WorldWideScience

Sample records for provably optimal trees

  1. Provably optimal parallel transport sweeps on regular grids

    International Nuclear Information System (INIS)

    Adams, M. P.; Adams, M. L.; Hawkins, W. D.; Smith, T.; Rauchwerger, L.; Amato, N. M.; Bailey, T. S.; Falgout, R. D.

    2013-01-01

    We have found provably optimal algorithms for full-domain discrete-ordinate transport sweeps on regular grids in 3D Cartesian geometry. We describe these algorithms and sketch a 'proof that they always execute the full eight-octant sweep in the minimum possible number of stages for a given P x x P y x P z partitioning. Computational results demonstrate that our optimal scheduling algorithms execute sweeps in the minimum possible stage count. Observed parallel efficiencies agree well with our performance model. An older version of our PDT transport code achieves almost 80% parallel efficiency on 131,072 cores, on a weak-scaling problem with only one energy group, 80 directions, and 4096 cells/core. A newer version is less efficient at present-we are still improving its implementation - but achieves almost 60% parallel efficiency on 393,216 cores. These results conclusively demonstrate that sweeps can perform with high efficiency on core counts approaching 10 6 . (authors)

  2. Provably optimal parallel transport sweeps on regular grids

    Energy Technology Data Exchange (ETDEWEB)

    Adams, M. P.; Adams, M. L.; Hawkins, W. D. [Dept. of Nuclear Engineering, Texas A and M University, 3133 TAMU, College Station, TX 77843-3133 (United States); Smith, T.; Rauchwerger, L.; Amato, N. M. [Dept. of Computer Science and Engineering, Texas A and M University, 3133 TAMU, College Station, TX 77843-3133 (United States); Bailey, T. S.; Falgout, R. D. [Lawrence Livermore National Laboratory (United States)

    2013-07-01

    We have found provably optimal algorithms for full-domain discrete-ordinate transport sweeps on regular grids in 3D Cartesian geometry. We describe these algorithms and sketch a 'proof that they always execute the full eight-octant sweep in the minimum possible number of stages for a given P{sub x} x P{sub y} x P{sub z} partitioning. Computational results demonstrate that our optimal scheduling algorithms execute sweeps in the minimum possible stage count. Observed parallel efficiencies agree well with our performance model. An older version of our PDT transport code achieves almost 80% parallel efficiency on 131,072 cores, on a weak-scaling problem with only one energy group, 80 directions, and 4096 cells/core. A newer version is less efficient at present-we are still improving its implementation - but achieves almost 60% parallel efficiency on 393,216 cores. These results conclusively demonstrate that sweeps can perform with high efficiency on core counts approaching 10{sup 6}. (authors)

  3. Provability Calculus of Constructions

    DEFF Research Database (Denmark)

    Nyblad, Kasten

    This thesis presents a type system, Provability Calculus of Constructions (PCoC) that can be used for the formalization of logic. In a theorem prover based on the system, the user can extend the prover with new inference rules in a logically consistent manner. This is done by representing PCo...

  4. Provability, complexity, grammars

    CERN Document Server

    Beklemishev, Lev; Vereshchagin, Nikolai

    1999-01-01

    The book contains English translations of three outstanding dissertations in mathematical logic and complexity theory. L. Beklemishev proves that all provability logics must belong to one of the four previously known classes. The dissertation of M. Pentus proves the Chomsky conjecture about the equivalence of two approaches to formal languages: the Chomsky hierarchy and the Lambek calculus. The dissertation of N. Vereshchagin describes a general framework for criteria of reversability in complexity theory.

  5. Totally optimal decision trees for Boolean functions

    KAUST Repository

    Chikalov, Igor

    2016-07-28

    We study decision trees which are totally optimal relative to different sets of complexity parameters for Boolean functions. A totally optimal tree is an optimal tree relative to each parameter from the set simultaneously. We consider the parameters characterizing both time (in the worst- and average-case) and space complexity of decision trees, i.e., depth, total path length (average depth), and number of nodes. We have created tools based on extensions of dynamic programming to study totally optimal trees. These tools are applicable to both exact and approximate decision trees, and allow us to make multi-stage optimization of decision trees relative to different parameters and to count the number of optimal trees. Based on the experimental results we have formulated the following hypotheses (and subsequently proved): for almost all Boolean functions there exist totally optimal decision trees (i) relative to the depth and number of nodes, and (ii) relative to the depth and average depth.

  6. Totally optimal decision trees for Boolean functions

    KAUST Repository

    Chikalov, Igor; Hussain, Shahid; Moshkov, Mikhail

    2016-01-01

    We study decision trees which are totally optimal relative to different sets of complexity parameters for Boolean functions. A totally optimal tree is an optimal tree relative to each parameter from the set simultaneously. We consider the parameters

  7. Combinatorial optimization theory and algorithms

    CERN Document Server

    Korte, Bernhard

    2018-01-01

    This comprehensive textbook on combinatorial optimization places special emphasis on theoretical results and algorithms with provably good performance, in contrast to heuristics. It is based on numerous courses on combinatorial optimization and specialized topics, mostly at graduate level. This book reviews the fundamentals, covers the classical topics (paths, flows, matching, matroids, NP-completeness, approximation algorithms) in detail, and proceeds to advanced and recent topics, some of which have not appeared in a textbook before. Throughout, it contains complete but concise proofs, and also provides numerous exercises and references. This sixth edition has again been updated, revised, and significantly extended. Among other additions, there are new sections on shallow-light trees, submodular function maximization, smoothed analysis of the knapsack problem, the (ln 4+ɛ)-approximation for Steiner trees, and the VPN theorem. Thus, this book continues to represent the state of the art of combinatorial opti...

  8. A course in bimodal provability logic

    NARCIS (Netherlands)

    Visser, A.

    The aim of the present paper is twofold: first I am somewhat dissatisfied with current treatments of Bimodal Provability Logic: the models employed there are singled out by certain syntactical conditions, moreover they validate the logics under consideration only locally. In this paper I give a

  9. Provably trustworthy systems.

    Science.gov (United States)

    Klein, Gerwin; Andronick, June; Keller, Gabriele; Matichuk, Daniel; Murray, Toby; O'Connor, Liam

    2017-10-13

    We present recent work on building and scaling trustworthy systems with formal, machine-checkable proof from the ground up, including the operating system kernel, at the level of binary machine code. We first give a brief overview of the seL4 microkernel verification and how it can be used to build verified systems. We then show two complementary techniques for scaling these methods to larger systems: proof engineering, to estimate verification effort; and code/proof co-generation, for scalable development of provably trustworthy applications.This article is part of the themed issue 'Verified trustworthy software systems'. © 2017 The Author(s).

  10. A Survey of Provably Secure Searchable Encryption

    NARCIS (Netherlands)

    Bösch, C.T.; Hartel, Pieter H.; Jonker, Willem; Peter, Andreas

    We survey the notion of provably secure Searchable Encryption (SE) by giving a complete and comprehensive overview of the two main SE techniques: Searchable Symmetric Encryption (SSE) and Public Key Encryption with Keyword Search (PEKS). Since the pioneering work of Song, Wagner and Perrig (IEEE S&P

  11. Algorithms for optimal dyadic decision trees

    Energy Technology Data Exchange (ETDEWEB)

    Hush, Don [Los Alamos National Laboratory; Porter, Reid [Los Alamos National Laboratory

    2009-01-01

    A new algorithm for constructing optimal dyadic decision trees was recently introduced, analyzed, and shown to be very effective for low dimensional data sets. This paper enhances and extends this algorithm by: introducing an adaptive grid search for the regularization parameter that guarantees optimal solutions for all relevant trees sizes, revising the core tree-building algorithm so that its run time is substantially smaller for most regularization parameter values on the grid, and incorporating new data structures and data pre-processing steps that provide significant run time enhancement in practice.

  12. Empirical Analysis of Using Erasure Coding in Outsourcing Data Storage With Provable Security

    Science.gov (United States)

    2016-06-01

    computing and communication technologies become powerful and advanced , people are exchanging a huge amount of data, and they are de- manding more storage...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS EMPIRICAL ANALYSIS OF USING ERASURE CODING IN OUTSOURCING DATA STORAGEWITH PROVABLE SECURITY by...2015 to 06-17-2016 4. TITLE AND SUBTITLE EMPIRICAL ANALYSIS OF USING ERASURE CODING IN OUTSOURCING DATA STORAGE WITH PROVABLE SECURITY 5. FUNDING

  13. Fundamental problems in provable security and cryptography.

    Science.gov (United States)

    Dent, Alexander W

    2006-12-15

    This paper examines methods for formally proving the security of cryptographic schemes. We show that, despite many years of active research and dozens of significant results, there are fundamental problems which have yet to be solved. We also present a new approach to one of the more controversial aspects of provable security, the random oracle model.

  14. Sequent Calculus in the Topos of Trees

    DEFF Research Database (Denmark)

    Clouston, Ranald; Goré, Rajeev

    2015-01-01

    Nakano’s “later” modality, inspired by Gödel-Löb provability logic, has been applied in type systems and program logics to capture guarded recursion. Birkedal et al modelled this modality via the internal logic of the topos of trees. We show that the semantics of the propositional fragment of thi...

  15. Extensions of Dynamic Programming: Decision Trees, Combinatorial Optimization, and Data Mining

    KAUST Repository

    Hussain, Shahid

    2016-01-01

    This thesis is devoted to the development of extensions of dynamic programming to the study of decision trees. The considered extensions allow us to make multi-stage optimization of decision trees relative to a sequence of cost functions, to count the number of optimal trees, and to study relationships: cost vs cost and cost vs uncertainty for decision trees by construction of the set of Pareto-optimal points for the corresponding bi-criteria optimization problem. The applications include study of totally optimal (simultaneously optimal relative to a number of cost functions) decision trees for Boolean functions, improvement of bounds on complexity of decision trees for diagnosis of circuits, study of time and memory trade-off for corner point detection, study of decision rules derived from decision trees, creation of new procedure (multi-pruning) for construction of classifiers, and comparison of heuristics for decision tree construction. Part of these extensions (multi-stage optimization) was generalized to well-known combinatorial optimization problems: matrix chain multiplication, binary search trees, global sequence alignment, and optimal paths in directed graphs.

  16. Extensions of Dynamic Programming: Decision Trees, Combinatorial Optimization, and Data Mining

    KAUST Repository

    Hussain, Shahid

    2016-07-10

    This thesis is devoted to the development of extensions of dynamic programming to the study of decision trees. The considered extensions allow us to make multi-stage optimization of decision trees relative to a sequence of cost functions, to count the number of optimal trees, and to study relationships: cost vs cost and cost vs uncertainty for decision trees by construction of the set of Pareto-optimal points for the corresponding bi-criteria optimization problem. The applications include study of totally optimal (simultaneously optimal relative to a number of cost functions) decision trees for Boolean functions, improvement of bounds on complexity of decision trees for diagnosis of circuits, study of time and memory trade-off for corner point detection, study of decision rules derived from decision trees, creation of new procedure (multi-pruning) for construction of classifiers, and comparison of heuristics for decision tree construction. Part of these extensions (multi-stage optimization) was generalized to well-known combinatorial optimization problems: matrix chain multiplication, binary search trees, global sequence alignment, and optimal paths in directed graphs.

  17. Provable quantum advantage in randomness processing

    OpenAIRE

    Dale, H; Jennings, D; Rudolph, T

    2015-01-01

    Quantum advantage is notoriously hard to find and even harder to prove. For example the class of functions computable with classical physics actually exactly coincides with the class computable quantum-mechanically. It is strongly believed, but not proven, that quantum computing provides exponential speed-up for a range of problems, such as factoring. Here we address a computational scenario of "randomness processing" in which quantum theory provably yields, not only resource reduction over c...

  18. Comparison of Greedy Algorithms for Decision Tree Optimization

    KAUST Repository

    Alkhalid, Abdulaziz; Chikalov, Igor; Moshkov, Mikhail

    2013-01-01

    This chapter is devoted to the study of 16 types of greedy algorithms for decision tree construction. The dynamic programming approach is used for construction of optimal decision trees. Optimization is performed relative to minimal values

  19. Practical Provably Secure Multi-node Communication

    OpenAIRE

    Ali, Omar; Ayoub, Mahmoud F.; Youssef, Moustafa

    2013-01-01

    We present a practical and provably-secure multimode communication scheme in the presence of a passive eavesdropper. The scheme is based on a random scheduling approach that hides the identity of the transmitter from the eavesdropper. This random scheduling leads to ambiguity at the eavesdropper with regard to the origin of the transmitted frame. We present the details of the technique and analyze it to quantify the secrecy-fairness-overhead trade-off. Implementation of the scheme over Crossb...

  20. Gaming Self-Contained Provably Fair Smart Contract Casinos

    Directory of Open Access Journals (Sweden)

    Piotr J. Piasecki

    2016-12-01

    Full Text Available This paper discusses the game theory behind self-contained smart contract provably fair casinos, how they can be gamed by attackers with a large amount of money and computing power, as well as what are the necessary conditions to assure the system cannot be taken advantage of under various configurations.

  1. TreePOD: Sensitivity-Aware Selection of Pareto-Optimal Decision Trees.

    Science.gov (United States)

    Muhlbacher, Thomas; Linhardt, Lorenz; Moller, Torsten; Piringer, Harald

    2018-01-01

    Balancing accuracy gains with other objectives such as interpretability is a key challenge when building decision trees. However, this process is difficult to automate because it involves know-how about the domain as well as the purpose of the model. This paper presents TreePOD, a new approach for sensitivity-aware model selection along trade-offs. TreePOD is based on exploring a large set of candidate trees generated by sampling the parameters of tree construction algorithms. Based on this set, visualizations of quantitative and qualitative tree aspects provide a comprehensive overview of possible tree characteristics. Along trade-offs between two objectives, TreePOD provides efficient selection guidance by focusing on Pareto-optimal tree candidates. TreePOD also conveys the sensitivities of tree characteristics on variations of selected parameters by extending the tree generation process with a full-factorial sampling. We demonstrate how TreePOD supports a variety of tasks involved in decision tree selection and describe its integration in a holistic workflow for building and selecting decision trees. For evaluation, we illustrate a case study for predicting critical power grid states, and we report qualitative feedback from domain experts in the energy sector. This feedback suggests that TreePOD enables users with and without statistical background a confident and efficient identification of suitable decision trees.

  2. A tool for study of optimal decision trees

    KAUST Repository

    Alkhalid, Abdulaziz

    2010-01-01

    The paper describes a tool which allows us for relatively small decision tables to make consecutive optimization of decision trees relative to various complexity measures such as number of nodes, average depth, and depth, and to find parameters and the number of optimal decision trees. © 2010 Springer-Verlag Berlin Heidelberg.

  3. On algorithm for building of optimal α-decision trees

    KAUST Repository

    Alkhalid, Abdulaziz

    2010-01-01

    The paper describes an algorithm that constructs approximate decision trees (α-decision trees), which are optimal relatively to one of the following complexity measures: depth, total path length or number of nodes. The algorithm uses dynamic programming and extends methods described in [4] to constructing approximate decision trees. Adjustable approximation rate allows controlling algorithm complexity. The algorithm is applied to build optimal α-decision trees for two data sets from UCI Machine Learning Repository [1]. © 2010 Springer-Verlag Berlin Heidelberg.

  4. OSPREY: protein design with ensembles, flexibility, and provable algorithms.

    Science.gov (United States)

    Gainza, Pablo; Roberts, Kyle E; Georgiev, Ivelin; Lilien, Ryan H; Keedy, Daniel A; Chen, Cheng-Yu; Reza, Faisal; Anderson, Amy C; Richardson, David C; Richardson, Jane S; Donald, Bruce R

    2013-01-01

    We have developed a suite of protein redesign algorithms that improves realistic in silico modeling of proteins. These algorithms are based on three characteristics that make them unique: (1) improved flexibility of the protein backbone, protein side-chains, and ligand to accurately capture the conformational changes that are induced by mutations to the protein sequence; (2) modeling of proteins and ligands as ensembles of low-energy structures to better approximate binding affinity; and (3) a globally optimal protein design search, guaranteeing that the computational predictions are optimal with respect to the input model. Here, we illustrate the importance of these three characteristics. We then describe OSPREY, a protein redesign suite that implements our protein design algorithms. OSPREY has been used prospectively, with experimental validation, in several biomedically relevant settings. We show in detail how OSPREY has been used to predict resistance mutations and explain why improved flexibility, ensembles, and provability are essential for this application. OSPREY is free and open source under a Lesser GPL license. The latest version is OSPREY 2.0. The program, user manual, and source code are available at www.cs.duke.edu/donaldlab/software.php. osprey@cs.duke.edu. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Relationships among various parameters for decision tree optimization

    KAUST Repository

    Hussain, Shahid

    2014-01-14

    In this chapter, we study, in detail, the relationships between various pairs of cost functions and between uncertainty measure and cost functions, for decision tree optimization. We provide new tools (algorithms) to compute relationship functions, as well as provide experimental results on decision tables acquired from UCI ML Repository. The algorithms presented in this paper have already been implemented and are now a part of Dagger, which is a software system for construction/optimization of decision trees and decision rules. The main results presented in this chapter deal with two types of algorithms for computing relationships; first, we discuss the case where we construct approximate decision trees and are interested in relationships between certain cost function, such as depth or number of nodes of a decision trees, and an uncertainty measure, such as misclassification error (accuracy) of decision tree. Secondly, relationships between two different cost functions are discussed, for example, the number of misclassification of a decision tree versus number of nodes in a decision trees. The results of experiments, presented in the chapter, provide further insight. © 2014 Springer International Publishing Switzerland.

  6. Relationships among various parameters for decision tree optimization

    KAUST Repository

    Hussain, Shahid

    2014-01-01

    In this chapter, we study, in detail, the relationships between various pairs of cost functions and between uncertainty measure and cost functions, for decision tree optimization. We provide new tools (algorithms) to compute relationship functions, as well as provide experimental results on decision tables acquired from UCI ML Repository. The algorithms presented in this paper have already been implemented and are now a part of Dagger, which is a software system for construction/optimization of decision trees and decision rules. The main results presented in this chapter deal with two types of algorithms for computing relationships; first, we discuss the case where we construct approximate decision trees and are interested in relationships between certain cost function, such as depth or number of nodes of a decision trees, and an uncertainty measure, such as misclassification error (accuracy) of decision tree. Secondly, relationships between two different cost functions are discussed, for example, the number of misclassification of a decision tree versus number of nodes in a decision trees. The results of experiments, presented in the chapter, provide further insight. © 2014 Springer International Publishing Switzerland.

  7. Comparison of Greedy Algorithms for Decision Tree Optimization

    KAUST Repository

    Alkhalid, Abdulaziz

    2013-01-01

    This chapter is devoted to the study of 16 types of greedy algorithms for decision tree construction. The dynamic programming approach is used for construction of optimal decision trees. Optimization is performed relative to minimal values of average depth, depth, number of nodes, number of terminal nodes, and number of nonterminal nodes of decision trees. We compare average depth, depth, number of nodes, number of terminal nodes and number of nonterminal nodes of constructed trees with minimum values of the considered parameters obtained based on a dynamic programming approach. We report experiments performed on data sets from UCI ML Repository and randomly generated binary decision tables. As a result, for depth, average depth, and number of nodes we propose a number of good heuristics. © Springer-Verlag Berlin Heidelberg 2013.

  8. Bi-Criteria Optimization of Decision Trees with Applications to Data Analysis

    KAUST Repository

    Chikalov, Igor

    2017-10-19

    This paper is devoted to the study of bi-criteria optimization problems for decision trees. We consider different cost functions such as depth, average depth, and number of nodes. We design algorithms that allow us to construct the set of Pareto optimal points (POPs) for a given decision table and the corresponding bi-criteria optimization problem. These algorithms are suitable for investigation of medium-sized decision tables. We discuss three examples of applications of the created tools: the study of relationships among depth, average depth and number of nodes for decision trees for corner point detection (such trees are used in computer vision for object tracking), study of systems of decision rules derived from decision trees, and comparison of different greedy algorithms for decision tree construction as single- and bi-criteria optimization algorithms.

  9. Optimal tree-stem bucking of northeastern species of China

    Science.gov (United States)

    Jingxin Wang; Chris B. LeDoux; Joseph McNeel

    2004-01-01

    An application of optimal tree-stem bucking to the northeastern tree species of China is reported. The bucking procedures used in this region are summarized, which are the basic guidelines for the optimal bucking design. The directed graph approach was adopted to generate the bucking patterns by using the network analysis labeling algorithm. A computer-based bucking...

  10. Towards provably correct code generation for a hard real-time programming language

    DEFF Research Database (Denmark)

    Fränzle, Martin; Müller-Olm, Markus

    1994-01-01

    This paper sketches a hard real-time programming language featuring operators for expressing timeliness requirements in an abstract, implementation-independent way and presents parts of the design and verification of a provably correct code generator for that language. The notion of implementation...

  11. On algorithm for building of optimal α-decision trees

    KAUST Repository

    Alkhalid, Abdulaziz; Chikalov, Igor; Moshkov, Mikhail

    2010-01-01

    The paper describes an algorithm that constructs approximate decision trees (α-decision trees), which are optimal relatively to one of the following complexity measures: depth, total path length or number of nodes. The algorithm uses dynamic

  12. Quasi-Optimal Elimination Trees for 2D Grids with Singularities

    Directory of Open Access Journals (Sweden)

    A. Paszyńska

    2015-01-01

    Full Text Available We construct quasi-optimal elimination trees for 2D finite element meshes with singularities. These trees minimize the complexity of the solution of the discrete system. The computational cost estimates of the elimination process model the execution of the multifrontal algorithms in serial and in parallel shared-memory executions. Since the meshes considered are a subspace of all possible mesh partitions, we call these minimizers quasi-optimal. We minimize the cost functionals using dynamic programming. Finding these minimizers is more computationally expensive than solving the original algebraic system. Nevertheless, from the insights provided by the analysis of the dynamic programming minima, we propose a heuristic construction of the elimination trees that has cost ONelog⁡Ne, where Ne is the number of elements in the mesh. We show that this heuristic ordering has similar computational cost to the quasi-optimal elimination trees found with dynamic programming and outperforms state-of-the-art alternatives in our numerical experiments.

  13. Quasi-Optimal Elimination Trees for 2D Grids with Singularities

    KAUST Repository

    Paszyńska, A.

    2015-04-22

    We construct quasi-optimal elimination trees for 2D finite element meshes with singularities.These trees minimize the complexity of the solution of the discrete system. The computational cost estimates of the elimination process model the execution of the multifrontal algorithms in serial and in parallel shared-memory executions. Since the meshes considered are a subspace of all possible mesh partitions, we call these minimizers quasi-optimal.We minimize the cost functionals using dynamic programming. Finding these minimizers is more computationally expensive than solving the original algebraic system. Nevertheless, from the insights provided by the analysis of the dynamic programming minima, we propose a heuristic construction of the elimination trees that has cost O(log(Ne log(Ne)), where N e is the number of elements in the mesh.We show that this heuristic ordering has similar computational cost to the quasi-optimal elimination trees found with dynamic programming and outperforms state-of-the-art alternatives in our numerical experiments.

  14. Quasi-Optimal Elimination Trees for 2D Grids with Singularities

    KAUST Repository

    Paszyńska, A.; Paszyński, M.; Jopek, K.; Woźniak, M.; Goik, D.; Gurgul, P.; AbouEisha, H.; Moshkov, Mikhail; Calo, Victor M.; Lenharth, A.; Nguyen, D.; Pingali, K.

    2015-01-01

    We construct quasi-optimal elimination trees for 2D finite element meshes with singularities.These trees minimize the complexity of the solution of the discrete system. The computational cost estimates of the elimination process model the execution of the multifrontal algorithms in serial and in parallel shared-memory executions. Since the meshes considered are a subspace of all possible mesh partitions, we call these minimizers quasi-optimal.We minimize the cost functionals using dynamic programming. Finding these minimizers is more computationally expensive than solving the original algebraic system. Nevertheless, from the insights provided by the analysis of the dynamic programming minima, we propose a heuristic construction of the elimination trees that has cost O(log(Ne log(Ne)), where N e is the number of elements in the mesh.We show that this heuristic ordering has similar computational cost to the quasi-optimal elimination trees found with dynamic programming and outperforms state-of-the-art alternatives in our numerical experiments.

  15. Bonsai trees in your head: how the pavlovian system sculpts goal-directed choices by pruning decision trees.

    Directory of Open Access Journals (Sweden)

    Quentin J M Huys

    Full Text Available When planning a series of actions, it is usually infeasible to consider all potential future sequences; instead, one must prune the decision tree. Provably optimal pruning is, however, still computationally ruinous and the specific approximations humans employ remain unknown. We designed a new sequential reinforcement-based task and showed that human subjects adopted a simple pruning strategy: during mental evaluation of a sequence of choices, they curtailed any further evaluation of a sequence as soon as they encountered a large loss. This pruning strategy was Pavlovian: it was reflexively evoked by large losses and persisted even when overwhelmingly counterproductive. It was also evident above and beyond loss aversion. We found that the tendency towards Pavlovian pruning was selectively predicted by the degree to which subjects exhibited sub-clinical mood disturbance, in accordance with theories that ascribe Pavlovian behavioural inhibition, via serotonin, a role in mood disorders. We conclude that Pavlovian behavioural inhibition shapes highly flexible, goal-directed choices in a manner that may be important for theories of decision-making in mood disorders.

  16. Learning decision trees with flexible constraints and objectives using integer optimization

    NARCIS (Netherlands)

    Verwer, S.; Zhang, Y.

    2017-01-01

    We encode the problem of learning the optimal decision tree of a given depth as an integer optimization problem. We show experimentally that our method (DTIP) can be used to learn good trees up to depth 5 from data sets of size up to 1000. In addition to being efficient, our new formulation allows

  17. Totally Optimal Decision Trees for Monotone Boolean Functions with at Most Five Variables

    KAUST Repository

    Chikalov, Igor

    2013-01-01

    In this paper, we present the empirical results for relationships between time (depth) and space (number of nodes) complexity of decision trees computing monotone Boolean functions, with at most five variables. We use Dagger (a tool for optimization of decision trees and decision rules) to conduct experiments. We show that, for each monotone Boolean function with at most five variables, there exists a totally optimal decision tree which is optimal with respect to both depth and number of nodes.

  18. A provably-secure ECC-based authentication scheme for wireless sensor networks.

    Science.gov (United States)

    Nam, Junghyun; Kim, Moonseong; Paik, Juryon; Lee, Youngsook; Won, Dongho

    2014-11-06

    A smart-card-based user authentication scheme for wireless sensor networks (in short, a SUA-WSN scheme) is designed to restrict access to the sensor data only to users who are in possession of both a smart card and the corresponding password. While a significant number of SUA-WSN schemes have been suggested in recent years, their intended security properties lack formal definitions and proofs in a widely-accepted model. One consequence is that SUA-WSN schemes insecure against various attacks have proliferated. In this paper, we devise a security model for the analysis of SUA-WSN schemes by extending the widely-accepted model of Bellare, Pointcheval and Rogaway (2000). Our model provides formal definitions of authenticated key exchange and user anonymity while capturing side-channel attacks, as well as other common attacks. We also propose a new SUA-WSN scheme based on elliptic curve cryptography (ECC), and prove its security properties in our extended model. To the best of our knowledge, our proposed scheme is the first SUA-WSN scheme that provably achieves both authenticated key exchange and user anonymity. Our scheme is also computationally competitive with other ECC-based (non-provably secure) schemes.

  19. A Provably-Secure ECC-Based Authentication Scheme for Wireless Sensor Networks

    Science.gov (United States)

    Nam, Junghyun; Kim, Moonseong; Paik, Juryon; Lee, Youngsook; Won, Dongho

    2014-01-01

    A smart-card-based user authentication scheme for wireless sensor networks (in short, a SUA-WSN scheme) is designed to restrict access to the sensor data only to users who are in possession of both a smart card and the corresponding password. While a significant number of SUA-WSN schemes have been suggested in recent years, their intended security properties lack formal definitions and proofs in a widely-accepted model. One consequence is that SUA-WSN schemes insecure against various attacks have proliferated. In this paper, we devise a security model for the analysis of SUA-WSN schemes by extending the widely-accepted model of Bellare, Pointcheval and Rogaway (2000). Our model provides formal definitions of authenticated key exchange and user anonymity while capturing side-channel attacks, as well as other common attacks. We also propose a new SUA-WSN scheme based on elliptic curve cryptography (ECC), and prove its security properties in our extended model. To the best of our knowledge, our proposed scheme is the first SUA-WSN scheme that provably achieves both authenticated key exchange and user anonymity. Our scheme is also computationally competitive with other ECC-based (non-provably secure) schemes. PMID:25384009

  20. A Provably-Secure ECC-Based Authentication Scheme for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Junghyun Nam

    2014-11-01

    Full Text Available A smart-card-based user authentication scheme for wireless sensor networks (in short, a SUA-WSN scheme is designed to restrict access to the sensor data only to users who are in possession of both a smart card and the corresponding password. While a significant number of SUA-WSN schemes have been suggested in recent years, their intended security properties lack formal definitions and proofs in a widely-accepted model. One consequence is that SUA-WSN schemes insecure against various attacks have proliferated. In this paper, we devise a security model for the analysis of SUA-WSN schemes by extending the widely-accepted model of Bellare, Pointcheval and Rogaway (2000. Our model provides formal definitions of authenticated key exchange and user anonymity while capturing side-channel attacks, as well as other common attacks. We also propose a new SUA-WSN scheme based on elliptic curve cryptography (ECC, and prove its security properties in our extended model. To the best of our knowledge, our proposed scheme is the first SUA-WSN scheme that provably achieves both authenticated key exchange and user anonymity. Our scheme is also computationally competitive with other ECC-based (non-provably secure schemes.

  1. A Branch-and-Price approach to find optimal decision trees

    NARCIS (Netherlands)

    Firat, M.; Crognier, Guillaume; Gabor, Adriana; Zhang, Y.

    2018-01-01

    In Artificial Intelligence (AI) field, decision trees have gained certain importance due to their effectiveness in solving classification and regression problems. Recently, in the literature we see finding optimal decision trees are formulated as Mixed Integer Linear Programming (MILP) models. This

  2. Optimal tree design for daylighting in residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Hongbing, Wang [College of Landscape Architecture, Beijing Forestry University, 35, East Qinghua Rd., Beijing (China); Shanghai Botanical Garden, 1111, Longwu Rd., Shanghai (China); Jun, Qin; Yonghong, Hu [Shanghai Botanical Garden, 1111, Longwu Rd., Shanghai (China); Li, Dong [College of Landscape Architecture, Beijing Forestry University, 35, East Qinghua Rd., Beijing (China)

    2010-12-15

    Urban reforestation is advocated as an efficient countermeasure to the intensification of urban heat islands. The greening and beautification of residential quarters is one of the main concerns of residents, while lighting and ventilation are two main energy-consuming building services. Hence, the tree layout in green space between buildings is important, and it is necessary to determine the relationships between trees and buildings. This study takes Shanghai as a case study to optimize tree design between residential buildings and meet good daylighting requirements. Models were made using software such as AutoCAD and SketchUp. The relationships between maximum tree height and building separation were determined. For the same building layout, there were different tree height limits according to crown shape; the order of decreasing height limits was cylindrical, conical, spherical, and inverted conical crowns. Three cases having different green space between building layouts were studied. Their maximum tree heights differed. Overall, our model helps us realize good daylighting of a building environment. The formula allows us to determine which trees to plant between buildings in that we can predict the effects of future tree growth on building daylighting. (author)

  3. Multi-stage optimization of decision and inhibitory trees for decision tables with many-valued decisions

    KAUST Repository

    Azad, Mohammad

    2017-06-16

    We study problems of optimization of decision and inhibitory trees for decision tables with many-valued decisions. As cost functions, we consider depth, average depth, number of nodes, and number of terminal/nonterminal nodes in trees. Decision tables with many-valued decisions (multi-label decision tables) are often more accurate models for real-life data sets than usual decision tables with single-valued decisions. Inhibitory trees can sometimes capture more information from decision tables than decision trees. In this paper, we create dynamic programming algorithms for multi-stage optimization of trees relative to a sequence of cost functions. We apply these algorithms to prove the existence of totally optimal (simultaneously optimal relative to a number of cost functions) decision and inhibitory trees for some modified decision tables from the UCI Machine Learning Repository.

  4. Multi-stage optimization of decision and inhibitory trees for decision tables with many-valued decisions

    KAUST Repository

    Azad, Mohammad; Moshkov, Mikhail

    2017-01-01

    We study problems of optimization of decision and inhibitory trees for decision tables with many-valued decisions. As cost functions, we consider depth, average depth, number of nodes, and number of terminal/nonterminal nodes in trees. Decision tables with many-valued decisions (multi-label decision tables) are often more accurate models for real-life data sets than usual decision tables with single-valued decisions. Inhibitory trees can sometimes capture more information from decision tables than decision trees. In this paper, we create dynamic programming algorithms for multi-stage optimization of trees relative to a sequence of cost functions. We apply these algorithms to prove the existence of totally optimal (simultaneously optimal relative to a number of cost functions) decision and inhibitory trees for some modified decision tables from the UCI Machine Learning Repository.

  5. Lightweight certificateless and provably-secure signcryptosystem for the internet of things

    OpenAIRE

    Nguyen , Kim Thuat; Oualha , Nouha; Laurent , Maryline

    2015-01-01

    International audience; In this paper, we propose an elliptic curve-based signcryption scheme derived from the standardized signature KCDSA (Korean Certificate-based Digital Signature Algorithm) in the context of the Internet of Things. Our solution has several advantages. First, the scheme is provably secure in the random oracle model. Second, it provides the following security properties: outsider/insider confidentiality and unforgeability; non-repudiation and public verifiability, while be...

  6. Provable Fair Document Exchange Protocol with Transaction Privacy for E-Commerce

    OpenAIRE

    Ren-Junn Hwang; Chih-Hua Lai

    2015-01-01

    Transaction privacy has attracted a lot of attention in the e-commerce. This study proposes an efficient and provable fair document exchange protocol with transaction privacy. Using the proposed protocol, any untrusted parties can fairly exchange documents without the assistance of online, trusted third parties. Moreover, a notary only notarizes each document once. The authorized document owner can exchange a notarized document with different parties repeatedly without disclosing the origin o...

  7. Multi-stage Optimization of Matchings in Trees with Application to Kidney Exchange

    KAUST Repository

    Mankowski, Michal; Moshkov, Mikhail

    2017-01-01

    In this paper, we propose a method for multi-stage optimization of matchings in trees relative to different weight functions that assign positive weights to the edges of the trees. This method can be useful in transplantology where nodes of the tree

  8. A tool for study of optimal decision trees

    KAUST Repository

    Alkhalid, Abdulaziz; Chikalov, Igor; Moshkov, Mikhail

    2010-01-01

    The paper describes a tool which allows us for relatively small decision tables to make consecutive optimization of decision trees relative to various complexity measures such as number of nodes, average depth, and depth, and to find parameters

  9. Parallel Algorithms for Graph Optimization using Tree Decompositions

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Blair D [ORNL; Weerapurage, Dinesh P [ORNL; Groer, Christopher S [ORNL

    2012-06-01

    Although many $\\cal{NP}$-hard graph optimization problems can be solved in polynomial time on graphs of bounded tree-width, the adoption of these techniques into mainstream scientific computation has been limited due to the high memory requirements of the necessary dynamic programming tables and excessive runtimes of sequential implementations. This work addresses both challenges by proposing a set of new parallel algorithms for all steps of a tree decomposition-based approach to solve the maximum weighted independent set problem. A hybrid OpenMP/MPI implementation includes a highly scalable parallel dynamic programming algorithm leveraging the MADNESS task-based runtime, and computational results demonstrate scaling. This work enables a significant expansion of the scale of graphs on which exact solutions to maximum weighted independent set can be obtained, and forms a framework for solving additional graph optimization problems with similar techniques.

  10. The influence of variability on the optimal shape of an airway tree branching asymmetrically

    International Nuclear Information System (INIS)

    Mauroy, Benjamin; Bokov, Plamen

    2010-01-01

    The asymmetry of the bronchial tree has been reported on numerous occasions, and bronchi in the lung bifurcate most of the time into a major and a minor daughter. Asymmetry is most probably bound to play a role on the hydrodynamic resistance and volume occupation of the bronchial tree. Thus, in this work, we search for an optimal asymmetric airway tree crossed by Poiseuille flow that would be a good candidate to model the distal conductive part of the lung. The geometry is controlled by major and minor diameter reduction factors that depend on the generation. We show that the optimal asymmetric tree has diameter reduction factors that are adimensional from the second level of bifurcation and that they are highly dependent on the asymmetric ratio that defines the relative sizes of the major and minor branches in a bifurcation. This optimization also gives access to a cost function whose particularity is to be asymmetric around its minimum. Thus, the cliff-edge hypothesis predicts that if the system suffers variability, then the best tree is shifted from the optimal. We apply a recent theoretical model of cliff-edge in order to measure the role of variability on the determination of the best asymmetric tree. Then, we compare our results with lung data of the literature. In particular, we are able to quantify the variability needed to fit the data and to give hypothesis that could explain, at least partially, the shift found between the optimal tree and the measures in the case of asymmetric bronchial trees. Finally, our model predicts that, even if the population is adapted at best, there always exist individuals whose bronchial trees are associated with larger costs comparatively to the average and who ought to be more sensitive to geometrical remodeling

  11. Provable Data Possession of Resource-constrained Mobile Devices in Cloud Computing

    OpenAIRE

    Jian Yang; Haihang Wang; Jian Wang; Chengxiang Tan; Dingguo Yu

    2011-01-01

    Benefited from cloud storage services, users can save their cost of buying expensive storage and application servers, as well as deploying and maintaining applications. Meanwhile they lost the physical control of their data. So effective methods are needed to verify the correctness of the data stored at cloud servers, which are the research issues the Provable Data Possession (PDP) faced. The most important features in PDP are: 1) supporting for public, unlimited numbers of times of verificat...

  12. Provably unbounded memory advantage in stochastic simulation using quantum mechanics

    Science.gov (United States)

    Garner, Andrew J. P.; Liu, Qing; Thompson, Jayne; Vedral, Vlatko; Gu, mile

    2017-10-01

    Simulating the stochastic evolution of real quantities on a digital computer requires a trade-off between the precision to which these quantities are approximated, and the memory required to store them. The statistical accuracy of the simulation is thus generally limited by the internal memory available to the simulator. Here, using tools from computational mechanics, we show that quantum processors with a fixed finite memory can simulate stochastic processes of real variables to arbitrarily high precision. This demonstrates a provable, unbounded memory advantage that a quantum simulator can exhibit over its best possible classical counterpart.

  13. An optimal algorithm for computing all subtree repeats in trees.

    Science.gov (United States)

    Flouri, T; Kobert, K; Pissis, S P; Stamatakis, A

    2014-05-28

    Given a labelled tree T, our goal is to group repeating subtrees of T into equivalence classes with respect to their topologies and the node labels. We present an explicit, simple and time-optimal algorithm for solving this problem for unrooted unordered labelled trees and show that the running time of our method is linear with respect to the size of T. By unordered, we mean that the order of the adjacent nodes (children/neighbours) of any node of T is irrelevant. An unrooted tree T does not have a node that is designated as root and can also be referred to as an undirected tree. We show how the presented algorithm can easily be modified to operate on trees that do not satisfy some or any of the aforementioned assumptions on the tree structure; for instance, how it can be applied to rooted, ordered or unlabelled trees.

  14. Extensions of dynamic programming as a new tool for decision tree optimization

    KAUST Repository

    Alkhalid, Abdulaziz

    2013-01-01

    The chapter is devoted to the consideration of two types of decision trees for a given decision table: α-decision trees (the parameter α controls the accuracy of tree) and decision trees (which allow arbitrary level of accuracy). We study possibilities of sequential optimization of α-decision trees relative to different cost functions such as depth, average depth, and number of nodes. For decision trees, we analyze relationships between depth and number of misclassifications. We also discuss results of computer experiments with some datasets from UCI ML Repository. ©Springer-Verlag Berlin Heidelberg 2013.

  15. Hide and seek

    DEFF Research Database (Denmark)

    Radel, Dietrich; Sand, Andreas; Steel, Mike

    2013-01-01

    criterion. This provides, for the first time, a rigorous way to test tree search algorithms on homoplasy-rich data, where we know in advance what the ‘best’ tree is. In this short note we consider just one search program (TNT) but show that it is able to locate the globally optimal tree correctly for 32......Finding optimal evolutionary trees from sequence data is typically an intractable problem, and there is usually no way of knowing how close to optimal the best tree from some search truly is. The problem would seem to be particularly acute when we have many taxa and when that data has high levels...... of homoplasy, in which the individual characters require many changes to fit on the best tree. However, a recent mathematical result has provided a precise tool to generate a short number of high-homoplasy characters for any given tree, so that this tree is provably the optimal tree under the maximum parsimony...

  16. Runtime Optimizations for Tree-Based Machine Learning Models

    NARCIS (Netherlands)

    N. Asadi; J.J.P. Lin (Jimmy); A.P. de Vries (Arjen)

    2014-01-01

    htmlabstractTree-based models have proven to be an effective solution for web ranking as well as other machine learning problems in diverse domains. This paper focuses on optimizing the runtime performance of applying such models to make predictions, specifically using gradient-boosted regression

  17. Provably unbounded memory advantage in stochastic simulation using quantum mechanics

    International Nuclear Information System (INIS)

    Garner, Andrew J P; Thompson, Jayne; Vedral, Vlatko; Gu, Mile; Liu, Qing

    2017-01-01

    Simulating the stochastic evolution of real quantities on a digital computer requires a trade-off between the precision to which these quantities are approximated, and the memory required to store them. The statistical accuracy of the simulation is thus generally limited by the internal memory available to the simulator. Here, using tools from computational mechanics, we show that quantum processors with a fixed finite memory can simulate stochastic processes of real variables to arbitrarily high precision. This demonstrates a provable, unbounded memory advantage that a quantum simulator can exhibit over its best possible classical counterpart. (paper)

  18. Optimal Rate Allocation in Cluster-Tree WSNs

    Directory of Open Access Journals (Sweden)

    Jose Lopez Vicario

    2011-03-01

    Full Text Available In this paper, we propose a solution to the problem of guaranteed time slot allocation in cluster-tree WSNs. Our design uses the so-called Network Utility Maximization (NUM approach as far as we aim to provide a fair distribution of the available resources. From the point of view of implementation, we extend here the authors’ proposed Coupled-Decompositions Method (CDM in order to compute the NUM problem inside the cluster tree topology and we prove the optimality of this new extended version of the method. As a result, we obtain a distributed solution that reduces the total amount of signalling information in the network up to a factor of 500 with respect to the classical techniques, that is, primal and dual decomposition. This is possible because the CDM finds the optimal solution with a small number of iterations. Furthermore, when we compare our solution to the standard-proposed First Come First Serve (FCFS policy, we realize that FCFS becomes pretty unfair as the traffic load in the network increases and thus, a fair allocation of resources can be considered whenever the price to pay in terms of signalling and computational complexity is controlled.

  19. Optimization and analysis of decision trees and rules: Dynamic programming approach

    KAUST Repository

    Alkhalid, Abdulaziz

    2013-08-01

    This paper is devoted to the consideration of software system Dagger created in KAUST. This system is based on extensions of dynamic programming. It allows sequential optimization of decision trees and rules relative to different cost functions, derivation of relationships between two cost functions (in particular, between number of misclassifications and depth of decision trees), and between cost and uncertainty of decision trees. We describe features of Dagger and consider examples of this systems work on decision tables from UCI Machine Learning Repository. We also use Dagger to compare 16 different greedy algorithms for decision tree construction. © 2013 Taylor and Francis Group, LLC.

  20. Optimization and analysis of decision trees and rules: Dynamic programming approach

    KAUST Repository

    Alkhalid, Abdulaziz; Amin, Talha M.; Chikalov, Igor; Hussain, Shahid; Moshkov, Mikhail; Zielosko, Beata

    2013-01-01

    This paper is devoted to the consideration of software system Dagger created in KAUST. This system is based on extensions of dynamic programming. It allows sequential optimization of decision trees and rules relative to different cost functions, derivation of relationships between two cost functions (in particular, between number of misclassifications and depth of decision trees), and between cost and uncertainty of decision trees. We describe features of Dagger and consider examples of this systems work on decision tables from UCI Machine Learning Repository. We also use Dagger to compare 16 different greedy algorithms for decision tree construction. © 2013 Taylor and Francis Group, LLC.

  1. Scenario tree generation and multi-asset financial optimization problems

    DEFF Research Database (Denmark)

    Geyer, Alois; Hanke, Michael; Weissensteiner, Alex

    2013-01-01

    We compare two popular scenario tree generation methods in the context of financial optimization: moment matching and scenario reduction. Using a simple problem with a known analytic solution, moment matching-when ensuring absence of arbitrage-replicates this solution precisely. On the other hand...

  2. Optimizing continuous cover management of boreal forest when timber prices and tree growth are stochastic

    Directory of Open Access Journals (Sweden)

    Timo Pukkala

    2015-03-01

    Full Text Available Background Decisions on forest management are made under risk and uncertainty because the stand development cannot be predicted exactly and future timber prices are unknown. Deterministic calculations may lead to biased advice on optimal forest management. The study optimized continuous cover management of boreal forest in a situation where tree growth, regeneration, and timber prices include uncertainty. Methods Both anticipatory and adaptive optimization approaches were used. The adaptive approach optimized the reservation price function instead of fixed cutting years. The future prices of different timber assortments were described by cross-correlated auto-regressive models. The high variation around ingrowth model was simulated using a model that describes the cross- and autocorrelations of the regeneration results of different species and years. Tree growth was predicted with individual tree models, the predictions of which were adjusted on the basis of a climate-induced growth trend, which was stochastic. Residuals of the deterministic diameter growth model were also simulated. They consisted of random tree factors and cross- and autocorrelated temporal terms. Results Of the analyzed factors, timber price caused most uncertainty in the calculation of the net present value of a certain management schedule. Ingrowth and climate trend were less significant sources of risk and uncertainty than tree growth. Stochastic anticipatory optimization led to more diverse post-cutting stand structures than obtained in deterministic optimization. Cutting interval was shorter when risk and uncertainty were included in the analyses. Conclusions Adaptive optimization and management led to 6%–14% higher net present values than obtained in management that was based on anticipatory optimization. Increasing risk aversion of the forest landowner led to earlier cuttings in a mature stand. The effect of risk attitude on optimization results was small.

  3. Multi-stage Optimization of Matchings in Trees with Application to Kidney Exchange

    KAUST Repository

    Mankowski, Michal

    2017-07-22

    In this paper, we propose a method for multi-stage optimization of matchings in trees relative to different weight functions that assign positive weights to the edges of the trees. This method can be useful in transplantology where nodes of the tree correspond to pairs (donor, recipient) and two nodes (pairs) are connected by an edge if these pairs can exchange kidneys. Weight functions can characterize the number of exchanges, the importance of exchanges, or their compatibility.

  4. On Kripke-style semantics for the provability logic of Gödel’s proof predicate with quantifiers on proofs

    NARCIS (Netherlands)

    Yavorskiy, R.

    Kripke-style semantics is suggested for the provability logic with quantifiers on proofs corresponding to the standard Gödel proof predicate. It is proved that the set of valid formulas is decidable. The arithmetical completeness is still an open issue.

  5. Dynamic Programming Algorithm for Generation of Optimal Elimination Trees for Multi-frontal Direct Solver Over H-refined Grids

    KAUST Repository

    AbouEisha, Hassan M.

    2014-06-06

    In this paper we present a dynamic programming algorithm for finding optimal elimination trees for computational grids refined towards point or edge singularities. The elimination tree is utilized to guide the multi-frontal direct solver algorithm. Thus, the criterion for the optimization of the elimination tree is the computational cost associated with the multi-frontal solver algorithm executed over such tree. We illustrate the paper with several examples of optimal trees found for grids with point, isotropic edge and anisotropic edge mixed with point singularity. We show the comparison of the execution time of the multi-frontal solver algorithm with results of MUMPS solver with METIS library, implementing the nested dissection algorithm.

  6. Provably-Secure Authenticated Group Diffie-Hellman KeyExchange

    Energy Technology Data Exchange (ETDEWEB)

    Bresson, Emmanuel; Chevassut, Olivier; Pointcheval, David

    2007-01-01

    Authenticated key exchange protocols allow two participantsA and B, communicating over a public network and each holding anauthentication means, to exchange a shared secret value. Methods designedto deal with this cryptographic problem ensure A (resp. B) that no otherparticipants aside from B (resp. A) can learn any information about theagreed value, and often also ensure A and B that their respective partnerhas actually computed this value. A natural extension to thiscryptographic method is to consider a pool of participants exchanging ashared secret value and to provide a formal treatment for it. Startingfrom the famous 2-party Diffie-Hellman (DH) key exchange protocol, andfrom its authenticated variants, security experts have extended it to themulti-party setting for over a decade and completed a formal analysis inthe framework of modern cryptography in the past few years. The presentpaper synthesizes this body of work on the provably-secure authenticatedgroup DH key exchange.

  7. Optimal interconnection trees in the plane theory, algorithms and applications

    CERN Document Server

    Brazil, Marcus

    2015-01-01

    This book explores fundamental aspects of geometric network optimisation with applications to a variety of real world problems. It presents, for the first time in the literature, a cohesive mathematical framework within which the properties of such optimal interconnection networks can be understood across a wide range of metrics and cost functions. The book makes use of this mathematical theory to develop efficient algorithms for constructing such networks, with an emphasis on exact solutions.  Marcus Brazil and Martin Zachariasen focus principally on the geometric structure of optimal interconnection networks, also known as Steiner trees, in the plane. They show readers how an understanding of this structure can lead to practical exact algorithms for constructing such trees.  The book also details numerous breakthroughs in this area over the past 20 years, features clearly written proofs, and is supported by 135 colour and 15 black and white figures. It will help graduate students, working mathematicians, ...

  8. Element Partition Trees For H-Refined Meshes to Optimize Direct Solver Performance. Part I: Dynamic Programming

    KAUST Repository

    AbouEisha, Hassan M.

    2017-07-13

    We consider a class of two-and three-dimensional h-refined meshes generated by an adaptive finite element method. We introduce an element partition tree, which controls the execution of the multi-frontal solver algorithm over these refined grids. We propose and study algorithms with polynomial computational cost for the optimization of these element partition trees. The trees provide an ordering for the elimination of unknowns. The algorithms automatically optimize the element partition trees using extensions of dynamic programming. The construction of the trees by the dynamic programming approach is expensive. These generated trees cannot be used in practice, but rather utilized as a learning tool to propose fast heuristic algorithms. In this first part of our paper we focus on the dynamic programming approach, and draw a sketch of the heuristic algorithm. The second part will be devoted to a more detailed analysis of the heuristic algorithm extended for the case of hp-adaptive

  9. Element Partition Trees For H-Refined Meshes to Optimize Direct Solver Performance. Part I: Dynamic Programming

    KAUST Repository

    AbouEisha, Hassan M.; Calo, Victor Manuel; Jopek, Konrad; Moshkov, Mikhail; Paszyńka, Anna; Paszyński, Maciej; Skotniczny, Marcin

    2017-01-01

    We consider a class of two-and three-dimensional h-refined meshes generated by an adaptive finite element method. We introduce an element partition tree, which controls the execution of the multi-frontal solver algorithm over these refined grids. We propose and study algorithms with polynomial computational cost for the optimization of these element partition trees. The trees provide an ordering for the elimination of unknowns. The algorithms automatically optimize the element partition trees using extensions of dynamic programming. The construction of the trees by the dynamic programming approach is expensive. These generated trees cannot be used in practice, but rather utilized as a learning tool to propose fast heuristic algorithms. In this first part of our paper we focus on the dynamic programming approach, and draw a sketch of the heuristic algorithm. The second part will be devoted to a more detailed analysis of the heuristic algorithm extended for the case of hp-adaptive

  10. Provable Fair Document Exchange Protocol with Transaction Privacy for E-Commerce

    Directory of Open Access Journals (Sweden)

    Ren-Junn Hwang

    2015-04-01

    Full Text Available Transaction privacy has attracted a lot of attention in the e-commerce. This study proposes an efficient and provable fair document exchange protocol with transaction privacy. Using the proposed protocol, any untrusted parties can fairly exchange documents without the assistance of online, trusted third parties. Moreover, a notary only notarizes each document once. The authorized document owner can exchange a notarized document with different parties repeatedly without disclosing the origin of the document or the identities of transaction participants. Security and performance analyses indicate that the proposed protocol not only provides strong fairness, non-repudiation of origin, non-repudiation of receipt, and message confidentiality, but also enhances forward secrecy, transaction privacy, and authorized exchange. The proposed protocol is more efficient than other works.

  11. The optimal patch test concentration for ascaridole as a sensitizing component of tea tree oil

    NARCIS (Netherlands)

    Christoffers, Wietske Andrea; Bloemeke, Brunhilde; Coenraads, Pieter-Jan; Schuttelaar, Marie-Louise Anna

    BACKGROUND: Tea tree oil is used as a natural remedy, but is also a popular ingredient in household and cosmetic products. Oxidation of tea tree oil results in degradation products, such as ascaridole, which may cause allergic contact dermatitis. OBJECTIVES: To identify the optimal patch test

  12. A System to Derive Optimal Tree Diameter Increment Models from the Eastwide Forest Inventory Data Base (EFIDB)

    Science.gov (United States)

    Don C. Bragg

    2002-01-01

    This article is an introduction to the computer software used by the Potential Relative Increment (PRI) approach to optimal tree diameter growth modeling. These DOS programs extract qualified tree and plot data from the Eastwide Forest Inventory Data Base (EFIDB), calculate relative tree increment, sort for the highest relative increments by diameter class, and...

  13. Classification and Optimization of Decision Trees for Inconsistent Decision Tables Represented as MVD Tables

    KAUST Repository

    Azad, Mohammad

    2015-10-11

    Decision tree is a widely used technique to discover patterns from consistent data set. But if the data set is inconsistent, where there are groups of examples (objects) with equal values of conditional attributes but different decisions (values of the decision attribute), then to discover the essential patterns or knowledge from the data set is challenging. We consider three approaches (generalized, most common and many-valued decision) to handle such inconsistency. We created different greedy algorithms using various types of impurity and uncertainty measures to construct decision trees. We compared the three approaches based on the decision tree properties of the depth, average depth and number of nodes. Based on the result of the comparison, we choose to work with the many-valued decision approach. Now to determine which greedy algorithms are efficient, we compared them based on the optimization and classification results. It was found that some greedy algorithms Mult\\\\_ws\\\\_entSort, and Mult\\\\_ws\\\\_entML are good for both optimization and classification.

  14. Classification and Optimization of Decision Trees for Inconsistent Decision Tables Represented as MVD Tables

    KAUST Repository

    Azad, Mohammad; Moshkov, Mikhail

    2015-01-01

    Decision tree is a widely used technique to discover patterns from consistent data set. But if the data set is inconsistent, where there are groups of examples (objects) with equal values of conditional attributes but different decisions (values of the decision attribute), then to discover the essential patterns or knowledge from the data set is challenging. We consider three approaches (generalized, most common and many-valued decision) to handle such inconsistency. We created different greedy algorithms using various types of impurity and uncertainty measures to construct decision trees. We compared the three approaches based on the decision tree properties of the depth, average depth and number of nodes. Based on the result of the comparison, we choose to work with the many-valued decision approach. Now to determine which greedy algorithms are efficient, we compared them based on the optimization and classification results. It was found that some greedy algorithms Mult\\_ws\\_entSort, and Mult\\_ws\\_entML are good for both optimization and classification.

  15. A Novel Path Planning for Robots Based on Rapidly-Exploring Random Tree and Particle Swarm Optimizer Algorithm

    Directory of Open Access Journals (Sweden)

    Zhou Feng

    2013-09-01

    Full Text Available A based on Rapidly-exploring Random Tree(RRT and Particle Swarm Optimizer (PSO for path planning of the robot is proposed.First the grid method is built to describe the working space of the mobile robot,then the Rapidly-exploring Random Tree algorithm is used to obtain the global navigation path,and the Particle Swarm Optimizer algorithm is adopted to get the better path.Computer experiment results demonstrate that this novel algorithm can plan an optimal path rapidly in a cluttered environment.The successful obstacle avoidance is achieved,and the model is robust and performs reliably.

  16. Mixed integer linear programming for maximum-parsimony phylogeny inference.

    Science.gov (United States)

    Sridhar, Srinath; Lam, Fumei; Blelloch, Guy E; Ravi, R; Schwartz, Russell

    2008-01-01

    Reconstruction of phylogenetic trees is a fundamental problem in computational biology. While excellent heuristic methods are available for many variants of this problem, new advances in phylogeny inference will be required if we are to be able to continue to make effective use of the rapidly growing stores of variation data now being gathered. In this paper, we present two integer linear programming (ILP) formulations to find the most parsimonious phylogenetic tree from a set of binary variation data. One method uses a flow-based formulation that can produce exponential numbers of variables and constraints in the worst case. The method has, however, proven extremely efficient in practice on datasets that are well beyond the reach of the available provably efficient methods, solving several large mtDNA and Y-chromosome instances within a few seconds and giving provably optimal results in times competitive with fast heuristics than cannot guarantee optimality. An alternative formulation establishes that the problem can be solved with a polynomial-sized ILP. We further present a web server developed based on the exponential-sized ILP that performs fast maximum parsimony inferences and serves as a front end to a database of precomputed phylogenies spanning the human genome.

  17. Provably Secure Password-based Authentication in TLS

    Energy Technology Data Exchange (ETDEWEB)

    Abdalla, Michel; Emmanuel, Bresson; Chevassut, Olivier; Moeller,Bodo; Pointcheval, David

    2005-12-20

    In this paper, we show how to design an efficient, provably secure password-based authenticated key exchange mechanism specifically for the TLS (Transport Layer Security) protocol. The goal is to provide a technique that allows users to employ (short) passwords to securely identify themselves to servers. As our main contribution, we describe a new password-based technique for user authentication in TLS, called Simple Open Key Exchange (SOKE). Loosely speaking, the SOKE ciphersuites are unauthenticated Diffie-Hellman ciphersuites in which the client's Diffie-Hellman ephemeral public value is encrypted using a simple mask generation function. The mask is simply a constant value raised to the power of (a hash of) the password.The SOKE ciphersuites, in advantage over previous pass-word-based authentication ciphersuites for TLS, combine the following features. First, SOKE has formal security arguments; the proof of security based on the computational Diffie-Hellman assumption is in the random oracle model, and holds for concurrent executions and for arbitrarily large password dictionaries. Second, SOKE is computationally efficient; in particular, it only needs operations in a sufficiently large prime-order subgroup for its Diffie-Hellman computations (no safe primes). Third, SOKE provides good protocol flexibility because the user identity and password are only required once a SOKE ciphersuite has actually been negotiated, and after the server has sent a server identity.

  18. Pareto-optimal phylogenetic tree reconciliation.

    Science.gov (United States)

    Libeskind-Hadas, Ran; Wu, Yi-Chieh; Bansal, Mukul S; Kellis, Manolis

    2014-06-15

    Phylogenetic tree reconciliation is a widely used method for reconstructing the evolutionary histories of gene families and species, hosts and parasites and other dependent pairs of entities. Reconciliation is typically performed using maximum parsimony, in which each evolutionary event type is assigned a cost and the objective is to find a reconciliation of minimum total cost. It is generally understood that reconciliations are sensitive to event costs, but little is understood about the relationship between event costs and solutions. Moreover, choosing appropriate event costs is a notoriously difficult problem. We address this problem by giving an efficient algorithm for computing Pareto-optimal sets of reconciliations, thus providing the first systematic method for understanding the relationship between event costs and reconciliations. This, in turn, results in new techniques for computing event support values and, for cophylogenetic analyses, performing robust statistical tests. We provide new software tools and demonstrate their use on a number of datasets from evolutionary genomic and cophylogenetic studies. Our Python tools are freely available at www.cs.hmc.edu/∼hadas/xscape. . © The Author 2014. Published by Oxford University Press.

  19. Credibilistic multi-period portfolio optimization based on scenario tree

    Science.gov (United States)

    Mohebbi, Negin; Najafi, Amir Abbas

    2018-02-01

    In this paper, we consider a multi-period fuzzy portfolio optimization model with considering transaction costs and the possibility of risk-free investment. We formulate a bi-objective mean-VaR portfolio selection model based on the integration of fuzzy credibility theory and scenario tree in order to dealing with the markets uncertainty. The scenario tree is also a proper method for modeling multi-period portfolio problems since the length and continuity of their horizon. We take the return and risk as well cardinality, threshold, class, and liquidity constraints into consideration for further compliance of the model with reality. Then, an interactive dynamic programming method, which is based on a two-phase fuzzy interactive approach, is employed to solve the proposed model. In order to verify the proposed model, we present an empirical application in NYSE under different circumstances. The results show that the consideration of data uncertainty and other real-world assumptions lead to more practical and efficient solutions.

  20. Totally Optimal Decision Trees for Monotone Boolean Functions with at Most Five Variables

    KAUST Repository

    Chikalov, Igor; Hussain, Shahid; Moshkov, Mikhail

    2013-01-01

    In this paper, we present the empirical results for relationships between time (depth) and space (number of nodes) complexity of decision trees computing monotone Boolean functions, with at most five variables. We use Dagger (a tool for optimization

  1. Practical optimization of Steiner trees via the cavity method

    Science.gov (United States)

    Braunstein, Alfredo; Muntoni, Anna

    2016-07-01

    The optimization version of the cavity method for single instances, called Max-Sum, has been applied in the past to the minimum Steiner tree problem on graphs and variants. Max-Sum has been shown experimentally to give asymptotically optimal results on certain types of weighted random graphs, and to give good solutions in short computation times for some types of real networks. However, the hypotheses behind the formulation and the cavity method itself limit substantially the class of instances on which the approach gives good results (or even converges). Moreover, in the standard model formulation, the diameter of the tree solution is limited by a predefined bound, that affects both computation time and convergence properties. In this work we describe two main enhancements to the Max-Sum equations to be able to cope with optimization of real-world instances. First, we develop an alternative ‘flat’ model formulation that allows the relevant configuration space to be reduced substantially, making the approach feasible on instances with large solution diameter, in particular when the number of terminal nodes is small. Second, we propose an integration between Max-Sum and three greedy heuristics. This integration allows Max-Sum to be transformed into a highly competitive self-contained algorithm, in which a feasible solution is given at each step of the iterative procedure. Part of this development participated in the 2014 DIMACS Challenge on Steiner problems, and we report the results here. The performance on the challenge of the proposed approach was highly satisfactory: it maintained a small gap to the best bound in most cases, and obtained the best results on several instances in two different categories. We also present several improvements with respect to the version of the algorithm that participated in the competition, including new best solutions for some of the instances of the challenge.

  2. Dynamic Programming Algorithm for Generation of Optimal Elimination Trees for Multi-frontal Direct Solver Over H-refined Grids

    KAUST Repository

    AbouEisha, Hassan M.; Moshkov, Mikhail; Calo, Victor M.; Paszynski, Maciej; Goik, Damian; Jopek, Konrad

    2014-01-01

    In this paper we present a dynamic programming algorithm for finding optimal elimination trees for computational grids refined towards point or edge singularities. The elimination tree is utilized to guide the multi-frontal direct solver algorithm

  3. Which trees should be removed in thinning?

    Directory of Open Access Journals (Sweden)

    Timo Pukkala

    2015-12-01

    Full Text Available Background: In economically optimal management, trees that are removed in a thinning treatment should be selected on the basis of their value, relative value increment and the effect of removal on the growth of remaining trees. Large valuable trees with decreased value increment should be removed, especially when they overtop smaller trees. Methods: This study optimized the tree selection rule in the thinning treatments of continuous cover management when the aim is to maximize the profitability of forest management. The weights of three criteria (stem value, relative value increment and effect of removal on the competition of remaining trees were optimized together with thinning intervals. Results and conclusions: The results confirmed the hypothesis that optimal thinning involves removing predominantly large trees. Increasing stumpage value, decreasing relative value increment, and increasing competitive influence increased the likelihood that removal is optimal decision. However, if the spatial distribution of trees is irregular, it is optimal to leave large trees in sparse places and remove somewhat smaller trees from dense places. However, the benefit of optimal thinning, as compared to diameter limit cutting is not usually large in pure one-species stands. On the contrary, removing the smallest trees from the stand may lead to significant (30–40 % reductions in the net present value of harvest incomes. Keywords: Continuous cover forestry, Tree selection, High thinning, Optimal management, Spatial distribution, Spatial growth model

  4. Constructing an optimal decision tree for FAST corner point detection

    KAUST Repository

    Alkhalid, Abdulaziz; Chikalov, Igor; Moshkov, Mikhail

    2011-01-01

    In this paper, we consider a problem that is originated in computer vision: determining an optimal testing strategy for the corner point detection problem that is a part of FAST algorithm [11,12]. The problem can be formulated as building a decision tree with the minimum average depth for a decision table with all discrete attributes. We experimentally compare performance of an exact algorithm based on dynamic programming and several greedy algorithms that differ in the attribute selection criterion. © 2011 Springer-Verlag.

  5. The Optimization of In-Memory Space Partitioning Trees for Cache Utilization

    Science.gov (United States)

    Yeo, Myung Ho; Min, Young Soo; Bok, Kyoung Soo; Yoo, Jae Soo

    In this paper, a novel cache conscious indexing technique based on space partitioning trees is proposed. Many researchers investigated efficient cache conscious indexing techniques which improve retrieval performance of in-memory database management system recently. However, most studies considered data partitioning and targeted fast information retrieval. Existing data partitioning-based index structures significantly degrade performance due to the redundant accesses of overlapped spaces. Specially, R-tree-based index structures suffer from the propagation of MBR (Minimum Bounding Rectangle) information by updating data frequently. In this paper, we propose an in-memory space partitioning index structure for optimal cache utilization. The proposed index structure is compared with the existing index structures in terms of update performance, insertion performance and cache-utilization rate in a variety of environments. The results demonstrate that the proposed index structure offers better performance than existing index structures.

  6. Behavior and sensitivity of an optimal tree diameter growth model under data uncertainty

    Science.gov (United States)

    Don C. Bragg

    2005-01-01

    Using loblolly pine, shortleaf pine, white oak, and northern red oak as examples, this paper considers the behavior of potential relative increment (PRI) models of optimal tree diameter growth under data uncertainity. Recommendations on intial sample size and the PRI iteractive curve fitting process are provided. Combining different state inventories prior to PRI model...

  7. A Hybrid Optimized Weighted Minimum Spanning Tree for the Shortest Intrapath Selection in Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Matheswaran Saravanan

    2014-01-01

    Full Text Available Wireless sensor network (WSN consists of sensor nodes that need energy efficient routing techniques as they have limited battery power, computing, and storage resources. WSN routing protocols should enable reliable multihop communication with energy constraints. Clustering is an effective way to reduce overheads and when this is aided by effective resource allocation, it results in reduced energy consumption. In this work, a novel hybrid evolutionary algorithm called Bee Algorithm-Simulated Annealing Weighted Minimal Spanning Tree (BASA-WMST routing is proposed in which randomly deployed sensor nodes are split into the best possible number of independent clusters with cluster head and optimal route. The former gathers data from sensors belonging to the cluster, forwarding them to the sink. The shortest intrapath selection for the cluster is selected using Weighted Minimum Spanning Tree (WMST. The proposed algorithm computes the distance-based Minimum Spanning Tree (MST of the weighted graph for the multihop network. The weights are dynamically changed based on the energy level of each sensor during route selection and optimized using the proposed bee algorithm simulated annealing algorithm.

  8. Improving medical diagnosis reliability using Boosted C5.0 decision tree empowered by Particle Swarm Optimization.

    Science.gov (United States)

    Pashaei, Elnaz; Ozen, Mustafa; Aydin, Nizamettin

    2015-08-01

    Improving accuracy of supervised classification algorithms in biomedical applications is one of active area of research. In this study, we improve the performance of Particle Swarm Optimization (PSO) combined with C4.5 decision tree (PSO+C4.5) classifier by applying Boosted C5.0 decision tree as the fitness function. To evaluate the effectiveness of our proposed method, it is implemented on 1 microarray dataset and 5 different medical data sets obtained from UCI machine learning databases. Moreover, the results of PSO + Boosted C5.0 implementation are compared to eight well-known benchmark classification methods (PSO+C4.5, support vector machine under the kernel of Radial Basis Function, Classification And Regression Tree (CART), C4.5 decision tree, C5.0 decision tree, Boosted C5.0 decision tree, Naive Bayes and Weighted K-Nearest neighbor). Repeated five-fold cross-validation method was used to justify the performance of classifiers. Experimental results show that our proposed method not only improve the performance of PSO+C4.5 but also obtains higher classification accuracy compared to the other classification methods.

  9. Effects of tree-to-tree variations on sap flux-based transpiration estimates in a forested watershed

    Science.gov (United States)

    Kume, Tomonori; Tsuruta, Kenji; Komatsu, Hikaru; Kumagai, Tomo'omi; Higashi, Naoko; Shinohara, Yoshinori; Otsuki, Kyoichi

    2010-05-01

    To estimate forest stand-scale water use, we assessed how sample sizes affect confidence of stand-scale transpiration (E) estimates calculated from sap flux (Fd) and sapwood area (AS_tree) measurements of individual trees. In a Japanese cypress plantation, we measured Fd and AS_tree in all trees (n = 58) within a 20 × 20 m study plot, which was divided into four 10 × 10 subplots. We calculated E from stand AS_tree (AS_stand) and mean stand Fd (JS) values. Using Monte Carlo analyses, we examined potential errors associated with sample sizes in E, AS_stand, and JS by using the original AS_tree and Fd data sets. Consequently, we defined optimal sample sizes of 10 and 15 for AS_stand and JS estimates, respectively, in the 20 × 20 m plot. Sample sizes greater than the optimal sample sizes did not decrease potential errors. The optimal sample sizes for JS changed according to plot size (e.g., 10 × 10 m and 10 × 20 m), while the optimal sample sizes for AS_stand did not. As well, the optimal sample sizes for JS did not change in different vapor pressure deficit conditions. In terms of E estimates, these results suggest that the tree-to-tree variations in Fd vary among different plots, and that plot size to capture tree-to-tree variations in Fd is an important factor. This study also discusses planning balanced sampling designs to extrapolate stand-scale estimates to catchment-scale estimates.

  10. Optimization of matrix tablets controlled drug release using Elman dynamic neural networks and decision trees.

    Science.gov (United States)

    Petrović, Jelena; Ibrić, Svetlana; Betz, Gabriele; Đurić, Zorica

    2012-05-30

    The main objective of the study was to develop artificial intelligence methods for optimization of drug release from matrix tablets regardless of the matrix type. Static and dynamic artificial neural networks of the same topology were developed to model dissolution profiles of different matrix tablets types (hydrophilic/lipid) using formulation composition, compression force used for tableting and tablets porosity and tensile strength as input data. Potential application of decision trees in discovering knowledge from experimental data was also investigated. Polyethylene oxide polymer and glyceryl palmitostearate were used as matrix forming materials for hydrophilic and lipid matrix tablets, respectively whereas selected model drugs were diclofenac sodium and caffeine. Matrix tablets were prepared by direct compression method and tested for in vitro dissolution profiles. Optimization of static and dynamic neural networks used for modeling of drug release was performed using Monte Carlo simulations or genetic algorithms optimizer. Decision trees were constructed following discretization of data. Calculated difference (f(1)) and similarity (f(2)) factors for predicted and experimentally obtained dissolution profiles of test matrix tablets formulations indicate that Elman dynamic neural networks as well as decision trees are capable of accurate predictions of both hydrophilic and lipid matrix tablets dissolution profiles. Elman neural networks were compared to most frequently used static network, Multi-layered perceptron, and superiority of Elman networks have been demonstrated. Developed methods allow simple, yet very precise way of drug release predictions for both hydrophilic and lipid matrix tablets having controlled drug release. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. SAFTAC, Monte-Carlo Fault Tree Simulation for System Design Performance and Optimization

    International Nuclear Information System (INIS)

    Crosetti, P.A.; Garcia de Viedma, L.

    1976-01-01

    1 - Description of problem or function: SAFTAC is a Monte Carlo fault tree simulation program that provides a systematic approach for analyzing system design, performing trade-off studies, and optimizing system changes or additions. 2 - Method of solution: SAFTAC assumes an exponential failure distribution for basic input events and a choice of either Gaussian distributed or constant repair times. The program views the system represented by the fault tree as a statistical assembly of independent basic input events, each characterized by an exponential failure distribution and, if used, a constant or normal repair distribution. 3 - Restrictions on the complexity of the problem: The program is dimensioned to handle 1100 basic input events and 1100 logical gates. It can be re-dimensioned to handle up to 2000 basic input events and 2000 logical gates within the existing core memory

  12. Optimal Halbach permanent magnet designs for maximally pulling and pushing nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sarwar, A., E-mail: azeem@umd.edu [Fischell Department of Bioengineering, College Park, MD (United States); University of Maryland at College Park (United States); Nemirovski, A. [H. Milton Stewart School of Industrial and Systems Engineering (ISyE), Georgia Institute of Technology (United States); Shapiro, B. [Fischell Department of Bioengineering, College Park, MD (United States); Institute for Systems Research (United States); University of Maryland at College Park (United States)

    2012-03-15

    Optimization methods are presented to design Halbach arrays to maximize the forces applied on magnetic nanoparticles at deep tissue locations. In magnetic drug targeting, where magnets are used to focus therapeutic nanoparticles to disease locations, the sharp fall off of magnetic fields and forces with distances from magnets has limited the depth of targeting. Creating stronger forces at a depth by optimally designed Halbach arrays would allow treatment of a wider class of patients, e.g. patients with deeper tumors. The presented optimization methods are based on semi-definite quadratic programming, yield provably globally optimal Halbach designs in 2 and 3-dimensions, for maximal pull or push magnetic forces (stronger pull forces can collect nanoparticles against blood forces in deeper vessels; push forces can be used to inject particles into precise locations, e.g. into the inner ear). These Halbach designs, here tested in simulations of Maxwell's equations, significantly outperform benchmark magnets of the same size and strength. For example, a 3-dimensional 36 element 2000 cm{sup 3} volume optimal Halbach design yields a 5 Multiplication-Sign greater force at a 10 cm depth compared to a uniformly magnetized magnet of the same size and strength. The designed arrays should be feasible to construct, as they have a similar strength ({<=}1 T), size ({<=}2000 cm{sup 3}), and number of elements ({<=}36) as previously demonstrated arrays, and retain good performance for reasonable manufacturing errors (element magnetization direction errors {<=}5 Degree-Sign), thus yielding practical designs to improve magnetic drug targeting treatment depths. - Highlights: Black-Right-Pointing-Pointer Optimization methods presented to design Halbach arrays for drug targeting. Black-Right-Pointing-Pointer The goal is to maximize forces on magnetic nanoparticles at deep tissue locations. Black-Right-Pointing-Pointer The presented methods yield provably globally optimal Halbach

  13. Optimal Halbach permanent magnet designs for maximally pulling and pushing nanoparticles

    International Nuclear Information System (INIS)

    Sarwar, A.; Nemirovski, A.; Shapiro, B.

    2012-01-01

    Optimization methods are presented to design Halbach arrays to maximize the forces applied on magnetic nanoparticles at deep tissue locations. In magnetic drug targeting, where magnets are used to focus therapeutic nanoparticles to disease locations, the sharp fall off of magnetic fields and forces with distances from magnets has limited the depth of targeting. Creating stronger forces at a depth by optimally designed Halbach arrays would allow treatment of a wider class of patients, e.g. patients with deeper tumors. The presented optimization methods are based on semi-definite quadratic programming, yield provably globally optimal Halbach designs in 2 and 3-dimensions, for maximal pull or push magnetic forces (stronger pull forces can collect nanoparticles against blood forces in deeper vessels; push forces can be used to inject particles into precise locations, e.g. into the inner ear). These Halbach designs, here tested in simulations of Maxwell's equations, significantly outperform benchmark magnets of the same size and strength. For example, a 3-dimensional 36 element 2000 cm 3 volume optimal Halbach design yields a 5× greater force at a 10 cm depth compared to a uniformly magnetized magnet of the same size and strength. The designed arrays should be feasible to construct, as they have a similar strength (≤1 T), size (≤2000 cm 3 ), and number of elements (≤36) as previously demonstrated arrays, and retain good performance for reasonable manufacturing errors (element magnetization direction errors ≤5°), thus yielding practical designs to improve magnetic drug targeting treatment depths. - Highlights: ► Optimization methods presented to design Halbach arrays for drug targeting. ► The goal is to maximize forces on magnetic nanoparticles at deep tissue locations. ► The presented methods yield provably globally optimal Halbach designs in 2D and 3D. ► These designs significantly outperform benchmark magnets of the same size and strength. ► These

  14. Timing-Driven-Testable Convergent Tree Adders

    Directory of Open Access Journals (Sweden)

    Johnnie A. Huang

    2002-01-01

    Full Text Available Carry lookahead adders have been, over the years, implemented in complex arithmetic units due to their regular structure which leads to efficient VLSI implementation for fast adders. In this paper, timing-driven testability synthesis is first performed on a tree adder. It is shown that the structure of the tree adder provides for a high fanout with an imbalanced tree structure, which likely contributes to a racing effect and increases the delay of the circuit. The timing optimization is then realized by reducing the maximum fanout of the adder and by balancing the tree circuit. For a 56-b testable tree adder, the optimization produces a 6.37%increase in speed of the critical path while only contributing a 2.16% area overhead. The full testability of the circuit is achieved in the optimized adder design.

  15. Building optimal regression tree by ant colony system-genetic algorithm: Application to modeling of melting points

    Energy Technology Data Exchange (ETDEWEB)

    Hemmateenejad, Bahram, E-mail: hemmatb@sums.ac.ir [Department of Chemistry, Shiraz University, Shiraz (Iran, Islamic Republic of); Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz (Iran, Islamic Republic of); Shamsipur, Mojtaba [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Zare-Shahabadi, Vali [Young Researchers Club, Mahshahr Branch, Islamic Azad University, Mahshahr (Iran, Islamic Republic of); Akhond, Morteza [Department of Chemistry, Shiraz University, Shiraz (Iran, Islamic Republic of)

    2011-10-17

    Highlights: {yields} Ant colony systems help to build optimum classification and regression trees. {yields} Using of genetic algorithm operators in ant colony systems resulted in more appropriate models. {yields} Variable selection in each terminal node of the tree gives promising results. {yields} CART-ACS-GA could model the melting point of organic materials with prediction errors lower than previous models. - Abstract: The classification and regression trees (CART) possess the advantage of being able to handle large data sets and yield readily interpretable models. A conventional method of building a regression tree is recursive partitioning, which results in a good but not optimal tree. Ant colony system (ACS), which is a meta-heuristic algorithm and derived from the observation of real ants, can be used to overcome this problem. The purpose of this study was to explore the use of CART and its combination with ACS for modeling of melting points of a large variety of chemical compounds. Genetic algorithm (GA) operators (e.g., cross averring and mutation operators) were combined with ACS algorithm to select the best solution model. In addition, at each terminal node of the resulted tree, variable selection was done by ACS-GA algorithm to build an appropriate partial least squares (PLS) model. To test the ability of the resulted tree, a set of approximately 4173 structures and their melting points were used (3000 compounds as training set and 1173 as validation set). Further, an external test set containing of 277 drugs was used to validate the prediction ability of the tree. Comparison of the results obtained from both trees showed that the tree constructed by ACS-GA algorithm performs better than that produced by recursive partitioning procedure.

  16. FB-Tree: A B+-Tree for Flash-Based SSDs

    DEFF Research Database (Denmark)

    Jørgensen, Martin V.; Rasmussen, René B.; Saltenis, Simonas

    2011-01-01

    Due to their many advantages, flash-based SSDs (Solid-State Drives) have become a mainstream alternative to magnetic disks for database servers. Nevertheless, database systems, designed and optimized for magnetic disks, still do not fully exploit all the benefits of the new technology. We propose....... As a consequence, the FB-tree outperforms a regular B+-tree in all scenarios tested. For instance, the throughput of a random workload of 75% updates increases by a factor of three using only two times the space of the B+-tree....

  17. OmniGA: Optimized Omnivariate Decision Trees for Generalizable Classification Models

    KAUST Repository

    Magana-Mora, Arturo

    2017-06-14

    Classification problems from different domains vary in complexity, size, and imbalance of the number of samples from different classes. Although several classification models have been proposed, selecting the right model and parameters for a given classification task to achieve good performance is not trivial. Therefore, there is a constant interest in developing novel robust and efficient models suitable for a great variety of data. Here, we propose OmniGA, a framework for the optimization of omnivariate decision trees based on a parallel genetic algorithm, coupled with deep learning structure and ensemble learning methods. The performance of the OmniGA framework is evaluated on 12 different datasets taken mainly from biomedical problems and compared with the results obtained by several robust and commonly used machine-learning models with optimized parameters. The results show that OmniGA systematically outperformed these models for all the considered datasets, reducing the F score error in the range from 100% to 2.25%, compared to the best performing model. This demonstrates that OmniGA produces robust models with improved performance. OmniGA code and datasets are available at www.cbrc.kaust.edu.sa/omniga/.

  18. OmniGA: Optimized Omnivariate Decision Trees for Generalizable Classification Models

    KAUST Repository

    Magana-Mora, Arturo; Bajic, Vladimir B.

    2017-01-01

    Classification problems from different domains vary in complexity, size, and imbalance of the number of samples from different classes. Although several classification models have been proposed, selecting the right model and parameters for a given classification task to achieve good performance is not trivial. Therefore, there is a constant interest in developing novel robust and efficient models suitable for a great variety of data. Here, we propose OmniGA, a framework for the optimization of omnivariate decision trees based on a parallel genetic algorithm, coupled with deep learning structure and ensemble learning methods. The performance of the OmniGA framework is evaluated on 12 different datasets taken mainly from biomedical problems and compared with the results obtained by several robust and commonly used machine-learning models with optimized parameters. The results show that OmniGA systematically outperformed these models for all the considered datasets, reducing the F score error in the range from 100% to 2.25%, compared to the best performing model. This demonstrates that OmniGA produces robust models with improved performance. OmniGA code and datasets are available at www.cbrc.kaust.edu.sa/omniga/.

  19. Using rapidly-exploring random tree-based algorithms to find smooth and optimal trajectories

    CSIR Research Space (South Africa)

    Matebese, B

    2012-10-01

    Full Text Available -exploring random tree-based algorithms to fi nd smooth and optimal trajectories B MATEBESE1, MK BANDA2 AND S UTETE1 1CSIR Modelling and Digital Science, PO Box 395, Pretoria, South Africa, 0001 2Department of Applied Mathematics, Stellenbosch University... and complex environments. The RRT algorithm is the most popular and has the ability to find a feasible solution faster than other algorithms. The drawback of using RRT is that, as the number of samples increases, the probability that the algorithm converges...

  20. TreeNetViz: revealing patterns of networks over tree structures.

    Science.gov (United States)

    Gou, Liang; Zhang, Xiaolong Luke

    2011-12-01

    Network data often contain important attributes from various dimensions such as social affiliations and areas of expertise in a social network. If such attributes exhibit a tree structure, visualizing a compound graph consisting of tree and network structures becomes complicated. How to visually reveal patterns of a network over a tree has not been fully studied. In this paper, we propose a compound graph model, TreeNet, to support visualization and analysis of a network at multiple levels of aggregation over a tree. We also present a visualization design, TreeNetViz, to offer the multiscale and cross-scale exploration and interaction of a TreeNet graph. TreeNetViz uses a Radial, Space-Filling (RSF) visualization to represent the tree structure, a circle layout with novel optimization to show aggregated networks derived from TreeNet, and an edge bundling technique to reduce visual complexity. Our circular layout algorithm reduces both total edge-crossings and edge length and also considers hierarchical structure constraints and edge weight in a TreeNet graph. These experiments illustrate that the algorithm can reduce visual cluttering in TreeNet graphs. Our case study also shows that TreeNetViz has the potential to support the analysis of a compound graph by revealing multiscale and cross-scale network patterns. © 2011 IEEE

  1. A new method of optimal capacitor switching based on minimum spanning tree theory in distribution systems

    Science.gov (United States)

    Li, H. W.; Pan, Z. Y.; Ren, Y. B.; Wang, J.; Gan, Y. L.; Zheng, Z. Z.; Wang, W.

    2018-03-01

    According to the radial operation characteristics in distribution systems, this paper proposes a new method based on minimum spanning trees method for optimal capacitor switching. Firstly, taking the minimal active power loss as objective function and not considering the capacity constraints of capacitors and source, this paper uses Prim algorithm among minimum spanning trees algorithms to get the power supply ranges of capacitors and source. Then with the capacity constraints of capacitors considered, capacitors are ranked by the method of breadth-first search. In term of the order from high to low of capacitor ranking, capacitor compensation capacity based on their power supply range is calculated. Finally, IEEE 69 bus system is adopted to test the accuracy and practicality of the proposed algorithm.

  2. Phylogenetic search through partial tree mixing

    Science.gov (United States)

    2012-01-01

    Background Recent advances in sequencing technology have created large data sets upon which phylogenetic inference can be performed. Current research is limited by the prohibitive time necessary to perform tree search on a reasonable number of individuals. This research develops new phylogenetic algorithms that can operate on tens of thousands of species in a reasonable amount of time through several innovative search techniques. Results When compared to popular phylogenetic search algorithms, better trees are found much more quickly for large data sets. These algorithms are incorporated in the PSODA application available at http://dna.cs.byu.edu/psoda Conclusions The use of Partial Tree Mixing in a partition based tree space allows the algorithm to quickly converge on near optimal tree regions. These regions can then be searched in a methodical way to determine the overall optimal phylogenetic solution. PMID:23320449

  3. An Optimal Sample Data Usage Strategy to Minimize Overfitting and Underfitting Effects in Regression Tree Models Based on Remotely-Sensed Data

    Directory of Open Access Journals (Sweden)

    Yingxin Gu

    2016-11-01

    Full Text Available Regression tree models have been widely used for remote sensing-based ecosystem mapping. Improper use of the sample data (model training and testing data may cause overfitting and underfitting effects in the model. The goal of this study is to develop an optimal sampling data usage strategy for any dataset and identify an appropriate number of rules in the regression tree model that will improve its accuracy and robustness. Landsat 8 data and Moderate-Resolution Imaging Spectroradiometer-scaled Normalized Difference Vegetation Index (NDVI were used to develop regression tree models. A Python procedure was designed to generate random replications of model parameter options across a range of model development data sizes and rule number constraints. The mean absolute difference (MAD between the predicted and actual NDVI (scaled NDVI, value from 0–200 and its variability across the different randomized replications were calculated to assess the accuracy and stability of the models. In our case study, a six-rule regression tree model developed from 80% of the sample data had the lowest MAD (MADtraining = 2.5 and MADtesting = 2.4, which was suggested as the optimal model. This study demonstrates how the training data and rule number selections impact model accuracy and provides important guidance for future remote-sensing-based ecosystem modeling.

  4. Multi-pruning of decision trees for knowledge representation and classification

    KAUST Repository

    Azad, Mohammad

    2016-06-09

    We consider two important questions related to decision trees: first how to construct a decision tree with reasonable number of nodes and reasonable number of misclassification, and second how to improve the prediction accuracy of decision trees when they are used as classifiers. We have created a dynamic programming based approach for bi-criteria optimization of decision trees relative to the number of nodes and the number of misclassification. This approach allows us to construct the set of all Pareto optimal points and to derive, for each such point, decision trees with parameters corresponding to that point. Experiments on datasets from UCI ML Repository show that, very often, we can find a suitable Pareto optimal point and derive a decision tree with small number of nodes at the expense of small increment in number of misclassification. Based on the created approach we have proposed a multi-pruning procedure which constructs decision trees that, as classifiers, often outperform decision trees constructed by CART. © 2015 IEEE.

  5. Multi-pruning of decision trees for knowledge representation and classification

    KAUST Repository

    Azad, Mohammad; Chikalov, Igor; Hussain, Shahid; Moshkov, Mikhail

    2016-01-01

    We consider two important questions related to decision trees: first how to construct a decision tree with reasonable number of nodes and reasonable number of misclassification, and second how to improve the prediction accuracy of decision trees when they are used as classifiers. We have created a dynamic programming based approach for bi-criteria optimization of decision trees relative to the number of nodes and the number of misclassification. This approach allows us to construct the set of all Pareto optimal points and to derive, for each such point, decision trees with parameters corresponding to that point. Experiments on datasets from UCI ML Repository show that, very often, we can find a suitable Pareto optimal point and derive a decision tree with small number of nodes at the expense of small increment in number of misclassification. Based on the created approach we have proposed a multi-pruning procedure which constructs decision trees that, as classifiers, often outperform decision trees constructed by CART. © 2015 IEEE.

  6. Towards improving searches for optimal phylogenies.

    Science.gov (United States)

    Ford, Eric; St John, Katherine; Wheeler, Ward C

    2015-01-01

    Finding the optimal evolutionary history for a set of taxa is a challenging computational problem, even when restricting possible solutions to be "tree-like" and focusing on the maximum-parsimony optimality criterion. This has led to much work on using heuristic tree searches to find approximate solutions. We present an approach for finding exact optimal solutions that employs and complements the current heuristic methods for finding optimal trees. Given a set of taxa and a set of aligned sequences of characters, there may be subsets of characters that are compatible, and for each such subset there is an associated (possibly partially resolved) phylogeny with edges corresponding to each character state change. These perfect phylogenies serve as anchor trees for our constrained search space. We show that, for sequences with compatible sites, the parsimony score of any tree [Formula: see text] is at least the parsimony score of the anchor trees plus the number of inferred changes between [Formula: see text] and the anchor trees. As the maximum-parsimony optimality score is additive, the sum of the lower bounds on compatible character partitions provides a lower bound on the complete alignment of characters. This yields a region in the space of trees within which the best tree is guaranteed to be found; limiting the search for the optimal tree to this region can significantly reduce the number of trees that must be examined in a search of the space of trees. We analyze this method empirically using four different biological data sets as well as surveying 400 data sets from the TreeBASE repository, demonstrating the effectiveness of our technique in reducing the number of steps in exact heuristic searches for trees under the maximum-parsimony optimality criterion. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. A Durable Flash Memory Search Tree

    OpenAIRE

    Clay III, James; Wortman, Kevin

    2012-01-01

    We consider the task of optimizing the B-tree data structure, used extensively in operating systems and databases, for sustainable usage on multi-level flash memory. Empirical evidence shows that this new flash memory tree, or FM Tree, extends the operational lifespan of each block of flash memory by a factor of roughly 27 to 70 times, while still supporting logarithmic-time search tree operations.

  8. Enzymatic production of sterculic acid from the novel Phoenix tree seed oil: Optimization and kinetic study

    International Nuclear Information System (INIS)

    Hou, X.; Sun, S.

    2017-01-01

    Phoenix tree (Firmiana simplex) seed oil is a novel oil which is rich in sterculic acid. Sterculic acid, a cyclopropene fatty acid, can be used as the inhibitor of the stearoyl-CoA desaturase system and mammary carcinomas growth. In this work, Lipozyme TLIM-catalyzed hydrolysis of the novel Phoenix tree seed oil was used to prepare sterculic acid. High temperature GC-FID and the degree of hydrolysis (DH) were used to monitor the reaction progress. Effects of reaction variables on the hydrolysis were evaluated and optimized using response surface methodology. Results showed that sterculic acid can be successfully prepared from the novel seed oil, and the effect of reaction variables on the hydrolysis decreased in the order of reaction time > enzyme load > temperature. A high yield of fatty acids (DH, 98.2±0.8%) can be obtained under optimized conditions (45 ºC, mass ratio of water to oil 10:1, enzyme load 10%, and 18 h). The Arrhenius equation for the hydrolysis was LnV0 = 9.12 − 4721/T. The activation energy was 39.25KJ/mol. The kinetic values for Vmax, K/m were 0.232mol/(L∙min) and 0.084 mol/L, respectively. [es

  9. Refining discordant gene trees.

    Science.gov (United States)

    Górecki, Pawel; Eulenstein, Oliver

    2014-01-01

    Evolutionary studies are complicated by discordance between gene trees and the species tree in which they evolved. Dealing with discordant trees often relies on comparison costs between gene and species trees, including the well-established Robinson-Foulds, gene duplication, and deep coalescence costs. While these costs have provided credible results for binary rooted gene trees, corresponding cost definitions for non-binary unrooted gene trees, which are frequently occurring in practice, are challenged by biological realism. We propose a natural extension of the well-established costs for comparing unrooted and non-binary gene trees with rooted binary species trees using a binary refinement model. For the duplication cost we describe an efficient algorithm that is based on a linear time reduction and also computes an optimal rooted binary refinement of the given gene tree. Finally, we show that similar reductions lead to solutions for computing the deep coalescence and the Robinson-Foulds costs. Our binary refinement of Robinson-Foulds, gene duplication, and deep coalescence costs for unrooted and non-binary gene trees together with the linear time reductions provided here for computing these costs significantly extends the range of trees that can be incorporated into approaches dealing with discordance.

  10. Gene selection for the reconstruction of stem cell differentiation trees: a linear programming approach.

    Science.gov (United States)

    Ghadie, Mohamed A; Japkowicz, Nathalie; Perkins, Theodore J

    2015-08-15

    Stem cell differentiation is largely guided by master transcriptional regulators, but it also depends on the expression of other types of genes, such as cell cycle genes, signaling genes, metabolic genes, trafficking genes, etc. Traditional approaches to understanding gene expression patterns across multiple conditions, such as principal components analysis or K-means clustering, can group cell types based on gene expression, but they do so without knowledge of the differentiation hierarchy. Hierarchical clustering can organize cell types into a tree, but in general this tree is different from the differentiation hierarchy itself. Given the differentiation hierarchy and gene expression data at each node, we construct a weighted Euclidean distance metric such that the minimum spanning tree with respect to that metric is precisely the given differentiation hierarchy. We provide a set of linear constraints that are provably sufficient for the desired construction and a linear programming approach to identify sparse sets of weights, effectively identifying genes that are most relevant for discriminating different parts of the tree. We apply our method to microarray gene expression data describing 38 cell types in the hematopoiesis hierarchy, constructing a weighted Euclidean metric that uses just 175 genes. However, we find that there are many alternative sets of weights that satisfy the linear constraints. Thus, in the style of random-forest training, we also construct metrics based on random subsets of the genes and compare them to the metric of 175 genes. We then report on the selected genes and their biological functions. Our approach offers a new way to identify genes that may have important roles in stem cell differentiation. tperkins@ohri.ca Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Bi-Criteria Optimization of Decision Trees with Applications to Data Analysis

    KAUST Repository

    Chikalov, Igor; Hussain, Shahid; Moshkov, Mikhail

    2017-01-01

    : the study of relationships among depth, average depth and number of nodes for decision trees for corner point detection (such trees are used in computer vision for object tracking), study of systems of decision rules derived from decision trees

  12. Urban tree mortality: a primer on demographic approaches

    Science.gov (United States)

    Lara A. Roman; John J. Battles; Joe R. McBride

    2016-01-01

    Realizing the benefits of tree planting programs depends on tree survival. Projections of urban forest ecosystem services and cost-benefit analyses are sensitive to assumptions about tree mortality rates. Long-term mortality data are needed to improve the accuracy of these models and optimize the public investment in tree planting. With more accurate population...

  13. Extensions of dynamic programming as a new tool for decision tree optimization

    KAUST Repository

    Alkhalid, Abdulaziz; Chikalov, Igor; Hussain, Shahid; Moshkov, Mikhail

    2013-01-01

    The chapter is devoted to the consideration of two types of decision trees for a given decision table: α-decision trees (the parameter α controls the accuracy of tree) and decision trees (which allow arbitrary level of accuracy). We study

  14. A bicriterion Steiner tree problem on graph

    Directory of Open Access Journals (Sweden)

    Vujošević Mirko B.

    2003-01-01

    Full Text Available This paper presents a formulation of bicriterion Steiner tree problem which is stated as a task of finding a Steiner tree with maximal capacity and minimal length. It is considered as a lexicographic multicriteria problem. This means that the bottleneck Steiner tree problem is solved first. After that, the next optimization problem is stated as a classical minimums Steiner tree problem under the constraint on capacity of the tree. The paper also presents some computational experiments with the multicriteria problem.

  15. Optimal Monotone Drawings of Trees

    OpenAIRE

    He, Dayu; He, Xin

    2016-01-01

    A monotone drawing of a graph G is a straight-line drawing of G such that, for every pair of vertices u,w in G, there exists abpath P_{uw} in G that is monotone in some direction l_{uw}. (Namely, the order of the orthogonal projections of the vertices of P_{uw} on l_{uw} is the same as the order they appear in P_{uw}.) The problem of finding monotone drawings for trees has been studied in several recent papers. The main focus is to reduce the size of the drawing. Currently, the smallest drawi...

  16. A fast method for calculating reliable event supports in tree reconciliations via Pareto optimality.

    Science.gov (United States)

    To, Thu-Hien; Jacox, Edwin; Ranwez, Vincent; Scornavacca, Celine

    2015-11-14

    Given a gene and a species tree, reconciliation methods attempt to retrieve the macro-evolutionary events that best explain the discrepancies between the two tree topologies. The DTL parsimonious approach searches for a most parsimonious reconciliation between a gene tree and a (dated) species tree, considering four possible macro-evolutionary events (speciation, duplication, transfer, and loss) with specific costs. Unfortunately, many events are erroneously predicted due to errors in the input trees, inappropriate input cost values or because of the existence of several equally parsimonious scenarios. It is thus crucial to provide a measure of the reliability for predicted events. It has been recently proposed that the reliability of an event can be estimated via its frequency in the set of most parsimonious reconciliations obtained using a variety of reasonable input cost vectors. To compute such a support, a straightforward but time-consuming approach is to generate the costs slightly departing from the original ones, independently compute the set of all most parsimonious reconciliations for each vector, and combine these sets a posteriori. Another proposed approach uses Pareto-optimality to partition cost values into regions which induce reconciliations with the same number of DTL events. The support of an event is then defined as its frequency in the set of regions. However, often, the number of regions is not large enough to provide reliable supports. We present here a method to compute efficiently event supports via a polynomial-sized graph, which can represent all reconciliations for several different costs. Moreover, two methods are proposed to take into account alternative input costs: either explicitly providing an input cost range or allowing a tolerance for the over cost of a reconciliation. Our methods are faster than the region based method, substantially faster than the sampling-costs approach, and have a higher event-prediction accuracy on

  17. Stock Picking via Nonsymmetrically Pruned Binary Decision Trees

    OpenAIRE

    Anton Andriyashin

    2008-01-01

    Stock picking is the field of financial analysis that is of particular interest for many professional investors and researchers. In this study stock picking is implemented via binary classification trees. Optimal tree size is believed to be the crucial factor in forecasting performance of the trees. While there exists a standard method of tree pruning, which is based on the cost-complexity tradeoff and used in the majority of studies employing binary decision trees, this paper introduces a no...

  18. Tree Resolution Proofs of the Weak Pigeon-Hole Principle

    DEFF Research Database (Denmark)

    Dantchev, Stefan Stajanov; Riis, Søren

    2001-01-01

    We prove that any optimal tree resolution proof of PHPn m is of size 2&thetas;(n log n), independently from m, even if it is infinity. So far, only a 2Ω(n) lower bound has been known in the general case. We also show that any, not necessarily optimal, regular tree resolution proof PHPn m is bound...

  19. Decision and Inhibitory Trees for Decision Tables with Many-Valued Decisions

    KAUST Repository

    Azad, Mohammad

    2018-06-06

    Decision trees are one of the most commonly used tools in decision analysis, knowledge representation, machine learning, etc., for its simplicity and interpretability. We consider an extension of dynamic programming approach to process the whole set of decision trees for the given decision table which was previously only attainable by brute-force algorithms. We study decision tables with many-valued decisions (each row may contain multiple decisions) because they are more reasonable models of data in many cases. To address this problem in a broad sense, we consider not only decision trees but also inhibitory trees where terminal nodes are labeled with “̸= decision”. Inhibitory trees can sometimes describe more knowledge from datasets than decision trees. As for cost functions, we consider depth or average depth to minimize time complexity of trees, and the number of nodes or the number of the terminal, or nonterminal nodes to minimize the space complexity of trees. We investigate the multi-stage optimization of trees relative to some cost functions, and also the possibility to describe the whole set of strictly optimal trees. Furthermore, we study the bi-criteria optimization cost vs. cost and cost vs. uncertainty for decision trees, and cost vs. cost and cost vs. completeness for inhibitory trees. The most interesting application of the developed technique is the creation of multi-pruning and restricted multi-pruning approaches which are useful for knowledge representation and prediction. The experimental results show that decision trees constructed by these approaches can often outperform the decision trees constructed by the CART algorithm. Another application includes the comparison of 12 greedy heuristics for single- and bi-criteria optimization (cost vs. cost) of trees. We also study the three approaches (decision tables with many-valued decisions, decision tables with most common decisions, and decision tables with generalized decisions) to handle

  20. Relating phylogenetic trees to transmission trees of infectious disease outbreaks.

    Science.gov (United States)

    Ypma, Rolf J F; van Ballegooijen, W Marijn; Wallinga, Jacco

    2013-11-01

    Transmission events are the fundamental building blocks of the dynamics of any infectious disease. Much about the epidemiology of a disease can be learned when these individual transmission events are known or can be estimated. Such estimations are difficult and generally feasible only when detailed epidemiological data are available. The genealogy estimated from genetic sequences of sampled pathogens is another rich source of information on transmission history. Optimal inference of transmission events calls for the combination of genetic data and epidemiological data into one joint analysis. A key difficulty is that the transmission tree, which describes the transmission events between infected hosts, differs from the phylogenetic tree, which describes the ancestral relationships between pathogens sampled from these hosts. The trees differ both in timing of the internal nodes and in topology. These differences become more pronounced when a higher fraction of infected hosts is sampled. We show how the phylogenetic tree of sampled pathogens is related to the transmission tree of an outbreak of an infectious disease, by the within-host dynamics of pathogens. We provide a statistical framework to infer key epidemiological and mutational parameters by simultaneously estimating the phylogenetic tree and the transmission tree. We test the approach using simulations and illustrate its use on an outbreak of foot-and-mouth disease. The approach unifies existing methods in the emerging field of phylodynamics with transmission tree reconstruction methods that are used in infectious disease epidemiology.

  1. Univariate decision tree induction using maximum margin classification

    OpenAIRE

    Yıldız, Olcay Taner

    2012-01-01

    In many pattern recognition applications, first decision trees are used due to their simplicity and easily interpretable nature. In this paper, we propose a new decision tree learning algorithm called univariate margin tree where, for each continuous attribute, the best split is found using convex optimization. Our simulation results on 47 data sets show that the novel margin tree classifier performs at least as good as C4.5 and linear discriminant tree (LDT) with a similar time complexity. F...

  2. Search Trees with Relaxed Balance and Near-Optimal Height

    DEFF Research Database (Denmark)

    Fagerberg, Rolf; Jensen, Rune E.; Larsen, Kim Skak

    2001-01-01

    We introduce a relaxed k-tree, a search tree with relaxed balance and a height bound, when in balance, of (1+epsilon)log_2 n + 1, for any epsilon > 0. The number of nodes involved in rebalancing is O(1/epsilon) per update in the amortized sense, and O(log n/epsilon) in the worst case sense. This ...... constant rebalancing, which is an improvement over the current definition. World Wide Web search engines are possible applications for this line of work....

  3. Stratified B-trees and versioning dictionaries

    OpenAIRE

    Twigg, Andy; Byde, Andrew; Milos, Grzegorz; Moreton, Tim; Wilkes, John; Wilkie, Tom

    2011-01-01

    A classic versioned data structure in storage and computer science is the copy-on-write (CoW) B-tree -- it underlies many of today's file systems and databases, including WAFL, ZFS, Btrfs and more. Unfortunately, it doesn't inherit the B-tree's optimality properties; it has poor space utilization, cannot offer fast updates, and relies on random IO to scale. Yet, nothing better has been developed since. We describe the `stratified B-tree', which beats all known semi-external memory versioned B...

  4. Tree-inception in PMMA with a barrier

    International Nuclear Information System (INIS)

    Gefle, O S; Lebedev, S M; Pokholkov, Y P; Gockenbach, E; Borsi, H

    2004-01-01

    The experimental results of a study of the tree-inception phenomenon for three-layer dielectrics in a divergent field are presented in this paper. It is shown that the tree-inception time depends on both the position of the high-permittivity barrier in the insulating gap and the ratio of the permittivities of the barrier material and main dielectric, and that it has a maximum at the optimal barrier position. It is found that the tree-inception length has a minimum value at this barrier position. Good agreement between the coefficient of the local field non-uniformity and the tree-inception time or the initial tree length was found

  5. The Tree of Industrial Life

    DEFF Research Database (Denmark)

    Andersen, Esben Sloth

    2002-01-01

    The purpose of this paper is to bring forth an interaction between evolutionary economics and industrial systematics. The suggested solution is to reconstruct the "family tree" of the industries. Such a tree is based on similarities, but it may also reflect the evolutionary history in industries....... For this purpose the paper shows how matrices of input-output coefficients can be transformed into binary characteristics matrices and to distance matrices, and it also discusses the possible evolutionary meaning of this translation. Then these derived matrices are used as inputs to algorithms for the heuristic...... finding of optimal industrial trees. The results are presented as taxonomic trees that can easily be compared with the hierarchical structure of existing systems of industrial classification....

  6. The decision tree approach to classification

    Science.gov (United States)

    Wu, C.; Landgrebe, D. A.; Swain, P. H.

    1975-01-01

    A class of multistage decision tree classifiers is proposed and studied relative to the classification of multispectral remotely sensed data. The decision tree classifiers are shown to have the potential for improving both the classification accuracy and the computation efficiency. Dimensionality in pattern recognition is discussed and two theorems on the lower bound of logic computation for multiclass classification are derived. The automatic or optimization approach is emphasized. Experimental results on real data are reported, which clearly demonstrate the usefulness of decision tree classifiers.

  7. Provable Secure and Efficient Digital Rights Management Authentication Scheme Using Smart Card Based on Elliptic Curve Cryptography

    Directory of Open Access Journals (Sweden)

    Yuanyuan Zhang

    2015-01-01

    Full Text Available Since the concept of ubiquitous computing is firstly proposed by Mark Weiser, its connotation has been extending and expanding by many scholars. In pervasive computing application environment, many kinds of small devices containing smart cart are used to communicate with others. In 2013, Yang et al. proposed an enhanced authentication scheme using smart card for digital rights management. They demonstrated that their scheme is secure enough. However, Mishra et al. pointed out that Yang et al.’s scheme suffers from the password guessing attack and the denial of service attack. Moreover, they also demonstrated that Yang et al.’s scheme is not efficient enough when the user inputs an incorrect password. In this paper, we analyze Yang et al.’s scheme again, and find that their scheme is vulnerable to the session key attack. And, there are some mistakes in their scheme. To surmount the weakness of Yang et al.’s scheme, we propose a more efficient and provable secure digital rights management authentication scheme using smart card based on elliptic curve cryptography.

  8. Polytomy refinement for the correction of dubious duplications in gene trees.

    Science.gov (United States)

    Lafond, Manuel; Chauve, Cedric; Dondi, Riccardo; El-Mabrouk, Nadia

    2014-09-01

    Large-scale methods for inferring gene trees are error-prone. Correcting gene trees for weakly supported features often results in non-binary trees, i.e. trees with polytomies, thus raising the natural question of refining such polytomies into binary trees. A feature pointing toward potential errors in gene trees are duplications that are not supported by the presence of multiple gene copies. We introduce the problem of refining polytomies in a gene tree while minimizing the number of created non-apparent duplications in the resulting tree. We show that this problem can be described as a graph-theoretical optimization problem. We provide a bounded heuristic with guaranteed optimality for well-characterized instances. We apply our algorithm to a set of ray-finned fish gene trees from the Ensembl database to illustrate its ability to correct dubious duplications. The C++ source code for the algorithms and simulations described in the article are available at http://www-ens.iro.umontreal.ca/~lafonman/software.php. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  9. Properly placed shade trees reduce summertime electricity bills in Sacramento, California

    Science.gov (United States)

    Geoffery H. Donovan; David R. Butry

    2009-01-01

    The discovery that shade trees can reduce home cooling costs is hardly surprising. Anybody who has sat under a tree on a warm summer day understands the shade benefit of trees. However, quantifying the effect a shade tree has on home energy use and carbon footprint, and identifying the optimal location for a shade tree, is less straightforward. Past studies that have...

  10. Downscaling soil moisture over East Asia through multi-sensor data fusion and optimization of regression trees

    Science.gov (United States)

    Park, Seonyoung; Im, Jungho; Park, Sumin; Rhee, Jinyoung

    2017-04-01

    optimization based on pruning of rules derived from the modified regression trees was conducted. Root Mean Square Error (RMSE) and Correlation coefficients (r) were used to optimize the rules, and finally 59 rules from modified regression trees were produced. The results show high validation r (0.79) and low validation RMSE (0.0556m3/m3). The 1 km downscaled soil moisture was evaluated using ground soil moisture data at 14 stations, and both soil moisture data showed similar temporal patterns (average r=0.51 and average RMSE=0.041). The spatial distribution of the 1 km downscaled soil moisture well corresponded with GLDAS soil moisture that caught both extremely dry and wet regions. Correlation between GLDAS and the 1 km downscaled soil moisture during growing season was positive (mean r=0.35) in most regions.

  11. Algorithms for Decision Tree Construction

    KAUST Repository

    Chikalov, Igor

    2011-01-01

    The study of algorithms for decision tree construction was initiated in 1960s. The first algorithms are based on the separation heuristic [13, 31] that at each step tries dividing the set of objects as evenly as possible. Later Garey and Graham [28] showed that such algorithm may construct decision trees whose average depth is arbitrarily far from the minimum. Hyafil and Rivest in [35] proved NP-hardness of DT problem that is constructing a tree with the minimum average depth for a diagnostic problem over 2-valued information system and uniform probability distribution. Cox et al. in [22] showed that for a two-class problem over information system, even finding the root node attribute for an optimal tree is an NP-hard problem. © Springer-Verlag Berlin Heidelberg 2011.

  12. Minimization of decision tree depth for multi-label decision tables

    KAUST Repository

    Azad, Mohammad

    2014-10-01

    In this paper, we consider multi-label decision tables that have a set of decisions attached to each row. Our goal is to find one decision from the set of decisions for each row by using decision tree as our tool. Considering our target to minimize the depth of the decision tree, we devised various kinds of greedy algorithms as well as dynamic programming algorithm. When we compare with the optimal result obtained from dynamic programming algorithm, we found some greedy algorithms produces results which are close to the optimal result for the minimization of depth of decision trees.

  13. Minimization of decision tree depth for multi-label decision tables

    KAUST Repository

    Azad, Mohammad; Moshkov, Mikhail

    2014-01-01

    In this paper, we consider multi-label decision tables that have a set of decisions attached to each row. Our goal is to find one decision from the set of decisions for each row by using decision tree as our tool. Considering our target to minimize the depth of the decision tree, we devised various kinds of greedy algorithms as well as dynamic programming algorithm. When we compare with the optimal result obtained from dynamic programming algorithm, we found some greedy algorithms produces results which are close to the optimal result for the minimization of depth of decision trees.

  14. Optimal processing for gel electrophoresis images: Applying Monte Carlo Tree Search in GelApp.

    Science.gov (United States)

    Nguyen, Phi-Vu; Ghezal, Ali; Hsueh, Ya-Chih; Boudier, Thomas; Gan, Samuel Ken-En; Lee, Hwee Kuan

    2016-08-01

    In biomedical research, gel band size estimation in electrophoresis analysis is a routine process. To facilitate and automate this process, numerous software have been released, notably the GelApp mobile app. However, the band detection accuracy is limited due to a band detection algorithm that cannot adapt to the variations in input images. To address this, we used the Monte Carlo Tree Search with Upper Confidence Bound (MCTS-UCB) method to efficiently search for optimal image processing pipelines for the band detection task, thereby improving the segmentation algorithm. Incorporating this into GelApp, we report a significant enhancement of gel band detection accuracy by 55.9 ± 2.0% for protein polyacrylamide gels, and 35.9 ± 2.5% for DNA SYBR green agarose gels. This implementation is a proof-of-concept in demonstrating MCTS-UCB as a strategy to optimize general image segmentation. The improved version of GelApp-GelApp 2.0-is freely available on both Google Play Store (for Android platform), and Apple App Store (for iOS platform). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Pareto Efficient Solutions of Attack-Defence Trees

    DEFF Research Database (Denmark)

    Aslanyan, Zaruhi; Nielson, Flemming

    2015-01-01

    Attack-defence trees are a promising approach for representing threat scenarios and possible countermeasures in a concise and intuitive manner. An attack-defence tree describes the interaction between an attacker and a defender, and is evaluated by assigning parameters to the nodes, such as proba......Attack-defence trees are a promising approach for representing threat scenarios and possible countermeasures in a concise and intuitive manner. An attack-defence tree describes the interaction between an attacker and a defender, and is evaluated by assigning parameters to the nodes......, such as probability or cost of attacks and defences. In case of multiple parameters most analytical methods optimise one parameter at a time, e.g., minimise cost or maximise probability of an attack. Such methods may lead to sub-optimal solutions when optimising conflicting parameters, e.g., minimising cost while...... maximising probability. In order to tackle this challenge, we devise automated techniques that optimise all parameters at once. Moreover, in the case of conflicting parameters our techniques compute the set of all optimal solutions, defined in terms of Pareto efficiency. The developments are carried out...

  16. A parallel buffer tree

    DEFF Research Database (Denmark)

    Sitchinava, Nodar; Zeh, Norbert

    2012-01-01

    We present the parallel buffer tree, a parallel external memory (PEM) data structure for batched search problems. This data structure is a non-trivial extension of Arge's sequential buffer tree to a private-cache multiprocessor environment and reduces the number of I/O operations by the number of...... in the optimal OhOf(psortN + K/PB) parallel I/O complexity, where K is the size of the output reported in the process and psortN is the parallel I/O complexity of sorting N elements using P processors....

  17. New perspectives on the ecology of tree structure and tree communities through terrestrial laser scanning.

    Science.gov (United States)

    Malhi, Yadvinder; Jackson, Tobias; Patrick Bentley, Lisa; Lau, Alvaro; Shenkin, Alexander; Herold, Martin; Calders, Kim; Bartholomeus, Harm; Disney, Mathias I

    2018-04-06

    Terrestrial laser scanning (TLS) opens up the possibility of describing the three-dimensional structures of trees in natural environments with unprecedented detail and accuracy. It is already being extensively applied to describe how ecosystem biomass and structure vary between sites, but can also facilitate major advances in developing and testing mechanistic theories of tree form and forest structure, thereby enabling us to understand why trees and forests have the biomass and three-dimensional structure they do. Here we focus on the ecological challenges and benefits of understanding tree form, and highlight some advances related to capturing and describing tree shape that are becoming possible with the advent of TLS. We present examples of ongoing work that applies, or could potentially apply, new TLS measurements to better understand the constraints on optimization of tree form. Theories of resource distribution networks, such as metabolic scaling theory, can be tested and further refined. TLS can also provide new approaches to the scaling of woody surface area and crown area, and thereby better quantify the metabolism of trees. Finally, we demonstrate how we can develop a more mechanistic understanding of the effects of avoidance of wind risk on tree form and maximum size. Over the next few years, TLS promises to deliver both major empirical and conceptual advances in the quantitative understanding of trees and tree-dominated ecosystems, leading to advances in understanding the ecology of why trees and ecosystems look and grow the way they do.

  18. Exact Algorithms for Duplication-Transfer-Loss Reconciliation with Non-Binary Gene Trees.

    Science.gov (United States)

    Kordi, Misagh; Bansal, Mukul S

    2017-06-01

    Duplication-Transfer-Loss (DTL) reconciliation is a powerful method for studying gene family evolution in the presence of horizontal gene transfer. DTL reconciliation seeks to reconcile gene trees with species trees by postulating speciation, duplication, transfer, and loss events. Efficient algorithms exist for finding optimal DTL reconciliations when the gene tree is binary. In practice, however, gene trees are often non-binary due to uncertainty in the gene tree topologies, and DTL reconciliation with non-binary gene trees is known to be NP-hard. In this paper, we present the first exact algorithms for DTL reconciliation with non-binary gene trees. Specifically, we (i) show that the DTL reconciliation problem for non-binary gene trees is fixed-parameter tractable in the maximum degree of the gene tree, (ii) present an exponential-time, but in-practice efficient, algorithm to track and enumerate all optimal binary resolutions of a non-binary input gene tree, and (iii) apply our algorithms to a large empirical data set of over 4700 gene trees from 100 species to study the impact of gene tree uncertainty on DTL-reconciliation and to demonstrate the applicability and utility of our algorithms. The new techniques and algorithms introduced in this paper will help biologists avoid incorrect evolutionary inferences caused by gene tree uncertainty.

  19. Optimal Finger Search Trees in the Pointer Machine

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Lagogiannis, George; Makris, Christos

    2003-01-01

    We develop a new finger search tree with worst-case constant update time in the Pointer Machine (PM) model of computation. This was a major problem in the field of Data Structures and was tantalizingly open for over twenty years while many attempts by researchers were made to solve it. The result...

  20. Protecting organic fruit trees from direct rain and sun

    OpenAIRE

    Kjaer, Katrine Heinsvig

    2017-01-01

    Fruit trees grown in orchards are highly nursed to maintain a specific growth structure for optimal yield and maintenance. Maintenance includes heavy spraying protocols to avoid fungal diseases both in conventional and organic orchards. Would it be possible to avoid fungal diseases by shielding the trees.

  1. A framework for sensitivity analysis of decision trees.

    Science.gov (United States)

    Kamiński, Bogumił; Jakubczyk, Michał; Szufel, Przemysław

    2018-01-01

    In the paper, we consider sequential decision problems with uncertainty, represented as decision trees. Sensitivity analysis is always a crucial element of decision making and in decision trees it often focuses on probabilities. In the stochastic model considered, the user often has only limited information about the true values of probabilities. We develop a framework for performing sensitivity analysis of optimal strategies accounting for this distributional uncertainty. We design this robust optimization approach in an intuitive and not overly technical way, to make it simple to apply in daily managerial practice. The proposed framework allows for (1) analysis of the stability of the expected-value-maximizing strategy and (2) identification of strategies which are robust with respect to pessimistic/optimistic/mode-favoring perturbations of probabilities. We verify the properties of our approach in two cases: (a) probabilities in a tree are the primitives of the model and can be modified independently; (b) probabilities in a tree reflect some underlying, structural probabilities, and are interrelated. We provide a free software tool implementing the methods described.

  2. Quantifying branch architecture of tropical trees using terrestrial LiDAR and 3D modelling

    NARCIS (Netherlands)

    Lau, Alvaro; Bentley, Lisa Patrick; Martius, Christopher; Shenkin, Alexander; Bartholomeus, Harm; Raumonen, Pasi; Malhi, Yadvinder; Jackson, Tobias; Herold, Martin

    2018-01-01

    Tree architecture is the three-dimensional arrangement of above ground parts of a tree. Ecologists hypothesize that the topology of tree branches represents optimized adaptations to tree’s environment. Thus, an accurate description of tree architecture leads to a better understanding of how form is

  3. Representing Boolean Functions by Decision Trees

    KAUST Repository

    Chikalov, Igor

    2011-01-01

    A Boolean or discrete function can be represented by a decision tree. A compact form of decision tree named binary decision diagram or branching program is widely known in logic design [2, 40]. This representation is equivalent to other forms, and in some cases it is more compact than values table or even the formula [44]. Representing a function in the form of decision tree allows applying graph algorithms for various transformations [10]. Decision trees and branching programs are used for effective hardware [15] and software [5] implementation of functions. For the implementation to be effective, the function representation should have minimal time and space complexity. The average depth of decision tree characterizes the expected computing time, and the number of nodes in branching program characterizes the number of functional elements required for implementation. Often these two criteria are incompatible, i.e. there is no solution that is optimal on both time and space complexity. © Springer-Verlag Berlin Heidelberg 2011.

  4. Urban Forest Ecosystem Service Optimization, Tradeoffs, and Disparities

    Science.gov (United States)

    Bodnaruk, E.; Kroll, C. N.; Endreny, T. A.; Hirabayashi, S.; Yang, Y.

    2014-12-01

    Urban land area and the proportion of humanity living in cities is growing, leading to increased urban air pollution, temperature, and stormwater runoff. These changes can exacerbate respiratory and heat-related illnesses and affect ecosystem functioning. Urban trees can help mitigate these threats by removing air pollutants, mitigating urban heat island effects, and infiltrating and filtering stormwater. The urban environment is highly heterogeneous, and there is no tool to determine optimal locations to plant or protect trees. Using spatially explicit land cover, weather, and demographic data within biophysical ecosystem service models, this research expands upon the iTree urban forest tools to produce a new decision support tool (iTree-DST) that will explore the development and impacts of optimal tree planting. It will also heighten awareness of environmental justice by incorporating the Atkinson Index to quantify disparities in health risks and ecosystem services across vulnerable and susceptible populations. The study area is Baltimore City, a location whose urban forest and environmental justice concerns have been studied extensively. The iTree-DST is run at the US Census block group level and utilizes a local gradient approach to calculate the change in ecosystem services with changing tree cover across the study area. Empirical fits provide ecosystem service gradients for possible tree cover scenarios, greatly increasing the speed and efficiency of the optimization procedure. Initial results include an evaluation of the performance of the gradient method, optimal planting schemes for individual ecosystem services, and an analysis of tradeoffs and synergies between competing objectives.

  5. Total Path Length and Number of Terminal Nodes for Decision Trees

    KAUST Repository

    Hussain, Shahid

    2014-09-13

    This paper presents a new tool for study of relationships between total path length (average depth) and number of terminal nodes for decision trees. These relationships are important from the point of view of optimization of decision trees. In this particular case of total path length and number of terminal nodes, the relationships between these two cost functions are closely related with space-time trade-off. In addition to algorithm to compute the relationships, the paper also presents results of experiments with datasets from UCI ML Repository1. These experiments show how two cost functions behave for a given decision table and the resulting plots show the Pareto frontier or Pareto set of optimal points. Furthermore, in some cases this Pareto frontier is a singleton showing the total optimality of decision trees for the given decision table.

  6. USING GENETIC ALGORTIHM TO SOLVE STEINER MINIMUM SPANNING TREE PROBLEM

    Directory of Open Access Journals (Sweden)

    Öznur İŞÇİ

    2006-03-01

    Full Text Available Genetic algorithms (GA are a stochastic research methods, and they produce solutions that are close to optimum or near optimum. In addition to GA's successful application to traveling salesman problem, square designation, allocation, workshop table, preparation of lesson/examination schedules, planning of communication networks, assembling line balanced, minimum spanning tree type many combinatorial optimization problems it would be applicable to make the best comparison in optimization. In this study a Java program is developed to solve Steiner minimum spanning tree problem by genetic algorithm and its performance is examined. According to the tests carried out on the problems that were given before in the literature, results that are close to optimum are obtained in by GA approach that is recommended in this study. For the predetermined points in the study, length and gain are calculated for Steiner minimum spanning tree problem and minimum spanning tree problem.

  7. Object-based methods for individual tree identification and tree species classification from high-spatial resolution imagery

    Science.gov (United States)

    Wang, Le

    2003-10-01

    textures occurring due to branches and twigs. As a result from the inverse wavelet transform, the tree crown boundary is enhanced while the unwanted textures are suppressed. Based on the enhanced image, an improvement is achieved when applying the two-stage methods to a high resolution aerial photograph. To improve tree species classification, we develop a new method to choose the optimal scale parameter with the aid of Bhattacharya Distance (BD), a well-known index of class separability in traditional pixel-based classification. The optimal scale parameter is then fed in the process of a region-growing-based segmentation as a break-off value. Our object classification achieves a better accuracy in separating tree species when compared to the conventional Maximum Likelihood Classification (MLC). In summary, we develop two object-based methods for identifying individual trees and classifying tree species from high-spatial resolution imagery. Both methods achieve promising results and will promote integration of Remote Sensing and GIS in forest applications.

  8. A support vector machine based test for incongruence between sets of trees in tree space

    Science.gov (United States)

    2012-01-01

    Background The increased use of multi-locus data sets for phylogenetic reconstruction has increased the need to determine whether a set of gene trees significantly deviate from the phylogenetic patterns of other genes. Such unusual gene trees may have been influenced by other evolutionary processes such as selection, gene duplication, or horizontal gene transfer. Results Motivated by this problem we propose a nonparametric goodness-of-fit test for two empirical distributions of gene trees, and we developed the software GeneOut to estimate a p-value for the test. Our approach maps trees into a multi-dimensional vector space and then applies support vector machines (SVMs) to measure the separation between two sets of pre-defined trees. We use a permutation test to assess the significance of the SVM separation. To demonstrate the performance of GeneOut, we applied it to the comparison of gene trees simulated within different species trees across a range of species tree depths. Applied directly to sets of simulated gene trees with large sample sizes, GeneOut was able to detect very small differences between two set of gene trees generated under different species trees. Our statistical test can also include tree reconstruction into its test framework through a variety of phylogenetic optimality criteria. When applied to DNA sequence data simulated from different sets of gene trees, results in the form of receiver operating characteristic (ROC) curves indicated that GeneOut performed well in the detection of differences between sets of trees with different distributions in a multi-dimensional space. Furthermore, it controlled false positive and false negative rates very well, indicating a high degree of accuracy. Conclusions The non-parametric nature of our statistical test provides fast and efficient analyses, and makes it an applicable test for any scenario where evolutionary or other factors can lead to trees with different multi-dimensional distributions. The

  9. Optimally Stopped Optimization

    Science.gov (United States)

    Vinci, Walter; Lidar, Daniel

    We combine the fields of heuristic optimization and optimal stopping. We propose a strategy for benchmarking randomized optimization algorithms that minimizes the expected total cost for obtaining a good solution with an optimal number of calls to the solver. To do so, rather than letting the objective function alone define a cost to be minimized, we introduce a further cost-per-call of the algorithm. We show that this problem can be formulated using optimal stopping theory. The expected cost is a flexible figure of merit for benchmarking probabilistic solvers that can be computed when the optimal solution is not known, and that avoids the biases and arbitrariness that affect other measures. The optimal stopping formulation of benchmarking directly leads to a real-time, optimal-utilization strategy for probabilistic optimizers with practical impact. We apply our formulation to benchmark the performance of a D-Wave 2X quantum annealer and the HFS solver, a specialized classical heuristic algorithm designed for low tree-width graphs. On a set of frustrated-loop instances with planted solutions defined on up to N = 1098 variables, the D-Wave device is between one to two orders of magnitude faster than the HFS solver.

  10. Fault trees for decision making in systems analysis

    International Nuclear Information System (INIS)

    Lambert, H.E.

    1975-01-01

    The application of fault tree analysis (FTA) to system safety and reliability is presented within the framework of system safety analysis. The concepts and techniques involved in manual and automated fault tree construction are described and their differences noted. The theory of mathematical reliability pertinent to FTA is presented with emphasis on engineering applications. An outline of the quantitative reliability techniques of the Reactor Safety Study is given. Concepts of probabilistic importance are presented within the fault tree framework and applied to the areas of system design, diagnosis and simulation. The computer code IMPORTANCE ranks basic events and cut sets according to a sensitivity analysis. A useful feature of the IMPORTANCE code is that it can accept relative failure data as input. The output of the IMPORTANCE code can assist an analyst in finding weaknesses in system design and operation, suggest the most optimal course of system upgrade, and determine the optimal location of sensors within a system. A general simulation model of system failure in terms of fault tree logic is described. The model is intended for efficient diagnosis of the causes of system failure in the event of a system breakdown. It can also be used to assist an operator in making decisions under a time constraint regarding the future course of operations. The model is well suited for computer implementation. New results incorporated in the simulation model include an algorithm to generate repair checklists on the basis of fault tree logic and a one-step-ahead optimization procedure that minimizes the expected time to diagnose system failure. (80 figures, 20 tables)

  11. Seeing the wood for the trees: a forest of methods for optimization and omic-network integration in metabolic modelling.

    Science.gov (United States)

    Vijayakumar, Supreeta; Conway, Max; Lió, Pietro; Angione, Claudio

    2017-05-30

    Metabolic modelling has entered a mature phase with dozens of methods and software implementations available to the practitioner and the theoretician. It is not easy for a modeller to be able to see the wood (or the forest) for the trees. Driven by this analogy, we here present a 'forest' of principal methods used for constraint-based modelling in systems biology. This provides a tree-based view of methods available to prospective modellers, also available in interactive version at http://modellingmetabolism.net, where it will be kept updated with new methods after the publication of the present manuscript. Our updated classification of existing methods and tools highlights the most promising in the different branches, with the aim to develop a vision of how existing methods could hybridize and become more complex. We then provide the first hands-on tutorial for multi-objective optimization of metabolic models in R. We finally discuss the implementation of multi-view machine learning approaches in poly-omic integration. Throughout this work, we demonstrate the optimization of trade-offs between multiple metabolic objectives, with a focus on omic data integration through machine learning. We anticipate that the combination of a survey, a perspective on multi-view machine learning and a step-by-step R tutorial should be of interest for both the beginner and the advanced user. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Wind-Induced Reconfigurations in Flexible Branched Trees

    Science.gov (United States)

    Ojo, Oluwafemi; Shoele, Kourosh

    2017-11-01

    Wind induced stresses are the major mechanical cause of failure in trees. We know that the branching mechanism has an important effect on the stress distribution and stability of a tree in the wind. Eloy in PRL 2011, showed that Leonardo da Vinci's original observation which states the total cross section of branches is conserved across branching nodes is the best configuration for resisting wind-induced fracture in rigid trees. However, prediction of the fracture risk and pattern of a tree is also a function of their reconfiguration capabilities and how they mitigate large wind-induced stresses. In this studies through developing an efficient numerical simulation of flexible branched trees, we explore the role of the tree flexibility on the optimal branching. Our results show that the probability of a tree breaking at any point depends on both the cross-section changes in the branching nodes and the level of tree flexibility. It is found that the branching mechanism based on Leonardo da Vinci's original observation leads to a uniform stress distribution over a wide range of flexibilities but the pattern changes for more flexible systems.

  13. SATe-II: very fast and accurate simultaneous estimation of multiple sequence alignments and phylogenetic trees.

    Science.gov (United States)

    Liu, Kevin; Warnow, Tandy J; Holder, Mark T; Nelesen, Serita M; Yu, Jiaye; Stamatakis, Alexandros P; Linder, C Randal

    2012-01-01

    Highly accurate estimation of phylogenetic trees for large data sets is difficult, in part because multiple sequence alignments must be accurate for phylogeny estimation methods to be accurate. Coestimation of alignments and trees has been attempted but currently only SATé estimates reasonably accurate trees and alignments for large data sets in practical time frames (Liu K., Raghavan S., Nelesen S., Linder C.R., Warnow T. 2009b. Rapid and accurate large-scale coestimation of sequence alignments and phylogenetic trees. Science. 324:1561-1564). Here, we present a modification to the original SATé algorithm that improves upon SATé (which we now call SATé-I) in terms of speed and of phylogenetic and alignment accuracy. SATé-II uses a different divide-and-conquer strategy than SATé-I and so produces smaller more closely related subsets than SATé-I; as a result, SATé-II produces more accurate alignments and trees, can analyze larger data sets, and runs more efficiently than SATé-I. Generally, SATé is a metamethod that takes an existing multiple sequence alignment method as an input parameter and boosts the quality of that alignment method. SATé-II-boosted alignment methods are significantly more accurate than their unboosted versions, and trees based upon these improved alignments are more accurate than trees based upon the original alignments. Because SATé-I used maximum likelihood (ML) methods that treat gaps as missing data to estimate trees and because we found a correlation between the quality of tree/alignment pairs and ML scores, we explored the degree to which SATé's performance depends on using ML with gaps treated as missing data to determine the best tree/alignment pair. We present two lines of evidence that using ML with gaps treated as missing data to optimize the alignment and tree produces very poor results. First, we show that the optimization problem where a set of unaligned DNA sequences is given and the output is the tree and alignment of

  14. Total Path Length and Number of Terminal Nodes for Decision Trees

    KAUST Repository

    Hussain, Shahid

    2014-01-01

    This paper presents a new tool for study of relationships between total path length (average depth) and number of terminal nodes for decision trees. These relationships are important from the point of view of optimization of decision trees

  15. Visualizing phylogenetic tree landscapes.

    Science.gov (United States)

    Wilgenbusch, James C; Huang, Wen; Gallivan, Kyle A

    2017-02-02

    Genomic-scale sequence alignments are increasingly used to infer phylogenies in order to better understand the processes and patterns of evolution. Different partitions within these new alignments (e.g., genes, codon positions, and structural features) often favor hundreds if not thousands of competing phylogenies. Summarizing and comparing phylogenies obtained from multi-source data sets using current consensus tree methods discards valuable information and can disguise potential methodological problems. Discovery of efficient and accurate dimensionality reduction methods used to display at once in 2- or 3- dimensions the relationship among these competing phylogenies will help practitioners diagnose the limits of current evolutionary models and potential problems with phylogenetic reconstruction methods when analyzing large multi-source data sets. We introduce several dimensionality reduction methods to visualize in 2- and 3-dimensions the relationship among competing phylogenies obtained from gene partitions found in three mid- to large-size mitochondrial genome alignments. We test the performance of these dimensionality reduction methods by applying several goodness-of-fit measures. The intrinsic dimensionality of each data set is also estimated to determine whether projections in 2- and 3-dimensions can be expected to reveal meaningful relationships among trees from different data partitions. Several new approaches to aid in the comparison of different phylogenetic landscapes are presented. Curvilinear Components Analysis (CCA) and a stochastic gradient decent (SGD) optimization method give the best representation of the original tree-to-tree distance matrix for each of the three- mitochondrial genome alignments and greatly outperformed the method currently used to visualize tree landscapes. The CCA + SGD method converged at least as fast as previously applied methods for visualizing tree landscapes. We demonstrate for all three mtDNA alignments that 3D

  16. An Alternative to Optimize the Indonesian’s Airport Network Design: An Application of Minimum Spanning Tree (MST Technique

    Directory of Open Access Journals (Sweden)

    Luluk Lusiantoro

    2012-09-01

    Full Text Available Using minimum spanning tree technique (MST, this exploratory research was done to optimize the interrelation and hierarchical network design of Indonesian’s airports. This research also identifies the position of the Indonesian’s airports regionally based on the ASEAN Open Sky Policy 2015. The secondary data containing distance between airports (both in Indonesia and in ASEAN, flight frequency, and correlation of Gross Domestic Regional Product (GDRP for each region in Indonesia are used as inputs to form MST networks. The result analysis is done by comparing the MST networks with the existing network in Indonesia. This research found that the existing airport network in Indonesia does not depict the optimal network connecting all airports with the shortest distance and maximizing the correlation of regional economic potential in the country. This research then suggests the optimal networks and identifies the airports and regions as hubs and spokes formed by the networks. Lastly, this research indicates that the Indonesian airports have no strategic position in the ASEAN Open Sky network, but they have an opportunity to get strategic positions if 33 airports in 33 regions in Indonesia are included in the network.

  17. Decision tree methods: applications for classification and prediction.

    Science.gov (United States)

    Song, Yan-Yan; Lu, Ying

    2015-04-25

    Decision tree methodology is a commonly used data mining method for establishing classification systems based on multiple covariates or for developing prediction algorithms for a target variable. This method classifies a population into branch-like segments that construct an inverted tree with a root node, internal nodes, and leaf nodes. The algorithm is non-parametric and can efficiently deal with large, complicated datasets without imposing a complicated parametric structure. When the sample size is large enough, study data can be divided into training and validation datasets. Using the training dataset to build a decision tree model and a validation dataset to decide on the appropriate tree size needed to achieve the optimal final model. This paper introduces frequently used algorithms used to develop decision trees (including CART, C4.5, CHAID, and QUEST) and describes the SPSS and SAS programs that can be used to visualize tree structure.

  18. A Method to Quantify Plant Availability and Initiating Event Frequency Using a Large Event Tree, Small Fault Tree Model

    International Nuclear Information System (INIS)

    Kee, Ernest J.; Sun, Alice; Rodgers, Shawn; Popova, ElmiraV; Nelson, Paul; Moiseytseva, Vera; Wang, Eric

    2006-01-01

    South Texas Project uses a large fault tree to produce scenarios (minimal cut sets) used in quantification of plant availability and event frequency predictions. On the other hand, the South Texas Project probabilistic risk assessment model uses a large event tree, small fault tree for quantifying core damage and radioactive release frequency predictions. The South Texas Project is converting its availability and event frequency model to use a large event tree, small fault in an effort to streamline application support and to provide additional detail in results. The availability and event frequency model as well as the applications it supports (maintenance and operational risk management, system engineering health assessment, preventive maintenance optimization, and RIAM) are briefly described. A methodology to perform availability modeling in a large event tree, small fault tree framework is described in detail. How the methodology can be used to support South Texas Project maintenance and operations risk management is described in detail. Differences with other fault tree methods and other recently proposed methods are discussed in detail. While the methods described are novel to the South Texas Project Risk Management program and to large event tree, small fault tree models, concepts in the area of application support and availability modeling have wider applicability to the industry. (authors)

  19. Context Tree Estimation in Variable Length Hidden Markov Models

    OpenAIRE

    Dumont, Thierry

    2011-01-01

    We address the issue of context tree estimation in variable length hidden Markov models. We propose an estimator of the context tree of the hidden Markov process which needs no prior upper bound on the depth of the context tree. We prove that the estimator is strongly consistent. This uses information-theoretic mixture inequalities in the spirit of Finesso and Lorenzo(Consistent estimation of the order for Markov and hidden Markov chains(1990)) and E.Gassiat and S.Boucheron (Optimal error exp...

  20. MDTS: automatic complex materials design using Monte Carlo tree search

    Science.gov (United States)

    Dieb, Thaer M.; Ju, Shenghong; Yoshizoe, Kazuki; Hou, Zhufeng; Shiomi, Junichiro; Tsuda, Koji

    2017-12-01

    Complex materials design is often represented as a black-box combinatorial optimization problem. In this paper, we present a novel python library called MDTS (Materials Design using Tree Search). Our algorithm employs a Monte Carlo tree search approach, which has shown exceptional performance in computer Go game. Unlike evolutionary algorithms that require user intervention to set parameters appropriately, MDTS has no tuning parameters and works autonomously in various problems. In comparison to a Bayesian optimization package, our algorithm showed competitive search efficiency and superior scalability. We succeeded in designing large Silicon-Germanium (Si-Ge) alloy structures that Bayesian optimization could not deal with due to excessive computational cost. MDTS is available at https://github.com/tsudalab/MDTS.

  1. Model-Based Design of Tree WSNs for Decentralized Detection

    Directory of Open Access Journals (Sweden)

    Ashraf Tantawy

    2015-08-01

    Full Text Available The classical decentralized detection problem of finding the optimal decision rules at the sensor and fusion center, as well as variants that introduce physical channel impairments have been studied extensively in the literature. The deployment of WSNs in decentralized detection applications brings new challenges to the field. Protocols for different communication layers have to be co-designed to optimize the detection performance. In this paper, we consider the communication network design problem for a tree WSN. We pursue a system-level approach where a complete model for the system is developed that captures the interactions between different layers, as well as different sensor quality measures. For network optimization, we propose a hierarchical optimization algorithm that lends itself to the tree structure, requiring only local network information. The proposed design approach shows superior performance over several contentionless and contention-based network design approaches.

  2. Decision trees with minimum average depth for sorting eight elements

    KAUST Repository

    AbouEisha, Hassan M.

    2015-11-19

    We prove that the minimum average depth of a decision tree for sorting 8 pairwise different elements is equal to 620160/8!. We show also that each decision tree for sorting 8 elements, which has minimum average depth (the number of such trees is approximately equal to 8.548×10^326365), has also minimum depth. Both problems were considered by Knuth (1998). To obtain these results, we use tools based on extensions of dynamic programming which allow us to make sequential optimization of decision trees relative to depth and average depth, and to count the number of decision trees with minimum average depth.

  3. How eco-evolutionary principles can guide tree breeding and tree biotechnology for enhanced productivity.

    Science.gov (United States)

    Franklin, Oskar; Palmroth, Sari; Näsholm, Torgny

    2014-11-01

    Tree breeding and biotechnology can enhance forest productivity and help alleviate the rising pressure on forests from climate change and human exploitation. While many physiological processes and genes are targeted in search of genetically improved tree productivity, an overarching principle to guide this search is missing. Here, we propose a method to identify the traits that can be modified to enhance productivity, based on the differences between trees shaped by natural selection and 'improved' trees with traits optimized for productivity. We developed a tractable model of plant growth and survival to explore such potential modifications under a range of environmental conditions, from non-water limited to severely drought-limited sites. We show how key traits are controlled by a trade-off between productivity and survival, and that productivity can be increased at the expense of long-term survival by reducing isohydric behavior (stomatal regulation of leaf water potential) and allocation to defense against pests compared with native trees. In contrast, at dry sites occupied by naturally drought-resistant trees, the model suggests a better strategy may be to select trees with slightly lower wood density than the native trees and to augment isohydric behavior and allocation to defense. Thus, which traits to modify, and in which direction, depend on the original tree species or genotype, the growth environment and wood-quality versus volume production preferences. In contrast to this need for customization of drought and pest resistances, consistent large gains in productivity for all genotypes can be obtained if root traits can be altered to reduce competition for water and nutrients. Our approach illustrates the potential of using eco-evolutionary theory and modeling to guide plant breeding and genetic technology in selecting target traits in the quest for higher forest productivity. © The Author 2014. Published by Oxford University Press. All rights reserved

  4. Minimizing size of decision trees for multi-label decision tables

    KAUST Repository

    Azad, Mohammad

    2014-09-29

    We used decision tree as a model to discover the knowledge from multi-label decision tables where each row has a set of decisions attached to it and our goal is to find out one arbitrary decision from the set of decisions attached to a row. The size of the decision tree can be small as well as very large. We study here different greedy as well as dynamic programming algorithms to minimize the size of the decision trees. When we compare the optimal result from dynamic programming algorithm, we found some greedy algorithms produce results which are close to the optimal result for the minimization of number of nodes (at most 18.92% difference), number of nonterminal nodes (at most 20.76% difference), and number of terminal nodes (at most 18.71% difference).

  5. Minimizing size of decision trees for multi-label decision tables

    KAUST Repository

    Azad, Mohammad; Moshkov, Mikhail

    2014-01-01

    We used decision tree as a model to discover the knowledge from multi-label decision tables where each row has a set of decisions attached to it and our goal is to find out one arbitrary decision from the set of decisions attached to a row. The size of the decision tree can be small as well as very large. We study here different greedy as well as dynamic programming algorithms to minimize the size of the decision trees. When we compare the optimal result from dynamic programming algorithm, we found some greedy algorithms produce results which are close to the optimal result for the minimization of number of nodes (at most 18.92% difference), number of nonterminal nodes (at most 20.76% difference), and number of terminal nodes (at most 18.71% difference).

  6. Design of data structures for mergeable trees

    DEFF Research Database (Denmark)

    Georgiadis, Loukas; Tarjan, Robert Endre; Werneck, Renato Fonseca F.

    2006-01-01

    merge operation can change many arcs. In spite of this, we develop a data structure that supports merges and all other standard tree operations in O(log2 n) amortized time on an n-node forest. For the special case that occurs in the motivating application, in which arbitrary arc deletions...... are not allowed, we give a data structure with an O(log n) amortized time bound per operation, which is asymptotically optimal. The analysis of both algorithms is not straightforward and requires ideas not previously used in the study of dynamic trees. We explore the design space of algorithms for the problem......Motivated by an application in computational topology, we consider a novel variant of the problem of efficiently maintaining dynamic rooted trees. This variant allows an operation that merges two tree paths. In contrast to the standard problem, in which only one tree arc at a time changes, a single...

  7. Reconciliation with non-binary species trees.

    Science.gov (United States)

    Vernot, Benjamin; Stolzer, Maureen; Goldman, Aiton; Durand, Dannie

    2008-10-01

    Reconciliation extracts information from the topological incongruence between gene and species trees to infer duplications and losses in the history of a gene family. The inferred duplication-loss histories provide valuable information for a broad range of biological applications, including ortholog identification, estimating gene duplication times, and rooting and correcting gene trees. While reconciliation for binary trees is a tractable and well studied problem, there are no algorithms for reconciliation with non-binary species trees. Yet a striking proportion of species trees are non-binary. For example, 64% of branch points in the NCBI taxonomy have three or more children. When applied to non-binary species trees, current algorithms overestimate the number of duplications because they cannot distinguish between duplication and incomplete lineage sorting. We present the first algorithms for reconciling binary gene trees with non-binary species trees under a duplication-loss parsimony model. Our algorithms utilize an efficient mapping from gene to species trees to infer the minimum number of duplications in O(|V(G) | x (k(S) + h(S))) time, where |V(G)| is the number of nodes in the gene tree, h(S) is the height of the species tree and k(S) is the size of its largest polytomy. We present a dynamic programming algorithm which also minimizes the total number of losses. Although this algorithm is exponential in the size of the largest polytomy, it performs well in practice for polytomies with outdegree of 12 or less. We also present a heuristic which estimates the minimal number of losses in polynomial time. In empirical tests, this algorithm finds an optimal loss history 99% of the time. Our algorithms have been implemented in NOTUNG, a robust, production quality, tree-fitting program, which provides a graphical user interface for exploratory analysis and also supports automated, high-throughput analysis of large data sets.

  8. Proactive data mining with decision trees

    CERN Document Server

    Dahan, Haim; Rokach, Lior; Maimon, Oded

    2014-01-01

    This book explores a proactive and domain-driven method to classification tasks. This novel proactive approach to data mining not only induces a model for predicting or explaining a phenomenon, but also utilizes specific problem/domain knowledge to suggest specific actions to achieve optimal changes in the value of the target attribute. In particular, the authors suggest a specific implementation of the domain-driven proactive approach for classification trees. The book centers on the core idea of moving observations from one branch of the tree to another. It introduces a novel splitting crite

  9. A simple and optimal ancestry labeling scheme for trees

    DEFF Research Database (Denmark)

    Dahlgaard, Søren; Knudsen, Mathias Bæk Tejs; Rotbart, Noy Galil

    2015-01-01

    We present a lg n + 2 lg lg n + 3 ancestry labeling scheme for trees. The problem was first presented by Kannan et al. [STOC 88’] along with a simple 2 lg n solution. Motivated by applications to XML files, the label size was improved incrementally over the course of more than 20 years by a series...

  10. Decision tree ensembles for online operation of large smart grids

    International Nuclear Information System (INIS)

    Steer, Kent C.B.; Wirth, Andrew; Halgamuge, Saman K.

    2012-01-01

    Highlights: ► We present a new technique for the online control of large smart grids. ► We use a Decision Tree Ensemble in a Receding Horizon Controller. ► Decision Trees can approximate online optimisation approaches. ► Decision Trees can make adjustments to their output in real time. ► The new technique outperforms heuristic online optimisation approaches. - Abstract: Smart grids utilise omnidirectional data transfer to operate a network of energy resources. Associated technologies present operators with greater control over system elements and more detailed information on the system state. While these features may improve the theoretical optimal operating performance, determining the optimal operating strategy becomes more difficult. In this paper, we show how a decision tree ensemble or ‘forest’ can produce a near-optimal control strategy in real time. The approach substitutes the decision forest for the simulation–optimisation sub-routine commonly employed in receding horizon controllers. The method is demonstrated on a small and a large network, and compared to controllers employing particle swarm optimisation and evolutionary strategies. For the smaller network the proposed method performs comparably in terms of total energy usage, but delivers a greater demand deficit. On the larger network the proposed method is superior with respect to all measures. We conclude that the method is useful when the time required to evaluate possible strategies via simulation is high.

  11. Trait acclimation mitigates mortality risks of tropical canopy trees under global warming

    Directory of Open Access Journals (Sweden)

    Frank eSterck

    2016-05-01

    Full Text Available There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and – the notoriously unknown – physiological trait acclimation of trees. In this opinion article we provided a first quantification of the potential of trait acclimation to mitigate the negative effects of warming on tropical canopy tree growth and survival. We applied a physiological tree growth model that incorporates trait acclimation through an optimization approach. Our model estimated the maximum effect of acclimation when trees optimize traits that are strongly plastic on a week to annual time scale (leaf photosynthetic capacity, total leaf area, stem sapwood area to maximize carbon gain. We simulated tree carbon gain for temperatures (25-35ºC and ambient CO2 concentrations (390-800 ppm predicted for the 21st century. Full trait acclimation increased simulated carbon gain by up to 10-20% and the maximum tolerated temperature by up to 2ºC, thus reducing risks of tree death under predicted warming. Functional trait acclimation may thus increase the resilience of tropical trees to warming, but cannot prevent tree death during extremely hot and dry years at current CO2 levels. We call for incorporating trait acclimation in field and experimental studies of plant functional traits, and in models that predict responses of tropical forests to climate change.

  12. Trait Acclimation Mitigates Mortality Risks of Tropical Canopy Trees under Global Warming

    Science.gov (United States)

    Sterck, Frank; Anten, Niels P. R.; Schieving, Feike; Zuidema, Pieter A.

    2016-01-01

    There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and – the notoriously unknown – physiological trait acclimation of trees. In this opinion article we provided a first quantification of the potential of trait acclimation to mitigate the negative effects of warming on tropical canopy tree growth and survival. We applied a physiological tree growth model that incorporates trait acclimation through an optimization approach. Our model estimated the maximum effect of acclimation when trees optimize traits that are strongly plastic on a week to annual time scale (leaf photosynthetic capacity, total leaf area, stem sapwood area) to maximize carbon gain. We simulated tree carbon gain for temperatures (25–35°C) and ambient CO2 concentrations (390–800 ppm) predicted for the 21st century. Full trait acclimation increased simulated carbon gain by up to 10–20% and the maximum tolerated temperature by up to 2°C, thus reducing risks of tree death under predicted warming. Functional trait acclimation may thus increase the resilience of tropical trees to warming, but cannot prevent tree death during extremely hot and dry years at current CO2 levels. We call for incorporating trait acclimation in field and experimental studies of plant functional traits, and in models that predict responses of tropical forests to climate change. PMID:27242814

  13. Implementing optimal thinning strategies

    Science.gov (United States)

    Kurt H. Riitters; J. Douglas Brodie

    1984-01-01

    Optimal thinning regimes for achieving several management objectives were derived from two stand-growth simulators by dynamic programming. Residual mean tree volumes were then plotted against stand density management diagrams. The results supported the use of density management diagrams for comparing, checking, and implementing the results of optimization analyses....

  14. Transforming phylogenetic networks: Moving beyond tree space.

    Science.gov (United States)

    Huber, Katharina T; Moulton, Vincent; Wu, Taoyang

    2016-09-07

    Phylogenetic networks are a generalization of phylogenetic trees that are used to represent reticulate evolution. Unrooted phylogenetic networks form a special class of such networks, which naturally generalize unrooted phylogenetic trees. In this paper we define two operations on unrooted phylogenetic networks, one of which is a generalization of the well-known nearest-neighbor interchange (NNI) operation on phylogenetic trees. We show that any unrooted phylogenetic network can be transformed into any other such network using only these operations. This generalizes the well-known fact that any phylogenetic tree can be transformed into any other such tree using only NNI operations. It also allows us to define a generalization of tree space and to define some new metrics on unrooted phylogenetic networks. To prove our main results, we employ some fascinating new connections between phylogenetic networks and cubic graphs that we have recently discovered. Our results should be useful in developing new strategies to search for optimal phylogenetic networks, a topic that has recently generated some interest in the literature, as well as for providing new ways to compare networks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Optimizing Use of Girdled Ash Trees for Management of Low-Density Emerald Ash Borer (Coleoptera: Buprestidae) Populations.

    Science.gov (United States)

    Siegert, Nathan W; McCullough, Deborah G; Poland, Therese M; Heyd, Robert L

    2017-06-01

    Effective survey methods to detect and monitor recently established, low-density infestations of emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), remain a high priority because they provide land managers and property owners with time to implement tactics to slow emerald ash borer population growth and the progression of ash mortality. We evaluated options for using girdled ash (Fraxinus spp.) trees for emerald ash borer detection and management in a low-density infestation in a forested area with abundant green ash (F. pennsylvanica). Across replicated 4-ha plots, we compared detection efficiency of 4 versus 16 evenly distributed girdled ash trees and between clusters of 3 versus 12 girdled trees. We also examined within-tree larval distribution in 208 girdled and nongirdled trees and assessed adult emerald ash borer emergence from detection trees felled 11 mo after girdling and left on site. Overall, current-year larvae were present in 85-97% of girdled trees and 57-72% of nongirdled trees, and larval density was 2-5 times greater on girdled than nongirdled trees. Low-density emerald ash borer infestations were readily detected with four girdled trees per 4-ha, and 3-tree clusters were as effective as 12-tree clusters. Larval densities were greatest 0.5 ± 0.4 m below the base of the canopy in girdled trees and 1.3 ± 0.7 m above the canopy base in nongirdled trees. Relatively few adult emerald ash borer emerged from trees felled 11 mo after girdling and left on site through the following summer, suggesting removal or destruction of girdled ash trees may be unnecessary. This could potentially reduce survey costs, particularly in forested areas with poor accessibility. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  16. New approaches to phylogenetic tree search and their application to large numbers of protein alignments.

    Science.gov (United States)

    Whelan, Simon

    2007-10-01

    Phylogenetic tree estimation plays a critical role in a wide variety of molecular studies, including molecular systematics, phylogenetics, and comparative genomics. Finding the optimal tree relating a set of sequences using score-based (optimality criterion) methods, such as maximum likelihood and maximum parsimony, may require all possible trees to be considered, which is not feasible even for modest numbers of sequences. In practice, trees are estimated using heuristics that represent a trade-off between topological accuracy and speed. I present a series of novel algorithms suitable for score-based phylogenetic tree reconstruction that demonstrably improve the accuracy of tree estimates while maintaining high computational speeds. The heuristics function by allowing the efficient exploration of large numbers of trees through novel hill-climbing and resampling strategies. These heuristics, and other computational approximations, are implemented for maximum likelihood estimation of trees in the program Leaphy, and its performance is compared to other popular phylogenetic programs. Trees are estimated from 4059 different protein alignments using a selection of phylogenetic programs and the likelihoods of the tree estimates are compared. Trees estimated using Leaphy are found to have equal to or better likelihoods than trees estimated using other phylogenetic programs in 4004 (98.6%) families and provide a unique best tree that no other program found in 1102 (27.1%) families. The improvement is particularly marked for larger families (80 to 100 sequences), where Leaphy finds a unique best tree in 81.7% of families.

  17. Optimization Method of Fusing Model Tree into Partial Least Squares

    Directory of Open Access Journals (Sweden)

    Yu Fang

    2017-01-01

    Full Text Available Partial Least Square (PLS can’t adapt to the characteristics of the data of many fields due to its own features multiple independent variables, multi-dependent variables and non-linear. However, Model Tree (MT has a good adaptability to nonlinear function, which is made up of many multiple linear segments. Based on this, a new method combining PLS and MT to analysis and predict the data is proposed, which build MT through the main ingredient and the explanatory variables(the dependent variable extracted from PLS, and extract residual information constantly to build Model Tree until well-pleased accuracy condition is satisfied. Using the data of the maxingshigan decoction of the monarch drug to treat the asthma or cough and two sample sets in the UCI Machine Learning Repository, the experimental results show that, the ability of explanation and predicting get improved in the new method.

  18. Optimizing Biomass Feedstock Logistics for Forest Residue Processing and Transportation on a Tree-Shaped Road Network

    Directory of Open Access Journals (Sweden)

    Hee Han

    2018-03-01

    Full Text Available An important task in forest residue recovery operations is to select the most cost-efficient feedstock logistics system for a given distribution of residue piles, road access, and available machinery. Notable considerations include inaccessibility of treatment units to large chip vans and frequent, long-distance mobilization of forestry equipment required to process dispersed residues. In this study, we present optimized biomass feedstock logistics on a tree-shaped road network that take into account the following options: (1 grinding residues at the site of treatment and forwarding ground residues either directly to bioenergy facility or to a concentration yard where they are transshipped to large chip vans, (2 forwarding residues to a concentration yard where they are stored and ground directly into chip vans, and (3 forwarding residues to a nearby grinder location and forwarding the ground materials. A mixed-integer programming model coupled with a network algorithm was developed to solve the problem. The model was applied to recovery operations on a study site in Colorado, USA, and the optimal solution reduced the cost of logistics up to 11% compared to the conventional system. This is an important result because this cost reduction propagates downstream through the biomass supply chain, reducing production costs for bioenergy and bioproducts.

  19. Accelerated Stochastic Matrix Inversion: General Theory and Speeding up BFGS Rules for Faster Second-Order Optimization

    KAUST Repository

    Gower, Robert M.

    2018-02-12

    We present the first accelerated randomized algorithm for solving linear systems in Euclidean spaces. One essential problem of this type is the matrix inversion problem. In particular, our algorithm can be specialized to invert positive definite matrices in such a way that all iterates (approximate solutions) generated by the algorithm are positive definite matrices themselves. This opens the way for many applications in the field of optimization and machine learning. As an application of our general theory, we develop the {\\\\em first accelerated (deterministic and stochastic) quasi-Newton updates}. Our updates lead to provably more aggressive approximations of the inverse Hessian, and lead to speed-ups over classical non-accelerated rules in numerical experiments. Experiments with empirical risk minimization show that our rules can accelerate training of machine learning models.

  20. Optimal Halbach Permanent Magnet Designs for Maximally Pulling and Pushing Nanoparticles.

    Science.gov (United States)

    Sarwar, A; Nemirovski, A; Shapiro, B

    2012-03-01

    Optimization methods are presented to design Halbach arrays to maximize the forces applied on magnetic nanoparticles at deep tissue locations. In magnetic drug targeting, where magnets are used to focus therapeutic nanoparticles to disease locations, the sharp fall off of magnetic fields and forces with distances from magnets has limited the depth of targeting. Creating stronger forces at depth by optimally designed Halbach arrays would allow treatment of a wider class of patients, e.g. patients with deeper tumors. The presented optimization methods are based on semi-definite quadratic programming, yield provably globally optimal Halbach designs in 2 and 3-dimensions, for maximal pull or push magnetic forces (stronger pull forces can collect nano-particles against blood forces in deeper vessels; push forces can be used to inject particles into precise locations, e.g. into the inner ear). These Halbach designs, here tested in simulations of Maxwell's equations, significantly outperform benchmark magnets of the same size and strength. For example, a 3-dimensional 36 element 2000 cm(3) volume optimal Halbach design yields a ×5 greater force at a 10 cm depth compared to a uniformly magnetized magnet of the same size and strength. The designed arrays should be feasible to construct, as they have a similar strength (≤ 1 Tesla), size (≤ 2000 cm(3)), and number of elements (≤ 36) as previously demonstrated arrays, and retain good performance for reasonable manufacturing errors (element magnetization direction errors ≤ 5°), thus yielding practical designs to improve magnetic drug targeting treatment depths.

  1. Simultaneous Buffer-sizing and Wire-sizing for Clock Trees Based on Lagrangian Relaxation

    Directory of Open Access Journals (Sweden)

    Yu-Min Lee

    2002-01-01

    Full Text Available Delay, power, skew, area and sensitivity are the most important concerns in current clock-tree design. We present in this paper an algorithm for simultaneously optimizing the above objectives by sizing wires and buffers in clock trees. Our algorithm, based on Lagrangian relaxation method, can optimally minimize delay, power and area simultaneously with very low skew and sensitivity. With linear storage overall and linear runtime per iteration, our algorithm is extremely economical, fast and accurate; for example, our algorithm can solve a 6201-wire-segment clock-tree problem using about 1-minute runtime and 1.3-MB memory and still achieve pico-second precision on an IBM RS/6000 workstation.

  2. SCHEME ANALYSIS TREE DIMENSIONS AND TOLERANCES PROCESSING

    Directory of Open Access Journals (Sweden)

    Constanta RADULESCU

    2011-07-01

    Full Text Available This paper presents one of the steps that help us to determine the optimal tolerances depending on thetechnological capability of processing equipment. To determine the tolerances in this way is necessary to takethe study and to represent schematically the operations are used in technological process of making a piece.Also in this phase will make the tree diagram of the dimensions and machining tolerances, dimensions andtolerances shown that the design execution. Determination processes, and operations of the dimensions andtolerances tree scheme will make for a machined piece is both indoor and outdoor.

  3. Constructal tree-shaped two-phase flow for cooling a surface

    Energy Technology Data Exchange (ETDEWEB)

    Zamfirescu, C.; Bejan, A. [Duke University, Durham, NC (United States). Dept. of Mechanical Engineering and Materials Science

    2003-07-01

    This paper documents the strong relation that exists between the changing architecture of a complex flow system and the maximization of global performance under constraints. The system is a surface with uniform heating per unit area, which is cooled by a network with evaporating two-phase flow. Illustrations are based on the design of the cooling network for a skating rink. The flow structure is optimized as a sequence of building blocks, which starts with the smallest (elemental volume of fixed size), and continues with assemblies of stepwise larger sizes (first construct, second construct, etc.). The optimized flow network is tree shaped. Three features of the elemental volume are optimized: the cross-sectional shape, the elemental tube diameter, and the shape of the elemental area viewed from above. The tree that emerges at larger scales is optimized for minimal amount of header material and fixed pressure drop. The optimal number of constituents in each new (larger) construct decreases as the size and complexity of the construct increase. Constructs of various levels of complexity compete: the paper shows how to select the optimal flow structure subject to fixed size (cooled surface), pressure drop and amount of header material. (author)

  4. Optical solar energy adaptations and radiative temperature control of green leaves and tree barks

    Energy Technology Data Exchange (ETDEWEB)

    Henrion, Wolfgang; Tributsch, Helmut [Department of Si-Photovoltaik and Solare Energetik, Hahn-Meitner-Institut Berlin, 14109 Berlin (Germany)

    2009-01-15

    Trees have adapted to keep leaves and barks cool in sunshine and can serve as interesting bionic model systems for radiative cooling. Silicon solar cells, on the other hand, loose up to one third of their energy efficiency due to heating in intensive sunshine. It is shown that green leaves minimize absorption of useful radiation and allow efficient infrared thermal emission. Since elevated temperatures are detrimental for tensile water flow in the Xylem tissue below barks, the optical properties of barks should also have evolved so as to avoid excessive heating. This was tested by performing optical studies with tree bark samples from representative trees. It was found that tree barks have optimized their reflection of incoming sunlight between 0.7 and 2 {mu}m. This is approximately the optical window in which solar light is transmitted and reflected by green vegetation. Simultaneously, the tree bark is highly absorbing and thus radiation emitting between 6 and 10 {mu}m. These two properties, mainly provided by tannins, create optimal conditions for radiative temperature control. In addition, tannins seem to have adopted a function as mediators for excitation energy towards photo-antioxidative activity for control of radiation damage. The results obtained are used to discuss challenges for future solar cell optimization. (author)

  5. Categorizing ideas about trees: a tree of trees.

    Science.gov (United States)

    Fisler, Marie; Lecointre, Guillaume

    2013-01-01

    The aim of this study is to explore whether matrices and MP trees used to produce systematic categories of organisms could be useful to produce categories of ideas in history of science. We study the history of the use of trees in systematics to represent the diversity of life from 1766 to 1991. We apply to those ideas a method inspired from coding homologous parts of organisms. We discretize conceptual parts of ideas, writings and drawings about trees contained in 41 main writings; we detect shared parts among authors and code them into a 91-characters matrix and use a tree representation to show who shares what with whom. In other words, we propose a hierarchical representation of the shared ideas about trees among authors: this produces a "tree of trees." Then, we categorize schools of tree-representations. Classical schools like "cladists" and "pheneticists" are recovered but others are not: "gradists" are separated into two blocks, one of them being called here "grade theoreticians." We propose new interesting categories like the "buffonian school," the "metaphoricians," and those using "strictly genealogical classifications." We consider that networks are not useful to represent shared ideas at the present step of the study. A cladogram is made for showing who is sharing what with whom, but also heterobathmy and homoplasy of characters. The present cladogram is not modelling processes of transmission of ideas about trees, and here it is mostly used to test for proximity of ideas of the same age and for categorization.

  6. An automatic way of finding robust elimination trees for a multi-frontal sparse solver for radical 2D hierarchical meshes

    KAUST Repository

    AbouEisha, Hassan M.

    2014-01-01

    In this paper we present a dynamic programming algorithm for finding optimal elimination trees for the multi-frontal direct solver algorithm executed over two dimensional meshes with point singularities. The elimination tree found by the optimization algorithm results in a linear computational cost of sequential direct solver. Based on the optimal elimination tree found by the optimization algorithm we construct heuristic sequential multi-frontal direct solver algorithm resulting in a linear computational cost as well as heuristic parallel multi-frontal direct solver algorithm resulting in a logarithmic computational cost. The resulting parallel algorithm is implemented on NVIDIA CUDA GPU architecture based on our graph-grammar approach. © 2014 Springer-Verlag.

  7. Minimization of Decision Tree Average Depth for Decision Tables with Many-valued Decisions

    KAUST Repository

    Azad, Mohammad

    2014-09-13

    The paper is devoted to the analysis of greedy algorithms for the minimization of average depth of decision trees for decision tables such that each row is labeled with a set of decisions. The goal is to find one decision from the set of decisions. When we compare with the optimal result obtained from dynamic programming algorithm, we found some greedy algorithms produces results which are close to the optimal result for the minimization of average depth of decision trees.

  8. Minimization of Decision Tree Average Depth for Decision Tables with Many-valued Decisions

    KAUST Repository

    Azad, Mohammad; Moshkov, Mikhail

    2014-01-01

    The paper is devoted to the analysis of greedy algorithms for the minimization of average depth of decision trees for decision tables such that each row is labeled with a set of decisions. The goal is to find one decision from the set of decisions. When we compare with the optimal result obtained from dynamic programming algorithm, we found some greedy algorithms produces results which are close to the optimal result for the minimization of average depth of decision trees.

  9. A model for the inverse 1-median problem on trees under uncertain costs

    Directory of Open Access Journals (Sweden)

    Kien Trung Nguyen

    2016-01-01

    Full Text Available We consider the problem of justifying vertex weights of a tree under uncertain costs so that a prespecified vertex become optimal and the total cost should be optimal in the uncertainty scenario. We propose a model which delivers the information about the optimal cost which respect to each confidence level \\(\\alpha \\in [0,1]\\. To obtain this goal, we first define an uncertain variable with respect to the minimum cost in each confidence level. If all costs are independently linear distributed, we present the inverse distribution function of this uncertain variable in \\(O(n^{2}\\log n\\ time, where \\(n\\ is the number of vertices in the tree.

  10. Greedy heuristics for minimization of number of terminal nodes in decision trees

    KAUST Repository

    Hussain, Shahid

    2014-10-01

    This paper describes, in detail, several greedy heuristics for construction of decision trees. We study the number of terminal nodes of decision trees, which is closely related with the cardinality of the set of rules corresponding to the tree. We compare these heuristics empirically for two different types of datasets (datasets acquired from UCI ML Repository and randomly generated data) as well as compare with the optimal results obtained using dynamic programming method.

  11. Greedy heuristics for minimization of number of terminal nodes in decision trees

    KAUST Repository

    Hussain, Shahid

    2014-01-01

    This paper describes, in detail, several greedy heuristics for construction of decision trees. We study the number of terminal nodes of decision trees, which is closely related with the cardinality of the set of rules corresponding to the tree. We compare these heuristics empirically for two different types of datasets (datasets acquired from UCI ML Repository and randomly generated data) as well as compare with the optimal results obtained using dynamic programming method.

  12. Bridging process-based and empirical approaches to modeling tree growth

    Science.gov (United States)

    Harry T. Valentine; Annikki Makela; Annikki Makela

    2005-01-01

    The gulf between process-based and empirical approaches to modeling tree growth may be bridged, in part, by the use of a common model. To this end, we have formulated a process-based model of tree growth that can be fitted and applied in an empirical mode. The growth model is grounded in pipe model theory and an optimal control model of crown development. Together, the...

  13. Constructing multi-labelled decision trees for junction design using the predicted probabilities

    NARCIS (Netherlands)

    Bezembinder, Erwin M.; Wismans, Luc J. J.; Van Berkum, Eric C.

    2017-01-01

    In this paper, we evaluate the use of traditional decision tree algorithms CRT, CHAID and QUEST to determine a decision tree which can be used to predict a set of (Pareto optimal) junction design alternatives (e.g. signal or roundabout) for a given traffic demand pattern and available space. This is

  14. An ordering heuristic for building Binary Decision Diagrams for fault-trees

    International Nuclear Information System (INIS)

    Bouissou, M.

    1997-01-01

    Binary Decision Diagrams (BDD) have recently made a noticeable entry in the RAMS field. This kind of representation for boolean functions makes possible the assessment of complex fault-trees, both qualitatively (minimal cut-sets search) and quantitatively (exact calculation of top event probability). The object of the paper is to present a pre-processing of the fault-tree which ensures that the results given by different heuristics on the 'optimized' fault-tree are not too sensitive to the way the tree is written. This property is based on a theoretical proof. In contrast with some well known heuristics, the method proposed is not based only on intuition and practical experiments. (author)

  15. Energy-efficient multicast traffic grooming strategy based on light-tree splitting for elastic optical networks

    Science.gov (United States)

    Liu, Huanlin; Yin, Yarui; Chen, Yong

    2017-07-01

    In order to address the problem of optimizing the spectrum resources and power consumption in elastic optical networks (EONs), we investigate the potential gains by jointly employing the light-tree splitting and traffic grooming for multicast requests. An energy-efficient multicast traffic grooming strategy based on light-tree splitting (EED-MTGS-LS) is proposed in this paper. Firstly, we design a traffic pre-processing mechanism to decide the multicast requests' routing order, which considers the request's bandwidth requirement and physical hops synthetically. Then, by dividing a light-tree to some sub-light-trees and grooming the request to these sub-light-trees, the light-tree sharing ratios of multicast requests can be improved. What's more, a priority scheduling vector is constructed, which aims to improve the success rate of spectrum assignment for grooming requests. Finally, a grooming strategy is designed to optimize the total power consumption by reducing the use of transponders and IP routers during routing. Simulation results show that the proposed strategy can significantly improve the spectrum utilization and save the power consumption.

  16. Minimum spanning trees and random resistor networks in d dimensions.

    Science.gov (United States)

    Read, N

    2005-09-01

    We consider minimum-cost spanning trees, both in lattice and Euclidean models, in d dimensions. For the cost of the optimum tree in a box of size L , we show that there is a correction of order L(theta) , where theta or =1 . The arguments all rely on the close relation of Kruskal's greedy algorithm for the minimum spanning tree, percolation, and (for some arguments) random resistor networks. The scaling of the entropy and free energy at small nonzero T , and hence of the number of near-optimal solutions, is also discussed. We suggest that the Steiner tree problem is in the same universality class as the minimum spanning tree in all dimensions, as is the traveling salesman problem in two dimensions. Hence all will have the same value of theta=-3/4 in two dimensions.

  17. Multi-weighted tree based query optimization method for parallel relational database systems%基于多重加权树的并行关系数据库系统的查询优化方法

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The author investigates the query optimization problem for parallel relational databases. A multi-weighted tree based query optimization method is proposed. The method consists of a multi-weighted tree based parallel query plan model, a cost model for parallel qury plans and a query optimizer. The parallel query plan model is the first one to model all basic relational operations, all three types of parallelism of query execution, processor and memory allocation to operations, memory allocation to the buffers between operations in pipelines and data redistribution among processors.The cost model takes the waiting time of the operations in pipelining execution into consideration and is computable in a bottom-up fashion. The query optimizer addresses the query optimization problem in the context of Select-Project-Join queries that are widely used in commercial DBMSs. Several heuristics determining the processor allocation to operations are derived and used in the query optimizer. The query optimizer is aware of memory resources in order to generate good-quality plans. It includes the heuristics for determining the memory allocation to operations and buffers between operations in pipelines so that the memory resourse is fully exploit. In addition, multiple algorithms for implementing join operations are consided in the query optimizer. The query optimizer can make an optimal choice of join algorithm for each join operation in a query. The proposed query optimization method has been used in a prototype parallel database management system designed and implemented by the author.

  18. On defining a unique phylogenetic tree with homoplastic characters.

    Science.gov (United States)

    Goloboff, Pablo A; Wilkinson, Mark

    2018-05-01

    This paper discusses the problem of whether creating a matrix with all the character state combinations that have a fixed number of steps (or extra steps) on a given tree T, produces the same tree T when analyzed with maximum parsimony or maximum likelihood. Exhaustive enumeration of cases up to 20 taxa for binary characters, and up to 12 taxa for 4-state characters, shows that the same tree is recovered (as unique most likely or most parsimonious tree) as long as the number of extra steps is within 1/4 of the number of taxa. This dependence, 1/4 of the number of taxa, is discussed with a general argumentation, in terms of the spread of the character changes on the tree used to select character state distributions. The present finding allows creating matrices which have as much homoplasy as possible for the most parsimonious or likely tree to be predictable, and examination of these matrices with hill-climbing search algorithms provides additional evidence on the (lack of a) necessary relationship between homoplasy and the ability of search methods to find optimal trees. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Depletion of endogenous germ cells in tree shrews in preparation for spermatogonial transplantation.

    Science.gov (United States)

    Liu, Tingting; Guo, Ying; Yan, Lanzhen; Sun, Bin; Zheng, Ping; Zhao, Xudong

    2017-09-01

    To achieve successful spermatogonial transplantation, endogenous germ cells must be depleted in recipient animals to allow donor germ cells to colonize efficiently. Busulfan is commonly used for the depletion of endogenous germ cells in recipient males. However, the optimal dose of busulfan is species-specific, and the optimal dose in tree shrews is yet to be determined. The current study aimed to determine the optimal dose of busulfan for effective suppression of endogenous spermatogenesis in tree shrews. Different doses (15, 20, 25, 30, 35, 40 and 45 mg/kg) of busulfan were injected into tree shrews intraperitoneally. Survival rates of the different treatment groups were calculated at 2 weeks and body weights were measured at 4, 6, 8, 10 and 28 weeks post-busulfan treatment. The testes were also removed and weighed at 4, 6, 8, 10 and 28 weeks post-treatment, and the cross and longitude diameters of the testes and diameters of the seminiferous tubules were measured and histologically evaluated. It was observed that there were no significant differences in the survival rates between the 15-35 mg/kg treatment groups and the control group (P>0.05), while the survival rate of the 40 mg/kg treatment group significantly decreased relative to the control group (Pendogenous germ cells in tree shrews. This dose led to maximum suppression of endogenous spermatogenesis while maintaining an acceptable survival rate of >50% of the lethal dose of busulfan for tree shrews.

  20. Succinct partial sums and fenwick trees

    DEFF Research Database (Denmark)

    Bille, Philip; Christiansen, Anders Roy; Prezza, Nicola

    2017-01-01

    We consider the well-studied partial sums problem in succint space where one is to maintain an array of n k-bit integers subject to updates such that partial sums queries can be efficiently answered. We present two succint versions of the Fenwick Tree – which is known for its simplicity...... and practicality. Our results hold in the encoding model where one is allowed to reuse the space from the input data. Our main result is the first that only requires nk + o(n) bits of space while still supporting sum/update in O(logbn)/O(blogbn) time where 2 ≤ b ≤ log O(1)n. The second result shows how optimal...... time for sum/update can be achieved while only slightly increasing the space usage to nk + o(nk) bits. Beyond Fenwick Trees, the results are primarily based on bit-packing and sampling – making them very practical – and they also allow for simple optimal parallelization....

  1. EEG feature selection method based on decision tree.

    Science.gov (United States)

    Duan, Lijuan; Ge, Hui; Ma, Wei; Miao, Jun

    2015-01-01

    This paper aims to solve automated feature selection problem in brain computer interface (BCI). In order to automate feature selection process, we proposed a novel EEG feature selection method based on decision tree (DT). During the electroencephalogram (EEG) signal processing, a feature extraction method based on principle component analysis (PCA) was used, and the selection process based on decision tree was performed by searching the feature space and automatically selecting optimal features. Considering that EEG signals are a series of non-linear signals, a generalized linear classifier named support vector machine (SVM) was chosen. In order to test the validity of the proposed method, we applied the EEG feature selection method based on decision tree to BCI Competition II datasets Ia, and the experiment showed encouraging results.

  2. An automated approach to the design of decision tree classifiers

    Science.gov (United States)

    Argentiero, P.; Chin, R.; Beaudet, P.

    1982-01-01

    An automated technique is presented for designing effective decision tree classifiers predicated only on a priori class statistics. The procedure relies on linear feature extractions and Bayes table look-up decision rules. Associated error matrices are computed and utilized to provide an optimal design of the decision tree at each so-called 'node'. A by-product of this procedure is a simple algorithm for computing the global probability of correct classification assuming the statistical independence of the decision rules. Attention is given to a more precise definition of decision tree classification, the mathematical details on the technique for automated decision tree design, and an example of a simple application of the procedure using class statistics acquired from an actual Landsat scene.

  3. Close to Optimally Secure Variants of GCM

    Directory of Open Access Journals (Sweden)

    Ping Zhang

    2018-01-01

    Full Text Available The Galois/Counter Mode of operation (GCM is a widely used nonce-based authenticated encryption with associated data mode which provides the birthday-bound security in the nonce-respecting scenario; that is, it is secure up to about 2n/2 adversarial queries if all nonces used in the encryption oracle are never repeated, where n is the block size. It is an open problem to analyze whether GCM security can be improved by using some simple operations. This paper presents a positive response for this problem. Firstly, we introduce two close to optimally secure pseudorandom functions and derive their security bound by the hybrid technique. Then, we utilize these pseudorandom functions that we design and a universal hash function to construct two improved versions of GCM, called OGCM-1 and OGCM-2. OGCM-1 and OGCM-2 are, respectively, provably secure up to approximately 2n/67(n-12 and 2n/67 adversarial queries in the nonce-respecting scenario if the underlying block cipher is a secure pseudorandom permutation. Finally, we discuss the properties of OGCM-1 and OGCM-2 and describe the future works.

  4. An ordering heuristic for building Binary Decision Diagrams for fault-trees

    Energy Technology Data Exchange (ETDEWEB)

    Bouissou, M. [Electricite de France (EDF), 75 - Paris (France)

    1997-12-31

    Binary Decision Diagrams (BDD) have recently made a noticeable entry in the RAMS field. This kind of representation for boolean functions makes possible the assessment of complex fault-trees, both qualitatively (minimal cut-sets search) and quantitatively (exact calculation of top event probability). The object of the paper is to present a pre-processing of the fault-tree which ensures that the results given by different heuristics on the `optimized` fault-tree are not too sensitive to the way the tree is written. This property is based on a theoretical proof. In contrast with some well known heuristics, the method proposed is not based only on intuition and practical experiments. (author) 12 refs.

  5. Hybrid Direct and Iterative Solver with Library of Multi-criteria Optimal Orderings for h Adaptive Finite Element Method Computations

    KAUST Repository

    AbouEisha, Hassan M.

    2016-06-02

    In this paper we present a multi-criteria optimization of element partition trees and resulting orderings for multi-frontal solver algorithms executed for two dimensional h adaptive finite element method. In particular, the problem of optimal ordering of elimination of rows in the sparse matrices resulting from adaptive finite element method computations is reduced to the problem of finding of optimal element partition trees. Given a two dimensional h refined mesh, we find all optimal element partition trees by using the dynamic programming approach. An element partition tree defines a prescribed order of elimination of degrees of freedom over the mesh. We utilize three different metrics to estimate the quality of the element partition tree. As the first criterion we consider the number of floating point operations(FLOPs) performed by the multi-frontal solver. As the second criterion we consider the number of memory transfers (MEMOPS) performed by the multi-frontal solver algorithm. As the third criterion we consider memory usage (NONZEROS) of the multi-frontal direct solver. We show the optimization results for FLOPs vs MEMOPS as well as for the execution time estimated as FLOPs+100MEMOPS vs NONZEROS. We obtain Pareto fronts with multiple optimal trees, for each mesh, and for each refinement level. We generate a library of optimal elimination trees for small grids with local singularities. We also propose an algorithm that for a given large mesh with identified local sub-grids, each one with local singularity. We compute Schur complements over the sub-grids using the optimal trees from the library, and we submit the sequence of Schur complements into the iterative solver ILUPCG.

  6. Tree compression with top trees

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Landau, Gad M.

    2013-01-01

    We introduce a new compression scheme for labeled trees based on top trees [3]. Our compression scheme is the first to simultaneously take advantage of internal repeats in the tree (as opposed to the classical DAG compression that only exploits rooted subtree repeats) while also supporting fast...

  7. Tree compression with top trees

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Landau, Gad M.

    2015-01-01

    We introduce a new compression scheme for labeled trees based on top trees. Our compression scheme is the first to simultaneously take advantage of internal repeats in the tree (as opposed to the classical DAG compression that only exploits rooted subtree repeats) while also supporting fast...

  8. 3D modeling of olive tree and simulating the harvesting forces

    Directory of Open Access Journals (Sweden)

    Glăvan Dan Ovidiu

    2017-01-01

    Full Text Available The paper presents the results of the study regarding the influence of shaking forces on olive tree harvesting systems. Shaking forces can be released through several methods. Important is the end result, namely the shaking force and the cadence of shaking speed. Mechanical and automatic harvesting methods collect more olives than traditional methods but may damage the olive trees. In order to prevent this damage, we need to calculate the necessary shaking force. An original research method is proposed to simulate shaking forces using a 3D olive tree model with Autodesk Inventor software. In the experiments, we use different shaking forces and various shaking speeds. We also use different diameters of the olive tree trunk. We analyze the results from this experiment to determine the optimal shaking force for harvesting olives without damaging the olive tree.

  9. Efficient reduction and modularization for large fault trees stored by pages

    International Nuclear Information System (INIS)

    Chen, Shanqi; Wang, Jin; Wang, Jiaqun; Wang, Fang; Hu, Liqin

    2016-01-01

    Highlights: • New fault tree pre-processing methods used in RiskA are presented. • Including the fault tree paging storage, simplification and modularization. • For getting MCS for fault trees containing more than 10,000 gates and events. • Reduce computer resources needs (RAM) and improve computation speed. - Abstract: Fault Tree Analysis (FTA), an indispensable tool used in Probabilistic Risk Assessment (PRA), has been used throughout the commercial nuclear power industry for safety and reliability analyses. However, large fault tree analysis, such as those used in nuclear power plant requires significant computer resources, which makes the analysis of PRA model inefficient and time consuming. This paper describes a fault tree pre-processing method used in the reliability and probabilistic safety assessment program RiskA that is capable of generating minimal cutsets for fault trees containing more than 10,000 gates and basic events. The novel feature of this method is not only that Boolean reduction rules are used but also that a new objective of simplification is proposed. Moreover, since the method aims to find more fault tree modules by the linear-time algorithm, it can optimize fault tree modularization, which further reduces the computational time of large fault tree analysis.

  10. Decision tree based knowledge acquisition and failure diagnosis using a PWR loop vibration model

    International Nuclear Information System (INIS)

    Bauernfeind, V.; Ding, Y.

    1993-01-01

    An analytical vibration model of the primary system of a 1300 MW PWR was used for simulating mechanical faults. Deviations in the calculated power density spectra and coherence functions are determined and classified. The decision tree technique is then used for a personal computer supported knowledge presentation and for optimizing the logical relationships between the simulated faults and the observed symptoms. The optimized decision tree forms the knowledge base and can be used to diagnose known cases as well as to include new data into the knowledge base if new faults occur. (author)

  11. Intermediate tree cover can maximize groundwater recharge in the seasonally dry tropics

    Science.gov (United States)

    Ilstedt, U.; Bargués Tobella, A.; Bazié, H. R.; Bayala, J.; Verbeeten, E.; Nyberg, G.; Sanou, J.; Benegas, L.; Murdiyarso, D.; Laudon, H.; Sheil, D.; Malmer, A.

    2016-01-01

    Water scarcity contributes to the poverty of around one-third of the world’s people. Despite many benefits, tree planting in dry regions is often discouraged by concerns that trees reduce water availability. Yet relevant studies from the tropics are scarce, and the impacts of intermediate tree cover remain unexplored. We developed and tested an optimum tree cover theory in which groundwater recharge is maximized at an intermediate tree density. Below this optimal tree density the benefits from any additional trees on water percolation exceed their extra water use, leading to increased groundwater recharge, while above the optimum the opposite occurs. Our results, based on groundwater budgets calibrated with measurements of drainage and transpiration in a cultivated woodland in West Africa, demonstrate that groundwater recharge was maximised at intermediate tree densities. In contrast to the prevailing view, we therefore find that moderate tree cover can increase groundwater recharge, and that tree planting and various tree management options can improve groundwater resources. We evaluate the necessary conditions for these results to hold and suggest that they are likely to be common in the seasonally dry tropics, offering potential for widespread tree establishment and increased benefits for hundreds of millions of people. PMID:26908158

  12. An Efficient User Authentication and User Anonymity Scheme with Provably Security for IoT-Based Medical Care System.

    Science.gov (United States)

    Li, Chun-Ta; Wu, Tsu-Yang; Chen, Chin-Ling; Lee, Cheng-Chi; Chen, Chien-Ming

    2017-06-23

    In recent years, with the increase in degenerative diseases and the aging population in advanced countries, demands for medical care of older or solitary people have increased continually in hospitals and healthcare institutions. Applying wireless sensor networks for the IoT-based telemedicine system enables doctors, caregivers or families to monitor patients' physiological conditions at anytime and anyplace according to the acquired information. However, transmitting physiological data through the Internet concerns the personal privacy of patients. Therefore, before users can access medical care services in IoT-based medical care system, they must be authenticated. Typically, user authentication and data encryption are most critical for securing network communications over a public channel between two or more participants. In 2016, Liu and Chung proposed a bilinear pairing-based password authentication scheme for wireless healthcare sensor networks. They claimed their authentication scheme cannot only secure sensor data transmission, but also resist various well-known security attacks. In this paper, we demonstrate that Liu-Chung's scheme has some security weaknesses, and we further present an improved secure authentication and data encryption scheme for the IoT-based medical care system, which can provide user anonymity and prevent the security threats of replay and password/sensed data disclosure attacks. Moreover, we modify the authentication process to reduce redundancy in protocol design, and the proposed scheme is more efficient in performance compared with previous related schemes. Finally, the proposed scheme is provably secure in the random oracle model under ECDHP.

  13. Dual decomposition for parsing with non-projective head automata

    OpenAIRE

    Koo, Terry; Rush, Alexander Matthew; Collins, Michael; Jaakkola, Tommi S.; Sontag, David Alexander

    2010-01-01

    This paper introduces algorithms for non-projective parsing based on dual decomposition. We focus on parsing algorithms for non-projective head automata, a generalization of head-automata models to non-projective structures. The dual decomposition algorithms are simple and efficient, relying on standard dynamic programming and minimum spanning tree algorithms. They provably solve an LP relaxation of the non-projective parsing problem. Empirically the LP relaxation is very often tight: for man...

  14. Generalising tree traversals and tree transformations to DAGs

    DEFF Research Database (Denmark)

    Bahr, Patrick; Axelsson, Emil

    2017-01-01

    We present a recursion scheme based on attribute grammars that can be transparently applied to trees and acyclic graphs. Our recursion scheme allows the programmer to implement a tree traversal or a tree transformation and then apply it to compact graph representations of trees instead. The resul......We present a recursion scheme based on attribute grammars that can be transparently applied to trees and acyclic graphs. Our recursion scheme allows the programmer to implement a tree traversal or a tree transformation and then apply it to compact graph representations of trees instead...... as the complementing theory with a number of examples....

  15. Monte-Carlo Tree Search by Best Arm Identification

    NARCIS (Netherlands)

    E. Kaufmann (Emilie); W.M. Koolen-Wijkstra (Wouter)

    2017-01-01

    textabstractRecent advances in bandit tools and techniques for sequential learning are steadily enabling new applications and are promising the resolution of a range of challenging related problems. We study the game tree search problem, where the goal is to quickly identify the optimal move in a

  16. Monte-Carlo tree search by best arm identification

    NARCIS (Netherlands)

    E. Kaufmann (Emilie); W.M. Koolen-Wijkstra (Wouter)

    2017-01-01

    textabstractRecent advances in bandit tools and techniques for sequential learning are steadily enabling new applications and are promising the resolution of a range of challenging related problems. We study the game tree search problem, where the goal is to quickly identify the optimal move in a

  17. Surface tree languages and parallel derivation trees

    NARCIS (Netherlands)

    Engelfriet, Joost

    1976-01-01

    The surface tree languages obtained by top-down finite state transformation of monadic trees are exactly the frontier-preserving homomorphic images of sets of derivation trees of ETOL systems. The corresponding class of tree transformation languages is therefore equal to the class of ETOL languages.

  18. TreePics: visualizing trees with pictures

    Directory of Open Access Journals (Sweden)

    Nicolas Puillandre

    2017-09-01

    Full Text Available While many programs are available to edit phylogenetic trees, associating pictures with branch tips in an efficient and automatic way is not an available option. Here, we present TreePics, a standalone software that uses a web browser to visualize phylogenetic trees in Newick format and that associates pictures (typically, pictures of the voucher specimens to the tip of each branch. Pictures are visualized as thumbnails and can be enlarged by a mouse rollover. Further, several pictures can be selected and displayed in a separate window for visual comparison. TreePics works either online or in a full standalone version, where it can display trees with several thousands of pictures (depending on the memory available. We argue that TreePics can be particularly useful in a preliminary stage of research, such as to quickly detect conflicts between a DNA-based phylogenetic tree and morphological variation, that may be due to contamination that needs to be removed prior to final analyses, or the presence of species complexes.

  19. Microwave sensing of tree trunks

    Science.gov (United States)

    Jezova, Jana; Mertens, Laurence; Lambot, Sebastien

    2015-04-01

    The main subject of this research is the observation of the inner part of living tree trunks using ground-penetrating radar (GPR). Trees are everyday part of human life and therefore it is important to pay attention to the tree conditions. The most obvious consequence of the poor tree condition is dead or injury caused by falling tree. The trunk internal structure is divided into three main parts: heartwood, sapwood and bark, which make this medium highly anisotropic and heterogeneous. Furthermore, the properties of the wood are not only specie-dependent but also depend on genetic and on environmental conditions. In urban areas the main problem for the stability of the trees relies in the apparition of decays provoked by fungi, insect or birds. This results in cavities or decreasing of the support capacity of the tree. GPR has proved itself to be a very powerful electromagnetic tool for non-destructive detection of buried objects. Since the beginning of the 20th century it has been used in several different areas (archaeology, landmine detection, civil engineering, ...). GPR uses the principle of the scattering of the electromagnetic waves that are radiated from a transmitting antenna. Then the waves propagate through the medium and are reflected from the object and then they are received by a receiving antenna. The velocity of the scattered signal is determined primarily by the permittivity of the material. The optimal functionality of the GPR was investigated using the numerical simulation tool gprMax2D. This tool is based on a Finite-Difference Time-Domain (FDTD) numerical model. Subsequently, the GPR functionality was tested using the laboratory model of a decayed tree trunk. Afterwards, the results and lessons learnt in the simplified tests will be used in the processing of the real data and will help to achieve deeper understanding of them. The laboratory model of the tree trunk was made by plastic or carton pipes and filled by sand. Space inside the model

  20. Maximum parsimony, substitution model, and probability phylogenetic trees.

    Science.gov (United States)

    Weng, J F; Thomas, D A; Mareels, I

    2011-01-01

    The problem of inferring phylogenies (phylogenetic trees) is one of the main problems in computational biology. There are three main methods for inferring phylogenies-Maximum Parsimony (MP), Distance Matrix (DM) and Maximum Likelihood (ML), of which the MP method is the most well-studied and popular method. In the MP method the optimization criterion is the number of substitutions of the nucleotides computed by the differences in the investigated nucleotide sequences. However, the MP method is often criticized as it only counts the substitutions observable at the current time and all the unobservable substitutions that really occur in the evolutionary history are omitted. In order to take into account the unobservable substitutions, some substitution models have been established and they are now widely used in the DM and ML methods but these substitution models cannot be used within the classical MP method. Recently the authors proposed a probability representation model for phylogenetic trees and the reconstructed trees in this model are called probability phylogenetic trees. One of the advantages of the probability representation model is that it can include a substitution model to infer phylogenetic trees based on the MP principle. In this paper we explain how to use a substitution model in the reconstruction of probability phylogenetic trees and show the advantage of this approach with examples.

  1. Path Minima Queries in Dynamic Weighted Trees

    DEFF Research Database (Denmark)

    Davoodi, Pooya; Brodal, Gerth Stølting; Satti, Srinivasa Rao

    2011-01-01

    In the path minima problem on a tree, each edge is assigned a weight and a query asks for the edge with minimum weight on a path between two nodes. For the dynamic version of the problem, where the edge weights can be updated, we give data structures that achieve optimal query time\\todo{what about...

  2. Methodology for reliability allocation based on fault tree analysis and dualistic contrast

    Institute of Scientific and Technical Information of China (English)

    TONG Lili; CAO Xuewu

    2008-01-01

    Reliability allocation is a difficult multi-objective optimization problem.This paper presents a methodology for reliability allocation that can be applied to determine the reliability characteristics of reactor systems or subsystems.The dualistic contrast,known as one of the most powerful tools for optimization problems,is applied to the reliability allocation model of a typical system in this article.And the fault tree analysis,deemed to be one of the effective methods of reliability analysis,is also adopted.Thus a failure rate allocation model based on the fault tree analysis and dualistic contrast is achieved.An application on the emergency diesel generator in the nuclear power plant is given to illustrate the proposed method.

  3. Derivative Trade Optimizing Model Utilizing GP Based on Behavioral Finance Theory

    Science.gov (United States)

    Matsumura, Koki; Kawamoto, Masaru

    This paper proposed a new technique which makes the strategy trees for the derivative (option) trading investment decision based on the behavioral finance theory and optimizes it using evolutionary computation, in order to achieve high profitability. The strategy tree uses a technical analysis based on a statistical, experienced technique for the investment decision. The trading model is represented by various technical indexes, and the strategy tree is optimized by the genetic programming(GP) which is one of the evolutionary computations. Moreover, this paper proposed a method using the prospect theory based on the behavioral finance theory to set psychological bias for profit and deficit and attempted to select the appropriate strike price of option for the higher investment efficiency. As a result, this technique produced a good result and found the effectiveness of this trading model by the optimized dealings strategy.

  4. Development of Gis Tool for the Solution of Minimum Spanning Tree Problem using Prim's Algorithm

    Science.gov (United States)

    Dutta, S.; Patra, D.; Shankar, H.; Alok Verma, P.

    2014-11-01

    minimum spanning tree (MST) of a connected, undirected and weighted network is a tree of that network consisting of all its nodes and the sum of weights of all its edges is minimum among all such possible spanning trees of the same network. In this study, we have developed a new GIS tool using most commonly known rudimentary algorithm called Prim's algorithm to construct the minimum spanning tree of a connected, undirected and weighted road network. This algorithm is based on the weight (adjacency) matrix of a weighted network and helps to solve complex network MST problem easily, efficiently and effectively. The selection of the appropriate algorithm is very essential otherwise it will be very hard to get an optimal result. In case of Road Transportation Network, it is very essential to find the optimal results by considering all the necessary points based on cost factor (time or distance). This paper is based on solving the Minimum Spanning Tree (MST) problem of a road network by finding it's minimum span by considering all the important network junction point. GIS technology is usually used to solve the network related problems like the optimal path problem, travelling salesman problem, vehicle routing problems, location-allocation problems etc. Therefore, in this study we have developed a customized GIS tool using Python script in ArcGIS software for the solution of MST problem for a Road Transportation Network of Dehradun city by considering distance and time as the impedance (cost) factors. It has a number of advantages like the users do not need a greater knowledge of the subject as the tool is user-friendly and that allows to access information varied and adapted the needs of the users. This GIS tool for MST can be applied for a nationwide plan called Prime Minister Gram Sadak Yojana in India to provide optimal all weather road connectivity to unconnected villages (points). This tool is also useful for constructing highways or railways spanning several

  5. ColorTree: a batch customization tool for phylogenic trees.

    Science.gov (United States)

    Chen, Wei-Hua; Lercher, Martin J

    2009-07-31

    Genome sequencing projects and comparative genomics studies typically aim to trace the evolutionary history of large gene sets, often requiring human inspection of hundreds of phylogenetic trees. If trees are checked for compatibility with an explicit null hypothesis (e.g., the monophyly of certain groups), this daunting task is greatly facilitated by an appropriate coloring scheme. In this note, we introduce ColorTree, a simple yet powerful batch customization tool for phylogenic trees. Based on pattern matching rules, ColorTree applies a set of customizations to an input tree file, e.g., coloring labels or branches. The customized trees are saved to an output file, which can then be viewed and further edited by Dendroscope (a freely available tree viewer). ColorTree runs on any Perl installation as a stand-alone command line tool, and its application can thus be easily automated. This way, hundreds of phylogenic trees can be customized for easy visual inspection in a matter of minutes. ColorTree allows efficient and flexible visual customization of large tree sets through the application of a user-supplied configuration file to multiple tree files.

  6. Bounds on Average Time Complexity of Decision Trees

    KAUST Repository

    Chikalov, Igor

    2011-01-01

    In this chapter, bounds on the average depth and the average weighted depth of decision trees are considered. Similar problems are studied in search theory [1], coding theory [77], design and analysis of algorithms (e.g., sorting) [38]. For any diagnostic problem, the minimum average depth of decision tree is bounded from below by the entropy of probability distribution (with a multiplier 1/log2 k for a problem over a k-valued information system). Among diagnostic problems, the problems with a complete set of attributes have the lowest minimum average depth of decision trees (e.g, the problem of building optimal prefix code [1] and a blood test study in assumption that exactly one patient is ill [23]). For such problems, the minimum average depth of decision tree exceeds the lower bound by at most one. The minimum average depth reaches the maximum on the problems in which each attribute is "indispensable" [44] (e.g., a diagnostic problem with n attributes and kn pairwise different rows in the decision table and the problem of implementing the modulo 2 summation function). These problems have the minimum average depth of decision tree equal to the number of attributes in the problem description. © Springer-Verlag Berlin Heidelberg 2011.

  7. Decision-Tree Formulation With Order-1 Lateral Execution

    Science.gov (United States)

    James, Mark

    2007-01-01

    A compact symbolic formulation enables mapping of an arbitrarily complex decision tree of a certain type into a highly computationally efficient multidimensional software object. The type of decision trees to which this formulation applies is that known in the art as the Boolean class of balanced decision trees. Parallel lateral slices of an object created by means of this formulation can be executed in constant time considerably less time than would otherwise be required. Decision trees of various forms are incorporated into almost all large software systems. A decision tree is a way of hierarchically solving a problem, proceeding through a set of true/false responses to a conclusion. By definition, a decision tree has a tree-like structure, wherein each internal node denotes a test on an attribute, each branch from an internal node represents an outcome of a test, and leaf nodes represent classes or class distributions that, in turn represent possible conclusions. The drawback of decision trees is that execution of them can be computationally expensive (and, hence, time-consuming) because each non-leaf node must be examined to determine whether to progress deeper into a tree structure or to examine an alternative. The present formulation was conceived as an efficient means of representing a decision tree and executing it in as little time as possible. The formulation involves the use of a set of symbolic algorithms to transform a decision tree into a multi-dimensional object, the rank of which equals the number of lateral non-leaf nodes. The tree can then be executed in constant time by means of an order-one table lookup. The sequence of operations performed by the algorithms is summarized as follows: 1. Determination of whether the tree under consideration can be encoded by means of this formulation. 2. Extraction of decision variables. 3. Symbolic optimization of the decision tree to minimize its form. 4. Expansion and transformation of all nested conjunctive

  8. Diameter sensors for tree-length harvesting systems

    Science.gov (United States)

    T.P. McDonald; Robert B. Rummer; T.E. Grift

    2003-01-01

    Most cut-to-length (CTL) harvesters provide sensors for measuring diameter of trees as they are cut and processed. Among other uses, this capability provides a data collection tool for marketing of logs in real time. Logs can be sorted and stacked based on up-to-date market information, then transportation systems optimized to route wood to proper destinations at...

  9. Tree Colors: Color Schemes for Tree-Structured Data.

    Science.gov (United States)

    Tennekes, Martijn; de Jonge, Edwin

    2014-12-01

    We present a method to map tree structures to colors from the Hue-Chroma-Luminance color model, which is known for its well balanced perceptual properties. The Tree Colors method can be tuned with several parameters, whose effect on the resulting color schemes is discussed in detail. We provide a free and open source implementation with sensible parameter defaults. Categorical data are very common in statistical graphics, and often these categories form a classification tree. We evaluate applying Tree Colors to tree structured data with a survey on a large group of users from a national statistical institute. Our user study suggests that Tree Colors are useful, not only for improving node-link diagrams, but also for unveiling tree structure in non-hierarchical visualizations.

  10. An Efficient User Authentication and User Anonymity Scheme with Provably Security for IoT-Based Medical Care System

    Science.gov (United States)

    Wu, Tsu-Yang; Chen, Chin-Ling; Lee, Cheng-Chi; Chen, Chien-Ming

    2017-01-01

    In recent years, with the increase in degenerative diseases and the aging population in advanced countries, demands for medical care of older or solitary people have increased continually in hospitals and healthcare institutions. Applying wireless sensor networks for the IoT-based telemedicine system enables doctors, caregivers or families to monitor patients’ physiological conditions at anytime and anyplace according to the acquired information. However, transmitting physiological data through the Internet concerns the personal privacy of patients. Therefore, before users can access medical care services in IoT-based medical care system, they must be authenticated. Typically, user authentication and data encryption are most critical for securing network communications over a public channel between two or more participants. In 2016, Liu and Chung proposed a bilinear pairing-based password authentication scheme for wireless healthcare sensor networks. They claimed their authentication scheme cannot only secure sensor data transmission, but also resist various well-known security attacks. In this paper, we demonstrate that Liu–Chung’s scheme has some security weaknesses, and we further present an improved secure authentication and data encryption scheme for the IoT-based medical care system, which can provide user anonymity and prevent the security threats of replay and password/sensed data disclosure attacks. Moreover, we modify the authentication process to reduce redundancy in protocol design, and the proposed scheme is more efficient in performance compared with previous related schemes. Finally, the proposed scheme is provably secure in the random oracle model under ECDHP. PMID:28644381

  11. Two Trees: Migrating Fault Trees to Decision Trees for Real Time Fault Detection on International Space Station

    Science.gov (United States)

    Lee, Charles; Alena, Richard L.; Robinson, Peter

    2004-01-01

    We started from ISS fault trees example to migrate to decision trees, presented a method to convert fault trees to decision trees. The method shows that the visualizations of root cause of fault are easier and the tree manipulating becomes more programmatic via available decision tree programs. The visualization of decision trees for the diagnostic shows a format of straight forward and easy understands. For ISS real time fault diagnostic, the status of the systems could be shown by mining the signals through the trees and see where it stops at. The other advantage to use decision trees is that the trees can learn the fault patterns and predict the future fault from the historic data. The learning is not only on the static data sets but also can be online, through accumulating the real time data sets, the decision trees can gain and store faults patterns in the trees and recognize them when they come.

  12. The Witness-Voting System

    Science.gov (United States)

    Gerck, Ed

    We present a new, comprehensive framework to qualitatively improve election outcome trustworthiness, where voting is modeled as an information transfer process. Although voting is deterministic (all ballots are counted), information is treated stochastically using Information Theory. Error considerations, including faults, attacks, and threats by adversaries, are explicitly included. The influence of errors may be corrected to achieve an election outcome error as close to zero as desired (error-free), with a provably optimal design that is applicable to any type of voting, with or without ballots. Sixteen voting system requirements, including functional, performance, environmental and non-functional considerations, are derived and rated, meeting or exceeding current public-election requirements. The voter and the vote are unlinkable (secret ballot) although each is identifiable. The Witness-Voting System (Gerck, 2001) is extended as a conforming implementation of the provably optimal design that is error-free, transparent, simple, scalable, robust, receipt-free, universally-verifiable, 100% voter-verified, and end-to-end audited.

  13. Optimization of Algorithms Using Extensions of Dynamic Programming

    KAUST Repository

    AbouEisha, Hassan M.

    2017-04-09

    We study and answer questions related to the complexity of various important problems such as: multi-frontal solvers of hp-adaptive finite element method, sorting and majority. We advocate the use of dynamic programming as a viable tool to study optimal algorithms for these problems. The main approach used to attack these problems is modeling classes of algorithms that may solve this problem using a discrete model of computation then defining cost functions on this discrete structure that reflect different complexity measures of the represented algorithms. As a last step, dynamic programming algorithms are designed and used to optimize those models (algorithms) and to obtain exact results on the complexity of the studied problems. The first part of the thesis presents a novel model of computation (element partition tree) that represents a class of algorithms for multi-frontal solvers along with cost functions reflecting various complexity measures such as: time and space. It then introduces dynamic programming algorithms for multi-stage and bi-criteria optimization of element partition trees. In addition, it presents results based on optimal element partition trees for famous benchmark meshes such as: meshes with point and edge singularities. New improved heuristics for those benchmark meshes were ob- tained based on insights of the optimal results found by our algorithms. The second part of the thesis starts by introducing a general problem where different problems can be reduced to and show how to use a decision table to model such problem. We describe how decision trees and decision tests for this table correspond to adaptive and non-adaptive algorithms for the original problem. We present exact bounds on the average time complexity of adaptive algorithms for the eight elements sorting problem. Then bounds on adaptive and non-adaptive algorithms for a variant of the majority problem are introduced. Adaptive algorithms are modeled as decision trees whose depth

  14. Multiobjective optimization of strategies for operation and testing of low-demand safety instrumented systems using a genetic algorithm and fault trees

    International Nuclear Information System (INIS)

    Longhi, Antonio Eduardo Bier; Pessoa, Artur Alves; Garcia, Pauli Adriano de Almada

    2015-01-01

    Since low-demand safety instrumented systems (SISs) do not operate continuously, their failures are often only detected when the system is demanded or tested. The conduction of tests, besides adding costs, can raise risks of failure on demand during their execution and also increase the frequency of spurious activation. Additionally, it is often necessary to interrupt production to carry out tests. In light of this scenario, this paper presents a model to optimize strategies for operation and testing of these systems, applying modeling by fault trees associated with optimization by a genetic algorithm. Its main differences are: (i) ability to represent four modes of operation and test them for each SIS subsystem; (ii) ability to represent a SIS that executes more than one safety instrumented function; (iii) ability to keep track of the down-time generated in the production system; and (iv) alteration of a genetic selection mechanism that permits identification of more efficient solutions with smaller influence on the optimization parameters. These aspects are presented by applying this model in three case studies. The results obtained show the applicability of the proposed approach and its potential to help make more informed decisions. - Highlights: • Models the integrity and cost related to operation and testing of low-demand SISs. • Keeps track of the production down-time generated by SIS tests and repairs. • Allows multiobjective optimization to identify operation and testing strategies. • Enables integrated assessment of an SIS that executes more than one SIF. • Allows altering the selection mechanism to identify the most efficient strategies

  15. Fast Image Texture Classification Using Decision Trees

    Science.gov (United States)

    Thompson, David R.

    2011-01-01

    Texture analysis would permit improved autonomous, onboard science data interpretation for adaptive navigation, sampling, and downlink decisions. These analyses would assist with terrain analysis and instrument placement in both macroscopic and microscopic image data products. Unfortunately, most state-of-the-art texture analysis demands computationally expensive convolutions of filters involving many floating-point operations. This makes them infeasible for radiation- hardened computers and spaceflight hardware. A new method approximates traditional texture classification of each image pixel with a fast decision-tree classifier. The classifier uses image features derived from simple filtering operations involving integer arithmetic. The texture analysis method is therefore amenable to implementation on FPGA (field-programmable gate array) hardware. Image features based on the "integral image" transform produce descriptive and efficient texture descriptors. Training the decision tree on a set of training data yields a classification scheme that produces reasonable approximations of optimal "texton" analysis at a fraction of the computational cost. A decision-tree learning algorithm employing the traditional k-means criterion of inter-cluster variance is used to learn tree structure from training data. The result is an efficient and accurate summary of surface morphology in images. This work is an evolutionary advance that unites several previous algorithms (k-means clustering, integral images, decision trees) and applies them to a new problem domain (morphology analysis for autonomous science during remote exploration). Advantages include order-of-magnitude improvements in runtime, feasibility for FPGA hardware, and significant improvements in texture classification accuracy.

  16. Stochastic search, optimization and regression with energy applications

    Science.gov (United States)

    Hannah, Lauren A.

    Designing clean energy systems will be an important task over the next few decades. One of the major roadblocks is a lack of mathematical tools to economically evaluate those energy systems. However, solutions to these mathematical problems are also of interest to the operations research and statistical communities in general. This thesis studies three problems that are of interest to the energy community itself or provide support for solution methods: R&D portfolio optimization, nonparametric regression and stochastic search with an observable state variable. First, we consider the one stage R&D portfolio optimization problem to avoid the sequential decision process associated with the multi-stage. The one stage problem is still difficult because of a non-convex, combinatorial decision space and a non-convex objective function. We propose a heuristic solution method that uses marginal project values---which depend on the selected portfolio---to create a linear objective function. In conjunction with the 0-1 decision space, this new problem can be solved as a knapsack linear program. This method scales well to large decision spaces. We also propose an alternate, provably convergent algorithm that does not exploit problem structure. These methods are compared on a solid oxide fuel cell R&D portfolio problem. Next, we propose Dirichlet Process mixtures of Generalized Linear Models (DPGLM), a new method of nonparametric regression that accommodates continuous and categorical inputs, and responses that can be modeled by a generalized linear model. We prove conditions for the asymptotic unbiasedness of the DP-GLM regression mean function estimate. We also give examples for when those conditions hold, including models for compactly supported continuous distributions and a model with continuous covariates and categorical response. We empirically analyze the properties of the DP-GLM and why it provides better results than existing Dirichlet process mixture regression

  17. Tree Nut Allergies

    Science.gov (United States)

    ... Blog Vision Awards Common Allergens Tree Nut Allergy Tree Nut Allergy Learn about tree nut allergy, how ... a Tree Nut Label card . Allergic Reactions to Tree Nuts Tree nuts can cause a severe and ...

  18. Economic Valuation of Urban Trees: Ribnjak Park Case Study, Zagreb

    Directory of Open Access Journals (Sweden)

    Karlo Beljan

    2015-06-01

    Full Text Available Background and Purpose: Population growth, urbanisation and technological development are creating a growing need for urban forests and parks, which are becoming green oases for recreation and relaxation. Apart from the sociological and economic components, urban forest valuation is presented through tourism, the market value of main and secondary forest products, and the growing value of real estate in the vicinity of green areas. Environmental economics explores the optimal ratio between the costs and the benefits received from the investment in the environment. The aim of this research is monetary valuation of urban trees. Materials and Methods: A Danish model for tree value determination was applied in Ribnjak Park as a case study. The model is based on tree growing costs and the present value. It is limited by the subjective aesthetic tree value estimation, but it is used in Europe because of its practicality. Individual tree value estimation is used because of the tree damage from vehicles or new residential buildings. The method is suitable for individual trees or groups of trees, but it is not appropriate for forest stands. Twenty random selected trees from nine different tree species have been analysed in the park. Diameter at breast height, tree height, expected age, aesthetic value and location were recorded for each tree. Furthermore, ecological, social and health tree values were taken into account separately with the calculation of points. Results: According to the evaluation, the average monetary value of one tree in Ribnjak Park is 542 EUR. The average diameter at breast height is 57.86 cm with the average age of 96.14 years. Plane trees have the highest value in comparison to other sampled species. Conclusions: Tree values vary depending on age, dimension or aesthetic values. The disadvantage of this method is in the estimation of very old tree value and in high involvement of personal estimation, which creates an opportunity

  19. Big trees, old trees, and growth factor tables

    Science.gov (United States)

    Kevin T. Smith

    2018-01-01

    The potential for a tree to reach a great size and to live a long life frequently captures the public's imagination. Sometimes the desire to know the age of an impressively large tree is simple curiosity. For others, the date-of-tree establishment can make a big diff erence for management, particularly for trees at historic sites or those mentioned in property...

  20. A Suffix Tree Or Not a Suffix Tree?

    DEFF Research Database (Denmark)

    Starikovskaya, Tatiana; Vildhøj, Hjalte Wedel

    2015-01-01

    In this paper we study the structure of suffix trees. Given an unlabeled tree r on n nodes and suffix links of its internal nodes, we ask the question “Is r a suffix tree?”, i.e., is there a string S whose suffix tree has the same topological structure as r? We place no restrictions on S, in part...

  1. In-situ transesterification of seeds of invasive Chinese tallow trees (Triadica sebifera L.) in a microwave batch system (GREEN(3)) using hexane as co-solvent: Biodiesel production and process optimization.

    Science.gov (United States)

    Barekati-Goudarzi, Mohamad; Boldor, Dorin; Nde, Divine B

    2016-02-01

    In-situ transesterification (simultaneous extraction and transesterification) of Chinese tallow tree seeds into methyl esters using a batch microwave system was investigated in this study. A high degree of oil extraction and efficient conversion of oil to biodiesel were found in the proposed range. The process was further optimized in terms of product yields and conversion rates using Doehlert optimization methodology. Based on the experimental results and statistical analysis, the optimal production yield conditions for this process were determined as: catalyst concentration of 1.74wt.%, solvent ratio about 3 (v/w), reaction time of 20min and temperature of 58.1°C. H(+)NMR was used to calculate reaction conversion. All methyl esters produced using this method met ASTM biodiesel quality specifications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. [Effects of crop tree release on stand growth and stand structure of Cunninghamia lanceolata plantation].

    Science.gov (United States)

    Wu, Jian-qiang; Wang, Yi-xiang; Yang, Yi; Zhu, Ting-ting; Zhu, Xu-dan

    2015-02-01

    Crop trees were selected in a 26-year-old even-aged Cunninghamia lanceolata plantation in Lin' an, and compared in plots that were released and unreleased to examine growth and structure responses for 3 years after thinning. Crop tree release significantly increased the mean increments of diameter and volume of individual tree by 1.30 and 1.25 times relative to trees in control stands, respectively. The increments of diameter and volume of crop trees were significantly higher than those of general trees in thinning plots, crop trees and general trees in control plots, which suggested that the responses from different tree types to crop tree release treatment were different. Crop tree release increased the average distances of crop trees to the nearest neighboring trees, reducing competition among crop trees by about 68.2%. 3-year stand volume increment for thinning stands had no significant difference with that of control stands although the number of trees was only 81.5% of the control. Crop trees in thinned plots with diameters over than 14 cm reached 18.0% over 3 years, compared with 12.0% for trees without thinning, suggesting that crop tree release benefited the larger individual trees. The pattern of tree locations in thinning plots tended to be random, complying with the rule that tree distribution pattern changes with growth. Crop tree release in C. lanceolata plantation not only promoted the stand growth, but also optimized the stand structure, benefiting crop trees sustained rapid growth and larger diameter trees production.

  3. High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV) Technology

    Science.gov (United States)

    Torres-Sánchez, Jorge; López-Granados, Francisca; Serrano, Nicolás; Arquero, Octavio; Peña, José M.

    2015-01-01

    The geometric features of agricultural trees such as canopy area, tree height and crown volume provide useful information about plantation status and crop production. However, these variables are mostly estimated after a time-consuming and hard field work and applying equations that treat the trees as geometric solids, which produce inconsistent results. As an alternative, this work presents an innovative procedure for computing the 3-dimensional geometric features of individual trees and tree-rows by applying two consecutive phases: 1) generation of Digital Surface Models with Unmanned Aerial Vehicle (UAV) technology and 2) use of object-based image analysis techniques. Our UAV-based procedure produced successful results both in single-tree and in tree-row plantations, reporting up to 97% accuracy on area quantification and minimal deviations compared to in-field estimations of tree heights and crown volumes. The maps generated could be used to understand the linkages between tree grown and field-related factors or to optimize crop management operations in the context of precision agriculture with relevant agro-environmental implications. PMID:26107174

  4. High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV) Technology.

    Science.gov (United States)

    Torres-Sánchez, Jorge; López-Granados, Francisca; Serrano, Nicolás; Arquero, Octavio; Peña, José M

    2015-01-01

    The geometric features of agricultural trees such as canopy area, tree height and crown volume provide useful information about plantation status and crop production. However, these variables are mostly estimated after a time-consuming and hard field work and applying equations that treat the trees as geometric solids, which produce inconsistent results. As an alternative, this work presents an innovative procedure for computing the 3-dimensional geometric features of individual trees and tree-rows by applying two consecutive phases: 1) generation of Digital Surface Models with Unmanned Aerial Vehicle (UAV) technology and 2) use of object-based image analysis techniques. Our UAV-based procedure produced successful results both in single-tree and in tree-row plantations, reporting up to 97% accuracy on area quantification and minimal deviations compared to in-field estimations of tree heights and crown volumes. The maps generated could be used to understand the linkages between tree grown and field-related factors or to optimize crop management operations in the context of precision agriculture with relevant agro-environmental implications.

  5. High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV Technology.

    Directory of Open Access Journals (Sweden)

    Jorge Torres-Sánchez

    Full Text Available The geometric features of agricultural trees such as canopy area, tree height and crown volume provide useful information about plantation status and crop production. However, these variables are mostly estimated after a time-consuming and hard field work and applying equations that treat the trees as geometric solids, which produce inconsistent results. As an alternative, this work presents an innovative procedure for computing the 3-dimensional geometric features of individual trees and tree-rows by applying two consecutive phases: 1 generation of Digital Surface Models with Unmanned Aerial Vehicle (UAV technology and 2 use of object-based image analysis techniques. Our UAV-based procedure produced successful results both in single-tree and in tree-row plantations, reporting up to 97% accuracy on area quantification and minimal deviations compared to in-field estimations of tree heights and crown volumes. The maps generated could be used to understand the linkages between tree grown and field-related factors or to optimize crop management operations in the context of precision agriculture with relevant agro-environmental implications.

  6. Determination of major elements in annual tree rings by acid extraction

    International Nuclear Information System (INIS)

    Belacy, N.; Abou EL-Nour, F.; Simpson, H.J.

    1991-01-01

    A method utilizing acid extraction of Na, K, Ca and Mg from the wood of annual growth rings of egyptian trees was executed. The method was applied on a Morus Alba tree located at Nile delta, northern of egypt. The acid extraction method includes the use of dilute nitric acid to extract the elements of the wood. The wood was soaked for one hour with continuous stirring at room temperature. Element contents of both leachant and ash of the extracted wood dissolved in 2N HNO 3 , were then estimated using an atomic absorption spectrophotometer. The method was optimized and led to an accurate determination of the elements in the wood of the examined tree rings. The results showed a difference in the level of these elements along the annual rings of the examined tree. The data obtained in this work can help in understanding the correlation between the concentration of these elements in the annual growth rings of the egyptian trees and the expected changes in the salinity of water of irrigation before and after the high dam project

  7. Tree-growth analyses to estimate tree species' drought tolerance

    NARCIS (Netherlands)

    Eilmann, B.; Rigling, A.

    2012-01-01

    Climate change is challenging forestry management and practices. Among other things, tree species with the ability to cope with more extreme climate conditions have to be identified. However, while environmental factors may severely limit tree growth or even cause tree death, assessing a tree

  8. Blind One-Bit Compressive Sampling

    Science.gov (United States)

    2013-01-17

    14] Q. Li, C. A. Micchelli, L. Shen, and Y. Xu, A proximity algorithm accelerated by Gauss - Seidel iterations for L1/TV denoising models, Inverse...methods for nonconvex optimization on the unit sphere and has a provable convergence guarantees. Binary iterative hard thresholding (BIHT) algorithms were... Convergence analysis of the algorithm is presented. Our approach is to obtain a sequence of optimization problems by successively approximating the ℓ0

  9. Using decision trees and their ensembles for analysis of NIR spectroscopic data

    DEFF Research Database (Denmark)

    Kucheryavskiy, Sergey V.

    and interpretation of the models. In this presentation, we are going to discuss an applicability of decision trees based methods (including gradient boosting) for solving classification and regression tasks with NIR spectra as predictors. We will cover such aspects as evaluation, optimization and validation......Advanced machine learning methods, like convolutional neural networks and decision trees, became extremely popular in the last decade. This, first of all, is directly related to the current boom in Big data analysis, where traditional statistical methods are not efficient. According to the kaggle.......com — the most popular online resource for Big data problems and solutions — methods based on decision trees and their ensembles are most widely used for solving the problems. It can be noted that the decision trees and convolutional neural networks are not very popular in Chemometrics. One of the reasons...

  10. TREE SELECTING AND TREE RING MEASURING IN DENDROCHRONOLOGICAL INVESTIGATIONS

    Directory of Open Access Journals (Sweden)

    Sefa Akbulut

    2004-04-01

    Full Text Available Dendrochronology is a method of dating which makes use of the annual nature of tree growth. Dendrochronology may be divided into a number of subfields, each of which covers one or more aspects of the use of tree ring data: dendroclimatology, dendrogeomorphology, dendrohydrology, dendroecology, dendroarchaelogy, and dendrogylaciology. Basic of all form the analysis of the tree rings. The wood or tree rings can aid to dating past events about climatology, ecology, geology, hydrology. Dendrochronological studies are conducted either on increment cores or on discs. It may be seen abnormalities on tree rings during the measurement like that false rings, missing rings, reaction wood. Like that situation, increment cores must be extracted from four different sides of each tree and be studied as more as on tree.

  11. Visualizing Individual Tree Differences in Tree-Ring Studies

    Directory of Open Access Journals (Sweden)

    Mario Trouillier

    2018-04-01

    Full Text Available Averaging tree-ring measurements from multiple individuals is one of the most common procedures in dendrochronology. It serves to filter out noise from individual differences between trees, such as competition, height, and micro-site effects, which ideally results in a site chronology sensitive to regional scale factors such as climate. However, the climate sensitivity of individual trees can be modulated by factors like competition, height, and nitrogen deposition, calling attention to whether average chronologies adequately assess climatic growth-control. In this study, we demonstrate four simple but effective methods to visually assess differences between individual trees. Using individual tree climate-correlations we: (1 employed jitter plots with superimposed metadata to assess potential causes for these differences; (2 plotted the frequency distributions of climate correlations over time as heat maps; (3 mapped the spatial distribution of climate sensitivity over time to assess spatio-temporal dynamics; and (4 used t-distributed Stochastic Neighborhood Embedding (t-SNE to assess which trees were generally more similar in terms of their tree-ring pattern and their correlation with climate variables. This suite of exploratory methods can indicate if individuals in tree-ring datasets respond differently to climate variability, and therefore, should not solely be explored with climate correlations of the mean population chronology.

  12. Fault tree handbook

    International Nuclear Information System (INIS)

    Haasl, D.F.; Roberts, N.H.; Vesely, W.E.; Goldberg, F.F.

    1981-01-01

    This handbook describes a methodology for reliability analysis of complex systems such as those which comprise the engineered safety features of nuclear power generating stations. After an initial overview of the available system analysis approaches, the handbook focuses on a description of the deductive method known as fault tree analysis. The following aspects of fault tree analysis are covered: basic concepts for fault tree analysis; basic elements of a fault tree; fault tree construction; probability, statistics, and Boolean algebra for the fault tree analyst; qualitative and quantitative fault tree evaluation techniques; and computer codes for fault tree evaluation. Also discussed are several example problems illustrating the basic concepts of fault tree construction and evaluation

  13. Optimization of safety equipment outages improves safety

    International Nuclear Information System (INIS)

    Cepin, Marko

    2002-01-01

    Testing and maintenance activities of safety equipment in nuclear power plants are an important potential for risk and cost reduction. An optimization method is presented based on the simulated annealing algorithm. The method determines the optimal schedule of safety equipment outages due to testing and maintenance based on minimization of selected risk measure. The mean value of the selected time dependent risk measure represents the objective function of the optimization. The time dependent function of the selected risk measure is obtained from probabilistic safety assessment, i.e. the fault tree analysis at the system level and the fault tree/event tree analysis at the plant level, both extended with inclusion of time requirements. Results of several examples showed that it is possible to reduce risk by application of the proposed method. Because of large uncertainties in the probabilistic safety assessment, the most important result of the method may not be a selection of the most suitable schedule of safety equipment outages among those, which results in similarly low risk. But, it may be a prevention of such schedules of safety equipment outages, which result in high risk. Such finding increases the importance of evaluation speed versus the requirement of getting always the global optimum no matter if it is only slightly better that certain local one

  14. Introduction of operator actions in the event trees

    International Nuclear Information System (INIS)

    Bars, G.; Lanore, J.M.; Villeroux, C.

    1984-11-01

    In the PRA in progress in France for a 900 MW PWR plant, an effort is done for introducing operator actions during accident sequences. A first approach of this complex problem relies on an extensive use of existing methods an knowledge in diverse fields. Identification of actions is based on the operating procedures, and in particular on the existence of special emergency procedures which define the optimal actions during severe accidents. This approach implies the introduction in the event trees of the notion of procedure failure. Quantification of the corresponding probabilities leads to several problems including physics of the sequences, systems availability and human behaviour for decision making and actions. This treatment is illustrated by the example of the small break event tree

  15. Acclimation of mechanical and hydraulic functions in trees:Impact of the thigmomorphogenetic process

    Directory of Open Access Journals (Sweden)

    Eric eBadel

    2015-04-01

    Full Text Available The secondary xylem (wood of trees mediates several functions including water transport and storage, mechanical support and storage of photosynthates. The optimal structures for each of these functions will most likely differ. The complex structure and function of xylem could lead to trade-offs between conductive efficiency, resistance to embolism and mechanical strength needed to count for mechanical loading due to gravity and wind. This has been referred to as the trade-off triangle, with the different optimal solutions to the structure/function problems depending on the environmental constraints as well as taxonomic histories. Thus, the optimisation of each function will lead to drastically different anatomical structures. Trees are able to acclimate the internal structure of their trunk and branches according to the stress they experience. These acclimations lead to specific structures that favour the efficiency or the safety of one function but can be antagonistic with other functions. Currently, there are no means to predict the way a tree will acclimate or optimize its internal structure in support of its various functions under differing environmental conditions. In this review, we will focus on the acclimation of xylem anatomy and its resulting mechanical and hydraulic functions to recurrent mechanical strain that usually result from wind-induced thigmomorphogenesis with a special focus on the construction cost and the possible trade-off between wood functions.

  16. Mirroring co-evolving trees in the light of their topologies.

    Science.gov (United States)

    Hajirasouliha, Iman; Schönhuth, Alexander; de Juan, David; Valencia, Alfonso; Sahinalp, S Cenk

    2012-05-01

    Determining the interaction partners among protein/domain families poses hard computational problems, in particular in the presence of paralogous proteins. Available approaches aim to identify interaction partners among protein/domain families through maximizing the similarity between trimmed versions of their phylogenetic trees. Since maximization of any natural similarity score is computationally difficult, many approaches employ heuristics to evaluate the distance matrices corresponding to the tree topologies in question. In this article, we devise an efficient deterministic algorithm which directly maximizes the similarity between two leaf labeled trees with edge lengths, obtaining a score-optimal alignment of the two trees in question. Our algorithm is significantly faster than those methods based on distance matrix comparison: 1 min on a single processor versus 730 h on a supercomputer. Furthermore, we outperform the current state-of-the-art exhaustive search approach in terms of precision, while incurring acceptable losses in recall. A C implementation of the method demonstrated in this article is available at http://compbio.cs.sfu.ca/mirrort.htm

  17. Modular tree automata

    DEFF Research Database (Denmark)

    Bahr, Patrick

    2012-01-01

    Tree automata are traditionally used to study properties of tree languages and tree transformations. In this paper, we consider tree automata as the basis for modular and extensible recursion schemes. We show, using well-known techniques, how to derive from standard tree automata highly modular...

  18. Optimisation of Offshore Wind Farm Cable Connection Layout Considering Levelised Production Cost Using Dynamic Minimum Spanning Tree Algorithm

    DEFF Research Database (Denmark)

    Hou, Peng; Hu, Weihao; Chen, Cong

    2016-01-01

    The approach in this paper hads been developed to optimize the cable connection layout of large scale offshore wind farms. The objective is to minimize the Levelised Production Cost (LPC) og an offshore wind farm by optimizing the cable connection configuration. Based on the minimum spanning tree...... (MST) algorithm, an improved algorithm, the Dynamic Minimum Spanning Tree (DMST) algorithm is proposed. The current carrying capacity of the cable is considered to be the main constraint and the cable sectional area is changed dynamically. An irregular shaped wind farm is chosen as the studie case...

  19. Learning in data-limited multimodal scenarios: Scandent decision forests and tree-based features.

    Science.gov (United States)

    Hor, Soheil; Moradi, Mehdi

    2016-12-01

    Incomplete and inconsistent datasets often pose difficulties in multimodal studies. We introduce the concept of scandent decision trees to tackle these difficulties. Scandent trees are decision trees that optimally mimic the partitioning of the data determined by another decision tree, and crucially, use only a subset of the feature set. We show how scandent trees can be used to enhance the performance of decision forests trained on a small number of multimodal samples when we have access to larger datasets with vastly incomplete feature sets. Additionally, we introduce the concept of tree-based feature transforms in the decision forest paradigm. When combined with scandent trees, the tree-based feature transforms enable us to train a classifier on a rich multimodal dataset, and use it to classify samples with only a subset of features of the training data. Using this methodology, we build a model trained on MRI and PET images of the ADNI dataset, and then test it on cases with only MRI data. We show that this is significantly more effective in staging of cognitive impairments compared to a similar decision forest model trained and tested on MRI only, or one that uses other kinds of feature transform applied to the MRI data. Copyright © 2016. Published by Elsevier B.V.

  20. Rate of tree carbon accumulation increases continuously with tree size.

    Science.gov (United States)

    Stephenson, N L; Das, A J; Condit, R; Russo, S E; Baker, P J; Beckman, N G; Coomes, D A; Lines, E R; Morris, W K; Rüger, N; Alvarez, E; Blundo, C; Bunyavejchewin, S; Chuyong, G; Davies, S J; Duque, A; Ewango, C N; Flores, O; Franklin, J F; Grau, H R; Hao, Z; Harmon, M E; Hubbell, S P; Kenfack, D; Lin, Y; Makana, J-R; Malizia, A; Malizia, L R; Pabst, R J; Pongpattananurak, N; Su, S-H; Sun, I-F; Tan, S; Thomas, D; van Mantgem, P J; Wang, X; Wiser, S K; Zavala, M A

    2014-03-06

    Forests are major components of the global carbon cycle, providing substantial feedback to atmospheric greenhouse gas concentrations. Our ability to understand and predict changes in the forest carbon cycle--particularly net primary productivity and carbon storage--increasingly relies on models that represent biological processes across several scales of biological organization, from tree leaves to forest stands. Yet, despite advances in our understanding of productivity at the scales of leaves and stands, no consensus exists about the nature of productivity at the scale of the individual tree, in part because we lack a broad empirical assessment of whether rates of absolute tree mass growth (and thus carbon accumulation) decrease, remain constant, or increase as trees increase in size and age. Here we present a global analysis of 403 tropical and temperate tree species, showing that for most species mass growth rate increases continuously with tree size. Thus, large, old trees do not act simply as senescent carbon reservoirs but actively fix large amounts of carbon compared to smaller trees; at the extreme, a single big tree can add the same amount of carbon to the forest within a year as is contained in an entire mid-sized tree. The apparent paradoxes of individual tree growth increasing with tree size despite declining leaf-level and stand-level productivity can be explained, respectively, by increases in a tree's total leaf area that outpace declines in productivity per unit of leaf area and, among other factors, age-related reductions in population density. Our results resolve conflicting assumptions about the nature of tree growth, inform efforts to undertand and model forest carbon dynamics, and have additional implications for theories of resource allocation and plant senescence.

  1. Comparing wavefront-optimized, wavefront-guided and topography-guided laser vision correction: clinical outcomes using an objective decision tree.

    Science.gov (United States)

    Stonecipher, Karl; Parrish, Joseph; Stonecipher, Megan

    2018-05-18

    This review is intended to update and educate the reader on the currently available options for laser vision correction, more specifically, laser-assisted in-situ keratomileusis (LASIK). In addition, some related clinical outcomes data from over 1000 cases performed over a 1-year are presented to highlight some differences between the various treatment profiles currently available including the rapidity of visual recovery. The cases in question were performed on the basis of a decision tree to segregate patients on the basis of anatomical, topographic and aberrometry findings; the decision tree was formulated based on the data available in some of the reviewed articles. Numerous recent studies reported in the literature provide data related to the risks and benefits of LASIK; alternatives to a laser refractive procedure are also discussed. The results from these studies have been used to prepare a decision tree to assist the surgeon in choosing the best option for the patient based on the data from several standard preoperative diagnostic tests. The data presented here should aid surgeons in understanding the effects of currently available LASIK treatment profiles. Surgeons should also be able to appreciate how the findings were used to create a decision tree to help choose the most appropriate treatment profile for patients. Finally, the retrospective evaluation of clinical outcomes based on the decision tree should provide surgeons with a realistic expectation for their own outcomes should they adopt such a decision tree in their own practice.

  2. Leaf size and leaf display of thirty-eight tropical tree species

    NARCIS (Netherlands)

    Poorter, L.; Rozendaal, D.M.A.

    2008-01-01

    Trees forage for light through optimal leaf display. Effective leaf display is determined by metamer traits (i.e., the internode, petiole, and corresponding leaf), and thus these traits strongly co-determine carbon gain and as a result competitive advantage in a light-limited environment. We

  3. SCHEME ANALYSIS TREE DIMENSIONS AND TOLERANCES PROCESSING

    OpenAIRE

    Constanta RADULESCU; Liviu Marius CÎRŢÎNĂ; Constantin MILITARU

    2011-01-01

    This paper presents one of the steps that help us to determine the optimal tolerances depending on thetechnological capability of processing equipment. To determine the tolerances in this way is necessary to takethe study and to represent schematically the operations are used in technological process of making a piece.Also in this phase will make the tree diagram of the dimensions and machining tolerances, dimensions andtolerances shown that the design execution. Determination processes, and ...

  4. A bijection between phylogenetic trees and plane oriented recursive trees

    OpenAIRE

    Prodinger, Helmut

    2017-01-01

    Phylogenetic trees are binary nonplanar trees with labelled leaves, and plane oriented recursive trees are planar trees with an increasing labelling. Both families are enumerated by double factorials. A bijection is constructed, using the respective representations a 2-partitions and trapezoidal words.

  5. Nutrient content of biomass components of Hamlin sweet orange trees

    Directory of Open Access Journals (Sweden)

    Mattos Jr. Dirceu

    2003-01-01

    Full Text Available The knowledge of the nutrient distribution in trees is important to establish sound nutrient management programs for citrus production. Six-year-old Hamlin orange trees [Citrus sinensis (L. Osb.] on Swingle citrumelo [Poncirus trifoliata (L. Raf. x Citrus paradisi Macfad.] rootstock, grown on a sandy Entisol in Florida were harvested to investigate the macro and micronutrient distributions of biomass components. The biomass of aboveground components of the tree represented the largest proportion of the total. The distribution of the total tree dry weight was: fruit = 30.3%, leaf = 9.7%, twig = 26.1%, trunk = 6.3%, and root = 27.8%. Nutrient concentrations of recent mature leaves were in the adequate to optimal range as suggested by interpretation of leaf analysis in Florida. Concentrations of Ca in older leaves and woody tissues were much greater than those in the other parts of the tree. Concentrations of micronutrients were markedly greater in fibrous root as compared to woody roots. Calcium made up the greatest amount of nutrient in the citrus tree (273.8 g per tree, followed by N and K (234.7 and 181.5 g per tree, respectively. Other macronutrients comprised about 11% of the total nutrient content of trees. The contents of various nutrients in fruits were: N = 1.20, K = 1.54, P = 0.18, Ca = 0.57, Mg = 0.12, S = 0.09, B = 1.63 x 10-3, Cu = 0.39 x 10-3, Fe = 2.1 x 10-3, Mn = 0.38 10-3, and Zn = 0.40 10-3 (kg ton-1. Total contents of N, K, and P in the orchard corresponded to 66.5, 52.0, and 8.3 kg ha-1, respectively, which were equivalent to the amounts applied annually by fertilization.

  6. Variable Rate, Adaptive Transform Tree Coding Of Images

    Science.gov (United States)

    Pearlman, William A.

    1988-10-01

    A tree code, asymptotically optimal for stationary Gaussian sources and squared error distortion [2], is used to encode transforms of image sub-blocks. The variance spectrum of each sub-block is estimated and specified uniquely by a set of one-dimensional auto-regressive parameters. The expected distortion is set to a constant for each block and the rate is allowed to vary to meet the given level of distortion. Since the spectrum and rate are different for every block, the code tree differs for every block. Coding simulations for target block distortion of 15 and average block rate of 0.99 bits per pel (bpp) show that very good results can be obtained at high search intensities at the expense of high computational complexity. The results at the higher search intensities outperform a parallel simulation with quantization replacing tree coding. Comparative coding simulations also show that the reproduced image with variable block rate and average rate of 0.99 bpp has 2.5 dB less distortion than a similarly reproduced image with a constant block rate equal to 1.0 bpp.

  7. Malignancy Risk Assessment in Patients with Thyroid Nodules Using Classification and Regression Trees

    Directory of Open Access Journals (Sweden)

    Shokouh Taghipour Zahir

    2013-01-01

    Full Text Available Purpose. We sought to investigate the utility of classification and regression trees (CART classifier to differentiate benign from malignant nodules in patients referred for thyroid surgery. Methods. Clinical and demographic data of 271 patients referred to the Sadoughi Hospital during 2006–2011 were collected. In a two-step approach, a CART classifier was employed to differentiate patients with a high versus low risk of thyroid malignancy. The first step served as the screening procedure and was tailored to produce as few false negatives as possible. The second step identified those with the lowest risk of malignancy, chosen from a high risk population. Sensitivity, specificity, positive and negative predictive values (PPV and NPV of the optimal tree were calculated. Results. In the first step, age, sex, and nodule size contributed to the optimal tree. Ultrasonographic features were employed in the second step with hypoechogenicity and/or microcalcifications yielding the highest discriminatory ability. The combined tree produced a sensitivity and specificity of 80.0% (95% CI: 29.9–98.9 and 94.1% (95% CI: 78.9–99.0, respectively. NPV and PPV were 66.7% (41.1–85.6 and 97.0% (82.5–99.8, respectively. Conclusion. CART classifier reliably identifies patients with a low risk of malignancy who can avoid unnecessary surgery.

  8. Rate of tree carbon accumulation increases continuously with tree size

    Science.gov (United States)

    Stephenson, N.L.; Das, A.J.; Condit, R.; Russo, S.E.; Baker, P.J.; Beckman, N.G.; Coomes, D.A.; Lines, E.R.; Morris, W.K.; Rüger, N.; Álvarez, E.; Blundo, C.; Bunyavejchewin, S.; Chuyong, G.; Davies, S.J.; Duque, Á.; Ewango, C.N.; Flores, O.; Franklin, J.F.; Grau, H.R.; Hao, Z.; Harmon, M.E.; Hubbell, S.P.; Kenfack, D.; Lin, Y.; Makana, J.-R.; Malizia, A.; Malizia, L.R.; Pabst, R.J.; Pongpattananurak, N.; Su, S.-H.; Sun, I-F.; Tan, S.; Thomas, D.; van Mantgem, P.J.; Wang, X.; Wiser, S.K.; Zavala, M.A.

    2014-01-01

    Forests are major components of the global carbon cycle, providing substantial feedback to atmospheric greenhouse gas concentrations. Our ability to understand and predict changes in the forest carbon cycle—particularly net primary productivity and carbon storage - increasingly relies on models that represent biological processes across several scales of biological organization, from tree leaves to forest stands. Yet, despite advances in our understanding of productivity at the scales of leaves and stands, no consensus exists about the nature of productivity at the scale of the individual tree, in part because we lack a broad empirical assessment of whether rates of absolute tree mass growth (and thus carbon accumulation) decrease, remain constant, or increase as trees increase in size and age. Here we present a global analysis of 403 tropical and temperate tree species, showing that for most species mass growth rate increases continuously with tree size. Thus, large, old trees do not act simply as senescent carbon reservoirs but actively fix large amounts of carbon compared to smaller trees; at the extreme, a single big tree can add the same amount of carbon to the forest within a year as is contained in an entire mid-sized tree. The apparent paradoxes of individual tree growth increasing with tree size despite declining leaf-level and stand-level productivity can be explained, respectively, by increases in a tree’s total leaf area that outpace declines in productivity per unit of leaf area and, among other factors, age-related reductions in population density. Our results resolve conflicting assumptions about the nature of tree growth, inform efforts to understand and model forest carbon dynamics, and have additional implications for theories of resource allocation and plant senescence.

  9. Tools of the Future: How Decision Tree Analysis Will Impact Mission Planning

    Science.gov (United States)

    Otterstatter, Matthew R.

    2005-01-01

    The universe is infinitely complex; however, the human mind has a finite capacity. The multitude of possible variables, metrics, and procedures in mission planning are far too many to address exhaustively. This is unfortunate because, in general, considering more possibilities leads to more accurate and more powerful results. To compensate, we can get more insightful results by employing our greatest tool, the computer. The power of the computer will be utilized through a technology that considers every possibility, decision tree analysis. Although decision trees have been used in many other fields, this is innovative for space mission planning. Because this is a new strategy, no existing software is able to completely accommodate all of the requirements. This was determined through extensive research and testing of current technologies. It was necessary to create original software, for which a short-term model was finished this summer. The model was built into Microsoft Excel to take advantage of the familiar graphical interface for user input, computation, and viewing output. Macros were written to automate the process of tree construction, optimization, and presentation. The results are useful and promising. If this tool is successfully implemented in mission planning, our reliance on old-fashioned heuristics, an error-prone shortcut for handling complexity, will be reduced. The computer algorithms involved in decision trees will revolutionize mission planning. The planning will be faster and smarter, leading to optimized missions with the potential for more valuable data.

  10. Constructal tree-shaped flow structures

    International Nuclear Information System (INIS)

    Bejan, A.; Lorente, S.

    2007-01-01

    This paper is an introduction to a new trend in the conceptual design of energy systems: the generation of flow configuration based on the 'constructal' principle that the global performance is maximized by balancing and arranging the various flow resistances (the irreversibilities) in a flow system that is free to morph. The paper focuses on distribution and collection, which are flows that connect one point (source, or sink) with an infinity of points (volume, area, curve). The flow configurations that emerge from this principle are tree-shaped, and the systems that employ them are 'vascularized'. The paper traces the most recent progress made on constructal vascularization. The direction is from large-scale applications toward microscales. The large-scale tree-shaped designs of electric power distribution systems and networks for natural gas and water are now invading small-scale designs such as fuel cells, heat exchangers and cooled packages of electronics. These flow configurations have several properties in common: freedom to morph, multiple scales, hierarchy, nonuniform (optimal) distribution of scales through the available volume, compactness and finite complexity

  11. Automated method for identification and artery-venous classification of vessel trees in retinal vessel networks.

    Science.gov (United States)

    Joshi, Vinayak S; Reinhardt, Joseph M; Garvin, Mona K; Abramoff, Michael D

    2014-01-01

    The separation of the retinal vessel network into distinct arterial and venous vessel trees is of high interest. We propose an automated method for identification and separation of retinal vessel trees in a retinal color image by converting a vessel segmentation image into a vessel segment map and identifying the individual vessel trees by graph search. Orientation, width, and intensity of each vessel segment are utilized to find the optimal graph of vessel segments. The separated vessel trees are labeled as primary vessel or branches. We utilize the separated vessel trees for arterial-venous (AV) classification, based on the color properties of the vessels in each tree graph. We applied our approach to a dataset of 50 fundus images from 50 subjects. The proposed method resulted in an accuracy of 91.44% correctly classified vessel pixels as either artery or vein. The accuracy of correctly classified major vessel segments was 96.42%.

  12. Fixed Parameter Evolutionary Algorithms and Maximum Leaf Spanning Trees: A Matter of Mutations

    DEFF Research Database (Denmark)

    Kratsch, Stefan; Lehre, Per Kristian; Neumann, Frank

    2011-01-01

    Evolutionary algorithms have been shown to be very successful for a wide range of NP-hard combinatorial optimization problems. We investigate the NP-hard problem of computing a spanning tree that has a maximal number of leaves by evolutionary algorithms in the context of fixed parameter tractabil...... two common mutation operators, we show that an operator related to spanning tree problems leads to an FPT running time in contrast to a general mutation operator that does not have this property....

  13. Effects of stand and inter-specific stocking on maximizing standing tree carbon stocks in the eastern United States

    Science.gov (United States)

    Christopher W. Woodall; Anthony W. D' Amato; John B. Bradford; Andrew O. Finley

    2011-01-01

    There is expanding interest in management strategies that maximize forest carbon (C) storage to mitigate increased atmospheric carbon dioxide. The tremendous tree species diversity and range of stand stocking found across the eastern United States presents a challenge for determining optimal combinations for the maximization of standing tree C storage. Using a...

  14. Implementation of visitor pattern in processing a syntax tree in Qlab project

    Directory of Open Access Journals (Sweden)

    Đenić Aleksandar

    2012-01-01

    Full Text Available Qlab is an open-source project that supports various mathematical calculations, specialized for academic use. It has been developed at the Faculty of Mathematics, University of Belgrade, and is supported by Microsoft Serbia. In this paper we present some of Qlab’s successfully implemented core solutions. More precisely, in our approach we use a specialized Visitor pattern to optimize the management of syntax tree commands that our parser sends to our engine. This allows the processing of a larger scale of tree implementation using the Visitor interface.

  15. Peak tree: a new tool for multiscale hierarchical representation and peak detection of mass spectrometry data.

    Science.gov (United States)

    Zhang, Peng; Li, Houqiang; Wang, Honghui; Wong, Stephen T C; Zhou, Xiaobo

    2011-01-01

    Peak detection is one of the most important steps in mass spectrometry (MS) analysis. However, the detection result is greatly affected by severe spectrum variations. Unfortunately, most current peak detection methods are neither flexible enough to revise false detection results nor robust enough to resist spectrum variations. To improve flexibility, we introduce peak tree to represent the peak information in MS spectra. Each tree node is a peak judgment on a range of scales, and each tree decomposition, as a set of nodes, is a candidate peak detection result. To improve robustness, we combine peak detection and common peak alignment into a closed-loop framework, which finds the optimal decomposition via both peak intensity and common peak information. The common peak information is derived and loopily refined from the density clustering of the latest peak detection result. Finally, we present an improved ant colony optimization biomarker selection method to build a whole MS analysis system. Experiment shows that our peak detection method can better resist spectrum variations and provide higher sensitivity and lower false detection rates than conventional methods. The benefits from our peak-tree-based system for MS disease analysis are also proved on real SELDI data.

  16. IcyTree: rapid browser-based visualization for phylogenetic trees and networks.

    Science.gov (United States)

    Vaughan, Timothy G

    2017-08-01

    IcyTree is an easy-to-use application which can be used to visualize a wide variety of phylogenetic trees and networks. While numerous phylogenetic tree viewers exist already, IcyTree distinguishes itself by being a purely online tool, having a responsive user interface, supporting phylogenetic networks (ancestral recombination graphs in particular), and efficiently drawing trees that include information such as ancestral locations or trait values. IcyTree also provides intuitive panning and zooming utilities that make exploring large phylogenetic trees of many thousands of taxa feasible. IcyTree is a web application and can be accessed directly at http://tgvaughan.github.com/icytree . Currently supported web browsers include Mozilla Firefox and Google Chrome. IcyTree is written entirely in client-side JavaScript (no plugin required) and, once loaded, does not require network access to run. IcyTree is free software, and the source code is made available at http://github.com/tgvaughan/icytree under version 3 of the GNU General Public License. tgvaughan@gmail.com. © The Author(s) 2017. Published by Oxford University Press.

  17. constNJ: an algorithm to reconstruct sets of phylogenetic trees satisfying pairwise topological constraints.

    Science.gov (United States)

    Matsen, Frederick A

    2010-06-01

    This article introduces constNJ (constrained neighbor-joining), an algorithm for phylogenetic reconstruction of sets of trees with constrained pairwise rooted subtree-prune-regraft (rSPR) distance. We are motivated by the problem of constructing sets of trees that must fit into a recombination, hybridization, or similar network. Rather than first finding a set of trees that are optimal according to a phylogenetic criterion (e.g., likelihood or parsimony) and then attempting to fit them into a network, constNJ estimates the trees while enforcing specified rSPR distance constraints. The primary input for constNJ is a collection of distance matrices derived from sequence blocks which are assumed to have evolved in a tree-like manner, such as blocks of an alignment which do not contain any recombination breakpoints. The other input is a set of rSPR constraint inequalities for any set of pairs of trees. constNJ is consistent and a strict generalization of the neighbor-joining algorithm; it uses the new notion of maximum agreement partitions (MAPs) to assure that the resulting trees satisfy the given rSPR distance constraints.

  18. TreeScaper: Visualizing and Extracting Phylogenetic Signal from Sets of Trees.

    Science.gov (United States)

    Huang, Wen; Zhou, Guifang; Marchand, Melissa; Ash, Jeremy R; Morris, David; Van Dooren, Paul; Brown, Jeremy M; Gallivan, Kyle A; Wilgenbusch, Jim C

    2016-12-01

    Modern phylogenomic analyses often result in large collections of phylogenetic trees representing uncertainty in individual gene trees, variation across genes, or both. Extracting phylogenetic signal from these tree sets can be challenging, as they are difficult to visualize, explore, and quantify. To overcome some of these challenges, we have developed TreeScaper, an application for tree set visualization as well as the identification of distinct phylogenetic signals. GUI and command-line versions of TreeScaper and a manual with tutorials can be downloaded from https://github.com/whuang08/TreeScaper/releases TreeScaper is distributed under the GNU General Public License. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Classification tree for the assessment of sedentary lifestyle among hypertensive.

    Science.gov (United States)

    Castelo Guedes Martins, Larissa; Venícios de Oliveira Lopes, Marcos; Gomes Guedes, Nirla; Paixão de Menezes, Angélica; de Oliveira Farias, Odaleia; Alves Dos Santos, Naftale

    2016-04-01

    To develop a classification tree of clinical indicators for the correct prediction of the nursing diagnosis "Sedentary lifestyle" (SL) in people with high blood pressure (HTN). A cross-sectional study conducted in an outpatient care center specializing in high blood pressure and Mellitus diabetes located in northeastern Brazil. The sample consisted of 285 people between 19 and 59 years old diagnosed with high blood pressure and was applied an interview and physical examination, obtaining socio-demographic information, related factors and signs and symptoms that made the defining characteristics for the diagnosis under study. The tree was generated using the CHAID algorithm (Chi-square Automatic Interaction Detection). The construction of the decision tree allowed establishing the interactions between clinical indicators that facilitate a probabilistic analysis of multiple situations allowing quantify the probability of an individual presenting a sedentary lifestyle. The tree included the clinical indicator Choose daily routine without exercise as the first node. People with this indicator showed a probability of 0.88 of presenting the SL. The second node was composed of the indicator Does not perform physical activity during leisure, with 0.99 probability of presenting the SL with these two indicators. The predictive capacity of the tree was established at 69.5%. Decision trees help nurses who care HTN people in decision-making in assessing the characteristics that increase the probability of SL nursing diagnosis, optimizing the time for diagnostic inference.

  20. Classification tree for the assessment of sedentary lifestyle among hypertensive

    Directory of Open Access Journals (Sweden)

    Larissa Castelo Guedes Martins

    Full Text Available Objective.To develop a classification tree of clinical indicators for the correct prediction of the nursing diagnosis "Sedentary lifestyle" (SL in people with high blood pressure (HTN. Methods. A cross-sectional study conducted in an outpatient care center specializing in high blood pressure and Mellitus diabetes located in northeastern Brazil. The sample consisted of 285 people between 19 and 59 years old diagnosed with high blood pressure and was applied an interview and physical examination, obtaining socio-demographic information, related factors and signs and symptoms that made the defining characteristics for the diagnosis under study. The tree was generated using the CHAID algorithm (Chi-square Automatic Interaction Detection. Results. The construction of the decision tree allowed establishing the interactions between clinical indicators that facilitate a probabilistic analysis of multiple situations allowing quantify the probability of an individual presenting a sedentary lifestyle. The tree included the clinical indicator Choose daily routine without exercise as the first node. People with this indicator showed a probability of 0.88 of presenting the SL. The second node was composed of the indicator Does not perform physical activity during leisure, with 0.99 probability of presenting the SL with these two indicators. The predictive capacity of the tree was established at 69.5%. Conclusion. Decision trees help nurses who care HTN people in decision-making in assessing the characteristics that increase the probability of SL nursing diagnosis, optimizing the time for diagnostic inference.

  1. Flowering Trees

    Indian Academy of Sciences (India)

    IAS Admin

    Flowering Trees. Ailanthus excelsa Roxb. (INDIAN TREE OF. HEAVEN) of Simaroubaceae is a lofty tree with large pinnately compound alternate leaves, which are ... inflorescences, unisexual and greenish-yellow. Fruits are winged, wings many-nerved. Wood is used in making match sticks. 1. Male flower; 2. Female flower.

  2. Why do trees die? Characterizing the drivers of background tree mortality

    Science.gov (United States)

    Das, Adrian J.; Stephenson, Nathan L.; Davis, Kristin P.

    2016-01-01

    The drivers of background tree mortality rates—the typical low rates of tree mortality found in forests in the absence of acute stresses like drought—are central to our understanding of forest dynamics, the effects of ongoing environmental changes on forests, and the causes and consequences of geographical gradients in the nature and strength of biotic interactions. To shed light on factors contributing to background tree mortality, we analyzed detailed pathological data from 200,668 tree-years of observation and 3,729 individual tree deaths, recorded over a 13-yr period in a network of old-growth forest plots in California's Sierra Nevada mountain range. We found that: (1) Biotic mortality factors (mostly insects and pathogens) dominated (58%), particularly in larger trees (86%). Bark beetles were the most prevalent (40%), even though there were no outbreaks during the study period; in contrast, the contribution of defoliators was negligible. (2) Relative occurrences of broad classes of mortality factors (biotic, 58%; suppression, 51%; and mechanical, 25%) are similar among tree taxa, but may vary with tree size and growth rate. (3) We found little evidence of distinct groups of mortality factors that predictably occur together on trees. Our results have at least three sets of implications. First, rather than being driven by abiotic factors such as lightning or windstorms, the “ambient” or “random” background mortality that many forest models presume to be independent of tree growth rate is instead dominated by biotic agents of tree mortality, with potentially critical implications for forecasting future mortality. Mechanistic models of background mortality, even for healthy, rapidly growing trees, must therefore include the insects and pathogens that kill trees. Second, the biotic agents of tree mortality, instead of occurring in a few predictable combinations, may generally act opportunistically and with a relatively large degree of independence from

  3. Flowering Trees

    Indian Academy of Sciences (India)

    Flowering Trees. Gyrocarpus americanus Jacq. (Helicopter Tree) of Hernandiaceae is a moderate size deciduous tree that grows to about 12 m in height with a smooth, shining, greenish-white bark. The leaves are ovate, rarely irregularly ... flowers which are unpleasant smelling. Fruit is a woody nut with two long thin wings.

  4. Alternative measures of risk of extreme events in decision trees

    International Nuclear Information System (INIS)

    Frohwein, H.I.; Lambert, J.H.; Haimes, Y.Y.

    1999-01-01

    A need for a methodology to control the extreme events, defined as low-probability, high-consequence incidents, in sequential decisions is identified. A variety of alternative and complementary measures of the risk of extreme events are examined for their usability as objective functions in sequential decisions, represented as single- or multiple-objective decision trees. Earlier work had addressed difficulties, related to non-separability, with the minimization of some measures of the risk of extreme events in sequential decisions. In an extension of these results, it is shown how some non-separable measures of the risk of extreme events can be interpreted in terms of separable constituents of risk, thereby enabling a wider class of measures of the risk of extreme events to be handled in a straightforward manner in a decision tree. Also for extreme events, results are given to enable minimax- and Hurwicz-criterion analyses in decision trees. An example demonstrates the incorporation of different measures of the risk of extreme events in a multi-objective decision tree. Conceptual formulations for optimizing non-separable measures of the risk of extreme events are identified as an important area for future investigation

  5. Cache-Oblivious Search Trees via Binary Trees of Small Height

    DEFF Research Database (Denmark)

    Brodal, G.S.; Fagerberg, R.; Jacob, R.

    2002-01-01

    We propose a version of cache oblivious search trees which is simpler than the previous proposal of Bender, Demaine and Farach-Colton and has the same complexity bounds. In particular, our data structure avoids the use of weight balanced B-trees, and can be implemented as just a single array......, and range queries in worst case O(logB n + k/B) memory transfers, where k is the size of the output.The basic idea of our data structure is to maintain a dynamic binary tree of height log n+O(1) using existing methods, embed this tree in a static binary tree, which in turn is embedded in an array in a cache...... oblivious fashion, using the van Emde Boas layout of Prokop.We also investigate the practicality of cache obliviousness in the area of search trees, by providing an empirical comparison of different methods for laying out a search tree in memory....

  6. Flowering Trees

    Indian Academy of Sciences (India)

    Flowering Trees. Boswellia serrata Roxb. ex Colebr. (Indian Frankincense tree) of Burseraceae is a large-sized deciduous tree that is native to India. Bark is thin, greenish-ash-coloured that exfoliates into smooth papery flakes. Stem exudes pinkish resin ... Fruit is a three-valved capsule. A green gum-resin exudes from the ...

  7. Manajemen Bandwidth Simple Queue dan Queue Tree pada PT. Endorsindo Makmur Selaras

    OpenAIRE

    Budiman, Arif

    2015-01-01

      The purpose of this study is to analyze and optimize the bandwidth management at PT. Endorsindo Makmur Selaras, with the expectation that the distribution of bandwidth can be evenly distributed to each employee so that the employee can improve performance and quality of the company. Research methods used include analysis methods (survey and interview system that runs directly on the user) and to optimize bandwidth management method to configure the proxy using the Queue Tree. The re...

  8. Quantifying the Severity of Phytophthora Root Rot Disease in Avocado Trees Using Image Analysis

    Directory of Open Access Journals (Sweden)

    Arachchige Surantha Ashan Salgadoe

    2018-02-01

    Full Text Available Phytophthora root rot (PRR infects the roots of avocado trees, resulting in reduced uptake of water and nutrients, canopy decline, defoliation, and, eventually, tree mortality. Typically, the severity of PRR disease (proportion of canopy decline is assessed by visually comparing the canopy health of infected trees to a standardised set of photographs and a corresponding disease rating. Although this visual method provides some indication of the spatial variability of PRR disease across orchards, the accuracy and repeatability of the ranking is influenced by the experience of the assessor, the visibility of tree canopies, and the timing of the assessment. This study evaluates two image analysis methods that may serve as surrogates to the visual assessment of canopy decline in large avocado orchards. A smartphone camera was used to collect red, green, and blue (RGB colour images of individual trees with varying degrees of canopy decline, with the digital photographs then analysed to derive a canopy porosity percentage using a combination of ‘Canny edge detection’ and ‘Otsu’s’ methods. Coinciding with the on-ground measure of canopy porosity, the canopy reflectance characteristics of the sampled trees measured by high resolution Worldview-3 (WV-3 satellite imagery was also correlated against the observed disease severity rankings. Canopy porosity values (ranging from 20–70% derived from RGB images were found to be significantly different for most disease rankings (p < 0.05 and correlated well (R2 = 0.89 with the differentiation of three disease severity levels identified to be optimal. From the WV-3 imagery, a multivariate stepwise regression of 18 structural and pigment-based vegetation indices found the simplified ratio vegetation index (SRVI to be strongly correlated (R2 = 0.96 with the disease rankings of PRR disease severity, with the differentiation of four levels of severity found to be optimal.

  9. Offshore Wind Farm Cable Connection Configuration Optimization using Dynamic Minimum Spanning Tree Algorithm

    DEFF Research Database (Denmark)

    Hou, Peng; Hu, Weihao; Chen, Zhe

    2015-01-01

    Anew approach, Dynamic Minimal Spanning Tree (DMST) algorithm, whichisbased on the MST algorithm isproposed in this paper to optimizethe cable connectionlayout for large scale offshore wind farm collection system. The current carrying capacity of the cable is considered as the main constraint....... It is amore economicalway for cable connection configurationdesignof offshore wind farm collection system....

  10. A Hybrid Vector Quantization Combining a Tree Structure and a Voronoi Diagram

    Directory of Open Access Journals (Sweden)

    Yeou-Jiunn Chen

    2014-01-01

    Full Text Available Multimedia data is a popular communication medium, but requires substantial storage space and network bandwidth. Vector quantization (VQ is suitable for multimedia data applications because of its simple architecture, fast decoding ability, and high compression rate. Full-search VQ can typically be used to determine optimal codewords, but requires considerable computational time and resources. In this study, a hybrid VQ combining a tree structure and a Voronoi diagram is proposed to improve VQ efficiency. To efficiently reduce the search space, a tree structure integrated with principal component analysis is proposed, to rapidly determine an initial codeword in low-dimensional space. To increase accuracy, a Voronoi diagram is applied to precisely enlarge the search space by modeling relations between each codeword. This enables an optimal codeword to be efficiently identified by rippling an optimal neighbor from parts of neighboring Voronoi regions. The experimental results demonstrated that the proposed approach improved VQ performance, outperforming other approaches. The proposed approach also satisfies the requirements of handheld device application, namely, the use of limited memory and network bandwidth, when a suitable number of dimensions in principal component analysis is selected.

  11. Systolic trees and systolic language recognition by tree automata

    Energy Technology Data Exchange (ETDEWEB)

    Steinby, M

    1983-01-01

    K. Culik II, J. Gruska, A. Salomaa and D. Wood have studied the language recognition capabilities of certain types of systolically operating networks of processors (see research reports Cs-81-32, Cs-81-36 and Cs-82-01, Univ. of Waterloo, Ontario, Canada). In this paper, their model for systolic VLSI trees is formalised in terms of standard tree automaton theory, and the way in which some known facts about recognisable forests and tree transductions can be applied in VLSI tree theory is demonstrated. 13 references.

  12. DupTree: a program for large-scale phylogenetic analyses using gene tree parsimony.

    Science.gov (United States)

    Wehe, André; Bansal, Mukul S; Burleigh, J Gordon; Eulenstein, Oliver

    2008-07-01

    DupTree is a new software program for inferring rooted species trees from collections of gene trees using the gene tree parsimony approach. The program implements a novel algorithm that significantly improves upon the run time of standard search heuristics for gene tree parsimony, and enables the first truly genome-scale phylogenetic analyses. In addition, DupTree allows users to examine alternate rootings and to weight the reconciliation costs for gene trees. DupTree is an open source project written in C++. DupTree for Mac OS X, Windows, and Linux along with a sample dataset and an on-line manual are available at http://genome.cs.iastate.edu/CBL/DupTree

  13. Managing Commercial Tree Species for Timber Production and Carbon Sequestration: Management Guidelines and Financial Returns

    Energy Technology Data Exchange (ETDEWEB)

    Gary D. Kronrad

    2006-09-19

    A carbon credit market is developing in the United States. Information is needed by buyers and sellers of carbon credits so that the market functions equitably and efficiently. Analyses have been conducted to determine the optimal forest management regime to employ for each of the major commercial tree species so that profitability of timber production only or the combination of timber production and carbon sequestration is maximized. Because the potential of a forest ecosystem to sequester carbon depends on the tree species, site quality and management regimes utilized, analyses have determined how to optimize carbon sequestration by determining how to optimally manage each species, given a range of site qualities, discount rates, prices of carbon credits and other economic variables. The effects of a carbon credit market on the method and profitability of forest management, the cost of sequestering carbon, the amount of carbon that can be sequestered, and the amount of timber products produced has been determined.

  14. Flowering Trees

    Indian Academy of Sciences (India)

    More Details Fulltext PDF. Volume 8 Issue 8 August 2003 pp 112-112 Flowering Trees. Zizyphus jujuba Lam. of Rhamnaceae · More Details Fulltext PDF. Volume 8 Issue 9 September 2003 pp 97-97 Flowering Trees. Moringa oleifera · More Details Fulltext PDF. Volume 8 Issue 10 October 2003 pp 100-100 Flowering Trees.

  15. Inferring duplications, losses, transfers and incomplete lineage sorting with nonbinary species trees.

    Science.gov (United States)

    Stolzer, Maureen; Lai, Han; Xu, Minli; Sathaye, Deepa; Vernot, Benjamin; Durand, Dannie

    2012-09-15

    Gene duplication (D), transfer (T), loss (L) and incomplete lineage sorting (I) are crucial to the evolution of gene families and the emergence of novel functions. The history of these events can be inferred via comparison of gene and species trees, a process called reconciliation, yet current reconciliation algorithms model only a subset of these evolutionary processes. We present an algorithm to reconcile a binary gene tree with a nonbinary species tree under a DTLI parsimony criterion. This is the first reconciliation algorithm to capture all four evolutionary processes driving tree incongruence and the first to reconcile non-binary species trees with a transfer model. Our algorithm infers all optimal solutions and reports complete, temporally feasible event histories, giving the gene and species lineages in which each event occurred. It is fixed-parameter tractable, with polytime complexity when the maximum species outdegree is fixed. Application of our algorithms to prokaryotic and eukaryotic data show that use of an incomplete event model has substantial impact on the events inferred and resulting biological conclusions. Our algorithms have been implemented in Notung, a freely available phylogenetic reconciliation software package, available at http://www.cs.cmu.edu/~durand/Notung. mstolzer@andrew.cmu.edu.

  16. Embedding complete ternary tree in hypercubes using AVL trees

    NARCIS (Netherlands)

    S.A. Choudum; I. Raman (Indhumathi)

    2008-01-01

    htmlabstractA complete ternary tree is a tree in which every non-leaf vertex has exactly three children. We prove that a complete ternary tree of height h, TTh, is embeddable in a hypercube of dimension . This result coincides with the result of [2]. However, in this paper, the embedding utilizes

  17. Ghost-tree: creating hybrid-gene phylogenetic trees for diversity analyses.

    Science.gov (United States)

    Fouquier, Jennifer; Rideout, Jai Ram; Bolyen, Evan; Chase, John; Shiffer, Arron; McDonald, Daniel; Knight, Rob; Caporaso, J Gregory; Kelley, Scott T

    2016-02-24

    Fungi play critical roles in many ecosystems, cause serious diseases in plants and animals, and pose significant threats to human health and structural integrity problems in built environments. While most fungal diversity remains unknown, the development of PCR primers for the internal transcribed spacer (ITS) combined with next-generation sequencing has substantially improved our ability to profile fungal microbial diversity. Although the high sequence variability in the ITS region facilitates more accurate species identification, it also makes multiple sequence alignment and phylogenetic analysis unreliable across evolutionarily distant fungi because the sequences are hard to align accurately. To address this issue, we created ghost-tree, a bioinformatics tool that integrates sequence data from two genetic markers into a single phylogenetic tree that can be used for diversity analyses. Our approach starts with a "foundation" phylogeny based on one genetic marker whose sequences can be aligned across organisms spanning divergent taxonomic groups (e.g., fungal families). Then, "extension" phylogenies are built for more closely related organisms (e.g., fungal species or strains) using a second more rapidly evolving genetic marker. These smaller phylogenies are then grafted onto the foundation tree by mapping taxonomic names such that each corresponding foundation-tree tip would branch into its new "extension tree" child. We applied ghost-tree to graft fungal extension phylogenies derived from ITS sequences onto a foundation phylogeny derived from fungal 18S sequences. Our analysis of simulated and real fungal ITS data sets found that phylogenetic distances between fungal communities computed using ghost-tree phylogenies explained significantly more variance than non-phylogenetic distances. The phylogenetic metrics also improved our ability to distinguish small differences (effect sizes) between microbial communities, though results were similar to non

  18. Trees are good, but…

    Science.gov (United States)

    E.G. McPherson; F. Ferrini

    2010-01-01

    We know that “trees are good,” and most people believe this to be true. But if this is so, why are so many trees neglected, and so many tree wells empty? An individual’s attitude toward trees may result from their firsthand encounters with specific trees. Understanding how attitudes about trees are shaped, particularly aversion to trees, is critical to the business of...

  19. A tree-ring perspective on the terrestrial carbon cycle

    International Nuclear Information System (INIS)

    Babst, F.; Alexander, M.R.; Szejner, P.; Trouet, V.; Alexander, M.R.; Moore, D.J.P.; Bouriaud, O.; Klesse, S.; Frank, D.; Roden, J.; Ciais, P.; Poulter, B.

    2014-01-01

    Tree-ring records can provide valuable information to advance our understanding of contemporary terrestrial carbon cycling and to reconstruct key metrics in the decades preceding monitoring data. The growing use of tree rings in carbon-cycle research is being facilitated by increasing recognition of reciprocal benefits among research communities. Yet, basic questions persist regarding what tree rings represent at the ecosystem level, how to optimally integrate them with other data streams, and what related challenges need to be overcome. It is also apparent that considerable unexplored potential exists for tree rings to refine assessments of terrestrial carbon cycling across a range of temporal and spatial domains. Here, we summarize recent advances and highlight promising paths of investigation with respect to (1) growth phenology, (2) forest productivity trends and variability, (3) CO 2 fertilization and water-use efficiency, (4) forest disturbances, and (5) comparisons between observational and computational forest productivity estimates. We encourage the integration of tree-ring data: with eddy-covariance measurements to investigate carbon allocation patterns and water-use efficiency; with remotely sensed observations to distinguish the timing of cambial growth and leaf phenology; and with forest inventories to develop continuous, annually resolved and long-term carbon budgets. In addition, we note the potential of tree-ring records and derivatives thereof to help evaluate the performance of earth system models regarding the simulated magnitude and dynamics of forest carbon uptake, and inform these models about growth responses to (non-)climatic drivers. Such efforts are expected to improve our understanding of forest carbon cycling and place current developments into a long-term perspective. (authors)

  20. Multiple-purpose trees for pastoral farming in New Zealand: with emphasis on tree legumes. [Lucerne Tree: Medick Tree

    Energy Technology Data Exchange (ETDEWEB)

    Davies, D J.G.; Macfarlane, R P

    1979-01-01

    The potential for soil conservation and agroforestry of several native and exotic legumes is discussed. Flowering period, chemical composition of leaves/pods, hardiness to frost and drought, timber value, forage potential for livestock and bees, ornamental value and other products are tabulated with information on up to 38 species. Two low-growing species that have proved useful for slope stabilization as well as forage are tree lucerne (Cytisus palmensis) and tree medick (Medicago arborea), the latter being shrubby and more suitable for cold districts. Gleditsia triacanthos is recommended as a shade and fodder tree for farm pasture.

  1. Ant colony optimization and constraint programming

    CERN Document Server

    Solnon, Christine

    2013-01-01

    Ant colony optimization is a metaheuristic which has been successfully applied to a wide range of combinatorial optimization problems. The author describes this metaheuristic and studies its efficiency for solving some hard combinatorial problems, with a specific focus on constraint programming. The text is organized into three parts. The first part introduces constraint programming, which provides high level features to declaratively model problems by means of constraints. It describes the main existing approaches for solving constraint satisfaction problems, including complete tree search

  2. Study on Drive System of Hybrid Tree Harvester

    Directory of Open Access Journals (Sweden)

    Shen Rong-feng

    2017-01-01

    Full Text Available Hybrid tree harvester with a 60 kW diesel engine combined with a battery pile could be a “green” forest harvesting and transportation system. With the new design, the diesel engine maintains a constant engine speed, keeping fuel consumption low while charging the batteries that drive the forwarder. As an additional energy saving method, the electric motors work as generators to charge the battery pile when the vehicle moves downhill. The vehicle is equipped with six large wheels providing high clearance over uneven terrain while reducing ground pressure. Each wheel is driven via a hub gear by its own alternating current motor, and each of the three wheel pairs can be steered independently. The combination of the diesel engine and six electric motors provides plenty of power for heavy lifting and pulling. The main component parameters of the drive system are calculated and optimized with a set of dynamics and simulated with AVL Cruise software. The results provide practical insights for the fuel tree harvester and are helpful to reduce the structure and size of the tree harvester. Advantage Environment provides information about existing and future products designed to reduce environmental impacts.

  3. Shedding light on tree growth : ring analysis of juvenile tropical trees

    NARCIS (Netherlands)

    Soliz Gamboa, C.C.

    2010-01-01

    In the understory of tropical forests light is believed to be the main limiting growth factor for the newly established trees. Trees growing in shade of the understory may experience periods of slow radial growth. It is expected that gaps created by tree or branch fall will provoke tree growth

  4. A data mining approach to optimize pellets manufacturing process based on a decision tree algorithm.

    Science.gov (United States)

    Ronowicz, Joanna; Thommes, Markus; Kleinebudde, Peter; Krysiński, Jerzy

    2015-06-20

    The present study is focused on the thorough analysis of cause-effect relationships between pellet formulation characteristics (pellet composition as well as process parameters) and the selected quality attribute of the final product. The shape using the aspect ratio value expressed the quality of pellets. A data matrix for chemometric analysis consisted of 224 pellet formulations performed by means of eight different active pharmaceutical ingredients and several various excipients, using different extrusion/spheronization process conditions. The data set contained 14 input variables (both formulation and process variables) and one output variable (pellet aspect ratio). A tree regression algorithm consistent with the Quality by Design concept was applied to obtain deeper understanding and knowledge of formulation and process parameters affecting the final pellet sphericity. The clear interpretable set of decision rules were generated. The spehronization speed, spheronization time, number of holes and water content of extrudate have been recognized as the key factors influencing pellet aspect ratio. The most spherical pellets were achieved by using a large number of holes during extrusion, a high spheronizer speed and longer time of spheronization. The described data mining approach enhances knowledge about pelletization process and simultaneously facilitates searching for the optimal process conditions which are necessary to achieve ideal spherical pellets, resulting in good flow characteristics. This data mining approach can be taken into consideration by industrial formulation scientists to support rational decision making in the field of pellets technology. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Inferring species trees from incongruent multi-copy gene trees using the Robinson-Foulds distance

    Science.gov (United States)

    2013-01-01

    Background Constructing species trees from multi-copy gene trees remains a challenging problem in phylogenetics. One difficulty is that the underlying genes can be incongruent due to evolutionary processes such as gene duplication and loss, deep coalescence, or lateral gene transfer. Gene tree estimation errors may further exacerbate the difficulties of species tree estimation. Results We present a new approach for inferring species trees from incongruent multi-copy gene trees that is based on a generalization of the Robinson-Foulds (RF) distance measure to multi-labeled trees (mul-trees). We prove that it is NP-hard to compute the RF distance between two mul-trees; however, it is easy to calculate this distance between a mul-tree and a singly-labeled species tree. Motivated by this, we formulate the RF problem for mul-trees (MulRF) as follows: Given a collection of multi-copy gene trees, find a singly-labeled species tree that minimizes the total RF distance from the input mul-trees. We develop and implement a fast SPR-based heuristic algorithm for the NP-hard MulRF problem. We compare the performance of the MulRF method (available at http://genome.cs.iastate.edu/CBL/MulRF/) with several gene tree parsimony approaches using gene tree simulations that incorporate gene tree error, gene duplications and losses, and/or lateral transfer. The MulRF method produces more accurate species trees than gene tree parsimony approaches. We also demonstrate that the MulRF method infers in minutes a credible plant species tree from a collection of nearly 2,000 gene trees. Conclusions Our new phylogenetic inference method, based on a generalized RF distance, makes it possible to quickly estimate species trees from large genomic data sets. Since the MulRF method, unlike gene tree parsimony, is based on a generic tree distance measure, it is appealing for analyses of genomic data sets, in which many processes such as deep coalescence, recombination, gene duplication and losses as

  6. On the distribution of interspecies correlation for Markov models of character evolution on Yule trees.

    Science.gov (United States)

    Mulder, Willem H; Crawford, Forrest W

    2015-01-07

    Efforts to reconstruct phylogenetic trees and understand evolutionary processes depend fundamentally on stochastic models of speciation and mutation. The simplest continuous-time model for speciation in phylogenetic trees is the Yule process, in which new species are "born" from existing lineages at a constant rate. Recent work has illuminated some of the structural properties of Yule trees, but it remains mostly unknown how these properties affect sequence and trait patterns observed at the tips of the phylogenetic tree. Understanding the interplay between speciation and mutation under simple models of evolution is essential for deriving valid phylogenetic inference methods and gives insight into the optimal design of phylogenetic studies. In this work, we derive the probability distribution of interspecies covariance under Brownian motion and Ornstein-Uhlenbeck models of phenotypic change on a Yule tree. We compute the probability distribution of the number of mutations shared between two randomly chosen taxa in a Yule tree under discrete Markov mutation models. Our results suggest summary measures of phylogenetic information content, illuminate the correlation between site patterns in sequences or traits of related organisms, and provide heuristics for experimental design and reconstruction of phylogenetic trees. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Microwave-Assisted Simultaneous Extraction of Luteolin and Apigenin from Tree Peony Pod and Evaluation of Its Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Hongzheng Wang

    2014-01-01

    Full Text Available An efficient microwave-assisted extraction (MAE technique was employed in simultaneous extraction of luteolin and apigenin from tree peony pod. The MAE procedure was optimized using response surface methodology (RSM and compared with other conventional extraction techniques of macerate extraction (ME and heat reflux extraction (HRE. The optimal conditions of MAE were as follows: employing 70% ethanol volume fraction as solvent, soaking time of 4 h, liquid-solid ratio of 10 (mL/g, microwave irradiation power of 265 W, microwave irradiation time of 9.6 min, and 3 extraction cycles. Under the optimal conditions, 151 μg/g luteolin and 104 μg/g apigenin were extracted from the tree peony pod. Compared with ME and HRE, MAE gave the highest extraction efficiency. The antioxidant activities of the extracts obtained by MAE, ME, and HRE were evaluated using a 2,2-di(4-tert-octylphenyl-1-picrylhydrazyl (DPPH free radical-scavenging assay, a ferric reducing antioxidant power assay (FRAP, and a reducing power assay. Meanwhile, the structural changes of the unprocessed and processed tree peony pod samples were analyzed by scanning electron microscopy.

  8. Trees

    Science.gov (United States)

    Al-Khaja, Nawal

    2007-01-01

    This is a thematic lesson plan for young learners about palm trees and the importance of taking care of them. The two part lesson teaches listening, reading and speaking skills. The lesson includes parts of a tree; the modal auxiliary, can; dialogues and a role play activity.

  9. Tree species mapping in tropical forests using multi-temporal imaging spectroscopy: Wavelength adaptive spectral mixture analysis

    Science.gov (United States)

    Somers, B.; Asner, G. P.

    2014-09-01

    The use of imaging spectroscopy for florisic mapping of forests is complicated by the spectral similarity among co-existing species. Here we evaluated an alternative spectral unmixing strategy combining a time series of EO-1 Hyperion images and an automated feature selection in Multiple Endmember Spectral Mixture Analysis (MESMA). The temporal analysis provided a way to incorporate species phenology while feature selection indicated the best phenological time and best spectral feature set to optimize the separability between tree species. Instead of using the same set of spectral bands throughout the image which is the standard approach in MESMA, our modified Wavelength Adaptive Spectral Mixture Analysis (WASMA) approach allowed the spectral subsets to vary on a per pixel basis. As such we were able to optimize the spectral separability between the tree species present in each pixel. The potential of the new approach for floristic mapping of tree species in Hawaiian rainforests was quantitatively assessed using both simulated and actual hyperspectral image time-series. With a Cohen's Kappa coefficient of 0.65, WASMA provided a more accurate tree species map compared to conventional MESMA (Kappa = 0.54; p-value < 0.05. The flexible or adaptive use of band sets in WASMA provides an interesting avenue to address spectral similarities in complex vegetation canopies.

  10. Spectra of chemical trees

    International Nuclear Information System (INIS)

    Balasubramanian, K.

    1982-01-01

    A method is developed for obtaining the spectra of trees of NMR and chemical interests. The characteristic polynomials of branched trees can be obtained in terms of the characteristic polynomials of unbranched trees and branches by pruning the tree at the joints. The unbranched trees can also be broken down further until a tree containing just two vertices is obtained. The effectively reduces the order of the secular determinant of the tree used at the beginning to determinants of orders atmost equal to the number of vertices in the branch containing the largest number of vertices. An illustrative example of a NMR graph is given for which the 22 x 22 secular determinant is reduced to determinants of orders atmost 4 x 4 in just the second step of the algorithm. The tree pruning algorithm can be applied even to trees with no symmetry elements and such a factoring can be achieved. Methods developed here can be elegantly used to find if two trees are cospectral and to construct cospectral trees

  11. Tree spacing impacts the individual incidence of Moniliophthora roreri disease in cacao agroforests.

    Science.gov (United States)

    Ngo Bieng, Marie Ange; Alem, Laudine; Curtet, Chloé; Tixier, Philippe

    2017-11-01

    Using conventional pesticides in crop protection has raised serious environmental concerns and there is therefore a need for integrated pest management (IPM) methods. In this paper, we found that the spacing of trees can impact disease, which could result in a reduction in pesticide applications and may act as a potential IPM method. We studied Frosty Pod Rot (FPR) in 20 cacao agroforests in Costa Rica (Upala region). Using a generalized linear mixed model, we analyzed the impact of the neighborhood composition and distance from a studied cacao individual on its individual FPR incidence. We found that the number of cacao tree neighbors in a radius of 3.7 m and the number of fruit trees in a radius of 4.3 m had a significant negative influence on the incidence of FPR on individual cacao trees. Moreover, cacao tree neighbors had the most significant local influence compared to the neighborhood of other taller categories such as fruit or forest trees. The mechanisms involved are related to the barrier effect, due to the effectiveness of the cacao tree's architecture as an efficient barrier against FPR spore dispersal. This paper provides new insights into optimization of the spatial environment around each host as an original IPM method. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Implications of Liebig’s law of the minimum for tree-ring reconstructions of climate

    Science.gov (United States)

    Stine, A. R.; Huybers, P.

    2017-11-01

    A basic principle of ecology, known as Liebig’s Law of the Minimum, is that plant growth reflects the strongest limiting environmental factor. This principle implies that a limiting environmental factor can be inferred from historical growth and, in dendrochronology, such reconstruction is generally achieved by averaging collections of standardized tree-ring records. Averaging is optimal if growth reflects a single limiting factor and noise but not if growth also reflects locally variable stresses that intermittently limit growth. In this study a collection of Arctic tree ring records is shown to follow scaling relationships that are inconsistent with the signal-plus-noise model of tree growth but consistent with Liebig’s Law acting at the local level. Also consistent with law-of-the-minimum behavior is that reconstructions based on the least-stressed trees in a given year better-follow variations in temperature than typical approaches where all tree-ring records are averaged. Improvements in reconstruction skill occur across all frequencies, with the greatest increase at the lowest frequencies. More comprehensive statistical-ecological models of tree growth may offer further improvement in reconstruction skill.

  13. MeshTree: A Delay optimised Overlay Multicast Tree Building Protocol

    OpenAIRE

    Tan, Su-Wei; Waters, A. Gill; Crawford, John

    2005-01-01

    We study decentralised low delay degree-constrained overlay multicast tree construction for single source real-time applications. This optimisation problem is NP-hard even if computed centrally. We identify two problems in traditional distributed solutions, namely the greedy problem and delay-cost trade-off. By offering solutions to these problems, we propose a new self-organising distributed tree building protocol called MeshTree. The main idea is to embed the delivery tree in a degree-bound...

  14. Minimum variance rooting of phylogenetic trees and implications for species tree reconstruction.

    Science.gov (United States)

    Mai, Uyen; Sayyari, Erfan; Mirarab, Siavash

    2017-01-01

    Phylogenetic trees inferred using commonly-used models of sequence evolution are unrooted, but the root position matters both for interpretation and downstream applications. This issue has been long recognized; however, whether the potential for discordance between the species tree and gene trees impacts methods of rooting a phylogenetic tree has not been extensively studied. In this paper, we introduce a new method of rooting a tree based on its branch length distribution; our method, which minimizes the variance of root to tip distances, is inspired by the traditional midpoint rerooting and is justified when deviations from the strict molecular clock are random. Like midpoint rerooting, the method can be implemented in a linear time algorithm. In extensive simulations that consider discordance between gene trees and the species tree, we show that the new method is more accurate than midpoint rerooting, but its relative accuracy compared to using outgroups to root gene trees depends on the size of the dataset and levels of deviations from the strict clock. We show high levels of error for all methods of rooting estimated gene trees due to factors that include effects of gene tree discordance, deviations from the clock, and gene tree estimation error. Our simulations, however, did not reveal significant differences between two equivalent methods for species tree estimation that use rooted and unrooted input, namely, STAR and NJst. Nevertheless, our results point to limitations of existing scalable rooting methods.

  15. On the Complexity of Duplication-Transfer-Loss Reconciliation with Non-Binary Gene Trees.

    Science.gov (United States)

    Kordi, Misagh; Bansal, Mukul S

    2017-01-01

    Duplication-Transfer-Loss (DTL) reconciliation has emerged as a powerful technique for studying gene family evolution in the presence of horizontal gene transfer. DTL reconciliation takes as input a gene family phylogeny and the corresponding species phylogeny, and reconciles the two by postulating speciation, gene duplication, horizontal gene transfer, and gene loss events. Efficient algorithms exist for finding optimal DTL reconciliations when the gene tree is binary. However, gene trees are frequently non-binary. With such non-binary gene trees, the reconciliation problem seeks to find a binary resolution of the gene tree that minimizes the reconciliation cost. Given the prevalence of non-binary gene trees, many efficient algorithms have been developed for this problem in the context of the simpler Duplication-Loss (DL) reconciliation model. Yet, no efficient algorithms exist for DTL reconciliation with non-binary gene trees and the complexity of the problem remains unknown. In this work, we resolve this open question by showing that the problem is, in fact, NP-hard. Our reduction applies to both the dated and undated formulations of DTL reconciliation. By resolving this long-standing open problem, this work will spur the development of both exact and heuristic algorithms for this important problem.

  16. Boosted Multivariate Trees for Longitudinal Data

    Science.gov (United States)

    Pande, Amol; Li, Liang; Rajeswaran, Jeevanantham; Ehrlinger, John; Kogalur, Udaya B.; Blackstone, Eugene H.; Ishwaran, Hemant

    2017-01-01

    Machine learning methods provide a powerful approach for analyzing longitudinal data in which repeated measurements are observed for a subject over time. We boost multivariate trees to fit a novel flexible semi-nonparametric marginal model for longitudinal data. In this model, features are assumed to be nonparametric, while feature-time interactions are modeled semi-nonparametrically utilizing P-splines with estimated smoothing parameter. In order to avoid overfitting, we describe a relatively simple in sample cross-validation method which can be used to estimate the optimal boosting iteration and which has the surprising added benefit of stabilizing certain parameter estimates. Our new multivariate tree boosting method is shown to be highly flexible, robust to covariance misspecification and unbalanced designs, and resistant to overfitting in high dimensions. Feature selection can be used to identify important features and feature-time interactions. An application to longitudinal data of forced 1-second lung expiratory volume (FEV1) for lung transplant patients identifies an important feature-time interaction and illustrates the ease with which our method can find complex relationships in longitudinal data. PMID:29249866

  17. Transitions from Trees to Cycles in Adaptive Flow Networks

    DEFF Research Database (Denmark)

    Martens, Erik Andreas; Klemm, Konstantin

    2017-01-01

    . The network converges to a spatially non-uniform stable configuration composed of both cyclic and tree-like structures. Cyclic structures emerge locally in a transcritical bifurcation as the amplitude of the load fluctuations is increased. The resulting adaptive dynamics thus partitions the network into two......Transport networks are crucial to the functioning of natural and technological systems. Nature features transport networks that are adaptive over a vast range of parameters, thus providing an impressive level of robustness in supply. Theoretical and experimental studies have found that real......-world transport networks exhibit both tree-like motifs and cycles. When the network is subject to load fluctuations, the presence of cyclic motifs may help to reduce flow fluctuations and, thus, render supply in the network more robust. While previous studies considered network topology via optimization...

  18. Resolution and reconciliation of non-binary gene trees with transfers, duplications and losses.

    Science.gov (United States)

    Jacox, Edwin; Weller, Mathias; Tannier, Eric; Scornavacca, Celine

    2017-04-01

    Gene trees reconstructed from sequence alignments contain poorly supported branches when the phylogenetic signal in the sequences is insufficient to determine them all. When a species tree is available, the signal of gains and losses of genes can be used to correctly resolve the unsupported parts of the gene history. However finding a most parsimonious binary resolution of a non-binary tree obtained by contracting the unsupported branches is NP-hard if transfer events are considered as possible gene scale events, in addition to gene origination, duplication and loss. We propose an exact, parameterized algorithm to solve this problem in single-exponential time, where the parameter is the number of connected branches of the gene tree that show low support from the sequence alignment or, equivalently, the maximum number of children of any node of the gene tree once the low-support branches have been collapsed. This improves on the best known algorithm by an exponential factor. We propose a way to choose among optimal solutions based on the available information. We show the usability of this principle on several simulated and biological datasets. The results are comparable in quality to several other tested methods having similar goals, but our approach provides a lower running time and a guarantee that the produced solution is optimal. Our algorithm has been integrated into the ecceTERA phylogeny package, available at http://mbb.univ-montp2.fr/MBB/download_sources/16__ecceTERA and which can be run online at http://mbb.univ-montp2.fr/MBB/subsection/softExec.php?soft=eccetera . celine.scornavacca@umontpellier.fr. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  19. SnagPRO: snag and tree sampling and analysis methods for wildlife

    Science.gov (United States)

    Lisa J. Bate; Michael J. Wisdom; Edward O. Garton; Shawn C. Clabough

    2008-01-01

    We describe sampling methods and provide software to accurately and efficiently estimate snag and tree densities at desired scales to meet a variety of research and management objectives. The methods optimize sampling effort by choosing a plot size appropriate for the specified forest conditions and sampling goals. Plot selection and data analyses are supported by...

  20. TreePlus: interactive exploration of networks with enhanced tree layouts.

    Science.gov (United States)

    Lee, Bongshin; Parr, Cynthia S; Plaisant, Catherine; Bederson, Benjamin B; Veksler, Vladislav D; Gray, Wayne D; Kotfila, Christopher

    2006-01-01

    Despite extensive research, it is still difficult to produce effective interactive layouts for large graphs. Dense layout and occlusion make food webs, ontologies, and social networks difficult to understand and interact with. We propose a new interactive Visual Analytics component called TreePlus that is based on a tree-style layout. TreePlus reveals the missing graph structure with visualization and interaction while maintaining good readability. To support exploration of the local structure of the graph and gathering of information from the extensive reading of labels, we use a guiding metaphor of "Plant a seed and watch it grow." It allows users to start with a node and expand the graph as needed, which complements the classic overview techniques that can be effective at (but often limited to) revealing clusters. We describe our design goals, describe the interface, and report on a controlled user study with 28 participants comparing TreePlus with a traditional graph interface for six tasks. In general, the advantage of TreePlus over the traditional interface increased as the density of the displayed data increased. Participants also reported higher levels of confidence in their answers with TreePlus and most of them preferred TreePlus.

  1. Self-reference in Arithmetic I

    NARCIS (Netherlands)

    Halbach, Volker; Visser, Albert|info:eu-repo/dai/nl/068579985

    2014-01-01

    A Gödel sentence is often described as a sentence saying about itself that it is not provable, and a Henkin sentence as a sentence stating its own provability. We discuss what it could mean for a sentence of arithmetic to ascribe to itself a property such as provability or unprovability. The

  2. A practical approximation algorithm for solving massive instances of hybridization number for binary and nonbinary trees.

    Science.gov (United States)

    van Iersel, Leo; Kelk, Steven; Lekić, Nela; Scornavacca, Celine

    2014-05-05

    Reticulate events play an important role in determining evolutionary relationships. The problem of computing the minimum number of such events to explain discordance between two phylogenetic trees is a hard computational problem. Even for binary trees, exact solvers struggle to solve instances with reticulation number larger than 40-50. Here we present CycleKiller and NonbinaryCycleKiller, the first methods to produce solutions verifiably close to optimality for instances with hundreds or even thousands of reticulations. Using simulations, we demonstrate that these algorithms run quickly for large and difficult instances, producing solutions that are very close to optimality. As a spin-off from our simulations we also present TerminusEst, which is the fastest exact method currently available that can handle nonbinary trees: this is used to measure the accuracy of the NonbinaryCycleKiller algorithm. All three methods are based on extensions of previous theoretical work (SIDMA 26(4):1635-1656, TCBB 10(1):18-25, SIDMA 28(1):49-66) and are publicly available. We also apply our methods to real data.

  3. Determination of As in tree-rings of poplar (Populus alba L.) by U-shaped DC arc.

    Science.gov (United States)

    Marković, D M; Novović, I; Vilotić, D; Ignjatović, Lj

    2009-04-01

    An argon-stabilized U-shaped DC arc with a system for aerosol introduction was used for determination of As in poplar (Populus alba L.) tree-rings. After optimization of the operating parameters and selection of the most appropriate signal integration time (30 s), the limit of detection for As was reduced to 15.0 ng/mL. This detection limit obtained with the optimal integration time was compared with those for other methods: inductively coupled plasma-atomic emission spectrometry (ICP-AES), direct coupled plasma-atomic emission spectrometry (DCP-AES), microwave induced plasma-atomic emission spectrometry (MIP-AES) and improved thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS). Arsenic is toxic trace element which can adversely affect plant, animal and human health. As an indicator of environment pollution we collected poplar tree-rings from two locations. The first area was close to the "Nikola Tesla" (TENT-A) power plant, Obrenovac, while the other was in the urban area of Novi Sad. In all cases elevated average concentrations of As were registered in poplar tree-rings from the Obrenovac location.

  4. Liveness-Based RRT Algorithm for Autonomous Underwater Vehicles Motion Planning

    Directory of Open Access Journals (Sweden)

    Yang Li

    2017-01-01

    Full Text Available Motion planning is a crucial, basic issue in robotics, which aims at driving vehicles or robots towards to a given destination with various constraints, such as obstacles and limited resource. This paper presents a new version of rapidly exploring random trees (RRT, that is, liveness-based RRT (Li-RRT, to address autonomous underwater vehicles (AUVs motion problem. Different from typical RRT, we define an index of each node in the random searching tree, called “liveness” in this paper, to describe the potential effectiveness during the expanding process. We show that Li-RRT is provably probabilistic completeness as original RRT. In addition, the expected time of returning a valid path with Li-RRT is obviously reduced. To verify the efficiency of our algorithm, numerical experiments are carried out in this paper.

  5. Simple street tree sampling

    Science.gov (United States)

    David J. Nowak; Jeffrey T. Walton; James Baldwin; Jerry. Bond

    2015-01-01

    Information on street trees is critical for management of this important resource. Sampling of street tree populations provides an efficient means to obtain street tree population information. Long-term repeat measures of street tree samples supply additional information on street tree changes and can be used to report damages from catastrophic events. Analyses of...

  6. TreeFam: a curated database of phylogenetic trees of animal gene families

    DEFF Research Database (Denmark)

    Li, Heng; Coghlan, Avril; Ruan, Jue

    2006-01-01

    TreeFam is a database of phylogenetic trees of gene families found in animals. It aims to develop a curated resource that presents the accurate evolutionary history of all animal gene families, as well as reliable ortholog and paralog assignments. Curated families are being added progressively......, based on seed alignments and trees in a similar fashion to Pfam. Release 1.1 of TreeFam contains curated trees for 690 families and automatically generated trees for another 11 646 families. These represent over 128 000 genes from nine fully sequenced animal genomes and over 45 000 other animal proteins...

  7. GenNon-h: Generating multiple sequence alignments on nonhomogeneous phylogenetic trees

    Directory of Open Access Journals (Sweden)

    Kedzierska Anna M

    2012-08-01

    Full Text Available Abstract Background A number of software packages are available to generate DNA multiple sequence alignments (MSAs evolved under continuous-time Markov processes on phylogenetic trees. On the other hand, methods of simulating the DNA MSA directly from the transition matrices do not exist. Moreover, existing software restricts to the time-reversible models and it is not optimized to generate nonhomogeneous data (i.e. placing distinct substitution rates at different lineages. Results We present the first package designed to generate MSAs evolving under discrete-time Markov processes on phylogenetic trees, directly from probability substitution matrices. Based on the input model and a phylogenetic tree in the Newick format (with branch lengths measured as the expected number of substitutions per site, the algorithm produces DNA alignments of desired length. GenNon-h is publicly available for download. Conclusion The software presented here is an efficient tool to generate DNA MSAs on a given phylogenetic tree. GenNon-h provides the user with the nonstationary or nonhomogeneous phylogenetic data that is well suited for testing complex biological hypotheses, exploring the limits of the reconstruction algorithms and their robustness to such models.

  8. Tree-space statistics and approximations for large-scale analysis of anatomical trees

    DEFF Research Database (Denmark)

    Feragen, Aasa; Owen, Megan; Petersen, Jens

    2013-01-01

    parametrize the relevant parts of tree-space well. Using the developed approximate statistics, we illustrate how the structure and geometry of airway trees vary across a population and show that airway trees with Chronic Obstructive Pulmonary Disease come from a different distribution in tree-space than...

  9. New Hybrid Algorithms for Estimating Tree Stem Diameters at Breast Height Using a Two Dimensional Terrestrial Laser Scanner

    Directory of Open Access Journals (Sweden)

    Jianlei Kong

    2015-07-01

    Full Text Available In this paper, a new algorithm to improve the accuracy of estimating diameter at breast height (DBH for tree trunks in forest areas is proposed. First, the information is collected by a two-dimensional terrestrial laser scanner (2DTLS, which emits laser pulses to generate a point cloud. After extraction and filtration, the laser point clusters of the trunks are obtained, which are optimized by an arithmetic means method. Then, an algebraic circle fitting algorithm in polar form is non-linearly optimized by the Levenberg-Marquardt method to form a new hybrid algorithm, which is used to acquire the diameters and positions of the trees. Compared with previous works, this proposed method improves the accuracy of diameter estimation of trees significantly and effectively reduces the calculation time. Moreover, the experimental results indicate that this method is stable and suitable for the most challenging conditions, which has practical significance in improving the operating efficiency of forest harvester and reducing the risk of causing accidents.

  10. Optimal ranking regime analysis of TreeFlow dendrohydrological reconstructions

    Science.gov (United States)

    The Optimal Ranking Regime (ORR) method was used to identify 6-100 year time windows containing significant ranking sequences in 55 western U.S. streamflow reconstructions, and reconstructions of the level of the Great Salt Lake and San Francisco Bay salinity during 1500-2007. The method’s ability t...

  11. Comparing different methods to assess weaver ant abundance in plantation trees

    DEFF Research Database (Denmark)

    Wargui, Rosine; Offenberg, Joachim; Sinzogan, Antonio

    2015-01-01

    Weaver ants (Oecophylla spp.) are widely used as effective biological control agents. In order to optimize their use, ant abundance needs to be tracked. As several methods have been used to estimate ant abundance on plantation trees, abundances are not comparable between studies and no guideline...... is available on which method to apply in a particular study. This study compared four existing methods: three methods based on the number of ant trails on the main branches of a tree (called the Peng 1, Peng 2 and Offenberg index) and one method based on the number of ant nests per tree. Branch indices did...... not produce equal scores and cannot be compared directly. The Peng 1 index was the fastest to assess, but showed only limited seasonal fluctuations when ant abundance was high, because it approached its upper limit. The Peng 2 and Offenberg indices were lower and not close to the upper limit and therefore...

  12. Decision-Tree Program

    Science.gov (United States)

    Buntine, Wray

    1994-01-01

    IND computer program introduces Bayesian and Markov/maximum-likelihood (MML) methods and more-sophisticated methods of searching in growing trees. Produces more-accurate class-probability estimates important in applications like diagnosis. Provides range of features and styles with convenience for casual user, fine-tuning for advanced user or for those interested in research. Consists of four basic kinds of routines: data-manipulation, tree-generation, tree-testing, and tree-display. Written in C language.

  13. Multistage stochastic optimization

    CERN Document Server

    Pflug, Georg Ch

    2014-01-01

    Multistage stochastic optimization problems appear in many ways in finance, insurance, energy production and trading, logistics and transportation, among other areas. They describe decision situations under uncertainty and with a longer planning horizon. This book contains a comprehensive treatment of today’s state of the art in multistage stochastic optimization.  It covers the mathematical backgrounds of approximation theory as well as numerous practical algorithms and examples for the generation and handling of scenario trees. A special emphasis is put on estimation and bounding of the modeling error using novel distance concepts, on time consistency and the role of model ambiguity in the decision process. An extensive treatment of examples from electricity production, asset liability management and inventory control concludes the book

  14. A multicast tree aggregation algorithm in wavelength-routed WDM networks

    Science.gov (United States)

    Cheng, Hsu-Chen; Kuo, Chin-Chun; Lin, Frank Y.

    2005-02-01

    Wavelength division multiplexing (WDM) has been considered a promising transmission technology in optical communication networks. With the continuous advance in optical technology, WDM network will play an important role in wide area backbone networks. Optical wavelength switching, compared with optical packet switching, is a more mature and more cost-effective choice for optical switching technologies. Besides, the technology of time division multiplexing in optical communication networks has been working smoothly for a long time. In the proposed research, the problem of multicast groups aggregation and multicast routing and wavelength assignment in wavelength-routed WDM network is studied. The optical cross connect switches in the problem are assumed to have limited optical multicast/splitting and TDM functionalities. Given the physical network topology and capacity, the objective is to maximize the total revenue by means of utmost merging multicast groups into larger macro-groups. The groups in the same macro-group will share a multicast tree to conduct data transmission. The problem is formulated as an optimization problem, where the objective function is to maximize the total revenue subject to capacity constraints of components in the optical network, wavelength continuity constraints, and tree topology constraints. The decision variables in the formulations include the merging results between groups, multicast tree routing assignment and wavelength assignment. The basic approach to the algorithm development for this model is Lagrangean relaxation in conjunction with a number of optimization techniques. In computational experiments, the proposed algorithms are evaluated on different network topologies and perform efficiently and effectively according to the experiment results.

  15. Tree-growth analyses to estimate tree species' drought tolerance.

    Science.gov (United States)

    Eilmann, Britta; Rigling, Andreas

    2012-02-01

    Climate change is challenging forestry management and practices. Among other things, tree species with the ability to cope with more extreme climate conditions have to be identified. However, while environmental factors may severely limit tree growth or even cause tree death, assessing a tree species' potential for surviving future aggravated environmental conditions is rather demanding. The aim of this study was to find a tree-ring-based method suitable for identifying very drought-tolerant species, particularly potential substitute species for Scots pine (Pinus sylvestris L.) in Valais. In this inner-Alpine valley, Scots pine used to be the dominating species for dry forests, but today it suffers from high drought-induced mortality. We investigate the growth response of two native tree species, Scots pine and European larch (Larix decidua Mill.), and two non-native species, black pine (Pinus nigra Arnold) and Douglas fir (Pseudotsuga menziesii Mirb. var. menziesii), to drought. This involved analysing how the radial increment of these species responded to increasing water shortage (abandonment of irrigation) and to increasingly frequent drought years. Black pine and Douglas fir are able to cope with drought better than Scots pine and larch, as they show relatively high radial growth even after irrigation has been stopped and a plastic growth response to drought years. European larch does not seem to be able to cope with these dry conditions as it lacks the ability to recover from drought years. The analysis of trees' short-term response to extreme climate events seems to be the most promising and suitable method for detecting how tolerant a tree species is towards drought. However, combining all the methods used in this study provides a complete picture of how water shortage could limit species.

  16. Are trees long-lived?

    Science.gov (United States)

    Kevin T. Smith

    2009-01-01

    Trees and tree care can capture the best of people's motivations and intentions. Trees are living memorials that help communities heal at sites of national tragedy, such as Oklahoma City and the World Trade Center. We mark the places of important historical events by the trees that grew nearby even if the original tree, such as the Charter Oak in Connecticut or...

  17. Dynamic Event Tree advancements and control logic improvements

    International Nuclear Information System (INIS)

    Alfonsi, Andrea; Rabiti, Cristian; Mandelli, Diego; Sen, Ramazan Sonat; Cogliati, Joshua Joseph

    2015-01-01

    The RAVEN code has been under development at the Idaho National Laboratory since 2012. Its main goal is to create a multi-purpose platform for the deploying of all the capabilities needed for Probabilistic Risk Assessment, uncertainty quantification, data mining analysis and optimization studies. RAVEN is currently equipped with three different sampling categories: Forward samplers (Monte Carlo, Latin Hyper Cube, Stratified, Grid Sampler, Factorials, etc.), Adaptive Samplers (Limit Surface search, Adaptive Polynomial Chaos, etc.) and Dynamic Event Tree (DET) samplers (Deterministic and Adaptive Dynamic Event Trees). The main subject of this document is to report the activities that have been done in order to: start the migration of the RAVEN/RELAP-7 control logic system into MOOSE, and develop advanced dynamic sampling capabilities based on the Dynamic Event Tree approach. In order to provide to all MOOSE-based applications a control logic capability, in this Fiscal Year an initial migration activity has been initiated, moving the control logic system, designed for RELAP-7 by the RAVEN team, into the MOOSE framework. In this document, a brief explanation of what has been done is going to be reported. The second and most important subject of this report is about the development of a Dynamic Event Tree (DET) sampler named 'Hybrid Dynamic Event Tree' (HDET) and its Adaptive variant 'Adaptive Hybrid Dynamic Event Tree' (AHDET). As other authors have already reported, among the different types of uncertainties, it is possible to discern two principle types: aleatory and epistemic uncertainties. The classical Dynamic Event Tree is in charge of treating the first class (aleatory) uncertainties; the dependence of the probabilistic risk assessment and analysis on the epistemic uncertainties are treated by an initial Monte Carlo sampling (MCDET). From each Monte Carlo sample, a DET analysis is run (in total, N trees). The Monte Carlo employs a pre

  18. There's Life in Hazard Trees

    Science.gov (United States)

    Mary Torsello; Toni McLellan

    The goals of hazard tree management programs are to maximize public safety and maintain a healthy sustainable tree resource. Although hazard tree management frequently targets removal of trees or parts of trees that attract wildlife, it can take into account a diversity of tree values. With just a little extra planning, hazard tree management can be highly beneficial...

  19. Fast Tree: Computing Large Minimum-Evolution Trees with Profiles instead of a Distance Matrix

    Energy Technology Data Exchange (ETDEWEB)

    N. Price, Morgan; S. Dehal, Paramvir; P. Arkin, Adam

    2009-07-31

    Gene families are growing rapidly, but standard methods for inferring phylogenies do not scale to alignments with over 10,000 sequences. We present FastTree, a method for constructing large phylogenies and for estimating their reliability. Instead of storing a distance matrix, FastTree stores sequence profiles of internal nodes in the tree. FastTree uses these profiles to implement neighbor-joining and uses heuristics to quickly identify candidate joins. FastTree then uses nearest-neighbor interchanges to reduce the length of the tree. For an alignment with N sequences, L sites, and a different characters, a distance matrix requires O(N^2) space and O(N^2 L) time, but FastTree requires just O( NLa + N sqrt(N) ) memory and O( N sqrt(N) log(N) L a ) time. To estimate the tree's reliability, FastTree uses local bootstrapping, which gives another 100-fold speedup over a distance matrix. For example, FastTree computed a tree and support values for 158,022 distinct 16S ribosomal RNAs in 17 hours and 2.4 gigabytes of memory. Just computing pairwise Jukes-Cantor distances and storing them, without inferring a tree or bootstrapping, would require 17 hours and 50 gigabytes of memory. In simulations, FastTree was slightly more accurate than neighbor joining, BIONJ, or FastME; on genuine alignments, FastTree's topologies had higher likelihoods. FastTree is available at http://microbesonline.org/fasttree.

  20. TreeRipper web application: towards a fully automated optical tree recognition software

    Directory of Open Access Journals (Sweden)

    Hughes Joseph

    2011-05-01

    Full Text Available Abstract Background Relationships between species, genes and genomes have been printed as trees for over a century. Whilst this may have been the best format for exchanging and sharing phylogenetic hypotheses during the 20th century, the worldwide web now provides faster and automated ways of transferring and sharing phylogenetic knowledge. However, novel software is needed to defrost these published phylogenies for the 21st century. Results TreeRipper is a simple website for the fully-automated recognition of multifurcating phylogenetic trees (http://linnaeus.zoology.gla.ac.uk/~jhughes/treeripper/. The program accepts a range of input image formats (PNG, JPG/JPEG or GIF. The underlying command line c++ program follows a number of cleaning steps to detect lines, remove node labels, patch-up broken lines and corners and detect line edges. The edge contour is then determined to detect the branch length, tip label positions and the topology of the tree. Optical Character Recognition (OCR is used to convert the tip labels into text with the freely available tesseract-ocr software. 32% of images meeting the prerequisites for TreeRipper were successfully recognised, the largest tree had 115 leaves. Conclusions Despite the diversity of ways phylogenies have been illustrated making the design of a fully automated tree recognition software difficult, TreeRipper is a step towards automating the digitization of past phylogenies. We also provide a dataset of 100 tree images and associated tree files for training and/or benchmarking future software. TreeRipper is an open source project licensed under the GNU General Public Licence v3.

  1. Study of integrated optimization design of wind farm in complex terrain

    DEFF Research Database (Denmark)

    Xu, Chang; Chen, Dandan; Han, Xingxing

    2017-01-01

    wind farm design in complex terrain and setting up integrated optimization mathematical model for micro-site selection, power lines and road maintenance design etc.. Based on the existing 1-year wind measurement data in the wind farm area, the genetic algorithm was used to optimize the micro......-site selection. On the basis of location optimization of wind turbine, the optimization algorithms such as single-source shortest path algorithm and minimum spanning tree algorithm were used to optimize electric lines and maintenance roads. The practice shows that the research results can provide important...

  2. MixtureTree annotator: a program for automatic colorization and visual annotation of MixtureTree.

    Directory of Open Access Journals (Sweden)

    Shu-Chuan Chen

    Full Text Available The MixtureTree Annotator, written in JAVA, allows the user to automatically color any phylogenetic tree in Newick format generated from any phylogeny reconstruction program and output the Nexus file. By providing the ability to automatically color the tree by sequence name, the MixtureTree Annotator provides a unique advantage over any other programs which perform a similar function. In addition, the MixtureTree Annotator is the only package that can efficiently annotate the output produced by MixtureTree with mutation information and coalescent time information. In order to visualize the resulting output file, a modified version of FigTree is used. Certain popular methods, which lack good built-in visualization tools, for example, MEGA, Mesquite, PHY-FI, TreeView, treeGraph and Geneious, may give results with human errors due to either manually adding colors to each node or with other limitations, for example only using color based on a number, such as branch length, or by taxonomy. In addition to allowing the user to automatically color any given Newick tree by sequence name, the MixtureTree Annotator is the only method that allows the user to automatically annotate the resulting tree created by the MixtureTree program. The MixtureTree Annotator is fast and easy-to-use, while still allowing the user full control over the coloring and annotating process.

  3. On Determining if Tree-based Networks Contain Fixed Trees.

    Science.gov (United States)

    Anaya, Maria; Anipchenko-Ulaj, Olga; Ashfaq, Aisha; Chiu, Joyce; Kaiser, Mahedi; Ohsawa, Max Shoji; Owen, Megan; Pavlechko, Ella; St John, Katherine; Suleria, Shivam; Thompson, Keith; Yap, Corrine

    2016-05-01

    We address an open question of Francis and Steel about phylogenetic networks and trees. They give a polynomial time algorithm to decide if a phylogenetic network, N, is tree-based and pose the problem: given a fixed tree T and network N, is N based on T? We show that it is [Formula: see text]-hard to decide, by reduction from 3-Dimensional Matching (3DM) and further that the problem is fixed-parameter tractable.

  4. Comparing Phylogenetic Trees by Matching Nodes Using the Transfer Distance Between Partitions.

    Science.gov (United States)

    Bogdanowicz, Damian; Giaro, Krzysztof

    2017-05-01

    Ability to quantify dissimilarity of different phylogenetic trees describing the relationship between the same group of taxa is required in various types of phylogenetic studies. For example, such metrics are used to assess the quality of phylogeny construction methods, to define optimization criteria in supertree building algorithms, or to find horizontal gene transfer (HGT) events. Among the set of metrics described so far in the literature, the most commonly used seems to be the Robinson-Foulds distance. In this article, we define a new metric for rooted trees-the Matching Pair (MP) distance. The MP metric uses the concept of the minimum-weight perfect matching in a complete bipartite graph constructed from partitions of all pairs of leaves of the compared phylogenetic trees. We analyze the properties of the MP metric and present computational experiments showing its potential applicability in tasks related to finding the HGT events.

  5. Comparing Individual Tree Segmentation Based on High Resolution Multispectral Image and Lidar Data

    Science.gov (United States)

    Xiao, P.; Kelly, M.; Guo, Q.

    2014-12-01

    from multispectral image and Lidar data: recall, precision and F-score. This work explores the tradeoff between the expensive Lidar data and inexpensive multispectral image. The conclusion will guide the optimal data selection in different density canopy areas for individual tree segmentation, and contribute to the field of forest remote sensing.

  6. Optimization of RAPD-PCR reaction system for genetic relationships ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-02-08

    Feb 8, 2010 ... Camellia features beautiful tree shape, various petal color, .... (Huzhuabai (C. japonica)) was randomly selected for optimization of .... Afr. J. Biotechnol. Figure 1. Agarose gel electrophoresis analysis by primer S256 (left-up), ...

  7. Whole-tree distribution and temporal variation of non-structural carbohydrates in broadleaf evergreen trees.

    Science.gov (United States)

    Smith, Merryn G; Miller, Rebecca E; Arndt, Stefan K; Kasel, Sabine; Bennett, Lauren T

    2018-04-01

    Non-structural carbohydrates (NSCs) form a fundamental yet poorly quantified carbon pool in trees. Studies of NSC seasonality in forest trees have seldom measured whole-tree NSC stocks and allocation among organs, and are not representative of all tree functional types. Non-structural carbohydrate research has primarily focussed on broadleaf deciduous and coniferous evergreen trees with distinct growing seasons, while broadleaf evergreen trees remain under-studied despite their different growth phenology. We measured whole-tree NSC allocation and temporal variation in Eucalyptus obliqua L'Hér., a broadleaf evergreen tree species typically occurring in mixed-age temperate forests, which has year-round growth and the capacity to resprout after fire. Our overarching objective was to improve the empirical basis for understanding the functional importance of NSC allocation and stock changes at the tree- and organ-level in this tree functional type. Starch was the principal storage carbohydrate and was primarily stored in the stem and roots of young (14-year-old) trees rather than the lignotuber, which did not appear to be a specialized starch storage organ. Whole-tree NSC stocks were depleted during spring and summer due to significant decreases in starch mass in the roots and stem, seemingly to support root and crown growth but potentially exacerbated by water stress in summer. Seasonality of stem NSCs differed between young and mature trees, and was not synchronized with stem basal area increments in mature trees. Our results suggest that the relative magnitude of seasonal NSC stock changes could vary with tree growth stage, and that the main drivers of NSC fluctuations in broadleaf evergreen trees in temperate biomes could be periodic disturbances such as summer drought and fire, rather than growth phenology. These results have implications for understanding post-fire tree recovery via resprouting, and for incorporating NSC pools into carbon models of mixed

  8. The effect of contaminated groundwater on tree growth: A tree-ring analysis

    International Nuclear Information System (INIS)

    LeBlanc, D.C.; Loehle, C.

    1990-10-01

    A study was conducted on the effect of contaminated groundwater seepage on tree growth downslope from F- and H-Area seepage basins of the Savannah River Site. Trees in wetlands along Four Mile Creek began to show localized stress and mortality in the late 1970s. Extreme winter temperatures and high rainfall were ruled out as potential causal factors of tree stress. Drought was shown to affect trees in both contaminated and uncontaminated zones, but trees in uncontaminated areas exhibit better recovery after drought than trees in contaminated areas. Pollution-mediated alteration of soil acidity and aluminum, sodium, and heavy metal concentrations likely acted to predispose trees to decline, with severe drought acting as the trigger for decline initiation and tree death. Thus, a moderate pollution loading, not sufficient to cause visible damage of itself, may create conditions in which sudden, severe decline could result from natural stresses. This mechanism of forest decline is common, and should be considered in evaluations of the impact of pollution on wetland forest systems. 28 refs., 4 figs., 6 tabs

  9. SILVA tree viewer: interactive web browsing of the SILVA phylogenetic guide trees.

    Science.gov (United States)

    Beccati, Alan; Gerken, Jan; Quast, Christian; Yilmaz, Pelin; Glöckner, Frank Oliver

    2017-09-30

    Phylogenetic trees are an important tool to study the evolutionary relationships among organisms. The huge amount of available taxa poses difficulties in their interactive visualization. This hampers the interaction with the users to provide feedback for the further improvement of the taxonomic framework. The SILVA Tree Viewer is a web application designed for visualizing large phylogenetic trees without requiring the download of any software tool or data files. The SILVA Tree Viewer is based on Web Geographic Information Systems (Web-GIS) technology with a PostgreSQL backend. It enables zoom and pan functionalities similar to Google Maps. The SILVA Tree Viewer enables access to two phylogenetic (guide) trees provided by the SILVA database: the SSU Ref NR99 inferred from high-quality, full-length small subunit sequences, clustered at 99% sequence identity and the LSU Ref inferred from high-quality, full-length large subunit sequences. The Tree Viewer provides tree navigation, search and browse tools as well as an interactive feedback system to collect any kinds of requests ranging from taxonomy to data curation and improving the tool itself.

  10. D2-tree

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Sioutas, Spyros; Pantazos, Kostas

    2015-01-01

    We present a new overlay, called the Deterministic Decentralized tree (D2-tree). The D2-tree compares favorably to other overlays for the following reasons: (a) it provides matching and better complexities, which are deterministic for the supported operations; (b) the management of nodes (peers...

  11. Tree felling 2014

    CERN Multimedia

    2014-01-01

    With a view to creating new landscapes and making its population of trees safer and healthier, this winter CERN will complete the tree-felling campaign started in 2010.   Tree felling will take place between 15 and 22 November on the Swiss part of the Meyrin site. This work is being carried out above all for safety reasons. The trees to be cut down are at risk of falling as they are too old and too tall to withstand the wind. In addition, the roots of poplar trees are very powerful and spread widely, potentially damaging underground networks, pavements and roadways. Compensatory tree planting campaigns will take place in the future, subject to the availability of funding, with the aim of creating coherent landscapes while also respecting the functional constraints of the site. These matters are being considered in close collaboration with the Geneva nature and countryside directorate (Direction générale de la nature et du paysage, DGNP). GS-SE Group

  12. Phylogenetic trees

    OpenAIRE

    Baños, Hector; Bushek, Nathaniel; Davidson, Ruth; Gross, Elizabeth; Harris, Pamela E.; Krone, Robert; Long, Colby; Stewart, Allen; Walker, Robert

    2016-01-01

    We introduce the package PhylogeneticTrees for Macaulay2 which allows users to compute phylogenetic invariants for group-based tree models. We provide some background information on phylogenetic algebraic geometry and show how the package PhylogeneticTrees can be used to calculate a generating set for a phylogenetic ideal as well as a lower bound for its dimension. Finally, we show how methods within the package can be used to compute a generating set for the join of any two ideals.

  13. Identifying the rooted species tree from the distribution of unrooted gene trees under the coalescent.

    Science.gov (United States)

    Allman, Elizabeth S; Degnan, James H; Rhodes, John A

    2011-06-01

    Gene trees are evolutionary trees representing the ancestry of genes sampled from multiple populations. Species trees represent populations of individuals-each with many genes-splitting into new populations or species. The coalescent process, which models ancestry of gene copies within populations, is often used to model the probability distribution of gene trees given a fixed species tree. This multispecies coalescent model provides a framework for phylogeneticists to infer species trees from gene trees using maximum likelihood or Bayesian approaches. Because the coalescent models a branching process over time, all trees are typically assumed to be rooted in this setting. Often, however, gene trees inferred by traditional phylogenetic methods are unrooted. We investigate probabilities of unrooted gene trees under the multispecies coalescent model. We show that when there are four species with one gene sampled per species, the distribution of unrooted gene tree topologies identifies the unrooted species tree topology and some, but not all, information in the species tree edges (branch lengths). The location of the root on the species tree is not identifiable in this situation. However, for 5 or more species with one gene sampled per species, we show that the distribution of unrooted gene tree topologies identifies the rooted species tree topology and all its internal branch lengths. The length of any pendant branch leading to a leaf of the species tree is also identifiable for any species from which more than one gene is sampled.

  14. TREES OF DAMAGES AS A MODEL OF RISKS ASSESSMENT FOR AVAILABILITY LOSSES AFTER CHANGES IN FINANCIAL INFORMATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    S. A. Arustamov

    2013-03-01

    Full Text Available The article deals with the methodology for risks assessment of availability losses in financial information systems after changes made in them by using trees of damages. A description of damages tree generation for each identified possible event is presented that potentially can lead to the system availability loss. An example is given, illustrating the methodology application that gives the possibility to choose the optimal software testing strategy.

  15. Set-Based Discrete Particle Swarm Optimization Based on Decomposition for Permutation-Based Multiobjective Combinatorial Optimization Problems.

    Science.gov (United States)

    Yu, Xue; Chen, Wei-Neng; Gu, Tianlong; Zhang, Huaxiang; Yuan, Huaqiang; Kwong, Sam; Zhang, Jun

    2017-08-07

    This paper studies a specific class of multiobjective combinatorial optimization problems (MOCOPs), namely the permutation-based MOCOPs. Many commonly seen MOCOPs, e.g., multiobjective traveling salesman problem (MOTSP), multiobjective project scheduling problem (MOPSP), belong to this problem class and they can be very different. However, as the permutation-based MOCOPs share the inherent similarity that the structure of their search space is usually in the shape of a permutation tree, this paper proposes a generic multiobjective set-based particle swarm optimization methodology based on decomposition, termed MS-PSO/D. In order to coordinate with the property of permutation-based MOCOPs, MS-PSO/D utilizes an element-based representation and a constructive approach. Through this, feasible solutions under constraints can be generated step by step following the permutation-tree-shaped structure. And problem-related heuristic information is introduced in the constructive approach for efficiency. In order to address the multiobjective optimization issues, the decomposition strategy is employed, in which the problem is converted into multiple single-objective subproblems according to a set of weight vectors. Besides, a flexible mechanism for diversity control is provided in MS-PSO/D. Extensive experiments have been conducted to study MS-PSO/D on two permutation-based MOCOPs, namely the MOTSP and the MOPSP. Experimental results validate that the proposed methodology is promising.

  16. Trees and livestock together: silvopasture research and application for Virginia farms

    Science.gov (United States)

    Gregory E. Frey; John H. Fike; Adam K. Downing; Marcus M. Comer; Timothy A. Mize; Christopher D. Teutsch

    2017-01-01

    Silvopasture is the intentional combination of trees, forage, and livestock on a parcel of land to optimize multiple outputs and has been shown to have benefits for production in various parts of the world.  There is strong interest in silvopasture in the Southern United States, likely driven by multiple motivations.  However, silvopasture practices have not been...

  17. Covering tree with stars

    DEFF Research Database (Denmark)

    Baumbach, Jan; Guo, Jiong; Ibragimov, Rashid

    2015-01-01

    We study the tree edit distance problem with edge deletions and edge insertions as edit operations. We reformulate a special case of this problem as Covering Tree with Stars (CTS): given a tree T and a set of stars, can we connect the stars in by adding edges between them such that the resulting...... tree is isomorphic to T? We prove that in the general setting, CST is NP-complete, which implies that the tree edit distance considered here is also NP-hard, even when both input trees having diameters bounded by 10. We also show that, when the number of distinct stars is bounded by a constant k, CTS...

  18. Selecting and optimizing eco-physiological parameters of Biome-BGC to reproduce observed woody and leaf biomass growth of Eucommia ulmoides plantation in China using Dakota optimizer

    Science.gov (United States)

    Miyauchi, T.; Machimura, T.

    2013-12-01

    In the simulation using an ecosystem process model, the adjustment of parameters is indispensable for improving the accuracy of prediction. This procedure, however, requires much time and effort for approaching the simulation results to the measurements on models consisting of various ecosystem processes. In this study, we tried to apply a general purpose optimization tool in the parameter optimization of an ecosystem model, and examined its validity by comparing the simulated and measured biomass growth of a woody plantation. A biometric survey of tree biomass growth was performed in 2009 in an 11-year old Eucommia ulmoides plantation in Henan Province, China. Climate of the site was dry temperate. Leaf, above- and below-ground woody biomass were measured from three cut trees and converted into carbon mass per area by measured carbon contents and stem density. Yearly woody biomass growth of the plantation was calculated according to allometric relationships determined by tree ring analysis of seven cut trees. We used Biome-BGC (Thornton, 2002) to reproduce biomass growth of the plantation. Air temperature and humidity from 1981 to 2010 was used as input climate condition. The plant functional type was deciduous broadleaf, and non-optimizing parameters were left default. 11-year long normal simulations were performed following a spin-up run. In order to select optimizing parameters, we analyzed the sensitivity of leaf, above- and below-ground woody biomass to eco-physiological parameters. Following the selection, optimization of parameters was performed by using the Dakota optimizer. Dakota is an optimizer developed by Sandia National Laboratories for providing a systematic and rapid means to obtain optimal designs using simulation based models. As the object function, we calculated the sum of relative errors between simulated and measured leaf, above- and below-ground woody carbon at each of eleven years. In an alternative run, errors at the last year (at the

  19. Trees in the city: valuing street trees in Portland, Oregon

    Science.gov (United States)

    G.H. Donovan; D.T. Butry

    2010-01-01

    We use a hedonic price model to simultaneously estimate the effects of street trees on the sales price and the time-on-market (TOM) of houses in Portland. Oregon. On average, street trees add $8,870 to sales price and reduce TOM by 1.7 days. In addition, we found that the benefits of street trees spill over to neighboring houses. Because the provision and maintenance...

  20. Urban tree growth modeling

    Science.gov (United States)

    E. Gregory McPherson; Paula J. Peper

    2012-01-01

    This paper describes three long-term tree growth studies conducted to evaluate tree performance because repeated measurements of the same trees produce critical data for growth model calibration and validation. Several empirical and process-based approaches to modeling tree growth are reviewed. Modeling is more advanced in the fields of forestry and...

  1. Electron Tree

    DEFF Research Database (Denmark)

    Appelt, Ane L; Rønde, Heidi S

    2013-01-01

    The photo shows a close-up of a Lichtenberg figure – popularly called an “electron tree” – produced in a cylinder of polymethyl methacrylate (PMMA). Electron trees are created by irradiating a suitable insulating material, in this case PMMA, with an intense high energy electron beam. Upon discharge......, during dielectric breakdown in the material, the electrons generate branching chains of fractures on leaving the PMMA, producing the tree pattern seen. To be able to create electron trees with a clinical linear accelerator, one needs to access the primary electron beam used for photon treatments. We...... appropriated a linac that was being decommissioned in our department and dismantled the head to circumvent the target and ion chambers. This is one of 24 electron trees produced before we had to stop the fun and allow the rest of the accelerator to be disassembled....

  2. Classification and regression trees

    CERN Document Server

    Breiman, Leo; Olshen, Richard A; Stone, Charles J

    1984-01-01

    The methodology used to construct tree structured rules is the focus of this monograph. Unlike many other statistical procedures, which moved from pencil and paper to calculators, this text's use of trees was unthinkable before computers. Both the practical and theoretical sides have been developed in the authors' study of tree methods. Classification and Regression Trees reflects these two sides, covering the use of trees as a data analysis method, and in a more mathematical framework, proving some of their fundamental properties.

  3. Transitions from Trees to Cycles in Adaptive Flow Networks

    Directory of Open Access Journals (Sweden)

    Erik A. Martens

    2017-11-01

    Full Text Available Transport networks are crucial to the functioning of natural and technological systems. Nature features transport networks that are adaptive over a vast range of parameters, thus providing an impressive level of robustness in supply. Theoretical and experimental studies have found that real-world transport networks exhibit both tree-like motifs and cycles. When the network is subject to load fluctuations, the presence of cyclic motifs may help to reduce flow fluctuations and, thus, render supply in the network more robust. While previous studies considered network topology via optimization principles, here, we take a dynamical systems approach and study a simple model of a flow network with dynamically adapting weights (conductances. We assume a spatially non-uniform distribution of rapidly fluctuating loads in the sinks and investigate what network configurations are dynamically stable. The network converges to a spatially non-uniform stable configuration composed of both cyclic and tree-like structures. Cyclic structures emerge locally in a transcritical bifurcation as the amplitude of the load fluctuations is increased. The resulting adaptive dynamics thus partitions the network into two distinct regions with cyclic and tree-like structures. The location of the boundary between these two regions is determined by the amplitude of the fluctuations. These findings may explain why natural transport networks display cyclic structures in the micro-vascular regions near terminal nodes, but tree-like features in the regions with larger veins.

  4. Benefit-based tree valuation

    Science.gov (United States)

    E.G. McPherson

    2007-01-01

    Benefit-based tree valuation provides alternative estimates of the fair and reasonable value of trees while illustrating the relative contribution of different benefit types. This study compared estimates of tree value obtained using cost- and benefit-based approaches. The cost-based approach used the Council of Landscape and Tree Appraisers trunk formula method, and...

  5. Fragmentation of random trees

    International Nuclear Information System (INIS)

    Kalay, Z; Ben-Naim, E

    2015-01-01

    We study fragmentation of a random recursive tree into a forest by repeated removal of nodes. The initial tree consists of N nodes and it is generated by sequential addition of nodes with each new node attaching to a randomly-selected existing node. As nodes are removed from the tree, one at a time, the tree dissolves into an ensemble of separate trees, namely, a forest. We study statistical properties of trees and nodes in this heterogeneous forest, and find that the fraction of remaining nodes m characterizes the system in the limit N→∞. We obtain analytically the size density ϕ s of trees of size s. The size density has power-law tail ϕ s ∼s −α with exponent α=1+(1/m). Therefore, the tail becomes steeper as further nodes are removed, and the fragmentation process is unusual in that exponent α increases continuously with time. We also extend our analysis to the case where nodes are added as well as removed, and obtain the asymptotic size density for growing trees. (paper)

  6. Fault trees for diagnosis of system fault conditions

    International Nuclear Information System (INIS)

    Lambert, H.E.; Yadigaroglu, G.

    1977-01-01

    Methods for generating repair checklists on the basis of fault tree logic and probabilistic importance are presented. A one-step-ahead optimization procedure, based on the concept of component criticality, minimizing the expected time to diagnose system failure is outlined. Options available to the operator of a nuclear power plant when system fault conditions occur are addressed. A low-pressure emergency core cooling injection system, a standby safeguard system of a pressurized water reactor power plant, is chosen as an example illustrating the methods presented

  7. FTAP, Minimal Cut Sets of Arbitrary Fault Trees. FRTPLT, Fault Tree Structure and Logical Gates Plot for Program FTAP. FRTGEN, Fault Trees by Sub-tree Generator from Parent Tree for Program FTAP

    International Nuclear Information System (INIS)

    Willie, Randall R.; Rabien, U.

    1997-01-01

    1 - Description of problem or function: FTAP is a general-purpose program for deriving minimal reliability cut and path set families from the fault tree for a complex system. The program has a number of useful features that make it well-suited to nearly all fault tree applications. An input fault tree may specify the system state as any logical function of subsystem or component state variables or complements of these variables; thus, for instance, 'exclusive-or' type relations may be formed. When fault tree logical relations involve complements of state variables, the analyst may instruct FTAP to produce a family of prime implicants, a generalization of the minimal cut set concept. The program offers the flexibility of several distinct methods of generating cut set families. FTAP can also identify certain subsystems as system modules and provide a collection of minimal cut set families that essentially expresses the system state as a function of these module state variables. Another feature allows a useful subfamily to be obtained when the family of minimal cut sets or prime implicants is too large to be found in its entirety; this subfamily may consist of only those sets not containing more than some fixed number of elements or only those sets 'interesting' to the analyst in some special sense. Finally, the analyst can modify the input fault tree in various ways by declaring state variables identically true or false. 2 - Method of solution: Fault tree methods are based on the observation that the system state, either working or failed, can usually be expressed as a Boolean relation between states of several large, readily identifiable subsystems. The state of each subsystem in turn depends on states of simpler subsystems and components which compose it, so that the state of the system itself is determined by a hierarchy of logical relationships between states of subsystems. A fault tree is a graphical representation of these relationships. 3 - Restrictions on the

  8. Winter Birch Trees

    Science.gov (United States)

    Sweeney, Debra; Rounds, Judy

    2011-01-01

    Trees are great inspiration for artists. Many art teachers find themselves inspired and maybe somewhat obsessed with the natural beauty and elegance of the lofty tree, and how it changes through the seasons. One such tree that grows in several regions and always looks magnificent, regardless of the time of year, is the birch. In this article, the…

  9. 36 CFR 223.4 - Exchange of trees or portions of trees.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Exchange of trees or portions of trees. 223.4 Section 223.4 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER General Provisions § 223.4 Exchange of trees or...

  10. How many trees are enough? Tree death and the urban canopy

    Science.gov (United States)

    Lara A. Roman

    2014-01-01

    Massive city tree planting campaigns have invigorated the urban forestry movement, and engaged politicians, planners, and the public in urban greening. Million tree initiatives have been launched in Los Angeles, CA; Denver, CO; New York City, NY; Philadelphia, PA, and other cities. Sacramento, CA even has a five million tree program. These...

  11. Keeping trees as assets

    Science.gov (United States)

    Kevin T. Smith

    2009-01-01

    Landscape trees have real value and contribute to making livable communities. Making the most of that value requires providing trees with the proper care and attention. As potentially large and long-lived organisms, trees benefit from commitment to regular care that respects the natural tree system. This system captures, transforms, and uses energy to survive, grow,...

  12. Visualization of Uncertain Contour Trees

    DEFF Research Database (Denmark)

    Kraus, Martin

    2010-01-01

    Contour trees can represent the topology of large volume data sets in a relatively compact, discrete data structure. However, the resulting trees often contain many thousands of nodes; thus, many graph drawing techniques fail to produce satisfactory results. Therefore, several visualization methods...... were proposed recently for the visualization of contour trees. Unfortunately, none of these techniques is able to handle uncertain contour trees although any uncertainty of the volume data inevitably results in partially uncertain contour trees. In this work, we visualize uncertain contour trees...... by combining the contour trees of two morphologically filtered versions of a volume data set, which represent the range of uncertainty. These two contour trees are combined and visualized within a single image such that a range of potential contour trees is represented by the resulting visualization. Thus...

  13. DECISION TREE CLASSIFIERS FOR STAR/GALAXY SEPARATION

    International Nuclear Information System (INIS)

    Vasconcellos, E. C.; Ruiz, R. S. R.; De Carvalho, R. R.; Capelato, H. V.; Gal, R. R.; LaBarbera, F. L.; Frago Campos Velho, H.; Trevisan, M.

    2011-01-01

    We study the star/galaxy classification efficiency of 13 different decision tree algorithms applied to photometric objects in the Sloan Digital Sky Survey Data Release Seven (SDSS-DR7). Each algorithm is defined by a set of parameters which, when varied, produce different final classification trees. We extensively explore the parameter space of each algorithm, using the set of 884,126 SDSS objects with spectroscopic data as the training set. The efficiency of star-galaxy separation is measured using the completeness function. We find that the Functional Tree algorithm (FT) yields the best results as measured by the mean completeness in two magnitude intervals: 14 ≤ r ≤ 21 (85.2%) and r ≥ 19 (82.1%). We compare the performance of the tree generated with the optimal FT configuration to the classifications provided by the SDSS parametric classifier, 2DPHOT, and Ball et al. We find that our FT classifier is comparable to or better in completeness over the full magnitude range 15 ≤ r ≤ 21, with much lower contamination than all but the Ball et al. classifier. At the faintest magnitudes (r > 19), our classifier is the only one that maintains high completeness (>80%) while simultaneously achieving low contamination (∼2.5%). We also examine the SDSS parametric classifier (psfMag - modelMag) to see if the dividing line between stars and galaxies can be adjusted to improve the classifier. We find that currently stars in close pairs are often misclassified as galaxies, and suggest a new cut to improve the classifier. Finally, we apply our FT classifier to separate stars from galaxies in the full set of 69,545,326 SDSS photometric objects in the magnitude range 14 ≤ r ≤ 21.

  14. Forest FIRE and FIRE wood : tools for tree automata and tree algorithms

    NARCIS (Netherlands)

    Cleophas, L.G.W.A.; Piskorski, J.; Watson, B.W.; Yli-Jyrä, A.

    2009-01-01

    Pattern matching, acceptance, and parsing algorithms on node-labeled, ordered, ranked trees ('tree algorithms') are important for applications such as instruction selection and tree transformation/term rewriting. Many such algorithms have been developed. They often are based on results from such

  15. A multiplex PCR-based method for the detection and early identification of wood rotting fungi in standing trees.

    Science.gov (United States)

    Guglielmo, F; Bergemann, S E; Gonthier, P; Nicolotti, G; Garbelotto, M

    2007-11-01

    The goal of this research was the development of a PCR-based assay to identify important decay fungi from wood of hardwood tree species in northern temperate regions. Eleven taxon-specific primers were designed for PCR amplification of either nuclear or mitochondrial ribosomal DNA regions of Armillaria spp., Ganoderma spp., Hericium spp., Hypoxylon thouarsianum var. thouarsianum, Inonotus/Phellinus-group, Laetiporus spp., Perenniporia fraxinea, Pleurotus spp., Schizophyllum spp., Stereum spp. and Trametes spp. Multiplex PCR reactions were developed and optimized to detect fungal DNA and identify each taxon with a sensitivity of at least 1 pg of target DNA in the template. This assay correctly identified the agents of decay in 82% of tested wood samples. The development and optimization of multiplex PCRs allowed for reliable identification of wood rotting fungi directly from wood. Early detection of wood decay fungi is crucial for assessment of tree stability in urban landscapes. Furthermore, this method may prove useful for prediction of the severity and the evolution of decay in standing trees.

  16. Monitoring Million Trees LA: Tree performance during the early years and future benefits

    Science.gov (United States)

    E. Gregory McPherson

    2014-01-01

    Million Trees LA (MTLA) is one of several large-scale mayoral tree planting initiatives striving to create more livable cities through urban forestry. This study combined field sampling of tree survival and growth with numerical modeling of future benefits to assess performance of MTLA plantings. From 2006 to 2010 MTLA planted a diverse mix of 91,786 trees....

  17. Skewed Binary Search Trees

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Moruz, Gabriel

    2006-01-01

    It is well-known that to minimize the number of comparisons a binary search tree should be perfectly balanced. Previous work has shown that a dominating factor over the running time for a search is the number of cache faults performed, and that an appropriate memory layout of a binary search tree...... can reduce the number of cache faults by several hundred percent. Motivated by the fact that during a search branching to the left or right at a node does not necessarily have the same cost, e.g. because of branch prediction schemes, we in this paper study the class of skewed binary search trees....... For all nodes in a skewed binary search tree the ratio between the size of the left subtree and the size of the tree is a fixed constant (a ratio of 1/2 gives perfect balanced trees). In this paper we present an experimental study of various memory layouts of static skewed binary search trees, where each...

  18. The ghosts of trees past: savanna trees create enduring legacies in plant species composition.

    Science.gov (United States)

    Stahlheber, Karen A; Crispin, Kimberly L; Anton, Cassidy; D'Antonio, Carla M

    2015-09-01

    Isolated trees in savannas worldwide are known to modify their local environment and interact directly with neighboring plants. Less is known about how related tree species differ in their impacts on surrounding communities, how the effects of trees vary between years, and how composition might change following loss of the tree. To address these knowledge gaps, we explored the following questions: How do savanna trees influence the surrounding composition of herbaceous plants? Is the influence of trees consistent across different species and years? How does this change following the death of the tree? We surveyed herbaceous species composition and environmental attributes surrounding living and dead evergreen and deciduous Quercus trees in California (USA) savannas across several years that differed in their total precipitation. Oak trees of all species created distinct, homogenous understory communities dominated by exotic grasses across several sites. The composition of the low-diversity understory communities showed less interannual variation than open grassland, despite a two-fold difference in precipitation between the driest and wettest year. Vegetation composition was correlated with variation in soil properties, which were strongly affected by trees. Oaks also influenced the communities beyond the edge of the crown, but this depended on site and oak species. Low-diversity understory communities persisted up to 43 years following the death of the tree. A gradual decline in the effect of trees on the physical, environment following death did not result in vegetation becoming more similar to open grassland over time. The presence of long-lasting legacies of past tree crowns highlights the difficulty of assigning control of the current distribution of herbaceous species in grassland to their contemporary environment.

  19. Barking up the wrong tree: injuries due to falls from trees in Solomon Islands.

    Science.gov (United States)

    Negin, Joel; Vizintin, Pavle; Houasia, Patrick; Martiniuk, Alexandra L C

    2014-12-11

    To investigate tree-related injuries in Solomon Islands by the types of trees involved, who is affected and the types of injuries caused. Descriptive case series of all cases of injuries related to trees presenting to the National Referral Hospital in Honiara from 1994 to 2011. Data were collected by the attending clinician using a Trauma Epidemiology form, which provides information on age, sex, cause of injury and type of fracture. Number of injuries by tree type, sex and age. Of the 7651 injuries in the database, 1107 (14%) were caused by falls from trees. Falls from coconut trees led to the highest number of injuries, followed by falls from mango, guava, apple and nut trees. Overall, 85% of injuries occurred in individuals aged trees, 77% of patients were aged tree types. Overall, 71% of injuries occurred among males. Of all injuries, 92% were fractures, 3% were dislocations and 5% were non-fracture, non-dislocation injuries. The arm (including wrist, elbow and hand) was the most common location of injury across all tree types. Distal radius fractures in the forearm were particularly common, as were ulna fractures. While mangos and guavas are undeniably delicious, the quest for their flesh can be hazardous. Children will always climb trees, but the search for food among children in lower-income settings may lead to higher rates of injury.

  20. Recursive Trees for Practical ORAM

    Directory of Open Access Journals (Sweden)

    Moataz Tarik

    2015-06-01

    Full Text Available We present a new, general data structure that reduces the communication cost of recent tree-based ORAMs. Contrary to ORAM trees with constant height and path lengths, our new construction r-ORAM allows for trees with varying shorter path length. Accessing an element in the ORAM tree results in different communication costs depending on the location of the element. The main idea behind r-ORAM is a recursive ORAM tree structure, where nodes in the tree are roots of other trees. While this approach results in a worst-case access cost (tree height at most as any recent tree-based ORAM, we show that the average cost saving is around 35% for recent binary tree ORAMs. Besides reducing communication cost, r-ORAM also reduces storage overhead on the server by 4% to 20% depending on the ORAM’s client memory type. To prove r-ORAM’s soundness, we conduct a detailed overflow analysis. r-ORAM’s recursive approach is general in that it can be applied to all recent tree ORAMs, both constant and poly-log client memory ORAMs. Finally, we implement and benchmark r-ORAM in a practical setting to back up our theoretical claims.

  1. Unrealistic phylogenetic trees may improve phylogenetic footprinting.

    Science.gov (United States)

    Nettling, Martin; Treutler, Hendrik; Cerquides, Jesus; Grosse, Ivo

    2017-06-01

    The computational investigation of DNA binding motifs from binding sites is one of the classic tasks in bioinformatics and a prerequisite for understanding gene regulation as a whole. Due to the development of sequencing technologies and the increasing number of available genomes, approaches based on phylogenetic footprinting become increasingly attractive. Phylogenetic footprinting requires phylogenetic trees with attached substitution probabilities for quantifying the evolution of binding sites, but these trees and substitution probabilities are typically not known and cannot be estimated easily. Here, we investigate the influence of phylogenetic trees with different substitution probabilities on the classification performance of phylogenetic footprinting using synthetic and real data. For synthetic data we find that the classification performance is highest when the substitution probability used for phylogenetic footprinting is similar to that used for data generation. For real data, however, we typically find that the classification performance of phylogenetic footprinting surprisingly increases with increasing substitution probabilities and is often highest for unrealistically high substitution probabilities close to one. This finding suggests that choosing realistic model assumptions might not always yield optimal predictions in general and that choosing unrealistically high substitution probabilities close to one might actually improve the classification performance of phylogenetic footprinting. The proposed PF is implemented in JAVA and can be downloaded from https://github.com/mgledi/PhyFoo. : martin.nettling@informatik.uni-halle.de. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  2. Virtual private network design: a proof of the tree routing conjecture on ring networks

    NARCIS (Netherlands)

    C.A.J. Hurkens (Cor); J.C.M. Keijsper; L. Stougie (Leen)

    2005-01-01

    htmlabstractA basic question in Virtual Private Network (VPN) design is if the symmetric version of the problem always has an optimal solution which is a tree network. An affirmative answer would imply that the symmetric VPN problem is solvable in polynomial time. We give an affirmative answer in

  3. Ultrasonographic diagnosis of biliary atresia based on a decision-making tree model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So Mi; Cheon, Jung Eun; Choi, Young Hun; Kim, Woo Sun; Cho, Hyun Hye; Kim, In One; You, Sun Kyoung [Dept. of Radiology, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2015-12-15

    To assess the diagnostic value of various ultrasound (US) findings and to make a decision-tree model for US diagnosis of biliary atresia (BA). From March 2008 to January 2014, the following US findings were retrospectively evaluated in 100 infants with cholestatic jaundice (BA, n = 46; non-BA, n = 54): length and morphology of the gallbladder, triangular cord thickness, hepatic artery and portal vein diameters, and visualization of the common bile duct. Logistic regression analyses were performed to determine the features that would be useful in predicting BA. Conditional inference tree analysis was used to generate a decision-making tree for classifying patients into the BA or non-BA groups. Multivariate logistic regression analysis showed that abnormal gallbladder morphology and greater triangular cord thickness were significant predictors of BA (p = 0.003 and 0.001; adjusted odds ratio: 345.6 and 65.6, respectively). In the decision-making tree using conditional inference tree analysis, gallbladder morphology and triangular cord thickness (optimal cutoff value of triangular cord thickness, 3.4 mm) were also selected as significant discriminators for differential diagnosis of BA, and gallbladder morphology was the first discriminator. The diagnostic performance of the decision-making tree was excellent, with sensitivity of 100% (46/46), specificity of 94.4% (51/54), and overall accuracy of 97% (97/100). Abnormal gallbladder morphology and greater triangular cord thickness (> 3.4 mm) were the most useful predictors of BA on US. We suggest that the gallbladder morphology should be evaluated first and that triangular cord thickness should be evaluated subsequently in cases with normal gallbladder morphology.

  4. Ultrasonographic diagnosis of biliary atresia based on a decision-making tree model

    International Nuclear Information System (INIS)

    Lee, So Mi; Cheon, Jung Eun; Choi, Young Hun; Kim, Woo Sun; Cho, Hyun Hye; Kim, In One; You, Sun Kyoung

    2015-01-01

    To assess the diagnostic value of various ultrasound (US) findings and to make a decision-tree model for US diagnosis of biliary atresia (BA). From March 2008 to January 2014, the following US findings were retrospectively evaluated in 100 infants with cholestatic jaundice (BA, n = 46; non-BA, n = 54): length and morphology of the gallbladder, triangular cord thickness, hepatic artery and portal vein diameters, and visualization of the common bile duct. Logistic regression analyses were performed to determine the features that would be useful in predicting BA. Conditional inference tree analysis was used to generate a decision-making tree for classifying patients into the BA or non-BA groups. Multivariate logistic regression analysis showed that abnormal gallbladder morphology and greater triangular cord thickness were significant predictors of BA (p = 0.003 and 0.001; adjusted odds ratio: 345.6 and 65.6, respectively). In the decision-making tree using conditional inference tree analysis, gallbladder morphology and triangular cord thickness (optimal cutoff value of triangular cord thickness, 3.4 mm) were also selected as significant discriminators for differential diagnosis of BA, and gallbladder morphology was the first discriminator. The diagnostic performance of the decision-making tree was excellent, with sensitivity of 100% (46/46), specificity of 94.4% (51/54), and overall accuracy of 97% (97/100). Abnormal gallbladder morphology and greater triangular cord thickness (> 3.4 mm) were the most useful predictors of BA on US. We suggest that the gallbladder morphology should be evaluated first and that triangular cord thickness should be evaluated subsequently in cases with normal gallbladder morphology

  5. Ultrasonographic Diagnosis of Biliary Atresia Based on a Decision-Making Tree Model.

    Science.gov (United States)

    Lee, So Mi; Cheon, Jung-Eun; Choi, Young Hun; Kim, Woo Sun; Cho, Hyun-Hae; Cho, Hyun-Hye; Kim, In-One; You, Sun Kyoung

    2015-01-01

    To assess the diagnostic value of various ultrasound (US) findings and to make a decision-tree model for US diagnosis of biliary atresia (BA). From March 2008 to January 2014, the following US findings were retrospectively evaluated in 100 infants with cholestatic jaundice (BA, n = 46; non-BA, n = 54): length and morphology of the gallbladder, triangular cord thickness, hepatic artery and portal vein diameters, and visualization of the common bile duct. Logistic regression analyses were performed to determine the features that would be useful in predicting BA. Conditional inference tree analysis was used to generate a decision-making tree for classifying patients into the BA or non-BA groups. Multivariate logistic regression analysis showed that abnormal gallbladder morphology and greater triangular cord thickness were significant predictors of BA (p = 0.003 and 0.001; adjusted odds ratio: 345.6 and 65.6, respectively). In the decision-making tree using conditional inference tree analysis, gallbladder morphology and triangular cord thickness (optimal cutoff value of triangular cord thickness, 3.4 mm) were also selected as significant discriminators for differential diagnosis of BA, and gallbladder morphology was the first discriminator. The diagnostic performance of the decision-making tree was excellent, with sensitivity of 100% (46/46), specificity of 94.4% (51/54), and overall accuracy of 97% (97/100). Abnormal gallbladder morphology and greater triangular cord thickness (> 3.4 mm) were the most useful predictors of BA on US. We suggest that the gallbladder morphology should be evaluated first and that triangular cord thickness should be evaluated subsequently in cases with normal gallbladder morphology.

  6. Tree Transduction Tools for Cdec

    Directory of Open Access Journals (Sweden)

    Austin Matthews

    2014-09-01

    Full Text Available We describe a collection of open source tools for learning tree-to-string and tree-to-tree transducers and the extensions to the cdec decoder that enable translation with these. Our modular, easy-to-extend tools extract rules from trees or forests aligned to strings and trees subject to different structural constraints. A fast, multithreaded implementation of the Cohn and Blunsom (2009 model for extracting compact tree-to-string rules is also included. The implementation of the tree composition algorithm used by cdec is described, and translation quality and decoding time results are presented. Our experimental results add to the body of evidence suggesting that tree transducers are a compelling option for translation, particularly when decoding speed and translation model size are important.

  7. Observing of tree trunks and other cylindrical objects using GPR

    Science.gov (United States)

    Jezova, Jana; Lambot, Sebastien

    2016-04-01

    configurations is presented. Future research will focus on the design of an adapted radar antenna for that application to optimize living tree trunk tomography. This research is funded by the Fonds de la Recherche Scientifique (FNRS, Belgium) and benefits from networking activities carried out within the EU COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar".

  8. Real-Time Flood Control by Tree-Based Model Predictive Control Including Forecast Uncertainty: A Case Study Reservoir in Turkey

    Directory of Open Access Journals (Sweden)

    Gökçen Uysal

    2018-03-01

    Full Text Available Optimal control of reservoirs is a challenging task due to conflicting objectives, complex system structure, and uncertainties in the system. Real time control decisions suffer from streamflow forecast uncertainty. This study aims to use Probabilistic Streamflow Forecasts (PSFs having a lead-time up to 48 h as input for the recurrent reservoir operation problem. A related technique for decision making is multi-stage stochastic optimization using scenario trees, referred to as Tree-based Model Predictive Control (TB-MPC. Deterministic Streamflow Forecasts (DSFs are provided by applying random perturbations on perfect data. PSFs are synthetically generated from DSFs by a new approach which explicitly presents dynamic uncertainty evolution. We assessed different variables in the generation of stochasticity and compared the results using different scenarios. The developed real-time hourly flood control was applied to a test case which had limited reservoir storage and restricted downstream condition. According to hindcasting closed-loop experiment results, TB-MPC outperforms the deterministic counterpart in terms of decreased downstream flood risk according to different independent forecast scenarios. TB-MPC was also tested considering different number of tree branches, forecast horizons, and different inflow conditions. We conclude that using synthetic PSFs in TB-MPC can provide more robust solutions against forecast uncertainty by resolution of uncertainty in trees.

  9. Evaluation of impacts of trees on PM2.5 dispersion in urban streets

    Science.gov (United States)

    Jin, Sijia; Guo, Jiankang; Wheeler, Stephen; Kan, Liyan; Che, Shengquan

    2014-12-01

    Reducing airborne particulate matter (PM), especially PM2.5 (PM with aerodynamic diameters of 2.5 μm or less), in urban street canyons is critical to the health of central city population. Tree-planting in urban street canyons is a double-edged sword, providing landscape benefits while inevitably resulting in PM2.5 concentrating at street level, thus showing negative environmental effects. Thereby, it is necessary to quantify the impact of trees on PM2.5 dispersion and obtain the optimum structure of street trees for minimizing the PM2.5 concentration in street canyons. However, most of the previous findings in this field were derived from wind tunnel or numerical simulation rather than on-site measuring data. In this study, a seasonal investigation was performed in six typical street canyons in the residential area of central Shanghai, which has been suffering from haze pollution while having large numbers of green streets. We monitored and measured PM2.5 concentrations at five heights, structural parameters of street trees and weather. For tree-free street canyons, declining PM2.5 concentrations were found with increasing height. However, in presence of trees the reduction rate of PM2.5 concentrations was less pronounced, and for some cases, the concentrations even increased at the top of street canyons, indicating tree canopies are trapping PM2.5. To quantify the decrease of PM2.5 reduction rate, we developed the attenuation coefficient of PM2.5 (PMAC). The wind speed was significantly lower in street canyons with trees than in tree-free ones. A mixed-effects model indicated that canopy density (CD), leaf area index (LAI), rate of change of wind speed were the most significant predictors influencing PMAC. Further regression analysis showed that in order to balance both environmental and landscape benefits of green streets, the optimum range of CD and LAI was 50%-60% and 1.5-2.0 respectively. We concluded by suggesting an optimized tree-planting pattern and

  10. Estimating tree species diversity in the savannah using NDVI and woody canopy cover

    Science.gov (United States)

    Madonsela, Sabelo; Cho, Moses Azong; Ramoelo, Abel; Mutanga, Onisimo; Naidoo, Laven

    2018-04-01

    Remote sensing applications in biodiversity research often rely on the establishment of relationships between spectral information from the image and tree species diversity measured in the field. Most studies have used normalized difference vegetation index (NDVI) to estimate tree species diversity on the basis that it is sensitive to primary productivity which defines spatial variation in plant diversity. The NDVI signal is influenced by photosynthetically active vegetation which, in the savannah, includes woody canopy foliage and grasses. The question is whether the relationship between NDVI and tree species diversity in the savanna depends on the woody cover percentage. This study explored the relationship between woody canopy cover (WCC) and tree species diversity in the savannah woodland of southern Africa and also investigated whether there is a significant interaction between seasonal NDVI and WCC in the factorial model when estimating tree species diversity. To fulfil our aim, we followed stratified random sampling approach and surveyed tree species in 68 plots of 90 m × 90 m across the study area. Within each plot, all trees with diameter at breast height of >10 cm were sampled and Shannon index - a common measure of species diversity which considers both species richness and abundance - was used to quantify tree species diversity. We then extracted WCC in each plot from existing fractional woody cover product produced from Synthetic Aperture Radar (SAR) data. Factorial regression model was used to determine the interaction effect between NDVI and WCC when estimating tree species diversity. Results from regression analysis showed that (i) WCC has a highly significant relationship with tree species diversity (r2 = 0.21; p NDVI and WCC is not significant, however, the factorial model significantly reduced the error of prediction (RMSE = 0.47, p NDVI (RMSE = 0.49) or WCC (RMSE = 0.49) model during the senescence period. The result justifies our assertion

  11. Dynamic Event Tree advancements and control logic improvements

    Energy Technology Data Exchange (ETDEWEB)

    Alfonsi, Andrea [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sen, Ramazan Sonat [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cogliati, Joshua Joseph [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    The RAVEN code has been under development at the Idaho National Laboratory since 2012. Its main goal is to create a multi-purpose platform for the deploying of all the capabilities needed for Probabilistic Risk Assessment, uncertainty quantification, data mining analysis and optimization studies. RAVEN is currently equipped with three different sampling categories: Forward samplers (Monte Carlo, Latin Hyper Cube, Stratified, Grid Sampler, Factorials, etc.), Adaptive Samplers (Limit Surface search, Adaptive Polynomial Chaos, etc.) and Dynamic Event Tree (DET) samplers (Deterministic and Adaptive Dynamic Event Trees). The main subject of this document is to report the activities that have been done in order to: start the migration of the RAVEN/RELAP-7 control logic system into MOOSE, and develop advanced dynamic sampling capabilities based on the Dynamic Event Tree approach. In order to provide to all MOOSE-based applications a control logic capability, in this Fiscal Year an initial migration activity has been initiated, moving the control logic system, designed for RELAP-7 by the RAVEN team, into the MOOSE framework. In this document, a brief explanation of what has been done is going to be reported. The second and most important subject of this report is about the development of a Dynamic Event Tree (DET) sampler named “Hybrid Dynamic Event Tree” (HDET) and its Adaptive variant “Adaptive Hybrid Dynamic Event Tree” (AHDET). As other authors have already reported, among the different types of uncertainties, it is possible to discern two principle types: aleatory and epistemic uncertainties. The classical Dynamic Event Tree is in charge of treating the first class (aleatory) uncertainties; the dependence of the probabilistic risk assessment and analysis on the epistemic uncertainties are treated by an initial Monte Carlo sampling (MCDET). From each Monte Carlo sample, a DET analysis is run (in total, N trees). The Monte Carlo employs a pre-sampling of the

  12. Joint-layer encoder optimization for HEVC scalable extensions

    Science.gov (United States)

    Tsai, Chia-Ming; He, Yuwen; Dong, Jie; Ye, Yan; Xiu, Xiaoyu; He, Yong

    2014-09-01

    Scalable video coding provides an efficient solution to support video playback on heterogeneous devices with various channel conditions in heterogeneous networks. SHVC is the latest scalable video coding standard based on the HEVC standard. To improve enhancement layer coding efficiency, inter-layer prediction including texture and motion information generated from the base layer is used for enhancement layer coding. However, the overall performance of the SHVC reference encoder is not fully optimized because rate-distortion optimization (RDO) processes in the base and enhancement layers are independently considered. It is difficult to directly extend the existing joint-layer optimization methods to SHVC due to the complicated coding tree block splitting decisions and in-loop filtering process (e.g., deblocking and sample adaptive offset (SAO) filtering) in HEVC. To solve those problems, a joint-layer optimization method is proposed by adjusting the quantization parameter (QP) to optimally allocate the bit resource between layers. Furthermore, to make more proper resource allocation, the proposed method also considers the viewing probability of base and enhancement layers according to packet loss rate. Based on the viewing probability, a novel joint-layer RD cost function is proposed for joint-layer RDO encoding. The QP values of those coding tree units (CTUs) belonging to lower layers referenced by higher layers are decreased accordingly, and the QP values of those remaining CTUs are increased to keep total bits unchanged. Finally the QP values with minimal joint-layer RD cost are selected to match the viewing probability. The proposed method was applied to the third temporal level (TL-3) pictures in the Random Access configuration. Simulation results demonstrate that the proposed joint-layer optimization method can improve coding performance by 1.3% for these TL-3 pictures compared to the SHVC reference encoder without joint-layer optimization.

  13. Dynamic programming for optimization of timber production and grazing in ponderosa pine

    Science.gov (United States)

    Kurt H. Riitters; J. Douglas Brodie; David W. Hann

    1982-01-01

    Dynamic programming procedures are presented for optimizing thinning and rotation of even-aged ponderosa pine by using the four descriptors: age, basal area, number of trees, and time since thinning. Because both timber yield and grazing yield are functions of stand density, the two outputs-forage and timber-can both be optimized. The soil expectation values for single...

  14. City of Pittsburgh Trees

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Trees cared for and managed by the City of Pittsburgh Department of Public Works Forestry Division. Tree Benefits are calculated using the National Tree Benefit...

  15. Flowering Trees

    Indian Academy of Sciences (India)

    user

    Flowering Trees. Gliricidia sepium(Jacq.) Kunta ex Walp. (Quickstick) of Fabaceae is a small deciduous tree with. Pinnately compound leaves. Flower are prroduced in large number in early summer on terminal racemes. They are attractive, pinkish-white and typically like bean flowers. Fruit is a few-seeded flat pod.

  16. Drawing Trees

    DEFF Research Database (Denmark)

    Halkjær From, Andreas; Schlichtkrull, Anders; Villadsen, Jørgen

    2018-01-01

    We formally prove in Isabelle/HOL two properties of an algorithm for laying out trees visually. The first property states that removing layout annotations recovers the original tree. The second property states that nodes are placed at least a unit of distance apart. We have yet to formalize three...

  17. Interspecific variation in tree seedlings establishment in canopy gaps in relation to tree density

    Energy Technology Data Exchange (ETDEWEB)

    Reader, R.J.; Bonser, S.P.; Duralia, T.E.; Bricker, B.D. [Guelph Univ., ON (Canada). Dept. of Botany

    1995-10-01

    We tested whether interspecific variation in tree seedling establishment in canopy gaps was significantly related to interspecific variation in tree density, for seven deciduous forest tree species (Quercus alba, Hamamelis virginiana, Acer rubrum, Sassafras albidum, Quercus rubra, Prunus serotina, Ostrya virginiana). For each species, seedling establishment was calculated as the difference in seedling density before experimental gap creation versus three years after gap creation. In each of the six experimentally-created gap types (33% or 66% removal of tree basal area from 0.01ha, 0.05ha or 0.20ha patches), differences in seedling establishment among species were significantly related to differences in their density in the tree canopy. A regression model with log{sub e} tree density as the independent variable accounted for between 93% and 98% of interspecific variation in seedling establishment. Our results provide empirical support for models of tree dynamics in gaps that assume seedling establishment depends on canopy tree density. 17 refs, 1 fig, 3 tabs

  18. Hybrid Direct and Iterative Solver with Library of Multi-criteria Optimal Orderings for h Adaptive Finite Element Method Computations

    KAUST Repository

    AbouEisha, Hassan M.; Jopek, Konrad; Medygrał, Bartłomiej; Moshkov, Mikhail; Nosek, Szymon; Paszyńska, Anna; Paszyński, Maciej; Pingali, Keshav

    2016-01-01

    trees, for each mesh, and for each refinement level. We generate a library of optimal elimination trees for small grids with local singularities. We also propose an algorithm that for a given large mesh with identified local sub-grids, each one

  19. Phylogenetic trees in bioinformatics

    Energy Technology Data Exchange (ETDEWEB)

    Burr, Tom L [Los Alamos National Laboratory

    2008-01-01

    Genetic data is often used to infer evolutionary relationships among a collection of viruses, bacteria, animal or plant species, or other operational taxonomic units (OTU). A phylogenetic tree depicts such relationships and provides a visual representation of the estimated branching order of the OTUs. Tree estimation is unique for several reasons, including: the types of data used to represent each OTU; the use ofprobabilistic nucleotide substitution models; the inference goals involving both tree topology and branch length, and the huge number of possible trees for a given sample of a very modest number of OTUs, which implies that fmding the best tree(s) to describe the genetic data for each OTU is computationally demanding. Bioinformatics is too large a field to review here. We focus on that aspect of bioinformatics that includes study of similarities in genetic data from multiple OTUs. Although research questions are diverse, a common underlying challenge is to estimate the evolutionary history of the OTUs. Therefore, this paper reviews the role of phylogenetic tree estimation in bioinformatics, available methods and software, and identifies areas for additional research and development.

  20. Fast Tree: Computing Large Minimum-Evolution Trees with Profiles instead of a Distance Matrix

    OpenAIRE

    N. Price, Morgan

    2009-01-01

    Gene families are growing rapidly, but standard methods for inferring phylogenies do not scale to alignments with over 10,000 sequences. We present FastTree, a method for constructing large phylogenies and for estimating their reliability. Instead of storing a distance matrix, FastTree stores sequence profiles of internal nodes in the tree. FastTree uses these profiles to implement neighbor-joining and uses heuristics to quickly identify candidate joins. FastTree then uses nearest-neighbor i...

  1. FastTree: Computing Large Minimum Evolution Trees with Profiles instead of a Distance Matrix

    OpenAIRE

    Price, Morgan N.; Dehal, Paramvir S.; Arkin, Adam P.

    2009-01-01

    Gene families are growing rapidly, but standard methods for inferring phylogenies do not scale to alignments with over 10,000 sequences. We present FastTree, a method for constructing large phylogenies and for estimating their reliability. Instead of storing a distance matrix, FastTree stores sequence profiles of internal nodes in the tree. FastTree uses these profiles to implement Neighbor-Joining and uses heuristics to quickly identify candidate joins. FastTree then uses nearest neighbor in...

  2. Virtual private network design : a proof of the tree routing conjecture on ring networks

    NARCIS (Netherlands)

    Hurkens, C.A.J.; Keijsper, J.C.M.; Stougie, L.

    2007-01-01

    A basic question in virtual private network (VPN) design is if the symmetric version of the problem always has an optimal solution which is a tree network. An affirmative answer would imply that the symmetric VPN problem is solvable in polynomial time. We give an affirmative answer in case the

  3. Flowering Trees

    Indian Academy of Sciences (India)

    Flowering Trees. Acrocarpus fraxinifolius Wight & Arn. (PINK CEDAR, AUSTRALIAN ASH) of. Caesalpiniaceae is a lofty unarmed deciduous native tree that attains a height of 30–60m with buttresses. Bark is thin and light grey. Leaves are compound and bright red when young. Flowers in dense, erect, axillary racemes.

  4. An FMM based on dual tree traversal for many-core architectures

    KAUST Repository

    Yokota, Rio

    2013-09-01

    The present work attempts to integrate the independent efforts in the fast N-body community to create the fastest N-body library for many-core and heterogenous architectures. Focus is placed on low accuracy optimizations, in response to the recent interest to use FMM as a preconditioner for sparse linear solvers. A direct comparison with other state-of-the-art fast N-body codes demonstrates that orders of magnitude increase in performance can be achieved by careful selection of the optimal algorithm and low-level optimization of the code. The current N-body solver uses a fast multipole method with an efficient strategy for finding the list of cell-cell interactions by a dual tree traversal. A task-based threading model is used to maximize thread-level parallelism and intra-node load-balancing. In order to extract the full potential of the SIMD units on the latest CPUs, the inner kernels are optimized using AVX instructions.

  5. On Tree-Based Phylogenetic Networks.

    Science.gov (United States)

    Zhang, Louxin

    2016-07-01

    A large class of phylogenetic networks can be obtained from trees by the addition of horizontal edges between the tree edges. These networks are called tree-based networks. We present a simple necessary and sufficient condition for tree-based networks and prove that a universal tree-based network exists for any number of taxa that contains as its base every phylogenetic tree on the same set of taxa. This answers two problems posted by Francis and Steel recently. A byproduct is a computer program for generating random binary phylogenetic networks under the uniform distribution model.

  6. Development and Validation of a GC-MS Method for the Analysis of Homogentisic Acid in Strawberry Tree (Arbutus unedo L.) Honey.

    Science.gov (United States)

    Brčić Karačonji, Irena; Jurica, Karlo

    2017-07-01

    To confirm the botanical origin of strawberry tree (Arbutus unedo L.) honey, a liquid-liquid extraction followed by GC-MS method was developed for the quantitative determination of homogentisic acid (HGA), the main phenolic compound in this honey. Different parameters affecting extraction, such as the type and volume of extraction solvents, pH of the solution, and amount of salt, were optimized. The method showed good linearity (r2 = 0.9990) over the tested concentration range (50-500 mg/kg) and a low LOD (0.3 mg/kg). Precision expressed as RSD was <7%. The average accuracy was 95%. The optimized method was applied for determining the HGA content in strawberry tree honey samples from Croatia. The HGA content in analyzed samples (n = 7) ranged from 245.1 to 485.9 mg/kg. The proposed method provided reliable performance and can be easily implemented for the routine monitoring of HGA in strawberry tree honey in order to assure honey QC.

  7. Optimal test intervals for shutdown systems for the Cernavoda nuclear power station

    International Nuclear Information System (INIS)

    Negut, Gh.; Laslau, F.

    1993-01-01

    Cernavoda nuclear power station required a complete PSA study. As a part of this study, an important goal to enhance the effectiveness of the plant operation is to establish optimal test intervals for the important engineering safety systems. The paper presents, briefly, the current methods to optimize the test intervals. For this reason it was used Vesely methods to establish optimal test intervals and Frantic code to survey the influence of the test intervals on system availability. The applications were done on the Shutdown System no. 1, a shutdown system provided whit solid rods and on Shutdown System no. 2 provided with injecting poison. The shutdown systems receive nine total independent scram signals that dictate the test interval. Fault trees for the both safety systems were developed. For the fault tree solutions an original code developed in our Institute was used. The results, intended to be implemented in the technical specifications for test and operation of Cernavoda NPS are presented

  8. Optimized Data Indexing Algorithms for OLAP Systems

    Directory of Open Access Journals (Sweden)

    Lucian BORNAZ

    2010-12-01

    Full Text Available The need to process and analyze large data volumes, as well as to convey the information contained therein to decision makers naturally led to the development of OLAP systems. Similarly to SGBDs, OLAP systems must ensure optimum access to the storage environment. Although there are several ways to optimize database systems, implementing a correct data indexing solution is the most effective and less costly. Thus, OLAP uses indexing algorithms for relational data and n-dimensional summarized data stored in cubes. Today database systems implement derived indexing algorithms based on well-known Tree, Bitmap and Hash indexing algorithms. This is because no indexing algorithm provides the best performance for any particular situation (type, structure, data volume, application. This paper presents a new n-dimensional cube indexing algorithm, derived from the well known B-Tree index, which indexes data stored in data warehouses taking in consideration their multi-dimensional nature and provides better performance in comparison to the already implemented Tree-like index types.

  9. A Metric on Phylogenetic Tree Shapes.

    Science.gov (United States)

    Colijn, C; Plazzotta, G

    2018-01-01

    The shapes of evolutionary trees are influenced by the nature of the evolutionary process but comparisons of trees from different processes are hindered by the challenge of completely describing tree shape. We present a full characterization of the shapes of rooted branching trees in a form that lends itself to natural tree comparisons. We use this characterization to define a metric, in the sense of a true distance function, on tree shapes. The metric distinguishes trees from random models known to produce different tree shapes. It separates trees derived from tropical versus USA influenza A sequences, which reflect the differing epidemiology of tropical and seasonal flu. We describe several metrics based on the same core characterization, and illustrate how to extend the metric to incorporate trees' branch lengths or other features such as overall imbalance. Our approach allows us to construct addition and multiplication on trees, and to create a convex metric on tree shapes which formally allows computation of average tree shapes. © The Author(s) 2017. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.

  10. Human decision error (HUMDEE) trees

    International Nuclear Information System (INIS)

    Ostrom, L.T.

    1993-01-01

    Graphical presentations of human actions in incident and accident sequences have been used for many years. However, for the most part, human decision making has been underrepresented in these trees. This paper presents a method of incorporating the human decision process into graphical presentations of incident/accident sequences. This presentation is in the form of logic trees. These trees are called Human Decision Error Trees or HUMDEE for short. The primary benefit of HUMDEE trees is that they graphically illustrate what else the individuals involved in the event could have done to prevent either the initiation or continuation of the event. HUMDEE trees also present the alternate paths available at the operator decision points in the incident/accident sequence. This is different from the Technique for Human Error Rate Prediction (THERP) event trees. There are many uses of these trees. They can be used for incident/accident investigations to show what other courses of actions were available and for training operators. The trees also have a consequence component so that not only the decision can be explored, also the consequence of that decision

  11. Tree felling: a necessary evil

    CERN Multimedia

    CERN Bulletin

    2013-01-01

    CERN started a campaign of tree felling in 2010 for safety reasons, and it will continue this year in various parts of the Meyrin site. As in previous years, the trees cut down in 2013 will be recycled and some will be replaced.   Diseased tree that had to be cut down on the Meyrin site. In association with the Geneva nature and countryside directorate (Direction générale de la nature et du paysage, DGNP), CERN commissioned the Geneva school of landscaping, engineering and architecture (Haute école du paysage, d’ingénierie et d’architecture, HEPIA) to compile an inventory of the trees on the Meyrin site. In total, 1285 trees (excluding poplars) were recorded. 75.5% of these trees were declared to be in a good state of health (i.e. 971 trees), 21.5% in a moderate state of health (276 trees) and 3% in a poor state of health (38 trees). As for the poplars, the 236 specimens recorded on the Meyrin site were judged to be too old, to...

  12. Per tree estimates with n-tree distance sampling: an application to increment core data

    Science.gov (United States)

    Thomas B. Lynch; Robert F. Wittwer

    2002-01-01

    Per tree estimates using the n trees nearest a point can be obtained by using a ratio of per unit area estimates from n-tree distance sampling. This ratio was used to estimate average age by d.b.h. classes for cottonwood trees (Populus deltoides Bartr. ex Marsh.) on the Cimarron National Grassland. Increment...

  13. Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy.

    Science.gov (United States)

    Letunic, Ivica; Bork, Peer

    2011-07-01

    Interactive Tree Of Life (http://itol.embl.de) is a web-based tool for the display, manipulation and annotation of phylogenetic trees. It is freely available and open to everyone. In addition to classical tree viewer functions, iTOL offers many novel ways of annotating trees with various additional data. Current version introduces numerous new features and greatly expands the number of supported data set types. Trees can be interactively manipulated and edited. A free personal account system is available, providing management and sharing of trees in user defined workspaces and projects. Export to various bitmap and vector graphics formats is supported. Batch access interface is available for programmatic access or inclusion of interactive trees into other web services.

  14. Maximum Gene-Support Tree

    Directory of Open Access Journals (Sweden)

    Yunfeng Shan

    2008-01-01

    Full Text Available Genomes and genes diversify during evolution; however, it is unclear to what extent genes still retain the relationship among species. Model species for molecular phylogenetic studies include yeasts and viruses whose genomes were sequenced as well as plants that have the fossil-supported true phylogenetic trees available. In this study, we generated single gene trees of seven yeast species as well as single gene trees of nine baculovirus species using all the orthologous genes among the species compared. Homologous genes among seven known plants were used for validation of the finding. Four algorithms—maximum parsimony (MP, minimum evolution (ME, maximum likelihood (ML, and neighbor-joining (NJ—were used. Trees were reconstructed before and after weighting the DNA and protein sequence lengths among genes. Rarely a gene can always generate the “true tree” by all the four algorithms. However, the most frequent gene tree, termed “maximum gene-support tree” (MGS tree, or WMGS tree for the weighted one, in yeasts, baculoviruses, or plants was consistently found to be the “true tree” among the species. The results provide insights into the overall degree of divergence of orthologous genes of the genomes analyzed and suggest the following: 1 The true tree relationship among the species studied is still maintained by the largest group of orthologous genes; 2 There are usually more orthologous genes with higher similarities between genetically closer species than between genetically more distant ones; and 3 The maximum gene-support tree reflects the phylogenetic relationship among species in comparison.

  15. Hydrodynamics of isohydric and anisohydric trees: insights from models and measurements

    Science.gov (United States)

    Novick, K. A.; Oishi, A. C.; Roman, D. T.; Benson, M. C.; Miniat, C.

    2016-12-01

    In an effort to understand and predict the mechanisms that govern tree response to hydrologic stress, plant hydraulic theory, which classifies trees along a continuum of isohydric to anisohydric water use strategies, is increasingly being used. Isohydry maintains relatively constant leaf water potential during periods of water stress, promoting wide hydraulic safety margins that reduce the risk of xylem cavitation. In contrast, anisohydry allows leaf water potential to fall as soil water potential falls, but in doing so trees incur a greater risk of hydraulic failure. As a result, unique patterns of stomatal functioning between isohydric and anisohydric species are both predicted and observed in leaf-, tree-, and stand-level water use. We use a novel model formulation to examine the dynamics of three mechanisms that are potentially limiting to leaf-level gas exchange in trees during drought: (1) a `demand limitation' driven by an assumption of stomatal optimization of water loss and carbon uptake; (2) `hydraulic limitation' of water movement from the roots to the leaves; and (3) `non-stomatal' limitations imposed by declining leaf water status within the leaf. Model results suggest that species-specific `economics' of stomatal behavior may play an important role in differentiating species along the continuum of isohydric to anisohydric behavior; specifically, we show that non-stomatal and demand limitations may reduce stomatal conductance and increase leaf water potential, promoting wide safety margins characteristic of isohydric species. Direct comparisons of modeled and measured stomatal conductance further indicated that non-stomatal and demand limitations reproduced observed patterns of tree water use well for an isohydric species but that a hydraulic limitation likely applies in the case of an anisohydric species. This modeling framework used in concert with climate data may help land managers and scientists predict when and what forest species and communities

  16. Tree Rings: Timekeepers of the Past.

    Science.gov (United States)

    Phipps, R. L.; McGowan, J.

    One of a series of general interest publications on science issues, this booklet describes the uses of tree rings in historical and biological recordkeeping. Separate sections cover the following topics: dating of tree rings, dating with tree rings, tree ring formation, tree ring identification, sample collections, tree ring cross dating, tree…

  17. Flowering Trees

    Indian Academy of Sciences (India)

    Cassia siamia Lamk. (Siamese tree senna) of Caesalpiniaceae is a small or medium size handsome tree. Leaves are alternate, pinnately compound and glandular, upto 18 cm long with 8–12 pairs of leaflets. Inflorescence is axillary or terminal and branched. Flowering lasts for a long period from March to February. Fruit is ...

  18. Flowering Trees

    Indian Academy of Sciences (India)

    Flowering Trees. Cerbera manghasL. (SEA MANGO) of Apocynaceae is a medium-sized evergreen coastal tree with milky latex. The bark is grey-brown, thick and ... Fruit is large. (5–10 cm long), oval containing two flattened seeds and resembles a mango, hence the name Mangas or. Manghas. Leaves and fruits contain ...

  19. Talking Trees

    Science.gov (United States)

    Tolman, Marvin

    2005-01-01

    Students love outdoor activities and will love them even more when they build confidence in their tree identification and measurement skills. Through these activities, students will learn to identify the major characteristics of trees and discover how the pace--a nonstandard measuring unit--can be used to estimate not only distances but also the…

  20. Interplay of growth rate and xylem plasticity for optimal coordination of carbon and hydraulic economies in Fraxinus ornus trees.

    Science.gov (United States)

    Petit, Giai; Savi, Tadeja; Consolini, Martina; Anfodillo, Tommaso; Nardini, Andrea

    2016-11-01

    Efficient leaf water supply is fundamental for assimilation processes and tree growth. Renovating the architecture of the xylem transport system requires an increasing carbon investment while growing taller, and any deficiency of carbon availability may result in increasing hydraulic constraints to water flow. Therefore, plants need to coordinate carbon assimilation and biomass allocation to guarantee an efficient and safe long-distance transport system. We tested the hypothesis that reduced branch elongation rates together with carbon-saving adjustments of xylem anatomy hydraulically compensate for the reduction in biomass allocation to xylem. We measured leaf biomass, hydraulic and anatomical properties of wood segments along the main axis of branches in 10 slow growing (SG) and 10 fast growing (FG) Fraxinus ornus L. trees. Branches of SG trees had five times slower branch elongation rate (7 vs 35 cm year -1 ), and produced a higher leaf biomass (P trees in terms of leaf-specific conductivity (P > 0.05) and xylem safety (Ψ 50 ≈ -3.2 MPa). Slower elongation rate coupled with thinner annual rings and larger vessels allows the reduction of carbon costs associated with growth, while maintaining similar leaf-specific conductivity and xylem safety. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. ELB-trees an efficient and lock-free B-tree derivative

    DEFF Research Database (Denmark)

    Bonnichsen, Lars Frydendal; Karlsson, Sven; Probst, Christian W.

    2013-01-01

    overhead. All lock-free data structures are based on simple atomic operations that, though supported by modern processors, are expensive in execution time. We present a lock-free data structure, ELB-trees, which under certain assumptions can be used as multimaps as well as priority queues. Specifically...... it cannot store duplicate key-value pairs, and it is not linearizable. Compared to existing data structures, ELB-trees require fewer atomic operations leading to improved performance. We measure the parallel performance of ELB-trees using a set of benchmarks and observe that ELB-trees are up to almost 30......As computer systems scale in the number of processors, scalable data structures with good parallel performance become increasingly important. Lock-free data structures promise such improved parallel performance at the expense of higher algorithmic complexity and higher sequential execution time...

  2. Fitting Markovian binary trees using global and individual demographic data

    OpenAIRE

    Hautphenne, Sophie; Massaro, Melanie; Turner, Katharine

    2017-01-01

    We consider a class of branching processes called Markovian binary trees, in which the individuals lifetime and reproduction epochs are modeled using a transient Markovian arrival process (TMAP). We estimate the parameters of the TMAP based on population data containing information on age-specific fertility and mortality rates. Depending on the degree of detail of the available data, a weighted non-linear regression method or a maximum likelihood method is applied. We discuss the optimal choi...

  3. Atlas of United States Trees, Volume 2: Alaska Trees and Common Shrubs.

    Science.gov (United States)

    Viereck, Leslie A.; Little, Elbert L., Jr.

    This volume is the second in a series of atlases describing the natural distribution or range of native tree species in the United States. The 82 species maps include 32 of trees in Alaska, 6 of shrubs rarely reaching tree size, and 44 more of common shrubs. More than 20 additional maps summarize environmental factors and furnish general…

  4. Colourings of (k-r,k-trees

    Directory of Open Access Journals (Sweden)

    M. Borowiecki

    2017-01-01

    Full Text Available Trees are generalized to a special kind of higher dimensional complexes known as \\((j,k\\-trees ([L. W. Beineke, R. E. Pippert, On the structure of \\((m,n\\-trees, Proc. 8th S-E Conf. Combinatorics, Graph Theory and Computing, 1977, 75-80], and which are a natural extension of \\(k\\-trees for \\(j=k-1\\. The aim of this paper is to study\\((k-r,k\\-trees ([H. P. Patil, Studies on \\(k\\-trees and some related topics, PhD Thesis, University of Warsaw, Poland, 1984], which are a generalization of \\(k\\-trees (or usual trees when \\(k=1\\. We obtain the chromatic polynomial of \\((k-r,k\\-trees and show that any two \\((k-r,k\\-trees of the same order are chromatically equivalent. However, if \\(r\

  5. The valuative tree

    CERN Document Server

    Favre, Charles

    2004-01-01

    This volume is devoted to a beautiful object, called the valuative tree and designed as a powerful tool for the study of singularities in two complex dimensions. Its intricate yet manageable structure can be analyzed by both algebraic and geometric means. Many types of singularities, including those of curves, ideals, and plurisubharmonic functions, can be encoded in terms of positive measures on the valuative tree. The construction of these measures uses a natural tree Laplace operator of independent interest.

  6. A recursive algorithm for trees and forests

    OpenAIRE

    Guo, Song; Guo, Victor J. W.

    2017-01-01

    Trees or rooted trees have been generously studied in the literature. A forest is a set of trees or rooted trees. Here we give recurrence relations between the number of some kind of rooted forest with $k$ roots and that with $k+1$ roots on $\\{1,2,\\ldots,n\\}$. Classical formulas for counting various trees such as rooted trees, bipartite trees, tripartite trees, plane trees, $k$-ary plane trees, $k$-edge colored trees follow immediately from our recursive relations.

  7. Understanding recruitment failure in tropical tree species: Insights from a tree ring study

    NARCIS (Netherlands)

    Vlam, M.; Baker, P.J.; Bunyavejchewin, S.; Mohren, G.M.J.; Zuidema, P.A.

    2014-01-01

    Many tropical tree species have population structures that exhibit strong recruitment failure. While the presence of adult trees indicates that appropriate regeneration conditions occurred in the past, it is often unclear why small individuals are absent. Knowing how, when and where these tree

  8. Attack Trees with Sequential Conjunction

    NARCIS (Netherlands)

    Jhawar, Ravi; Kordy, Barbara; Mauw, Sjouke; Radomirović, Sasa; Trujillo-Rasua, Rolando

    2015-01-01

    We provide the first formal foundation of SAND attack trees which are a popular extension of the well-known attack trees. The SAND at- tack tree formalism increases the expressivity of attack trees by intro- ducing the sequential conjunctive operator SAND. This operator enables the modeling of

  9. SINGLE TREE DETECTION FROM AIRBORNE LASER SCANNING DATA USING A MARKED POINT PROCESS BASED METHOD

    Directory of Open Access Journals (Sweden)

    J. Zhang

    2013-05-01

    Full Text Available Tree detection and reconstruction is of great interest in large-scale city modelling. In this paper, we present a marked point process model to detect single trees from airborne laser scanning (ALS data. We consider single trees in ALS recovered canopy height model (CHM as a realization of point process of circles. Unlike traditional marked point process, we sample the model in a constraint configuration space by making use of image process techniques. A Gibbs energy is defined on the model, containing a data term which judge the fitness of the model with respect to the data, and prior term which incorporate the prior knowledge of object layouts. We search the optimal configuration through a steepest gradient descent algorithm. The presented hybrid framework was test on three forest plots and experiments show the effectiveness of the proposed method.

  10. Tree Size Comparison of Some Important Street Trees Growing at ...

    African Journals Online (AJOL)

    PROF HORSFALL

    More research is needed on these trees for healthy environment of city. The present ..... use and CO2 emissions from power plants. Environ. Poll. .... Anna. Bot., 65:567-574. Kozlowski, T.T., 1971. Growth and Development of. Trees. Vol. 1.

  11. Flowering Trees

    Indian Academy of Sciences (India)

    medium-sized handsome tree with a straight bole that branches at the top. Leaves are once pinnate, with two to three pairs of leaflets. Young parts of the tree are velvety. Inflorescence is a branched raceme borne at the branch ends. Flowers are large, white, attractive, and fragrant. Corolla is funnel-shaped. Fruit is an ...

  12. Flowering Trees

    Indian Academy of Sciences (India)

    Srimath

    Grevillea robusta A. Cunn. ex R. Br. (Sil- ver Oak) of Proteaceae is a daintily lacy ornamental tree while young and growing into a mighty tree (45 m). Young shoots are silvery grey and the leaves are fern- like. Flowers are golden-yellow in one- sided racemes (10 cm). Fruit is a boat- shaped, woody follicle.

  13. Mathematical foundations of event trees

    International Nuclear Information System (INIS)

    Papazoglou, Ioannis A.

    1998-01-01

    A mathematical foundation from first principles of event trees is presented. The main objective of this formulation is to offer a formal basis for developing automated computer assisted construction techniques for event trees. The mathematical theory of event trees is based on the correspondence between the paths of the tree and the elements of the outcome space of a joint event. The concept of a basic cylinder set is introduced to describe joint event outcomes conditional on specific outcomes of basic events or unconditional on the outcome of basic events. The concept of outcome space partition is used to describe the minimum amount of information intended to be preserved by the event tree representation. These concepts form the basis for an algorithm for systematic search for and generation of the most compact (reduced) form of an event tree consistent with the minimum amount of information the tree should preserve. This mathematical foundation allows for the development of techniques for automated generation of event trees corresponding to joint events which are formally described through other types of graphical models. Such a technique has been developed for complex systems described by functional blocks and it is reported elsewhere. On the quantification issue of event trees, a formal definition of a probability space corresponding to the event tree outcomes is provided. Finally, a short discussion is offered on the relationship of the presented mathematical theory with the more general use of event trees in reliability analysis of dynamic systems

  14. Analytical solutions of linked fault tree probabilistic risk assessments using binary decision diagrams with emphasis on nuclear safety applications

    International Nuclear Information System (INIS)

    Nusbaumer, O. P. M.

    2007-01-01

    . BDDs have the remarkable properties of having complexity that is not related to the number of prime implicants of the encoded Boolean formula and of having polynomial time complexity. Since a BDD analytically encodes a Boolean formula, the failure probability of the top event can be deduced without the need to resort to any numerical approximations. This approach is therefore an interesting technique for fault tree assessment. However, extended efforts are required when converting a given fault tree structure to its BDD form; the complexity associated with the conversion can be considerably reduced by optimizing the order of the basic events in the BDD. This optimization problem was proved to be of NP-complete complexity. Heuristics have been developed and investigated as a case study on the full scope PRA model of the Leibstadt Nuclear Power Plant. Several static and dynamic optimization techniques are proposed to optimize large problems. In order to evaluate these techniques in practice, a software tool (NeuralSpectrum) has been developed as part of this study. The software is an integrated fault tree / BDD tool that features a fault tree package, a BDD engine and a minimal cutset engine, with dedicated fault tree to BDD conversion and optimization routines. The optimization routines include global, static (preprocessing), dynamic and local (BDD objects) techniques. The combination of global, static, dynamic and local optimization techniques proved to be effective when dealing with large models. The Leibstadt PRA model was successfully converted to a BDD form of more than 1'500'000 nodes, for a total of about 3'650 basic events. The BDD covers a complete event tree sequence that includes reactor shutdown and reactor cooling with all Emergency Core Cooling Systems (including all support systems) of the Leibstadt Nuclear Power Plant. The impact of the different approximations used in the classical approach is evaluated using the Leibstadt PRA model, by comparing the

  15. Stand conditions and tree characteristics affect quality of longleaf pine for red-cockaded woodpecker cavity trees

    Science.gov (United States)

    W.G. Ross; D.L. Kulhavy; R.N. Conner

    1997-01-01

    We measured resin flow of longleaf (Pinus palustris Mill.) pines in red-cockaded woodpecker (Picoides borealis Vieillot) clusters in the Angelina National Forest in Texas, and the Apalachicola National Forest in Florida. Sample trees were categorized as active cavity trees, inactive cavity trees and control trees. Sample trees were further...

  16. Making CSB + -Trees Processor Conscious

    DEFF Research Database (Denmark)

    Samuel, Michael; Pedersen, Anders Uhl; Bonnet, Philippe

    2005-01-01

    of the CSB+-tree. We argue that it is necessary to consider a larger group of parameters in order to adapt CSB+-tree to processor architectures as different as Pentium and Itanium. We identify this group of parameters and study how it impacts the performance of CSB+-tree on Itanium 2. Finally, we propose......Cache-conscious indexes, such as CSB+-tree, are sensitive to the underlying processor architecture. In this paper, we focus on how to adapt the CSB+-tree so that it performs well on a range of different processor architectures. Previous work has focused on the impact of node size on the performance...... a systematic method for adapting CSB+-tree to new platforms. This work is a first step towards integrating CSB+-tree in MySQL’s heap storage manager....

  17. Tree architecture and life-history strategies across 200 co-occurring tropical tree species

    NARCIS (Netherlands)

    Iida, Y.; Kohyama, T.S.; Kubo, T.; Kassim, A.R.; Poorter, L.; Sterck, F.J.; Potts, M.D.

    2011-01-01

    1. Tree architecture is thought to allow species to partition horizontal and vertical light gradients in the forest canopy. Tree architecture is closely related to light capture, carbon gain and the efficiency with which trees reach the canopy. Previous studies that investigated how light gradients

  18. Total well dominated trees

    DEFF Research Database (Denmark)

    Finbow, Arthur; Frendrup, Allan; Vestergaard, Preben D.

    cardinality then G is a total well dominated graph. In this paper we study composition and decomposition of total well dominated trees. By a reversible process we prove that any total well dominated tree can both be reduced to and constructed from a family of three small trees....

  19. Polynomial algorithms for the Maximal Pairing Problem: efficient phylogenetic targeting on arbitrary trees

    Directory of Open Access Journals (Sweden)

    Stadler Peter F

    2010-06-01

    Full Text Available Abstract Background The Maximal Pairing Problem (MPP is the prototype of a class of combinatorial optimization problems that are of considerable interest in bioinformatics: Given an arbitrary phylogenetic tree T and weights ωxy for the paths between any two pairs of leaves (x, y, what is the collection of edge-disjoint paths between pairs of leaves that maximizes the total weight? Special cases of the MPP for binary trees and equal weights have been described previously; algorithms to solve the general MPP are still missing, however. Results We describe a relatively simple dynamic programming algorithm for the special case of binary trees. We then show that the general case of multifurcating trees can be treated by interleaving solutions to certain auxiliary Maximum Weighted Matching problems with an extension of this dynamic programming approach, resulting in an overall polynomial-time solution of complexity (n4 log n w.r.t. the number n of leaves. The source code of a C implementation can be obtained under the GNU Public License from http://www.bioinf.uni-leipzig.de/Software/Targeting. For binary trees, we furthermore discuss several constrained variants of the MPP as well as a partition function approach to the probabilistic version of the MPP. Conclusions The algorithms introduced here make it possible to solve the MPP also for large trees with high-degree vertices. This has practical relevance in the field of comparative phylogenetics and, for example, in the context of phylogenetic targeting, i.e., data collection with resource limitations.

  20. Recursive algorithms for phylogenetic tree counting.

    Science.gov (United States)

    Gavryushkina, Alexandra; Welch, David; Drummond, Alexei J

    2013-10-28

    In Bayesian phylogenetic inference we are interested in distributions over a space of trees. The number of trees in a tree space is an important characteristic of the space and is useful for specifying prior distributions. When all samples come from the same time point and no prior information available on divergence times, the tree counting problem is easy. However, when fossil evidence is used in the inference to constrain the tree or data are sampled serially, new tree spaces arise and counting the number of trees is more difficult. We describe an algorithm that is polynomial in the number of sampled individuals for counting of resolutions of a constraint tree assuming that the number of constraints is fixed. We generalise this algorithm to counting resolutions of a fully ranked constraint tree. We describe a quadratic algorithm for counting the number of possible fully ranked trees on n sampled individuals. We introduce a new type of tree, called a fully ranked tree with sampled ancestors, and describe a cubic time algorithm for counting the number of such trees on n sampled individuals. These algorithms should be employed for Bayesian Markov chain Monte Carlo inference when fossil data are included or data are serially sampled.

  1. Tree manipulation experiment

    Science.gov (United States)

    Nishina, K.; Takenaka, C.; Ishizuka, S.; Hashimoto, S.; Yagai, Y.

    2012-12-01

    Some forest operations such as thinning and harvesting management could cause changes in N cycling and N2O emission from soils, since thinning and harvesting managements are accompanied with changes in aboveground environments such as an increase of slash falling and solar radiation on the forest floor. However, a considerable uncertainty exists in effects of thinning and harvesting on N2O fluxes regarding changes in belowground environments by cutting trees. To focus on the effect of changes in belowground environments on the N2O emissions from soils, we conducted a tree manipulation experiment in Japanese cedar (Cryptomeria japonica) stand without soil compaction and slash falling near the chambers and measured N2O flux at 50 cm and 150 cm distances from the tree trunk (stump) before and after cutting. We targeted 5 trees for the manipulation and established the measurement chambers to the 4 directions around each targeted tree relative to upper slope (upper, left, right, lower positions). We evaluated the effect of logging on the emission by using hierarchical Bayesian model. HB model can evaluate the variability in observed data and their uncertainties in the estimation with various probability distributions. Moreover, the HB model can easily accommodate the non-linear relationship among the N2O emissions and the environmental factors, and explicitly take non-independent data (nested structure of data) for the estimation into account by using random effects in the model. Our results showed tree cutting stimulated N2O emission from soils, and also that the increase of N2O flux depended on the distance from the trunk (stump): the increase of N2O flux at 50 cm from the trunk (stump) was greater than that of 150 cm from the trunk. The posterior simulation of the HB model indicated that the stimulation of N2O emission by tree cut- ting could reach up to 200 cm in our experimental plot. By tree cutting, the estimated N2O emission at 0-40 cm from the trunk doubled

  2. The Re-Think Tree.

    Science.gov (United States)

    Gear, Jim

    1993-01-01

    The Re-Think Tree is a simple framework to help individuals assess and improve their behaviors related to environmental issues. The branches of the tree in order of priority are refuse, reduce, re-use, and recycle. Roots of the tree include such things as public opinion, education, and watchdog groups. (KS)

  3. Coalescent-based species tree inference from gene tree topologies under incomplete lineage sorting by maximum likelihood.

    Science.gov (United States)

    Wu, Yufeng

    2012-03-01

    Incomplete lineage sorting can cause incongruence between the phylogenetic history of genes (the gene tree) and that of the species (the species tree), which can complicate the inference of phylogenies. In this article, I present a new coalescent-based algorithm for species tree inference with maximum likelihood. I first describe an improved method for computing the probability of a gene tree topology given a species tree, which is much faster than an existing algorithm by Degnan and Salter (2005). Based on this method, I develop a practical algorithm that takes a set of gene tree topologies and infers species trees with maximum likelihood. This algorithm searches for the best species tree by starting from initial species trees and performing heuristic search to obtain better trees with higher likelihood. This algorithm, called STELLS (which stands for Species Tree InfErence with Likelihood for Lineage Sorting), has been implemented in a program that is downloadable from the author's web page. The simulation results show that the STELLS algorithm is more accurate than an existing maximum likelihood method for many datasets, especially when there is noise in gene trees. I also show that the STELLS algorithm is efficient and can be applied to real biological datasets. © 2011 The Author. Evolution© 2011 The Society for the Study of Evolution.

  4. Coded Splitting Tree Protocols

    DEFF Research Database (Denmark)

    Sørensen, Jesper Hemming; Stefanovic, Cedomir; Popovski, Petar

    2013-01-01

    This paper presents a novel approach to multiple access control called coded splitting tree protocol. The approach builds on the known tree splitting protocols, code structure and successive interference cancellation (SIC). Several instances of the tree splitting protocol are initiated, each...... instance is terminated prematurely and subsequently iterated. The combined set of leaves from all the tree instances can then be viewed as a graph code, which is decodable using belief propagation. The main design problem is determining the order of splitting, which enables successful decoding as early...

  5. Stability Analysis and Optimal Control Strategy for Prevention of Pine Wilt Disease

    Directory of Open Access Journals (Sweden)

    Kwang Sung Lee

    2014-01-01

    Full Text Available We propose a mathematical model of pine wilt disease (PWD which is caused by pine sawyer beetles carrying the pinewood nematode (PWN. We calculate the basic reproduction number R0 and investigate the stability of a disease-free and endemic equilibrium in a given mathematical model. We show that the stability of the equilibrium in the proposed model can be controlled through the basic reproduction number R0. We then discuss effective optimal control strategies for the proposed PWD mathematical model. We demonstrate the existence of a control problem, and then we apply both analytical and numerical techniques to demonstrate effective control methods to prevent the transmission of the PWD. In order to do this, we apply two control strategies: tree-injection of nematicide and the eradication of adult beetles through aerial pesticide spraying. Optimal prevention strategies can be determined by solving the corresponding optimality system. Numerical simulations of the optimal control problem using a set of reasonable parameter values suggest that reducing the number of pine sawyer beetles is more effective than the tree-injection strategy for controlling the spread of PWD.

  6. Drawing Contour Trees in the Plane.

    Science.gov (United States)

    Heine, C; Schneider, D; Carr, Hamish; Scheuermann, G

    2011-11-01

    The contour tree compactly describes scalar field topology. From the viewpoint of graph drawing, it is a tree with attributes at vertices and optionally on edges. Standard tree drawing algorithms emphasize structural properties of the tree and neglect the attributes. Applying known techniques to convey this information proves hard and sometimes even impossible. We present several adaptions of popular graph drawing approaches to the problem of contour tree drawing and evaluate them. We identify five esthetic criteria for drawing contour trees and present a novel algorithm for drawing contour trees in the plane that satisfies four of these criteria. Our implementation is fast and effective for contour tree sizes usually used in interactive systems (around 100 branches) and also produces readable pictures for larger trees, as is shown for an 800 branch example.

  7. Impact of Canopy Coupling on Canopy Average Stomatal Conductance Across Seven Tree Species in Northern Wisconsin

    Science.gov (United States)

    Ewers, B. E.; Mackay, D. S.; Samanta, S.; Ahl, D. E.; Burrows, S. S.; Gower, S. T.

    2001-12-01

    Land use changes over the last century in northern Wisconsin have resulted in a heterogeneous landscape composed of the following four main forest types: northern hardwoods, northern conifer, aspen/fir, and forested wetland. Based on sap flux measurements, aspen/fir has twice the canopy transpiration of northern hardwoods. In addition, daily transpiration was only explained by daily average vapor pressure deficit across the cover types. The objective of this study was to determine if canopy average stomatal conductance could be used to explain the species effects on tree transpiration. Our first hypothesis is that across all of the species, stomatal conductance will respond to vapor pressure deficit so as to maintain a minimum leaf water potential to prevent catostrophic cavitiation. The consequence of this hypothesis is that among species and individuals there is a proportionality between high stomatal conductance and the sensitivity of stomatal conductance to vapor pressure deficit. Our second hypothesis is that species that do not follow the proportionality deviate because the canopies are decoupled from the atmosphere. To test our two hypotheses we calculated canopy average stomatal conductance from sap flux measurements using an inversion of the Penman-Monteith equation. We estimated the canopy coupling using a leaf energy budget model that requires leaf transpiration and canopy aerodynamic conductance. We optimized the parameters of the aerodynamic conductance model using a Monte Carlo technique across six parameters. We determined the optimal model for each species by selecting parameter sets that resulted in the proportionality of our first hypothesis. We then tested the optimal energy budget models of each species by comparing leaf temperature and leaf width predicted by the models to measurements of each tree species. In red pine, sugar maple, and trembling aspen trees under high canopy coupling conditions, we found the hypothesized proportionality

  8. Minnesota's Forest Trees. Revised.

    Science.gov (United States)

    Miles, William R.; Fuller, Bruce L.

    This bulletin describes 46 of the more common trees found in Minnesota's forests and windbreaks. The bulletin contains two tree keys, a summer key and a winter key, to help the reader identify these trees. Besides the two keys, the bulletin includes an introduction, instructions for key use, illustrations of leaf characteristics and twig…

  9. Covering tree with stars

    DEFF Research Database (Denmark)

    Baumbach, Jan; Guo, Jian-Ying; Ibragimov, Rashid

    2013-01-01

    We study the tree edit distance problem with edge deletions and edge insertions as edit operations. We reformulate a special case of this problem as Covering Tree with Stars (CTS): given a tree T and a set of stars, can we connect the stars in by adding edges between them such that the resulting ...

  10. DIF Trees: Using Classification Trees to Detect Differential Item Functioning

    Science.gov (United States)

    Vaughn, Brandon K.; Wang, Qiu

    2010-01-01

    A nonparametric tree classification procedure is used to detect differential item functioning for items that are dichotomously scored. Classification trees are shown to be an alternative procedure to detect differential item functioning other than the use of traditional Mantel-Haenszel and logistic regression analysis. A nonparametric…

  11. Picking a tree: habitat use by the tree agama, Acanthocercus ...

    African Journals Online (AJOL)

    We studied tree agama (Acanthocercus a. atricollis) habitat use in the Magaliesberg mountain range in northern South Africa using sightings of marked individuals, and in a few cases, radio-telemetry. Acanthocercus a. atricollis preferentially selected thorn trees (46%; Acacia karroo), followed by common sugarbush (10%; ...

  12. [Estimating individual tree aboveground biomass of the mid-subtropical forest using airborne LiDAR technology].

    Science.gov (United States)

    Liu, Feng; Tan, Chang; Lei, Pi-Feng

    2014-11-01

    Taking Wugang forest farm in Xuefeng Mountain as the research object, using the airborne light detection and ranging (LiDAR) data under leaf-on condition and field data of concomitant plots, this paper assessed the ability of using LiDAR technology to estimate aboveground biomass of the mid-subtropical forest. A semi-automated individual tree LiDAR cloud point segmentation was obtained by using condition random fields and optimization methods. Spatial structure, waveform characteristics and topography were calculated as LiDAR metrics from the segmented objects. Then statistical models between aboveground biomass from field data and these LiDAR metrics were built. The individual tree recognition rates were 93%, 86% and 60% for coniferous, broadleaf and mixed forests, respectively. The adjusted coefficients of determination (R(2)adj) and the root mean squared errors (RMSE) for the three types of forest were 0.83, 0.81 and 0.74, and 28.22, 29.79 and 32.31 t · hm(-2), respectively. The estimation capability of model based on canopy geometric volume, tree percentile height, slope and waveform characteristics was much better than that of traditional regression model based on tree height. Therefore, LiDAR metrics from individual tree could facilitate better performance in biomass estimation.

  13. Reversed-phase liquid chromatographic profile of free amino acids in strawberry-tree (Arbutus unedo L.) honey.

    Science.gov (United States)

    Spano, Nadia; Piras, Irene; Ciulu, Marco; Floris, Ignazio; Panzanelli, Angelo; Pilo, Maria I; Piu, Paola C; Sanna, Gavino

    2009-01-01

    The typical profile of the free amino acids contained in strawberry-tree (Arbutus unedo L.) honey is reported for the first time. An optimized reversed-phase liquid chromatographic (RP-LC) method with phenyl isothiocyanate precolumn derivatization was used. Fourteen free amino acids were identified and quantified in 16 analytical samples. Proline (65.63%) was found to be the most abundant free amino acid, followed by glutamic acid (6.49%), arginine (5.21%), alanine (5.17%), and phenylalanine (4.97%). The total free amino acid content of strawberry-tree honey (average value, 436 mg/kg) was found to be low in comparison to amounts cited in the literature concerning unifloral honeys. The analytical method was optimized and fully validated in terms of detection and quantitation limits, precision (by testing repeatability and reproducibility), linearity, and bias (by means of recovery tests). The acceptability of the validation protocol results was verified using Horwitz's mathematical model and AOAC guidelines.

  14. Multi-level tree analysis of pulmonary artery/vein trees in non-contrast CT images

    Science.gov (United States)

    Gao, Zhiyun; Grout, Randall W.; Hoffman, Eric A.; Saha, Punam K.

    2012-02-01

    Diseases like pulmonary embolism and pulmonary hypertension are associated with vascular dystrophy. Identifying such pulmonary artery/vein (A/V) tree dystrophy in terms of quantitative measures via CT imaging significantly facilitates early detection of disease or a treatment monitoring process. A tree structure, consisting of nodes and connected arcs, linked to the volumetric representation allows multi-level geometric and volumetric analysis of A/V trees. Here, a new theory and method is presented to generate multi-level A/V tree representation of volumetric data and to compute quantitative measures of A/V tree geometry and topology at various tree hierarchies. The new method is primarily designed on arc skeleton computation followed by a tree construction based topologic and geometric analysis of the skeleton. The method starts with a volumetric A/V representation as input and generates its topologic and multi-level volumetric tree representations long with different multi-level morphometric measures. A new recursive merging and pruning algorithms are introduced to detect bad junctions and noisy branches often associated with digital geometric and topologic analysis. Also, a new notion of shortest axial path is introduced to improve the skeletal arc joining two junctions. The accuracy of the multi-level tree analysis algorithm has been evaluated using computer generated phantoms and pulmonary CT images of a pig vessel cast phantom while the reproducibility of method is evaluated using multi-user A/V separation of in vivo contrast-enhanced CT images of a pig lung at different respiratory volumes.

  15. Preparation of activated carbons from olive-tree wood revisited. II. Physical activation with air

    Energy Technology Data Exchange (ETDEWEB)

    Ould-Idriss, A.; Cuerda-Correa, E.M.; Fernandez-Gonzalez, C.; Alexandre-Franco, M.F.; Gomez-Serrano, V. [Extremadura Univ., Badajoz (Spain). Dept. of Organic and Inorganic Chemistry; Stitou, M. [Univ. Abdelmalek Esaadi, Tetouan (Morocco). Dept. de Chimie; Macias-Garcia, A. [Extremadura Univ., Badajoz (Spain). Dept. of Mechanical, Energetic and Materials Engineering

    2011-02-15

    Olive-tree has been grown in the Mediterranean countries for centuries. For an adequate development of the tree it must be subjected to different treatments such as trimming, large amounts of a woody residue being produced. Such a residue has been traditionally used as a domestic fuel or simply burnt in the landfield. In both cases greenhouse gases are generated to a large extent. Thus, the preparation of activated carbons from olive-tree wood appears as an attractive alternative to valorize this by-product. Commonly, two activation strategies are used with such an aim, namely chemical and physical activation. In this study, the optimization of the physical activation method with air for the production of activated carbon has been analyzed. The results obtained clearly show that if the preparation conditions are adequately controlled, it is possible to prepare activated carbons showing tailored properties in terms of micro- or mesoporous texture and surface area. (author)

  16. The national tree-list layer

    Science.gov (United States)

    Stacy A. Drury; Jason M. Herynk

    2011-01-01

    The National Tree-List Layer (NTLL) project used LANDFIRE map products to produce the first national tree-list map layer that represents tree populations at stand and regional levels. The NTLL was produced in a short time frame to address the needs of Fire and Aviation Management for a map layer that could be used as input for simulating fire-caused tree mortality...

  17. Allometric convergence in savanna trees and implications for the use of plant scaling models in variable ecosystems.

    Directory of Open Access Journals (Sweden)

    Andrew T Tredennick

    Full Text Available Theoretical models of allometric scaling provide frameworks for understanding and predicting how and why the morphology and function of organisms vary with scale. It remains unclear, however, if the predictions of 'universal' scaling models for vascular plants hold across diverse species in variable environments. Phenomena such as competition and disturbance may drive allometric scaling relationships away from theoretical predictions based on an optimized tree. Here, we use a hierarchical Bayesian approach to calculate tree-specific, species-specific, and 'global' (i.e. interspecific scaling exponents for several allometric relationships using tree- and branch-level data harvested from three savanna sites across a rainfall gradient in Mali, West Africa. We use these exponents to provide a rigorous test of three plant scaling models (Metabolic Scaling Theory (MST, Geometric Similarity, and Stress Similarity in savanna systems. For the allometric relationships we evaluated (diameter vs. length, aboveground mass, stem mass, and leaf mass the empirically calculated exponents broadly overlapped among species from diverse environments, except for the scaling exponents for length, which increased with tree cover and density. When we compare empirical scaling exponents to the theoretical predictions from the three models we find MST predictions are most consistent with our observed allometries. In those situations where observations are inconsistent with MST we find that departure from theory corresponds with expected tradeoffs related to disturbance and competitive interactions. We hypothesize savanna trees have greater length-scaling exponents than predicted by MST due to an evolutionary tradeoff between fire escape and optimization of mechanical stability and internal resource transport. Future research on the drivers of systematic allometric variation could reconcile the differences between observed scaling relationships in variable ecosystems and

  18. Multiple-Optimizing Dynamic Sensor Networks with MIMO Technology (PREPRINT)

    Science.gov (United States)

    2010-06-01

    cluster edge is always d and never changes. A backbone is a rooted tree formed by cluster heads. The transmission distance for a backbone-edge...optimization considerations and algorithms,” IEEE Transactions on Mobile Computing, 2004. 15. T. Tang, M. Park, R. W. Heath, Jr. and Scott M. Nettles , “A

  19. Beyond Tree Throw: Wind, Water, Rock and the Mechanics of Tree-Driven Bedrock Physical Weathering

    Science.gov (United States)

    Marshall, J. A.; Anderson, R. S.; Dawson, T. E.; Dietrich, W. E.; Minear, J. T.

    2017-12-01

    Tree throw is often invoked as the dominant process in converting bedrock to soil and thus helping to build the Critical Zone (CZ). In addition, observations of tree roots lifting sidewalk slabs, occupying cracks, and prying slabs of rock from cliff faces have led to a general belief in the power of plant growth forces. These common observations have led to conceptual models with trees at the center of the soil genesis process. This is despite the observation that tree throw is rare in many forested settings, and a dearth of field measurements that quantify the magnitude of growth forces. While few trees blow down, every tree grows roots, inserting many tens of percent of its mass below ground. Yet we lack data quantifying the role of trees in both damaging bedrock and detaching it (and thus producing soil). By combing force measurements at the tree-bedrock interface with precipitation, solar radiation, wind speed, and wind-driven tree sway data we quantified the magnitude and frequency of tree-driven soil-production mechanisms from two contrasting climatic and lithologic regimes (Boulder and Eel Creek CZ Observatories). Preliminary data suggests that in settings with relatively thin soils, trees can damage and detach rock due to diurnal fluctuations, wind response and rainfall events. Surprisingly, our data suggests that forces from roots and trunks growing against bedrock are insufficient to pry rock apart or damage bedrock although much more work is needed in this area. The frequency, magnitude and style of wind-driven tree forces at the bedrock interface varies considerably from one to another species. This suggests that tree properties such as mass, elasticity, stiffness and branch structure determine whether trees respond to gusts big or small, move at the same frequency as large wind gusts, or are able to self-dampen near-ground sway response to extended wind forces. Our measurements of precipitation-driven and daily fluctuations in root pressures exerted on

  20. Nonbinary Tree-Based Phylogenetic Networks.

    Science.gov (United States)

    Jetten, Laura; van Iersel, Leo

    2018-01-01

    Rooted phylogenetic networks are used to describe evolutionary histories that contain non-treelike evolutionary events such as hybridization and horizontal gene transfer. In some cases, such histories can be described by a phylogenetic base-tree with additional linking arcs, which can, for example, represent gene transfer events. Such phylogenetic networks are called tree-based. Here, we consider two possible generalizations of this concept to nonbinary networks, which we call tree-based and strictly-tree-based nonbinary phylogenetic networks. We give simple graph-theoretic characterizations of tree-based and strictly-tree-based nonbinary phylogenetic networks. Moreover, we show for each of these two classes that it can be decided in polynomial time whether a given network is contained in the class. Our approach also provides a new view on tree-based binary phylogenetic networks. Finally, we discuss two examples of nonbinary phylogenetic networks in biology and show how our results can be applied to them.

  1. Submodular unsplittable flow on trees

    DEFF Research Database (Denmark)

    Adamaszek, Anna Maria; Chalermsook, Parinya; Ene, Alina

    2016-01-01

    We study the Unsplittable Flow problem (UFP) on trees with a submodular objective function. The input to this problem is a tree with edge capacities and a collection of tasks, each characterized by a source node, a sink node, and a demand. A subset of the tasks is feasible if the tasks can...... simultaneously send their demands from the source to the sink without violating the edge capacities. The goal is to select a feasible subset of the tasks that maximizes a submodular objective function. Our main result is an O(k log n)-approximation algorithm for Submodular UFP on trees where k denotes...... the pathwidth of the given tree. Since every tree has pathwidth O(log n), we obtain an O(log2 n) approximation for arbitrary trees. This is the first non-trivial approximation guarantee for the problem and it matches the best approximation known for UFP on trees with a linear objective function. Our main...

  2. Tree Mortality Undercuts Ability of Tree-Planting Programs to Provide Benefits: Results of a Three-City Study

    Directory of Open Access Journals (Sweden)

    Sarah Widney

    2016-03-01

    Full Text Available Trees provide numerous benefits for urban residents, including reduced energy usage, improved air quality, stormwater management, carbon sequestration, and increased property values. Quantifying these benefits can help justify the costs of planting trees. In this paper, we use i-Tree Streets to quantify the benefits of street trees planted by nonprofits in three U.S. cities (Detroit, Michigan; Indianapolis, Indiana, and Philadelphia, Pennsylvania from 2009 to 2011. We also use both measured and modeled survival and growth rates to “grow” the tree populations 5 and 10 years into the future to project the future benefits of the trees under different survival and growth scenarios. The 4059 re-inventoried trees (2864 of which are living currently provide almost $40,000 (USD in estimated annual benefits ($9–$20/tree depending on the city, the majority (75% of which are increased property values. The trees can be expected to provide increasing annual benefits during the 10 years after planting if the annual survival rate is higher than the 93% annual survival measured during the establishment period. However, our projections show that with continued 93% or lower annual survival, the increase in annual benefits from tree growth will not be able to make up for the loss of benefits as trees die. This means that estimated total annual benefits from a cohort of planted trees will decrease between the 5-year projection and the 10-year projection. The results of this study indicate that without early intervention to ensure survival of planted street trees, tree mortality may be significantly undercutting the ability of tree-planting programs to provide benefits to neighborhood residents.

  3. An Indirect Simulation-Optimization Model for Determining Optimal TMDL Allocation under Uncertainty

    Directory of Open Access Journals (Sweden)

    Feng Zhou

    2015-11-01

    Full Text Available An indirect simulation-optimization model framework with enhanced computational efficiency and risk-based decision-making capability was developed to determine optimal total maximum daily load (TMDL allocation under uncertainty. To convert the traditional direct simulation-optimization model into our indirect equivalent model framework, we proposed a two-step strategy: (1 application of interval regression equations derived by a Bayesian recursive regression tree (BRRT v2 algorithm, which approximates the original hydrodynamic and water-quality simulation models and accurately quantifies the inherent nonlinear relationship between nutrient load reductions and the credible interval of algal biomass with a given confidence interval; and (2 incorporation of the calibrated interval regression equations into an uncertain optimization framework, which is further converted to our indirect equivalent framework by the enhanced-interval linear programming (EILP method and provides approximate-optimal solutions at various risk levels. The proposed strategy was applied to the Swift Creek Reservoir’s nutrient TMDL allocation (Chesterfield County, VA to identify the minimum nutrient load allocations required from eight sub-watersheds to ensure compliance with user-specified chlorophyll criteria. Our results indicated that the BRRT-EILP model could identify critical sub-watersheds faster than the traditional one and requires lower reduction of nutrient loadings compared to traditional stochastic simulation and trial-and-error (TAE approaches. This suggests that our proposed framework performs better in optimal TMDL development compared to the traditional simulation-optimization models and provides extreme and non-extreme tradeoff analysis under uncertainty for risk-based decision making.

  4. Electrode design optimization of lithium secondary batteries to enhance adhesion and deformation capabilities

    International Nuclear Information System (INIS)

    Jeong, Dongho; Lee, Jongsoo

    2014-01-01

    Safety, performance and lifetime of LSB (lithium secondary batteries) are affected by the adhesion of the active material to the electrode substance, and to the electrode deformation and the spring back limit in the electrode manufacturing process. This study explores the optimization process using decision tree analysis, an ANN (artificial neural network), and a multi-objective genetic algorithm. In the electrode design optimization, the objectives are to maximize the adhesion and to minimize the electrode deformation subjected to the allowable limit on the spring-back. Experimental data for use in design analysis and optimization is obtained via a measurement test. The decision tree analysis is first performed to extract major, effective parameters sensitive to adhesion force, electrode deformation and spring-back. The ANN-based approximate meta-models are then established for function approximations. The ANN-based causality analysis is further explored to determine dominant design variables for each of three design requirements for the optimization. A multi-objective optimization is finally conducted using ANN-based approximate meta-models. An optimized solution obtained from the numerical optimization process is compared with experimental data to verify the actual performance of the LSB in terms of physical and electro-chemical properties. - Highlights: • Electrode design for enhancing adhesion and electrode deformation performances. • Maximizing adhesion and minimizing deformation with allowable limit on spring-back. • Extraction of effective design parameters from data mining techniques. • Numerical optimization using experimental data of lithium secondary batteries. • Comparison of an optimized solution with an experimental result

  5. Coalescent methods for estimating phylogenetic trees.

    Science.gov (United States)

    Liu, Liang; Yu, Lili; Kubatko, Laura; Pearl, Dennis K; Edwards, Scott V

    2009-10-01

    We review recent models to estimate phylogenetic trees under the multispecies coalescent. Although the distinction between gene trees and species trees has come to the fore of phylogenetics, only recently have methods been developed that explicitly estimate species trees. Of the several factors that can cause gene tree heterogeneity and discordance with the species tree, deep coalescence due to random genetic drift in branches of the species tree has been modeled most thoroughly. Bayesian approaches to estimating species trees utilizes two likelihood functions, one of which has been widely used in traditional phylogenetics and involves the model of nucleotide substitution, and the second of which is less familiar to phylogeneticists and involves the probability distribution of gene trees given a species tree. Other recent parametric and nonparametric methods for estimating species trees involve parsimony criteria, summary statistics, supertree and consensus methods. Species tree approaches are an appropriate goal for systematics, appear to work well in some cases where concatenation can be misleading, and suggest that sampling many independent loci will be paramount. Such methods can also be challenging to implement because of the complexity of the models and computational time. In addition, further elaboration of the simplest of coalescent models will be required to incorporate commonly known issues such as deviation from the molecular clock, gene flow and other genetic forces.

  6. Decision trees in epidemiological research.

    Science.gov (United States)

    Venkatasubramaniam, Ashwini; Wolfson, Julian; Mitchell, Nathan; Barnes, Timothy; JaKa, Meghan; French, Simone

    2017-01-01

    In many studies, it is of interest to identify population subgroups that are relatively homogeneous with respect to an outcome. The nature of these subgroups can provide insight into effect mechanisms and suggest targets for tailored interventions. However, identifying relevant subgroups can be challenging with standard statistical methods. We review the literature on decision trees, a family of techniques for partitioning the population, on the basis of covariates, into distinct subgroups who share similar values of an outcome variable. We compare two decision tree methods, the popular Classification and Regression tree (CART) technique and the newer Conditional Inference tree (CTree) technique, assessing their performance in a simulation study and using data from the Box Lunch Study, a randomized controlled trial of a portion size intervention. Both CART and CTree identify homogeneous population subgroups and offer improved prediction accuracy relative to regression-based approaches when subgroups are truly present in the data. An important distinction between CART and CTree is that the latter uses a formal statistical hypothesis testing framework in building decision trees, which simplifies the process of identifying and interpreting the final tree model. We also introduce a novel way to visualize the subgroups defined by decision trees. Our novel graphical visualization provides a more scientifically meaningful characterization of the subgroups identified by decision trees. Decision trees are a useful tool for identifying homogeneous subgroups defined by combinations of individual characteristics. While all decision tree techniques generate subgroups, we advocate the use of the newer CTree technique due to its simplicity and ease of interpretation.

  7. SILVA tree viewer: interactive web browsing of the SILVA phylogenetic guide trees

    OpenAIRE

    Beccati, Alan; Gerken, Jan; Quast, Christian; Yilmaz, Pelin; Glöckner, Frank Oliver

    2017-01-01

    Background Phylogenetic trees are an important tool to study the evolutionary relationships among organisms. The huge amount of available taxa poses difficulties in their interactive visualization. This hampers the interaction with the users to provide feedback for the further improvement of the taxonomic framework. Results The SILVA Tree Viewer is a web application designed for visualizing large phylogenetic trees without requiring the download of any software tool or data files. The SILVA T...

  8. A Unified Experimental Approach for Estimation of Irrigationwater and Nitrate Leaching in Tree Crops

    Science.gov (United States)

    Hopmans, J. W.; Kandelous, M. M.; Moradi, A. B.

    2014-12-01

    Groundwater quality is specifically vulnerable in irrigated agricultural lands in California and many other(semi-)arid regions of the world. The routine application of nitrogen fertilizers with irrigation water in California is likely responsible for the high nitrate concentrations in groundwater, underlying much of its main agricultural areas. To optimize irrigation/fertigation practices, it is essential that irrigation and fertilizers are applied at the optimal concentration, place, and time to ensure maximum root uptake and minimize leaching losses to the groundwater. The applied irrigation water and dissolved fertilizer, as well as root growth and associated nitrate and water uptake, interact with soil properties and fertilizer source(s) in a complex manner that cannot easily be resolved. It is therefore that coupled experimental-modeling studies are required to allow for unraveling of the relevant complexities that result from typical field-wide spatial variations of soil texture and layering across farmer-managed fields. We present experimental approaches across a network of tree crop orchards in the San Joaquin Valley, that provide the necessary soil data of soil moisture, water potential and nitrate concentration to evaluate and optimize irrigation water management practices. Specifically, deep tensiometers were used to monitor in-situ continuous soil water potential gradients, for the purpose to compute leaching fluxes of water and nitrate at both the individual tree and field scale.

  9. Estimation of Tree Cover in an Agricultural Parkland of Senegal Using Rule-Based Regression Tree Modeling

    Directory of Open Access Journals (Sweden)

    Stefanie M. Herrmann

    2013-10-01

    Full Text Available Field trees are an integral part of the farmed parkland landscape in West Africa and provide multiple benefits to the local environment and livelihoods. While field trees have received increasing interest in the context of strengthening resilience to climate variability and change, the actual extent of farmed parkland and spatial patterns of tree cover are largely unknown. We used the rule-based predictive modeling tool Cubist® to estimate field tree cover in the west-central agricultural region of Senegal. A collection of rules and associated multiple linear regression models was constructed from (1 a reference dataset of percent tree cover derived from very high spatial resolution data (2 m Orbview as the dependent variable, and (2 ten years of 10-day 250 m Moderate Resolution Imaging Spectrometer (MODIS Normalized Difference Vegetation Index (NDVI composites and derived phenological metrics as independent variables. Correlation coefficients between modeled and reference percent tree cover of 0.88 and 0.77 were achieved for training and validation data respectively, with absolute mean errors of 1.07 and 1.03 percent tree cover. The resulting map shows a west-east gradient from high tree cover in the peri-urban areas of horticulture and arboriculture to low tree cover in the more sparsely populated eastern part of the study area. A comparison of current (2000s tree cover along this gradient with historic cover as seen on Corona images reveals dynamics of change but also areas of remarkable stability of field tree cover since 1968. The proposed modeling approach can help to identify locations of high and low tree cover in dryland environments and guide ground studies and management interventions aimed at promoting the integration of field trees in agricultural systems.

  10. Environmental tritium in trees

    International Nuclear Information System (INIS)

    Brown, R.M.

    1979-01-01

    The distribution of environmental tritium in the free water and organically bound hydrogen of trees growing in the vicinity of the Chalk River Nuclear Laboratories (CRNL) has been studied. The regional dispersal of HTO in the atmosphere has been observed by surveying the tritium content of leaf moisture. Measurement of the distribution of organically bound tritium in the wood of tree ring sequences has given information on past concentrations of HTO taken up by trees growing in the CRNL Liquid Waste Disposal Area. For samples at background environmental levels, cellulose separation and analysis was done. The pattern of bomb tritium in precipitation of 1955-68 was observed to be preserved in the organically bound tritium of a tree ring sequence. Reactor tritium was discernible in a tree growing at a distance of 10 km from CRNL. These techniques provide convenient means of monitoring dispersal of HTO from nuclear facilities. (author)

  11. On the structure of path-like trees

    OpenAIRE

    Muntaner Batle, Francesc Antoni; Rius Font, Miquel

    2007-01-01

    We study the structure of path-like trees. In order to do this, we introduce a set of trees that we call expandable trees. In this paper we also generalize the concept of path-like trees and we call such generalization generalized path-like trees. As in the case of path-like trees, generalized path-like trees, have very nice labeling properties.

  12. FPGA fabric specific optimization for RLT design

    International Nuclear Information System (INIS)

    Perwaiz, A.; Khan, S.A.

    2010-01-01

    This paper proposes a technique custom to the optimization requirements suited for a particular family of Field Programmable Gate Arrays (FPGAs). As FPGAs have introduced re configurable black boxes there is a need to perform optimization across FPGAs slice fabric in order to achieve optimum performance. Though the Register Transfer Level (RTL) Hardware Descriptive Language (HDL) code should be technology independent but in many design instances it is imperative to understand the target technology especially once the target device embeds dedicated arithmetic blocks. No matter what the degree of optimization of the algorithm is, the configuration of target device plays an important role as far as the device utilization and path delays are concerned Index Terms: Field Programmable Gate Arrays (FPGA), Compression Tree, Bit Width Reduction, Look Ahead Pipelining. (author)

  13. Arthropod but not bird predation in ethiopian homegardens is higher in tree-poor than in tree-rich landscapes.

    Science.gov (United States)

    Lemessa, Debissa; Hambäck, Peter A; Hylander, Kristoffer

    2015-01-01

    Bird and arthropod predation is often associated with natural pest control in agricultural landscapes, but the rates of predation may vary with the amount of tree cover or other environmental factors. We examined bird and arthropod predation in three tree-rich and three tree-poor landscapes across southwestern Ethiopia. Within each landscape we selected three tree-rich and three tree-poor homegardens in which we recorded the number of tree species and tree stems within 100 × 100 m surrounding the central house. To estimate predation rates, we attached plasticine caterpillars on leaves of two coffee and two avocado shrubs in each homegarden, and recorded the number of attacked caterpillars for 7-9 consecutive weeks. The overall mean daily predation rate was 1.45% for birds and 1.60% for arthropods. The rates of arthropod predation varied among landscapes and were higher in tree-poor landscapes. There was no such difference for birds. Within landscapes, predation rates from birds and arthropods did not vary between tree-rich and tree-poor homegardens in either tree-rich or tree-poor landscapes. The most surprising result was the lack of response by birds to tree cover at either spatial scale. Our results suggest that in tree-poor landscapes there are still enough non-crop habitats to support predatory arthropods and birds to deliver strong top-down effect on crop pests.

  14. Arthropod but not bird predation in ethiopian homegardens is higher in tree-poor than in tree-rich landscapes.

    Directory of Open Access Journals (Sweden)

    Debissa Lemessa

    Full Text Available Bird and arthropod predation is often associated with natural pest control in agricultural landscapes, but the rates of predation may vary with the amount of tree cover or other environmental factors. We examined bird and arthropod predation in three tree-rich and three tree-poor landscapes across southwestern Ethiopia. Within each landscape we selected three tree-rich and three tree-poor homegardens in which we recorded the number of tree species and tree stems within 100 × 100 m surrounding the central house. To estimate predation rates, we attached plasticine caterpillars on leaves of two coffee and two avocado shrubs in each homegarden, and recorded the number of attacked caterpillars for 7-9 consecutive weeks. The overall mean daily predation rate was 1.45% for birds and 1.60% for arthropods. The rates of arthropod predation varied among landscapes and were higher in tree-poor landscapes. There was no such difference for birds. Within landscapes, predation rates from birds and arthropods did not vary between tree-rich and tree-poor homegardens in either tree-rich or tree-poor landscapes. The most surprising result was the lack of response by birds to tree cover at either spatial scale. Our results suggest that in tree-poor landscapes there are still enough non-crop habitats to support predatory arthropods and birds to deliver strong top-down effect on crop pests.

  15. Decision Optimization of Machine Sets Taking Into Consideration Logical Tree Minimization of Design Guidelines

    Science.gov (United States)

    Deptuła, A.; Partyka, M. A.

    2014-08-01

    The method of minimization of complex partial multi-valued logical functions determines the degree of importance of construction and exploitation parameters playing the role of logical decision variables. Logical functions are taken into consideration in the issues of modelling machine sets. In multi-valued logical functions with weighting products, it is possible to use a modified Quine - McCluskey algorithm of multi-valued functions minimization. Taking into account weighting coefficients in the logical tree minimization reflects a physical model of the object being analysed much better

  16. Gene-Tree Reconciliation with MUL-Trees to Resolve Polyploidy Events.

    Science.gov (United States)

    Gregg, W C Thomas; Ather, S Hussain; Hahn, Matthew W

    2017-11-01

    Polyploidy can have a huge impact on the evolution of species, and it is a common occurrence, especially in plants. The two types of polyploids-autopolyploids and allopolyploids-differ in the level of divergence between the genes that are brought together in the new polyploid lineage. Because allopolyploids are formed via hybridization, the homoeologous copies of genes within them are at least as divergent as orthologs in the parental species that came together to form them. This means that common methods for estimating the parental lineages of allopolyploidy events are not accurate, and can lead to incorrect inferences about the number of gene duplications and losses. Here, we have adapted an algorithm for topology-based gene-tree reconciliation to work with multi-labeled trees (MUL-trees). By definition, MUL-trees have some tips with identical labels, which makes them a natural representation of the genomes of polyploids. Using this new reconciliation algorithm we can: accurately place allopolyploidy events on a phylogeny, identify the parental lineages that hybridized to form allopolyploids, distinguish between allo-, auto-, and (in most cases) no polyploidy, and correctly count the number of duplications and losses in a set of gene trees. We validate our method using gene trees simulated with and without polyploidy, and revisit the history of polyploidy in data from the clades including both baker's yeast and bread wheat. Our re-analysis of the yeast data confirms the allopolyploid origin and parental lineages previously identified for this group. The method presented here should find wide use in the growing number of genomes from species with a history of polyploidy. [Polyploidy; reconciliation; whole-genome duplication.]. © The Author(s) 2017. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Shade Trees Spatial Distribution and Its Effect on Grains and Beverage Quality of Shaded Coffee Trees

    Directory of Open Access Journals (Sweden)

    Francisco José da Silva Neto

    2018-01-01

    Full Text Available Shading coffee trees has gained importance, especially among smallholders, as an option to improve the products’ quality, therefore acquiring place at the specialty coffee market, where consumers are willing to give bonus for quality. This work aims to evaluate the influence of shade trees’ spatial distribution among coffee trees’ agronomic characteristics, yield, and beans and cup quality of shaded coffee trees. The experimental design consisted of completely randomized blocks with six repetitions and four treatments: coffee trees on shade trees planting rows, distant one meter from the trunk; coffee trees on shade trees planting row, distant six meters from the trunk; and coffee plants between the rows of shade trees, parallel to the previous treatments. The parameters analyzed were plant height, canopy diameter, plagiotropic branches’ length, yield, coffee fruits’ phenological stage, ripe cherries’ Brix degree, percentage of black, unripe, and insect damaged beans, bean size, and beverage quality. Shade trees quickened coffee fruits’ phenological stage of coffee trees nearest to them. This point also showed the best beverage quality, except for overripe fruits. The remaining parameters evaluated were not affected by shade trees’ spatial distribution.

  18. Decision trees in epidemiological research

    Directory of Open Access Journals (Sweden)

    Ashwini Venkatasubramaniam

    2017-09-01

    Full Text Available Abstract Background In many studies, it is of interest to identify population subgroups that are relatively homogeneous with respect to an outcome. The nature of these subgroups can provide insight into effect mechanisms and suggest targets for tailored interventions. However, identifying relevant subgroups can be challenging with standard statistical methods. Main text We review the literature on decision trees, a family of techniques for partitioning the population, on the basis of covariates, into distinct subgroups who share similar values of an outcome variable. We compare two decision tree methods, the popular Classification and Regression tree (CART technique and the newer Conditional Inference tree (CTree technique, assessing their performance in a simulation study and using data from the Box Lunch Study, a randomized controlled trial of a portion size intervention. Both CART and CTree identify homogeneous population subgroups and offer improved prediction accuracy relative to regression-based approaches when subgroups are truly present in the data. An important distinction between CART and CTree is that the latter uses a formal statistical hypothesis testing framework in building decision trees, which simplifies the process of identifying and interpreting the final tree model. We also introduce a novel way to visualize the subgroups defined by decision trees. Our novel graphical visualization provides a more scientifically meaningful characterization of the subgroups identified by decision trees. Conclusions Decision trees are a useful tool for identifying homogeneous subgroups defined by combinations of individual characteristics. While all decision tree techniques generate subgroups, we advocate the use of the newer CTree technique due to its simplicity and ease of interpretation.

  19. Human action analysis with randomized trees

    CERN Document Server

    Yu, Gang; Liu, Zicheng

    2014-01-01

    This book will provide a comprehensive overview on human action analysis with randomized trees. It will cover both the supervised random trees and the unsupervised random trees. When there are sufficient amount of labeled data available, supervised random trees provides a fast method for space-time interest point matching. When labeled data is minimal as in the case of example-based action search, unsupervised random trees is used to leverage the unlabelled data. We describe how the randomized trees can be used for action classification, action detection, action search, and action prediction.

  20. Edge-Disjoint Fibonacci Trees in Hypercube

    Directory of Open Access Journals (Sweden)

    Indhumathi Raman

    2014-01-01

    Full Text Available The Fibonacci tree is a rooted binary tree whose number of vertices admit a recursive definition similar to the Fibonacci numbers. In this paper, we prove that a hypercube of dimension h admits two edge-disjoint Fibonacci trees of height h, two edge-disjoint Fibonacci trees of height h-2, two edge-disjoint Fibonacci trees of height h-4 and so on, as subgraphs. The result shows that an algorithm with Fibonacci trees as underlying data structure can be implemented concurrently on a hypercube network with no communication latency.

  1. TreeCluster: Massively scalable transmission clustering using phylogenetic trees

    OpenAIRE

    Moshiri, Alexander

    2018-01-01

    Background: The ability to infer transmission clusters from molecular data is critical to designing and evaluating viral control strategies. Viral sequencing datasets are growing rapidly, but standard methods of transmission cluster inference do not scale well beyond thousands of sequences. Results: I present TreeCluster, a cross-platform tool that performs transmission cluster inference on a given phylogenetic tree orders of magnitude faster than existing inference methods and supports multi...

  2. Phylogenetic tree construction using trinucleotide usage profile (TUP).

    Science.gov (United States)

    Chen, Si; Deng, Lih-Yuan; Bowman, Dale; Shiau, Jyh-Jen Horng; Wong, Tit-Yee; Madahian, Behrouz; Lu, Henry Horng-Shing

    2016-10-06

    It has been a challenging task to build a genome-wide phylogenetic tree for a large group of species containing a large number of genes with long nucleotides sequences. The most popular method, called feature frequency profile (FFP-k), finds the frequency distribution for all words of certain length k over the whole genome sequence using (overlapping) windows of the same length. For a satisfactory result, the recommended word length (k) ranges from 6 to 15 and it may not be a multiple of 3 (codon length). The total number of possible words needed for FFP-k can range from 4 6 =4096 to 4 15 . We propose a simple improvement over the popular FFP method using only a typical word length of 3. A new method, called Trinucleotide Usage Profile (TUP), is proposed based only on the (relative) frequency distribution using non-overlapping windows of length 3. The total number of possible words needed for TUP is 4 3 =64, which is much less than the total count for the recommended optimal "resolution" for FFP. To build a phylogenetic tree, we propose first representing each of the species by a TUP vector and then using an appropriate distance measure between pairs of the TUP vectors for the tree construction. In particular, we propose summarizing a DNA sequence by a matrix of three rows corresponding to three reading frames, recording the frequency distribution of the non-overlapping words of length 3 in each of the reading frame. We also provide a numerical measure for comparing trees constructed with various methods. Compared to the FFP method, our empirical study showed that the proposed TUP method is more capable of building phylogenetic trees with a stronger biological support. We further provide some justifications on this from the information theory viewpoint. Unlike the FFP method, the TUP method takes the advantage that the starting of the first reading frame is (usually) known. Without this information, the FFP method could only rely on the frequency distribution of

  3. Optimizing Conservation Strategies for a Threatened Tree Species: In Situ Conservation of White Ash (Fraxinus americana L. Genetic Diversity through Insecticide Treatment

    Directory of Open Access Journals (Sweden)

    Charles E. Flower

    2018-04-01

    Full Text Available Forest resources face numerous threats that require costly management. Hence, there is an increasing need for data-informed strategies to guide conservation practices. The introduction of the emerald ash borer to North America has caused rapid declines in ash populations (Fraxinus spp. L.. Natural resource managers are faced with a choice of either allowing ash trees to die, risking forest degradation and reduced functional resilience, or investing in conserving trees to preserve ecosystem structure and standing genetic diversity. The information needed to guide these decisions is not always readily available. Therefore, to address this concern, we used eight microsatellites to genotype 352 white ash trees (Fraxinus americana L. across 17 populations in the Allegheny National Forest; a subset of individuals sampled are part of an insecticide treatment regimen. Genetic diversity (number of alleles and He was equivalent in treated and untreated trees, with little evidence of differentiation or inbreeding, suggesting current insecticidal treatment is conserving local, neutral genetic diversity. Using simulations, we demonstrated that best practice is treating more populations rather than more trees in fewer populations. Furthermore, through genetic screening, conservation practitioners can select highly diverse and unique populations to maximize diversity and reduce expenditures (by up to 21%. These findings will help practitioners develop cost-effective strategies to conserve genetic diversity.

  4. Value tree analysis

    International Nuclear Information System (INIS)

    Keeney, R.; Renn, O.; Winterfeldt, D. von; Kotte, U.

    1985-01-01

    What are the targets and criteria on which national energy policy should be based. What priorities should be set, and how can different social interests be matched. To answer these questions, a new instrument of decision theory is presented which has been applied with good results to controversial political issues in the USA. The new technique is known under the name of value tree analysis. Members of important West German organisations (BDI, VDI, RWE, the Catholic and Protestant Church, Deutscher Naturschutzring, and ecological research institutions) were asked about the goals of their organisations. These goals were then ordered systematically and arranged in a hierarchical tree structure. The value trees of different groups can be combined into a catalogue of social criteria of acceptability and policy assessment. The authors describe the philosophy and methodology of value tree analysis and give an outline of its application in the development of a socially acceptable energy policy. (orig.) [de

  5. Adjustable chain trees for proteins

    DEFF Research Database (Denmark)

    Winter, Pawel; Fonseca, Rasmus

    2012-01-01

    A chain tree is a data structure for changing protein conformations. It enables very fast detection of clashes and free energy potential calculations. A modified version of chain trees that adjust themselves to the changing conformations of folding proteins is introduced. This results in much...... tighter bounding volume hierarchies and therefore fewer intersection checks. Computational results indicate that the efficiency of the adjustable chain trees is significantly improved compared to the traditional chain trees....

  6. Introduction to fault tree analysis

    International Nuclear Information System (INIS)

    Barlow, R.E.; Lambert, H.E.

    1975-01-01

    An elementary, engineering oriented introduction to fault tree analysis is presented. The basic concepts, techniques and applications of fault tree analysis, FTA, are described. The two major steps of FTA are identified as (1) the construction of the fault tree and (2) its evaluation. The evaluation of the fault tree can be qualitative or quantitative depending upon the scope, extensiveness and use of the analysis. The advantages, limitations and usefulness of FTA are discussed

  7. Steiner trees in industry

    CERN Document Server

    Du, Ding-Zhu

    2001-01-01

    This book is a collection of articles studying various Steiner tree prob­ lems with applications in industries, such as the design of electronic cir­ cuits, computer networking, telecommunication, and perfect phylogeny. The Steiner tree problem was initiated in the Euclidean plane. Given a set of points in the Euclidean plane, the shortest network interconnect­ ing the points in the set is called the Steiner minimum tree. The Steiner minimum tree may contain some vertices which are not the given points. Those vertices are called Steiner points while the given points are called terminals. The shortest network for three terminals was first studied by Fermat (1601-1665). Fermat proposed the problem of finding a point to minimize the total distance from it to three terminals in the Euclidean plane. The direct generalization is to find a point to minimize the total distance from it to n terminals, which is still called the Fermat problem today. The Steiner minimum tree problem is an indirect generalization. Sch...

  8. Water, gravity and trees: Relationship of tree-ring widths and total water storage dynamics

    Science.gov (United States)

    Creutzfeldt, B.; Heinrich, I.; Merz, B.; Blume, T.; Güntner, A.

    2012-04-01

    Water stored in the subsurface as groundwater or soil moisture is the main fresh water source not only for drinking water and food production but also for the natural vegetation. In a changing environment water availability becomes a critical issue in many different regions. Long-term observations of the past are needed to improve the understanding of the hydrological system and the prediction of future developments. Tree ring data have repeatedly proved to be valuable sources for reconstructing long-term climate dynamics, e.g. temperature, precipitation and different hydrological variables. In water-limited environments, tree growth is primarily influenced by total water stored in the subsurface and hence, tree-ring records usually contain information about subsurface water storage. The challenge is to retrieve the information on total water storage from tree rings, because a training dataset of water stored in the sub-surface is required for calibration against the tree-ring series. However, measuring water stored in the subsurface is notoriously difficult. We here present high-precision temporal gravimeter measurements which allow for the depth-integrated quantification of total water storage dynamics at the field scale. In this study, we evaluate the relationship of total water storage change and tree ring growth also in the context of the complex interactions of other meteorological forcing factors. A tree-ring chronology was derived from a Norway spruce stand in the Bavarian Forest, Germany. Total water storage dynamics were measured directly by the superconducting gravimeter of the Geodetic Observatory Wettzell for a 9-years period. Time series were extended to 63-years period by a hydrological model using gravity data as the only calibration constrain. Finally, water storage changes were reconstructed based on the relationship between the hydrological model and the tree-ring chronology. Measurement results indicate that tree-ring growth is primarily

  9. The longevity of broadleaf deciduous trees in Northern Hemisphere temperate forests: insights from tree-ring series

    Directory of Open Access Journals (Sweden)

    Alfredo eDi Filippo

    2015-05-01

    Full Text Available Understanding the factors controlling the expression of longevity in trees is still an outstanding challenge for tree biologists and forest ecologists. We gathered tree-ring data and literature for broadleaf deciduous (BD temperate trees growing in closed-canopy old-growth forests in the Northern Hemisphere to explore the role of geographic patterns, climate variability, and growth rates on longevity. Our pan-continental analysis, covering 32 species from 12 genera, showed that 300-400 years can be considered a baseline threshold for maximum tree lifespan in many temperate deciduous forests. Maximum age varies greatly in relation to environmental features, even within the same species. Tree longevity is generally promoted by reduced growth rates across large genetic differences and environmental gradients. We argue that slower growth rates, and the associated smaller size, provide trees with an advantage against biotic and abiotic disturbance agents, supporting the idea that size, not age, is the main constraint to tree longevity. The oldest trees were living most of their life in subordinate canopy conditions and/or within primary forests in cool temperate environments and outside major storm tracks. Very old trees are thus characterized by slow growth and often live in forests with harsh site conditions and infrequent disturbance events that kill much of the trees. Temperature inversely controls the expression of longevity in mesophilous species (Fagus spp., but its role in Quercus spp. is more complex and warrants further research in disturbance ecology. Biological, ecological and historical drivers must be considered to understand the constraints imposed to longevity within different forest landscapes.

  10. Analytical solutions of linked fault tree probabilistic risk assessments using binary decision diagrams with emphasis on nuclear safety applications[Dissertation 17286

    Energy Technology Data Exchange (ETDEWEB)

    Nusbaumer, O. P. M

    2007-07-01

    deficiencies. BDDs have the remarkable properties of having complexity that is not related to the number of prime implicants of the encoded Boolean formula and of having polynomial time complexity. Since a BDD analytically encodes a Boolean formula, the failure probability of the top event can be deduced without the need to resort to any numerical approximations. This approach is therefore an interesting technique for fault tree assessment. However, extended efforts are required when converting a given fault tree structure to its BDD form; the complexity associated with the conversion can be considerably reduced by optimizing the order of the basic events in the BDD. This optimization problem was proved to be of NP-complete complexity. Heuristics have been developed and investigated as a case study on the full scope PRA model of the Leibstadt Nuclear Power Plant. Several static and dynamic optimization techniques are proposed to optimize large problems. In order to evaluate these techniques in practice, a software tool (NeuralSpectrum) has been developed as part of this study. The software is an integrated fault tree / BDD tool that features a fault tree package, a BDD engine and a minimal cutset engine, with dedicated fault tree to BDD conversion and optimization routines. The optimization routines include global, static (preprocessing), dynamic and local (BDD objects) techniques. The combination of global, static, dynamic and local optimization techniques proved to be effective when dealing with large models. The Leibstadt PRA model was successfully converted to a BDD form of more than 1'500'000 nodes, for a total of about 3'650 basic events. The BDD covers a complete event tree sequence that includes reactor shutdown and reactor cooling with all Emergency Core Cooling Systems (including all support systems) of the Leibstadt Nuclear Power Plant. The impact of the different approximations used in the classical approach is evaluated using the Leibstadt PRA model

  11. Up in the tree--the overlooked richness of bryophytes and lichens in tree crowns.

    Science.gov (United States)

    Boch, Steffen; Müller, Jörg; Prati, Daniel; Blaser, Stefan; Fischer, Markus

    2013-01-01

    Assessing diversity is among the major tasks in ecology and conservation science. In ecological and conservation studies, epiphytic cryptogams are usually sampled up to accessible heights in forests. Thus, their diversity, especially of canopy specialists, likely is underestimated. If the proportion of those species differs among forest types, plot-based diversity assessments are biased and may result in misleading conservation recommendations. We sampled bryophytes and lichens in 30 forest plots of 20 m × 20 m in three German regions, considering all substrates, and including epiphytic litter fall. First, the sampling of epiphytic species was restricted to the lower 2 m of trees and shrubs. Then, on one representative tree per plot, we additionally recorded epiphytic species in the crown, using tree climbing techniques. Per tree, on average 54% of lichen and 20% of bryophyte species were overlooked if the crown was not been included. After sampling all substrates per plot, including the bark of all shrubs and trees, still 38% of the lichen and 4% of the bryophyte species were overlooked if the tree crown of the sampled tree was not included. The number of overlooked lichen species varied strongly among regions. Furthermore, the number of overlooked bryophyte and lichen species per plot was higher in European beech than in coniferous stands and increased with increasing diameter at breast height of the sampled tree. Thus, our results indicate a bias of comparative studies which might have led to misleading conservation recommendations of plot-based diversity assessments.

  12. Modelling tree biomasses in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Repola, J.

    2013-06-01

    Biomass equations for above- and below-ground tree components of Scots pine (Pinus sylvestris L), Norway spruce (Picea abies [L.] Karst) and birch (Betula pendula Roth and Betula pubescens Ehrh.) were compiled using empirical material from a total of 102 stands. These stands (44 Scots pine, 34 Norway spruce and 24 birch stands) were located mainly on mineral soil sites representing a large part of Finland. The biomass models were based on data measured from 1648 sample trees, comprising 908 pine, 613 spruce and 127 birch trees. Biomass equations were derived for the total above-ground biomass and for the individual tree components: stem wood, stem bark, living and dead branches, needles, stump, and roots, as dependent variables. Three multivariate models with different numbers of independent variables for above-ground biomass and one for below-ground biomass were constructed. Variables that are normally measured in forest inventories were used as independent variables. The simplest model formulations, multivariate models (1) were mainly based on tree diameter and height as independent variables. In more elaborated multivariate models, (2) and (3), additional commonly measured tree variables such as age, crown length, bark thickness and radial growth rate were added. Tree biomass modelling includes consecutive phases, which cause unreliability in the prediction of biomass. First, biomasses of sample trees should be determined reliably to decrease the statistical errors caused by sub-sampling. In this study, methods to improve the accuracy of stem biomass estimates of the sample trees were developed. In addition, the reliability of the method applied to estimate sample-tree crown biomass was tested, and no systematic error was detected. Second, the whole information content of data should be utilized in order to achieve reliable parameter estimates and applicable and flexible model structure. In the modelling approach, the basic assumption was that the biomasses of

  13. Geodesic atlas-based labeling of anatomical trees

    DEFF Research Database (Denmark)

    Feragen, Aasa; Petersen, Jens; Owen, Megan

    2015-01-01

    We present a fast and robust atlas-based algorithm for labeling airway trees, using geodesic distances in a geometric tree-space. Possible branch label configurations for an unlabeled airway tree are evaluated using distances to a training set of labeled airway trees. In tree-space, airway tree t...... equally complete airway trees, and comparable in performance to that of experts in pulmonary medicine, emphasizing the suitability of the labeling algorithm for clinical use....

  14. Current and potential tree locations in tree line ecotone of Changbai Mountains, Northeast China: the controlling effects of topography.

    Science.gov (United States)

    Zong, Shengwei; Wu, Zhengfang; Xu, Jiawei; Li, Ming; Gao, Xiaofeng; He, Hongshi; Du, Haibo; Wang, Lei

    2014-01-01

    Tree line ecotone in the Changbai Mountains has undergone large changes in the past decades. Tree locations show variations on the four sides of the mountains, especially on the northern and western sides, which has not been fully explained. Previous studies attributed such variations to the variations in temperature. However, in this study, we hypothesized that topographic controls were responsible for causing the variations in the tree locations in tree line ecotone of the Changbai Mountains. To test the hypothesis, we used IKONOS images and WorldView-1 image to identify the tree locations and developed a logistic regression model using topographical variables to identify the dominant controls of the tree locations. The results showed that aspect, wetness, and slope were dominant controls for tree locations on western side of the mountains, whereas altitude, SPI, and aspect were the dominant factors on northern side. The upmost altitude a tree can currently reach was 2140 m asl on the northern side and 2060 m asl on western side. The model predicted results showed that habitats above the current tree line on the both sides were available for trees. Tree recruitments under the current tree line may take advantage of the available habitats at higher elevations based on the current tree location. Our research confirmed the controlling effects of topography on the tree locations in the tree line ecotone of Changbai Mountains and suggested that it was essential to assess the tree response to topography in the research of tree line ecotone.

  15. Using secondary metabolites in the monitoring of the condition of tree stands under industrial pollution

    Science.gov (United States)

    L. L. Fuksman

    2000-01-01

    The aim of this paper is to determine tile optimal physiological indicator in diagnosing the condition of tree stands under the stress of industrial pollution. Based on experimental results of the fumigation on pine seedlings with sulphur dioxide, acid rain treatment, and the effect of heavy metals on the seedlings, it is reasonable to use the secondary substances or...

  16. Moose?tree interactions: rebrowsing is common across tree species

    OpenAIRE

    Mathisen, Karen Marie; Milner, Jos M.; Skarpe, Christina

    2017-01-01

    Background Plant strategies to resist herbivory include tolerance and avoidance. Tolerance strategies, such as rapid regrowth which increases the palatability of new shoots, can lead to positive feedback loops between plants and herbivores. An example of such a positive feedback occurs when moose (Alces alces) browse trees in boreal forests. We described the degree of change in tree morphology that accumulated over time in response to repeated browsing by moose, using an index of accumulated ...

  17. Predicting Short-Term Subway Ridership and Prioritizing Its Influential Factors Using Gradient Boosting Decision Trees

    Directory of Open Access Journals (Sweden)

    Chuan Ding

    2016-10-01

    Full Text Available Understanding the relationship between short-term subway ridership and its influential factors is crucial to improving the accuracy of short-term subway ridership prediction. Although there has been a growing body of studies on short-term ridership prediction approaches, limited effort is made to investigate the short-term subway ridership prediction considering bus transfer activities and temporal features. To fill this gap, a relatively recent data mining approach called gradient boosting decision trees (GBDT is applied to short-term subway ridership prediction and used to capture the associations with the independent variables. Taking three subway stations in Beijing as the cases, the short-term subway ridership and alighting passengers from its adjacent bus stops are obtained based on transit smart card data. To optimize the model performance with different combinations of regularization parameters, a series of GBDT models are built with various learning rates and tree complexities by fitting a maximum of trees. The optimal model performance confirms that the gradient boosting approach can incorporate different types of predictors, fit complex nonlinear relationships, and automatically handle the multicollinearity effect with high accuracy. In contrast to other machine learning methods—or “black-box” procedures—the GBDT model can identify and rank the relative influences of bus transfer activities and temporal features on short-term subway ridership. These findings suggest that the GBDT model has considerable advantages in improving short-term subway ridership prediction in a multimodal public transportation system.

  18. Mitered fractal trees: constructions and properties

    NARCIS (Netherlands)

    Verhoeff, T.; Verhoeff, K.; Bosch, R.; McKenna, D.; Sarhangi, R.

    2012-01-01

    Tree-like structures, that is, branching structures without cycles, are attractive for artful expression. Especially interesting are fractal trees, where each subtree is a scaled and possibly otherwise transformed version of the entire tree. Such trees can be rendered in 3D by using beams with a

  19. Evaluation of properties over phylogenetic trees using stochastic logics.

    Science.gov (United States)

    Requeno, José Ignacio; Colom, José Manuel

    2016-06-14

    Model checking has been recently introduced as an integrated framework for extracting information of the phylogenetic trees using temporal logics as a querying language, an extension of modal logics that imposes restrictions of a boolean formula along a path of events. The phylogenetic tree is considered a transition system modeling the evolution as a sequence of genomic mutations (we understand mutation as different ways that DNA can be changed), while this kind of logics are suitable for traversing it in a strict and exhaustive way. Given a biological property that we desire to inspect over the phylogeny, the verifier returns true if the specification is satisfied or a counterexample that falsifies it. However, this approach has been only considered over qualitative aspects of the phylogeny. In this paper, we repair the limitations of the previous framework for including and handling quantitative information such as explicit time or probability. To this end, we apply current probabilistic continuous-time extensions of model checking to phylogenetics. We reinterpret a catalog of qualitative properties in a numerical way, and we also present new properties that couldn't be analyzed before. For instance, we obtain the likelihood of a tree topology according to a mutation model. As case of study, we analyze several phylogenies in order to obtain the maximum likelihood with the model checking tool PRISM. In addition, we have adapted the software for optimizing the computation of maximum likelihoods. We have shown that probabilistic model checking is a competitive framework for describing and analyzing quantitative properties over phylogenetic trees. This formalism adds soundness and readability to the definition of models and specifications. Besides, the existence of model checking tools hides the underlying technology, omitting the extension, upgrade, debugging and maintenance of a software tool to the biologists. A set of benchmarks justify the feasibility of our

  20. Genetic transformation of forest trees

    African Journals Online (AJOL)

    Admin

    In this review, the recent progress on genetic transformation of forest trees were discussed. Its described also, different applications of genetic engineering for improving forest trees or understanding the mechanisms governing genes expression in woody plants. Key words: Genetic transformation, transgenic forest trees, ...