests. For each testing condition, the gasoline flow rate was adjusted to maintain the mixture global excess air ratio at 1.00. The test results confirmed that engine fuel energy flow rate was decreased after hydrogen addition but increased with hydroxygen blending. When hydrogen or hydroxygen volume fraction in the intake was lower than 2%, the hydroxygen-blended gasoline engine produced a higher thermal efficiency than the hydrogen-blended gasoline engine. Both the additions of hydrogen and hydroxygen help reduce flame development and propagation periods of the gasoline engine. HC emissions were reduced whereas NOx emissions were raised with the increase of hydrogen and hydroxygen addition levels. CO was slightly increased after hydrogen blending, but reduced with hydroxygen addition. -- Highlights: → We compared the effects of hydrogen and hydroxygen additions on the gasoline engine performance. → The hydroxygen should be added into the engine only at low blending levels. → CO is decreased with hydroxygen addition whereas increased with hydrogen blending.

  4. Hydrogen energy assessment

    Energy Technology Data Exchange (ETDEWEB)

    Salzano, F J; Braun, C [eds.

    1977-09-01

    The purpose of this assessment is to define the near term and long term prospects for the use of hydrogen as an energy delivery medium. Possible applications of hydrogen are defined along with the associated technologies required for implementation. A major focus in the near term is on industrial uses of hydrogen for special applications. The major source of hydrogen in the near term is expected to be from coal, with hydrogen from electric sources supplying a smaller fraction. A number of potential applications for hydrogen in the long term are identified and the level of demand estimated. The results of a cost benefit study for R and D work on coal gasification to hydrogen and electrolytic production of hydrogen are presented in order to aid in defining approximate levels of R and D funding. A considerable amount of data is presented on the cost of producing hydrogen from various energy resources. A key conclusion of the study is that in time hydrogen is likely to play a role in the energy system; however, hydrogen is not yet competitive for most applications when compared to the cost of energy from petroleum and natural gas.

  5. Effects of External Hydrogen on Hydrogen Transportation and Distribution Around the Fatigue Crack Tip in Type 304 Stainless Steel

    Science.gov (United States)

    Chen, Xingyang; Zhou, Chengshuang; Cai, Xiao; Zheng, Jinyang; Zhang, Lin

    2017-10-01

    The effects of external hydrogen on hydrogen transportation and distribution around the fatigue crack tip in type 304 stainless steel were investigated by using hydrogen microprint technique (HMT) and thermal desorption spectrometry. HMT results show that some silver particles induced by hydrogen release are located near the fatigue crack and more silver particles are concentrated around the crack tip, which indicates that hydrogen accumulates in the vicinity of the crack tip during the crack growth in hydrogen gas environment. Along with the crack propagation, strain-induced α' martensite forms around the crack tip and promotes hydrogen invasion into the matrix, which will cause the crack initiation and propagation at the austenite/ α' martensite interface. In addition, the hydrogen content in the vicinity of the crack tip is higher than that at the crack edge far away from the crack tip, which is related to the stress state and strain-induced α' martensite.

  6. Hydrogen energy for beginners

    CERN Document Server

    2013-01-01

    This book highlights the outstanding role of hydrogen in energy processes, where it is the most functional element due to its unique peculiarities that are highlighted and emphasized in the book. The first half of the book covers the great natural hydrogen processes in biology, chemistry, and physics, showing that hydrogen is a trend that can unite all natural sciences. The second half of the book is devoted to the technological hydrogen processes that are under research and development with the aim to create the infrastructure for hydrogen energetics. The book describes the main features of hydrogen that make it inalienable player in processes such as fusion, photosynthesis, and metabolism. It also covers the methods of hydrogen production and storage, highlighting at the same time the exclusive importance of nanotechnologies in those processes.

  7. Hydrogen peroxide safety issues

    International Nuclear Information System (INIS)

    Conner, W.V.

    1993-01-01

    A literature survey was conducted to review the safety issues involved in handling hydrogen peroxide solutions. Most of the information found in the literature is not directly applicable to conditions at the Rocky Flats Plant, but one report describes experimental work conducted previously at Rocky Flats to determine decomposition reaction-rate constants for hydrogen peroxide solutions. Data from this report were used to calculate decomposition half-life times for hydrogen peroxide in solutions containing several decomposition catalysts. The information developed from this survey indicates that hydrogen peroxide will undergo both homogeneous and heterogeneous decomposition. The rate of decomposition is affected by temperature and the presence of catalytic agents. Decomposition of hydrogen peroxide is catalyzed by alkalies, strong acids, platinum group and transition metals, and dissolved salts of transition metals. Depending upon conditions, the consequence of a hydrogen peroxide decomposition can range from slow evolution of oxygen gas to a vapor, phase detonation of hydrogen peroxide vapors

  8. Hydrogen and its challenges

    International Nuclear Information System (INIS)

    Schal, M.

    2008-01-01

    The future of hydrogen as a universal fuel is in jeopardy unless we are able to produce it through an environment-friendly way and at a competitive cost. Today almost all the hydrogen used in the world is produced by steam reforming of natural gas. This process releases 8 tonnes of CO 2 per tonne of hydrogen produced. Other means of producing hydrogen are the hydrolysis, the very high temperature hydrolysis, and the direct chemical dissociation of water, these processes are greener than steam reforming but less efficient. About one hundred buses in the world operate on fuel cells fed by hydrogen, but it appears that the first industrial use of hydrogen at great scale will be for the local generation of electricity. Globally the annual budget for research concerning hydrogen is 4.4 milliard (10 9 ) euros worldwide. (A.C.)

  9. Surface acoustic wave hydrogen sensor

    Science.gov (United States)

    Bhethanabotla, Venkat R. (Inventor); Bhansali, Shekhar (Inventor)

    2006-01-01

    The present invention provides a delay line SAW device fabricated on a lithium niobate substrate and coated with a bilayer of nanocrystalline or other nanomaterials such as nanoparticles or nanowires of palladiumn and metal free pthalocyanine which will respond to hydrogen gas in near real time, at low (room) temperature, without being affected by CO, O.sub.2, CH.sub.4 and other gases, in air ambient or controlled ambient, providing sensitivity to low ppm levels.

  10. Hydrogen storage on carbon materials: state of the art

    International Nuclear Information System (INIS)

    D Cazorla Amoros; D Lozano Castello; F Suarez Garcia; M Jorda Beneytoa; A Linares Solano

    2005-01-01

    materials which can be obtained with high purity and in large amounts. In addition, the different preparation methods, the diversity of precursors, and the possibility of subsequent modifications, make possible the availability of activated carbons with different textures (pore volume and pore size distributions). As it bas been reported, activated carbons are effective materials for methane storage [4], which make them, in principle, also very interesting for hydrogen storage. Moreover, both experimental [5] and theoretical [6] studies have shown that hydrogen storage capacity is better in slit pores (typical porous shape in activated carbons) than in cylindrical ones (nano-tubes). Thus, the second objective of this work is to present experimental results corresponding to hydrogen storage capacity of porous materials, in order to analyze the effect of both specific surface area and pore size distribution on hydrogen storage capacity. To illustrate this effect, results obtained in our laboratory for a wide variety of activated carbon materials (fibres, powders, monoliths) will be presented. A literature survey shows that hydrogen storage in activated carbons have been studied by adsorption: (i) at cryogenic temperatures, at low or high pressure [5, 7-13] (uptake values of 4 wt% have been reported [8] ) or (ii) room temperature and high pressures [5, 6, 12-16] (uptake values around 2 wt% have been reported [14]). Different authors have reported that the total amount of hydrogen uptake per gram of adsorbent is correlated, more or less, with the porosity development of the material (surface area or micro-pore volume) [7-10, 13-15]. At low temperature (77 K) the hydrogen is not only adsorbed in the micropores but also into meso-pores, provided that sufficiently high pressures are used [7, 9]. In addition to the amount of porosity, hydrogen adsorption capacity seems to be also affected by the pore size distribution of the sample, as shown in our previous work [14] and also by

  11. Hydrogen storage on carbon materials: state of the art

    International Nuclear Information System (INIS)

    Cazorla-Amoros, D.; Lozano-Castello, D.; Suarez-Garcia, F.; Jorda-Beneyto, M.; Linares-Solano, A.

    2005-01-01

    materials which can be obtained with high purity and in large amounts. In addition, the different preparation methods, the diversity of precursors, and the possibility of subsequent modifications, make possible the availability of activated carbons with different textures (pore volume and pore size distributions). As it has been reported, activated carbons are effective materials for methane storage [4], which make them, in principle, also very interesting for hydrogen storage. Moreover, both experimental [5] and theoretical [6] studies have shown that hydrogen storage capacity is better in slit pores (typical porous shape in activated carbons) than in cylindrical ones (nano-tubes). Thus, the second objective of this work is to present experimental results corresponding to hydrogen storage capacity of porous materials, in order to analyze the effect of both specific surface area and pore size distribution on hydrogen storage capacity. To illustrate this effect, results obtained in our laboratory for a wide variety of activated carbon materials (fibres, powders, monoliths) will be presented. A literature survey shows that hydrogen storage in activated carbons have been studied by adsorption: (i) at cryogenic temperatures, at low or high pressure [5,7-13] (uptake values of 4 wt% have been reported [8]), or (ii) room temperature and high pressures [5,6,12- 6] (uptake values around 2 wt% have been reported [14]). Different authors have reported that the total amount of hydrogen uptake per gram of adsorbent is correlated, more or less, with the porosity development of the material (surface area or micropore volume) [7-10,13-15]. At low temperature (77 K) the hydrogen is not only adsorbed in the micropores but also into meso-pores, provided that sufficiently high pressures are used [7,9]. In addition to the amount of porosity, hydrogen adsorption capacity seems to be also affected by the pore size distribution of the sample, as shown in our previous work [14] and also by Strobel

  12. Hydrogen production in a PWR during LOCA

    International Nuclear Information System (INIS)

    Cassette, P.

    1983-12-01

    The purpose of this paper is to provide information on hydrogen generation during LOCA in French 900 MW PWR power plants. The design basis accident is taken into account as well as more severe accidents assuming failure of emergency systems

  13. Towards an ammonia-mediated hydrogen economy?

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Johannessen, Tue; Sørensen, Rasmus Zink

    2006-01-01

    Materialization of a hydrogen economy could provide a solution to significant global challenges, In particular. the possibility of improving the efficiency and simultaneously minimizing the environmental impact of energy conversion processes, together with the opportunity to reduce the dependency...

  14. Estimation of the hydrogen concentration in rat tissue using an airtight tube following the administration of hydrogen via various routes.

    Science.gov (United States)

    Liu, Chi; Kurokawa, Ryosuke; Fujino, Masayuki; Hirano, Shinichi; Sato, Bunpei; Li, Xiao-Kang

    2014-06-30

    Hydrogen exerts beneficial effects in disease animal models of ischemia-reperfusion injury as well as inflammatory and neurological disease. Additionally, molecular hydrogen is useful for various novel medical and therapeutic applications in the clinical setting. In the present study, the hydrogen concentration in rat blood and tissue was estimated. Wistar rats were orally administered hydrogen super-rich water (HSRW), intraperitoneal and intravenous administration of hydrogen super-rich saline (HSRS), and inhalation of hydrogen gas. A new method for determining the hydrogen concentration was then applied using high-quality sensor gas chromatography, after which the specimen was prepared via tissue homogenization in airtight tubes. This method allowed for the sensitive and stable determination of the hydrogen concentration. The hydrogen concentration reached a peak at 5 minutes after oral and intraperitoneal administration, compared to 1 minute after intravenous administration. Following inhalation of hydrogen gas, the hydrogen concentration was found to be significantly increased at 30 minutes and maintained the same level thereafter. These results demonstrate that accurately determining the hydrogen concentration in rat blood and organ tissue is very useful and important for the application of various novel medical and therapeutic therapies using molecular hydrogen.

  15. Estimation of the hydrogen concentration in rat tissue using an airtight tube following the administration of hydrogen via various routes

    Science.gov (United States)

    Liu, Chi; Kurokawa, Ryosuke; Fujino, Masayuki; Hirano, Shinichi; Sato, Bunpei; Li, Xiao-Kang

    2014-01-01

    Hydrogen exerts beneficial effects in disease animal models of ischemia-reperfusion injury as well as inflammatory and neurological disease. Additionally, molecular hydrogen is useful for various novel medical and therapeutic applications in the clinical setting. In the present study, the hydrogen concentration in rat blood and tissue was estimated. Wistar rats were orally administered hydrogen super-rich water (HSRW), intraperitoneal and intravenous administration of hydrogen super-rich saline (HSRS), and inhalation of hydrogen gas. A new method for determining the hydrogen concentration was then applied using high-quality sensor gas chromatography, after which the specimen was prepared via tissue homogenization in airtight tubes. This method allowed for the sensitive and stable determination of the hydrogen concentration. The hydrogen concentration reached a peak at 5 minutes after oral and intraperitoneal administration, compared to 1 minute after intravenous administration. Following inhalation of hydrogen gas, the hydrogen concentration was found to be significantly increased at 30 minutes and maintained the same level thereafter. These results demonstrate that accurately determining the hydrogen concentration in rat blood and organ tissue is very useful and important for the application of various novel medical and therapeutic therapies using molecular hydrogen. PMID:24975958

  16. Potential of the HTGR hydrogen cogeneration system in Japan

    International Nuclear Information System (INIS)

    Nishihara, Tetsuo; Mouri, Tomoaki; Kunitomi, Kazuhiko

    2007-01-01

    A high temperature gas cooled reactor (HTGR) is one of the next generation nuclear systems. The HTGR hydrogen cogeneration system can produce not only electricity but also hydrogen. Then it has a potential to supply massive low-cost hydrogen without greenhouse gas emission for the future hydrogen society. Japan Atomic Energy Agency (JAEA) has been carried out the design study of the HTGR hydrogen cogeneration system (GTHTR300C). The thermal power of the reactor is 600 MW. The hydrogen production plant utilizes 370 MW and can supply 52,000 m 3 /h (0.4 Bm 3 /y) of hydrogen. Present industrial hydrogen production capacity in Japan is about 18 Bm 3 /y and it will decrease by 15 Bm 3 /y in 2030 due to the aging facilities. On the other hand, the hydrogen demand for fuel cell vehicle (FCV) in 2030 is estimated at 15 Bm 3 /y at a maximum. Since the hydrogen supply may be short after 2030, the additional hydrogen should be produced by clean hydrogen process to reduce greenhouse gas emission. This hydrogen shortage is a potential market for the GTHTR300C. The hydrogen production cost of GTHTR300C is estimated at 20.5 JPY/Nm 3 which has an economic competitiveness against other industrial hydrogen production processes. 38 units of the GTHTR300C can supply a half of this shortage which accounts for the 33% of hydrogen demand for FCV in 2100. According to the increase of hydrogen demand, the GTHTR300C should be constructed after 2030. (author)

  17. Hydrogen storage in complex hydrides

    International Nuclear Information System (INIS)

    Lupu, D.; Biris, A. R.; Misan, I.

    2005-01-01

    AlH 4 with some hydrogen absorbing alloys and carbon nanofibers are reported. A specially designed vial for the planetary mill was used which allows the in situ study of the ball milling effects on the desorption characteristics. So, additional contamination of the sample surface which could arise during a handling step in a glove box was avoided. The results are comparable with the literature data, showing reversible storage capacities of 4.1% H. The results on LiAlH 4 are also reported and discussed comparatively. Reversible absorption/desorption cycles were performed on NaAlH 4 while LiAlH 4 could not be rehydrogenated. The results are compared with the literature data on alanates and suggest some new directions of research to find new materials with improved hydrogen storage capacity. (authors)

  18. Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Schey

    2009-07-01

    Cooperative Agreement DE-FC07-06ID14788 was executed between the U.S. Department of Energy, Electric Transportation Applications, and Idaho National Laboratory to investigate the economics of producing hydrogen by electrolysis using electricity generated by nuclear power. The work under this agreement is divided into the following four tasks: Task 1 – Produce Data and Analyses Task 2 – Economic Analysis of Large-Scale Alkaline Electrolysis Task 3 – Commercial-Scale Hydrogen Production Task 4 – Disseminate Data and Analyses. Reports exist on the prospect that utility companies may benefit from having the option to produce electricity or produce hydrogen, depending on market conditions for both. This study advances that discussion in the affirmative by providing data and suggesting further areas of study. While some reports have identified issues related to licensing hydrogen plants with nuclear plants, this study provides more specifics and could be a resource guide for further study and clarifications. At the same time, this report identifies other area of risks and uncertainties associated with hydrogen production on this scale. Suggestions for further study in some of these topics, including water availability, are included in the report. The goals and objectives of the original project description have been met. Lack of industry design for proton exchange membrane electrolysis hydrogen production facilities of this magnitude was a roadblock for a significant period. However, recent design breakthroughs have made costing this facility much more accurate. In fact, the new design information on proton exchange membrane electrolyzers scaled to the 1 kg of hydrogen per second electrolyzer reduced the model costs from $500 to $100 million. Task 1 was delayed when the original electrolyzer failed at the end of its economic life. However, additional valuable information was obtained when the new electrolyzer was installed. Products developed during this study

  19. Tritium/hydrogen barrier development

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Simonen, E.P.; Kalinen, G.; Terlain, A.

    1994-06-01

    A review of hydrogen permeation barriers that can be applied to structural metals used in fusion power plants is presented. Both implanted and chemically available hydrogen isotopes must be controlled in fusion plants. The need for permeation barriers appears strongest in Li17-Pb blanket designs, although barriers also appear necessary for other blanket and coolant systems. Barriers that provide greater than a 1000 fold reduction in the permeation of structural metals are desired. In laboratory experiments, aluminide and titanium ceramic coatings provide permeation reduction factors, PRFS, from 1000 to over 100,000 with a wide range of scatter. The rate-controlling mechanism for hydrogen permeation through these barriers may be related to the number and type of defects in the barriers. Although these barriers appear robust and resistant to liquid metal corrosion, irradiation tests which simulate blanket environments result in very low PRFs in comparison to laboratory experiments, i.e., <150. It is anticipated from fundamental research activities that the REID enhancement of hydrogen diffusion in oxides may contribute to the lower permeation reduction factors during in-reactor experiments

  20. Hydrogen permeation preventive structural materials

    International Nuclear Information System (INIS)

    Fukushima, Kimichika; Nakahigashi, Shigeo; Imura, Masashi; Terasawa, Michitaka; Ebisawa, Katsuyuki.

    1986-01-01

    Purpose: To provide highly practical wall materials for use in thermonuclear reactors capable of effectively preventing the permeation of hydrogen isotopes such as tritium thereby preventing the contamination of coolants. Constitution: Helium gas is injected into or at the surface of base materials comprising stainless steel plates to form a helium gas region. Alternatively, boron, nitrogen or the compound thereof having a greater helium forming nuclear reaction cross section than that of the base materials is mixed or injected into the base material to form the helium gas region through (n,α) reaction under neutron irradiation. Since the helium gas region constitutes a diffusion barrier for the tritium as the hydrogen isotope, the permeation amount of tritium is significantly suppressed. Helium gas bubbles or lattice defects are formed in the helium gas region under the neutron irradiation, by which the hydrogen isotope capturing effect can also be effected. In this way, permeation of the hydrogen isotope, contamination of the coolants, etc. can be prevented to provide great practical effectives. (Kawakami, Y.)

  1. Low-cost process for hydrogen production

    Science.gov (United States)

    Cha, Chang Y.; Bauer, Hans F.; Grimes, Robert W.

    1993-01-01

    A method is provided for producing hydrogen and carbon black from hydrocarbon gases comprising mixing the hydrocarbon gases with a source of carbon and applying radiofrequency energy to the mixture. The hydrocarbon gases and the carbon can both be the products of gasification of coal, particularly the mild gasification of coal. A method is also provided for producing hydrogen an carbon monoxide by treating a mixture of hydrocarbon gases and steam with radio-frequency energy.

  2. Catalyst support effects on hydrogen spillover

    Science.gov (United States)

    Karim, Waiz; Spreafico, Clelia; Kleibert, Armin; Gobrecht, Jens; Vandevondele, Joost; Ekinci, Yasin; van Bokhoven, Jeroen A.

    2017-01-01

    Hydrogen spillover is the surface migration of activated hydrogen atoms from a metal catalyst particle, on which they are generated, onto the catalyst support. The phenomenon has been much studied and its occurrence on reducible supports such as titanium oxide is established, yet questions remain about whether hydrogen spillover can take place on nonreducible supports such as aluminium oxide. Here we use the enhanced precision of top-down nanofabrication to prepare controlled and precisely tunable model systems that allow us to quantify the efficiency and spatial extent of hydrogen spillover on both reducible and nonreducible supports. We place multiple pairs of iron oxide and platinum nanoparticles on titanium oxide and aluminium oxide supports, varying the distance between the pairs from zero to 45 nanometres with a precision of one nanometre. We then observe the extent of the reduction of the iron oxide particles by hydrogen atoms generated on the platinum using single-particle in situ X-ray absorption spectromicroscopy applied simultaneously to all particle pairs. The data, in conjunction with density functional theory calculations, reveal fast hydrogen spillover on titanium oxide that reduces remote iron oxide nanoparticles via coupled proton-electron transfer. In contrast, spillover on aluminium oxide is mediated by three-coordinated aluminium centres that also interact with water and that give rise to hydrogen mobility competing with hydrogen desorption; this results in hydrogen spillover about ten orders of magnitude slower than on titanium oxide and restricted to very short distances from the platinum particle. We anticipate that these observations will improve our understanding of hydrogen storage and catalytic reactions involving hydrogen, and that our approach to creating and probing model catalyst systems will provide opportunities for studying the origin of synergistic effects in supported catalysts that combine multiple functionalities.

  3. Safe Detection System for Hydrogen Leaks

    Energy Technology Data Exchange (ETDEWEB)

    Lieberman, Robert A. [Intelligent Optical Systems, Inc., Torrance, CA (United States); Beshay, Manal [Intelligent Optical Systems, Inc., Torrance, CA (United States)

    2012-02-29

    Hydrogen is an "environmentally friendly" fuel for future transportation and other applications, since it produces only pure ("distilled") water when it is consumed. Thus, hydrogen-powered vehicles are beginning to proliferate, with the total number of such vehicles expected to rise to nearly 100,000 within the next few years. However, hydrogen is also an odorless, colorless, highly flammable gas. Because of this, there is an important need for hydrogen safety monitors that can warn of hazardous conditions in vehicles, storage facilities, and hydrogen production plants. To address this need, IOS has developed a unique intrinsically safe optical hydrogen sensing technology, and has embodied it in detector systems specifically developed for safety applications. The challenge of using light to detect a colorless substance was met by creating chemically-sensitized optical materials whose color changes in the presence of hydrogen. This reversible reaction provides a sensitive, reliable, way of detecting hydrogen and measuring its concentration using light from low-cost LEDs. Hydrogen sensors based on this material were developed in three completely different optical formats: point sensors ("optrodes"), integrated optic sensors ("optical chips"), and optical fibers ("distributed sensors") whose entire length responds to hydrogen. After comparing performance, cost, time-to-market, and relative market need for these sensor types, the project focused on designing a compact optrode-based single-point hydrogen safety monitor. The project ended with the fabrication of fifteen prototype units, and the selection of two specific markets: fuel cell enclosure monitoring, and refueling/storage safety. Final testing and development of control software for these markets await future support.

  4. Hydrogen storage in graphite nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Park, C.; Tan, C.D.; Hidalgo, R.; Baker, R.T.K.; Rodriguez, N.M. [Northeastern Univ., Boston, MA (United States). Chemistry Dept.

    1998-08-01

    Graphite nanofibers (GNF) are a type of material that is produced by the decomposition of carbon containing gases over metal catalyst particles at temperatures around 600 C. These molecularly engineered structures consist of graphene sheets perfectly arranged in a parallel, perpendicular or at angle orientation with respect to the fiber axis. The most important feature of the material is that only edges are exposed. Such an arrangement imparts the material with unique properties for gas adsorption because the evenly separated layers constitute the most ordered set of nanopores that can accommodate an adsorbate in the most efficient manner. In addition, the non-rigid pore walls can also expand so as to accommodate hydrogen in a multilayer conformation. Of the many varieties of structures that can be produced the authors have discovered that when gram quantities of a selected number of GNF are exposed to hydrogen at pressures of {approximately} 2,000 psi, they are capable of adsorbing and storing up to 40 wt% of hydrogen. It is believed that a strong interaction is established between hydrogen and the delocalized p-electrons present in the graphite layers and therefore a new type of chemistry is occurring within these confined structures.

  5. Dynamics of Molecular Hydrogen in Hypersaline Microbial Mars

    Science.gov (United States)

    Hoehler, Tori M.; Bebout, Brad M.; Visscher, Pieter T.; DesMarais, David J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Early Earth microbial communities that centered around the anaerobic decomposition of organic molecular hydrogen as a carrier of electrons, regulator of energy metabolism, and facilitator of syntroph'c microbial interactions. The advent of oxygenic photosynthetic organisms added a highly dynamic and potentially dominant term to the hydrogen economy of these communities. We have examined the daily variations of hydrogen concentrations in cyanobacteria-dominated microbial mats from hypersaline ponds in Baja California Sur, Mexico. These mats bring together phototrophic and anaerobic bacteria (along with virtually all other trophic groups) in a spatially ordered and chemically dynamic matrix that provides a good analog for early Earth microbial ecosystems. Hydrogen concentrations in the photic zone of the mat can be three orders of magnitude or more higher than in the photic zone, which are, in turn, an order of magnitude higher than in the unconsolidated sediments underlying the mat community. Within the photic zone, hydrogen concentrations can fluctuate dramatically during the diel (24 hour day-night) cycle, ranging from less than 0.001% during the day to nearly 10% at night. The resultant nighttime flux of hydrogen from the mat to the environment was up to 17% of the daytime oxygen flux. The daily pattern observed is highly dependent on cyanobacterial species composition within the mat, with Lyngbya-dominated systems having a much greater dynamic range than those dominated by Microcoleus; this may relate largely to differing degrees of nitrogen-fixing and fermentative activity in the two mats. The greatest H2 concentrations and fluxes were observed in the absence of oxygen, suggesting an important potential feedback control in the context of the evolution of atmospheric composition. The impact of adding this highly dynamic photosynthetic term to the hydrogen economy of early microbial ecosystems must have been substantial. From an evolutionary standpoint, the H2

  6. Nuclear power reactors and hydrogen storage systems

    International Nuclear Information System (INIS)

    Ibrahim Aly Mahmoud El Osery.

    1980-01-01

    Among conclusions and results come by, a nuclear-electric-hydrogen integrated power system was suggested as a way to prevent the energy crisis. It was shown that the hydrogen power system using nuclear power as a leading energy resource would hold an advantage in the current international situation as well as for the long-term future. Results reported provide designers of integrated nuclear-electric-hydrogen systems with computation models and routines which will allow them to explore the optimal solution in coupling power reactors to hydrogen producing systems, taking into account the specific characters of hydrogen storage systems. The models were meant for average computers of a type easily available in developing countries. (author)

  7. Hydrogen - From hydrogen to energy production

    International Nuclear Information System (INIS)

    Klotz, Gregory

    2005-01-01

    More than a century ago, Jules Verne wrote in 'The Mysterious Island' that water would one day be employed as fuel: 'Hydrogen and oxygen, which constitute it, used singly or together, will furnish an inexhaustible source of heat and light'. Today, the 'water motor' is not entirely the dream of a writer. Fiction is about to become fact thanks to hydrogen, which can be produced from water and when burned in air itself produces water. Hydrogen is now at the heart of international research. So why do we have such great expectations of hydrogen? 'Hydrogen as an energy system is now a major challenge, both scientifically and from an environmental and economic point of view'. Dominated as it is by fossil fuels (oil, gas and coal), our current energy system has left a dual threat hovering over our environment, exposing the planet to the exhaustion of its natural reserves and contributing to the greenhouse effect. If we want sustainable development for future generations, it is becoming necessary to diversify our methods of producing energy. Hydrogen is not, of course, a source of energy, because first it has to be produced. But it has the twofold advantage of being both inexhaustible and non-polluting. So in the future, it should have a very important role to play. (author)

  8. Use of reversible hydrides for hydrogen storage

    Science.gov (United States)

    Darriet, B.; Pezat, M.; Hagenmuller, P.

    1980-01-01

    The addition of metals or alloys whose hydrides have a high dissociation pressure allows a considerable increase in the hydrogenation rate of magnesium. The influence of temperature and hydrogen pressure on the reaction rate were studied. Results concerning the hydriding of magnesium rich alloys such as Mg2Ca, La2Mg17 and CeMg12 are presented. The hydriding mechanism of La2Mg17 and CeMg12 alloys is given.

  9. Ultrafine hydrogen storage powders

    Science.gov (United States)

    Anderson, Iver E.; Ellis, Timothy W.; Pecharsky, Vitalij K.; Ting, Jason; Terpstra, Robert; Bowman, Robert C.; Witham, Charles K.; Fultz, Brent T.; Bugga, Ratnakumar V.

    2000-06-13

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  10. Canadian hydrogen safety program

    International Nuclear Information System (INIS)

    MacIntyre, I.; Tchouvelev, A.V.; Hay, D.R.; Wong, J.; Grant, J.; Benard, P.

    2007-01-01

    The Canadian hydrogen safety program (CHSP) is a project initiative of the Codes and Standards Working Group of the Canadian transportation fuel cell alliance (CTFCA) that represents industry, academia, government, and regulators. The Program rationale, structure and contents contribute to acceptance of the products, services and systems of the Canadian Hydrogen Industry into the Canadian hydrogen stakeholder community. It facilitates trade through fair insurance policies and rates, effective and efficient regulatory approval procedures and accommodation of the interests of the general public. The Program integrates a consistent quantitative risk assessment methodology with experimental (destructive and non-destructive) failure rates and consequence-of-release data for key hydrogen components and systems into risk assessment of commercial application scenarios. Its current and past six projects include Intelligent Virtual Hydrogen Filling Station (IVHFS), Hydrogen clearance distances, comparative quantitative risk comparison of hydrogen and compressed natural gas (CNG) refuelling options; computational fluid dynamics (CFD) modeling validation, calibration and enhancement; enhancement of frequency and probability analysis, and Consequence analysis of key component failures of hydrogen systems; and fuel cell oxidant outlet hydrogen sensor project. The Program projects are tightly linked with the content of the International Energy Agency (IEA) Task 19 Hydrogen Safety. (author)

  11. High density hydrogen research

    International Nuclear Information System (INIS)

    Hawke, R.S.

    1977-01-01

    The interest in the properties of very dense hydrogen is prompted by its abundance in Saturn and Jupiter and its importance in laser fusion studies. Furthermore, it has been proposed that the metallic form of hydrogen may be a superconductor at relatively high temperatures and/or exist in a metastable phase at ambient pressure. For ten years or more, laboratories have been developing the techniques to study hydrogen in the megabar region (1 megabar = 100 GPa). Three major approaches to study dense hydrogen experimentally have been used, static presses, shockwave compression, and magnetic compression. Static tchniques have crossed the megabar threshold in stiff materials but have not yet been convincingly successful in very compressible hydrogen. Single and double shockwave techniques have improved the precision of the pressure, volume, temperature Equation of State (EOS) of molecular hydrogen (deuterium) up to near 1 Mbar. Multiple shockwave and magnetic techniques have compressed hydrogen to several megabars and densities in the range of the metallic phase. The net result is that hydrogen becomes conducting at a pressure between 2 and 4 megabars. Hence, the possibility of making a significant amount of hydrogen into a metal in a static press remains a formidable challenge. The success of such experiments will hopefully answer the questions about hydrogen's metallic vs. conducting molecular phase, superconductivity, and metastability. 4 figures, 15 references

  12. The energy carrier hydrogen

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The potential of hydrogen to be used as a clean fuel for the production of heat and power, as well as for the propulsion of aeroplanes and vehicles, is described, in particular for Germany. First, attention is paid to the application of hydrogen as a basic material for the (petro)chemical industry, as an indirect energy source for (petro)chemical processes, and as a direct energy source for several purposes. Than the importance of hydrogen as an energy carrier in a large-scale application of renewable energy sources is discussed. Next an overview is given of new and old hydrogen production techniques from fossil fuels, biomass, or the electrolysis of water. Energetic applications of hydrogen in the transportation sector and the production of electric power and heat are mentioned. Brief descriptions are given of techniques to store hydrogen safely. Finally attention is paid to hydrogen research in Germany. Two hydrogen projects, in which Germany participates, are briefly dealt with: the Euro-Quebec project (production of hydrogen by means of hydropower), and the HYSOLAR project (hydrogen production by means of solar energy). 18 figs., 1 tab., 7 refs

  13. Hydrogen solubility and permeability of Nb-W-Mo alloy membrane

    International Nuclear Information System (INIS)

    Awakura, Y.; Nambu, T.; Matsumoto, Y.; Yukawa, H.

    2011-01-01

    Research highlights: → The concept for alloy design of Nb-based hydrogen permeable membrane has been applied to Nb-W-Mo ternary alloy in order to improve further the resistance to hydrogen embrittlement and hydrogen permeability. → The alloying effects of Mo on the hydriding properties of Nb-W alloy have been elucidated. → The addition of Mo and/or W into niobium improves the resistance to hydrogen embrittlement by reducing the dissolved hydrogen concentration in the alloy. → Nb-W-Mo alloy possesses excellent hydrogen permeability together with strong resistance to hydrogen embrittlement. - Abstract: The alloying effects of molybdenum on the hydrogen solubility, the resistance to hydrogen embrittlement and the hydrogen permeability are investigated for Nb-W-Mo system. It is found that the hydrogen solubility decreases by the addition of molybdenum into Nb-W alloy. As a result, the resistance to hydrogen embrittlement improves by reducing the hydrogen concentration in the alloy. It is demonstrated that Nb-5 mol%W-5 mol%Mo alloy possesses excellent hydrogen permeability without showing any hydrogen embrittlement when used under appropriate hydrogen permeation conditions, i.e., temperature and hydrogen pressures.

  14. Hydrogen energy applications

    International Nuclear Information System (INIS)

    Okken, P.A.

    1992-10-01

    For the Energy and Material consumption Scenarios (EMS), by which emission reduction of CO 2 and other greenhouse gases can be calculated, calculations are executed by means of the MARKAL model (MARket ALlocation, a process-oriented dynamic linear programming model to minimize the costs of the energy system) for the Netherlands energy economy in the period 2000-2040, using a variable CO 2 emission limit. The results of these calculations are published in a separate report (ECN-C--92-066). The use of hydrogen can play an important part in the above-mentioned period. An overview of several options to produce or use hydrogen is given and added to the MARKAL model. In this report techno-economical data and estimates were compiled for several H 2 -application options, which subsequently also are added to the MARKAL model. After a brief chapter on hydrogen and the impact on the reduction of CO 2 emission attention is paid to stationary and mobile applications. The stationary options concern the mixing of natural gas with 10% hydrogen, a 100% substitution of natural gas by hydrogen, the use of a direct steam generator (combustion of hydrogen by means of pure oxygen, followed by steam injection to produce steam), and the use of fuel cells. The mobile options concern the use of hydrogen in the transportation sector. In brief, attention is paid to a hydrogen passenger car with an Otto engine, and a hydrogen passenger car with a fuel cell, a hybrid (metal)-hydride car, a hydrogen truck, a truck with a methanol fuel cell, a hydrogen bus, an inland canal boat with a hydrogen fuel cell, and finally a hydrogen airplane. 2 figs., 15 tabs., 1 app., 26 refs

  15. Fatigue crack growth behavior in niobium-hydrogen alloys

    International Nuclear Information System (INIS)

    Lin, M.C.C.; Salama, K.

    1997-01-01

    Near-threshold fatigue crack growth behavior has been investigated in niobium-hydrogen alloys. Compact tension specimens (CTS) with three hydrogen conditions are used: hydrogen-free, hydrogen in solid solution, and hydride alloy. The specimens are fatigued at a temperature of 296 K and load ratios of 0.05, 0.4, and 0.75. The results at load ratios of 0.05 and 0.4 show that the threshold stress intensity range (ΔK th ) decreases as hydrogen is added to niobium. It reaches a minimum at the critical hydrogen concentration (C cr ), where maximum embrittlement occurs. The critical hydrogen concentration is approximately equal to the solubility limit of hydrogen in niobium. As the hydrogen concentration exceeds C cr , ΔK th increases slowly as more hydrogen is added to the specimen. At load ratio 0.75, ΔK th decreases continuously as the hydrogen concentration is increased. The results provide evidence that two mechanisms are responsible for fatigue crack growth behavior in niobium-hydrogen alloys. First, embrittlement is retarded by hydride transformation--induced and plasticity-induced crack closures. Second, embrittlement is enhanced by the presence of hydrogen and hydride

  16. The hydrogen village in the Greater Toronto Area (GTA)

    International Nuclear Information System (INIS)

    Kimmel, T.B.; Smith, R.

    2004-01-01

    'Full text:' A Hydrogen Village (H2V) is a public/private partnership with an objective to accelerate the commercialization of hydrogen and fuel cell technology in Canada and firmly position Canada as the international leader in this sector. The first Hydrogen Village is planned for the Greater Toronto Area (GTA) and will make use of existing hydrogen and fuel cell deployments to assist in its creation. This five year GTA Hydrogen Village program is planned to begin operations in 2004. The Hydrogen Village will demonstrate and deploy various hydrogen production and delivery techniques as well as fuel cells for stationary, transportation (mobile) and portable applications. This paper will provide an overview of the Hydrogen Village and identify the missions, objectives, members and progress within the H2V. (author)

  17. Hydrogen, the phenomenon is reaching the Europe; Hydrogene, la deferlante atteint l'Europe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    More and more contracts and research programs are decided in Europe to promote the hydrogen energy. The market is today still moderate but the forecasting are great in many domains. This paper provides some data and trends on the hydrogen market. (A.L.B.)

  18. Renewable solar hydrogen production and utilization

    International Nuclear Information System (INIS)

    Bakos, J.

    2006-01-01

    There is a tremendous opportunity to generate large quantities of hydrogen from low grade and economical sources of methane including landfill gas, biogas, flare gas, and coal bed methane. The environmental benefits of generating hydrogen using renewable energy include significant greenhouse gas and air contaminant reductions. Solar Hydrogen Energy Corporation (SHEC LABS) recently constructed and demonstrated a Dry Fuel Reforming (DFR) hydrogen generation system that is powered primarily by sunlight focusing-mirrors in Tempe, Arizona. The system comprises a solar mirror array, a temperature controlling shutter system, and two thermo-catalytic reactors to convert methane, carbon dioxide, and water into hydrogen. This process has shown that solar hydrogen generation is feasible and cost-competitive with traditional hydrogen production. The presentation will provide the following: An overview of the results of the testing conducted in Tempe, Arizona; A look at the design and installation of the scaled-up technology site at a landfill site in Canada; An examination of the economic and environmental benefits of renewable hydrogen production using solar energy

  19. Hydrogen injection device in BWR type reactor

    International Nuclear Information System (INIS)

    Takagi, Jun-ichi; Kubo, Koji.

    1988-01-01

    Purpose: To reduce the increasing ratio of main steam system dose rate due to N-16 activity due to excess hydrogen injection in the hydrogen injection operation of BWR type reactors. Constitution: There are provided a hydrogen injection mechanism for injecting hydrogen into primary coolants of a BWR type reactor, and a chemical injection device for injecting chemicals such as methanol, which makes nitrogen radioisotopes resulted in the reactor water upon hydrogen injection non-volatile, into the pressure vessel separately from hydrogen. Injected hydrogen and the chemicals are not reacted in the feedwater system, but the reaction proceeds due to the presence of radioactive rays after the injection into the pressure vessel. Then, hydrogen causes re-combination in the downcomer portion to reduce the dissolved oxygen concentration. Meanwhile, about 70 % of the chemicals is supplied by means of a jet pump directly to the reactor core, thereby converting the chemical form of N-16 in the reactor core more oxidative (non-volatile). (Kawakami, Y.)

  20. A nanostructured Ni/graphene hybrid for enhanced electrochemical hydrogen storage

    International Nuclear Information System (INIS)

    Choi, Moon-Hyung; Min, Young-Je; Gwak, Gyeong-Hyeon; Paek, Seung-Min; Oh, Jae-Min

    2014-01-01

    Highlights: • Graphene oxide(GO) was hybridized with the Ni(OH) 2 . • The Ni(OH) 2 /GO was reduced to Ni/graphene. • XRD, TEM, and X-ray absorption spectroscopy were examined. • The hydrogen storage property of Ni/graphene was significantly enhanced. - Abstract: To fabricate electrochemical hydrogen storage materials with delaminated structure, the graphene oxide (GO) in the ethylene glycol solution was reassembled in the presence of the precursor of Ni nanoparticles, and then, the reassembled hybrid was reduced under hydrogen atmosphere to obtain Ni/graphene hybrid. X-ray diffraction patterns and X-ray absorption spectscopic (XAS) analysis clearly show that Ni nanoparticles in Ni/graphene hybrid maintain its nanosized nature even after hybridization with graphene nanosheet (GNS). According to the TEM analysis, the Ni nanoparticles with an average size of 5.2 nm are homogeneously distributed onto the GNS in such a way that the nanoporous structure with much amount of void spaces could be fabricated. The obtained Ni/GNS exhibits a hydrogen storage capacity of 160 mA h/g, while the specific capacity of the graphene nanosheet was only 21 mA h/g. A flexible delaminated structure of Ni/GNS nanocomposite could provide additional intercalation sites for accommodation of hydrogen, leading to the enhancement of hydrogen storage capacity

  1. The effect of TTNT nanotubes on hydrogen sorption using MgH2

    Directory of Open Access Journals (Sweden)

    Mariana Coutinho Brum

    2013-06-01

    Full Text Available Nanotubes are promising materials to be used with magnesium hydride, as catalysts, in order to enhance hydrogen sorption. A study was performed on the hydrogen absorption/desorption properties of MgH2 with the addition of TTNT (TiTanate NanoTubes. The MgH2-TTNT composite was prepared by ball milling and the influence of the TTNT amount (1.0 and 5.0 wt. (% on the hydrogen capacity was evaluated. The milling of pure MgH2 was performed for 24 hours and afterwards the MgH2-TTNT composite was milled for 20 minutes. Transmission Electronic Microscopy (TEM and Scanning Electron Microscopy (SEM were used to evaluate the nanotube synthesis and show the particle morphology of the MgH2-TTNT composite, respectively. The Differential Scanning Calorimetry (DSC examination provided some evidence with the shifting of the peaks obtained when the amount of TTNT is increased. The hydrogen absorption/desorption kinetics tests showed that the TTNT nanotubes can enhance hydrogen sorption effectively and the total hydrogen capacity obtained was 6.5 wt. (%.

  2. The effect of TTNT nanotubes on hydrogen sorption using MgH{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Brum, Mariana Coutinho; Jardim, Paula Mendes; Conceicao, Monique Osorio Talarico da; Santos, Dilson Silva dos, E-mail: monique@metalmat.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (PEMM/COPPEP/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Metalurgica e de Materiais

    2013-11-01

    Nanotubes are promising materials to be used with magnesium hydride, as catalysts, in order to enhance hydrogen sorption. A study was performed on the hydrogen absorption/desorption properties of MgH{sub 2} with the addition of TTNT (TiTanate nanotubes). The MgH{sub 2} -TTNT composite was prepared by ball milling and the influence of the TTNT amount (1.0 and 5.0 wt. (%)) on the hydrogen capacity was evaluated. The milling of pure MgH{sub 2} was performed for 24 hours and afterwards the MgH{sub 2} -TTNT composite was milled for 20 minutes. Transmission Electronic Microscopy (TEM) and Scanning Electron Microscopy (SEM) were used to evaluate the nanotube synthesis and show the particle morphology of the MgH{sub 2} -TTNT composite, respectively. The Differential Scanning Calorimetry (DSC) examination provided some evidence with the shifting of the peaks obtained when the amount of TTNT is increased. The hydrogen absorption/desorption kinetics tests showed that the TTNT nanotubes can enhance hydrogen sorption effectively and the total hydrogen capacity obtained was 6.5 wt. (%). (author)

  3. The effect of TTNT nanotubes on hydrogen sorption using MgH2

    International Nuclear Information System (INIS)

    Brum, Mariana Coutinho; Jardim, Paula Mendes; Conceicao, Monique Osorio Talarico da; Santos, Dilson Silva dos

    2013-01-01

    Nanotubes are promising materials to be used with magnesium hydride, as catalysts, in order to enhance hydrogen sorption. A study was performed on the hydrogen absorption/desorption properties of MgH 2 with the addition of TTNT (TiTanate nanotubes). The MgH 2 -TTNT composite was prepared by ball milling and the influence of the TTNT amount (1.0 and 5.0 wt. (%)) on the hydrogen capacity was evaluated. The milling of pure MgH 2 was performed for 24 hours and afterwards the MgH 2 -TTNT composite was milled for 20 minutes. Transmission Electronic Microscopy (TEM) and Scanning Electron Microscopy (SEM) were used to evaluate the nanotube synthesis and show the particle morphology of the MgH 2 -TTNT composite, respectively. The Differential Scanning Calorimetry (DSC) examination provided some evidence with the shifting of the peaks obtained when the amount of TTNT is increased. The hydrogen absorption/desorption kinetics tests showed that the TTNT nanotubes can enhance hydrogen sorption effectively and the total hydrogen capacity obtained was 6.5 wt. (%). (author)

  4. Zero emission distributed hydrogen production

    International Nuclear Information System (INIS)

    Maddaloni, J.; Rowe, A.; Bailey, R.; McDonald, J.D.

    2004-01-01

    demonstration hydrogen production and fueling station near Victoria, BC. The station would demonstrate the viability of the proposed process to generate hydrogen while increasing the performance of the natural gas distribution system. The station could provide the ability to fuel vehicles as part of the Victoria node of the hydrogen highway project to be implemented for the 2010 Winter Olympic games. (author)

  5. High and rapid hydrogen release from thermolysis of ammonia borane near PEM fuel cell operating temperature

    Science.gov (United States)

    Varma, Arvind; Hwang, Hyun Tae; Al-Kukhun, Ahmad

    2016-11-15

    A system for generating and purifying hydrogen. To generate hydrogen, the system includes inlets configured to receive a hydrogen carrier and an inert insulator, a mixing chamber configured to combine the hydrogen carrier and the inert insulator, a heat exchanger configured to apply heat to the mixture of hydrogen carrier and the inert insulator, wherein the applied heat results in the generation of hydrogen from the hydrogen carrier, and an outlet configured to release the generated hydrogen. To purify hydrogen, the system includes a primary inlet to receive a starting material and an ammonia filtration subassembly, which may include an absorption column configured to absorb the ammonia into water for providing purified hydrogen at a first purity level. The ammonia filtration subassembly may also include an adsorbent member configured to adsorb ammonia from the starting material into an adsorbent for providing purified hydrogen at a second purity level.

  6. High Efficiency Generation of Hydrogen Fuels Using Solar Thermochemical Splitting of Water

    Energy Technology Data Exchange (ETDEWEB)

    Heske, Clemens; Moujaes, Samir; Weimer, Alan; Wong, Bunsen; Siegal, Nathan; McFarland, Eric; Miller, Eric; Lewis, Michele; Bingham, Carl; Roth, Kurth; Sabacky, Bruce; Steinfeld, Aldo

    2011-09-29

    The objective of this work is to identify economically feasible concepts for the production of hydrogen from water using solar energy. The ultimate project objective was to select one or more competitive concepts for pilot-scale demonstration using concentrated solar energy. Results of pilot scale plant performance would be used as foundation for seeking public and private resources for full-scale plant development and testing. Economical success in this venture would afford the public with a renewable and limitless source of energy carrier for use in electric power load-leveling and as a carbon-free transportation fuel. The Solar Hydrogen Generation Research (SHGR) project embraces technologies relevant to hydrogen research under the Office of Hydrogen Fuel Cells and Infrastructure Technology (HFCIT) as well as concentrated solar power under the Office of Solar Energy Technologies (SET). Although the photoelectrochemical work is aligned with HFCIT, some of the technologies in this effort are also consistent with the skills and technologies found in concentrated solar power and photovoltaic technology under the Office of Solar Energy Technologies (SET). Hydrogen production by thermo-chemical water-splitting is a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or a combination of heat and electrolysis instead of pure electrolysis and meets the goals for hydrogen production using only water and renewable solar energy as feed-stocks. Photoelectrochemical hydrogen production also meets these goals by implementing photo-electrolysis at the surface of a semiconductor in contact with an electrolyte with bias provided by a photovoltaic source. Here, water splitting is a photo-electrolytic process in which hydrogen is produced using only solar photons and water as feed-stocks. The thermochemical hydrogen task engendered formal collaborations among two universities, three national laboratories and two private sector

  7. Novel Methods of Hydrogen Leak Detection

    International Nuclear Information System (INIS)

    Pushpinder S Puri

    2006-01-01

    For hydrogen to become a consumer fuel for automotive and domestic power generation, safety is paramount. Today's hydrogen systems are built with inherent safety measures and multiple levels of protection. However, human senses, in particular, the sense of smell, is considered the ultimate safeguards against leaks. Since hydrogen is an odorless gas, use of odorants to detect leaks, as is done in case of natural gas, is obvious solution. The odorants required for hydrogen used in fuel cells have a unique requirement which must be met. This is because almost all of the commercial odorants used in gas leak detection contain sulfur which acts as poison for the catalysts used in hydrogen based fuel cells, most specifically for the PEM (polymer electrolyte membrane or proton exchange membrane) fuel cells. A possible solution to this problem is to use non-sulfur containing odorants. Chemical compounds based on mixtures of acrylic acid and nitrogen compounds have been adopted to achieve a sulfur-free odorization of a gas. It is, therefore, desired to have a method and system for hydrogen leak detection using odorant which can incorporate a uniform concentration of odorant in the hydrogen gas, when odorants are mixed in the hydrogen storage or delivery means. It is also desired to develop methods where the odorant is not added to the bulk hydrogen, keeping it free of the odorization additives. A series of novel solutions are proposed which address the issues raised above. These solutions are divided into three categories as follows: 1. Methods incorporating an odorant in the path of hydrogen leak as opposed to adding it to the hydrogen gas. 2. Methods where odorants are generated in-situ by chemical reaction with the leaking hydrogen 3. Methods of dispensing and storing odorants in high pressure hydrogen gas which release odorants to the gas at a uniform and predetermined rates. Use of one or more of the methods described here in conjunction with appropriate engineering

  8. Laser ionization and dissociation of hydrogen

    International Nuclear Information System (INIS)

    Buck, J.D.

    1987-01-01

    Experiments undertaken to further characterize the spectroscopic and photophysical properties of some important excited singlet states of molecular hydrogen and its deuterium isotopes are described. Attention was centered on high vibrational levels of the B, C, and B' states within about 1000 cm -1 of the second dissociation limit. A double-resonance excitation scheme was needed to access levels with a large average bond distance from the ground state. Two-photon absorption of tunable uv-laser radiation-pumped ground-state hydrogen molecules into selected rovibronic levels of the metastable EF double-minimum electronic state. A second tunable near-IR probe laser was scanned to generate ions by resonant multiphoton ionization, where the resonant levels were provided by B, C, B', and other levels near the dissociation limit. New information was obtained regarding line shapes and intensities. Time-of-flight ion mass selection permitted observation of additional excitation channels with dissociation superimposed on the ionization process to produce protons

  9. Low temperature ultrasonic study of hydrogen in niobium

    International Nuclear Information System (INIS)

    Poker, D.B.

    1979-01-01

    Measurements were made of the velocity and attenuation of ultrasonic waves in niobium containing 1000 ppM oxygen with additional concentrations of hydrogen, to determine the properties of a relaxation of the hydrogen which appears below 10 K. Measurements were made as a function of temperature, frequency, polarization of the ultrasonic wave, hydrogen isotope, and concentration of hydrogen and oxygen. The Birnbaum--Flynn model of hydrogen tunnelling is modified to take into account the trapping of hydrogen by interstitial impurities. An Orbach process is proposed for a relaxation between the degenerate first excited states. Three parameters which are determined by the hydrogen ultrasonic attenuation data are sufficient to describe the properties of this model. The model correctly predicts the presence of unusual features of the relaxation which are not contained in a classical model of hydrogen motion over a potential barrrier; the decrease of the hydrogen relaxation strength at low temperatures, the decrease in velocity below the relaxation temperature without a corresponding effect in the attenuation, and the broadness of the deuterium decrement peak compared to that for hydrogen. A reasonable fit to the velocity data for low concentration of hydrogen is made by the model with no adjustable parameters. A fit to the heat capacity can be made with the addition of parameters representing the strain effects of the oxygen trapping

  10. Hydrogen gains further momentum

    International Nuclear Information System (INIS)

    Anon.

    2017-01-01

    As first industrial production projects should become a reality in the next few years, hydrogen as a source of energy will find important applications with mobility, which momentum is rapid and irresistible. Next steps will be the (large capacity) storage of hydrogen associated to power-to-gas systems and the generalization of renewable energies. This document presents 5 articles, which themes are: Description and explanation of the process of hydrogen production; Presentation of the H2V project for the construction, in Normandy, of the first operational industrial hydrogen production plant using electric power 100 pc generated by renewable energies; The conversion of electric power from renewable energies through hydrogen storage and fuel cells for buildings applications (Sylfen project); The development of a reversible fuel cell at Mines-Paris Tech University, that will be adapted to the storage of renewable electric power; Hydrogen as a lever for the development of zero-emission vehicles, from trucks to cars and bicycles

  11. Hydrogen Fuelling Stations

    DEFF Research Database (Denmark)

    Rothuizen, Erasmus Damgaard

    . A system consisting of one high pressure storage tank is used to investigate the thermodynamics of fuelling a hydrogen vehicle. The results show that the decisive parameter for how the fuelling proceeds is the pressure loss in the vehicle. The single tank fuelling system is compared to a cascade fuelling......This thesis concerns hydrogen fuelling stations from an overall system perspective. The study investigates thermodynamics and energy consumption of hydrogen fuelling stations for fuelling vehicles for personal transportation. For the study a library concerning the components in a hydrogen fuelling...... station has been developed in Dymola. The models include the fuelling protocol (J2601) for hydrogen vehicles made by Society of Automotive Engineers (SAE) and the thermodynamic property library CoolProp is used for retrieving state point. The components in the hydrogen fuelling library are building up...

  12. Fuel Cell and Hydrogen Technology Validation | Hydrogen and Fuel Cells |

    Science.gov (United States)

    NREL Fuel Cell and Hydrogen Technology Validation Fuel Cell and Hydrogen Technology Validation The NREL technology validation team works on validating hydrogen fuel cell electric vehicles; hydrogen fueling infrastructure; hydrogen system components; and fuel cell use in early market applications such as

  13. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Steinbugler, M.; Dennis, E. [Princeton Univ., NJ (United States)] [and others

    1995-09-01

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  14. Photochemical hydrogen production system

    International Nuclear Information System (INIS)

    Copeland, R.J.

    1990-01-01

    Both technical and economic factors affect the cost of producing hydrogen by photochemical processes. Technical factors include the efficiency and the capital and operating costs of the renewable hydrogen conversion system; economic factors include discount rates, economic life, credit for co-product oxygen, and the value of the energy produced. This paper presents technical and economic data for a system that generates on-peak electric power form photochemically produced hydrogen

  15. Hydrogen Fuel Cell Vehicles

    OpenAIRE

    Anton Francesch, Judit

    1992-01-01

    Hydrogen is an especially attractive transportation fuel. It is the least polluting fuel available, and can be produced anywhere there is water and a clean source of electricity. A fuel cycle in which hydrogen is produced by solar-electrolysis of water, or by gasification of renewably grown biomass, and then used in a fuel-cell powered electric-motor vehicle (FCEV), would produce little or no local, regional, or global pollution. Hydrogen FCEVs would combine the best features of bat...

  16. Hydrogen-Enhanced Natural Gas Vehicle Program

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, Dan; Collier, Kirk

    2009-01-22

    The project objective is to demonstrate the viability of HCNG fuel (30 to 50% hydrogen by volume and the remainder natural gas) to reduce emissions from light-duty on-road vehicles with no loss in performance or efficiency. The City of Las Vegas has an interest in alternative fuels and already has an existing hydrogen refueling station. Collier Technologies Inc (CT) supplied the latest design retrofit kits capable of converting nine compressed natural gas (CNG) fueled, light-duty vehicles powered by the Ford 5.4L Triton engine. CT installed the kits on the first two vehicles in Las Vegas, trained personnel at the City of Las Vegas (the City) to perform the additional seven retrofits, and developed materials for allowing other entities to perform these retrofits as well. These vehicles were used in normal service by the City while driver impressions, reliability, fuel efficiency and emissions were documented for a minimum of one year after conversion. This project has shown the efficacy of operating vehicles originally designed to operate on compressed natural gas with HCNG fuel incorporating large quantities of exhaust gas recirculation (EGR). There were no safety issues experienced with these vehicles. The only maintenance issue in the project was some rough idling due to problems with the EGR valve and piping parts. Once the rough idling was corrected no further maintenance issues with these vehicles were experienced. Fuel economy data showed no significant changes after conversion even with the added power provided by the superchargers that were part of the conversions. Driver feedback for the conversions was very favorable. The additional power provided by the HCNG vehicles was greatly appreciated, especially in traffic. The drivability of the HCNG vehicles was considered to be superior by the drivers. Most of the converted vehicles showed zero oxides of nitrogen throughout the life of the project using the State of Nevada emissions station.

  17. Hydrogen fuel cell power system

    International Nuclear Information System (INIS)

    Lam, A.W.

    2004-01-01

    'Full text:' Batteries are typically a necessary and prime component of any DC power system, providing a source of on-demand stored energy with proven reliability. The integration of batteries and basic fuel cells for mobile and stationary utility applications poses a new challenge. For high value applications, the specification and operating requirements for this hybrid module differ from conventional requirements as the module must withstand extreme weather conditions and provide extreme reliability. As an electric utility company, BCHydro has embarked in the development and application of a Hydrogen Fuel Cell Power Supply (HFCPS) for field trial. A Proton Exchange Membrane (PEM)- type fuel cell including power electronic modules are mounted in a standard 19-inch rack that provides 48V, 24V, 12V DC and 120V AC outputs. The hydrogen supply consists of hydrogen bottles and regulating devices to provide a continuous fuel source to the power modules. Many tests and evaluations have been done to ensure the HFCPS package is robust and suitable for electric utility grade operation. A field trial demonstrating this standalone system addressed reliability, durability, and installation concerns as well as developed the overall system operating procedures. (author)

  18. Liquid hydrogen in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yasumi, S. [Iwatani Corp., Osaka (Japan). Dept. of Overseas Business Development

    2009-07-01

    Japan's Iwatani Corporation has focused its attention on hydrogen as the ultimate energy source in future. Unlike the United States, hydrogen use and delivery in liquid form is extremely limited in the European Union and in Japan. Iwatani Corporation broke through industry stereotypes by creating and building Hydro Edge Co. Ltd., Japan's largest liquid hydrogen plant. It was established in 2006 as a joint venture between Iwatani and Kansai Electric Power Group in Osaka. Hydro Edge is Japan's first combined liquid hydrogen and ASU plant, and is fully operational. Liquid oxygen, liquid nitrogen and liquid argon are separated from air using the cryogenic energy of liquefied natural gas fuel that is used for power generation. Liquid hydrogen is produced efficiently and simultaneously using liquid nitrogen. Approximately 12 times as much hydrogen in liquid form can be transported and supplied as pressurized hydrogen gas. This technology is a significant step forward in the dissemination and expansion of hydrogen in a hydrogen-based economy.

  19. Hydrogen gas detector

    International Nuclear Information System (INIS)

    Bohl, T.L.

    1982-01-01

    A differential thermocouple hydrogen gas detector has one thermocouple junction coated with an activated palladium or palladium-silver alloy catalytic material to allow heated hydrogen gas to react with the catalyst and raise the temperature of that junction. The other juction is covered with inert glass or epoxy resin, and does not experience a rise in temperature in the presence of hydrogen gas. A coil heater may be mounted around the thermocouple junctions to heat the hydrogen, or the gas may be passed through a heated block prior to exposing it to the thermocouples

  20. Sustainable hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Block, D.L.; Linkous, C.; Muradov, N.

    1996-01-01

    This report describes the Sustainable Hydrogen Production research conducted at the Florida Solar Energy Center (FSEC) for the past year. The report presents the work done on the following four tasks: Task 1--production of hydrogen by photovoltaic-powered electrolysis; Task 2--solar photocatalytic hydrogen production from water using a dual-bed photosystem; Task 3--development of solid electrolytes for water electrolysis at intermediate temperatures; and Task 4--production of hydrogen by thermocatalytic cracking of natural gas. For each task, this report presents a summary, introduction/description of project, and results.

  1. New hydrogen technologies

    International Nuclear Information System (INIS)

    1992-01-01

    This report presents an overview of the overall hydrogen system. There are separate sections for production, distribution, transport, storage; and applications of hydrogen. The most important methods for hydrogen production are steam reformation of natural gas and electrolysis of water. Of the renewable energy options, production of hydrogen by electrolysis using electricity from wind turbines or by gasification of biomass were found to be the most economic for Finland. Direct use of this electricity or the production of liquid fuels from biomass will be competing alternatives. When hydrogen is produced in the solar belt or where there is cheap hydropower it must be transported over long distances. The overall energy consumed for the transport is from 25 to 40 % of the initial available energy. Hydrogen storage can be divided into stationary and mobile types. The most economic, stationary, large scale hydrogen storage for both long and short periods is underground storage. When suitable sites are not available, then pressure vessels are the best for short period and liquid H 2 for long period. Vehicle storage of hydrogen is by either metal hydrides or liquid H 2 . Hydrogen is a very versatile energy carrier. It can be used to produce heat directly in catalytic burners without flame, to produce electricity in fuel cells with high efficiency for use in vehicles or for peak power shaving, as a fuel component with conventional fuels to reduce emissions, as a way to store energy and as a chemical reagent in reactions

  2. Hydrogen as automotive fuel

    International Nuclear Information System (INIS)

    Ambrosini, G.; Ciancia, A.; Pede, G.; Brighigna, M.

    1993-01-01

    Hydrogen fueled vehicles may just be the answer to the air pollution problem in highly polluted urban environments where the innovative vehicle's air pollution abatement characteristics would justify its high operating costs as compared with those of conventional automotive alternatives. This paper examines the feasibility of hydrogen as an automotive fuel by analyzing the following aspects: the chemical-physical properties of hydrogen in relation to its use in internal combustion engines; the modifications necessary to adapt internal combustion engines to hydrogen use; hydrogen fuel injection systems; current production technologies and commercialization status of hydrogen automotive fuels; energy efficiency ratings; environmental impacts; in-vehicle storage systems - involving the use of hydrides, high pressure systems and liquid hydrogen storage systems; performance in terms of pay-load ratio; autonomous operation; and operating costs. With reference to recent trial results being obtained in the USA, an assessment is also made of the feasibility of the use of methane-hydrogen mixtures as automotive fuels. The paper concludes with a review of progress being made by ENEA (the Italian Agency for New Technology, Energy and the Environment) in the development of fuel storage and electronic fuel injection systems for hydrogen powered vehicles

  3. Hydrogen as automotive fuel

    International Nuclear Information System (INIS)

    Dini, D.; Ciancia, A.; Pede, G.; Sglavo, V.; ENEA, Rome

    1992-01-01

    An assessment of the technical/economic feasibility of the use of hydrogen as an automotive fuel is made based on analyses of the following: the chemical- physical properties of hydrogen in relation to its use in internal combustion engines; the modifications necessary to adapt internal combustion engines to hydrogen use; hydrogen fuel injection systems - with water vapour injection, cryogenic injection, and the low or high pressure injection of hydrogen directly into the combustion chamber; the current commercialization status of hydrogen automotive fuels; energy efficiency ratings; environmental impacts; in-vehicle storage systems - involving the use of hydrides, high pressure systems and liquid hydrogen storage systems; performance in terms of pay-load ratio; autonomous operation; and operating costs. The paper concludes that, considering current costs for hydrogen fuel production, distribution and use, at present, the employment of hydrogen fuelled vehicles is feasible only in highly polluted urban environments where the innovative vehicle's air pollution abatement characteristics would justify its high operating costs as compared with those of conventional automotive alternatives

  4. Palladium Nanoparticle Hydrogen Sensor

    Directory of Open Access Journals (Sweden)

    I. Pavlovsky

    2006-12-01

    Full Text Available An innovative hydrogen sensor based on palladium (Pd nanoparticle networks is described in the article. Made by Applied Nanotech Inc. sensor has a fast response time, in the range of seconds, which is increased at 80 °C due to higher hydrogen diffusion rates into the palladium lattice. The low detection limit of the sensor is 10 ppm of H2, and the high limit is 40,000 ppm. This is 100% of a lowest flammability level of hydrogen. This range of sensitivities complies with the requirements that one would expect for a reliable hydrogen sensor.

  5. Atomic hydrogen reactor

    International Nuclear Information System (INIS)

    Massip de Turville, C.M.D.

    1982-01-01

    Methods are discussed of generating heat in an atomic hydrogen reactor which involve; the production of atomic hydrogen by an electrical discharge, the capture of nascent neutrons from atomic hydrogen in a number of surrounding steel alloy tubes having a high manganese content to produce 56 Mn, the irradiation of atomic hydrogen by the high energy antineutrinos from the beta decay of 56 Mn to yield nascent neutrons, and the removal of the heat generated by the capture of nascent neutrons by 55 Mn and the beta decay of 56 Mn. (U.K.)

  6. The Role of Hydrogen for Sulfurimonas denitrificans’ Metabolism

    Science.gov (United States)

    Han, Yuchen; Perner, Mirjam

    2014-01-01

    Sulfurimonas denitrificans was originally isolated from coastal marine sediments. It can grow with thiosulfate and nitrate or sulfide and oxygen. Recently sequencing of its genome revealed that it encodes periplasmic and cytoplasmic [NiFe]-hydrogenases but the role of hydrogen for its metabolism has remained unknown. We show the first experimental evidence that S. denitrificans can indeed express a functional hydrogen uptake active hydrogenase and can grow on hydrogen. In fact, under the provided conditions it grew faster and denser on hydrogen than on thiosulfate alone and even grew with hydrogen in the absence of reduced sulfur compounds. In our experiments, at the time points tested, the hydrogen uptake activity appeared to be related to the periplasmic hydrogenase and not to the cytoplasmic hydrogenase. Our data suggest that under the provided conditions S. denitrificans can grow more efficiently with hydrogen than with thiosulfate. PMID:25170905

  7. On severe accident hydrogen behaviour in Loviisa

    International Nuclear Information System (INIS)

    Okkonen, T.

    1996-02-01

    This study is related to the hydrogen management strategy of the Loviisa ice-condenser containments. A synthetic survey is conducted of the various parts of the subject by using compact 'back-of-the-envelope' analysis methods. The analysed cases are consistent with the principal hydrogen management approaches proposed by the utility Imatran Voima Oy (IVO). The study begins by introduction of the Loviisa plant features and various severe accident types. Hydrogen generation characteristics are analysed mainly for the core degradation phase, but the hydrogen sources from molten fuel-coolant interactions and reflooding of a degraded core are discussed, as well. The hydrogen generation and release rates are compared with the overall gas convection and mixing conditions in order to estimate hydrogen concentrations in the containment. The natural convection currents are examined also from the scaling point of view, concerning the scaled-down VICTORIA tests of IVO. Finally, the potential for large deflagration loadings or local detonations is examined for the Loviisa containments. The study is concluded by preliminary subjective judgments about the most critical factors of the Loviisa hydrogen problematics and about any issues that may require additional confirmative research. (orig.) (47 refs., 4 figs., 24 tabs.)

  8. Manitoba: path to a hydrogen future

    International Nuclear Information System (INIS)

    Parsons, R.V.; Crone, J.

    2003-01-01

    A hydrogen economy is not just about future clean energy but is also about future economic development. It is about new products, new services, new knowledge, and renewable energy sources that will be ultimately used by consumers in the future, and thus represent potential new economic opportunities. The concept of achieving important environmental and health goals through a cleaner energy economy, based on hydrogen, is not new. Similarly, the desire of individual jurisdictions to seek out and develop economic development opportunities is not new. The key question today becomes one of how to plot directions on hydrogen that will yield appropriate economic development gains in the future. While hydrogen offers significant promise, the prospect benefits are recognized to be still largely long-term in nature. In addition, the ability to identify appropriate future directions is clouded by a degree of 'hydrogen hype' and by a variety of major technical and market uncertainties. During 2002, a unique process was initiated within Manitoba combining these elements to work toward a Hydrogen Economic Development Strategy, a strategy that is ultimately intended to lead the province as a whole to determining our future economic niches for hydrogen. This paper describes the nature of the assessment process undertaken within Manitoba, the outcomes achieved and general insights of relevance to a broader audience. (author)

  9. On severe accident hydrogen behaviour in Loviisa

    Energy Technology Data Exchange (ETDEWEB)

    Okkonen, T. [OTO-Consulting Ay, Helsinki (Finland)

    1996-02-01

    This study is related to the hydrogen management strategy of the Loviisa ice-condenser containments. A synthetic survey is conducted of the various parts of the subject by using compact `back-of-the-envelope` analysis methods. The analysed cases are consistent with the principal hydrogen management approaches proposed by the utility Imatran Voima Oy (IVO). The study begins by introduction of the Loviisa plant features and various severe accident types. Hydrogen generation characteristics are analysed mainly for the core degradation phase, but the hydrogen sources from molten fuel-coolant interactions and reflooding of a degraded core are discussed, as well. The hydrogen generation and release rates are compared with the overall gas convection and mixing conditions in order to estimate hydrogen concentrations in the containment. The natural convection currents are examined also from the scaling point of view, concerning the scaled-down VICTORIA tests of IVO. Finally, the potential for large deflagration loadings or local detonations is examined for the Loviisa containments. The study is concluded by preliminary subjective judgments about the most critical factors of the Loviisa hydrogen problematics and about any issues that may require additional confirmative research. (orig.) (47 refs., 4 figs., 24 tabs.).

  10. Energy Accumulation by Hydrogen Technologies

    Directory of Open Access Journals (Sweden)

    Jiřina Čermáková

    2012-01-01

    Full Text Available Photovoltaic power plants as a renewable energy source have been receiving rapidly growing attention in the Czech Republic and in the other EU countries. This rapid development of photovoltaic sources is having a negative effect on the electricity power system control, because they depend on the weather conditions and provide a variable and unreliable supply of electric power. One way to reduce this effect is by accumulating electricity in hydrogen. The aim of this paper is to introduce hydrogen as a tool for regulating photovoltaic energy in island mode. A configuration has been designed for connecting households with the photovoltaic hybrid system, and a simulation model has been made in order to check the validity of this system. The simulation results provide energy flows and have been used for optimal sizing of real devices. An appropriate system can deliver energy in a stand-alone installation.

  11. Catalytic hydrogenation of carbon monoxide

    International Nuclear Information System (INIS)

    Wayland, B.B.

    1993-12-01

    Focus of this project is on developing new approaches for hydrogenation of carbon monoxide to produce organic oxygenates at mild conditions. The strategies to accomplish CO reduction are based on favorable thermodynamics manifested by rhodium macrocycles for producing a series of intermediates implicated in the catalytic hydrogenation of CO. Metalloformyl complexes from reactions of H 2 and CO, and CO reductive coupling to form metallo α-diketone species provide alternate routes to organic oxygenates that utilize these species as intermediates. Thermodynamic and kinetic-mechanistic studies are used in guiding the design of new metallospecies to improve the thermodynamic and kinetic factors for individual steps in the overall process. Electronic and steric effects associated with the ligand arrays along with the influences of the reaction medium provide the chemical tools for tuning these factors. Non-macrocyclic ligand complexes that emulate the favorable thermodynamic features associated with rhodium macrocycles, but that also manifest improved reaction kinetics are promising candidates for future development

  12. Oxygen-hydrogen recombination system

    International Nuclear Information System (INIS)

    Sato, Shuichiro; Takejima, Masaki.

    1981-01-01

    Purpose: To avoid reduction in the performance of catalyst used for an oxygen-hydrogen recombiner in the off gas processing system of a nuclear reactor. Constitution: A thermometer is provided for the detection of temperature in an oxygen-hydrogen recombiner. A cooling pipe is provided in the recombiner and cooling medium is introduced externally. The cooling medium may be water or air. In accordance with the detection value from the thermometer, ON-OFF control is carried out for a valve to control the flow rate of the cooling medium thereby rendering the temperature in the recombiner to a predetermined value. This can prevent the catalyst from being exposed to high temperature and avoid the reduction in the performance of the catalyst. (Ikeda, J.)

  13. Hydrogen Production Using Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, K. [Research Centre Juelich (Germany)

    2013-03-15

    world. In recent years, the scope of the IAEA's programme has been widened to include other more promising applications such as nuclear hydrogen production and higher temperature process heat applications. The OECD Nuclear Energy Agency, Euratom and the Generation IV International Forum have also shown interest in the non-electric applications of nuclear power based on future generation advanced and innovative nuclear reactors. This report was developed under an IAEA project with the objective of providing updated, balanced and objective information on the current status of hydrogen production processes using nuclear energy. It documents the state of the art of the development of hydrogen as an energy carrier in many Member States, as well as its corresponding production through the use of nuclear power. The report includes an introduction to the technology of nuclear process heat reactors as a means of producing hydrogen or other upgraded fuels, with a focus on high temperature reactor technology to achieve simultaneous generation of electricity and high temperature process heat and steam. Special emphasis is placed on the safety aspects of nuclear hydrogen production systems.

  14. The US Department of Energy hydrogen baseline survey: assessing knowledge and opinions about hydrogen technology

    International Nuclear Information System (INIS)

    Christy Cooper; Tykey Truett; R L Schmoyer

    2006-01-01

    To design and maintain its education program, the United States Department of Energy (DOE) Hydrogen Program conducted a statistically-valid national survey to measure knowledge and opinions of hydrogen among key target audiences. The Hydrogen Baseline Knowledge Survey provides a reference for designing the DOE hydrogen education strategy and will be used in comparisons with future surveys to measure changes in knowledge and opinions over time. The survey sampled four U.S. populations: (1) public; (2) students; (3) state and local government officials; and (4) potential large-scale hydrogen end-users in three business categories. Questions measured technical understanding of hydrogen and opinions about hydrogen safety. Other questions assessed visions of the likelihood of future hydrogen applications and sources of energy information. Several important findings were discovered, including a striking lack of technical understanding across all survey groups, as well as a strong correlation between technical knowledge and opinions about safety: those who demonstrated an understanding of hydrogen technologies expressed the least fear of its safe use. (authors)

  15. LARGE-SCALE PRODUCTION OF HYDROGEN BY NUCLEAR ENERGY FOR THE HYDROGEN ECONOMY

    International Nuclear Information System (INIS)

    SCHULTZ, K.R.; BROWN, L.C.; BESENBRUCH, G.E.; HAMILTON, C.J.

    2003-01-01

    OAK B202 LARGE-SCALE PRODUCTION OF HYDROGEN BY NUCLEAR ENERGY FOR THE HYDROGEN ECONOMY. The ''Hydrogen Economy'' will reduce petroleum imports and greenhouse gas emissions. However, current commercial hydrogen production processes use fossil fuels and releases carbon dioxide. Hydrogen produced from nuclear energy could avoid these concerns. The authors have recently completed a three-year project for the US Department of Energy whose objective was to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the energy source''. Thermochemical water-splitting, a chemical process that accomplishes the decomposition of water into hydrogen and oxygen, met this objective. The goal of the first phase of this study was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen and to select one for further detailed consideration. The authors selected the Sulfur-Iodine cycle, In the second phase, they reviewed all the basic reactor types for suitability to provide the high temperature heat needed by the selected thermochemical water splitting cycle and chose the helium gas-cooled reactor. In the third phase they designed the chemical flowsheet for the thermochemical process and estimated the efficiency and cost of the process and the projected cost of producing hydrogen. These results are summarized in this paper

  16. Characterization of high-pressure, underexpanded hydrogen-jet flames

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, R.W.; Houf, W.G.; Williams, T.C. [Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551 (United States); Bourne, B.; Colton, J. [SRI International, 333 Ravenwood Ave., Menlo Park, CA 94025 (United States)

    2007-08-15

    Measurements were performed to characterize the dimensional and radiative properties of large-scale, vertical hydrogen-jet flames. This data is relevant to the safety scenario of a sudden leak in a high-pressure hydrogen containment vessel and will provide a technological basis for determining hazardous length scales associated with unintended hydrogen releases at storage and distribution centers. Jet flames originating from high-pressure sources up to 413 bar (6000 psi) were studied to verify the application of correlations and scaling laws based on lower-pressure subsonic and choked-flow jet flames. These higher pressures are expected to be typical of the pressure ranges in future hydrogen storage vessels. At these pressures the flows exiting the jet nozzle are categorized as underexpanded jets in which the flow is choked at the jet exit. Additionally, the gas behavior departs from that of an ideal-gas and alternate formulations for non-ideal gas must be introduced. Visible flame emission was recorded on video to evaluate flame length and structure. Radiometer measurements allowed determination of the radiant heat flux characteristics. The flame length results show that lower-pressure engineering correlations, based on the Froude number and a non-dimensional flame length, also apply to releases up to 413 bar (6000 psi). Similarly, radiative heat flux characteristics of these high-pressure jet flames obey scaling laws developed for low-pressure, smaller-scale flames and a wide variety of fuels. The results verify that such correlations can be used to a priori predict dimensional characteristics and radiative heat flux from a wide variety of hydrogen-jet flames resulting from accidental releases. (author)

  17. Electric field enhanced hydrogen storage on polarizable materials substrates

    Science.gov (United States)

    Zhou, J.; Wang, Q.; Sun, Q.; Jena, P.; Chen, X. S.

    2010-01-01

    Using density functional theory, we show that an applied electric field can substantially improve the hydrogen storage properties of polarizable substrates. This new concept is demonstrated by adsorbing a layer of hydrogen molecules on a number of nanomaterials. When one layer of H2 molecules is adsorbed on a BN sheet, the binding energy per H2 molecule increases from 0.03 eV/H2 in the field-free case to 0.14 eV/H2 in the presence of an electric field of 0.045 a.u. The corresponding gravimetric density of 7.5 wt% is consistent with the 6 wt% system target set by Department of Energy for 2010. The strength of the electric field can be reduced if the substrate is more polarizable. For example, a hydrogen adsorption energy of 0.14 eV/H2 can be achieved by applying an electric field of 0.03 a.u. on an AlN substrate, 0.006 a.u. on a silsesquioxane molecule, and 0.007 a.u. on a silsesquioxane sheet. Thus, application of an electric field to a polarizable substrate provides a novel way to store hydrogen; once the applied electric field is removed, the stored H2 molecules can be easily released, thus making storage reversible with fast kinetics. In addition, we show that materials with rich low-coordinated nonmetal anions are highly polarizable and can serve as a guide in the design of new hydrogen storage materials. PMID:20133647

  18. Enhancing hydrogen spillover and storage

    Science.gov (United States)

    Yang, Ralph T [Ann Arbor, MI; Li, Yingwel [Ann Arbor, MI; Lachawiec, Jr., Anthony J.

    2011-05-31

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonification as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  19. Hydrogen detector for sodium cooled reactors

    International Nuclear Information System (INIS)

    Roy, P.; Rodgers, D.N.

    1975-01-01

    An improved hydrogen detector for use in sodium cooled reactors is described. The improved detector basically comprises a diffusion tube of either pure nickel or stainless steel having a coating on the vacuum side (inside) of a thin layer of refractory metal, e.g., tungsten or molybdenum. The refractory metal functions as a diffusion barrier in the path of hydrogen diffusing from the sodium on the outside of the detector into the vacuum on the inside, thus by adjusting the thickness of the coating, it is possible to control the rate of permeation of hydrogen through the tube, thereby providing a more stable detector. (U.S.)