WorldWideScience

Sample records for provide additional flexibility

  1. Flexibility in Europe's power sector — An additional requirement or an automatic complement?

    International Nuclear Information System (INIS)

    Bertsch, Joachim; Growitsch, Christian; Lorenczik, Stefan; Nagl, Stephan

    2016-01-01

    By 2050, the European Union aims to reduce greenhouse gases by more than 80%. The EU member states have therefore declared to strongly increase the share of renewable energy sources (RES-E) in the next decades. Given a large deployment of wind and solar capacities, there are two major impacts on electricity systems: First, the electricity system must be flexible enough to cope with the volatile RES-E generation, i.e., ramp up supply or ramp down demand on short notice. Second, sufficient back-up capacities are needed during times with low feed-in from wind and solar capacities. This paper analyzes whether there is a need for additional incentive mechanisms for flexibility in electricity markets with a high share of renewables. For this purpose, we simulate the development of the European electricity markets up to the year 2050 using a linear investment and dispatch optimization model. Flexibility requirements are implemented in the model via ramping constraints and provision of balancing power. We found that an increase in fluctuating renewables has a tremendous impact on the volatility of the residual load and consequently on the flexibility requirements. However, any market design that incentivizes investments in least (total system) cost generation investment does not need additional incentives for flexibility. The main trigger for investing in flexible resources is the achievable full load hours and the need for backup capacity. In a competitive market, the cost-efficient technologies that are most likely to be installed, i.e., gas-fired power plants or flexible CCS plants, provide flexibility as a by-product. Under the condition of system adequacy, flexibility never poses a challenge in a cost-minimal capacity mix. Therefore, any market design incentivizing investments in efficient generation thus provides flexibility as an inevi complement. - Highlights: • We analyze flexibility in electricity systems with a high share of renewables. • For scenario

  2. Low carbon technologies as providers of operational flexibility in future power systems

    International Nuclear Information System (INIS)

    Pavić, Ivan; Capuder, Tomislav; Kuzle, Igor

    2016-01-01

    Highlights: • Mixed integer linear programming model for provision of multiple services from EV. • EV energy and reserve services provision effects on power system operation. • Impacts of conventional unit’s decommission on system’s operation and flexibility. • Assessment of power system’s flexibility under different wind generation polices. - Abstract: The paper presents a unit commitment model, based on mixed integer linear programming, capable of assessing the impact of electric vehicles (EV) on provision of ancillary services in power systems with high share of renewable energy sources (RES). The analyses show how role of different conventional units changes with integration of variable and uncertain RES and how introducing a flexible sources on the demand side, in this case EV, impact the traditional provision of spinning/contingency reserve services. In addition, technical constraints of conventional units, such as nuclear, gas or coal, limit the inherit flexibility of the system which results in curtailing clean renewable sources and inefficient operation. Following on that, sensitivity analyses of operational cost and wind curtailment shows which techno-economic constraints impact the flexibility of the high RES systems the most and how integration of more flexible units or decommission of conventional nuclear, coal and gas driven power plants would impact the system’s operation. Finally, two different wind generation polices (wind penalization and wind turbines as reserve providers) have been analysed in terms of operational flexibility through different stages of conventional unit’s decommission and compared with the same analyses when EV were used as reserve providers.

  3. Scalable fabrication of nanostructured devices on flexible substrates using additive driven self-assembly and nanoimprint lithography

    Science.gov (United States)

    Watkins, James

    2013-03-01

    Roll-to-roll (R2R) technologies provide routes for continuous production of flexible, nanostructured materials and devices with high throughput and low cost. We employ additive-driven self-assembly to produce well-ordered polymer/nanoparticle hybrid materials that can serve as active device layers, we use highly filled nanoparticle/polymer hybrids for applications that require tailored dielectric constant or refractive index, and we employ R2R nanoimprint lithography for device scale patterning. Specific examples include the fabrication of flexible floating gate memory and large area films for optical/EM management. Our newly constructed R2R processing facility includes a custom designed, precision R2R UV-assisted nanoimprint lithography (NIL) system and hybrid nanostructured materials coaters.

  4. Local Flexibility Market Design for Aggregators Providing Multiple Flexibility Services at Distribution Network Level

    Directory of Open Access Journals (Sweden)

    Pol Olivella-Rosell

    2018-04-01

    Full Text Available This paper presents a general description of local flexibility markets as a market-based management mechanism for aggregators. The high penetration of distributed energy resources introduces new flexibility services like prosumer or community self-balancing, congestion management and time-of-use optimization. This work is focused on the flexibility framework to enable multiple participants to compete for selling or buying flexibility. In this framework, the aggregator acts as a local market operator and supervises flexibility transactions of the local energy community. Local market participation is voluntary. Potential flexibility stakeholders are the distribution system operator, the balance responsible party and end-users themselves. Flexibility is sold by means of loads, generators, storage units and electric vehicles. Finally, this paper presents needed interactions between all local market stakeholders, the corresponding inputs and outputs of local market operation algorithms from participants and a case study to highlight the application of the local flexibility market in three scenarios. The local market framework could postpone grid upgrades, reduce energy costs and increase distribution grids’ hosting capacity.

  5. Performance analysis of flexible DSSC with binder addition

    Energy Technology Data Exchange (ETDEWEB)

    Muliani, Lia; Hidayat, Jojo; Anggraini, Putri Nur, E-mail: putri.nur.anggraini@gmail.com [Research Center for Electronics and Telecommunications Indonesian Institute of Sciences (PPET-LIPI) Kampus LIPI, Jl. Sangkuriang, Bandung 40135 (Indonesia)

    2016-04-19

    Flexible DSSC is one of modification of DSSC based on its substrate. Operating at low temperature, flexible DSSC requires a binder to improve particles interconnection. This research was done to compare the morphology and performance of flexible DSSC that was produced with binder-added and binder-free. TiO{sub 2} powder, butanol, and HCl were mixed for preparation of TiO{sub 2} paste. Small amount of titanium isopropoxide as binder was added into the mixture. TiO{sub 2} paste was deposited on ITO-PET plastic substrate with area of 1x1 cm{sup 2} by doctor blade method. Furthermore, SEM, XRD, and BET characterization were done to analyze morphology and surface area of the TiO{sub 2} photoelectrode microstructures. Dyed TiO{sub 2} photoelectrode and platinum counter electrode were assembled and injected by electrolyte. In the last process, flexible DSSCs were illuminated by sun simulator to do J-V measurement. As a result, flexible DSSC containing binder showed higher performance with photoconversion efficiency of 0.31%.

  6. The conformational stability and flexibility of insulin with an additional intramolecular cross-link

    International Nuclear Information System (INIS)

    Brems, D.N.; Brown, P.L.; Nakagawa, S.H.; Tager, H.S.

    1991-01-01

    The conformational stability and flexibility of insulin containing a cross-link between the alpha-amino group of the A-chain to the epsilon-amino group of Lys29 of the B-chain was examined. The cross-link varied in length from 2 to 12 carbon atoms. The conformational stability was determined by guanidine hydrochloride-induced equilibrium denaturation and flexibility was assessed by H2O/D2O amide exchange. The cross-link has substantial effects on both conformational stability and flexibility which depend on its length. In general, the addition of a cross-link enhances conformational stability and decreases flexibility. The optimal length for enhanced stability and decreased flexibility was the 6-carbon link. For the 6-carbon link the Gibbs free energy of unfolding was 8.0 kcal/mol compared to 4.5 kcal/mol for insulin, and the amide exchange rate decreased by at least 3-fold. A very short cross-link (i.e. the 2-carbon link) caused conformational strain that was detectable by a lack of stabilization in the Gibbs free energy of unfolding and enhancement in the amide exchange rate compared to insulin. The effect of the cross-link length on insulin hydrodynamic properties is discussed relative to previously obtained receptor binding results

  7. The Drupal Environmental Information Management System Provides Standardization, Flexibility and a Platform for Collaboration

    Science.gov (United States)

    Gries, C.; Vanderbilt, K.; Reid, D.; Melendez-Colom, E.; San Gil, I.

    2013-12-01

    Over the last five years several Long-Term Ecological Research (LTER) sites have collaboratively developed a standardized yet flexible approach to ecological information management based on the open source Drupal content management system. These LTER sites adopted a common data model for basic metadata necessary to describe data sets, but also used for site management and web presence. Drupal core functionality provides web forms for easy management of information stored in this data model. Custom Drupal extensions were developed to generate XML files conforming to the Ecological Metadata Language (EML) for contribution to the LTER Network Information System (NIS) and other data archives. Each LTER site then took advantage of the flexibility Drupal provides to develop its unique web presence, choosing different themes and adding additional content to the websites. By nature, information presented is highly interlinked which can easily be modeled in Drupal entities and is further supported by a sophisticated tagging system (Fig. 1). Therefore, it is possible to provide the visitor with many different entry points to the site specific information presented. For example, publications and datasets may be grouped for each scientist, for each research project, for each major research theme at the site, making the information presented more accessible for different visitors. Experience gained during the early years was recently used to launch a complete re-write for upgrading to Drupal 7. LTER sites from multiple academic institutions pooled resources in order to partner with professional Drupal developers. Highlights of the new developments are streamlined data entry, improved EML output and integrity, support of IM workflows, a faceted data set search, a highly configurable data exploration tool with intelligent filtering and data download, and, for the mobile age, a responsive web design theme. Seven custom modules and a specific installation profile were developed

  8. Robot-based additive manufacturing for flexible die-modelling in incremental sheet forming

    Science.gov (United States)

    Rieger, Michael; Störkle, Denis Daniel; Thyssen, Lars; Kuhlenkötter, Bernd

    2017-10-01

    The paper describes the application concept of additive manufactured dies to support the robot-based incremental sheet metal forming process (`Roboforming') for the production of sheet metal components in small batch sizes. Compared to the dieless kinematic-based generation of a shape by means of two cooperating industrial robots, the supporting robot models a die on the back of the metal sheet by using the robot-based fused layer manufacturing process (FLM). This tool chain is software-defined and preserves the high geometrical form flexibility of Roboforming while flexibly generating support structures adapted to the final part's geometry. Test series serve to confirm the feasibility of the concept by investigating the process challenges of the adhesion to the sheet surface and the general stability as well as the influence on the geometric accuracy compared to the well-known forming strategies.

  9. Structures of parasite calreticulins provide insights into their flexibility and dual carbohydrate/peptide-binding properties.

    Science.gov (United States)

    Moreau, Christophe; Cioci, Gianluca; Iannello, Marina; Laffly, Emmanuelle; Chouquet, Anne; Ferreira, Arturo; Thielens, Nicole M; Gaboriaud, Christine

    2016-11-01

    Calreticulin (CRT) is a multifaceted protein, initially discovered as an endoplasmic reticulum (ER) chaperone protein, that is essential in calcium metabolism. Various implications in cancer, early development and immunology have been discovered more recently for CRT, as well as its role as a dominant 'eat-me' prophagocytic signal. Intriguingly, cell-surface exposure/secretion of CRT is among the infective strategies used by parasites such as Trypanosoma cruzi , Entamoeba histolytica , Taenia solium , Leishmania donovani and Schistosoma mansoni . Because of the inherent flexibility of CRTs, their analysis by X-ray crystallography requires the design of recombinant constructs suitable for crystallization, and thus only the structures of two very similar mammalian CRT lectin domains are known. With the X-ray structures of two distant parasite CRTs, insights into species structural determinants that might be harnessed to fight against the parasites without affecting the functions of the host CRT are now provided. Moreover, although the hypothesis that CRT can exhibit both open and closed conformations has been proposed in relation to its chaperone function, only the open conformation has so far been observed in crystal structures. The first evidence is now provided of a complex conformational transition with the junction reoriented towards P-domain closure. SAXS experiments also provided additional information about the flexibility of T. cruzi CRT in solution, thus complementing crystallographic data on the open conformation. Finally, regarding the conserved lectin-domain structure and chaperone function, evidence is provided of its dual carbohydrate/protein specificity and a new scheme is proposed to interpret such unusual substrate-binding properties. These fascinating features are fully consistent with previous experimental observations, as discussed considering the broad spectrum of CRT sequence conservations and differences.

  10. Providing a Flexible, Learner-Centred Programme: Challenges for Educators

    Science.gov (United States)

    Cornelius, Sarah; Gordon, Carole

    2008-01-01

    This paper presents a case study of the implementation of a flexible learner-centred programme of study which blends face-to-face and online learning. The programme was developed to be flexible in terms of content and study strategies, whilst remaining within more rigid organisational structures and processes. This paper outlines the programme and…

  11. Structures of parasite calreticulins provide insights into their flexibility and dual carbohydrate/peptide-binding properties

    Directory of Open Access Journals (Sweden)

    Christophe Moreau

    2016-11-01

    Full Text Available Calreticulin (CRT is a multifaceted protein, initially discovered as an endoplasmic reticulum (ER chaperone protein, that is essential in calcium metabolism. Various implications in cancer, early development and immunology have been discovered more recently for CRT, as well as its role as a dominant `eat-me' prophagocytic signal. Intriguingly, cell-surface exposure/secretion of CRT is among the infective strategies used by parasites such as Trypanosoma cruzi, Entamoeba histolytica, Taenia solium, Leishmania donovani and Schistosoma mansoni. Because of the inherent flexibility of CRTs, their analysis by X-ray crystallography requires the design of recombinant constructs suitable for crystallization, and thus only the structures of two very similar mammalian CRT lectin domains are known. With the X-ray structures of two distant parasite CRTs, insights into species structural determinants that might be harnessed to fight against the parasites without affecting the functions of the host CRT are now provided. Moreover, although the hypothesis that CRT can exhibit both open and closed conformations has been proposed in relation to its chaperone function, only the open conformation has so far been observed in crystal structures. The first evidence is now provided of a complex conformational transition with the junction reoriented towards P-domain closure. SAXS experiments also provided additional information about the flexibility of T. cruzi CRT in solution, thus complementing crystallographic data on the open conformation. Finally, regarding the conserved lectin-domain structure and chaperone function, evidence is provided of its dual carbohydrate/protein specificity and a new scheme is proposed to interpret such unusual substrate-binding properties. These fascinating features are fully consistent with previous experimental observations, as discussed considering the broad spectrum of CRT sequence conservations and differences.

  12. New recording package for VACM provides sensor flexibility

    Science.gov (United States)

    Strahle, William J.; Worrilow, S. E.; Fucile, S. E.; Martini, Marinna A.

    1994-01-01

    For the past three decades, the VACM has been a standard for ocean current measurements. A VACM is a true vector-averaging instrument that computes north and east current vectors and averages temperature continuously over a specified interval. It keeps a running total of rotor counts, and records one-shot samples of compass, vane position and time. Adding peripheral sensors to the data stream was easy. In today's economy, it seems imperative that operational centers concentrate on upgrading present inventory rather than purchasing newer instruments that often fall short of the flexible measurement platforms with high data capacities required by most researchers today. PCMCIA cards are rapidly becoming an industry standard with a wide range of storage capacities. By upgrading the VACM to a PCMCIA storage system with a flexible microprocessor, the VACM should continue to be a viable instrument into the next century

  13. The Effectiveness of an Additional Stretching Exercise Program in Improving Flexibility Level among Preschool Boys

    Science.gov (United States)

    Lee, Wee Akina Sia Seng; Rengasamy, Shabeshan A/L; Raju, Subramaniam A/L

    2014-01-01

    This study was conducted to examine the effectiveness of a two minutes' additional stretching exercise program in a 30 minutes games teaching lesson in improving the flexibility level of 6 year old preschool boys (M = 5.92, SD = 0.27) in a preschool in Malaysia. Fifty (50) preschool boys were selected for the study based on the intact sampling…

  14. Three-dimensional formulation of rigid-flexible multibody systems with flexible beam elements

    International Nuclear Information System (INIS)

    Garcia-Vallejo, D.; Mayo, J.; Escalona, J. L.; Dominguez, J.

    2008-01-01

    Multibody systems generally contain solids with appreciable deformations and which decisively influence the dynamics of the system. These solids have to be modeled by means of special formulations for flexible solids. At the same time, other solids are of such a high stiffness that they may be considered rigid, which simplifies their modeling. For these reasons, for a rigid-flexible multibody system, two types of formulations coexist in the equations of the system. Among the different possibilities provided in the literature on the material, the formulation in natural coordinates and the formulation in absolute nodal coordinates are utilized in this paper to model the rigid and flexible solids, respectively. This paper contains a mixed formulation based on the possibility of sharing coordinates between a rigid solid and a flexible solid. The global mass matrix of the system is shown to be constant and, in addition, many of the constraint equations obtained upon utilizing these formulations are linear and can be eliminated

  15. Development of flexible, free-standing, thin films for additive manufacturing and localized energy generation

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Billy; McCollum, Jena; Pantoya, Michelle L., E-mail: michelle.pantoya@ttu.edu [Mechanical Engineering Department, Texas Tech University, Lubbock TX 79409 (United States); Heaps, Ronald J.; Daniels, Michael A. [Idaho National Laboratory, PO Box 1625, Idaho Falls, ID 83415 (United States)

    2015-08-15

    Film energetics are becoming increasingly popular because a variety of technologies are driving a need for localized energy generation in a stable, safe and flexible form. Aluminum (Al) and molybdenum trioxide (MoO{sub 3}) composites were mixed into a silicon binder and extruded using a blade casting technique to form flexible free-standing films ideal for localized energy generation. Since this material can be extruded onto a surface it is well suited to additive manufacturing applications. This study examines the influence of 0-35% by mass potassium perchlorate (KClO{sub 4}) additive on the combustion behavior of these energetic films. Without KClO{sub 4} the film exhibits thermal instabilities that produce unsteady energy propagation upon reaction. All films were cast at a thickness of 1 mm with constant volume percent solids to ensure consistent rheological properties. The films were ignited and flame propagation was measured. The results show that as the mass percent KClO{sub 4} increased, the flame speed increased and peaked at 0.43 cm/s and 30 wt% KClO{sub 4}. Thermochemical equilibrium simulations show that the heat of combustion increases with increasing KClO{sub 4} concentration up to a maximum at 20 wt% when the heat of combustion plateaus, indicating that the increased chemical energy liberated by the additional KClO{sub 4} promotes stable energy propagation. Differential scanning calorimeter and thermogravimetric analysis show that the silicone binder participates as a fuel and reacts with KClO{sub 4} adding energy to the reaction and promoting propagation.

  16. Development of flexible, free-standing, thin films for additive manufacturing and localized energy generation

    Directory of Open Access Journals (Sweden)

    Billy Clark

    2015-08-01

    Full Text Available Film energetics are becoming increasingly popular because a variety of technologies are driving a need for localized energy generation in a stable, safe and flexible form. Aluminum (Al and molybdenum trioxide (MoO3 composites were mixed into a silicon binder and extruded using a blade casting technique to form flexible free-standing films ideal for localized energy generation. Since this material can be extruded onto a surface it is well suited to additive manufacturing applications. This study examines the influence of 0-35% by mass potassium perchlorate (KClO4 additive on the combustion behavior of these energetic films. Without KClO4 the film exhibits thermal instabilities that produce unsteady energy propagation upon reaction. All films were cast at a thickness of 1 mm with constant volume percent solids to ensure consistent rheological properties. The films were ignited and flame propagation was measured. The results show that as the mass percent KClO4 increased, the flame speed increased and peaked at 0.43 cm/s and 30 wt% KClO4. Thermochemical equilibrium simulations show that the heat of combustion increases with increasing KClO4 concentration up to a maximum at 20 wt% when the heat of combustion plateaus, indicating that the increased chemical energy liberated by the additional KClO4 promotes stable energy propagation. Differential scanning calorimeter and thermogravimetric analysis show that the silicone binder participates as a fuel and reacts with KClO4 adding energy to the reaction and promoting propagation.

  17. Flexibility-enabling Contracts in Electricity Markets

    DEFF Research Database (Denmark)

    Boscan, Luis; Poudineh, Rahmatallah

    As the share of intermittent renewable energy increases in the generation mix, power systems are exposed to greater levels of uncertainty and risk, which requires planners, policy and business decision makers to incentivise flexibility, that is: their adaptability to unforeseen variations....... Additionally, along with traditional sources, which already enable flexibility, a number of business models, such as thermostat-based demand response, aggregators and small storage providers, are emerging in electricity markets and expected to constitute important sources of flexibility in future decentralised...... power systems. However, due to presence of high transaction costs, relative to the size of resource, the emerging small resources cannot directly participate in an organised electricity market and/or compete. This paper asks the fundamental question of how should the provision of flexibility, as a multi...

  18. An Overview of the Development of Flexible Sensors.

    Science.gov (United States)

    Han, Su-Ting; Peng, Haiyan; Sun, Qijun; Venkatesh, Shishir; Chung, Kam-Sing; Lau, Siu Chuen; Zhou, Ye; Roy, V A L

    2017-09-01

    Flexible sensors that efficiently detect various stimuli relevant to specific environmental or biological species have been extensively studied due to their great potential for the Internet of Things and wearable electronics applications. The application of flexible and stretchable electronics to device-engineering technologies has enabled the fabrication of slender, lightweight, stretchable, and foldable sensors. Here, recent studies on flexible sensors for biological analytes, ions, light, and pH are outlined. In addition, contemporary studies on device structure, materials, and fabrication methods for flexible sensors are discussed, and a market overview is provided. The conclusion presents challenges and perspectives in this field. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. On flexibility

    OpenAIRE

    Weiss, Christoph R.; Briglauer, Wolfgang

    2000-01-01

    By building on theoretical work by Mills and Schumann (1985) and Ungern-Sternberg (1990) this paper provides evidence on the determinants of two dimensions of flexibility, the flexibility in adjusting aggregate output over time (tactical flexibility) as well as the ability to switch quickly between products (operational flexibility). Econometric analysis of a sample of 40.000 farms in Upper-Austria for the period 1980 to 1990 suggests that larger full-time farms operated by younger, better ed...

  20. Office flexible cystoscopy.

    Science.gov (United States)

    Kavoussi, L R; Clayman, R V

    1988-11-01

    Since the development of the first purpose-built flexible cystoscope in 1984, flexible cystoscopy has become an accepted diagnostic and therapeutic modality. Indeed, it is estimated that more than 10 per cent of practicing urologists are already familiar with this technology. The flexible cystoscope has markedly extended the urologist's ability to examine the bladder, and it has become a valuable adjunct to the rigid cystoscope. Although the operation of this instrument is vastly different from that of its rigid counterpart, with practice, the technique can be learned. After experience is obtained with diagnostic flexible cystoscopy, the urologist will likely prefer this new instrument for bladder inspection, as it provides for a more thorough yet less morbid and less expensive examination. In the future, the development of improved and smaller instrumentation will further extend the therapeutic indications for flexible cystoscopy. Indeed, advances in laser technology are already providing the urologist with 300- to 600-micron (0.9 to 1.8F) flexible probes capable of incision (KTP laser), fulguration (Nd:YAG laser), and stone disintegration (tunable dye laser). Lastly, the skills obtained in using the flexible cystoscope are all readily applicable to the development of dexterity with the already available flexible nephroscope and the more recently developed flexible ureteroscope.

  1. Issues and Challenges Facing Flexible Lithium-Ion Batteries for Practical Application.

    Science.gov (United States)

    Cha, Hyungyeon; Kim, Junhyeok; Lee, Yoonji; Cho, Jaephil; Park, Minjoon

    2017-12-27

    With the advent of flexible electronics, lithium-ion batteries have become a key component of high performance energy storage systems. Thus, considerable effort is made to keep up with the development of flexible lithium-ion batteries. To date, many researchers have studied newly designed batteries with flexibility, however, there are several significant challenges that need to be overcome, such as degradation of electrodes under external load, poor battery performance, and complicated cell preparation procedures. In addition, an in-depth understanding of the current challenges for flexible batteries is rarely addressed in a systematical and practical way. Herein, recent progress and current issues of flexible lithium-ion batteries in terms of battery materials and cell designs are reviewed. A critical overview of important issues and challenges for the practical application of flexible lithium-ion batteries is also provided. Finally, the strategies are discussed to overcome current limitations of the practical use of flexible lithium-based batteries, providing a direction for future research. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Flexible single-incision surgery: a fusion technique.

    Science.gov (United States)

    Noguera, José F; Dolz, Carlos; Cuadrado, Angel; Olea, José; García, Juan

    2013-06-01

    The development of natural orifice transluminal endoscopic surgery has led to other techniques, such as single-incision surgery. The use of the flexible endoscope for single-incision surgery paves the way for further refinement of both surgical methods. To describe a new, single-incision surgical technique, namely, flexible single-incision surgery. Assessment of the safety and effectiveness of endoscopic cholecystectomy in a series of 30 patients. This technique consists of a single umbilical incision through which a flexible endoscope is introduced and consists of 2 parallel entry ports that provide access to nonarticulated laparoscopic instruments. The technique was applied in all patients for whom it was prescribed. No general or surgical wound complications were noted. Surgical time was no longer than usual for single-port surgery. Flexible single-incision surgery is a new single-site surgical technique offering the same level of patient safety, with additional advantages for the surgeon at minimal cost.

  3. Optimized flexible cover films for improved conversion efficiency in thin film flexible solar cells

    Science.gov (United States)

    Guterman, Sidney; Wen, Xin; Gudavalli, Ganesh; Rhajbhandari, Pravakar; Dhakal, Tara P.; Wilt, David; Klotzkin, David

    2018-05-01

    Thin film solar cell technologies are being developed for lower cost and flexible applications. For such technologies, it is desirable to have inexpensive, flexible cover strips. In this paper, we demonstrate that transparent silicone cover glass adhesive can be doped with TiO2 nanoparticles to achieve an optimal refractive index and maximize the performance of the cell. Cells covered with the film doped with nanoparticles at the optimal concentration demonstrated a ∼1% increase in photocurrent over the plain (undoped) film. In addition, fused silica beads can be incorporated into the flexible cover slip to realize a built-in pseudomorphic glass diffuser layer as well. This additional degree of freedom in engineering flexible solar cell covers allows maximal performance from a given cell for minimal increased cost.

  4. Transparent, flexible supercapacitors from nano-engineered carbon films

    Science.gov (United States)

    Jung, Hyun Young; Karimi, Majid B.; Hahm, Myung Gwan; Ajayan, Pulickel M.; Jung, Yung Joon

    2012-10-01

    Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications.

  5. Flexible OSSC or the on-site storage alternative and how it grew

    International Nuclear Information System (INIS)

    Dufrane, K.H.

    1986-01-01

    The On-Site Storage Container (OSSC) is an accepted and proven concept currently in widespread use for both operations and the storage of low level radioactive waste. In addition, it represents a very attractive enhancement to a geological low-level waste disposal site. Use of the proven OSSC concept at a site can provide additional safety to the environment by combining the benefits of an engineered storage facility with the proven safety of a sound geological repository. The concept of flexibility which was built into the OSSC concept for the temporary above ground storage of low-level waste is directly applicable to a permanent storage facility. Manufacturing costs, size flexibility, handling systems, and real-world operational advantages are well known and proven. This background provides a high confidence level for adapting this technology to a disposal site while keeping in mind the significance of both operational economics, safety to the environment, and ALARA principles. The development, design and cost effectiveness features of the OSSC as a temporary storage facility are discussed in detail. The flexible OSSC provides significant economic advantages over a permanent storage building. The application of the OSSC to a permanent geological disposal site provides the environmental advantages of an engineered facility while maintaining the inherent operational and economic benefits of the flexible OSSC concept

  6. Propulsion via flexible flapping in granular media

    Science.gov (United States)

    Peng, Zhiwei; Ding, Yang; Pietrzyk, Kyle; Elfring, Gwynn; Pak, On Shun

    2017-11-01

    Biological locomotion in nature is often achieved by the interaction between a flexible body and its surrounding medium. The interaction of a flexible body with granular media is less understood compared with viscous fluids partially due to its complex rheological properties. In this work, we explore the effect of flexibility on granular propulsion by considering a simple mechanical model in which a rigid rod is connected to a torsional spring that is under a displacement actuation using a granular resistive force theory. Through a combined numerical and asymptotic investigation, we characterize the propulsive dynamics of such a flexible flapper in relation to the actuation amplitude and spring stiffness, and we compare these dynamics with those observed in a viscous fluid. In addition, we demonstrate that the maximum possible propulsive force can be obtained in the steady propulsion limit with a finite spring stiffness and large actuation amplitude. These results may apply to the development of synthetic locomotive systems that exploit flexibility to move through complex terrestrial media. Funding for Z.P. and Y.D. was partially provided by NSFC 394 Grant No. 11672029 and NSAF-NSFC Grant No. U1530401.

  7. Flexible eddy current coil arrays

    International Nuclear Information System (INIS)

    Krampfner, Y.; Johnson, D.P.

    1987-01-01

    A novel approach was devised to overcome certain limitations of conventional eddy current testing. The typical single-element hand-wound probe was replaced with a two dimensional array of spirally wound probe elements deposited on a thin, flexible polyimide substrate. This provides full and reliable coverage of the test area and eliminates the need for scanning. The flexible substrate construction of the array allows the probes to conform to irregular part geometries, such as turbine blades and tubing, thereby eliminating the need for specialized probes for each geometry. Additionally, the batch manufacturing process of the array can yield highly uniform and reproducible coil geometries. The array is driven by a portable computer-based eddy current instrument, smartEDDY/sup TM/, capable of two-frequency operation, and offers a great deal of versatility and flexibility due to its software-based architecture. The array is coupled to the instrument via an 80-switch multiplexer that can be configured to address up to 1600 probes. The individual array elements may be addressed in any desired sequence, as defined by the software

  8. Evaluating the benefits of coordinated emerging flexible resources in electricity markets

    International Nuclear Information System (INIS)

    Heydarian-Forushani, E.; Golshan, M.E.H.; Siano, Pierluigi

    2017-01-01

    Highlights: •Variable renewable energy sources create a flexibility gap in power system operation. •BESs, PEV PLs and DR are modeled as flexible options. •DR programs have remarkable impacts in terms of cost and emission reduction. •PEV PL is not a favorable flexible option by its own due to uncertain behavior of PEV owners. •Coordinated operation of PEV PLs and BESs under TOU program is the most effective generation mixture. -- Abstract: Increasing share of variable renewable energy sources (VRESs) with the aim of tackling climate changes impose several techno-economic challenges to power system operation. VRESs reduce the available flexibility by displacing existing flexible units due to their priority in dispatch and simultaneously enhance the need for additional flexibility due to their uncertain nature. In this light, the system is faced with a flexibility gap. One way to cover the created flexibility gap is the incorporation of emerging flexible resources into power systems operation. On this basis, this paper proposes a comprehensive flexible generation portfolio including bulk energy storages (BESs), plug-in electric vehicle parking lots (PEV PLs), and demand response (DR) programs. A stochastic market-based model is proposed to coordinate the interactions among these flexibility providers considering different sets of uncertainty, such as wind power generation and PEV owner’s behavior. Finally, various generation mixtures are prioritized based on the system operator’s economic, technical, and environmental desires to provide a guideline to opt the most effective generation mixture in the context of flexibility promotion.

  9. Faculty career flexibility: Why we need it and how best to achieve it

    Science.gov (United States)

    Quinn, Kate

    2010-02-01

    Research conducted over the last decade provides compelling evidence that higher education institutions have a strong business case for providing flexibility for their tenure-track and tenured faculty. Flexibility constitutes an effective tool for recruiting and retaining talented faculty. Career flexibility is especially critical to retaining some of the most qualified female PhDs in academic science, engineering, and mathematics. Acquiring the best talent is essential to an institution's ability to achieve excellence and maintain its competitive advantage in a global environment. In an effort to increase the flexibility of faculty careers, the American Council on Education partnered with the Alfred P. Sloan Foundation to create the Award for Faculty Career Flexibility. This presentation will address the origins of the award and share findings from the awards process. Fairly simple and cost effective strategies have been successful in accelerating the cultural change necessary to increase the flexibility of faculty careers. This presentation shares these strategies in addition to information about the types of policies and practices being adopted to support faculty work-life balance through career flexibility. )

  10. Special Issue: Flexible Work Arrangements.

    Science.gov (United States)

    Olmstead, Barney, Ed.

    1996-01-01

    Section 1 contains five chapters on flexible work arrangements, self-employment, working from home, part-time professionals, job sharing, and temporary employment. Section 2 includes reviews of four books on working flexibly, concluding with a list of 23 additional readings. (SK)

  11. Energy Flexibility in the Power System

    DEFF Research Database (Denmark)

    Billanes, Joy Dalmacio; Ma, Zheng; Jørgensen, Bo Nørregaard

    2017-01-01

    Energy flexibility can address the challenges of large scale integration of renewable energy resources and thereby increasing imbalance in the power system. Flexible power system can provide reliable supply, low electricity cost and sustainability. Various situations and factors influence...... the adoption of the flexibility solutions, such as flexible electricity generation, demand-response, and electricity storage. This paper tries to analyze the current energy flexibility solutions and the factors that can influence the energy flexibility adoption. This paper takes Philippines as case study...... to provide an overview of the current condition of the Philippines’ power system and discuss the energy flexibility in the Philippines’ power system. A further discussion and recommendation is conducted in the end of the paper....

  12. JNC's experience of complementary accesses provided by the additional protocol

    International Nuclear Information System (INIS)

    Miura, Yasushi

    2001-01-01

    JNC (Japan Nuclear Cycle Development Institute) examined problems on implementation of the Additional Protocol to Japan/IAEA Safeguards Agreement with the Government of Japan and International Atomic Energy Agency through trials performed at Oarai Engineering Center before it entered into force. On December 16th 1999, the Additional Protocol entered into force, and in last January JNC provided the first JNC site information to STA. Then our Government provided it of all Japan to IAEA in last June. Also in this January, we sent the additional information changed from old one to MEXT (Ministry of Education, Culture, Sports, Science and Technology). The first Complementary Access of not only JNC but also Japan was implemented on JNC Ningyo-Toge Environmental Engineering Center on the end of last November. Since then, we have had over 10 times experience of Complementary Accesses for about one year especially on Tokai works and Ningyo-Toge. JNC's experience of Complementary Accesses will be introduced. (author)

  13. Incentivizing Flexibility in System Operations

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, Michael [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bloom, Aaron P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Townsend, Aaron [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ela, Erik [Electric Power Research Institute; Botterud, Audun [Argonne National Laboratory; Levin, Todd [Argonne National Laboratory

    2018-02-15

    Defining flexibility has been a challenge that a number of industry members and researchers have attempted to address in recent years. With increased variability and uncertainty of variable generation (VG), the resources on the system will have to be more flexible to adjust output, so that power output ranges, power ramp rates, and energy duration sustainability are sufficient to meet the needs of balancing supply with demand at various operational timescales. This chapter discusses whether existing market designs provide adequate incentives for resources to offer their flexibility into the market to meet the increased levels of variability and uncertainty introduced by VG in the short-term operational time frame. It presents a definition of flexibility and discusses how increased levels of VG require increased needs for flexibility on power systems. Following this introductory material, the chapter examines how existing market designs ensure that resources have the right incentives to provide increased flexibility, and then discusses a number of emerging market design elements that impact flexibility incentives.

  14. Specificity and affinity quantification of flexible recognition from underlying energy landscape topography.

    Directory of Open Access Journals (Sweden)

    Xiakun Chu

    2014-08-01

    Full Text Available Flexibility in biomolecular recognition is essential and critical for many cellular activities. Flexible recognition often leads to moderate affinity but high specificity, in contradiction with the conventional wisdom that high affinity and high specificity are coupled. Furthermore, quantitative understanding of the role of flexibility in biomolecular recognition is still challenging. Here, we meet the challenge by quantifying the intrinsic biomolecular recognition energy landscapes with and without flexibility through the underlying density of states. We quantified the thermodynamic intrinsic specificity by the topography of the intrinsic binding energy landscape and the kinetic specificity by association rate. We found that the thermodynamic and kinetic specificity are strongly correlated. Furthermore, we found that flexibility decreases binding affinity on one hand, but increases binding specificity on the other hand, and the decreasing or increasing proportion of affinity and specificity are strongly correlated with the degree of flexibility. This shows more (less flexibility leads to weaker (stronger coupling between affinity and specificity. Our work provides a theoretical foundation and quantitative explanation of the previous qualitative studies on the relationship among flexibility, affinity and specificity. In addition, we found that the folding energy landscapes are more funneled with binding, indicating that binding helps folding during the recognition. Finally, we demonstrated that the whole binding-folding energy landscapes can be integrated by the rigid binding and isolated folding energy landscapes under weak flexibility. Our results provide a novel way to quantify the affinity and specificity in flexible biomolecular recognition.

  15. Global Sourcing Flexibility

    DEFF Research Database (Denmark)

    Ørberg Jensen, Peter D.; Petersen, Bent

    2013-01-01

    the higher costs (but decreased risk for value chain disruption) embedded in a more flexible global sourcing model that allows the firm to replicate and/or relocate activities across multiple locations. We develop a model and propositions on facilitating and constraining conditions of global sourcing...... sourcing flexibility. Here we draw on prior research in the fields of organizational flexibility, international business and global sourcing as well as case examples and secondary studies. In the second part of the paper, we discuss the implications of global sourcing flexibility for firm strategy...... and operations against the backdrop of the theory-based definition of the construct. We discuss in particular the importance of global sourcing flexibility for operational performance stability, and the trade-off between specialization benefits, emerging from location and service provider specialization, versus...

  16. Neural Correlates of Attentional Flexibility during Approach and Avoidance Motivation

    Science.gov (United States)

    Calcott, Rebecca D.; Berkman, Elliot T.

    2015-01-01

    Dynamic, momentary approach or avoidance motivational states have downstream effects on eventual goal success and overall well being, but there is still uncertainty about how those states affect the proximal neurocognitive processes (e.g., attention) that mediate the longer-term effects. Attentional flexibility, or the ability to switch between different attentional foci, is one such neurocognitive process that influences outcomes in the long run. The present study examined how approach and avoidance motivational states affect the neural processes involved in attentional flexibility using fMRI with the aim of determining whether flexibility operates via different neural mechanisms under these different states. Attentional flexibility was operationalized as subjects’ ability to switch between global and local stimulus features. In addition to subjects’ motivational state, the task context was manipulated by varying the ratio of global to local trials in a block in light of recent findings about the moderating role of context on motivation-related differences in attentional flexibility. The neural processes involved in attentional flexibility differ under approach versus avoidance states. First, differences in the preparatory activity in key brain regions suggested that subjects’ preparedness to switch was influenced by motivational state (anterior insula) and the interaction between motivation and context (superior temporal gyrus, inferior parietal lobule). Additionally, we observed motivation-related differences the anterior cingulate cortex during switching. These results provide initial evidence that motivation-induced behavioral changes may arise via different mechanisms in approach versus avoidance motivational states. PMID:26000735

  17. A ¤flexible additive multiplicative hazard model

    DEFF Research Database (Denmark)

    Martinussen, T.; Scheike, T. H.

    2002-01-01

    Aalen's additive model; Counting process; Cox regression; Hazard model; Proportional excess harzard model; Time-varying effect......Aalen's additive model; Counting process; Cox regression; Hazard model; Proportional excess harzard model; Time-varying effect...

  18. Build platform that provides mechanical engagement with additive manufacturing prints

    Science.gov (United States)

    Elliott, Amelia M.

    2018-03-06

    A build platform and methods of fabricating an article with such a platform in an extrusion-type additive manufacturing machine are provided. A platform body 202 includes features 204 that extend outward from the body 202. The features 204 define protrusive areas 206 and recessive areas 208 that cooperate to mechanically engage the extruded material that forms the initial layers 220 of an article when the article is being fabricated by a nozzle 12 of the additive manufacturing machine 10.

  19. Flexible supercapacitor yarns with coaxial carbon nanotube network electrodes

    International Nuclear Information System (INIS)

    Smithyman, Jesse; Liang, Richard

    2014-01-01

    Graphical abstract: - Highlights: • Fabricated flexible yarn supercapacitor with coaxial electrodes. • Use of multifunctional carbon nanotube network electrodes eliminates inactive components and enables high energy/power density. • Robust structure maintains >95% of energy/power while under deformation. - Abstract: Flexible supercapacitors with a yarn-like geometry were fabricated with coaxially arranged electrodes. Carbon nanotube (CNT) network electrodes enabled the integration of the electronic conductor and active material of each electrode into a single component. CNT yarns were employed as the inner electrode to provide the supporting structure of the device. These part integration strategies eliminated the need for inactive material, which resulted in device volumetric energy and power densities among the highest reported for flexible carbon-based EDLCs. In addition, the coaxial yarn cell design provided a robust structure able to undergo flexural deformation with minimal impact on the energy storage performance. Greater than 95% of the energy density and 99% of the power density were retained when wound around an 11 cm diameter cylinder. The electrochemical properties were characterized at stages throughout the fabrication process to provide insights and potential directions for further development of these novel cell designs

  20. Inter-vertebral flexibility of the ostrich neck: implications for estimating sauropod neck flexibility.

    Science.gov (United States)

    Cobley, Matthew J; Rayfield, Emily J; Barrett, Paul M

    2013-01-01

    The flexibility and posture of the neck in sauropod dinosaurs has long been contentious. Improved constraints on sauropod neck function will have major implications for what we know of their foraging strategies, ecology and overall biology. Several hypotheses have been proposed, based primarily on osteological data, suggesting different degrees of neck flexibility. This study attempts to assess the effects of reconstructed soft tissues on sauropod neck flexibility through systematic removal of muscle groups and measures of flexibility of the neck in a living analogue, the ostrich (Struthio camelus). The possible effect of cartilage on flexibility is also examined, as this was previously overlooked in osteological estimates of sauropod neck function. These comparisons show that soft tissues are likely to have limited the flexibility of the neck beyond the limits suggested by osteology alone. In addition, the inferred presence of cartilage, and varying the inter-vertebral spacing within the synovial capsule, also affect neck flexibility. One hypothesis proposed that flexibility is constrained by requiring a minimum overlap between successive zygapophyses equivalent to 50% of zygapophyseal articular surface length (ONP50). This assumption is tested by comparing the maximum flexibility of the articulated cervical column in ONP50 and the flexibility of the complete neck with all tissues intact. It is found that this model does not adequately convey the pattern of flexibility in the ostrich neck, suggesting that the ONP50 model may not be useful in determining neck function if considered in isolation from myological and other soft tissue data.

  1. Inter-vertebral flexibility of the ostrich neck: implications for estimating sauropod neck flexibility.

    Directory of Open Access Journals (Sweden)

    Matthew J Cobley

    Full Text Available The flexibility and posture of the neck in sauropod dinosaurs has long been contentious. Improved constraints on sauropod neck function will have major implications for what we know of their foraging strategies, ecology and overall biology. Several hypotheses have been proposed, based primarily on osteological data, suggesting different degrees of neck flexibility. This study attempts to assess the effects of reconstructed soft tissues on sauropod neck flexibility through systematic removal of muscle groups and measures of flexibility of the neck in a living analogue, the ostrich (Struthio camelus. The possible effect of cartilage on flexibility is also examined, as this was previously overlooked in osteological estimates of sauropod neck function. These comparisons show that soft tissues are likely to have limited the flexibility of the neck beyond the limits suggested by osteology alone. In addition, the inferred presence of cartilage, and varying the inter-vertebral spacing within the synovial capsule, also affect neck flexibility. One hypothesis proposed that flexibility is constrained by requiring a minimum overlap between successive zygapophyses equivalent to 50% of zygapophyseal articular surface length (ONP50. This assumption is tested by comparing the maximum flexibility of the articulated cervical column in ONP50 and the flexibility of the complete neck with all tissues intact. It is found that this model does not adequately convey the pattern of flexibility in the ostrich neck, suggesting that the ONP50 model may not be useful in determining neck function if considered in isolation from myological and other soft tissue data.

  2. On flexible and rigid nouns

    DEFF Research Database (Denmark)

    Rijkhoff, Jan

    2010-01-01

    classes. Finally this article wants to claim that the distinction between rigid and flexible noun categories (a) adds a new dimension to current classifications of parts of speech systems, (b) correlates with certain grammatical phenomena (e.g. so-called number discord), and (c) helps to explain the parts......This article argues that in addition to the major flexible lexical categories in Hengeveld’s classification of parts of speech systems (Contentive, Non-Verb, Modifier), there are also flexible word classes within the rigid lexical category Noun (Set Noun, Sort Noun, General Noun). Members...... by the flexible item in the external world. I will then argue that flexible word classes constitute a proper category (i.e. they are not the result of a merger of some rigid word classes) in that members of flexible word categories display the same properties regarding category membership as members of rigid word...

  3. On flexible and rigid nouns

    DEFF Research Database (Denmark)

    Rijkhoff, Jan

    2008-01-01

    Studies in Language 32-3 (2008), 727-752. Special issue: Parts of Speech: Descriptive tools, theoretical constructs Jan Rijkhoff - On flexible and rigid nouns This article argues that in addition to the flexible lexical categories in Hengeveld’s classification of parts-of-speech systems (Contentive......, Non-Verb, Modifier), there are also flexible word classes within the rigid lexical category Noun (Set Noun, Sort Noun, General Noun). Members of flexible word classes are characterized by their vague semantics, which in the case of nouns means that values for the semantic features Shape...... and Homogeneity are either left undetermined or they are specified in such a way that they do not quite match the properties of the kind of entity denoted by the flexible item in the external world. I will then argue that flexible word classes constitute a proper category (i.e. they are not the result of a merger...

  4. Ultrahigh Sensitive and Flexible Magnetoelectronics with Magnetic Nanocomposites: Toward an Additional Perception of Artificial Intelligence.

    Science.gov (United States)

    Cai, Shu-Yi; Chang, Cheng-Han; Lin, Hung-I; Huang, Yuan-Fu; Lin, Wei-Ju; Lin, Shih-Yao; Liou, Yi-Rou; Shen, Tien-Lin; Huang, Yen-Hsiang; Tsao, Po-Wei; Tzou, Chen-Yang; Liao, Yu-Ming; Chen, Yang-Fang

    2018-05-23

    In recent years, flexible magnetoelectronics has attracted a great attention for its intriguing functionalities and potential applications, such as healthcare, memory, soft robots, navigation, and touchless human-machine interaction systems. Here, we provide the first attempt to demonstrate a new type of magneto-piezoresistance device, which possesses an ultrahigh sensitivity with several orders of resistance change under an external magnetic field (100 mT). In our device, Fe-Ni alloy powders are embedded in the silver nanowire-coated micropyramid polydimethylsiloxane films. Our devices can not only serve as an on/off switch but also act as a sensor that can detect different magnetic fields because of its ultrahigh sensitivity, which is very useful for the application in analog signal communication. Moreover, our devices contain several key features, including large-area and easy fabrication processes, fast response time, low working voltage, low power consumption, excellent flexibility, and admirable compatibility onto a freeform surface, which are the critical criteria for the future development of touchless human-machine interaction systems. On the basis of all of these unique characteristics, we have demonstrated a nontouch piano keyboard, instantaneous magnetic field visualization, and autonomous power system, making our new devices be integrable with magnetic field and enable to be implemented into our daily life applications with unfamiliar human senses. Our approach therefore paves a useful route for the development of wearable electronics and intelligent systems.

  5. Flexible Graphene Transistor Architecture for Optical Sensor Technology

    Science.gov (United States)

    Ordonez, Richard Christopher

    The unique electrical and optoelectronic properties of graphene allow tunable conductivity and broadband electromagnetic absorption that spans the ultraviolet and infrared regimes. However, in the current state-of-art graphene sensor architectures, junction resistance and doping concentration are predominant factors that affect signal strength and sensitivity. Unfortunately, graphene produces high contact resistances with standard electrode materials ( few kilo-ohms), therefore, signal is weak and large carrier concentrations are required to probe sensitivity. Moreover, the atomic thickness of graphene enables the potential for flexible electronics, but there has not been a successful graphene sensor architecture that demonstrates stable operation on flexible substrates and with minimal fabrication cost. In this study, the author explores a novel 3-terminal transistor architecture that integrates twodimensional graphene, liquid metal, and electrolytic gate dielectrics (LM-GFETs: Liquid Metal and Graphene Field-Effect Transistors ). The goal is to deliver a sensitive, flexible, and lightweight transistor architecture that will improve sensor technology and maneuverability. The reported high thermal conductivity of graphene provides potential for room-temperature thermal management without the need of thermal-electric and gas cooling systems that are standard in sensor platforms. Liquid metals provide a unique opportunity for conformal electrodes that maximize surface area contact, therefore, enable flexibility, lower contact resistance, and reduce damage to the graphene materials involved. Lastly, electrolytic gate dielectrics provide conformability and high capacitances needed for high on/off rations and electrostatic gating. Results demonstrated that with minimal fabrication steps the proposed flexible graphene transistor architecture demonstrated ambipolar current-voltage transfer characteristics that are comparable to the current state-of-the-art. An additional

  6. Distributed Manufacturing of Flexible Products: Technical Feasibility and Economic Viability

    Directory of Open Access Journals (Sweden)

    Aubrey L. Woern

    2017-10-01

    Full Text Available Distributed manufacturing even at the household level is now well established with the combined use of open source designs and self-replicating rapid prototyper (RepRap 3-D printers. Previous work has shown substantial economic consumer benefits for producing their own polymer products. Now flexible filaments are available at roughly 3-times the cost of more conventional 3-D printing materials. To provide some insight into the potential for flexible filament to be both technically feasible and economically viable for distributed digital manufacturing at the consumer level this study investigates 20 common flexible household products. The 3-D printed products were quantified by print time, electrical energy use and filament consumption by mass to determine the cost to fabricate with a commercial RepRap 3-D printer. Printed parts were inspected and when necessary tested for their targeted application to ensure technical feasibility. Then, the experimentally measured cost to DIY manufacturers was compared to low and high market prices for comparable commercially available products. In addition, the mark-up and potential for long-term price declines was estimated for flexible filaments by converting thermoplastic elastomer (TPE pellets into filament and reground TPE from a local recycling center into filament using an open source recyclebot. This study found that commercial flexible filament is economically as well as technically feasible for providing a means of distributed home-scale manufacturing of flexible products. The results found a 75% savings when compared to the least expensive commercially equivalent products and 92% when compared to high market priced products. Roughly, 160 flexible objects must be substituted to recover the capital costs to print flexible materials. However, as previous work has shown the Lulzbot Mini 3-D printer used in this study would provide more than a 100% ROI printing one object a week from hard thermoplastics

  7. Cognitive Flexibility in Obsessive Compulsive Disorder

    DEFF Research Database (Denmark)

    Jónsson, Hjalti; Salkovskis, Paul M.

    BT for problems such as OCD requires a level of cognitive flexibility (that is the ability to take a different perspective on ones problems). It could be argued that problems in set shifting (by neuropsychological tests) might underpin problems in this area. Two assessments were used (1: perception...... of cognitive flexibility was assessed by questionnaire 2: neuropsychological evaluation of set shifting). This study will recruit three groups: OCD patients, anxious and healthy controls. Cognitive flexibility is measured using modified version of the Cognitive Flexibility Scale (Martin & Rubin, 1995......) and neuropsychological measures of cognitive flexibility (Wisconsin Cart Sorting Test, Trail Making Test A/B, The Brixton Test). IN addition to the group comparison, the relationship between perceived flexibility, set shifting and psychopathology will be investigated. The implications of the findings for treatment...

  8. Comparative analysis on flexibility requirements of typical Cryogenic Transfer lines

    Science.gov (United States)

    Jadon, Mohit; Kumar, Uday; Choukekar, Ketan; Shah, Nitin; Sarkar, Biswanath

    2017-04-01

    The cryogenic systems and their applications; primarily in large Fusion devices, utilize multiple cryogen transfer lines of various sizes and complexities to transfer cryogenic fluids from plant to the various user/ applications. These transfer lines are composed of various critical sections i.e. tee section, elbows, flexible components etc. The mechanical sustainability (under failure circumstances) of these transfer lines are primary requirement for safe operation of the system and applications. The transfer lines need to be designed for multiple design constraints conditions like line layout, support locations and space restrictions. The transfer lines are subjected to single load and multiple load combinations, such as operational loads, seismic loads, leak in insulation vacuum loads etc. [1]. The analytical calculations and flexibility analysis using professional software are performed for the typical transfer lines without any flexible component, the results were analysed for functional and mechanical load conditions. The failure modes were identified along the critical sections. The same transfer line was then refurbished with the flexible components and analysed for failure modes. The flexible components provide additional flexibility to the transfer line system and make it safe. The results obtained from the analytical calculations were compared with those obtained from the flexibility analysis software calculations. The optimization of the flexible component’s size and selection was performed and components were selected to meet the design requirements as per code.

  9. Consumer Central Energy Flexibility in Office Buildings

    DEFF Research Database (Denmark)

    Billanes, Joy Dalmacio; Ma, Zheng; Jørgensen, Bo Nørregaard

    2017-01-01

    Energy flexibility in buildings will play an important role in the smart energy system. Office buildings have more potentials to provide energy flexibility to the grid compared to other types of buildings, due to the existing building management, control systems and large energy consumption....... Consumers in office buildings (building owners/managers and occupants) take a main role for adopting and engaging in building energy flexibility. In this paper provides a systematic review of consumer central energy flexibility in office buildings with the discussion of social, technical and business...... can boost energy flexibility in the office buildings....

  10. Thermally Induced Encapsulation of Food Nutrients into Phytoferritin through the Flexible Channels without Additives.

    Science.gov (United States)

    Yang, Rui; Tian, Jing; Liu, Yuqian; Yang, Zhiying; Wu, Dandan; Zhou, Zhongkai

    2017-11-22

    The cavity of phytoferritin provides a nanospace to encapsulate and deliver food nutrient molecules. However, tranditional methods to prepare the ferritin-nutrient complexes must undergo acid/alkaline conditions or apply additives. In this work, we provide a novel guideline that thermal treatment at 60 °C can expand ferritin channels by uncoiling the surrounding α-helix. Upon reduction of the temperature to 20 °C, food nutrient rutin can be encapsulated in apo-soybean seed ferritin (apoSSF) at pH 7.0 through channels without disassembly of the protein cage and with no addition of additives. Results indicated that one apoSSF could encapsulate about 10.5 molecules of rutin, with an encapsulation ratio of 8.08% (w/w). In addition, the resulting rutin-loaded SSF complexes were monodispersed in a size of 12 nm in aqueous solution. This work provides a novel pathway for the encapsulation of food nutrient molecules into the nanocavity of ferritin under a neutral pH condition induced by thermal treatment.

  11. Challenges in navigational strategies for flexible endoscopy

    NARCIS (Netherlands)

    van der Stap, N.; van der Heijden, Ferdinand; Broeders, Ivo Adriaan Maria Johannes

    Automating flexible endoscope navigation could lead to an increase in patient safety for endoluminal therapeutic procedures. Additionally, it may decrease the costs of diagnostic flexible endoscope procedures by shortening the learning curve and increasing the efficiency of insertion. Earlier

  12. Additive advantage in characteristics of MIMCAPs on flexible silicon (100) fabric with release-first process

    KAUST Repository

    Ghoneim, Mohamed T.

    2013-11-20

    We report the inherent increase in capacitance per unit planar area of state-of-the art high-κ integrated metal/insulator/metal capacitors (MIMCAPs) fabricated on flexible silicon fabric with release-first process. We methodically study and show that our approach to transform bulk silicon (100) into a flexible fabric adds an inherent advantage of enabling higher integration density dynamic random access memory (DRAM) on the same chip area. Our approach is to release an ultra-thin silicon (100) fabric (25 μm thick) from the bulk silicon wafer, then build MIMCAPs using sputtered aluminium electrodes and successive atomic layer depositions (ALD) without break-ing the vacuum of a high-κ aluminium oxide sandwiched between two tantalum nitride layers. This result shows that we can obtain flexible electronics on silicon without sacrificing the high density integration aspects and also utilize the non-planar geometry associated with fabrication process to obtain a higher integration density compared to bulk silicon integration due to an increased normalized capacitance per unit planar area. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Flexible Sensing Electronics for Wearable/Attachable Health Monitoring.

    Science.gov (United States)

    Wang, Xuewen; Liu, Zheng; Zhang, Ting

    2017-07-01

    Wearable or attachable health monitoring smart systems are considered to be the next generation of personal portable devices for remote medicine practices. Smart flexible sensing electronics are components crucial in endowing health monitoring systems with the capability of real-time tracking of physiological signals. These signals are closely associated with body conditions, such as heart rate, wrist pulse, body temperature, blood/intraocular pressure and blood/sweat bio-information. Monitoring such physiological signals provides a convenient and non-invasive way for disease diagnoses and health assessments. This Review summarizes the recent progress of flexible sensing electronics for their use in wearable/attachable health monitoring systems. Meanwhile, we present an overview of different materials and configurations for flexible sensors, including piezo-resistive, piezo-electrical, capacitive, and field effect transistor based devices, and analyze the working principles in monitoring physiological signals. In addition, the future perspectives of wearable healthcare systems and the technical demands on their commercialization are briefly discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Flexible magnetoimpedance sensor

    International Nuclear Information System (INIS)

    Li, Bodong; Kavaldzhiev, Mincho N.; Kosel, Jürgen

    2015-01-01

    Flexible magnetoimpedance (MI) sensors fabricated using a NiFe/Cu/NiFe tri-layer on Kapton substrate have been studied. A customized flexible microstrip transmission line was employed to investigate the MI sensors's magnetic field and frequency responses and their dependence on the sensors's deflection. For the first time, the impedance characteristic is obtained through reflection coefficient analysis over a wide range of frequencies from 0.1 MHz to 3 GHz and for deflections ranging from zero curvature to a radius of 7.2 cm. The sensor element maintains a high MI ratio of up to 90% and magnetic sensitivity of up to 9.2%/Oe over different bending curvatures. The relationship between the curvature and material composition is discussed based on the magnetostriction effect and stress simulations. The sensor's large frequency range, simple fabrication process and high sensitivity provide a great potential for flexible electronics and wireless applications. - Highlights: • A flexible magnetoimpedance (MI) sensor is developed. • Studies are carried out using a flexible microstrip transmission line. • An MI ratio of up to 90% is obtained. • The effect of magnetostriction is studied

  15. Controlled, Constrained, or Flexible? How Self-Management Goals Are Shaped By Patient-Provider Interactions.

    Science.gov (United States)

    Franklin, Marika; Lewis, Sophie; Willis, Karen; Rogers, Anne; Venville, Annie; Smith, Lorraine

    2018-06-01

    A person-centered approach to goal-setting, involving collaboration between patients and health professionals, is advocated in policy to support self-management. However, this is difficult to achieve in practice, reducing the potential effectiveness of self-management support. Drawing on observations of consultations between patients and health professionals, we examined how goal-setting is shaped in patient-provider interactions. Analysis revealed three distinct interactional styles. In controlled interactions, health professionals determine patients' goals based on biomedical reference points and present these goals as something patients should do. In constrained interactions, patients are invited to present goals, yet health professionals' language and questions orientate goals toward biomedical issues. In flexible interactions, patients and professionals both contribute to goal-setting, as health professionals use less directive language, create openings, and allow patients to decide on their goals. Findings suggest that interactional style of health professionals could be the focus of interventions when aiming to increase the effectiveness of goal-setting.

  16. Flexible packaging for PV modules

    Science.gov (United States)

    Dhere, Neelkanth G.

    2008-08-01

    Economic, flexible packages that provide needed level of protection to organic and some other PV cells over >25-years have not yet been developed. However, flexible packaging is essential in niche large-scale applications. Typical configuration used in flexible photovoltaic (PV) module packaging is transparent frontsheet/encapsulant/PV cells/flexible substrate. Besides flexibility of various components, the solder bonds should also be flexible and resistant to fatigue due to cyclic loading. Flexible front sheets should provide optical transparency, mechanical protection, scratch resistance, dielectric isolation, water resistance, UV stability and adhesion to encapsulant. Examples are Tefzel, Tedlar and Silicone. Dirt can get embedded in soft layers such as silicone and obscure light. Water vapor transmittance rate (WVTR) of polymer films used in the food packaging industry as moisture barriers are ~0.05 g/(m2.day) under ambient conditions. In comparison, light emitting diodes employ packaging components that have WVTR of ~10-6 g/(m2.day). WVTR of polymer sheets can be improved by coating them with dense inorganic/organic multilayers. Ethylene vinyl acetate, an amorphous copolymer used predominantly by the PV industry has very high O2 and H2O diffusivity. Quaternary carbon chains (such as acetate) in a polymer lead to cleavage and loss of adhesional strength at relatively low exposures. Reactivity of PV module components increases in presence of O2 and H2O. Adhesional strength degrades due to the breakdown of structure of polymer by reactive, free radicals formed by high-energy radiation. Free radical formation in polymers is reduced when the aromatic rings are attached at regular intervals. This paper will review flexible packaging for PV modules.

  17. Two dimensional nanomaterials for flexible supercapacitors.

    Science.gov (United States)

    Peng, Xu; Peng, Lele; Wu, Changzheng; Xie, Yi

    2014-05-21

    Flexible supercapacitors, as one of most promising emerging energy storage devices, are of great interest owing to their high power density with great mechanical compliance, making them very suitable as power back-ups for future stretchable electronics. Two-dimensional (2D) nanomaterials, including the quasi-2D graphene and inorganic graphene-like materials (IGMs), have been greatly explored to providing huge potential for the development of flexible supercapacitors with higher electrochemical performance. This review article is devoted to recent progresses in engineering 2D nanomaterials for flexible supercapacitors, which survey the evolution of electrode materials, recent developments in 2D nanomaterials and their hybrid nanostructures with regulated electrical properties, and the new planar configurations of flexible supercapacitors. Furthermore, a brief discussion on future directions, challenges and opportunities in this fascinating area is also provided.

  18. High-flexibility, noncollapsing lightweight hose

    Science.gov (United States)

    Williams, D.A.

    1993-04-20

    A high-flexibility, noncollapsing, lightweight, large-bore, wire-reinforced hose is inside fiber-reinforced PVC tubing that is flexible, lightweight, and abrasion resistant. It provides a strong, kink- and collapse-free conduit for moving large quantities of dangerous fluids, e.g., removing radioactive waste water or processing chemicals.

  19. Flexibility in flood management design: proactive planning under uncertainty

    Science.gov (United States)

    Smet, K.; de Neufville, R.; van der Vlist, M.

    2016-12-01

    This paper presents a value-enhancing approach for proactive planning and design of long-lived flood management infrastructure given uncertain future flooding threats. Designing infrastructure that can be adapted over time is a method to safeguard the efficacy of current design decisions given future uncertainties. We explore the value of embedding "options" in a physical structure, where an option is the right but not the obligation to do something at a later date (e.g. over-dimensioning a floodwall foundation now facilitates a future height addition in response to observed increases in sea level; building extra pump bays in a drainage pumping station enables the easy addition of pumping capacity whenever increased precipitation warrants an expansion.) The proposed approach couples a simulation model that captures future climate induced changes to the hydrologic operating environment of a structure, with an economic model that estimates the lifetime economic performance of alternative investment strategies. The economic model uses Real "In" Options analysis, a type of cash flow analysis that quantifies the implicit value of options and the flexibility they provide. We demonstrate the approach using replacement planning for the multi-functional pumping station IJmuiden on the North Sea Canal in the Netherlands. The analysis models flexibility in design decisions, varying the size and specific options included in the new structure. Results indicate that the incorporation of options within the structural design has the potential to improve its economic performance, as compared to more traditional, "build it once and build it big" designs where flexibility is not an explicit design criterion. The added value resulting from the incorporation of flexibility varies with the range of future conditions considered, and the specific options examined. This approach could be applied to explore investment strategies for the design of other flood management structures, as well

  20. Simulation analysis of resource flexibility on healthcare processes.

    Science.gov (United States)

    Simwita, Yusta W; Helgheim, Berit I

    2016-01-01

    This paper uses discrete event simulation to explore the best resource flexibility scenario and examine the effect of implementing resource flexibility on different stages of patient treatment process. Specifically we investigate the effect of resource flexibility on patient waiting time and throughput in an orthopedic care process. We further seek to explore on how implementation of resource flexibility on patient treatment processes affects patient access to healthcare services. We focus on two resources, namely, orthopedic surgeon and operating room. The observational approach was used to collect process data. The developed model was validated by comparing the simulation output with actual patient data collected from the studied orthopedic care process. We developed different scenarios to identify the best resource flexibility scenario and explore the effect of resource flexibility on patient waiting time, throughput, and future changes in demand. The developed scenarios focused on creating flexibility on service capacity of this care process by altering the amount of additional human resource capacity at different stages of patient care process and extending the use of operating room capacity. The study found that resource flexibility can improve responsiveness to patient demand in the treatment process. Testing different scenarios showed that the introduction of resource flexibility reduces patient waiting time and improves throughput. The simulation results show that patient access to health services can be improved by implementing resource flexibility at different stages of the patient treatment process. This study contributes to the current health care literature by explaining how implementing resource flexibility at different stages of patient care processes can improve ability to respond to increasing patients demands. This study was limited to a single patient process; studies focusing on additional processes are recommended.

  1. Development and initial evaluation of an enhanced measure of boundary flexibility for the work and family domains.

    Science.gov (United States)

    Matthews, Russell A; Barnes-Farrell, Janet L

    2010-07-01

    This manuscript reports the development of a measure of work and family domain boundary flexibility. Building on previous research, we propose an expanded definition of boundary flexibility that includes two components-flexibility-ability and flexibility-willingness-and we develop a measure designed to capture this more comprehensive definition of boundary flexibility. Flexibility-ability is conceptualized as an individual's perception of personal and situational constraints that affect boundary management, and flexibility-willingness is conceptualized as an individual difference variable that captures the motivation to engage in boundary flexing. An additional feature of domain boundaries, permeability, is also examined. Data are presented from two studies. Study 1 (N = 244) describes the development of a multiscale measure that extends current conceptual definitions of boundary flexibility. Study 2 (N = 225) describes the refinement and evaluation of this measure. Confirmatory factor analysis, reliability evidence, interscale correlations, and correlations with important work-family constructs (e.g., domain centrality, work-family conflict) provide initial construct validity evidence for the measure.

  2. High Performance Electronics on Flexible Silicon

    KAUST Repository

    Sevilla, Galo T.

    2016-09-01

    Over the last few years, flexible electronic systems have gained increased attention from researchers around the world because of their potential to create new applications such as flexible displays, flexible energy harvesters, artificial skin, and health monitoring systems that cannot be integrated with conventional wafer based complementary metal oxide semiconductor processes. Most of the current efforts to create flexible high performance devices are based on the use of organic semiconductors. However, inherent material\\'s limitations make them unsuitable for big data processing and high speed communications. The objective of my doctoral dissertation is to develop integration processes that allow the transformation of rigid high performance electronics into flexible ones while maintaining their performance and cost. In this work, two different techniques to transform inorganic complementary metal-oxide-semiconductor electronics into flexible ones have been developed using industry compatible processes. Furthermore, these techniques were used to realize flexible discrete devices and circuits which include metal-oxide-semiconductor field-effect-transistors, the first demonstration of flexible Fin-field-effect-transistors, and metal-oxide-semiconductors-based circuits. Finally, this thesis presents a new technique to package, integrate, and interconnect flexible high performance electronics using low cost additive manufacturing techniques such as 3D printing and inkjet printing. This thesis contains in depth studies on electrical, mechanical, and thermal properties of the fabricated devices.

  3. Ferroelectric Zinc Oxide Nanowire Embedded Flexible Sensor for Motion and Temperature Sensing.

    Science.gov (United States)

    Shin, Sung-Ho; Park, Dae Hoon; Jung, Joo-Yun; Lee, Min Hyung; Nah, Junghyo

    2017-03-22

    We report a simple method to realize multifunctional flexible motion sensor using ferroelectric lithium-doped ZnO-PDMS. The ferroelectric layer enables piezoelectric dynamic sensing and provides additional motion information to more precisely discriminate different motions. The PEDOT:PSS-functionalized AgNWs, working as electrode layers for the piezoelectric sensing layer, resistively detect a change of both movement or temperature. Thus, through the optimal integration of both elements, the sensing limit, accuracy, and functionality can be further expanded. The method introduced here is a simple and effective route to realize a high-performance flexible motion sensor with integrated multifunctionalities.

  4. Flexible Work Options within the Organisational System

    Science.gov (United States)

    Albion, Majella J.; Chee, Munli

    2006-01-01

    The availability of flexible work options provides an opportunity for individuals to shape their careers in order to optimise their work and life goals. This study takes a systems theory approach to examine how the use of flexible work options influences relationships and interactions in the workplace. The "Flexible Work Options…

  5. Interactive Web-based e-learning for Studying Flexible Manipulator Systems

    Directory of Open Access Journals (Sweden)

    Abul K. M. Azad

    2008-03-01

    Full Text Available Abstract— This paper presents a web-based e-leaning facility for simulation, modeling, and control of flexible manipulator systems. The simulation and modeling part includes finite difference and finite element simulations along with neural network and genetic algorithm based modeling strategies for flexible manipulator systems. The controller part constitutes a number of open-loop and closed-loop designs. Closed loop control designs include the classical, adaptive, and neuro-model based strategies. Matlab software package and its associated toolboxes are used to implement these. The Matlab web server is used as the gateway between the facility and web-access. ASP.NET technology and SQL database are utilized to develop web applications for access control, user account and password maintenance, administrative management, and facility utilization monitoring. The reported facility provides a flexible but effective approach of web-based interactive e-learning facility of an engineering system. This can be extended to incorporate additional engineering systems within the e-learning framework.

  6. Flexible Query Answering Systems 2006

    DEFF Research Database (Denmark)

    -computer interaction. The overall theme of the FQAS conferences is innovative query systems aimed at providing easy, flexible, and intuitive access to information. Such systems are intended to facilitate retrieval from information repositories such as databases, libraries, and the World-Wide Web. These repositories......This volume constitutes the proceedings of the Seventh International Conference on Flexible Query Answering Systems, FQAS 2006, held in Milan, Italy, on June 7--10, 2006. FQAS is the premier conference for researchers and practitioners concerned with the vital task of providing easy, flexible...... are typically equipped with standard query systems which are often inadequate, and the focus of FQAS is the development of query systems that are more expressive, informative, cooperative, and productive. These proceedings contain contributions from invited speakers and 53 original papers out of about 100...

  7. Flexible interaction of plug-in electric vehicle parking lots for efficient wind integration

    International Nuclear Information System (INIS)

    Heydarian-Forushani, E.; Golshan, M.E.H.; Shafie-khah, M.

    2016-01-01

    Highlights: • Interactive incorporation of plug-in electric vehicle parking lots is investigated. • Flexible energy and reserve services are provided by electric vehicle parking lots. • Uncertain characterization of electric vehicle owners’ behavior is taken into account. • Coordinated operation of parking lots can facilitate wind power integration. - Abstract: The increasing share of uncertain wind generation has changed traditional operation scheduling of power systems. The challenges of this additional variability raise the need for an operational flexibility in providing both energy and reserve. One key solution is an effective incorporation of plug-in electric vehicles (PEVs) into the power system operation process. To this end, this paper proposes a two-stage stochastic programming market-clearing model considering the network constraints to achieve the optimal scheduling of conventional units as well as PEV parking lots (PLs) in providing both energy and reserve services. Different from existing works, the paper pays more attention to the uncertain characterization of PLs takes into account the arrival/departure time of PEVs to/from the PL, the initial state of charge (SOC) of PEVs, and their battery capacity through a set of scenarios in addition to wind generation scenarios. The results reveal that although the cost saving as a consequence of incorporating PL to the grid is below 1% of total system cost, however, flexible interactions of PL in the energy and reserve markets can promote the integration of wind power more than 13.5%.

  8. Optimal reduction of flexible dynamic system

    International Nuclear Information System (INIS)

    Jankovic, J.

    1994-01-01

    Dynamic system reduction is basic procedure in various problems of active control synthesis of flexible structures. In this paper is presented direct method for system reduction by explicit extraction of modes included in reduced model form. Criterion for optimal system discrete approximation in synthesis reduced dynamic model is also presented. Subjected method of system decomposition is discussed in relation to the Schur method of solving matrix algebraic Riccati equation as condition for system reduction. By using exposed method procedure of flexible system reduction in addition with corresponding example is presented. Shown procedure is powerful in problems of active control synthesis of flexible system vibrations

  9. Flexibility Predicts Curve Progression in Providence Nighttime Bracing of Patients With Adolescent Idiopathic Scoliosis

    DEFF Research Database (Denmark)

    Ohrt-Nissen, Søren; Hallager, Dennis Winge; Gehrchen, Poul Martin

    2016-01-01

    for adolescent idiopathic ccoliosis (AIS) have been inconsistent and further research is needed. The association between flexibility, as determined by pretreatment SLBR, and curve progression has not previously been examined. METHODS: All patients treated with the PB from 2006 to 2011 who met Scoliosis Research...

  10. TH-CD-201-08: Flexible Dosimeter Bands for Whole-Body Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T; Fahimian, B; Pratx, G [Department of Radiation Oncology, Stanford University, Palo Alto, CA (United States)

    2016-06-15

    Purpose: The two commonly used radiotherapy techniques are total body irradiation (TBI) and the total skin irradiation (TSI). In order to ensure the accuracy of the prescription beams, the dose received throughout the entire body must be checked using dosimetry. However, the available number of data points is limited as the dosimeters are manually placed on the patient. We developed a flexible and wearable dosimeter that can collect 1D continuous dose information around the peripheral of the patients’ body, including areas obscured from the beam path. Methods: The flexible dosimeter bands are fabricated by embedding storage phosphor powders in a thin layer of non-toxic silicone based elastomer (PDMS). An additional elastomer layer is formed on top of the phosphor layer to provide additional mechanical support for the dosimeter. Once the curing process is complete, the dosimeter is cut into multiple bands and rolled into spools prior to use. Results: The dose responses are tested using a preclinical cabinet X-ray system, where the readout is performed with a storage phosphor reader. Results show that the dose calibration factor is ∼1400 (A.U./Gy) from the beam center. Also, 1-D dose distribution experiment was performed in water phantoms, where preliminary results demonstrate that the dose in water is indeed attenuated compared to in air. Conclusion: Dose response and high-resolution 1-D dosimetry is demonstrated using the flexible dosimeters. By providing a detailed spatial description of the beam dose profile, we expect that the dosimeter bands may aid in enhancing the current existing modality in dosimetry. Since the dosimeter is flexible (can retract back to its original length), they can be comfortably worn around the patient. Potentially, multiple 1-D dose information can be stitched together and extrapolated to provide a coarse 3-D image of the dose distribution. This work was supported by funding from the Cutaneous Lymphoma Foundation under the CLARIONS

  11. TH-CD-201-08: Flexible Dosimeter Bands for Whole-Body Dosimetry

    International Nuclear Information System (INIS)

    Kim, T; Fahimian, B; Pratx, G

    2016-01-01

    Purpose: The two commonly used radiotherapy techniques are total body irradiation (TBI) and the total skin irradiation (TSI). In order to ensure the accuracy of the prescription beams, the dose received throughout the entire body must be checked using dosimetry. However, the available number of data points is limited as the dosimeters are manually placed on the patient. We developed a flexible and wearable dosimeter that can collect 1D continuous dose information around the peripheral of the patients’ body, including areas obscured from the beam path. Methods: The flexible dosimeter bands are fabricated by embedding storage phosphor powders in a thin layer of non-toxic silicone based elastomer (PDMS). An additional elastomer layer is formed on top of the phosphor layer to provide additional mechanical support for the dosimeter. Once the curing process is complete, the dosimeter is cut into multiple bands and rolled into spools prior to use. Results: The dose responses are tested using a preclinical cabinet X-ray system, where the readout is performed with a storage phosphor reader. Results show that the dose calibration factor is ∼1400 (A.U./Gy) from the beam center. Also, 1-D dose distribution experiment was performed in water phantoms, where preliminary results demonstrate that the dose in water is indeed attenuated compared to in air. Conclusion: Dose response and high-resolution 1-D dosimetry is demonstrated using the flexible dosimeters. By providing a detailed spatial description of the beam dose profile, we expect that the dosimeter bands may aid in enhancing the current existing modality in dosimetry. Since the dosimeter is flexible (can retract back to its original length), they can be comfortably worn around the patient. Potentially, multiple 1-D dose information can be stitched together and extrapolated to provide a coarse 3-D image of the dose distribution. This work was supported by funding from the Cutaneous Lymphoma Foundation under the CLARIONS

  12. 76 FR 5319 - Regulation of Fuel and Fuel Additives: Alternative Test Method for Olefins in Gasoline

    Science.gov (United States)

    2011-01-31

    ... Regulation of Fuel and Fuel Additives: Alternative Test Method for Olefins in Gasoline AGENCY: Environmental... gasoline. This proposed rule will provide flexibility to the regulated community by allowing an additional... A. Alternative Test Method for Olefins in Gasoline III. Statutory and Executive Order Reviews A...

  13. 76 FR 65382 - Regulation of Fuel and Fuel Additives: Alternative Test Method for Olefins in Gasoline

    Science.gov (United States)

    2011-10-21

    ... Regulation of Fuel and Fuel Additives: Alternative Test Method for Olefins in Gasoline AGENCY: Environmental... gasoline. This final rule will provide flexibility to the regulated community by allowing an additional... Method for Olefins in Gasoline III. Statutory and Executive Order Reviews A. Executive Order 12866...

  14. High performance flexible pH sensor based on polyaniline nanopillar array electrode.

    Science.gov (United States)

    Yoon, Jo Hee; Hong, Seok Bok; Yun, Seok-Oh; Lee, Seok Jae; Lee, Tae Jae; Lee, Kyoung G; Choi, Bong Gill

    2017-03-15

    Flexible pH sensor technologies have attracted a great deal of attention in many applications, such as, wearable health care devices and monitors for chemical and biological processes. Here, we fabricated flexible and thin pH sensors using a two electrode configuration comprised of a polyaniline nanopillar (PAN) array working electrode and an Ag/AgCl reference electrode. In order to provide nanostructure, soft lithography using a polymeric blend was employed to create a flexible nanopillar backbone film. Polyaniline-sensing materials were deposited on a patterned-nanopillar array by electrochemical deposition. The pH sensors produced exhibited a near-Nernstian response (∼60.3mV/pH), which was maintained in a bent state. In addition, pH sensors showed other excellent sensor performances in terms of response time, reversibility, repeatability, selectivity, and stability. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Flexibility and reliability in long-term planning exercises dedicated to the electricity sector

    Energy Technology Data Exchange (ETDEWEB)

    Maizi, Nadia; Drouineau, Mathilde; Assoumou, Edi; Mazauric, Vincent

    2010-09-15

    Long-term planning models are useful to build plausible options for future energy systems and must consequently address the technological feasibility and associated cost of these options. This paper focuses on the electricity sector and on problems of flexibility and reliability in power systems in order to improve results provided by long-term planning exercises: flexibility needs are integrated as an additional criterion for new investment decisions and, reliability requirements are assessed through the level of electrical losses they induced and a related cost. These approaches are implemented in a long-term planning model and demonstrated through a study of the Reunion Island.

  16. Additive manufacturing: state-of-the-art and application framework

    DEFF Research Database (Denmark)

    Rodrigues, Vinicius Picanco; de Senzi Zancul, Eduardo; Gonçalves Mançanares, Cauê

    2017-01-01

    Additive manufacturing encompasses a class of production processes with increasing applications indifferent areas and supply chains. Due to its flexibility for production in small batches and the versatilityof materials and geometries, this technology is recognized as being capable...... of revolutionizing theproduction processes as well as changing production strategies that are currently employed. However,there are different technologies under the generic label of additive manufacturing, materials and applicationareas with different requirements. Given the growing importance of additive...... manufacturingas a production process, and also considering the need to have a better insight into the potential applicationsfor driving research and development efforts, this article presents a proposal of organizationfor additive manufacturing applications in seven areas. Additionally, the article provides...

  17. A Flexible Binding Site Architecture Provides New Insights into CcpA Global Regulation in Gram-Positive Bacteria.

    Science.gov (United States)

    Yang, Yunpeng; Zhang, Lu; Huang, He; Yang, Chen; Yang, Sheng; Gu, Yang; Jiang, Weihong

    2017-01-24

    Catabolite control protein A (CcpA) is the master regulator in Gram-positive bacteria that mediates carbon catabolite repression (CCR) and carbon catabolite activation (CCA), two fundamental regulatory mechanisms that enable competitive advantages in carbon catabolism. It is generally regarded that CcpA exerts its regulatory role by binding to a typical 14- to 16-nucleotide (nt) consensus site that is called a catabolite response element (cre) within the target regions. However, here we report a previously unknown noncanonical flexible architecture of the CcpA-binding site in solventogenic clostridia, providing new mechanistic insights into catabolite regulation. This novel CcpA-binding site, named cre var , has a unique architecture that consists of two inverted repeats and an intervening spacer, all of which are variable in nucleotide composition and length, except for a 6-bp core palindromic sequence (TGTAAA/TTTACA). It was found that the length of the intervening spacer of cre var can affect CcpA binding affinity, and moreover, the core palindromic sequence of cre var is the key structure for regulation. Such a variable architecture of cre var shows potential importance for CcpA's diverse and fine regulation. A total of 103 potential cre var sites were discovered in solventogenic Clostridium acetobutylicum, of which 42 sites were picked out for electrophoretic mobility shift assays (EMSAs), and 30 sites were confirmed to be bound by CcpA. These 30 cre var sites are associated with 27 genes involved in many important pathways. Also of significance, the cre var sites are found to be widespread and function in a great number of taxonomically different Gram-positive bacteria, including pathogens, suggesting their global role in Gram-positive bacteria. In Gram-positive bacteria, the global regulator CcpA controls a large number of important physiological and metabolic processes. Although a typical consensus CcpA-binding site, cre, has been identified, it remains

  18. Flexible Early Warning Systems with Workflows and Decision Tables

    Science.gov (United States)

    Riedel, F.; Chaves, F.; Zeiner, H.

    2012-04-01

    An essential part of early warning systems and systems for crisis management are decision support systems that facilitate communication and collaboration. Often official policies specify how different organizations collaborate and what information is communicated to whom. For early warning systems it is crucial that information is exchanged dynamically in a timely manner and all participants get exactly the information they need to fulfil their role in the crisis management process. Information technology obviously lends itself to automate parts of the process. We have experienced however that in current operational systems the information logistics processes are hard-coded, even though they are subject to change. In addition, systems are tailored to the policies and requirements of a certain organization and changes can require major software refactoring. We seek to develop a system that can be deployed and adapted to multiple organizations with different dynamic runtime policies. A major requirement for such a system is that changes can be applied locally without affecting larger parts of the system. In addition to the flexibility regarding changes in policies and processes, the system needs to be able to evolve; when new information sources become available, it should be possible to integrate and use these in the decision process. In general, this kind of flexibility comes with a significant increase in complexity. This implies that only IT professionals can maintain a system that can be reconfigured and adapted; end-users are unable to utilise the provided flexibility. In the business world similar problems arise and previous work suggested using business process management systems (BPMS) or workflow management systems (WfMS) to guide and automate early warning processes or crisis management plans. However, the usability and flexibility of current WfMS are limited, because current notations and user interfaces are still not suitable for end-users, and workflows

  19. Flexibility.

    Science.gov (United States)

    Humphrey, L. Dennis

    1981-01-01

    Flexibility is an important aspect of all sports and recreational activities. Flexibility can be developed and maintained by stretching exercises. Exercises designed to develop flexibility in ankle joints, knees, hips, and the lower back are presented. (JN)

  20. Flexibility at Work: A Study of Further Education.

    Science.gov (United States)

    Edwards, Richard; Clarke, Julia; Harrison, Roger; Reeve, Fiona

    2001-01-01

    Interviews with 50 further education managers, lecturers, and students in Britain identified complex ways in which flexibility is experienced: (1) lecturers feel increasingly busy trying to provide flexibility; (2) role boundaries are becoming more and more fuzzy in the flexible workplace; and (3) there are notions of "good" and…

  1. Flexible Software Design for Korean WA-DGNSS Reference Station

    Directory of Open Access Journals (Sweden)

    Wan Sik Choi

    2013-03-01

    Full Text Available In this paper, we describe the software design results of WA-DGNSS reference station that will be constructed in Korea in the near future. Software design of the WRS (Wide area Reference Station is carried out by applying object oriented software methodology in order to provide flexibilities: easy of model change (namely ionospheric delay model etc and system addition (Galileo, GLONASS in addition to GPS etc. Software design results include the use case diagrams for the functions to be executed, the architecture diagram showing components and their relationships, the activity diagrams of behaviors and models among them, and class diagrams describing the attribute and operation.

  2. High-performance flexible all-solid-state supercapacitors based on densely-packed graphene/polypyrrole nanoparticle papers

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chao; Zhang, Liling [Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Dong Chuan Road No. 800, Shanghai, 200240 (China); Hu, Nantao, E-mail: hunantao@sjtu.edu.cn [Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Dong Chuan Road No. 800, Shanghai, 200240 (China); Yang, Zhi; Wei, Hao [Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Dong Chuan Road No. 800, Shanghai, 200240 (China); Wang, Yanyan, E-mail: yywang@suda.edu.cn [College of Physics, Optoelectronics and Energy, Soochow University, Suzhou, 215006 (China); Zhang, Yafei, E-mail: yfzhang@sjtu.edu.cn [Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Dong Chuan Road No. 800, Shanghai, 200240 (China)

    2016-11-30

    Highlights: • The addition of methyl orange can affect the size of polypyrrole nanoparticles. • The flexible hybrid paper has a highly-interconnected sandwich framework. • The hybrid paper shows a high areal and volumetric specific capacitance. • Flexible all-solid-state supercapacitor exhibits excellent capacitive performances. - Abstract: Graphene-based all-solid-state supercapacitors (ASSSCs) have received increasing attention. It’s a great challenge to fabricate high-performance flexible solid-state supercapacitors with high areal and volumetric energy storage capability, superior electron and ion conductivity, robust mechanical flexibility, as well as long term stability. Herein, we report a facile method to fabricate flexible ASSSCs based on densely-packed reduced graphene oxide (rGO)/polypyrrole nanoparticle (PPy NP) hybrid papers with a sandwich framework, which consists of well-separated and continuously-aligned rGO sheets. The incorporation of PPy NPs not only provides pseudocapacitance but also facilitates the infiltration of gel electrolyte. The assembled ASSSCs possess maximum areal and volumetric specific capacitances of 477 mF/cm{sup 2} and 94.9 F/cm{sup 3} at 0.5 mA/cm{sup 2}. They also exhibit little capacitance deviation under different bending states, excellent cycling stability, small leakage current and low self-discharge characteristics. Additionally, the maximum areal and volumetric energy densities of 132.5 μWh/cm{sup 2} and 26.4 mWh/cm{sup 3} are achieved, which indicate that this hybrid paper is a promising candidate for high-performance flexible energy storage devices.

  3. Characterization of polymer silver pastes for screen printed flexible RFID antennas

    Science.gov (United States)

    Janeczek, Kamil; Jakubowska, Małgorzata; Futera, Konrad; MłoŻniak, Anna; Kozioł, GraŻyna; Araźna, Aneta

    Radio Frequency Identification (RFID) systems have become more and more popular in the last few years because of their wide application fields, such as supply chain management and logistics. To continue their development further investigations of new conductive materials for fabrication of RFID transponders' antennas are necessary to be carried out. These materials should provide high flexibility and good radiation performance of printed antennas. In this paper, two polymer silver pastes based on silver flakes were characterized with regard to manufacturing of flexible RFID antennas with screen printing technique. Foil and paper were used as a substrate materials. Surface profile of the printed antennas was measured using an optical profilometer and their resistance was measured with a four-point-probe method. Antenna flexibility was evaluated in cyclic bending tests and its performance with reflection coefficient measurements with the use of differential probe connected to a vector network analyzer. In addition, a maximum read distance of a fabricated RFID transponder was measured.

  4. Labor Supply Flexibility and Portfolio Choice

    OpenAIRE

    Zvi Bodie; William Samuelson

    1989-01-01

    This paper develops a model showing that people who have flexibility in choosing how much to work will prefer to invest substantially more of their money in risky assets than if they had no such flexibility. Viewed in this way, labor supply flexibility offers insurance against adverse investment outcomes. The model provides support for the conventional wisdom that the young can tolerate more risk in their investment portfolios than the old. The model has other implications for the study of ho...

  5. Novel Electrolyzer Applications: Providing More Than Just Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Eichman, J.; Harrison, K.; Peters, M.

    2014-09-01

    Hydrogen can be used for many different applications and can be integrated into many different system architectures. One of the methods for producing the hydrogen is to use an electrolyzer. This work explores the flexibility of electrolyzers to behave as responsive loads. Experimental tests were performed for a proton exchange membrane (PEM) and an alkaline electrolyzer to assess the operational flexibility of electrolyzers to behave as responsive loads. The results are compared to the operational requirements to participate in end-user facility energy management, transmission and distribution system support, and wholesale electricity market services. Electrolyzers begin changing their electricity demand within milliseconds of a set-point change. The settling time after a set-point change is on the order of seconds. It took 6.5 minutes for the PEM unit to execute a cold start and 1 minute to turn off. In addition, a frequency disturbance correction test was performed and electrolyzers were able to accelerate the speed that the grid frequency can be restored. Electrolyzers acting as demand response devices can respond sufficiently fast and for a long enough duration to participate in all of the applications explored. Furthermore, electrolyzers can be operated to support a variety of applications while also providing hydrogen for industrial processes, transportation fuel, or heating fuel. Additionally, favorable operating properties and a variety of potential system architectures showcase the flexibility of electrolyzer systems.

  6. Gender consistency and flexibility: using dynamics to understand the relationship between gender and adjustment.

    Science.gov (United States)

    DiDonato, Matthew D; Martin, Carol L; Hessler, Eric E; Amazeen, Polemnia G; Hanish, Laura D; Fabes, Richard A

    2012-04-01

    Controversy surrounds questions regarding the influence of being gender consistent (i.e., having and expressing gendered characteristics that are consistent with one's biological sex) versus being gender flexible (i.e., having and expressing gendered characteristics that vary from masculine to feminine as circumstances arise) on children's adjustment outcomes, such as self-esteem, positive emotion, or behavior problems. Whereas evidence supporting the consistency hypothesis is abundant, little support exists for the flexibility hypothesis. To shed new light on the flexibility hypothesis, we explored children's gendered behavior from a dynamical perspective that highlighted variability and flexibility in addition to employing a conventional approach that emphasized stability and consistency. Conventional mean-level analyses supported the consistency hypothesis by revealing that gender atypical behavior was related to greater maladjustment, and dynamical analyses supported the flexibility hypothesis by showing that flexibility of gendered behavior over time was related to positive adjustment. Integrated analyses showed that gender typical behavior was related to the adjustment of children who were behaviorally inflexible, but not for those who were flexible. These results provided a more comprehensive understanding of the relation between gendered behavior and adjustment in young children and illustrated for the first time the feasibility of applying dynamical analyses to the study of gendered behavior.

  7. Developmental constraints on behavioural flexibility.

    Science.gov (United States)

    Holekamp, Kay E; Swanson, Eli M; Van Meter, Page E

    2013-05-19

    We suggest that variation in mammalian behavioural flexibility not accounted for by current socioecological models may be explained in part by developmental constraints. From our own work, we provide examples of constraints affecting variation in behavioural flexibility, not only among individuals, but also among species and higher taxonomic units. We first implicate organizational maternal effects of androgens in shaping individual differences in aggressive behaviour emitted by female spotted hyaenas throughout the lifespan. We then compare carnivores and primates with respect to their locomotor and craniofacial adaptations. We inquire whether antagonistic selection pressures on the skull might impose differential functional constraints on evolvability of skulls and brains in these two orders, thus ultimately affecting behavioural flexibility in each group. We suggest that, even when carnivores and primates would theoretically benefit from the same adaptations with respect to behavioural flexibility, carnivores may nevertheless exhibit less behavioural flexibility than primates because of constraints imposed by past adaptations in the morphology of the limbs and skull. Phylogenetic analysis consistent with this idea suggests greater evolutionary lability in relative brain size within families of primates than carnivores. Thus, consideration of developmental constraints may help elucidate variation in mammalian behavioural flexibility.

  8. Flexible Graphene-Based Wearable Gas and Chemical Sensors.

    Science.gov (United States)

    Singh, Eric; Meyyappan, M; Nalwa, Hari Singh

    2017-10-11

    Wearable electronics is expected to be one of the most active research areas in the next decade; therefore, nanomaterials possessing high carrier mobility, optical transparency, mechanical robustness and flexibility, lightweight, and environmental stability will be in immense demand. Graphene is one of the nanomaterials that fulfill all these requirements, along with other inherently unique properties and convenience to fabricate into different morphological nanostructures, from atomically thin single layers to nanoribbons. Graphene-based materials have also been investigated in sensor technologies, from chemical sensing to detection of cancer biomarkers. The progress of graphene-based flexible gas and chemical sensors in terms of material preparation, sensor fabrication, and their performance are reviewed here. The article provides a brief introduction to graphene-based materials and their potential applications in flexible and stretchable wearable electronic devices. The role of graphene in fabricating flexible gas sensors for the detection of various hazardous gases, including nitrogen dioxide (NO 2 ), ammonia (NH 3 ), hydrogen (H 2 ), hydrogen sulfide (H 2 S), carbon dioxide (CO 2 ), sulfur dioxide (SO 2 ), and humidity in wearable technology, is discussed. In addition, applications of graphene-based materials are also summarized in detecting toxic heavy metal ions (Cd, Hg, Pb, Cr, Fe, Ni, Co, Cu, Ag), and volatile organic compounds (VOCs) including nitrobenzene, toluene, acetone, formaldehyde, amines, phenols, bisphenol A (BPA), explosives, chemical warfare agents, and environmental pollutants. The sensitivity, selectivity and strategies for excluding interferents are also discussed for graphene-based gas and chemical sensors. The challenges for developing future generation of flexible and stretchable sensors for wearable technology that would be usable for the Internet of Things (IoT) are also highlighted.

  9. Additive advantage in characteristics of MIMCAPs on flexible silicon (100) fabric with release-first process

    KAUST Repository

    Ghoneim, Mohamed T.; Rojas, Jhonathan Prieto; Hussain, Aftab M.; Hussain, Muhammad Mustafa

    2013-01-01

    We report the inherent increase in capacitance per unit planar area of state-of-the art high-κ integrated metal/insulator/metal capacitors (MIMCAPs) fabricated on flexible silicon fabric with release-first process. We methodically study and show

  10. Flexible magnetoimpedance sensor

    KAUST Repository

    Li, Bodong

    2015-03-01

    Flexible magnetoimpedance (MI) sensors fabricated using a NiFe/Cu/NiFe tri-layer on Kapton substrate have been studied. A customized flexible microstrip transmission line was employed to investigate the MI sensors\\'s magnetic field and frequency responses and their dependence on the sensors\\'s deflection. For the first time, the impedance characteristic is obtained through reflection coefficient analysis over a wide range of frequencies from 0.1 MHz to 3 GHz and for deflections ranging from zero curvature to a radius of 7.2 cm. The sensor element maintains a high MI ratio of up to 90% and magnetic sensitivity of up to 9.2%/Oe over different bending curvatures. The relationship between the curvature and material composition is discussed based on the magnetostriction effect and stress simulations. The sensor\\'s large frequency range, simple fabrication process and high sensitivity provide a great potential for flexible electronics and wireless applications.

  11. Additive manufacturing for steels: a review

    Science.gov (United States)

    Zadi-Maad, A.; Rohib, R.; Irawan, A.

    2018-01-01

    Additive manufacturing (AM) of steels involves the layer by layer consolidation of powder or wire feedstock using a heating beam to form near net shape products. For the past decades, the AM technique reaches the maturation of both research grade and commercial production due to significant research work from academic, government and industrial research organization worldwide. AM process has been implemented to replace the conventional process of steel fabrication due to its potentially lower cost and flexibility manufacturing. This paper provides a review of previous research related to the AM methods followed by current challenges issues. The relationship between microstructure, mechanical properties, and process parameters will be discussed. Future trends and recommendation for further works are also provided.

  12. Directly Printable Flexible Strain Sensors for Bending and Contact Feedback of Soft Actuators

    Directory of Open Access Journals (Sweden)

    Khaled Elgeneidy

    2018-02-01

    Full Text Available This paper presents a fully printable sensorized bending actuator that can be calibrated to provide reliable bending feedback and simple contact detection. A soft bending actuator following a pleated morphology, as well as a flexible resistive strain sensor, were directly 3D printed using easily accessible FDM printer hardware with a dual-extrusion tool head. The flexible sensor was directly welded to the bending actuator’s body and systematically tested to characterize and evaluate its response under variable input pressure. A signal conditioning circuit was developed to enhance the quality of the sensory feedback, and flexible conductive threads were used for wiring. The sensorized actuator’s response was then calibrated using a vision system to convert the sensory readings to real bending angle values. The empirical relationship was derived using linear regression and validated at untrained input conditions to evaluate its accuracy. Furthermore, the sensorized actuator was tested in a constrained setup that prevents bending, to evaluate the potential of using the same sensor for simple contact detection by comparing the constrained and free-bending responses at the same input pressures. The results of this work demonstrated how a dual-extrusion FDM printing process can be tuned to directly print highly customizable flexible strain sensors that were able to provide reliable bending feedback and basic contact detection. The addition of such sensing capability to bending actuators enhances their functionality and reliability for applications such as controlled soft grasping, flexible wearables, and haptic devices.

  13. Enzyme hydration, activity and flexibility : A neutron scattering approach

    International Nuclear Information System (INIS)

    Kurkal-Siebert, V.; Finney, J.L.; Daniel, R.M.; Smith, Jeremy C.

    2006-01-01

    Recent measurements have demonstrated enzyme activity at hydrations as low as 3%. The question of whether the hydration-induced enzyme flexibility is important for activity is addressed by performing picosecond dynamic neutron scattering experiments on pig liver esterase powders at various temperatures as well as solutions. At all temperatures and hydrations investigated here, significant quasielastic scattering intensity is found in the protein, indicating the presence of anharmonic, diffusive motion. As the hydration increases a temperature-dependent dynamical transition appears and strengthens involving additional diffusive motion. At low temperature, increasing hydration resulted in lower flexibility of the enzyme. At higher temperatures, systems containing sufficient number of water molecules interacting with the protein exhibit increased flexibility. The implication of these results is that, although the additional hydration-induced diffusive motion and flexibility at high temperatures in the enzyme detected here may be related to increased activity, they are not required for the enzyme to function

  14. A stochastic framework for the grid integration of wind power using flexible load approach

    International Nuclear Information System (INIS)

    Heydarian-Forushani, E.; Moghaddam, M.P.; Sheikh-El-Eslami, M.K.; Shafie-khah, M.; Catalão, J.P.S.

    2014-01-01

    Highlights: • This paper focuses on the potential of Demand Response Programs (DRPs) to contribute to flexibility. • A stochastic network constrained unit commitment associated with DR is presented. • DR participation levels and electricity tariffs are evaluated on providing a flexible load profile. • Novel quantitative indices for evaluating flexibility are defined to assess the success of DRPs. • DR types and customer participation levels are the main factors to modify the system load profile. - Abstract: Wind power integration has always been a key research area due to the green future power system target. However, the intermittent nature of wind power may impose some technical and economic challenges to Independent System Operators (ISOs) and increase the need for additional flexibility. Motivated by this need, this paper focuses on the potential of Demand Response Programs (DRPs) as an option to contribute to the flexible operation of power systems. On this basis, in order to consider the uncertain nature of wind power and the reality of electricity market, a Stochastic Network Constrained Unit Commitment associated with DR (SNCUCDR) is presented to schedule both generation units and responsive loads in power systems with high penetration of wind power. Afterwards, the effects of both price-based and incentive-based DRPs are evaluated, as well as DR participation levels and electricity tariffs on providing a flexible load profile and facilitating grid integration of wind power. For this reason, novel quantitative indices for evaluating flexibility are defined to assess the success of DRPs in terms of wind integration. Sensitivity studies indicate that DR types and customer participation levels are the main factors to modify the system load profile to support wind power integration

  15. ESF [Exploratory Shaft Facility] flexibility analysis

    International Nuclear Information System (INIS)

    Brusenback, R.W.

    1987-03-01

    This report directs that uncertainty allowances be included within the ESF facilities. The recommendations herein developed are intended as input to Title II Design criteria. Flexibility is measured first by lineal ft of drift, and then by hoisting rate and capacity of supporting utilities and services. A defined probability of need shows an extra 10,000 ft of drift for the first level of flexibility responding to testing and operations, and over 60,000 ft of drift for the second level of flexibility which recognizes possible need for perimeter drifting to investigate geologic stratigraphy. Observing there will be time constraints, a single shaft muck hoisting rate up to 170 to 250 tons per hour is recommended. The potential hoisting rate recommended for flexibility should be satisfied by a hoist approximately equivalent to, or conveniently upgraded from those being considered for sinking and construction, or 1000 horsepower. The cost of flexibility is limited to engineering planning and design (mostly conceptual) which makes later expansion achievable, and to selected items for initial construction where later upgrading would be impractical, impossible, or very costly. The cost is fixed to the level of flexibility and does not vary with excavated footage. The incremental margin is only a small fraction of the additional footage made available. Flexibility presents a strategy and not a position of design or technology. Examples used in this report are intended to be illustrative only, and not to lead design or cost estimates. 7 tabs

  16. Flexible use of electricity in heat-only district heating plants

    Directory of Open Access Journals (Sweden)

    Erik Trømborg

    2017-01-01

    Full Text Available European energy systems are in a period of significant transition, with the increasing shares of variable renewable energy (VRE and less flexible fossil-based generation units as predominant factors. The supply-side changes are expected to cause large short-term electricity price volatility. More frequent periods of low electricity prices may mean that electric use in flexible heating systems will become more profitable, and such flexible heating systems may, in turn, improve the integration of increasing shares of VRE. The objective of this study is to analyze the likely future of Nordic electricity price levels and variations and how the expected prices might affect the use of electricity and thermal storage in heat-only district heating plants. We apply the North European energy market model Balmorel to provide scenarios for future hourly electricity prices in years with normal, high, and low inflow levels to the hydro power system. The simulation tool energyPRO is subsequently applied to quantify how these electricity price scenarios affect the hourly use of thermal storage and individual boilers in heat-only district heating plants located in Norway. The two studied example plants use wood chips or heat pump as base load representing common technologies for district heating in Norway. The Balmorel results show that annual differences in inflow is still a decisive factor for Norwegian and Nordic electricity prices in year 2030 and that short-term (daily price variability is expected to increase. In the plant-level simulations, we find that tank storage, which is currently installed in only a few district heating plants in Norway, is a profitable flexibility option that will significantly reduce the use of fossil peak load in both biomass and heat-pump-based systems. Installation of an electric boiler in addition to tank storage is profitable in the heat pump system due to the limited capacity of the heat pump. Electricity will hence, to a

  17. Flexible Bronchoscopy.

    Science.gov (United States)

    Miller, Russell J; Casal, Roberto F; Lazarus, Donald R; Ost, David E; Eapen, George A

    2018-03-01

    Flexible bronchoscopy has changed the course of pulmonary medicine. As technology advances, the role of the flexible bronchoscope for both diagnostic and therapeutic indications is continually expanding. This article reviews the historical development of the flexible bronchoscopy, fundamental uses of the flexible bronchoscope as a tool to examine the central airways and obtain diagnostic tissue, and the indications, complications, and contraindications to flexible bronchoscopy. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Performance measurement of supply chain flexibility using witness

    Directory of Open Access Journals (Sweden)

    Rituraj Chandrakar

    2012-10-01

    Full Text Available In today’s global scenario of intense competition and environmental uncertainty flexibility in supply chain has an important role to play for the existence of any supply chain business. A need to be responsive to the constantly changing market scenario and cater to the customer needs, a certain degree of flexibility is required, which requires the coordination of many plants to produce and deliver goods to customers located in different places, and suppliers, which provide each plant with the required components. This paper intends to measure the degree of flexibility required for a two stage supply chain and assessing both the supplier flexibility and the assembler flexibility. In this paper, nine configurations of the SC are considered resulting from the combination of the three degrees of supplier and manufacturer flexibility, i.e. no flexibility, limited flexibility and total flexibility, respectively. Simulation model representing the different flexibility configurations are evaluated and the performance of each configuration analyzed to determine the flexibility configuration suitable to a supply chain. In particular the performance analysis of lead time, work-in-process, service level and cost are measured to determine the suitable flexibility.

  19. PsyAcoustX: A flexible MATLAB® package for psychoacoustics research

    Directory of Open Access Journals (Sweden)

    Gavin M. Bidelman

    2015-10-01

    Full Text Available The demands of modern psychophysical studies require precise stimulus delivery and flexible platforms for experimental control. Here, we describe PsyAcoustX, a new, freely available suite of software tools written in the MATLAB® environment to conduct psychoacoustics research on a standard PC. PsyAcoustX provides a flexible platform to generate and present auditory stimuli in real time and record users’ behavioral responses. Data are automatically logged by stimulus condition and aggregated in an exported spreadsheet for offline analysis. Detection thresholds can be measured adaptively under basic and complex auditory masking tasks and other paradigms (e.g., amplitude modulation detection within minutes. The flexibility of the module offers experimenters access to nearly every conceivable combination of stimulus parameters (e.g., probe-masker relations. Example behavioral applications are highlighted including the measurement of audiometric thresholds, basic simultaneous and non-simultaneous (i.e., forward and backward masking paradigms, gap detection, and amplitude modulation detection. Examples of these measurements are provided including the psychoacoustic phenomena of temporal overshoot, psychophysical tuning curves and temporal modulation transfer functions. Importantly, the core design of PsyAcoustX is easily modifiable, allowing users the ability to easily adapt its basic structure and create additional modules for measuring discrimination/detection thresholds for other auditory attributes (e.g., pitch, intensity, etc. or binaural paradigms.

  20. Shaft flexibility effects on aeroelastic stability of a rotating bladed disk

    Science.gov (United States)

    Khader, Naim; Loewy, Robert

    1989-01-01

    A comprehensive study of Coriolis forces and shaft flexibility effects on the structural dynamics and aeroelastic stability of a rotating bladed-disk assembly attached to a cantilever, massless, flexible shaft is presented. Analyses were performed for an actual bladed-disk assembly, used as the first stage in the fan of the 'E3' engine. In the structural model, both in-plane and out-of-plane elastic deformation of the bladed-disk assembly were considered relative to their hub, in addition to rigid disk translations and rotations introduced by shaft flexibility. Besides structural coupling between blades (through the flexible disk), additional coupling is introduced through quasisteady aerodynamic loads. Rotational effects are accounted for throughout the work, and some mode shapes for the whole structure are presented at a selected rpm.

  1. Towards Flexibility Detection in Device-Level Energy Consumption

    DEFF Research Database (Denmark)

    Neupane, Bijay; Pedersen, Torben Bach; Thiesson, Bo

    2014-01-01

    The increasing drive towards green energy has boosted the installation of Renewable Energy Sources (RES). Increasing the share of RES in the power grid requires demand management by flexibility in the consumption. In this paper, we perform a state-of-the-art analysis on the flexibility and operat......The increasing drive towards green energy has boosted the installation of Renewable Energy Sources (RES). Increasing the share of RES in the power grid requires demand management by flexibility in the consumption. In this paper, we perform a state-of-the-art analysis on the flexibility...... and operation patterns of the devices in a set of real households. We propose a number of specific pre-processing steps such as operation stage segmentation, and aberrant operation duration removal to clean device level data. Further, we demonstrate various device operation properties such as hourly and daily...... regularities and patterns and the correlation between operating different devices. Subsequently, we show the existence of detectable time and energy flexibility in device operations. Finally, we provide various results providing a foundation for load- and flexibility-detection and -prediction at the device...

  2. Operational Flexibility Responses to Environmental Uncertainties

    OpenAIRE

    Miller, Kent D.

    1994-01-01

    This study develops and tests a behavioral model of organizational changes in operational flexibility. Regression results using an international data set provide strong support for the general proposition that uncertainties associated with different environmental components--poitical, government policy, macroeconomic, competitive, input and product demand uncertainties--have different implications for firm internal, locational, and supploer flexibility. Slack acts as a buffer attenuating, a...

  3. Research into Flexibility Services. Final Report

    International Nuclear Information System (INIS)

    2005-03-01

    The Dutch Office for Energy Regulation (DTe) is currently investigating the Dutch gas flexibility market. DTe is concerned that Gasunie is dominant in the market. In order to take a view of Gasunie's market position, DTe needs to first define the market for gas flexibility services and then explore whether Gasunie is dominant in the market (or markets). DTe has commissioned Frontier to undertake the respective formal analysis. This report summarises the findings by Frontier. On the basis of this report and a formal consultation process, We follow a three-step approach to the study: (1) We first define the relevant markets for gas flexibility (Section 3); (2) We then analyse the structure of the markets for flexibility that we have defined (Section 4); (3) Finally, we assess whether Gasunie is dominant in the relevant markets, taking account of market shares and other competitive effects (Section 5). This document is the Final Report, which contains our views as to the market definition for gas flexibility and the position of Gasunie in the market. The remainder of this document is set out as follows: Section 2 provides an overview of aspects of the Dutch gas industry relevant to this study; Section 3 sets out our approach to defining the market and de-Mops our conclusions on the markets for gas flexibility; Section 4 provides our view as to the structure of the relevant flexibility markets as defined in Section 3; Section 5 reports our assessment as to whether Gasunie is dominant in the relevant markets, taking account of market shares and other competitive effects; Section 6 sets out our conclusions about the competitive assessment. We include three annexes that set out details related to the market definition and analysis of dominance

  4. Design and optimization of flexible multi-generation systems

    DEFF Research Database (Denmark)

    Lythcke-Jørgensen, Christoffer Ernst

    variations and dynamics, and energy system analysis, which fails to consider process integration synergies in local systems. The primary objective of the thesis is to derive a methodology for linking process design practices with energy system analysis for enabling coherent and holistic design optimization...... of flexible multi-generation system. In addition, the case study results emphasize the importance of considering flexible operation, systematic process integration, and systematic assessment of uncertainties in the design optimization. It is recommended that future research focus on assessing system impacts...... from flexible multi-generation systems and performance improvements from storage options....

  5. Ongoing behavioral state information signaled in the lateral habenula guides choice flexibility in freely moving rats

    Directory of Open Access Journals (Sweden)

    Phillip Michael Baker

    2015-11-01

    Full Text Available The lateral habenula (LHb plays a role in a wide variety of behaviors ranging from maternal care, to sleep, to various forms of cognition. One prominent theory with ample supporting evidence is that the LHb serves to relay basal ganglia and limbic signals about negative outcomes to midbrain monoaminergic systems. This makes it likely that the LHb is critically involved in behavioral flexibility as all of these systems have been shown to contribute when flexible behavior is required. Behavioral flexibility is commonly examined across species and is impaired in various neuropsychiatric conditions including autism, depression, addiction, and schizophrenia; conditions in which the LHb is thought to play a role. Therefore, a thorough examination of the role of the LHb in behavioral flexibility serves multiple functions including understanding possible connections with neuropsychiatric illnesses and additional insight into its role in cognition in general. Here we assess the LHb’s role in behavioral flexibility through comparisons of the roles its afferent and efferent pathways are known to play. Additionally, we provide new evidence supporting the LHb contributions to behavioral flexibility through organization of specific goal directed actions under cognitively demanding conditions. Specifically, in the first experiment, a majority of neurons recorded from the LHb were found to correlate with velocity on a spatial navigation task and did not change significantly when reward outcomes were manipulated. Additionally, measurements of local field potential in the theta band revealed significant changes in power relative to velocity and reward location. In a second set of experiments, inactivation of the LHb with the GABA agonists baclofen and muscimol led to an impairment in a spatial/response based repeated probabilistic reversal learning task. Control experiments revealed that this impairment was likely due to the demands of repeated switching

  6. Access to flexible working and informal care

    OpenAIRE

    Bryan, Mark L.

    2011-01-01

    We use matched employer-employee data to explore the relationship between employees' access to flexible working arrangements and the amount of informal care they provide to sick or elderly friends and relatives. Flexitime and the ability to reduce working hours are each associated with about 10% more hours of informal care, with effects concentrated among full-time workers providing small amounts of care. The wider workplace environment beyond formal flexible work also appears to facilitate c...

  7. The value of flexibility in offshore oil field development projects

    Energy Technology Data Exchange (ETDEWEB)

    Lund, Morten Wattengaard

    1997-12-31

    Offshore oil field development projects often face substantial uncertainties and the operator`s ability to take corrective actions is very important. The main objective of this thesis was to identify the value of flexibility in such projects. Estimates obtained from exploratory wells can be dependent through common information. The effect of stochastic dependence was illustrated by an analytical model, where the dependence was expressed in terms of correlation between estimate errors. It was found that a high degree of correlation might distort the benefit of additional exploration. A prototype that covered the major phases of the project was developed to study the value of flexibility. The prototype was a Markov decision process, solved by stochastic dynamic programming. Based on discussions with Norwegian oil companies, three uncertain variables were addressed: the reservoir volume, the well rate, and the oil price. Simple descriptions were used to mimic the uncertainty. The reservoir was thus depicted as a tank model, and the well rate and oil prices were assumed to follow Markov processes. Flexibility was restricted to managerial as opposed to financial flexibility. Application of the prototype to a case study, based on an ongoing field development, showed that flexibility might be of considerable value to the project. In particular, capacity flexibility and initiation flexibility were identified as important aspects of the development. The results also emphasized the importance of a joint assessment, as the values of different flexibility types are not additive. In conclusion, the proposed model motivates further development of the decision support system presently available. Future decision making should therefore be made within a framework that gives consideration to flexibility. 129 refs., 46 figs., 23 tabs.

  8. Flexible multimode polymer waveguides for high-speed short-reach communication links

    Science.gov (United States)

    Bamiedakis, N.; Shi, F.; Chu, D.; Penty, R. V.; White, I. H.

    2018-02-01

    Multimode polymer waveguides have attracted great interest for use in high-speed short-reach communication links as they can be cost-effectively integrated onto standard PCBs using conventional methods of the electronics industry and provide low loss (30 GHz×m) interconnection. The formation of such waveguides on flexible substrates can further provide flexible low-weight low-thickness interconnects and offer additional freedom in the implementation of high-speed short-reach optical links. These attributes make these flexible waveguides particularly attractive for use in low-cost detachable chip-to-chip links and in environments where weight and shape conformity become important, such as in cars and aircraft. However, the highly-multimoded nature of these waveguides raises important questions about their performance under severe flex due to mode loss and mode coupling. In this work therefore, we investigate the loss, crosstalk and bandwidth performance of such waveguides under out-of plane bending and in-plane twisting under different launch conditions and carry out data transmission tests at 40 Gb/s on a 1 m long spiral flexible waveguide under flexure. Excellent optical transmission characteristics are obtained while robust loss, crosstalk and bandwidth performance are demonstrated under flexure. Error-free (BER<10-12) 40 Gb/s data transmission is achieved over the 1 m long spiral waveguide for a 180° bend with a 4 mm radius. The obtained results demonstrate the excellent optical and mechanical properties of this technology and highlight its potential for use in real-world systems.

  9. Flexible protective gloves: The emperor's new clothes

    International Nuclear Information System (INIS)

    Kelsey, C.A.; Mettler, F.A. Jr.

    1990-01-01

    The risk of developing skin cancer is estimated for interventional radiologists who do and do not wear thin, flexible protective leaded gloves. The use of these gloves is extremely expensive in terms of dollars per potential cancer prevented. Good radiographic practice without the use of flexible protective gloves provides adequate protection

  10. Fabrication of Flexible, Fully Organic, Degradable Energy Storage Devices Using Silk Proteins.

    Science.gov (United States)

    Pal, Ramendra K; Kundu, Subhas C; Yadavalli, Vamsi K

    2018-03-21

    Flexible and thin-film devices are of great interest in epidermal and implantable bioelectronics. The integration of energy storage and delivery devices such as supercapacitors (SCs) with properties such as flexibility, miniaturization, biocompatibility, and degradability are sought for such systems. Reducing e-waste and using sustainable materials and processes are additional desirable qualities. Herein, a silk protein-based biocompatible and degradable thin-film microSC (μSC) is reported. A protein carrier with the conducting polymer poly(3,4-ethylenedioxythiophene) polystyrene sulfonate and reduced graphene oxide dopant is used as a photopatternable biocomposite ink. Active electrodes are fabricated using photolithography under benign conditions, using only water as the solvent. These electrodes are printed on flexible protein sheets to form degradable, organic devices with a benign agarose-NaCl gel electrolyte. High capacitance, power density, cycling stability over 500 cycles, and the ability to power a light-emitting diode are shown. The device is flexible, can sustain cyclic mechanical stresses over 450 cycles, and retain capacitive properties over several days in liquid. Significantly, the μSCs are cytocompatible and completely degraded over the period of ∼1 month. By precise control of the device configuration, these silk protein-based, all-polymer organic devices can be designed to be tunably transient and provide viable alternatives for powering flexible and implantable bioelectronics.

  11. Flexible forms of working hours

    OpenAIRE

    Knapp, Viktor

    2017-01-01

    66 Abstract - Flexible forms of working hours This diploma thesis deals with the flexible forms of working hours and its goal is to describe this issue in intelligible and comprehensive way. It is being very interesting and current theme which is to a great extent not subject to direct legal regulations and provides its contracting parties with a big amount of freedom of contract. This fact assists in bigger flexibilization of labour market and represents a significant instrument in the fight...

  12. Semi-flexible polymers near interfaces : equilibrium aspects and adsorption kinetics

    NARCIS (Netherlands)

    Eijk, van M.

    1998-01-01

    The first chapter is about semi-flexible polymers at a liquid-liquid interface: self-consistent-field calculations. The adsorption of semi-flexible polymers at a liquid-liquid interface largely differs from that at a solid surface. The width of the interface is an additional length scale in

  13. IEA EBC Annex 67 Energy Flexible Buildings

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Jensen, Søren Østergaard

    2016-01-01

    know ledge on and demonstration of the Energy Flexibility Buildings can provide for the energy grids as well of to identify critical aspects and possible solutions to manage this Energy Flexibility. The paper discusses the background, the aims and the work plan of IEA (International Energy Agency) EBC......The foreseen large deployment of renewable energy sources may seriously affect the stability of energy grids. It will be necessary to control energy consumption to match instantaneous energy production. The built-in Energy Flexibility in buildings may be utilized for stabilizing the energy grids......, allowing for a larger roll out of renewable technologies. The Energy Flexibility of a building is the ability to manage its energy demand and generation according to local climate conditions, user needs and grid requirements. Energy Flexibility of buildings will thus allow for demand side management...

  14. Flexible climate agreements after 2012

    International Nuclear Information System (INIS)

    Vevatne, Jonas

    2004-01-01

    The Kyoto agreement is only a small step towards much stronger and broader commitments and new creativity is needed to further develop a really global climate policy. A flexible approach is necessary to obtain broad participation and substantial reduction of the emissions of greenhouse gases. Flexibility is also important to ease negotiations, to ensure cost-effectiveness and implement a global climate agreement. The US withdrawal from the Kyoto Protocol has rendered the agreement much less effective than the original goal of five per cent reduction of the emission from the industrialized countries. In addition the emissions are increasing much faster in countries that have not committed themselves to the agreement. The agreement runs out in 2012 and should be followed by a new agreement, the negotiations about which are to start up no later than 2005. Attempts by the European Union to begin a discussion about future commitments were very quickly wrecked by the G77 group with strong support from the U.S.A. To formulate a practical climate policy the general goal in the Climate Convention must be interpreted and specified. It may seem impossible to agree upon a long-term goal. But the clarity it provides will be very useful. It will be a guide for short-term goals and a reference for evaluation of success

  15. Printed electronic on flexible and glass substrates

    Science.gov (United States)

    Futera, Konrad; Jakubowska, Małgorzata; Kozioł, Grażyna

    2010-09-01

    Organic electronics is a platform technology that enables multiple applications based on organic electronics but varied in specifications. Organic electronics is based on the combination of new materials and cost-effective, large area production processes that provide new fields of application. Organic electronic by its size, weight, flexibility and environmental friendliness electronics enables low cost production of numerous electrical components and provides for such promising fields of application as: intelligent packaging, low cost RFID, flexible solar cells, disposable diagnostic devices or games, and printed batteries [1]. The paper presents results of inkjetted electronics elements on flexible and glass substrates. The investigations was target on characterizing shape, surface and geometry of printed structures. Variety of substrates were investigated, within some, low cost, non specialized substrate, design for other purposes than organic electronic.

  16. Techno-economic optimization of flexible biogas concepts in the context of EEG

    International Nuclear Information System (INIS)

    Barchmann, Tino; Lauer, Markus

    2014-01-01

    Due to the introduction of direct marketing and flexibility premium of renewable energy by the Renewable Energy Act 2012 (EEG 2012), incentives were created to favour a more demand-oriented power supply from biogas plants (BGA). The decision for such an operational mode depends on on-site conversion units on the economic outcome of the plants throughout the whole operating time. To install new plants or transfer existing plants into a flexible mode of operation, investments in additional and more efficient combined heat and power plants (CHP), in additional gas and/or heat storage and other technical components are necessary. The analyses show that the flexibility premium, as an extra of the market premium model, creates the greatest incentive for a more flexible generation of electricity from biogas. In addition, an intelligent management optimization can generate additional revenues on EPEX SPOT SE and balancing energy market. The additional revenues of more demand-oriented power supply from biogas plants are highly dependent on plant-specific conditions. From an economic perspective, a duplication of the installed electrical capacity seems to be the most beneficial option for a transition to a demand-driven operation mode of an average biogas model plant under the current legal framework (EEG 2012).

  17. Additional operations in algebra of structural numbers for control algorithm development

    Directory of Open Access Journals (Sweden)

    Morhun A.V.

    2016-12-01

    Full Text Available The structural numbers and the algebra of the structural numbers due to the simplicity of representation, flexibility and current algebraic operations are the powerful tool for a wide range of applications. In autonomous power supply systems and systems with distributed generation (Micro Grid mathematical apparatus of structural numbers can be effectively used for the calculation of the parameters of the operating modes of consumption of electric energy. The purpose of the article is the representation of the additional algebra of structural numbers. The standard algebra was proposed to be extended by the additional operations and modification current in order to expand the scope of their use, namely to construct a flexible, adaptive algorithms of control systems. It is achieved due to the possibility to consider each individual component of the system with its parameters and provide easy management of entire system and each individual component. Thus, structural numbers and extended algebra are the perspective line of research and further studying is required.

  18. Natural flexible dermal armor.

    Science.gov (United States)

    Yang, Wen; Chen, Irene H; Gludovatz, Bernd; Zimmermann, Elizabeth A; Ritchie, Robert O; Meyers, Marc A

    2013-01-04

    Fish, reptiles, and mammals can possess flexible dermal armor for protection. Here we seek to find the means by which Nature derives its protection by examining the scales from several fish (Atractosteus spatula, Arapaima gigas, Polypterus senegalus, Morone saxatilis, Cyprinius carpio), and osteoderms from armadillos, alligators, and leatherback turtles. Dermal armor has clearly been developed by convergent evolution in these different species. In general, it has a hierarchical structure with collagen fibers joining more rigid units (scales or osteoderms), thereby increasing flexibility without significantly sacrificing strength, in contrast to rigid monolithic mineral composites. These dermal structures are also multifunctional, with hydrodynamic drag (in fish), coloration for camouflage or intraspecies recognition, temperature and fluid regulation being other important functions. The understanding of such flexible dermal armor is important as it may provide a basis for new synthetic, yet bioinspired, armor materials. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Design of semi-rigid type of flexible pavements

    Directory of Open Access Journals (Sweden)

    Pranshoo Solanki

    2017-03-01

    Full Text Available The primary objective of the study presented in this paper is to develop design curves for performance prediction of stabilized layers and to compare semi-rigid flexible pavement designs between the empirical AASHTO 1993 and the mechanistic-empirical pavement design methodologies. Specifically, comparisons were made for a range of different sections consisting of cementitious layers stabilized with different types and percentages of additives. It is found that the design thickness is influenced by the type of soil, additive, selection of material property and design method. Cost comparisons of sections stabilized with different percentage and type of additives showed that CKD-stabilization provides economically low cost sections as compared to lime- and CFA-stabilized sections. Knowledge gained from the parametric analysis of different sections using AASHTO 1993 and MEPDG is expected to be useful to pavement designers and others in implementation of the new MEPDG for future pavement design. Keywords: Semi-rigid, Mechanistic, Resilient modulus, Fatigue life, Reliability, Traffic

  20. Flexible Transparent Supercapacitors Based on Hierarchical Nanocomposite Films.

    Science.gov (United States)

    Chen, Fanhong; Wan, Pengbo; Xu, Haijun; Sun, Xiaoming

    2017-05-31

    Flexible transparent electronic devices have recently gained immense popularity in smart wearable electronics and touch screen devices, which accelerates the development of the portable power sources with reliable flexibility, robust transparency and integration to couple these electronic devices. For potentially coupled as energy storage modules in various flexible, transparent and portable electronics, the flexible transparent supercapacitors are developed and assembled from hierarchical nanocomposite films of reduced graphene oxide (rGO) and aligned polyaniline (PANI) nanoarrays upon their synergistic advantages. The nanocomposite films are fabricated from in situ PANI nanoarrays preparation in a blended solution of aniline monomers and rGO onto the flexible, transparent, and stably conducting film (FTCF) substrate, which is obtained by coating silver nanowires (Ag NWs) layer with Meyer rod and then coating of rGO layer on polyethylene terephthalate (PET) substrate. Optimization of the transparency, the specific capacitance, and the flexibility resulted in the obtained all-solid state nanocomposite supercapacitors exhibiting enhanced capacitance performance, good cycling stability, excellent flexibility, and superior transparency. It provides promising application prospects for exploiting flexible, low-cost, transparent, and high-performance energy storage devices to be coupled into various flexible, transparent, and wearable electronic devices.

  1. Wearable Flexible Sensors: A Review

    KAUST Repository

    Nag, Anindya

    2017-05-18

    The paper provides a review on some of the significant research work done on wearable flexible sensors (WFS). Sensors fabricated with flexible materials have been attached to a person along with the embedded system to monitor a parameter and transfer the significant data to the monitoring unit for further analyses. The use of wearable sensors has played a quite important role to monitor physiological parameters of a person to minimize any malfunctioning happening in the body. The paper categorizes the work according to the materials used for designing the system, the network protocols and different types of activities that were being monitored. The challenges faced by the current sensing systems and future opportunities for the wearable flexible sensors regarding its market values are also briefly explained in the paper.

  2. Wearable Flexible Sensors: A Review

    KAUST Repository

    Nag, Anindya; Mukhopadhyay, Subhas Chandra; Kosel, Jü rgen

    2017-01-01

    The paper provides a review on some of the significant research work done on wearable flexible sensors (WFS). Sensors fabricated with flexible materials have been attached to a person along with the embedded system to monitor a parameter and transfer the significant data to the monitoring unit for further analyses. The use of wearable sensors has played a quite important role to monitor physiological parameters of a person to minimize any malfunctioning happening in the body. The paper categorizes the work according to the materials used for designing the system, the network protocols and different types of activities that were being monitored. The challenges faced by the current sensing systems and future opportunities for the wearable flexible sensors regarding its market values are also briefly explained in the paper.

  3. Flexible Work Styles in the Corporate Research Center.

    Science.gov (United States)

    Baker, Katherine

    2000-01-01

    Explores the appropriateness for flexible work schedules for corporate librarians and provides insight into the benefits of flexible work arrangements in other industries. Highlights include technological changes that have changed roles and made resources available electronically; telecommuters; job sharing; and the effects of flexible…

  4. Graphene-based flexible and stretchable thin film transistors.

    Science.gov (United States)

    Yan, Chao; Cho, Jeong Ho; Ahn, Jong-Hyun

    2012-08-21

    Graphene has been attracting wide attention owing to its superb electronic, thermal and mechanical properties. These properties allow great applications in the next generation of optoelectronics, where flexibility and stretchability are essential. In this context, the recent development of graphene growth/transfer and its applications in field-effect transistors are involved. In particular, we provide a detailed review on the state-of-the-art of graphene-based flexible and stretchable thin film transistors. We address the principles of fabricating high-speed graphene analog transistors and the key issues of producing an array of graphene-based transistors on flexible and stretchable substrates. It provides a platform for future work to focus on understanding and realizing high-performance graphene-based transistors.

  5. A Clearinghouse Concept for Distribution-Level Flexibility Services

    DEFF Research Database (Denmark)

    Heussen, Kai; Bondy, Daniel Esteban Morales; Hu, Junjie

    2013-01-01

    Flexibility resources on the demand side are anticipated to become a valuable asset for balancing renewable energy fluctuation as well as for reducing investment needs in distribution grids. To harvest this flexibility for distribution grids, flexibility services need to be defined that can...... be integrated with distribution grid operation and that provide a benefit that can be traded off against other grid investments. Two key challenges are here that the identification of useful services is still ongoing and that the transaction cost for the individually small contributions from the demand side...... could be prohibitive. This paper introduces a flexibility clearinghouse (FLECH) concept and isolates FLECH key functionality: to facilitate flexibility services in distribution grids by streamlining the relevant business interactions while keeping technical specifications open....

  6. Regulatory Barriers for Flexible Coupling of the Nordic Power and District Heating Markets

    DEFF Research Database (Denmark)

    Skytte, Klaus; Olsen, Ole Jess

    2016-01-01

    that the choice of technologies for heat generation is mainly driven by outdated policies and tax conditions that create barriers for additional flexibility in the overall energy system. However, the balancing markets may be a main driver for introducing more electric boilers into DH and thereby increase its......Large share of variable renewable energy sources (VRE) is being deployed in the Nordic countries, especially wind power. This calls for additional flexibility of the power market. With the right coupling to the underlying national and local district heating (DH) markets, large shares of flexibility...

  7. Private and Flexible Proximity Detection in Mobile Social Networks

    DEFF Research Database (Denmark)

    Siksnys, Laurynas; Thomsen, Jeppe Rishede; Saltenis, Simonas

    2010-01-01

    A privacy-aware proximity detection service determines if two mobile users are close to each other without requiring them to disclose their exact locations. Existing proposals for such services provide weak privacy, give low accuracy guarantees, incur high communication costs, or lack flexibility......, in contrast to related work, can be of any shape and can be flexibly changed on the fly. Encryption and blind evaluation on the server ensures strong privacy, while low communication costs are achieved by an adaptive location-update policy. Experimental results show that the flexible functionality...... of the proposed solution is provided with low communication cost....

  8. Service provider perceptions of telerehabilitation as an additional service delivery option within an Australian neurosurgical and orthopaedic physiotherapy screening clinic: A qualitative study.

    Science.gov (United States)

    Cottrell, Michelle A; Hill, Anne J; O'Leary, Shaun P; Raymer, Maree E; Russell, Trevor G

    2017-12-01

    The Neurosurgical & Orthopaedic Physiotherapy Screening Clinic and Multidisciplinary Service (N/OPSC&MDS) originated as a complementary, non-surgical pathway for patients referred to public neurosurgical and orthopaedic specialist services. Patient access to the N/OPSC&MDS could potentially be improved with the implementation of telerehabilitation as an additional method of service delivery. To evaluate service provider's views on (1) current barriers to patients' accessing N/OPSC & MD services, and (2) the implementation of telerehabilitation within the N/OPSC&MDS. Qualitative descriptive study design. Healthcare providers (n = 26) were recruited from six N/OPSC&MD services located throughout Queensland, Australia. Semi-structured interviews were conducted to explore service providers' views with respect to existing barriers to patients accessing the N/OPSC&MDS, and if telerehabilitation could be feasibly adopted to address current barriers. Template analysis resulted in six themes: (1) barriers to some patients' accessing current N/OPSC&MD services are complex & multifaceted; (2) telerehabilitation could improve patient access to appropriate management for their musculoskeletal condition; (3) telerehabilitation may have limitations when compared to face-to-face healthcare; (4) the delivery of telerehabilitation needs to be flexible; (5) perceived barriers, and (6) facilitators to the successful implementation of telerehabilitation within the N/OPSC&MDS. This study represents a critical step in determining the readiness of service providers for the implementation of telerehabilitation within the N/OPSC&MDS. Although cautious, service providers are overall accepting of the implementation of telerehabilitation, acknowledging that it could eliminate several current barriers, subsequently achieving more equitable access to the service. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  9. Global mapping of DNA conformational flexibility on Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Giulia Menconi

    2015-04-01

    Full Text Available In this study we provide the first comprehensive map of DNA conformational flexibility in Saccharomyces cerevisiae complete genome. Flexibility plays a key role in DNA supercoiling and DNA/protein binding, regulating DNA transcription, replication or repair. Specific interest in flexibility analysis concerns its relationship with human genome instability. Enrichment in flexible sequences has been detected in unstable regions of human genome defined fragile sites, where genes map and carry frequent deletions and rearrangements in cancer. Flexible sequences have been suggested to be the determinants of fragile gene proneness to breakage; however, their actual role and properties remain elusive. Our in silico analysis carried out genome-wide via the StabFlex algorithm, shows the conserved presence of highly flexible regions in budding yeast genome as well as in genomes of other Saccharomyces sensu stricto species. Flexibile peaks in S. cerevisiae identify 175 ORFs mapping on their 3'UTR, a region affecting mRNA translation, localization and stability. (TAn repeats of different extension shape the central structure of peaks and co-localize with polyadenylation efficiency element (EE signals. ORFs with flexible peaks share common features. Transcripts are characterized by decreased half-life: this is considered peculiar of genes involved in regulatory systems with high turnover; consistently, their function affects biological processes such as cell cycle regulation or stress response. Our findings support the functional importance of flexibility peaks, suggesting that the flexible sequence may be derived by an expansion of canonical TAYRTA polyadenylation efficiency element. The flexible (TAn repeat amplification could be the outcome of an evolutionary neofunctionalization leading to a differential 3'-end processing and expression regulation in genes with peculiar function. Our study provides a new support to the functional role of flexibility in

  10. Global mapping of DNA conformational flexibility on Saccharomyces cerevisiae.

    Science.gov (United States)

    Menconi, Giulia; Bedini, Andrea; Barale, Roberto; Sbrana, Isabella

    2015-04-01

    In this study we provide the first comprehensive map of DNA conformational flexibility in Saccharomyces cerevisiae complete genome. Flexibility plays a key role in DNA supercoiling and DNA/protein binding, regulating DNA transcription, replication or repair. Specific interest in flexibility analysis concerns its relationship with human genome instability. Enrichment in flexible sequences has been detected in unstable regions of human genome defined fragile sites, where genes map and carry frequent deletions and rearrangements in cancer. Flexible sequences have been suggested to be the determinants of fragile gene proneness to breakage; however, their actual role and properties remain elusive. Our in silico analysis carried out genome-wide via the StabFlex algorithm, shows the conserved presence of highly flexible regions in budding yeast genome as well as in genomes of other Saccharomyces sensu stricto species. Flexibile peaks in S. cerevisiae identify 175 ORFs mapping on their 3'UTR, a region affecting mRNA translation, localization and stability. (TA)n repeats of different extension shape the central structure of peaks and co-localize with polyadenylation efficiency element (EE) signals. ORFs with flexible peaks share common features. Transcripts are characterized by decreased half-life: this is considered peculiar of genes involved in regulatory systems with high turnover; consistently, their function affects biological processes such as cell cycle regulation or stress response. Our findings support the functional importance of flexibility peaks, suggesting that the flexible sequence may be derived by an expansion of canonical TAYRTA polyadenylation efficiency element. The flexible (TA)n repeat amplification could be the outcome of an evolutionary neofunctionalization leading to a differential 3'-end processing and expression regulation in genes with peculiar function. Our study provides a new support to the functional role of flexibility in genomes and a

  11. Balance and flexibility.

    Science.gov (United States)

    2003-12-01

    The 'work-life balance' and flexible working are currently key buzz terms in the NHS. Those looking for more information on these topics should visit Flexibility at www.flexibility.co.uk for a host of resources designed to support new ways of working, including information on flexible workers and flexible rostering, the legal balancing act for work-life balance and home working.

  12. Towards Flexible Self-powered Micro-scale Integrated Systems

    KAUST Repository

    Rojas, Jhonathan Prieto

    2014-04-01

    Today’s information-centered world leads the ever-increasing consumer demand for more powerful, multifunctional portable devices. Additionally, recent developments on long-lasting energy sources and compliant, flexible systems, have introduced new required features to the portable devices industry. For example, wireless sensor networks are in urgent need of self-sustainable, easy-to-deploy, mobile platforms, wirelessly interconnected and accessible through a cloud computing system. The objective of my doctoral work is to develop integration strategies to effectively fabricate mechanically flexible, energy-independent systems, which could empower sensor networks for a great variety of new exciting applications. The first module, flexible electronics, can be achieved through several techniques and materials. Our main focus is to bring mechanical flexibility to the state-of-the-art high performing silicon-based electronics, with billions of ultra-low power, nano-sized transistors. Therefore, we have developed a low-cost batch fabrication process to transform standard, rigid, mono-crystalline silicon (100) wafer with devices, into a thin (5-20 m), mechanically flexible, optically semi-transparent silicon fabric. Recycling of the remaining wafer is possible, enabling generation of multiple fabrics to ensure lowcost and optimal utilization of the whole substrate. We have shown mono, amorphous and poly-crystalline silicon and silicon dioxide fabrics, featuring industry’s most advanced high-/metal-gate based capacitors and transistors. The second module consists on the development of efficient energy scavenging systems. First, we have identified an innovative and relatively young technology, which can address at the same time two of the main concerns of human kind: water and energy. Microbial fuel cells (MFC) are capable of producing energy out the metabolism of bacteria while treating wastewater. We have developed two micro-liter MFC designs, one with carbon

  13. Manned Mission Space Exploration Utilizing a Flexible Universal Module

    Science.gov (United States)

    Humphries, P.; Barez, F.; Gowda, A.

    2018-02-01

    The proposed ASMS, Inc. "Flexible Universal Module" is in support of NASA's Deep Space Gateway project. The Flexible Universal Module provides a possible habitation or manufacturing environment in support of Manned Mission for Space Exploration.

  14. ManiWordle: providing flexible control over Wordle.

    Science.gov (United States)

    Koh, Kyle; Lee, Bongshin; Kim, Bohyoung; Seo, Jinwook

    2010-01-01

    Among the multifarious tag-clouding techniques, Wordle stands out to the community by providing an aesthetic layout, eliciting the emergence of the participatory culture and usage of tag-clouding in the artistic creations. In this paper, we introduce ManiWordle, a Wordle-based visualization tool that revamps interactions with the layout by supporting custom manipulations. ManiWordle allows people to manipulate typography, color, and composition not only for the layout as a whole, but also for the individual words, enabling them to have better control over the layout result. We first describe our design rationale along with the interaction techniques for tweaking the layout. We then present the results both from the preliminary usability study and from the comparative study between ManiWordle and Wordle. The results suggest that ManiWordle provides higher user satisfaction and an efficient method of creating the desired "art work," harnessing the power behind the ever-increasing popularity of Wordle.

  15. Comparison and evaluation of flexible and stiff piping systems

    International Nuclear Information System (INIS)

    Hahn, W.; Tang, H.T.; Tang, Y.K.

    1983-01-01

    An experimental and numerical study was performed on a piping system, with various support configurations, to assess the difference in piping response for flexible and stiff piping systems. Questions have arisen concerning a basic design philosophy employed in present day piping designs. One basic question is, the reliability of a flexible piping system greater than that of a stiff piping system by virtue of the fact that a flexible system has fewer snubber supports. With fewer snubbers, the pipe is less susceptible to inadvertent thermal stresses introduced by snubber malfunction during normal operation. In addition to the technical issue, the matter of cost savings in flexible piping system design is a significant one. The costs associated with construction, in-service inspection and maintenance are all significantly reduced by reducing the number of snubber supports. The evaluation study, sponsored by the Electric Power Research Institute, was performed on a boiler feedwater line at Consolidated Edison's Indian Point Unit 1. In this study, the boiler feedwater line was tested and analyzed with two fundamentally different support systems. The first system was very flexible, employing rod and spring hangers, and represented the 'old' design philosophy. The pipe system was very flexible with this support system, due to the long pipe span lengths between supports and the fact that there was only one lateral support. This support did not provide much restraint since it was near an anchor. The second system employed strut and snubber supports and represented the 'modern' design philosophy. The pipe system was relatively stiff with this support system, primarily due to the increased number of supports, including lateral supports, thereby reducing the pipe span lengths between supports. The second support system was designed with removable supports to facilitate interchange of the supports with different support types (i.e., struts, mechanical snubbers and hydraulic

  16. A Skin-attachable Flexible Piezoelectric Pulse Wave Energy Harvester

    International Nuclear Information System (INIS)

    Yoon, Sunghyun; Cho, Young-Ho

    2014-01-01

    We present a flexible piezoelectric generator, capable to harvest energy from human arterial pulse wave on the human wrist. Special features and advantages of the flexible piezoelectric generator include the multi-layer device design with contact windows and the simple fabrication process for the higher flexibility with the better energy harvesting efficiency. We have demonstrated the design effectiveness and the process simplicity of our skin- attachable flexible piezoelectric pulse wave energy harvester, composed of the sensitive P(VDF-TrFE) piezoelectric layer on the flexible polyimide support layer with windows. We experimentally characterize and demonstrate the energy harvesting capability of 0.2∼1.0μW in the Human heart rate range on the skin contact area of 3.71cm 2 . Additional physiological and/or vital signal monitoring devices can be fabricated and integrated on the skin attachable flexible generator, covered by an insulation layer; thus demonstrating the potentials and advantages of the present device for such applications to the flexible multi-functional selfpowered artificial skins, capable to detect physiological and/or vital signals on Human skin using the energy harvested from arterial pulse waves

  17. Flexibility in Flood Management Design: Proactive Planning Under Climate Change Uncertainty

    Science.gov (United States)

    Smet, K.; de Neufville, R.; van der Vlist, M.

    2015-12-01

    This paper presents an innovative, value-enhancing procedure for effective planning and design of long-lived flood management infrastructure given uncertain future flooding threats due to climate change. Designing infrastructure that can be adapted over time is a method to safeguard the efficacy of current design decisions given uncertainty about rates and future impacts of climate change. This paper explores the value of embedding "options" in a physical structure, where an option is the right but not the obligation to do something at a later date (e.g. over-dimensioning a floodwall foundation now facilitates a future height addition in response to observed increases in sea level; building of extra pump bays in a pumping station now enables the addition of pumping capacity whenever increased precipitation warrants an expansion.) The proposed procedure couples a simulation model that captures future climate induced changes to the hydrologic operating environment of a structure, with an economic model that estimates the lifetime economic performance of alternative investments. The economic model uses Real "In" Options analysis, a type of cash flow analysis that quantifies the implicit value of options and the flexibility they provide. This procedure is demonstrated using replacement planning for the multi-functional pumping station IJmuiden on the North Sea Canal in the Netherlands. Flexibility in design decisions is modelled, varying the size and specific options included in the new structure. Results indicate that the incorporation of options within the structural design has the potential to improve its economic performance, as compared to more traditional, "build it once and build it big" designs where flexibility is not an explicit design criterion. The added value resulting from the incorporation of flexibility varies with the range of future conditions considered, as well as the options examined. This procedure could be applied more broadly to explore

  18. A flexible skin patch for continuous physiological monitoring of mental disorders

    Science.gov (United States)

    Jang, Won Ick; Lee, Bong Kuk; Ryu, Jin Hwa; Baek, In-Bok; Yu, Han Young; Kim, Seunghwan

    2017-10-01

    In this study, we have newly developed a flexible adhesive skin patch of electrocardiogram (ECG) device for continuous physiological monitoring of mental disorders. In addition, this flexible patch did not cause any damage to the skin even after 24 hours attachment. We have also suggested the possibility of novel interconnection for copper film on polyimide and polydimethylsiloxane (PDMS) layers of the flexible patch. Self-align and soldering of IC chips such as resistor between metal pads on flexible skin patch have also successfully fabricated for 5 min at 180 °C in vacuum oven. Low temperature interconnection technology based on a Sn42/Bi58 solder was also developed for flexible ECG devices. As a result, we can monitor the mental health status through a comprehensive analysis of biological signals from flexible ECG devices.

  19. Behavioral flexibility and problem solving in an invasive bird.

    Science.gov (United States)

    Logan, Corina J

    2016-01-01

    Behavioral flexibility is considered an important trait for adapting to environmental change, but it is unclear what it is, how it works, and whether it is a problem solving ability. I investigated behavioral flexibility and problem solving experimentally in great-tailed grackles, an invasive bird species and thus a likely candidate for possessing behavioral flexibility. Grackles demonstrated behavioral flexibility in two contexts, the Aesop's Fable paradigm and a color association test. Contrary to predictions, behavioral flexibility did not correlate across contexts. Four out of 6 grackles exhibited efficient problem solving abilities, but problem solving efficiency did not appear to be directly linked with behavioral flexibility. Problem solving speed also did not significantly correlate with reversal learning scores, indicating that faster learners were not the most flexible. These results reveal how little we know about behavioral flexibility, and provide an immense opportunity for future research to explore how individuals and species can use behavior to react to changing environments.

  20. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes.

    Science.gov (United States)

    He, Yongmin; Chen, Wanjun; Li, Xiaodong; Zhang, Zhenxing; Fu, Jiecai; Zhao, Changhui; Xie, Erqing

    2013-01-22

    A lightweight, flexible, and highly efficient energy management strategy is needed for flexible energy-storage devices to meet a rapidly growing demand. Graphene-based flexible supercapacitors are one of the most promising candidates because of their intriguing features. In this report, we describe the use of freestanding, lightweight (0.75 mg/cm(2)), ultrathin (rate of 2 mV/s. With a view to practical applications, we have further optimized the MnO(2) content with respect to the entire electrode and achieved a maximum specific capacitance of 130 F/g. In addition, we have also explored the excellent electrochemical performance of a symmetrical supercapacitor (of weight less than 10 mg and thickness ~0.8 mm) consisting of a sandwich structure of two pieces of 3D graphene/MnO(2) composite network separated by a membrane and encapsulated in polyethylene terephthalate (PET) membranes. This research might provide a method for flexible, lightweight, high-performance, low-cost, and environmentally friendly materials used in energy conversion and storage systems for the effective use of renewable energy.

  1. Hybrid fabrication process of additive manufacturing and direct writing for a 4 X 4 mm matrix flexible tactile sensor

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Sang Gu; Lee, In Hwan [Chungbuk National University, Chungju (Korea, Republic of); Lee, Kyong Chang [Pukyong National University, Busan (Korea, Republic of)

    2015-09-15

    Various machines require data from their external environments for safety and/or accuracy. In this respect, many sensors that mimic the human sensory system have been investigated. Among these, tactile sensors may be useful for obtaining data on the roughness of, and external forces acting upon, an object. Several tactile sensors have been developed; however, these are typically fabricated via a series of complex processes, and hence are unsuitable for volume manufacturing. In this paper, we report a fabrication process for a 4 X 4 mm matrix flexible sensor element using layered manufacturing and direct-write technology. A composite composed of photocurable resin and Multi-walled carbon nanotubes (MWCNTs) was used as the sensing material. The MWCNTs were mixed with the photocurable resin using ultrasonic dispersion, and the liquid mixture exhibited excellent piezoresistive properties following curing using ultraviolet light. The used photocurable resin is flexible and elastic after curing. Therefore, the composite material can be bent and deformed. To use this composite material with the flexible sensor, dispensing characteristics were examined using direct-write technology. For the acquisition of sensor data, a commercial pin-header was inserted and photocurable resin was filled up to the height of pin-header and cured . Then, the composite material was dispensed onto the pin-header as a sensing material. Using this process, a flexible sensor with piezoresistive properties was formed.

  2. Hybrid fabrication process of additive manufacturing and direct writing for a 4 X 4 mm matrix flexible tactile sensor

    International Nuclear Information System (INIS)

    Woo, Sang Gu; Lee, In Hwan; Lee, Kyong Chang

    2015-01-01

    Various machines require data from their external environments for safety and/or accuracy. In this respect, many sensors that mimic the human sensory system have been investigated. Among these, tactile sensors may be useful for obtaining data on the roughness of, and external forces acting upon, an object. Several tactile sensors have been developed; however, these are typically fabricated via a series of complex processes, and hence are unsuitable for volume manufacturing. In this paper, we report a fabrication process for a 4 X 4 mm matrix flexible sensor element using layered manufacturing and direct-write technology. A composite composed of photocurable resin and Multi-walled carbon nanotubes (MWCNTs) was used as the sensing material. The MWCNTs were mixed with the photocurable resin using ultrasonic dispersion, and the liquid mixture exhibited excellent piezoresistive properties following curing using ultraviolet light. The used photocurable resin is flexible and elastic after curing. Therefore, the composite material can be bent and deformed. To use this composite material with the flexible sensor, dispensing characteristics were examined using direct-write technology. For the acquisition of sensor data, a commercial pin-header was inserted and photocurable resin was filled up to the height of pin-header and cured . Then, the composite material was dispensed onto the pin-header as a sensing material. Using this process, a flexible sensor with piezoresistive properties was formed.

  3. The creation, market deployment and performance relevance of market-focused flexibility

    NARCIS (Netherlands)

    Fleischer, L.R.

    2014-01-01

    The thesis provides a market-focused representation of the flexibility concept. It portrays flexibility as a promising capability for firms that operate under uncertainty. It gives resource reallocation recommendations and offers a value-driven legitimation for the creation and use of flexibility.

  4. Thin Film Photovoltaic Cells on Flexible Substrates Integrated with Energy Storage

    Science.gov (United States)

    2011-11-30

    on a variety of flexible substrates. One of the more promising substrates is a 75 micron thick flexible glass manufactured by Corning . Corning has...gel sulfurization methods[14], sol-gel spin-coated deposition[15] and spray pyrolysis [ 16,17][16-18]. In addition, there is synthesis based on

  5. Industrial Fuel Flexibility Workshop

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2006-09-01

    On September 28, 2006, in Washington, DC, ITP and Booz Allen Hamilton conducted a fuel flexibility workshop with attendance from various stakeholder groups. Workshop participants included representatives from the petrochemical, refining, food and beverage, steel and metals, pulp and paper, cement and glass manufacturing industries; as well as representatives from industrial boiler manufacturers, technology providers, energy and waste service providers, the federal government and national laboratories, and developers and financiers.

  6. Polyimide-Epoxy Composites with Superior Bendable Properties for Application in Flexible Electronics

    Science.gov (United States)

    Lee, Sangyoup; Yoo, Taewon; Han, Youngyu; Kim, Hanglim; Han, Haksoo

    2017-08-01

    The need for flexible electronics with outstanding bending properties is increasing due to the demand for wearable devices and next-generation flexible or rollable smartphones. In addition, the requirements for flexible or rigid-flexible electronics are sharply increasing to achieve the design of space-saving electronic devices. In this regard, coverlay (CL) film is a key material used in the bending area of flexible electronics, albeit infrequently. Because flexible electronics undergo folding and unfolding numerous times, CL films with superior mechanical and bending properties are required so that the bending area can endure such severe stress. However, because current CL films are only used for a designated bending area in the flexible electronics panel, their highly complicated and expensive manufacturing procedure is a disadvantage. In addition, the thickness of CL films must be decreased to satisfy the ongoing requirement for increasingly thin products. However, due to the limitations of the two-layer structure of existing CL films, the manufacturing process cannot be made more cost effective by simply applying more thin film onto the board. To address this problem, we have developed liquid coverlay inks (LCIs) with superior bendable properties, in comparison with CL films, when applied onto flexible electronics using a screen-printing method. The results show that LCIs have the potential to become one of the leading candidates to replace existing CL films because of their lower cost and faster manufacturing process.

  7. Flexible Laser Metal Cutting

    DEFF Research Database (Denmark)

    Villumsen, Sigurd; Jørgensen, Steffen Nordahl; Kristiansen, Morten

    2014-01-01

    This paper describes a new flexible and fast approach to laser cutting called ROBOCUT. Combined with CAD/CAM technology, laser cutting of metal provides the flexibility to perform one-of-a-kind cutting and hereby realises mass production of customised products. Today’s laser cutting techniques...... possess, despite their wide use in industry, limitations regarding speed and geometry. Research trends point towards remote laser cutting techniques which can improve speed and geometrical freedom and hereby the competitiveness of laser cutting compared to fixed-tool-based cutting technology...... such as punching. This paper presents the concepts and preliminary test results of the ROBOCUT laser cutting technology, a technology which potentially can revolutionise laser cutting....

  8. RT-18: Value of Flexibility. Phase 1

    Science.gov (United States)

    2010-09-25

    following examples of putative flexibility:  ― Nike shoes provide flexibility to the customer in terms of color choice, customized emblems (such...investment opportunity, he constructs a synthetic portfolio of a brand -new factory in a developing country, such as China, and bonds. Maybe the...kit using a combination of Inertial Navigation (INS) and the satellite based Global Positioning System (GPS). These Joint Direct Attack Munition

  9. Fast and anisotropic flexibility-rigidity index for protein flexibility and fluctuation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Opron, Kristopher [Department of Biochemistry and Molecular Biology, Michigan State University, Michigan 48824 (United States); Xia, Kelin [Department of Mathematics, Michigan State University, Michigan 48824 (United States); Wei, Guo-Wei, E-mail: wei@math.msu.edu [Department of Biochemistry and Molecular Biology, Michigan State University, Michigan 48824 (United States); Department of Mathematics, Michigan State University, Michigan 48824 (United States); Department of Electrical and Computer Engineering, Michigan State University, Michigan 48824 (United States)

    2014-06-21

    Protein structural fluctuation, typically measured by Debye-Waller factors, or B-factors, is a manifestation of protein flexibility, which strongly correlates to protein function. The flexibility-rigidity index (FRI) is a newly proposed method for the construction of atomic rigidity functions required in the theory of continuum elasticity with atomic rigidity, which is a new multiscale formalism for describing excessively large biomolecular systems. The FRI method analyzes protein rigidity and flexibility and is capable of predicting protein B-factors without resorting to matrix diagonalization. A fundamental assumption used in the FRI is that protein structures are uniquely determined by various internal and external interactions, while the protein functions, such as stability and flexibility, are solely determined by the structure. As such, one can predict protein flexibility without resorting to the protein interaction Hamiltonian. Consequently, bypassing the matrix diagonalization, the original FRI has a computational complexity of O(N{sup 2}). This work introduces a fast FRI (fFRI) algorithm for the flexibility analysis of large macromolecules. The proposed fFRI further reduces the computational complexity to O(N). Additionally, we propose anisotropic FRI (aFRI) algorithms for the analysis of protein collective dynamics. The aFRI algorithms permit adaptive Hessian matrices, from a completely global 3N × 3N matrix to completely local 3 × 3 matrices. These 3 × 3 matrices, despite being calculated locally, also contain non-local correlation information. Eigenvectors obtained from the proposed aFRI algorithms are able to demonstrate collective motions. Moreover, we investigate the performance of FRI by employing four families of radial basis correlation functions. Both parameter optimized and parameter-free FRI methods are explored. Furthermore, we compare the accuracy and efficiency of FRI with some established approaches to flexibility analysis, namely

  10. Qualification test for the Flexible Receiver. Revision 1

    International Nuclear Information System (INIS)

    Keller, C.M.

    1994-01-01

    This document provides the test plan and procedures to certify and design verify the 42 in. and 4 in. -- 6 in. Flexible Receiver as a safety class 3 system. The Flexible Receiver will be used by projects W-151 and W-320 for removing equipment from tanks C-106 and Az-101

  11. Additive manufacturing: state-of-the-art and application framework

    Directory of Open Access Journals (Sweden)

    Vinícius Picanço Rodrigues

    2017-09-01

    Full Text Available Additive manufacturing encompasses a class of production processes with increasing applications in different areas and supply chains. Due to its flexibility for production in small batches and the versatility of materials and geometries, this technology is recognized as being capable of revolutionizing the production processes as well as changing production strategies that are currently employed. However, there are different technologies under the generic label of additive manufacturing, materials and application areas with different requirements. Given the growing importance of additive manufacturing as a production process, and also considering the need to have a better insight into the potential applications for driving research and development efforts, this article presents a proposal of organization for additive manufacturing applications in seven areas. Additionally, the article provides a panorama of the current development stage of this technology, with a review of its major technological variants. The results presented aim to serve as a basis to support driving initiatives in additive manufacturing in companies, development agencies and research institutions.

  12. Medical Care Provided Under California's Workers' Compensation Program: Effects of the Reforms and Additional Opportunities to Improve the Quality and Efficiency of Care.

    Science.gov (United States)

    Wynn, Barbara O; Timbie, Justin W; Sorbero, Melony E

    2011-01-01

    Since 2004, significant changes have been made to the California workers' compensation (WC) system. The Commission on Health and Safety and Workers' Compensation (CHSWC) asked the RAND Corporation to examine the impact that these changes have on the medical care provided to injured workers. This study synthesizes findings from interviews and available information regarding the implementation of the changes affecting WC medical care and identifies areas in which additional changes might increase the quality and efficiency of care delivered under the WC system. To improve incentives for efficiently providing medically appropriate care, California should revise its fee schedule allowances for services provided by hospitals to inpatients, freestanding ambulatory surgery centers, and physicians, create nonmonetary incentives for providing medically appropriate care in the medical provider network (MPN) context through more-selective contracting with providers and reducing medical review requirements for high-performing physicians; reduce incentives for inappropriate prescribing practices by curtailing in-office physician dispensing; and implement pharmacy benefit network regulations. To increase accountability for performance, California should revise the MPN certification process to place accountability for meeting MPN standards on the entity contracting with the physician network; strengthen Division of Workers' Compensation (DWC) authorities to provide intermediate sanctions for failure to comply with MPN requirements; and modify the Labor Code to remove payers and MPNs from the definition of individually identifiable data so that performance on key measures can be publicly available. To facilitate monitoring and oversight, California should provide DWC with more flexibility to add needed data elements to medical data reporting and provide penalties for a claim administrator failing to comply with the data-reporting requirements; require that medical cost

  13. Flexible Electronics Development Supported by NASA

    Science.gov (United States)

    Baumann, Eric

    2014-01-01

    The commercial electronics industry is leading development in most areas of electronics for NASA applications; however, working in partnership with industry and the academic community, results from NASA research could lead to better understanding and utilization of electronic materials by the flexible electronics industry. Innovative ideas explored by our partners in industry and the broader U.S. research community help NASA execute our missions and bring new American products and services to the global technology marketplace. [Mike Gazarik, associate administrator for Space Technology, NASA Headquarters, Washington DC] This presentation provides information on NASA needs in electronics looking towards the future, some of the work being supported by NASA in flexible electronics, and the capabilities of the Glenn Research Center supporting the development of flexible electronics.

  14. Consumer flexibility - State and challenges

    International Nuclear Information System (INIS)

    Grande, Ove S.; Saele, Hanne; Morch, Andrei Z.

    2002-02-01

    This report summarises experiences and results from relevant projects carried out within the area of consumer flexibility in the last years. A general description of the projects is presented. In addition are testing activities, economical signals for motivating the end user for load reductions and appropriate technology for communication and effect management mentioned separately. Briefly summarised is the following achieved: 1) The potential for effect regulating measures in ordinary consumption and in power demanding industry is analysed and estimated to 1750 MW and 3360 MW respectively. 2) Time varied rates are developed and are tested. The NVE has decided on this basis that all the network owners should offer season varied rates to their customers. 3) Test projects in Drammen, Oslo and Trondheim have shown that it is possible to motivate smaller consumers for and implement load reductions. 4) Technology for load management for the end user is evaluated. 5) A survey is made viewing the technology for two way communication. In addition the ''option'' market for the reserves of the Statnett has proved that a steady compensation is a sufficient incentive for producing substantial effect reserves in the load sector (power intensive industry). In the last part of the report the incentives and frame conditions for establishing technical solutions and infrastructure are discussed. Further work will focus on the consumer flexibility in shortage situations. The main challenges are connected to: 1) Establishing a foundation for decisions concerning cost efficient investments in necessary technical equipment. 2) To find an optimal combination of a price flexible and remote controlled load reduction

  15. Improved NGL recovery designs maximize operating flexibility and product recoveries

    International Nuclear Information System (INIS)

    Wilkinson, J.D.; Hudson, H.M.

    1992-01-01

    This paper reports that the historically cyclical nature in the market for ethane and propane has demonstrated the need for flexible natural gas liquids (NGL) recovery plants. NEwly developed and patented processes are now available which can provide ultra-high recovery of ethane (95%+) when demand for ethane is high and provide essentially complete ethane rejection without the normally concomitant reduction in propane recovery. This provides plant operators the flexibility to respond more readily to NGL market conditions, thus maximizing plant operating profits. The new process designs provide this flexibility without increasing utility requirements. In fact, utility consumption is often lower when compared to conventional designs. This same process technology can also be easily retrofit into existing plants with relatively quick payout of the modifications from both recovery and efficiency improvements

  16. Parent's Relative Perceived Work Flexibility Compared to Their Partner Is Associated With Emotional Exhaustion.

    Science.gov (United States)

    Leineweber, Constanze; Falkenberg, Helena; Albrecht, Sophie C

    2018-01-01

    A number of studies have found that control over work conditions and hours is positively related to mental health. Still, potential positive and negative effects of work flexibility remain to be fully explored. On the one hand, higher work flexibility might provide better opportunities for recovery. On the other hand, especially mothers may use flexibility to meet household and family demands. Here, we investigated the association between parent's work flexibility, rated relative to their partner, and emotional exhaustion in interaction with gender. Additionally, gender differences in time use were investigated. Cross-sectional analyses based on responses of employed parents to the 2012 wave of the Swedish Longitudinal Occupational Survey of Health (SLOSH) were conducted ( N = 2,911). Generalized linear models with gamma distribution and a log-link function were used to investigate associations between relative work-flexibility (lower, equal, or higher as compared to partner), gender, and emotional exhaustion. After control for potential confounders, we found that having lower work flexibility than the partner was associated with higher levels of emotional exhaustion as compared to those with higher relative work flexibility. Also, being a mother was associated with higher levels of emotional exhaustion, independent of possible confounders. An interaction effect between low relative work flexibility and gender was found in relation to emotional exhaustion. Regarding time use, clear differences between mothers' and fathers' were found. However, few indications were found that relative work flexibility influenced time use. Mothers spent more time on household chores as compared to fathers, while fathers reported longer working hours. Fathers spent more time on relaxation compared with mothers. To conclude, our results indicate that lower relative work flexibility is detrimental for mental health both for mothers and fathers. However, while gender seems to have a

  17. Parent's Relative Perceived Work Flexibility Compared to Their Partner Is Associated With Emotional Exhaustion

    Directory of Open Access Journals (Sweden)

    Constanze Leineweber

    2018-05-01

    Full Text Available A number of studies have found that control over work conditions and hours is positively related to mental health. Still, potential positive and negative effects of work flexibility remain to be fully explored. On the one hand, higher work flexibility might provide better opportunities for recovery. On the other hand, especially mothers may use flexibility to meet household and family demands. Here, we investigated the association between parent's work flexibility, rated relative to their partner, and emotional exhaustion in interaction with gender. Additionally, gender differences in time use were investigated. Cross-sectional analyses based on responses of employed parents to the 2012 wave of the Swedish Longitudinal Occupational Survey of Health (SLOSH were conducted (N = 2,911. Generalized linear models with gamma distribution and a log-link function were used to investigate associations between relative work-flexibility (lower, equal, or higher as compared to partner, gender, and emotional exhaustion. After control for potential confounders, we found that having lower work flexibility than the partner was associated with higher levels of emotional exhaustion as compared to those with higher relative work flexibility. Also, being a mother was associated with higher levels of emotional exhaustion, independent of possible confounders. An interaction effect between low relative work flexibility and gender was found in relation to emotional exhaustion. Regarding time use, clear differences between mothers' and fathers' were found. However, few indications were found that relative work flexibility influenced time use. Mothers spent more time on household chores as compared to fathers, while fathers reported longer working hours. Fathers spent more time on relaxation compared with mothers. To conclude, our results indicate that lower relative work flexibility is detrimental for mental health both for mothers and fathers. However, while gender

  18. [Flexible print circuit technology application in biomedical engineering].

    Science.gov (United States)

    Jiang, Lihua; Cao, Yi; Zheng, Xiaolin

    2013-06-01

    Flexible print circuit (FPC) technology has been widely applied in variety of electric circuits with high precision due to its advantages, such as low-cost, high specific fabrication ability, and good flexibility, etc. Recently, this technology has also been used in biomedical engineering, especially in the development of microfluidic chip and microelectrode array. The high specific fabrication can help making microelectrode and other micro-structure equipment. And good flexibility allows the micro devices based on FPC technique to be easily packaged with other parts. In addition, it also reduces the damage of microelectrodes to the tissue. In this paper, the application of FPC technology in biomedical engineering is introduced. Moreover, the important parameters of FPC technique and the development trend of prosperous applications is also discussed.

  19. Towards Flexible Self-powered Micro-scale Integrated Systems

    KAUST Repository

    Rojas, Jhonathan Prieto

    2014-01-01

    Today’s information-centered world leads the ever-increasing consumer demand for more powerful, multifunctional portable devices. Additionally, recent developments on long-lasting energy sources and compliant, flexible systems, have introduced new

  20. Qualification test for the flexible receiver. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Tedeschi, D.J.

    1994-12-12

    This document provides the test plan and procedures to certify and design verify the 42{double_prime} and 4{double_prime}-6{double_prime} Flexible Receiver as a safety class 3 system. The Flexible Receiver will be used by projects W-151 and W-320 for removing equipment from tanks C-106 and AZ-101.

  1. Qualification test for the flexible receiver. Revision 2

    International Nuclear Information System (INIS)

    Tedeschi, D.J.

    1994-01-01

    This document provides the test plan and procedures to certify and design verify the 42 double-prime and 4 double-prime-6 double-prime Flexible Receiver as a safety class 3 system. The Flexible Receiver will be used by projects W-151 and W-320 for removing equipment from tanks C-106 and AZ-101

  2. A shut-off valve for flexible tubing

    Science.gov (United States)

    Reyburn, W. W.

    1972-01-01

    Design of light weight valve for flexible tubing is described. Valve is hand operated and provides positive sealing in normally closed position. Diagram is provided to show construction of valve. Principles of operation are explained.

  3. Nanowire surface fastener fabrication on flexible substrate

    Science.gov (United States)

    Toku, Yuhki; Uchida, Keita; Morita, Yasuyuki; Ju, Yang

    2018-07-01

    The market for wearable devices has increased considerably in recent years. In response to this demand, flexible electronic circuit technology has become more important. The conventional bonding technology in electronic assembly depends on high-temperature processes such as reflow soldering, which result in undesired thermal damages and residual stress at a bonding interface. In addition, it exhibits poor compatibility with bendable or stretchable device applications. Therefore, there is an urgent requirement to attach electronic parts on printed circuit boards with good mechanical and electrical properties at room temperature. Nanowire surface fasteners (NSFs) are candidates for resolving these problems. This paper describes the fabrication of an NSF on a flexible substrate, which can be used for room temperature conductive bonding. The template method is used for preparing high-density nanowire arrays. A Cu thin film is layered on the template as the flexible substrate. After etching the template, a Cu NSF is obtained on the Cu film substrate. In addition, the electrical and mechanical properties of the Cu NSF are studied under various fabrication conditions. The Cu NSF exhibits high shear adhesion strength (∼234 N cm‑2) and low contact resistivity (2.2 × 10‑4 Ω cm2).

  4. Flexible Adaptation in Cognitive Radios

    CERN Document Server

    Li, Shujun

    2013-01-01

    This book provides an introduction to software-defined radio and cognitive radio, along with methodologies for applying knowledge representation, semantic web, logic reasoning and artificial intelligence to cognitive radio, enabling autonomous adaptation and flexible signaling. Readers from the wireless communications and software-defined radio communities will use this book as a reference to extend software-defined radio to cognitive radio, using the semantic technology described. Readers with a background in semantic web and artificial intelligence will find in this book the application of semantic web and artificial intelligence technologies to wireless communications. For readers in networks and network management, this book presents a new approach to enable interoperability, collaborative optimization and flexible adaptation of network components. Provides a comprehensive ontology covering the core concepts of wireless communications using a formal language; Presents the technical realization of using a ...

  5. Mixture design procedure for flexible base.

    Science.gov (United States)

    2013-04-01

    This document provides information on mixture design requirements for a flexible base course. Sections : design requirements, job mix formula, contractor's responsibility, and engineer's responsibility. Tables : material requirements; requirements fo...

  6. Flexibility factors for small (d/D<1/3) branch connections with external loadings

    International Nuclear Information System (INIS)

    Rodabaugh, E.C.; Moore, S.E.

    1977-03-01

    A piping system analysis is accurate only to the extent that the flexibilities of all portions of the piping system are accurately known. The use of a ''conservative'' flexibility factor is not possible because such a factor cannot be defined. Branch connections require a definition of flexibility factor which is conceptually different than commonly used for curved pipe. An appropriate definition for the flexibility factors of branch connections is presented. The background of the present Code formulations of flexibility factors for branch connections is discussed. Additional theoretical data and test data are summarized. Recommendations are given for revisions to Code formulations for handling the flexibility of branch connections in a piping system analysis

  7. Layout designs of surface barrier coatings for boosting the capability of oxygen/vapor obstruction utilized in flexible electronics

    Science.gov (United States)

    Lee, Chang-Chun; Huang, Pei-Chen; He, Jing-Yan

    2018-04-01

    Organic light-emitting diode-based flexible and rollable displays have become a promising candidate for next-generation flexible electronics. For this reason, the design of surface multi-layered barriers should be optimized to enhance the long-term mechanical reliability of a flexible encapsulation that prevents the penetration of oxygen and vapor. In this study, finite element-based stress simulation was proposed to estimate the mechanical reliability of gas/vapor barrier design with low-k/silicon nitride (low-k/SiNx) stacking architecture. Consequently, stress-induced failure of critical thin films within the flexible display under various bending conditions must be considered. The feasibility of one pair SiO2/SiNx barrier design, which overcomes the complex lamination process, and the critical bending radius, which is decreased to 1.22 mm, were also examined. In addition, the influence of distance between neutral axes to the concerned layer surface dominated the induced-stress magnitude rather than the stress compliant mechanism provided from stacked low-k films.

  8. The Flexibility of Ectopic Lipids

    Directory of Open Access Journals (Sweden)

    Hannah Loher

    2016-09-01

    Full Text Available In addition to the subcutaneous and the visceral fat tissue, lipids can also be stored in non-adipose tissue such as in hepatocytes (intrahepatocellular lipids; IHCL, skeletal (intramyocellular lipids; IMCL or cardiac muscle cells (intracardiomyocellular lipids; ICCL. Ectopic lipids are flexible fuel stores that can be depleted by physical exercise and repleted by diet. They are related to obesity and insulin resistance. Quantification of IMCL was initially performed invasively, using muscle biopsies with biochemical and/or histological analysis. 1H-magnetic resonance spectroscopy (1H-MRS is now a validated method that allows for not only quantifying IMCL non-invasively and repeatedly, but also assessing IHCL and ICCL. This review summarizes the current available knowledge on the flexibility of ectopic lipids. The available evidence suggests a complex interplay between quantitative and qualitative diet, fat availability (fat mass, insulin action, and physical exercise, all important factors that influence the flexibility of ectopic lipids. Furthermore, the time frame of the intervention on these parameters (short-term vs. long-term appears to be critical. Consequently, standardization of physical activity and diet are critical when assessing ectopic lipids in predefined clinical situations.

  9. The nature and necessity of operational flexibility in the emergency department.

    Science.gov (United States)

    Ward, Michael J; Ferrand, Yann B; Laker, Lauren F; Froehle, Craig M; Vogus, Timothy J; Dittus, Robert S; Kripalani, Sunil; Pines, Jesse M

    2015-02-01

    Hospital-based emergency departments (EDs), given their high cost and major role in allocating care resources, are at the center of the debate about how to maximize value in delivering health care in the United States. To operate effectively and create value, EDs must be flexible, having the ability to rapidly adapt to the highly variable needs of patients. The concept of flexibility has not been well described in the ED literature. We introduce the concept, outline its potential benefits, and provide some illustrative examples to facilitate incorporating flexibility into ED management. We draw on operations research and organizational theory to identify and describe 5 forms of flexibility: physical, human resource, volume, behavioral, and conceptual. Each form of flexibility may be useful individually or in combination with other forms in improving ED performance and enhancing value. We also offer suggestions for measuring operational flexibility in the ED. A better understanding of operational flexibility and its application to the ED may help us move away from reactive approaches of managing variable demand to a more systematic approach. We also address the tension between cost and flexibility and outline how "partial flexibility" may help resolve some challenges. Applying concepts of flexibility from other disciplines may help clinicians and administrators think differently about their workflow and provide new insights into managing issues of cost, flow, and quality in the ED. Copyright © 2014 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

  10. Flexible structured high-frequency film bulk acoustic resonator for flexible wireless electronics

    International Nuclear Information System (INIS)

    Zhou, Changjian; Shu, Yi; Yang, Yi; Ren, Tian-Ling; Jin, Hao; Dong, Shu-Rong; Chan, Mansun

    2015-01-01

    Flexible electronics have inspired many novel and very important applications in recent years and various flexible electronic devices such as diodes, transistors, circuits, sensors, and radiofrequency (RF) passive devices including antennas and inductors have been reported. However, the lack of a high-performance RF resonator is one of the key bottlenecks to implement flexible wireless electronics. In this study, for the first time, a novel ultra-flexible structured film bulk acoustic resonator (FBAR) is proposed. The flexible FBAR is fabricated on a flexible polyimide substrate using piezoelectric thin film aluminum nitride (AlN) for acoustic wave excitation. Both the shear wave and longitudinal wave can be excited under the surface interdigital electrodes configuration we proposed. In the case of the thickness extension mode, a flexible resonator with a working frequency as high as of 5.2325 GHz has been realized. The resonators stay fully functional under bending status and after repeated bending and re-flattening operations. This flexible high-frequency resonator will serve as a key building block for the future flexible wireless electronics, greatly expanding the application scope of flexible electronics. (paper)

  11. Scaling of the dynamics of flexible Lennard-Jones chains

    DEFF Research Database (Denmark)

    Veldhorst, Arno; Dyre, J. C.; Schrøder, Thomas

    2014-01-01

    functions of excess entropy) which has been observed in simulations of both molecular and polymeric systems. Doing molecular dynamics simulations of flexible Lennard-Jones chains (LJC) with rigid bonds, we here provide the first detailed test of the isomorph theory applied to flexible chain molecules. We...

  12. Large-Scale Direct-Writing of Aligned Nanofibers for Flexible Electronics.

    Science.gov (United States)

    Ye, Dong; Ding, Yajiang; Duan, Yongqing; Su, Jiangtao; Yin, Zhouping; Huang, Yong An

    2018-05-01

    Nanofibers/nanowires usually exhibit exceptionally low flexural rigidities and remarkable tolerance against mechanical bending, showing superior advantages in flexible electronics applications. Electrospinning is regarded as a powerful process for this 1D nanostructure; however, it can only be able to produce chaotic fibers that are incompatible with the well-patterned microstructures in flexible electronics. Electro-hydrodynamic (EHD) direct-writing technology enables large-scale deposition of highly aligned nanofibers in an additive, noncontact, real-time adjustment, and individual control manner on rigid or flexible, planar or curved substrates, making it rather attractive in the fabrication of flexible electronics. In this Review, the ground-breaking research progress in the field of EHD direct-writing technology is summarized, including a brief chronology of EHD direct-writing techniques, basic principles and alignment strategies, and applications in flexible electronics. Finally, future prospects are suggested to advance flexible electronics based on orderly arranged EHD direct-written fibers. This technology overcomes the limitations of the resolution of fabrication and viscosity of ink of conventional inkjet printing, and represents major advances in manufacturing of flexible electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Study of a zero Poisson’s ratio honeycomb used for flexible skin

    Science.gov (United States)

    Rong, Jiaxin; Zhou, Li

    2017-04-01

    Flexible skin used in morphing wings is required to provide adequate cooperation deformation as well as bear the air load. Besides, according to the requirement of smoothness, the non-deformation direction of flexible skin needs to be restrained. This paper studies the mechanical properties of a cruciform honeycomb under a zero Poisson’s ratio constraint. The in-plane morphing capacity of the honeycomb is improved by optimizing the shape parameters of the honeycomb unit. To improve the out-of-plane bending capacity, a zero Poisson’s ratio mixed cruciform honeycomb with additional ribs is proposed. The mechanical properties of the mixed honeycomb are studied by theoretical analysis and simulation. Based on the design requirements of variable-camber trailing-edge flexible skin, the specific design parameters and performance parameters of the skin based on the mixed honeycomb are given. The results show that the zero Poisson’s ratio mixed cruciform honeycomb has high bending rigidity itself and can have better deformation capacity in-plane and higher bending rigidity out-of-plane by optimizing the shape parameters. The designed skin also has advantages in driving force, deformation capacity and quality over conventional skin.

  14. The compatibility of flexible instruments under the Kyoto Protocol

    International Nuclear Information System (INIS)

    Jepma, C.J.; Van der Gaast, W.P.; Woerdman, E.

    1998-01-01

    The compatibility of the Kyoto Protocol flexible instruments and the lessons that can be learned form the AIJ-phase (AIJ stands for Activities Implemented Jointly) are discussed. The key point to be made is that there may be various applications of flexible instruments which can create situations where the various instruments would crowd out each other. On the other hand, applying flexible instruments may create a leverage for Parties in terms of achieving domestic environmental objectives. In addition, several issues related to the implementation of Joint Implementation (JI) , Clean Development Mechanism (CDM) and international emissions trading are discussed. The issues concern mainly those that have been included in the working programme on flexible instruments for CoP4 and CoP5 (CoP stands for Convention of Parties). As such the report discusses the consequences of possible negotiations outcomes at CoP for the effectiveness of flexible instruments, Parties' capabilities to achieve their Kyoto Protocol commitments cost-effectively, and the role of the private sector on the national and international credits markets(s). 106 refs

  15. Role of Pectoral Fin Flexibility in Robotic Fish Performance

    Science.gov (United States)

    Bazaz Behbahani, Sanaz; Tan, Xiaobo

    2017-08-01

    Pectoral fins play a vital role in the maneuvering and locomotion of fish, and they have become an important actuation mechanism for robotic fish. In this paper, we explore the effect of flexibility of robotic fish pectoral fins on the robot locomotion performance and mechanical efficiency. A dynamic model for the robotic fish is presented, where the flexible fin is modeled as multiple rigid elements connected via torsional springs and dampers. Blade element theory is used to capture the hydrodynamic force on the fin. The model is validated with experimental results obtained on a robotic fish prototype, equipped with 3D-printed fins of different flexibility. The model is then used to analyze the impacts of fin flexibility and power/recovery stroke speed ratio on the robot swimming speed and mechanical efficiency. It is found that, in general, flexible fins demonstrate advantages over rigid fins in speed and efficiency at relatively low fin-beat frequencies, while rigid fins outperform flexible fins at higher frequencies. For a given fin flexibility, the optimal frequency for speed performance differs from the optimal frequency for mechanical efficiency. In addition, for any given fin, there is an optimal power/recovery stroke speed ratio, typically in the range of 2-3, that maximizes the speed performance. Overall, the presented model offers a promising tool for fin flexibility and gait design, to achieve speed and efficiency objectives for robotic fish actuated with pectoral fins.

  16. Flexibility@Work 2013: yearly report on flexible labor and employment

    NARCIS (Netherlands)

    Berkhout, E.; Heyma, A.; Prins, J.

    2013-01-01

    There is no clear evidence that the strong growth in the share of flexible labor relations between 2002 and 2007 points at a worldwide trend towards a larger share of flexible labor at the expense of traditional open-ended labor contracts. The growth in flexible labor varies too much between

  17. High-performance flexible all-solid-state supercapacitors based on densely-packed graphene/polypyrrole nanoparticle papers

    Science.gov (United States)

    Yang, Chao; Zhang, Liling; Hu, Nantao; Yang, Zhi; Wei, Hao; Wang, Yanyan; Zhang, Yafei

    2016-11-01

    Graphene-based all-solid-state supercapacitors (ASSSCs) have received increasing attention. It's a great challenge to fabricate high-performance flexible solid-state supercapacitors with high areal and volumetric energy storage capability, superior electron and ion conductivity, robust mechanical flexibility, as well as long term stability. Herein, we report a facile method to fabricate flexible ASSSCs based on densely-packed reduced graphene oxide (rGO)/polypyrrole nanoparticle (PPy NP) hybrid papers with a sandwich framework, which consists of well-separated and continuously-aligned rGO sheets. The incorporation of PPy NPs not only provides pseudocapacitance but also facilitates the infiltration of gel electrolyte. The assembled ASSSCs possess maximum areal and volumetric specific capacitances of 477 mF/cm2 and 94.9 F/cm3 at 0.5 mA/cm2. They also exhibit little capacitance deviation under different bending states, excellent cycling stability, small leakage current and low self-discharge characteristics. Additionally, the maximum areal and volumetric energy densities of 132.5 μWh/cm2 and 26.4 mWh/cm3 are achieved, which indicate that this hybrid paper is a promising candidate for high-performance flexible energy storage devices.

  18. Planning flexible learning to match the needs of consumers: a national survey.

    Science.gov (United States)

    Ayer, S; Smith, C

    1998-05-01

    The injection of market forces into the National Health Service (NHS) has led to nurse education being viewed as a commodity which educational institutions supply and NHS employers purchase. Conscious of the costs of paying for courses within this new consumer culture, NHS trusts and other health service employers are increasingly looking for cost-effective flexible training to educate their workforce quickly and efficiently. Parallel to this is the accelerated demand for continuing professional development (CPD) brought about by the inception of the UKCC's Post-Registration Education and Practice Project (PREPP). Both registered and enrolled nurses are finding they need professional updating and skills and thus increased access to courses. The increased demand for education and training brought about by these changes cannot be met through traditional methods alone, requiring educational institutions to re-appraise their methods of delivery and introduce more flexible approaches to learning. There is every evidence that this is now the case with open learning, distance learning and flexible approaches to learning ever growing in popularity as providers of nurse education recognize the benefits such approaches offer. The emphasis is on meeting the diverse needs of the health care employers and individuals by providing education that is flexible, learner-centred and customer focused. This paper presents the findings of a national survey to ascertain how providers of flexible education plan educational programmes to meet the needs of their customers. Based on data collected from 120 educational institutions within the higher education, health and social care and private sectors, it highlights: the ways in which flexible learning programmes and courses are delivered; what aspects of flexibility are considered important when designing programmes to meet the needs of prospective customers; and what approaches are used to assess demand for flexible education. The study

  19. Towards automated visual flexible endoscope navigation.

    Science.gov (United States)

    van der Stap, Nanda; van der Heijden, Ferdinand; Broeders, Ivo A M J

    2013-10-01

    The design of flexible endoscopes has not changed significantly in the past 50 years. A trend is observed towards a wider application of flexible endoscopes with an increasing role in complex intraluminal therapeutic procedures. The nonintuitive and nonergonomical steering mechanism now forms a barrier in the extension of flexible endoscope applications. Automating the navigation of endoscopes could be a solution for this problem. This paper summarizes the current state of the art in image-based navigation algorithms. The objectives are to find the most promising navigation system(s) to date and to indicate fields for further research. A systematic literature search was performed using three general search terms in two medical-technological literature databases. Papers were included according to the inclusion criteria. A total of 135 papers were analyzed. Ultimately, 26 were included. Navigation often is based on visual information, which means steering the endoscope using the images that the endoscope produces. Two main techniques are described: lumen centralization and visual odometry. Although the research results are promising, no successful, commercially available automated flexible endoscopy system exists to date. Automated systems that employ conventional flexible endoscopes show the most promising prospects in terms of cost and applicability. To produce such a system, the research focus should lie on finding low-cost mechatronics and technologically robust steering algorithms. Additional functionality and increased efficiency can be obtained through software development. The first priority is to find real-time, robust steering algorithms. These algorithms need to handle bubbles, motion blur, and other image artifacts without disrupting the steering process.

  20. Curing mechanism of flexible aqueous polymeric coatings.

    Science.gov (United States)

    Irfan, Muhammad; Ahmed, Abid Riaz; Kolter, Karl; Bodmeier, Roland; Dashevskiy, Andriy

    2017-06-01

    The objective of this study was to explain curing phenomena for pellets coated with a flexible polymeric coating based on poly(vinyl acetate) (Kollicoat® SR 30D) with regard to the effect of starter cores, thickness of drug layer, adhesion of coating to drug-layered-cores as well as coating properties. In addition, appropriate approaches to eliminate the curing effect were identified. Sugar or MCC cores were layered with the model drugs carbamazepine, theophylline, propranolol HCl, tramadol HCl and metoprolol HCl using HPMC (5 or 25% w/w, based on drug) as a binder. Drug-layered pellets were coated with Kollicoat® SR 30D in a fluidized bed coater using TEC (10% w/w) as plasticizer and talc (35-100% w/w) as anti-tacking agent. Drug release, pellet properties (morphology, water uptake-weight loss and osmolality) and adhesion of the coating to the drug layer were investigated as a function of curing at 60°C or 60°C/75% RH for 24h. The film formation of the aqueous dispersion of Kollicoat® SR 30D was complete, and therefore, a strong curing effect (decrease in drug release) at elevated temperature and humidity (60°C/75% RH) could not be explained by the well-known hydroplasticization and the further gradual coalescence of the colloidal polymer particles. According to the provided mechanistic explanation, the observed curing effect was associated with (1) high flexibility of coating, (2) adhesion between coating and drug layer, (3) water retaining properties of the drug layer, and (4) osmotically active cores. Unwanted curing effects could be minimized/eliminated by the addition of talc or/and pore-forming water soluble polymers in the coating, increasing binder amount or applying an intermediate coating, by increasing the thickness of drug layer or using non-osmotic cores. A new insight into curing phenomena mainly associated with the adhesion between drug layer and coating was provided. Appropriate approaches to avoid unwanted curing effect were identified

  1. Modeling and control of a hydraulically actuated flexible-prismatic link robot

    International Nuclear Information System (INIS)

    Love, L.; Kress, R.; Jansen, J.

    1996-12-01

    Most of the research related to flexible link manipulators to date has focused on single link, fixed length, single plane of vibration test beds. In addition, actuation has been predominantly based upon electromagnetic motors. Ironically, these elements are rarely found in the existing industrial long reach systems. This manuscript describes a new hydraulically actuated, long reach manipulator with a flexible prismatic link at Oak Ridge National Laboratory (ORNL). Focus is directed towards both modeling and control of hydraulic actuators as well as flexible links that have variable natural frequencies

  2. Flexible Bragg reflection waveguide devices fabricated on a plastic substrate

    Science.gov (United States)

    Kim, Kyung-Jo; Yi, Jeong-Ah; Oh, Min-Cheol; Noh, Young-Ouk; Lee, Hyung-Jong

    2007-09-01

    Bragg reflecting waveguide devices are fabricated on a flexible substrate by using a post lift-off process in order to provide highly uniform grating patterns on a wide range. In this process, the flexible substrate spin-coated on silicon wafer is released after the final fabrication process of chip dicing. The fabricated flexible Bragg reflector shows very sharp transmission spectrum with 3-dB bandwidth of 0.1 nm and 10-dB bandwidth of 0.4 nm, which proves the Bragg reflector has excellent uniformity. To achieve athermal operation of the flexible Bragg reflector, thermal expansion property of the plastic substrate is controlled by the thickness of two polymer materials constructing the plastic substrate. The flexible substrate with 0.7-μm SU-8 layers sandwiching 100-μm NOA61 layer provides an optimized thermal expansion property to compensate the thermo-optic effect of the waveguide made of ZPU polymer. The temperature dependence of the Bragg reflector is decreased to -0.011 nm/°C through the incorporation of the plastic substrate.

  3. Etanercept provides an effective, safe and flexible short- and long-term treatment regimen for moderate-to-severe psoriasis: a systematic review of current evidence.

    Science.gov (United States)

    Strohal, Robert; Chimenti, Sergio; Vena, Gino Antonio; Girolomoni, Giampiero

    2013-06-01

    The treatment of psoriasis requires long-lasting intervention. Conventional treatments for psoriasis comprise topical, phototherapeutic and systemic modalities, such as methotrexate or cyclosporine. Biological therapies are advocated by treatment guidelines for the use in moderate-to-severe psoriasis, when conventional treatments have failed, are contraindicated or are associated with severe adverse events. Etanercept is an anti-TNF recombinant fusion protein that has emerged as a standard biologic treatment option for moderate-to-severe psoriasis. The present review summarizes data from pivotal and post-marketing randomized controlled etanercept trials to treat moderate-to-severe psoriasis for 24 weeks and longer. During the first 12 weeks, etanercept can be administered in different dosing regimens: 50 mg twice weekly (BIW) and 50 mg once weekly. Although both regimens are effective, it has been shown that the 50 mg BIW dosage leads to higher response rates at week 24. In addition, after 24 weeks' treatment etanercept provides the unique possibility of continuous or intermittent long-term treatment programmes. The medium- to long-term efficacy of etanercept was consistent, regardless of whether etanercept therapy was interrupted or continuous. Taking the chronic nature of psoriasis into account, this flexibility in dosing regimen bestows a key advantage in facilitating individualisation of long-term treatment according to patient needs.

  4. An infrastructure with a unified control plane to integrate IP into optical metro networks to provide flexible and intelligent bandwidth on demand for cloud computing

    Science.gov (United States)

    Yang, Wei; Hall, Trevor

    2012-12-01

    The Internet is entering an era of cloud computing to provide more cost effective, eco-friendly and reliable services to consumer and business users and the nature of the Internet traffic will undertake a fundamental transformation. Consequently, the current Internet will no longer suffice for serving cloud traffic in metro areas. This work proposes an infrastructure with a unified control plane that integrates simple packet aggregation technology with optical express through the interoperation between IP routers and electrical traffic controllers in optical metro networks. The proposed infrastructure provides flexible, intelligent, and eco-friendly bandwidth on demand for cloud computing in metro areas.

  5. A Study of Flexible Composites for Expandable Space Structures

    Science.gov (United States)

    Scotti, Stephen J.

    2016-01-01

    Payload volume for launch vehicles is a critical constraint that impacts spacecraft design. Deployment mechanisms, such as those used for solar arrays and antennas, are approaches that have successfully accommodated this constraint, however, providing pressurized volumes that can be packaged compactly at launch and expanded in space is still a challenge. One approach that has been under development for many years is to utilize softgoods - woven fabric for straps, cloth, and with appropriate coatings, bladders - to provide this expandable pressure vessel capability. The mechanics of woven structure is complicated by a response that is nonlinear and often nonrepeatable due to the discrete nature of the woven fiber architecture. This complexity reduces engineering confidence to reliably design and certify these structures, which increases costs due to increased requirements for system testing. The present study explores flexible composite materials systems as an alternative to the heritage softgoods approach. Materials were obtained from vendors who utilize flexible composites for non-aerospace products to determine some initial physical and mechanical properties of the materials. Uniaxial mechanical testing was performed to obtain the stress-strain response of the flexible composites and the failure behavior. A failure criterion was developed from the data, and a space habitat application was used to provide an estimate of the relative performance of flexible composites compared to the heritage softgoods approach. Initial results are promising with a 25% mass savings estimated for the flexible composite solution.

  6. Nature-Inspired Structural Materials for Flexible Electronic Devices.

    Science.gov (United States)

    Liu, Yaqing; He, Ke; Chen, Geng; Leow, Wan Ru; Chen, Xiaodong

    2017-10-25

    Exciting advancements have been made in the field of flexible electronic devices in the last two decades and will certainly lead to a revolution in peoples' lives in the future. However, because of the poor sustainability of the active materials in complex stress environments, new requirements have been adopted for the construction of flexible devices. Thus, hierarchical architectures in natural materials, which have developed various environment-adapted structures and materials through natural selection, can serve as guides to solve the limitations of materials and engineering techniques. This review covers the smart designs of structural materials inspired by natural materials and their utility in the construction of flexible devices. First, we summarize structural materials that accommodate mechanical deformations, which is the fundamental requirement for flexible devices to work properly in complex environments. Second, we discuss the functionalities of flexible devices induced by nature-inspired structural materials, including mechanical sensing, energy harvesting, physically interacting, and so on. Finally, we provide a perspective on newly developed structural materials and their potential applications in future flexible devices, as well as frontier strategies for biomimetic functions. These analyses and summaries are valuable for a systematic understanding of structural materials in electronic devices and will serve as inspirations for smart designs in flexible electronics.

  7. Feasibility of mini-tablets as a flexible drug delivery tool.

    Science.gov (United States)

    Mitra, Biplob; Chang, Jessica; Wu, Sy-Juen; Wolfe, Chad N; Ternik, Robert L; Gunter, Thomas Z; Victor, Michael C

    2017-06-15

    Mini-tablets have potential applications as a flexible drug delivery tool in addition to their generally perceived use as multi-particulates. That is, mini-tablets could provide flexibility in dose finding studies and/or allow for combination therapies in the clinic. Moreover, mini-tablets with well controlled quality attributes could be a prudent choice for administering solid dosage forms as a single unit or composite of multiple mini-tablets in patient populations with swallowing difficulties (e.g., pediatric and geriatric populations). This work demonstrated drug substance particle size and concentration ranges that achieve acceptable mini-tablet quality attributes for use as a single or composite dosage unit. Immediate release and orally disintegrating mini-tablet formulations with 30μm to 350μm (particle size d 90 ) acetaminophen and Compap™ L (90% acetaminophen) at concentrations equivalent to 6.7% and 26.7% acetaminophen were evaluated. Mini-tablets achieved acceptable weight variability, tensile strength, friability, and disintegration time at a reasonable solid fraction for each formulation. The content uniformity was acceptable for mini-tablets of 6.7% formulations with ≤170μm drug substance, mini-tablets of all 26.7% formulations, and composite dosage units containing five or more mini-tablets of any formulation. Results supported the manufacturing feasibility of quality mini-tablets, and their applicability as a flexible drug delivery tool. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Optimization of flexible substrate by gradient elastic modulus design for performance improvement of flexible electronic devices

    Science.gov (United States)

    Xia, Minggang; Liang, Chunping; Hu, Ruixue; Cheng, Zhaofang; Liu, Shiru; Zhang, Shengli

    2018-05-01

    It is imperative and highly desirable to buffer the stress in flexible electronic devices. In this study, we designed and fabricated lamellate poly(dimethylsiloxane) (PDMS) samples with gradient elastic moduli, motivated by the protection of the pomelo pulp by its skin, followed by the measurements of their elastic moduli. We demonstrated that the electrical and fatigue performances of a Ag-nanowire thin film device on the PDMS substrate with a gradient elastic modulus are significantly better than those of a device on a substrate with a monolayer PDMS. This study provides a robust scheme to effectively protect flexible electronic devices.

  9. Printed all-solid flexible microsupercapacitors: towards the general route for high energy storage devices

    International Nuclear Information System (INIS)

    Wang, Ye; Shi, Yumeng; Zhao, Cheng Xi; Wong, Jen It; Yang, Hui Ying; Sun, Xiao Wei

    2014-01-01

    A novel method for fabricating all-solid flexible microsupercapacitors (MSCs) was proposed and developed by utilizing screen printing technology. A typical printed MSC is composed of a printed Ag electrode, MnO 2 /onion-like carbon (MnO 2 /OLC) as active material and a polyvinyl alcohol:H 3 PO 4 (PVA:H 3 PO 4 ) as solid electrolyte. A capacity of 7.04 mF cm −2 was achieved for the screen printed MnO 2 /OLC MSCs at a current density of 20 μA cm −2 . It also showed an excellent cycling stability, with 80% retention of the specific capacity after 1000 cycles. The printed all-solid flexible MSCs exhibited remarkably high mechanical flexibility when the devices were bent to a radius of 3.5 mm. In addition, all-solid MSCs were successfully demonstrated by screen printing technique on various substrates, such as silicon, glass and conventional printing paper. Moreover, the screen printing technique can be extended to other active materials, such as OLC and carbon nanotubes. This method provides a general route for printable all-solid flexible MSCs, which is compatible with the roll-to-roll process for various high performance active materials. (paper)

  10. Diffusion in flexible pipes

    Energy Technology Data Exchange (ETDEWEB)

    Brogaard Kristensen, S

    2000-06-01

    This report describes the work done on modelling and simulation of the complex diffusion of gas through the wall of a flexible pipe. The diffusion and thus the pressure in annulus depends strongly on the diffusion and solubility parameters of the gas-polymer system and on the degree of blocking of the outer surface of the inner liner due to pressure reinforcements. The report evaluates the basis modelling required to describe the complex geometries and flow patterns. Qualitatively results of temperature and concentration profiles are shown in the report. For the program to serve any modelling purpose in 'real life' the results need to be validated and possibly the model needs corrections. Hopefully, a full-scale test of a flexible pipe will provide the required temperatures and pressures in annulus to validate the models. (EHS)

  11. Effect of the Flexible Regions of the Oncoprotein Mouse Double Minute X on Inhibitor Binding Affinity.

    Science.gov (United States)

    Qin, Lingyun; Liu, Huili; Chen, Rong; Zhou, Jingjing; Cheng, Xiyao; Chen, Yao; Huang, Yongqi; Su, Zhengding

    2017-11-07

    The oncoprotein MdmX (mouse double minute X) is highly homologous to Mdm2 (mouse double minute 2) in terms of their amino acid sequences and three-dimensional conformations, but Mdm2 inhibitors exhibit very weak affinity for MdmX, providing an excellent model for exploring how protein conformation distinguishes and alters inhibitor binding. The intrinsic conformation flexibility of proteins plays pivotal roles in determining and predicting the binding properties and the design of inhibitors. Although the molecular dynamics simulation approach enables us to understand protein-ligand interactions, the mechanism underlying how a flexible binding pocket adapts an inhibitor has been less explored experimentally. In this work, we have investigated how the intrinsic flexible regions of the N-terminal domain of MdmX (N-MdmX) affect the affinity of the Mdm2 inhibitor nutlin-3a using protein engineering. Guided by heteronuclear nuclear Overhauser effect measurements, we identified the flexible regions that affect inhibitor binding affinity around the ligand-binding pocket on N-MdmX. A disulfide engineering mutant, N-MdmX C25-C110/C76-C88 , which incorporated two staples to rigidify the ligand-binding pocket, allowed an affinity for nutlin-3a higher than that of wild-type N-MdmX (K d ∼ 0.48 vs K d ∼ 20.3 μM). Therefore, this mutant provides not only an effective protein model for screening and designing of MdmX inhibitors but also a valuable clue for enhancing the intermolecular interactions of the pharmacophores of a ligand with pronounced flexible regions. In addition, our results revealed an allosteric ligand-binding mechanism of N-MdmX in which the ligand initially interacts with a compact core, followed by augmenting intermolecular interactions with intrinsic flexible regions. This strategy should also be applicable to many other protein targets to accelerate drug discovery.

  12. Methods for fabrication of flexible hybrid electronics

    Science.gov (United States)

    Street, Robert A.; Mei, Ping; Krusor, Brent; Ready, Steve E.; Zhang, Yong; Schwartz, David E.; Pierre, Adrien; Doris, Sean E.; Russo, Beverly; Kor, Siv; Veres, Janos

    2017-08-01

    Printed and flexible hybrid electronics is an emerging technology with potential applications in smart labels, wearable electronics, soft robotics, and prosthetics. Printed solution-based materials are compatible with plastic film substrates that are flexible, soft, and stretchable, thus enabling conformal integration with non-planar objects. In addition, manufacturing by printing is scalable to large areas and is amenable to low-cost sheet-fed and roll-to-roll processes. FHE includes display and sensory components to interface with users and environments. On the system level, devices also require electronic circuits for power, memory, signal conditioning, and communications. Those electronic components can be integrated onto a flexible substrate by either assembly or printing. PARC has developed systems and processes for realizing both approaches. This talk presents fabrication methods with an emphasis on techniques recently developed for the assembly of off-the-shelf chips. A few examples of systems fabricated with this approach are also described.

  13. Organic nanowire hierarchy over fabric platform for flexible cold cathode

    Science.gov (United States)

    Maiti, Soumen; Narayan Maiti, Uday; Pal, Shreyasi; Chattopadhyay, Kalyan Kumar

    2013-11-01

    Organic charge transfer (CT) complexes initiated a growing interest in modern electronic devices owing to their easy processability and unique characteristics. In this work, three-dimensional field emitters comprising metal-organic charge transfer complex nanostructures of AgTCNQ and CuTCNQ (TCNQ, 7,7,8,8-tetracyanoquinodimethane) over flexible fabric substrate are realized. Deliberate control over the reaction parameter during organic solid phase reaction leads to modification in structural parameters of the nanowires (i.e. length, diameter) as well as their arrangement atop the carbon fibers. The optimized arrays of AgTCNQ and CuTCNQ nanowires exhibit excellent field electron emission performance with very low turn-on (1.72 and 2.56 V μm-1) and threshold fields (4.21 and 6.33 V μm-1) respectively, which are comparable to those of the best organic field emitters reported to date. The underlying conducting carbon cloth with special woven-like geometry not only offers a flexible platform for nanowire growth, but also provides an additional field enhancement to ease the electron emission.

  14. Organic nanowire hierarchy over fabric platform for flexible cold cathode

    International Nuclear Information System (INIS)

    Maiti, Soumen; Pal, Shreyasi; Chattopadhyay, Kalyan Kumar; Maiti, Uday Narayan

    2013-01-01

    Organic charge transfer (CT) complexes initiated a growing interest in modern electronic devices owing to their easy processability and unique characteristics. In this work, three-dimensional field emitters comprising metal–organic charge transfer complex nanostructures of AgTCNQ and CuTCNQ (TCNQ, 7,7,8,8-tetracyanoquinodimethane) over flexible fabric substrate are realized. Deliberate control over the reaction parameter during organic solid phase reaction leads to modification in structural parameters of the nanowires (i.e. length, diameter) as well as their arrangement atop the carbon fibers. The optimized arrays of AgTCNQ and CuTCNQ nanowires exhibit excellent field electron emission performance with very low turn-on (1.72 and 2.56 V μm −1 ) and threshold fields (4.21 and 6.33 V μm −1 ) respectively, which are comparable to those of the best organic field emitters reported to date. The underlying conducting carbon cloth with special woven-like geometry not only offers a flexible platform for nanowire growth, but also provides an additional field enhancement to ease the electron emission. (paper)

  15. Flexible public transportation services in Florida.

    Science.gov (United States)

    2013-08-01

    This synthesis research provides an overview of the current use of flexible transportation services in Florida through administration of a survey and subsequent identification and examination of case study locations. The research included a literatur...

  16. Extremely flexible nanoscale ultrathin body silicon integrated circuits on plastic.

    Science.gov (United States)

    Shahrjerdi, Davood; Bedell, Stephen W

    2013-01-09

    In recent years, flexible devices based on nanoscale materials and structures have begun to emerge, exploiting semiconductor nanowires, graphene, and carbon nanotubes. This is primarily to circumvent the existing shortcomings of the conventional flexible electronics based on organic and amorphous semiconductors. The aim of this new class of flexible nanoelectronics is to attain high-performance devices with increased packing density. However, highly integrated flexible circuits with nanoscale transistors have not yet been demonstrated. Here, we show nanoscale flexible circuits on 60 Å thick silicon, including functional ring oscillators and memory cells. The 100-stage ring oscillators exhibit the stage delay of ~16 ps at a power supply voltage of 0.9 V, the best reported for any flexible circuits to date. The mechanical flexibility is achieved by employing the controlled spalling technology, enabling the large-area transfer of the ultrathin body silicon devices to a plastic substrate at room temperature. These results provide a simple and cost-effective pathway to enable ultralight flexible nanoelectronics with unprecedented level of system complexity based on mainstream silicon technology.

  17. Flexible riser integrity management: areas of concern and applications

    Energy Technology Data Exchange (ETDEWEB)

    Podskarbi, Mateusz [Schlumberger Servicos de Petroleo Ltda., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    Flexible risers are key enables for both deep water and shallow water offshore production developments. Number of flexible risers installed worldwide is into several thousands with two main concentration areas - offshore Brazil and North Sea. Flexible risers are subject to significant loads including environmental impacts, vessel motions, internal temperature and pressure as well as substantial installation loads. Excessive loads of one type or a combination of various types of loads can cause damage to the flexible that can lead to a catastrophic failure. Industry observed number of failures increasing in recent years. Operators and manufacturing companies are taking various steps to address this issue. One of possible approaches is to use monitoring instrumentation to measure riser response and integrity in real time. This paper reviews various types of flexible riser damage mechanisms caused by impact damage, corrosion, excessive pressure, armor wire rupture, compromising flexible riser minimum bend radius, excessive fatigue loading, etc. Failure mechanisms are reviewed with particular focus on the consequences that it causes in terms of risk to the infrastructure and detectable changes. Further part of the paper is focused on monitoring techniques employed and available to detect particular types of failure mechanisms. Systematic review of the monitoring techniques is provided with specific attention given to ability of these techniques to provide early warnings of riser failure. Evaluation of monitoring techniques versus modes of operation and failure mechanism is key to selecting appropriate system that ensures effectiveness of the integrity management program. (author)

  18. External laundry service. A tool for fleet management and flexible decommissioning

    International Nuclear Information System (INIS)

    Brueckner, Guenter; Schmitt, Burkhard; Micklinghoff, Michael

    2014-01-01

    While it is common in other countries such as the USA or Sweden to send out contaminated garments to an external laundering facility, this is not the case in Germany, where the preferred tendency in the nuclear industry is to remain independent from an external service provider. After the US based company 'UniTech' built a laundering facility for controlled area garment in Coevorden, Netherlands, in 1996, German operators began testing this service for decommissioning work. At the time, their justification for this choice was based on the following: - In case of a disrupted delivery the consequences would not be as severe for a nuclear power plant in the process of decommissioning. - Additional investments (evaporators) would have been necessary to install in the laundries of the individual nuclear power plants. - The existing on-site laundries and waste treatment equipment were often not suited to deal with nuclides, specific to decommissioning. It quickly became evident that a specialized service provider could conduct the necessary tasks more effectively, more flexibly, and with higher quality than an ancillary on-site facility. In addition, it became evident that central fleet management tasks are facilitated by contracting an external service provider. Business and technical processes, and requirements agreed upon in a framework agreement, supported the introduction of unified standards. The road map for future decommissioning projects in Germany is impacted by many uncertainties. Therefore, planning requires a great deal of flexibility. Here, as with other related operations, it is critical that enough protective garments are in the right place at the right time. If this does not happen, delays, additional costs and changes to process planning result. For these reasons, an external laundering and garment management service is the most reliable solution. Industry experience shows that even very short-term requests for large quantities of protective garments

  19. Dynamic Model of a Rotating Flexible Arm-Flexible Root Mechanism Driven by a Shaft Flexible in Torsion

    Directory of Open Access Journals (Sweden)

    S.Z. Ismail

    2006-01-01

    Full Text Available This paper presents a dynamic model of a rotating flexible beam carrying a payload at its tip. The model accounts for the driving shaft and the arm root flexibilities. The finite element method and the Lagrangian dynamics are used in deriving the equations of motion with the small deformation theory assumptions and the Euler-Bernoulli beam theory. The obtained model is a nonlinear-coupled system of differential equations. The model is simulated for different combinations of shaft and root flexibilities and arm properties. The simulation results showed that the root flexibility is an important factor that should be considered in association with the arm and shaft flexibilities, as its dynamics influence the motor motion. Moreover, the effect of system non-linearity on the dynamic behavior is investigated by simulating the equivalent linearized system and it was found to be an important factor that should be considered, particularly when designing a control strategy for practical implementation.

  20. Elucidating the effects of adsorbent flexibility on fluid adsorption using simple models and flat-histogram sampling methods

    International Nuclear Information System (INIS)

    Shen, Vincent K.; Siderius, Daniel W.

    2014-01-01

    Using flat-histogram Monte Carlo methods, we investigate the adsorptive behavior of the square-well fluid in two simple slit-pore-like models intended to capture fundamental characteristics of flexible adsorbent materials. Both models require as input thermodynamic information about the flexible adsorbent material itself. An important component of this work involves formulating the flexible pore models in the appropriate thermodynamic (statistical mechanical) ensembles, namely, the osmotic ensemble and a variant of the grand-canonical ensemble. Two-dimensional probability distributions, which are calculated using flat-histogram methods, provide the information necessary to determine adsorption thermodynamics. For example, we are able to determine precisely adsorption isotherms, (equilibrium) phase transition conditions, limits of stability, and free energies for a number of different flexible adsorbent materials, distinguishable as different inputs into the models. While the models used in this work are relatively simple from a geometric perspective, they yield non-trivial adsorptive behavior, including adsorption-desorption hysteresis solely due to material flexibility and so-called “breathing” of the adsorbent. The observed effects can in turn be tied to the inherent properties of the bare adsorbent. Some of the effects are expected on physical grounds while others arise from a subtle balance of thermodynamic and mechanical driving forces. In addition, the computational strategy presented here can be easily applied to more complex models for flexible adsorbents

  1. The missing link between maintenance contracts and flexible asset management

    OpenAIRE

    Marttonen-Arola, Salla; Viskari, Sari; Kärri, Timo

    2013-01-01

    The paper shows how additional value can be created in maintenance collaboration through integrating the features of flexible asset management into maintenance contracts. We expand the traditional typology of maintenance contracts and introduce a new contract type, flexible asset management contracts. Also value sharing in the new contract type is discussed. Our logic for sharing the value is based on reaching for win-win situations in industrial maintenance collaboration. Finally, we present...

  2. Low-temperature fabrication of flexible TiO{sub 2} electrode for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Qinghui; Qi, Bin [Laboratory of Organic Optoelectronic Functional Materials and Molecular Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Zhong-guan-cun, Beijing 100190 (China); Graduate University of Chinese Academy of Sciences, Zhong-guan-cun, Beijing 100190 (China); Yu, Yuan; Wu, Liangzhuan; Zhi, Jinfang [Laboratory of Organic Optoelectronic Functional Materials and Molecular Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Zhong-guan-cun, Beijing 100190 (China)

    2010-09-15

    A novel method for preparing flexible porous titania electrode from commercial TiO{sub 2} particles at low temperature for dye-sensitized solar cells (DSSCs) was introduced. In this method, hydroxypropyl methyl cellulose (HPMC) as an additive was added to form a good-quality TiO{sub 2}/HPMC film on indium-tin-oxide-coated polyethylene naphthalate flexible substrate (PEN/ITO). The additive was subsequently decomposed via the TiO{sub 2} photocatalytic degradation process under 365 nm UV-light illumination at room temperature to form flexible multiporous TiO{sub 2} electrode film. Electrochemistry impedance spectroscopy (EIS) analysis indicated that the resistance of TiO{sub 2} film markedly decreased, and photocurrent-voltage curves showed that the photocurrent dramatically increased when the additive (HPMC) was removed from the flexible titania electrode film. The photocurrent conversion efficiency was estimated at 3.25% under 100 mW/cm{sup 2} illuminations using this flexible film as the DSSC photoanode. Photocurrent versus voltages of the as-prepared flexible DSSCs under AM 1.5 at 100 mW/cm{sup 2} illumination: photoanode made from HPMC-free TiO{sub 2} paste ({open_square}) and photoanodes made from HPMC/TiO{sub 2} paste with UV-light illumination from 0 to 10 h. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  3. Options: the value of flexibilities in long term uranium contracts

    International Nuclear Information System (INIS)

    Major-Sosias, M.A.

    1996-01-01

    It has been commonplace for uranium suppliers to offer utilities long-term contracts with significant quantity flexibilities. These are attractive to the utility for which the consumption of fuel is dependent on variable reactor performance and have given the suppliers an additional competitive tool. The return to a uranium market in which near-term supply is likely to be tight is a disincentive to suppliers to offer new contracts with flexibilities. Typical recent flexibility offers have been significantly less generous than in the past. A methodology is outlined which can be used to give a theoretical estimate of the value of the flexibility provision to the supplier and buyer. It is based on the similarity between flexibility provision and option contracts in the securities and commodity markets. By regarding flexibilities as ''embedded options'' it is possible to apply to them the Black-Scholes option pricing formula as long as the necessary inputs, such as the price of uranium, the loan rate and the volatility, are available. The formula does have its shortfalls, however; in particular, it cannot incorporate the political perturbations that are continually taking place in the uranium industry. (13 figures, 15 references). (UK)

  4. Optics Flexibility and Dispersion Matching at Injection into the LHC

    CERN Document Server

    Koschik, A; Goddard, B; Kadi, Y; Kain, V; Mertens, V; Risselada, Thys

    2006-01-01

    The LHC requires very precise matching of transfer line and LHC optics to minimise emittance blow-up and tail repopulation at injection. The recent addition of a comprehensive transfer line collimation system to improve the protection against beam loss has created additional matching constraints and consumed a significant part of the flexibility contained in the initial optics design of the transfer lines. Optical errors, different injection configurations and possible future optics changes require however to preserve a certain tuning range. Here we present methods of tuning optics parameters at the injection point by using orbit correctors in the main ring, with the emphasis on dispersion matching. The benefit of alternative measures to enhance the flexibility is briefly discussed.

  5. Network Physics - the only company to provide physics-based network management - secures additional funding and new executives

    CERN Multimedia

    2003-01-01

    "Network Physics, the only provider of physics-based network management products, today announced an additional venture round of $6 million in funding, as well as the addition of David Jones as president and CEO and Tom Dunn as vice president of sales and business development" (1 page).

  6. Automation Hooks Architecture for Flexible Test Orchestration - Concept Development and Validation

    Science.gov (United States)

    Lansdowne, C. A.; Maclean, John R.; Winton, Chris; McCartney, Pat

    2011-01-01

    The Automation Hooks Architecture Trade Study for Flexible Test Orchestration sought a standardized data-driven alternative to conventional automated test programming interfaces. The study recommended composing the interface using multicast DNS (mDNS/SD) service discovery, Representational State Transfer (Restful) Web Services, and Automatic Test Markup Language (ATML). We describe additional efforts to rapidly mature the Automation Hooks Architecture candidate interface definition by validating it in a broad spectrum of applications. These activities have allowed us to further refine our concepts and provide observations directed toward objectives of economy, scalability, versatility, performance, severability, maintainability, scriptability and others.

  7. Development of a Novel Transparent Flexible Capacitive Micromachined Ultrasonic Transducer

    Directory of Open Access Journals (Sweden)

    Da-Chen Pang

    2017-06-01

    Full Text Available This paper presents the world’s first transparent flexible capacitive micromachined ultrasonic transducer (CMUT that was fabricated through a roll-lamination technique. This polymer-based CMUT has advantages of transparency, flexibility, and non-contacting detection which provide unique functions in display panel applications. Comprising an indium tin oxide-polyethylene terephthalate (ITO-PET substrate, SU-8 sidewall and vibrating membranes, and silver nanowire transparent electrode, the transducer has visible-light transmittance exceeding 80% and can operate on curved surfaces with a 40 mm radius of curvature. Unlike the traditional silicon-based high temperature process, the CMUT can be fabricated on a flexible substrate at a temperature below 100 °C to reduce residual stress introduced at high temperature. The CMUT on the curved surfaces can detect a flat target and finger at distances up to 50 mm and 40 mm, respectively. The transparent flexible CMUT provides a better human-machine interface than existing touch panels because it can be integrated with a display panel for non-contacting control in a health conscious environment and the flexible feature is critical for curved display and wearable electronics.

  8. Microcontroller based automatic liquid poison addition control system

    International Nuclear Information System (INIS)

    Kapatral, R.S.; Ananthakrishnan, T.S.; Pansare, M.G.

    1989-01-01

    Microcontrollers are finding increasing applications in instrumentation where complex digital circuits can be substituted by a compact and simple circuit, thus enhancing the reliability. In addition to this, intelligence and flexibility can be incorporated. For applications not requiring large amount of read/write memory (RAM), microcontrollers are ideally suited since they contain programmable memory (Eprom), parallel input/output lines, data memory, programmable timers and serial interface ports in one chip. This paper describes the design of automatic liquid poison addition control system (ALPAS) using intel's 8 bit microcontroller 8751, which is used to generate complex timing control sequence signals for liquid poison addition to the moderator in a nuclear reactor. ALPAS monitors digital inputs coming from protection system and regulating system of a nuclear reactor and provides control signals for liquid poison addition for long term safe shutdown of the reactor after reactor trip and helps the regulating system to reduce the power of the reactor during operation. Special hardware and software features have been incorporated to improve performance and fault detection. (author)

  9. Very Thin Flexible Coupled Inductors for PV Module Integrated GaN Converter

    DEFF Research Database (Denmark)

    Acanski, Milos; Ouyang, Ziwei; Popovic-Gerber, Jelena

    2012-01-01

    converter integrated directly into a low cost flexible PV module. Additional problems arise in this case, specifically in magnetics design, due to the requirements for very low profile flexible construction and limited thermal headroom. Overcoming these limitations presents a challenge, but can lead...... to a cost effective, reliable solution for PV systems with improved integration level and power density....

  10. Diffusion in flexible pipes

    Energy Technology Data Exchange (ETDEWEB)

    Brogaard Kristensen, S.

    2000-06-01

    This report describes the work done on modelling and simulation of the complex diffusion of gas through the wall of a flexible pipe. The diffusion and thus the pressure in annulus depends strongly on the diffusion and solubility parameters of the gas-polymer system and on the degree of blocking of the outer surface of the inner liner due to pressure reinforcements. The report evaluates the basis modelling required to describe the complex geometries and flow patterns. Qualitatively results of temperature and concentration profiles are shown in the report. For the program to serve any modelling purpose in 'real life' the results need to be validated and possibly the model needs corrections. Hopefully, a full-scale test of a flexible pipe will provide the required temperatures and pressures in annulus to validate the models. (EHS)

  11. Large-area high-efficiency flexible PHOLED lighting panels

    Science.gov (United States)

    Pang, Huiqing; Mandlik, Prashant; Levermore, Peter A.; Silvernail, Jeff; Ma, Ruiqing; Brown, Julie J.

    2012-09-01

    Organic Light Emitting Diodes (OLEDs) provide various attractive features for next generation illumination systems, including high efficiency, low power, thin and flexible form factor. In this work, we incorporated phosphorescent emitters and demonstrated highly efficient white phosphorescent OLED (PHOLED) devices on flexible plastic substrates. The 0.94 cm2 small-area device has total thickness of approximately 0.25 mm and achieved 63 lm/W at 1,000 cd/m2 with CRI = 85 and CCT = 2920 K. We further designed and fabricated a 15 cm x 15 cm large-area flexible white OLED lighting panels, finished with a hybrid single-layer ultra-low permeability single layer barrier (SLB) encapsulation film. The flexible panel has an active area of 116.4 cm2, and achieved a power efficacy of 47 lm/W at 1,000 cd/m2 with CRI = 83 and CCT = 3470 K. The efficacy of the panel at 3,000 cd/m2 is 43 lm/W. The large-area flexible PHOLED lighting panel is to bring out enormous possibilities to the future general lighting applications.

  12. 17 CFR 270.6e-3(T) - Temporary exemptions for flexible premium variable life insurance separate accounts.

    Science.gov (United States)

    2010-04-01

    ... for issuance, increases in or additions of insurance benefits, transfer and redemption of flexible... deducted from amounts transferred to a flexible contract from another plan of insurance; (iii) Sections 27... guaranteed death benefit risks assumed by the life insurer under the flexible contracts (collectively, a...

  13. Development and Plasticity of Cognitive Flexibility in Early and Middle Childhood.

    Science.gov (United States)

    Buttelmann, Frances; Karbach, Julia

    2017-01-01

    Cognitive flexibility, the ability to flexibly switch between tasks, is a core dimension of executive functions (EFs) allowing to control actions and to adapt flexibly to changing environments. It supports the management of multiple tasks, the development of novel, adaptive behavior and is associated with various life outcomes. Cognitive flexibility develops rapidly in preschool and continuously increases well into adolescence, mirroring the growth of neural networks involving the prefrontal cortex. Over the past decade, there has been increasing interest in interventions designed to improve cognitive flexibility in children in order to support the many developmental outcomes associated with cognitive flexibility. This article provides a brief review of the development and plasticity of cognitive flexibility across early and middle childhood (i.e., from preschool to elementary school age). Focusing on interventions designed to improve cognitive flexibility in typically developing children, we report evidence for significant training and transfer effects while acknowledging that current findings on transfer are heterogeneous. Finally, we introduce metacognitive training as a promising new approach to promote cognitive flexibility and to support transfer of training.

  14. Flexible Environmental Modeling with Python and Open - GIS

    Science.gov (United States)

    Pryet, Alexandre; Atteia, Olivier; Delottier, Hugo; Cousquer, Yohann

    2015-04-01

    Numerical modeling now represents a prominent task of environmental studies. During the last decades, numerous commercial programs have been made available to environmental modelers. These software applications offer user-friendly graphical user interfaces that allow an efficient management of many case studies. However, they suffer from a lack of flexibility and closed-source policies impede source code reviewing and enhancement for original studies. Advanced modeling studies require flexible tools capable of managing thousands of model runs for parameter optimization, uncertainty and sensitivity analysis. In addition, there is a growing need for the coupling of various numerical models associating, for instance, groundwater flow modeling to multi-species geochemical reactions. Researchers have produced hundreds of open-source powerful command line programs. However, there is a need for a flexible graphical user interface allowing an efficient processing of geospatial data that comes along any environmental study. Here, we present the advantages of using the free and open-source Qgis platform and the Python scripting language for conducting environmental modeling studies. The interactive graphical user interface is first used for the visualization and pre-processing of input geospatial datasets. Python scripting language is then employed for further input data processing, call to one or several models, and post-processing of model outputs. Model results are eventually sent back to the GIS program, processed and visualized. This approach combines the advantages of interactive graphical interfaces and the flexibility of Python scripting language for data processing and model calls. The numerous python modules available facilitate geospatial data processing and numerical analysis of model outputs. Once input data has been prepared with the graphical user interface, models may be run thousands of times from the command line with sequential or parallel calls. We

  15. Effect of flexibility on flapping wing characteristics under forward flight

    International Nuclear Information System (INIS)

    Zhu, Jianyang; Jiang, Lin; Zhou, Chaoying; Wang, Chao

    2014-01-01

    Through two-dimensional numerical simulation and by solving the unsteady incompressible Navier–Stokes (NS) equations, coupled with the structural dynamic equation for the motion of the wing, the effect of flexibility on flapping wing characteristics during forward flight is systematically studied. The flapping wing is considered as a cantilever, which performs the translational and rotational motion at its leading edge, and the other part is passively deformed by the aerodynamic force. The frequency ratio ω* and mass ratio m* are defined and used to characterize the flexibility of the flapping wing. It has been found that an optimal range of the frequency ratio exists in which the flexible wing possesses both a larger propulsive efficiency and lifting efficiency than their rigid counterpart. Also, the flexible wing with the smaller mass ratio may be of benefit to generate thrust, while the larger mass ratio may be of benefit to generate lift. In addition, a stronger leading edge vortex and reattachment vortex are observed around the appropriate flexibility wing’s surface, which therefore leads to better aerodynamic characteristics. (paper)

  16. Conflicting flexibility

    NARCIS (Netherlands)

    De Jong, P.; Schaap, A.

    2011-01-01

    New buildings are designed for first users. For a sustainable approach there are many advantages in designing in flexibility and adjustability in order to enable and facilitate the other sequential users. For the first investor this flexibility is translated into improved exit values due to

  17. LMFBR flexible pipe joint development program. Annual technical progress report, government fiscal year 1977

    International Nuclear Information System (INIS)

    1978-01-01

    Currently, the ASME Boiler and Pressure Vessel Code does not allow the use of flexible pipe joints (bellows) in Section III, Class 1 reactor primary piping systems. Studies have shown that the primary piping loops of LMFBR's could be simplified by using these joints. This simplification translates directly into shorter primary piping runs and reduced costs for the primary piping system. Further cost savings result through reduced vault sizes and reduced containment building diameter. In addition, the use of flexible joints localizes the motions from thermally-induced piping growth into components which are specifically designed to accommodate this motion. This reduces the stress levels in the piping system and its components. It is thus economically and structurally important that flexible piping joints be available to the LMFBR designer. The overall objective of the Flexible Joint Program is to provide this availability. This will be accomplished through the development of ASME rules which allow the appropriate use of such joints in Section III, Class 1 piping systems and through the development and demonstration of construction methods which satisfy these rules. The rule development includes analytic and testing methodology formulations which will be supported by subscale bellows testing. The construction development and demonstration encompass the design, fabrication, and in-sodium testing of prototypical LMFBR plant-size flexible pipe joints which meet all ASME rule requirements. The satisfactory completion of these developmental goals will result in an approved flexible pipe joint design for the LMFBR. Progress is summarized in the following efforts undertaken during 1977 to accomplish these goals: (1) code case support, (2) engineering and design, (3) material development, (4) testing, and (5) manufacturing development

  18. Measuring psychological flexibility in medical students and residents: a psychometric analysis

    Directory of Open Access Journals (Sweden)

    Christie L. Palladino

    2013-08-01

    Full Text Available Purpose: Psychological flexibility involves mindful awareness of our thoughts and feelings without allowing them to prohibit acting consistently with our values and may have important implications for patient-centered clinical care. Although psychological flexibility appears quite relevant to the training and development of health care providers, prior research has not evaluated measures of psychological flexibility in medical learners. Therefore, we investigated the validity of our learners’ responses to three measures related to psychological flexibility. Methods: Fourth-year medical students and residents (n=275 completed three measures of overlapping aspects of psychological flexibility: (1 Acceptance and Action Questionnaire-II (AAQ-II; (2 Cognitive Fusion Questionnaire (CFQ; and (3 Mindful Attention and Awareness Questionnaire (MAAS. We evaluated five aspects of construct validity: content, response process, internal structure, relationship with other variables, and consequences. Results: We found good internal consistency for responses on the AAQ (α=0.93, MAAS (α=0.92, and CFQ (α=0.95. Factor analyses demonstrated a reasonable fit to previously published factor structures. As expected, scores on all three measures were moderately correlated with one another and with a measure of life satisfaction (p<0.01. Conclusion: Our findings provide preliminary evidence supporting validity of the psychological flexibility construct in a medical education sample. As psychological flexibility is a central concept underlying self-awareness, this work may have important implications for clinical training and practice.

  19. Energy Savings Potential of Flexible and Adaptive HVAC Distribution Systems for Office Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Loftness, Vivian; Brahme, Rohini; Mondazzi, Michelle; Vineyard, Edward; MacDonald, Michael

    2002-06-01

    It has been understood by architects and engineers that office buildings with easily re-configurable space and flexible mechanical and electrical systems are able to provide comfort that increases worker productivity while using less energy. Raised floors are an example of how fresh air, thermal conditioning, lighting needs, and network access can be delivered in a flexible manner that is not ''embedded'' within the structure. What are not yet documented is how well these systems perform and how much energy they can save. This area is being investigated in phased projects of the 21st Century Research Program of the Air-conditioning and Refrigeration Technology Institute. For the initial project, research teams at the Center for Building Performance and Diagnostics, Pittsburgh, Pennsylvania, and Oak Ridge National Laboratory, Oak Ridge, Tennessee, documented the diversity, performance, and incidence of flexible and adaptive HVAC systems. Information was gathered worldwide from journal and conference articles, case studies, manufactured products and assemblies, and interviews with design professionals. Their report thoroughly describes the variety of system types along with the various design alternatives observed for plenums, diffusers, individual control, and system integration. Many of the systems are illustrated in the report and the authors provide quantitative and qualitative comparisons. Among conclusions regarding key design issues, and barriers to widespread adoption, the authors state that flexible and adaptive HVAC systems, such as underfloor air, perform as well if not better than ceiling-based systems. Leading engineers have become active proponents after their first experience, which is resulting in these flexible and adaptive HVAC systems approaching 10 percent of the new construction market. To encourage adoption of this technology that improves thermal comfort and indoor air quality, follow-on work is required to further document

  20. Towards Flexible Transparent Electrodes Based on Carbon and Metallic Materials

    Directory of Open Access Journals (Sweden)

    Minghui Luo

    2017-01-01

    Full Text Available Flexible transparent electrodes (FTEs with high stability and scalability are in high demand for the extremely widespread applications in flexible optoelectronic devices. Traditionally, thin films of indium thin oxide (ITO served the role of FTEs, but film brittleness and scarcity of materials limit its further application. This review provides a summary of recent advances in emerging transparent electrodes and related flexible devices (e.g., touch panels, organic light-emitting diodes, sensors, supercapacitors, and solar cells. Mainly focusing on the FTEs based on carbon nanomaterials (e.g., carbon nanotubes and graphene and metal materials (e.g., metal grid and metal nanowires, we discuss the fabrication techniques, the performance improvement, and the representative applications of these highly transparent and flexible electrodes. Finally, the challenges and prospects of flexible transparent electrodes will be summarized.

  1. Automation Architecture based on Cyber Physical Systems for Flexible Manufacturing within Oil&Gas Industry

    Directory of Open Access Journals (Sweden)

    Marcelo V García

    2018-03-01

    Full Text Available It is clear that in the next few years most of the technologies involved in the so-called Industry 4.0 will have a deep impact on manufacturing companies, including those related to Oil & Gas exploration and production. Low cost automation promotes reference architectures and development approaches aiming at increasing the flexibility and efficiency of production operations in industrial plants. In this sense, OPC UA, in addition to allowing companies to join the Industry 4.0 initiative, provides local and remote access to plant information, enabling a recognized mechanism for both, horizontal and vertical integration in a reliable, safe and efficient way. The contribution of this article is an open architecture for vertical integration based on cyber-physical production systems, configured under IEC 61499 and using OPC UA, suitable to achieve flexible manufacturing within Oil & Gas industry.

  2. Flexible indium zinc oxide/Ag/indium zinc oxide multilayer electrode grown on polyethersulfone substrate by cost-efficient roll-to-roll sputtering for flexible organic photovoltaics

    International Nuclear Information System (INIS)

    Park, Yong-Seok; Kim, Han-Ki

    2010-01-01

    The authors describe the preparation and characteristics of flexible indium zinc oxide (IZO)-Ag-IZO multilayer electrodes grown on flexible polyethersulfone (PES) substrates using a roll-to-roll sputtering system for use in flexible organic photovoltaics. By the continuous roll-to-roll sputtering of the bottom IZO, Ag, and top IZO layers at room temperature, they were able to fabricate a high quality IZO-Ag-IZO multilayer electrode with a sheet resistance of 6.15 ε/square, optical transmittance of 87.4%, and figure of merit value of 42.03x10 -3 Ω -1 on the PES substrate. In addition, the IZO-Ag-IZO multilayer electrode exhibited superior flexibility to the roll-to-roll sputter grown single ITO electrode due to the existence of a ductile Ag layer between the IZO layers and stable amorphous structure of the IZO film. Furthermore, the flexible organic solar cells (OSCs) fabricated on the roll-to-roll sputter grown IZO-Ag-IZO electrode showed higher power efficiency (3.51%) than the OSCs fabricated on the roll-to-roll sputter grown single ITO electrode (2.67%).

  3. A Flex-market Design for Flexibility Services through DERs

    DEFF Research Database (Denmark)

    Zhang, Chunyu; Ding, Yi; Østergaard, Jacob

    2013-01-01

    services of DERs are stipulated accommodating the various requirements of DSOs. The trading setups and processes are illustrated in details as well. Additionally, the demonstration diagram of Flex-market is also introduced in this paper. The diagram is utilized to test the feasibility and robustness......The high penetration of distributed energy resources (DERs) will significantly challenge the power system operation due to their intermittent characteristic. In order to utilize the DERs as economically efficient as possible in the distribution grid, an Aggregator-based Flex-market is proposed...... in this paper. With the brand new notion of Flexibility Clearing House (FLECH), the proposed Flex-market has the ability to promote small scale DERs (up to 5MW) to participate in flexibility services trading. Accordingly, efforts to relieve the congestions in local grid areas, the contractual flexibility...

  4. A study for providing additional storage spaces to ET-RR-1 spent fuel

    International Nuclear Information System (INIS)

    El-Kady, A.; Ashoub, N.; Saleh, H.G.

    1995-01-01

    The ET-RR-1 reactor spent fuel storage pool is a trapezoidal aluminum tank concrete shield and of capacity 10 m 3 . It can hold up to 60 fuel assemblies. The long operation history of the ET-RR-1 reactor resulted in a partially filled spent fuel storage with the remaining spaces not enough to host a complete load from the reactor. This work have been initiated to evaluate possible alternative solutions for providing additional storage spaces to host the available EK-10 fuel elements after irradiation and any foreseen fuel in case of reactor upgrading. Several alternate solutions have been reviewed and decision on the most suitable one is under study. These studies include criticality calculation of some suggested alternatives like reracking the present spent fuel storage pool and double tiering by the addition of a second level storage rack above the existing rack. The two levels may have different factor. Criticality calculation of the double tiering possible accident was also studied. (author)

  5. Recent advances in flexible low power cholesteric LCDs

    Science.gov (United States)

    Khan, Asad; Shiyanovskaya, Irina; Montbach, Erica; Schneider, Tod; Nicholson, Forrest; Miller, Nick; Marhefka, Duane; Ernst, Todd; Doane, J. W.

    2006-05-01

    Bistable reflective cholesteric displays are a liquid crystal display technology developed to fill a market need for very low power displays. Their unique look, high reflectivity, bistability, and simple structure make them an ideal flat panel display choice for handheld or other portable devices where small lightweight batteries with long lifetimes are important. Applications ranging from low resolution large signs to ultra high resolution electronic books can utilize cholesteric displays to not only benefit from the numerous features, but also create enabling features that other flat panel display technologies cannot. Flexible displays are the focus of attention of numerous research groups and corporations worldwide. Cholesteric displays have been demonstrated to be highly amenable to flexible substrates. This paper will review recent advances in flexible cholesteric displays including both phase separation and emulsification approaches to encapsulation. Both approaches provide unique benefits to various aspects of manufacturability, processes, flexibility, and conformability.

  6. Quality Evaluation in Flexible Manufacturing Systems: A Markovian Approach

    Directory of Open Access Journals (Sweden)

    Jingshan Li

    2007-01-01

    to illustrate the applicability of the method. The results of this study suggest a possible approach to investigate the impact of flexibility on product quality and, finally, with extensions and enrichment of the model, may lead to provide production engineers and managers a better understanding of the quality implications and to summarize some general guidelines of operation management in flexible manufacturing systems.

  7. Flexibility Study of a Liquid Food Production Process

    DEFF Research Database (Denmark)

    Cheng, Hongyuan; Friis, Alan

    2006-01-01

    Applying process engineering simulation method to model the processing of liquid food can provide a way to build a flexible food factory that can efficiently offer a wide range of tailored products in short delivery time. A milk production process, as an example, is simulated using a process...... engineering software to investigate the process operation conditions and flexibility. The established simulation method can be adapted to simulate similar liquid food production processes through suitable modifications....

  8. Interfacial characterization of flexible hybrid electronics

    Science.gov (United States)

    Najafian, Sara; Amirkhizi, Alireza V.; Stapleton, Scott

    2018-03-01

    Flexible Hybrid Electronics (FHEs) are the new generation of electronics combining flexible plastic film substrates with electronic devices. Besides the electrical features, design improvements of FHEs depend on the prediction of their mechanical and failure behavior. Debonding of electronic components from the flexible substrate is one of the most common and critical failures of these devices, therefore, the experimental determination of material and interface properties is of great importance in the prediction of failure mechanisms. Traditional interface characterization involves isolated shear and normal mode tests such as the double cantilever beam (DCB) and end notch flexure (ENF) tests. However, due to the thin, flexible nature of the materials and manufacturing restrictions, tests mirroring traditional interface characterization experiments may not always be possible. The ideal goal of this research is to design experiments such that each mode of fracture is isolated. However, due to the complex nonlinear nature of the response and small geometries of FHEs, design of the proper tests to characterize the interface properties can be significantly time and cost consuming. Hence numerical modeling has been implemented to design these novel characterization experiments. This research involves loading case and specimen geometry parametric studies using numerical modeling to design future experiments where either shear or normal fracture modes are dominant. These virtual experiments will provide a foundation for designing similar tests for many different types of flexible electronics and predicting the failure mechanism independent of the specific FHE materials.

  9. Stability of perovskite solar cells on flexible substrates

    Science.gov (United States)

    Tam, Ho Won; Chen, Wei; Liu, Fangzhou; He, Yanling; Leung, Tik Lun; Wang, Yushu; Wong, Man Kwong; Djurišić, Aleksandra B.; Ng, Alan Man Ching; He, Zhubing; Chan, Wai Kin; Tang, Jinyao

    2018-02-01

    Perovskite solar cells are emerging photovoltaic technology with potential for low cost, high efficiency devices. Currently, flexible devices efficiencies over 15% have been achieved. Flexible devices are of significant interest for achieving very low production cost via roll-to-roll processing. However, the stability of perovskite devices remains a significant challenge. Unlike glass substrate which has negligible water vapor transmission rate (WVTR), polymeric flexible film substrates suffer from high moisture permeability. As PET and PEN flexible substrates exhibit higher water permeability then glass, transparent flexible backside encapsulation should be used to maximize light harvesting in perovskite layer while WVTR should be low enough. Wide band gap materials are transparent in the visible spectral range low temperature processable and can be a moisture barrier. For flexible substrates, approaches like atomic layer deposition (ALD) and low temperature solution processing could be used for metal oxide deposition. In this work, ALD SnO2, TiO2, Al2O3 and solution processed spin-on-glass was used as the barrier layer on the polymeric side of indium tin oxide (ITO) coated PEN substrates. The UV-Vis transmission spectra of the prepared substrates were investigated. Perovskite solar cells will be fabricated and stability of the devices were encapsulated with copolymer films on the top side and tested under standard ISOS-L-1 protocol and then compared to the commercial unmodified ITO/PET or ITO/PEN substrates. In addition, devices with copolymer films laminated on both sides successfully surviving more than 300 hours upon continuous AM1.5G illumination were demonstrated.

  10. Parametric Analysis of Flexible Logic Control Model

    Directory of Open Access Journals (Sweden)

    Lihua Fu

    2013-01-01

    Full Text Available Based on deep analysis about the essential relation between two input variables of normal two-dimensional fuzzy controller, we used universal combinatorial operation model to describe the logic relationship and gave a flexible logic control method to realize the effective control for complex system. In practical control application, how to determine the general correlation coefficient of flexible logic control model is a problem for further studies. First, the conventional universal combinatorial operation model has been limited in the interval [0,1]. Consequently, this paper studies a kind of universal combinatorial operation model based on the interval [a,b]. And some important theorems are given and proved, which provide a foundation for the flexible logic control method. For dealing reasonably with the complex relations of every factor in complex system, a kind of universal combinatorial operation model with unequal weights is put forward. Then, this paper has carried out the parametric analysis of flexible logic control model. And some research results have been given, which have important directive to determine the values of the general correlation coefficients in practical control application.

  11. Influence of hinge point on flexible flap aerodynamic performance

    International Nuclear Information System (INIS)

    Zhao, H Y; Ye, Z; Wu, P; Li, C

    2013-01-01

    Large scale wind turbines lead to increasing blade lengths and weights, which presents new challenges for blade design. This paper selects NREL S809 airfoil, uses the parameterized technology to realize the flexible trailing edge deformation, researches the static aerodynamic characteristics of wind turbine blade airfoil with flexible deformation, and the dynamic aerodynamic characteristics in the process of continuous deformation, analyses the influence of hinge point position on flexible flap aerodynamic performance, in order to further realize the flexible wind turbine blade design and provides some references for the active control scheme. The results show that compared with the original airfoil, proper trailing edge deformation can improve the lift coefficient, reduce the drag coefficient, and thereby more efficiently realize flow field active control. With hinge point moving forward, total aerodynamic performance of flexible flap improves. Positive swing angle can push the transition point backward, thus postpones the occurrence of the transition phenomenon

  12. Nitrogen doped carbon derived from polyimide/multiwall carbon nanotube composites for high performance flexible all-solid-state supercapacitors

    Science.gov (United States)

    Kim, Dae Kyom; Kim, Nam Dong; Park, Seung-Keun; Seong, Kwang-dong; Hwang, Minsik; You, Nam-Ho; Piao, Yuanzhe

    2018-03-01

    Flexible all-solid-state supercapacitors are desirable as potential energy storage systems for wearable technologies. Herein, we synthesize aminophenyl multiwall carbon nanotube (AP-MWCNT) grafted polyimide precursor by in situ polymerization method as a nitrogen-doped carbon precursor. Flexible supercapacitor electrodes are fabricated via a coating of carbon precursor on carbon cloth surface and carbonization at high temperature directly. The as-obtained electrodes, which can be directly used without any binders or additives, can deliver a high specific capacitance of 333.4 F g-1 at 1 A g-1 (based on active material mass) and excellent cycle stability with 103% capacitance retention after 10,000 cycles in a three-electrode system. The flexible all-solid-state supercapacitor device exhibits a high volumetric capacitance of 3.88 F cm-3 at a current density of 0.02 mA cm-3. And also the device can deliver a maximum volumetric energy density of 0.50 mWh cm-3 and presents good cycling stability with 85.3% capacitance retention after 10,000 cycles. This device cell can not only show extraordinary mechanical flexibilities allowing folding, twisting, and rolling but also demonstrate remarkable stable electrochemical performances under their forms. This work provides a novel approach to obtain carbon textile-based flexible supercapacitors with high electrochemical performance and mechanical flexibility.

  13. One-step electrochemically expanded graphite foil for flexible all-solid supercapacitor with high rate performance

    International Nuclear Information System (INIS)

    Li, Han-Yu; Yu, Yao; Liu, Lang; Liu, Lin; Wu, Yue

    2017-01-01

    Flexible solid-state supercapacitors (SSCs) as a candidate for energy storage source, have been attracting intensive attention. Graphene-based materials for SSCs have been widely studied. However, most reported preparation methods for graphene-based materials are energy-consuming, time-consuming and environmentally hazardous, what’s more, the assembling of SSCs need additives, such as current collectors, flexible substrates. So, it is necessary to develop simpler and greener attempts to achieve high-performance, cost-effective, substrates/additives-free and flexible electrodes for SSC devices. Herein, we reported a green and facile one-step process of electrochemical oxidation and expansion in salt solution to activate graphite foil (GF) for fabricating expanded graphite foil (EGF). The EGF electrode with unique structure and high conductivity showed high supercapacitor performance of 65 mF cm −2 , remarkable rate-capability maintaining at a level of 80% even at a current density of 20 mA cm −2 and excellent cycling stability with ∼95% capacitance remaining after 10000 cycles at a current density of 20 mA cm −2 . Moreover, a symmetric flexible all-solid supercapacitor (SSC) device was integrated using EGFs without any current collectors and additives. The flexible EGF-based device showed a high capacitance capacity of 30.5 mF cm −2 , excellent rate performance and good cycle stability which make it holds promise for applications in flexible, portable and wearable electronic devices.

  14. 34 CFR 645.13 - What additional services do Upward Bound Math and Science Centers provide and how are they...

    Science.gov (United States)

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What additional services do Upward Bound Math and... Program? § 645.13 What additional services do Upward Bound Math and Science Centers provide and how are... provided under § 645.11(b), an Upward Bound Math and Science Center must provide— (1) Intensive instruction...

  15. Flexible feature interface for multimedia sources

    Science.gov (United States)

    Coffland, Douglas R [Livermore, CA

    2009-06-09

    A flexible feature interface for multimedia sources system that includes a single interface for the addition of features and functions to multimedia sources and for accessing those features and functions from remote hosts. The interface utilizes the export statement: export "C" D11Export void FunctionName(int argc, char ** argv,char * result, SecureSession *ctrl) or the binary equivalent of the export statement.

  16. Fully Printed Flexible and Stretchable Electronics

    Science.gov (United States)

    Zhang, Suoming

    Through this thesis proposal, the author has demonstrated series of flexible or stretchable sensors including strain gauge, pressure sensors, display arrays, thin film transistors and photodetectors fabricated by a direct printing process. By adopting the novel serpentine configuration with conventional non-stretchable materials silver nanoparticles, the fully printed stretchable devices are successfully fabricated on elastomeric substrate with the demonstration of stretchable conductors that can maintain the electrical properties under strain and the strain gauge, which could be used to measure the strain in desired locations and also to monitor individual person's finger motion. And by investigating the intrinsic stretchable materials silver nanowires (AgNWs) with the conventional configuration, the fully printed stretchable conductors are achieved on various substrates including Si, glass, Polyimide, Polydimethylsiloxane (PDMS) and Very High Bond (VHB) tape with the illustration of the capacitive pressure sensor and stretchable electroluminescent displays. In addition, intrinsically stretchable thin-film transistors (TFTs) and integrated logic circuits are directly printed on elastomeric PDMS substrates. The printed devices utilize carbon nanotubes and a type of hybrid gate dielectric comprising PDMS and barium titanate (BaTiO3) nanoparticles. The BaTiO3/PDMS composite simultaneously provides high dielectric constant, superior stretchability, low leakage, as well as good printability and compatibility with the elastomeric substrate. Both TFTs and logic circuits can be stretched beyond 50% strain along either channel length or channel width directions for thousands of cycles while showing no significant degradation in electrical performance. Finally, by applying the SWNTs as the channel layer of the thin film transistor, we successfully fabricate the fully printed flexible photodetector which exhibits good electrical characteristics and the transistors exhibit

  17. Researching and modelling energy efficiency, sustainability and flexibility of biogas chains

    NARCIS (Netherlands)

    Pierie, Frank; Moll, Henri C.; van Gemert, Wim; Benders, René M.J.

    2012-01-01

    Biogas can be seen as a flexible and storable energy carrier, capable of absorbing intermittent energy production and demand. However, the sustainability and efficiency of biogas production as a flexible energy provider is not fully understood. This research will focus on simulating biogas

  18. Research for improved flexible tactile sensor sensitivity

    International Nuclear Information System (INIS)

    Yun, Hae Yong; Kim, Ho Chan; Lee, In Hwan

    2015-01-01

    With the development of robotic technologies, in recent years these technologies have been applied to multidisciplinary fields of study. To operate similarly to a human being, many robot technologies require devices that can receive exterior stimulus, temperature, visual data, and the sense of smell, etc. The robot's hand needs sensor devices that can receive exterior stimuli in order to operate similarly to human skin. The flexible tactile sensor for the robot has to be manufactured to have a shape similar to the shape of human skin. The research studied the development of a system and materials that will enable exterior stimuli to be received effectively. This research used carbon nano tube as a material. Carbon nano tube is used because it has a high electrical conductivity and outstanding mechanical characteristics. In addition, the two composite Materials are used to improve the stimulation sensitivity at different rates, the flexible tactile sensor to measure the sensitivity. Using 3D printing technology, the fabrication of a flexible tactile sensor system is introduced.

  19. Research for improved flexible tactile sensor sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hae Yong; Kim, Ho Chan [Andong National University, Andong (Korea, Republic of); Lee, In Hwan [Chungbuk National University, Chungju (Korea, Republic of)

    2015-11-15

    With the development of robotic technologies, in recent years these technologies have been applied to multidisciplinary fields of study. To operate similarly to a human being, many robot technologies require devices that can receive exterior stimulus, temperature, visual data, and the sense of smell, etc. The robot's hand needs sensor devices that can receive exterior stimuli in order to operate similarly to human skin. The flexible tactile sensor for the robot has to be manufactured to have a shape similar to the shape of human skin. The research studied the development of a system and materials that will enable exterior stimuli to be received effectively. This research used carbon nano tube as a material. Carbon nano tube is used because it has a high electrical conductivity and outstanding mechanical characteristics. In addition, the two composite Materials are used to improve the stimulation sensitivity at different rates, the flexible tactile sensor to measure the sensitivity. Using 3D printing technology, the fabrication of a flexible tactile sensor system is introduced.

  20. The Energy System of the Future is Smart and Flexible

    DEFF Research Database (Denmark)

    Pallesen, Trine; Karnøe, Peter; Holm Jacobsen, Peter

    and policy makers are debating the possible organization of a system based on 100% renewables and the market design providing the best ‘fit’ for this system. Despite controversies, one thing seems clear: the energy system of the future is smart and flexible. But what smart and flexible means – and how...

  1. The influence of flexible branches in flexible polymers

    International Nuclear Information System (INIS)

    Wescott, J.T.

    1998-06-01

    In this work the influence of branches in flexible polymer systems has been investigated by consideration of (1) the behaviour of isolated poly-α-olefin chains and (2) the p -T phase behaviour of poly(4-methylpentene-1)(P4MP1). Molecular dynamics simulations of isolated poly-α-olefins were performed in order to gauge directly the effect of molecular structure on chain dimensions, flexibility (via the persistence length) and shape. Under Θ-conditions the addition of short linear branches was shown to increase the flexibility of the backbone. In conditions of good solvent, however, the effect of longer and bulkier branches was to increase the persistence length and average size of the coil with the arrangement of side chain atoms making a small difference. The side branches themselves also affected the solvent conditions experienced by the backbone, behaving much like bound solvent. Consideration of ethylene-α-olefin copolymers, where the branch content was varied from 0-50%, showed that under good solvent conditions the branches increased the chain stiffness only when the gap between side branches was less than five backbone carbon atoms. The backbone torsions were also shown to play an important role in determining these trends. For comparison with the above simulations, persistence length values for polyethylene (= 7.3±0.2A) and P4MP1 (=7.6±0.3A) were measured experimentally by neutron scattering in dilute solution. A value of 6.7±0.5 for the characteristic ratio of PE was also calculated. To investigate the role of a bulky side group in crystalline phases, wide angle X-ray diffraction experiments using a Hikosaka pressure cell were performed on P4MP1. Computer modelling, utilising the experimental data obtained, determined the structure of a disordered phase produced at room temperature and a new high pressure/high temperature phase. The disordered phase was found to be due to a collapse of the backbone combined with some disordering of the side chains

  2. WEBnm@ v2.0: Web server and services for comparing protein flexibility.

    Science.gov (United States)

    Tiwari, Sandhya P; Fuglebakk, Edvin; Hollup, Siv M; Skjærven, Lars; Cragnolini, Tristan; Grindhaug, Svenn H; Tekle, Kidane M; Reuter, Nathalie

    2014-12-30

    Normal mode analysis (NMA) using elastic network models is a reliable and cost-effective computational method to characterise protein flexibility and by extension, their dynamics. Further insight into the dynamics-function relationship can be gained by comparing protein motions between protein homologs and functional classifications. This can be achieved by comparing normal modes obtained from sets of evolutionary related proteins. We have developed an automated tool for comparative NMA of a set of pre-aligned protein structures. The user can submit a sequence alignment in the FASTA format and the corresponding coordinate files in the Protein Data Bank (PDB) format. The computed normalised squared atomic fluctuations and atomic deformation energies of the submitted structures can be easily compared on graphs provided by the web user interface. The web server provides pairwise comparison of the dynamics of all proteins included in the submitted set using two measures: the Root Mean Squared Inner Product and the Bhattacharyya Coefficient. The Comparative Analysis has been implemented on our web server for NMA, WEBnm@, which also provides recently upgraded functionality for NMA of single protein structures. This includes new visualisations of protein motion, visualisation of inter-residue correlations and the analysis of conformational change using the overlap analysis. In addition, programmatic access to WEBnm@ is now available through a SOAP-based web service. Webnm@ is available at http://apps.cbu.uib.no/webnma . WEBnm@ v2.0 is an online tool offering unique capability for comparative NMA on multiple protein structures. Along with a convenient web interface, powerful computing resources, and several methods for mode analyses, WEBnm@ facilitates the assessment of protein flexibility within protein families and superfamilies. These analyses can give a good view of how the structures move and how the flexibility is conserved over the different structures.

  3. Flexible Carbon Aerogels

    Directory of Open Access Journals (Sweden)

    Marina Schwan

    2016-09-01

    Full Text Available Carbon aerogels are highly porous materials with a large inner surface area. Due to their high electrical conductivity they are excellent electrode materials in supercapacitors. Their brittleness, however, imposes certain limitations in terms of applicability. In that context, novel carbon aerogels with varying degree of flexibility have been developed. These highly porous, light aerogels are characterized by a high surface area and possess pore structures in the micrometer range, allowing for a reversible deformation of the aerogel network. A high ratio of pore size to particle size was found to be crucial for high flexibility. For dynamic microstructural analysis, compression tests were performed in-situ within a scanning electron microscope allowing us to directly visualize the microstructural flexibility of an aerogel. The flexible carbon aerogels were found to withstand between 15% and 30% of uniaxial compression in a reversible fashion. These findings might stimulate further research and new application fields directed towards flexible supercapacitors and batteries.

  4. Increasing body image flexibility in a residential eating disorder facility: Correlates with symptom improvement.

    Science.gov (United States)

    Lee, Eric B; Ong, Clarissa W; Twohig, Michael P; Lensegrav-Benson, Tera; Quakenbush-Roberts, Benita

    2018-01-01

    The purpose of this study was to examine the effects of changes in body image psychological flexibility over the course of treatment on various outcome variables. Participants included 103 female, residential patients diagnosed with an eating disorder. Pretreatment and posttreatment data were collected that examined body image psychological flexibility, general psychological flexibility, symptom severity, and other outcome variables. Changes in body image psychological flexibility significantly predicted changes in all outcome measures except for obsessive-compulsive symptoms after controlling for body mass index, depression, and anxiety. Additionally, these results were maintained after controlling for general psychological flexibility, contributing to the incremental validity of the BI-AAQ. This study suggests that changes in body image psychological flexibility meaningfully predict changes in various treatment outcomes of interest, including eating disorder risk, quality of life, and general mental health. Findings indicate that body image psychological flexibility might be a viable target for eating disorder treatment.

  5. A Triblock Copolymer Design Leads to Robust Hybrid Hydrogels for High-Performance Flexible Supercapacitors.

    Science.gov (United States)

    Zhang, Guangzhao; Chen, Yunhua; Deng, Yonghong; Wang, Chaoyang

    2017-10-18

    We report here an intriguing hybrid conductive hydrogel as electrode for high-performance flexible supercapacitor. The key is using a rationally designed water-soluble ABA triblock copolymer (termed as IAOAI) containing a central poly(ethylene oxide) block (A) and terminal poly(acrylamide) (PAAm) block with aniline moieties randomly incorporated (B), which was synthesized by reversible additional fragment transfer polymerization. The subsequent copolymerization of aniline monomers with the terminated aniline moieties on the IAOAI polymer generates a three-dimensional cross-linking hybrid network. The hybrid hydrogel electrode demonstrates robust mechanical flexibility, remarkable electrochemical capacitance (919 F/g), and cyclic stability (90% capacitance retention after 1000 cycles). Moreover, the flexible supercapacitor based on this hybrid hydrogel electrode presents a large specific capacitance (187 F/g), superior to most reported conductive hydrogel-based supercapacitors. With the demonstrated additional favorable cyclic stability and excellent capacitive and rate performance, this hybrid hydrogel-based supercapacitor holds great promise for flexible energy-storage device.

  6. 75 FR 56995 - Procurement List Proposed Additions and Deletion

    Science.gov (United States)

    2010-09-17

    ... Additions and Deletion AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Proposed Additions to and Deletion From the Procurement List. SUMMARY: The Committee is proposing to add... aggregated by the Defense Logistics Agency Troop Support, Philadelphia, PA. Deletion Regulatory Flexibility...

  7. 76 FR 60810 - Procurement List; Proposed Additions and Deletion

    Science.gov (United States)

    2011-09-30

    ... Additions and Deletion AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Proposed Additions to and Deletion from the Procurement List. SUMMARY: The Committee is proposing to add... Activity: Department of Energy, Idaho Operations Office, Idaho Falls, ID. DELETION Regulatory Flexibility...

  8. Tricolore. A flexible color scale for ternary compositions

    DEFF Research Database (Denmark)

    2018-01-01

    tricolore is an R library providing a flexible color scale for the visualization of three-part/ternary compositions. Its main functionality is to color-code any ternary composition as a mixture of three primary colours and to draw a suitable color-key. tricolore flexibly adapts to different...... visualisation challenges via - discrete and continuous color support - support for unbalanced compositional data via centering - support for data with very narrow range via scaling - hue, chroma and lightness options...

  9. Preventative maintenance of drainpipes in radioisotope facility using flexible hose

    International Nuclear Information System (INIS)

    Hiroi, Tomoko; Tatsunami, Shinobu; Kuwabara, Rie; Kouyama, Hiroshi; Matsui, Hiroaki; Yamamoto, Takio

    2009-01-01

    A flexible hose made of plasticized polyvinyl chloride was introduced into underground radioactive wastewater drainpipes as preventative maintenance. We completed a seamless connection spanning the longest interval between the last confluence point and the wastewater tank. Although the flexible hose is not a construction material but rather a consumable article, it is robust against the effects of temperature change and erosion by chemical substances. Moreover, it is placed in an underground steel pipe where it is protected from UV irradiation and friction. Therefore, increased hose durability is expected. In addition, the risk of damage from earthquakes or ground subsidence is negligible due to the flexibility of the hose. Compared with a full renovation of the plumbing, the economic cost is much cheaper and the construction period is much shorter. We propose the use of flexible hoses as one of the most convenient methods to prevent leakage accidents at radioisotope facilities with underground plumbing for wastewater. (author)

  10. Real-Time Congestion Management in Distribution Networks by Flexible Demand Swap

    DEFF Research Database (Denmark)

    Huang, Shaojun; Wu, Qiuwei

    2017-01-01

    In addition to the day-ahead congestion management in distribution networks, the real-time congestion management is very important because many unforeseen events can occur at the real operation time, e.g. loss of generation of distributed energy resources (DERs) or inaccurate forecast of energy...... pumps (HPs) for real time congestion management. The swap method can maintain the power balance of the system and avoid the imbalance cost of activating the flexibility service. An algorithm for forming swaps through optimal power flow (OPF) and mixed integer linear programming (MILP) is proposed...... consumption or production. Flexibility service from demand will be a good option to solve the real-time congestions if the cost of activating the flexibility service is fully addressed. This paper proposes a new method, namely “swap”, to employ the flexibility service from electric vehicles (EVs) and heat...

  11. Smart Material-Actuated Flexible Tendon-Based Snake Robot

    Directory of Open Access Journals (Sweden)

    Mohiuddin Ahmed

    2016-05-01

    Full Text Available A flexible snake robot has better navigation ability compare with the existing electrical motor-based rigid snake robot, due to its excellent bending capability during navigation inside a narrow maze. This paper discusses the modelling, simulation and experiment of a flexible snake robot. The modelling consists of the kinematic analysis and the dynamic analysis of the snake robot. A platform based on the Incompletely Restrained Positioning Mechanism (IRPM is proposed, which uses the external force provided by a compliant flexible beam in each of the actuators. The compliant central column allows the configuration to achieve three degrees of freedom (3DOFs with three tendons. The proposed flexible snake robot has been built using smart material, such as electroactive polymers (EAPs, which can be activated by applying power to it. Finally, the physical prototype of the snake robot has been built. An experiment has been performed in order to justify the proposed model.

  12. Intrinsic flexibility of B-DNA: the experimental TRX scale.

    Science.gov (United States)

    Heddi, Brahim; Oguey, Christophe; Lavelle, Christophe; Foloppe, Nicolas; Hartmann, Brigitte

    2010-01-01

    B-DNA flexibility, crucial for DNA-protein recognition, is sequence dependent. Free DNA in solution would in principle be the best reference state to uncover the relation between base sequences and their intrinsic flexibility; however, this has long been hampered by a lack of suitable experimental data. We investigated this relationship by compiling and analyzing a large dataset of NMR (31)P chemical shifts in solution. These measurements reflect the BI BII equilibrium in DNA, intimately correlated to helicoidal descriptors of the curvature, winding and groove dimensions. Comparing the ten complementary DNA dinucleotide steps indicates that some steps are much more flexible than others. This malleability is primarily controlled at the dinucleotide level, modulated by the tetranucleotide environment. Our analyses provide an experimental scale called TRX that quantifies the intrinsic flexibility of the ten dinucleotide steps in terms of Twist, Roll, and X-disp (base pair displacement). Applying the TRX scale to DNA sequences optimized for nucleosome formation reveals a 10 base-pair periodic alternation of stiff and flexible regions. Thus, DNA flexibility captured by the TRX scale is relevant to nucleosome formation, suggesting that this scale may be of general interest to better understand protein-DNA recognition.

  13. Reversibly Bistable Flexible Electronics

    KAUST Repository

    Alfaraj, Nasir

    2015-05-01

    Introducing the notion of transformational silicon electronics has paved the way for integrating various applications with silicon-based, modern, high-performance electronic circuits that are mechanically flexible and optically semitransparent. While maintaining large-scale production and prototyping rapidity, this flexible and translucent scheme demonstrates the potential to transform conventionally stiff electronic devices into thin and foldable ones without compromising long-term performance and reliability. In this work, we report on the fabrication and characterization of reversibly bistable flexible electronic switches that utilize flexible n-channel metal-oxide-semiconductor field-effect transistors. The transistors are fabricated initially on rigid (100) silicon substrates before they are peeled off. They can be used to control flexible batches of light-emitting diodes, demonstrating both the relative ease of scaling at minimum cost and maximum reliability and the feasibility of integration. The peeled-off silicon fabric is about 25 µm thick. The fabricated devices are transferred to a reversibly bistable flexible platform through which, for example, a flexible smartphone can be wrapped around a user’s wrist and can also be set back to its original mechanical position. Buckling and cyclic bending of such host platforms brings a completely new dimension to the development of flexible electronics, especially rollable displays.

  14. Impact of Flexibility Options on Grid Economic Carrying Capacity of Solar and Wind: Three Case Studies

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Novacheck, Joshua [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jorgenson, Jennie [National Renewable Energy Lab. (NREL), Golden, CO (United States); O' Connell, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-12-01

    In this study, we attempt to quantify the benefits of various options of grid flexibility by measuring their impact on two measures: economic carrying capacity and system costs. Flexibility can increase ECC and reduce overall system costs. In some cases, options that provide a limited increase in ECC can provide significant operational savings, thus demonstrating the need to evaluate flexibility options using multiple metrics. The value of flexibility options varies regionally due to different generation mixes and types of renewables. The more rapid decline in PV value compared to wind makes PV more dependent on adding flexibility options, including transmission and energy storage.

  15. Status of Research on Selective Laser Sintering of Nanomaterials for Flexible Electronics Fabrication

    International Nuclear Information System (INIS)

    Ko, Seung Hwan

    2011-01-01

    A plastic-compatible low-temperature metal deposition and patterning process is essential for the fabrication of flexible electronics because they are usually built on a heat-sensitive flexible substrate, for example plastic, fabric, paper, or metal foil. There is considerable interest in solution-processible metal nanoparticle ink deposition and patterning by selective laser sintering. It provides flexible electronics fabrication without the use of conventional photolithography or vacuum deposition techniques. We summarize our recent progress on the selective laser sintering of metals and metal oxide nanoparticles on a polymer substrate to realize flexible electronics such as flexible displays and flexible solar cells. Future research directions are also discussed

  16. Interventions to increase recommendation and delivery of screening for breast, cervical, and colorectal cancers by healthcare providers systematic reviews of provider assessment and feedback and provider incentives.

    Science.gov (United States)

    Sabatino, Susan A; Habarta, Nancy; Baron, Roy C; Coates, Ralph J; Rimer, Barbara K; Kerner, Jon; Coughlin, Steven S; Kalra, Geetika P; Chattopadhyay, Sajal

    2008-07-01

    Most major medical organizations recommend routine screening for breast, cervical, and colorectal cancers. Screening can lead to early detection of these cancers, resulting in reduced mortality. Yet not all people who should be screened are screened, either regularly or, in some cases, ever. This report presents results of systematic reviews of effectiveness, applicability, economic efficiency, barriers to implementation, and other harms or benefits of two provider-directed intervention approaches to increase screening for breast, cervical, and colorectal cancers. These approaches, provider assessment and feedback, and provider incentives encourage providers to deliver screening services at appropriate intervals. Evidence in these reviews indicates that provider assessment and feedback interventions can effectively increase screening by mammography, Pap test, and fecal occult blood test. Health plans, healthcare systems, and cancer control coalitions should consider such evidence-based findings when implementing interventions to increase screening use. Evidence was insufficient to determine the effectiveness of provider incentives in increasing use of any of these tests. Specific areas for further research are suggested in this report, including the need for additional research to determine whether provider incentives are effective in increasing use of any of these screening tests, and whether assessment and feedback interventions are effective in increasing other tests for colorectal cancer (i.e., flexible sigmoidoscopy, colonoscopy, or double-contrast barium enema).

  17. Flexible MEMS: A novel technology to fabricate flexible sensors and electronics

    Science.gov (United States)

    Tu, Hongen

    This dissertation presents the design and fabrication techniques used to fabricate flexible MEMS (Micro Electro Mechanical Systems) devices. MEMS devices and CMOS(Complementary Metal-Oxide-Semiconductor) circuits are traditionally fabricated on rigid substrates with inorganic semiconductor materials such as Silicon. However, it is highly desirable that functional elements like sensors, actuators or micro fluidic components to be fabricated on flexible substrates for a wide variety of applications. Due to the fact that flexible substrate is temperature sensitive, typically only low temperature materials, such as polymers, metals, and organic semiconductor materials, can be directly fabricated on flexible substrates. A novel technology based on XeF2(xenon difluoride) isotropic silicon etching and parylene conformal coating, which is able to monolithically incorporate high temperature materials and fluidic channels, was developed at Wayne State University. The technology was first implemented in the development of out-of-plane parylene microneedle arrays that can be individually addressed by integrated flexible micro-channels. These devices enable the delivery of chemicals with controlled temporal and spatial patterns and allow us to study neurotransmitter-based retinal prosthesis. The technology was further explored by adopting the conventional SOI-CMOS processes. High performance and high density CMOS circuits can be first fabricated on SOI wafers, and then be integrated into flexible substrates. Flexible p-channel MOSFETs (Metal-Oxide-Semiconductor Field-Effect-Transistors) were successfully integrated and tested. Integration of pressure sensors and flow sensors based on single crystal silicon has also been demonstrated. A novel smart yarn technology that enables the invisible integration of sensors and electronics into fabrics has been developed. The most significant advantage of this technology is its post-MEMS and post-CMOS compatibility. Various high

  18. 3D inkjet printed flexible and wearable antenna systems

    KAUST Repository

    Shamim, Atif

    2017-01-01

    extremely low cost, to the extent that they become disposable. The flexible and low cost aspects can be addressed by adapting additive manufacturing technologies such as inkjet printing and 3D printing. This paper presents inkjet printing as an emerging new

  19. Flexible Biomanufacturing Processes that Address the Needs of the Future.

    Science.gov (United States)

    Diel, Bernhard; Manzke, Christian; Peuker, Thorsten

    2014-01-01

    : As the age of the blockbuster drug recedes, the business model for the biopharmaceutical industry is evolving at an ever-increasing pace. The personalization of medicine, the emergence of biosimilars and biobetters, and the need to provide vaccines globally are just some of the factors forcing biomanufacturers to rethink how future manufacturing capability is implemented. One thing is clear: the traditional manufacturing strategy of constructing large-scale, purpose-built, capital-intensive facilities will no longer meet the industry's emerging production and economic requirements. Therefore, the authors of this chapter describe the new approach for designing and implementing flexible production processes for monoclonal antibodies and focus on the points to consider as well as the lessons learned from past experience in engineering such systems. A conceptual integrated design is presented that can be used as a blueprint for next-generation biomanufacturing facilities. In addition, this chapter discusses the benefits of the new approach with respect to flexibility, cost, and schedule. The concept presented here can be applied to other biopharmaceutical manufacturing processes and facilities, including-but not limited to-vaccine manufacturing, multiproduct and/or multiprocess capability, clinical manufacturing, and so on.

  20. A methodology for designing flexible multi-generation systems

    DEFF Research Database (Denmark)

    Lythcke-Jørgensen, Christoffer Ernst; Viana Ensinas, Adriano; Münster, Marie

    2016-01-01

    An FMG (flexible multi-generation system) consists of integrated and flexibly operated facilities that provide multiple links between the various layers of the energy system. FMGs may facilitate integration and balancing of fluctuating renewable energy sources in the energy system in a cost...... is based on consideration of the following points: Selection, location and dimensioning of processes; systematic heat and mass integration; flexible operation optimization with respect to both short-term market fluctuations and long-term energy system development; global sensitivity and uncertainty...... analysis; biomass supply chains; variable part-load performance; and multi-objective optimization considering economic and environmental performance. Tested in a case study, the methodology is proved effective in screening the solution space for efficient FMG designs, in assessing the importance...

  1. Reducing Approximation Error in the Fourier Flexible Functional Form

    Directory of Open Access Journals (Sweden)

    Tristan D. Skolrud

    2017-12-01

    Full Text Available The Fourier Flexible form provides a global approximation to an unknown data generating process. In terms of limiting function specification error, this form is preferable to functional forms based on second-order Taylor series expansions. The Fourier Flexible form is a truncated Fourier series expansion appended to a second-order expansion in logarithms. By replacing the logarithmic expansion with a Box-Cox transformation, we show that the Fourier Flexible form can reduce approximation error by 25% on average in the tails of the data distribution. The new functional form allows for nested testing of a larger set of commonly implemented functional forms.

  2. Flexible Carpooling: Exploratory Study

    OpenAIRE

    Dorinson, Diana; Gay, Deanna; Minett, Paul; Shaheen, Susan

    2009-01-01

    Energy consumption could be reduced if more people shared rides rather than driving alone yet carpooling represents a small proportion of all potential carpoolers. Prior research has found that many who might carpool were concerned about reduced flexibility with carpooling. If flexibility is one of the barriers how could carpooling be organized to be more flexible? In Northern Virginia a flexible system has evolved where there are 3,500 single-use carpools per day. In another example there ...

  3. Flexible network wireless transceiver and flexible network telemetry transceiver

    Science.gov (United States)

    Brown, Kenneth D.

    2008-08-05

    A transceiver for facilitating two-way wireless communication between a baseband application and other nodes in a wireless network, wherein the transceiver provides baseband communication networking and necessary configuration and control functions along with transmitter, receiver, and antenna functions to enable the wireless communication. More specifically, the transceiver provides a long-range wireless duplex communication node or channel between the baseband application, which is associated with a mobile or fixed space, air, water, or ground vehicle or other platform, and other nodes in the wireless network or grid. The transceiver broadly comprises a communication processor; a flexible telemetry transceiver including a receiver and a transmitter; a power conversion and regulation mechanism; a diplexer; and a phased array antenna system, wherein these various components and certain subcomponents thereof may be separately enclosed and distributable relative to the other components and subcomponents.

  4. Functionally specialised birds respond flexibly to seasonal changes in fruit availability.

    Science.gov (United States)

    Bender, Irene M A; Kissling, W Daniel; Böhning-Gaese, Katrin; Hensen, Isabell; Kühn, Ingolf; Wiegand, Thorsten; Dehling, D Matthias; Schleuning, Matthias

    2017-07-01

    Interactions between resource and consumer species result in complex ecological networks. The overall structure of these networks is often stable in space and time, but little is known about the temporal stability of the functional roles of consumer species in these networks. We used a trait-based approach to investigate whether consumers (frugivorous birds) show similar degrees of functional specialisation on resources (plants) in ecological networks across seasons. We additionally tested whether closely related bird species have similar degrees of functional specialisation and whether birds that are functionally specialised on specific resource types within a season are flexible in switching to other resource types in other seasons. We analysed four seasonal replicates of two species-rich plant-frugivore networks from the tropical Andes. To quantify fruit preferences of frugivorous birds, we projected their interactions with plants into a multidimensional plant trait space. To measure functional specialisation of birds, we calculated a species' functional niche breadth (the extent of seasonal plant trait space utilised by a particular bird) and functional originality (the extent to which a bird species' fruit preference functionally differs from those of other species in a seasonal network). We additionally calculated functional flexibility, i.e. the ability of bird species to change their fruit preference across seasons in response to variation in plant resources. Functional specialisation of bird species varied more among species than across seasons, and phylogenetically similar bird species showed similar degrees of functional niche breadth (phylogenetic signal λ = 0·81) and functional originality (λ = 0·89). Additionally, we found that birds with high functional flexibility across seasons had narrow functional niche breadth and high functional originality per season, suggesting that birds that are seasonally specialised on particular resources are

  5. [Inspecting the cochlear scala tympanic with flexible and semi-flexible micro-endoscope].

    Science.gov (United States)

    Zhang, Daoxcing; Zhang, Yankun

    2006-02-01

    Flexible and semi-flexible micro-endoscopes were used in cochlear scala tympani inspection , to explore their application in inner ear examination. Fifteen profound hearing loss patients preparing for cochlear implant were included in this study. During the operation, micro-endoscopy was performed after opening the cochlear scala tympani. And 1 mm diameter semi-flexible micro-endoscope could go as deep as 9 mm into the cochlear scala tympani, while 0. 5 mm diameter flexible micro-endoscope could go as deep as 25 mm. The inspecting results were compared with video recording. Using 0.5 mm flexible micro-endoscope, we canould check cochlear scala tympani with depth range of 15-25 mm, but the video imaging was not clear enough to examine the microstructure in the cochlear. With 1 mm diameter semi-flexible micro-endoscope, we could reach 9 mm deep into the cochlear. During the examination, we found 3 cases with calcification deposit in osseous spiral lamina, l case with granulation tissue in the lateral wall of scala tympani, no abnormal findings in the other 11 cases. Inspecting the cochlear scala tympani with 0.5 mm flexible micro-endoscope, even though we can reach the second circuit of the cochlear, it is difficult to find the pathology in the cochlear because of the poor video imaging. With 1 mm semi-flexible micro-endoscope, we can identify the microstructure of the cochlear clearly and find the pathologic changes, but the inserting depth was limited to 9 mm with limitation to examine the whole cochlear.

  6. Development of Flexible Pneumatic Cylinder with Built-in Flexible Linear Encoder and Flexible Bending Sensor

    Science.gov (United States)

    Akagi, Tetsuya; Dohta, Shujiro; Matsushita, Hisashi; Fukuhara, Akimasa

    The purpose of this study is to develop a lightweight and intelligent soft actuator which can be safely attached to the human body. A novel flexible pneumatic cylinder that can be used even if it is deformed by external force had been proposed. The cylinder can realize both pushing and pulling motions even if the cylinder bends. In this paper, a flexible pneumatic cylinder with a built-in flexible linear encoder is proposed and tested. The encoder can detect the cylinder displacement even if the cylinder bends. In the next step, to realize an intelligent flexible cylinder, it is essential to recognize the angle of deflection of the cylinder to estimate the direction of the external force. Therefore, a flexible bending sensor that can measure the directional angle by attaching it to the end of the cylinder is also proposed and tested. The tested bending sensor also consists of four inexpensive photo-reflectors set on the circumferential surface to the cylinder tube every 90 degrees from the center of the tube. By measuring the distance between the photo reflector and the surface of the tube at each point, the bending directional angle of the cylinder can be obtained. A low cost measuring system using a micro-computer incorporating a programmed Up/Down counter to measure the displacement of the cylinder is also developed. As a result, it was confirmed that the measuring accuracy of the bending directional angle was good, less than 0.7 degrees as a standard deviation.

  7. Utilization of Flexible Airspace Structure in Flight Efficiency Optimization

    Directory of Open Access Journals (Sweden)

    Tomislav Mihetec

    2013-04-01

    Full Text Available With increasing air traffic demand in the Pan-European airspace there is a need for optimizing the use of the airspace structure (civilian and military in a manner that would satisfy the requirements of civil and military users. In the area of Europe with the highest levels of air traffic (Core area 32% of the volume of airspace above FL 195 is shared by both civil and military users. Until the introduction of the concept of flexible use of airspace, flexible airspace structures were 24 hours per day unavailable for commercial air transport. Flexible use of airspace concept provides a substantial level of dynamic airspace management by the usage of conditional routes. This paper analyses underutilization of resources, flexible airspace structures in the Pan-European airspace, especially in the south-eastern part of the traffic flows (East South Axis, reducing the efficiency of flight operations, as result of delegating the flexible structures to military users. Based on previous analysis, utilization model for flexible use of airspace is developed (scenarios with defined airspace structure. The model is based on the temporal, vertical, and modular airspace sectorisation parameters in order to optimize flight efficiency. The presented model brings significant improvement in flight efficiency (in terms of reduced flight distance for air carriers that planned to fly through the selected flexible airspace structure (LI_RST-49.

  8. Spring-back of flexible roll forming bending process

    International Nuclear Information System (INIS)

    Zhang, Y; Kim, D H; Jung, D W

    2015-01-01

    Simulations are now widely used in the field of roll forming because of their convenience. Simulations provide a low cost, secure and fast analysis tool. Flexible roll forming provides the desired shapes with a one time forming process. For roll forming, the velocity of the sheet and friction are important factors to attain an ideal shape. Because it is a complicated process, simulations provide a better understanding of the roll forming process. Simulations were peformed using ABAQUS software linked to elastic-plastic modules which we developed taking into account of interactions between these fields [1]. The application of this method makes it possible to highlight the strain-stress and mechanical behaviour laws and the spring-back. Thus, the flexible roll forming and bending process can be well described by the simulation software and guide the actual machine. (paper)

  9. PROSPECTS OF DESIGNING FLEXIBLE BUSINESS MODEL IN TURBULENT TIMES

    Directory of Open Access Journals (Sweden)

    Amalia DUTU

    2014-06-01

    Full Text Available The present study aims to analyze the current global context to capture the characteristics of the new type of volatile and turbulent business environment in which companies must operate nowdays and to bring some propositions in order to guide managers in designing or redesigning business models to achieve flexibility. The central message of this paper, that is a point of view one, is that, nowdays but also in the future, business models that are based on strategic, organizational and operational flexibility and on reaction speed will be those who will provide the greatest capacity to respond to change. Even if the international theory provides a multiple perspective analysis of business model concept, still how it can be achieved such flexibility remains an open issue in the academic debate, but also in the practice of companies. Thus, the paper contains some propositions in order to guide managers in the process of designing or redesigning the business model.

  10. 75 FR 7450 - Procurement List: Proposed Addition and Deletion

    Science.gov (United States)

    2010-02-19

    ... Addition and Deletion AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Proposed addition to and deletion from Procurement List. SUMMARY: The Committee is proposing to add to the... W6BA ACA, FT CARSON, COLORADO. Deletion Regulatory Flexibility Act Certification I certify that the...

  11. 77 FR 20795 - Procurement List Proposed Addition and Deletion

    Science.gov (United States)

    2012-04-06

    ... Addition and Deletion AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Proposed Addition to and Deletion from the Procurement List. SUMMARY: The Committee is proposing to add a.... Deletion Regulatory Flexibility Act Certification I certify that the following action will not have a...

  12. Aggregation of flexible polyelectrolytes: Phase diagram and dynamics.

    Science.gov (United States)

    Tom, Anvy Moly; Rajesh, R; Vemparala, Satyavani

    2017-10-14

    Similarly charged polymers in solution, known as polyelectrolytes, are known to form aggregated structures in the presence of oppositely charged counterions. Understanding the dependence of the equilibrium phases and the dynamics of the process of aggregation on parameters such as backbone flexibility and charge density of such polymers is crucial for insights into various biological processes which involve biological polyelectrolytes such as protein, DNA, etc. Here, we use large-scale coarse-grained molecular dynamics simulations to obtain the phase diagram of the aggregated structures of flexible charged polymers and characterize the morphology of the aggregates as well as the aggregation dynamics, in the presence of trivalent counterions. Three different phases are observed depending on the charge density: no aggregation, a finite bundle phase where multiple small aggregates coexist with a large aggregate and a fully phase separated phase. We show that the flexibility of the polymer backbone causes strong entanglement between charged polymers leading to additional time scales in the aggregation process. Such slowing down of the aggregation dynamics results in the exponent, characterizing the power law decay of the number of aggregates with time, to be dependent on the charge density of the polymers. These results are contrary to those obtained for rigid polyelectrolytes, emphasizing the role of backbone flexibility.

  13. Impact of Flexibility Options on Grid Economic Carrying Capacity of Solar and Wind: Three Case Studies

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Novacheck, Joshua [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jorgenson, Jennie [National Renewable Energy Lab. (NREL), Golden, CO (United States); O' Connell, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-12-01

    In this study, we attempt to quantify the benefits of various options of grid flexibility by measuring their impact on two measures: economic carrying capacity and system costs. Flexibility can increase economic carrying capacity and reduce overall system costs. In some cases, options that provide a limited increase in economic carrying capacity can provide significant operational savings, thus demonstrating the need to evaluate flexibility options using multiple metrics. The value of flexibility options varies regionally due to different generation mixes and types of renewables. The more rapid decline in PV value compared to wind makes PV more dependent on adding flexibility options, including transmission and energy storage.

  14. Flexibility as a management principle in dementia care: the Adards example.

    Science.gov (United States)

    Cohen-Mansfield, Jiska; Bester, Allan

    2006-08-01

    Flexibility is an essential ingredient of person-centered care. We illustrate the potential impact of flexibility by portraying a nursing home that uses flexibility in its approach to residents and staff members. The paper describes the management strategies, principles, and environmental features used by the Adards nursing home in Australia. Adards' flexibility in daily work and task scheduling promotes both resident and staff autonomy, which in turn allows for higher staffing levels, lower staff turnover, and more typical life experiences for residents than is found in many long-term-care facilities in the United States. The article provides an example and a basis for future discussion on this topic, with the hope that it will prompt other institutions to expand the level of flexibility in their policies and procedures.

  15. Energy Flexibility in Retail Buildings

    DEFF Research Database (Denmark)

    Ma, Zheng; Billanes, Joy Dalmacio; Kjærgaard, Mikkel Baun

    2017-01-01

    Retail buildings has an important role for demand side energy flexibility because of their high energy consumption, variety of energy flexibility resources, and centralized control via building control systems. Energy flexibility requires agreements and collaborations among different actors......), with the discussion of the stakeholders’ roles and their interrelation in delivering energy flexibility with the influential factors to the actual implementation of energy flexible operation of their buildings. Based on a literature analysis, the results cover stakeholders’ types and roles, perceptions (drivers......, barriers, and benefits), energy management activities and technology adoptions, and the stakeholders’ interaction for the energy flexibility in retail buildings....

  16. Analytical and numerical modeling for flexible pipes

    Science.gov (United States)

    Wang, Wei; Chen, Geng

    2011-12-01

    The unbonded flexible pipe of eight layers, in which all the layers except the carcass layer are assumed to have isotropic properties, has been analyzed. Specifically, the carcass layer shows the orthotropic characteristics. The effective elastic moduli of the carcass layer have been developed in terms of the influence of deformation to stiffness. With consideration of the effective elastic moduli, the structure can be properly analyzed. Also the relative movements of tendons and relative displacements of wires in helical armour layer have been investigated. A three-dimensional nonlinear finite element model has been presented to predict the response of flexible pipes under axial force and torque. Further, the friction and contact of interlayer have been considered. Comparison between the finite element model and experimental results obtained in literature has been given and discussed, which might provide practical and technical support for the application of unbonded flexible pipes.

  17. Flexible Word Classes

    DEFF Research Database (Denmark)

    • First major publication on the phenomenon • Offers cross-linguistic, descriptive, and diverse theoretical approaches • Includes analysis of data from different language families and from lesser studied languages This book is the first major cross-linguistic study of 'flexible words', i.e. words...... that cannot be classified in terms of the traditional lexical categories Verb, Noun, Adjective or Adverb. Flexible words can - without special morphosyntactic marking - serve in functions for which other languages must employ members of two or more of the four traditional, 'specialised' word classes. Thus......, flexible words are underspecified for communicative functions like 'predicating' (verbal function), 'referring' (nominal function) or 'modifying' (a function typically associated with adjectives and e.g. manner adverbs). Even though linguists have been aware of flexible world classes for more than...

  18. A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries.

    Science.gov (United States)

    Peng, Hong-Jie; Huang, Jia-Qi; Zhang, Qiang

    2017-08-29

    Flexible energy storage systems are imperative for emerging flexible devices that are revolutionizing our life. Lithium-ion batteries, the current main power sources, are gradually approaching their theoretical limitation in terms of energy density. Therefore, alternative battery chemistries are urgently required for next-generation flexible power sources with high energy densities, low cost, and inherent safety. Flexible lithium-sulfur (Li-S) batteries and analogous flexible alkali metal-chalcogen batteries are of paramount interest owing to their high energy densities endowed by multielectron chemistry. In this review, we summarized the recent progress of flexible Li-S and analogous batteries. A brief introduction to flexible energy storage systems and general Li-S batteries has been provided first. Progress in flexible materials for flexible Li-S batteries are reviewed subsequently, with a detailed classification of flexible sulfur cathodes as those based on carbonaceous (e.g., carbon nanotubes, graphene, and carbonized polymers) and composite (polymers and inorganics) materials and an overview of flexible lithium anodes and flexible solid-state electrolytes. Advancements in other flexible alkali metal-chalcogen batteries are then introduced. In the next part, we emphasize the importance of cell packaging and flexibility evaluation, and two special flexible battery prototypes of foldable and cable-type Li-S batteries are highlighted. In the end, existing challenges and future development of flexible Li-S and analogous alkali metal-chalcogen batteries are summarized and prospected.

  19. Literacy processes cognitive flexibility in learning and teaching

    CERN Document Server

    Cartwright, Kelly B

    2015-01-01

    Reading and writing instruction require individuals--both students and teachers--to flexibly process many kinds of information, from a variety of sources. This is the first book to provide an in-depth examination of cognitive flexibility: how it develops across the lifespan; its role in specific literacy processes, such as phonemic awareness, word recognition, and comprehension; and implications for improving literacy instruction and teacher education. The contributors include leading researchers in literacy, psychology, and cognitive development, who summarize the current state of the science

  20. Flexible magnetoimpedance sensor

    KAUST Repository

    Li, Bodong; Kavaldzhiev, Mincho; Kosel, Jü rgen

    2015-01-01

    Flexible magnetoimpedance (MI) sensors fabricated using a NiFe/Cu/NiFe tri-layer on Kapton substrate have been studied. A customized flexible microstrip transmission line was employed to investigate the MI sensors's magnetic field and frequency

  1. Gravure printing of graphene for large-area flexible electronics.

    Science.gov (United States)

    Secor, Ethan B; Lim, Sooman; Zhang, Heng; Frisbie, C Daniel; Francis, Lorraine F; Hersam, Mark C

    2014-07-09

    Gravure printing of graphene is demonstrated for the rapid production of conductive patterns on flexible substrates. Development of suitable inks and printing parameters enables the fabrication of patterns with a resolution down to 30 μm. A mild annealing step yields conductive lines with high reliability and uniformity, providing an efficient method for the integration of graphene into large-area printed and flexible electronics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A Signal Processing Method to Explore Similarity in Protein Flexibility

    Directory of Open Access Journals (Sweden)

    Simina Vasilache

    2010-01-01

    Full Text Available Understanding mechanisms of protein flexibility is of great importance to structural biology. The ability to detect similarities between proteins and their patterns is vital in discovering new information about unknown protein functions. A Distance Constraint Model (DCM provides a means to generate a variety of flexibility measures based on a given protein structure. Although information about mechanical properties of flexibility is critical for understanding protein function for a given protein, the question of whether certain characteristics are shared across homologous proteins is difficult to assess. For a proper assessment, a quantified measure of similarity is necessary. This paper begins to explore image processing techniques to quantify similarities in signals and images that characterize protein flexibility. The dataset considered here consists of three different families of proteins, with three proteins in each family. The similarities and differences found within flexibility measures across homologous proteins do not align with sequence-based evolutionary methods.

  3. Adaptive fiber optics collimator based on flexible hinges.

    Science.gov (United States)

    Zhi, Dong; Ma, Yanxing; Ma, Pengfei; Si, Lei; Wang, Xiaolin; Zhou, Pu

    2014-08-20

    In this manuscript, we present a new design for an adaptive fiber optics collimator (AFOC) based on flexible hinges by using piezoelectric stacks actuators for X-Y displacement. Different from traditional AFOC, the new structure is based on flexible hinges to drive the fiber end cap instead of naked fiber. We fabricated a real AFOC based on flexible hinges, and the end cap's deviation and resonance frequency of the device were measured. Experimental results show that this new AFOC can provide fast control of tip-tilt deviation of the laser beam emitting from the end cap. As a result, the fiber end cap can support much higher power than naked fiber, which makes the new structure ideal for tip-tilt controlling in a high-power fiber laser system.

  4. Flexible work arrangements and work-family conflict after childbirth.

    Science.gov (United States)

    Grice, Mira M; McGovern, Patricia M; Alexander, Bruce H

    2008-10-01

    Previous research has revealed that work-family conflict negatively influences women's health following childbirth. To examine if flexible work arrangements were associated with work-family conflict among women, 1 year after childbirth. Employed women, aged >or=18, were recruited while hospitalized for childbirth. Flexible work arrangements were measured at 6 months and work-family conflict was measured at 12 months. General linear models estimated the association between flexible work arrangements and work-family conflict. Of 1157 eligible participants, 522 were included in this analysis giving a 45% response rate. Compared to women who reported that taking time off was very hard, those who reported it was not too hard (beta = -0.80, SE = 0.36, P hours was associated with greater home spillover (beta = 0.46, SE = 0.18, P work home was associated with increased home spillover (beta = 0.35, SE = 0.14, P work hours and the ability to take work home were associated with increased home spillover to work. The ability to take time off was associated with decreased job spillover to home. Additional research is needed to examine the intentional and unintentional consequences of flexible work arrangements.

  5. SUPPLIER SELECTION STRATEGY AND MANUFACTURING FLEXIBILITY: IMPACT OF QUALITY AND TECHNOLOGY ROADMAPS

    Directory of Open Access Journals (Sweden)

    Muhamad Jantan

    2006-01-01

    Full Text Available The study evaluates the relationship between technology, quality, cost and delivery performance-based, supplier selection strategies, and manufacturing flexibilities namely, product flexibility, launch flexibility, and volume flexibility. Moreover, the moderating impact of supplier management strategies, namely quality roadmap and technology roadmap on the above relationships were also explored. The data for the study was drawn from a sample of companies listed in the factory directory published by the Penang Development Corporation (PDC. A postal survey of 120 manufacturers provided a return of 92 usable responses. The results reveal that the selection of suppliers based on technological and quality performance positively affects all the three dimensions of manufacturing flexibility, with complementary effects of good technology and quality roadmaps. Technology and quality roadmaps act as predictors for product and volume flexibilities. However, when launch flexibility is the focus, both technology and quality roadmaps moderate the impact of supplier selection strategies. Details of the findings, theoretical and practical implications, and the research limitation are discussed.

  6. Flexible transparent electrode

    Science.gov (United States)

    Demiryont, Hulya; Shannon, Kenneth C., III; Moorehead, David; Bratcher, Matthew

    2011-06-01

    This paper presents the properties of the EclipseTECTM transparent conductor. EclipseTECTM is a room temperature deposited nanostructured thin film coating system comprised of metal-oxide semiconductor elements. The system possesses metal-like conductivity and glass-like transparency in the visible region. These highly conductive TEC films exhibit high shielding efficiency (35dB at 1 to 100GHz). EclipseTECTM can be deposited on rigid or flexible substrates. For example, EclipseTECTM deposited on polyethylene terephthalate (PET) is extremely flexible that can be rolled around a 9mm diameter cylinder with little or no reduction in electrical conductivity and that can assume pre-extension states after an applied stress is relieved. The TEC is colorless and has been tailored to have high visible transmittance which matches the eye sensitivity curve and allows the viewing of true background colors through the coating. EclipseTECTM is flexible, durable and can be tailored at the interface for applications such as electron- or hole-injecting OLED electrodes as well as electrodes in flexible displays. Tunable work function and optical design flexibility also make EclipseTECTM well-suited as a candidate for grid electrode replacement in next-generation photovoltaic cells.

  7. Flexible Foam Model.

    Energy Technology Data Exchange (ETDEWEB)

    Neilsen, Michael K.; Lu, Wei-Yang; Werner, Brian T.; Scherzinger, William M.; Lo, Chi S.

    2018-03-01

    Experiments were performed to characterize the mechanical response of a 15 pcf flexible polyurethane foam to large deformation at different strain rates and temperatures. Results from these experiments indicated that at room temperature, flexible polyurethane foams exhibit significant nonlinear elastic deformation and nearly return to their original undeformed shape when unloaded. However, when these foams are cooled to temperatures below their glass transition temperature of approximately -35 o C, they behave like rigid polyurethane foams and exhibit significant permanent deformation when compressed. Thus, a new model which captures this dramatic change in behavior with temperature was developed and implemented into SIERRA with the name Flex_Foam to describe the mechanical response of both flexible and rigid foams to large deformation at a variety of temperatures and strain rates. This report includes a description of recent experiments. Next, development of the Flex Foam model for flexible polyurethane and other flexible foams is described. Selection of material parameters are discussed and finite element simulations with the new Flex Foam model are compared with experimental results to show behavior that can be captured with this new model.

  8. Estimation of adjusted rate differences using additive negative binomial regression.

    Science.gov (United States)

    Donoghoe, Mark W; Marschner, Ian C

    2016-08-15

    Rate differences are an important effect measure in biostatistics and provide an alternative perspective to rate ratios. When the data are event counts observed during an exposure period, adjusted rate differences may be estimated using an identity-link Poisson generalised linear model, also known as additive Poisson regression. A problem with this approach is that the assumption of equality of mean and variance rarely holds in real data, which often show overdispersion. An additive negative binomial model is the natural alternative to account for this; however, standard model-fitting methods are often unable to cope with the constrained parameter space arising from the non-negativity restrictions of the additive model. In this paper, we propose a novel solution to this problem using a variant of the expectation-conditional maximisation-either algorithm. Our method provides a reliable way to fit an additive negative binomial regression model and also permits flexible generalisations using semi-parametric regression functions. We illustrate the method using a placebo-controlled clinical trial of fenofibrate treatment in patients with type II diabetes, where the outcome is the number of laser therapy courses administered to treat diabetic retinopathy. An R package is available that implements the proposed method. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Aligning flexibility with uncertainty in software development arrangements through a contractual typology

    OpenAIRE

    Lichtenstein, Y.; Finkelstein, L.; Wyss, S.

    2018-01-01

    Purpose\\ud The purpose of this study is to identify a typology of procurement contracts in the context of software development projects that allows firms to align design flexibility with design uncertainty at the project level. The theoretical lenses of contract theory and software engineering are used to explain why the five archetypes in the proposed typology provide gradually increasing levels of design flexibility and to develop hypotheses about the associations between design flexibility...

  10. Internal Fiber Structure of a High-Performing, Additively Manufactured Injection Molding Insert

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Baier, Sina; Trinderup, Camilla H.

    A standard mold is equipped with additively manufactured inserts in a rectangular shape produced with vat photo polymerization. While the lifetime compared to conventional materials such as brass, steel, and aluminum is reduced, the prototyping and design phase can be shortened significantly...... by using flexible and cost-effective additive manufacturing technologies. Higher production volumes still exceed the capability of additively manufactured inserts, which are overruled by the stronger performance of less-flexible but mechanically advanced materials. In this contribution, the internal...... structure of a high-performing, fiber-reinforced injection molding insert has been analyzed. The insert reached a statistically proven and reproducible lifetime of 4,500 shots, which significantly outperforms any other previously published additively manufactured inserts. Computer tomography, tensile tests...

  11. Flexible mechanism of magnetic microbeads chains in an oscillating field

    Science.gov (United States)

    Li, Yan-Hom; Yen, Chia-Yen

    2018-05-01

    To investigate the use of magnetic microbeads for swimming at low Reynolds number, the flexible structure of microchains comprising superparamagnetic microbeads under the influence of oscillating magnetic fields is examined experimentally and theoretically. For a ductile chain, each particle has its own phase angle trajectory and phase-lag angle to the overall field. This present study thoroughly discusses the synchronicity of the local phase angle trajectory between each dyad of beads and the external field. The prominently asynchronous trajectories between the central and outer beads significantly dominate the flexible structure of the oscillating chain. In addition, the dimensionless local Mason number (Mnl) is derived as the solo controlling parameter to evaluate the structure of each dyad of beads in a flexible chain. The evolution of the local Mason number within an oscillating period implies the most unstable position locates near the center of the chain around 0.6Pflexible structure.

  12. CMOS compatible generic batch process towards flexible memory on bulk monocrystalline silicon (100)

    KAUST Repository

    Ghoneim, Mohamed T.

    2014-12-01

    Today\\'s mainstream flexible electronics research is geared towards replacing silicon either totally, by having organic devices on organic substrates, or partially, by transferring inorganic devices onto organic substrates. In this work, we present a pragmatic approach combining the desired flexibility of organic substrates and the ultra-high integration density, inherent in silicon semiconductor industry, to transform bulk/inflexible silicon into an ultra-thin mono-crystalline fabric. We also show the effectiveness of this approach in achieving fully flexible electronic systems. Furthermore, we provide a progress report on fabricating various memory devices on flexible silicon fabric and insights for completely flexible memory modules on silicon fabric.

  13. CMOS compatible generic batch process towards flexible memory on bulk monocrystalline silicon (100)

    KAUST Repository

    Ghoneim, Mohamed T.; Rojas, Jhonathan Prieto; Kutbee, Arwa T.; Hanna, Amir; Hussain, Muhammad Mustafa

    2014-01-01

    Today's mainstream flexible electronics research is geared towards replacing silicon either totally, by having organic devices on organic substrates, or partially, by transferring inorganic devices onto organic substrates. In this work, we present a pragmatic approach combining the desired flexibility of organic substrates and the ultra-high integration density, inherent in silicon semiconductor industry, to transform bulk/inflexible silicon into an ultra-thin mono-crystalline fabric. We also show the effectiveness of this approach in achieving fully flexible electronic systems. Furthermore, we provide a progress report on fabricating various memory devices on flexible silicon fabric and insights for completely flexible memory modules on silicon fabric.

  14. Flexible Graphene Composites for Human Space Flight Applications

    Science.gov (United States)

    Sosa, Edward D.

    2013-01-01

    Graphene oxide allows for better dispersion stability in aqueous and organic solvents. Stabilizers provide dispersion of pristine graphene. Roll coating provide the best coverage of polyurethane sheets. Graphene and GO coated polyurethane used to fabricate flexible laminate composite. Permeation testing indicates that pristine graphene acts as a better gas barrier material. Continuous graphene films are expected to provide even better gas barrier properties.

  15. The deployment of manufacturing flexibility as a function of company strategy

    Directory of Open Access Journals (Sweden)

    Carla Estorilio

    2013-08-01

    Full Text Available The flexibility is one of the priorities in manufacturing companies. However, the lack of guidelines for carrying out a critical analysis of the use of resources in manufacturing industry leads to a loss of process performance. This article describes a method to help companies identify the resources needed to provide manufacturing flexibility and meet the demands of their consumers while complying with company strategy. The literature related to flexibility is reviewed and a classification based on four levels is proposed: abilities, dimensions, elements and resources that provide flexibility. Based on this taxonomy and using the principles of QFD (Quality Function Deployment, a method is proposed that shows the correlation between these four levels, starting with customer demand and company strategy. The method was tested in an automobile manufacturing company, showing the applicability of the method. It highlighted the high degree of automation, which’s had serious problems related to restrictions on product mix. It can be inferred that this problem could be minimized by simplifying the tasks involved in the manufacture of car and by hiring more experienced, multi-skilled workers. The proposed method is different from those founded in the literature review because it deploys two levels more of flexibility, considering the QFD structure, and addresses strategic company issues.

  16. Integrated digital printing of flexible circuits for wireless sensing (Conference Presentation)

    Science.gov (United States)

    Mei, Ping; Whiting, Gregory L.; Schwartz, David E.; Ng, Tse Nga; Krusor, Brent S.; Ready, Steve E.; Daniel, George; Veres, Janos; Street, Bob

    2016-09-01

    Wireless sensing has broad applications in a wide variety of fields such as infrastructure monitoring, chemistry, environmental engineering and cold supply chain management. Further development of sensing systems will focus on achieving light weight, flexibility, low power consumption and low cost. Fully printed electronics provide excellent flexibility and customizability, as well as the potential for low cost and large area applications, but lack solutions for high-density, high-performance circuitry. Conventional electronics mounted on flexible printed circuit boards provide high performance but are not digitally fabricated or readily customizable. Incorporation of small silicon dies or packaged chips into a printed platform enables high performance without compromising flexibility or cost. At PARC, we combine high functionality c-Si CMOS and digitally printed components and interconnects to create an integrated platform that can read and process multiple discrete sensors. Our approach facilitates customization to a wide variety of sensors and user interfaces suitable for a broad range of applications including remote monitoring of health, structures and environment. This talk will describe several examples of printed wireless sensing systems. The technologies required for these sensor systems are a mix of novel sensors, printing processes, conventional microchips, flexible substrates and energy harvesting power solutions.

  17. Flexible Aqueous Lithium-Ion Battery with High Safety and Large Volumetric Energy Density.

    Science.gov (United States)

    Dong, Xiaoli; Chen, Long; Su, Xiuli; Wang, Yonggang; Xia, Yongyao

    2016-06-20

    A flexible and wearable aqueous lithium-ion battery is introduced based on spinel Li1.1 Mn2 O4 cathode and a carbon-coated NASICON-type LiTi2 (PO4 )3 anode (NASICON=sodium-ion super ionic conductor). Energy densities of 63 Wh kg(-1) or 124 mWh cm(-3) and power densities of 3 275 W kg(-1) or 11.1 W cm(-3) can be obtained, which are seven times larger than the largest reported till now. The full cell can keep its capacity without significant loss under different bending states, which shows excellent flexibility. Furthermore, two such flexible cells in series with an operation voltage of 4 V can be compatible with current nonaqueous Li-ion batteries. Therefore, such a flexible cell can potentially be put into practical applications for wearable electronics. In addition, a self-chargeable unit is realized by integrating a single flexible aqueous Li-ion battery with a commercial flexible solar cell, which may facilitate the long-time outdoor operation of flexible and wearable electronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesan, Krishna

    2011-11-30

    The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to

  19. Non-symmetric forms of non-linear vibrations of flexible cylindrical panels and plates under longitudinal load and additive white noise

    Science.gov (United States)

    Krysko, V. A.; Awrejcewicz, J.; Krylova, E. Yu; Papkova, I. V.; Krysko, A. V.

    2018-06-01

    Parametric non-linear vibrations of flexible cylindrical panels subjected to additive white noise are studied. The governing Marguerre equations are investigated using the finite difference method (FDM) of the second-order accuracy and the Runge-Kutta method. The considered mechanical structural member is treated as a system of many/infinite number of degrees of freedom (DoF). The dependence of chaotic vibrations on the number of DoFs is investigated. Reliability of results is guaranteed by comparing the results obtained using two qualitatively different methods to reduce the problem of PDEs (partial differential equations) to ODEs (ordinary differential equations), i.e. the Faedo-Galerkin method in higher approximations and the 4th and 6th order FDM. The Cauchy problem obtained by the FDM is eventually solved using the 4th-order Runge-Kutta methods. The numerical experiment yielded, for a certain set of parameters, the non-symmetric vibration modes/forms with and without white noise. In particular, it has been illustrated and discussed that action of white noise on chaotic vibrations implies quasi-periodicity, whereas the previously non-symmetric vibration modes are closer to symmetric ones.

  20. All-solid state flexible supercapacitors based on graphene/polymer composites

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Won; Choi, Bong Gill, E-mail: bgchoi@kangwon.ac.kr

    2015-06-01

    Recent advances in lightweight, flexible, and wearable electronic equipment has led to advancements in the development of sufficiently compact and flexible energy storage. A challenge remains to integrate the storage elements as closely as possible within a fully flexible device. Here, we demonstrate the fabrication of all-solid state flexible supercapacitors with the integration of two electrodes that consist of graphene/polymer composites. Robust conductive free-standing thin graphene/polymer composite electrodes were prepared through a simple “physical grinding” process. As-prepared composite electrodes store energy up to a reversible gravimetric capacitance of 90.6 F/g, at a constant current density of 0.5 A/g while also delivering long-term durability (90% retention) for excess of five-thousands of cycles. Notably, the enhancement of mechanical properties of supercapacitors enables them to maintain their electrochemical performance even when twisted or folded. This straightforward approach to the fabrication of fully flexible supercapacitors provides new design opportunities within wearable electronics and electrochemical applications. - Highlights: • All solid-sate supercapacitors were fabricated using graphene/polymer composite electrodes. • Supercapacitor devices show an excellent mechanical flexibility. • High electrochemical performances were demonstrated.

  1. All-solid state flexible supercapacitors based on graphene/polymer composites

    International Nuclear Information System (INIS)

    Kim, Jung Won; Choi, Bong Gill

    2015-01-01

    Recent advances in lightweight, flexible, and wearable electronic equipment has led to advancements in the development of sufficiently compact and flexible energy storage. A challenge remains to integrate the storage elements as closely as possible within a fully flexible device. Here, we demonstrate the fabrication of all-solid state flexible supercapacitors with the integration of two electrodes that consist of graphene/polymer composites. Robust conductive free-standing thin graphene/polymer composite electrodes were prepared through a simple “physical grinding” process. As-prepared composite electrodes store energy up to a reversible gravimetric capacitance of 90.6 F/g, at a constant current density of 0.5 A/g while also delivering long-term durability (90% retention) for excess of five-thousands of cycles. Notably, the enhancement of mechanical properties of supercapacitors enables them to maintain their electrochemical performance even when twisted or folded. This straightforward approach to the fabrication of fully flexible supercapacitors provides new design opportunities within wearable electronics and electrochemical applications. - Highlights: • All solid-sate supercapacitors were fabricated using graphene/polymer composite electrodes. • Supercapacitor devices show an excellent mechanical flexibility. • High electrochemical performances were demonstrated

  2. The Implications of Flexible Staffing Arrangements for Job Stability

    OpenAIRE

    Houseman, Susan N.; Polivka, Anne E.

    1999-01-01

    In this paper, we examine the job stability of workers in a wide range of flexible staffing arrangements: agency temporary, direct-hire temporary, on-call, contract company, independent contractor, and regular part-time work. We draw upon two data sources in our analysis. The first is a nationwide survey of employers on their use of flexible staffing arrangements conducted by the Upjohn Institute for Employment Research. This survey provides evidence on why employers use various types of flex...

  3. Good practice guide to internal flexibility policies in companies

    OpenAIRE

    Goudswaard, A.; Oeij, P.; Brugman, T.

    2009-01-01

    This report sets out to contribute to the present debate on the need for European companies and their workers to become more flexible and adaptable in the face of ongoing economic change and business restructuring. The guide should therefore provide useful and practical tips for company-level actors concerning the potential benefits of developing more flexible internal workplace policies. Equally, it has been developed to assist practitioners and social partners wishing to review and/or learn...

  4. Flexible electroluminescent device with inkjet-printed carbon nanotube electrodes

    Science.gov (United States)

    Azoubel, Suzanna; Shemesh, Shay; Magdassi, Shlomo

    2012-08-01

    Carbon nanotube (CNTs) inks may provide an effective route for producing flexible electronic devices by digital printing. In this paper we report on the formulation of highly concentrated aqueous CNT inks and demonstrate the fabrication of flexible electroluminescent (EL) devices by inkjet printing combined with wet coating. We also report, for the first time, on the formation of flexible EL devices in which all the electrodes are formed by inkjet printing of low-cost multi-walled carbon nanotubes (MWCNTs). Several flexible EL devices were fabricated by using different materials for the production of back and counter electrodes: ITO/MWCNT and MWCNT/MWCNT. Transparent electrodes were obtained either by coating a thin layer of the CNTs or by inkjet printing a grid which is composed of empty cells surrounded by MWCNTs. It was found that the conductivity and transparency of the electrodes are mainly controlled by the MWCNT film thickness, and that the dominant factor in the luminance intensity is the transparency of the electrode.

  5. Additional electrodes on the Quartet™ LV lead provide more programmable pacing options than bipolar and tripolar equivalents.

    Science.gov (United States)

    O'Donnell, David; Sperzel, Johannes; Thibault, Bernard; Rinaldi, Christopher A; Pappone, Carlo; Gutleben, Klaus-Jürgen; Leclercq, Christopher; Razavi, Hedi; Ryu, Kyungmoo; Mcspadden, Luke C; Fischer, Avi; Tomassoni, Gery

    2017-04-01

    The aim of this study was to evaluate any benefits to the number of viable pacing vectors and maximal spatial coverage with quadripolar left ventricular (LV) leads when compared with tripolar and bipolar equivalents in patients receiving cardiac resynchronization therapy (CRT). A meta-analysis of five previously published clinical trials involving the Quartet™ LV lead (St Jude Medical, St Paul, MN, USA) was performed to evaluate the number of viable pacing vectors defined as capture thresholds ≤2.5 V and no phrenic nerve stimulation and maximal spatial coverage of viable vectors in CRT patients at pre-discharge (n = 370) and first follow-up (n = 355). Bipolar and tripolar lead configurations were modelled by systematic elimination of two and one electrode(s), respectively, from the Quartet lead. The Quartet lead with its four pacing electrodes exhibited the greatest number of pacing vectors per patient when compared with the best bipolar and the best tripolar modelled equivalents. Similarly, the Quartet lead provided the highest spatial coverage in terms of the distance between two furthest viable pacing cathodes when compared with the best bipolar and the best tripolar configurations (P tripolar configurations, elimination of the second proximal electrode (M3) resulted in the highest number of viable pacing options per patient. There were no significant differences observed between pre-discharge and first follow-up analyses. The Quartet lead with its four electrodes and the capability to pace from four anatomical locations provided the highest number of viable pacing vectors at pre-discharge and first follow-up visits, providing more flexibility in device programming and enabling continuation of CRT in more patients when compared with bipolar and tripolar equivalents. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  6. A hybrid optical switch architecture to integrate IP into optical networks to provide flexible and intelligent bandwidth on demand for cloud computing

    Science.gov (United States)

    Yang, Wei; Hall, Trevor J.

    2013-12-01

    The Internet is entering an era of cloud computing to provide more cost effective, eco-friendly and reliable services to consumer and business users. As a consequence, the nature of the Internet traffic has been fundamentally transformed from a pure packet-based pattern to today's predominantly flow-based pattern. Cloud computing has also brought about an unprecedented growth in the Internet traffic. In this paper, a hybrid optical switch architecture is presented to deal with the flow-based Internet traffic, aiming to offer flexible and intelligent bandwidth on demand to improve fiber capacity utilization. The hybrid optical switch is capable of integrating IP into optical networks for cloud-based traffic with predictable performance, for which the delay performance of the electronic module in the hybrid optical switch architecture is evaluated through simulation.

  7. A flexible method for multi-level sample size determination

    International Nuclear Information System (INIS)

    Lu, Ming-Shih; Sanborn, J.B.; Teichmann, T.

    1997-01-01

    This paper gives a flexible method to determine sample sizes for both systematic and random error models (this pertains to sampling problems in nuclear safeguard questions). In addition, the method allows different attribute rejection limits. The new method could assist achieving a higher detection probability and enhance inspection effectiveness

  8. Prey-predator dynamics with prey refuge providing additional food to predator

    International Nuclear Information System (INIS)

    Ghosh, Joydev; Sahoo, Banshidhar; Poria, Swarup

    2017-01-01

    Highlights: • The effects of interplay between prey refugia and additional food are reported. • Hopf bifurcation conditions are derived analytically. • Existence of unique limit cycle is shown analytically. • Predator extinction may be possible at very high prey refuge ecological systems. - Abstract: The impacts of additional food for predator on the dynamics of a prey-predator model with prey refuge are investigated. The equilibrium points and their stability behaviours are determined. Hopf bifurcation conditions are derived analytically. Most significantly, existence conditions for unique stable limit cycle in the phase plane are shown analytically. The analytical results are in well agreement with the numerical simulation results. Effects of variation of refuge level as well as the variation of quality and quantity of additional food on the dynamics are reported with the help of bifurcation diagrams. It is found that high quality and high quantity of additional food supports oscillatory coexistence of species. It is observed that predator extinction possibility in high prey refuge ecological systems may be removed by supplying additional food to predator population. The reported theoretical results may be useful to conservation biologist for species conservation in real world ecological systems.

  9. Graphene-based materials for flexible supercapacitors.

    Science.gov (United States)

    Shao, Yuanlong; El-Kady, Maher F; Wang, Lisa J; Zhang, Qinghong; Li, Yaogang; Wang, Hongzhi; Mousavi, Mir F; Kaner, Richard B

    2015-06-07

    The demand for flexible/wearable electronic devices that have aesthetic appeal and multi-functionality has stimulated the rapid development of flexible supercapacitors with enhanced electrochemical performance and mechanical flexibility. After a brief introduction to flexible supercapacitors, we summarize current progress made with graphene-based electrodes. Two recently proposed prototypes for flexible supercapacitors, known as micro-supercapacitors and fiber-type supercapacitors, are then discussed. We also present our perspective on the development of graphene-based electrodes for flexible supercapacitors.

  10. Functional design criteria 241-AP-102 Flexible Receiver System

    International Nuclear Information System (INIS)

    Roblyer, S.P.

    1995-01-01

    A mixer pump was installed in the 1.07 m (42-in.) riser of the central pump pit of tank 241-AP-102 to mitigate potential fluid separation particle sedimentation by mixing the tank's contents. The mixer pump performed this function until failure. Its removal is now necessary to meet possible tank content removal commitments or other corrective actions. The proposed removal procedure requires a flexible receiver that will provide a barrier to contamination during removal and transfer of the pump to the mixer pump storage container. This document describes the functional design criteria of the flexible receiver. These criteria include the functional and performance requirements of the flexible receiver as a barrier to contamination during normal conditions and contingencies and the instrumentation requirements

  11. Flexible Metal Oxide/Graphene Oxide Hybrid Neuromorphic Devices on Flexible Conducting Graphene Substrates

    OpenAIRE

    Wan, Chang Jin; Wang, Wei; Zhu, Li Qiang; Liu, Yang Hui; Feng, Ping; Liu, Zhao Ping; Shi, Yi; Wan, Qing

    2016-01-01

    Flexible metal oxide/graphene oxide hybrid multi-gate neuron transistors were fabricated on flexible graphene substrates. Dendritic integrations in both spatial and temporal modes were successfully emulated, and spatiotemporal correlated logics were obtained. A proof-of-principle visual system model for emulating lobula giant motion detector neuron was investigated. Our results are of great interest for flexible neuromorphic cognitive systems.

  12. Flexible thermoelectric generator using bulk legs and liquid metal interconnects for wearable electronics

    International Nuclear Information System (INIS)

    Suarez, Francisco; Parekh, Dishit P.; Ladd, Collin; Vashaee, Daryoosh; Dickey, Michael D.; Öztürk, Mehmet C.

    2017-01-01

    Highlights: •Flexible thermoelectric generator (TEG) with bulk legs. •Flexible thermoelectric generator with liquid metal interconnects. •Flexible TEG with potential to match the performance of rigid TEGs. •Flexible TEG for wearable electronics. -- Abstract: Interest in wearable electronics for continuous, long-term health and performance monitoring is rapidly increasing. The reduction in power levels consumed by sensors and electronic circuits accompanied by the advances in energy harvesting methods allows for the realization of self-powered monitoring systems that do not have to rely on batteries. For wearable electronics, thermoelectric generators (TEGs) offer the unique ability to continuously convert body heat into usable energy. For body harvesting, it is preferable to have TEGs that are thin, soft and flexible. Unfortunately, the performances of flexible modules reported to date have been far behind those of their rigid counterparts. This is largely due to lower efficiencies of the thermoelectric materials, electrical or thermal parasitic losses and limitations on leg dimensions posed by the synthesis techniques. In this work, we present an entirely new approach and explore the possibility of using standard bulk legs in a flexible package. Bulk thermoelectric legs cut from solid ingots are far superior to thermoelectric materials synthesized using other techniques. A key enabler of the proposed technology is the use of EGaIn liquid metal interconnects, which not only provide extremely low interconnect resistance but also stretchability with self-healing, both of which are essential for flexible TE modules. The results suggest that this novel approach can finally produce flexible TEGs that have the potential to challenge the rigid TEGs and provide a pathway for the realization of self-powered wearable electronics.

  13. Flexible Electronics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Flexible Electronics Research Facility designs, synthesizes, tests, and fabricates materials and devices compatible with flexible substrates for Army information...

  14. Large-Area Cross-Aligned Silver Nanowire Electrodes for Flexible, Transparent, and Force-Sensitive Mechanochromic Touch Screens.

    Science.gov (United States)

    Cho, Seungse; Kang, Saewon; Pandya, Ashish; Shanker, Ravi; Khan, Ziyauddin; Lee, Youngsu; Park, Jonghwa; Craig, Stephen L; Ko, Hyunhyub

    2017-04-25

    Silver nanowire (AgNW) networks are considered to be promising structures for use as flexible transparent electrodes for various optoelectronic devices. One important application of AgNW transparent electrodes is the flexible touch screens. However, the performances of flexible touch screens are still limited by the large surface roughness and low electrical to optical conductivity ratio of random network AgNW electrodes. In addition, although the perception of writing force on the touch screen enables a variety of different functions, the current technology still relies on the complicated capacitive force touch sensors. This paper demonstrates a simple and high-throughput bar-coating assembly technique for the fabrication of large-area (>20 × 20 cm 2 ), highly cross-aligned AgNW networks for transparent electrodes with the sheet resistance of 21.0 Ω sq -1 at 95.0% of optical transmittance, which compares favorably with that of random AgNW networks (sheet resistance of 21.0 Ω sq -1 at 90.4% of optical transmittance). As a proof of concept demonstration, we fabricate flexible, transparent, and force-sensitive touch screens using cross-aligned AgNW electrodes integrated with mechanochromic spiropyran-polydimethylsiloxane composite film. Our force-sensitive touch screens enable the precise monitoring of dynamic writings, tracing and drawing of underneath pictures, and perception of handwriting patterns with locally different writing forces. The suggested technique provides a robust and powerful platform for the controllable assembly of nanowires beyond the scale of conventional fabrication techniques, which can find diverse applications in multifunctional flexible electronic and optoelectronic devices.

  15. A powerful and flexible approach to the analysis of RNA sequence count data.

    Science.gov (United States)

    Zhou, Yi-Hui; Xia, Kai; Wright, Fred A

    2011-10-01

    A number of penalization and shrinkage approaches have been proposed for the analysis of microarray gene expression data. Similar techniques are now routinely applied to RNA sequence transcriptional count data, although the value of such shrinkage has not been conclusively established. If penalization is desired, the explicit modeling of mean-variance relationships provides a flexible testing regimen that 'borrows' information across genes, while easily incorporating design effects and additional covariates. We describe BBSeq, which incorporates two approaches: (i) a simple beta-binomial generalized linear model, which has not been extensively tested for RNA-Seq data and (ii) an extension of an expression mean-variance modeling approach to RNA-Seq data, involving modeling of the overdispersion as a function of the mean. Our approaches are flexible, allowing for general handling of discrete experimental factors and continuous covariates. We report comparisons with other alternate methods to handle RNA-Seq data. Although penalized methods have advantages for very small sample sizes, the beta-binomial generalized linear model, combined with simple outlier detection and testing approaches, appears to have favorable characteristics in power and flexibility. An R package containing examples and sample datasets is available at http://www.bios.unc.edu/research/genomic_software/BBSeq yzhou@bios.unc.edu; fwright@bios.unc.edu Supplementary data are available at Bioinformatics online.

  16. Flexibility within Fidelity

    Science.gov (United States)

    Kendall, Philip C.; Gosch, Elizabeth; Furr, Jami M.; Sood, Erica

    2008-01-01

    The authors address concerns regarding manual-based treatments, highlighting the role of flexibility and creativity. A cognitive-behavioral therapy for youth anxiety called the Coping Cat program demonstrates the flexible application of manuals and emphasizes the importance of a child-centered, personalized approach that involves the child in the…

  17. Persistency and flexibility of complex brain networks underlie dual-task interference.

    Science.gov (United States)

    Alavash, Mohsen; Hilgetag, Claus C; Thiel, Christiane M; Gießing, Carsten

    2015-09-01

    Previous studies on multitasking suggest that performance decline during concurrent task processing arises from interfering brain modules. Here, we used graph-theoretical network analysis to define functional brain modules and relate the modular organization of complex brain networks to behavioral dual-task costs. Based on resting-state and task fMRI we explored two organizational aspects potentially associated with behavioral interference when human subjects performed a visuospatial and speech task simultaneously: the topological overlap between persistent single-task modules, and the flexibility of single-task modules in adaptation to the dual-task condition. Participants showed a significant decline in visuospatial accuracy in the dual-task compared with single visuospatial task. Global analysis of topological similarity between modules revealed that the overlap between single-task modules significantly correlated with the decline in visuospatial accuracy. Subjects with larger overlap between single-task modules showed higher behavioral interference. Furthermore, lower flexible reconfiguration of single-task modules in adaptation to the dual-task condition significantly correlated with larger decline in visuospatial accuracy. Subjects with lower modular flexibility showed higher behavioral interference. At the regional level, higher overlap between single-task modules and less modular flexibility in the somatomotor cortex positively correlated with the decline in visuospatial accuracy. Additionally, higher modular flexibility in cingulate and frontal control areas and lower flexibility in right-lateralized nodes comprising the middle occipital and superior temporal gyri supported dual-tasking. Our results suggest that persistency and flexibility of brain modules are important determinants of dual-task costs. We conclude that efficient dual-tasking benefits from a specific balance between flexibility and rigidity of functional brain modules. © 2015 Wiley

  18. Organizational flexibility as a challenge of contemporary management. Determinants and methods of measurement

    Directory of Open Access Journals (Sweden)

    Piotr Buła

    2011-12-01

    Full Text Available Purpose: This paper has been aimed at defining contemporary management flexibility determinants and the methods of its measurement. Problem investigated: This paper presents an analysis of organizational flexibility determinants related to the contemporary concepts and challenges within the area of management. The discussion includes two types of measurement of organizational flexibility based on declarative tests and quantitative criteria. The described methods are subject to evaluation. The paper also presents authors' own proposal for determinants classification, organizational flexibility assessment and an exemplary application. Methodology: The paper has been based on the results of research on organizational flexibility conducted by the Department of Business Studies Aalborg University (Denmark and Wrocław University of Economics (Poland. Conclusion: Organizational flexibility constitutes one of the major challenges of contemporary management. This issue has already been extensively discussed, however, despite numerous publications and relevant research projects many issues still need to be resolved. One of them is organizational flexibility measurement. In the first place, it needs a description of flexibility determinants relevant to a certain organization. There are no objective methods that would allow a description of the set of determinants since they are dependent on organization's special features and individually set objectives. In addition, it should be noted that those factors are subject to change, in line with the development of theory and concepts of management. The very flexibility measurement requires simultaneous application of various methods of factor analysis and polling stakeholder opinions.

  19. A Flexible Job Shop Scheduling Problem with Controllable Processing Times to Optimize Total Cost of Delay and Processing

    Directory of Open Access Journals (Sweden)

    Hadi Mokhtari

    2015-11-01

    Full Text Available In this paper, the flexible job shop scheduling problem with machine flexibility and controllable process times is studied. The main idea is that the processing times of operations may be controlled by consumptions of additional resources. The purpose of this paper to find the best trade-off between processing cost and delay cost in order to minimize the total costs. The proposed model, flexible job shop scheduling with controllable processing times (FJCPT, is formulated as an integer non-linear programming (INLP model and then it is converted into an integer linear programming (ILP model. Due to NP-hardness of FJCPT, conventional analytic optimization methods are not efficient. Hence, in order to solve the problem, a Scatter Search (SS, as an efficient metaheuristic method, is developed. To show the effectiveness of the proposed method, numerical experiments are conducted. The efficiency of the proposed algorithm is compared with that of a genetic algorithm (GA available in the literature for solving FJSP problem. The results showed that the proposed SS provide better solutions than the existing GA.

  20. Topology Optimization for Additive Manufacturing

    DEFF Research Database (Denmark)

    Clausen, Anders

    This PhD thesis deals with the combination of topology optimization and additive man-ufacturing (AM, also known as 3D-printing). In addition to my own works, the thesis contains a broader review and assessment of the literature within the field. The thesis first presents a classification...... of the various AM technologies, a review of relevant manufacturing materials, the properties of these materials in the additively manufactured part, as well as manufacturing constraints with a potential for design optimization. Subsequently, specific topology optimization formulations relevant for the most im...... for scalable manufacturing. In relation to interface problems it is shown how a flexible void area may be included into a standard minimum compliance problem by employing an additional design variable field and a sensitivity filter. Furthermore, it is shown how the design of coated structures may be modeled...

  1. Magnetic fish-robot based on multi-motion control of a flexible magnetic actuator.

    Science.gov (United States)

    Kim, Sung Hoon; Shin, Kyoosik; Hashi, Shuichiro; Ishiyama, Kazushi

    2012-09-01

    This paper presents a biologically inspired fish-robot driven by a single flexible magnetic actuator with a rotating magnetic field in a three-axis Helmholtz coil. Generally, magnetic fish-robots are powered by alternating and gradient magnetic fields, which provide a single motion such as bending the fish-robot's fins. On the other hand, a flexible magnetic actuator driven by an external rotating magnetic field can create several gaits such as the bending vibration, the twisting vibration, and their combination. Most magnetic fish-like micro-robots do not have pectoral fins on the side and are simply propelled by the tail fin. The proposed robot can swim and perform a variety of maneuvers with the addition of pectoral fins and control of the magnetic torque direction. In this paper, we find that the robot's dynamic actuation correlates with the magnetic actuator and the rotating magnetic field. The proposed robot is also equipped with new features, such as a total of six degrees of freedom, a new control method that stabilizes posture, three-dimensional swimming, a new velocity control, and new turning abilities.

  2. Magnetic fish-robot based on multi-motion control of a flexible magnetic actuator

    International Nuclear Information System (INIS)

    Kim, Sung Hoon; Hashi, Shuichiro; Ishiyama, Kazushi; Shin, Kyoosik

    2012-01-01

    This paper presents a biologically inspired fish-robot driven by a single flexible magnetic actuator with a rotating magnetic field in a three-axis Helmholtz coil. Generally, magnetic fish-robots are powered by alternating and gradient magnetic fields, which provide a single motion such as bending the fish-robot's fins. On the other hand, a flexible magnetic actuator driven by an external rotating magnetic field can create several gaits such as the bending vibration, the twisting vibration, and their combination. Most magnetic fish-like micro-robots do not have pectoral fins on the side and are simply propelled by the tail fin. The proposed robot can swim and perform a variety of maneuvers with the addition of pectoral fins and control of the magnetic torque direction. In this paper, we find that the robot's dynamic actuation correlates with the magnetic actuator and the rotating magnetic field. The proposed robot is also equipped with new features, such as a total of six degrees of freedom, a new control method that stabilizes posture, three-dimensional swimming, a new velocity control, and new turning abilities. (paper)

  3. WAGE FLEXIBILITY IN THE CONTEMPORARY SOCIETY

    Directory of Open Access Journals (Sweden)

    TECULESCU Silviu Alexandru

    2010-12-01

    Full Text Available The paper follows to offer the most efficient solutions for the attainment by Romania of the economic development level associated to the Western European countries. It proposes the division of the flexibility of labour market in three components, namely: internal flexibility, external flexibility and wage flexibility. The analysis performed within the present study will emphasize the wage flexibility. Wage flexibility can be classified in four components: a plans of individual and group incentives; b plans of assigning wages out of productivity; c plans of distribution of profits and, respectively, d plans of suggestions. The labour market flexibility, in general, and especially the wage flexibility contributes to the increase of employee motivation at the workplace, aspect which leeds to the growth of labour productivity, through this one being put the bases of the medium- and long-term economic development.

  4. Electrolyzers Enhancing Flexibility in Electric Grids

    Directory of Open Access Journals (Sweden)

    Manish Mohanpurkar

    2017-11-01

    Full Text Available This paper presents a real-time simulation with a hardware-in-the-loop (HIL-based approach for verifying the performance of electrolyzer systems in providing grid support. Hydrogen refueling stations may use electrolyzer systems to generate hydrogen and are proposed to have the potential of becoming smarter loads that can proactively provide grid services. On the basis of experimental findings, electrolyzer systems with balance of plant are observed to have a high level of controllability and hence can add flexibility to the grid from the demand side. A generic front end controller (FEC is proposed, which enables an optimal operation of the load on the basis of market and grid conditions. This controller has been simulated and tested in a real-time environment with electrolyzer hardware for a performance assessment. It can optimize the operation of electrolyzer systems on the basis of the information collected by a communication module. Real-time simulation tests are performed to verify the performance of the FEC-driven electrolyzers to provide grid support that enables flexibility, greater economic revenue, and grid support for hydrogen producers under dynamic conditions. The FEC proposed in this paper is tested with electrolyzers, however, it is proposed as a generic control topology that is applicable to any load.

  5. Three-dimensional free-standing carbon nanotubes for a flexible lithium-ion battery anode

    International Nuclear Information System (INIS)

    Kang, Chiwon; Cha, Eunho; Baskaran, Rangasamy; Choi, Wonbong

    2016-01-01

    Flexible lithium-ion batteries (LIBs) have received considerable attention as energy sources for wearable electronics. In recent years, much effort has been devoted to study light-weight, robust, and flexible electrodes. However, high areal and volumetric capacities need to be achieved for practical power and energy densities. In this paper, we report the use of three-dimensional (3D) free-standing carbon nanotubes (CNTs) as a current collector-free anode to demonstrate flexible LIBs with enhanced areal and volumetric capacities. High density CNTs grown on copper (Cu) mesh are transferred to a flexible graphene/polyethylene terephthalate  film and integrated into a flexible LIB. A fully flexible LIB cell integrated with the 3D CNT anode delivers a high areal capacity of 0.25 mAh cm"−"2 at 0.1C and shows fairly consistent open circuit voltage under bending. These findings may provide significant advances in the application of flexible LIB based electronic devices. (paper)

  6. Advancing System Flexibility for High Penetration Renewable Integration

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Frew, Bethany [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhou, Ella [National Renewable Energy Lab. (NREL), Golden, CO (United States); Arent, Douglas J. [Joint Inst. for Strategic Energy Analysis, Golden, CO (United States)

    2015-10-01

    This report summarizes some of the issues discussed during the engagement on power system flexibility. By design, the focus is on flexibility options used in the United States. Exploration of whether and how U.S. experiences can inform Chinese energy planning will be part of the continuing project, and will benefit from the knowledge base provided by this report. We believe the initial stage of collaboration represented in this report has successfully started a process of mutual understanding, helping Chinese researchers to begin evaluating how lessons learned in other countries might translate to China's unique geographic, economic, social, and political contexts.

  7. Flexible and efficient genome tiling design with penalized uniqueness score

    Directory of Open Access Journals (Sweden)

    Du Yang

    2012-12-01

    Full Text Available Abstract Background As a powerful tool in whole genome analysis, tiling array has been widely used in the answering of many genomic questions. Now it could also serve as a capture device for the library preparation in the popular high throughput sequencing experiments. Thus, a flexible and efficient tiling array design approach is still needed and could assist in various types and scales of transcriptomic experiment. Results In this paper, we address issues and challenges in designing probes suitable for tiling array applications and targeted sequencing. In particular, we define the penalized uniqueness score, which serves as a controlling criterion to eliminate potential cross-hybridization, and a flexible tiling array design pipeline. Unlike BLAST or simple suffix array based methods, computing and using our uniqueness measurement can be more efficient for large scale design and require less memory. The parameters provided could assist in various types of genomic tiling task. In addition, using both commercial array data and experiment data we show, unlike previously claimed, that palindromic sequence exhibiting relatively lower uniqueness. Conclusions Our proposed penalized uniqueness score could serve as a better indicator for cross hybridization with higher sensitivity and specificity, giving more control of expected array quality. The flexible tiling design algorithm incorporating the penalized uniqueness score was shown to give higher coverage and resolution. The package to calculate the penalized uniqueness score and the described probe selection algorithm are implemented as a Perl program, which is freely available at http://www1.fbn-dummerstorf.de/en/forschung/fbs/fb3/paper/2012-yang-1/OTAD.v1.1.tar.gz.

  8. Neural correlates of reappraisal considering working memory capacity and cognitive flexibility.

    Science.gov (United States)

    Zaehringer, Jenny; Falquez, Rosalux; Schubert, Anna-Lena; Nees, Frauke; Barnow, Sven

    2018-01-09

    Cognitive reappraisal of emotion is strongly related to long-term mental health. Therefore, the exploration of underlying cognitive and neural mechanisms has become an essential focus of research. Considering that reappraisal and executive functions rely on a similar brain network, the question arises whether behavioral differences in executive functions modulate neural activity during reappraisal. Using functional neuroimaging, the present study aimed to analyze the role of working memory capacity (WMC) and cognitive flexibility in brain activity during down-regulation of negative emotions by reappraisal in N = 20 healthy participants. Results suggests that WMC and cognitive flexibility were negatively correlated with prefrontal activity during reappraisal condition. Here, results also revealed a negative correlation between cognitive flexibility and amygdala activation. These findings provide first hints that (1) individuals with lower WMC and lower cognitive flexibility might need more higher-order cognitive neural resources in order to down-regulate negative emotions and (2) cognitive flexibility relates to emotional reactivity during reappraisal.

  9. Organizational flexibility estimation

    OpenAIRE

    Komarynets, Sofia

    2013-01-01

    By the help of parametric estimation the evaluation scale of organizational flexibility and its parameters was formed. Definite degrees of organizational flexibility and its parameters for the Lviv region enterprises were determined. Grouping of the enterprises under the existing scale was carried out. Special recommendations to correct the enterprises behaviour were given.

  10. Carbon nanotube based pressure sensor for flexible electronics

    International Nuclear Information System (INIS)

    So, Hye-Mi; Sim, Jin Woo; Kwon, Jinhyeong; Yun, Jongju; Baik, Seunghyun; Chang, Won Seok

    2013-01-01

    Highlights: • The electromechanical change of vertically aligned carbon nanotubes. • Fabrication of CNT field-effect transistor on flexible substrate. • CNT based FET integrated active pressure sensor. • The integrated device yields an increase in the source-drain current under pressure. - Abstract: A pressure sensor was developed based on an arrangement of vertically aligned carbon nanotubes (VACNTs) supported by a polydimethylsiloxane (PDMS) matrix. The VACNTs embedded in the PDMS matrix were structurally flexible and provided repeated sensing operation due to the high elasticities of both the polymer and the carbon nanotubes (CNTs). The conductance increased in the presence of a loading pressure, which compressed the material and induced contact between neighboring CNTs, thereby producing a dense current path and better CNT/metal contacts. To achieve flexible functional electronics, VACNTs based pressure sensor was integrated with field-effect transistor, which is fabricated using sprayed semiconducting carbon nanotubes on plastic substrate

  11. Carbon nanotube based pressure sensor for flexible electronics

    Energy Technology Data Exchange (ETDEWEB)

    So, Hye-Mi [Department of Nano Mechanics, Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 305-343 (Korea, Republic of); Sim, Jin Woo [Advanced Nano Technology Ltd., Seoul 132-710 (Korea, Republic of); Kwon, Jinhyeong [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Yun, Jongju; Baik, Seunghyun [SKKU Advanced Institute of Nanotechnology (SAINT), Department of Energy Science and School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Chang, Won Seok, E-mail: paul@kimm.re.kr [Department of Nano Mechanics, Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 305-343 (Korea, Republic of)

    2013-12-15

    Highlights: • The electromechanical change of vertically aligned carbon nanotubes. • Fabrication of CNT field-effect transistor on flexible substrate. • CNT based FET integrated active pressure sensor. • The integrated device yields an increase in the source-drain current under pressure. - Abstract: A pressure sensor was developed based on an arrangement of vertically aligned carbon nanotubes (VACNTs) supported by a polydimethylsiloxane (PDMS) matrix. The VACNTs embedded in the PDMS matrix were structurally flexible and provided repeated sensing operation due to the high elasticities of both the polymer and the carbon nanotubes (CNTs). The conductance increased in the presence of a loading pressure, which compressed the material and induced contact between neighboring CNTs, thereby producing a dense current path and better CNT/metal contacts. To achieve flexible functional electronics, VACNTs based pressure sensor was integrated with field-effect transistor, which is fabricated using sprayed semiconducting carbon nanotubes on plastic substrate.

  12. Reliability Issues and Solutions in Flexible Electronics Under Mechanical Fatigue

    Science.gov (United States)

    Yi, Seol-Min; Choi, In-Suk; Kim, Byoung-Joon; Joo, Young-Chang

    2018-03-01

    Flexible devices are of significant interest due to their potential expansion of the application of smart devices into various fields, such as energy harvesting, biological applications and consumer electronics. Due to the mechanically dynamic operations of flexible electronics, their mechanical reliability must be thoroughly investigated to understand their failure mechanisms and lifetimes. Reliability issue caused by bending fatigue, one of the typical operational limitations of flexible electronics, has been studied using various test methodologies; however, electromechanical evaluations which are essential to assess the reliability of electronic devices for flexible applications had not been investigated because the testing method was not established. By employing the in situ bending fatigue test, we has studied the failure mechanism for various conditions and parameters, such as bending strain, fatigue area, film thickness, and lateral dimensions. Moreover, various methods for improving the bending reliability have been developed based on the failure mechanism. Nanostructures such as holes, pores, wires and composites of nanoparticles and nanotubes have been suggested for better reliability. Flexible devices were also investigated to find the potential failures initiated by complex structures under bending fatigue strain. In this review, the recent advances in test methodology, mechanism studies, and practical applications are introduced. Additionally, perspectives including the future advance to stretchable electronics are discussed based on the current achievements in research.

  13. 14 CFR 399.73 - Definition of small business for Regulatory Flexibility Act.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Definition of small business for Regulatory... Rulemaking Proceedings § 399.73 Definition of small business for Regulatory Flexibility Act. For the purposes... Flexibility Act), a direct air carrier or foreign air carrier is a small business if it provides air...

  14. Inter-Vertebral Flexibility of the Ostrich Neck: Implications for Estimating Sauropod Neck Flexibility

    OpenAIRE

    Cobley, Matthew J.; Rayfield, Emily J.; Barrett, Paul M.

    2013-01-01

    The flexibility and posture of the neck in sauropod dinosaurs has long been contentious. Improved constraints on sauropod neck function will have major implications for what we know of their foraging strategies, ecology and overall biology. Several hypotheses have been proposed, based primarily on osteological data, suggesting different degrees of neck flexibility. This study attempts to assess the effects of reconstructed soft tissues on sauropod neck flexibility through systematic removal o...

  15. Flexible automated manufacturing for SMEs

    DEFF Research Database (Denmark)

    Grube Hansen, David; Bilberg, Arne; Madsen, Erik Skov

    2017-01-01

    SMEs are in general highly flexible and agile in order to accommodate the customer demands in the paradigm of High Mix-Low Volume manufacturing. The flexibility and agility have mainly been enabled by manual labor, but as we are entering the technology and data driven fourth industrial revolution......, where augmented operators and machines work in cooperation in a highly flexible and productive manufacturing system both an opportunity and a need has raised for developing highly flexible and efficient automation....

  16. Multiobjective Joint Optimization of Production Scheduling and Maintenance Planning in the Flexible Job-Shop Problem

    Directory of Open Access Journals (Sweden)

    Jianfei Ye

    2015-01-01

    Full Text Available In order to solve the joint optimization of production scheduling and maintenance planning problem in the flexible job-shop, a multiobjective joint optimization model considering the maximum completion time and maintenance costs per unit time is established based on the concept of flexible job-shop and preventive maintenance. A weighted sum method is adopted to eliminate the index dimension. In addition, a double-coded genetic algorithm is designed according to the problem characteristics. The best result under the circumstances of joint decision-making is obtained through multiple simulation experiments, which proves the validity of the algorithm. We can prove the superiority of joint optimization model by comparing the result of joint decision-making project with the result of independent decision-making project under fixed preventive maintenance period. This study will enrich and expand the theoretical framework and analytical methods of this problem; it provides a scientific decision analysis method for enterprise to make production plan and maintenance plan.

  17. Development of Flexible Software Process Lines with Variability Operations

    DEFF Research Database (Denmark)

    Schramm, Joachim; Dohrmann, Patrick; Kuhrmann, Marco

    2015-01-01

    families of processes and, as part of this, variability operations provide means to modify and reuse pre-defined process assets. Objective: Our goal is to evaluate the feasibility of variability operations to support the development of flexible software process lines. Method: We conducted a longitudinal......Context: Software processes evolve over time and several approaches were proposed to support the required flexibility. Yet, little is known whether these approaches sufficiently support the development of large software processes. A software process line helps to systematically develop and manage...

  18. Flexible ACT & Resource-group ACT: Different Working Procedures Which Can Supplement and Strengthen Each Other. A Response.

    Science.gov (United States)

    van Veldhuizen, Remmers; Delespaul, Philippe; Kroon, Hans; Mulder, Niels

    2015-01-01

    This article is a response to Nordén and Norlander's 'Absence of Positive Results for Flexible Assertive Community Treatment. What is the next approach?'[1], in which they assert that 'at present [there is] no evidence for Flexible ACT and… that RACT might be able to provide new impulses and new vitality to the treatment mode of ACT'. We question their analyses and conclusions. We clarify Flexible ACT, referring to the Flexible Assertive Community Treatment Manual (van Veldhuizen, 2013) [2] to rectify misconceptions. We discuss Nordén and Norlander's interpretation of research on Flexible ACT. The fact that too little research has been done and that there are insufficient positive results cannot serve as a reason to propagate RACT. However, the Resource Group method does provide inspiration for working with clients to involve their networks more effectively in Flexible ACT.

  19. DFD-01 Reduces Transepidermal Water Loss and Improves Skin Hydration and Flexibility.

    Science.gov (United States)

    Jackson, J Mark; Grove, Gary L; Allenby, Kent; Houser, Tim

    2017-12-01

    In plaque psoriasis, the benefit of topical steroids is well established. The vehicle formulation of topical steroids may also provide benefit in addition to the effects of the steroid itself. DFD-01 (betamethasone dipropionate spray, 0.05%) is a formulation composed of a topical steroid in an emollient-like vehicle that enhances penetration to the target site of inflammation in the skin. The aim of this study was to assess the effect of DFD-01 and its vehicle on skin hydration and barrier function in compromised skin and to evaluate its effect on flexibility in healthy skin. Eighteen healthy white volunteers were enrolled in each of two studies. In Study 1, dry shaving of volar forearms created a compromised skin barrier, through which transepidermal water loss (TEWL) was measured using an evaporimeter. Capacitance, a measure of epidermal hydration, was also measured at baseline and at 1, 2 and 4 h after application of DFD-01 or its vehicle formulation. In Study 2, intact skin flexibility was tested with a cutometer before and at 1, 2 and 4 h after application of DFD-01 or vehicle. In Study 1, both DFD-01 and its vehicle were effective at reducing TEWL through the compromised stratum corneum. Capacitance measurements confirmed this finding; razor-chafed skin treated with either DFD-01 or vehicle exhibited levels of skin hydration similar to unshaved control skin. Study 2 found softening and greater flexibility of normal skin treated with either DFD-01 or vehicle compared with nontreated control skin samples. These tests suggest that the DFD-01 formulation and its vehicle are each effective at retaining moisture within a damaged skin barrier and for softening and increasing the flexibility of intact skin. Dr. Reddy's Laboratories.

  20. Flexible Sensory Platform Based on Oxide-based Neuromorphic Transistors.

    Science.gov (United States)

    Liu, Ning; Zhu, Li Qiang; Feng, Ping; Wan, Chang Jin; Liu, Yang Hui; Shi, Yi; Wan, Qing

    2015-12-11

    Inspired by the dendritic integration and spiking operation of a biological neuron, flexible oxide-based neuromorphic transistors with multiple input gates are fabricated on flexible plastic substrates for pH sensor applications. When such device is operated in a quasi-static dual-gate synergic sensing mode, it shows a high pH sensitivity of ~105 mV/pH. Our results also demonstrate that single-spike dynamic mode can remarkably improve pH sensitivity and reduce response/recover time and power consumption. Moreover, we find that an appropriate negative bias applied on the sensing gate electrode can further enhance the pH sensitivity and reduce the power consumption. Our flexible neuromorphic transistors provide a new-concept sensory platform for biochemical detection with high sensitivity, rapid response and ultralow power consumption.

  1. The demand for flexibility as a process of disenfranchisement

    DEFF Research Database (Denmark)

    Petersen, Anders; Willig, Rasmus

    2011-01-01

    The demand for employees to show flexibility is not merely a characteristic of large companies, but one that can even be traced in municipal day nurseries and kindergartens. In a series of focus group interviews with Danish kindergarten teachers, managers and staff representatives, it became clear...... to the kindergarten teachers' experience of insecurity, Axel Honneth's considerations of how it has become harder to perceive the kinds of performance that will provide recognition have been included. Similarly, Boltanski and Chiapello's reflections on project work, in which the idea of showing flexibility...... is a central value in obtaining recognition, have been included and are discussed in relation to the fact that several of the respondents felt their criticism was not heard when they protested against the increasing demands for flexibility....

  2. Flexible Sensory Platform Based on Oxide-based Neuromorphic Transistors

    Science.gov (United States)

    Liu, Ning; Zhu, Li Qiang; Feng, Ping; Wan, Chang Jin; Liu, Yang Hui; Shi, Yi; Wan, Qing

    2015-01-01

    Inspired by the dendritic integration and spiking operation of a biological neuron, flexible oxide-based neuromorphic transistors with multiple input gates are fabricated on flexible plastic substrates for pH sensor applications. When such device is operated in a quasi-static dual-gate synergic sensing mode, it shows a high pH sensitivity of ~105 mV/pH. Our results also demonstrate that single-spike dynamic mode can remarkably improve pH sensitivity and reduce response/recover time and power consumption. Moreover, we find that an appropriate negative bias applied on the sensing gate electrode can further enhance the pH sensitivity and reduce the power consumption. Our flexible neuromorphic transistors provide a new-concept sensory platform for biochemical detection with high sensitivity, rapid response and ultralow power consumption. PMID:26656113

  3. Flexible magnetoimpidence sensor

    KAUST Repository

    Kavaldzhiev, Mincho

    2015-05-01

    Recently, flexible electronic devices have attracted increasing interest, due to the opportunities they promise for new applications such as wearable devices, where the components are required to flex during normal use[1]. In this light, different magnetic sensors, like microcoil, spin valve, giant magnetoresistance (GMR), magnetoimpedance (MI), have been studied previously on flexible substrates.

  4. Global Analysis of Flexible Risers

    DEFF Research Database (Denmark)

    Banke, Lars

    1996-01-01

    Flexible pipes are often a technically attractive alternative to the traditional steel pipe. Often commercial utilisation of oil/gas fields depends on the use of flexible pipes. An example is when floating production vessels are used, where the flexible pipe follows the wave induced motions...

  5. Designing structural supply chain flexibility

    NARCIS (Netherlands)

    Mulinski, Ksawery Jan

    2012-01-01

    In a continuously changing business environment the role of supply chain flexibility is constantly increasing. A flexible supply chain can ensure survival in quickly changing market conditions as well as enable sustainable growth. This thesis explores the topic of supply chain flexibility with focus

  6. Flexible Composite-Material Pressure Vessel

    Science.gov (United States)

    Brown, Glen; Haggard, Roy; Harris, Paul A.

    2003-01-01

    A proposed lightweight pressure vessel would be made of a composite of high-tenacity continuous fibers and a flexible matrix material. The flexibility of this pressure vessel would render it (1) compactly stowable for transport and (2) more able to withstand impacts, relative to lightweight pressure vessels made of rigid composite materials. The vessel would be designed as a structural shell wherein the fibers would be predominantly bias-oriented, the orientations being optimized to make the fibers bear the tensile loads in the structure. Such efficient use of tension-bearing fibers would minimize or eliminate the need for stitching and fill (weft) fibers for strength. The vessel could be fabricated by techniques adapted from filament winding of prior composite-material vessels, perhaps in conjunction with the use of dry film adhesives. In addition to the high-bias main-body substructure described above, the vessel would include a low-bias end substructure to complete coverage and react peak loads. Axial elements would be overlaid to contain damage and to control fiber orientation around side openings. Fiber ring structures would be used as interfaces for connection to ancillary hardware.

  7. Flexibility in insulin prescription

    Directory of Open Access Journals (Sweden)

    Sanjay Kalra

    2016-01-01

    Full Text Available This communication explores the concept of flexibility, a propos insulin preparations and insulin regimes used in the management of type 2 diabetes. The flexibility of an insulin regime or preparation is defined as their ability to be injected at variable times, with variable injection-meal time gaps, in a dose frequency and quantum determined by shared decision making, with a minimal requirement of glucose monitoring and health professional consultation, with no compromise on safety, efficiency and tolerability. The relative flexibility of various basal, prandial and dual action insulins, as well as intensive regimes, is compared. The biopsychosocial model of health is used to assess the utility of different insulins while encouraging a philosophy of flexible insulin usage.

  8. Expert panel on additional cross subsidisation. Considering arguments and providing expert opinion

    International Nuclear Information System (INIS)

    Faber, J.; Nelissen, D.; Lowe, S.; Mason, A.

    2007-10-01

    In the period end 2005 till September 2006 MVA London in cooperation with SEO Amsterdam was commissioned by the Dutch Ministry of Transport to perform an analysis of the economic and competition effects of the different proposals from the European Commission to include aviation in the European Emission Trading System (ETS). Roughly at the same time CE Delft was commissioned to study the overall impacts of this inclusion for the European Commission. Both studies considered the possibility that inclusion of aviation in the ETS could lead to the distortion of competition between airlines through cross-subsidisation. The studies concluded differently on additional possibilities for cross-subsidisation. As a result, both parties have different views on the possible distortion of the competitive market on routes where EU-based carriers compete directly with carriers based outside the EU. CE Delft concluded that 'none of the policy options considered in this study will significantly damage the competitive position of EU airlines relative to non-EU airlines'. In contrast, MVA and SEO (2006) concluded that 'effective cross-subsidisation by non-EU carriers in the Departing EU scope of the ETS appears to be more probable than cross-subsidisation by EU network carriers in the Intra-EU scope of the ETS'. In July 2007, the Dutch Ministry of Transport, DGTL commissioned CE Delft, MVA and SEO to study the causes for their different opinions and to see whether a further investigation could shed more light on the likelihood of additional cross-subsidisation. Formally, the aim of the work currently carried out is: (1) To determine whether it is possible to assess the impacts on the competitive market between EU based carriers and non-EU based carriers based on sound economic reasoning and analysis of empirical data; and, if so, (2) to determine whether the inclusion of aviation in ETS as proposed by the European Commission will offer non-EU airlines the opportunity to increase their

  9. Influence of inflow angle on flexible flap aerodynamic performance

    International Nuclear Information System (INIS)

    Zhao, H Y; Ye, Z; Li, Z M; Li, C

    2013-01-01

    Large scale wind turbines have larger blade lengths and weights, which creates new challenges for blade design. This paper selects NREL S809 airfoil, and uses the parameterized technology to realize the flexible trailing edge deformation, researches the dynamic aerodynamic characteristics in the process of continuous flexible deformation, analyses the influence of inflow angle on flexible flap aerodynamic performance, in order to further realize the flexible wind turbine blade design and provides some references for the active control scheme. The results show that compared with the original airfoil, proper trailing edge deformation can improve the lift coefficient, reduce the drag coefficient, and thereby more efficiently realize flow field active control. With inflow angle increases, dynamic lift-drag coefficient hysteresis loop shape deviation occurs, even turns into different shapes. Appropriate swing angle can improve the flap lift coefficient, but may cause early separation of flow. To improve the overall performance of wind turbine blades, different angular control should be used at different cross sections, in order to achieve the best performance

  10. Education for Flexible Personality

    Directory of Open Access Journals (Sweden)

    Bogomir Novak

    1998-12-01

    Full Text Available Flexible personality transforms both cultural environment and itself. Post-modern personality is both contemplative and active. On one hand, it is subject to inner imagination of a creative act, and on the other hand, to creation of a tangible product What is more, flexible personality is also autonomous, mature, healthy and well balanced, as well as stable and responsive to the demand for change. Due to ever quicker changes, flexible personality is a must. And it is a task. The impact of professional work of adults on the education of children, however, is being conditioned by the exrigid family and rigid enterprises or institutions in which adults are employed. Nevertheless, flexible educational style is not repressive, as it used to be, nor permissive and totally concentrated on the child. It is a choice between the two qualities. The educators' style is dependent on their attitude towards life (play and self-education and not only towards work. Nowadays, flexibility is a way towards quality management of social and personal changes.

  11. Efficient Flexible Organic/Inorganic Hybrid Perovskite Light-Emitting Diodes Based on Graphene Anode.

    Science.gov (United States)

    Seo, Hong-Kyu; Kim, Hobeom; Lee, Jaeho; Park, Min-Ho; Jeong, Su-Hun; Kim, Young-Hoon; Kwon, Sung-Joo; Han, Tae-Hee; Yoo, Seunghyup; Lee, Tae-Woo

    2017-03-01

    Highly efficient organic/inorganic hybrid perovskite light-emitting diodes (PeLEDs) based on graphene anode are developed for the first time. Chemically inert graphene avoids quenching of excitons by diffused metal atom species from indium tin oxide. The flexible PeLEDs with graphene anode on plastic substrate show good bending stability; they provide an alternative and reliable flexible electrode for highly efficient flexible PeLEDs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Flexible working times : effects on employees' exhaustion, work-nonwork conflict and job performance

    NARCIS (Netherlands)

    Kattenbach, R.; Demerouti, E.; Nachreiner, F.

    2010-01-01

    Purpose - The aim of this study is to provide a useful conceptualization of flexible working times and to examine the relationships between flexible working times and employees' well-being and peer ratings of performance. It is supposed that an employee's "time-autonomy" would be positively related

  13. Flexibility of Bricard's linkages and other structures via resultants and computer algebra.

    Science.gov (United States)

    Lewis, Robert H; Coutsias, Evangelos A

    2016-07-01

    Flexibility of structures is extremely important for chemistry and robotics. Following our earlier work, we study flexibility using polynomial equations, resultants, and a symbolic algorithm of our creation that analyzes the resultant. We show that the software solves a classic arrangement of quadrilaterals in the plane due to Bricard. We fill in several gaps in Bricard's work and discover new flexible arrangements that he was apparently unaware of. This provides strong evidence for the maturity of the software, and is a wonderful example of mathematical discovery via computer assisted experiment.

  14. Distributed flow sensing for closed-loop speed control of a flexible fish robot.

    Science.gov (United States)

    Zhang, Feitian; Lagor, Francis D; Yeo, Derrick; Washington, Patrick; Paley, Derek A

    2015-10-23

    Flexibility plays an important role in fish behavior by enabling high maneuverability for predator avoidance and swimming in turbulent flow. This paper presents a novel flexible fish robot equipped with distributed pressure sensors for flow sensing. The body of the robot is molded from soft, hyperelastic material, which provides flexibility. Its Joukowski-foil shape is conducive to modeling the fluid analytically. A quasi-steady potential-flow model is adopted for real-time flow estimation, whereas a discrete-time vortex-shedding flow model is used for higher-fidelity simulation. The dynamics for the flexible fish robot yield a reduced model for one-dimensional swimming. A recursive Bayesian filter assimilates pressure measurements to estimate flow speed, angle of attack, and foil camber. The closed-loop speed-control strategy combines an inverse-mapping feedforward controller based on an average model derived for periodic actuation of angle-of-attack and a proportional-integral feedback controller utilizing the estimated flow information. Simulation and experimental results are presented to show the effectiveness of the estimation and control strategy. The paper provides a systematic approach to distributed flow sensing for closed-loop speed control of a flexible fish robot by regulating the flapping amplitude.

  15. Health care spending accounts: a flexible solution for Canadian employers.

    Science.gov (United States)

    Smithies, R; Steeves, L

    1996-01-01

    Flexible benefits plans have grown more slowly in Canada than in the United States, largely because of certain legal and regulatory considerations. Health care spending accounts (HCSAs) provide a cost-effective way for Canadian employers to address the health care benefit needs of a diverse workforce. A flexible health care spending account is a versatile and cost-effective instrument that can be used by Canadian employers that wish to provide a full range of health care benefits to employees. The health care alternatives available through an HCSA can provide employees with an opportunity to customize and optimize their benefits program. Regulatory requirements that an HCSA must meet in order to qualify for available tax advantages are discussed, as are the range of health care services that may be covered.

  16. CameraCast: flexible access to remote video sensors

    Science.gov (United States)

    Kong, Jiantao; Ganev, Ivan; Schwan, Karsten; Widener, Patrick

    2007-01-01

    New applications like remote surveillance and online environmental or traffic monitoring are making it increasingly important to provide flexible and protected access to remote video sensor devices. Current systems use application-level codes like web-based solutions to provide such access. This requires adherence to user-level APIs provided by such services, access to remote video information through given application-specific service and server topologies, and that the data being captured and distributed is manipulated by third party service codes. CameraCast is a simple, easily used system-level solution to remote video access. It provides a logical device API so that an application can identically operate on local vs. remote video sensor devices, using its own service and server topologies. In addition, the application can take advantage of API enhancements to protect remote video information, using a capability-based model for differential data protection that offers fine grain control over the information made available to specific codes or machines, thereby limiting their ability to violate privacy or security constraints. Experimental evaluations of CameraCast show that the performance of accessing remote video information approximates that of accesses to local devices, given sufficient networking resources. High performance is also attained when protection restrictions are enforced, due to an efficient kernel-level realization of differential data protection.

  17. Enabling Flexible and Continuous Capability Invocation in Mobile Prosumer Environments

    Science.gov (United States)

    Alcarria, Ramon; Robles, Tomas; Morales, Augusto; López-de-Ipiña, Diego; Aguilera, Unai

    2012-01-01

    Mobile prosumer environments require the communication with heterogeneous devices during the execution of mobile services. These environments integrate sensors, actuators and smart devices, whose availability continuously changes. The aim of this paper is to design a reference architecture for implementing a model for continuous service execution and access to capabilities, i.e., the functionalities provided by these devices. The defined architecture follows a set of software engineering patterns and includes some communication paradigms to cope with the heterogeneity of sensors, actuators, controllers and other devices in the environment. In addition, we stress the importance of the flexibility in capability invocation by allowing the communication middleware to select the access technology and change the communication paradigm when dealing with smart devices, and by describing and evaluating two algorithms for resource access management. PMID:23012526

  18. Nanofabrication and Nanopatterning of Carbon Nanomaterials for Flexible Electronics

    Science.gov (United States)

    Ding, Junjun

    Stretchable electrodes have increasingly drawn attention as a vital component for flexible electronic devices. Carbon nanomaterials such as graphene and carbon nanotubes (CNTs) exhibit properties such as high mechanical flexibility and strength, optical transparency, and electrical conductivity which are naturally required for stretchable electrodes. Graphene growth, nanopatterning, and transfer processes are important steps to use graphene as flexible electrodes. However, advances in the large-area nanofabrication and nanopatterning of carbon nanomaterials such as graphene are necessary to realize the full potential of this technology. In particular, laser interference lithography (LIL), a fast and low cost large-area nanoscale patterning technique, shows tremendous promise for the patterning of graphene and other nanostructures for numerous applications. First, it was demonstrated that large-area nanopatterning and the transfer of chemical vapor deposition (CVD) grown graphene via LIL and plasma etching provide a reliable method to provide large area nanoengineered graphene on various target substrates. Then, to improve the electrode performance under large strain (naturally CVD grown graphene sheet will crack at tensile strains larger than 1%), a corrugated graphene structure on PDMS was designed, fabricated, and tested, with experimental results indicating that this approach successfully allows the graphene sheets to withstand cyclic tensile strains up to 15%. Lastly, to further enhance the performance of carbon-based stretchable electrodes, an approach was developed which coupled graphene and vertically aligned CNT (VACNT) on a flexible PDMS substrate. Characterization of the graphene-VACNT hybrid shows high electrical conductivity and durability through 50 cycles of loading up to 100% tensile strain. While flexible electronics promise tremendous advances in important technological areas such as healthcare, sensing, energy, and wearable electronics, continued

  19. Solid-state Memory on Flexible Silicon for Future Electronic Applications

    KAUST Repository

    Ghoneim, Mohamed

    2016-11-01

    Advancements in electronics research triggered a vision of a more connected world, touching new unprecedented fields to improve the quality of our lives. This vision has been fueled by electronic giants showcasing flexible displays for the first time in consumer electronics symposiums. Since then, the scientific and research communities partook on exploring possibilities for making flexible electronics. Decades of research have revealed many routes to flexible electronics, lots of opportunities and challenges. In this work, we focus on our contributions towards realizing a complimentary approach to flexible inorganic high performance electronic memories on silicon. This approach provides a straight forward method for capitalizing on the existing well-established semiconductor infrastructure, standard processes and procedures, and collective knowledge. Ultimately, we focus on understanding the reliability and functionality anomalies in flexible electronics and flexible solid state memory built using the flexible silicon platform. The results of the presented studies show that: (i) flexible devices fabricated using etch-protect-release approach (with trenches included in the active area) exhibit ~19% lower safe operating voltage compared to their bulk counterparts, (ii) they can withstand prolonged bending duration (static stress) but are prone to failure under dynamic stress as in repeated bending and re-flattening, (iii) flexible 3D FinFETs exhibit ~10% variation in key properties when exposed to out-of-plane bending stress and out-of-plane stress does not resemble the well-studied in-plane stress used in strain engineering, (iv) resistive memories can be achieved on flexible silicon and their basic resistive property is preserved but other memory functionalities (retention, endurance, speed, memory window) requires further investigations, (v) flexible silicon based PZT ferroelectric capacitors exhibit record polarization, capacitance, and endurance (1 billion

  20. The impact of cooperation and competition on the performance of flexible decentralized manufacturing networks

    Directory of Open Access Journals (Sweden)

    Hu-Song Ding

    2013-02-01

    Full Text Available Due to the mismatch between the order of costumers and the production capacity resulting from demand uncertainty, product shortages or wastes of production capacity occur. In response, the subcontracting of production among the plants occurs to diminish the influence of this mismatch on expected profits. Using a small-and medium-sized firm industrial district, the decentralized decision-making process for flexibility investment is studied using the cooperative subcontracting mechanism based on a contract net protocol and is compared with centralized decision making on the flexibility investment problem. Through simulation, it is concluded that although flexibility can increase the opportunities to obtain additional orders, the distributed decision-making mechanism increases the competition among plants during the bidding process. Plants should tradeoff these two aspects to make decisions about investments in flexibility.

  1. A multi-modality tracking, navigation and calibration for a flexible robotic drill system for total hip arthroplasty.

    Science.gov (United States)

    Ahmad Fuad, Ahmad Nazmi Bin; Deep, Kamal; Yao, Wei

    2018-02-01

    This paper presents a novel multi-modality tracking and navigation system that provides a unique capability to guild a flexible drill tip inside the bone with accurate curved tunnelling. As the flexible drill tip cannot be tracked optically inside the bone, this research focuses on developing a hybrid tracking and navigation system for tracking a flexible drill tip by using both optical and kinematic tracking. The tracking information is used to guide the THA (total hip arthroplasty) procedure, providing a real-time virtual model of the flexible drill. The flexible and steerable drill tip system is then tested on total hip arthroplasty followed by evaluation of the positioning and orientation of femoral stem placement by femoral milling. Based on this study, we conclude that the tracking and navigation system is able to guide the flexible drill to mill inside femoral canal. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Flexible ACT & Resource-group ACT: Different Working Procedures Which Can Supplement and Strengthen Each Other. A Response#

    Science.gov (United States)

    van Veldhuizen, Remmers; Delespaul, Philippe; Kroon, Hans; Mulder, Niels

    2015-01-01

    This article is a response to Nordén and Norlander’s ‘Absence of Positive Results for Flexible Assertive Community Treatment. What is the next approach?’[1], in which they assert that ‘at present [there is] no evidence for Flexible ACT and… that RACT might be able to provide new impulses and new vitality to the treatment mode of ACT’. We question their analyses and conclusions. We clarify Flexible ACT, referring to the Flexible Assertive Community Treatment Manual (van Veldhuizen, 2013) [2] to rectify misconceptions. We discuss Nordén and Norlander’s interpretation of research on Flexible ACT. The fact that too little research has been done and that there are insufficient positive results cannot serve as a reason to propagate RACT. However, the Resource Group method does provide inspiration for working with clients to involve their networks more effectively in Flexible ACT. PMID:25767558

  3. Just Another Gibbs Additive Modeler: Interfacing JAGS and mgcv

    Directory of Open Access Journals (Sweden)

    Simon N. Wood

    2016-12-01

    Full Text Available The BUGS language offers a very flexible way of specifying complex statistical models for the purposes of Gibbs sampling, while its JAGS variant offers very convenient R integration via the rjags package. However, including smoothers in JAGS models can involve some quite tedious coding, especially for multivariate or adaptive smoothers. Further, if an additive smooth structure is required then some care is needed, in order to centre smooths appropriately, and to find appropriate starting values. R package mgcv implements a wide range of smoothers, all in a manner appropriate for inclusion in JAGS code, and automates centring and other smooth setup tasks. The purpose of this note is to describe an interface between mgcv and JAGS, based around an R function, jagam, which takes a generalized additive model (GAM as specified in mgcv and automatically generates the JAGS model code and data required for inference about the model via Gibbs sampling. Although the auto-generated JAGS code can be run as is, the expectation is that the user would wish to modify it in order to add complex stochastic model components readily specified in JAGS. A simple interface is also provided for visualisation and further inference about the estimated smooth components using standard mgcv functionality. The methods described here will be un-necessarily inefficient if all that is required is fully Bayesian inference about a standard GAM, rather than the full flexibility of JAGS. In that case the BayesX package would be more efficient.

  4. Strong and Robust Polyaniline-Based Supramolecular Hydrogels for Flexible Supercapacitors.

    Science.gov (United States)

    Li, Wanwan; Gao, Fengxian; Wang, Xiaoqian; Zhang, Ning; Ma, Mingming

    2016-08-01

    We report a supramolecular strategy to prepare conductive hydrogels with outstanding mechanical and electrochemical properties, which are utilized for flexible solid-state supercapacitors (SCs) with high performance. The supramolecular assembly of polyaniline and polyvinyl alcohol through dynamic boronate bond yields the polyaniline-polyvinyl alcohol hydrogel (PPH), which shows remarkable tensile strength (5.3 MPa) and electrochemical capacitance (928 F g(-1) ). The flexible solid-state supercapacitor based on PPH provides a large capacitance (306 mF cm(-2) and 153 F g(-1) ) and a high energy density of 13.6 Wh kg(-1) , superior to other flexible supercapacitors. The robustness of the PPH-based supercapacitor is demonstrated by the 100 % capacitance retention after 1000 mechanical folding cycles, and the 90 % capacitance retention after 1000 galvanostatic charge-discharge cycles. The high activity and robustness enable the PPH-based supercapacitor as a promising power device for flexible electronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Piezoresistive effect observed in flexible amorphous carbon films

    Science.gov (United States)

    Wang, B.; Jiang, Y. C.; Zhao, R.; Liu, G. Z.; He, A. P.; Gao, J.

    2018-05-01

    Amorphous carbon (a-C) films, deposited on Si substrates at 500 °C, were transferred onto flexible polyethylene (PE) substrates by a lift-off method, which overcomes the limit of deposition temperature. After transferring, a-C films exhibited a large piezoresistive effect. Such flexible samples could detect the change of bending angle by attaching them onto Cu foils. The ratio of the bending and non-bending resistances reaches as large as ~27.8, which indicates a potential application as a pressure sensor. Also, the a-C/PE sample revealed an enhanced sensitivity to gas pressure compared with the a-C/Si one. By controlling the bending angle, the sensitivity range can be tuned to shift to a low- or high-pressure region. The fatigue test shows a less than 1% change in resistance after 10 000 bending cycles. Our work provides a route to prepare the flexible and piezoresistive carbon-based devices with high sensitivity, controllable pressure-sensing and high stability.

  6. Flexible Thermal Protection System Development for Hypersonic Inflatable Aerodynamic Decelerators

    Science.gov (United States)

    DelCorso, Joseph A.; Bruce, Walter E., III; Hughes, Stephen J.; Dec, John A.; Rezin, Marc D.; Meador, Mary Ann B.; Guo, Haiquan; Fletcher, Douglas G.; Calomino, Anthony M.; Cheatwood, McNeil

    2012-01-01

    The Hypersonic Inflatable Aerodynamic Decelerators (HIAD) project has invested in development of multiple thermal protection system (TPS) candidates to be used in inflatable, high downmass, technology flight projects. Flexible TPS is one element of the HIAD project which is tasked with the research and development of the technology ranging from direct ground tests, modelling and simulation, characterization of TPS systems, manufacturing and handling, and standards and policy definition. The intent of flexible TPS is to enable large deployable aeroshell technologies, which increase the drag performance while significantly reducing the ballistic coefficient of high-mass entry vehicles. A HIAD requires a flexible TPS capable of surviving aerothermal loads, and durable enough to survive the rigors of construction, handling, high density packing, long duration exposure to extrinsic, in-situ environments, and deployment. This paper provides a comprehensive overview of key work being performed within the Flexible TPS element of the HIAD project. Included in this paper is an overview of, and results from, each Flexible TPS research and development activity, which includes ground testing, physics-based thermal modelling, age testing, margins policy, catalysis, materials characterization, and recent developments with new TPS materials.

  7. Flexible graphene–PZT ferroelectric nonvolatile memory

    International Nuclear Information System (INIS)

    Lee, Wonho; Ahn, Jong-Hyun; Kahya, Orhan; Toh, Chee Tat; Özyilmaz, Barbaros

    2013-01-01

    We report the fabrication of a flexible graphene-based nonvolatile memory device using Pb(Zr 0.35 ,Ti 0.65 )O 3 (PZT) as the ferroelectric material. The graphene and PZT ferroelectric layers were deposited using chemical vapor deposition and sol–gel methods, respectively. Such PZT films show a high remnant polarization (P r ) of 30 μC cm −2 and a coercive voltage (V c ) of 3.5 V under a voltage loop over ±11 V. The graphene–PZT ferroelectric nonvolatile memory on a plastic substrate displayed an on/off current ratio of 6.7, a memory window of 6 V and reliable operation. In addition, the device showed one order of magnitude lower operation voltage range than organic-based ferroelectric nonvolatile memory after removing the anti-ferroelectric behavior incorporating an electrolyte solution. The devices showed robust operation in bent states of bending radii up to 9 mm and in cycling tests of 200 times. The devices exhibited remarkable mechanical properties and were readily integrated with plastic substrates for the production of flexible circuits. (paper)

  8. Flexible graphene-PZT ferroelectric nonvolatile memory.

    Science.gov (United States)

    Lee, Wonho; Kahya, Orhan; Toh, Chee Tat; Ozyilmaz, Barbaros; Ahn, Jong-Hyun

    2013-11-29

    We report the fabrication of a flexible graphene-based nonvolatile memory device using Pb(Zr0.35,Ti0.65)O3 (PZT) as the ferroelectric material. The graphene and PZT ferroelectric layers were deposited using chemical vapor deposition and sol–gel methods, respectively. Such PZT films show a high remnant polarization (Pr) of 30 μC cm−2 and a coercive voltage (Vc) of 3.5 V under a voltage loop over ±11 V. The graphene–PZT ferroelectric nonvolatile memory on a plastic substrate displayed an on/off current ratio of 6.7, a memory window of 6 V and reliable operation. In addition, the device showed one order of magnitude lower operation voltage range than organic-based ferroelectric nonvolatile memory after removing the anti-ferroelectric behavior incorporating an electrolyte solution. The devices showed robust operation in bent states of bending radii up to 9 mm and in cycling tests of 200 times. The devices exhibited remarkable mechanical properties and were readily integrated with plastic substrates for the production of flexible circuits.

  9. Shift Work and Cognitive Flexibility: Decomposing Task Performance.

    Science.gov (United States)

    Cheng, Philip; Tallent, Gabriel; Bender, Thomas John; Tran, Kieulinh Michelle; Drake, Christopher L

    2017-04-01

    Deficits in cognitive functioning associated with shift work are particularly relevant to occupational performance; however, few studies have examined how cognitive functioning is associated with specific components of shift work. This observational study examined how circadian phase, nocturnal sleepiness, and daytime insomnia in a sample of shift workers ( N = 30) were associated with cognitive flexibility during the night shift. Cognitive flexibility was measured using a computerized task-switching paradigm, which produces 2 indexes of flexibility: switch cost and set inhibition. Switch cost represents the additional cognitive effort required in switching to a different task and can impact performance when multitasking is involved. Set inhibition is the efficiency in returning to previously completed tasks and represents the degree of cognitive perseveration, which can lead to reduced accuracy. Circadian phase was measured via melatonin assays, nocturnal sleepiness was assessed using the Multiple Sleep Latency Test, and daytime insomnia was assessed using the Insomnia Severity Index. Results indicated that those with an earlier circadian phase, insomnia, and sleepiness exhibited reduced cognitive flexibility; however, specific components of cognitive flexibility were differentially associated with circadian phase, insomnia, and sleepiness. Individuals with an earlier circadian phase (thus more misaligned to the night shift) exhibited larger switch costs, which was also associated with reduced task efficiency. Shift workers with more daytime insomnia demonstrated difficulties with cognitive inhibition, whereas nocturnal sleepiness was associated with difficulties in reactivating previous tasks. Deficits in set inhibition were also related to reduced accuracy and increased perseverative errors. Together, this study indicates that task performance deficits in shift work are complex and are variably impacted by different mechanisms. Future research may examine

  10. Designing flexible engineering systems utilizing embedded architecture options

    Science.gov (United States)

    Pierce, Jeff G.

    This dissertation develops and applies an integrated framework for embedding flexibility in an engineered system architecture. Systems are constantly faced with unpredictability in the operational environment, threats from competing systems, obsolescence of technology, and general uncertainty in future system demands. Current systems engineering and risk management practices have focused almost exclusively on mitigating or preventing the negative consequences of uncertainty. This research recognizes that high uncertainty also presents an opportunity to design systems that can flexibly respond to changing requirements and capture additional value throughout the design life. There does not exist however a formalized approach to designing appropriately flexible systems. This research develops a three stage integrated flexibility framework based on the concept of architecture options embedded in the system design. Stage One defines an eight step systems engineering process to identify candidate architecture options. This process encapsulates the operational uncertainty though scenario development, traces new functional requirements to the affected design variables, and clusters the variables most sensitive to change. The resulting clusters can generate insight into the most promising regions in the architecture to embed flexibility in the form of architecture options. Stage Two develops a quantitative option valuation technique, grounded in real options theory, which is able to value embedded architecture options that exhibit variable expiration behavior. Stage Three proposes a portfolio optimization algorithm, for both discrete and continuous options, to select the optimal subset of architecture options, subject to budget and risk constraints. Finally, the feasibility, extensibility and limitations of the framework are assessed by its application to a reconnaissance satellite system development problem. Detailed technical data, performance models, and cost estimates

  11. Graphene-cellulose paper flexible supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Zhe; Su, Yang; Li, Feng; Du, Jinhong; Cheng, Hui-Ming [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Wang, Da-Wei [ARC Centre of Excellence for Functional Nanomaterials, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Qld 4072 (Australia)

    2011-10-15

    A simple and scalable method to fabricate graphene-cellulose paper (GCP) membranes is reported; these membranes exhibit great advantages as freestanding and binder-free electrodes for flexible supercapacitors. The GCP electrode consists of a unique three-dimensional interwoven structure of graphene nanosheets and cellulose fibers and has excellent mechanical flexibility, good specific capacitance and power performance, and excellent cyclic stability. The electrical conductivity of the GCP membrane shows high stability with a decrease of only 6% after being bent 1000 times. This flexible GCP electrode has a high capacitance per geometric area of 81 mF cm{sup -2}, which is equivalent to a gravimetric capacitance of 120 F g{sup -1} of graphene, and retains >99% capacitance over 5000 cycles. Several types of flexible GCP-based polymer supercapacitors with various architectures are assembled to meet the power-energy requirements of typical flexible or printable electronics. Under highly flexible conditions, the supercapacitors show a high capacitance per geometric area of 46 mF cm{sup -2} for the complete devices. All the results demonstrate that polymer supercapacitors made using GCP membranes are versatile and may be used for flexible and portable micropower devices. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Transparent Ethenylene-Bridged Polymethylsiloxane Aerogels: Mechanical Flexibility and Strength and Availability for Addition Reaction.

    Science.gov (United States)

    Shimizu, Taiyo; Kanamori, Kazuyoshi; Maeno, Ayaka; Kaji, Hironori; Doherty, Cara M; Nakanishi, Kazuki

    2017-05-09

    Transparent, low-density ethenylene-bridged polymethylsiloxane [Ethe-BPMS, O 2/2 (CH 3 )Si-CH═CH-Si(CH 3 )O 2/2 ] aerogels from 1,2-bis(methyldiethoxysilyl)ethene have successfully been synthesized via a sol-gel process. A two-step sol-gel process composed of hydrolysis under acidic conditions and polycondensation under basic conditions in a liquid surfactant produces a homogeneous pore structure based on cross-linked nanosized colloidal particles. Visible-light transmittance of the aerogels varies with the concentration of the base catalyst and reaches as high as 87% (at a wavelength of 550 nm for a 10 mm thick sample). Gelation and aging temperature strongly affect the deformation behavior of the resultant aerogels against uniaxial compression, and the obtained aerogels prepared at 80 °C show high elasticity after being unloaded. This highly resilient behavior is primarily derived from the rigidity of ethenylene groups, which is confirmed by a comparison with other aerogels with similar molecular structures, ethylene-bridged polymethylsiloxane and polymethylsilsesquioxane. Applicability of the addition reaction using a Diels-Alder reaction of benzocyclobutene has also been investigated, revealing that a successful addition takes place on the ethenylene linkings, which is verified using Raman and solid-state NMR spectroscopies. Insights into the effect of molecular structure on mechanical properties and the availability of surface functionalization provided in this study are important for realizing transparent aerogels with the desired functionality.

  13. Flexible Electronics: Integration Processes for Organic and Inorganic Semiconductor-Based Thin-Film Transistors

    Directory of Open Access Journals (Sweden)

    Fábio F. Vidor

    2015-07-01

    Full Text Available Flexible and transparent electronics have been studied intensively during the last few decades. The technique establishes the possibility of fabricating innovative products, from flexible displays to radio-frequency identification tags. Typically, large-area polymeric substrates such as polypropylene (PP or polyethylene terephthalate (PET are used, which produces new requirements for the integration processes. A key element for flexible and transparent electronics is the thin-film transistor (TFT, as it is responsible for the driving current in memory cells, digital circuits or organic light-emitting devices (OLEDs. In this paper, we discuss some fundamental concepts of TFT technology. Additionally, we present a comparison between the use of the semiconducting organic small-molecule pentacene and inorganic nanoparticle semiconductors in order to integrate TFTs suitable for flexible electronics. Moreover, a technique for integration with a submicron resolution suitable for glass and foil substrates is presented.

  14. Synthesis and Electroluminescent Property of New Orange Iridium Compounds for Flexible White Organic Light Emitting Diodes.

    Science.gov (United States)

    Lee, Ho Won; Jeong, Hyunjin; Kim, Young Kwan; Ha, Yunkyoung

    2015-10-01

    Recently, white organic light-emitting diodes (OLEDs) have aroused considerable attention because they have the potential of next-generation flexible displays and white illuminated applications. White OLED applications are particularly heading to the industry but they have still many problems both materials and manufacturing. Therefore, we proposed that the new iridium compounds of orange emitters could be demonstrated and also applied to flexible white OLEDs for verification of potential. First, we demonstrated the chemical properties of new orange iridium compounds. Secondly, conventional two kinds of white phosphorescent OLEDs were fabricated by following devices; indium-tin oxide coated glass substrate/4,4'-bis[N-(napthyl)-N-phenylamino]biphenyl/N,N'-dicarbazolyl-3,5-benzene doped with blue and new iridium compounds for orange emitting 8 wt%/1,3,5-tris[N-phenylbenzimidazole-2-yl]benzene/lithium quinolate/aluminum. In addition, we fabricated white OLEDs using these emitters to verify the potential on flexible substrate. Therefore, this work could be proposed that white light applications can be applied and could be extended to additional research on flexible applications.

  15. Current use and potential of additive manufacturing for optical applications

    Science.gov (United States)

    Brunelle, Matthew; Ferralli, Ian; Whitsitt, Rebecca; Medicus, Kate

    2017-10-01

    Additive manufacturing, or 3D printing, has become widely used in recent years for the creation of both prototype and end-use parts. Because the parts are created in a layer-by-layer manner, the flexibility of additive manufacturing is unparalleled and has opened the design space to enable features like undercuts and internal channels which cannot exist on traditional, subtractively manufactured parts. This flexibility can also be leveraged for optical applications. This paper outlines some of the current uses of 3D printing in the optical manufacturing process at Optimax. Several materials and additive technologies are utilized, including polymer printing through fused deposition modeling, which creates parts by depositing a softened thermoplastic filament in a layerwise fashion. Stereolithography, which uses light to cure layers of a photopolymer resin, will also be discussed. These technologies are used to manufacture functional prototypes, fixtures, sealed housings, and other components. Additionally, metal printing through selective laser melting, which uses a laser to melt metal powder layers into a dense solid, will be discussed due to the potential to manufacture thermally stable opticalmechanical assembly frameworks and functional optics. Examples of several additively manufactured optical components will be shown.

  16. Multiscale weighted colored graphs for protein flexibility and rigidity analysis

    Science.gov (United States)

    Bramer, David; Wei, Guo-Wei

    2018-02-01

    Protein structural fluctuation, measured by Debye-Waller factors or B-factors, is known to correlate to protein flexibility and function. A variety of methods has been developed for protein Debye-Waller factor prediction and related applications to domain separation, docking pose ranking, entropy calculation, hinge detection, stability analysis, etc. Nevertheless, none of the current methodologies are able to deliver an accuracy of 0.7 in terms of the Pearson correlation coefficients averaged over a large set of proteins. In this work, we introduce a paradigm-shifting geometric graph model, multiscale weighted colored graph (MWCG), to provide a new generation of computational algorithms to significantly change the current status of protein structural fluctuation analysis. Our MWCG model divides a protein graph into multiple subgraphs based on interaction types between graph nodes and represents the protein rigidity by generalized centralities of subgraphs. MWCGs not only predict the B-factors of protein residues but also accurately analyze the flexibility of all atoms in a protein. The MWCG model is validated over a number of protein test sets and compared with many standard methods. An extensive numerical study indicates that the proposed MWCG offers an accuracy of over 0.8 and thus provides perhaps the first reliable method for estimating protein flexibility and B-factors. It also simultaneously predicts all-atom flexibility in a molecule.

  17. Experimental Study on OSNR Requirements for Spectrum-Flexible Optical Networks

    DEFF Research Database (Denmark)

    Borkowski, Robert; Karinou, Fotini; Angelou, Marianna

    2012-01-01

    on adaptive allocation of superchannels in spectrum-flexible heterogeneous optical network. In total, three superchannels were transmitted. Two 5-subcarrier 14-GHz-spaced, 14 Gbaud, polarization-division-multiplexed (PDM) quadrature-phase-shift-keyed (QPSK) superchannels were separated by a spectral gap...... to maintain a 1×10−3 bit error rate of the central BOI subcarrier. The results provide a rule of thumb that can be exploited in resource allocation mechanisms of future spectrum-flexible optical networks.......The flexibility and elasticity of the spectrum is an important topic today. As the capacity of deployed fiber-optic systems is becoming scarce, it is vital to shift towards solutions ensuring higher spectral efficiency. Working in this direction, we report an extensive experimental study...

  18. Ultra-thin ZnSe: Anisotropic and flexible crystal structure

    Energy Technology Data Exchange (ETDEWEB)

    Bacaksiz, C., E-mail: cihanbacaksiz@iyte.edu.tr [Department of Physics, Izmir Institute of Technology, 35430 Izmir (Turkey); Senger, R.T. [Department of Physics, Izmir Institute of Technology, 35430 Izmir (Turkey); Sahin, H. [Department of Photonics, Izmir Institute of Technology, 35430 Izmir (Turkey)

    2017-07-01

    Highlights: • Ultra-thin ZnSe is dynamically stable. • Ultra-thin ZnSe is electronically direct-gap semiconductor. • Ultra-thin ZnSe is ultra-flexible. • Ultra-thin ZnSe is mechanically in-plane anisotropic. - Abstract: By performing density functional theory-based calculations, we investigate the structural, electronic, and mechanical properties of the thinnest ever ZnSe crystal . The vibrational spectrum analysis reveals that the monolayer ZnSe is dynamically stable and has flexible nature with its soft phonon modes. In addition, a direct electronic band gap is found at the gamma point for the monolayer structure of ZnSe. We also elucidate that the monolayer ZnSe has angle dependent in-plane elastic parameters. In particular, the in-plane stiffness values are found to be 2.07 and 6.89 N/m for the arm-chair and zig-zag directions, respectively. The angle dependency is also valid for the Poisson ratio of the monolayer ZnSe. More significantly, the in-plane stiffness of the monolayer ZnSe is the one-tenth of Young modulus of bulk zb-ZnSe which indicates that the monolayer ZnSe is a quite flexible single layer crystal. With its flexible nature and in-plane anisotropic mechanical properties, the monolayer ZnSe is a good candidate for nanoscale mechanical applications.

  19. Ultra-thin ZnSe: Anisotropic and flexible crystal structure

    International Nuclear Information System (INIS)

    Bacaksiz, C.; Senger, R.T.; Sahin, H.

    2017-01-01

    Highlights: • Ultra-thin ZnSe is dynamically stable. • Ultra-thin ZnSe is electronically direct-gap semiconductor. • Ultra-thin ZnSe is ultra-flexible. • Ultra-thin ZnSe is mechanically in-plane anisotropic. - Abstract: By performing density functional theory-based calculations, we investigate the structural, electronic, and mechanical properties of the thinnest ever ZnSe crystal . The vibrational spectrum analysis reveals that the monolayer ZnSe is dynamically stable and has flexible nature with its soft phonon modes. In addition, a direct electronic band gap is found at the gamma point for the monolayer structure of ZnSe. We also elucidate that the monolayer ZnSe has angle dependent in-plane elastic parameters. In particular, the in-plane stiffness values are found to be 2.07 and 6.89 N/m for the arm-chair and zig-zag directions, respectively. The angle dependency is also valid for the Poisson ratio of the monolayer ZnSe. More significantly, the in-plane stiffness of the monolayer ZnSe is the one-tenth of Young modulus of bulk zb-ZnSe which indicates that the monolayer ZnSe is a quite flexible single layer crystal. With its flexible nature and in-plane anisotropic mechanical properties, the monolayer ZnSe is a good candidate for nanoscale mechanical applications.

  20. An Evaluation of Explicit Receptor Flexibility in Molecular Docking Using Molecular Dynamics and Torsion Angle Molecular Dynamics.

    Science.gov (United States)

    Armen, Roger S; Chen, Jianhan; Brooks, Charles L

    2009-10-13

    Incorporating receptor flexibility into molecular docking should improve results for flexible proteins. However, the incorporation of explicit all-atom flexibility with molecular dynamics for the entire protein chain may also introduce significant error and "noise" that could decrease docking accuracy and deteriorate the ability of a scoring function to rank native-like poses. We address this apparent paradox by comparing the success of several flexible receptor models in cross-docking and multiple receptor ensemble docking for p38α mitogen-activated protein (MAP) kinase. Explicit all-atom receptor flexibility has been incorporated into a CHARMM-based molecular docking method (CDOCKER) using both molecular dynamics (MD) and torsion angle molecular dynamics (TAMD) for the refinement of predicted protein-ligand binding geometries. These flexible receptor models have been evaluated, and the accuracy and efficiency of TAMD sampling is directly compared to MD sampling. Several flexible receptor models are compared, encompassing flexible side chains, flexible loops, multiple flexible backbone segments, and treatment of the entire chain as flexible. We find that although including side chain and some backbone flexibility is required for improved docking accuracy as expected, docking accuracy also diminishes as additional and unnecessary receptor flexibility is included into the conformational search space. Ensemble docking results demonstrate that including protein flexibility leads to to improved agreement with binding data for 227 active compounds. This comparison also demonstrates that a flexible receptor model enriches high affinity compound identification without significantly increasing the number of false positives from low affinity compounds.

  1. Effects of a pilates school program on hamstrings flexibility of adolescents

    Directory of Open Access Journals (Sweden)

    Noelia González-Gálvez

    2015-08-01

    Full Text Available INTRODUCTION: Low levels of hamstring flexibility may trigger certain acute and chronic pathologies and injuries. Poor flexibility is observed among teenagers and several authors have recommended the use of specific programs in this population to improve flexibility levels. The Pilates Method (PM may be an appropriate intervention to achieve this purpose and has rarely been used with this population. Objective: Study was to assess changes in the flexibility of hamstrings after running a didactic PM unit for high-school students.METHODS: This research was developed through a quasi-experimental design. The sample consisted of 66 high-school students divided into experimental group (EG=39 and control group (CG=27. The intervention was carried out 2 times a week for six weeks. Each session lasted 55 minutes divided into three parts: warm-up, main part and cool down. Hamstring flexibility was assessed using the toe-touch test. Paired Student t-test and t-test for independent samples were applied. The size of the effect (d was determined.RESULTS: The EG showed significant provident in hamstring flexibility (+3.54±3.9cm. The effect size was low (d>d>0,2d>0.21.15 which means that a large proportion of participants improved their results.CONCLUSION: This study showed that six-weeks of Pilates training in Physical Education classes has significantly improved the hamstrings flexibility among adolescents.

  2. Metallization and biopatterning on ultra-flexible substrates via dextran sacrificial layers.

    Directory of Open Access Journals (Sweden)

    Peter Tseng

    Full Text Available Micro-patterning tools adopted from the semiconductor industry have mostly been optimized to pattern features onto rigid silicon and glass substrates, however, recently the need to pattern on soft substrates has been identified in simulating cellular environments or developing flexible biosensors. We present a simple method of introducing a variety of patterned materials and structures into ultra-flexible polydimethylsiloxane (PDMS layers (elastic moduli down to 3 kPa utilizing water-soluble dextran sacrificial thin films. Dextran films provided a stable template for photolithography, metal deposition, particle adsorption, and protein stamping. These materials and structures (including dextran itself were then readily transferrable to an elastomer surface following PDMS (10 to 70∶1 base to crosslinker ratios curing over the patterned dextran layer and after sacrificial etch of the dextran in water. We demonstrate that this simple and straightforward approach can controllably manipulate surface wetting and protein adsorption characteristics of PDMS, covalently link protein patterns for stable cell patterning, generate composite structures of epoxy or particles for study of cell mechanical response, and stably integrate certain metals with use of vinyl molecular adhesives. This method is compatible over the complete moduli range of PDMS, and potentially generalizable over a host of additional micro- and nano-structures and materials.

  3. Metallization and Biopatterning on Ultra-Flexible Substrates via Dextran Sacrificial Layers

    Science.gov (United States)

    Tseng, Peter; Pushkarsky, Ivan; Di Carlo, Dino

    2014-01-01

    Micro-patterning tools adopted from the semiconductor industry have mostly been optimized to pattern features onto rigid silicon and glass substrates, however, recently the need to pattern on soft substrates has been identified in simulating cellular environments or developing flexible biosensors. We present a simple method of introducing a variety of patterned materials and structures into ultra-flexible polydimethylsiloxane (PDMS) layers (elastic moduli down to 3 kPa) utilizing water-soluble dextran sacrificial thin films. Dextran films provided a stable template for photolithography, metal deposition, particle adsorption, and protein stamping. These materials and structures (including dextran itself) were then readily transferrable to an elastomer surface following PDMS (10 to 70∶1 base to crosslinker ratios) curing over the patterned dextran layer and after sacrificial etch of the dextran in water. We demonstrate that this simple and straightforward approach can controllably manipulate surface wetting and protein adsorption characteristics of PDMS, covalently link protein patterns for stable cell patterning, generate composite structures of epoxy or particles for study of cell mechanical response, and stably integrate certain metals with use of vinyl molecular adhesives. This method is compatible over the complete moduli range of PDMS, and potentially generalizable over a host of additional micro- and nano-structures and materials. PMID:25153326

  4. Simulations of Micropumps Based on Tilted Flexible Fibers

    Science.gov (United States)

    Hancock, Matthew; Elabbasi, Nagi; Demirel, Melik

    2015-11-01

    Pumping liquids at low Reynolds numbers is challenging because of the principle of reversibility. We report here a class of microfluidic pump designs based on tilted flexible structures that combines the concepts of cilia (flexible elastic elements) and rectifiers (e.g., Tesla valves, check valves). We demonstrate proof-of-concept with 2D and 3D fluid-structure interaction (FSI) simulations in COMSOL Multiphysics®of micropumps consisting of a source for oscillatory fluidic motion, e.g. a piston, and a channel lined with tilted flexible rods or sheets to provide rectification. When flow is against the rod tilt direction, the rods bend backward, narrowing the channel and increasing flow resistance; when flow is in the direction of rod tilt, the rods bend forward, widening the channel and decreasing flow resistance. The 2D and 3D simulations involve moving meshes whose quality is maintained by prescribing the mesh displacement on guide surfaces positioned on either side of each flexible structure. The prescribed displacement depends on structure bending and maintains mesh quality even for large deformations. Simulations demonstrate effective pumping even at Reynolds numbers as low as 0.001. Because rod rigidity may be specified independently of Reynolds number, in principle, rod rigidity may be reduced to enable pumping at arbitrarily low Reynolds numbers.

  5. Aspects affecting flexibility of Czech managers’ leadership style

    Directory of Open Access Journals (Sweden)

    Ladislava Kuchynková

    2013-01-01

    Full Text Available The paper examines the potential aspects that affect the flexibility of Czech managers’ leadership style, because the ability to lead subordinates flexibly seems to be necessary for managerial practice in these days full of rapid change. A tool which makes it possible to determine the degree of flexibility of individual managers within the situational leadership style is represented by original method LBAII® developed by Ken Blanchard Companies, which the authors were provided with solely for this purpose. Due to the fact that research based on this method had not been conducted in the Czech Republic, an opportunity to learn new information from this field about the selected sample of Czech managers occurred. First of all, the article introduces the concept of a situational leadership style as well as an explanation of its use in practice. Subsequently it describes in detail the methodology of the authors’ primary research and presents the outcomes of a questionnaire survey conducted in the form of contingency tables and other tools (correspondence map, box plot, scatter plot, which aptly illustrate the data found. Finally, the results obtained are discussed and aspects related to the achieved scores of flexibility of the monitored managers are established based on verified hypotheses.

  6. Value of Flexibility - Phase 1

    Science.gov (United States)

    2010-09-25

    010-1 9/25/10 UNCLASSIFIED 99  ― Nike shoes provide flexibility to the customer in terms of color choice, customized emblems (such as college...opportunity, he constructs a synthetic portfolio of a brand -new factory in a developing country, such as China, and bonds. Maybe the monetary values of both...1990s the DoD developed a new guidance kit using a combination of Inertial Navigation (INS) and the satellite based Global Positioning System (GPS

  7. Advanced Process Chains for Prototyping and Pilot Production based on Additive Manufacturing

    DEFF Research Database (Denmark)

    Mischkot, Michael

    2015-01-01

    For many years, Additive Manufacturing (AM) has been a well-established production technology used mainly for rapid prototyping. But the need for increased flexibility and economic low volume production led to the discovery of Additive Manufacturing as a suitable fabrication technique (Mellor 2013...

  8. Highly transparent vanadium oxide-graded indium zinc oxide electrodes for flexible organic solar cells

    International Nuclear Information System (INIS)

    Ko, Eun-Hye; Kim, Han-Ki

    2016-01-01

    We investigated characteristics of amorphous V_2O_5-graded InZnO (IZO) films to use as a flexible anode for flexible organic solar cells (FOSCs). Graded sputtering of the V_2O_5 layer on the IZO layer produced V_2O_5-graded IZO anodes (VGIZO) with a sheet resistance of 42.14 Ω/square, a resistivity of 6.32 × 10"−"4 Ω cm, and an optical transmittance of 82.15%, as well as good mechanical flexibility. In addition, the VGIZO electrode showed a greater work function of 5.2 eV than that (4.9 eV) of an IZO anode, which is beneficial for hole extraction from an organic active layer. Due to the higher work function of the VGIZO electrodes, FOSCs fabricated on the flexible VGIZO anode exhibited a higher power conversion efficiency 2.753% than that of FOSCs on the IZO anode. This indicates that the V_2O_5 graded sputtering is a promising technique to increase the work function of the IZO anode without change in sheet resistance and transmittance. - Highlights: • Transparent and flexible V_2O_5 graded IZO (VGIZO) electrodes. • High work function of VGIZO electrodes • The VGIZO film is a promising flexible anode for flexible organic solar cells.

  9. Review on Physically Flexible Nonvolatile Memory for Internet of Everything Electronics

    KAUST Repository

    Ghoneim, Mohamed T.; Hussain, Muhammad Mustafa

    2015-01-01

    Solid-state memory is an essential component of the digital age. With advancements in healthcare technology and the Internet of Things (IoT), the demand for ultra-dense, ultra-low-power memory is increasing. In this review, we present a comprehensive perspective on the most notable approaches to the fabrication of physically flexible memory devices. With the future goal of replacing traditional mechanical hard disks with solid-state storage devices, a fully flexible electronic system will need two basic devices: transistors and nonvolatile memory. Transistors are used for logic operations and gating memory arrays, while nonvolatile memory (NVM) devices are required for storing information in the main memory and cache storage. Since the highest density of transistors and storage structures is manifested in memories, the focus of this review is flexible NVM. Flexible NVM components are discussed in terms of their functionality, performance metrics, and reliability aspects, all of which are critical components for NVM technology to be part of mainstream consumer electronics, IoT, and advanced healthcare devices. Finally, flexible NVMs are benchmarked and future prospects are provided.

  10. Review on Physically Flexible Nonvolatile Memory for Internet of Everything Electronics

    Directory of Open Access Journals (Sweden)

    Mohamed T. Ghoneim

    2015-07-01

    Full Text Available Solid-state memory is an essential component of the digital age. With advancements in healthcare technology and the Internet of Things (IoT, the demand for ultra-dense, ultra-low-power memory is increasing. In this review, we present a comprehensive perspective on the most notable approaches to the fabrication of physically flexible memory devices. With the future goal of replacing traditional mechanical hard disks with solid-state storage devices, a fully flexible electronic system will need two basic devices: transistors and nonvolatile memory. Transistors are used for logic operations and gating memory arrays, while nonvolatile memory (NVM devices are required for storing information in the main memory and cache storage. Since the highest density of transistors and storage structures is manifested in memories, the focus of this review is flexible NVM. Flexible NVM components are discussed in terms of their functionality, performance metrics, and reliability aspects, all of which are critical components for NVM technology to be part of mainstream consumer electronics, IoT, and advanced healthcare devices. Finally, flexible NVMs are benchmarked and future prospects are provided.

  11. Review on Physically Flexible Nonvolatile Memory for Internet of Everything Electronics

    KAUST Repository

    Ghoneim, Mohamed T.

    2015-07-23

    Solid-state memory is an essential component of the digital age. With advancements in healthcare technology and the Internet of Things (IoT), the demand for ultra-dense, ultra-low-power memory is increasing. In this review, we present a comprehensive perspective on the most notable approaches to the fabrication of physically flexible memory devices. With the future goal of replacing traditional mechanical hard disks with solid-state storage devices, a fully flexible electronic system will need two basic devices: transistors and nonvolatile memory. Transistors are used for logic operations and gating memory arrays, while nonvolatile memory (NVM) devices are required for storing information in the main memory and cache storage. Since the highest density of transistors and storage structures is manifested in memories, the focus of this review is flexible NVM. Flexible NVM components are discussed in terms of their functionality, performance metrics, and reliability aspects, all of which are critical components for NVM technology to be part of mainstream consumer electronics, IoT, and advanced healthcare devices. Finally, flexible NVMs are benchmarked and future prospects are provided.

  12. Impact of Building Design Parameters on Thermal Energy Flexibility in a Low-Energy Building

    OpenAIRE

    Sarran, Lucile; Foteinaki, Kyriaki; Gianniou, Panagiota; Rode, Carsten

    2017-01-01

    This work focuses on demand-side management potential for the heating grid in residential buildings. The possibility to increase the flexibility provided to the heat network through specific building design is investigated. The role of different parts of the building structure on thermal flexibility is assessed through a parameter variation on a building model. Different building designs are subjected to heat cut-offs, and flexibility is evaluated with respect to comfort preservation and heat...

  13. Development of the Coping Flexibility Scale: Evidence for the Coping Flexibility Hypothesis

    Science.gov (United States)

    Kato, Tsukasa

    2012-01-01

    "Coping flexibility" was defined as the ability to discontinue an ineffective coping strategy (i.e., evaluation coping) and produce and implement an alternative coping strategy (i.e., adaptive coping). The Coping Flexibility Scale (CFS) was developed on the basis of this definition. Five studies involving approximately 4,400 Japanese…

  14. Light-controlling, flexible and transparent ethanol gas sensor based on ZnO nanoparticles for wearable devices.

    Science.gov (United States)

    Zheng, Z Q; Yao, J D; Wang, B; Yang, G W

    2015-06-16

    In recent years, owing to the significant applications of health monitoring, wearable electronic devices such as smart watches, smart glass and wearable cameras have been growing rapidly. Gas sensor is an important part of wearable electronic devices for detecting pollutant, toxic, and combustible gases. However, in order to apply to wearable electronic devices, the gas sensor needs flexible, transparent, and working at room temperature, which are not available for traditional gas sensors. Here, we for the first time fabricate a light-controlling, flexible, transparent, and working at room-temperature ethanol gas sensor by using commercial ZnO nanoparticles. The fabricated sensor not only exhibits fast and excellent photoresponse, but also shows high sensing response to ethanol under UV irradiation. Meanwhile, its transmittance exceeds 62% in the visible spectral range, and the sensing performance keeps the same even bent it at a curvature angle of 90(o). Additionally, using commercial ZnO nanoparticles provides a facile and low-cost route to fabricate wearable electronic devices.

  15. Integrating Multi-Domain Distributed Energy Systems with Electric Vehicle PQ Flexibility: Optimal Design and Operation Scheduling for Sustainable Low-Voltage Distribution Grids

    DEFF Research Database (Denmark)

    Morvaj, Boran; Knezovic, Katarina; Evins, Ralph

    2016-01-01

    on the grid operation, in addition to coordinated charging, is analysed. Results showed that when the system can be optimally designed, emissions decrease by 64% and additionally 32% with proactive EV integration, whereas EV reactive power control enables integration of larger EV amounts and provides...... in the stable operation. The model was applied to a real low-voltage Danish distribution grid where measurement data is available on hourly basis in order to determine EV flexibility impacts on carbon emissions, as well as the benefits of optimal DES design. The influence of EV reactive power control...

  16. Microwave Photonics Techniques Supporting Flexible Wireless Communications Links

    DEFF Research Database (Denmark)

    Rommel, Simon; Cavalcante, Lucas Costa Pereira; Vegas Olmos, Juan José

    Wireless data communication links supporting the next generation 5G and beyond mobile networking face a set of engineering challenges related to the mandatory operation at mmw and higher frequency bands, provide capacities above 10 Gb/s, satisfy latency, robustness, flexibility and low complexity...

  17. Low Cost and Flexible UAV Deployment of Sensors

    DEFF Research Database (Denmark)

    Sørensen, Lars Yndal; Jacobsen, Lars Toft; Hansen, John Paulin

    2017-01-01

    -collection needs. The main contribution is the extensible architecture for modularized airborne sensor deployment and real-time data visualisation. Our open-source Android application provides data collection, flight path definition and map tools. Total cost of the system is below 800 dollars. The flexibility...

  18. Graphite and Hybrid Nanomaterials as Lubricant Additives

    Directory of Open Access Journals (Sweden)

    Zhenyu J. Zhang

    2014-04-01

    Full Text Available Lubricant additives, based on inorganic nanoparticles coated with organic outer layer, can reduce wear and increase load-carrying capacity of base oil remarkably, indicating the great potential of hybrid nanoparticles as anti-wear and extreme-pressure additives with excellent levels of performance. The organic part in the hybrid materials improves their flexibility and stability, while the inorganic part is responsible for hardness. The relationship between the design parameters of the organic coatings, such as molecular architecture and the lubrication performance, however, remains to be fully elucidated. A survey of current understanding of hybrid nanoparticles as lubricant additives is presented in this review.

  19. A flexible tactile-feedback touch screen using transparent ferroelectric polymer film vibrators

    International Nuclear Information System (INIS)

    Ju, Woo-Eon; Moon, Yong-Ju; Park, Cheon-Ho; Choi, Seung Tae

    2014-01-01

    To provide tactile feedback on flexible touch screens, transparent relaxor ferroelectric polymer film vibrators were designed and fabricated in this study. The film vibrator can be integrated underneath a transparent cover film or glass, and can also produce acoustic waves that cause a tactile sensation on human fingertips. Poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) [P(VDF-TrFE-CTFE)] polymer was used as the relaxor ferroelectric polymer because it produces a large strain under applied electric fields, shows a fast response, and has excellent optical transparency. The natural frequency of this tactile-feedback touch screen was designed to be around 200–240 Hz, at which the haptic perception of human fingertips is the most sensitive; therefore, the resonance of the touch screen at its natural frequency provides maximum haptic sensation. A multilayered relaxor ferroelectric polymer film vibrator was also demonstrated to provide the same vibration power at reduced voltage. The flexible P(VDF-TrFE-CTFE) film vibrators developed in this study are expected to provide tactile sensation not only in large-area flat panel displays, but also in flexible displays and touch screens. (papers)

  20. The Flexibility of Pusher Furnace Grate

    Directory of Open Access Journals (Sweden)

    Słowik J.A.

    2016-12-01

    Full Text Available The lifetime of guide grates in pusher furnaces for heat treatment could be increased by raising the flexibility of their structure through, for example, the replacement of straight ribs, parallel to the direction of grate movement, with more flexible segments. The deformability of grates with flexible segments arranged in two orientations, i.e. crosswise (perpendicular to the direction of compression and lengthwise (parallel to the direction of compression, was examined. The compression process was simulated using SolidWorks Simulation program. Relevant regression equations were also derived describing the dependence of force inducing the grate deformation by 0.25 mm ‒ modulus of grate elasticity ‒ on the number of flexible segments in established orientations. These calculations were made in Statistica and Scilab programs. It has been demonstrated that, with the same number of segments, the crosswise orientation of flexible segments increases the grate structure flexibility in a more efficient way than the lengthwise orientation. It has also been proved that a crucial effect on the grate flexibility has only the quantity and orientation of segments (crosswise / lengthwise, while the exact position of segments changes the grate flexibility by less than 1%.

  1. Two-dimensional CsPbBr3/PCBM heterojunctions for sensitive, fast and flexible photodetectors boosted by charge transfer

    Science.gov (United States)

    Shen, Yalong; Yu, Dejian; Wang, Xiong; Huo, Chengxue; Wu, Ye; Zhu, Zhengfeng; Zeng, Haibo

    2018-02-01

    Inorganic halide perovskites exhibited promising potentials for high-performance wide-band photodetectors (PDs) due to their high light absorption coefficients, long carrier diffusion length and wide light absorption ranges. Here, we report two-dimensional (2D) CsPbBr3/PCBM heterojunctions for sensitive, fast and flexible PDs, whose performances can be greatly boosted by the charge transfer through the energy-aligned interface. The 2D CsPbBr3 nanosheets with high crystallinity were fabricated via a simple solution-process at room temperature, and then assembled into flexible heterojunctions films with polymerphenyl-C61-butyric acid methyl ester (PCBM). Significantly, the efficient and fast charge transfer at the heterojunctions interface was evidenced by the obvious photoluminescence quenching and variation of recombination dynamics. Subsequently, such heterojunctions PD exhibited an enhanced responsivity of 10.85 A W-1 and an ultrahigh detectivity of 3.06 × 1013 Jones. In addition, the PD shows a broad linear dynamic range of 73 dB, a fast response speed with rise time of 44 μs and decay time of 390 μs, respectively. Moreover, the PD lying on polyethylene terephthalate substrates exhibited an outstanding mechanical flexibility and a robust electrical stability. These results could provide a new avenue for integration of 2D perovskites and organic functional materials and for high-performance flexible PDs.

  2. Analysis of the flexible support mechanisms in the Directive on the promotion of the use of energy from renewable sources. Final report 8th January 2010

    Energy Technology Data Exchange (ETDEWEB)

    Ruokonen, J.; Sinnemaa, M.A.; Magnusson, R.; Gautesen, K.; Seppaenen, S.; Opsal, O.

    2010-07-01

    The Nordic countries have a long history in co-operation and a common electricity market. The long-term objective of Nordic countries is to promote an efficient, competitive, secure and sustainable energy supply. The EU countries have set a binding target to increase the share of renewable energy to 20% by 2020. The European Parliament approved a legislative resolution on December 17th 2008 on the proposal for a Directive on the promotion of the use of energy from renewable source ('The Directive'). This Directive become part of the European Community legislation in 2009. The Directive sets national targets for renewable energy, but it also provides various flexibility mechanisms that enable co-operation between countries in reaching the national targets. It is however still not clear how these flexible mechanisms should be used, nor the consequences on the electricity market and renewable energy sources. The objective of this project is to evaluate the usefulness and consequences of utilising the Flexible Mechanisms described in the Articles 6-11 ('Flex-Mex') of the Directive in Nordic Countries. Moreover, the objective is to provide basis for conclusions and political recommendations on whether and how to cooperate and move forward in this area. In addition to basic principles of the flexible mechanisms, the project concentrates on analysing the arrangements needed between the Nordic Countries to utilise the flexible mechanisms and analysis of benefits and problems of using Mechanisms. The report is divided five sections. Chapter 2 introduced the RES directive and Flexible Mechanisms. In chapter 3, lesson learnt from other markets are used as starting point in drawing possible frameworks for Nordic countries. Chapter 4 summarizes presents outcome of various co-operation scenarios and their benefits. In Chapter 5 some selected topics are discussed from RES Flex-Mex point of view. Chapter 6 provides conclusions and recommendations. (Author)

  3. Directional rolling of positively charged nanoparticles along a flexibility gradient on long DNA molecules.

    Science.gov (United States)

    Park, Suehyun; Joo, Heesun; Kim, Jun Soo

    2018-01-31

    Directing the motion of molecules/colloids in any specific direction is of great interest in many applications of chemistry, physics, and biological sciences, where regulated positioning or transportation of materials is highly desired. Using Brownian dynamics simulations of coarse-grained models of a long, double-stranded DNA molecule and positively charged nanoparticles, we observed that the motion of a single nanoparticle bound to and wrapped by the DNA molecule can be directed along a gradient of DNA local flexibility. The flexibility gradient is constructed along a 0.8 kilobase-pair DNA molecule such that local persistence length decreases gradually from 50 nm to 40 nm, mimicking a gradual change in sequence-dependent flexibility. Nanoparticles roll over a long DNA molecule from less flexible regions towards more flexible ones as a result of the decreasing energetic cost of DNA bending and wrapping. In addition, the rolling becomes slightly accelerated as the positive charge of nanoparticles decreases due to a lower free energy barrier of DNA detachment from charged nanoparticle for processive rolling. This study suggests that the variation in DNA local flexibility can be utilized in constructing and manipulating supramolecular assemblies of DNA molecules and nanoparticles in structural DNA nanotechnology.

  4. Additional disulfide bonds in insulin

    DEFF Research Database (Denmark)

    Vinther, Tine N; Pettersson, Ingrid; Huus, Kasper

    2015-01-01

    The structure of insulin, a glucose homeostasis-controlling hormone, is highly conserved in all vertebrates and stabilized by three disulfide bonds. Recently, we designed a novel insulin analogue containing a fourth disulfide bond located between positions A10-B4. The N-terminus of insulin's B......-chain is flexible and can adapt multiple conformations. We examined how well disulfide bond predictions algorithms could identify disulfide bonds in this region of insulin. In order to identify stable insulin analogues with additional disulfide bonds, which could be expressed, the Cβ cut-off distance had...... in comparison to analogues with additional disulfide bonds that were more difficult to predict. In contrast, addition of the fourth disulfide bond rendered all analogues resistant to fibrillation under stress conditions and all stable analogues bound to the insulin receptor with picomolar affinities. Thus...

  5. Assembly of new polyoxometalate–templated metal–organic frameworks based on flexible ligands

    Energy Technology Data Exchange (ETDEWEB)

    Li, Na; Mu, Bao; Lv, Lei; Huang, Rudan, E-mail: huangrd@bit.edu.cn

    2015-03-15

    Four new polyoxometalate(POM)–templated metal–organic frameworks based on flexible ligands, namely, [Cu{sub 6}(bip){sub 12}(PMo{sup VI}{sub 12}O{sub 40}){sub 2}(PMo{sup V}Mo{sup VI}{sub 11}O{sub 40}O{sub 2})]·8H{sub 2}O(1), [Cu{sup I}{sub 3}Cu{sup II}{sub 3}(bip){sub 12}(PMo{sup VI}{sub 12}O{sub 40}){sub 2}(PMo{sup V}{sub 12}O{sub 34})]·8H{sub 2}O(2), [Ni{sub 6}(bip){sub 12}(PMo{sup VI}{sub 12}O{sub 40})(PMo{sup VI}{sub 11}Mo{sup V}O{sub 40}){sub 2}]Cl·6H{sub 2}O(3), [Co{sup II}{sub 3}Co{sup III}{sub 2}(H{sub 2}bib){sub 2}(Hbib){sub 2}(PW{sub 9}O{sub 34}){sub 2}(H{sub 2}O){sub 6}]·6H{sub 2}O(4) (bip=1,3-bis(imidazolyl)propane, bib=1,4-bis(imidazolyl)butane) have been obtained under hydrothermal condition and characterized by single-crystal X-ray diffraction analyses, elemental analyses, and thermogravimetric (TG) analyses. The studies of single crystal X-ray indicate that compounds 1–3 crystallize in the trigonal space group P-3, and compound 4 crystallizes in the triclinic space group P-1. Compounds 1 and 3 represent 3D frameworks, and POMs as the guest molecules are incorporated into the cages which are composed of the ligands and metals, while compounds 2 and 4 show 3D frameworks by hydrogen bonds. This compounds provide new examples of host–guest compounds based on flexible bis(imidazole) ligands. In addition, the electrochemical property and the catalytic property of compound 1 have also been investigated. - Graphical abstract: Four inorganic–organic hybrid compounds based polyoxometalates (POMs) and flexible ligands, namely, have been obtained under hydrothermal conditions and characterized by single-crystal X-ray diffraction analyses, elemental analyses, IR spectra, and thermogravimetric (TG) analyses. Compounds 1–3 are new examples of host–guest compounds based on flexible bis(imidazole) ligands and POMs as the guest molecules are incorporated into the cages which are composed of the ligands and metals. - Highlights: • Polyoxometalate

  6. Dynamic Responses of Flexible Cylinders with Low Mass Ratio

    Science.gov (United States)

    Olaoye, Abiodun; Wang, Zhicheng; Triantafyllou, Michael

    2017-11-01

    Flexible cylinders with low mass ratios such as composite risers are attractive in the offshore industry because they require lower top tension and are less likely to buckle under self-weight compared to steel risers. However, their relatively low stiffness characteristics make them more vulnerable to vortex induced vibrations. Additionally, numerical investigation of the dynamic responses of such structures based on realistic conditions is limited by high Reynolds number, complex sheared flow profile, large aspect ratio and low mass ratio challenges. In the framework of Fourier spectral/hp element method, the current technique employs entropy-viscosity method (EVM) based large-eddy simulation approach for flow solver and fictitious added mass method for structure solver. The combination of both methods can handle fluid-structure interaction problems at high Reynolds number with low mass ratio. A validation of the numerical approach is provided by comparison with experiments.

  7. Child Care: States Exercise Flexibility in Setting Reimbursement Rates and Providing Access for Low-Income Children. Report to Congressional Requesters.

    Science.gov (United States)

    Shaul, Marnie S.

    In order to promote low-income parents' job preparation and work efforts, states were given greater flexibility to design programs using federal funds to subsidize child care for low-income families. At Congressional request, this report from the General Accounting Office describes how states set reimbursement rates and calculates the extent to…

  8. Metal oxide semiconductor thin-film transistors for flexible electronics

    Energy Technology Data Exchange (ETDEWEB)

    Petti, Luisa; Vogt, Christian; Büthe, Lars; Cantarella, Giuseppe; Tröster, Gerhard [Electronics Laboratory, Swiss Federal Institute of Technology, Zürich (Switzerland); Münzenrieder, Niko [Electronics Laboratory, Swiss Federal Institute of Technology, Zürich (Switzerland); Sensor Technology Research Centre, University of Sussex, Falmer (United Kingdom); Faber, Hendrik; Bottacchi, Francesca; Anthopoulos, Thomas D. [Department of Physics and Centre for Plastic Electronics, Imperial College London, London (United Kingdom)

    2016-06-15

    particular, the realization of large-area digital circuitry like flexible near field communication tags and analog integrated circuits such as bendable operational amplifiers is presented. The last topic of this review is devoted for emerging flexible electronic systems, from foldable displays, power transmission elements to integrated systems for large-area sensing and data storage and transmission. Finally, the conclusions are drawn and an outlook over the field with a prediction for the future is provided.

  9. Workplace flexibility: from research to action.

    Science.gov (United States)

    Galinsky, Ellen; Sakai, Kelly; Wigton, Tyler

    2011-01-01

    Ellen Galinsky, Kelly Sakai, and Tyler Wigton explore the "time famine" among American workers-the continuing sense among employees of not having enough time to manage the multiple responsibilities of work and personal and family life. Noting that large shares of U.S. employees report feeling the need for greater workplace flexibility to enable them to take better care of family responsibilities, the authors examine a large-scale community-engagement initiative to increase workplace flexibility voluntarily. Using the 2008 National Study of the Changing Workforce as a primary source of data, the authors begin with an overview of the prevalence of flexibility in today's American workplace. They track which categories of employees have access to various flexibility options, as well as the extent to which employees with access to various types of flexibility use those options. Findings from the study indicate that the majority of employees want flexibility but that access to it varies, with more advantaged employees--those who are well educated, have high salaries, and work full time, for example--being doubly advantaged in having greater access to flexibility. A number of employers, say the authors, tend to be skeptical of the value of workplace flexibility and to fear that employees will abuse it if it is offered. But the study data reveal that most employees use flexibility quite conservatively. When the authors use their nationally representative data set to investigate correlations between access to workplace flexibility and a range of workplace outcomes especially valued by employers--employee engagement, job satisfaction, retention, and health--they find that employers as well as employees can benefit from flexibility. Finally, the authors discuss When Work Works, a large, national community-based initiative under way since 2003 to increase voluntary adoption of workplace flexibility. The authors detail the conceptual basis of the project's design, noting its

  10. Free-form Flexible Lithium-Ion Microbattery

    KAUST Repository

    Kutbee, Arwa T.; Ghoneim, Mohamed T.; Ahmed, Sally; Hussain, Muhammad Mustafa

    2016-01-01

    Wearable electronics need miniaturized, safe and flexible power sources. Lithium ion battery is a strong candidate as high performance flexible battery. The development of flexible materials for battery electrodes suffers from the limited material

  11. Robust high-precision attitude control for flexible spacecraft with improved mixed H2/H∞ control strategy under poles assignment constraint

    Science.gov (United States)

    Liu, Chuang; Ye, Dong; Shi, Keke; Sun, Zhaowei

    2017-07-01

    A novel improved mixed H2/H∞ control technique combined with poles assignment theory is presented to achieve attitude stabilization and vibration suppression simultaneously for flexible spacecraft in this paper. The flexible spacecraft dynamics system is described and transformed into corresponding state space form. Based on linear matrix inequalities (LMIs) scheme and poles assignment theory, the improved mixed H2/H∞ controller does not restrict the equivalence of the two Lyapunov variables involved in H2 and H∞ performance, which can reduce conservatives compared with traditional mixed H2/H∞ controller. Moreover, it can eliminate the coupling of Lyapunov matrix variables and system matrices by introducing slack variable that provides additional degree of freedom. Several simulations are performed to demonstrate the effectiveness and feasibility of the proposed method in this paper.

  12. Flexible devices: from materials, architectures to applications

    Science.gov (United States)

    Zou, Mingzhi; Ma, Yue; Yuan, Xin; Hu, Yi; Liu, Jie; Jin, Zhong

    2018-01-01

    Flexible devices, such as flexible electronic devices and flexible energy storage devices, have attracted a significant amount of attention in recent years for their potential applications in modern human lives. The development of flexible devices is moving forward rapidly, as the innovation of methods and manufacturing processes has greatly encouraged the research of flexible devices. This review focuses on advanced materials, architecture designs and abundant applications of flexible devices, and discusses the problems and challenges in current situations of flexible devices. We summarize the discovery of novel materials and the design of new architectures for improving the performance of flexible devices. Finally, we introduce the applications of flexible devices as key components in real life. Project supported by the National Key R&D Program of China (Nos. 2017YFA0208200, 2016YFB0700600, 2015CB659300), the National Natural Science Foundation of China (Nos. 21403105, 21573108), and the Fundamental Research Funds for the Central Universities (No. 020514380107).

  13. Flexible ultraviolet photodetectors based on ZnO-SnO2 heterojunction nanowire arrays

    Science.gov (United States)

    Lou, Zheng; Yang, Xiaoli; Chen, Haoran; Liang, Zhongzhu

    2018-02-01

    A ZnO-SnO2 nanowires (NWs) array, as a metal oxide semiconductor, was successfully synthesized by a near-field electrospinning method for the applications as high performance ultraviolet photodetectors. Ultraviolet photodetectors based on a single nanowire exhibited excellent photoresponse properties to 300 nm ultraviolet light illumination including ultrahigh I on/I off ratios (up to 103), good stability and reproducibility because of the separation between photo-generated electron-hole pairs. Moreover, the NWs array shows an enhanced photosensing performance. Flexible photodetectors on the PI substrates with similar tendency properties were also fabricated. In addition, under various bending curvatures and cycles, the as-fabricated flexible photodetectors revealed mechanical flexibility and good stable electrical properties, showing that they have the potential for applications in future flexible photoelectron devices. Project supported by the National Science Foundation of China (No. 61504136) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine and Physics, Chinese Academy of Sciences.

  14. Development and validation of resource flexibility measures for manufacturing industry

    Directory of Open Access Journals (Sweden)

    Gulshan Chauhan

    2014-01-01

    companies do not want to spend on worker training. Practical implications: The study provides guidelines to managers/ practitioners in assessing and managing resource flexibility for optimum utilization of resources. This study can also help the firm’s management to identify the measures and variables to manage resource flexibility and the order in which stress should be given to various measures and actions. The developed and validated measures can be used globally for managing the resource flexibility in manufacturing sector. Originality/value: In this work, the theoretical perspective has been used to prepare the instrument from a detailed review of literature and then the study carried out using the questionnaire in an area where such studies were not carried out earlier.

  15. 23rd International Conference on Flexible Automation & Intelligent Manufacturing

    CERN Document Server

    2013-01-01

    The proceedings includes the set of revised papers from the 23rd International Conference on Flexible Automation and Intelligent Manufacturing (FAIM 2013). This conference aims to provide an international forum for the exchange of leading edge scientific knowledge and industrial experience regarding the development and integration of the various aspects of Flexible Automation and Intelligent Manufacturing Systems covering the complete life-cycle of a company’s Products and Processes. Contents will include topics such as: Product, Process and Factory Integrated Design, Manufacturing Technology and Intelligent Systems, Manufacturing Operations Management and Optimization and Manufacturing Networks and MicroFactories.

  16. Flexible Thermoelectric Generators on Silicon Fabric

    KAUST Repository

    Sevilla, Galo T.

    2012-01-01

    In this work, the development of a Thermoelectric Generator on Flexible Silicon Fabric is explored to extend silicon electronics for flexible platforms. Low cost, easily deployable plastic based flexible electronics are of great interest for smart

  17. Flexible Electronics-Based Transformers for Extreme Environments

    Science.gov (United States)

    Quadrelli, Marco B.; Stoica, Adrian; Ingham, Michel; Thakur, Anubhav

    2015-01-01

    This paper provides a survey of the use of modular multifunctional systems, called Flexible Transformers, to facilitate the exploration of extreme and previously inaccessible environments. A novel dynamics and control model of a modular algorithm for assembly, folding, and unfolding of these innovative structural systems is also described, together with the control model and the simulation results.

  18. The Flexibility of Organization and the flexibility of product – premises of organizational success

    OpenAIRE

    Todorut, Amalia Venera

    2008-01-01

    Flexibility represents the ability of a manufactural system to adapt to some diversified tasks of production, thus to assure an economic efficiency – the rapport time/cost should be optimum, with insignificant structure changes within a long period of time. The central role of flexibility is to permit the survival and the success of the organizations in a turbulent circumstance, which is characteristic to the new world tendencies. The more flexible the organization becomes, the better it resp...

  19. Nozzle-less Ultrasonic Spray Deposition for Flexible Ammonia and Ozone Gas Sensors

    Directory of Open Access Journals (Sweden)

    Mónica ACUAUTLA

    2016-06-01

    Full Text Available In the last years printing and flexible electronic is transforming the way we used electronic devices. Among these, special interest is given to the development of gas sensors for industrial and environmental applications. Nozzle-less ultrasonic spray deposition is a simple and precise technique, which offers good homogeneity and high quality of the sensitive thin film. In addition, it represents a potential fabrication process for flexible electronic with low cost production and low waste of material. In this paper, nanoparticles of zinc oxide were deposited by nozzle-less ultrasonic spray deposition on flexible substrate. The sensing properties towards reducing and oxidizing gases in function of the operational temperature are reported. The flexible platform consists in titanium/platinum interdigitated electrodes and a micro-heater device, both fabricated by lift-off and photolithography. The operating temperature of the sensor is also challenging in term of power consumption. It is allowing the reaction with the exposure gases. Most of the semiconducting metal oxide materials used for gas sensing applications require high temperatures above 250 °C. Flexible gas sensors fabricated in this work present good responses towards ammonia and ozone at 300 °C and 200 °C respectively, with fast response and recovery time in a wide range of gas concentration.

  20. Flexible anodized aluminum oxide membranes with customizable back contact materials.

    Science.gov (United States)

    Nadimpally, B; Jarro, C A; Mangu, R; Rajaputra, S; Singh, V P

    2016-12-16

    Anodized aluminum oxide (AAO) membranes were fabricated using flexible substrate/carrier material. This method facilitates the use of AAO templates with many different materials as substrates that are otherwise incompatible with most anodization techniques. Thin titanium (Ti) and tungsten (W) layers were employed as interlayer materials. Titanium enhances adhesion. Tungsten not only helps eliminate the barrier layer but also plays a critical role in enabling the use of flexible substrates. The resulting flexible templates provide new, exciting opportunities in photovoltaic and other device applications. CuInSe 2 nanowires were electrochemically deposited into porous AAO templates with molybdenum (Mo) as the back contact material. The feasibility of using any material to form a contact with semiconductor nanowires has been demonstrated for the first time enabling new avenues in photovoltaic applications.

  1. Flexible anodized aluminum oxide membranes with customizable back contact materials

    Science.gov (United States)

    Nadimpally, B.; Jarro, C. A.; Mangu, R.; Rajaputra, S.; Singh, V. P.

    2016-12-01

    Anodized aluminum oxide (AAO) membranes were fabricated using flexible substrate/carrier material. This method facilitates the use of AAO templates with many different materials as substrates that are otherwise incompatible with most anodization techniques. Thin titanium (Ti) and tungsten (W) layers were employed as interlayer materials. Titanium enhances adhesion. Tungsten not only helps eliminate the barrier layer but also plays a critical role in enabling the use of flexible substrates. The resulting flexible templates provide new, exciting opportunities in photovoltaic and other device applications. CuInSe2 nanowires were electrochemically deposited into porous AAO templates with molybdenum (Mo) as the back contact material. The feasibility of using any material to form a contact with semiconductor nanowires has been demonstrated for the first time enabling new avenues in photovoltaic applications.

  2. Introduction of Spectrally and Spatially Flexible Optical Networks

    DEFF Research Database (Denmark)

    Xia, Tiejun J.; Fevrier, Herve; Wang, Ting

    2015-01-01

    Given the introduction of coherent 100G systems has provided enough fiber capacity to meet data traffic growth in the near term, enhancing network efficiency will be service providers' high priority. Adding flexibility at the optical layer is a key step to increasing network efficiency, and both...... spectral and spatial functionality will be considered in next generation optical networks along with advanced network management to effectively harness the new capabilities....

  3. Assessment of Optimal Flexibility in Ensemble of Frequency Responsive Loads

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Soumya; Hansen, Jacob; Lian, Jianming; Kalsi, Karanjit

    2018-04-19

    Potential of electrical loads in providing grid ancillary services is often limited due to the uncertainties associated with the load behavior. A knowledge of the expected uncertainties with a load control program would invariably yield to better informed control policies, opening up the possibility of extracting the maximal load control potential without affecting grid operations. In the context of frequency responsive load control, a probabilistic uncertainty analysis framework is presented to quantify the expected error between the target and actual load response, under uncertainties in the load dynamics. A closed-form expression of an optimal demand flexibility, minimizing the expected error in actual and committed flexibility, is provided. Analytical results are validated through Monte Carlo simulations of ensembles of electric water heaters.

  4. Contagious flexibility? A study on whether schedule flexibility facilitates work-life enrichment.

    Science.gov (United States)

    Pedersen, Vivi Bach; Jeppesen, Hans Jeppe

    2012-08-01

    Schedule flexibility defines an important generating resource for work-life enrichment; however, our knowledge about how such spillovers take place is limited. This multiple case study examines how workers from different working time contexts with varying levels of schedule flexibility experience work-life interplay. Given the adopted explorative design, it is important to interpret the findings in a tentative light. Nonetheless, the study offers important insight into work-life enrichment that may guide future research in this field. The findings indicate that schedule flexibility may act as a boundary-spanning resource owing to the agency potential it offers workers. Thus, it seemed that flexible schedule opportunities enabled workers to engage more fully in personal life activities, which in turn had a positive influence on their work involvement through positive affect. Such positive role engagements appeared, however, to be greatly determined by workers' boundary management and by time conditions of work and family. In conclusion, the major findings and limitation of the study are discussed against existing research and theory. © 2012 The Authors. Scandinavian Journal of Psychology © 2012 The Scandinavian Psychological Associations.

  5. Enhancing wind turbines efficiency with passive reconfiguration of flexible blades

    Science.gov (United States)

    Cognet, Vincent P. A.; Thiria, Benjamin; Courrech Du Pont, Sylvain; MSC Team; PMMH Team

    2015-11-01

    Nature provides excellent examples where flexible materials are advantageous in a fluid stream. By folding, leaves decrease the drag caused by air stream; and birds' flapping is much more efficient with flexible wings. Motivated by this, we investigate the effect of flexible blades on the performance of a wind turbine. The effect of chordwise flexible blades is studied both experimentally and theoretically on a small wind turbine in steady state. Four parameters are varied: the wind velocity, the resisting torque, the pitch angle, and the blade's bending modulus. We find an optimum efficiency with respect to the bending modulus. By tuning our four parameters, the wind turbine with flexible blades has a high-efficiency range significantly larger than rigid blades', and, furthermore enhances the operating range. These results are all the more important as one of the current issues concerning wind turbines is the enlargement of their operating range. To explain these results, we propose a simple two-dimensional model by discretising the blade along the radius. We take into account the variation of drag and lift coefficients with the bending ability. This model matches experimental observations and demonstrates the contribution of the reconfiguration of the blade. Matiere et Systemes Complexes.

  6. Developing a flexible and verifiable integrated dose assessment capability

    International Nuclear Information System (INIS)

    Parzyck, D.C.; Rhea, T.A.; Copenhaver, E.D.; Bogard, J.S.

    1987-01-01

    A flexible yet verifiable system of computing and recording personnel doses is needed. Recent directions in statutes establish the trend of combining internal and external doses. We are developing a Health Physics Information Management System (HPIMS) that will centralize dosimetry calculations and data storage; integrate health physics records with other health-related disciplines, such as industrial hygiene, medicine, and safety; provide a more auditable system with published algorithms and clearly defined flowcharts of system operation; readily facilitate future changes dictated by new regulations, new dosimetric models, and new systems of units; and address ad-hoc inquiries regarding worker/workplace interactions, including potential synergisms with non-radiation exposures. The system is modular and provides a high degree of isolation from low-level detail, allowing flexibility for changes without adversely affecting other parts of the system. 10 refs., 3 figs

  7. Indirect control of flexible demand for power system applications

    DEFF Research Database (Denmark)

    Sossan, Fabrizio

    This thesis addresses the topic of control of flexible demand to provide support to the operation of the electric power system. We focus on the indirect control approach, a framework that enables demand response by means of a consumption incentive signal. Initially, the concept of flexibility...... a shift in the consumption according to an indirect control signal. We present from simple control algorithms with a few requirements up to model predictive control strategies. The performance of the indirect control algorithms are compared by means of hardware-in-the-loop simulations using Power...... and storage in the operation of the future power system, we develop a model predictive control strategy for a smart building with the objective of supplying iii space heating and providing regulating power to the grid according to a dynamic electricity price. We named this application energy replacement...

  8. Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems

    NARCIS (Netherlands)

    Finck, C.J.; Li, R.; Kramer, R.P.; Zeiler, W.

    2018-01-01

    In the future due to continued integration of renewable energy sources, demand-side flexibility would be required for managing power grids. Building energy systems will serve as one possible source of energy flexibility. The degree of flexibility provided by building energy systems is highly

  9. Additive manufacturing: From implants to organs | Douglas | South ...

    African Journals Online (AJOL)

    Additive manufacturing (AM) constructs 3D objects layer by layer under computer control from 3D models. 3D printing is one example of this kind of technology. AM offers geometric flexibility in its products and therefore allows customisation to suit individual needs. Clinical success has been shown with models for surgical ...

  10. Impact Vibration Attenuation for a Flexible Robotic Manipulator through Transfer and Dissipation of Energy

    Directory of Open Access Journals (Sweden)

    Yushu Bian

    2013-01-01

    Full Text Available Due to the presence of system flexibility, impact can excite severe large amplitude vibration responses of the flexible robotic manipulator. This impact vibration exhibits characteristics of remarkable nonlinearity and strong energy. The main goal of this study is to put forward an energy-based control method to absorb and attenuate large amplitude impact vibration of the flexible robotic manipulator. The method takes advantage of internal resonance and is implemented through a vibration absorber based on the transfer and dissipation of energy. The addition of the vibration absorber to the flexible arm generates a coupling effect between vibration modes of the system. By means of analysis on 2:1 internal resonance, the exchange of energy is proven to be existent. The impact vibrational energy can be transferred from the arm to the absorber and dissipated through the damping of the absorber. The results of numerical simulations are promising and preliminarily verify that the method is feasible and can be used to combat large amplitude impact vibration of the flexible manipulator undergoing rigid motion.

  11. A Flexible Multidose GnRH Antagonist versus a Microdose Flare-Up GnRH Agonist Combined with a Flexible Multidose GnRH Antagonist Protocol in Poor Responders to IVF

    Directory of Open Access Journals (Sweden)

    Gayem İnayet Turgay Çelik

    2015-01-01

    Full Text Available Objective. To compare the effectiveness of a flexible multidose gonadotropin-releasing hormone (GnRH antagonist against the effectiveness of a microdose flare-up GnRH agonist combined with a flexible multidose GnRH antagonist protocol in poor responders to in vitro fertilization (IVF. Study Design. A retrospective study in Akdeniz University, Faculty of Medicine, Department of Obstetrics and Gynecology, IVF Center, for 131 poor responders in the intracytoplasmic sperm injection-embryo transfer (ICSI-ET program between January 2006 and November 2012. The groups were compared to the patients’ characteristics, controlled ovarian stimulation (COH results, and laboratory results. Results. Combination protocol was applied to 46 patients (group 1, and a single protocol was applied to 85 patients (group 2. In group 1, the duration of the treatment was longer and the dose of FSH was higher. The cycle cancellation rate was significantly higher in group 2 (26.1% versus 38.8%. A significant difference was not observed with respect to the number and quality of oocytes and embryos or to the number of embryos transferred. There were no statistically significant differences in the hCG positivity (9.5% versus 9.4% or the clinical pregnancy rates (7.1% versus 10.6%. Conclusion. The combination protocol does not provide additional efficacy.

  12. A Flexible Multidose GnRH Antagonist versus a Microdose Flare-Up GnRH Agonist Combined with a Flexible Multidose GnRH Antagonist Protocol in Poor Responders to IVF.

    Science.gov (United States)

    Çelik, Gayem İnayet Turgay; Sütçü, Havva Kömür; Akpak, Yaşam Kemal; Akar, Münire Erman

    2015-01-01

    To compare the effectiveness of a flexible multidose gonadotropin-releasing hormone (GnRH) antagonist against the effectiveness of a microdose flare-up GnRH agonist combined with a flexible multidose GnRH antagonist protocol in poor responders to in vitro fertilization (IVF). A retrospective study in Akdeniz University, Faculty of Medicine, Department of Obstetrics and Gynecology, IVF Center, for 131 poor responders in the intracytoplasmic sperm injection-embryo transfer (ICSI-ET) program between January 2006 and November 2012. The groups were compared to the patients' characteristics, controlled ovarian stimulation (COH) results, and laboratory results. Combination protocol was applied to 46 patients (group 1), and a single protocol was applied to 85 patients (group 2). In group 1, the duration of the treatment was longer and the dose of FSH was higher. The cycle cancellation rate was significantly higher in group 2 (26.1% versus 38.8%). A significant difference was not observed with respect to the number and quality of oocytes and embryos or to the number of embryos transferred. There were no statistically significant differences in the hCG positivity (9.5% versus 9.4%) or the clinical pregnancy rates (7.1% versus 10.6%). The combination protocol does not provide additional efficacy.

  13. UNITY OF THE ORGANIZATIONAL FUNCTIONS FLEXIBILITY

    OpenAIRE

    George MOLDOVEANU; Cosmin DOBRIN

    2012-01-01

    The paper has the goal to analyse the correlation of the flexibility of all organizational functions. Based upon theoretical and practical studies, the decrease of flexibility into an "activity area" of organizations implies a diminution on a large scale of the flexibility of the processing system as a law expression of the decreasing outputs within economy. Therefore, at the level of each organizational function there are several major directions ensuring the flexibility of the "ensemble".

  14. MPLM On-Orbit Interface Dynamic Flexibility Modal Test

    Science.gov (United States)

    Bookout, Paul S.; Rodriguez, Pedro I.; Tinson, Ian; Fleming, Paolo

    2001-01-01

    Now that the International Space Station (ISS) is being constructed, payload developers have to not only verify the Shuttle-to-payload interface, but also the interfaces their payload will have with the ISS. The Multi Purpose Logistic Module (MPLM) being designed and built by Alenia Spazio in Torino, Italy is one such payload. The MPLM is the primary carrier for the ISS Payload Racks, Re-supply Stowage Racks, and the Resupply Stowage Platforms to re-supply the ISS with food, water, experiments, maintenance equipment and etc. During the development of the MPLM there was no requirement for verification of the on-orbit interfaces with the ISS. When this oversight was discovered, all the dynamic test stands had already been disassembled. A method was needed that would not require an extensive testing stand and could be completed in a short amount of time. The residual flexibility testing technique was chosen. The residual flexibility modal testing method consists of measuring the free-free natural frequencies and mode shapes along with the interface frequency response functions (FRF's). Analytically, the residual flexibility method has been investigated in detail by, MacNeal, Martinez, Carne, and Miller, and Rubin, but has not been implemented extensively for model correlation due to difficulties in data acquisition. In recent years improvement of data acquisition equipment has made possible the implementation of the residual flexibility method as in Admire, Tinker, and Ivey, and Klosterman and Lemon. The residual flexibility modal testing technique is applicable to a structure with distinct points (DOF) of contact with its environment, such as the MPLM-to-Station interface through the Common Berthing Mechanism (CBM). The CBM is bolted to a flange on the forward cone of the MPLM. During the fixed base test (to verify Shuttle interfaces) some data was gathered on the forward cone panels. Even though there was some data on the forward cones, an additional modal test was

  15. Towards flexible solid-state supercapacitors for smart and wearable electronics.

    Science.gov (United States)

    Dubal, Deepak P; Chodankar, Nilesh R; Kim, Do-Heyoung; Gomez-Romero, Pedro

    2018-03-21

    Flexible solid-state supercapacitors (FSSCs) are frontrunners in energy storage device technology and have attracted extensive attention owing to recent significant breakthroughs in modern wearable electronics. In this study, we review the state-of-the-art advancements in FSSCs to provide new insights on mechanisms, emerging electrode materials, flexible gel electrolytes and novel cell designs. The review begins with a brief introduction on the fundamental understanding of charge storage mechanisms based on the structural properties of electrode materials. The next sections briefly summarise the latest progress in flexible electrodes (i.e., freestanding and substrate-supported, including textile, paper, metal foil/wire and polymer-based substrates) and flexible gel electrolytes (i.e., aqueous, organic, ionic liquids and redox-active gels). Subsequently, a comprehensive summary of FSSC cell designs introduces some emerging electrode materials, including MXenes, metal nitrides, metal-organic frameworks (MOFs), polyoxometalates (POMs) and black phosphorus. Some potential practical applications, such as the development of piezoelectric, photo-, shape-memory, self-healing, electrochromic and integrated sensor-supercapacitors are also discussed. The final section highlights current challenges and future perspectives on research in this thriving field.

  16. Flexible Li-CO{sub 2} batteries with liquid-free electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiaofei; Li, Zifan; Chen, Jun [Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin (China)

    2017-05-15

    Developing flexible Li-CO{sub 2} batteries is a promising approach to reuse CO{sub 2} and simultaneously supply energy to wearable electronics. However, all reported Li-CO{sub 2} batteries use liquid electrolyte and lack robust electrolyte/electrodes structure, not providing the safety and flexibility required. Herein we demonstrate flexible liquid-free Li-CO{sub 2} batteries based on poly(methacrylate)/poly(ethylene glycol)-LiClO{sub 4}-3 wt %SiO{sub 2} composite polymer electrolyte (CPE) and multiwall carbon nanotubes (CNTs) cathodes. The CPE (7.14 x 10{sup -2} mS cm{sup -1}) incorporates with porous CNTs cathodes, displaying stable structure and small interface resistance. The batteries run for 100 cycles with controlled capacity of 1000 mAh g{sup -1}. Moreover, pouch-type flexible batteries exhibit large reversible capacity of 993.3 mAh, high energy density of 521 Wh kg{sup -1}, and long operation time of 220 h at different degrees of bending (0-360 ) at 55 C. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Modelling, simulation and experiment of the spherical flexible joint stiffness

    Directory of Open Access Journals (Sweden)

    S. Li

    2018-02-01

    Full Text Available The spherical flexible joint is extensively used in engineering. It is designed to provide flexibility in rotation while bearing vertical compression load. The linear rotational stiffness of the flexible joint is formulated. The rotational stiffness of the bonded rubber layer is related to inner radius, thickness and two edge angles. FEM is used to verify the analytical solution and analyze the stiffness. The Mooney–Rivlin, Neo Hooke and Yeoh constitutive models are used in the simulation. The experiment is taken to obtain the material coefficient and validate the analytical and FEM results. The Yeoh model can reflect the deformation trend more accurately, but the error in the nearly linear district is bigger than the Mooney–Rivlin model. The Mooney–Rivlin model can fit the test result very well and the analytical solution can also be used when the rubber deformation in the flexible joint is small. The increase of Poisson's ratio of the rubber layers will enhance the vertical compression stiffness but barely have effect on the rotational stiffness.

  18. Flexible barrier technology for enabling rollable AMOLED displays and upscaling flexible OLED lighting

    NARCIS (Netherlands)

    Li, F.M.; Unnikrishnan, S.; Weijer, P. van de; Assche, F. van; Shen, J.; Ellis, T.; Manders, W.; Akkerman, H.; Bouten, P.; Mol, A.M.B. van

    2013-01-01

    The availability of a high performance thin-film barrier is the most critical challenge in upscaling and commercializing flexible OLED products. We report a flexible thin-film-barrier technology that meets lifetime specifications for OLED lighting, and demonstrate it in rollable QVGA a-IGZO AMOLED

  19. Docking ligands into flexible and solvated macromolecules. 7. Impact of protein flexibility and water molecules on docking-based virtual screening accuracy.

    Science.gov (United States)

    Therrien, Eric; Weill, Nathanael; Tomberg, Anna; Corbeil, Christopher R; Lee, Devin; Moitessier, Nicolas

    2014-11-24

    The use of predictive computational methods in the drug discovery process is in a state of continual growth. Over the last two decades, an increasingly large number of docking tools have been developed to identify hits or optimize lead molecules through in-silico screening of chemical libraries to proteins. In recent years, the focus has been on implementing protein flexibility and water molecules. Our efforts led to the development of Fitted first reported in 2007 and further developed since then. In this study, we wished to evaluate the impact of protein flexibility and occurrence of water molecules on the accuracy of the Fitted docking program to discriminate active compounds from inactive compounds in virtual screening (VS) campaigns. For this purpose, a total of 171 proteins cocrystallized with small molecules representing 40 unique enzymes and receptors as well as sets of known ligands and decoys were selected from the Protein Data Bank (PDB) and the Directory of Useful Decoys (DUD), respectively. This study revealed that implementing displaceable crystallographic or computationally placed particle water molecules and protein flexibility can improve the enrichment in active compounds. In addition, an informed decision based on library diversity or research objectives (hit discovery vs lead optimization) on which implementation to use may lead to significant improvements.

  20. Measuring Carbon Footprint of Flexible Pavement Construction Project in Indonesia

    Directory of Open Access Journals (Sweden)

    Utomo Dwi Hatmoko Jati

    2018-01-01

    Full Text Available Road infrastructure in Indonesia is mainly dominated by flexible pavement type. Its construction process, however, has raised concerns in terms of its environment impacts. This study aims to track and measure the carbon footprint of flexible pavement. The objectives are to map the construction process in relation to greenhouse gas (GHG emissions, to quantify them in terms of carbon dioxide equivalents (CO2e as generated by the process of production and transportation of raw materials, and the operation of plant off-site and on-site project. Data collection was done by having site observations and interviews with project stakeholders. The results show a total emissions of 70.888 tonnes CO2e, consisting of 34.248 tonnes CO2e (48.31% off-site activities and 36.640 tonnes CO2e (51.687% on-site activities. The two highest CO2e emissions were generated by the use of plant for asphalt concrete laying activities accounted 34.827 tonnes CO2e (49.130%, and material transportation accounted 24.921 (35.155%. These findings provide a new perspective of the carbon footprint in flexible pavement and suggest the urgent need for the use of more efficient and environmentally friendly plant in construction process as it shows the most significant contribution on the CO2e. This study provides valuable understanding on the environmental impact of typical flexible pavement projects in Indonesia, and further can be used for developing green road framework.

  1. Measuring Carbon Footprint of Flexible Pavement Construction Project in Indonesia

    Science.gov (United States)

    Hatmoko, Jati Utomo Dwi; Hidayat, Arif; Setiawati, Apsari; Prasetyo, Stefanus Catur Adi

    2018-02-01

    Road infrastructure in Indonesia is mainly dominated by flexible pavement type. Its construction process, however, has raised concerns in terms of its environment impacts. This study aims to track and measure the carbon footprint of flexible pavement. The objectives are to map the construction process in relation to greenhouse gas (GHG) emissions, to quantify them in terms of carbon dioxide equivalents (CO2e) as generated by the process of production and transportation of raw materials, and the operation of plant off-site and on-site project. Data collection was done by having site observations and interviews with project stakeholders. The results show a total emissions of 70.888 tonnes CO2e, consisting of 34.248 tonnes CO2e (48.31%) off-site activities and 36.640 tonnes CO2e (51.687%) on-site activities. The two highest CO2e emissions were generated by the use of plant for asphalt concrete laying activities accounted 34.827 tonnes CO2e (49.130%), and material transportation accounted 24.921 (35.155%). These findings provide a new perspective of the carbon footprint in flexible pavement and suggest the urgent need for the use of more efficient and environmentally friendly plant in construction process as it shows the most significant contribution on the CO2e. This study provides valuable understanding on the environmental impact of typical flexible pavement projects in Indonesia, and further can be used for developing green road framework.

  2. A flexible fuzzy regression algorithm for forecasting oil consumption estimation

    International Nuclear Information System (INIS)

    Azadeh, A.; Khakestani, M.; Saberi, M.

    2009-01-01

    Oil consumption plays a vital role in socio-economic development of most countries. This study presents a flexible fuzzy regression algorithm for forecasting oil consumption based on standard economic indicators. The standard indicators are annual population, cost of crude oil import, gross domestic production (GDP) and annual oil production in the last period. The proposed algorithm uses analysis of variance (ANOVA) to select either fuzzy regression or conventional regression for future demand estimation. The significance of the proposed algorithm is three fold. First, it is flexible and identifies the best model based on the results of ANOVA and minimum absolute percentage error (MAPE), whereas previous studies consider the best fitted fuzzy regression model based on MAPE or other relative error results. Second, the proposed model may identify conventional regression as the best model for future oil consumption forecasting because of its dynamic structure, whereas previous studies assume that fuzzy regression always provide the best solutions and estimation. Third, it utilizes the most standard independent variables for the regression models. To show the applicability and superiority of the proposed flexible fuzzy regression algorithm the data for oil consumption in Canada, United States, Japan and Australia from 1990 to 2005 are used. The results show that the flexible algorithm provides accurate solution for oil consumption estimation problem. The algorithm may be used by policy makers to accurately foresee the behavior of oil consumption in various regions.

  3. Intrinsic flexibility of porous materials; theory, modelling and the flexibility window of the EMT zeolite framework

    International Nuclear Information System (INIS)

    Fletcher, Rachel E.; Wells, Stephen A.; Leung, Ka Ming; Edwards, Peter P.; Sartbaeva, Asel

    2015-01-01

    Framework materials possess intrinsic flexibility which can be investigated using geometric simulation. We review framework flexibility properties in energy materials and present novel results on the flexibility window of the EMT zeolite framework containing 18-crown-6 ether as a structure directing agent (SDA). Framework materials have structures containing strongly bonded polyhedral groups of atoms connected through their vertices. Typically the energy cost for variations of the inter-polyhedral geometry is much less than the cost of distortions of the polyhedra themselves – as in the case of silicates, where the geometry of the SiO 4 tetrahedral group is much more strongly constrained than the Si—O—Si bridging angle. As a result, framework materials frequently display intrinsic flexibility, and their dynamic and static properties are strongly influenced by low-energy collective motions of the polyhedra. Insight into these motions can be obtained in reciprocal space through the ‘rigid unit mode’ (RUM) model, and in real-space through template-based geometric simulations. We briefly review the framework flexibility phenomena in energy-relevant materials, including ionic conductors, perovskites and zeolites. In particular we examine the ‘flexibility window’ phenomenon in zeolites and present novel results on the flexibility window of the EMT framework, which shed light on the role of structure-directing agents. Our key finding is that the crown ether, despite its steric bulk, does not limit the geometric flexibility of the framework

  4. Examination system utilizing ionizing radiation and a flexible, miniature radiation detector probe

    Science.gov (United States)

    Majewski, Stanislaw; Kross, Brian J.; Zorn, Carl J.; Majewski, Lukasz A.

    1996-01-01

    An optimized examination system and method based on the Reverse Geometry X-Ray.RTM. (RGX.RTM.) radiography technique are presented. The examination system comprises a radiation source, at least one flexible, miniature radiation detector probe positioned in appropriate proximity to the object to be examined and to the radiation source with the object located between the source and the probe, a photodetector device attachable to an end of the miniature radiation probe, and a control unit integrated with a display device connected to the photodetector device. The miniature radiation detector probe comprises a scintillation element, a flexible light guide having a first end optically coupled to the scintillation element and having a second end attachable to the photodetector device, and an opaque, environmentally-resistant sheath surrounding the flexible light guide. The probe may be portable and insertable, or may be fixed in place within the object to be examined. An enclosed, flexible, liquid light guide is also presented, which comprises a thin-walled flexible tube, a liquid, preferably mineral oil, contained within the tube, a scintillation element located at a first end of the tube, closures located at both ends of the tube, and an opaque, environmentally-resistant sheath surrounding the flexible tube. The examination system and method have applications in non-destructive material testing for voids, cracks, and corrosion, and may be used in areas containing hazardous materials. In addition, the system and method have applications for medical and dental imaging.

  5. Electrochemical characteristics of flexible micro supercapacitors with reduced graphene oxide-carbon nanotubes composite electrodes

    Science.gov (United States)

    Yang, Kyungwhan; Cho, Kyoungah; Kim, Sangsig

    2018-06-01

    In this study, we fabricate solid-state flexible micro-supercapacitors (MSCs) with reduced graphene oxide-carbon nanotube (rGO-CNT) composite electrodes and investigate the electrochemical characteristics by comparing with those of an MSC with rGO electrodes. Regarding the resistance-capacitance time constant and IR drop, the addition of CNTs into the rGO electrodes shows a significant effect owing to both the decrease in the resistance and the increase in the permeability of the electrolytes. Compared to the rGO MSCs, the rGO-CNT MSCs show an excellent areal capacitance of 2.6 mF/cm2, a smaller IR drop of 11 mV, a lower RC time constant of 6 ms, and faster charging/discharging rates with a high scan rate ability up to 100 V/s. The mechanical stability of the flexible rGO-CNT MSCs is verified by 1000 bending cycles. In addition, the electrochemical characteristics of the flexible rGO-CNT MSCs are maintained regardless of the MSC array type.

  6. Cross-Linked Poly(vinylidene fluoride-co-hexafluoropropene (PVDF-co-HFP Gel Polymer Electrolyte for Flexible Li-Ion Battery Integrated with Organic Light Emitting Diode (OLED

    Directory of Open Access Journals (Sweden)

    Ilhwan Kim

    2018-04-01

    Full Text Available Here, we fabricate poly(vinylidene fluoride-co-hexafluoropropene (PVDF-co-HFP by electrospinning for a gel polymer electrolyte (GPE for use in flexible Li-ion batteries (LIBs. As a solvent, we use N-methyl-2-pyrrolidone (NMP, which helps produce the cross-linked morphology of PVDF-co-HFP separator, owing to its low volatility. The cross-linked PVDF-co-HFP separator shows an uptake rate higher than that of a commercialized polypropylene (PP separator. Moreover, the PVDF-co-HFP separator shows an ionic conductivity of 2.3 × 10−3 S/cm at room temperature, comparable with previously reported values. An LIB full-cell assembled with the PVDF-co-HFP-based GPE shows capacities higher than its counterpart with the commercialized PP separator, confirming that the cross-linked PVDF-co-HFP separator provides highly efficient ionic conducting pathways. In addition, we integrate a flexible LIB cell using the PVDF-co-HFP GPE with a flexible organic light emitting diode (OLED, demonstrating a fully flexible unit of LIB and OLED.

  7. Recent Advances in Flexible/Stretchable Supercapacitors for Wearable Electronics.

    Science.gov (United States)

    Li, La; Lou, Zheng; Chen, Di; Jiang, Kai; Han, Wei; Shen, Guozhen

    2017-11-22

    The popularization of personalized wearable devices has accelerated the development of flexible/stretchable supercapacitors (SCs) that possess remarkable features of miniaturization, high security, and easy integration to build an all-in-one integrated system, and realize the functions of comfortable, noninvasive and continuous health monitoring, motion records, and information acquisition, etc. This Review presents a brief phylogeny of flexible/stretchable SCs, represented by planar micro-supercapacitors (MSCs) and 1D fibrous SCs. The latest progress and advantages of different flexible/stretchable/self-healing substrate, solid-state electrolyte and electrode materials for the fabrication of wearable SCs devices are summarized. The various configurations used in planar MSCs and 1D fibrous SCs aiming at the improvement of performance are also discussed. In addition, from the viewpoint of practical value and large-scale production, a survey of integrated systems, from different types of SC powered wearable sensing (gas, pressure, tactile…) systems, wearable all-in-one systems (including energy harvest, storage, and functional groups), to device packaging is presented. Finally, the challenges and future perspectives of wearable SCs are also considered. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Flexible Light Emission Diode Arrays Made of Transferred Si Microwires-ZnO Nanofilm with Piezo-Phototronic Effect Enhanced Lighting.

    Science.gov (United States)

    Li, Xiaoyi; Liang, Renrong; Tao, Juan; Peng, Zhengchun; Xu, Qiming; Han, Xun; Wang, Xiandi; Wang, Chunfeng; Zhu, Jing; Pan, Caofeng; Wang, Zhong Lin

    2017-04-25

    Due to the fragility and the poor optoelectronic performances of Si, it is challenging and exciting to fabricate the Si-based flexible light-emitting diode (LED) array devices. Here, a flexible LED array device made of Si microwires-ZnO nanofilm, with the advantages of flexibility, stability, lightweight, and energy savings, is fabricated and can be used as a strain sensor to demonstrate the two-dimensional pressure distribution. Based on piezo-phototronic effect, the intensity of the flexible LED array can be increased more than 3 times (under 60 MPa compressive strains). Additionally, the device is stable and energy saving. The flexible device can still work well after 1000 bending cycles or 6 months placed in the atmosphere, and the power supplied to the flexible LED array is only 8% of the power of the surface-contact LED. The promising Si-based flexible device has wide range application and may revolutionize the technologies of flexible screens, touchpad technology, and smart skin.

  9. Metal-mediated aminocatalysis provides mild conditions: Enantioselective Michael addition mediated by primary amino catalysts and alkali-metal ions

    Directory of Open Access Journals (Sweden)

    Matthias Leven

    2013-01-01

    Full Text Available Four catalysts based on new amides of chiral 1,2-diamines and 2-sulfobenzoic acid have been developed. The alkali-metal salts of these betaine-like amides are able to form imines with enones, which are activated by Lewis acid interaction for nucleophilic attack by 4-hydroxycoumarin. The addition of 4-hydroxycoumarin to enones gives ee’s up to 83% and almost quantitative yields in many cases. This novel type of catalysis provides an effective alternative to conventional primary amino catalysis were strong acid additives are essential components.

  10. Free-form Flexible Lithium-Ion Microbattery

    KAUST Repository

    Kutbee, Arwa T.

    2016-03-02

    Wearable electronics need miniaturized, safe and flexible power sources. Lithium ion battery is a strong candidate as high performance flexible battery. The development of flexible materials for battery electrodes suffers from the limited material choices. In this work, we present integration strategy to rationally design materials and processes to report flexible inorganic lithium-ion microbattery with no restrictions on the materials used. The battery shows an enhanced normalized capacity of 147 μAh/cm2 when bent.

  11. 3D inkjet printed flexible and wearable antenna systems

    KAUST Repository

    Shamim, Atif

    2017-12-22

    With the advent of wearable sensors and internet of things (IoT), there is a new focus on electronics which can be bent so that they can be worn or mounted on non-planar objects. Moreover, there is a requirement that these electronics become extremely low cost, to the extent that they become disposable. The flexible and low cost aspects can be addressed by adapting additive manufacturing technologies such as inkjet printing and 3D printing. This paper presents inkjet printing as an emerging new technique to realize low cost, flexible and wearable antenna systems. The ability of inkjet printing to realize electronics on unconventional mediums such as plastics, papers, and textiles has opened up a plethora of new applications. A variety of antennas such as wide-band, multiband, and wearable, etc, which have been realized through additive manufacturing techniques are shown. Many system level examples are also shown, primarily for wireless sensing applications. The promising results of these designs indicate that the day when electronics can be printed like newspapers and magazines through roll-to-roll and reel-to-reel printing is not far away.

  12. Flexible Programmes in Higher Professional Education: Expert Validation of a Flexible Educational Model

    Science.gov (United States)

    Schellekens, Ad; Paas, Fred; Verbraeck, Alexander; van Merrienboer, Jeroen J. G.

    2010-01-01

    In a preceding case study, a process-focused demand-driven approach for organising flexible educational programmes in higher professional education (HPE) was developed. Operations management and instructional design contributed to designing a flexible educational model by means of discrete-event simulation. Educational experts validated the model…

  13. Van der Waals epitaxy of functional MoO{sub 2} film on mica for flexible electronics

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Chun-Hao [Department of Electrical Engineering, National Tsing Hua University, 30013 Hsinchu, Taiwan (China); Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Lin, Jheng-Cyuan [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Liu, Heng-Jui; Do, Thi Hien [Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Zhu, Yuan-Min; Zhan, Qian [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Ha, Thai Duy; Juang, Jenh-Yih [Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan (China); He, Qing [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Arenholz, Elke [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Chiu, Po-Wen, E-mail: pwchiu@ee.nthu.edu.tw [Department of Electrical Engineering, National Tsing Hua University, 30013 Hsinchu, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan (China); Chu, Ying-Hao, E-mail: yhc@nctu.edu.tw [Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan (China)

    2016-06-20

    Flexible electronics have a great potential to impact consumer electronics and with that our daily life. Currently, no direct growth of epitaxial functional oxides on commercially available flexible substrates is possible. In this study, in order to address this challenge, muscovite, a common layered oxide, is used as a flexible substrate that is chemically similar to typical functional oxides. We fabricated epitaxial MoO{sub 2} films on muscovite via pulsed laser deposition technique. A combination of X-ray diffraction and transmission electron microscopy confirms van der Waals epitaxy of the heterostructures. The electrical transport properties of MoO{sub 2} films are similar to those of the bulk. Flexible or free-standing MoO{sub 2} thin film can be obtained and serve as a template to integrate additional functional oxide layers. Our study demonstrates a remarkable concept to create flexible electronics based on functional oxides.

  14. Flexible position probe assembly

    International Nuclear Information System (INIS)

    Schmitz, J.J.

    1977-01-01

    The combination of a plurality of tubular transducer sections and a flexible supporting member extending through the tubular transducer sections forms a flexible elongated probe of a design suitable for monitoring the level of an element, such as a nuclear magnetically permeable control rod or liquid. 3 claims, 23 figures

  15. Flexible Learning Environments: Leveraging the Affordances of Flexible Delivery and Flexible Learning

    Science.gov (United States)

    Hill, Janette R.

    2006-01-01

    The purpose of this article is to explore the key features of "flexible learning environments" (FLEs). Key principles associated with FLEs are explained. Underlying tenets and support mechanisms necessary for the implementation of FLEs are described. Similarities and differences in traditional learning and FLEs are explored. Finally, strategies…

  16. Aggregation of demand side flexibility in a smart grid: A review for European market design

    OpenAIRE

    Eid , Cherrelle; Codani , Paul; Chen , Yurong; Perez , Yannick; Hakvoort , Rudi

    2015-01-01

    International audience; The increased share of renewable generation and the integration of Distributed Generation (DG) require more electricity system flexibility. One way to increase this flexibility is to use the potentials of demand response (DR). In order to activate the full range of customers in DR, a new market intermediary actor is needed to aggregate the resources in an adequate technical and economical format. These actors, so called " aggregators " , can act as flexibility provider...

  17. Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs.

    Science.gov (United States)

    Zhang, Ye; Bai, Wenyu; Cheng, Xunliang; Ren, Jing; Weng, Wei; Chen, Peining; Fang, Xin; Zhang, Zhitao; Peng, Huisheng

    2014-12-22

    The construction of lightweight, flexible and stretchable power systems for modern electronic devices without using elastic polymer substrates is critical but remains challenging. We have developed a new and general strategy to produce both freestanding, stretchable, and flexible supercapacitors and lithium-ion batteries with remarkable electrochemical properties by designing novel carbon nanotube fiber springs as electrodes. These springlike electrodes can be stretched by over 300 %. In addition, the supercapacitors and lithium-ion batteries have a flexible fiber shape that enables promising applications in electronic textiles. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Flexible experimental FPGA based platform

    DEFF Research Database (Denmark)

    Andersen, Karsten Holm; Nymand, Morten

    2016-01-01

    This paper presents an experimental flexible Field Programmable Gate Array (FPGA) based platform for testing and verifying digital controlled dc-dc converters. The platform supports different types of control strategies, dc-dc converter topologies and switching frequencies. The controller platform...... interface supporting configuration and reading of setup parameters, controller status and the acquisition memory in a simple way. The FPGA based platform, provides an easy way within education or research to use different digital control strategies and different converter topologies controlled by an FPGA...

  19. Investing in biogas: Timing, technological choice and the value of flexibility from input mix

    International Nuclear Information System (INIS)

    Di Corato, Luca; Moretto, Michele

    2011-01-01

    In a stochastic dynamic frame, we study the technology choice problem of a continuous co-digestion biogas plant where input factors are substitutes but need to be mixed together to provide output. Given any initial rule for the composition of the feedstock, we consider the possibility of revising it if economic circumstances make it profitable. Flexibility in the mix is an advantage under randomly fluctuating input costs and comes at a higher investment cost. We show that the degree of flexibility in the productive technology installed depends on the value of the option to profitably re-arrange the input mix. Such option adds value to the project in that it provides a device for hedging against fluctuations in the input relative convenience. Accounting for such value we discuss the trade-off between investment timing and profit smoothing flexibility. - Research highlights: ► We study the technology choice problem of a continuous co-digestion biogas plant where input factors are substitutes but need to be mixed together to provide output. ► We show that the degree of flexibility in the productive technology installed depends on the value of the option to profitably re-arrange the input mix. ► Such option adds value to the project in that it provides a device for hedging against fluctuations in the input relative convenience.

  20. Flexible MOFs under stress: pressure and temperature.

    Science.gov (United States)

    Clearfield, Abraham

    2016-03-14

    In the recent past an enormous number of Metal-Organic Framework type compounds (MOFs) have been synthesized. The novelty resides in their extremely high surface area and the ability to include additional features to their structure either during synthesis or as additives to the MOF. This versatility allows for MOFs to be designed for specific applications. However, the question arises as to whether a particular MOF can withstand the stress that may be encountered in fulfillment of the designated application. In this study we describe the behavior of two flexible MOFs under pressure and several others under temperature increase. The pressure study includes both experimental and theoretical calculations. In the thermal processes evidence for colossal negative thermal expansion were encountered.

  1. Space robots with flexible appendages: Dynamic modeling, coupling measurement, and vibration suppression

    Science.gov (United States)

    Meng, Deshan; Wang, Xueqian; Xu, Wenfu; Liang, Bin

    2017-05-01

    For a space robot with flexible appendages, vibrations of flexible structure can be easily excited during both orbit and/or attitude maneuvers of the base and the operation of the manipulators. Hence, the pose (position and attitude) of the manipulator's end-effector will greatly deviate from the desired values, and furthermore, the motion of the manipulator will trigger and exacerbate vibrations of flexible appendages. Given lack of the atmospheric damping in orbit, the vibrations will last for quite a while and cause the on-orbital tasks to fail. We derived the rigid-flexible coupling dynamics of a space robot system with flexible appendages and established a coupling model between the flexible base and the space manipulator. A specific index was defined to measure the coupling degree between the flexible motion of the appendages and the rigid motion of the end-effector. Then, we analyzed the dynamic coupling for different conditions, such as modal displacements, joint angles (manipulator configuration), and mass properties. Moreover, the coupling map was adopted and drawn to represent the coupling motion. Based on this map, a trajectory planning method was addressed to suppress structure vibration. Finally, simulation studies of typical cases were performed, which verified the proposed models and method. This work provides a theoretic basis for the system design, performance evaluation, trajectory planning, and control of such space robots.

  2. Design of variable energy and price components of electricity tariffs as an incentive for system-efficient energy management of flexible consumers in households; Design variabler Energie- und Leistungspreiskomponenten von Stromtarifen als Anreiz fuer ein systemdienliches Energiemanagement flexibler Verbraucher in Haushalten

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, Michael

    2017-11-01

    To mitigate anthropogenic climate change, both the heating and transport sectors will need to be electrically driven, with the higher electrical demand met by emission-free technologies, in addition to general efficiency improvements. On the generation side, wind and photovoltaic power plants must have a rated power significantly exceeding the current peak demand, in order to cover this increased electrical requirement. On the consumption side, heat pumps and private electric vehicles will increase the percentage of energy withdrawn at the low-voltage level of the new system. Given the right incentives, these customers will shift the energy demand in such a way as to benefit the system. This flexibility can be used as a tool to deal with variable renewable insertion while avoiding simultaneous overloading of the power grid. This thesis analyses and evaluates the effects of different electricity tariff designs on energy consumption. These tariffs should incentivise households to adapt their energy consumption to market prices, without inducing critical peak demands in times of particularly low prices. Therefore, time-varying energy price components and power price components are combined into flexible electricity tariffs and implemented as target functions within an optimization problem. The cost-minimizing effect of household energy management is determined under these flexible tariffs, and the effects of the tariff designs on energy consumption and the induced costs are evaluated. Additionally, the results of the flexible tariff approach are compared with results from a centralized optimization by a virtual power plant. It is possible to develop a design for a suitable flexible tariff that decreases the energy procurement costs of electric vehicles while simultaneously reducing peak demand in comparison to a single real-time pricing incentive. Furthermore, this thesis shows that certain kinds of electricity tariff design do not only fail to support but actually

  3. An organizational model to support the flexible workflow based on ontology

    International Nuclear Information System (INIS)

    Yuan Feng; Li Xudong; Zhu Guangying; Zhang Xiankun

    2012-01-01

    Based on ontology theory, the paper addresses an organizational model for flexible workflow. Firstly, the paper describes the conceptual model of the organizational model on ontology chart, which provides a consistent semantic framework of organization. Secondly, the paper gives the formalization of the model and describes the six key ontology elements of the mode in detail. Finally, the paper discusses deeply how the model supports the flexible workflow and indicates that the model has the advantages of cross-area, cross-organization and cross-domain, multi-process support and scalability. Especially, because the model is represented by ontology, the paper produces the conclusion that the model has covered the defect of unshared feature in traditional models, at the same time, it is more capable and flexible. (authors)

  4. Pyvolve: A Flexible Python Module for Simulating Sequences along Phylogenies.

    Science.gov (United States)

    Spielman, Stephanie J; Wilke, Claus O

    2015-01-01

    We introduce Pyvolve, a flexible Python module for simulating genetic data along a phylogeny using continuous-time Markov models of sequence evolution. Easily incorporated into Python bioinformatics pipelines, Pyvolve can simulate sequences according to most standard models of nucleotide, amino-acid, and codon sequence evolution. All model parameters are fully customizable. Users can additionally specify custom evolutionary models, with custom rate matrices and/or states to evolve. This flexibility makes Pyvolve a convenient framework not only for simulating sequences under a wide variety of conditions, but also for developing and testing new evolutionary models. Pyvolve is an open-source project under a FreeBSD license, and it is available for download, along with a detailed user-manual and example scripts, from http://github.com/sjspielman/pyvolve.

  5. Value of flexible bronchoscopy in the pre-operative work-up of solitary pulmonary nodules.

    Science.gov (United States)

    Schwarz, Carsten; Schönfeld, Nicolas; Bittner, Roland C; Mairinger, Thomas; Rüssmann, Holger; Bauer, Torsten T; Kaiser, Dirk; Loddenkemper, Robert

    2013-01-01

    The diagnostic value of flexible bronchoscopy in the pre-operative work-up of solitary pulmonary nodules (SPN) is still under debate among pneumologists, radiologists and thoracic surgeons. In a prospective observational manner, flexible bronchoscopy was routinely performed in 225 patients with SPN of unknown origin. Of the 225 patients, 80.5% had lung cancer, 7.6% had metastasis of an extrapulmonary primary tumour and 12% had benign aetiology. Unsuspected endobronchial involvement was found in 4.4% of all 225 patients (or in 5.5% of patients with lung cancer). In addition, flexible bronchoscopy clarified the underlying aetiology in 41% of the cases. The bronchoscopic biopsy results from the SPN were positive in 84 (46.5%) patients with lung cancer. Surgery was cancelled due to the results of flexible bronchoscopy in four cases (involvement of the right main bronchus (impaired pulmonary function did not allow pneumonectomy) n=1, small cell lung cancer n=1, bacterial pneumonia n=2), and the surgical strategy had to be modified to bilobectomy in one patient. Flexible bronchoscopy changed the planned surgical approach in five cases substantially. These results suggest that routine flexible bronchoscopy should be included in the regular pre-operative work-up of patients with SPN.

  6. Impact of High-Fidelity Simulation and Pharmacist-Specific Didactic Lectures in Addition to ACLS Provider Certification on Pharmacy Resident ACLS Performance.

    Science.gov (United States)

    Bartel, Billie J

    2014-08-01

    This pilot study explored the use of multidisciplinary high-fidelity simulation and additional pharmacist-focused training methods in training postgraduate year 1 (PGY1) pharmacy residents to provide Advanced Cardiovascular Life Support (ACLS) care. Pharmacy resident confidence and comfort level were assessed after completing these training requirements. The ACLS training requirements for pharmacy residents were revised to include didactic instruction on ACLS pharmacology and rhythm recognition and participation in multidisciplinary high-fidelity simulation ACLS experiences in addition to ACLS provider certification. Surveys were administered to participating residents to assess the impact of this additional education on resident confidence and comfort level in cardiopulmonary arrest situations. The new ACLS didactic and simulation training requirements resulted in increased resident confidence and comfort level in all assessed functions. Residents felt more confident in all areas except providing recommendations for dosing and administration of medications and rhythm recognition after completing the simulation scenarios than with ACLS certification training and the didactic components alone. All residents felt the addition of lectures and simulation experiences better prepared them to function as a pharmacist in the ACLS team. Additional ACLS training requirements for pharmacy residents increased overall awareness of pharmacist roles and responsibilities and greatly improved resident confidence and comfort level in performing most essential pharmacist functions during ACLS situations. © The Author(s) 2013.

  7. Flexible weapons architecture design

    Science.gov (United States)

    Pyant, William C., III

    Present day air-delivered weapons are of a closed architecture, with little to no ability to tailor the weapon for the individual engagement. The closed architectures require weaponeers to make the target fit the weapon instead of fitting the individual weapons to a target. The concept of a flexible weapons aims to modularize weapons design using an open architecture shell into which different modules are inserted to achieve the desired target fractional damage while reducing cost and civilian casualties. This thesis shows that the architecture design factors of damage mechanism, fusing, weapons weight, guidance, and propulsion are significant in enhancing weapon performance objectives, and would benefit from modularization. Additionally, this thesis constructs an algorithm that can be used to design a weapon set for a particular target class based on these modular components.

  8. AUTOMATED LOW-COST PHOTOGRAMMETRY FOR FLEXIBLE STRUCTURE MONITORING

    Directory of Open Access Journals (Sweden)

    C. H. Wang

    2012-07-01

    Full Text Available Structural monitoring requires instruments which can provide high precision and accuracy, reliable measurements at good temporal resolution and rapid processing speeds. Long-term campaigns and flexible structures are regarded as two of the most challenging subjects in monitoring engineering structures. Long-term monitoring in civil engineering is generally considered to be labourintensive and financially expensive and it can take significant effort to arrange the necessary human resources, transportation and equipment maintenance. When dealing with flexible structure monitoring, it is of paramount importance that any monitoring equipment used is able to carry out rapid sampling. Low cost, automated, photogrammetric techniques therefore have the potential to become routinely viable for monitoring non-rigid structures. This research aims to provide a photogrammetric solution for long-term flexible structural monitoring purposes. The automated approach was achieved using low-cost imaging devices (mobile phones to replace traditional image acquisition stations and substantially reduce the equipment costs. A self-programmed software package was developed to deal with the hardware-software integration and system operation. In order to evaluate the performance of this low-cost monitoring system, a shaking table experiment was undertaken. Different network configurations and target sizes were used to determine the best configuration. A large quantity of image data was captured by four DSLR cameras and four mobile phone cameras respectively. These image data were processed using photogrammetric techniques to calculate the final results for the system evaluation.

  9. A Contextual Behavior Science Framework for Understanding How Behavioral Flexibility Relates to Anxiety.

    Science.gov (United States)

    Palm Reed, Kathleen M; Cameron, Amy Y; Ameral, Victoria E

    2017-09-01

    There is a growing literature focusing on the emerging idea that behavioral flexibility, rather than particular emotion regulation strategies per se, provides greater promise in predicting and influencing anxiety-related psychopathology. Yet this line of research and theoretical analysis appear to be plagued by its own challenges. For example, middle-level constructs, such as behavioral flexibility, are difficult to define, difficult to measure, and difficult to interpret in relation to clinical interventions. A key point that some researchers have made is that previous studies examining flexible use of emotion regulation strategies (or, more broadly, coping) have failed due to a lack of focus on context. That is, examining strategies in isolation of the context in which they are used provides limited information on the suitability, rigid adherence, or effectiveness of a given strategy in that situation. Several of these researchers have proposed the development of new models to define and measure various types of behavioral flexibility. We would like to suggest that an explanation of the phenomenon already exists and that we can go back to our behavioral roots to understand this phenomenon rather than focusing on defining and capturing a new process. Indeed, thorough contextual behavioral analyses already yield a useful account of what has been observed. We will articulate a model explaining behavioral flexibility using a functional, contextual framework, with anxiety-related disorders as an example.

  10. Application of the random coil index to studying protein flexibility

    Energy Technology Data Exchange (ETDEWEB)

    Berjanskii, Mark V.; Wishart, David S. [University of Alberta, Department of Computing Science (Canada)], E-mail: david.wishart@ualberta.ca

    2008-01-15

    Protein flexibility lies at the heart of many protein-ligand binding events and enzymatic activities. However, the experimental measurement of protein motions is often difficult, tedious and error-prone. As a result, there is a considerable interest in developing simpler and faster ways of quantifying protein flexibility. Recently, we described a method, called Random Coil Index (RCI), which appears to be able to quantitatively estimate model-free order parameters and flexibility in protein structural ensembles using only backbone chemical shifts. Because of its potential utility, we have undertaken a more detailed investigation of the RCI method in an attempt to ascertain its underlying principles, its general utility, its sensitivity to chemical shift errors, its sensitivity to data completeness, its applicability to other proteins, and its general strengths and weaknesses. Overall, we find that the RCI method is very robust and that it represents a useful addition to traditional methods of studying protein flexibility. We have implemented many of the findings and refinements reported here into a web server that allows facile, automated predictions of model-free order parameters, MD RMSF and NMR RMSD values directly from backbone {sup 1}H, {sup 13}C and {sup 15}N chemical shift assignments. The server is available at http: //wishart.biology.ualberta.ca/rcihttp://wishart.biology.ualberta.ca/rci.

  11. Software industrial flexible

    OpenAIRE

    Díaz Araya, Daniel; Muñoz, Leandro; Sirerol, Daniel; Oviedo, Sandra; Ibáñez, Francisco S.

    2012-01-01

    En este trabajo se pretende investigar y proponer técnicas, métodos y tecnologías que permitan el desarrollo de software flexible en ambientes industriales. El objetivo es generar métodos y técnicas para facilitar el desarrollo de software flexible en ambientes industriales. Las áreas de investigación son los sistemas de scheduling de producción, la generación de software para plataformas de hardware abiertas y la innovación.

  12. Flexible Al-doped ZnO films grown on PET substrates using linear facing target sputtering for flexible OLEDs

    International Nuclear Information System (INIS)

    Jeong, Jin-A; Shin, Hyun-Su; Choi, Kwang-Hyuk; Kim, Han-Ki

    2010-01-01

    We report the characteristics of flexible Al-doped zinc oxide (AZO) films prepared by a plasma damage-free linear facing target sputtering (LFTS) system on PET substrates for use as a flexible transparent conducting electrode in flexible organic light-emitting diodes (OLEDs). The electrical, optical and structural properties of LFTS-grown flexible AZO electrodes were investigated as a function of dc power. We obtained a flexible AZO film with a sheet resistance of 39 Ω/□ and an average transmittance of 84.86% in the visible range although it was sputtered at room temperature without activation of the Al dopant. Due to the effective confinement of the high-density plasma between the facing AZO targets, the AZO film was deposited on the PET substrate without plasma damage and substrate heating caused by bombardment of energy particles. Moreover, the flexible OLED fabricated on the AZO/PET substrate showed performance similar to the OLED fabricated on a ITO/PET substrate in spite of a lower work function. This indicates that LFTS is a promising plasma damage-free and low-temperature sputtering technique for deposition of flexible and indium-free AZO electrodes for use in cost-efficient flexible OLEDs.

  13. Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems

    DEFF Research Database (Denmark)

    Finck, Christian; Li, Rongling; Kramer, Rick

    2018-01-01

    restricted by power-to-heat conversion such as heat pumps and thermal energy storage possibilities of a building. To quantify building demand flexibility, it is essential to capture the dynamic response of the building energy system with thermal energy storage. To identify the maximum flexibility a building......’s energy system can provide, optimal control is required. In this paper, optimal control serves to determine in detail demand flexibility of an office building equipped with heat pump, electric heater, and thermal energy storage tanks. The demand flexibility is quantified using different performance...... of TES and power-to-heat in any case of charging, discharging or idle mode. A simulation case study is performed showing that a water tank, a phase change material tank, and a thermochemical material tank integrated with building heating system can be designed to provide flexibility with optimal control....

  14. Microfluidic-assisted fabrication of flexible and location traceable organo-motor.

    Science.gov (United States)

    Seo, Kyoung Duck; Kwak, Byung Kook; Sanchez, Samuel; Kim, Dong Sung

    2015-04-01

    In this paper, we fabricate a flexible and location traceable micromotor, called organo-motor, assisted by microfluidic devices and with high throughput. The organo-motors are composed of organic hydrogel material, poly (ethylene glycol) diacrylate (PEGDA), which can provide the flexibility of their structure. For spatial and temporal traceability of the organo-motors under magnetic resonance imaging (MRI), superparamagnetic iron oxide nanoparticles (SPION; Fe3O4) were incorporated into the PEGDA microhydrogels. Furthermore, a thin layer of platinum (Pt) was deposited onto one side of the SPION-PEGDA microhydrogels providing geometrical asymmetry and catalytic propulsion in aqueous fluids containing hydrogen peroxide solution, H2O2. Furthermore, the motion of the organo-motor was controlled by a small external magnet enabled by the presence of SPION in the motor architecture.

  15. Labour Market Flexibility and Employment Adjustment: Micro Evidence from UK Establishments.

    OpenAIRE

    Haskel, Jonathan; Kersley, Barbara; Martin, Christopher

    1997-01-01

    In this paper, the authors study how firms react to demand shocks, examining how different aspects of flexibility shape their responses. Their main findings are that very few firms choose to adjust to price in response to a demand shock and that firms with more flexibility are more likely to respond to demand shocks by adjusting employment and hours. The authors' results provide a microeconomic explanation for recent macroeconomic evidence that labor input has become more closely aligned to t...

  16. Flexible electronic feedback using the virtues of progress testing.

    Science.gov (United States)

    Muijtjens, Arno M M; Timmermans, Ilske; Donkers, Jeroen; Peperkamp, Robert; Medema, Harro; Cohen-Schotanus, Janke; Thoben, Arnold; Wenink, Arnold C G; van der Vleuten, Cees P M

    2010-01-01

    The potential richness of the feedback for learners and teachers is one of the educational advantages of progress tests (PTs). Every test administration yields information on a student's knowledge level in each sub-domain of the test (cross-sectional information), and it adds a next point to the corresponding knowledge growth curve (longitudinal information). Traditional paper-based feedback has severe limitations and requires considerable effort from the learners to give meaning to the data. We reasoned that the PT data should be flexibly accessible in all pathways and with any available comparison data, according to the personal interest of the learner. For that purpose, a web-based tool (Progress test Feedback, the ProF system) was developed. This article presents the principles and features of the generated feedback and shows how it can be used. In addition to enhancement of the feedback, the ProF database of longitudinal PT-data also provides new opportunities for research on knowledge growth, and these are currently being explored.

  17. A Flexible Binding Site Architecture Provides New Insights into CcpA Global Regulation in Gram-Positive Bacteria

    Directory of Open Access Journals (Sweden)

    Yunpeng Yang

    2017-01-01

    Full Text Available Catabolite control protein A (CcpA is the master regulator in Gram-positive bacteria that mediates carbon catabolite repression (CCR and carbon catabolite activation (CCA, two fundamental regulatory mechanisms that enable competitive advantages in carbon catabolism. It is generally regarded that CcpA exerts its regulatory role by binding to a typical 14- to 16-nucleotide (nt consensus site that is called a catabolite response element (cre within the target regions. However, here we report a previously unknown noncanonical flexible architecture of the CcpA-binding site in solventogenic clostridia, providing new mechanistic insights into catabolite regulation. This novel CcpA-binding site, named crevar, has a unique architecture that consists of two inverted repeats and an intervening spacer, all of which are variable in nucleotide composition and length, except for a 6-bp core palindromic sequence (TGTAAA/TTTACA. It was found that the length of the intervening spacer of crevar can affect CcpA binding affinity, and moreover, the core palindromic sequence of crevar is the key structure for regulation. Such a variable architecture of crevar shows potential importance for CcpA’s diverse and fine regulation. A total of 103 potential crevar sites were discovered in solventogenic Clostridium acetobutylicum, of which 42 sites were picked out for electrophoretic mobility shift assays (EMSAs, and 30 sites were confirmed to be bound by CcpA. These 30 crevar sites are associated with 27 genes involved in many important pathways. Also of significance, the crevar sites are found to be widespread and function in a great number of taxonomically different Gram-positive bacteria, including pathogens, suggesting their global role in Gram-positive bacteria.

  18. Variability of the Cyclin-Dependent Kinase 2 Flexibility Without Significant Change in the Initial Conformation of the Protein or Its Environment; a Computational Study.

    Science.gov (United States)

    Taghizadeh, Mohammad; Goliaei, Bahram; Madadkar-Sobhani, Armin

    2016-06-01

    addition, it could provide a better computational calculation of the protein flexibility, which is, especially important in the comparative studies of the proteins' flexibility.

  19. Techno-economic optimization of flexible biogas concepts in the context of EEG; Technisch-oekonomische Optimierung von flexiblen Biogaskonzepten im Kontext des EEG

    Energy Technology Data Exchange (ETDEWEB)

    Barchmann, Tino; Lauer, Markus [DBFZ Deutsches Biomasseforschungszentrum gemeinnuetzige GmbH, Leipzig (Germany)

    2014-08-01

    Due to the introduction of direct marketing and flexibility premium of renewable energy by the Renewable Energy Act 2012 (EEG 2012), incentives were created to favour a more demand-oriented power supply from biogas plants (BGA). The decision for such an operational mode depends on on-site conversion units on the economic outcome of the plants throughout the whole operating time. To install new plants or transfer existing plants into a flexible mode of operation, investments in additional and more efficient combined heat and power plants (CHP), in additional gas and/or heat storage and other technical components are necessary. The analyses show that the flexibility premium, as an extra of the market premium model, creates the greatest incentive for a more flexible generation of electricity from biogas. In addition, an intelligent management optimization can generate additional revenues on EPEX SPOT SE and balancing energy market. The additional revenues of more demand-oriented power supply from biogas plants are highly dependent on plant-specific conditions. From an economic perspective, a duplication of the installed electrical capacity seems to be the most beneficial option for a transition to a demand-driven operation mode of an average biogas model plant under the current legal framework (EEG 2012).

  20. Mechanistic modelling of weak interlayers in flexible and semi-flexible road pavements: Part 2

    CSIR Research Space (South Africa)

    De Beer, Morris

    2012-04-01

    Full Text Available This paper (Part 2 of a two-part set of papers) discusses models and illustrates the adverse effects of weak layers, interlayers, laminations and/or weak interfaces in flexible and semi-flexible pavements, also incorporating lightly cemented layers...

  1. Adaptive precompensators for flexible-link manipulator control

    Science.gov (United States)

    Tzes, Anthony P.; Yurkovich, Stephen

    1989-01-01

    The application of input precompensators to flexible manipulators is considered. Frequency domain compensators color the input around the flexible mode locations, resulting in a bandstop or notch filter in cascade with the system. Time domain compensators apply a sequence of impulses at prespecified times related to the modal frequencies. The resulting control corresponds to a feedforward term that convolves in real-time the desired reference input with a sequence of impulses and produces a vibration-free output. An adaptive precompensator can be implemented by combining a frequency domain identification scheme which is used to estimate online the modal frequencies and subsequently update the bandstop interval or the spacing between the impulses. The combined adaptive input preshaping scheme provides the most rapid slew that results in a vibration-free output. Experimental results are presented to verify the results.

  2. Analysis of flexible structures under lateral impact

    International Nuclear Information System (INIS)

    Ramirez, D. F.; Razavi, H.

    2012-01-01

    Three methods for analysis of flexible structures under lateral impact are presented. The first proposed method (Method A) consists of: (1) modifying an available deceleration on a rigid target with conservation principles to account for structural flexibility; and (2) transient nonlinear analysis of the structure with the corrected forcing function. The second proposed method (Method B) is similar to Method A in obtaining the forcing function but it solves the equations of motion of an idealized two-degree-of-freedom system instead of directly using conservation principles. The last method simply provides the maximum force in the structure using the conservation of energy and linear momentum. A coupled simulation is also performed in LS-DYNA and compared against the proposed methods. A case study is presented to illustrate the applicability of all three methods and the LS-DYNA simulation. (authors)

  3. Combined cycle design flexibility in today's market

    International Nuclear Information System (INIS)

    DeRidder, W.N.; Knott, S.J.

    1995-01-01

    In the power generation industry, non utility generators (NUG's) comprise a significant portion of new generation growth as electricity demands exceed existing utility capacities. These NUG's are developed by customers with widely varying experiences; bankers, lawyers, architect engineers, original equipment manufacturers, and other organizations involved in such diverse industries as petrochemical, pulp and paper, and steel making. The demands of these customers can be significantly varied in terms of features such as capacity factor, operability, maintainability, equipment redundancy, acceptable design practices, and many others. In addition, both the utility and NUG industries demand flexibility due to external influences such as regulatory policies, environmental conditions new design technologies, and emerging global markets. All of these factors are subject to wide variation across different market regions and even within a given region. This paper discusses the development of a reference plant design approach which focuses on customer flexibility while maximizing the use of proven designs. This approach allows basic system designs to be modified in a modular fashion to meet the differing demands of utility and NUG customers

  4. Undermining the rules in home care services for the elderly in Norway: flexibility and cooperation.

    Science.gov (United States)

    Wollscheid, Sabine; Eriksen, John; Hallvik, Jørgen

    2013-06-01

    This study explores the provision of home care services (home nursing and domiciliary help) for the elderly in Norwegian municipalities with purchaser-provider split model. The study draws on the assumption that flexibility in adjusting services to the care receivers' needs, and cooperation between provider and purchasers are indicators of good quality of care. Data were collected through semi-structured telephone interviews with 22 team leaders of provider units in nine municipalities. Data were collected in 2008-2009. The study has been approved by the Norwegian Social Science Data Services. We identified four different ways of organising home care services under a purchaser-provider split model: Provider empowerment, New Public Management, Vague instructions and undermining the rules. High flexibility in providing care and cooperation with the purchaser unit were identified by the team leaders as characteristics for good care. Our findings suggest that the care providers use individual strategies that allow flexibility and cooperation rather than rigidly abiding to the regulations the purchaser-provider split models implies. Ironically, in provider units where the 'rules were undermined', the informants (team leaders of provider units) seemed to be most satisfied with the quality of home care that they delivered. © 2012 Nordic College of Caring Science.

  5. Hyperspectral Imaging Using Flexible Endoscopy for Laryngeal Cancer Detection

    Directory of Open Access Journals (Sweden)

    Bianca Regeling

    2016-08-01

    Full Text Available Hyperspectral imaging (HSI is increasingly gaining acceptance in the medical field. Up until now, HSI has been used in conjunction with rigid endoscopy to detect cancer in vivo. The logical next step is to pair HSI with flexible endoscopy, since it improves access to hard-to-reach areas. While the flexible endoscope’s fiber optic cables provide the advantage of flexibility, they also introduce an interfering honeycomb-like pattern onto images. Due to the substantial impact this pattern has on locating cancerous tissue, it must be removed before the HS data can be further processed. Thereby, the loss of information is to minimize avoiding the suppression of small-area variations of pixel values. We have developed a system that uses flexible endoscopy to record HS cubes of the larynx and designed a special filtering technique to remove the honeycomb-like pattern with minimal loss of information. We have confirmed its feasibility by comparing it to conventional filtering techniques using an objective metric and by applying unsupervised and supervised classifications to raw and pre-processed HS cubes. Compared to conventional techniques, our method successfully removes the honeycomb-like pattern and considerably improves classification performance, while preserving image details.

  6. THE FLEXIBILITY-AUTOMATION CORRESPONDENCE TO A VIRTUAL COMMERCIAL SOCIETY

    Directory of Open Access Journals (Sweden)

    Liliana Doble

    2012-01-01

    Full Text Available Design and operation of FMS is based on system requirement can be as productive and flexible as necessary, i.e. obtaining controlled correspondence between the degree of flexibility and automation of system.The flexibility of a FMS (Flexible Manufacturing Systems is determined by two important criteria: Flexible hardware structure of the system; Flexible software structure. Flexible hardware structure of the CS system (calculation system is determined to its turn according to three components: Flexibility of technological subsystem; Flexibility subsystem of storage, transport and handling;Flexibility of informational subsystem.

  7. Docking of flexible ligands to flexible receptors in solution by molecular dynamics simulation

    NARCIS (Netherlands)

    Mangoni, R; Roccatano, D; Di Nola, A

    1999-01-01

    In this paper, a method of simulating the docking of small flexible ligands to flexible receptors in water is reported. The method is based on molecular dynamics simulations and is an extension of an algorithm previously reported by Di Nola et al, (Di Nola et al,, Proteins 1994;19:174-182), The

  8. Guanabara Bay and Pecem LNG flexible metering systems

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Vinicus Roberto C.; Carvalho, Gustavo L.A.; Bruel, Edson L.; Santana, Jose P.C. de; Vidal, Lud C.C.N. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2009-12-19

    This work presents to the community the metering systems installed in the Liquefied Natural (LNG) Gas Flexible Terminals of the Pecem Port and Guanabara Bay. A brief description of the Terminals facilities and its operation is firstly made to provide a background of the systems discussed. Then, the LNG custody transfer metering system, the operational control metering system, the energy balance of the LNG transferring system and the Natural Gas custody transfer metering system - that are our systems of interest - are described in detail. It is intended to use the philosophy adopted in the Guanabara Bay and Pecem Flexible Terminals design as a standard to future installations, integrated with improvements brought by the operation experience that will be obtained in those terminals. (author)

  9. Building flexible real-time systems using the Flex language

    Science.gov (United States)

    Kenny, Kevin B.; Lin, Kwei-Jay

    1991-01-01

    The design and implementation of a real-time programming language called Flex, which is a derivative of C++, are presented. It is shown how different types of timing requirements might be expressed and enforced in Flex, how they might be fulfilled in a flexible way using different program models, and how the programming environment can help in making binding and scheduling decisions. The timing constraint primitives in Flex are easy to use yet powerful enough to define both independent and relative timing constraints. Program models like imprecise computation and performance polymorphism can carry out flexible real-time programs. In addition, programmers can use a performance measurement tool that produces statistically correct timing models to predict the expected execution time of a program and to help make binding decisions. A real-time programming environment is also presented.

  10. Cost analysis of concepts for a demand oriented biogas supply for flexible power generation.

    Science.gov (United States)

    Hahn, Henning; Ganagin, Waldemar; Hartmann, Kilian; Wachendorf, Michael

    2014-10-01

    With the share of intermittent renewable energies within the electricity system rising, balancing services from dispatchable power plants are of increasing importance. Highlighting the importance of the need to keeping fuel costs for flexible power generation to a minimum, the study aims to identify favourable biogas plant configurations, supplying biogas on demand. A cost analysis of five configurations based on biogas storing and flexible biogas production concepts has been carried out. Results show that additional flexibility costs for a biogas supply of 8h per day range between 2€ and 11€MWh(-1) and for a 72h period without biogas demand from 9€ to 19€MWh(-1). While biogas storage concepts were identified as favourable short term supply configurations, flexible biogas production concepts profit from reduced storage requirements at plants with large biogas production capacities or for periods of several hours without biogas demand. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Aggregating and Disaggregating Flexibility Objects

    DEFF Research Database (Denmark)

    Siksnys, Laurynas; Valsomatzis, Emmanouil; Hose, Katja

    2015-01-01

    In many scientific and commercial domains we encounter flexibility objects, i.e., objects with explicit flexibilities in a time and an amount dimension (e.g., energy or product amount). Applications of flexibility objects require novel and efficient techniques capable of handling large amounts...... and aiming at energy balancing during aggregation. In more detail, this paper considers the complete life cycle of flex-objects: aggregation, disaggregation, associated requirements, efficient incremental computation, and balance aggregation techniques. Extensive experiments based on real-world data from...

  12. Experimental analysis of flexibility change with different levels of power reduction by demand response activation on thermostat controlled loads

    DEFF Research Database (Denmark)

    Lakshmanan, Venkatachalam; Marinelli, Mattia; Hu, Junjie

    2017-01-01

    This paper studies the flexibility available with thermostatically controlled loads (TCLs) to provide power system services by demand response (DR) activation. Although the DR activation on TCLs can provide power system ancillary services, it is important to know how long such services can...... be provided for when different levels of power reduction are imposed. The flexibility change with different levels of power reduction is tested experimentally with domestic fridges used by real customers with unknown user interaction. The investigation quantifies the flexibility of household fridges...... and the impact of DR activation in terms of deviation in the average temperature. The maximum possible power reduction with the cluster of refrigerators is 67% and the available flexibility with the cluster of refrigerators is 10%. The resulting deviation in the average temperature is 14%....

  13. A semi-analytical bearing model considering outer race flexibility for model based bearing load monitoring

    Science.gov (United States)

    Kerst, Stijn; Shyrokau, Barys; Holweg, Edward

    2018-05-01

    This paper proposes a novel semi-analytical bearing model addressing flexibility of the bearing outer race structure. It furthermore presents the application of this model in a bearing load condition monitoring approach. The bearing model is developed as current computational low cost bearing models fail to provide an accurate description of the more and more common flexible size and weight optimized bearing designs due to their assumptions of rigidity. In the proposed bearing model raceway flexibility is described by the use of static deformation shapes. The excitation of the deformation shapes is calculated based on the modelled rolling element loads and a Fourier series based compliance approximation. The resulting model is computational low cost and provides an accurate description of the rolling element loads for flexible outer raceway structures. The latter is validated by a simulation-based comparison study with a well-established bearing simulation software tool. An experimental study finally shows the potential of the proposed model in a bearing load monitoring approach.

  14. The development of spontaneous gender stereotyping in childhood: relations to stereotype knowledge and stereotype flexibility.

    Science.gov (United States)

    Banse, Rainer; Gawronski, Bertram; Rebetez, Christine; Gutt, Hélène; Morton, J Bruce

    2010-03-01

    The development of spontaneous gender stereotyping in children was investigated using the newly developed Action Interference Paradigm (AIP). This task consists of assigning gender-stereotypical toys as quickly as possible to boys and girls in either a stereotype-congruent or a stereotype-incongruent manner. A pilot study with 38 children (mean age 5.1 years) provided evidence for spontaneous gender stereotyping in the AIP, which was reflected in higher latencies for stereotype-incongruent compared with stereotype-congruent toy assignments. The main study, with 66 children (aged 5, 8 and 11 years), compared the development of spontaneous stereotyping with established measures of stereotype flexibility and stereotype knowledge. Stereotype flexibility showed a strong increase from age 5 to 11. In contrast, stereotype knowledge and spontaneous stereotyping remained stable at high levels. The results provide evidence for a dissociation between stereotype flexibility and spontaneous stereotyping, suggesting that spontaneous stereotyping may be more closely related to stereotype knowledge than to stereotype flexibility.

  15. Flexible design in water and wastewater engineering--definitions, literature and decision guide.

    Science.gov (United States)

    Spiller, Marc; Vreeburg, Jan H G; Leusbrock, Ingo; Zeeman, Grietje

    2015-02-01

    Urban water and wastewater systems face uncertain developments including technological progress, climate change and urban development. To ensure the sustainability of these systems under dynamic conditions it has been proposed that technologies and infrastructure should be flexible, adaptive and robust. However, in literature it is often unclear what these technologies and infrastructure are. Furthermore, the terms flexible, adaptive and robust are often used interchangeably, despite important differences. In this paper we will i) define the terminology, ii) provide an overview of the status of flexible infrastructure design alternatives for water and wastewater networks and treatment, and iii) develop guidelines for the selection of flexible design alternatives. Results indicate that, with the exception of Net Present Valuation methods, there is little research available on the design and evaluation of technologies that can enable flexibility. Flexible design alternatives reviewed include robust design, phased design, modular design, modular/component platform design and design for remanufacturing. As developments in the water sector are driven by slow variables (climate change, urban development), rather than market forces, it is suggested that phased design or component platform designs are suitable for responding to change, while robust design is an option when operations face highly dynamic variability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Distributed flexibility in inertial swimmers

    Science.gov (United States)

    Floryan, Daniel; Rowley, Clarence W.; Smits, Alexander J.

    2017-11-01

    To achieve fast and efficient swimming, the flexibility of the propulsive surfaces is an important feature. To better understand the effects of distributed flexibility (either through inhomogeneous material properties, varying geometry, or both) we consider the coupled solid and fluid mechanics of the problem. Here, we develop a simplified model of a flexible swimmer, using Euler-Bernoulli theory to describe the solid, Theodorsen's theory to describe the fluid, and a Blasius boundary layer to incorporate viscous effects. Our primary aims are to understand how distributed flexibility affects the thrust production and efficiency of a swimmer with imposed motion at its leading edge. In particular, we examine the modal shapes of the swimmer to gain physical insight into the observed trends. Supported under ONR MURI Grant N00014-14-1-0533, Program Manager Robert Brizzolara.

  17. Flexibility of trunnion piping elbows

    International Nuclear Information System (INIS)

    Lewis, G.D.; Chao, Y.J.

    1987-01-01

    Flexibility factors and stress indices for piping component such as straight pipe, elbows, butt-welding tees, branch connections, and butt-welding reducers are contained in the code, but many of the less common piping components, like the trunnion elbow, do not have flexibility factors or stress indices defined. The purpose of this paper is to identify the in-plane and out-of-plane flexibility factors in accordance with code procedures for welded trunnions attached to the tangent centerlines of long radius elbows. This work utilized the finite element method as applicable to plates and shells for calculating the relative rotations of the trunnion elbow-ends for in-plane and out-of-plane elbow moment loadings. These rotations are used to derive the corresponding in-plane and out-of-plane flexibility factors. (orig./GL)

  18. In situ X-ray scattering of perovskite solar cell active layers roll-to-roll coated on flexible substrates

    DEFF Research Database (Denmark)

    Rossander, Lea Hildebrandt; Larsen-Olsen, Thue T.; Dam, Henrik Friis

    2016-01-01

    crystallographic developments between the substrates, especially seen through the behaviour of a crystalline precursor which survived longer on the flexible substrates than on glass. Additionally, the common degradation product PbI2 was absent on the thickest flexible substrate. This leads us to conjecture...

  19. Recent Advancements in Liquid Metal Flexible Printed Electronics: Properties, Technologies, and Applications

    Directory of Open Access Journals (Sweden)

    Xuelin Wang

    2016-11-01

    Full Text Available This article presents an overview on typical properties, technologies, and applications of liquid metal based flexible printed electronics. The core manufacturing material—room-temperature liquid metal, currently mainly represented by gallium and its alloys with the properties of excellent resistivity, enormous bendability, low adhesion, and large surface tension, was focused on in particular. In addition, a series of recently developed printing technologies spanning from personal electronic circuit printing (direct painting or writing, mechanical system printing, mask layer based printing, high-resolution nanoimprinting, etc. to 3D room temperature liquid metal printing is comprehensively reviewed. Applications of these planar or three-dimensional printing technologies and the related liquid metal alloy inks in making flexible electronics, such as electronical components, health care sensors, and other functional devices were discussed. The significantly different adhesions of liquid metal inks on various substrates under different oxidation degrees, weakness of circuits, difficulty of fabricating high-accuracy devices, and low rate of good product—all of which are challenges faced by current liquid metal flexible printed electronics—are discussed. Prospects for liquid metal flexible printed electronics to develop ending user electronics and more extensive applications in the future are given.

  20. Primary and secondary structure dependence of peptide flexibility assessed by fluorescence-based measurement of end-to-end collision rates.

    Science.gov (United States)

    Huang, Fang; Hudgins, Robert R; Nau, Werner M

    2004-12-22

    The intrachain fluorescence quenching of the fluorophore 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) is measured in short peptide fragments, namely the two strands and the turn of the N-terminal beta-hairpin of ubiquitin. The investigated peptides adopt a random-coil conformation in aqueous solution according to CD and NMR experiments. The combination of quenchers with different quenching efficiencies, namely tryptophan and tyrosine, allows the extrapolation of the rate constants for end-to-end collision rates as well as the dissociation of the end-to-end encounter complex. The measured activation energies for fluorescence quenching demonstrate that the end-to-end collision process in peptides is partially controlled by internal friction within the backbone, while measurements in solvents of different viscosities (H2O, D2O, and 7.0 M guanidinium chloride) suggest that solvent friction is an additional important factor in determining the collision rate. The extrapolated end-to-end collision rates, which are only slightly larger than the experimental rates for the DBO/Trp probe/quencher system, provide a measure of the conformational flexibility of the peptide backbone. The chain flexibility is found to be strongly dependent on the type of secondary structure that the peptides represent. The collision rates for peptides derived from the beta-strand motifs (ca. 1 x 10(7) s(-1)) are ca. 4 times slower than that derived from the beta-turn. The results provide further support for the hypothesis that chain flexibility is an important factor in the preorganization of protein fragments during protein folding. Mutations to the beta-turn peptide show that subtle sequence changes strongly affect the flexibility of peptides as well. The protonation and charge status of the peptides, however, are shown to have no significant effect on the flexibility of the investigated peptides. The meaning and definition of end-to-end collision rates in the context of protein folding are critically