WorldWideScience

Sample records for prototyping pdms microdevices

  1. A facile route for irreversible bonding of plastic-PDMS hybrid microdevices at room temperature.

    Science.gov (United States)

    Tang, Linzhi; Lee, Nae Yoon

    2010-05-21

    Plastic materials do not generally form irreversible bonds with poly(dimethylsiloxane) (PDMS) regardless of oxygen plasma treatment and a subsequent thermal process. In this paper, we perform plastic-PDMS bonding at room temperature, mediated by the formation of a chemically robust amine-epoxy bond at the interfaces. Various plastic materials, such as poly(methylmethacrylate) (PMMA), polycarbonate (PC), polyimide (PI), and poly(ethylene terephthalate) (PET) were adopted as choices for plastic materials. Irrespective of the plastic materials used, the surfaces were successfully modified with amine and epoxy functionalities, confirmed by the surface characterizations such as water contact angle measurements and X-ray photoelectron spectroscopy (XPS), and chemically robust and irreversible bonding was successfully achieved within 1 h at room temperature. The bonding strengths of PDMS with PMMA and PC sheets were measured to be 180 and 178 kPa, respectively, and their assemblies containing microchannel structures endured up to 74 and 84 psi (510 and 579 kPa) of introduced compressed air, respectively, without destroying the microdevices, representing a robust and highly stable interfacial bonding. In addition to microchannel-molded PDMS bonded with flat plastic substrates, microchannel-embossed plastics were also bonded with a flat PDMS sheet, and both types of bonded assemblies displayed sufficiently robust bonding, tolerating an intense influx of liquid whose per-minute injection volume was nearly 1000 to 2000 times higher than the total internal volume of the microchannel used. In addition to observing the bonding performance, we also investigated the potential of surface amine and epoxy functionalities as durable chemical adhesives by observing their storage-time-dependent bonding performances.

  2. A vacuum manifold for rapid world-to-chip connectivity of complex PDMS microdevices.

    Science.gov (United States)

    Cooksey, Gregory A; Plant, Anne L; Atencia, Javier

    2009-05-07

    The lack of simple interfaces for microfluidic devices with a large number of inlets significantly limits production and utilization of these devices. In this article, we describe the fabrication of a reusable manifold that provides rapid world-to-chip connectivity. A vacuum network milled into a rigid manifold holds microdevices and prevents leakage of fluids injected into the device from ports in the manifold. A number of different manifold designs were explored, and all performed similarly, yielding an average of 100 kPa (15 psi) fluid holding pressure. The wide applicability of this manifold concept is demonstrated by interfacing with a 51-inlet microfluidic chip containing 144 chambers and hundreds of embedded pneumatic valves. Due to the speed of connectivity, the manifolds are ideal for rapid prototyping and are well suited to serve as "universal" interfaces.

  3. Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite.

    Science.gov (United States)

    Kim, Jungkyu; Surapaneni, Rajesh; Gale, Bruce K

    2009-05-07

    Rapid prototyping of microfluidic systems using a combination of double-sided tape and PDMS (polydimethylsiloxane) is introduced. PDMS is typically difficult to bond using adhesive tapes due to its hydrophobic nature and low surface energy. For this reason, PDMS is not compatible with the xurography method, which uses a knife plotter and various adhesive coated polymer tapes. To solve these problems, a PDMS/tape composite was developed and demonstrated in microfluidic applications. The PDMS/tape composite was created by spinning it to make a thin layer of PDMS over double-sided tape. Then the PDMS/tape composite was patterned to create channels using xurography, and bonded to a PDMS slab. After removing the backing paper from the tape, a complete microfluidic system could be created by placing the construct onto nearly any substrate; including glass, plastic or metal-coated glass/silicon substrates. The bond strength was shown to be sufficient for the pressures that occur in typical microfluidic channels used for chemical or biological analysis. This method was demonstrated in three applications: standard microfluidic channels and reactors, a microfluidic system with an integrated membrane, and an electrochemical biosensor. The PDMS/tape composite rapid prototyping technique provides a fast and cost effective fabrication method and can provide easy integration of microfluidic channels with sensors and other components without the need for a cleanroom facility.

  4. Rapid prototyping of multi-scale biomedical microdevices by combining additive manufacturing technologies.

    Science.gov (United States)

    Hengsbach, Stefan; Lantada, Andrés Díaz

    2014-08-01

    The possibility of designing and manufacturing biomedical microdevices with multiple length-scale geometries can help to promote special interactions both with their environment and with surrounding biological systems. These interactions aim to enhance biocompatibility and overall performance by using biomimetic approaches. In this paper, we present a design and manufacturing procedure for obtaining multi-scale biomedical microsystems based on the combination of two additive manufacturing processes: a conventional laser writer to manufacture the overall device structure, and a direct-laser writer based on two-photon polymerization to yield finer details. The process excels for its versatility, accuracy and manufacturing speed and allows for the manufacture of microsystems and implants with overall sizes up to several millimeters and with details down to sub-micrometric structures. As an application example we have focused on manufacturing a biomedical microsystem to analyze the impact of microtextured surfaces on cell motility. This process yielded a relevant increase in precision and manufacturing speed when compared with more conventional rapid prototyping procedures.

  5. Rapid prototyping of microstructures in polydimethylsiloxane (PDMS) by direct UV-lithography

    NARCIS (Netherlands)

    Scharnweber, Tim; Truckenmüller, R.K.; Schneider, Andrea M.; Welle, Alexander; Reinhardt, Martina; Giselbrecht, Stefan

    2011-01-01

    Microstructuring of polydimethylsiloxane (PDMS) is a key step for many lab-on-a-chip (LOC) applications. In general, the structure is generated by casting the liquid prepolymer against a master. The production of the master in turn calls for special equipment and know how. Furthermore, a given

  6. PDMS/glass microfluidic cell culture system for cytotoxicity tests and cells passage

    DEFF Research Database (Denmark)

    Ziolkowska, K.; Jedrych, E.; Kwapiszewski, R.

    2010-01-01

    In this paper, hybrid (PDMS/glass) microfluidic cell culture system (MCCS) integrated with the concentration gradient generator (CGG) is presented. PDMS gas permeability enabled cells' respiration in the fabricated microdevices and excellent glass hydrophilicity allowed successful cells' seeding...

  7. Glucose-Responsive Implantable Polymeric Microdevices for "Smart" Insulin Therapy of Diabetes

    Science.gov (United States)

    Chu, Michael Kok Loon

    Diabetes mellitus is a chronic illness manifested by improper blood glucose management, affecting over 350 million worldwide. As a result, all type 1 patients and roughly 20% of type 2 patients require exogenous insulin therapy to survive. Typically, daily multiple injections are taken to maintain normal glucose levels in response glucose spikes from meals. However, patient compliance and dosing accuracy can fluctuate with variation in meals, exercise, glucose metabolism or stress, leading to poor clinical outcomes. A 'smart', closed-loop insulin delivery system providing on-demand release kinetics responding to circulating glucose levels would be a boon for diabetes patients, replacing constant self monitoring and insulin. This thesis focuses on the development of a novel, 'smart' insulin microdevice that can provide on-demand insulin release in response to blood glucose levels. In the early stage, the feasibility of integrating a composite membrane with pH-responsive nanoparticles embedded in ethylcellulose membrane to provide pH-responsive in vitro release was examined and confirmed using a model drug, vitamin B12. In the second microdevice, glucose oxidase for generating pH signals from glucose oxidation, catalase and manganese dioxide nanoparticles, as peroxide scavengers, were used in a bioinorganic, albumin-based membrane cross-linked with a polydimethylsiloxane (PDMS) grid-microdevice system. This prototype device demonstrated insulin release in response to glucose levels in vitro and regulating plasma glucose in type 1 diabetic rats when implanted intraperitoneally. Advancement allowing for subcutaneous implantation and improved biocompatibility was achieved with surface modification of PDMS microdevices grafted with activated 20 kDa polyethylene glycol (PEG) chains, dramatically reducing immune response and local inflammation. When implanted subcutaneously in diabetic rats, glucose-responsive insulin delivery microdevices showed short and long

  8. Benchtop fabrication of PDMS microstructures by an unconventional photolithographic method

    International Nuclear Information System (INIS)

    Hwang, Chang Mo; Sim, Woo Young; Lee, Seung Hwan; Foudeh, Amir M; Bae, Hojae; Khademhosseini, Ali; Lee, Sang-Hoon

    2010-01-01

    Poly(dimethylsiloxane) (PDMS) microstructures have been widely used in bio-microelectromechanical systems (bio-MEMS) for various types of analytical, diagnostic and therapeutic applications. However, PDMS-based soft lithographic techniques still use conventional microfabrication processes to generate a master mold, which requires access to clean room facilities and costly equipment. With the increasing use of these systems in various fields, the development of benchtop systems for fabricating microdevices is emerging as an important challenge in their widespread use. Here we demonstrate a simple, low-cost and rapid method to fabricate PDMS microstructures by using micropatterned poly(ethylene glycol) diacrylate (PEGDA) master molds. In this method, PEGDA microstructures were patterned on a glass substrate by photolithography under ambient conditions and by using simple tools. The resulting PEGDA structures were subsequently used to generate PDMS microstructures by standard molding in a reproducible and repeatable manner. The thickness of the PEGDA microstructures was controllable from 15 to 300 μm by using commonly available spacer materials. We also demonstrate the use of this method to fabricate microfluidic channels capable of generating concentration gradients. In addition, we fabricated PEGDA microstructures by photolithography from the light generated from commonly available laminar cell culture hood. These data suggest that this approach could be beneficial for fabricating low-cost PDMS-based microdevices in resource limited settings.

  9. Design of microdevices for long-term live cell imaging

    International Nuclear Information System (INIS)

    Chen, Huaying; Nordon, Robert E; Rosengarten, Gary; Li, Musen

    2012-01-01

    Advances in fluorescent live cell imaging provide high-content information that relates a cell's life events to its ancestors. An important requirement to track clonal growth and development is the retention of motile cells derived from an ancestor within the same microscopic field of view for days to weeks, while recording fluorescence images and controlling the mechanical and biochemical microenvironments that regulate cell growth and differentiation. The aim of this study was to design a microwell device for long-term, time-lapse imaging of motile cells with the specific requirements of (a) inoculating devices with an average of one cell per well and (b) retaining progeny of cells within a single microscopic field of view for extended growth periods. A two-layer PDMS microwell culture device consisting of a parallel-plate flow cell bonded on top of a microwell array was developed for cell capture and clonal culture. Cell deposition statistics were related to microwell geometry (plate separation and well depth) and the Reynolds number. Computational fluid dynamics was used to simulate flow in the microdevices as well as cell–fluid interactions. Analysis of the forces acting upon a cell was used to predict cell docking zones, which were confirmed by experimental observations. Cell–fluid dynamic interactions are important considerations for design of microdevices for long-term, live cell imaging. The analysis of force and torque balance provides a reasonable approximation for cell displacement forces. It is computationally less intensive compared to simulation of cell trajectories, and can be applied to a wide range of microdevice geometries to predict the cell docking behavior. (paper)

  10. An optically guided microdevice comprising a nanowire

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a microdevice (100) for emitting electromagnetic radiation onto an associated object. Simultaneous non-contact spatial control over the microdevice in terms of translational movement in three dimensions, and rotational movement around at least two axes, preferably...

  11. Exogenous Gene Integration for Microalgal Cell Transformation Using a Nanowire-Incorporated Microdevice.

    Science.gov (United States)

    Bae, Sunwoong; Park, Seunghye; Kim, Jung; Choi, Jong Seob; Kim, Kyung Hoon; Kwon, Donguk; Jin, EonSeon; Park, Inkyu; Kim, Do Hyun; Seo, Tae Seok

    2015-12-16

    Superior green algal cells showing high lipid production and rapid growth rate are considered as an alternative for the next generation green energy resources. To achieve the biomass based energy generation, transformed microalgae with superlative properties should be developed through genetic engineering. Contrary to the normal cells, microalgae have rigid cell walls, so that target gene delivery into cells is challengeable. In this study, we report a ZnO nanowire-incorporated microdevice for a high throughput microalgal transformation. The proposed microdevice was equipped with not only a ZnO nanowire in the microchannel for gene delivery into cells but also a pneumatic polydimethylsiloxane (PDMS) microvalve to modulate the cellular attachment and detachment from the nanowire. As a model, hygromycin B resistance gene cassette (Hyg3) was functionalized on the hydrothermally grown ZnO nanowires through a disulfide bond and released into green algal cells, Chlamydomonas reinhardtii, by reductive cleavage. During Hyg3 gene delivery, a monolithic PDMS membrane was bent down, so that algal cells were pushed down toward ZnO nanowires. The supply of vacuum in the pneumatic line made the PDMS membrane bend up, enabling the gene delivered algal cells to be recovered from the outlet of the microchannel. We successfully confirmed Hyg3 gene integrated in microalgae by amplifying the inserted gene through polymerase chain reaction (PCR) and DNA sequencing. The efficiency of the gene delivery to algal cells using the ZnO nanowire-incorporated microdevice was 6.52 × 10(4)- and 9.66 × 10(4)-fold higher than that of a traditional glass bead beating and electroporation.

  12. [An implantable micro-device using wireless power transmission for measuring aortic aneurysm sac pressure].

    Science.gov (United States)

    Guo, Xudong; Ge, Bin; Wang, Wenxing

    2013-08-01

    In order to detect endoleaks after endovascular aneurysm repair (EVAR), we developed an implantable micro-device based on wireless power transmission to measure aortic aneurysm sac pressure. The implantable micro-device is composed of a miniature wireless pressure sensor, an energy transmitting coil, a data recorder and a data processing platform. Power transmission without interconnecting wires is performed by a transmitting coil and a receiving coil. The coupling efficiency of wireless power transmission depends on the coupling coefficient between the transmitting coil and the receiving coil. With theoretical analysis and experimental study, we optimized the geometry of the receiving coil to increase the coupling coefficient. In order to keep efficiency balance and satisfy the maximizing conditions, we designed a closed loop power transmission circuit, including a receiving voltage feedback module based on wireless communication. The closed loop improved the stability and reliability of transmission energy. The prototype of the micro-device has been developed and the experiment has been performed. The experiments showed that the micro-device was feasible and valid. For normal operation, the distance between the transmitting coil and the receiving coil is smaller than 8cm. Besides, the distance between the micro-device and the data recorder is within 50cm.

  13. PDMS membranes as sensing element in optical sensors for gas detection in water

    Directory of Open Access Journals (Sweden)

    Stefania Torino

    2017-11-01

    Full Text Available Polydimethylsiloxane (PDMS has been introduced the first time about 20years ago. This polymer is worldwide used for the rapid prototyping of microfluidic device through a replica molding process. However, the great popularity of PDMS is not only related to its easy processability, but also to its chemical and physical properties. For its interesting properties, the polymer has been implied for several applications, including sensing. In this work, we investigated how to use functionalized PDMS membranes as sensing elements in optical sensors for gas detection in water samples. Keywords: Polydimethylsiloxane (PDMS, Surface Plasmon Resonance (SPR sensors, Gas sensor

  14. A new UV-curing elastomeric substrate for rapid prototyping of microfluidic devices

    Science.gov (United States)

    Alvankarian, Jafar; Yeop Majlis, Burhanuddin

    2012-03-01

    Rapid prototyping in the design cycle of new microfluidic devices is very important for shortening time-to-market. Researchers are facing the challenge to explore new and suitable substrates with simple and efficient microfabrication techniques. In this paper, we introduce and characterize a UV-curing elastomeric polyurethane methacrylate (PUMA) for rapid prototyping of microfluidic devices. The swelling and solubility of PUMA in different chemicals is determined. Time-dependent measurements of water contact angle show that the native PUMA is hydrophilic without surface treatment. The current monitoring method is used for measurement of the electroosmotic flow mobility in the microchannels made from PUMA. The optical, physical, thermal and mechanical properties of PUMA are evaluated. The UV-lithography and molding process is used for making micropillars and deep channel microfluidic structures integrated to the supporting base layer. Spin coating is characterized for producing different layer thicknesses of PUMA resin. A device is fabricated and tested for examining the strength of different bonding techniques such as conformal, corona treating and semi-curing of two PUMA layers in microfluidic application and the results show that the bonding strengths are comparable to that of PDMS. We also report fabrication and testing of a three-layer multi inlet/outlet microfluidic device including a very effective fluidic interconnect for application demonstration of PUMA as a promising new substrate. A simple micro-device is developed and employed for observing the pressure deflection of membrane made from PUMA as a very effective elastomeric valve in microfluidic devices.

  15. Thermally robust and biomolecule-friendly room-temperature bonding for the fabrication of elastomer-plastic hybrid microdevices.

    Science.gov (United States)

    Nguyen, T P O; Tran, B M; Lee, N Y

    2016-08-16

    Here, we introduce a simple and fast method for bonding a poly(dimethylsiloxane) (PDMS) silicone elastomer to different plastics. In this technique, surface modification and subsequent bonding processes are performed at room temperature. Furthermore, only one chemical is needed, and no surface oxidation step is necessary prior to bonding. This bonding method is particularly suitable for encapsulating biomolecules that are sensitive to external stimuli, such as heat or plasma treatment, and for embedding fracturable materials prior to the bonding step. Microchannel-fabricated PDMS was first oxidized by plasma treatment and reacted with aminosilane by forming strong siloxane bonds (Si-O-Si) at room temperature. Without the surface oxidation of the amine-terminated PDMS and plastic, the two heterogeneous substrates were brought into intimate physical contact and left at room temperature. Subsequently, aminolysis occurred, leading to the generation of a permanent seal via the formation of robust urethane bonds after only 5 min of assembling. Using this method, large-area (10 × 10 cm) bonding was successfully realized. The surface was characterized by contact angle measurements and X-ray photoelectron spectroscopy (XPS) analyses, and the bonding strength was analyzed by performing peel, delamination, leak, and burst tests. The bond strength of the PDMS-polycarbonate (PC) assembly was approximately 409 ± 6.6 kPa, and the assembly withstood the injection of a tremendous amount of liquid with the per-minute injection volume exceeding 2000 times its total internal volume. The thermal stability of the bonded microdevice was confirmed by performing a chamber-type multiplex polymerase chain reaction (PCR) of two major foodborne pathogens - Escherichia coli O157:H7 and Salmonella typhimurium - and assessing the possibility for on-site direct detection of PCR amplicons. This bonding method demonstrated high potential for the stable construction of closed microfluidic systems

  16. Rapid, High-Throughput, and Direct Molecular Beacon Delivery to Human Cancer Cells Using a Nanowire-Incorporated and Pneumatic Pressure-Driven Microdevice.

    Science.gov (United States)

    Kim, Kyung Hoon; Kim, Jung; Choi, Jong Seob; Bae, Sunwoong; Kwon, Donguk; Park, Inkyu; Kim, Do Hyun; Seo, Tae Seok

    2015-12-01

    Tracking and monitoring the intracellular behavior of mRNA is of paramount importance for understanding real-time gene expression in cell biology. To detect specific mRNA sequences, molecular beacons (MBs) have been widely employed as sensing probes. Although numerous strategies for MB delivery into the target cells have been reported, many issues such as the cytotoxicity of the carriers, dependence on the random probability of MB transfer, and critical cellular damage still need to be overcome. Herein, we have developed a nanowire-incorporated and pneumatic pressure-driven microdevice for rapid, high-throughput, and direct MB delivery to human breast cancer MCF-7 cells to monitor survivin mRNA expression. The proposed microdevice is composed of three layers: a pump-associated glass manifold layer, a monolithic polydimethylsiloxane (PDMS) membrane, and a ZnO nanowire-patterned microchannel layer. The MB is immobilized on the ZnO nanowires by disulfide bonding, and the glass manifold and PDMS membrane serve as a microvalve, so that the cellular attachment and detachment on the MB-coated nanowire array can be manipulated. The combination of the nanowire-mediated MB delivery and the microvalve function enable the transfer of MB into the cells in a controllable way with high cell viability and to detect survivin mRNA expression quantitatively after docetaxel treatment. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. PDMS patterning by proton beam

    International Nuclear Information System (INIS)

    Szilasi, S.Z.; Huszank, R.; Csik, A.; Rajta, I.; Cserhati, C.

    2008-01-01

    Complete text of publication follows. In this paper the poly-(dimethylsiloxane) (PDMS) is introduced as a resist material for proton beam writing. We were looking for a biocompatible micropatternable polymer in which the chemical structure changes significantly due to proton beam exposure making the polymer capable of proton beam writing. PDMS is a commonly used silicon-based organic polymer, optically clear, and generally considered to be inert, non-toxic biocompatible polymer. PDMS is also notably hydrophobic, meaning that water cannot easily penetrate its surface. This property has led extended use of PDMS in microfluidics too. PDMS is a crosslinkable polymer, it acts like a rubbery solid when it is cross-linked. In this state, the polymer does not deform permanently under stress or strain. Up to now the PDMS has been used as a casting or replicating material in microfabrication to form microchannels, micromolding, or creating microstamps, etc. PDMS has not been used as a resist material for direct write techniques. In this work we investigated the surface topography of the irradiated regions of PDMS under and without stress (on the cut surface and on the original fluid surface, respectively). In the samples wherein stress was not developed, noticeable compaction was observed. In case of those samples wherein stress was developed, noticeable swelling occurred. During the irradiation around the actual position of the beam spot we experienced significant swelling that reduced in time. To determine the large scale remaining changes in the surface topography at the cut edges of the samples we used Scanning Electron Microscope (SEM). After numerous profilometer measurements we experienced that the irradiated areas became harder, so the probe could move on it without sinking. The unirradiated areas of the PDMS were so soft, that the probe sank in the medium even with the smallest load (5 x 10 -7 N). Because of this phenomenon the irradiated areas seem to be higher

  18. Photonic devices prepared by embossing in PDMS

    Energy Technology Data Exchange (ETDEWEB)

    Jandura, D., E-mail: jandura@fyzika.uniza.sk; Pudis, D.; Berezina, S.

    2017-02-15

    Highlights: • Fabrication technology of photonic devices based on embossing in PDMS is presented. • Analysis of morphological properties of prepared devices in PDMS by CLSM and AFM. • Spectral characterization of PDMS ring resonator proved the resonator functionality. - Abstract: In this paper, we present useful technique for fabrication of novel photonic devices created in the polydimethylsiloxane (PDMS). We use combination of direct laser writing in thin photoresist layer with embossing process of liquid PDMS. We prepared ring resonator and Mach-Zehnder interferometer in PDMS. The shape of prepared PDMS photonic devices was analyzed by confocal laser microscope and atomic force microscope. Optical characterization of these devices reveals extinction ratios of up to 20 dB.

  19. Microheater based on magnetic nanoparticle embedded PDMS

    International Nuclear Information System (INIS)

    Kim, Jeong Ah; Lee, Seung Hwan; Park, Tai Hyun; Park, Hongsuk; Kim, Jong Hyo

    2010-01-01

    A microheater was established by embedding magnetic nanoparticles into PDMS (MNP-PDMS). MNP-PDMS generated heat under an AC magnetic field and the temperature was controlled by varying the magnetic particle content and the magnetic field intensity. In this study, the MNP-PDMS chip was demonstrated to amplify the target DNA (732 bp) with > 90% efficiency compared to the conventional PCR thermocycler, and exhibited good performance in regards to temperature control. This system holds great promise for reliably controlling the temperature of thermal processes on an integrated microchip platform for biochemical applications.

  20. Microheater based on magnetic nanoparticle embedded PDMS

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Ah; Lee, Seung Hwan; Park, Tai Hyun [School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Park, Hongsuk [Interdisciplinary Program of Bioengineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Kim, Jong Hyo, E-mail: thpark@snu.ac.kr [Department of Radiology, College of Medicine, Seoul National University, Seoul, 110-744 (Korea, Republic of)

    2010-04-23

    A microheater was established by embedding magnetic nanoparticles into PDMS (MNP-PDMS). MNP-PDMS generated heat under an AC magnetic field and the temperature was controlled by varying the magnetic particle content and the magnetic field intensity. In this study, the MNP-PDMS chip was demonstrated to amplify the target DNA (732 bp) with > 90% efficiency compared to the conventional PCR thermocycler, and exhibited good performance in regards to temperature control. This system holds great promise for reliably controlling the temperature of thermal processes on an integrated microchip platform for biochemical applications.

  1. Engineers are from PDMS-land, Biologists are from Polystyrenia.

    Science.gov (United States)

    Berthier, Erwin; Young, Edmond W K; Beebe, David

    2012-04-07

    As the integration of microfluidics into cell biology research proceeds at an ever-increasing pace, a critical question for those working at the interface of both disciplines is which device material to use for a given application. While PDMS and soft lithography methods offer the engineer rapid prototyping capabilities, PDMS as a material has characteristics that have known adverse effects on cell-based experiments. In contrast, while polystyrene (PS), the most commonly used thermoplastic for laboratory cultureware, has provided decades of grounded and validated research conclusions in cell behavior and function, PS as a material has posed significant challenges in microfabrication. These competing issues have forced microfluidics engineers and biologists to make compromises in how they approach specific research questions, and furthermore, have attenuated the impact of microfluidics on biological research. In this review, we provide a comparison of the attributes of PDMS and PS, and discuss reasons for their popularity in their respective fields. We provide a critical evaluation of the strengths and limitations of PDMS and PS in relation to the advancement and future impact on microfluidic cell-based studies and applications. We believe that engineers have a responsibility to overcome any challenges associated with microfabrication, whether with PS or other materials, and that engineers should provide options and solutions that assist biologists in their experimental design. Our goal is not to advocate for any specific material, but provide guidelines for researchers who desire to choose the most suitable material for their application, and suggest important research directions for engineers working at the interface between microfabrication technology and biological application. This journal is © The Royal Society of Chemistry 2012

  2. Accounting for PDMS shrinkage when replicating structures

    DEFF Research Database (Denmark)

    Madsen, Morten Hannibal; Feidenhans'l, Nikolaj Agentoft; Hansen, Poul-Erik

    2014-01-01

    are seldom applied to counteract the shrinkage of PDMS. Also, to perform metrological measurements using replica techniques one has to take the shrinkage into account. Thus we report a study of the shrinkage of PDMS with several different mixing ratios and curing temperatures. The shrinkage factor, with its...

  3. Encapsulated PDMS microspheres with reactive handles

    DEFF Research Database (Denmark)

    Gonzalez, Lidia; Ma, Baoguang; Li, Li

    2014-01-01

    , cured PDMS microspheres are coated with poly(methyl methacrylate) using a chemical process (solvent evaporation technique). Three solvents are used in three different experiments: dichloromethane, tetrahydrofuran, and acetone. The composition and morphology of the cured PDMS microspheres and PMMA coated...

  4. Biofunctionalization of PDMS-based microfluidic systems

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Bergoi Ibarlucea, Cesar Fernández-Sánchez, Stefanie Demming, Stephanus Büttgenbach & Andreu Llobera ### Abstract Three simple approaches for the selective immobilization of biomolecules on the surface of poly(dimethylsiloxane) (PDMS) microfluidic systems that do not require any specific instrumentation, are described and compared. They are based in the introduction of hydroxyl groups on the PDMS surface by direct adsorption of either polyethylene glycol (PEG) or polyvinyl alc...

  5. Improving dielectric permittivity by incorporating PDMS-PEG block copolymer into PDMS network

    DEFF Research Database (Denmark)

    A Razak, Aliff Hisyam; Szabo, Peter; Skov, Anne Ladegaard

    introduces different properties in terms of contact angles, dielectric permittivity and rheological behaviour. All morphologies of PDMS-PEG block copolymer in this study exhibit high storage permittivity; at the same time the loss permittivity is even higher which implies that the synthesized PDMS-PEG block...

  6. Improving dielectric permittivity by incorporating PDMS-PEG block copolymer into PDMS network

    DEFF Research Database (Denmark)

    A Razak, Aliff Hisyam; Szabo, Peter; Skov, Anne Ladegaard

    Polydimethylsiloxane (PDMS) based elastomers are well-known to actuate with large strain mainly due to their low modulus and their non-conducting nature. On the other hand, polyethyleneglycols(PEG) are not stretchable but they have high permittivity and are conductive. Combination of the two...... polymers as a block copolymer depicts a possibility for substantial improvement of properties such as high permittivity and non-conductivity – if carefully designed. The objective is to synthesize PDMS-PEG multiblock copolymer assembling into different morphologies1 such as lamellar,cylinder, gyroid...... and spheres based on variation of volume fractions of PDMS and PEG. The synthesisis amended from Klasner et al.2 and Jukarainen et al.3 Variation in the ratio between the two constituents introduces distinctive properties in terms of dielectric permittivity and rheological behaviour. PDMS-PEG multiblock...

  7. Fabrication of microstructures and microdevices by the particle assemblage

    Science.gov (United States)

    Kobayashi, Mikihiko; Shinya, Norio; Dan, Takehiro; Fudouzi, Hiroshi; Konno, Takeshi; Egashira, Mitsuru

    2001-08-01

    We aim to fabricate microstructure and microdevices by integrating and arranging powder particles, i.e., the particle assemblage. We have developed three assembling techniques of the particles. The details of the assembling techniques and samples of the assembled microstructures are introduced. A manipulator is developed to manipulate and to weld metal particles by using a tungsten probe. Nickel alloy particles of 50 micrometers were piled on a gold substrate by the manipulator, and a leaning tower of the particles is fabricated. The array of the leaning tower is considered to act as an actuator. For the integration of a great number of particles, we developed another method based on the principle with the xerography. An electron beam or an ion beam is irradiated on an insulating substrate. An electrified pattern is formed on the substrate by the doped electron or doped ion. Fine particles are attracted to the pattern by the electrostatic force. Thus, we can arrange particles by immersing the substrate in the suspension of particles. The third is a productive method of ordered mixture by the electrostatic force. A self- thermostatic heater is made from the composite particles of BaTiO3 and In produced by the method.

  8. Culture of bovine embryos on a polydimethylsiloxane (PDMS) microwell plate.

    Science.gov (United States)

    Akagi, Satoshi; Hosoe, Misa; Matsukawa, Kazutsugu; Ichikawa, Akihiko; Tanikawa, Tamio; Takahashi, Seiya

    2010-08-01

    We fabricated a polydimethylsiloxane (PDMS)-based microwell plate (PDMS-MP) containing 100 microwells with a rounded bottom and examined whether it can be used for culture of individual in vitro fertilized (IVF) embryos or parthenogenetically activated zona-free embryos in cattle. In Experiment 1, we examined the in vitro developmental ability of IVF embryos cultured individually on PDMS-MP. After IVF, 20 embryos were transferred into 100 microl drops on PDMS-MP and cultured individually in each well of PDMS-MP (PDMS group). After 7 days of culture, the embryos in the PDMS group developed to the blastocyst stage at the same rate of those in the control group cultured in a group of 20 embryos without PDMS-MP. There were no differences in total number of cells and the ratio of inner cell mass to total cells between the PDMS and control groups. In Experiment 2, we examined the in vitro developmental ability of parthenogenetically activated zona-free bovine embryos cultured individually on PDMS-MP. The zona-free embryos were cultured individually in each well of a PDMS-MP or in each well produced by pressing a darning needle onto the bottom of a culture dish (WOW group). After 7 days of culture, the blastocyst formation rate and cell number of blastocysts in the PDMS group did not differ from those of the zona-intact embryos in the control group. Also, there were no differences in the blastocyst formation rate and cell number of blastocysts between the WOW and PDMS groups. These results suggest that the culture system using PDMS-MP is useful for individual embryos or zona-free embryos in cattle.

  9. Polymer (PDMS-Fe3O4) magneto-dielectric substrate for a MIMO antenna array

    Science.gov (United States)

    Alqadami, Abdulrahman Shueai Mohsen; Jamlos, Mohd Faizal; Soh, Ping Jack; Kamarudin, Muhammad Ramlee

    2016-01-01

    This paper presents the design of a 2 × 4 multiple-input multiple-output (MIMO) antenna array fabricated on a nanocomposite magneto-dielectric polymer substrate. The 10-nm iron oxide (Fe3O4) nanoparticles and polydimethylsiloxane (PDMS) composite is used as substrate to enhance the performance of a MIMO antenna array. The measured results showed up to 40.8 % enhancement in terms of bandwidth, 9.95 dB gain, and 57 % of radiation efficiency. Furthermore, it is found that the proposed magneto-dielectric (PDMS-Fe3O4) composite substrate provides excellent MIMO parameters such as correlation coefficient, diversity gain, and mutual coupling. The prototype of the proposed antenna is transparent, flexible, lightweight, and resistant against dust and corrosion. Measured results indicate that the proposed antenna is suitable for WLAN and ultra-wideband biomedical applications within frequency range of 5.33-7.70 GHz.

  10. Quantitative Studies on PDMS-PDMS Interface Bonding with Piranha Solution and its Swelling Effect

    Directory of Open Access Journals (Sweden)

    Choon-Lai Chiang

    2012-05-01

    Full Text Available In this paper, a low-cost yet effective method of irreversible bonding between two elastomeric polydimethylsiloxane (PDMS interfaces using Piranha solution is investigated. Piranha solutions at a weight ratio of 3:1 using different acids and hydrogen peroxide were attempted. The average tensile strengths of the device bonded with concentrated sulfuric acid-based piranha solution and nitric acid-based piranha solution were found to be 200 ± 20 kPa and 100 ± 15 kPa respectively. A PDMS surface treated with Piranha Solution demonstrated an increase in hydrophilicity. In addition, relatively straightforward swelling studies of PDMS using a weight loss method with common organic solvents were also investigated. Experimental results show that hexane, toluene, ethyl acetate, n-propyl alcohol and acetone swell PDMS significantly over a duration of up to 1 h and above; PDMS samples reached a steady state of swelling only after 5 min of immersion in other solvents. This will enable researchers to develop devices for the future according to the interaction between the material and the solvents in contact.

  11. The synthesis and protein resistance of amphiphilic PDMS-b-(PDMS-g-cysteine) copolymers

    Science.gov (United States)

    Lei, Yufeng; Lin, Yaling; Zhang, Anqiang

    2017-10-01

    Zwitterionic polymers have been used to cope with nonspecific protein adsorption and bio-fouling problems for a wide range of materials, including biomedical devices, marine coatings and membrane separation. However, direct surface modification with highly water-soluble zwitterionic polymers is rather difficult due to their poor attachment to hydrophobic solid surfaces. In this work, we utilize the hydrophobic interaction to anchor zwitterionic polysiloxanes grafted with cysteine onto surfaces by adding an hydrophobic block of polydimethylsiloxanes, referred as PDMS-b-(PDMS-g-Cys)s. The synthesis involves only three steps of reactions, and the structures of each product were characterized using GPC, FT-IR and 1H NMR. The adsorption and protein resistance of PDMS-b-(PDMS-g-Cys)s on a gold surface are investigated with QCM-D. The results show that the hydrophobic interaction moieties of the additional PDMS blocks help the hydrophilic cysteine-grafted blocks stably attach and then function on the sensor. These findings suggest that the addition of hydrophobic moieties provides an effective approach to construct anti-fouling interfaces with zwitterionic polymers in aqueous solution.

  12. Architectural prototyping

    DEFF Research Database (Denmark)

    Bardram, Jakob Eyvind; Christensen, Henrik Bærbak; Hansen, Klaus Marius

    2004-01-01

    A major part of software architecture design is learning how specific architectural designs balance the concerns of stakeholders. We explore the notion of "architectural prototypes", correspondingly architectural prototyping, as a means of using executable prototypes to investigate stakeholders...

  13. Rapid prototyping of biodegradable microneedle arrays by integrating CO2 laser processing and polymer molding

    International Nuclear Information System (INIS)

    Tu, K T; Chung, C K

    2016-01-01

    An integrated technology of CO 2 laser processing and polymer molding has been demonstrated for the rapid prototyping of biodegradable poly-lactic-co-glycolic acid (PLGA) microneedle arrays. Rapid and low-cost CO 2 laser processing was used for the fabrication of a high-aspect-ratio microneedle master mold instead of conventional time-consuming and expensive photolithography and etching processes. It is crucial to use flexible polydimethylsiloxane (PDMS) to detach PLGA. However, the direct CO 2 laser-ablated PDMS could generate poor surfaces with bulges, scorches, re-solidification and shrinkage. Here, we have combined the polymethyl methacrylate (PMMA) ablation and two-step PDMS casting process to form a PDMS female microneedle mold to eliminate the problem of direct ablation. A self-assembled monolayer polyethylene glycol was coated to prevent stiction between the two PDMS layers during the peeling-off step in the PDMS-to-PDMS replication. Then the PLGA microneedle array was successfully released by bending the second-cast PDMS mold with flexibility and hydrophobic property. The depth of the polymer microneedles can range from hundreds of micrometers to millimeters. It is linked to the PMMA pattern profile and can be adjusted by CO 2 laser power and scanning speed. The proposed integration process is maskless, simple and low-cost for rapid prototyping with a reusable mold. (paper)

  14. Rapid prototyping of biodegradable microneedle arrays by integrating CO2 laser processing and polymer molding

    Science.gov (United States)

    Tu, K. T.; Chung, C. K.

    2016-06-01

    An integrated technology of CO2 laser processing and polymer molding has been demonstrated for the rapid prototyping of biodegradable poly-lactic-co-glycolic acid (PLGA) microneedle arrays. Rapid and low-cost CO2 laser processing was used for the fabrication of a high-aspect-ratio microneedle master mold instead of conventional time-consuming and expensive photolithography and etching processes. It is crucial to use flexible polydimethylsiloxane (PDMS) to detach PLGA. However, the direct CO2 laser-ablated PDMS could generate poor surfaces with bulges, scorches, re-solidification and shrinkage. Here, we have combined the polymethyl methacrylate (PMMA) ablation and two-step PDMS casting process to form a PDMS female microneedle mold to eliminate the problem of direct ablation. A self-assembled monolayer polyethylene glycol was coated to prevent stiction between the two PDMS layers during the peeling-off step in the PDMS-to-PDMS replication. Then the PLGA microneedle array was successfully released by bending the second-cast PDMS mold with flexibility and hydrophobic property. The depth of the polymer microneedles can range from hundreds of micrometers to millimeters. It is linked to the PMMA pattern profile and can be adjusted by CO2 laser power and scanning speed. The proposed integration process is maskless, simple and low-cost for rapid prototyping with a reusable mold.

  15. A multilayer microdevice for cell-based high-throughput drug screening

    International Nuclear Information System (INIS)

    Liu, Chong; Wang, Lei; Li, Jingmin; Ding, Xiping; Chunyu, Li; Xu, Zheng; Wang, Qi

    2012-01-01

    A multilayer polydimethylsiloxane microdevice for cell-based high-throughput drug screening is described in this paper. This established microdevice was based on a modularization method and it integrated a drug/medium concentration gradient generator (CGG), pneumatic microvalves and a cell culture microchamber array. The CGG was able to generate five steps of linear concentrations with the same outlet flow rate. The medium/drug flowed through CGG and then into the pear-shaped cell culture microchambers vertically. This vertical perfusion mode was used to reduce the impact of the shear stress on the physiology of cells induced by the fluid flow in the microchambers. Pear-shaped microchambers with two arrays of miropillars at each outlet were adopted in this microdevice, which were beneficial to cell distribution. The chemotherapeutics Cisplatin (DDP)-induced Cisplatin-resistant cell line A549/DDP apoptotic experiments were performed well on this platform. The results showed that this novel microdevice could not only provide well-defined and stable conditions for cell culture, but was also useful for cell-based high-throughput drug screening with less reagents and time consumption. (paper)

  16. Printing Functional 3D Microdevices by Laser-Induced Forward Transfer

    NARCIS (Netherlands)

    Luo, Jun; Pohl, R.; Qi, Lehua; Römer, G.R.B.E.; Sun, Chao; Lohse, Detlef; Visser, C.W.

    2017-01-01

    Slender, out-of-plane metal microdevices are made in a new spatial domain, by using laser-induced forward transfer (LIFT) of metals. Here, a thermocouple with a thickness of 10 µm and a height of 250 µm, consisting of platinum and gold pillars is demonstrated. Multimaterial LIFT enables

  17. FY05 LDRD Final Report A Computational Design Tool for Microdevices and Components in Pathogen Detection Systems

    Energy Technology Data Exchange (ETDEWEB)

    Trebotich, D

    2006-02-07

    We have developed new algorithms to model complex biological flows in integrated biodetection microdevice components. The proposed work is important because the design strategy for the next-generation Autonomous Pathogen Detection System at LLNL is the microfluidic-based Biobriefcase, being developed under the Chemical and Biological Countermeasures Program in the Homeland Security Organization. This miniaturization strategy introduces a new flow regime to systems where biological flow is already complex and not well understood. Also, design and fabrication of MEMS devices is time-consuming and costly due to the current trial-and-error approach. Furthermore, existing devices, in general, are not optimized. There are several MEMS CAD capabilities currently available, but their computational fluid dynamics modeling capabilities are rudimentary at best. Therefore, we proposed a collaboration to develop computational tools at LLNL which will (1) provide critical understanding of the fundamental flow physics involved in bioMEMS devices, (2) shorten the design and fabrication process, and thus reduce costs, (3) optimize current prototypes and (4) provide a prediction capability for the design of new, more advanced microfluidic systems. Computational expertise was provided by Comp-CASC and UC Davis-DAS. The simulation work was supported by key experiments for guidance and validation at UC Berkeley-BioE.

  18. A novel method for transferring graphene onto PDMS

    International Nuclear Information System (INIS)

    Hiranyawasit, Witchawate; Punpattanakul, Krirktakul; Pimpin, Alongkorn; Kim, Houngkyung; Jeon, Seokwoo; Srituravanich, Werayut

    2015-01-01

    Graphical abstract: - Highlights: • A novel method for graphene transfer onto PDMS substrates established. • SU-8 layer is used to strengthen the adhesion between graphene and PDMS substrate. • A great potential for the development of graphene-based microfluidic devices. - Abstract: Graphene has been attracting great attention from scientific community due to its astonishing mechanical, optical, and electrical properties, especially, graphene films synthesized by chemical vapor deposition (CVD) method are large, uniform and high-quality. CVD-grown graphene films have been successfully transferred onto various kinds of substrates such as SiO 2 /Si, quartz, PET, and plastics. However, graphene transfer onto polydimethylsiloxane (PDMS) substrates for device development has been limited due to the very low surface energy of PDMS. Here, we present a novel method to transfer graphene onto PDMS substrates by utilizing a thin layer of SU-8 as an adhesion layer. The SU-8 adhesion layer significantly improves the adhesion between the graphene layer and the PDMS substrate resulting in successful graphene transfer onto the PDMS substrate. This opens up a great potential of using graphene on PDMS substrates for the development of a wide range of graphene-based transparent and flexible devices.

  19. A novel method for transferring graphene onto PDMS

    Energy Technology Data Exchange (ETDEWEB)

    Hiranyawasit, Witchawate; Punpattanakul, Krirktakul; Pimpin, Alongkorn [Department of Mechanical Engineering, Chulalongkorn University, Pathumwan, Bangkok 10330 (Thailand); Kim, Houngkyung; Jeon, Seokwoo [Department of Materials Science and Engineering, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 305-701 (Korea, Republic of); Srituravanich, Werayut, E-mail: werayut.s@chula.ac.th [Department of Mechanical Engineering, Chulalongkorn University, Pathumwan, Bangkok 10330 (Thailand)

    2015-12-15

    Graphical abstract: - Highlights: • A novel method for graphene transfer onto PDMS substrates established. • SU-8 layer is used to strengthen the adhesion between graphene and PDMS substrate. • A great potential for the development of graphene-based microfluidic devices. - Abstract: Graphene has been attracting great attention from scientific community due to its astonishing mechanical, optical, and electrical properties, especially, graphene films synthesized by chemical vapor deposition (CVD) method are large, uniform and high-quality. CVD-grown graphene films have been successfully transferred onto various kinds of substrates such as SiO{sub 2}/Si, quartz, PET, and plastics. However, graphene transfer onto polydimethylsiloxane (PDMS) substrates for device development has been limited due to the very low surface energy of PDMS. Here, we present a novel method to transfer graphene onto PDMS substrates by utilizing a thin layer of SU-8 as an adhesion layer. The SU-8 adhesion layer significantly improves the adhesion between the graphene layer and the PDMS substrate resulting in successful graphene transfer onto the PDMS substrate. This opens up a great potential of using graphene on PDMS substrates for the development of a wide range of graphene-based transparent and flexible devices.

  20. Viscoelastic nature of Au nanoparticle–PDMS nanocomposite gels

    Indian Academy of Sciences (India)

    A stable gel of Au nanoparticles in polydimethylsiloxane (PDMS) nanocomposite is prepared by employing the curing agent of PDMS elastomer as a reducing agent for the formation of Au nanoparticles by an in-situ process. The viscoelastic nature of these gels is very sensitive to the Au nanoparticle loading and the ...

  1. Stretchable Metamaterial Absorber Using Liquid Metal-Filled Polydimethylsiloxane (PDMS

    Directory of Open Access Journals (Sweden)

    Kyeongseob Kim

    2016-04-01

    Full Text Available A stretchable metamaterial absorber is proposed in this study. The stretchability was achieved by liquid metal and polydimethylsiloxane (PDMS. To inject liquid metal, microfluidic channels were fabricated using PDMS powers and microfluidic-channel frames, which were built using a three-dimensional printer. A top conductive pattern and ground plane were designed after considering the easy injection of liquid metal. The proposed metamaterial absorber comprises three layers of PDMS substrate. The top layer is for the top conductive pattern, and the bottom layer is for the meandered ground plane. Flat PDMS layers were inserted between the top and bottom PDMS layers. The measured absorptivity of the fabricated absorber was 97.8% at 18.5 GHz, and the absorption frequency increased from 18.5 to 18.65 GHz as the absorber was stretched from its original length (5.2 cm to 6.4 cm.

  2. Rapid fabrication of microfluidic polymer electrolyte membrane fuel cell in PDMS by surface patterning of perfluorinated ion-exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yong-Ak; Han, Jongyoon [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Batista, Candy [Roxbury Community College, 1234 Columbus Ave., Roxbury Crossing, MA 02120 (United States); Sarpeshkar, Rahul [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States)

    2008-09-01

    In this paper we demonstrate a simple and rapid fabrication method for a microfluidic polymer electrolyte membrane (PEM) fuel cell using polydimethylsiloxane (PDMS), which has become the de facto standard material in BioMEMS. Instead of integrating a Nafion sheet film between two layers of a PDMS device in a traditional ''sandwich format,'' we pattern a perfluorinated ion-exchange resin such as a Nafion resin on a glass substrate using a reversibly bonded PDMS microchannel to generate an ion-selective membrane between the fuel-cell electrodes. After this patterning step, the assembly of the microfluidic fuel cell is accomplished by simple oxygen plasma bonding between the PDMS chip and the glass substrate. In an example implementation, the planar PEM microfluidic fuel cell generates an open circuit voltage of 600-800 mV and delivers a maximum current output of nearly 4 {mu}A. To enhance the power output of the fuel cell we utilize self-assembled colloidal arrays as a support matrix for the Nafion resin. Such arrays allow us to increase the thickness of the ion-selective membrane to 20 {mu}m and increase the current output by 166%. Our novel fabrication method enables rapid prototyping of microfluidic fuel cells to study various ion-exchange resins for the polymer electrolyte membrane. Our work will facilitate the development of miniature, implantable, on-chip power sources for biomedical applications. (author)

  3. Collaborative Prototyping

    DEFF Research Database (Denmark)

    Bogers, Marcel; Horst, Willem

    2014-01-01

    of the prototyping process, the actual prototype was used as a tool for communication or development, thus serving as a platform for the cross-fertilization of knowledge. In this way, collaborative prototyping leads to a better balance between functionality and usability; it translates usability problems into design......This paper presents an inductive study that shows how collaborative prototyping across functional, hierarchical, and organizational boundaries can improve the overall prototyping process. Our combined action research and case study approach provides new insights into how collaborative prototyping...... can provide a platform for prototype-driven problem solving in early new product development (NPD). Our findings have important implications for how to facilitate multistakeholder collaboration in prototyping and problem solving, and more generally for how to organize collaborative and open innovation...

  4. Development of Cell Culture Microdevice Actuated by Piezoelectric Thin Films for Delivering Mechanical Vibratory Stimuli to Cells

    International Nuclear Information System (INIS)

    Yamada, Y; Umegaki, G; Kawashima, T; Nagai, M; Shibata, T; Masuzawa, T; Kimura, T; Kishida, A

    2012-01-01

    In order to realize a cell culture microdevice actuated by piezoelectric thin films for on-chip regulation of cell functions, this paper reported on a feasibility study by using the microdevice with KOH-etched cavities surrounded by four (111) sidewalls as microchambers in order to introduce cells to be cultured. As a result, the vibration characteristic of the PZT actuator was improved by using an electric field -150 kV/cm at 70 C for 30 min in poling process. A feasibility study on cell culture for delivering mechanical vibratory stimuli to cells revealed the microdevice could be applicable to the culture with actual biological cells. In addition, it was found that O 2 -plasma treated parylene-C process could be applicable for obtaining homogeneous surface of cell culture microdevice.

  5. Analysis of using PDMS polymer as the sensors of the pressure or weight

    Science.gov (United States)

    Jargus, Jan; Nedoma, Jan; Fajkus, Marcel; Novak, Martin; Mec, Pavel; Cvejn, Daniel; Bujdos, David; Vasinek, Vladimir

    2017-10-01

    Polydimethylsiloxane (PDMS) can be used for its optical properties, and its composition offers the possibility of use in the diverse environments (industry, photonics, medicine applications, security devices and etc.). Therefore authors of this article focused on more detailed working with this material. This material could be use for the sensory applications such as the sensor of pressure or weight, which may find use also in the field of security and defense. The article describes the process of making the prototype of the sensor and its verification based on laboratory results. Measurement methodology is based on the determination of the change of optical power at the output of the sensor prototype depending on the change in pressure or weight. We estimate the maximum load of the sensor on the basis of the laboratory results in the units of tons. Using a calibration measurement can determine the amount of pressure and weight with an accuracy of +/- 2 %.

  6. Deployable and Conformal Planar Micro-Devices: Design and Model Validation

    Directory of Open Access Journals (Sweden)

    Jinda Zhuang

    2014-08-01

    Full Text Available We report a design concept for a deployable planar microdevice and the modeling and experimental validation of its mechanical behavior. The device consists of foldable membranes that are suspended between flexible stems and actuated by push-pull wires. Such a deployable device can be introduced into a region of interest in its compact “collapsed” state and then deployed to conformally cover a large two-dimensional surface area for minimally invasive biomedical operations and other engineering applications. We develop and experimentally validate theoretical models based on the energy minimization approach to examine the conformality and figures of merit of the device. The experimental results obtained using model contact surfaces agree well with the prediction and quantitatively highlight the importance of the membrane bending modulus in controlling surface conformality. The present study establishes an early foundation for the mechanical design of this and related deployable planar microdevice concepts.

  7. Residual stress measurement in a metal microdevice by micro Raman spectroscopy

    International Nuclear Information System (INIS)

    Song, Chang; Du, Liqun; Qi, Leijie; Li, Yu; Li, Xiaojun; Li, Yuanqi

    2017-01-01

    Large residual stress induced during the electroforming process cannot be ignored to fabricate reliable metal microdevices. Accurate measurement is the basis for studying the residual stress. Influenced by the topological feature size of micron scale in the metal microdevice, residual stress in it can hardly be measured by common methods. In this manuscript, a methodology is proposed to measure the residual stress in the metal microdevice using micro Raman spectroscopy (MRS). To estimate the residual stress in metal materials, micron sized β -SiC particles were mixed in the electroforming solution for codeposition. First, the calculated expression relating the Raman shifts to the induced biaxial stress for β -SiC was derived based on the theory of phonon deformation potentials and Hooke’s law. Corresponding micro electroforming experiments were performed and the residual stress in Ni–SiC composite layer was both measured by x-ray diffraction (XRD) and MRS methods. Then, the validity of the MRS measurements was verified by comparing with the residual stress measured by XRD method. The reliability of the MRS method was further validated by the statistical student’s t -test. The MRS measurements were found to have no systematic error in comparison with the XRD measurements, which confirm that the residual stresses measured by the MRS method are reliable. Besides that, the MRS method, by which the residual stress in a micro inertial switch was measured, has been confirmed to be a convincing experiment tool for estimating the residual stress in metal microdevice with micron order topological feature size. (paper)

  8. Residual stress measurement in a metal microdevice by micro Raman spectroscopy

    Science.gov (United States)

    Song, Chang; Du, Liqun; Qi, Leijie; Li, Yu; Li, Xiaojun; Li, Yuanqi

    2017-10-01

    Large residual stress induced during the electroforming process cannot be ignored to fabricate reliable metal microdevices. Accurate measurement is the basis for studying the residual stress. Influenced by the topological feature size of micron scale in the metal microdevice, residual stress in it can hardly be measured by common methods. In this manuscript, a methodology is proposed to measure the residual stress in the metal microdevice using micro Raman spectroscopy (MRS). To estimate the residual stress in metal materials, micron sized β-SiC particles were mixed in the electroforming solution for codeposition. First, the calculated expression relating the Raman shifts to the induced biaxial stress for β-SiC was derived based on the theory of phonon deformation potentials and Hooke’s law. Corresponding micro electroforming experiments were performed and the residual stress in Ni-SiC composite layer was both measured by x-ray diffraction (XRD) and MRS methods. Then, the validity of the MRS measurements was verified by comparing with the residual stress measured by XRD method. The reliability of the MRS method was further validated by the statistical student’s t-test. The MRS measurements were found to have no systematic error in comparison with the XRD measurements, which confirm that the residual stresses measured by the MRS method are reliable. Besides that, the MRS method, by which the residual stress in a micro inertial switch was measured, has been confirmed to be a convincing experiment tool for estimating the residual stress in metal microdevice with micron order topological feature size.

  9. Thermal and bonding properties of nano size carbon black filled PDMS

    CSIR Research Space (South Africa)

    Chen, H

    2009-12-01

    Full Text Available is varied from 10% to 25%. The mechanical property is characterized by testing the bond strength of the bond between pure PDMS and PDMS-CB composite. The bond between pure PDMS and 10% carbon black filled PDMS broke at 0.72 MPa. The bond has become very...

  10. Design and fabrication of microfluidic mixer from carbonyl iron–PDMS composite membrane

    KAUST Repository

    Li, Jiaxing; Zhang, Mengying; Wang, Limu; Li, Weihua; Sheng, Ping; Wen, Weijia

    2010-01-01

    This paper introduces a carbonyl iron-PDMS (CI-PDMS) composite magnetic elastomer in which carbonyl iron (CI) particles are uniformly distributed in a PDMS matrix. The CI particles and the PDMS were mixed at different weight ratios and tested

  11. Improving Satellite Compatible Microdevices to Study Biology in Space

    Science.gov (United States)

    Kalkus, Trevor; Snyder, Jessica; Paulino-Lima, Ivan; Rothschild, Lynn

    2017-01-01

    The technology for biology in space lags far behind the gold standard for biological experiments on Earth. To remedy this disparity, the Rothschild lab works on proof of concept, prototyping, and developing of new sensors and devices to further the capabilities of biology research on satellites. One such device is the PowerCell Payload System. One goal for synthetic biology in aiding space travel and colonization is to genetically engineer living cells to produce biochemicals in space. However, such farming in space presupposes bacteria retain their functionality post-launch, bombarded by radiation, and without the 1G of Earth. Our questions is, does a co-culture of cyanobacteria and protein-synthesizing bacteria produce Earth-like yields of target proteins? Is the yield sensitive to variable gravitational forces? To answer these questions, a PowerCell Payload System will spend 1 year aboard the German Aerospace Center's Euglena and Combined Regenerative Organic-food Production In Space (Eu:CROPIS) mission satellite. The PowerCell system is a pair of two 48-well microfluidic cards, each well seeded with bacteria. The system integrates fluidic, thermal, optical, electronic, and control systems to germinate bacteria spores, then measure the protein synthesized for comparison to parallel experiments conducted on the Earth. In developing the PowerCell Payload, we gained insight into the shortcomings of biology experiments on satellites. To address these issues, we have started three new prototyping projects: 1) The development of an extremely stable and radiation resistant cell-free system, allowing for the construction of proteins utilizing only cell components instead of living cells. This can be lyophilized on a substrate, like paper. (2) Using paper as a microfluidic platform that is flexible, stable, cheap, and wicking. The capillary action eliminates the need for pumps, reducing volume, mass, and potential failing points. Electrodes can be printed on the paper to

  12. Viscoelastic nature of Au nanoparticle–PDMS nanocomposite gels

    Indian Academy of Sciences (India)

    1Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research,. Bangalore ... enhanced thermal stability.3 These unique properties have ..... (loss modulus) and G (storage modulus) for plain PDMS gel.

  13. Fabrication and transfer of fragile 3D PDMS microstructures

    International Nuclear Information System (INIS)

    Karlsson, J Mikael; Haraldsson, Tommy; Carlborg, Carl Fredrik; Van der Wijngaart, Wouter; Hansson, Jonas; Russom, Aman

    2012-01-01

    We present a method for PDMS microfabrication of fragile membranes and 3D fluidic networks, using a surface modified water-dissolvable release material, poly(vinyl alcohol), as a tool for handling, transfer and release of fragile polymer microstructures. The method is well suited for the fabrication of complex multilayer microfluidic devices, here shown for a PDMS device with a thin gas permeable membrane and closely spaced holes for vertical interlayer connections fabricated in a single layer. To the authors’ knowledge, this constitutes the most advanced PDMS fabrication method for the combination of thin, fragile structures and 3D fluidics networks, and hence a considerable step in the direction of making PDMS fabrication of complex microfluidic devices a routine endeavour. (paper)

  14. Influence of Bulk PDMS Network Properties on Water Wettability

    Science.gov (United States)

    Melillo, Matthew; Walker, Edwin; Klein, Zoe; Efimenko, Kirill; Genzer, Jan

    Poly(dimethylsiloxane) (PDMS) is one of the most common elastomers, with applications ranging from sealants and marine antifouling coatings to absorbents for water treatment. Fundamental understanding of how liquids spread on the surface of and absorb into PDMS networks is of critical importance for the design and use of another application - medical devices. We have systematically studied the effects of polymer molecular weight, loading of tetra-functional crosslinker, and end-group chemical functionality on the mechanical and surface properties of end-linked PDMS networks. Wettability was investigated through the sessile drop technique, wherein a DI water droplet was placed on the bulk network surface and droplet volume, shape, surface area, and contact angle were monitored as a function of time. Various silicone substrates ranging from incredibly soft and flexible materials (E' 50 kPa) to highly rigid networks (E' 5 MPa) were tested. The dynamic behavior of the droplet on the surfaces demonstrated equilibration times between the droplet and surface on the order of 5 minutes. Similar trends were observed for the commercial PDMS material, Sylgard-184. Our results have provided new evidence for the strong influence that substrate modulus and molecular network structure have on the wettability of PDMS elastomers. These findings will aid in the design and implementation of efficient, accurate, and safe PDMS-based medical devices and microfluidic materials that involve aqueous media.

  15. Prototyping Practice

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette; Tamke, Martin

    2015-01-01

    This paper examines the role of the prototyping in digital architecture. During the past decade, a new research field has emerged exploring the digital technology’s impact on the way we think, design and build our environment. In this practice the prototype, the pavilion, installation or demonstr......This paper examines the role of the prototyping in digital architecture. During the past decade, a new research field has emerged exploring the digital technology’s impact on the way we think, design and build our environment. In this practice the prototype, the pavilion, installation...

  16. Study of PDMS conformation in PDMS-based hybrid materials prepared by gamma irradiation

    International Nuclear Information System (INIS)

    Lancastre, J.J.H.; Fernandes, N.; Margaça, F.M.A.; Miranda Salvado, I.M.; Ferreira, L.M.; Falcão, A.N.; Casimiro, M.H.

    2012-01-01

    Polydimethylsiloxane-silicate based hybrid materials have recognized properties (high flexibility, low elastic modulus or high mechanical strength) for which there are a large number of applications in development, such as for the bioapplications field. The hybrids addressed in the present study were prepared by gamma irradiation of a mixture of polydimethylsiloxane (PDMS) with tetraethylorthosilicate (TEOS) and zirconium propoxide (PrZr) without addition of any solvent or other product. The materials are homogeneous, transparent, monolithic and flexible. The structure dependence on the PrZr content is addressed. A combination of X-ray diffraction (XRD) and Infrared Spectroscopy (IR) was used. The results reveal that the polymer in the hybrids prepared with PrZr, in a content≤5 wt%, shows a structure similar to that in the irradiated pure polymer sample. In these samples the presence of ordered polymer regions is clearly found. For samples prepared with higher content of Zr almost no ordered polymer regions are observed. The addition of PrZr plays an important role on polymer conformation in these hybrid materials. - Highlights: ► PDMS-based hybrid materials were prepared by γ-irradiation. ► FTIR, ATR/FT-IR and XRD techniques were used to characterize the materials. ► Changes in FTIR bands reflect growth of crosslinking network. ► Above certain Zr concentration regions of Zr-silicate oxide are formed. ► Zr content determines conformation of the polymer chain network.

  17. Unikabeton Prototype

    DEFF Research Database (Denmark)

    Søndergaard, Asbjørn; Dombernowsky, Per

    2011-01-01

    The Unikabeton prototype structure was developed as the finalization of the cross-disciplinary research project Unikabeton, exploring the architectural potential in linking the computational process of topology optimisation with robot fabrication of concrete casting moulds. The project was elabor......The Unikabeton prototype structure was developed as the finalization of the cross-disciplinary research project Unikabeton, exploring the architectural potential in linking the computational process of topology optimisation with robot fabrication of concrete casting moulds. The project...... of Architecture was to develop a series of optimisation experiments, concluding in the design and optimisation of a full scale prototype concrete structure....

  18. Fs-laser processing of medical grade polydimethylsiloxane (PDMS)

    Energy Technology Data Exchange (ETDEWEB)

    Atanasov, P.A., E-mail: paatanas@ie.bas.bg [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsaridradsko shose Blvd., Sofia 1784 (Bulgaria); Stankova, N.E.; Nedyalkov, N.N. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsaridradsko shose Blvd., Sofia 1784 (Bulgaria); Fukata, N. [International Centre for Materials for NanoArchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1Namiki, Tsukuba 305-0044 (Japan); Hirsch, D.; Rauschenbach, B. [Leibniz Institute of Surface Modification (IOM), Permoserstrasse 15, D-04318 Leipzig (Germany); Amoruso, S.; Wang, X. [Dipartimento di Fisica Università degli Studi di Napoli Federico II and CNR-SPIN, Complesso Universitario di Monte S.Angelo, Via Cintia, I-80126 Napoli (Italy); Kolev, K.N.; Valova, E.I.; Georgieva, J.S.; Armyanov, St.A. [Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 11, Sofia 1113 (Bulgaria)

    2016-06-30

    Highlights: • Fs-laser (263, 527 and 1055 nm) processing of PDMS-elastomer is studied. • High quality trenches are produced on the PDMS surface. • The trenches are analyzed by Laser Microscope and by μ-Raman spectrometry. • Selective Ni metallization of the trenches is accomplished via electro-less plating. • The metalized trenches are studied by SEM. - Abstract: Medical grade polydimethylsiloxane (PDMS) elastomer is a biomaterial widely used in medicine and high-tech devices, e.g. MEMS and NEMS. In this work, we report an experimental investigation on femtosecond laser processing of PDMS-elastomer with near infrared (NIR), visible (VIS) and ultraviolet (UV) pulses. High definition trenches are produced by varying processing parameters as laser wavelength, pulse duration, fluence, scanning speed and overlap of the subsequent pulses. The sample surface morphology and chemical composition are investigated by Laser Microscopy, SEM and Raman spectroscopy, addressing the effects of the various processing parameters through comparison with the native materials characteristics. For all the laser pulse wavelengths used, the produced tracks are successfully metalized with Ni via electro-less plating method. We observe a negligible influence of the time interval elapsed between laser treatment and metallization process. Our experimental findings suggest promising perspectives of femtosecond laser pulses in micro- and nano-fabrication of hi-tech PDMS devices.

  19. A parylene-filled-trench technique for thermal isolation in silicon-based microdevices

    International Nuclear Information System (INIS)

    Lei Yinhua; Wang Wei; Li Ting; Jin Yufeng; Zhang Haixia; Li Zhihong; Yu Huaiqiang; Luo Yingcun

    2009-01-01

    Microdevices prepared in a silicon substrate have been widely used in versatile fields due to the matured silicon-based microfabrication technique and the excellent physical properties of silicon material. However, the high thermal conductivity of silicon restricts its application in most thermal microdevices, especially devices comprising different temperature zones. In this work, a parylene-filled-trench technique was optimized to realize high-quality thermal isolation in silicon-based microdevices. Parylene C, a heat transfer barricading material, was deposited on parallel high-aspect-ratio trenches, which surrounded the isolated target zones. After removing the remnant silicon beneath the trenches by deep reactive ion etching from the back side, a high-quality heat transfer barrier was obtained. By using narrow trenches, only 5 µm thick parylene was required for a complete filling, which facilitated multi-layer interconnection thereafter. The parylene filling performance inside the high-aspect-ratio trench was optimized by two approaches: multiple etch–deposition cycling and trench profile controlling. A 4 × 6 array, in which each unit was kept at a constant temperature and was well thermally isolated individually, was achieved on a silicon substrate by using the present parylene-filled-trench technique. The preliminary experimental results indicated that the present parylene-filled-trench structure exhibited excellent thermal isolation performance, with a very low power requirement of 0.134 mW (K mm 2 ) −1 for heating the isolated silicon unit and a high thermal isolation efficiency of 72.5% between two adjacent units. Accompanied with high-quality isolation performance, the microdevices embedded the present parylene-filled-trench structure to retain a strong mechanical connection larger than 400 kPa between two isolated zones, which is very important for a high-reliability-required micro-electro-mechanical-system (MEMS) device. Considering its room

  20. Solution Prototype

    DEFF Research Database (Denmark)

    Efeoglu, Arkin; Møller, Charles; Serie, Michel

    2013-01-01

    This paper outlines an artifact building and evaluation proposal. Design Science Research (DSR) studies usually consider encapsulated artifact that have relationships with other artifacts. The solution prototype as a composed artifact demands for a more comprehensive consideration in its systematic...... environment. The solution prototype that is composed from blending product and service prototype has particular impacts on the dualism of DSR’s “Build” and “Evaluate”. Since the mix between product and service prototyping can be varied, there is a demand for a more agile and iterative framework. Van de Ven......’s research framework seems to fit this purpose. Van de Ven allows for an iterative research approach to problem solving with flexible starting point. The research activity is the result between the iteration of two dimensions. This framework focuses on the natural evaluation, particularly on ex...

  1. Nanooxide/Polymer Composites with Silica@PDMS and Ceria-Zirconia-Silica@PDMS: Textural, Morphological, and Hydrophilic/Hydrophobic Features.

    Science.gov (United States)

    Sulym, Iryna; Goncharuk, Olena; Sternik, Dariusz; Terpilowski, Konrad; Derylo-Marczewska, Anna; Borysenko, Mykola V; Gun'ko, Vladimir M

    2017-12-01

    SiO 2 @PDMS and CeO 2 -ZrO 2 -SiO 2 @PDMS nanocomposites were prepared and studied using nitrogen adsorption-desorption, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), measurements of advancing and receding contact angles with water, and microcalorimetry. The pore size distributions indicate that the textural characteristics change after oxide modification by poly(dimethylsiloxane) (PDMS). Composites are characterized by mainly mesoporosity and macroporosity of aggregates of oxide nanoparticles or oxide@PDMS nanoparticles and their agglomerates. The FT-IR spectra show that PDMS molecules cover well the oxide surface, since the intensity of the band of free silanols at 3748 cm -1 decreases with increasing PDMS concentration and it is absent in the IR spectrum at C PDMS  ≥ 20 wt% that occurs due to the hydrogen bonding of the PDMS molecules to the surface hydroxyls. SEM images reveal that the inter-particle voids are gradually filled and aggregates are re-arranged and increase from 20 to 200 nm in size with the increasing polymer concentration. The highest hydrophobicity (contact angle θ = 140° at C PDMS  = 20-40 wt%) is obtained for the CeO 2 -ZrO 2 -SiO 2 @PDMS nanocomposites. The heat of composite immersion in water shows a tendency to decrease with increasing PDMS concentration.

  2. Design and Fabrication of a PDMS Microchip Based Immunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Guocheng; Wang, Wanjun; Wang, Jun; Lin, Yuehe

    2010-07-01

    In this paper, we describe the design and fabrication process of a polydimethylsiloxane (PDMS) microchip for on-chip multiplex immunoassay application. The microchip consists of a PDMS microfluidic channel layer and a micro pneumatic valve control layer. By selectively pressurizing the pneumatic microvalves, immuno reagents were controlled to flow and react in certain fluidic channel sites. Cross contamination was prevented by tightly closed valves. Our design was proposed to utilize PDMS micro channel surface as the solid phase immunoassay substrate and simultaneously detect four targets antigens on chip. Experiment result shows that 20psi valve pressure is sufficient to tightly close a 200µm wide micro channel with flow rate up to 20µl/min.

  3. Applying the vantage PDMS to jack-up drilling ships

    Science.gov (United States)

    Yin, Peng; Chen, Yuan-Ming; Cui, Tong-Kai; Wang, Zi-Shen; Gong, Li-Jiang; Yu, Xiang-Fen

    2009-09-01

    The plant design management system (PDMS) is an integrated application which includes a database and is useful when designing complex 3-D industrial projects. It could be used to simplify the most difficult part of a subsea oil extraction project—detailed pipeline design. It could also be used to integrate the design of equipment, structures, HVAC, E-ways as well as the detailed designs of other specialists. This article mainly examines the applicability of the Vantage PDMS database to pipeline projects involving jack-up drilling ships. It discusses the catalogue (CATA) of the pipeline, the spec-world (SPWL) of the pipeline, the bolt tables (BLTA) and so on. This article explains the main methods for CATA construction as well as problem in the process of construction. In this article, the authors point out matters needing attention when using the Vantage PDMS database in the design process and discuss partial solutions to these questions.

  4. Visualisation and characterisation of heterogeneous bimodal PDMS networks

    DEFF Research Database (Denmark)

    Bahrt, Frederikke; Daugaard, Anders Egede; Fleury, Clemence

    2014-01-01

    The existence of short-chain domains in heterogeneous bimodal PDMS networks has been confirmed visually, for the first time, through confocal fluorescence microscopy. The networks were prepared using a controlled reaction scheme where short PDMS chains were reacted below the gelation point...... bimodal networks with short-chain domains within a long-chain network. The average sizes of the short-chain domains were found to vary from 2.1 to 5.7 mm depending on the short-chain content. The visualised network structure could be correlated thereafter to the elastic properties, which were determined...... by rheology. All heterogeneous bimodal networks displayed significantly lower moduli than mono-modal PDMS elastomers prepared from the long polymer chains. Low-loss moduli as well as low-sol fractions indicate that low-elastic moduli can be obtained without compromising the network's structure...

  5. Modeling of microdevices for SAW-based acoustophoresis - A study of boundary conditions

    DEFF Research Database (Denmark)

    Skov, Nils Refstrup; Bruus, Henrik

    2016-01-01

    We present a finite-element method modeling of acoustophoretic devices consisting of a single, long, straight, water-filled microchannel surrounded by an elastic wall of either borosilicate glass (pyrex) or the elastomer polydimethylsiloxane (PDMS) and placed on top of a piezoelectric transducer...

  6. Soft and flexible conductive PDMS/MWCNT composites

    DEFF Research Database (Denmark)

    Hassouneh, Suzan Sager; Yu, Liyun; Skov, Anne Ladegaard

    2017-01-01

    (trifluoromethanesulfonyl)imide, was used to pre-disperse MWCNT in a MWCNT/IL-gel that was used for preparation of MWCVNT/PDMS composites. The method was seen to be effective at low levels of MWCNT, but required combination with a roll mill to obtain a stable dispersion at 4 wt % MWCNT. With higher amounts of MWCNT a reduction...... for preparation of MWCNT/PDMS composites. Composites prepared by use of the IL dispersion method, use of a roll mill or by use of the f-MWCNT all had conductivities around 0.005–0.01 s/cm and retained conductivity upon extension....

  7. Software Prototyping

    Science.gov (United States)

    Del Fiol, Guilherme; Hanseler, Haley; Crouch, Barbara Insley; Cummins, Mollie R.

    2016-01-01

    Summary Background Health information exchange (HIE) between Poison Control Centers (PCCs) and Emergency Departments (EDs) could improve care of poisoned patients. However, PCC information systems are not designed to facilitate HIE with EDs; therefore, we are developing specialized software to support HIE within the normal workflow of the PCC using user-centered design and rapid prototyping. Objective To describe the design of an HIE dashboard and the refinement of user requirements through rapid prototyping. Methods Using previously elicited user requirements, we designed low-fidelity sketches of designs on paper with iterative refinement. Next, we designed an interactive high-fidelity prototype and conducted scenario-based usability tests with end users. Users were asked to think aloud while accomplishing tasks related to a case vignette. After testing, the users provided feedback and evaluated the prototype using the System Usability Scale (SUS). Results Survey results from three users provided useful feedback that was then incorporated into the design. After achieving a stable design, we used the prototype itself as the specification for development of the actual software. Benefits of prototyping included having 1) subject-matter experts heavily involved with the design; 2) flexibility to make rapid changes, 3) the ability to minimize software development efforts early in the design stage; 4) rapid finalization of requirements; 5) early visualization of designs; 6) and a powerful vehicle for communication of the design to the programmers. Challenges included 1) time and effort to develop the prototypes and case scenarios; 2) no simulation of system performance; 3) not having all proposed functionality available in the final product; and 4) missing needed data elements in the PCC information system. PMID:27081404

  8. SU-8 based microdevices to study self-induced chemotaxis in 3D microenvironments

    Science.gov (United States)

    Ayuso, Jose; Monge, Rosa; Llamazares, Guillermo; Moreno, Marco; Agirregabiria, Maria; Berganzo, Javier; Doblaré, Manuel; Ochoa, Iñaki; Fernandez, Luis

    2015-05-01

    Tissues are complex three-dimensional structures in which cell behaviour is frequently guided by chemotactic signals. Although starvation and nutrient restriction induce many different chemotactic processes, the recreation of such conditions in vitro remains difficult when using standard cell culture equipment. Recently, microfluidic techniques have arisen as powerful tools to mimic such physiological conditions. In this context, microfluidic three-dimensional cell culture systems require precise control of cell/hydrogel location because samples need to be placed within a microchamber without obstruction of surrounding elements. In this article, SU-8 is studied as structural material for the fabrication of complex cell culture devices due to its good mechanical properties, low gas permeability and sensor integration capacity. In particular, this manuscript presents a SU-8 based microdevice designed to create “self-induced” medium starvation, based on the combination of nutrient restriction and natural cell metabolism. Results show a natural migratory response towards nutrient source, showing how cells adapt to their own microenvironment modifications. The presented results demonstrate the SU-8 potential for microdevice fabrication applied to cell culture.

  9. A review of microfabrication techniques and dielectrophoretic microdevices for particle manipulation and separation

    International Nuclear Information System (INIS)

    Li, M; Li, W H; Zhang, J; Alici, G; Wen, W

    2014-01-01

    The development of lab-on-a-chip (LOC) devices over the past decade has attracted growing interest. LOC devices aim to achieve the miniaturization, integration, automation and parallelization of biological and chemical assays. One of the applications, the ability to effectively and accurately manipulate and separate micro- and nano-scale particles in an aqueous solution, is particularly appealing in biological, chemical and medical fields. Among the technologies that have been developed and implemented in microfluidic microsystems for particle manipulation and separation (such as mechanical, inertial, hydrodynamic, acoustic, optical, magnetic and electrical methodologies), dielectrophoresis (DEP) may prove to be the most popular because of its label-free nature, ability to manipulate neutral bioparticles, analyse with high selectivity and sensitivity, compatibility with LOC devices, and easy and direct interface with electronics. The required spatial electric non-uniformities for the DEP effect can be generated by patterning microelectrode arrays within microchannels, or placing insulating obstacles within a microchannel and curving the microchannels. A wide variety of electrode- and insulator-based DEP microdevices have been developed, fabricated, and successfully employed to manipulate and separate bioparticles (i.e. DNA, proteins, bacteria, viruses, mammalian and yeast cells). This review provides an overview of the state-of-the-art of microfabrication techniques and of the structures of dielectrophoretic microdevices aimed towards different applications. The techniques used for particle manipulation and separation based on microfluidics are provided in this paper. In addition, we also present the theoretical background of DEP. (topical review)

  10. Reducing detrimental electrostatic effects in Casimir-force measurements and Casimir-force-based microdevices

    Science.gov (United States)

    Xu, Jun; Klimchitskaya, G. L.; Mostepanenko, V. M.; Mohideen, U.

    2018-03-01

    It is well known that residual electrostatic forces create significant difficulties in precise measurements of the Casimir force and the wide use of Casimir-operated microdevices. We experimentally demonstrate that, with the help of Ar-ion cleaning of the surfaces, it is possible to make electrostatic effects negligibly small compared to the Casimir interaction. Our experimental setup consists of a dynamic atomic force microscope supplemented with an Ar-ion gun and argon reservoir. The residual potential difference between the Au-coated surfaces of a sphere and those of a plate was measured both before and after in situ Ar-ion cleaning. It is shown that this cleaning decreases the magnitude of the residual potential by up to an order of magnitude and makes it almost independent of the separation. The gradient of the Casimir force was measured using ordinary samples subjected to Ar-ion cleaning. The obtained results are shown to be in good agreement both with previous precision measurements using specially selected samples and with theoretical predictions of the Lifshitz theory. The conclusion is made that the suggested method of in situ Ar-ion cleaning is effective in reducing the electrostatic effects and therefore is a great resource for experiments on measuring the Casimir interaction and for Casimir-operated microdevices.

  11. Passive blood plasma separation at the microscale: a review of design principles and microdevices

    International Nuclear Information System (INIS)

    Tripathi, Siddhartha; Varun Kumar, Y V Bala; Joshi, Suhas S; Agrawal, Amit; Prabhakar, Amit

    2015-01-01

    Blood plasma separation is vital in the field of diagnostics and health care. Due to the inherent advantages obtained in the transition to microscale, the recent trend in these fields is a rapid shift towards the miniaturization of complex macro processes. Plasma separation in microdevices is one such process which has received extensive attention from researchers globally. Blood plasma separation techniques based on microfluidic platforms can be broadly classified into two categories. While active techniques utilize external force fields for separation, the passive techniques are dependent on biophysical effects, cell behavior, hydrodynamic forces and channel geometry for blood plasma separation. In general, passive separation methods are favored in comparison to active methods because they tend to avoid design complexities and are relatively easy to integrate with biosensors; additionally they are cost effective. Here we review passive separation techniques demonstrating separation and blood behavior at microscale. We present an extensive review of relevant biophysical laws, along with experimental details of various passive separation techniques and devices exploiting these physical effects. The relative performances, and the advantages and disadvantages of microdevices discussed in the literature, are compared and future challenges are brought about. (topical review)

  12. Novel anti-flooding poly(dimethylsiloxane) (PDMS) catalyst binder for microbial fuel cell cathodes

    KAUST Repository

    Zhang, Fang; Chen, Guang; Hickner, Michael A.; Logan, Bruce E.

    2012-01-01

    Poly(dimethylsiloxane) (PDMS) was investigated as an alternative to Nafion as an air cathode catalyst binder in microbial fuel cells (MFCs). Cathodes were constructed around either stainless steel (SS) mesh or copper mesh using PDMS as both catalyst

  13. Surface morphology of PS-PDMS diblock copolymer films

    DEFF Research Database (Denmark)

    Andersen, T.H.; Tougaard, S.; Larsen, N.B.

    2001-01-01

    Spin coated thin films (∼400 Å) of poly(styrene)–poly(dimethylsiloxane) (PS–PDMS) diblock copolymers have been investigated using X-ray Photoelectron Spectroscopy and Atomic Force Microscopy. Surface segregation of the poly(dimethylsiloxane) blocks was studied for five diblock copolymers which ra...

  14. PMMA highlights the layering transition of PDMS in Langmuir films

    NARCIS (Netherlands)

    Bernardini, C.; Stoyanov, S.D.; Cohen Stuart, M.A.; Arnaudov, L.N.; Leermakers, F.A.M.

    2011-01-01

    We report a system consisting of a mixed Langmuir monolayer, made of water-insoluble, spreadable, fluid-like polymers polydimethylsiloxane (PDMS) and polymethylmethacrylate (PMMA) with a minority P(DMS-b-MMA) copolymer. We have performed both Langmuir trough pressure/area isotherm measurements and

  15. Compaction of PDMS due to proton beam irradiation

    International Nuclear Information System (INIS)

    Szilasi, S.Z.; Huszank, R.; Rajta, I.; Kokavecz, J.

    2011-01-01

    Complete text of publication follows. This work is about the detailed investigation of the changes of the surface topography, the degree of compaction/shrinkage and its relation to the irradiation fluence and the structure spacing in poly(dimethylsiloxane) (PDMS) patterned with 2 MeV proton microbeam. Sylgard 184 kit (Dow-Corning) was used to create the PDMS samples. The density of the PDMS samples was determined with pycnometer. The penetration depth for 2 MeV protons is ∼85 μm, the PDMS layer was ∼95 μm thick, so the incident protons stop in the PDMS, they do not reach the substrate. The irradiations have been performed at the nuclear microprobe facility at ATOMKI. The irradiated periodic structures consisted of parallel lines with different widths and spacing. To achieve different degrees of compaction, each structure was irradiated with five different fluences. The surface topography, the phase modification of the surface, and the connection between them were revealed using an atomic force microscope (AFM PSIA XE 100). The shrinkage data were obtained from the topography images. The structures with different line widths and spacing show different degrees of compaction as a function of irradiation fluence. By plotting them in the same graph (Fig. 1) it is clearly seen that the degree of compaction depends on both the irradiation fluence and the distance of the structures. The fluence dependence of the compaction can be explained with the chemical changes of PDMS. When an energetic ion penetrates through the material it scissions the polymer chain, whereupon among other things volatile products form. In the case of PDMS, these are mainly hydrogen, methane and ethane gases that can be released from PDMS. The irradiated volume shrinks due to significant structural change during which silicate derivatives (SiO x ) are formed. The phase change and the corresponding surface topography was compared and studied at all applied irradiation fluences. It was concluded

  16. Visualization of the distribution of surface-active block copolymers in PDMS-based coatings

    DEFF Research Database (Denmark)

    Noguer, A. Camós; Latipov, R.; Madsen, F. B.

    2018-01-01

    the distribution and release of these block copolymers from PDMS-based coatings has been previously reported. However, the distribution and behaviour of these compounds in the bulk of the PDMS coating are not fully understood. A novel fluorescent-labelled triblock PEG-b-PDMS-b-PEG copolymer was synthesized...... results in non-specific protein adsorption and wettability issues. Poly(ethylene glycol)-based surface-active block copolymers and surfactants have been added to PDMS coatings and films to impart biofouling resistance and hydrophilicity to the PDMS surface with successful results. Information regarding...

  17. Osteogenic differentiation on DLC-PDMS-h surface.

    Science.gov (United States)

    Soininen, Antti; Kaivosoja, Emilia; Sillat, Tarvo; Virtanen, Sannakaisa; Konttinen, Yrjö T; Tiainen, Veli-Matti

    2014-10-01

    The hypothesis was that anti-fouling diamond-like carbon polydimethylsiloxane hybrid (DLC-PDMS-h) surface impairs early and late cellular adhesion and matrix-cell interactions. The effect of hybrid surface on cellular adhesion and cytoskeletal organization, important for osteogenesis of human mesenchymal stromal cells (hMSC), where therefore compared with plain DLC and titanium (Ti). hMSCs were induced to osteogenesis and followed over time using scanning electron microscopy (SEM), time-of-flight secondary ion mass spectrometry (ToF-SIMS), immunofluorescence staining, quantitative real-time polymerase chain reaction (qRT-PCR), and hydroxyapatite (HA) staining. SEM at 7.5 hours showed that initial adherence and spreading of hMSC was poor on DLC-PDMS-h. At 5 days some hMSC were undergoing condensation and apoptotic fragmentation, whereas cells on DLC and Ti grew well. DAPI-actin-vinculin triple staining disclosed dwarfed cells with poorly organized actin cytoskeleton-focal complex/adhesion-growth substrate attachments on hybrid coating, whereas spread cells, organized microfilament bundles, and focal adhesions were seen on DLC and in particular on Ti. Accordingly, at day one ToF-SIMS mass peaks showed poor protein adhesion to DLC-PDMS-h compared with DLC and Ti. COL1A1, ALP, OP mRNA levels at days 0, 7, 14, 21, and/or 28 and lack of HA deposition at day 28 demonstrated delayed or failed osteogenesis on DLC-PDMS-h. Anti-fouling DLC-PDMS-h is a poor cell adhesion substrate during the early protein adsorption-dependent phase and extracellular matrix-dependent late phase. Accordingly, some hMSCs underwent anoikis-type apoptosis and failed to complete osteogenesis, due to few focal adhesions and poor cell-to-ECM contacts. DLC-PDMS-h seems to be a suitable coating for non-integrating implants/devices designed for temporary use. © 2014 Wiley Periodicals, Inc.

  18. Carbon doped PDMS: conductance stability over time and implications for additive manufacturing of stretchable electronics

    International Nuclear Information System (INIS)

    Tavakoli, Mahmoud; Rocha, Rui; Osorio, Luis; Almeida, Miguel; De Almeida, Anibal; Ramachandran, Vivek; Tabatabai, Arya; Lu, Tong; Majidi, Carmel

    2017-01-01

    Carbon doped PDMS (cPDMS), has been used as a conductive polymer for stretchable electronics. Compared to liquid metals, cPDMS is low cost and is easier to process or to print with an additive manufacturing process. However, changes on the conductance of the carbon based conductive PDMS (cPDMS) were observed over time, in particular after integration of cPDMS and the insulating polymer. In this article we investigate the process parameters that lead to improved stability over conductance of the cPDMS over time. Slight modifications to the fabrication process parameters were conducted and changes on the conductance of the samples for each method were monitored. Results suggested that change of the conductance happens mostly after integration of a pre-polymer over a cured cPDMS, and not after integration of the cPDMS over a cured insulating polymer. We show that such changes can be eliminated by adjusting the integration priority between the conductive and insulating polymers, by selecting the right curing temperature, changing the concentration of the carbon particles and the thickness of the conductive traces, and when possible by changing the insulating polymer material. In this way, we obtained important conclusions regarding the effect of these parameters on the change of the conductance over time, that should be considered for additive manufacturing of soft electronics. Also, we show that these changes can be possibly due to the diffusion from PDMS into cPDMS. (paper)

  19. Design and fabrication of microfluidic mixer from carbonyl iron–PDMS composite membrane

    KAUST Repository

    Li, Jiaxing

    2010-10-12

    This paper introduces a carbonyl iron-PDMS (CI-PDMS) composite magnetic elastomer in which carbonyl iron (CI) particles are uniformly distributed in a PDMS matrix. The CI particles and the PDMS were mixed at different weight ratios and tested to determine the influence of CI concentration. The magnetic and mechanical properties of the magnetic elastomers were characterized, respectively, by vibrating-sample magnetometer and by tensile testing using a mechanical analyzer. The elastomer was found to exhibit high magnetization and good mechanical flexibility. The morphology and deformation of the CI-PDMS membrane also were observed. A magnetically actuated microfluidic mixer (that is, a micromixer) integrated with CI-PDMS elastomer membranes was successfully designed and fabricated. The high efficiency and quality of the mixing makes possible the impressive potential applications of this unique CI-PDMS material in microfluidic systems. © Springer-Verlag 2010.

  20. Cleaning of nanopillar templates for nanoparticle collection using PDMS

    Science.gov (United States)

    Merzsch, S.; Wasisto, H. S.; Waag, A.; Kirsch, I.; Uhde, E.; Salthammer, T.; Peiner, E.

    2011-05-01

    Nanoparticles are easily attracted by surfaces. This sticking behavior makes it difficult to clean contaminated samples. Some complex approaches have already shown efficiencies in the range of 90%. However, a simple and cost efficient method was still missing. A commonly used silicone for soft lithography, PDMS, is able to mold a given surface. This property was used to cover surface-bonded particles from all other sides. After hardening the PDMS, particles are still embedded. A separation of silicone and sample disjoins also the particles from the surface. After this procedure, samples are clean again. This method was first tested with carbon particles on Si surfaces and Si pillar samples with aspect ratios up to 10. Experiments were done using 2 inch wafers, which, however, is not a size limitation for this method.

  1. Development of piping support structure design software based on PDMS

    International Nuclear Information System (INIS)

    Tang Yongtao; Guan Hui; Su Rongfu; Huang Wei; Mao Huihui

    2014-01-01

    In order to enhance the efficiency of nuclear power process system piping support design, the veracity of interface with support, piping and anchor, and decrease the clash between supports and other disciplines, developed piping support structure design software NPHS based on PDMS independently. That achieved the seamless integration of PDMS and NPHS by method of embedded development, reduce the size of program code, improve the running efficiency; That predigested the 3D modeling and information storage for support parts, that increased the support database opening and maintenance using the special mechanism and configuration of database. The support modeling efficiency due to setting of the connection key point of support parts is improved. Practices in several real nuclear power projects proved that NPHS software is provided with such outstanding performances: quick running, strong stability, accurate data, easy to operate and maintain, and output results satisfied the engineering requirements. (authors)

  2. Viscoelasticity of Brownian Carbon Nanotubes in PDMS Semidilute Regime

    OpenAIRE

    MARCEAU, Sandrine; DUBOIS, Philippe; FULCHIRON, René; CASSAGNAU, Philippe

    2009-01-01

    The objective of the present paper is to investigate the linear viscoelasticity of diluted suspension of MWNT spread in PDMS. Specifically, we focus our attention on both the CNT relaxation in semidilute conditions and the concept of percolation threshold for such system. Finally, the results, and mainly the concentration dependence of the zero-shear viscosity and mean relaxation time, will be discussed within the Doi−Edwards theory framework on molecular dynamic of rigid rods in a semi...

  3. Patterning conductive PDMS nanocomposite in an elastomer using microcontact printing

    International Nuclear Information System (INIS)

    Liu, Chao-Xuan; Choi, Jin-Woo

    2009-01-01

    This paper introduces a simple method of embedding conductive and flexible elastomer micropatterns into a bulk elastomer. Employing microcontact printing and cast molding techniques, patterns consisting of conductive poly(dimethylsiloxane) (PDMS) composites mixed with multi-walled carbon nanotubes (MWCNTs) are embedded into bulk PDMS to form all-elastomer devices. To pattern conductive composites, a micromachined printing mold is utilized to transfer composite ink from a spin-coated thin layer to another substrate. Distinct from previously reported approaches, the printing mold in this technique, once fabricated, can be repeatedly used to generate new patterns and therefore greatly simplifies the device fabrication process and improves its efficiency. Manufactured devices with embedded conductive patterns exhibit excellent mechanical flexibility. With characterization of printing reliability, electrical conductivity of the composites is also shown with different loading percentages of MWCNTs. Furthermore, a simple strain gauge was fabricated and tested to demonstrate the potential applications of embedded conductive patterns. Overall, this approach demonstrates feasibility to be a simple method to pattern conductive elastomers that work as electrodes or sensing probes in PDMS-based devices. With further development, this technology yields many potential applications in lab-on-a-chip systems

  4. Improved actuation strain of PDMS-based DEA materials chemically modified with softening agents

    Science.gov (United States)

    Biedermann, Miriam; Blümke, Martin; Wegener, Michael; Krüger, Hartmut

    2015-04-01

    Dielectric elastomer actuators (DEAs) are smart materials that gained much in interest particularly in recent years. One active field of research is the improvement of their properties by modification of their structural framework. The object of this work is to improve the actuation properties of polydimethylsiloxane (PDMS)-based DEAs by covalent incorporation of mono-vinyl-terminated low-molecular PDMS chains into the PDMS network. These low-molecular units act as a kind of softener within the PDMS network. The loose chain ends interfere with the network formation and lower the network's density. PDMS films with up to 50wt% of low-molecular PDMS additives were manufactured and the chemical, mechanical, electrical, and electromechanical properties of these novel materials were investigated.

  5. Soft lithography of ceramic microparts using wettability-tunable poly(dimethylsiloxane) (PDMS) molds

    International Nuclear Information System (INIS)

    Su, Bo; Zhang, Aijun; Meng, Junhu; Zhang, Zhaozhu

    2016-01-01

    Green alumina microparts were fabricated from a high solid content aqueous suspension by microtransfer molding using air plasma-treated poly(dimethylsiloxane) (PDMS) molds. The wettability of the air plasma-treated PDMS molds spontaneously changed between the hydrophilic and hydrophobic states during the process. Initial hydrophilicity of the air plasma-treated PDMS molds significantly improved the flowability of the concentrated suspension. Subsequent hydrophobic recovery of the air plasma-treated PDMS molds enabled a perfect demolding of the green microparts. Consequently, defect-free microchannel parts of 60 μ m and a micromixer with an area of several square centimeters were successfully fabricated. In soft lithography, tuning the wetting behavior of PDMS molds has a great effect on the quality of ceramic microparts. Using wettability-tunable PDMS molds has great potential in producing complex-shaped and large-area ceramic microparts and micropatterns. (paper)

  6. 3D Printing PDMS Elastomer in a Hydrophilic Support Bath via Freeform Reversible Embedding

    OpenAIRE

    Hinton, Thomas J.; Hudson, Andrew; Pusch, Kira; Lee, Andrew; Feinberg, Adam W.

    2016-01-01

    Polydimethylsiloxane (PDMS) elastomer is used in a wide range of biomaterial applications including microfluidics, cell culture substrates, flexible electronics, and medical devices. However, it has proved challenging to 3D print PDMS in complex structures due to its low elastic modulus and need for support during the printing process. Here we demonstrate the 3D printing of hydrophobic PDMS prepolymer resins within a hydrophilic Carbopol gel support via freeform reversible embedding (FRE). In...

  7. Low cost batch fabrication of microdevices using ultraviolet light-emitting diode photolithography technique

    Science.gov (United States)

    Lee, Neam Heng; Swamy, Varghese; Ramakrishnan, Narayanan

    2016-01-01

    Solid-state technology has enabled the use of light-emitting diodes (LEDs) in lithography systems due to their low cost, low power requirement, and higher efficiency relative to the traditional mercury lamp. Uniform irradiance distribution is essential for photolithography to ensure the critical dimension (CD) of the feature fabricated. However, light illuminated from arrays of LEDs can have nonuniform irradiance distribution, which can be a problem when using LED arrays as a source to batch-fabricate multiple devices on a large wafer piece. In this study, the irradiance distribution of an UV LED array was analyzed, and the separation distance between light source and mask optimized to obtain maximum irradiance uniformity without the use of a complex lens. Further, employing a diffuser glass enhanced the fabrication process and the CD loss was minimized to an average of 300 nm. To assess the performance of the proposed technology, batch fabrication of surface acoustic wave devices on lithium niobate substrate was carried out, and all the devices exhibited identical insertion loss of -18 dB at a resonance frequency of 39.33 MHz. The proposed low-cost UV lithography setup can be adapted in academic laboratories for research and teaching on microdevices.

  8. Potentiodynamic polarization assays on magnetic materials for new medical micro-devices

    Energy Technology Data Exchange (ETDEWEB)

    Pouponneau, P. [Ecole Polytechnique de Montreal, PQ (Canada). Nanorobotics Lab; Ecole Polytechnique de Montreal, PQ (Canada). Biomedical Engineering Inst., Laboratory for the Innovation and Analysis of Bioperformance; Savadogo, O.; Napporn, T. [Ecole Polytechnique de Montreal, Montreal, PQ (Canada). Laboratoire de nouveaux materiaux pour l' energie et l' electrochimie; Yahia, L' H. [Ecole Polytechnique de Montreal, PQ (Canada). Biomedical Engineering Inst., Laboratory for the Innovation and Analysis of Bioperformance; Martel, S. [Ecole Polytechnique de Montreal, PQ (Canada). Nanorobotics Lab

    2008-07-01

    This study investigated the corrosion behaviour of a terbium (Tb0.27Dy0.73Fe1.95) alloy and single crystal nickel (Ni-Mn-Ga) alloy smart magnetic materials (SMM), and Vacoflux 17 and Permendur iron-cobalt alloys. Previous studies have shown that the materials demonstrate a high potential for use in wireless medical microdevices controlled by magnetic fields. However, the Tb0.27Dy0.73Fe1.95 alloy has poor corrosion properties due to its high corrosion potential and corrosion current. Corrosion behaviour was investigated using potentiodynamic polarization measurements and scanning electron microscopy. The study showed that the surface of the alloy was impaired by cracks and holes. The single crystal Ni-Mn Ga alloy demonstrated higher corrosion resistance. The SMM were then embedded into a bio-compatible matrix to form composite with the Vacoflux 17 and Permendur alloys. The study showed that while the Vacoflux 17 surface was degraded by cracks and pits, the Permendur surface was uniformly corroded without pitting. The uniform corrosion was attributed to the formation of a stable passive layer. 4 refs., 3 figs.

  9. SMA Foils for MEMS: From Material Properties to the Engineering of Microdevices

    Science.gov (United States)

    Kohl, Manfred; Ossmer, Hinnerk; Gueltig, Marcel; Megnin, Christof

    2018-03-01

    In the early nineties, microelectromechanical systems (MEMS) technology has been still in its infancy. As silicon (Si) is not a transducer material, it was clear at the very beginning that mechanically active materials had to be introduced to MEMS in order to enable functional microdevices with actuation capability beyond electrostatics. At that time, shape memory alloys (SMAs) have been available in bulk form, mainly as SMA wires and SMA plates. On the macro scale, these materials show highest work densities compared to other actuation principles in the order of 107 J/m3, which stimulated research on the integration of SMA to MEMS. Subsequently, two approaches for producing planar materials have been initiated (1) magnetron sputtering of SMA thin films and (2) the integration of rolled SMA foils, which both turned out to be very successful creating a paradigm change in microactuation technology. The following review covers important milestones of the research and development of SMA foil-based microactuators including materials characterization, design engineering, technology, and demonstrator development as well as first commercial products.

  10. SMA Foils for MEMS: From Material Properties to the Engineering of Microdevices

    Science.gov (United States)

    Kohl, Manfred; Ossmer, Hinnerk; Gueltig, Marcel; Megnin, Christof

    2017-12-01

    In the early nineties, microelectromechanical systems (MEMS) technology has been still in its infancy. As silicon (Si) is not a transducer material, it was clear at the very beginning that mechanically active materials had to be introduced to MEMS in order to enable functional microdevices with actuation capability beyond electrostatics. At that time, shape memory alloys (SMAs) have been available in bulk form, mainly as SMA wires and SMA plates. On the macro scale, these materials show highest work densities compared to other actuation principles in the order of 107 J/m3, which stimulated research on the integration of SMA to MEMS. Subsequently, two approaches for producing planar materials have been initiated (1) magnetron sputtering of SMA thin films and (2) the integration of rolled SMA foils, which both turned out to be very successful creating a paradigm change in microactuation technology. The following review covers important milestones of the research and development of SMA foil-based microactuators including materials characterization, design engineering, technology, and demonstrator development as well as first commercial products.

  11. Anti-stiction coating of PDMS moulds for rapid microchannel fabrication by double replica moulding

    DEFF Research Database (Denmark)

    Zhuang, Guisheng; Kutter, Jörg Peter

    2011-01-01

    ), which resulted in an anti-stiction layer for the improved release after PDMS casting. The deposition of FDTS on an O2 plasma-activated surface of PDMS produced a reproducible and well-performing anti-stiction monolayer of fluorocarbon, and we used the FDTS-coated moulds as micro-masters for rapid......In this paper, we report a simple and precise method to rapidly replicate master structures for fast microchannel fabrication by double replica moulding of polydimethylsiloxane (PDMS). A PDMS mould was surface-treated by vapour phase deposition of 1H,1H,2H,2H-perfluorodecyltrichlorosilane (FDTS...

  12. Mechanically compliant electrodes and dielectric elastomers from PEG-PDMS copolymers

    DEFF Research Database (Denmark)

    A Razak, Aliff Hisyam; Madsen, Frederikke Bahrt; Skov, Anne Ladegaard

    2016-01-01

    Soft conducting elastomers have been prepared from polydimethylsiloxane-polyethyleneglycol (PDMS-PEG) copolymer and surfactant-stabilized multi-walled carbon nanotubes (MWCNTs). The copolymer was chain-extended with PDMS of molecular weight 17.2 kg mol-1 in order to obtain a crosslinkable PDMS...... showed high conductivity combined with inherent softness. The high conductivity and softness, PDMS-PEG copolymers with incorporated MWCNTs hold great promises as compliant and highly stretchable electrodes for stretchable devices such as electro-mechanical transducers....

  13. Rapid selective metal patterning on polydimethylsiloxane (PDMS) fabricated by capillarity-assisted laser direct write

    KAUST Repository

    Lee, Ming-Tsang

    2011-08-12

    In this study we demonstrate a novel approach for the rapid fabricating micro scale metal (silver) patterning directly on a polydimethylsiloxane (PDMS) substrate. Silver nanoparticles were sintered on PDMS to form conductive metal films using laser direct write (LDW) technology. To achieve good metal film quality, a capillarity-assisted laser direct writing (CALDW) of nanoparticle suspensions on a low surface energy material (PDMS) was utilized. Experimental results showed controllable electrical conductivities and good film properties of the sintered silver patterns. This study reveals an advanced method of metal patterning on PDMS, and proposes a new research application of LDW in a nanoparticle colloidal environment. © 2011 IOP Publishing Ltd.

  14. Investigation on the mechanism of nitrogen plasma modified PDMS bonding with SU-8

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chengxin; Yuan, Yong J., E-mail: yongyuan@swjtu.edu.cn

    2016-02-28

    Graphical abstract: - Highlights: • Different nitrogen plasma processes modified PDMS bonding with SU-8 had been studied. • The effect of nitrogen plasma modification would produce the best result and the recovery of PDMS hydrophobicity could be delayed. - Abstract: Polydimethylsiloxane (PDMS) and SU-8 are both widely used for microfluidic system. However, it is difficult to permanently seal SU-8 microfluidic channels using PDMS with conventional methods. Previous efforts of combining these two materials mainly employed oxygen plasma modified PDMS. The nitrogen plasma modification of PDMS bonding with SU-8 is rarely studied in recent years. In this work, the mechanism of nitrogen plasma modified PDMS bonding with SU-8 was investigated. The fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and contact angle of a water droplet were used to analyze the nitrogen plasma modified surface and the hydrophilic stability of PDMS samples. Pull-off tests were used for estimating the bonding effect of interface between nitrogen plasma modified PDMS and SU-8.

  15. Effect of proton irradiation on photoluminescent properties of PDMS-nanodiamond composites

    International Nuclear Information System (INIS)

    Borjanovic, Vesna; Hens, Suzanne; Shenderova, Olga; McGuire, Gary E; Lawrence, William G; Edson, Clark; Jaksic, Milko; Zamboni, Ivana; Vlasov, Igor

    2008-01-01

    Pure poly(dimethylsiloxane) (PDMS) films, PDMS-nanodiamond (ND) and pure nanodiamond powder were irradiated with 2 MeV protons under a variety of fluence and current conditions. Upon proton irradiation, these samples acquire a fluence-dependent photoluminescence (PL). The emission and excitation spectra, photostability and emission lifetime of the induced photoluminescence of PDMS and PDMS-ND samples are reported. Pure PDMS exhibits a noticeable stable blue PL, while the PDMS-ND composites exhibit a pronounced stable green PL under 425 nm excitation. The PL of PDMS-ND composites is much more prominent than that of pure PDMS or pure ND powder even when irradiated at higher doses. The origin of the significantly enhanced PL intensity for the proton-irradiated PDMS-ND composite is explained by the combination of enhanced intrinsic PL within ND particles due to ion-implantation-generated defects and by PL originating from structural transformations produced by protons at the nanodiamond/matrix interface.

  16. Optical properties of polydimethylsiloxane (PDMS) during nanosecond laser processing

    Energy Technology Data Exchange (ETDEWEB)

    Stankova, N.E., E-mail: nestankova@yahoo.com [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsaridradsko shose Boul., Sofia 1784 (Bulgaria); Atanasov, P.A.; Nikov, Ru.G.; Nikov, R.G.; Nedyalkov, N.N.; Stoyanchov, T.R. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsaridradsko shose Boul., Sofia 1784 (Bulgaria); Fukata, N. [International Center for Materials for NanoArchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044 (Japan); Kolev, K.N.; Valova, E.I.; Georgieva, J.S.; Armyanov, St.A. [Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 11, Sofia 1113 (Bulgaria)

    2016-06-30

    Highlights: • Ns-laser (266, 355, 532 and 1064 nm) processing of medical grade PDMS is performed. • Investigation of the optical transmittance as a function of the laser beam parameters. • Analyses of laser treated area by optical & laser microscope and μ-Raman spectrometry. • Application as (MEAs) neural interface for monitor and stimulation of neural activity. - Abstract: This article presents experimental investigations of effects of the process parameters on the medical grade polydimethylsiloxane (PDMS) elastomer processed by laser source with irradiation at UV (266 and 355 nm), VIS (532 nm) and NIR (1064 nm). Systematic experiments are done to characterize how the laser beam parameters (wavelength, fluence, and number of pulses) affect the optical properties and the chemical composition in the laser treated areas. Remarkable changes of the optical properties and the chemical composition are observed. Despite the low optical absorption of the native PDMS for UV, VIS and NIR wavelengths, successful laser treatment is accomplished due to the incubation process occurring below the polymer surface. With increasing of the fluence and the number of the pulses chemical transformations are revealed in the entire laser treated area and hence decreasing of the optical transmittance is observed. The incubation gets saturation after a certain number of pulses and the laser ablation of the material begins efficiently. At the UV and VIS wavelengths the number of the initial pulses, at which the optical transmittance begins to reduce, decreases from 16 up to 8 with increasing of the laser fluence up to 1.0, 2.5 and 10 J cm{sup −2} for 266, 355 and 532 nm, respectively. In the case of 1064 nm the optical transmittance begins to reduce at 11th pulse incident at a fluence of 13 J cm{sup −2} and the number of the pulses decreases to 8 when the fluence reaches value of 16 J cm{sup −2}. The threshold laser fluence needed to induce incubation process after certain

  17. A crossed dodecagonal deployable polarizer on textile and polydimethylsiloxane (PDMS) substrates

    Science.gov (United States)

    Mirza, Hidayath; Soh, Ping Jack; Jamlos, Mohd Faizal; Hossain, Toufiq Md; Ramli, Muhammad Nazrin; Al-Hadi, Azremi Abdullah; Sheikh, R. Ahmad; Hassan, Emad S.; Yan, Sen

    2018-02-01

    This paper presents the design of a flexible using two set of flexible material classes: polymer and textiles. ShieldIt Super conductive fabric and felt are used as the textile material, and its performance is compared with another version designed on a polydimethylsiloxane (PDMS) polymeric substrate. They are both built using a 4 × 4 dodecagonal unit element array backed by a rectangular patch, each sized at 54 × 64 × 3.34 mm3 (0.40 λ × 0.34 λ × 0.02λ) and 62 × 52 × 3.34 mm3 (0.35λ × 0.41λ × 0.02 λ). Both of them are validated to be operational centered at 2.2 GHz with a measured conversion efficiency of more than 90% from 1.578 to 2.578 GHz (48.12%) for the textile prototype. The results of the bending investigations suggest that the deployment mechanism must ensure a flat polarizer condition to enable its optimal performance.

  18. Polydimethylsiloxane (PDMS) modulates CD38 expression, absorbs retinoic acid and may perturb retinoid signalling.

    Science.gov (United States)

    Futrega, Kathryn; Yu, Jianshi; Jones, Jace W; Kane, Maureen A; Lott, William B; Atkinson, Kerry; Doran, Michael R

    2016-04-21

    Polydimethylsiloxane (PDMS) is the most commonly used material in the manufacture of customized cell culture devices. While there is concern that uncured PDMS oligomers may leach into culture medium and/or hydrophobic molecules may be absorbed into PDMS structures, there is no consensus on how or if PDMS influences cell behaviour. We observed that human umbilical cord blood (CB)-derived CD34(+) cells expanded in standard culture medium on PDMS exhibit reduced CD38 surface expression, relative to cells cultured on tissue culture polystyrene (TCP). All-trans retinoic acid (ATRA) induces CD38 expression, and we reasoned that this hydrophobic molecule might be absorbed by PDMS. Through a series of experiments we demonstrated that ATRA-mediated CD38 expression was attenuated when cultures were maintained on PDMS. Medium pre-incubated on PDMS for extended durations resulted in a time-dependant reduction of ATRA in the medium and increasingly attenuated CD38 expression. This indicated a time-dependent absorption of ATRA into the PDMS. To better understand how PDMS might generally influence cell behaviour, Ingenuity Pathway Analysis (IPA) was used to identify potential upstream regulators. This analysis was performed for differentially expressed genes in primary cells including CD34(+) haematopoietic progenitor cells, mesenchymal stromal cells (MSC), and keratinocytes, and cell lines including prostate cancer epithelial cells (LNCaP), breast cancer epithelial cells (MCF-7), and myeloid leukaemia cells (KG1a). IPA predicted that the most likely common upstream regulator of perturbed pathways was ATRA. We demonstrate here that ATRA is absorbed by PDMS in a time-dependent manner and results in the concomitant reduced expression of CD38 on the cell surface of CB-derived CD34(+) cells.

  19. Ethanol fermentation integrated with PDMS composite membrane: An effective process.

    Science.gov (United States)

    Fu, Chaohui; Cai, Di; Hu, Song; Miao, Qi; Wang, Yong; Qin, Peiyong; Wang, Zheng; Tan, Tianwei

    2016-01-01

    The polydimethylsiloxane (PDMS) membrane, prepared in water phase, was investigated in separation ethanol from model ethanol/water mixture and fermentation-pervaporation integrated process. Results showed that the PDMS membrane could effectively separate ethanol from model solution. When integrated with batch ethanol fermentation, the ethanol productivity was enhanced compared with conventional process. Fed-batch and continuous ethanol fermentation with pervaporation were also performed and studied. 396.2-663.7g/m(2)h and 332.4-548.1g/m(2)h of total flux with separation factor of 8.6-11.7 and 8-11.6, were generated in the fed-batch and continuous fermentation with pervaporation scenario, respectively. At the same time, high titre ethanol production of ∼417.2g/L and ∼446.3g/L were also achieved on the permeate side of membrane in the two scenarios, respectively. The integrated process was environmental friendly and energy saving, and has a promising perspective in long-terms operation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Tetherless near-infrared control of brain activity in behaving animals using fully implantable upconversion microdevices.

    Science.gov (United States)

    Wang, Ying; Lin, Xudong; Chen, Xi; Chen, Xian; Xu, Zhen; Zhang, Wenchong; Liao, Qinghai; Duan, Xin; Wang, Xin; Liu, Ming; Wang, Feng; He, Jufang; Shi, Peng

    2017-10-01

    Many nanomaterials can be used as sensors or transducers in biomedical research and they form the essential components of transformative novel biotechnologies. In this study, we present an all-optical method for tetherless remote control of neural activity using fully implantable micro-devices based on upconversion technology. Upconversion nanoparticles (UCNPs) were used as transducers to convert near-infrared (NIR) energy to visible light in order to stimulate neurons expressing different opsin proteins. In our setup, UCNPs were packaged in a glass micro-optrode to form an implantable device with superb long-term biocompatibility. We showed that remotely applied NIR illumination is able to reliably trigger spiking activity in rat brains. In combination with a robotic laser projection system, the upconversion-based tetherless neural stimulation technique was implemented to modulate brain activity in various regions, including the striatum, ventral tegmental area, and visual cortex. Using this system, we were able to achieve behavioral conditioning in freely moving animals. Notably, our microscale device was at least one order of magnitude smaller in size (∼100 μm in diameter) and two orders of magnitude lighter in weight (less than 1 mg) than existing wireless optogenetic devices based on light-emitting diodes. This feature allows simultaneous implantation of multiple UCNP-optrodes to achieve modulation of brain function to control complex animal behavior. We believe that this technology not only represents a novel practical application of upconversion nanomaterials, but also opens up new possibilities for remote control of neural activity in the brains of behaving animals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Solid-State Power Generating Microdevices for Distributed Space System Architectures

    Science.gov (United States)

    Fleurial, J.-P.; Patel, J.; Snyder, G. J.; Huang, C.-K.; Averback, R.; Hill, C.; Chen, G.

    2001-01-01

    Deep space missions have a strong need for compact, high power density, reliable and long life electrical power generation and storage under extreme temperature conditions. Conventional power generating devices become inefficient at very low temperatures (temperatures lower than 200 K encountered during Mars missions for example) and rechargeable energy storage devices cannot be operated thereby limiting mission duration. At elevated temperatures (for example for planned solar probe or Venus lander missions), thin film interdiffusion destroys electronic devices used for generating and storing power. Solar power generation strongly depends upon the light intensity, which falls rapidly in deep interplanetary missions (beyond 5 AU), and in planetary missions in the sun shadow or in dusty environments (Mars, for example). Radioisotope thermoelectric generators (RTGs) have been successfully used for a number of deep space missions RTGs. However, their energy conversion efficiency and specific power characteristics are quite low, and this technology has been limited to relatively large systems (more than 100 W). The National Aeronautics and Space Administration (NASA) and the Jet Propulsion Laboratory (JPL) have been planning the use of much smaller spacecrafts that will incorporate a variety of microdevices and miniature vehicles such as microdetectors, microsensors, and microrovers. Except for electrochemical batteries and solar cells, there are currently no available miniaturized power sources. Novel technologies that will function reliably over a long duration mission (ten years and over), in harsh environments (temperature, pressure, and atmosphere) must be developed to enable the success of future space missions. It is also expected that such micropower sources could have a wide range of terrestrial applications, in particular when the limited lifetime and environmental limitations of batteries are key factors. Additional information is contained in the original

  2. Laser-induced superhydrophobic grid patterns on PDMS for droplet arrays formation

    Energy Technology Data Exchange (ETDEWEB)

    Farshchian, Bahador [Ingram School of Engineering, Texas State University, San Marcos, TX 78666 (United States); Gatabi, Javad R. [Materials Science, Engineering and Commercialization, Texas State University, San Marcos, TX 78666 (United States); Bernick, Steven M.; Park, Sooyeon [Ingram School of Engineering, Texas State University, San Marcos, TX 78666 (United States); Lee, Gwan-Hyoung [Department of Materials Science and Engineering, Yonsei University, Seoul 03722 (Korea, Republic of); Droopad, Ravindranath [Ingram School of Engineering, Texas State University, San Marcos, TX 78666 (United States); Materials Science, Engineering and Commercialization, Texas State University, San Marcos, TX 78666 (United States); Kim, Namwon, E-mail: n_k43@txstate.edu [Ingram School of Engineering, Texas State University, San Marcos, TX 78666 (United States)

    2017-02-28

    Highlights: • Superhydrophobic grid patterns were processed on the surface of PDMS using a pulsed nanosecond laser. • Droplet arrays form instantly on the laser-patterned PDMS with the superhydrophobic grid pattern when the PDMS sample is simply immersed in and withdrawn from water. • Droplet size can be controlled by controlling the pitch size of superhydrophobic grid and the withdrawal speed. - Abstract: We demonstrate a facile single step laser treatment process to render a polydimethylsiloxane (PDMS) surface superhydrophobic. By synchronizing a pulsed nanosecond laser source with a motorized stage, superhydrophobic grid patterns were written on the surface of PDMS. Hierarchical micro and nanostructures were formed in the irradiated areas while non-irradiated areas were covered by nanostructures due to deposition of ablated particles. Arrays of droplets form spontaneously on the laser-patterned PDMS with superhydrophobic grid pattern when the PDMS sample is simply immersed in and withdrawn from water due to different wetting properties of the irradiated and non-irradiated areas. The effects of withdrawal speed and pitch size of superhydrophobic grid on the size of formed droplets were investigated experimentally. The droplet size increases initially with increasing the withdrawal speed and then does not change significantly beyond certain points. Moreover, larger droplets are formed by increasing the pitch size of the superhydrophobic grid. The droplet arrays formed on the laser-patterned PDMS with wettability contrast can be used potentially for patterning of particles, chemicals, and bio-molecules and also for cell screening applications.

  3. Physico-chemical properties of PDMS surfaces suitable as substrates for cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Raczkowska, Joanna, E-mail: joanna.raczkowska@uj.edu.pl [The Marian Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-428 Kraków (Poland); Prauzner-Bechcicki, Szymon [Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków (Poland); Lukes, Jaroslav; Sepitka, Josef [Czech Technical University in Prague, Faculty of Mechanical Engineering, Technicka 4, 16607 Prague (Czech Republic); Bernasik, Andrzej [Faculty of Physics and Applied Computer Science, AGH - University of Science and Technology, Reymonta 19, 30-049 Kraków (Poland); Awsiuk, Kamil [The Marian Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-428 Kraków (Poland); Paluszkiewicz, Czesława; Pabijan, Joanna; Lekka, Małgorzata [Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków (Poland); Budkowski, Andrzej [The Marian Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-428 Kraków (Poland)

    2016-12-15

    Highlights: • Series of PDMS substrates with monotonically tuned elasticity were produced. • Method to estimate PDMS stiffness based on AFM force-distance curves was shown. • No change in surface properties of PDMS other than elasticity was demonstrated. • MTT performed for cancer cells showed impact of PDMS elasticity on cells behavior. - Abstract: Elastic properties of the substrate have profound effect on adhesion and proliferation of cells. Here, we introduce a method to produce polydimethylsiloxane (PDMS) substrates with stiffness tuned monotonically from 1.67 to 0.24 MPa, by the time of UV irradiation adjusted up to 5 h. The Young’s modulus (determined by using nanoindenter) scales linearly with stiffness calculated using AFM-based force spectroscopy data. Such a relation enables the determination of the Young modulus from AFM force – distance curves also when the Herz model is not applicable. Our findings demonstrate that surface properties of PDMS substrates are not affected by the applied methodology of tuning substrate elasticity. Finally, the colorimetric proliferation assay (MTT) carried out for non-malignant (HCV29) and cancerous (T24) bladder cancer cells depicted a significant contribution of PDMS substrate elasticity to the behavior of cells. The softer PDMS substrate demonstrated excellent cytocompatibility whereas the stiff one is more cell-repellent.

  4. Novel anti-flooding poly(dimethylsiloxane) (PDMS) catalyst binder for microbial fuel cell cathodes

    KAUST Repository

    Zhang, Fang

    2012-11-01

    Poly(dimethylsiloxane) (PDMS) was investigated as an alternative to Nafion as an air cathode catalyst binder in microbial fuel cells (MFCs). Cathodes were constructed around either stainless steel (SS) mesh or copper mesh using PDMS as both catalyst binder and diffusion layer, and compared to cathodes of the same structure having a Nafion binder. With PDMS binder, copper mesh cathodes produced a maximum power of 1710 ± 1 mW m -2, while SS mesh had a slightly lower power of 1680 ± 12 mW m -2, with both values comparable to those obtained with Nafion binder. Cathodes with PDMS binder had stable power production of 1510 ± 22 mW m -2 (copper) and 1480 ± 56 mW m -2 (SS) over 15 days at cycle 15, compared to a 40% decrease in power with the Nafion binder. Cathodes with the PDMS binder had lower total cathode impedance than those with Nafion. This is due to a large decrease in diffusion resistance, because hydrophobic PDMS effectively prevented catalyst sites from filling up with water, improving oxygen mass transfer. The cost of PDMS is only 0.23% of that of Nafion. These results showed that PDMS is a very effective and low-cost alternative to Nafion binder that will be useful for large scale construction of these cathodes for MFC applications. © 2012 Elsevier B.V.

  5. Sub-15nm Silicon Lines Fabrication via PS-b-PDMS Block Copolymer Lithography

    DEFF Research Database (Denmark)

    Rasappa, Sozaraj; Schulte, Lars; Borah, Dipu

    2013-01-01

    -b-PDMS (33 k–17 k) was conditioned by applying solvent and solvothermal annealing techniques. BCP nanopatterns formed after the annealing process have been confirmed by scanning electron microscope (SEM) after removal of upper PDMS wetting layer by plasma etching. Silicon nanostructures were obtained...

  6. Motor Skill Performance by Low SES Preschool and Typically Developing Children on the PDMS-2

    Science.gov (United States)

    Liu, Ting; Hoffmann, Chelsea; Hamilton, Michelle

    2017-01-01

    The purpose of this study was to compare the motor skill performance of preschool children from low socioeconomic (SES) backgrounds to their age matched typically developing peers using the Peabody Developmental Motor Scales-2 (PDMS-2). Sixty-eight children (34 low SES and 34 typically developing; ages 3-5) performed the PDMS-2. Standard scores…

  7. Surface tension-induced high aspect-ratio PDMS micropillars with concave and convex lens tips

    KAUST Repository

    Li, Huawei

    2013-04-01

    This paper reports a novel method for the fabrication of 3-dimensional (3D) Polydimethylsiloxane (PDMS) micropillars with concave and convex lens tips in a one-step molding process, using a CO2 laser-machined Poly(methyl methacrylate) (PMMA) mold with through holes. The PDMS micropillars are 4 mm high and have an aspect ratio of 251. The micropillars are formed by capillary force drawing up PDMS into the through hole mold. The concave and convex lens tips of the PDMS cylindrical micropillars are induced by surface tension and are controllable by changing the surface wetting properties of the through holes in the PMMA mold. This technique eliminates the requirements of expensive and complicated facilities to prepare a 3D mold, and it provides a simple and rapid method to fabricate 3D PDMS micropillars with controllable dimensions and tip shapes. © 2013 IEEE.

  8. Surface tension-induced high aspect-ratio PDMS micropillars with concave and convex lens tips

    KAUST Repository

    Li, Huawei; Fan, Yiqiang; Yi, Ying; Foulds, Ian G.

    2013-01-01

    This paper reports a novel method for the fabrication of 3-dimensional (3D) Polydimethylsiloxane (PDMS) micropillars with concave and convex lens tips in a one-step molding process, using a CO2 laser-machined Poly(methyl methacrylate) (PMMA) mold with through holes. The PDMS micropillars are 4 mm high and have an aspect ratio of 251. The micropillars are formed by capillary force drawing up PDMS into the through hole mold. The concave and convex lens tips of the PDMS cylindrical micropillars are induced by surface tension and are controllable by changing the surface wetting properties of the through holes in the PMMA mold. This technique eliminates the requirements of expensive and complicated facilities to prepare a 3D mold, and it provides a simple and rapid method to fabricate 3D PDMS micropillars with controllable dimensions and tip shapes. © 2013 IEEE.

  9. Investigation Into Accessible Surface Vinyl Concentrations of Nonstoichiometric PDMS Microspheres from Hydrosilylation Reactions and Their Further Crosslinking Reactions

    DEFF Research Database (Denmark)

    Ma, Baoguang; Hansen, Jens Henrik; Hvilsted, Søren

    2015-01-01

    The introduction of surface vinyl groups to PDMS microspheres broadens the latter's applicability range since the microspheres can be further functionalized or crosslinked into elastomers. Quantification of the surface vinyl concentration of PDMS microspheres is therefore essential. Here, a novel...

  10. Adhesion enhancement by a dielectric barrier discharge of PDMS used for flexible and stretchable electronics

    International Nuclear Information System (INIS)

    Morent, R; Geyter, N De; Axisa, F; Smet, N de; Gengembre, L; Leersnyder, E De; Leys, C; Vanfleteren, J; Rymarczyk-Machal, M; Schacht, E; Payen, E

    2007-01-01

    Currently, there is a strong tendency to replace rigid electronic assemblies by mechanically flexible and stretchable equivalents. This emerging technology can be applied for biomedical electronics, such as implantable devices and electronics on skin. In the first step of the production process of stretchable electronics, electronic interconnections and components are encapsulated into a thin layer of polydimethylsiloxane (PDMS). Afterwards, the electronic structures are completely embedded by placing another PDMS layer on top. It is very important that the metals inside the electronic circuit do not leak out in order to obtain a highly biocompatible system. Therefore, an excellent adhesion between the 2 PDMS layers is of great importance. However, PDMS has a very low surface energy, resulting in poor adhesion properties. Therefore, in this paper, PDMS films are plasma treated with a dielectric barrier discharge (DBD) operating in air at medium pressure (5.0 kPa). Contact angle and XPS measurements reveal that plasma treatment increases the hydrophilicity of the PDMS films due to the incorporation of silanol groups at the expense of methyl groups. T-peel tests show that plasma treatment rapidly imparts adhesion enhancement, but only when both PDMS layers are plasma treated. Results also reveal that it is very important to bond the plasma-treated PDMS films immediately after treatment. In this case, an excellent adhesion is maintained several days after treatment. The ageing behaviour of the plasma-treated PDMS films is also studied in detail: contact angle measurements show that the contact angle increases during storage in air and angle-resolved XPS reveals that this hydrophobic recovery is due to the migration of low molar mass PDMS species to the surface

  11. Three-dimensionally embedded indium tin oxide (ITO) films in photosensitive glass: a transparent and conductive platform for microdevices

    International Nuclear Information System (INIS)

    Beke, S.; Sugioka, K.; Midorikawa, K.; Koroesi, L.; Dekany, I.

    2011-01-01

    A new method for embedding transparent and conductive two- and three-dimensional microstructures in glass is presented. We show that the internal surface of hollow structures fabricated by femtosecond-laser direct writing inside the photosensitive glass can be coated by indium tin oxide (Sn-doped In 2 O 3 , ITO) using a sol-gel process. The idea of combining two transparent materials with different electrical properties, i.e., insulating and conductive, is very promising and hence it opens new prospects in manufacturing cutting edge microdevices, such as lab-on-a-chips (LOCs) and microelectromechanical systems (MEMS). (orig.)

  12. Investigation of PDMS as coating on CMUTs for Imaging

    DEFF Research Database (Denmark)

    la Cour, Mette Funding; Stuart, Matthias Bo; Laursen, Mads Bjerregaard

    2014-01-01

    A protective layer is necessary for Capacitive Mi- cromachined Ultrasonic Transducers (CMUTs) to be used for imaging purpose. The layer should both protect the device itself and the patient while maintaining the performance of the device. In this work Sylgard 170 PDMS is tested as coating material...... for CMUTs through comparison of transmit pressure and receive sensitivity in immersion of coated and uncoated elements. It is seen that the transmitted pressure decreases with 27% and the receive sensitivity decreases 35 % when applying the coating using a dam and fill principle. This matches well...... with the estimated value of 31 %. With the coating, the center frequency was found to be decreased from 4.5 MHz to 4.1 MHz and the fractional bandwidth was increased from 77 % to 84 % in transmit. In receive the center frequency was found to decrease from 4.4 MHz to 3.9 MHz and the fractional bandwidth was decreased...

  13. PDMS Based Thermopnuematic Peristaltic Micropump for Microfluidic Systems

    International Nuclear Information System (INIS)

    Mamanee, W; Tuantranont, A; Afzulpurkar, N V; Porntheerapat, N; Rahong, S; Wisitsoraat, A

    2006-01-01

    A thermopnuematic peristaltic micropump for controlling micro litters of fluid was designed and fabricated from multi-stack PDMS structure on glass substrate. Pump structure consists of inlet and outlet, microchannel, three thermopneumatic actuation chambers, and three heaters. In microchannel, fluid is controlled and pumped by peristaltic motion of actuation diaphragm. Actuation diaphragm can bend up and down by exploiting air expansion that is induced by increasing heater temperature. The micropump characteristics were measured as a function of applied voltage and frequency. The flow rate was determined by periodically recording the motion of fluid at Nanoport output and computing flow volume from height difference between consecutive records. From the experiment, an optimum flow rate of 0.82 μl/min is obtained under 14 V three-phase input voltages at 0.033 Hz operating frequency

  14. Flexible electret energy harvesters with parylene electret on PDMS substrates

    International Nuclear Information System (INIS)

    Chiu, Yi; Wu, Shih-Hsien

    2013-01-01

    Currently, most vibrational energy harvesters have rigid and resonant structures to harvest energy from periodic motions in specific directions. However, in some situations the motion is random and aperiodic; or the targeted energy source is the strain energy in deformation, rather than the kinetic energy in vibration. Therefore we propose and demonstrate a PDMS-based flexible energy harvester with parylene-C electret that can be attached to any deformable surfaces to harvest the stain energy caused by external deformation. The proposed flexible harvester was fabricated and characterized. The measured power at 20 Hz is 0.18 μW and 82 nW in the compression and bending modes, respectively. Such a harvester has the potential for wearable and implantable electronics applications

  15. Photonic crystal and photonic quasicrystal patterned in PDMS surfaces and their effect on LED radiation properties

    Energy Technology Data Exchange (ETDEWEB)

    Suslik, Lubos [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Pudis, Dusan, E-mail: pudis@fyzika.uniza.sk [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Goraus, Matej [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Nolte, Rainer [Fakultät für Maschinenbau FG Lichttechnik Ilmenau University of Technology, Ilmenau (Germany); Kovac, Jaroslav [Inst. of Electronics and Photonics, Slovak University of Technology, Ilkovicova 3, 812 19, Bratislava (Slovakia); Durisova, Jana; Gaso, Peter [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Hronec, Pavol [Inst. of Electronics and Photonics, Slovak University of Technology, Ilkovicova 3, 812 19, Bratislava (Slovakia); Schaaf, Peter [Chair Materials for Electronics, Institute of Materials Engineering and Institute of Micro- and Nanotechnologies MacroNano, TU Ilmenau, Gustav-Kirchhoff-Str. 5, 98693 Ilmenau (Germany)

    2017-02-15

    Graphical abstract: Photonic quasicrystal patterned in the surface of polydimethylsiloxane membrane (left) and radiation pattern of light emitting diode with patterned membrane applied in the surface (right). - Highlights: • We presented fabrication technique of PDMS membranes with patterned surface by photonic crystal (PhC) and photonic quasi-crystal (PQC). • Presented technique is effective for preparation PhC and PQC PDMS membranes easily implementing in the LED chip. • From the goniophotometer measurements, the membranes document effective angular emission due to the diffraction on patterned surfaces. • 12 fold symmetry PQC structure shows homogeneous radiation pattern, while the 2 fold symmetry of square PhC shows evident diffraction lobes. - Abstract: We present results of fabrication and implementation of thin polydimethylsiloxane (PDMS) membranes with patterned surface for the light emitting diode (LED). PDMS membranes were patterned by using the interference lithography in combination with embossing technique. Two-dimensional photonic crystal and photonic quasicrystal structures with different period were patterned in the surface of thin PDMS membranes with depth up to 550 nm. Patterned PDMS membranes placed on the LED chip effectively diffracted light and increased angular emission of LED radiation pattern. We presented effective technique for fabrication of patterned PDMS membranes, which could modify the emission properties of optoelectronic devices and can be applied directly on surface LEDs and small optical devices.

  16. The Fabrication and Application of a PDMS Micro Through-Holes Mask in Electrochemical Micromanufacturing

    Directory of Open Access Journals (Sweden)

    Xiaolei Chen

    2014-08-01

    Full Text Available The electrochemical micromanufacturing process, as a key micromanufacturing technology, plays an important role in diverse industries. In this paper, polydimethylsiloxane (PDMS is employed as a mask in the electrochemical micromanufacture of microstructures because of its chemical resistance, low cost, flexibility, and high molding capability. A new method for fabricating a PDMS micro through-holes mask is proposed. In this method, a thin resist film is employed to enhance the adhesion between the substrate and the SU-8 pillar array which is used as a mold. A vacuum-aided process is used to inject the PDMS gel into the SU-8 mold and the PDMS micro through-holes mask can be peeled off from the SU-8 mold when the gel is cured. Experiments were conducted to verify the feasibility of the proposed approach and PDMS microholes of various shapes were obtained. The PDMS mask can then be successfully applied in the electrochemical micromanufacturing process to generate microstructures and microdimple and embossment arrays have been successfully demonstrated. Furthermore, the PDMS mask can be reused, as it is not damaged during the manufacturing process.

  17. Enhanced pattern resolution, swelling-behaviour and biocompatibility of bioimprinted casein microdevices

    Directory of Open Access Journals (Sweden)

    Azadeh Hashemi

    2017-11-01

    Full Text Available This work introduces casein microstructures with surface features as a biodegradable biomedical platform technology for enhancing tissue-engineering applications. An optimized fabrication process is presented to reduce the hydrophobicity of intermediate polydimethylsiloxane (PDMS molds and to transfer high-resolution regular and biomimetic features onto the surface of casein devices. Four different cross-linking reagents, glutaraldehyde, formaldehyde, citric acid and transglutaminase (TG were investigated to increase the degradation time of casein and their influence on swelling and biocompatibility of the films was studied. TG was found to be the only cross-linker to effectively increase the degradation time and show reduced film swelling after immersion into media, while remaining compatible with cell-culture. The maximum expansion of the films cross-linked via TG was 33% after 24 hours of immersion in cell-culture media. C2C12 cells were successfully cultured on the patterned films for up to 72 hours. The patterned biodegradable casein substrates presented here have promising applications in stem-cell engineering, regenerative medicine, and implantable devices.

  18. Enhanced pattern resolution, swelling-behaviour and biocompatibility of bioimprinted casein microdevices

    Science.gov (United States)

    Hashemi, Azadeh; de Decker, Fanny; Orcheston-Findlay, Louise; Ali, M. Azam; Alkaisi, Maan M.; Nock, Volker

    2017-11-01

    This work introduces casein microstructures with surface features as a biodegradable biomedical platform technology for enhancing tissue-engineering applications. An optimized fabrication process is presented to reduce the hydrophobicity of intermediate polydimethylsiloxane (PDMS) molds and to transfer high-resolution regular and biomimetic features onto the surface of casein devices. Four different cross-linking reagents, glutaraldehyde, formaldehyde, citric acid and transglutaminase (TG) were investigated to increase the degradation time of casein and their influence on swelling and biocompatibility of the films was studied. TG was found to be the only cross-linker to effectively increase the degradation time and show reduced film swelling after immersion into media, while remaining compatible with cell-culture. The maximum expansion of the films cross-linked via TG was 33% after 24 hours of immersion in cell-culture media. C2C12 cells were successfully cultured on the patterned films for up to 72 hours. The patterned biodegradable casein substrates presented here have promising applications in stem-cell engineering, regenerative medicine, and implantable devices.

  19. Enhancing relative permittivity by incorporating PDMS-PEG multiblock copolymers in binary polymer blends

    DEFF Research Database (Denmark)

    A Razak, Aliff Hisyam; Szabo, Peter; Skov, Anne Ladegaard

    Polydimethylsiloxane (PDMS) elastomers are well-known to be soft and highly stretchable, yet they never achieve maximum elongation when utilised as dielectric elastomers, simply because their dielectric permittivity remains rather low. Conversely, polyethyleneglycols (PEG) are not stretchable......, but they do possess high permittivity. Combining two such polymers in a block copolymer allows for further crosslinking and presents the possibility of substantial improvements in the actuation response of the resulting dielectric elastomer – if carefully designed. The objective is to synthesise a PDMS......, the discontinuity in PEG can be acquired and the relative permittivity (ε’) is significantly enhanced (60%) with 5wt% of PDMS-PEG block copolymer incorporated into the silicone elastomer....

  20. Prediction of Partition Coefficients of Organic Compounds for SPME/PDMS

    Directory of Open Access Journals (Sweden)

    Liao Hsuan-Yu

    2016-01-01

    Full Text Available The partition coefficients of 51 organic compounds between SPME/PDMS and gas were compiled from the literature sources in this study. The effect of physicochemical properties and descriptors on the partitioning process of partition coefficients was explicated by the correlation analysis. The PDMS-gas partition coefficients were well correlated to the molecular weight of organic compounds (r = 0.832, p < 0.05. An empirical model, consisting of the molecular weight and the polarizability, was developed to appropriately predict the partition coefficients of organic compounds. The empirical model for estimating the PDMS-gas partition coefficient will contribute to the practical applications of the SPME technique.

  1. Microphase separation behavior on the surfaces of PEG-MDI-PDMS multiblock copolymer coatings

    International Nuclear Information System (INIS)

    Fang Hongxia; Zhou Shuxue; Wu Limin

    2006-01-01

    A series of poly(ethylene glycol)(PEG)-4,4'-diphenylmethanediisocyanate(MDI)-poly(dimethylsiloxane) (PDMS) multiblock copolymers were synthesized by employing two-step growth polymerization technique. Atomic force microscopy (AFM) observed nanoscopically well-organized phase-separated surfaces consisting of hydrophilic domain from PEG and MDI segments and hydrophobic domain from PDMS segments even with 50 wt.% PDMS in the copolymer, and the multiblock copolymer coatings presented a surface free energy of as low as 6-8 mN m -1

  2. Preparation and Characterizing of PANI/PDMS Elastomer for Artificial Muscles

    Science.gov (United States)

    Zhang, Yiyang; Zhang, Jie; Wang, Genlin; Zhang, Ming; Luo, Zhiwei

    2018-01-01

    A dielectric elastomer has been synthesized using organic soluble PANI and PDMS through solution blending method for applications as artificial muscles. The dielectric constant of PANI/PDMS composite reached 4.82 with a filling amount of 0.8 wt.%, which was 2.24 times of pure silicone, due to the dipole polarization in matrix network and electron polarization in conductive polyaniline. The actuated strain of 0.8w.t % PANI/PDMS was 16.57% compared to 8.52% of pure silicone at an electric field of 10V/μm, and can be applied as a soft actuator.

  3. Novel method to prepare multiwalled carbon nanotube/poly(dimethyl siloxane) (MWCNT/PDMS) non-conducting composites

    DEFF Research Database (Denmark)

    Goswami, Kaustav; Daugaard, Anders Egede; Skov, Anne Ladegaard

    In this study a new method of carbon nanotube (CNT) incorporation was employed for the preparation of ultraviolet (UV) curable CNT filled poly (dimethyl siloxane) (PDMS) composites. The composites were designed to contain loadings of CNT above the percolation threshold without becoming conductive...... due to a localized distribution of CNT. Ultrasonicated and dispersed multiwalled CNTs were mixed with short chain ,- vinyl terminated PDMS. When the whole mixture containing dispersed CNT and short chain PDMS was irradiated with UV radiation in presence of deficient amount of hexa functional thiol...... PDMS crosslinker and a photoinitiator, hyperbranced PDMS layer was formed over the CNTs. The prepared hyperbranched CNTs were mixed in different weight ratios (0.33%, 0.66%, 1%) with long chain ,- vinyl terminated PDMS and crosslinked subsequently with the same hexa functional thiol PDMS via UV...

  4. Simple and fast polydimethylsiloxane (PDMS) patterning using a cutting plotter and vinyl adhesives to achieve etching results.

    Science.gov (United States)

    Hyun Kim; Sun-Young Yoo; Ji Sung Kim; Zihuan Wang; Woon Hee Lee; Kyo-In Koo; Jong-Mo Seo; Dong-Il Cho

    2017-07-01

    Inhibition of polydimethylsiloxane (PDMS) polymerization could be observed when spin-coated over vinyl substrates. The degree of polymerization, partially curing or fully curing, depended on the PDMS thickness coated over the vinyl substrate. This characteristic was exploited to achieve simple and fast PDMS patterning method using a vinyl adhesive layer patterned through a cutting plotter. The proposed patterning method showed results resembling PDMS etching. Therefore, patterning PDMS over PDMS, glass, silicon, and gold substrates were tested to compare the results with conventional etching methods. Vinyl stencils with widths ranging from 200μm to 1500μm were used for the procedure. To evaluate the accuracy of the cutting plotter, stencil designed on the AutoCAD software and the actual stencil widths were compared. Furthermore, this method's accuracy was also evaluated by comparing the widths of the actual stencils and etched PDMS results.

  5. Rethink! prototyping transdisciplinary concepts of prototyping

    CERN Document Server

    Nagy, Emilia; Stark, Rainer

    2016-01-01

    In this book, the authors describe the findings derived from interaction and cooperation between scientific actors employing diverse practices. They reflect on distinct prototyping concepts and examine the transformation of development culture in their fusion to hybrid approaches and solutions. The products of tomorrow are going to be multifunctional, interactive systems – and already are to some degree today. Collaboration across multiple disciplines is the only way to grasp their complexity in design concepts. This underscores the importance of reconsidering the prototyping process for the development of these systems, particularly in transdisciplinary research teams. “Rethinking Prototyping – new hybrid concepts for prototyping” was a transdisciplinary project that took up this challenge. The aim of this programmatic rethinking was to come up with a general concept of prototyping by combining innovative prototyping concepts, which had been researched and developed in three sub-projects: “Hybrid P...

  6. Architectures of prototypes and architectural prototyping

    DEFF Research Database (Denmark)

    Hansen, Klaus Marius; Christensen, Michael; Sandvad, Elmer

    1998-01-01

    together as a team, but developed a prototype that more than fulfilled the expectations of the shipping company. The prototype should: - complete the first major phase within 10 weeks, - be highly vertical illustrating future work practice, - continuously live up to new requirements from prototyping......This paper reports from experience obtained through development of a prototype of a global customer service system in a project involving a large shipping company and a university research group. The research group had no previous knowledge of the complex business of shipping and had never worked...... sessions with users, - evolve over a long period of time to contain more functionality - allow for 6-7 developers working intensively in parallel. Explicit focus on the software architecture and letting the architecture evolve with the prototype played a major role in resolving these conflicting...

  7. Friction, adhesion and wear properties of PDMS films on silicon sidewalls

    International Nuclear Information System (INIS)

    Penskiy, I; Gerratt, A P; Bergbreiter, S

    2011-01-01

    This paper demonstrates the first tests of friction, adhesion and wear properties of thin poly(dimethylsiloxane) (PDMS) films on the sidewalls of silicon-on-insulator structures. The test devices were individually calibrated using a simple method that included optical and electrical measurements. The static coefficient of friction versus normal pressure curves were obtained for PDMS–PDMS, PDMS–silicon and silicon–silicon sidewall interfaces. The effects of aging on friction and adhesion properties of PDMS were also evaluated. The results of friction tests showed that the static coefficient of friction follows the JKR contact model, which means that the friction force depends on the apparent area of contact. The wear tests showed high resistance of PDMS to abrasion over millions of cycles.

  8. Rapid selective metal patterning on polydimethylsiloxane (PDMS) fabricated by capillarity-assisted laser direct write

    KAUST Repository

    Lee, Ming-Tsang; Lee, Daeho; Sherry, Alexander; Grigoropoulos, Costas P

    2011-01-01

    direct write (LDW) technology. To achieve good metal film quality, a capillarity-assisted laser direct writing (CALDW) of nanoparticle suspensions on a low surface energy material (PDMS) was utilized. Experimental results showed controllable electrical

  9. Low cost fabrication of polymer composite (h-ZnO + PDMS) material for piezoelectric device application

    Science.gov (United States)

    Singh, Akanksha; Das, Sonatan; Bharathkumar, Mareddi; Revanth, D.; Karthik, ARB; Sudhakara Sastry, Bala; Ramgopal Rao, V.

    2016-07-01

    Flexible piezoelectric composites offer alternative and/or additional solutions to sensor, actuator and transducer applications. Here in this work, we have successfully fabricated highly flexible piezoelectric composites with poly dimethyl siloxane (PDMS) using herbal zinc oxide (h-ZnO) as filler having weight fractions up to 50 wt.% by solution casting of dispersions of h-ZnO in PDMS. Excellent piezo properties (Resonant frequency 935 Hz, d*33 29.76 pm V-1), physiochemical properties (Wurtzite structure ZnO, 380 nm absorbance) and mechanical properties (Young modulus 16.9 MPa) have been optimized with theoretical simulations and observed experimentally for h-ZnO + PDMS. As such, the demonstrated piezoelectric PDMS membranes combined with the excellent properties of these composites open new ways to ‘soft touch’ applications and could serve as a variety of soft and sensitive electromechanical transducers, which are desired for a variety of sensor and energy harvesting applications.

  10. Fabrication of hierarchically structured superhydrophobic PDMS surfaces by Cu and CuO casting

    Science.gov (United States)

    Migliaccio, Christopher P.; Lazarus, Nathan

    2015-10-01

    Poly(dimethylsiloxane) (PDMS) films decorated with hierarchically structured pillars are cast from large area copper and copper oxide negative molds. The molds are fabricated using a single patterning step and electroplating. The process of casting structured PDMS films is simpler and cheaper than alternatives based on deep reactive ion etching or laser roughening of bulk silicone. Texture imparted to the pillars from the mold walls renders the PDMS films superhydrophobic, with the contact angle/hysteresis of the most non-wetting surfaces measuring 164°/9° and 158°/10° for surfaces with and without application of a low surface energy coating. The usefulness of patterned PDMS films as a "self-cleaning" solar cell module covering is demonstrated and other applications are discussed.

  11. Thermal conductivity and stability of nano size carbon black filled PDMS: Fuel cell perspective

    CSIR Research Space (South Africa)

    Chen, H

    2011-01-01

    Full Text Available Carbon black filled Polydimethylsiloxane (PDMS) was considered as a prospective bipolar plate material candidate for a Fuel Cell. In this perspective, thermal conductivity and stability of the composites were investigated. Samples with filler weight...

  12. Two-dimensional nanopatterning by PDMS relief structures of polymeric colloidal crystals

    Science.gov (United States)

    Nam, Hye Jin; Kim, Ju-Hee; Jung, Duk-Young; Park, Jong Bae; Lee, Hae Seong

    2008-06-01

    A new constructive method of fabricating a nanoparticle self-assembly on the patterned surface of a poly(dimethylsiloxane) (PDMS) relief nanostructure was demonstrated. Patterned PDMS templates with close-packed microwells were fabricated by molding against a self-assembled monolayer of polystyrene spheres. Alkanethiol-functionalized gold nanoparticles with an average particle size of 2.5 nm were selectively deposited onto a hydrophobic self-assembled monolayer printed on the substrate by the micro-contact printing (μCP) of the prepared PDMS microwell, in which the patterned gold nanoparticles consisted of close-packed hexagons with an average diameter of 370 nm. In addition, two-dimensional colloidal crystals derived from PMMA microspheres with a diameter of 380 nm and a negative surface charge were successfully formed on the hemispherical microwells by electrostatic force using positively charged PAH-coated PDMS as a template to produce multidimensional nanostructures.

  13. The study of PDMS surface treatment and it's applications by using proton beam

    International Nuclear Information System (INIS)

    Baek, J. Y.; Kim, J. Y.; Kwon, K. H.; Park, J. Y.

    2007-04-01

    PDMS(Polydimethylsiloxane) is mainly used as a material to do lab on a chip for biochemical analysis. PDMS has many applicability at the Bio-Technology(BT) field, because it is flexible, biocompatible and has good oxygen permeability. In this study, we have investigated to physical and chemical changes of PDMS surface by proton beam radiation conditions. The used kind of ion were Ar and N, beam energy was 30keV, 60keV, 80keV, total fluence was 1E10 to 1E16 [ions/cm 2 ]. PDMS membrane was produced as 150 μm thick on the 3' silicon wafer. We inquired into physical and chemical changes up to beam radiation conditions through the investigate the change of surface roughness by AFM(Atomic Force Microscope), the change of surface morphology by SEM(Scanning Electron Microscope) and the change of chemical composition by FT-IR(Fourier Transform Infrared Raman spectroscopy) and XPS(X-ray Photoelectron Spectroscopy). From these basic data to we set up the proton beam radiation conditions to secure metal layer and PDMS adhesion. This enables to produce the electrode at the PDMS material lab on a chip. From now on, we'll investigate the cell patterning possibility after carry out of cell culture with mouse fibroblast at PDMS surface what is surface modification by using of proton beam radiation and apply this to produce lab on a chip. Physical property: Surface roughness of PDMS membrane was observed using AFM, after exposure of proton beam on it. The roughness increased as the power level of proton beam increase. This phenomena was caused by the kinetic energy of particle. Chemical property: Long term observation was conducted on the contact angles of the samples made by the proton beam exposure or oxygen plasma treatment; the hydrophilicity was found to be stronger in the samples made by the proton beam exposure. We found the reason of this was the destruction of polymer chains by proton beam. Feasibility of Through-hole: Considering that comparatively high level energy beam

  14. The study of PDMS surface treatment and it's applications by using proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Baek, J. Y.; Kim, J. Y.; Kwon, K. H.; Park, J. Y. [Korea Univ., Seoul (Korea, Republic of)

    2007-04-15

    PDMS(Polydimethylsiloxane) is mainly used as a material to do lab on a chip for biochemical analysis. PDMS has many applicability at the Bio-Technology(BT) field, because it is flexible, biocompatible and has good oxygen permeability. In this study, we have investigated to physical and chemical changes of PDMS surface by proton beam radiation conditions. The used kind of ion were Ar and N, beam energy was 30keV, 60keV, 80keV, total fluence was 1E10 to 1E16 [ions/cm{sup 2}]. PDMS membrane was produced as 150 {mu}m thick on the 3' silicon wafer. We inquired into physical and chemical changes up to beam radiation conditions through the investigate the change of surface roughness by AFM(Atomic Force Microscope), the change of surface morphology by SEM(Scanning Electron Microscope) and the change of chemical composition by FT-IR(Fourier Transform Infrared Raman spectroscopy) and XPS(X-ray Photoelectron Spectroscopy). From these basic data to we set up the proton beam radiation conditions to secure metal layer and PDMS adhesion. This enables to produce the electrode at the PDMS material lab on a chip. From now on, we'll investigate the cell patterning possibility after carry out of cell culture with mouse fibroblast at PDMS surface what is surface modification by using of proton beam radiation and apply this to produce lab on a chip. Physical property: Surface roughness of PDMS membrane was observed using AFM, after exposure of proton beam on it. The roughness increased as the power level of proton beam increase. This phenomena was caused by the kinetic energy of particle. Chemical property: Long term observation was conducted on the contact angles of the samples made by the proton beam exposure or oxygen plasma treatment; the hydrophilicity was found to be stronger in the samples made by the proton beam exposure. We found the reason of this was the destruction of polymer chains by proton beam. Feasibility of Through-hole: Considering that comparatively high

  15. Prediction of Partition Coefficients of Organic Compounds for SPME/PDMS

    OpenAIRE

    Liao Hsuan-Yu; Huang Miao-Ling; Lu Yu-Ting; Chao Keh-Ping

    2016-01-01

    The partition coefficients of 51 organic compounds between SPME/PDMS and gas were compiled from the literature sources in this study. The effect of physicochemical properties and descriptors on the partitioning process of partition coefficients was explicated by the correlation analysis. The PDMS-gas partition coefficients were well correlated to the molecular weight of organic compounds (r = 0.832, p < 0.05). An empirical model, consisting of the molecular weight and the polarizability, was ...

  16. Stretchable and bendable carbon nanotube on PDMS super-lyophobic sheet for liquid metal manipulation

    International Nuclear Information System (INIS)

    Kim, Daeyoung; Jung, Daewoong; Yoo, Jun Hyeon; Lee, Gil S; Lee, Jeong-Bong; Lee, Yunho; Choi, Wonjae; Yoo, Koangki

    2014-01-01

    We report a vertically-aligned carbon nanotube (CNT) forest on polydimethylsiloxane (PDMS) sheet as a novel widely stretchable and bendable anti-wetting super-lyophobic surface for naturally oxidized gallium-based liquid metals. The vertically-aligned CNT has inherent chemical inertness and a hierarchical texture combining micro/nanoscale roughness; these two characters render the developed sheet as a super-lyophobic substrate against gallium-based liquid metals. The vertically-aligned CNT forest was first grown on Si substrate and then transferred onto a PDMS sheet by imprinting. It was found that the transferred CNT on the PDMS sheet maintained its vertically-aligned nature as well as hierarchical micro/nano surface morphology. It was found that the static contact angles of the gallium-based liquid metal droplet on the CNT on Si and on the CNT on PDMS were both greater than 155° and the contact angle hysteresis on the CNT on Si was 4° and that on the transferred CNT on PDMS was 19°. These measurement results showed that the surface retains a super-lyophobic property before and after the CNT transfer onto PDMS. We tested the CNT on PDMS sheet for its mechanical flexibility using stretching (50% and 100%) and bending (curvature of 0.1 and 0.4 mm −1 ). We carried out a bouncing test and a rolling test on the stretched/bent CNT on the PDMS sheet and the results confirmed that the flexible sheet maintains anti-wetting characteristics under bending or stretching conditions. (paper)

  17. 3D Printing PDMS Elastomer in a Hydrophilic Support Bath via Freeform Reversible Embedding.

    Science.gov (United States)

    Hinton, Thomas J; Hudson, Andrew; Pusch, Kira; Lee, Andrew; Feinberg, Adam W

    2016-10-10

    Polydimethylsiloxane (PDMS) elastomer is used in a wide range of biomaterial applications including microfluidics, cell culture substrates, flexible electronics, and medical devices. However, it has proved challenging to 3D print PDMS in complex structures due to its low elastic modulus and need for support during the printing process. Here we demonstrate the 3D printing of hydrophobic PDMS prepolymer resins within a hydrophilic Carbopol gel support via freeform reversible embedding (FRE). In the FRE printing process, the Carbopol support acts as a Bingham plastic that yields and fluidizes when the syringe tip of the 3D printer moves through it, but acts as a solid for the PDMS extruded within it. This, in combination with the immiscibility of hydrophobic PDMS in the hydrophilic Carbopol, confines the PDMS prepolymer within the support for curing times up to 72 h while maintaining dimensional stability. After printing and curing, the Carbopol support gel releases the embedded PDMS prints by using phosphate buffered saline solution to reduce the Carbopol yield stress. As proof-of-concept, we used Sylgard 184 PDMS to 3D print linear and helical filaments via continuous extrusion and cylindrical and helical tubes via layer-by-layer fabrication. Importantly, we show that the 3D printed tubes were manifold and perfusable. The results demonstrate that hydrophobic polymers with low viscosity and long cure times can be 3D printed using a hydrophilic support, expanding the range of biomaterials that can be used in additive manufacturing. Further, by implementing the technology using low cost open-source hardware and software tools, the FRE printing technique can be rapidly implemented for research applications.

  18. Enhancing relative permittivity by incorporating PDMS-PEG multi block copolymers in binary polymer blends

    DEFF Research Database (Denmark)

    A Razak, Aliff Hisyam; Szabo, Peter; Skov, Anne Ladegaard

    Polydimethylsiloxanes (PDMS) are well-known to actuate with relatively large strains due to low modulus, but they possess lowpermittivity. Contrary, polyethyleneglycols (PEG) are not stretchable but possess high permittivity. Combination of the two polymers in a block copolymer depicts a possibil......Polydimethylsiloxanes (PDMS) are well-known to actuate with relatively large strains due to low modulus, but they possess lowpermittivity. Contrary, polyethyleneglycols (PEG) are not stretchable but possess high permittivity. Combination of the two polymers in a block copolymer depicts...... a possibility for substantial improvement of properties such as high permittivity, stretchability and non-conductivity – if carefully designed. The objective is to synthesize PDMS-PEG multiblock copolymer assembling into discontinuous morphologies in PEG based on variation of volume fractions of PDMS....... The utilized synthesis of PDMS-PEG multiblock copolymer is based on hydrosilylation reaction, which is amended from Klasner et al.1 and Jukarainen etal.2 Variation in the ratio between the two constituents introduces distinctive properties in terms of dielectric permittivity and rheological behaviour. PDMS...

  19. Direct transfer of multilayer graphene grown on a rough metal surface using PDMS adhesion engineering

    Science.gov (United States)

    Jang, Heejun; Kang, Il-Suk; Lee, Youngbok; Cha, Yun Jeong; Yoon, Dong Ki; Ahn, Chi Won; Lee, Wonhee

    2016-09-01

    The direct transfer of graphene using polydimethylsiloxane (PDMS) stamping has advantages such as a ‘pick-and-place’ capability and no chemical residue problems. However, it is not easy to apply direct PDMS stamping to graphene grown via chemical vapor deposition on rough, grainy metal surfaces due to poor contact between the PDMS and graphene. In this study, graphene consisting of a mixture of monolayers and multiple layers grown on a rough Ni surface was directly transferred without the use of an adhesive layer. Liquid PDMS was cured on graphene to effect a conformal contact with the graphene. A fast release of graphene from substrate was achieved by carrying out wet-etching-assisted mechanical peeling. We also carried out a thermal post-curing of PDMS to control the level of adhesion between PDMS and graphene and hence facilitate a damage-free release of the graphene. Characterization of the transferred graphene by micro-Raman spectroscopy, SEM/EDS and optical microscopy showed neither cracks nor contamination from the transfer. This technique allows a fast and simple transfer of graphene, even for multilayer graphene grown on a rough surface.

  20. PDMS Network Structure-Property Relationships: Influence of Molecular Architecture on Mechanical and Wetting Properties

    Science.gov (United States)

    Melillo, Matthew Joseph

    Poly(dimethylsiloxane) (PDMS) is one of the most common elastomers, with applications ranging from sealants and marine-antifouling coatings to medical devices and absorbents for water treatment. Fundamental understanding of how liquids spread on the surface of and absorb into and leach out of PDMS networks is of critical importance for the design and use in another application - microfluidic devices. The growing use of PDMS in microfluidic devices raises the concern that some researchers may use this material without fully understanding all of its advantages, drawbacks, and intricacies. The primary goal of this Ph.D. dissertation is to elucidate PDMS network molecular structure to macroscopic property relationships and to demonstrate how molecular architecture can alter dynamic mechanical and wetting characteristics. We prepare PDMS materials by using vinyl/ tetrakis(dimethylsiloxy)silane (TDSS) and silanol/ tetraethylorthosilicate (TEOS) combinations of PDMS end-groups and crosslinkers as two model systems. Under constant curing conditions, we systematically study the effects of polymer molecular weight, loading of crosslinker, and end-group chemical functionality on the extent of gelation and the dynamic mechanical and water wetting properties of end-linked PDMS networks. The extent of the gelation reaction is determined using the Soxhlet extraction to quantify the amount of material that did and did not participate in the crosslinking reactions, termed the gel and sol fractions, respectively. We use the Miller-Macosko model in conjunction with the gel fraction and precise chemical composition (i.e., stoichiometric ratio and molecular weight) to determine the fractions of elastic and pendant material, the molecular weight between chemical crosslinks, and the average effective functionality of the crosslinker molecule. Based on dynamic mechanical testing, we find that the maximum storage moduli are achieved at optimal stoichiometric conditions in the vinyl

  1. Modelling of Impulsional pH Variations Using ChemFET-Based Microdevices: Application to Hydrogen Peroxide Detection

    Directory of Open Access Journals (Sweden)

    Abdou Karim Diallo

    2014-02-01

    Full Text Available This work presents the modelling of impulsional pH variations in microvolume related to water-based electrolysis and hydrogen peroxide electrochemical oxidation using an Electrochemical Field Effect Transistor (ElecFET microdevice. This ElecFET device consists of a pH-Chemical FET (pH-ChemFET with an integrated microelectrode around the dielectric gate area in order to trigger electrochemical reactions. Combining oxidation/reduction reactions on the microelectrode, water self-ionization and diffusion properties of associated chemical species, the model shows that the sensor response depends on the main influential parameters such as: (i polarization parameters on the microelectrode, i.e., voltage (Vp and time (tp; (ii distance between the gate sensitive area and the microelectrode (d; and (iii hydrogen peroxide concentration ([H2O2]. The model developed can predict the ElecFET response behaviour and creates new opportunities for H2O2-based enzymatic detection of biomolecules.

  2. Dry fabrication of microdevices by the combination of focused ion beam and cryogenic deep reactive ion etching

    International Nuclear Information System (INIS)

    Chekurov, N; Tittonen, I; Grigoras, K; Sainiemi, L; Franssila, S; Peltonen, A

    2010-01-01

    In this paper, we demonstrate silicon microdevice fabrication by a combination of focused ion beam (FIB) and cryogenic deep reactive ion etching (DRIE). Applying FIB treatment only to a thin surface layer enables very high writing speed compared with FIB milling. The use of DRIE then defines the micro- and nanodevices utilizing the FIB-modified silicon as a mask. We demonstrate the ability to create patterns on highly 3D structures, which is extremely challenging by other nanofabrication methods. The alignment of optically made and FIB-defined patterns is also demonstrated. We also show that complete microelectromechanical systems (MEMS) can be fabricated by this method by presenting a double-ended tuning fork resonator as an example. Extremely short process time is achieved as the full fabrication cycle from mask design to electrical measurements can be completed during one working day.

  3. Modulation of hepatocarcinoma cell morphology and activity by parylene-C coating on PDMS.

    Directory of Open Access Journals (Sweden)

    Nazaré Pereira-Rodrigues

    Full Text Available BACKGROUND: The ability to understand and locally control the morphogenesis of mammalian cells is a fundamental objective of cell and developmental biology as well as tissue engineering research. We present parylene-C (ParC deposited on polydimethylsiloxane (PDMS as a new substratum for in vitro advanced cell culture in the case of Human Hepatocarcinoma (HepG2 cells. PRINCIPAL FINDINGS: Our findings establish that the intrinsic properties of ParC-coated PDMS (ParC/PDMS influence and modulate initial extracellular matrix (ECM; here, type-I collagen surface architecture, as compared to non-coated PDMS substratum. Morphological changes induced by the presence of ParC on PDMS were shown to directly affect liver cell metabolic activity and the expression of transmembrane receptors implicated in cell adhesion and cell-cell interaction. These changes were characterized by atomic force microscopy (AFM, which elucidated differences in HepG2 cell adhesion, spreading, and reorganization into two- or three-dimensional structures by neosynthesis of ECM components. Local modulation of cell aggregation was successfully performed using ParC/PDMS micropatterns constructed by simple microfabrication. CONCLUSION/SIGNIFICANCE: We demonstrated for the first time the modulation of HepG2 cells' behavior in relation to the intrinsic physical properties of PDMS and ParC, enabling the local modulation of cell spreading in a 2D or 3D manner by simple microfabrication techniques. This work will provide promising insights into the development of cell-based platforms that have many applications in the field of in vitro liver tissue engineering, pharmacology and therapeutics.

  4. Surface studies on benzophenone doped PDMS microstructures fabricated using KrF excimer laser direct write lithography

    Energy Technology Data Exchange (ETDEWEB)

    Kant, Madhushree Bute; Shinde, Shashikant D. [Department of Physics, University of Pune, Pune 411007 (India); Bodas, Dhananjay [Centre for Nanobioscience, Agharkar Research Institute, Agharkar road, Pune 411004 (India); Patil, K.R. [Center for Materials Characterization, National Chemical Laboratories, Pune 411008 (India); Sathe, V.G. [UGC DAE Inter University Consortium, Indore 452017 (India); Adhi, K.P. [Department of Physics, University of Pune, Pune 411007 (India); Gosavi, S.W., E-mail: swg@physics.unipune.ac.in [Department of Physics, University of Pune, Pune 411007 (India)

    2014-09-30

    Graphical abstract: - Highlights: • Use of KrF Laser micromachining for Lab-On-Chip applications at lower fluence. • Addition of Benzophenone in PDMS enhances its self development sensitivity. • Benzophenone helps efficient energy transfer for equal density of bond scissioning. • Correlation of chemical composition with laser dose and microstructure. • Microstructures with well defined clean sidewalls. - Abstract: This paper discusses microfabrication process for benzophenone doped polydimethylsiloxane (PDMS) using laser lithography. KrF excimer laser of 248 nm with 20 ns pulse width at repetition rate of 1 Hz was used for microfabrication of undoped and benzophenone doped PDMS. The doped-PDMS shows sensitivity below 365 nm, permitting processing under ambient light. The analysis of etch depth revealed that doped PDMS shows self developable sensitivity at lower fluence of ∼250 mJ/cm{sup 2}. The unexposed and exposed surface was studied using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and Scanning electron microscopy (SEM). Spectrocopic analysis indicated increase in C-O, C=O, Si-O{sub 3} and Si-O{sub 4} bonding at the expense of Si-C and Si-O{sub 2} bonds of PDMS. In case of laser exposed doped-PDMS, removal of benzophenone from probe depth of spectroscopy was observed. Whereas the surface morphology of exposed and unexposed doped-PDMS was observed to be same, indicating clean development of PDMS micropatterns. The present study indicates that addition of 3.0 wt.% benzophenone in PDMS enhance self development sensitivity of PDMS. The self developable results on doped-PDMS are quite encouraging for its potential use in point of care Lab-On-Chip applications, for fabricating micropatterns using direct write laser lithography technology.

  5. Rapid and low-cost fabrication of polystyrene-based molds for PDMS microfluidic devices using a CO2 laser

    KAUST Repository

    Li, Huawei

    2011-11-01

    In this article, we described a rapid and low-cost method to fabricate polystyrene molds for PDMS microfluidic devices using a CO2 laser system. It takes only several minutes to fabricate the polystyrene mold with bump pattern on top of it using a CO2 laser system. The bump pattern can be easily transferred to PDMS and fabricate microchannles as deep as 3μm on PDMS. © (2012) Trans Tech Publications, Switzerland.

  6. Rapid and low-cost fabrication of polystyrene-based molds for PDMS microfluidic devices using a CO2 laser

    KAUST Repository

    Li, Huawei; Fan, Yiqiang; Foulds, Ian G.

    2011-01-01

    In this article, we described a rapid and low-cost method to fabricate polystyrene molds for PDMS microfluidic devices using a CO2 laser system. It takes only several minutes to fabricate the polystyrene mold with bump pattern on top of it using a CO2 laser system. The bump pattern can be easily transferred to PDMS and fabricate microchannles as deep as 3μm on PDMS. © (2012) Trans Tech Publications, Switzerland.

  7. Surface studies on benzophenone doped PDMS microstructures fabricated using KrF excimer laser direct write lithography

    International Nuclear Information System (INIS)

    Kant, Madhushree Bute; Shinde, Shashikant D.; Bodas, Dhananjay; Patil, K.R.; Sathe, V.G.; Adhi, K.P.; Gosavi, S.W.

    2014-01-01

    Graphical abstract: - Highlights: • Use of KrF Laser micromachining for Lab-On-Chip applications at lower fluence. • Addition of Benzophenone in PDMS enhances its self development sensitivity. • Benzophenone helps efficient energy transfer for equal density of bond scissioning. • Correlation of chemical composition with laser dose and microstructure. • Microstructures with well defined clean sidewalls. - Abstract: This paper discusses microfabrication process for benzophenone doped polydimethylsiloxane (PDMS) using laser lithography. KrF excimer laser of 248 nm with 20 ns pulse width at repetition rate of 1 Hz was used for microfabrication of undoped and benzophenone doped PDMS. The doped-PDMS shows sensitivity below 365 nm, permitting processing under ambient light. The analysis of etch depth revealed that doped PDMS shows self developable sensitivity at lower fluence of ∼250 mJ/cm 2 . The unexposed and exposed surface was studied using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and Scanning electron microscopy (SEM). Spectrocopic analysis indicated increase in C-O, C=O, Si-O 3 and Si-O 4 bonding at the expense of Si-C and Si-O 2 bonds of PDMS. In case of laser exposed doped-PDMS, removal of benzophenone from probe depth of spectroscopy was observed. Whereas the surface morphology of exposed and unexposed doped-PDMS was observed to be same, indicating clean development of PDMS micropatterns. The present study indicates that addition of 3.0 wt.% benzophenone in PDMS enhance self development sensitivity of PDMS. The self developable results on doped-PDMS are quite encouraging for its potential use in point of care Lab-On-Chip applications, for fabricating micropatterns using direct write laser lithography technology

  8. Imagining the prototype

    OpenAIRE

    Brouwer, C. E.; Bhomer, ten, M.; Melkas, H.; Buur, J.

    2013-01-01

    This article reports on the analysis of a design session, employing conversation analysis. In the design session three experts and a designer discuss a prototype of a shirt, which has been developed with the input from these experts. The analysis focuses on the type of involvement of the participants with the prototype and how they explicate the points they make in the discussion with or without making use of the prototype. Three techniques for explicating design issues that exploit the proto...

  9. Poly-dimethylsiloxane (PDMS) based micro-reactors for steam reforming of methanol

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Ji Won; Kundu, Arunabha; Jang, Jae Hyuk

    2010-11-15

    A miniaturized methanol steam reformer with a serpentine type of micro-channels was developed based on poly-dimethylsiloxane (PDMS) material. This way of fabricating micro-hydrogen generator is very simple and inexpensive. The volume of a PDMS micro-reformer is less than 10 cm{sup 3}. The catalyst used was a commercial Cu/ZnO/Al{sub 2}O{sub 3} reforming catalyst from Johnson Matthey. The Cu/ZnO/Al{sub 2}O{sub 3} reforming catalyst particles of mean diameter 50-70 {mu}m was packed into the micro-channels by injecting water based suspension of catalyst particles at the inlet point. The miniaturized PDMS micro-reformer was operated successfully in the operating temperatures of 180-240 C and 15%-75% molar methanol conversion was achieved in this temperature range for WHSV of 2.1-4.2 h{sup -1}. It was not possible to operate the micro-reformer made by pure PDMS at temperature beyond 240 C. Hybrid type of micro-reformer was fabricated by mixing PDMS and silica powder which allowed the operating temperature around 300 C. The complete conversion (99.5%) of methanol was achieved at 280 C in this case. The maximum reformate gas flow rate was 30 ml/min which can produce 1 W power at 0.6 V assuming hydrogen utilization of 60%. (author)

  10. Irreversible bonding of polyimide and polydimethylsiloxane (PDMS) based on a thiol-epoxy click reaction

    International Nuclear Information System (INIS)

    Hoang, Michelle V; Chung, Hyun-Joong; Elias, Anastasia L

    2016-01-01

    Polyimide is one of the most popular substrate materials for the microfabrication of flexible electronics, while polydimethylsiloxane (PDMS) is the most widely used stretchable substrate/encapsulant material. These two polymers are essential in fabricating devices for microfluidics, bioelectronics, and the internet of things; bonding these materials together is a crucial challenge. In this work, we employ click chemistry at room temperature to irreversibly bond polyimide and PDMS through thiol-epoxy bonds using two different methods. In the first method, we functionalize the surfaces of the PDMS and polyimide substrates with mercaptosilanes and epoxysilanes, respectively, for the formation of a thiol-epoxy bond in the click reaction. In the second method, we functionalize one or both surfaces with mercaptosilane and introduce an epoxy adhesive layer between the two surfaces. When the surfaces are bonded using the epoxy adhesive without any surface functionalization, an extremely small peel strength (<0.01 N mm −1 ) is measured with a peel test, and adhesive failure occurs at the PDMS surface. With surface functionalization, however, remarkably higher peel strengths of ∼0.2 N mm −1 (method 1) and  >0.3 N mm −1 (method 2) are observed, and failure occurs by tearing of the PDMS layer. We envision that the novel processing route employing click chemistry can be utilized in various cases of stretchable and flexible device fabrication. (paper)

  11. Rapid Prototyping Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The ARDEC Rapid Prototyping (RP) Laboratory was established in December 1992 to provide low cost RP capabilities to the ARDEC engineering community. The Stratasys,...

  12. Fabrication and Prototyping Lab

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The Fabrication and Prototyping Lab for composite structures provides a wide variety of fabrication capabilities critical to enabling hands-on research and...

  13. Surface tension-induced PDMS micro-pillars with controllable tips and tilt angles

    KAUST Repository

    Li, Huawei; Fan, Yiqiang; Conchouso Gonzalez, David; Foulds, Ian G.

    2013-01-01

    This paper reports a novel method to fabricate three-dimensional (3D) polydimethylsiloxane (PDMS) micro-pillars using a CO2 laser-machined poly(methyl methacrylate) (PMMA) mold with through-holes. This method eliminates the requirements of expensive and complicated facilities to fabricate a 3D mold. The micro-pillars were formed by the capillary force that draws PDMS into the through-holes of the PMMA mold. The tilt angles of the micro-pillars depend on the tilt angles of the through-holes in the mold, and the concave and convex micro-lens tip shapes of the PDMS micro-pillars can be modified by changing the surface wettability of the PMMA through-holes.

  14. A PDMS-Based Microfluidic Hanging Drop Chip for Embryoid Body Formation.

    Science.gov (United States)

    Wu, Huei-Wen; Hsiao, Yi-Hsing; Chen, Chih-Chen; Yet, Shaw-Fang; Hsu, Chia-Hsien

    2016-07-06

    The conventional hanging drop technique is the most widely used method for embryoid body (EB) formation. However, this method is labor intensive and limited by the difficulty in exchanging the medium. Here, we report a microfluidic chip-based approach for high-throughput formation of EBs. The device consists of microfluidic channels with 6 × 12 opening wells in PDMS supported by a glass substrate. The PDMS channels were fabricated by replicating polydimethyl-siloxane (PDMS) from SU-8 mold. The droplet formation in the chip was tested with different hydrostatic pressures to obtain optimal operation pressures for the wells with 1000 μm diameter openings. The droplets formed at the opening wells were used to culture mouse embryonic stem cells which could subsequently developed into EBs in the hanging droplets. This device also allows for medium exchange of the hanging droplets making it possible to perform immunochemistry staining and characterize EBs on chip.

  15. A PDMS-Based Microfluidic Hanging Drop Chip for Embryoid Body Formation

    Directory of Open Access Journals (Sweden)

    Huei-Wen Wu

    2016-07-01

    Full Text Available The conventional hanging drop technique is the most widely used method for embryoid body (EB formation. However, this method is labor intensive and limited by the difficulty in exchanging the medium. Here, we report a microfluidic chip-based approach for high-throughput formation of EBs. The device consists of microfluidic channels with 6 × 12 opening wells in PDMS supported by a glass substrate. The PDMS channels were fabricated by replicating polydimethyl-siloxane (PDMS from SU-8 mold. The droplet formation in the chip was tested with different hydrostatic pressures to obtain optimal operation pressures for the wells with 1000 μm diameter openings. The droplets formed at the opening wells were used to culture mouse embryonic stem cells which could subsequently developed into EBs in the hanging droplets. This device also allows for medium exchange of the hanging droplets making it possible to perform immunochemistry staining and characterize EBs on chip.

  16. Green silicone elastomer obtained from a counterintuitively stable mixture of glycerol and PDMS

    DEFF Research Database (Denmark)

    Mazurek, P.; Hvilsted, S.; Skov, A. L.

    2016-01-01

    A green and cheap silicone-based elastomer has been developed. Through the simple mixing-in of biodiesel-originating glycerol into commercially available polydimethylsiloxane (PDMS) pre-polymer, a glycerol-in-PDMS emulsion was produced. This counterintuitively stable mixture became a basis...... for obtaining elastomeric composites with uniformly distributed glycerol droplets. Various compositions, containing from 0 to 140 parts of glycerol per 100 parts of PDMS by weight, were prepared and investigated in terms of ATR-FTIR, broadband dielectric spectroscopy, mechanical properties as well as optical......, even in the presence of very high loadings. The conducted experiments highlight the great potential of this new type of elastomer and reveal some possible applications....

  17. Influence of crosslinking process on the mechanical behavior of Poly(Dimethylsiloxane) (PDMS)

    International Nuclear Information System (INIS)

    Fernandes, Barbara Monteiro Pessoa; Weber, Ricardo Ponde; Elzubair, Amal; Suarez, Joao Carlos Miguez

    2010-01-01

    In the present work was studied the influence of the crosslinking process on the mechanical behavior of a composite with a poly(dimethylsiloxane) (PDMS) matrix filled with inorganic particles, used as dental impression material. The material was crosslinked chemically and by exposition to 400kGy gamma radiation dose. The material properties, before and after crosslinking, were analyzed through physical chemical and mechanical tests and microscopic exam. The results showed that the gamma irradiation, as compared to chemical cure process, produced higher degree of crosslinking, better wettability, adjusted hardness and low fragility. However, the microscopic exam showed that the gamma irradiated PDMS presents, as compared with the chemical cure, a greater number of defaults which resulted from the large concentration of released gases. The results allowed us to conclude that gamma irradiation is an adequate process to crosslink the studied PDMS composite, since we can reduce the quantity of gases formed in this process. (author)

  18. Surface tension-induced PDMS micro-pillars with controllable tips and tilt angles

    KAUST Repository

    Li, Huawei

    2013-12-21

    This paper reports a novel method to fabricate three-dimensional (3D) polydimethylsiloxane (PDMS) micro-pillars using a CO2 laser-machined poly(methyl methacrylate) (PMMA) mold with through-holes. This method eliminates the requirements of expensive and complicated facilities to fabricate a 3D mold. The micro-pillars were formed by the capillary force that draws PDMS into the through-holes of the PMMA mold. The tilt angles of the micro-pillars depend on the tilt angles of the through-holes in the mold, and the concave and convex micro-lens tip shapes of the PDMS micro-pillars can be modified by changing the surface wettability of the PMMA through-holes.

  19. Nanoporous polymeric nanofibers based on selectively etched PS-b-PDMS block copolymers.

    Science.gov (United States)

    Demirel, Gokcen B; Buyukserin, Fatih; Morris, Michael A; Demirel, Gokhan

    2012-01-01

    One-dimensional nanoporous polymeric nanofibers have been fabricated within an anodic aluminum oxide (AAO) membrane by a facile approach based on selective etching of poly(dimethylsiloxane) (PDMS) domains in polystyrene-block-poly(dimethylsiloxane) (PS-b-PDMS) block copolymers that had been formed within the AAO template. It was observed that prior to etching, the well-ordered PS-b-PDMS nanofibers are solid and do not have any porosity. The postetched PS nanofibers, on the other hand, had a highly porous structure having about 20-50 nm pore size. The nanoporous polymeric fibers were also employed as a drug carrier for the native, continuous, and pulsatile drug release using Rhodamine B (RB) as a model drug. These studies showed that enhanced drug release and tunable drug dosage can be achieved by using ultrasound irradiation. © 2011 American Chemical Society

  20. Fouling release nanostructured coatings based on PDMS-polyurea segmented copolymers

    KAUST Repository

    Fang, Jason

    2010-05-01

    The bulk and surface characteristics of a series of coatings based on PDMS-polyurea segmented copolymers were correlated to their fouling release performance. Incorporation of polyurea segments to PDMS backbone gives rise to phase separation with the extensively hydrogen bonded hard domains creating an interconnected network that imparts mechanical rigidity. Increasing the compositional complexity of the system by including fluorinated or POSS-functionalized chain extenders or through nanoclay intercalation, confers further thermomechanical improvements. In analogy to the bulk morphology, the surface topography also reflects the compositional complexity of the materials, displaying a wide range of motifs. Investigations on settlement and subsequent removal of Ulva sporelings on those nanostructured surfaces indicate that the work required to remove the microorganisms is significantly lower compared to coatings based on standard PDMS homopolymer. All in all, the series of materials considered in this study demonstrate advanced fouling release properties, while exhibiting superior mechanical properties and, thus, long term durability. © 2010 Elsevier Ltd.

  1. Polydimethylsiloxane (PDMS-Based Flexible Resistive Strain Sensors for Wearable Applications

    Directory of Open Access Journals (Sweden)

    Jing Chen

    2018-02-01

    Full Text Available There is growing attention and rapid development on flexible electronic devices with electronic materials and sensing technology innovations. In particular, strain sensors with high elasticity and stretchability are needed for several potential applications including human entertainment technology, human–machine interface, personal healthcare, and sports performance monitoring, etc. This article presents recent advancements in the development of polydimethylsiloxane (PDMS-based flexible resistive strain sensors for wearable applications. First of all, the article shows that PDMS-based stretchable resistive strain sensors are successfully fabricated by different methods, such as the filtration method, printing technology, micromolding method, coating techniques, and liquid phase mixing. Next, strain sensing performances including stretchability, gauge factor, linearity, and durability are comprehensively demonstrated and compared. Finally, potential applications of PDMS-based flexible resistive strain sensors are also discussed. This review indicates that the era of wearable intelligent electronic systems has arrived.

  2. Designing and testing prototypes

    NARCIS (Netherlands)

    Vereijken, P.; Wijnands, F.; Stol, W.

    1995-01-01

    This second progress report focuses on designing a theoretical prototype by linking parameters to methods and designing the methods in this context until they are ready for initial testing. The report focuses also on testing and improving the prototype in general and the methods in particular until

  3. EUCLID ARCHIVE SYSTEM PROTOTYPE

    NARCIS (Netherlands)

    Belikov, Andrey; Williams, Owen; Droge, Bob; Tsyganov, Andrey; Boxhoorn, Danny; McFarland, John; Verdoes Kleijn, Gijs; Valentijn, E; Altieri, Bruno; Dabin, Christophe; Pasian, F.; Osuna, Pedro; Soille, P.; Marchetti, P.G.

    2014-01-01

    The Euclid Archive System prototype is a functional information system which is used to address the numerous challenges in the development of fully functional data processing system for Euclid. The prototype must support the highly distributed nature of the Euclid Science Ground System, with Science

  4. Specifications in software prototyping

    OpenAIRE

    Luqi; Chang, Carl K.; Zhu, Hong

    1998-01-01

    We explore the use of software speci®cations for software prototyping. This paper describes a process model for software prototyping, and shows how specifications can be used to support such a process via a cellular mobile phone switch example.

  5. EPCiR prototype

    DEFF Research Database (Denmark)

    2003-01-01

    A prototype of a residential pervasive computing platform based on OSGi involving among other a mock-up of an health care bandage.......A prototype of a residential pervasive computing platform based on OSGi involving among other a mock-up of an health care bandage....

  6. A Facile Method and Novel Mechanism Using Microneedle-Structured PDMS for Triboelectric Generator Applications.

    Science.gov (United States)

    Trinh, Van-Long; Chung, Chen-Kuei

    2017-08-01

    The triboelectric generator (TEG) is a cost-effective, multi-fabricated, friendly mechanical-energy-harvesting device. The traditional TEG, generally formed by two triboelectric materials in multilayers or a simple pattern, generated triboelectricity as it worked in the cycling contact-separation operation. This paper demonstrates a novel, high-aspect-ratio, microneedle (MN)-structured polydimethylsiloxane (PDMS)-based triboelectric generator (MN-TEG) by means of a low-cost, simple fabrication using CO 2 laser ablation on the polymethyl methacrylate substrate and a molding process. The MN-TEG, consisting of an aluminum foil and a microneedle-structured PDMS (MN-PDMS) film, generates an output performance with an open-circuit voltage up to 102.8 V, and a short-circuit current of 43.1 µA, corresponding to the current density of 1.5 µA cm -2 . With introducing MN-PDMS into the MN-TEG, a great increase of randomly closed bending-friction-deformation (BFD) behavior of MNs leads to highly enhanced triboelectric performance of the MN-TEG. The BFD keeps increasingly on in-contact between MN with Al that results in enhancement of electrical capacitance of PDMS. The effect of aspect ratio and density of MN morphology on the output performance of MN-PDMS TEG is studied further. The MN-TEG can rapidly charge electric energy on a 0.1 µF capacitor up to 2.1 V in about 0.56 s. The MN-TEG source under tapping can light up 53 light-emitting diodes with different colors, connected in series. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Cooperative Prototyping Experiments

    DEFF Research Database (Denmark)

    Bødker, Susanne; Grønbæk, Kaj

    1989-01-01

    This paper describes experiments with a design technique that we denote cooperative prototyping. The experiments consider design of a patient case record system for municipal dental clinics in which we used HyperCard, an off the shelf programming environment for the Macintosh. In the ecperiments we...... tried to achieve a fluent work-like evaluation of prototypes where users envisioned future work with a computer tool, at the same time as we made on-line modifications of prototypes in cooperation with the users when breakdown occur in their work-like evaluation. The experiments showed...... that it was possible to make a number of direct manipulation changes of prototypes in cooperation with the users, in interplay with their fluent work-like evaluation of these. However, breakdown occurred in the prototyping process when we reached the limits of the direct manipulation support for modification. From...

  8. Dipolar cross-linkers for PDMS networks with enhanced dielectric permittivity and low dielectric loss

    DEFF Research Database (Denmark)

    Bahrt, Frederikke; Daugaard, Anders Egede; Hvilsted, Søren

    2013-01-01

    -(4-((4-nitrophenyl)diazenyl)phenoxy)-prop-1-yn-1-ylium, with a synthesized silicone compatible azide-functional cross-linker by click chemistry. The thermal, mechanical and electromechanical properties were investigated for PDMS films with 0 to 3.6 wt% of dipole-cross-linker. The relative dielectric permittivity......Dipole grafted cross-linkers were utilized to prepare polydimethylsiloxane (PDMS) elastomers with various chain lengths and with various concentrations of functional cross-linker. The grafted cross-linkers were prepared by reaction of two alkyne-functional dipoles, 1-ethynyl-4-nitrobenzene and 3...

  9. Softlithographic partial integration of surface-active nanoparticles in a PDMS matrix for microfluidic biodevices

    Energy Technology Data Exchange (ETDEWEB)

    Demming, Stefanie; Buettgenbach, Stephanus [Institute for Microtechnology (IMT), Technische Universitaet Braunschweig, Alte Salzdahlumer Strasse 203, 38124 Braunschweig (Germany); Hahn, Anne; Barcikowski, Stephan [Nanotechnology Department, Laser Zentrum Hannover e.V. (LZH), Hollerithallee 8, 30419 Hannover (Germany); Edlich, Astrid; Franco-Lara, Ezequiel; Krull, Rainer [Institute of Biochemical Engineering (IBVT), Technische Universitaet Braunschweig, Gaussstrasse 17, 38106 Braunschweig (Germany)

    2010-04-15

    The mergence of microfluidics and nanocomposite materials and their in situ structuring leads to a higher integration level within microsystems technology. Nanoparticles (Cu and Ag) produced via laser radiation were suspended in Poly(dimethylsiloxane) to permanently modify surface material. A microstructuring process was implemented which allows the incorporation of these nanomaterials globally or partially at defined locations within a microbioreactor (MBR) for the determination of their antiseptic and toxic effects on the growth of biomass. Partially structured PDMS with nanoparticle-PDMS composite. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  10. Low cost fabrication and assembly process for re-usable 3D polydimethylsiloxane (PDMS) microfluidic networks

    CSIR Research Space (South Africa)

    Land, K

    2011-09-01

    Full Text Available and assembly process for re-usable 3D polydimethylsiloxane (PDMS) microfluidic networks Kevin J. Land, Mesuli B. Mbanjwa, Klariska Govindasamy, and Jan G. Korvink Citation: Biomicrofluidics 5, 036502 (2011); doi: 10.1063/1.3641859 View online: http... polydimethylsiloxane (PDMS) microfluidic networks Kevin J. Land,1,2,a) Mesuli B. Mbanjwa,1,3 Klariska Govindasamy,1 and Jan G. Korvink2,4 1Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa 2University of Freiburg, Department...

  11. Monolithic PDMS Laminates for Dielectric Elastomer Transducers through Open-Air PlasmATreatment

    DEFF Research Database (Denmark)

    Hassouneh, Suzan Sager; Oubæk, Jakob; Daugaard, Anders Egede

    2016-01-01

    The present study investigates the use of an open-air plasma-treatment system for the surface modification of polydimethylsiloxane (PDMS), in order to improve layer-to-layer adhesion. The procedure presented herein is more cost efficient compared to conventional vacuum-based plasma-treatment, and......The present study investigates the use of an open-air plasma-treatment system for the surface modification of polydimethylsiloxane (PDMS), in order to improve layer-to-layer adhesion. The procedure presented herein is more cost efficient compared to conventional vacuum-based plasma...

  12. PDMS/PVDF hybrid electrospun membrane with superhydrophobic property and drop impact dynamics for dyeing wastewater treatment using membrane distillation

    KAUST Repository

    An, Alicia Kyoungjin; Guo, Jiaxin; Lee, Eui-Jong; Jeong, Sanghyun; Zhao, Yanhua; Wang, Zuankai; Leiknes, TorOve

    2016-01-01

    .4°) and roughness (Ra = 1,285mm). The zeta potential of E-PDMS membrane surface showed a higher negative value than that of a commercial PVDF (C-PVDF) membrane. These properties of E-PDMS membrane provided an antifouling in treating of differently-charged dyes

  13. High quality sub-10 nm graphene nanoribbons by on-chip PS-b-PDMS block copolymer lithography

    DEFF Research Database (Denmark)

    Rasappa, Sozaraj; Caridad, Jose; Schulte, Lars

    2015-01-01

    block and the graphene under PS. Raman analysis supports the formation of graphene nanoribbons with an average distance between defects corresponding to the oxidized PDMS pitch, with no sign of defects generated in the ribbon channel. This suggests a high degree of protection of the nanoribbons...... by the hard oxidized PDMS mask formed in situ during oxygen plasma etching....

  14. PDMS/PVDF hybrid electrospun membrane with superhydrophobic property and drop impact dynamics for dyeing wastewater treatment using membrane distillation

    KAUST Repository

    An, Alicia Kyoungjin

    2016-10-21

    Fouling in membrane distillation (MD) results in an increase in operation costs and deterioration in a water quality. In this work, a poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP) electrospun (E-PH) membrane was fabricated by hybridizing polydimethylsiloxane (PDMS) polymeric microspheres with superhydrophobicity onto the E-PH membrane via electrospinning. The resulting hybrid PDMS with E-PH (E-PDMS) membrane showed a significant enhancement in surface hydrophobicity (contact angle, CA = 155.4°) and roughness (Ra = 1,285mm). The zeta potential of E-PDMS membrane surface showed a higher negative value than that of a commercial PVDF (C-PVDF) membrane. These properties of E-PDMS membrane provided an antifouling in treating of differently-charged dyes and generated a flake-like dye–dye (loosely bound foulant) structure on the membrane surface rather than in the membrane pores. This also led to a high productivity of E-PDMS membrane (34 Lm-2h-1, 50% higher than that of C-PVDF membrane) without fouling or wetting. In addition, complete color removal and pure water production were achieved during a long-term operation. An application of intermittent water flushing (WF) in direct contact MD (DCMD) operation led to a 99% CA recovery of E-PDMS membrane indicating its sustainability. Therefore, the E-PDMS membrane is a promising candidate for MD application in dyeing wastewater treatment.

  15. An integrated field-effect microdevice for monitoring membrane transport in Xenopus laevis oocytes via lateral proton diffusion.

    Directory of Open Access Journals (Sweden)

    Daniel Felix Schaffhauser

    Full Text Available An integrated microdevice for measuring proton-dependent membrane activity at the surface of Xenopus laevis oocytes is presented. By establishing a stable contact between the oocyte vitelline membrane and an ion-sensitive field-effect (ISFET sensor inside a microperfusion channel, changes in surface pH that are hypothesized to result from facilitated proton lateral diffusion along the membrane were detected. The solute diffusion barrier created between the sensor and the active membrane area allowed detection of surface proton concentration free from interference of solutes in bulk solution. The proposed sensor mechanism was verified by heterologously expressing membrane transport proteins and recording changes in surface pH during application of the specific substrates. Experiments conducted on two families of phosphate-sodium cotransporters (SLC20 & SLC34 demonstrated that it is possible to detect phosphate transport for both electrogenic and electroneutral isoforms and distinguish between transport of different phosphate species. Furthermore, the transport activity of the proton/amino acid cotransporter PAT1 assayed using conventional whole cell electrophysiology correlated well with changes in surface pH, confirming the ability of the system to detect activity proportional to expression level.

  16. In situ electron microscopy studies of electromechanical behavior in metals at the nanoscale using a novel microdevice-based system

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Wonmo, E-mail: wonmo.kang.ctr.ks@nrl.navy.mil; Beniam, Iyoel; Qidwai, Siddiq M. [Naval Research Laboratory, Washington, DC 20375 (United States)

    2016-09-15

    Electrically assisted deformation (EAD) is an emerging technique to enhance formability of metals by applying an electric current through them. Despite its increasing importance in manufacturing applications, there is still an unresolved debate on the nature of the fundamental deformation mechanisms underlying EAD, mainly between electroplasticity (non-thermal effects) and resistive heating (thermal effects). This status is due to two critical challenges: (1) a lack of experimental techniques to directly observe fundamental mechanisms of material deformation during EAD, and (2) intrinsic coupling between electric current and Joule heating giving rise to unwanted thermally activated mechanisms. To overcome these challenges, we have developed a microdevice-based electromechanical testing system (MEMTS) to characterize nanoscale metal specimens in transmission electron microscopy (TEM). Our studies reveal that MEMTS eliminates the effect of Joule heating on material deformation, a critical advantage over macroscopic experiments, owing to its unique scale. For example, a negligible change in temperature (<0.02 °C) is predicted at ∼3500 A/mm{sup 2}. Utilizing the attractive features of MEMTS, we have directly investigated potential electron-dislocation interactions in single crystal copper (SCC) specimens that are simultaneously subjected to uniaxial loading and electric current density up to 5000 A/mm{sup 2}. Our in situ TEM studies indicate that for SCC, electroplasticity does not play a key role as no differences in dislocation activities, such as depinning and movement, are observed.

  17. The fabrication and performance of a poly(dimethylsiloxane) (PDMS)-based microreformer for application to electronics

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Ji Won [Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 (United States); Hyuck Jang, Jae; Hyoung Gil, Jae; Kim, Sung-Han [Micro-Fuel Cell Team, Electro-Material and Device Laboratory, Central R and D Institute, Samsung Electro-Mechanics, Maetan 3-Dong, Yeoungtong-Gu, Suwon 442-838 (Korea)

    2008-04-15

    A miniaturized poly(dimethylsiloxane) (PDMS)-based methanol steam reformer having a serpentine microchannel for application in a proton exchange membrane fuel cell (PEMFC) has been developed. The fabricated PDMS microreformer consists of four layers, and a commercial thin-flexible heater for reforming reaction is embedded in the PDMS layers. The volume of a PDMS microreformer is about 10cm{sup 3}. The commercial Cu/ZnO/Al{sub 2}O{sub 3} reforming catalyst was used and the Cu/ZnO/Al{sub 2}O{sub 3} reforming catalyst particles of mean diameter 50-70{mu} m was packed into the microchannels by fluidized method. In this study, the miniaturized PDMS microreformer was operated successfully in the operating temperatures of 180-240 C and 30-40% molar methanol conversion was achieved in the temperature range for the feed rate of 10 and 50{mu} l-{sup -1}. (author)

  18. Study of Different Sol-Gel Coatings to Enhance the Lifetime of PDMS Devices: Evaluation of Their Biocompatibility.

    Science.gov (United States)

    Aymerich, María; Gómez-Varela, Ana I; Álvarez, Ezequiel; Flores-Arias, María T

    2016-08-25

    A study of PDMS (polydimethylsiloxane) sol-gel-coated channels fabricated using soft lithography and a laser direct writing technique is presented. PDMS is a biocompatible material that presents a high versatility to reproduce several structures. It is widely employed in the fabrication of preclinical devices due to its advantages but it presents a rapid chemical deterioration to organic solvents. The use of sol-gel layers to cover the PDMS overcomes this problem since it provides the robustness of glass for the structures made with PDMS, decreasing its deterioration and changing the biocompatibility of the surface. In this work, PDMS channels are coated with three different kinds of sol-gel compositions (60MTES/40TEOS, 70MTES/30TISP and 80MTES/20TISP). The endothelial cell adhesion to the different coated devices is evaluated in order to determine the most suitable sol-gel preparation conditions to enhance cellular adhesion.

  19. PRMS Data Warehousing Prototype

    Science.gov (United States)

    Guruvadoo, Eranna K.

    2002-01-01

    Project and Resource Management System (PRMS) is a web-based, mid-level management tool developed at KSC to provide a unified enterprise framework for Project and Mission management. The addition of a data warehouse as a strategic component to the PRMS is investigated through the analysis, design and implementation processes of a data warehouse prototype. As a proof of concept, a demonstration of the prototype with its OLAP's technology for multidimensional data analysis is made. The results of the data analysis and the design constraints are discussed. The prototype can be used to motivate interest and support for an operational data warehouse.

  20. Does introduction of a Patient Data Management System (PDMS) improve the financial situation of an intensive care unit?

    Science.gov (United States)

    Castellanos, Ixchel; Schüttler, Jürgen; Prokosch, Hans-Ulrich; Bürkle, Thomas

    2013-09-16

    Patient Data Management Systems (PDMS) support clinical documentation at the bedside and have demonstrated effects on completeness of patient charting and the time spent on documentation. These systems are costly and raise the question if such a major investment pays off. We tried to answer the following questions: How do costs and revenues of an intensive care unit develop before and after introduction of a PDMS? Can higher revenues be obtained with improved PDMS documentation? Can we present cost savings attributable to the PDMS? Retrospective analysis of cost and reimbursement data of a 25 bed Intensive Care Unit at a German University Hospital, three years before (2004-2006) and three years after (2007-2009) PDMS implementation. Costs and revenues increased continuously over the years. The profit of the investigated ICU was fluctuating over the years and seemingly depending on other factors as well. We found a small increase in profit in the year after the introduction of the PDMS, but not in the following years. Profit per case peaked at 1039 € in 2007, but dropped subsequently to 639 € per case. We found no clear evidence for cost savings after the PDMS introduction. Our cautious calculation did not consider additional labour costs for IT staff needed for system maintenance. The introduction of a PDMS has probably minimal or no effect on reimbursement. In our case the observed increase in profit was too small to amortize the total investment for PDMS implementation.This may add some counterweight to the literature, where expectations for tools such as the PDMS can be quite unreasonable.

  1. Topology optimization and fabrication of low frequency vibration energy harvesting microdevices

    International Nuclear Information System (INIS)

    Deng, Jiadong; Rorschach, Katherine; Baker, Evan; Sun, Cheng; Chen, Wei

    2015-01-01

    Topological design of miniaturized resonating structures capable of harvesting electrical energy from low frequency environmental mechanical vibrations encounters a particular physical challenge, due to the conflicting design requirements: low resonating frequency and miniaturization. In this paper structural static stiffness to resist undesired lateral deformation is included into the objective function, to prevent the structure from degenerating and forcing the solution to be manufacturable. The rational approximation of material properties interpolation scheme is introduced to deal with the problems of local vibration and instability of the low density area induced by the design dependent body forces. Both density and level set based topology optimization (TO) methods are investigated in their parameterization, sensitivity analysis, and applicability for low frequency energy harvester TO problems. Continuum based variation formulations for sensitivity analysis and the material derivative based shape sensitivity analysis are presented for the density method and the level set method, respectively; and their similarities and differences are highlighted. An external damper is introduced to simulate the energy output of the resonator due to electrical damping and the Rayleigh proportional damping is used for mechanical damping. Optimization results for different scenarios are tested to illustrate the influences of dynamic and static loads. To demonstrate manufacturability, the designs are built to scale using a 3D microfabrication method and assembled into vibration energy harvester prototypes. The fabricated devices based on the optimal results from using different TO techniques are tested and compared with the simulation results. The structures obtained by the level set based TO method require less post-processing before fabrication and the structures obtained by the density based TO method have resonating frequency as low as 100 Hz. The electrical voltage response

  2. CO2 Laser-Based Rapid Prototyping of Micropumps

    Directory of Open Access Journals (Sweden)

    Zachary Strike

    2018-05-01

    Full Text Available The fabrication of microdevices for fluidic control often requires the use of flexible diaphragms in a way that requires cleanroom equipment and compromises performance. We use a CO 2 laser to perform the standard ablative techniques of cutting and engraving materials, but we also apply a method that we call laser placement. This allows us to fabricate precisely-positioned and precisely-sized, isolated diaphragms. This in turn enables the rapid prototyping of integrated multilayer microfluidic devices to form complex structures without the need for manual positioning or cleanroom equipment. The fabrication process is also remarkably rapid and capable of being scaled to manufacturing levels of production. We explore the use of these devices to construct a compact system of peristaltic pumps that can form water in oil droplets without the use of the non-pulsatile pumping systems typically required. Many devices can be fabricated at a time on a sheet by sheet basis with a fabrication process that, to our knowledge, is the fastest reported to date for devices of this type (requiring only 3 h. Moreover, this system is unusually compact and self-contained.

  3. Contact angle studies on PDMS surfaces fouled by bovine serum albumin

    CSIR Research Space (South Africa)

    Windvoel, VT

    2010-01-01

    Full Text Available Polydimethylsiloxane (PDMS) has a hydrophobic surface, forming a contact angle of around 110º with deionised water. It is due to its hydrophobic nature that the elastomer is prone to bio-fouling, such as non-specific adsorption of biomaterials like...

  4. PZT-5A4/PA and PZT-5A4/PDMS piezoelectric composite bimorphs

    NARCIS (Netherlands)

    Babu, I.; Hendrix, M.M.R.M.; With, de G.

    2014-01-01

    Disc type reinforced piezoelectric composite bimorphs with series connection were designed and the performance was investigated. The composite bimorphs (PZT/PA and PZT/PDMS (40/60 vol%)) were successfully fabricated by a compression molding and solution casting technique. The charge developed at an

  5. Adhesive Stretchable Printed Conductive Thin Film Patterns on PDMS Surface with an Atmospheric Plasma Treatment.

    Science.gov (United States)

    Li, Chun-Yi; Liao, Ying-Chih

    2016-05-11

    In this study, a plasma surface modification with printing process was developed to fabricate printed flexible conductor patterns or devices directly on polydimethylsiloxane (PDMS) surface. An atmospheric plasma treatment was first used to oxidize the PDMS surface and create a hydrophilic silica surface layer, which was confirmed with photoelectron spectra. The plasma operating parameters, such as gas types and plasma powers, were optimized to obtain surface silica layers with the longest lifetime. Conductive paste with epoxy resin was screen-printed on the plasma-treated PDMS surface to fabricate flexible conductive tracks. As a result of the strong binding forces between epoxy resin and the silica surface layer, the printed patterns showed great adhesion on PDMS and were undamaged after several stringent adhesion tests. The printed conductive tracks showed strong mechanical stability and exhibited great electric conductivity under bending, twisting, and stretching conditions. Finally, a printed pressure sensor with good sensitivity and a fast response time was fabricated to demonstrate the capability of this method for the realization of printed electronic devices.

  6. A simple method for fabricating multi-layer PDMS structures for 3D microfluidic chips

    KAUST Repository

    Zhang, Mengying

    2010-01-01

    We report a simple methodology to fabricate PDMS multi-layer microfluidic chips. A PDMS slab was surface-treated by trichloro (1H,1H,2H,2H-perfluorooctyl) silane, and acts as a reusable transferring layer. Uniformity of the thickness of the patterned PDMS layer and the well-alignment could be achieved due to the transparency and proper flexibility of this transferring layer. Surface treatment results are confirmed by XPS and contact angle testing, while bonding forces between different layers were measured for better understanding of the transferring process. We have also designed and fabricated a few simple types of 3D PDMS chip, especially one consisting of 6 thin layers (each with thickness of 50 μm), to demonstrate the potential utilization of this technique. 3D fluorescence images were taken by a confocal microscope to illustrate the spatial characters of essential parts. This fabrication method is confirmed to be fast, simple, repeatable, low cost and possible to be mechanized for mass production. © The Royal Society of Chemistry 2010.

  7. Graphene-Vertically Aligned Carbon Nanotube Hybrid on PDMS as Stretchable Electrodes.

    Science.gov (United States)

    Ding, Junjun; Fu, Shichen; Zhang, Runzhi; Boon, Eric Peter; Lee, Woo; Fisher, Frank T; Yang, Eui-Hyeok

    2017-09-11

    Stretchable electrodes are a critical component for flexible electronics such as displays, energy devices, and wearable sensors. Carbon nanotubes (CNTs) and graphene have been considered for flexible electrode applications, due to their mechanical strength, high carrier mobility, and excellent thermal conductivity. Vertically aligned carbon nanotubes (VACNTs) provide the possibility to serve as interconnects to graphene sheets as stretchable electrodes that could maintain high electrical conductivity under large tensile strain. In this work, a graphene oxide (GO) -VACNT hybrid on a PDMS substrate was demonstrated. Here, 50 μm long VACNTs were grown on a Si/SiO2 wafer substrate via atmospheric pressure chemical vapor deposition (APCVD). VACNTs were directly transferred by delamination from the Si/SiO2 to a semi-cured PDMS substrate, ensuring strong adhesion between VACNTs and PDMS upon full curing of the PDMS. GO ink was then printed on the surface of the VACNT carpet and thermally reduced to reduced graphene oxide (rGO). The sheet resistance of the rGO-VACNT hybrid was measured under uniaxial tensile strains up to 300% applied to the substrate. Under applied strain, the rGO-VACNT hybrid maintained a sheet resistant of 386±55 Ω/sq. Cyclic stretching of the rGO-VACNT hybrid was performed with up to 50 cycles at 100% maximum tensile strain, showing no increase in sheet resistance. These results demonstrate promising performance of the rGO-VACNT hybrid for flexible electronics applications. © 2017 IOP Publishing Ltd.

  8. LEO resistant PI-B-PDMS block copolymer films for solar array applications

    NARCIS (Netherlands)

    Lonkhuyzen, H. van; Bongers, E.; Fischer, H.R.; Dingemans, T.J.; Semprimoschnig, C.

    2013-01-01

    Due to their low atomic oxygen erosion yields PI-b-PDMS block copolymer films have considerable potential for application onto space exposed surfaces of satellites in low earth orbit. On solar arrays these materials might be used as electrical electrical insulation film, flexprint outer layer,

  9. Development of a Waterproof Crack-Based Stretchable Strain Sensor Based on PDMS Shielding.

    Science.gov (United States)

    Hong, Seong Kyung; Yang, Seongjin; Cho, Seong J; Jeon, Hyungkook; Lim, Geunbae

    2018-04-12

    This paper details the design of a poly(dimethylsiloxane) (PDMS)-shielded waterproof crack-based stretchable strain sensor, in which the electrical characteristics and sensing performance are not influenced by changes in humidity. This results in a higher number of potential applications for the sensor. A previously developed omni-purpose stretchable strain (OPSS) sensor was used as the basis for this work, which utilizes a metal cracking structure and provides a wide sensing range and high sensitivity. Changes in the conductivity of the OPSS sensor, based on humidity conditions, were investigated along with the potential possibility of using the design as a humidity sensor. However, to prevent conductivity variation, which can decrease the reliability and sensing ability of the OPSS sensor, PDMS was utilized as a shielding layer over the OPSS sensor. The PDMS-shielded OPSS sensor showed approximately the same electrical characteristics as previous designs, including in a high humidity environment, while maintaining its strain sensing capabilities. The developed sensor shows promise for use under high humidity conditions and in underwater applications. Therefore, considering its unique features and reliable sensing performance, the developed PDMS-shielded waterproof OPSS sensor has potential utility in a wide range of applications, such as motion monitoring, medical robotics and wearable healthcare devices.

  10. PDMS as a sacrificial substrate for SU-8-based biomedical and microfluidic applications

    International Nuclear Information System (INIS)

    Patel, Jasbir N; Kaminska, Bozena; Gray, Bonnie L; Gates, Byron D

    2008-01-01

    We describe a new fabrication process utilizing polydimethylesiloxane (PDMS) as a sacrificial substrate layer for fabricating free-standing SU-8-based biomedical and microfluidic devices. The PDMS-on-glass substrate permits SU-8 photo patterning and layer-to-layer bonding. We have developed a novel PDMS-based process which allows the SU-8 structures to be easily peeled off from the substrate after complete fabrication. As an example, a fully enclosed microfluidic chip has been successfully fabricated utilizing the presented new process. The enclosed microfluidic chip uses adhesive bonding technology and the SU-8 layers from 10 µm to 450 µm thick for fully enclosed microchannels. SU-8 layers as large as the glass substrate are successfully fabricated and peeled off from the PDMS layer as single continuous sheets. The fabrication results are supported by optical microscopy and profilometry. The peel-off force for the 120 µm thick SU-8-based chips is measured using a voice coil actuator (VCA). As an additional benefit the release step leaves the input and the output of the microchannels accessible to the outside world facilitating interconnecting to the external devices

  11. CNT/PDMS composite flexible dry electrodes for long-term ECG monitoring.

    Science.gov (United States)

    Jung, Ha-Chul; Moon, Jin-Hee; Baek, Dong-Hyun; Lee, Jae-Hee; Choi, Yoon-Young; Hong, Joung-Sook; Lee, Sang-Hoon

    2012-05-01

    We fabricated a carbon nanotube (CNT)/ polydimethylsiloxane (PDMS) composite-based dry ECG electrode that can be readily connected to conventional ECG devices, and showed its long-term wearable monitoring capability and robustness to motion and sweat. While the dispersion of CNTs in PDMS is challenging, we optimized the process to disperse untreated CNTs within PDMS by mechanical force only. The electrical and mechanical characteristics of the CNT/PDMS electrode were tested according to the concentration of CNTs and its thickness. The performances of ECG electrodes were evaluated by using 36 types of electrodes which were fabricated with different concentrations of CNTs, and with a differing diameter and thickness. The ECG signals were obtained by using electrodes of diverse sizes to observe the effects of motion and sweat, and the proposed electrode was shown to be robust to both factors. The CNT concentration and diameter of the electrodes were critical parameters in obtaining high-quality ECG signals. The electrode was shown to be biocompatible from the cytotoxicity test. A seven-day continuous wearability test showed that the quality of the ECG signal did not degrade over time, and skin reactions such as itching or erythema were not observed. This electrode could be used for the long-term measurement of other electrical biosignals for ubiquitous health monitoring including EMG, EEG, and ERG.

  12. A soft and conductive PDMS-PEG block copolymer as a compliant electrode for dielectric elastomers

    DEFF Research Database (Denmark)

    A Razak, Aliff Hisyam; Szabo, Peter; Skov, Anne Ladegaard

    Conductive PDMS-PEG block copolymers (Mn = 3 – 5 kg/mol) were chain-extended (Mn = 30 – 45 kg/mol) using hydrosilylation reaction as presented in figure 1. Subsequently, the extended copolymers were added to a conductive nano-filler (multi-walled carbon nanotubes – MWCNTs) in order to enhance...... conductivity. The combination of soft chainextended PDMS-PEG block copolymers and conductive MWCNTs results in a soft and conductive block copolymer composite which potentially can be used as a compliant and highly stretchable electrode for dielectric elastomers. The addition of MWCNTs into the PDMS-PEG matrix...... MWCNTs is 10-3 S/cm compared to 10-1 S/cm of a non-stretchable reference conducting silicone elastomer (LR3162 from Wacker). Furthermore, PDMS-PEG block copolymer with 4 phr MWCNTs (Young’s modulus, Y = 0.26 MPa) is softer and more stretchable thanLR3162 (Y = 1.17 MPa)....

  13. Novel silicone compatible cross-linkers for controlled functionalization of PDMS networks

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Daugaard, Anders Egede; Hvilsted, Søren

    2013-01-01

    . In order to improve the dielectric properties of PDMS a novel system is developed where push-pull dipoles are grafted to a new silicone compatible cross-linker. The grafted cross-linkers are prepared by reaction of two different push-pull dipole alkynes as well as a fluorescent alkyne with the new azide...

  14. Development of a Waterproof Crack-Based Stretchable Strain Sensor Based on PDMS Shielding

    Directory of Open Access Journals (Sweden)

    Seong Kyung Hong

    2018-04-01

    Full Text Available This paper details the design of a poly(dimethylsiloxane (PDMS-shielded waterproof crack-based stretchable strain sensor, in which the electrical characteristics and sensing performance are not influenced by changes in humidity. This results in a higher number of potential applications for the sensor. A previously developed omni-purpose stretchable strain (OPSS sensor was used as the basis for this work, which utilizes a metal cracking structure and provides a wide sensing range and high sensitivity. Changes in the conductivity of the OPSS sensor, based on humidity conditions, were investigated along with the potential possibility of using the design as a humidity sensor. However, to prevent conductivity variation, which can decrease the reliability and sensing ability of the OPSS sensor, PDMS was utilized as a shielding layer over the OPSS sensor. The PDMS-shielded OPSS sensor showed approximately the same electrical characteristics as previous designs, including in a high humidity environment, while maintaining its strain sensing capabilities. The developed sensor shows promise for use under high humidity conditions and in underwater applications. Therefore, considering its unique features and reliable sensing performance, the developed PDMS-shielded waterproof OPSS sensor has potential utility in a wide range of applications, such as motion monitoring, medical robotics and wearable healthcare devices.

  15. Graphene—vertically aligned carbon nanotube hybrid on PDMS as stretchable electrodes

    Science.gov (United States)

    Ding, Junjun; Fu, Shichen; Zhang, Runzhi; Boon, Eric; Lee, Woo; Fisher, Frank T.; Yang, Eui-Hyeok

    2017-11-01

    Stretchable electrodes are a critical component for flexible electronics such as displays, energy devices, and wearable sensors. Carbon nanotubes (CNTs) and graphene have been considered for flexible electrode applications, due to their mechanical strength, high carrier mobility, and excellent thermal conductivity. Vertically aligned carbon nanotubes (VACNTs) provide the possibility to serve as interconnects to graphene sheets as stretchable electrodes that could maintain high electrical conductivity under large tensile strain. In this work, a graphene oxide (GO)-VACNT hybrid on a PDMS substrate was demonstrated. Here, 50 μm long VACNTs were grown on a Si/SiO2 wafer substrate via atmospheric pressure chemical vapor deposition. VACNTs were directly transferred by delamination from the Si/SiO2 to a semi-cured PDMS substrate, ensuring strong adhesion between VACNTs and PDMS upon full curing of the PDMS. GO ink was then printed on the surface of the VACNT carpet and thermally reduced to reduced graphene oxide (rGO). The sheet resistance of the rGO-VACNT hybrid was measured under uniaxial tensile strains up to 300% applied to the substrate. Under applied strain, the rGO-VACNT hybrid maintained a sheet resistant of 386 ± 55 Ω/sq. Cyclic stretching of the rGO-VACNT hybrid was performed with up to 50 cycles at 100% maximum tensile strain, showing no increase in sheet resistance. These results demonstrate promising performance of the rGO-VACNT hybrid for flexible electronics applications.

  16. P.D.M.S. a cad software for the design of new power plants

    International Nuclear Information System (INIS)

    Le Lous, Y.

    1982-01-01

    P.D.M.S. (''Plant Design Management System'') is a computer based management system designed to assist the engineer, with no previous computer knowledge, to solve the problems associated with plant and piping design. The essential feature of P.D.M.S. is that it provides the user with the ability to create a 3D model of his complete plant, by making use of a graphic terminal connected to a computer. The system gives the engineer the powerful advantage over existing techniques that any part of the plant information, which may be required for a specific function, may be retrieved and presented to him in the form most suited to his requirements (i.e. lists of items or fully annotated drawings). P.D.M.S. incorporates advanced facilities to enable engineers to analyse the information for design accuracy and consistency. The project manager can ensure that no errors in the total design due to integration of disciplines within the project, or due to the amalgamation of the work of many designers, who possibly operate in different design centres. P.D.M.S., implemented on an IBM machine of the computer center of Clamart, is being used by the equipment Direction of EDF for the design of new power plants [fr

  17. Flexible Piezoelectric Touch Sensor by Alignment of Lead-Free Alkaline Niobate Microcubes in PDMS

    NARCIS (Netherlands)

    Deutz, D.B.; Mascarenhas, N.T.; Schelen, J.B.J.; de Leeuw, D.M.; van der Zwaag, S.; Groen, W.A.

    2017-01-01

    A highly sensitive, lead-free, and flexible piezoelectric touch sensor is reported based on composite films of alkaline niobate K0.485Na0.485Li0.03NbO3 (KNLN) powders aligned in a polydimethylsiloxane (PDMS) matrix. KNLN powder is fabricated by

  18. Enhanced protection of PDMS-embedded palladium catalysts by co-embedding of sulphide-scavengers.

    Science.gov (United States)

    Comandella, Daniele; Ahn, Min Hyung; Kim, Hojeong; Mackenzie, Katrin

    2017-12-01

    For Pd-containing hydrodechlorination catalysts, coating with poly(dimethyl siloxane) (PDMS) was proposed earlier as promising protection scheme against poisoning. The PDMS coating can effectively repel non-permeating poisons (such as SO 3 2- ) retaining the hydrodechlorination Pd activity. In the present study, the previously achieved protection efficiency was enhanced by incorporation of sulphide scavengers into the polymer. The embedded scavengers were able to bind permeating non-ionic poisons (such as H 2 S) during their passage through PDMS prior to Pd contact which ensured an extended catalyst lifetime. Three scavenger types forming non-permeable sulphur species from H 2 S - alkaline, oxidative or iron-based compounds - were either incorporated into single-layer coats around individual Pd/Al 2 O 3 particles or into a second layer above Pd-containing PDMS films (Pd-PDMS). Hydrodechlorination and hydrogenation were chosen as model reactions, carried out in batch and continuous-flow reactors. Batch tests with all scavenger-containing catalysts showed extended Pd protection compared to scavenger-free catalysts. Solid alkaline compounds (Ca(OH) 2 , NaOH, CaO) and MnO 2 showed the highest instantaneous scavenger efficiencies (retained Pd activity=30-60%), while iron-based catalysts, such as nano zero-valent iron (nZVI) or ferrocene (FeCp 2 ), proved less efficient (1-10%). When stepwise poisoning was applied, the protection efficiency of iron-based and oxidizing compounds was higher in the long term than that of alkaline solids. Long-term experiments in mixed-flow reactors were performed with selected scavengers, revealing the following trend of protection efficiency: CaO 2 >Ca(OH) 2 >FeCp 2 . Under field-simulating conditions using a fixed-bed reactor, the combination of sulphide pre-oxidation in the water phase by H 2 O 2 and local scavenger-enhanced Pd protection was successful. The oxidizing agent H 2 O 2 does not disturb the Pd-catalysed reduction, while the

  19. PCL-PDMS-PCL copolymer-based microspheres mediate cardiovascular differentiation from embryonic stem cells

    Science.gov (United States)

    Song, Liqing

    Poly-epsilon-caprolactone (PCL) based copolymers have received much attention as drug or growth factor delivery carriers and tissue engineering scaffolds due to their biocompatibility, biodegradability, and tunable biophysical properties. Copolymers of PCL and polydimethylsiloxane (PDMS) also have shape memory behaviors and can be made into thermoresponsive shape memory polymers for various biomedical applications such as smart sutures and vascular stents. However, the influence of biophysical properties of PCL-PDMS-PCL copolymers on stem cell lineage commitment is not well understood. In this study, PDMS was used as soft segments of varying length to tailor the biophysical properties of PCL-based co-polymers. While low elastic modulus (affected cardiovascular differentiation of embryonic stem cells, the range of 60-100 MPa PCL-PDMS-PCL showed little influence on the differentiation. Then different size (30-140 mum) of microspheres were fabricated from PCL-PDMS-PCL copolymers and incorporated within embryoid bodies (EBs). Mesoderm differentiation was induced using bone morphogenetic protein (BMP)-4 for cardiovascular differentiation. Differential expressions of mesoderm progenitor marker KDR and vascular markers CD31 and VE-cadherin were observed for the cells differentiated from EBs incorporated with microspheres of different size, while little difference was observed for cardiac marker alpha-actinin expression. Small size of microspheres (30 mum) resulted in higher expression of KDR while medium size of microspheres (94 mum) resulted in higher CD31 and VE-cadherin expression. This study indicated that the biophysical properties of PCL-based copolymers impacted stem cell lineage commitment, which should be considered for drug delivery and tissue engineering applications.

  20. Novel cross-linkers for PDMS networks for controlled and well distributed grafting of functionalities by click chemistry

    DEFF Research Database (Denmark)

    Bahrt, Frederikke; Dimitrov, Ivaylo; Daugaard, Anders Egede

    2013-01-01

    by 35%. The contact angle of PDMS films was increased from 108° to 116° by the introduction of a small poly(pentafluorostyrene) chain. Finally, 17α-ethynyl-1,3,5(10)-estratriene-3,17β-diol and 1-ethynyl-3,5- bis(trifluoromethyl)benzene were incorporated as examples of other functional groups. © 2013......-linkers have been utilized to prepare novel polydimethylsiloxane (PDMS) networks. All functional cross-linkers were successfully incorporated into the networks and were demonstrated to be well distributed within the PDMS films. This was substantiated by fluorescence microscopy of a film prepared with the 4...

  1. A centrifugal direct recombinase polymerase amplification (direct-RPA) microdevice for multiplex and real-time identification of food poisoning bacteria.

    Science.gov (United States)

    Choi, Goro; Jung, Jae Hwan; Park, Byung Hyun; Oh, Seung Jun; Seo, Ji Hyun; Choi, Jong Seob; Kim, Do Hyun; Seo, Tae Seok

    2016-06-21

    In this study, we developed a centrifugal direct recombinase polymerase amplification (direct-RPA) microdevice for multiplex and real-time identification of food poisoning bacteria contaminated milk samples. The microdevice was designed to contain identical triplicate functional units and each unit has four reaction chambers, thereby making it possible to perform twelve direct-RPA reactions simultaneously. The integrated microdevice consisted of two layers: RPA reagents were injected in the top layer, while spiked milk samples with food poisoning bacteria were loaded into sample reservoirs in the bottom layer. For multiplex bacterial detection, the target gene-specific primers and probes were dried in each reaction chamber. The introduced samples and reagents could be equally aliquoted and dispensed into each reaction chamber by centrifugal force, and then the multiplex direct-RPA reaction was executed. The target genes of bacteria spiked in milk could be amplified at 39 °C without a DNA extraction step by using the direct-RPA cocktails, which were a combination of a direct PCR buffer and RPA enzymes. As the target gene amplification proceeded, the increased fluorescence signals coming from the reaction chambers were recorded in real-time at an interval of 2 min. The entire process, including the sample distribution, the direct-RPA reaction, and the real-time analysis, was accomplished with a custom-made portable genetic analyzer and a miniaturized optical detector. Monoplex, duplex, and triplex food poisoning bacteria (Salmonella enterica, Escherichia coli O157:H7, and Vibrio parahaemolyticus) detection was successfully performed with a detection sensitivity of 4 cells per 3.2 μL of milk samples within 30 min. By implementing the direct-PRA on the miniaturized centrifugal microsystem, the on-site food poisoning bacteria analysis would be feasible with high speed, sensitivity, and multiplicity.

  2. From prototype to product

    DEFF Research Database (Denmark)

    Andersen, Tariq Osman; Bansler, Jørgen P.; Kensing, Finn

    2017-01-01

    This paper delves into the challenges of engaging patients, clinicians and industry stakeholders in the participatory design of an mHealth platform for patient-clinician collaboration. It follows the process from the development of a research prototype to a commercial software product. In particu......This paper delves into the challenges of engaging patients, clinicians and industry stakeholders in the participatory design of an mHealth platform for patient-clinician collaboration. It follows the process from the development of a research prototype to a commercial software product....... In particular, we draw attention to four major challenges of (a) aligning the different concerns of patients and clinicians, (b) designing according to clinical accountability, (c) ensuring commercial interest, and (d) dealing with regulatory constraints when prototyping safety critical health Information...... Technology. Using four illustrative cases, we discuss what these challenges entail and the implications they pose to Participatory Design. We conclude the paper by presenting lessons learned....

  3. PANDA Muon System Prototype

    Science.gov (United States)

    Abazov, Victor; Alexeev, Gennady; Alexeev, Maxim; Frolov, Vladimir; Golovanov, Georgy; Kutuzov, Sergey; Piskun, Alexei; Samartsev, Alexander; Tokmenin, Valeri; Verkheev, Alexander; Vertogradov, Leonid; Zhuravlev, Nikolai

    2018-04-01

    The PANDA Experiment will be one of the key experiments at the Facility for Antiproton and Ion Research (FAIR) which is under construction now in the territory of the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany. PANDA is aimed to study hadron spectroscopy and various topics of the weak and strong forces. Muon System is chosen as the most suitable technology for detecting the muons. The Prototype of the PANDA Muon System is installed on the test beam line T9 at the Proton Synchrotron (PS) at CERN. Status of the PANDA Muon System prototype is presented with few preliminary results.

  4. Prototyping a Smart City

    DEFF Research Database (Denmark)

    Korsgaard, Henrik; Brynskov, Martin

    In this paper, we argue that by approaching the so-called Smart City as a design challenge, and an interaction design perspective, it is possible to both uncover existing challenges in the interplay between people, technology and society, as well as prototype possible futures. We present a case...... in which we exposed data about the online communication between the citizens and the municipality on a highly visible media facade, while at the same time prototyped a tool that enabled citizens to report ‘bugs’ within the city....

  5. PANDA Muon System Prototype

    Directory of Open Access Journals (Sweden)

    Abazov Victor

    2018-01-01

    Full Text Available The PANDA Experiment will be one of the key experiments at the Facility for Antiproton and Ion Research (FAIR which is under construction now in the territory of the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany. PANDA is aimed to study hadron spectroscopy and various topics of the weak and strong forces. Muon System is chosen as the most suitable technology for detecting the muons. The Prototype of the PANDA Muon System is installed on the test beam line T9 at the Proton Synchrotron (PS at CERN. Status of the PANDA Muon System prototype is presented with few preliminary results.

  6. Hydrophilic Surface Modification of PDMS Microchannel for O/W and W/O/W Emulsions

    Directory of Open Access Journals (Sweden)

    Shazia Bashir

    2015-09-01

    Full Text Available A surface modification method for bonded polydimethylsiloxane (PDMS microchannels is presented herein. Polymerization of acrylic acid was performed on the surface of a microchannel using an inline atmospheric pressure dielectric barrier microplasma technique. The surface treatment changes the wettability of the microchannel from hydrophobic to hydrophilic. This is a challenging task due to the fast hydrophobic recovery of the PDMS surface after modification. This modification allows the formation of highly monodisperse oil-in-water (O/W droplets. The generation of water-in-oil-in-water (W/O/W double emulsions was successfully achieved by connecting in series a hydrophobic microchip with a modified hydrophilic microchip. An original channel blocking technique to pattern the surface wettability of a specific section of a microchip using a viscous liquid comprising a mixture of honey and glycerol, is also presented for generating W/O/W emulsions on a single chip.

  7. Flexible Pressure Sensor with Ag Wrinkled Electrodes Based on PDMS Substrate

    Directory of Open Access Journals (Sweden)

    Jianli Cui

    2016-12-01

    Full Text Available Flexible pressure sensors are essential components of electronic skins for future attractive applications ranging from human healthcare monitoring to biomedical diagnostics, robotic skins, and prosthetic limbs. Here we report a new kind of flexible pressure sensor. The sensors are capacitive, and composed of two Ag wrinkled electrodes separated by a carbon nanotubes (CNTs/polydimethylsiloxane (PDMS composite deformable dielectric layer. Ag wrinkled electrodes were formed by vacuum deposition on top of pre-strained and relaxed PDMS substrates which were treated using an O2 plasma, a surface functionalization process, and a magnetron sputtering process. Ultimately, the developed sensor exhibits a maximum sensitivity of 19.80% kPa−1 to capacitance, great durability over 500 cycles, and rapid mechanical responses (<200 ms. We also demonstrate that our sensor can be used to effectively detect the location and distribution of finger pressure.

  8. LEP vacuum chamber, prototype

    CERN Multimedia

    CERN PhotoLab

    1983-01-01

    Final prototype for the LEP vacuum chamber, see 8305170 for more details. Here we see the strips of the NEG pump, providing "distributed pumping". The strips are made from a Zr-Ti-Fe alloy. By passing an electrical current, they were heated to 700 deg C.

  9. Imagining the prototype

    NARCIS (Netherlands)

    Brouwer, C. E.; Bhomer, ten M.; Melkas, H.; Buur, J.

    2013-01-01

    This article reports on the analysis of a design session, employing conversation analysis. In the design session three experts and a designer discuss a prototype of a shirt, which has been developed with the input from these experts. The analysis focuses on the type of involvement of the

  10. MIND performance and prototyping

    International Nuclear Information System (INIS)

    Cervera-Villanueva, A.

    2008-01-01

    The performance of MIND (Magnetised Iron Neutrino Detector) at a neutrino factory has been revisited in a new analysis. In particular, the low neutrino energy region is studied, obtaining an efficiency plateau around 5 GeV for a background level below 10 -3 . A first look has been given into the detector optimisation and prototyping

  11. The prototype fast reactor

    International Nuclear Information System (INIS)

    Broomfield, A.M.

    1985-01-01

    The paper concerns the Prototype Fast Reactor (PFR), which is a liquid metal cooled fast reactor power station, situated at Dounreay, Scotland. The principal design features of a Fast Reactor and the PFR are given, along with key points of operating history, and health and safety features. The role of the PFR in the development programme for commercial reactors is discussed. (U.K.)

  12. AGS Booster prototype magnets

    Energy Technology Data Exchange (ETDEWEB)

    Danby, G.; Jackson, J.; Lee, Y.Y.; Phillips, R.; Brodowski, J.; Jablonski, E.; Keohane, G.; McDowell, B.; Rodger, E.

    1987-03-19

    Prototype magnets have been designed and constructed for two half cells of the AGS Booster. The lattice requires 2.4m long dipoles, each curved by 10/sup 0/. The multi-use Booster injector requires several very different standard magnet cycles, capable of instantaneous interchange using computer control from dc up to 10 Hz.

  13. AGS booster prototype magnets

    International Nuclear Information System (INIS)

    Danby, G.; Jackson, J.; Lee, Y.Y.; Phillips, R.; Brodowski, J.; Jablonski, E.; Keohane, G.; McDowell, B.; Rodger, E.

    1987-01-01

    Prototype magnets have been designed and constructed for two half cells of the AGS Booster. The lattice requires 2.4m long dipoles, each curved by 10 0 . The multi-use Booster injector requires several very different standard magnet cycles, capable of instantaneous interchange using computer control from dc up to 10 Hz

  14. Cockroft Walton accelerator prototype

    International Nuclear Information System (INIS)

    Hutapea, Sumihar.

    1976-01-01

    Prototype of a Cockroft Walton generator using ceramic and plastic capacitors is discussed. Compared to the previous generator, the construction and components are much more improved. Pralon is used for the high voltage insulation column and plastic is used as a dielectric material for the high voltage capacitor. Cockroft Walton generator is used as a high tension supply for an accelerator. (author)

  15. Prompt and Precise Prototyping

    Science.gov (United States)

    2003-01-01

    For Sanders Design International, Inc., of Wilton, New Hampshire, every passing second between the concept and realization of a product is essential to succeed in the rapid prototyping industry where amongst heavy competition, faster time-to-market means more business. To separate itself from its rivals, Sanders Design aligned with NASA's Marshall Space Flight Center to develop what it considers to be the most accurate rapid prototyping machine for fabrication of extremely precise tooling prototypes. The company's Rapid ToolMaker System has revolutionized production of high quality, small-to-medium sized prototype patterns and tooling molds with an exactness that surpasses that of computer numerically-controlled (CNC) machining devices. Created with funding and support from Marshall under a Small Business Innovation Research (SBIR) contract, the Rapid ToolMaker is a dual-use technology with applications in both commercial and military aerospace fields. The advanced technology provides cost savings in the design and manufacturing of automotive, electronic, and medical parts, as well as in other areas of consumer interest, such as jewelry and toys. For aerospace applications, the Rapid ToolMaker enables fabrication of high-quality turbine and compressor blades for jet engines on unmanned air vehicles, aircraft, and missiles.

  16. Surrogates-based prototyping

    NARCIS (Netherlands)

    Du Bois, E.; Horvath, I.

    2014-01-01

    The research is situated in the system development phase of interactive software products. In this detailed design phase, we found a need for fast testable prototyping to achieve qualitative change proposals on the system design. In this paper, we discuss a literature study on current software

  17. Z Andromedae: the prototype

    International Nuclear Information System (INIS)

    Viotti, R.; Giangrande, A.; Ricciardi, O.; Cassatella, A.

    1982-01-01

    Z And is considered as the ''prototype'' of the symbiotic stars. Besides its symbiotic spectrum, the star is also known for its characteristic light curve (and for the related spectral variations). Since many theoretical speculations on Z And and similar objects have been based on the luminosity and spectral variations of this star, the authors critically analyse the observational data concerning it. (Auth.)

  18. Prototype ATLAS straw tracker

    CERN Multimedia

    Laurent Guiraud

    1998-01-01

    This is an early prototype of the straw tracking device for the ATLAS detector at CERN. This detector will be part of the LHC project, scheduled to start operation in 2008. The straw tracker will consist of thousands of gas-filled straws, each containing a wire, allowing the tracks of particles to be followed.

  19. Enhancement of dielectric permittivity by incorporating PDMS-PEG multiblock copolymers in silicone elastomers

    DEFF Research Database (Denmark)

    A Razak, Aliff Hisyam; Szabo, Peter; Skov, Anne Ladegaard

    2015-01-01

    A silicone elastomer from PDMS-PEG multiblock copolymer has been prepared by use of silylation reactions for both copolymer preparation and crosslinking. The dielectric and mechanical properties of the silicone elastomers were carefully investigated, as well as the morphology of the elastomers wa...... to a significantly increased dielectric permittivity. The conductivity also remained low due to the resulting discontinuity in PEG within the silicone matrix....

  20. Multi-layered fabrication of large area PDMS flexible optical light guide sheets

    Science.gov (United States)

    Green, Robert; Knopf, George K.; Bordatchev, Evgueni V.

    2017-02-01

    Large area polydimethylsiloxane (PDMS) flexible optical light guide sheets can be used to create a variety of passive light harvesting and illumination systems for wearable technology, advanced indoor lighting, non-planar solar light collectors, customized signature lighting, and enhanced safety illumination for motorized vehicles. These thin optically transparent micro-patterned polymer sheets can be draped over a flat or arbitrarily curved surface. The light guiding behavior of the optical light guides depends on the geometry and spatial distribution of micro-optical structures, thickness and shape of the flexible sheet, refractive indices of the constituent layers, and the wavelength of the incident light. A scalable fabrication method that combines soft-lithography, closed thin cavity molding, partial curing, and centrifugal casting is described in this paper for building thin large area multi-layered PDMS optical light guide sheets. The proposed fabrication methodology enables the of internal micro-optical structures (MOSs) in the monolithic PDMS light guide by building the optical system layer-by-layer. Each PDMS layer in the optical light guide can have the similar, or a slightly different, indices of refraction that permit total internal reflection within the optical sheet. The individual molded layers may also be defect free or micro-patterned with microlens or reflecting micro-features. In addition, the bond between adjacent layers is ensured because each layer is only partially cured before the next functional layer is added. To illustrate the scalable build-by-layers fabrication method a three-layer mechanically flexible illuminator with an embedded LED strip is constructed and demonstrated.

  1. Courthouse Prototype Building

    Energy Technology Data Exchange (ETDEWEB)

    Malhotra, Mini [ORNL; New, Joshua Ryan [ORNL; Im, Piljae [ORNL

    2018-02-01

    As part of DOE's support of ANSI/ASHRAE/IES Standard 90.1 and IECC, researchers at Pacific Northwest National Laboratory (PNNL) apply a suite of prototype buildings covering 80% of the commercial building floor area in the U.S. for new construction. Efforts have started on expanding the prototype building suite to cover 90% of the commercial building floor area in the U.S., by developing prototype models for additional building types including place of worship, public order and safety, public assembly. Courthouse is courthouse is a sub-category under the “Public Order and Safety" building type category; other sub-categories include police station, fire station, and jail, reformatory or penitentiary.ORNL used building design guides, databases, and documented courthouse projects, supplemented by personal communication with courthouse facility planning and design experts, to systematically conduct research on the courthouse building and system characteristics. This report documents the research conducted for the courthouse building type and proposes building and system characteristics for developing a prototype building energy model to be included in the Commercial Building Prototype Model suite. According to the 2012 CBECS, courthouses occupy a total of 436 million sqft of floor space or 0.5% of the total floor space in all commercial buildings in the US, next to fast food (0.35%), grocery store or food market (0.88%), and restaurant or cafeteria (1.2%) building types currently included in the Commercial Prototype Building Model suite. Considering aggregated average, courthouse falls among the larger with a mean floor area of 69,400 sqft smaller fuel consumption intensity building types and an average of 94.7 kBtu/sqft compared to 77.8 kBtu/sqft for office and 80 kBtu/sqft for all commercial buildings.Courthouses range in size from 1000 sqft to over a million square foot building gross square feet and 1 courtroom to over 100 courtrooms. Small courthouses

  2. Quantitative Determination of Nicotine in a PDMS Microfluidic Channel Using Surface Enhanced Raman Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jae Hyun; Choo, Jae Bum [Hanyang University, Ansan (Korea, Republic of); Kim, Duck Joong [Dankook University, Cheonan (Korea, Republic of); Lee, Sang Hoon [Korea University, Seoul (Korea, Republic of)

    2006-02-15

    Rapid and highly sensitive determination of nicotine in a PDMS microfluidic channel was investigated using surface enhanced Raman spectroscopy (SERS). A three-dimensional PDMS microfluidic channel was fabricated for this purpose. This channel shows a high mixing efficiency because the transverse and vertical dispersions of the fluid occur simultaneously through the upper and lower zig zag-type blocks. A higher efficiency of mixing could also be obtained by splitting each of the confluent streams into two sub-streams that then joined and recombined. The SERS signal was measured after nicotine molecules were effectively adsorbed onto silver nanoparticles by passing through the three-dimensional channel. A quantitative analysis of nicotine was performed based on the measured peak area at 1030 cm{sup -1}. The detection limit was estimated to be below 0.1 ppm. In this work, the SERS detection, in combination with a PDMS microfluidic channel, has been applied to the quantitative analysis of nicotine in aqueous solution. Compared to the other conventional analytical methods, the detection sensitivity was enhanced up to several orders of magnitude.

  3. Controlled Contamination of Epoxy Composites with PDMS and Removal by Laser Ablation

    Science.gov (United States)

    Palmieri, Frank; Ledesma, Rodolfo; Cataldo, Daniel; Lin, Yi; Wohl, Christopher; Gupta, Mool; Connell, John

    2016-01-01

    Surface preparation is critical to the performance of adhesively bonded composites. During manufacturing, minute quantities of mold release compounds are inevitably deposited on faying surfaces and may compromise bond performance. To ensure safety, mechanical fasteners and other crack arrest features must be installed in the bondlines of primary structures, which negates some advantages of adhesively bonded construction. Laser ablation is an automated, repeatable, and scalable process with high potential for the surface preparation of metals and composites in critical applications such as primary airframe structures. In this study, laser ablation is evaluated on composite surfaces for the removal of polydimethylsiloxane (PDMS), a common mold release material. Composite panels were contaminated uniformly with PDMS film thicknesses as low as 6.0 nm as measured by variable angle spectroscopic ellipsometry. Bond performance was assessed by mechanical testing using a 250 F cure, epoxy adhesive and compared with pre-bond surface inspection results. Water contact angle, optically stimulated electron emission, and laser induced breakdown spectroscopy were used to characterize contaminated and laser ablated surfaces. The failure mode obtained from double cantilever beam tests correlated well with surface characterization data. The test results indicated that even low levels of PDMS were not completely removed by laser ablation.

  4. Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves.

    Science.gov (United States)

    Nama, Nitesh; Barnkob, Rune; Mao, Zhangming; Kähler, Christian J; Costanzo, Francesco; Huang, Tony Jun

    2015-06-21

    We present a numerical study of the acoustophoretic motion of particles suspended in a liquid-filled PDMS microchannel on a lithium niobate substrate acoustically driven by surface acoustic waves. We employ a perturbation approach where the flow variables are divided into first- and second-order fields. We use impedance boundary conditions to model the PDMS microchannel walls and we model the acoustic actuation by a displacement function from the literature based on a numerical study of piezoelectric actuation. Consistent with the type of actuation, the obtained first-order field is a horizontal standing wave that travels vertically from the actuated wall towards the upper PDMS wall. This is in contrast to what is observed in bulk acoustic wave devices. The first-order fields drive the acoustic streaming, as well as the time-averaged acoustic radiation force acting on suspended particles. We analyze the motion of suspended particles driven by the acoustic streaming drag and the radiation force. We examine a range of particle diameters to demonstrate the transition from streaming-drag-dominated acoustophoresis to radiation-force-dominated acoustophoresis. Finally, as an application of our numerical model, we demonstrate the capability to tune the position of the vertical pressure node along the channel width by tuning the phase difference between two incoming surface acoustic waves.

  5. Experimental and Modeling Study of Solvent Diffusion in PDMS for Nanoparticle-Polymer Cosuspension Imprint Lithography.

    Science.gov (United States)

    Gervasio, Michelle; Lu, Kathy; Davis, Richey

    2015-09-15

    This study is the first that focuses on solvent migration in a polydimethylsiloxane (PDMS) stamp during the imprint lithography of ZnO-poly(methyl methacrylate) (PMMA) hybrid suspensions. Using suspensions with varying solids loading levels and ZnO/PMMA ratios, the uptake of the anisole solvent in the stamp is evaluated as a function of time. Laser confocal microscopy is employed as a unique technique to measure the penetration depth of the solvent into the stamp. The suspension solids loading affects the anisole saturation depth in the PDMS stamp. For the suspensions with low solids loading, the experimental data agree with the model for non-Fickian diffusion through a rubbery-elastic polymer. For the suspensions with high solids loading, the data agree more with a sigmoidal diffusion curve, reflecting the rubbery-viscous behavior of a swelling polymer. This difference is due to the degree of swelling in the PDMS. Higher solids loadings induce more swelling because the rate of anisole diffusing into the stamp is increased, likely due to the less dense buildup of the solids as the suspension dries.

  6. PDMS-based triboelectric and transparent nanogenerators with ZnO nanorod arrays.

    Science.gov (United States)

    Ko, Yeong Hwan; Nagaraju, Goli; Lee, Soo Hyun; Yu, Jae Su

    2014-05-14

    Vertically-grown ZnO nanorod arrays (NRAs) on indium tin oxide (ITO)-coated polyethylene terephthalate (PET), as a top electrode of nanogenerators, were investigated for the antireflective property as well as an efficient contact surface in bare polydimethysiloxane (PDMS)-based triboelectric nanogenerators. Compared to conventional ITO-coated PET (i.e., ITO/PET), the ZnO NRAs considerably suppressed the reflectance from 20 to 9.7% at wavelengths of 300-1100 nm, creating a highly transparent top electrode, as demonstrated by theoretical analysis. Also, the interval time between the peaks of generated output voltage under external pushing forces was significantly decreased from 1.84 to 0.19 s because the reduced contact area of the PDMS by discrete surfaces of the ZnO NRAs on ITO/PET causes a rapid sequence for triboelectric charge generation process including rubbing and separating. Therefore, the use of this top electrode enabled to operate the transparent PDMS-based triboelectric nanogenerator at high frequency of external pushing force. Under different external forces of 0.3-10 kgf, the output voltage and current were also characterized.

  7. Functionalized PDMS with versatile and scalable surface roughness gradients for cell culture

    KAUST Repository

    Zhou, Bingpu

    2015-07-21

    This manuscript describes a simple and versatile approach to engineering surface roughness gradients via combination of microfluidics and photo-polymerization. Through UV-mediated polymerization, N-isopropylacrylamide with concentration gradients are successfully grafted onto PDMS surface, leading to diverse roughness degrees on the obtained PDMS substrate. Furthermore, the extent of surface roughness can be controllably regulated via tuning the flow rate ratio between the monomer solution and deionized water. Average roughness ranging from 8.050 nm to 151.68 nm has well been achieved in this work. Such PDMS samples are also demonstrated to be capable of working as supporting substrates for controlling cell adhesion or detachment. Due to the different degrees of surface roughness on a single substrate, our method provides an effective approach for designing advanced surafecs for cell culture. Finally, the thermosensitive property of N-isopropylacrylamide makes our sample furnish as another means for controlling the cell detachment from the substrates with correspondence to the surrounding temperature.

  8. Suspended liquid subtractive lithography: printing three dimensional channels directly into uncured PDMS

    Science.gov (United States)

    Helmer, D.; Voigt, A.; Wagner, S.; Keller, N.; Sachsenheimer, K.; Kotz, F.; Nargang, T. M.; Rapp, B. E.

    2018-02-01

    Polydimethylsiloxane (PDMS) is one of the most widely used polymers for the generation of microfluidic chips. The standard procedures of soft lithography require the formation of a new master structure for every design which is timeconsuming and expensive. All channel generated by soft lithography need to be consecutively sealed by bonding which is a process that can proof to be hard to control. Channel cross-sections are largely restricted to squares or flat-topped designs and the generation of truly three-dimensional designs is not straightforward. Here we present Suspended Liquid Subtractive Lithography (SLSL) a method for generating microfluidic channels of nearly arbitrary three-dimensional structures in PDMS that do not require master formation or bonding and give circular channel cross sections which are especially interesting for mimicking in vivo environments. In SLSL, an immiscible liquid is introduced into the uncured PDMS by a capillary mounted on a 3D printer head. The liquid forms continuous "threads" inside the matrix thus creating void suspended channel structures.

  9. Minimizing residues and strain in 2D materials transferred from PDMS

    Science.gov (United States)

    Jain, Achint; Bharadwaj, Palash; Heeg, Sebastian; Parzefall, Markus; Taniguchi, Takashi; Watanabe, Kenji; Novotny, Lukas

    2018-06-01

    Integrating layered two-dimensional (2D) materials into 3D heterostructures offers opportunities for novel material functionalities and applications in electronics and photonics. In order to build the highest quality heterostructures, it is crucial to preserve the cleanliness and morphology of 2D material surfaces that come in contact with polymers such as PDMS during transfer. Here we report that substantial residues and up to ∼0.22% compressive strain can be present in monolayer MoS2 transferred using PDMS. We show that a UV-ozone pre-cleaning of the PDMS surface before exfoliation significantly reduces organic residues on transferred MoS2 flakes. An additional 200 ◦C vacuum anneal after transfer efficiently removes interfacial bubbles and wrinkles as well as accumulated strain, thereby restoring the surface morphology of transferred flakes to their native state. Our recipe is important for building clean heterostructures of 2D materials and increasing the reproducibility and reliability of devices based on them.

  10. A PDMS Device Coupled with Culture Dish for In Vitro Cell Migration Assay.

    Science.gov (United States)

    Lv, Xiaoqing; Geng, Zhaoxin; Fan, Zhiyuan; Wang, Shicai; Pei, WeiHua; Chen, Hongda

    2018-04-30

    Cell migration and invasion are important factors during tumor progression and metastasis. Wound-healing assay and the Boyden chamber assay are efficient tools to investigate tumor development because both of them could be applied to measure cell migration rate. Therefore, a simple and integrated polydimethylsiloxane (PDMS) device was developed for cell migration assay, which could perform quantitative evaluation of cell migration behaviors, especially for the wound-healing assay. The integrated device was composed of three units, which included cell culture dish, PDMS chamber, and wound generation mold. The PDMS chamber was integrated with cell culture chamber and could perform six experiments under different conditions of stimuli simultaneously. To verify the function of this device, it was utilized to explore the tumor cell migration behaviors under different concentrations of fetal bovine serum (FBS) and transforming growth factor (TGF-β) at different time points. This device has the unique capability to create the "wound" area in parallel during cell migration assay and provides a simple and efficient platform for investigating cell migration assay in biomedical application.

  11. Ultra-soft PDMS-based magnetoactive elastomers as dynamic cell culture substrata.

    Directory of Open Access Journals (Sweden)

    Matthias Mayer

    Full Text Available Mechanical cues such as extracellular matrix stiffness and movement have a major impact on cell differentiation and function. To replicate these biological features in vitro, soft substrata with tunable elasticity and the possibility for controlled surface translocation are desirable. Here we report on the use of ultra-soft (Young's modulus <100 kPa PDMS-based magnetoactive elastomers (MAE as suitable cell culture substrata. Soft non-viscous PDMS (<18 kPa is produced using a modified extended crosslinker. MAEs are generated by embedding magnetic microparticles into a soft PDMS matrix. Both substrata yield an elasticity-dependent (14 vs. 100 kPa modulation of α-smooth muscle actin expression in primary human fibroblasts. To allow for static or dynamic control of MAE material properties, we devise low magnetic field (≈40 mT stimulation systems compatible with cell-culture environments. Magnetic field-instigated stiffening (14 to 200 kPa of soft MAE enhances the spreading of primary human fibroblasts and decreases PAX-7 transcription in human mesenchymal stem cells. Pulsatile MAE movements are generated using oscillating magnetic fields and are well tolerated by adherent human fibroblasts. This MAE system provides spatial and temporal control of substratum material characteristics and permits novel designs when used as dynamic cell culture substrata or cell culture-coated actuator in tissue engineering applications or biomedical devices.

  12. Functionalized PDMS with versatile and scalable surface roughness gradients for cell culture

    KAUST Repository

    Zhou, Bingpu; Gao, Xinghua; Wang, Cong; Ye, Ziran; Gao, Yibo; Xie, Jiao; Wu, Xiaoxiao; Wen, Weijia

    2015-01-01

    This manuscript describes a simple and versatile approach to engineering surface roughness gradients via combination of microfluidics and photo-polymerization. Through UV-mediated polymerization, N-isopropylacrylamide with concentration gradients are successfully grafted onto PDMS surface, leading to diverse roughness degrees on the obtained PDMS substrate. Furthermore, the extent of surface roughness can be controllably regulated via tuning the flow rate ratio between the monomer solution and deionized water. Average roughness ranging from 8.050 nm to 151.68 nm has well been achieved in this work. Such PDMS samples are also demonstrated to be capable of working as supporting substrates for controlling cell adhesion or detachment. Due to the different degrees of surface roughness on a single substrate, our method provides an effective approach for designing advanced surafecs for cell culture. Finally, the thermosensitive property of N-isopropylacrylamide makes our sample furnish as another means for controlling the cell detachment from the substrates with correspondence to the surrounding temperature.

  13. Acrylic acid grafted PDMS preliminary activated by Ar{sup +}beam plasma and cell observation

    Energy Technology Data Exchange (ETDEWEB)

    Kostadinova, A.; Zaekov, N. [Institute of Biophysics, BAS, Sofia (Bulgaria); Keranov, I. [Department of Polymer Engineering, University of Chemical Technology and Metallurgy (UCTM), Sofia (Bulgaria)

    2007-07-01

    Plasma based Ar{sup +} beam performed in RF (13.56 MHz) low-pressure (200 mTorr) glow discharge (at 100 W, 1200 W and 2500 W) with a serial capacitance was employed for surface modification of poly(dimethylsiloxane) (PDMS) aimed at improvement of its interactions with living cells. The presence of a serial capacitance ensures arise of an ion-flow inside the plasma volume directed toward the treated sample and the vary of the discharge power ensures varied density of the ion-flow The initial adhesion of human fibroblast cells was studied on the described above plasma based Ar{sup +}beam modified and acrylic acid (AA) grafted or not fibronectin (FN) pre-coated or ba resurfaces. The cell response seem sto be related with the peculiar structure and wettability of the modified PDMS surface layer after plasma based Ar{sup +} beam treatment followed or not by AA grafting. Key words: Biomaterials; Surface treatment of PDMS; Plasma based Ar{sup +} beam; Acrylic acid grafting; Fibroblast cells.

  14. Mesomorphic phase behaviour of low molar mass PEP-PDMS diblock copolymers synthesized by anionic polymerization

    International Nuclear Information System (INIS)

    Vigild, M.E.

    1997-10-01

    The phase behaviour of low molar mass poly(ethylene-alt-propylene) -poly(dimethylsiloxane) (PEP-PDMS) is investigated in this thesis by the combination of dynamical mechanical spectroscopy (rheology) to measure phase transition temperatures, and small-angle x-ray scattering to identify the morphology of encountered phases. Samples of PEP-PDMS in the range of 0.2-0.7 in volume fraction of PEP are studied. This diblock copolymer system exhibits the three classical phases of lamellar sandwich structure (LAM), hexagonally packed cylinders (HEX), and spheres arranged on a body centered cubic lattice (BCC). Furthermore the gyroid phase (Ia3d symmetry) of two interpenetrating networks was also identified as a stable phase of the PEP-PDMS system. Time resolved measurements of small-angle neutron scattering in tandem with simultaneous in-situ rheological measurements are performed on samples showing transitions between different ordered phases. The identification of especially the BCC and gyroid phases from scattering experiments is treated. By performing mesoscopic crystallographic measurements using a custom built goniometer it was unambiguously shown that the application of shear to an unoriented powder-like sample introduces uniaxial orientation of the gyroid phase. The orientation of the ordered phase is otherwise random, causing a two-dimensional powder. Finally this dissertation presents a discussion of relevant parameters for the description of diblock copolymer phase behaviour together with descriptions of anionic polymerization for the synthesis of copolymers, and various experimental techniques for the characterization of diblocks. (au)

  15. Synthesis of Ru/PDMS nano-composites via supercritial deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Minglan [Dept. of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617 (China); Bozbag, Selmi E. [Dept. of Chemical and Biological Engineering, Koç University, 34450 Sariyer, Istanbul (Turkey); Ayala, Christian J.; Aindow, Mark [Department of Materials Science and Engineering, Institute of Materials Science, University of Connecticut, Storrs, CT 06269 (United States); Erkey, Can, E-mail: cerkey@ku.edu.tr [Dept. of Chemical and Biological Engineering, Koç University, 34450 Sariyer, Istanbul (Turkey); Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, 34450 Sariyer, Istanbul (Turkey)

    2016-09-01

    Nanomaterials consisting of Ru nanoparticles dispersed in polydimethylsiloxane films were synthesized by supercritical deposition. The films were impregnated with the organometallic precursor bis(2,2,6,6-tetramethyl-3,5-heptanedionato) (1,5-cyclooctadiene) ruthenium (II) under thermodynamic control in the presence of supercritical carbon dioxide (scCO{sub 2}) at 40 °C and 10.34 MPa. The precursor molecules were then converted to metallic Ru by thermal treatment in flowing N{sub 2} at ambient pressure, resulting in well-dispersed nanoparticles with diameters of ≈2 nm. - Highlights: • PDMS-Ru nanoparticle composites were prepared using supercritical deposition. • PDMS-Ru nanoparticle composites were prepared without using an immobilization agent. • PDMS films were impregnated with Ru(cod)(tmhd){sub 2} in supercritical CO{sub 2}. • The impregnated Ru(cod)(tmhd){sub 2} was then reduced to metallic Ru in flowing N{sub 2}. • The resulting Ru nanoparticles were well-dispersed and had diameters of ≈2 nm.

  16. Stretchable gold conductors embedded in PDMS and patterned by photolithography: fabrication and electromechanical characterization

    International Nuclear Information System (INIS)

    Adrega, T; Lacour, S P

    2010-01-01

    Stretchable gold conductors embedded in polydimethylsiloxane (PDMS) films were successfully prepared using standard photolithography. The minimum feature sizes patterned in the metal film and PDMS encapsulation are 10 µm and 20 µm, respectively. The micro-patterned conductors are robust to uni-axial (1D) and radial (2D) stretching with applied strains of tens of percent. The electrical response of the conductors follows a nonlinear increase with strain, and is reversible. The extensive stretchability of the conductors relies on a randomly and independently distributed network of micro-cracks (∼100 nm long) in the metal film on PDMS. The micro-cracks elongate to a few microns length both in the stretching and normal directions in 1D stretching but during 2D stretching, the micro-cracks grow and form 'dry mud' islands leaving the gold microstructure inside the islands intact. Patterning metallic thin films directly onto elastomeric substrates opens a promising route for microelectrodes and interconnects for soft and ultra-compliant MEMS and electronic devices.

  17. Ultrasonic and dielectric studies of polymer PDMS composites with ZnO and onion-like carbons nanoinclusions

    OpenAIRE

    Samulionis, Vytautas; Macutkevič, Jan; Banys, Jūras; Shenderova, Olga

    2015-01-01

    The ultrasonic and dielectric temperature investigations were performed in polydi-methylsiloxane (PDMS) with zinc oxide (ZnO) and onion-like carbon (OLC) nanocomposites. In the glass transition region, the ultrasonic velocity dispersion and large ultrasonic attenuation maxima were observed. The positions of ultrasonic attenuation peaks were slightly shifted to higher temperatures after doping PDMS with OLC and ZnO nanoparticles. The ultrasonic relaxation was compared to that of dielectric and...

  18. Valence band structure of PDMS surface and a blend with MWCNTs: A UPS and MIES study of an insulating polymer

    Energy Technology Data Exchange (ETDEWEB)

    Schmerl, Natalya M.; Khodakov, Dmitriy A.; Stapleton, Andrew J.; Ellis, Amanda V.; Andersson, Gunther G., E-mail: gunther.andersson@flinders.edu.au

    2015-10-30

    Graphical abstract: - Highlights: • Valence electron spectroscopy was performed on an insulating polymer using different charge compensation methods. • MWCNT were embedded in PDMS and found to be the most effective method for reducing the charging of the insulating polymer. • The valence band spectrum of PDMS was obtained via MIES and UPS. • Ion scattering spectroscopy was used to determine the concentration depth profile of the PDMS in the sample. - Abstract: The use of polydimethylsiloxane (PDMS) is increasing with new technologies working toward compact, flexible and transparent devices for use in medical and microfluidic systems. Electronic characterization of PDMS and other insulating materials is difficult due to charging, yet necessary for many applications where the interfacial structure is vital to device function or further modification. The outermost layer in particular is of importance as this is the area where chemical reactions such as surface functionalization will occur. Here, we investigate the valence band structure of the outermost layer and near surface area of PDMS through the use of metastable induced photoelectron spectroscopy (MIES) paired with ultraviolet photoelectron spectroscopy (UPS). The chemical composition of the samples under investigation were measured via X-ray photoelectron spectroscopy (XPS), and the vertical distribution of the polymer was shown with neutral impact collision ion scattering spectroscopy (NICISS). Three separate methods for charge compensation are used for the samples, and their effectiveness is compared.

  19. Corrosion study of iron-cobalt alloys for MRI-based propulsion embedded in untethered microdevices operating in the vascular network.

    Science.gov (United States)

    Pouponneau, Pierre; Savadogo, Oumarou; Napporn, Teko; Yahia, L'hocine; Martel, Sylvain

    2010-04-01

    Our group have shown in an experiment performed in the carotid artery of a living swine that magnetic gradients generated by a clinical magnetic resonance imaging (MRI) system could propel and navigate untethered medical microdevices and micro-nanorobots in the human vasculature. The main problem with these devices is that the metal necessary for magnetic propulsion may corrode and induce cytotoxic effects. The challenge, then, is to find an alloy with low corrosion yet providing an adequate magnetization level for propulsion in often stringent physiological conditions. Because of their high magnetization, we studied the corrosion behavior of two iron-cobalt alloys, Permendur (49% Fe, 49% Co, 2% V) and Vacoflux 17 (81% Fe, 17% Co, 2% Cr), in physiological solution by potentiodynamic polarization assay, surface analysis, and corrosion electrolyte analysis. Both alloys exhibited low corrosion parameters such as a corrosion potential (E(corr)) of -0.57 V/SCE and E(corr) of -0.42 V/SCE for Vacoflux 17. The surface of Permendur samples was homogenously degraded. Vacoflux 17 surface was impaired by cracks and crevices. Both alloys had a stoichiometric dissolution in the electrolyte, and they released enough cobalt to induce cytotoxic effects. This study concluded that Fe-Co alloys could be used preferably in medical microdevices if they were coated so as not to come in contact with physiological solutions.

  20. fs- and ns-laser processing of polydimethylsiloxane (PDMS) elastomer: Comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Stankova, N.E., E-mail: nestankova@yahoo.com [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Shose, Sofia 1784 (Bulgaria); Atanasov, P.A.; Nedyalkov, N.N.; Stoyanchov, T.R. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Shose, Sofia 1784 (Bulgaria); Kolev, K.N.; Valova, E.I.; Georgieva, J.S.; Armyanov, St.A. [Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 11, Sofia 1113 (Bulgaria); Amoruso, S.; Wang, X.; Bruzzese, R. [CNR-SPIN, Dipartimento di Scienze Fisiche, Universita degli Studi di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia, I-80126 Napoli (Italy); Grochowska, K.; Śliwiński, G. [Photophysics Department, The Szewalski Institute, Polish Academy of Sciences, 14 Fiszera St., 80-231 Gdańsk (Poland); Baert, K.; Hubin, A. [Vrije Universiteit Brussels, Faculty of Engineering, Research group, SURF “Electrochemical and Surface Engineering” (Belgium); Delplancke, M.P.; Dille, J. [Université Libre de Bruxelles, Materials Engineering, Characterization, Synthesis and Recycling (Service 4MAT), Faculté des Sciences Appliquées, 1050 Brussels (Belgium)

    2015-05-01

    Highlights: • fs- and ns-laser (266 and 532 nm) processing of PDMS-elastomer, in air, is studied. • High definition tracks (on the PDMS-elastomer surface) for electrodes are produced. • Selective Pt or Ni metallization of the tracks is produced via electroless plating. • Irradiated and metallized tracks are characterized by μ-Raman spectrometry and SEM. • DC resistance of Pt and Ni tracks is always between 0.5 and 15 Ω/mm. - Abstract: Medical grade polydimethylsiloxane (PDMS) elastomer is a widely used biomaterial as encapsulation and/or as substrate insulator carrier for long term neural implants because of its remarkable properties. Femtosecond (λ = 263 and 527 nm) and nanosecond (266 and 532 nm) laser processing of PDMS-elastomer surface, in air, is investigated. The influence of different processing parameters, including laser wavelength, pulse duration, fluence, scanning speed and overlapping of the subsequent pulses, on the surface activation and the surface morphology are studied. High definition tracks and electrodes are produced. Remarkable alterations of the chemical composition and structural morphology of the ablated traces are observed in comparison with the native material. Raman spectra illustrate well-defined dependence of the chemical composition on the laser fluence, pulse duration, number of pulses and wavelength. An extra peak about ∼512–518 cm{sup −1}, assigned to crystalline silicon, is observed after ns- or visible fs-laser processing of the surface. In all cases, the intensities of Si−O−Si symmetric stretching at 488 cm{sup −1}, Si−CH{sub 3} symmetric rocking at 685 cm{sup −1}, Si−C symmetric stretching at 709 cm{sup −1}, CH{sub 3} asymmetric rocking + Si−C asymmetric stretching at 787 cm{sup −1}, and CH{sub 3} symmetric rocking at 859 cm{sup −1}, modes strongly decrease. The laser processed areas are also analyzed by SEM and optical microscopy. Selective Pt or Ni metallization of the laser processed

  1. Database Replication Prototype

    OpenAIRE

    Vandewall, R.

    2000-01-01

    This report describes the design of a Replication Framework that facilitates the implementation and com-parison of database replication techniques. Furthermore, it discusses the implementation of a Database Replication Prototype and compares the performance measurements of two replication techniques based on the Atomic Broadcast communication primitive: pessimistic active replication and optimistic active replication. The main contributions of this report can be split into four parts....

  2. Brachial Plexus Blocker Prototype

    OpenAIRE

    Stéphanie Coelho Monteiro

    2017-01-01

    Although the area of surgical simulation has been the subject of study in recent years, it is still necessary to develop artificial experimental models with a perspective to dismiss the use of biological models. Since this makes the simulators more real, transferring the environment of the health professional to a physical or virtual reality, an anesthetic prototype has been developed, where the motor response is replicated when the brachial plexus is subjected to a proximal nervous stimulus....

  3. Prototyping real-time systems

    OpenAIRE

    Clynch, Gary

    1994-01-01

    The traditional software development paradigm, the waterfall life cycle model, is defective when used for developing real-time systems. This thesis puts forward an executable prototyping approach for the development of real-time systems. A prototyping system is proposed which uses ESML (Extended Systems Modelling Language) as a prototype specification language. The prototyping system advocates the translation of non-executable ESML specifications into executable LOOPN (Language of Object ...

  4. MITRE sensor layer prototype

    Science.gov (United States)

    Duff, Francis; McGarry, Donald; Zasada, David; Foote, Scott

    2009-05-01

    The MITRE Sensor Layer Prototype is an initial design effort to enable every sensor to help create new capabilities through collaborative data sharing. By making both upstream (raw) and downstream (processed) sensor data visible, users can access the specific level, type, and quantities of data needed to create new data products that were never anticipated by the original designers of the individual sensors. The major characteristic that sets sensor data services apart from typical enterprise services is the volume (on the order of multiple terabytes) of raw data that can be generated by most sensors. Traditional tightly coupled processing approaches extract pre-determined information from the incoming raw sensor data, format it, and send it to predetermined users. The community is rapidly reaching the conclusion that tightly coupled sensor processing loses too much potentially critical information.1 Hence upstream (raw and partially processed) data must be extracted, rapidly archived, and advertised to the enterprise for unanticipated uses. The authors believe layered sensing net-centric integration can be achieved through a standardize-encapsulate-syndicateaggregate- manipulate-process paradigm. The Sensor Layer Prototype's technical approach focuses on implementing this proof of concept framework to make sensor data visible, accessible and useful to the enterprise. To achieve this, a "raw" data tap between physical transducers associated with sensor arrays and the embedded sensor signal processing hardware and software has been exploited. Second, we encapsulate and expose both raw and partially processed data to the enterprise within the context of a service-oriented architecture. Third, we advertise the presence of multiple types, and multiple layers of data through geographic-enabled Really Simple Syndication (GeoRSS) services. These GeoRSS feeds are aggregated, manipulated, and filtered by a feed aggregator. After filtering these feeds to bring just the type

  5. A prototype analysis of vengeance

    NARCIS (Netherlands)

    Elshout, Maartje; Nelissen, Rob; van Beest, Ilja

    2015-01-01

    The authors examined the concept of vengeance from a prototype perspective. In 6 studies, the prototype structure of vengeance was mapped. Sixty-nine features of vengeance were identified (Study 1), and rated on centrality (Study 2). Further studies confirmed the prototype structure. Compared to

  6. Rapid prototyping of 2D glass microfluidic devices based on femtosecond laser assisted selective etching process

    Science.gov (United States)

    Kim, Sung-Il; Kim, Jeongtae; Koo, Chiwan; Joung, Yeun-Ho; Choi, Jiyeon

    2018-02-01

    Microfluidics technology which deals with small liquid samples and reagents within micro-scale channels has been widely applied in various aspects of biological, chemical, and life-scientific research. For fabricating microfluidic devices, a silicon-based polymer, PDMS (Polydimethylsiloxane), is widely used in soft lithography, but it has several drawbacks for microfluidic applications. Glass has many advantages over PDMS due to its excellent optical, chemical, and mechanical properties. However, difficulties in fabrication of glass microfluidic devices that requires multiple skilled steps such as MEMS technology taking several hours to days, impedes broad application of glass based devices. Here, we demonstrate a rapid and optical prototyping of a glass microfluidic device by using femtosecond laser assisted selective etching (LASE) and femtosecond laser welding. A microfluidic droplet generator was fabricated as a demonstration of a microfluidic device using our proposed prototyping. The fabrication time of a single glass chip containing few centimeter long and complex-shaped microfluidic channels was drastically reduced in an hour with the proposed laser based rapid and simple glass micromachining and hermetic packaging technique.

  7. Fast Prototyping of Sensorized Cell Culture Chips and Microfluidic Systems with Ultrashort Laser Pulses

    Directory of Open Access Journals (Sweden)

    Sebastian M. Bonk

    2015-03-01

    Full Text Available We developed a confined microfluidic cell culture system with a bottom plate made of a microscopic slide with planar platinum sensors for the measurement of acidification, oxygen consumption, and cell adhesion. The slides were commercial slides with indium tin oxide (ITO plating or were prepared from platinum sputtering (100 nm onto a 10-nm titanium adhesion layer. Direct processing of the sensor structures (approximately three minutes per chip by an ultrashort pulse laser facilitated the production of the prototypes. pH-sensitive areas were produced by the sputtering of 60-nm Si3N4 through a simple mask made from a circuit board material. The system body and polydimethylsiloxane (PDMS molding forms for the microfluidic structures were manufactured by micromilling using a printed circuit board (PCB milling machine for circuit boards. The microfluidic structure was finally imprinted in PDMS. Our approach avoided the use of photolithographic techniques and enabled fast and cost-efficient prototyping of the systems. Alternatively, the direct production of metallic, ceramic or polymeric molding tools was tested. The use of ultrashort pulse lasers improved the precision of the structures and avoided any contact of the final structures with toxic chemicals and possible adverse effects for the cell culture in lab-on-a-chip systems.

  8. OPAL Jet Chamber Prototype

    CERN Multimedia

    OPAL was one of the four experiments installed at the LEP particle accelerator from 1989 - 2000. OPAL's central tracking system consists of (in order of increasing radius) a silicon microvertex detector, a vertex detector, a jet chamber, and z-chambers. All the tracking detectors work by observing the ionization of atoms by charged particles passing by: when the atoms are ionized, electrons are knocked out of their atomic orbitals, and are then able to move freely in the detector. These ionization electrons are detected in the dirfferent parts of the tracking system. This piece is a prototype of the jet chambers

  9. Prototyping Augmented Reality

    CERN Document Server

    Mullen, Tony

    2011-01-01

    Learn to create augmented reality apps using Processing open-source programming language Augmented reality (AR) is used all over, and you may not even realize it. Smartphones overlay data onto live camera views to show homes for sale, restaurants, or historical sites. American football broadcasts use AR to show the invisible first-down line on the field to TV viewers. Nike and Budweiser, among others, have used AR in ads. Now, you can learn to create AR prototypes using 3D data, Processing open-source programming language, and other languages. This unique book is an easy-to-follow guide on how

  10. Nightshade Prototype Experiments (Silverleaf)

    Energy Technology Data Exchange (ETDEWEB)

    Danielson, Jeremy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bauer, Amy L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-23

    The Red Sage campaign is a series of subcritical dynamic plutonium experiments designed to measure ejecta. Nightshade, the first experiments in Red Sage scheduled for fiscal year 2019, will measure the amount of ejecta emission into vacuum from a double-­shocked plutonium surface. To address the major technical risks in Nightshade, a Level 2 milestone was developed for fiscal year 2016. Silverleaf, a series of four experiments, was executed at the Los Alamos National Laboratory in July and August 2016 to demonstrate a prototype of the Nightshade package and to satisfy this Level 2 milestone. This report is documentation that Red Sage Level 2 milestone requirements were successfully met.

  11. Fabrication and characterization of Aerogel-Polydimethyl siloxane (PDMS) Insulation Film

    Science.gov (United States)

    Noh, Yeoung ah; Song, Sinae; Taik Kim, Hee

    2018-03-01

    The building has a large impact on the space heating demand and the indoor environment is affected by climate or daylight. Hence, silica aerogel has generally used as a film to reduce the coefficient of the window in the building. Silica aerogel is a suitable material to apply for insulation material with lower thermal conductivity than that of air to save interior energy. However expensive precursor and drying process were the main issue of the silica aerogel synthesis and practical usage. We attempt to fabricate aerogel insulation film for energy saving through the economic process under ambient pressure. Silica aerogel was synthesized from rice husk ash, which was an agricultural waste to be able to recycle. Taguchi design was used to optimize the parameters (amount of rice husk ash, pH, aging time) controlling the surface area of silica aerogel. The silica aerogel is prepared by sol-gel processing through acidic treatment and aging. The silica aerogel was obtained by modification of silica hydrogel surface and dry at ambient pressure. Finally, aerogel film was respectively fabricated by the different content of aerogel in polydimethylsiloxane (PDMS). Silica aerogel obtained 21 – 24nm average particle size was analyzed by SEM and silica aerogel with high surface area (832.26 m2/g), pore size ( 3.30nm ) was characterized by BET. Then silica Aerogel – PDMS insulation film with thermal conductivity (0.002 W/mK) was analyzed by thermal wave system. The study demonstrates an eco-friendly and low-cost route toward silica – PDMS insulation film with low thermal conductivity (0.002 W/mK).

  12. Anti-icing properties of superhydrophobic ZnO/PDMS composite coating

    Science.gov (United States)

    Yang, Chao; Wang, Fajun; Li, Wen; Ou, Junfei; Li, Changquan; Amirfazli, Alidad

    2016-01-01

    We present the excellent anti-icing performance for a superhydrophobic coating surface based on ZnO/polydimethylsiloxane (ZnO/PDMS) composite. The superhydrophobic ZnO/PDMS coating surface was prepared by a facile solution mixing, drop coating, room-temperature curing and surface abrading procedure. The superhydrophobic ZnO/PDMS composite coating possesses a water contact angle of 159.5° and a water sliding angle of 8.3° at room temperature (5 °C). The anti-icing properties of the superhydrophobic coating were investigated by continuously dropping cold-water droplets (about 0 °C) onto the pre-cooled surface using a home-made apparatus. The sample was placed at different tilting angle (0° and 10°) and pre-cooled to various temperatures (-5, -10 and -15 °C) prior to measure. The pure Al surface was also studied for comparison. It was found that icing accretion on the surface could be reduced apparently because the water droplets merged together and slid away from the superhydrophobic surface at all of the measuring temperatures when the surface is horizontally placed. In addition, water droplet slid away completely from the superhydrophobic surface at -5 and -10 °C when the surface is tilted at 10°, which demonstrates its excellent anti-icing properties at these temperatures. When the temperature decreased to -15 °C, though ice accretion on the tilted superhydrophobic coating surface could not be avoided absolutely, the amount of ice formed on the surface is very small, which indicated that the coating surface with superhydrophobicity could significantly reduce ice accumulation on the surface at very low temperature (-15 °C). Importantly, the sample is also stable against repeated icing/deicing cycles. More meaningfully, once the superhydrophobic surface is damaged, it can be repaired easily and rapidly.

  13. Mesomorphic phase behaviour of low molar mass PEP-PDMS diblock copolymers synthesized by anionic polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Vigild, M.E.

    1997-10-01

    The phase behaviour of low molar mass poly(ethylene-alt-propylene) -poly(dimethylsiloxane) (PEP-PDMS) is investigated in this thesis by the combination of dynamical mechanical spectroscopy (rheology) to measure phase transition temperatures, and small-angle x-ray scattering to identify the morphology of encountered phases. Samples of PEP-PDMS in the range of 0.2-0.7 in volume fraction of PEP are studied. This diblock copolymer system exhibits the three classical phases of lamellar sandwich structure (LAM), hexagonally packed cylinders (HEX), and spheres arranged on a body centered cubic lattice (BCC). Furthermore the gyroid phase (Ia3d symmetry) of two interpenetrating networks was also identified as a stable phase of the PEP-PDMS system. Time resolved measurements of small-angle neutron scattering in tandem with simultaneous in-situ rheological measurements are performed on samples showing transitions between different ordered phases. The identification of especially the BCC and gyroid phases from scattering experiments is treated. By performing mesoscopic crystallographic measurements using a custom built goniometer it was unambiguously shown that the application of shear to an unoriented powder-like sample introduces uniaxial orientation of the gyroid phase. The orientation of the ordered phase is otherwise random, causing a two-dimensional powder. Finally this dissertation presents a discussion of relevant parameters for the description of diblock copolymer phase behaviour together with descriptions of anionic polymerization for the synthesis of copolymers, and various experimental techniques for the characterization of diblocks. (au). 9 tabs., 40 ills., 81 refs.

  14. Time-Dependent Wetting Behavior of PDMS Surfaces with Bio-Inspired, Hierarchical Structures

    KAUST Repository

    Mishra, Himanshu; Schrader, Alex M.; Lee, Dong Woog; Gallo, Adair; Chen, Szu-Ying; Kaufman, Yair; Das, Saurabh; Israelachvili, Jacob N.

    2015-01-01

    Wetting of rough surfaces involves time-dependent effects, such as surface deformations, non-uniform filling of surface pores within or outside the contact area, and surface chemistries, but the detailed impact of these phenomena on wetting is not entirely clear. Understanding these effects is crucial for designing coatings for a wide range of applications, such as membrane-based oil-water separation and desalination, waterproof linings/windows for automobiles, aircrafts, and naval vessels, and antibiofouling. Herein, we report on time-dependent contact angles of water droplets on a rough polydimethylsiloxane (PDMS) surface that cannot be completely described by the conventional Cassie-Baxter or Wenzel models or the recently proposed Cassie-impregnated model. Shells of sand dollars (Dendraster excentricus) were used as lithography-free, robust templates to produce rough PDMS surfaces with hierarchical, periodic features ranging from 10-7-10-4 m. Under saturated vapor conditions, we found that in the short-term (<1 min), the contact angle of a sessile water droplet on the templated PDMS, θSDT = 140° ± 3°, was accurately described by the Cassie-Baxter model (predicted θSDT = 137°); however, after 90 min, θSDT fell to 110°. Fluorescent confocal microscopy confirmed that the initial reduction in θSDT to 110° (the Wenzel limit) was primarily a Cassie-Baxter to Wenzel transition during which pores within the contact area filled gradually, and more rapidly for ethanol-water mixtures. After 90 min, the contact line of the water droplet became pinned, perhaps caused by viscoelastic deformation of the PDMS around the contact line, and a significant volume of water began to flow from the droplet to pores outside the contact region, causing θSDT to decrease to 65° over 48 h on the rough surface. The system we present here to explore the concept of contact angle time dependence (dynamics) and modeling of natural surfaces provides insights into the design and

  15. Tunable, flexible antireflection layer of ZnO nanowires embedded in PDMS.

    Science.gov (United States)

    Kim, Min Kyu; Yi, Dong Kee; Paik, Ungyu

    2010-05-18

    In this article, we report the fabrication of ordered hybrid structures composed of ZnO nanowires and a polymeric matrix with a polymer precursor infiltrating the nanowire arrays. The antireflective properties of the resulting ZnO nanowire-embedded polydimethylsiloxane composite (ZPC) were investigated at various ZnO nanowire lengths and ZPC bending angles. Interestingly, we found that whereas the antireflective properties showed a strong dependence on the length of the embedded ZnO nanowires in PDMS, the bending of ZPC has little effect on the antireflective properties.

  16. Time-Dependent Wetting Behavior of PDMS Surfaces with Bio-Inspired, Hierarchical Structures

    KAUST Repository

    Mishra, Himanshu

    2015-12-28

    Wetting of rough surfaces involves time-dependent effects, such as surface deformations, non-uniform filling of surface pores within or outside the contact area, and surface chemistries, but the detailed impact of these phenomena on wetting is not entirely clear. Understanding these effects is crucial for designing coatings for a wide range of applications, such as membrane-based oil-water separation and desalination, waterproof linings/windows for automobiles, aircrafts, and naval vessels, and antibiofouling. Herein, we report on time-dependent contact angles of water droplets on a rough polydimethylsiloxane (PDMS) surface that cannot be completely described by the conventional Cassie-Baxter or Wenzel models or the recently proposed Cassie-impregnated model. Shells of sand dollars (Dendraster excentricus) were used as lithography-free, robust templates to produce rough PDMS surfaces with hierarchical, periodic features ranging from 10-7-10-4 m. Under saturated vapor conditions, we found that in the short-term (<1 min), the contact angle of a sessile water droplet on the templated PDMS, θSDT = 140° ± 3°, was accurately described by the Cassie-Baxter model (predicted θSDT = 137°); however, after 90 min, θSDT fell to 110°. Fluorescent confocal microscopy confirmed that the initial reduction in θSDT to 110° (the Wenzel limit) was primarily a Cassie-Baxter to Wenzel transition during which pores within the contact area filled gradually, and more rapidly for ethanol-water mixtures. After 90 min, the contact line of the water droplet became pinned, perhaps caused by viscoelastic deformation of the PDMS around the contact line, and a significant volume of water began to flow from the droplet to pores outside the contact region, causing θSDT to decrease to 65° over 48 h on the rough surface. The system we present here to explore the concept of contact angle time dependence (dynamics) and modeling of natural surfaces provides insights into the design and

  17. DataCollection Prototyping

    CERN Multimedia

    Beck, H.P.

    DataCollection is a subsystem of the Trigger, DAQ & DCS project responsible for the movement of event data from the ROS to the High Level Triggers. This includes data from Regions of Interest (RoIs) for Level 2, building complete events for the Event Filter and finally transferring accepted events to Mass Storage. It also handles passing the LVL1 RoI pointers and the allocation of Level 2 processors and load balancing of Event Building. During the last 18 months DataCollection has developed a common architecture for the hardware and software required. This involved a radical redesign integrating ideas from separate parts of earlier TDAQ work. An important milestone for this work, now achieved, has been to demonstrate this subsystem in the so-called Phase 2A Integrated Prototype. This prototype comprises the various TDAQ hardware and software components (ROSs, LVL2, etc.) under the control of the TDAQ Online software. The basic functionality has been demonstrated on small testbeds (~8-10 processing nodes)...

  18. OMS FDIR: Initial prototyping

    Science.gov (United States)

    Taylor, Eric W.; Hanson, Matthew A.

    1990-01-01

    The Space Station Freedom Program (SSFP) Operations Management System (OMS) will automate major management functions which coordinate the operations of onboard systems, elements and payloads. The objectives of OMS are to improve safety, reliability and productivity while reducing maintenance and operations cost. This will be accomplished by using advanced automation techniques to automate much of the activity currently performed by the flight crew and ground personnel. OMS requirements have been organized into five task groups: (1) Planning, Execution and Replanning; (2) Data Gathering, Preprocessing and Storage; (3) Testing and Training; (4) Resource Management; and (5) Caution and Warning and Fault Management for onboard subsystems. The scope of this prototyping effort falls within the Fault Management requirements group. The prototyping will be performed in two phases. Phase 1 is the development of an onboard communications network fault detection, isolation, and reconfiguration (FDIR) system. Phase 2 will incorporate global FDIR for onboard systems. Research into the applicability of expert systems, object-oriented programming, fuzzy sets, neural networks and other advanced techniques will be conducted. The goals and technical approach for this new SSFP research project are discussed here.

  19. Live Piloting and Prototyping

    Directory of Open Access Journals (Sweden)

    Francesca Rizzo

    2013-07-01

    Full Text Available This paper presents current trends in service design research concerning large scale projects aimed at generating changes at a local scale. The strategy adopted to achieve this, is to co-design solutions including future users in the development process, prototyping and testing system of products and services before their actual implementation. On the basis of experience achieved in the European Project Life 2.0, this paper discusses which methods and competencies are applied in the development of these projects, eliciting the lessons learnt especially from the piloting phase in which the participatory design (PD approach plays a major role. In the first part, the topic is introduced jointly with the theoretical background where the user center design and participatory design methods are presented; then the Life 2.0 project development is described; finally the experience is discussed from a service design perspective, eliciting guidelines for piloting and prototyping services in a real context of use. The paper concludes reflecting on the designers’ role and competencies needed in this process.

  20. Processing of Al2O3/SrTiO3/PDMS Composites With Low Dielectric Loss

    Science.gov (United States)

    Yao, J. L.; Guo, M. J.; Qi, Y. B.; Zhu, H. X.; Yi, R. Y.; Gao, L.

    2018-05-01

    Polydimethylsiloxane (PDMS) is widely used in the electrical and electronic industries due to its excellent electrical insulation and biocompatible characteristics. However, the dielectric constant of pure PDMS is very low which restricts its applications. Herein, we report a series of PDMS/Al2O3/strontium titanate (ST) composites with high dielectric constant and low loss prepared by a simple experimental method. The composites exhibit high dielectric constant (relative dielectric constant is 4) after the composites are coated with insulated Al2O3 particles, and the dielectric constant gets further improved for composites with ST particles (dielectric constant reaches 15.5); a lower dielectric loss (tanδ= 0.05) is also found at the same time which makes co-filler composites suitable for electrical insulation products, and makes the experimental method more interesting in modern teaching.

  1. A robust and stretchable superhydrophobic PDMS/PVDF@KNFs membrane for oil/water separation and flame retardancy.

    Science.gov (United States)

    Li, Deke; Gou, Xuelian; Wu, Daheng; Guo, Zhiguang

    2018-04-05

    The wide application of superhydrophobic membranes has been limited due to their complicated preparation technology and weak durability. Inspired by the mechanical flexibility of nanofibrous biomaterials, nanofibrils have been successfully generated from Kevlar, which is one of the strongest synthetic fibers, by appropriate hydrothermal treatment. In this study, a robust superhydrophobic PDMS/PVDF@KNFs membrane is prepared via a simple one-step process and subsequent curing without combination with inorganic fillers. The as-prepared PDMS/PVDF@KNFs membrane not only shows efficient oil/water separation ability and oil absorption capacity but also has excellent superhydrophobicity stability after deformation. The resultant membrane shows stretchability, flexibility and flame retardance because of the reinforcing effect and the excellent flame retardancy of Kevlar. We believe that this simple fabrication of PDMS/PVDF@KNFs has promising applications in filtering membranes and wearable devices.

  2. XPS and μ-Raman study of nanosecond-laser processing of poly(dimethylsiloxane) (PDMS)

    Energy Technology Data Exchange (ETDEWEB)

    Armyanov, S., E-mail: armyanov@ipc.bas.bg [Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 11, Sofia 1113 (Bulgaria); Stankova, N.E.; Atanasov, P.A. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Shose, Sofia 1784 (Bulgaria); Valova, E.; Kolev, K.; Georgieva, J. [Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 11, Sofia 1113 (Bulgaria); Steenhaut, O.; Baert, K.; Hubin, A. [Vrije Universiteit Brussels, Faculty of Engineering, Research Group, SURF “Electrochemical and Surface Engineering” (Belgium)

    2015-10-01

    Data about the chemical status of poly(dimethylsiloxane) (PDMS) after nanosecond Q-switched Nd:YAG laser treatment with near infrared, visible and ultraviolet radiation are presented. The μ-Raman spectroscopy analyses reveal as irradiation result a new sharp peak of crystalline silicon. In addition, broad bands appear assigned to D band of amorphous carbon and G band of microcrystalline and polycrystalline graphite. The μ-Raman spectra are variable taken in different inspected points in the trenches formed by laser treatment. The XPS surface survey spectra indicate the constituent elements of PDMS: carbon, oxygen and silicon. The spectra of detail XPS scans illustrate the influence of the laser treatment. The position of Si 2p peaks of the treated samples is close to the value of non-treated except that irradiated by 1064 nm 66 pulses, which is shifted by 0.9 eV. Accordingly, a shift by 0.4 eV is noticed of the O 1s peak, which reflects again a stronger oxidation of silicon. The curve fitting of Si 2p and O 1s peaks after this particular laser treatment shows the degree of conversion of organic to inorganic silicon that takes place during the irradiation.

  3. Porous PDMS structures for the storage and release of aqueous solutions into fluidic environments.

    Science.gov (United States)

    Thurgood, Peter; Baratchi, Sara; Szydzik, Crispin; Mitchell, Arnan; Khoshmanesh, Khashayar

    2017-07-11

    Typical microfluidic systems take advantage of multiple storage reservoirs, pumps and valves for the storage, driving and release of buffers and other reagents. However, the fabrication, integration, and operation of such components can be difficult. In particular, the reliance of such components on external off-chip equipment limits their utility for creating self-sufficient, stand-alone microfluidic systems. Here, we demonstrate a porous sponge made of polydimethylsiloxane (PDMS), which is fabricated by templating microscale water droplets using a T-junction microfluidic structure. High-resolution microscopy reveals that this sponge contains a network of pores, interconnected by small holes. This unique structure enables the sponge to passively release stored solutions very slowly. Proof-of-concept experiments demonstrate that the sponge can be used for the passive release of stored solutions into narrow channels and circular well plates, with the latter used for inducing intracellular calcium signalling of immobilised endothelial cells. The release rate of stored solutions can be controlled by varying the size of interconnecting holes, which can be easily achieved by changing the flow rate of the water injected into the T-junction. We also demonstrate the active release of stored liquids into a fluidic channel upon the manual compression of the sponge. The developed PDMS sponge can be easily integrated into complex micro/macro fluidic systems and prepared with a wide array of reagents, representing a new building block for self-sufficient microfluidic systems.

  4. Route to one-step microstructure mold fabrication for PDMS microfluidic chip

    Science.gov (United States)

    Lv, Xiaoqing; Geng, Zhaoxin; Fan, Zhiyuan; Wang, Shicai; Su, Yue; Fang, Weihao; Pei, Weihua; Chen, Hongda

    2018-04-01

    The microstructure mold fabrication for PDMS microfluidic chip remains complex and time-consuming process requiring special equipment and protocols: photolithography and etching. Thus, a rapid and cost-effective method is highly needed. Comparing with the traditional microfluidic chip fabricating process based on the micro-electromechanical system (MEMS), this method is simple and easy to implement, and the whole fabrication process only requires 1-2 h. Different size of microstructure from 100 to 1000 μm was fabricated, and used to culture four kinds of breast cancer cell lines. Cell viability and morphology was assessed when they were cultured in the micro straight channels, micro square holes and the bonding PDMS-glass microfluidic chip. The experimental results indicate that the microfluidic chip is good and meet the experimental requirements. This method can greatly reduce the process time and cost of the microfluidic chip, and provide a simple and effective way for the structure design and in the field of biological microfabrications and microfluidic chips.

  5. PZT-5A4/PA and PZT-5A4/PDMS piezoelectric composite bimorphs

    International Nuclear Information System (INIS)

    Babu, I; Hendrix, M M R M; De With, G

    2014-01-01

    Disc type reinforced piezoelectric composite bimorphs with series connection were designed and the performance was investigated. The composite bimorphs (PZT/PA and PZT/PDMS (40/60 vol%)) were successfully fabricated by a compression molding and solution casting technique. The charge developed at an applied force of 150 N is 18150 pC (PZT/PA) and 2310 pC (PZT/PDMS), respectively. Electric force microscopy (EFM) is used to study the structural characterization and piezoelectric properties of the materials realized. A clear inverse piezoelectric effect was observed when the bimorphs were subjected to an electric field stepped up through 2, 6 and 10 V, indicating the net polarization direction of the different ferroelectric domains. The as-developed bimorphs have the basic structure of a sensor and actuator, and, since they do not use any bonding agent for bonding, they can provide a valuable alternative to the present bimorphs where bonding processes are required for their realization that can limit their application at high temperature. (paper)

  6. Sub-100 nm gold nanohole-enhanced Raman scattering on flexible PDMS sheets

    Science.gov (United States)

    Lee, Seunghyun; Ongko, Andry; Kim, Ho Young; Yim, Sang-Gu; Jeon, Geumhye; Jeong, Hee Jin; Lee, Seungwoo; Kwak, Minseok; Yang, Seung Yun

    2016-08-01

    Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive vibrational spectroscopy technique enabling detection of multiple analytes at the molecular level in a nondestructive and rapid manner. In this work, we introduce a new approach to fabricate deep subwavelength-scaled (sub-100 nm) metallic nanohole arrays (quasi-3D metallic nanoholes) on flexible and highly efficient SERS substrates. Target structures have been fabricated using a two-step process consisting of (i) direct pattern transfer of spin-coated polymer films onto polydimethylsiloxane (PDMS) substrates by plasma etching with transferred anodic aluminum oxide masks, and (ii) producing SERS-active substrates by functionalization of the etched polymeric films followed by Au deposition. Such an all-dry, top-down lithographic approach enables on-demand patterning of SERS-active metallic nanoholes with high structural fidelity even onto flexible and stretchable substrates, thus making possible multiple sensing modes in a versatile fashion. For example, metallic nanoholes on flexible PDMS substrates are highly amenable to their integration with curved glass sticks, which can be used in optical fiber-integrated SERS systems. Au surfaces immobilized by probe DNA molecules show a selective enhancement of Raman scattering with Cy5-labeled complementary DNA (as compared to flat Au surfaces), demonstrating the potential of using the quasi-3D Au nanohole arrays for bio-sensing applications.

  7. Geometric study of transparent superhydrophobic surfaces of molded and grid patterned polydimethylsiloxane (PDMS)

    Science.gov (United States)

    Davaasuren, Gaasuren; Ngo, Chi-Vinh; Oh, Hyun-Seok; Chun, Doo-Man

    2014-09-01

    Herein we describe an economical method to fabricate a transparent superhydrophobic surface that uses grid patterning, and we report on the effects of grid geometry in determining the wettability and transparency of the fabricated surfaces. A polymer casting method was utilized because of its applicability to economical manufacturing and mass production; the material polydimethylsiloxane (PDMS) was selected because of its moldability and transparency. PDMS was replicated from a laser textured mold fabricated by a UV nanosecond pulsed laser. Sapphire wafer was used for the mold because it has very low surface roughness (Ra ≤0.3 nm) and adequate mechanical properties. To study geometric effects, grid patterns of a series of step sizes were fabricated. The maximum water droplet contact angle (WDCA) observed was 171°. WDCAs depended on the wetting area and the wetting state. The experimental results of WDCA were analyzed with Wenzel and Cassie-Baxter equations. The designed grid pattern was suitably transparent and structurally stable. Transmittance of the optimal transparent superhydrophobic surface was measured by using a spectrophotometer. Transmittance loss due to the presence of the grid was around 2-4% over the wavelength region measured (300-1000 nm); the minimum transmittance observed was 83.1% at 300 nm. This study also demonstrates the possibility of using a nanosecond pulsed laser for the surface texturing of a superhydrophobic surface.

  8. Prototypes as Platforms for Participation

    DEFF Research Database (Denmark)

    Horst, Willem

    developers, and design it accordingly. Designing a flexible prototype in combination with supportive tools to be used by both interaction designers and non-designers during development is introduced as a way to open up the prototyping process to these users. Furthermore I demonstrate how such a flexible...... on prototyping, by bringing to attention that the prototype itself is an object of design, with its users and use context, which deserves further attention. Moreover, in this work I present concrete tools and methods that can be used by interaction designers in practice. As such this work addresses both......The development of interactive products in industry is an activity involving different disciplines – such as different kinds of designers, engineers, marketers and managers – in which prototypes play an important role. On the one hand, prototypes can be powerful boundary objects and an effective...

  9. Prototype Stilbene Neutron Collar

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, M. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shumaker, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Snyderman, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Verbeke, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wong, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-26

    A neutron collar using stilbene organic scintillator cells for fast neutron counting is described for the assay of fresh low enriched uranium (LEU) fuel assemblies. The prototype stilbene collar has a form factor similar to standard He-3 based collars and uses an AmLi interrogation neutron source. This report describes the simulation of list mode neutron correlation data on various fuel assemblies including some with neutron absorbers (burnable Gd poisons). Calibration curves (doubles vs 235U linear mass density) are presented for both thermal and fast (with Cd lining) modes of operation. It is shown that the stilbene collar meets or exceeds the current capabilities of He-3 based neutron collars. A self-consistent assay methodology, uniquely suited to the stilbene collar, using triples is described which complements traditional assay based on doubles calibration curves.

  10. Brachial Plexus Blocker Prototype

    Directory of Open Access Journals (Sweden)

    Stéphanie Coelho Monteiro

    2017-08-01

    Full Text Available Although the area of surgical simulation has been the subject of study in recent years, it is still necessary to develop artificial experimental models with a perspective to dismiss the use of biological models. Since this makes the simulators more real, transferring the environment of the health professional to a physical or virtual reality, an anesthetic prototype has been developed, where the motor response is replicated when the brachial plexus is subjected to a proximal nervous stimulus. Using action-research techniques, with this simulator it was possible to validate that the human nerve response can be replicated, which will aid the training of health professionals, reducing possible risks in a surgical environment.

  11. Naval Prototype Optical Interferometer (NPOI)

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Used for astrometry and astronomical imaging, the Naval Prototype Optical Interferometer (NPOI) is a distributed aperture optical telescope. It is operated...

  12. Mobile prototyping with Axure 7

    CERN Document Server

    Hacker, Will

    2013-01-01

    This book is a step-by-step tutorial which includes hands-on examples and downloadable Axure files to get you started with mobile prototyping immediately. You will learn how to develop an application from scratch, and will be guided through each and every step.If you are a mobile-centric developer/designer, or someone who would like to take their Axure prototyping skills to the next level and start designing and testing mobile prototypes, this book is ideal for you. You should be familiar with prototyping and Axure specifically, before you read this book.

  13. Nanoporous materials from stable and metastable structures of 1,2-PB-b-PDMS block copolymers

    DEFF Research Database (Denmark)

    Schulte, Lars; Grydgaard, Anne; Jakobsen, Mathilde R.

    2011-01-01

    matrix component) and secondly degrading PDMS (the expendable component). Depending on the temperature of the cross-linking reaction different morphologies can be ‘frozen’ from the same block copolymer. Starting with a block copolymer precursor of lamellar morphology at room temperature, the gyroid...... structure or a metastable structure showing hexagonal symmetry (probably HPL) were permanently captured by cross-linking the precursor at 140 °C or at 85 °C, respectively. PDMS was degraded by reaction with tetrabutylamonium fluoride; considerations on the mechanism of cleaving reaction are presented...

  14. PDMS-modified poly(styrene-alt-maleic anhydride)s as water-borne coatings based on surfactant-free latexes

    NARCIS (Netherlands)

    Gunbas, I.D.; Wouters, M.E.L.; Benthem, R.A.T.M. van; Koning, C.E.; Noordover, B.A.J.

    2013-01-01

    In this work, two series of PDMS-modified poly(styrene-alt-maleic anhydride)s (PSMA) were prepared by the partial imidization of their anhydride groups with mono-functional, amine-terminated polydimethyl siloxanes (PDMS-NH2) with two different molecular weights. Subsequently, surfactant-free

  15. Window prototypes during the project

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe

    1996-01-01

    The conditions for the PASSYS test and the results of the measurements on one of the aerogel window prototypes are described.......The conditions for the PASSYS test and the results of the measurements on one of the aerogel window prototypes are described....

  16. Rapid prototyping: een veelbelovende methode

    NARCIS (Netherlands)

    Haverman, T.M.; Karagozoglu, K.H.; Prins, H.; Schulten, E.A.J.M.; Forouzanfar, T.

    2013-01-01

    Rapid prototyping is a method which makes it possible to produce a three-dimensional model based on two-dimensional imaging. Various rapid prototyping methods are available for modelling, such as stereolithography, selective laser sintering, direct laser metal sintering, two-photon polymerization,

  17. Role model and prototype matching

    DEFF Research Database (Denmark)

    Lykkegaard, Eva; Ulriksen, Lars

    2016-01-01

    ’ meetings with the role models affected their thoughts concerning STEM students and attending university. The regular self-to-prototype matching process was shown in real-life role-models meetings to be extended to a more complex three-way matching process between students’ self-perceptions, prototype...

  18. Virtual Prototyping at CERN

    Science.gov (United States)

    Gennaro, Silvano De

    The VENUS (Virtual Environment Navigation in the Underground Sites) project is probably the largest Virtual Reality application to Engineering design in the world. VENUS is just over one year old and offers a fully immersive and stereoscopic "flythru" of the LHC pits for the proposed experiments, including the experimental area equipment and the surface models that are being prepared for a territorial impact study. VENUS' Virtual Prototypes are an ideal replacement for the wooden models traditionally build for the past CERN machines, as they are generated directly from the EUCLID CAD files, therefore they are totally reliable, they can be updated in a matter of minutes, and they allow designers to explore them from inside, in a one-to-one scale. Navigation can be performed on the computer screen, on a stereoscopic large projection screen, or in immersive conditions, with an helmet and 3D mouse. By using specialised collision detection software, the computer can find optimal paths to lower each detector part into the pits and position it to destination, letting us visualize the whole assembly probess. During construction, these paths can be fed to a robot controller, which can operate the bridge cranes and build LHC almost without human intervention. VENUS is currently developing a multiplatform VR browser that will let the whole HEP community access LHC's Virtual Protoypes over the web. Many interesting things took place during the conference on Virtual Reality. For more information please refer to the Virtual Reality section.

  19. UA1 prototype detector

    CERN Multimedia

    1980-01-01

    Prototype of UA1 central detector inside a plexi tube. The UA1 experiment ran at CERN's Super Proton Synchrotron and made the Nobel Prize winning discovery of W and Z particles in 1983. The UA1 central detector was crucial to understanding the complex topology of proton-antiproton events. It played a most important role in identifying a handful of Ws and Zs among billions of collisions. The detector was essentially a wire chamber - a 6-chamber cylindrical assembly 5.8 m long and 2.3 m in diameter, the largest imaging drift chamber of its day. It recorded the tracks of charged particles curving in a 0.7 Tesla magnetic field, measuring their momentum, the sign of their electric charge and their rate of energy loss (dE/dx). Atoms in the argon-ethane gas mixture filling the chambers were ionised by the passage of charged particles. The electrons which were released drifted along an electric field shaped by field wires and were collected on sense wires. The geometrical arrangement of the 17000 field wires and 6...

  20. STABILITY OF MFI ZEOLITE-FILLED PDMS MEMBRANES DURING PERVAPORATIVE ETHANOL RECOVERY FROM AQUEOUS MIXTURES CONTAINING ACETIC ACID

    Science.gov (United States)

    Pervaporation is potentially a cost-effective means of recovering biofuels, such as ethanol, from biomass fermentation broths for small- to medium-scale applications (~2 - 20 million liters per year). Hydrophobic zeolite-filled polydimethylsiloxane (PDMS) membranes have been sho...

  1. Study on the Optimum Cutting Parameters of an Aluminum Mold for Effective Bonding Strength of a PDMS Microfluidic Device

    Directory of Open Access Journals (Sweden)

    Caffiyar Mohamed Yousuff

    2017-08-01

    Full Text Available Master mold fabricated using micro milling is an easy way to develop the polydimethylsiloxane (PDMS based microfluidic device. Achieving high-quality micro-milled surface is important for excellent bonding strength between PDMS and glass slide. The aim of our experiment is to study the optimal cutting parameters for micro milling an aluminum mold insert for the production of a fine resolution microstructure with the minimum surface roughness using conventional computer numerical control (CNC machine systems; we also aim to measure the bonding strength of PDMS with different surface roughnesses. Response surface methodology was employed to optimize the cutting parameters in order to obtain high surface smoothness. The cutting parameters were demonstrated with the following combinations: 20,000 rpm spindle speed, 50 mm/min feed rate, depth of cut 5 µm with tool size 200 µm or less; this gives a fine resolution microstructure with the minimum surface roughness and strong bonding strength between PDMS–PDMS and PDMS–glass.

  2. Facile Fabrication of a PDMS@Stearic Acid-Kaolin Coating on Lignocellulose Composites with Superhydrophobicity and Flame Retardancy

    Directory of Open Access Journals (Sweden)

    Zhe Wang

    2018-05-01

    Full Text Available The disadvantages such as swelling after absorbing water and flammability restrict the widespread applications of lignocellulose composites (LC. Herein, a facile and effective method to fabricate superhydrophobic surfaces with flame retardancy on LC has been investigated by coating polydimethylsiloxane (PDMS and stearic acid (STA modified kaolin (KL particles. The as-prepared coatings on the LC exhibited a good repellency to water (a contact angle = 156°. Owing to the excellent flame retardancy of kaolin particles, the LC coated with PDMS@STA-KL displayed a good flame retardancy during limiting oxygen index and cone calorimeter tests. After the coating treatment, the limiting oxygen index value of the LC increased to 41.0. Cone calorimetry results indicated that the ignition time of the LC coated with PDMS@STA-KL increased by 40 s compared with that of uncoated LC. Moreover, the peak heat release rate (PHRR and the total heat release (THR of LC coated with PDMS@STA-KL reduced by 18.7% and 19.2% compared with those of uncoated LC, respectively. This LC coating with improved water repellency and flame retardancy can be considered as a potential alternative to protect the lignocellulose composite.

  3. ZnO–PDMS Nanohybrids: A Novel Optical Sensing Platform for Ethanol Vapor Detection at Room Temperature

    KAUST Repository

    Klini, Argyro; Pissadakis, Stavros; Das, Rabindra N.; Giannelis, Emmanuel P.; Anastasiadis, Spiros H.; Anglos, Demetrios

    2015-01-01

    O-PDMS system as an optical gas sensing device. The interaction of the ZnO nanoparticles with molecular oxygen plays an essential role on the overall performance of the sensor, as shown in comparative experiments performed in the presence and absence

  4. Poly(Dimethylsiloxane) (PDMS) Affects Gene Expression in PC12 Cells Differentiating into Neuronal-Like Cells

    DEFF Research Database (Denmark)

    Lopacinska, Joanna M.; Emnéus, Jenny; Dufva, Martin

    2013-01-01

    Introduction: Microfluidics systems usually consist of materials like PMMA - poly(methyl methacrylate) and PDMS - poly(dimethylsiloxane) and not polystyrene (PS), which is usually used for cell culture. Cellular and molecular responses in cells grown on PS are well characterized due to decades...

  5. Fabrication of Graphene Oxide Dispersed DLC/PDMS Substrates and Human Mesenchymal Stem Cell Culture(Researches)

    OpenAIRE

    伴, 雅人; Masahito, Ban

    2016-01-01

    Graphene Oxide (GO) dispersed DLC (diamond-like carbon) thin film deposited PDMS substrates were fabricated with plasma treatments and dip coating methods. It was found from cell culture tests using the substrates as scaffolds human mesenchymal stem cells (hMSCs) indicated larger F-actin areas compared with the substrates without GO and/or DLC.

  6. Facile Fabrication and Characterization of a PDMS-Derived Candle Soot Coated Stable Biocompatible Superhydrophobic and Superhemophobic Surface.

    Science.gov (United States)

    Iqbal, R; Majhy, B; Sen, A K

    2017-09-13

    We report a simple, inexpensive, rapid, and one-step method for the fabrication of a stable and biocompatible superhydrophobic and superhemophobic surface. The proposed surface comprises candle soot particles embedded in a mixture of PDMS+n-hexane serving as the base material. The mechanism responsible for the superhydrophobic behavior of the surface is explained, and the surface is characterized based on its morphology and elemental composition, wetting properties, mechanical and chemical stability, and biocompatibility. The effect of %n-hexane in PDMS, the thickness of the PDMS+n-hexane layer (in terms of spin coating speed) and sooting time on the wetting property of the surface is studied. The proposed surface exhibits nanoscale surface asperities (average roughness of 187 nm), chemical compositions of soot particles, very high water and blood repellency along with excellent mechanical and chemical stability and excellent biocompatibility against blood sample and biological cells. The water contact angle and roll-off angle is measured as 160° ± 1° and 2°, respectively, and the blood contact angle is found to be 154° ± 1°, which indicates that the surface is superhydrophobic and superhemophobic. The proposed superhydrophobic and superhemophobic surface offers significantly improved (>40%) cell viability as compared to glass and PDMS surfaces.

  7. Highly dispersed Co0.5Zn0.5Fe2O4/polypyrrole nanocomposites for cost-effective, high-performance defluoridation using a magnetically controllable microdevice

    International Nuclear Information System (INIS)

    Wang, Gang; Shi, Guoying; Mu, Qinghui; Zhang, Qinghong; Wang, Hongzhi; Li, Yaogang

    2012-01-01

    Highlights: ► Highly dispersed CZFO/PPy nanocomposites are synthesized in microfluidic reactor. ► The as-synthesized nanocomposites behave as a high performance adsorbent. ► The magnetic microdevice has advantages over traditional methods for defluoridation. - Abstract: Highly dispersed Co 0.5 Zn 0.5 Fe 2 O 4 /polypyrrole (CZFO/PPy) nanocomposites with enhanced electromagnetic properties and large surface area were rapidly and controllably prepared using microfluidic reactors. A novel magnetically controllable microdevice using the new adsorbent in a highly dispersed form was assembled and used for fluoride adsorption. Compared with traditional adsorption methods, the device displayed high adsorption efficiency and capacity. The adsorbents were regenerated with no significant loss in defluoridation ability, which indicates that the device is a realistic and highly efficient alternative way of removing fluoride pollution at low cost.

  8. Solving the shrinkage-induced PDMS alignment registration issue in multilayer soft lithography

    International Nuclear Information System (INIS)

    Moraes, Christopher; Sun, Yu; Simmons, Craig A

    2009-01-01

    Shrinkage of polydimethylsiloxane (PDMS) complicates alignment registration between layers during multilayer soft lithography fabrication. This often hinders the development of large-scale microfabricated arrayed devices. Here we report a rapid method to construct large-area, multilayered devices with stringent alignment requirements. This technique, which exploits a previously unrecognized aspect of sandwich mold fabrication, improves device yield, enables highly accurate alignment over large areas of multilayered devices and does not require strict regulation of fabrication conditions or extensive calibration processes. To demonstrate this technique, a microfabricated Braille display was developed and characterized. High device yield and accurate alignment within 15 µm were achieved over three layers for an array of 108 Braille units spread over a 6.5 cm 2 area, demonstrating the fabrication of well-aligned devices with greater ease and efficiency than previously possible

  9. Preparation and Property Research of Strain Sensor Based on PDMS and Silver Nanomaterials

    Directory of Open Access Journals (Sweden)

    Lihua Liu

    2017-01-01

    Full Text Available Based on the advantages and broad applications of stretchable strain sensors, this study reports a simple method to fabricate a highly sensitive strain sensor with Ag nanomaterials-polydimethylsiloxane (AgNMs-PDMS to create a synergic conductive network and a sandwich-structure. Three Ag nanomaterial samples were synthesized by controlling the concentrations of the FeCl3 solution and reaction time via the heat polyols thermal method. The AgNMs network’s elastomer nanocomposite-based strain sensors show strong piezoresistivity with a high gauge factor of 547.8 and stretchability from 0.81% to 7.26%. The application of our high-performance strain sensors was demonstrated by the inducting finger of the motion detection. These highly sensitive sensors conform to the current trends of flexible electronics and have prospects for broad application.

  10. A superhydrophobic EP/PDMS nanocomposite coating with high gamma radiation stability

    Science.gov (United States)

    Zhang, Yan; Ren, Fule; Liu, Yujian

    2018-04-01

    The superhydrophobic coatings with high gamma radiation stability were prepared by using epoxy/polydimethylsiloxane (EP/PDMS) resins as the matrix and silica nanoparticles as the fillers. The nanocomposite coatings exhibit superhydrophobicity with a high water contact angle (WCA) of 154° and a low sliding angle of 7°. With the amount of SiO2 increasing from 0 to 30%, the surface shows the hierarchically structure gradually and its roughness raised from 4 nm to 278 nm. And little change in the WCA of the coatings (from 155° to 149°) was observed when the pH of the droplets varied from 2 to 14. In addition, the coatings also show good adhesion grade (5B), high hardness (6H) and outstanding stability for high dose gamma radiation.

  11. Manufacturing PDMS micro lens array using spin coating under a multiphase system

    International Nuclear Information System (INIS)

    Sun, Rongrong; Yang, Hanry; Rock, D Mitchell; Danaei, Roozbeh; Panat, Rahul; Kessler, Michael R; Li, Lei

    2017-01-01

    The development of micro lens arrays has garnered much interest due to increased demand of miniaturized systems. Traditional methods for manufacturing micro lens arrays have several shortcomings. For example, they require expensive facilities and long lead time, and traditional lens materials (i.e. glass) are typically heavy, costly and difficult to manufacture. In this paper, we explore a method for manufacturing a polydimethylsiloxane (PDMS) micro lens array using a simple spin coating technique. The micro lens array, formed under an interfacial tension dominated system, and the influence of material properties and process parameters on the fabricated lens shape are examined. The lenses fabricated using this method show comparable optical properties—including surface finish and image quality—with a reduced cost and manufacturing lead time. (paper)

  12. Patterned Fibers Embedded Microfluidic Chips Based on PLA and PDMS for Ag Nanoparticle Safety Testing

    Directory of Open Access Journals (Sweden)

    Yaowen Liu

    2016-11-01

    Full Text Available A new method to integrate poly-dl-lactide (PLA patterned electrospun fibers with a polydimethylsiloxane (PDMS microfluidic chip was successfully developed via lithography. Hepatocyte behavior under static and dynamic conditions was investigated. Immunohistochemical analyses indicated good hepatocyte survival under the dynamic culture system with effective hepatocyte spheroid formation in the patterned microfluidic chip vs. static culture conditions and tissue culture plate (TCP. In particular, hepatocytes seeded in this microfluidic chip under a flow rate of 10 μL/min could re-establish hepatocyte polarity to support biliary excretion and were able to maintain high levels of albumin and urea secretion over 15 days. Furthermore, the optimized system could produce sensitive and consistent responses to nano-Ag-induced hepatotoxicity during culture. Thus, this microfluidic chip device provides a new means of fabricating complex liver tissue-engineered scaffolds, and may be of considerable utility in the toxicity screening of nanoparticles.

  13. A PDMS-based cylindrical hybrid lens for enhanced fluorescence detection in microfluidic systems.

    Science.gov (United States)

    Lin, Bor-Shyh; Yang, Yu-Ching; Ho, Chong-Yi; Yang, Han-Yu; Wang, Hsiang-Yu

    2014-02-13

    Microfluidic systems based on fluorescence detection have been developed and applied for many biological and chemical applications. Because of the tiny amount of sample in the system; the induced fluorescence can be weak. Therefore, most microfluidic systems deploy multiple optical components or sophisticated equipment to enhance the efficiency of fluorescence detection. However, these strategies encounter common issues of complex manufacturing processes and high costs. In this study; a miniature, cylindrical and hybrid lens made of polydimethylsiloxane (PDMS) to improve the fluorescence detection in microfluidic systems is proposed. The hybrid lens integrates a laser focusing lens and a fluorescence collecting lens to achieve dual functions and simplify optical setup. Moreover, PDMS has advantages of low-cost and straightforward fabrication compared with conventional optical components. The performance of the proposed lens is first examined with two fluorescent dyes and the results show that the lens provides satisfactory enhancement for fluorescence detection of Rhodamine 6G and Nile Red. The overall increments in collected fluorescence signal and detection sensitivity are more than 220% of those without lens, and the detection limits of Rhodamine 6G and Nile red are lowered to 0.01 μg/mL and 0.05 μg/mL, respectively. The hybrid lens is further applied to the detection of Nile red-labeled Chlorella vulgaris cells and it increases both signal intensity and detection sensitivity by more than 520%. The proposed hybrid lens also dramatically reduces the variation in detected signal caused by the deviation in incident angle of excitation light.

  14. Mechanical properties and filler distribution as a function filler content in silica filled PDMS samples

    International Nuclear Information System (INIS)

    Hawley, Marilyn E.; Wrobleski, Debra A.; Orler, E. Bruce; Houlton, Robert J.; Chitanvis, Kiran E.; Brown, Geoffrey W.; Hanson, David E.

    2004-01-01

    Atomic force microscopy (AFM) phase imaging and tensile stress-strain measurements are used to study a series of model compression molded fumed silica filled polydimethysiloxane (PDMS) samples with filler content of zero, 20, 35, and 50 parts per hundred (phr) to determine the relationship between filler content and stress-strain properties. AFM phase imaging was used to determine filler size, degree of aggregation, and distribution within the soft PDMS matrix. A small tensile stage was used to measure mechanical properties. Samples were not pulled to break in order to study Mullins and aging effects. Several identical 35 phr samples were subjected to an initial stress, and then one each was reevaluated over intervals up to 26 weeks to determine the degree to which these samples recovered their initial stress-strain behavior as a function of time. One sample was tested before and after heat treatment to determine if heating accelerated recovery of the stress-strain behavior. The effect of filler surface treatment on mechanical properties was examined for two samples containing 35 phr filler treated or untreated with hexamethyldisilazane (HMDZ), respectively. Fiduciary marks were used on several samples to determine permanent set. 35 phr filler samples were found to give the optimum mechanical properties. A clear Mullins effect was seen. Within experimental error, no change was seen in mechanical behavior as a function of time or heat-treatment. The mechanical properties of the sample containing the HDMZ treated silica were adversely affected. AFM phase images revealed aggregation and nonuniform distribution of the filler for all samples. Finally, a permanent set of about 3 to 6 percent was observed for the 35 phr samples.

  15. A multi-scale PDMS fabrication strategy to bridge the size mismatch between integrated circuits and microfluidics.

    Science.gov (United States)

    Muluneh, Melaku; Issadore, David

    2014-12-07

    In recent years there has been great progress harnessing the small-feature size and programmability of integrated circuits (ICs) for biological applications, by building microfluidics directly on top of ICs. However, a major hurdle to the further development of this technology is the inherent size-mismatch between ICs (~mm) and microfluidic chips (~cm). Increasing the area of the ICs to match the size of the microfluidic chip, as has often been done in previous studies, leads to a waste of valuable space on the IC and an increase in fabrication cost (>100×). To address this challenge, we have developed a three dimensional PDMS chip that can straddle multiple length scales of hybrid IC/microfluidic chips. This approach allows millimeter-scale ICs, with no post-processing, to be integrated into a centimeter-sized PDMS chip. To fabricate this PDMS chip we use a combination of soft-lithography and laser micromachining. Soft lithography was used to define micrometer-scale fluid channels directly on the surface of the IC, allowing fluid to be controlled with high accuracy and brought into close proximity to sensors for highly sensitive measurements. Laser micromachining was used to create ~50 μm vias to connect these molded PDMS channels to a larger PDMS chip, which can connect multiple ICs and house fluid connections to the outside world. To demonstrate the utility of this approach, we built and demonstrated an in-flow magnetic cytometer that consisted of a 5 × 5 cm(2) microfluidic chip that incorporated a commercial 565 × 1145 μm(2) IC with a GMR sensing circuit. We additionally demonstrated the modularity of this approach by building a chip that incorporated two of these GMR chips connected in series.

  16. Prototyping chips in minutes: Direct Laser Plotting (DLP) of functional microfluidic structures

    KAUST Repository

    Wang, Limu

    2013-10-10

    We report a fast and simple prototyping method to fabricate polymer-based microfluidic chips using Direct Laser Plotting (DLP) technique, by which various functional micro-structures can be realized within minutes, in a mask-free and out-of-cleanroom fashion. A 2D Computer-Aid-Design (CAD) software was employed to layout the required micro-structures and micro-channels, a CO2 laser plotter was then used to construct the microstructures. The desired patterns can be plotted directly on PDMS substrates and bio-compatible polymer films by manipulating the strength and density of laser pulses. With the DLP technique, chip-embedded micro-electrodes, micro-mixers and 3D microfluidic chips with 5 layers, which normally require several days of work in a cleanroom facility, can be fabricated in minutes in common laboratory. This novel method can produce microfluidic channels with average feature size of 100 μm, while feature size of 50 μm or smaller is achievable by making use of the interference effect from laser impulsion. In this report, we present the optimized parameters for successful fabrication of 3D microchannels, micro-mixers and microfluidic chips for protein concentration measurements (Bovine Serum Albumine (BSA) test), and a novel procedure to pattern flexible embedding electrodes on PDMS-based microfluidic chips. DLP offers a convenient and low cost alternative to conventional microfluidic channel fabrication technique which relies on complicated and hazardous soft lithography process.

  17. Prototype moving-ring reactor

    International Nuclear Information System (INIS)

    Smith, A.C. Jr.; Ashworth, C.P.; Abreu, K.E.

    1981-01-01

    The objective of this work was to design a prototype fusion reactor based on fusion plasmas confined as ''Compact Toruses.' Six major criteria guided the prototype design. The prototype must: (1) produce net electricity decisively (P/sub net/ >70% of P/sub gross/), with P/sub net/ approximately 100 MW(e); (2) have small physical size (low project cost) but commercial plant; (3) have all features required of commerical plants; (4) avoid unreasonable extrapolation of technology; (5) minimize nuclear issues substantially, i.e. accident and waste issues of public concern, and (6) be modular (to permit repetitive fabrication of parts) and be maintainable with low occupational radiological exposures

  18. Learning Axure RP interactive prototypes

    CERN Document Server

    Krahenbuhl, John Henry

    2015-01-01

    If you are a user experience professional, designer, information architect, or business analyst who wants to gain interactive prototyping skills with Axure, then this book is ideal for you. Some familiarity with Axure is preferred but not essential.

  19. Architectural Prototyping in Industrial Practice

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak; Hansen, Klaus Marius

    2008-01-01

    Architectural prototyping is the process of using executable code to investigate stakeholders’ software architecture concerns with respect to a system under development. Previous work has established this as a useful and cost-effective way of exploration and learning of the design space of a system......, in addressing issues regarding quality attributes, in addressing architectural risks, and in addressing the problem of knowledge transfer and conformance. Little work has been reported so far on the actual industrial use of architectural prototyping. In this paper, we report from an ethnographical study...... and focus group involving architects from four companies in which we have focused on architectural prototypes. Our findings conclude that architectural prototypes play an important role in resolving problems experimentally, but less so in exploring alternative solutions. Furthermore, architectural...

  20. Experimentation with PEC channel prototype

    International Nuclear Information System (INIS)

    Caponetti, R.; Iacovelli, M.

    1984-01-01

    Experimentation on prototypes of PEC components is presently being carried out at Casaccia CRE. This report shows the results of the first cycle of experimentation of the central channel, concerning the aspects of sodium removal after experimentation

  1. Tangiplay: prototyping tangible electronic games

    OpenAIRE

    Boileau, Jason

    2010-01-01

    Tangible electronic games currently exist in research laboratories around the world but have yet to transition to the commercial sector. The development process of a tangible electronic game is one of the factors preventing progression, as it requires much time and money. Prototyping tools for tangible hardware and software development are becoming more available but are targeted to programmers and technically trained developers. Paper prototyping board and video games is a proven and rapid m...

  2. Simple photolithographic rapid prototyping of microfluidic chips

    DEFF Research Database (Denmark)

    Kunstmann-Olsen, Casper; Hoyland, James; Rubahn, Horst-Günter

    2012-01-01

    Vi præsenterer en simpel metode til at producere støbeforme til støbning af PDMS mikrofluide chips vha. fotolitografi, med 35mm fotonegativer som masker. Vi demonstrer metodens muligheder og begrænsninger. Vi har optimeret processen til at fremstille planare lab-on-a-chip strukturer med meget høj...

  3. Fast-prototyping of VLSI

    International Nuclear Information System (INIS)

    Saucier, G.; Read, E.

    1987-01-01

    Fast-prototyping will be a reality in the very near future if both straightforward design methods and fast manufacturing facilities are available. This book focuses, first, on the motivation for fast-prototyping. Economic aspects and market considerations are analysed by European and Japanese companies. In the second chapter, new design methods are identified, mainly for full custom circuits. Of course, silicon compilers play a key role and the introduction of artificial intelligence techniques sheds a new light on the subject. At present, fast-prototyping on gate arrays or on standard cells is the most conventional technique and the third chapter updates the state-of-the art in this area. The fourth chapter concentrates specifically on the e-beam direct-writing for submicron IC technologies. In the fifth chapter, a strategic point in fast-prototyping, namely the test problem is addressed. The design for testability and the interface to the test equipment are mandatory to fulfill the test requirement for fast-prototyping. Finally, the last chapter deals with the subject of education when many people complain about the lack of use of fast-prototyping in higher education for VLSI

  4. Ultrasonic and dielectric studies of polymer PDMS composites with ZnO and onion-like carbons nanoinclusions

    International Nuclear Information System (INIS)

    Samulionis, V; Macutkevic, J; Banys, J; Belovickis, J; Shenderova, O

    2015-01-01

    The ultrasonic and dielectric temperature investigations were performed in polydi- methylsiloxane (PDMS) with zinc oxide (ZnO) and onion-like carbon (OLC) nanocomposites. In the glass transition region, the ultrasonic velocity dispersion and large ultrasonic attenuation maxima were observed. The positions of ultrasonic attenuation peaks were slightly shifted to higher temperatures after doping PDMS with OLC and ZnO nanoparticles. The ultrasonic relaxation was compared to that of dielectric and such behaviour was described by Vogel- Fulcher law. The upshift of the glass transition temperature with addition of nanoparticles was confirmed by both methods. The additional increase of ultrasonic attenuation in composites doped with OLC and ZnO was observed at room temperature and such behaviour we attributed to ultrasound-nanofiller interaction in polymer matrix. (paper)

  5. Ultrasonic and dielectric studies of polymer PDMS composites with ZnO and onion-like carbons nanoinclusions

    Science.gov (United States)

    Samulionis, V.; Macutkevic, J.; Banys, J.; Belovickis, J.; Shenderova, O.

    2015-07-01

    The ultrasonic and dielectric temperature investigations were performed in polydi- methylsiloxane (PDMS) with zinc oxide (ZnO) and onion-like carbon (OLC) nanocomposites. In the glass transition region, the ultrasonic velocity dispersion and large ultrasonic attenuation maxima were observed. The positions of ultrasonic attenuation peaks were slightly shifted to higher temperatures after doping PDMS with OLC and ZnO nanoparticles. The ultrasonic relaxation was compared to that of dielectric and such behaviour was described by Vogel- Fulcher law. The upshift of the glass transition temperature with addition of nanoparticles was confirmed by both methods. The additional increase of ultrasonic attenuation in composites doped with OLC and ZnO was observed at room temperature and such behaviour we attributed to ultrasound-nanofiller interaction in polymer matrix.

  6. Comparison of three different scales techniques for the dynamic mechanical characterization of two polymers (PDMS and SU8)

    Science.gov (United States)

    Le Rouzic, J.; Delobelle, P.; Vairac, P.; Cretin, B.

    2009-10-01

    In this article the dynamic mechanical characterization of PDMS and SU8 resin using dynamic mechanical analysis, nanoindentation and the scanning microdeformation microscope have been presented. The methods are hereby explained, extended for viscoelastic behaviours, and their compatibility underlined. The storage and loss moduli of these polymers over a wide range of frequencies (from 0.01 Hz to somekHz) have been measured. These techniques are shown fairly matching and the two different viscoelastic behaviours of these two polymers have been exhibited. Indeed, PDMS shows moduli which still increase at 5kHz whereas SU8 ones decrease much sooner. From a material point of view, the Havriliak and Negami model to estimate instantaneous, relaxed moduli and time constant of these materials has been identified.

  7. The research and development of module 3D designing system for nuclear power project based on the PDMS

    International Nuclear Information System (INIS)

    Lu Qinwu; Li Yi; Wu Xiangyong

    2012-01-01

    In order to meet the demand of implementing Modularization design in CPR1000 nuclear power projects, this study aims to develop, relying on CPR1000 nuclear power project, the self-reliant module 3D design system based on the PDMS. so as to offer a convenient and effective module 3D design tool for the designers. Satisfactory results have been achieved through the test and application of two design projects. The research and application have entered the domestic advanced level. (authors)

  8. Micro-patterned ZnO semiconductors for high performance thin film transistors via chemical imprinting with a PDMS stamp.

    Science.gov (United States)

    Seong, Kieun; Kim, Kyongjun; Park, Si Yun; Kim, Youn Sang

    2013-04-07

    Chemical imprinting was conducted on ZnO semiconductor films via a chemical reaction at the contact regions between a micro-patterned PDMS stamp and ZnO films. In addition, we applied the chemical imprinting on Li doped ZnO thin films for high performance TFTs fabrication. The representative micro-patterned Li doped ZnO TFTs showed a field effect mobility of 4.2 cm(2) V(-1) s(-1) after sintering at 300 °C.

  9. Prototypes in engineering design: Definitions and strategies

    DEFF Research Database (Denmark)

    Jensen, Lasse Skovgaard; Özkil, Ali Gürcan; Mortensen, Niels Henrik

    2016-01-01

    By reviewing literature, we investigate types, purposes and definitions of prototypes. There is no overarching definition of a prototype, but we identify five categories of prototypes in litterature. We further synthesize and reference previous work to create an overview of aspects in prototyping...

  10. Prototyping in theory and in practice

    DEFF Research Database (Denmark)

    Yu, Fei; Brem, Alexander; Pasinell, Michele

    2018-01-01

    and functions of a prototype and needed to meet specific goals in order to push the process forward. Designers, on the other hand, used prototypes to investigate the design space for new possibilities, and were more open to a variety of prototyping materials and tools, especially for low-fidelity prototypes...

  11. Rapid Prototyping of Formally Modelled Distributed Systems

    OpenAIRE

    Buchs, Didier; Buffo, Mathieu; Titsworth, Frances M.

    1999-01-01

    This paper presents various kinds of prototypes, used in the prototyping of formally modelled distributed systems. It presents the notions of prototyping techniques and prototype evolution, and shows how to relate them to the software life-cycle. It is illustrated through the use of the formal modelling language for distributed systems CO-OPN/2.

  12. Towards an Operational Framework for Architectural Prototyping

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak

    2005-01-01

    We use a case study in architectural prototyping as input for presenting a first, tentative, framework describing key concepts and their relationships in architectural prototyping processes.......We use a case study in architectural prototyping as input for presenting a first, tentative, framework describing key concepts and their relationships in architectural prototyping processes....

  13. Friction and adhesion of gecko-inspired PDMS flaps on rough surfaces.

    Science.gov (United States)

    Yu, Jing; Chary, Sathya; Das, Saurabh; Tamelier, John; Turner, Kimberly L; Israelachvili, Jacob N

    2012-08-07

    Geckos have developed a unique hierarchical structure to maintain climbing ability on surfaces with different roughness, one of the extremely important parameters that affect the friction and adhesion forces between two surfaces. Although much attention has been paid on fabricating various structures that mimic the hierarchical structure of a gecko foot, yet no systematic effort, in experiment or theory, has been made to quantify the effect of surface roughness on the performance of the fabricated structures that mimic the hierarchical structure of geckos. Using a modified surface forces apparatus (SFA), we measured the adhesion and friction forces between microfabricated tilted PDMS flaps and optically smooth SiO(2) and rough SiO(2) surfaces created by plasma etching. Anisotropic adhesion and friction forces were measured when sliding the top glass surface along (+y) and against (-y) the tilted direction of the flaps. Increasing the surface roughness first increased the adhesion and friction forces measured between the flaps and the rough surface due to topological matching of the two surfaces but then led to a rapid decrease in both of these forces. Our results demonstrate that the surface roughness significantly affects the performance of gecko mimetic adhesives and that different surface textures can either increase or decrease the adhesion and friction forces of the fabricated adhesives.

  14. Characterization of PDMS samples with variation of its synthesis parameters for tunable optics applications

    Science.gov (United States)

    Marquez-Garcia, Josimar; Cruz-Félix, Angel S.; Santiago-Alvarado, Agustin; González-García, Jorge

    2017-09-01

    Nowadays the elastomer known as polydimethylsiloxane (PDMS, Sylgard 184), due to its physical properties, low cost and easy handle, have become a frequently used material for the elaboration of optical components such as: variable focal length liquid lenses, optical waveguides, solid elastic lenses, etc. In recent years, we have been working in the characterization of this material for applications in visual sciences; in this work, we describe the elaboration of PDMSmade samples, also, we present physical and optical properties of the samples by varying its synthesis parameters such as base: curing agent ratio, and both, curing time and temperature. In the case of mechanical properties, tensile and compression tests were carried out through a universal testing machine to obtain the respective stress-strain curves, and to obtain information regarding its optical properties, UV-vis spectroscopy is applied to the samples to obtain transmittance and absorbance curves. Index of refraction variation was obtained through an Abbe refractometer. Results from the characterization will determine the proper synthesis parameters for the elaboration of tunable refractive surfaces for potential applications in robotics.

  15. A planar PDMS micropump using in-contact minimized-leakage check valves

    International Nuclear Information System (INIS)

    Ni, Junhui; Li, Beizhi; Huang, Fengliang; Wang, Bin; Lin, Qiao

    2010-01-01

    We present a micropump with a simple planar design featuring compliant in-contact check valves in a single layer, which allows for a simple structure and easy system integration. The micropump, based on poly(dimethylsiloxane) (PDMS), primarily consists of a pneumatically driven thin membrane, a pump chamber, and two in-plane check valves. The pair of check valves is based on an in-contact flap–stopper configuration and is able to minimize leakage flow, greatly enhancing the reliability and performance of the micropump. Systematic experimental characterization of the micropump has been performed in terms of the frequency response of the pumping flow rate with respect to factors including device geometry (e.g. chamber height) and operating parameters (e.g. pneumatic driving pressure and backpressure). The results demonstrate that this micropump is capable of reliably generating a maximum flow rate of 41 µL min −1 and operating against a high backpressure of up to 25 kPa. In addition, a lumped-parameter theoretical model for the planar micropump is also developed for accurate analysis of the device behavior. These results demonstrate the capability of this micropump for diverse applications in lab-on-a-chip systems.

  16. An agar gel membrane-PDMS hybrid microfluidic device for long term single cell dynamic study.

    Science.gov (United States)

    Wong, Ieong; Atsumi, Shota; Huang, Wei-Chih; Wu, Tung-Yun; Hanai, Taizo; Lam, Miu-Ling; Tang, Ping; Yang, Jian; Liao, James C; Ho, Chih-Ming

    2010-10-21

    Significance of single cell measurements stems from the substantial temporal fluctuations and cell-cell variability possessed by individual cells. A major difficulty in monitoring surface non-adherent cells such as bacteria and yeast is that these cells tend to aggregate into clumps during growth, obstructing the tracking or identification of single-cells over long time periods. Here, we developed a microfluidic platform for long term single-cell tracking and cultivation with continuous media refreshing and dynamic chemical perturbation capability. The design highlights a simple device-assembly process between PDMS microchannel and agar membrane through conformal contact, and can be easily adapted by microbiologists for their routine laboratory use. The device confines cell growth in monolayer between an agar membrane and a glass surface. Efficient nutrient diffusion through the membrane and reliable temperature maintenance provide optimal growth condition for the cells, which exhibited fast exponential growth and constant distribution of cell sizes. More than 24 h of single-cell tracking was demonstrated on a transcription-metabolism integrated synthetic biological model, the gene-metabolic oscillator. Single cell morphology study under alcohol toxicity allowed us to discover and characterize cell filamentation exhibited by different E. coli isobutanol tolerant strains. We believe this novel device will bring new capabilities to quantitative microbiology, providing a versatile platform for single cell dynamic studies.

  17. Fabrication and characterization of artificial hair cell sensor based on MWCNT-PDMS composite

    Science.gov (United States)

    Kim, Chi Yeon; Lee, Hyun Sup; Cho, Yo Han; Joh, Cheeyoung; Choi, Pyung; Park, Seong Jin

    2011-06-01

    The aim of this work is to design and fabricate a flow sensor using an artificial hair cell (AHC) inspired by biological hair cells of fish. The sensor consists of a single cilium structure with high aspect ratio and a mechanoreceptor using force sensitive resistor (FSR). The cilium structure is designed for capturing a drag force with direction due to flow field around the sensor and the mechanoreceptor is designed for sensing the drag force with direction from the cilium structure and converting it into an electric signal. The mechanoreceptor has a symmetric four electrodes to sense the drag force and its direction. To fabricate the single cilium structure with high aspect ratio, we have proposed a new design concept using a separated micro mold system (SMS) fabricated by the LIGA process. For a successful replication of the cilium structure, we used the hot embossing process with the help of a double-sided mold system. We used a composite of multiwall carbon nanotube and polydimethylsiloxane (MWCNT-PDMS). The performance of the mechanoreceptors was measured by a computer-controlled nanoindenter. We carried out several experiments with the sensor in the different flow rate and direction using the experimental test apparatus. To calibrate the sensor and calculate the velocity with direction based the signal from the sensor, we analyzed the coupled phenomena between flow field and the cilium structure to calculate the deflection of the cilium structure and the drag force applying to the cilium structure due to the flow field around sensor.

  18. Engineering prototypes for theta-pinch devices

    International Nuclear Information System (INIS)

    Hansborough, L.D.; Hammer, C.F.; Hanks, K.W.; McDonald, T.E.; Nunnally, W.C.

    1975-01-01

    Past, present, and future engineering prototypes for theta-pinch plasma-physics devices at Los Alamos Scientific Laboratory are discussed. Engineering prototypes are designed to test and evaluate all components under system conditions expected on actual plasma-physics experimental devices. The importance of engineering prototype development increases as the size and complexity of the plasma-physics device increases. Past experiences with the Scyllac prototype and the Staged Theta-Pinch prototype are discussed and evaluated. The design of the proposed Staged Scyllac prototype and the Large Staged Scyllac implosion prototype assembly are discussed

  19. Three-dimensional spheroid culture targeting versatile tissue bioassays using a PDMS-based hanging drop array.

    Science.gov (United States)

    Kuo, Ching-Te; Wang, Jong-Yueh; Lin, Yu-Fen; Wo, Andrew M; Chen, Benjamin P C; Lee, Hsinyu

    2017-06-29

    Biomaterial-based tissue culture platforms have emerged as useful tools to mimic in vivo physiological microenvironments in experimental cell biology and clinical studies. We describe herein a three-dimensional (3D) tissue culture platform using a polydimethylsiloxane (PDMS)-based hanging drop array (PDMS-HDA) methodology. Multicellular spheroids can be achieved within 24 h and further boosted by incorporating collagen fibrils in PDMS-HDA. In addition, the spheroids generated from different human tumor cells exhibited distinct sensitivities toward drug chemotherapeutic agents and radiation as compared with two-dimensional (2D) cultures that often lack in vivo-like biological insights. We also demonstrated that multicellular spheroids may enable key hallmarks of tissue-based bioassays, including drug screening, tumor dissemination, cell co-culture, and tumor invasion. Taken together, these results offer new opportunities not only to achieve the active control of 3D multicellular spheroids on demand, but also to establish a rapid and cost-effective platform to study anti-cancer therapeutics and tumor microenvironments.

  20. Functionalization of PDMS modified and plasma activated two-component polyurethane coatings by surface attachment of enzymes

    International Nuclear Information System (INIS)

    Kreider, Alexej; Richter, Katharina; Sell, Stephan; Fenske, Mandus; Tornow, Christian; Stenzel, Volkmar; Grunwald, Ingo

    2013-01-01

    This article describes a new strategy for coupling the enzyme horseradish peroxidase to a two-component polyurethane (2C-PUR) coating. A stable polymer conjugate was achieved by combining the enzyme and the 2C-PUR coating which was modified with poly(dimethylsiloxane) (PDMS), located at the surface. An atmospheric pressure plasma jet system was used to convert alkyl groups from the PDMS into polar silanol functionalities. This conversion was proven by X-ray photoelectron spectroscopy and dynamic contact angle measurements. In addition, the stability of the activated 2C-PUR surface containing silanol groups was determined by measuring the contact angle as a function of time. Compared to the non-modified 2C-PUR systems the one with PDMS displayed a higher stability over a time period over 28 h. In a silanization process the coating was treated with (3-aminopropyl) trimethoxysilane and the enzyme was subsequently immobilized to the coating via the cross linker glutaraldehyde to receive new biomimetic catalytic/enzymatic functions. The chemical immobilization (chemisorption) of the enzyme to the surface showed statistically significant higher biological activity as compared to references samples without using a cross linker (physisorption). The presented technique offers the opportunity to design new and smart multifunctional surface coatings which employ biomimetic capabilities.

  1. Nanoparticle-Incorporated PDMS Film as an Improved Performance SPME Fiber for Analysis of Volatile Components of Eucalyptus Leaf

    Directory of Open Access Journals (Sweden)

    Parviz Aberoomand Azar

    2013-01-01

    Full Text Available A new fabrication strategy was proposed to prepare polydimethylsiloxane (PDMS- coated solid-phase microextraction (SPME on inexpensive and unbreakable Cu fiber. PDMS was covalently bonded to the Cu substrate using self-assembled monolayer (SAM of (3-mercaptopropyltrimethoxysilane (3MPTS as binder. To increase the performance of the fiber, the incorporation effect of some nanomaterials including silica nanoparticles (NPs, carbon nanotubes (CNTs, and carboxylated carbon nanotubes (CNT-COOH to PDMS coating was compared. The surface morphology of the prepared fibers was characterized by scanning electron microscopy (SEM, and their applicability was evaluated through the extraction of some volatile organic compounds (VOCs of Eucalyptus leaf in headspace mode, and parameters affecting the extraction efficiency including extraction temperature and extraction time were optimized. Extracted compounds were analyzed by GC-MS instrument. The results obtained indicated that prepared fibers have some advantages relative to previously prepared SPME fibers, such as higher thermal stability and improved performance of the fiber. Also, results showed that SPME is a fast, simple, quick, and sensitive technique for sampling and sample introduction of Eucalyptus VOCs.

  2. Design and fabrication of PMMA-micromachined fluid lens based on electromagnetic actuation on PMMA–PDMS bonded membrane

    International Nuclear Information System (INIS)

    Lee, June Kyoo; Park, Kyung-Woo; Choi, Ju Chan; Kim, Hak-Rin; Kong, Seong Ho

    2012-01-01

    The fabrication of a poly(methyl methacrylate) (PMMA)-micromachined fluid lens with an optimally designed built-in electromagnetic actuator was demonstrated in this study. Through a finite element method, the number of winding turns and the distance between magnetic moments were estimated to design an effective and miniaturized electromagnetic actuator. The lens body composed of PMMA structures was simply and rapidly micromachined using computer numerical control micro-milling. The poly(dimethylsiloxane) (PDMS) membranes for electromagnetic actuation were bonded to the PMMA structures by using the proposed PMMA–PDMS bonding technique, which uses an SiO 2 intermediate layer. A physical repulsive force produced by the electromagnetic actuator applies a controllable fluidic pressure to a fluidic chamber that is sealed with the PDMS membrane, thus allowing dynamic focusing. The focus tunability of the fabricated lens was 67 diopters with a focus hysteresis of less than 1 mm and a response time of 2 ms. The solenoid of the built-in actuator showed negligible thermal crosstalk to the lens. (paper)

  3. Functionalization of PDMS modified and plasma activated two-component polyurethane coatings by surface attachment of enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Kreider, Alexej; Richter, Katharina; Sell, Stephan; Fenske, Mandus; Tornow, Christian; Stenzel, Volkmar [Fraunhofer Institute for Manufacturing Technology and Advanced Materials - IFAM, Wiener Strasse 12, 28359 Bremen (Germany); Grunwald, Ingo, E-mail: ingo.grunwald@ifam.fraunhofer.de [Fraunhofer Institute for Manufacturing Technology and Advanced Materials - IFAM, Wiener Strasse 12, 28359 Bremen (Germany)

    2013-05-15

    This article describes a new strategy for coupling the enzyme horseradish peroxidase to a two-component polyurethane (2C-PUR) coating. A stable polymer conjugate was achieved by combining the enzyme and the 2C-PUR coating which was modified with poly(dimethylsiloxane) (PDMS), located at the surface. An atmospheric pressure plasma jet system was used to convert alkyl groups from the PDMS into polar silanol functionalities. This conversion was proven by X-ray photoelectron spectroscopy and dynamic contact angle measurements. In addition, the stability of the activated 2C-PUR surface containing silanol groups was determined by measuring the contact angle as a function of time. Compared to the non-modified 2C-PUR systems the one with PDMS displayed a higher stability over a time period over 28 h. In a silanization process the coating was treated with (3-aminopropyl) trimethoxysilane and the enzyme was subsequently immobilized to the coating via the cross linker glutaraldehyde to receive new biomimetic catalytic/enzymatic functions. The chemical immobilization (chemisorption) of the enzyme to the surface showed statistically significant higher biological activity as compared to references samples without using a cross linker (physisorption). The presented technique offers the opportunity to design new and smart multifunctional surface coatings which employ biomimetic capabilities.

  4. Fabrication of a roller type PDMS stamp using SU-8 concave molds and its application for roll contact printing

    International Nuclear Information System (INIS)

    Park, Jongho; Kim, Beomjoon

    2016-01-01

    Continuous fabrication of micropatterns at low-cost is attracting attention in various applications within industrial fields. To meet such demands, we have demonstrated a roll contact printing technique, using roller type polydimethylsiloxane (PDMS) stamps with roll-to-flat and roll-to-roll stages. Roller type PDMS stamps for roll contact printing were fabricated using a custom-made metal support and SU-8 microstructures fabricated on concave substrates as a mold. The molding/casting method which we developed here provided faster and easier fabrication than conventional methods for roller type stamps. Next, roll contact printing was performed using fabricated roller type PDMS stamps with roll-to-flat and roll-to-roll stages. Patterns with minimum widths of 3 μm and 2.1 μm were continuously fabricated for each stage, respectively. In addition, the relationship between applied pressures and dimensional changes of roll contact printed patterns was investigated. Finally, we confirmed that roll contact printing and the new fabrication method for roller stamps presented in this study demonstrated the feasibility for industrial applications. (paper)

  5. Synthesis and electrochemical study of a hybrid structure based on PDMS-TEOS and titania nanotubes for biomedical applications

    International Nuclear Information System (INIS)

    Castro, António G B; Bastos, Alexandre C; Miranda Salvado, Isabel M; Galstyan, Vardan; Faglia, Guido; Sberveglieri, Giorgio

    2014-01-01

    Metallic implants and devices are widely used in the orthopedic and orthodontic clinical areas. However, several problems regarding their adhesion with the living tissues and inflammatory responses due to the release of metallic ions to the medium have been reported. The modification of the metallic surfaces and the use of biocompatible protective coatings are two approaches to solve such issues. In this study, in order to improve the adhesion properties and to increase the corrosion resistance of metallic Ti substrates we have obtained a hybrid structure based on TiO 2 nanotubular arrays and PDMS-TEOS films. TiO 2 nanotubes have been prepared with two different diameters by means of electrochemical anodization. PDMS-TEOS films have been prepared by the sol–gel method. The morphological and the elemental analysis of the structures have been investigated by scanning electron microscopy and energy dispersive spectroscopy (EDS). Electrochemical impedance spectroscopy (EIS) and polarization curves have been performed during immersion of the samples in Kokubo’s simulated body fluid (SBF) at 37 °C to study the effect of structure layers and tube diameter on the protective properties. The obtained results show that the modification of the surface structure of TiO 2 and the application of PDMS-TEOS film is a promising strategy for the development of implant materials. (paper)

  6. Fabrication of a 3D active mixer based on deformable Fe-doped PDMS cones with magnetic actuation

    International Nuclear Information System (INIS)

    Riahi, Mohammadreza; Alizadeh, Elaheh

    2012-01-01

    In this paper an active 3D mixer for lab-on-chip applications is presented. The micrometer size cone shape holes are ablated on a PMMA sheet utilizing a CO 2 laser. The holes are filled with Fe micro-particles and the whole structure is molded with PDMS which cause the Fe micro-particles to be trapped in a PDMS cone structure. These Fe-doped PDMS cones are placed in a PMMA micro-channel structure fabricated by CO 2 laser machining. By applying an external periodic magnetic field, the cones periodically bend in the micro-channel and stir the fluid. The fabrication method and the effect of the magnetic field on the bending of the cones with different aspect ratios is also discussed utilizing computer simulation. Doping the polymers with micro- and nano-metallic particles has been carried out by different research groups before, but according to our knowledge, application of such structures for the fabrication of a 3D active mixer has not been presented before. (paper)

  7. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase III of the Prototypical Rod Consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod Consolidation System as described in the NUS Phase II Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase III effort the system was tested on a component, subsystem, and system level. Volume IV provides the Operating and Maintenance Manual for the Prototypical Rod Consolidation System that was installed at the Cold Test Facility. This document, Book 1 of Volume IV, discusses: Process overview functional descriptions; Control system descriptions; Support system descriptions; Maintenance system descriptions; and Process equipment descriptions

  8. Science with the ASTRI prototype

    International Nuclear Information System (INIS)

    Sartore, Nicola

    2013-01-01

    ASTRI (Astrofisica a Specchi con Tecnologia Replicante Italiana) is a “Flagship Project” financed by the Italian Ministry of Instruction, University and Research and led by the Italian National Institute of Astrophysics. It represents the Italian proposal for the development of the Small Size Telescope system of the Cherenkov Telescope Array, the next generation observatory for Very High Energy gamma-rays (20 GeV - 100 TeV). The ASTRI end-to-end prototype will be installed at Serra La Nave (Catania, Italy) and it will see the first light at the beginning of 2014. We describe the expected performance of the prototype on few selected test cases of the northern emisphere. The aim of the prototype is to probe the technological solutions and the nominal performance of the various telescope's subsystems

  9. Flight Telerobotic Servicer prototype simulator

    Science.gov (United States)

    Schein, Rob; Krauze, Linda; Hartley, Craig; Dickenson, Alan; Lavecchia, Tom; Working, Bob

    A prototype simulator for the Flight Telerobotic Servicer (FTS) system is described for use in the design development of the FTS, emphasizing the hand controller and user interface. The simulator utilizes a graphics workstation based on rapid prototyping tools for systems analyses of the use of the user interface and the hand controller. Kinematic modeling, manipulator-control algorithms, and communications programs are contained in the software for the simulator. The hardwired FTS panels and operator interface for use on the STS Orbiter are represented graphically, and the simulated controls function as the final FTS system configuration does. The robotic arm moves based on the user hand-controller interface, and the joint angles and other data are given on the prototype of the user interface. This graphics simulation tool provides the means for familiarizing crewmembers with the FTS system operation, displays, and controls.

  10. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase III of the Prototypical Rod Consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod Consolidation System as described in the NUS Phase II Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase III effort the system was tested on a component, subsystem, and system level. Volume IV provides the Operating and Maintenance Manual for the Prototypical Rod Consolidation System that was installed at the Cold Test Facility. This document, Book 4 of Volume IV, discusses: Off-normal operating and recovery procedures; Emergency response procedures; Troubleshooting procedures; and Preventive maintenance procedures

  11. Axure RP 6 Prototyping Essentials

    CERN Document Server

    Schwartz, Ezra

    2012-01-01

    Axure RP 6 Prototyping Essentials is a detailed, practical primer on the leading rapid prototyping tool. Short on jargon and high on concepts, real-life scenarios and step-by-step guidance through hands-on examples, this book will show you how to integrate Axure into your UX workflow. This book is written for UX practitioners, business analysts, product managers, and anyone else who is involved in UX projects. The book assumes that you have no or very little familiarity with Axure. It will help you if you are evaluating the tool for an upcoming project or are required to quickly get up to spee

  12. An immuno-wall microdevice exhibits rapid and sensitive detection of IDH1-R132H mutation specific to grade II and III gliomas

    Science.gov (United States)

    Yamamichi, Akane; Kasama, Toshihiro; Ohka, Fumiharu; Suzuki, Hiromichi; Kato, Akira; Motomura, Kazuya; Hirano, Masaki; Ranjit, Melissa; Chalise, Lushun; Kurimoto, Michihiro; Kondo, Goro; Aoki, Kosuke; Kaji, Noritada; Tokeshi, Manabu; Matsubara, Toshio; Senga, Takeshi; Kaneko, Mika K.; Suzuki, Hidenori; Hara, Masahito; Wakabayashi, Toshihiko; Baba, Yoshinobu; Kato, Yukinari; Natsume, Atsushi

    2016-01-01

    World Health Organization grade II and III gliomas most frequently occur in the central nervous system (CNS) in adults. Gliomas are not circumscribed; tumor edges are irregular and consist of tumor cells, normal brain tissue, and hyperplastic reactive glial cells. Therefore, the tumors are not fully resectable, resulting in recurrence, malignant progression, and eventual death. Approximately 69-80% of grade II and III gliomas harbor mutations in the isocitrate dehydrogenase 1 gene (IDH1), of which 83-90% are found to be the IDH1-R132H mutation. Detection of the IDH1-R132H mutation should help in the differential diagnosis of grade II and III gliomas from other types of CNS tumors and help determine the boundary between the tumor and normal brain tissue. In this study, we established a highly sensitive antibody-based device, referred to as the immuno-wall, to detect the IDH1-R132H mutation in gliomas. The immuno-wall causes an immunoreaction in microchannels fabricated using a photo-polymerizing polymer. This microdevice enables the analysis of the IDH1 status with a small sample within 15 min with substantially high sensitivity. Our results suggested that 10% content of the IDH1-R132H mutation in a sample of 0.33 μl volume, with 500 ng protein, or from 500 cells is theoretically sufficient for the analysis. The immuno-wall device will enable the rapid and highly sensitive detection of the IDH1-R132H mutation in routine clinical practice.

  13. NMS Prototype development final report

    International Nuclear Information System (INIS)

    Lepetich, J.E.

    1993-01-01

    Program for development of NMS prototype for LAMPF consisted of 5 tasks: crystal procurement specification, inspection/evaluation of CsI crystals, design/fabrication of crystal housing, design/fabrication of PMT shields, and packaging of crystals in the housing

  14. EUSO-TA prototype telescope

    Energy Technology Data Exchange (ETDEWEB)

    Bisconti, Francesca, E-mail: francesca.bisconti@kit.edu

    2016-07-11

    EUSO-TA is one of the prototypes developed for the JEM-EUSO project, a space-based large field-of-view telescope to observe the fluorescence light emitted by cosmic ray air showers in the atmosphere. EUSO-TA is a ground-based prototype located at the Telescope Array (TA) site in Utah, USA, where an Electron Light Source and a Central Laser Facility are installed. The purpose of the EUSO-TA project is to calibrate the prototype with the TA fluorescence detector in presence of well-known light sources and cosmic ray air showers. In 2015, the detector started the first measurements and tests using the mentioned light sources have been performed successfully. A first cosmic ray candidate has been observed, as well as stars of different magnitude and color index. Since Silicon Photo-Multipliers (SiPMs) are very promising for fluorescence telescopes of next generation, they are under consideration for the realization of a new prototype of EUSO Photo Detector Module (PDM). The response of this sensor type is under investigation through simulations and laboratory experimentation.

  15. The OPAL vertex detector prototype

    International Nuclear Information System (INIS)

    Roney, J.M.; Armitage, J.C.; Carnegie, R.K.; Giles, G.L.; Hemingway, R.J.; McPherson, A.C.; Pinfold, J.L.; Waterhouse, J.; Godfrey, L.; Hargrove, C.K.

    1989-01-01

    The prototype test results of a high resolution charged particle tracking detector are reported. The detector is designed to measure vertex topologies of particles produced in the e + e - collisions of the OPAL experiment at LEP. The OPAL vertex detector is a 1 m long, 0.46 m diameter cylindrical drift chamber consisting of an axial and stereo layer each of which is divided into 36 jet cells. A prototype chamber containing four axial and two stereo cells was studied using a pion test beam at CERN. The studies examined the prototype under a variety of operating conditions. An r-Φ resolution of 60 μm was obtained when the chamber was operated with argon (50%)-ethane (50%) at 3.75 bar, and when CO 2 (80%)-isobutane (20%) at 2.5 bar was used a 25 μm resolution was achieved. A z measurement using end-to-end time difference has a resolution of 3.5 cm. The details of these prototype studies are discussed in this paper. (orig.)

  16. Rapid Prototyping Enters Mainstream Manufacturing.

    Science.gov (United States)

    Winek, Gary

    1996-01-01

    Explains rapid prototyping, a process that uses computer-assisted design files to create a three-dimensional object automatically, speeding the industrial design process. Five commercially available systems and two emerging types--the 3-D printing process and repetitive masking and depositing--are described. (SK)

  17. Encapsulation of polymer photovoltaic prototypes

    DEFF Research Database (Denmark)

    Krebs, Frederik C

    2006-01-01

    A simple and efficient method for the encapsulation of polymer and organic photovoltaic prototypes is presented. The method employs device preparation on glass substrates with subsequent sealing using glass fiber reinforced thermosetting epoxy (prepreg) against a back plate. The method allows...

  18. EUSO-TA prototype telescope

    Science.gov (United States)

    Bisconti, Francesca; JEM-EUSO Collaboration

    2016-07-01

    EUSO-TA is one of the prototypes developed for the JEM-EUSO project, a space-based large field-of-view telescope to observe the fluorescence light emitted by cosmic ray air showers in the atmosphere. EUSO-TA is a ground-based prototype located at the Telescope Array (TA) site in Utah, USA, where an Electron Light Source and a Central Laser Facility are installed. The purpose of the EUSO-TA project is to calibrate the prototype with the TA fluorescence detector in presence of well-known light sources and cosmic ray air showers. In 2015, the detector started the first measurements and tests using the mentioned light sources have been performed successfully. A first cosmic ray candidate has been observed, as well as stars of different magnitude and color index. Since Silicon Photo-Multipliers (SiPMs) are very promising for fluorescence telescopes of next generation, they are under consideration for the realization of a new prototype of EUSO Photo Detector Module (PDM). The response of this sensor type is under investigation through simulations and laboratory experimentation.

  19. Facial Prototype Formation in Children.

    Science.gov (United States)

    Inn, Donald; And Others

    This study examined memory representation as it is exhibited in young children's formation of facial prototypes. In the first part of the study, researchers constructed images of faces using an Identikit that provided the features of hair, eyes, mouth, nose, and chin. Images were varied systematically. A series of these images, called exemplar…

  20. Prototype diagnosis of psychiatric syndromes

    Science.gov (United States)

    WESTEN, DREW

    2012-01-01

    The method of diagnosing patients used since the early 1980s in psychiatry, which involves evaluating each of several hundred symptoms for their presence or absence and then applying idiosyncratic rules for combining them for each of several hundred disorders, has led to great advances in research over the last 30 years. However, its problems have become increasingly apparent, particularly for clinical practice. An alternative approach, designed to maximize clinical utility, is prototype matching. Instead of counting symptoms of a disorder and determining whether they cross an arbitrary cutoff, the task of the diagnostician is to gauge the extent to which a patient’s clinical presentation matches a paragraph-length description of the disorder using a simple 5-point scale, from 1 (“little or no match”) to 5 (“very good match”). The result is both a dimensional diagnosis that captures the extent to which the patient “has” the disorder and a categorical diagnosis, with ratings of 4 and 5 corresponding to presence of the disorder and a rating of 3 indicating “subthreshold” or “clinically significant features”. The disorders and criteria woven into the prototypes can be identified empirically, so that the prototypes are both scientifically grounded and clinically useful. Prototype diagnosis has a number of advantages: it better captures the way humans naturally classify novel and complex stimuli; is clinically helpful, reliable, and easy to use in everyday practice; facilitates both dimensional and categorical diagnosis and dramatically reduces the number of categories required for classification; allows for clinically richer, empirically derived, and culturally relevant classification; reduces the gap between research criteria and clinical knowledge, by allowing clinicians in training to learn a small set of standardized prototypes and to develop richer mental representations of the disorders over time through clinical experience; and can help

  1. Prototype Effect and the Persuasiveness of Generalizations.

    Science.gov (United States)

    Dahlman, Christian; Sarwar, Farhan; Bååth, Rasmus; Wahlberg, Lena; Sikström, Sverker

    An argument that makes use of a generalization activates the prototype for the category used in the generalization. We conducted two experiments that investigated how the activation of the prototype affects the persuasiveness of the argument. The results of the experiments suggest that the features of the prototype overshadow and partly overwrite the actual facts of the case. The case is, to some extent, judged as if it had the features of the prototype instead of the features it actually has. This prototype effect increases the persuasiveness of the argument in situations where the audience finds the judgment more warranted for the prototype than for the actual case (positive prototype effect), but decreases persuasiveness in situations where the audience finds the judgment less warranted for the prototype than for the actual case (negative prototype effect).

  2. Supporting Active User Involvment in Prototyping

    DEFF Research Database (Denmark)

    Grønbæk, Kaj

    1990-01-01

    The term prototyping has in recent years become a buzzword in both research and practice of system design due to a number of claimed advantages of prototyping techniques over traditional specification techniques. In particular it is often stated that prototyping facilitates the users' involvement...... in the development process. But prototyping does not automatically imply active user involvement! Thus a cooperative prototyping approach aiming at involving users actively and creatively in system design is proposed in this paper. The key point of the approach is to involve users in activities that closely couple...... development of prototypes to early evaluation of prototypes in envisioned use situations. Having users involved in such activities creates new requirements for tool support. Tools that support direct manipulation of prototypes and simulation of behaviour have shown promise for cooperative prototyping...

  3. Prototyping of user interfaces for mobile applications

    CERN Document Server

    Bähr, Benjamin

    2017-01-01

    This book investigates processes for the prototyping of user interfaces for mobile apps, and describes the development of new concepts and tools that can improve the prototype driven app development in the early stages. It presents the development and evaluation of a new requirements catalogue for prototyping mobile app tools that identifies the most important criteria such tools should meet at different prototype-development stages. This catalogue is not just a good point of orientation for designing new prototyping approaches, but also provides a set of metrics for a comparing the performance of alternative prototyping tools. In addition, the book discusses the development of Blended Prototyping, a new approach for prototyping user interfaces for mobile applications in the early and middle development stages, and presents the results of an evaluation of its performance, showing that it provides a tool for teamwork-oriented, creative prototyping of mobile apps in the early design stages.

  4. Design in action: From prototyping by demonstration to cooperative prototyping

    DEFF Research Database (Denmark)

    Bødker, Susanne; Grønbæk, Kaj

    1991-01-01

    ... the development of any computer-based system will have to proceed in a cycle from design to experience and back again. It is impossible to anticipate all of the relevant breakdown and their domains. They emerge gradually in practice. Winograd and Flores, 1986. p.171 Some time ago we worked wi...... with a group of dental assistants, designing a prototype case record system to explore the possibility of using computer support in public dental clinics. ...

  5. Effect of wettability and surface roughness on the adhesion properties of collagen on PDMS films treated by capacitively coupled oxygen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Juárez-Moreno, J.A. [Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburna de Hidalgo C.P., 97200 Mérida, Yucatán (Mexico); Ávila-Ortega, A. [Facultad de Ingeniería Química—UADY, Periférico Norte Kilómetro 33.5, Col. Chuburna de Hidalgo Inn, C.P. , 97203 Mérida, Yucatán (Mexico); Oliva, A.I. [Centro de Investigación y de Estudios Avanzados del IPN–Unidad Mérida, Km. 6 Antigua carretera a Progreso Apdo. Postal 73, Cordemex, 97310 Mérida, Yucatán (Mexico); Avilés, F. [Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburna de Hidalgo C.P., 97200 Mérida, Yucatán (Mexico); Cauich-Rodríguez, J.V., E-mail: jvcr@cicy.mx [Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburna de Hidalgo C.P., 97200 Mérida, Yucatán (Mexico)

    2015-09-15

    Highlights: • Plasma treatment was used as an adhesive tool for PDMS/collagen composite preparation. • Response surface methodology was used for statistical optimization. • A microscopic roughness can also lead to a mechanical interlocking between materials. • Hydroxyl groups on the PDMS surface contribute to the enhanced chemical interactions. • PDMS/collagen composite obtained by plasma treatment exhibited higher peel strength. - Abstract: Direct chemical bonding of biomolecules to the surface of chemically inert polymers such as polydimethylsiloxane (PDMS) is not easily achieved. Therefore, pre-activation of such materials, followed by attachment of the biomolecule is necessary. This paper describes a procedure to functionalize a PDMS surface by oxygen-based plasma followed by the adhesion of collagen type I for the preparation of adhesive-free bilayer composite intended as skin substitute. Plasma treatments between 40 and 120 W for 5 to 15 min were used and the extent of surface modification was followed by contact angle, Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM) and adhesion test. It was found that as the plasma power and time were increased, PDMS contact angle decreased while surface roughness increased as revealed by SEM and AFM. The formation of oxygen-containing functional groups at the surface was detected by FTIR. T-peel tests, performed on PDMS treated at 80 W/13 min and covered with collagen showed maximum peel strength of 0.1 N/mm which was 3 times higher than that measured for the untreated bilayer composite. The observed enhancement in the adhesion strength was attributed to the increased mechanical interlocking driven by the increased roughness and the formation of hydrophilic functional groups.

  6. Effect of wettability and surface roughness on the adhesion properties of collagen on PDMS films treated by capacitively coupled oxygen plasma

    International Nuclear Information System (INIS)

    Juárez-Moreno, J.A.; Ávila-Ortega, A.; Oliva, A.I.; Avilés, F.; Cauich-Rodríguez, J.V.

    2015-01-01

    Highlights: • Plasma treatment was used as an adhesive tool for PDMS/collagen composite preparation. • Response surface methodology was used for statistical optimization. • A microscopic roughness can also lead to a mechanical interlocking between materials. • Hydroxyl groups on the PDMS surface contribute to the enhanced chemical interactions. • PDMS/collagen composite obtained by plasma treatment exhibited higher peel strength. - Abstract: Direct chemical bonding of biomolecules to the surface of chemically inert polymers such as polydimethylsiloxane (PDMS) is not easily achieved. Therefore, pre-activation of such materials, followed by attachment of the biomolecule is necessary. This paper describes a procedure to functionalize a PDMS surface by oxygen-based plasma followed by the adhesion of collagen type I for the preparation of adhesive-free bilayer composite intended as skin substitute. Plasma treatments between 40 and 120 W for 5 to 15 min were used and the extent of surface modification was followed by contact angle, Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM) and adhesion test. It was found that as the plasma power and time were increased, PDMS contact angle decreased while surface roughness increased as revealed by SEM and AFM. The formation of oxygen-containing functional groups at the surface was detected by FTIR. T-peel tests, performed on PDMS treated at 80 W/13 min and covered with collagen showed maximum peel strength of 0.1 N/mm which was 3 times higher than that measured for the untreated bilayer composite. The observed enhancement in the adhesion strength was attributed to the increased mechanical interlocking driven by the increased roughness and the formation of hydrophilic functional groups

  7. The influence of the PDMS technique in the study of the induced modifications of polymers used in nuclear environment; Apport de la technique PDMS a l`etude des modifications induites dans des polymeres utilises en ambiance nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Nsouli, B [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire

    1995-07-20

    The PDMS technique (Particle Induced Desorption Mass Spectrometry) combined with a TOF detection (Time of Flight) is the main tool used in this study of polymer degradation in nuclear environment. Ar{sup 3+} ions with a 9 MeV energy have been used to induce the secondary ion emission, and the study was devoted to two stresses typical of this type of environment. The first part of the work concerned with the structural modifications induced by gamma irradiation on ion exchange resin, used for nuclear effluents reprocessing, namely the poly(4-vinylpyridine), or P-4PV. For such a material, the negative fragment emission is particularly sensitive to structural modifications. Difficult physical measurements in such an insoluble and infusible material (IR, UV - Vis, EPR, TGA, dielectric measurements) became consistent after the degradation mechanisms were elucidated. These effects, interpreted in terms of scissions and recombinations, enabled us to explicit different modes of energy deposition, and shed light on some discrepancies between SIMS and PDMS. The second part of the study is devoted to the thermal ageing of an elastomer, used in fabrication of valve gaskets submitted to high temperatures. First of all, we studied the constituents of the polymeric material, i. e. copolymer, homo polymers, and also additives. This last component proved useful to analyze, as a superficial lubricant layer can mask the conformational rearrangements which seem to occur after few hours of thermal treatment (PE blocks are prevailing at the surface). Here too, the PDMS information is important to account for static SIMS and ESCA results, as its probed layer thickness lies in-between. (author) 187 refs.

  8. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 2 discusses the following topics: Fuel Rod Extraction System Test Results and Analysis Reports and Clamping Table Test Results and Analysis Reports

  9. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 1 discusses the following topics: the background of the project; test program description; summary of tests and test results; problem evaluation; functional requirements confirmation; recommendations; and completed test documentation for tests performed in Phase 3

  10. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 9 discusses the following topics: Integrated System Normal Operations Test Results and Analysis Report; Integrated System Off-Normal Operations Test Results and Analysis Report; and Integrated System Maintenance Operations Test Results and Analysis Report

  11. Prototype of sun projector device

    Science.gov (United States)

    Ihsan; Dermawan, B.

    2016-11-01

    One way to introduce astronomy to public, including students, can be handled by solar observation. The widely held device for this purpose is coelostat and heliostat. Besides using filter attached to a device such as telescope, it is safest to use indirect way for observing the Sun. The main principle of the indirect way is deflecting the sun light and projecting image of the sun on a screen. We design and build a simple and low-cost astronomical device, serving as a supplement to increase public service, especially for solar observation. Without using any digital and intricate supporting equipment, people can watch and relish image of the Sun in comfortable condition, i.e. in a sheltered or shady place. Here we describe a design and features of our prototype of the device, which still, of course, has some limitations. In the future, this prototype can be improved for more efficient and useful applications.

  12. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 8 discusses Control System SOT Tests Results and Analysis Report. This is a continuation of Book 7

  13. Prototype and proposed ISABELLE dipoles

    International Nuclear Information System (INIS)

    McInturff, A.D.; Sampson, W.B.; Robins, K.E.; Dahl, P.F.; Damm, R.

    1977-01-01

    Data are presented on the latest dipole prototypes to update the operational parameters possible for ISABELLE. This data base will constantly expand until the start of construction of the storage rings. The data will include field quality, stray field magnitudes, quench temperature and propagation times, protection capabilities singly and in multiple units, maximum central fields obtained and training behavior. Performance of the dipoles versus temperature and mode of refrigeration will be discussed. The single layer cosine theta turns distribution coils' parameters are better than those required for the operation of the 200 x 200 GeV version of ISABELLE. The double layer prototype has exceeded the magnetic field performance and two dimensional quality of field needed for the 400 x 400 GeV version of ISABELLE

  14. Prototypical Rod Construction Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 3 discusses the following topics: Downender Test Results and Analysis Report; NFBC Canister Upender Test Results and Analysis Report; Fuel Assembly Handling Fixture Test Results and Analysis Report; and Fuel Canister Upender Test Results and Analysis Report

  15. Rapid mask prototyping for microfluidics.

    Science.gov (United States)

    Maisonneuve, B G C; Honegger, T; Cordeiro, J; Lecarme, O; Thiry, T; Fuard, D; Berton, K; Picard, E; Zelsmann, M; Peyrade, D

    2016-03-01

    With the rise of microfluidics for the past decade, there has come an ever more pressing need for a low-cost and rapid prototyping technology, especially for research and education purposes. In this article, we report a rapid prototyping process of chromed masks for various microfluidic applications. The process takes place out of a clean room, uses a commercially available video-projector, and can be completed in less than half an hour. We quantify the ranges of fields of view and of resolutions accessible through this video-projection system and report the fabrication of critical microfluidic components (junctions, straight channels, and curved channels). To exemplify the process, three common devices are produced using this method: a droplet generation device, a gradient generation device, and a neuro-engineering oriented device. The neuro-engineering oriented device is a compartmentalized microfluidic chip, and therefore, required the production and the precise alignment of two different masks.

  16. Prototyping the PANDA Barrel DIRC

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, C., E-mail: C.Schwarz@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany); Kalicy, G.; Dzhygadlo, R.; Gerhardt, A.; Götzen, K.; Hohler, R.; Kumawat, H.; Lehmann, D.; Lewandowski, B.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwiening, J.; Traxler, M.; Zühlsdorf, M. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany); Dodokhov, V.Kh. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Britting, A.; Eyrich, W.; Lehmann, A. [Friedrich Alexander-University of Erlangen-Nuremberg, Erlangen (Germany); and others

    2014-12-01

    The design of the Barrel DIRC detector for the future PANDA experiment at FAIR contains several important improvements compared to the successful BABAR DIRC, such as focusing and fast timing. To test those improvements as well as other design options a prototype was build and successfully tested in 2012 with particle beams at CERN. The prototype comprises a radiator bar, focusing lens, mirror, and a prism shaped expansion volume made of synthetic fused silica. An array of micro-channel plate photomultiplier tubes measures the location and arrival time of the Cherenkov photons with sub-nanosecond resolution. The development of a fast reconstruction algorithm allowed to tune construction details of the detector setup with test beam data and Monte-Carlo simulations.

  17. Customer-experienced rapid prototyping

    Science.gov (United States)

    Zhang, Lijuan; Zhang, Fu; Li, Anbo

    2008-12-01

    In order to describe accurately and comprehend quickly the perfect GIS requirements, this article will integrate the ideas of QFD (Quality Function Deployment) and UML (Unified Modeling Language), and analyze the deficiency of prototype development model, and will propose the idea of the Customer-Experienced Rapid Prototyping (CE-RP) and describe in detail the process and framework of the CE-RP, from the angle of the characteristics of Modern-GIS. The CE-RP is mainly composed of Customer Tool-Sets (CTS), Developer Tool-Sets (DTS) and Barrier-Free Semantic Interpreter (BF-SI) and performed by two roles of customer and developer. The main purpose of the CE-RP is to produce the unified and authorized requirements data models between customer and software developer.

  18. DOE's annealing prototype demonstration projects

    International Nuclear Information System (INIS)

    Warren, J.; Nakos, J.; Rochau, G.

    1997-01-01

    One of the challenges U.S. utilities face in addressing technical issues associated with the aging of nuclear power plants is the long-term effect of plant operation on reactor pressure vessels (RPVs). As a nuclear plant operates, its RPV is exposed to neutrons. For certain plants, this neutron exposure can cause embrittlement of some of the RPV welds which can shorten the useful life of the RPV. This RPV embrittlement issue has the potential to affect the continued operation of a number of operating U.S. pressurized water reactor (PWR) plants. However, RPV material properties affected by long-term irradiation are recoverable through a thermal annealing treatment of the RPV. Although a dozen Russian-designed RPVs and several U.S. military vessels have been successfully annealed, U.S. utilities have stated that a successful annealing demonstration of a U.S. RPV is a prerequisite for annealing a licensed U.S. nuclear power plant. In May 1995, the Department of Energy's Sandia National Laboratories awarded two cost-shared contracts to evaluate the feasibility of annealing U.S. licensed plants by conducting an anneal of an installed RPV using two different heating technologies. The contracts were awarded to the American Society of Mechanical Engineers (ASME) Center for Research and Technology Development (CRTD) and MPR Associates (MPR). The ASME team completed its annealing prototype demonstration in July 1996, using an indirect gas furnace at the uncompleted Public Service of Indiana's Marble Hill nuclear power plant. The MPR team's annealing prototype demonstration was scheduled to be completed in early 1997, using a direct heat electrical furnace at the uncompleted Consumers Power Company's nuclear power plant at Midland, Michigan. This paper describes the Department's annealing prototype demonstration goals and objectives; the tasks, deliverables, and results to date for each annealing prototype demonstration; and the remaining annealing technology challenges

  19. Encapsulation of polymer photovoltaic prototypes

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, Frederik C. [The Danish Polymer Centre, RISOE National Laboratory, P.O. Box 49, DK-4000 Roskilde (Denmark)

    2006-12-15

    A simple and efficient method for the encapsulation of polymer and organic photovoltaic prototypes is presented. The method employs device preparation on glass substrates with subsequent sealing using glass fiber reinforced thermosetting epoxy (prepreg) against a back plate. The method allows for transporting oxygen and water sensitive devices outside a glove box environment after sealing and enables sharing of devices between research groups such that efficiency and stability can be evaluated in different laboratories. (author)

  20. Yucca Mountain project prototype testing

    International Nuclear Information System (INIS)

    Hughes, W.T.; Girdley, W.A.

    1990-01-01

    The U.S. DOE is responsible for characterizing the Yucca Mountain site in Nevada to determine its suitability for development as a geologic repository to isolate high-level nuclear waste for at least 10,000 years. This unprecedented task relies in part on measurements made with relatively new methods or applications, such as dry coring and overcoring for studies to be conducted from the land surface and in an underground facility. The Yucca Mountain Project has, since 1988, implemented a program of equipment development and methods development for a broad spectrum of hydrologic, geologic, rock mechanics, and thermomechanical tests planned for use in an Exploratory Shaft during site characterization at the Yucca Mountain site. A second major program was fielded beginning in April 1989 to develop and test methods and equipment for surface drilling to obtain core samples from depth using only air as a circulating medium. The third major area of prototype testing has been during the ongoing development of the Instrumentation/ Data Acquisition System (IDAS), designed to collect and monitor data from down-hole instrumentation in the unsaturated zone, and store and transmit the data to a central archiving computer. Future prototype work is planned for several programs including the application of vertical seismic profiling methods and flume design to characterizing the geology at Yucca Mountain. The major objectives of this prototype testing are to assure that planned Site Characterization testing can be carried out effectively at Yucca Mountain, both in the Exploratory Shaft Facility (ESF), and from the surface, and to avoid potential major failures or delays that could result from the need to re-design testing concepts or equipment. This paper will describe the scope of the Yucca Mountain Project prototype testing programs and summarize results to date. 3 figs

  1. Prototype Morphing Fan Nozzle Demonstrated

    Science.gov (United States)

    Lee, Ho-Jun; Song, Gang-Bing

    2004-01-01

    Ongoing research in NASA Glenn Research Center's Structural Mechanics and Dynamics Branch to develop smart materials technologies for aeropropulsion structural components has resulted in the design of the prototype morphing fan nozzle shown in the photograph. This prototype exploits the potential of smart materials to significantly improve the performance of existing aircraft engines by introducing new inherent capabilities for shape control, vibration damping, noise reduction, health monitoring, and flow manipulation. The novel design employs two different smart materials, a shape-memory alloy and magnetorheological fluids, to reduce the nozzle area by up to 30 percent. The prototype of the variable-area fan nozzle implements an overlapping spring leaf assembly to simplify the initial design and to provide ease of structural control. A single bundle of shape memory alloy wire actuators is used to reduce the nozzle geometry. The nozzle is subsequently held in the reduced-area configuration by using magnetorheological fluid brakes. This prototype uses the inherent advantages of shape memory alloys in providing large induced strains and of magnetorheological fluids in generating large resistive forces. In addition, the spring leaf design also functions as a return spring, once the magnetorheological fluid brakes are released, to help force the shape memory alloy wires to return to their original position. A computerized real-time control system uses the derivative-gain and proportional-gain algorithms to operate the system. This design represents a novel approach to the active control of high-bypass-ratio turbofan engines. Researchers have estimated that such engines will reduce thrust specific fuel consumption by 9 percent over that of fixed-geometry fan nozzles. This research was conducted under a cooperative agreement (NCC3-839) at the University of Akron.

  2. Using prototyping in software development

    OpenAIRE

    Šinkovec, Miha

    2010-01-01

    Today the business system changers faster than the usual conventional cascade life cycle. Because of that, we can conclude, that today's programming system will no longer be presented as the answer to this topic in the developing age of ever changing user requirements. Neither increased performance or higher productivity will decrease the problem. The appropriate solution to this stated problem is prototyping. Instead of building and developing the whole system, we build a module that can...

  3. Iteration and Prototyping in Creating Technical Specifications.

    Science.gov (United States)

    Flynt, John P.

    1994-01-01

    Claims that the development process for computer software can be greatly aided by the writers of specifications if they employ basic iteration and prototyping techniques. Asserts that computer software configuration management practices provide ready models for iteration and prototyping. (HB)

  4. Printing of Titanium implant prototype

    International Nuclear Information System (INIS)

    Wiria, Florencia Edith; Shyan, John Yong Ming; Lim, Poon Nian; Wen, Francis Goh Chung; Yeo, Jin Fei; Cao, Tong

    2010-01-01

    Dental implant plays an important role as a conduit of force and stress to flow from the tooth to the related bone. In the load sharing between an implant and its related bone, the amount of stress carried by each of them directly related to their stiffness or modulus. Hence, it is a crucial issue for the implant to have matching mechanical properties, in particular modulus, between the implant and its related bone. Titanium is a metallic material that has good biocompatibility and corrosion resistance. Whilst the modulus of the bulk material is still higher than that of bone, it is the lowest among all other commonly used metallic implant materials, such as stainless steel or cobalt alloy. Hence it is potential to further reduce the modulus of pure Titanium by engineering its processing method to obtain porous structure. In this project, porous Titanium implant prototype is fabricated using 3-dimensional printing. This technique allows the flexibility of design customization, which is beneficial for implant fabrication as tailoring of implant size and shape helps to ensure the implant would fit nicely to the patient. The fabricated Titanium prototype had a modulus of 4.8-13.2 GPa, which is in the range of natural bone modulus. The compressive strength achieved was between 167 to 455 MPa. Subsequent cell culture study indicated that the porous Titanium prototype had good biocompatibility and is suitable for bone cell attachment and proliferation.

  5. Majorana Thermosyphon Prototype Experimental Results

    International Nuclear Information System (INIS)

    Fast, James E.; Reid, Douglas J.; Aguayo Navarrete, Estanislao

    2010-01-01

    The Majorana demonstrator will operate at liquid Nitrogen temperatures to ensure optimal spectrometric performance of its High Purity Germanium (HPGe) detector modules. In order to transfer the heat load of the detector module, the Majorana demonstrator requires a cooling system that will maintain a stable liquid nitrogen temperature. This cooling system is required to transport the heat from the detector chamber outside the shield. One approach is to use the two phase liquid-gas equilibrium to ensure constant temperature. This cooling technique is used in a thermosyphon. The thermosyphon can be designed so the vaporization/condensing process transfers heat through the shield while maintaining a stable operating temperature. A prototype of such system has been built at PNNL. This document presents the experimental results of the prototype and evaluates the heat transfer performance of the system. The cool down time, temperature gradient in the thermosyphon, and heat transfer analysis are studied in this document with different heat load applied to the prototype.

  6. The influence of the PDMS technique in the study of the induced modifications of polymers used in nuclear environment

    International Nuclear Information System (INIS)

    Nsouli, B.

    1995-01-01

    The PDMS technique (Particle Induced Desorption Mass Spectrometry) combined with a TOF detection (Time of Flight) is the main tool used in this study of polymer degradation in nuclear environment. Ar 3+ ions with a 9 MeV energy have been used to induce the secondary ion emission, and the study was devoted to two stresses typical of this type of environment. The first part of the work concerned with the structural modifications induced by gamma irradiation on ion exchange resin, used for nuclear effluents reprocessing, namely the poly(4-vinylpyridine), or P-4PV. For such a material, the negative fragment emission is particularly sensitive to structural modifications. Difficult physical measurements in such an insoluble and infusible material (IR, UV - Vis, EPR, TGA, dielectric measurements) became consistent after the degradation mechanisms were elucidated. These effects, interpreted in terms of scissions and recombinations, enabled us to explicit different modes of energy deposition, and shed light on some discrepancies between SIMS and PDMS. The second part of the study is devoted to the thermal ageing of an elastomer, used in fabrication of valve gaskets submitted to high temperatures. First of all, we studied the constituents of the polymeric material, i. e. copolymer, homo polymers, and also additives. This last component proved useful to analyze, as a superficial lubricant layer can mask the conformational rearrangements which seem to occur after few hours of thermal treatment (PE blocks are prevailing at the surface). Here too, the PDMS information is important to account for static SIMS and ESCA results, as its probed layer thickness lies in-between. (author)

  7. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system.

    Science.gov (United States)

    Lima, Rui; Wada, Shigeo; Tanaka, Shuji; Takeda, Motohiro; Ishikawa, Takuji; Tsubota, Ken-ichi; Imai, Yohsuke; Yamaguchi, Takami

    2008-04-01

    Progress in microfabricated technologies has attracted the attention of researchers in several areas, including microcirculation. Microfluidic devices are expected to provide powerful tools not only to better understand the biophysical behavior of blood flow in microvessels, but also for disease diagnosis. Such microfluidic devices for biomedical applications must be compatible with state-of-the-art flow measuring techniques, such as confocal microparticle image velocimetry (PIV). This confocal system has the ability to not only quantify flow patterns inside microchannels with high spatial and temporal resolution, but can also be used to obtain velocity measurements for several optically sectioned images along the depth of the microchannel. In this study, we investigated the ability to obtain velocity measurements using physiological saline (PS) and in vitro blood in a rectangular polydimethysiloxane (PDMS) microchannel (300 microm wide, 45 microm deep) using a confocal micro-PIV system. Applying this combination, measurements of trace particles seeded in the flow were performed for both fluids at a constant flow rate (Re = 0.02). Velocity profiles were acquired by successive measurements at different depth positions to obtain three-dimensional (3-D) information on the behavior of both fluid flows. Generally, the velocity profiles were found to be markedly blunt in the central region, mainly due to the low aspect ratio (h/w = 0.15) of the rectangular microchannel. Predictions using a theoretical model for the rectangular microchannel corresponded quite well with the experimental micro-PIV results for the PS fluid. However, for the in vitro blood with 20% hematocrit, small fluctuations were found in the velocity profiles. The present study clearly shows that confocal micro-PIV can be effectively integrated with a PDMS microchannel and used to obtain blood velocity profiles along the full depth of the microchannel because of its unique 3-D optical sectioning ability

  8. Prototype effect and the persuasiveness of generalizations

    OpenAIRE

    Dahlman, Christian; Sarwar, Farhan; Bååth, Rasmus; Wahlberg, Lena; Sikström, Sverker

    2015-01-01

    An argument that makes use of a generalization activates the prototype for the category used in the generalization. We conducted two experiments that investigated how the activation of the prototype affects the persuasiveness of the argument. The results of the experiments suggest that the features of the prototype overshadow and partly overwrite the actual facts of the case. The case is, to some extent, judged as if it had the features of the prototype instead of the features it actually ...

  9. Engineering of PDMS surfaces for use in microsystems for capture and isolation of complex and biomedically important proteins: epidermal growth factor receptor as a model system.

    Science.gov (United States)

    Lowe, Aaron M; Ozer, Byram H; Wiepz, Gregory J; Bertics, Paul J; Abbott, Nicholas L

    2008-08-01

    Elastomers based on poly(dimethylsiloxane) (PDMS) are promising materials for fabrication of a wide range of microanalytical systems due to their mechanical and optical properties and ease of processing. To date, however, quantitative studies that demonstrate reliable and reproducible methods for attachment of binding groups that capture complex receptor proteins of relevance to biomedical applications of PDMS microsystems have not been reported. Herein we describe methods that lead to the reproducible capture of a transmembrane protein, the human epidermal growth factor (EGF) receptor, onto PDMS surfaces presenting covalently immobilized antibodies for EGF receptor, and subsequent isolation of the captured receptor by mechanical transfer of the receptor onto a chemically functionalized surface of a gold film for detection. This result is particularly significant because the physical properties of transmembrane proteins make this class of proteins a difficult one to analyze. We benchmark the performance of antibodies to the human EGF receptor covalently immobilized on PDMS against the performance of the same antibodies physisorbed to conventional surfaces utilized in ELISA assays through the use of EGF receptor that was (32)P-radiolabeled in its autophosphorylation domain. These results reveal that two pan-reactive antibodies for the EGF receptor (clones H11 and 111.6) and one phosphospecific EGF receptor antibody (clone pY1068) capture the receptor on both PDMS and ELISA plates. When using H11 antibody to capture EGF receptor and subsequent treatment with a stripping buffer (NaOH and sodium dodecylsulfate) to isolate the receptor, the signal-to-background obtained using the PDMS surface was 82 : 1, exceeding the signal-to-background measured on the ELISA plate (<48 : 1). We also characterized the isolation of captured EGF receptor by mechanical contact of the PDMS surface with a chemically functionalized gold film. The efficiency of mechanical transfer of the

  10. Separación de mezclas agua-propanol usando membranas de preevaporación PDMS

    Directory of Open Access Journals (Sweden)

    Mahacine Amrani

    2008-05-01

    Full Text Available La recuperación y purificación de disolventes orgánicos en la química farmacéutica resulta de gran importancia pa-ra la economía y el medio ambiente. La separación de mezclas de agua/alcohol por el proceso de pervaporación se llevó a cabo a través de membranas hidrofóbicas. En este trabajo se estudia el rendimiento de las membranas de polidimetilsiloxano (PDMS para la deshidratación de mezclas agua/propanol por el proceso de preevaporación. El PDMS es reconocido por su selectividad de permeabilidad al alcohol preferentemente en mezclas de agua/alcohol durante el preevaporación debido a su tamaño molecular, aunque aún se presente penetración de agua a través de la membrana hidrofóbica. Se utilizó una unidad de preevaporación a escala de laboratorio para el estudio de esta membrana de separación evaluando características en términos de pervaporación como el flujo y la selectivi-dad de los canales con un contenido máximo de masa de agua y de 30 °C a 50 °C. El flujo de propanol/agua fue observado al variar la temperatura. A pesar que el PDMS presentó buenas características para la separación de mezclas de agua/propanol, el factor de separación y el flujo de pervaporación disminuyen a medida que el contenido de agua en la carga aumenta. La membrana PDMS resultó ser muy eficiente para concentraciones de a-gua de menos de 0.3, lo que corresponde al total del flujo de transferencia máxima.

  11. Implicit face prototype learning from geometric information.

    Science.gov (United States)

    Or, Charles C-F; Wilson, Hugh R

    2013-04-19

    There is evidence that humans implicitly learn an average or prototype of previously studied faces, as the unseen face prototype is falsely recognized as having been learned (Solso & McCarthy, 1981). Here we investigated the extent and nature of face prototype formation where observers' memory was tested after they studied synthetic faces defined purely in geometric terms in a multidimensional face space. We found a strong prototype effect: The basic results showed that the unseen prototype averaged from the studied faces was falsely identified as learned at a rate of 86.3%, whereas individual studied faces were identified correctly 66.3% of the time and the distractors were incorrectly identified as having been learned only 32.4% of the time. This prototype learning lasted at least 1 week. Face prototype learning occurred even when the studied faces were further from the unseen prototype than the median variation in the population. Prototype memory formation was evident in addition to memory formation of studied face exemplars as demonstrated in our models. Additional studies showed that the prototype effect can be generalized across viewpoints, and head shape and internal features separately contribute to prototype formation. Thus, implicit face prototype extraction in a multidimensional space is a very general aspect of geometric face learning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. The Scintillator Tile Hadronic Calorimeter Prototype

    International Nuclear Information System (INIS)

    Rusinov, V.

    2006-01-01

    A high granularity scintillator hadronic calorimeter prototype is described. The calorimeter is based on a novel photodetector - Silicon Photo-Multiplier (SiPM). The main parameters of SiPM are discussed as well as readout cell construction and optimization. The experience with a small prototype production and testing is described. A new 8 k channel prototype is being manufactured now

  13. Rapid Prototyping: An Alternative Instructional Design Strategy.

    Science.gov (United States)

    Tripp, Steven D.; Bichelmeyer, Barbara

    1990-01-01

    Discusses the nature of instructional design and describes rapid prototyping as a feasible model for instructional system design (ISD). The use of prototyping in software engineering is described, similarities between software design and instructional design are discussed, and an example is given which uses rapid prototyping in designing a…

  14. Assessment of PDMS-water partition coefficients: implications for passive environmental sampling of hydrophobic organic compounds

    Science.gov (United States)

    DiFilippo, Erica L.; Eganhouse, Robert P.

    2010-01-01

    Solid-phase microextraction (SPME) has shown potential as an in situ passive-sampling technique in aquatic environments. The reliability of this method depends upon accurate determination of the partition coefficient between the fiber coating and water (Kf). For some hydrophobic organic compounds (HOCs), Kf values spanning 4 orders of magnitude have been reported for polydimethylsiloxane (PDMS) and water. However, 24% of the published data examined in this review did not pass the criterion for negligible depletion, resulting in questionable Kf values. The range in reported Kf is reduced to just over 2 orders of magnitude for some polychlorinated biphenyls (PCBs) when these questionable values are removed. Other factors that could account for the range in reported Kf, such as fiber-coating thickness and fiber manufacturer, were evaluated and found to be insignificant. In addition to accurate measurement of Kf, an understanding of the impact of environmental variables, such as temperature and ionic strength, on partitioning is essential for application of laboratory-measured Kf values to field samples. To date, few studies have measured Kf for HOCs at conditions other than at 20 degrees or 25 degrees C in distilled water. The available data indicate measurable variations in Kf at different temperatures and different ionic strengths. Therefore, if the appropriate environmental variables are not taken into account, significant error will be introduced into calculated aqueous concentrations using this passive sampling technique. A multiparameter linear solvation energy relationship (LSER) was developed to estimate log Kf in distilled water at 25 degrees C based on published physicochemical parameters. This method provided a good correlation (R2 = 0.94) between measured and predicted log Kf values for several compound classes. Thus, an LSER approach may offer a reliable means of predicting log Kf for HOCs whose experimental log Kf values are presently unavailable. Future

  15. Increased adhesion of polydimethylsiloxane (PDMS) to acrylic adhesive tape for medical use by surface treatment with an atmospheric pressure rotating plasma jet

    International Nuclear Information System (INIS)

    Jofre-Reche, José Antonio; Martín-Martínez, José Miguel; Pulpytel, Jérôme; Arefi-Khonsari, Farzaneh

    2016-01-01

    The surface properties of polydimethylsiloxane (PDMS) were modified by treatment with an atmospheric pressure rotating plasma jet (APPJ) and the surface modifications were studied to assess its hydrophilicity and adhesion to acrylic adhesive tape intended for medical applications. Furthermore, the extent of hydrophobic recovery under different storage conditions was studied. The surface treatment of PDMS with the APPJ under optimal conditions noticeably increased the oxygen content and most of the surface silicon species were fully oxidized. A brittle silica-like layer on the outermost surface was created showing changes in topography due to the formation of grooves and cracks. A huge improvement in T-peel and the shear adhesive strength of the APPJ-treated PDMS surface/acrylic tape joints was obtained. On the other hand, the hydrophilicity of the PDMS surface increased noticeably after the APPJ treatment, but 24 h after treatment almost 80% hydrophobicity was recovered and the adhesive strength was markedly reduced with time after the APPJ treatment. However, the application of an acrylic adhesive layer on the just-APPJ-treated PDMS surface retained the adhesive strength, limiting the extent of hydrophobic recovery. (paper)

  16. Project management strategies for prototyping breakdowns

    DEFF Research Database (Denmark)

    Granlien, Maren Sander; Pries-Heje, Jan; Baskerville, Richard

    2009-01-01

    , managing the explorative and iterative aspects of prototyping projects is not a trivial task. We examine the managerial challenges in a small scale prototyping project in the Danish healthcare sector where a prototype breakdown and project escalation occurs. From this study we derive a framework...... of strategies for coping with escalation in troubled prototyping projects; the framework is based on project management triangle theory and is useful when considering how to manage prototype breakdown and escalation. All strategies were applied in the project case at different points in time. The strategies led...

  17. Results from the FDIRC prototype

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, D.A., E-mail: roberts@umd.edu [University of Maryland, College Park, MD 20742 (United States); Arnaud, N. [Laboratoire de l’Accélérateur Linéaire, Centre Scientifique d’Orsay, F-91898 Orsay Cedex (France); Dey, B. [University of California, Riverside, CA 92521 (United States); Borsato, M. [Laboratoire de l’Accélérateur Linéaire, Centre Scientifique d’Orsay, F-91898 Orsay Cedex (France); Leith, D.W.G.S.; Nishimura, K.; Ratcliff, B.N. [SLAC, Stanford University, Palo Alto, CA 94309 (United States); Varner, G. [University of Hawaii, Honolulu, HI 96822 (United States); Va’vra, J. [SLAC, Stanford University, Palo Alto, CA 94309 (United States)

    2014-12-01

    We present results from a novel Cherenkov imaging detector called the Focusing DIRC (FDIRC). This detector was designed as a prototype of the particle identification system for the SuperB experiment, and comprises 1/12 of the SuperB barrel azimuthal coverage with partial electronics implementation. The prototype was tested in the SLAC Cosmic Ray Telescope (CRT) which provides 3-D muon tracking with an angular resolution of ∼1.5 mrad, track position resolution of 5–6 mm, start time resolution of 70 ps, and a muon low-energy cutoff of ∼2 GeV provided by an iron range stack. The quartz focusing photon camera couples to a full-size BaBar DIRC bar box and is read out by 12 Hamamatsu H8500 MaPMTs providing 768 pixels. We used IRS2 waveform digitizing electronics to read out the MaPMTs. We present several results from our on-going development activities that demonstrate that the new optics design works very well, including: (a) single photon Cherenkov angle resolutions with and without chromatic corrections, (b) S/N ratio between the Cherenkov peak and background, which consists primarily of ambiguities in possible photon paths to a given pixel, (c) dTOP=TOP{sub measured}–TOP{sub expected} resolutions, and (d) performance of the detector in the presence of high-rate backgrounds. We also describe data analysis methods and point out limits of the present performance. - Highlights: • We present results from a novel Cherenkov imaging detector called the Focusing DIRC (FDIRC). • The prototype was tested in the SLAC Cosmic Ray Telescope (CRT) which provides 3-D muon tracking. • We present several results from our on-going development activities that demonstrate that new optics design works very well. • We describe data analysis methods and point out limits of the present performance.

  18. Digital Prototyping of Milk Products

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall; Nielsen, Otto Højager Attermann; Skytte, Jacob Lercke

    2012-01-01

    reflectance measurements can be used for more extensive validation and for gathering data that can be used to extend our current model such that it can also predict how the optical properties develop during fermentation or acidification of milk to yogurt. A well-established way of measuring optical properties...... prototyping of milk products such that it can also predict how the optical properties develop during gelation of milk to yogurt. The influence of the colloidal aggregation on the optical properties is described by the static structure factor. As our method is noninvasive, we can use our setup for monitoring...

  19. Mechanical Prototyping and Manufacturing Internship

    Science.gov (United States)

    Grenfell, Peter

    2016-01-01

    The internship was located at the Johnson Space Center (JSC) Innovation Design Center (IDC), which is a facility where the JSC workforce can meet and conduct hands-on innovative design, fabrication, evaluation, and testing of ideas and concepts relevant to NASA's mission. The tasks of the internship included mechanical prototyping design and manufacturing projects in service of research and development as well as assisting the users of the IDC in completing their manufacturing projects. The first project was to manufacture hatch mechanisms for a team in the Systems Engineering and Project Advancement Program (SETMAP) hexacopter competition. These mechanisms were intended to improve the performance of the servomotors and offer an access point that would also seal to prevent cross-contamination. I also assisted other teams as they were constructing and modifying their hexacopters. The success of this competition demonstrated a proof of concept for aerial reconnaissance and sample return to be potentially used in future NASA missions. I also worked with Dr. Kumar Krishen to prototype an improved thermos and a novel, portable solar array. Computer-aided design (CAD) software was used to model the parts for both of these projects. Then, 3D printing as well as conventional techniques were used to produce the parts. These prototypes were then subjected to trials to determine the success of the designs. The solar array is intended to work in a cluster that is easy to set up and take down and doesn't require powered servomechanisms. It could be used terrestrially in areas not serviced by power grids. Both projects improve planetary exploration capabilities to future astronauts. Other projects included manufacturing custom rail brackets for EG-2, assisting engineers working on underwater instrument and tool cases for the NEEMO project, and helping to create mock-up parts for Space Center Houston. The use of the IDC enabled efficient completion of these projects at

  20. Prototype system of secure VOD

    Science.gov (United States)

    Minemura, Harumi; Yamaguchi, Tomohisa

    1997-12-01

    Secure digital contents delivery systems are to realize copyright protection and charging mechanism, and aim at secure delivery service of digital contents. Encrypted contents delivery and history (log) management are means to accomplish this purpose. Our final target is to realize a video-on-demand (VOD) system that can prevent illegal usage of video data and manage user history data to achieve a secure video delivery system on the Internet or Intranet. By now, mainly targeting client-server systems connected with enterprise LAN, we have implemented and evaluated a prototype system based on the investigation into the delivery method of encrypted video contents.

  1. CERN LHC dipole prototype success

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    In a crash programme, the first prototype superconducting dipole magnet for CERN's LHC protonproton collider was successfully powered for the first time at CERN on 14 April, eventually sailing to 9T, above the 8.65T nominal LHC field, before quenching for the third time. The next stage is to install the delicate measuring system for making comprehensive magnetic field maps in the 10 m long, 50 mm diameter twin-apertures of the magnet. These measurements will check that the required LHC field quality has been achieved at both the nominal and injection fields

  2. Prototype plutonium-storage monitor

    International Nuclear Information System (INIS)

    Bliss, M.; Craig, R.A.; Sunberg, D.S.; Warner, R.A.

    1996-01-01

    Pacific Northwest National Laboratory (PNNL) has fabricated cerium-activated lithium silicate scintillating fibers via a hot-downdraw process. These fibers typically have an operational transmission length (e -1 length) of greater than 2 meters. This permits the fabrication of devices that, hitherto, were not possible to consider. A prototype neutron monitor for scrap Pu-storage containers was fabricated and tested for 70 days, taking data with a variety of sources in a high-background environment. These data and their implication in the context of a storage-monitor situation are discussed

  3. FY97 ICCS prototype specification

    International Nuclear Information System (INIS)

    Woodruff, J.

    1997-01-01

    The ICCS software team will implement and test two iterations of their software product during FY97. This document specifies the products to be delivered in that first prototype and projects the direction that the second prototype will take. Detailed specification of the later iteration will be written when the results of the first iteration are complete. The selection of frameworks to be implemented early is made on a basis of risk analysis from the point of view of future development in the ICCS project. The prototype will address risks in integration of object- oriented components, in refining our development process, and in emulation testing for FEP devices. This document is a specification that identifies products and processes to undertake for resolving these risks. The goals of this activity are to exercise our development process at a modest scale and to probe our architecture plan for fundamental limits and failure modes. The product of the iterations will be the framework software which will be useful in future ICCS code. Thus the FY97 products are intended for internal usage by the ICCS team and for demonstration to the FEP software developers of the strategy for integrating supervisory software with FEP computers. This will be the first of several expected iterations of the software development process and the performance measurements that ICCS will demonstrate, intended to support confidence in our ability to meet project RAM goals. The design of the application software is being carried out in a separate WBS 1.5.2 activity. The design activity has as its FY97 product a series of Software Design Documents that will specify the functionality of the controls software of ICCS. During the testing of this year''s prototypes, the application functionality needed for test will be provided by sample maintenance controls. These are early precursors of controls that can be used for low level device control. Since the devices under test will be represented by

  4. Rapid prototyping of robotic platforms

    CSIR Research Space (South Africa)

    De Ronde, Willis

    2016-11-01

    Full Text Available of thickness up to 200mm can be cut to create prototype chassis/ bodies or even the final product. One of the few limitations is the cutting of certain laminated materials, as this tends to produce delaminated cutting edges or even fractures in the case... mine inspection robot (Shongololo). Shongololo’s frame is made from engineering plastics while the chassis of Dassie was made from aluminium and cut using abrasive waterjet machining. The advantage of using abrasive waterjet machining is the speed...

  5. Relationship of Cure Temperature to Mechanical, Physical, and Dielectric Performance of PDMS Glass Composite for Electric Motor Insulation

    Science.gov (United States)

    Miller, Sandi G.; Becker, Kathleen; Williams, Tiffany S.; Scheiman, Daniel A.; McCorkle, Linda S.; Heimann, Paula J.; Ring, Andrew; Woodworth, Andrew

    2017-01-01

    Achieving NASAs aggressive fuel burn and emission reduction for N-plus-3 aircraft will require hybrid electric propulsion system in which electric motors driven by either power generated from turbine or energy storage system will power the fan for propulsion. Motors designed for hybrid electric aircraft are expected to operate at medium to high voltages over long durations in a high altitude service environment. Such conditions have driven research toward the development of wire insulation with improved mechanical strength, thermal stability and increased breakdown voltage. The silicone class of materials has been considered for electric wire insulation due to its inherent thermal stability, dielectric strength and mechanical integrity. This paper evaluates the dependence of these properties on the cure conditions of a polydimethyl-siloxane (PDMS) elastomer; where both cure temperature and base-to-catalyst ratio were varied. The PDMS elastomer was evaluated as a bulk material and an impregnation matrix within a lightweight glass veil support. The E-glass support was selected for mechanical stiffness and dielectric strength. This work has shown a correlation between cure conditions and material physical properties. Tensile strength increased with cure temperature whereas breakdown voltage tended to be independent of process variations. The results will be used to direct material formulation based on specific insulation requirements.

  6. ZnO–PDMS Nanohybrids: A Novel Optical Sensing Platform for Ethanol Vapor Detection at Room Temperature

    KAUST Repository

    Klini, Argyro

    2015-01-08

    © 2014 American Chemical Society. A new optical gas sensor platform based on highly luminescent ZnO-polymer nanohybrids is demonstrated. The nanohybrids consist of ZnO nanoparticles, typically 125 (±25) nm in size, dispersed in an inert cross-linked polydimethylsiloxane (PDMS) matrix. Upon exposure to ethanol-enriched air at room temperature, the nanocomposites exhibit a clear increase in their photoluminescence (PL) emission, which shows a nearly Langmuir dependence on the alcohol vapor pressure. The response time is on the order of 50 s, particularly at low ethanol concentrations. The limit of ethanol vapor detection (LOD) is as low as 0.4 Torr, while the sensor remains unaffected by the presence of water vapor, demonstrating the potential of the ZnO-PDMS system as an optical gas sensing device. The interaction of the ZnO nanoparticles with molecular oxygen plays an essential role on the overall performance of the sensor, as shown in comparative experiments performed in the presence and absence of atmospheric air. Notably, O2 was found to be quite effective in accelerating the sensor recovery process compared to N2 or vacuum.

  7. Fabrication of superhydrophobic surfaces based on ZnO-PDMS nanocomposite coatings and study of its wetting behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Chakradhar, R.P.S., E-mail: chakra@nal.res.in [Surface Engineering Division, National Aerospace Laboratories (CSIR), Bangalore 560017 (India); Kumar, V. Dinesh [Surface Engineering Division, National Aerospace Laboratories (CSIR), Bangalore 560017 (India); Rao, J.L. [Department of Physics, S.V. University, Tirupathi 517502 (India); Basu, Bharathibai J., E-mail: bharathi@nal.res.in [Surface Engineering Division, National Aerospace Laboratories (CSIR), Bangalore 560017 (India)

    2011-08-01

    Superhydrophobic surfaces based on ZnO-PDMS nanocomposite coatings are demonstrated by a simple, facile, time-saving, wet chemical route. ZnO nanopowders with average particle size of 14 nm were synthesized by a low temperature solution combustion method. Powder X-ray diffraction results confirm that the nanopowders exhibit hexagonal wurtzite structure and belong to space group P63mc. Field emission scanning electron micrographs reveal that the nanoparticles are connected to each other to make large network systems consisting of hierarchical structure. The as formed ZnO coating exhibits wetting behaviour with Water Contact Angle (WCA) of {approx}108{sup o}, however on modification with polydimethylsiloxane (PDMS), it transforms to superhydrophobic surface with measured contact and sliding angles for water at 155{sup o} and less than 5{sup o} respectively. The surface properties such as surface free energy ({gamma}{sub p}), interfacial free energy ({gamma}{sub pw}), and the adhesive work (W{sub pw}) were evaluated. Electron paramagnetic resonance (EPR) studies on superhydrophobic coatings revealed that the surface defects play a major role on the wetting behaviour. Advantages of the present method include the cheap and fluorine-free raw materials, environmentally benign solvents, and feasibility for applying on large area of different substrates.

  8. Fabrication of superhydrophobic surfaces based on ZnO-PDMS nanocomposite coatings and study of its wetting behaviour

    Science.gov (United States)

    Chakradhar, R. P. S.; Kumar, V. Dinesh; Rao, J. L.; Basu, Bharathibai J.

    2011-08-01

    Superhydrophobic surfaces based on ZnO-PDMS nanocomposite coatings are demonstrated by a simple, facile, time-saving, wet chemical route. ZnO nanopowders with average particle size of 14 nm were synthesized by a low temperature solution combustion method. Powder X-ray diffraction results confirm that the nanopowders exhibit hexagonal wurtzite structure and belong to space group P63 mc. Field emission scanning electron micrographs reveal that the nanoparticles are connected to each other to make large network systems consisting of hierarchical structure. The as formed ZnO coating exhibits wetting behaviour with Water Contact Angle (WCA) of ˜108°, however on modification with polydimethylsiloxane (PDMS), it transforms to superhydrophobic surface with measured contact and sliding angles for water at 155° and less than 5° respectively. The surface properties such as surface free energy ( γp), interfacial free energy ( γpw), and the adhesive work ( Wpw) were evaluated. Electron paramagnetic resonance (EPR) studies on superhydrophobic coatings revealed that the surface defects play a major role on the wetting behaviour. Advantages of the present method include the cheap and fluorine-free raw materials, environmentally benign solvents, and feasibility for applying on large area of different substrates.

  9. Fabrication of Photonic Crystal Structures on Flexible Organic Light-Emitting Diodes by Using Nano-Imprint and PDMS Mold

    Directory of Open Access Journals (Sweden)

    Ho Ting-Lin

    2016-01-01

    Full Text Available In this paper, nanoimprint lithography was used to create a photonic crystals structure film in organic light-emitting diode (OLED component, and then compare the efficiency of components whether with nanostructure or not. By using two different kinds of mold, such as silicon mold and PDMS mold, the nano structures in PMMA (molecular weight of 350K were fabricated. Nanostructures in period of 403.53nm with silicon mold and nano structures in period of 385.64nm with PDMS mold as photonic crystal films were fabricated and were integrated into OLED. In experimental results, the OLED without photonic crystal films (with packing behaves 193.3cd/m2 for luminous intensity, 3.481cd/A for lightening efficiency (ηL and 0.781 lm/W for lightening power (ηP where V is 14V and I is 5.5537mA; the OLED with photonic crystal films (with packing behaves 241.6cd/m2 for luminous intensity, 4.173cd/A for lightening efficiency (ηL and 0.936 lm/W for lightening power (ηP where voltage of 14V and current (I of 5.7891mA, which shows that the latter perform is well.

  10. Fabrication of superhydrophobic surfaces based on ZnO-PDMS nanocomposite coatings and study of its wetting behaviour

    International Nuclear Information System (INIS)

    Chakradhar, R.P.S.; Kumar, V. Dinesh; Rao, J.L.; Basu, Bharathibai J.

    2011-01-01

    Superhydrophobic surfaces based on ZnO-PDMS nanocomposite coatings are demonstrated by a simple, facile, time-saving, wet chemical route. ZnO nanopowders with average particle size of 14 nm were synthesized by a low temperature solution combustion method. Powder X-ray diffraction results confirm that the nanopowders exhibit hexagonal wurtzite structure and belong to space group P63mc. Field emission scanning electron micrographs reveal that the nanoparticles are connected to each other to make large network systems consisting of hierarchical structure. The as formed ZnO coating exhibits wetting behaviour with Water Contact Angle (WCA) of ∼108 o , however on modification with polydimethylsiloxane (PDMS), it transforms to superhydrophobic surface with measured contact and sliding angles for water at 155 o and less than 5 o respectively. The surface properties such as surface free energy (γ p ), interfacial free energy (γ pw ), and the adhesive work (W pw ) were evaluated. Electron paramagnetic resonance (EPR) studies on superhydrophobic coatings revealed that the surface defects play a major role on the wetting behaviour. Advantages of the present method include the cheap and fluorine-free raw materials, environmentally benign solvents, and feasibility for applying on large area of different substrates.

  11. Assembly of live micro-organisms on microstructured PDMS stamps by convective/capillary deposition for AFM bio-experiments

    International Nuclear Information System (INIS)

    Dague, E; Jauvert, E; Laplatine, L; Thibault, C; Viallet, B; Ressier, L

    2011-01-01

    Immobilization of live micro-organisms on solid substrates is an important prerequisite for atomic force microscopy (AFM) bio-experiments. The method employed must immobilize the cells firmly enough to enable them to withstand the lateral friction forces exerted by the tip during scanning but without denaturing the cell interface. In this work, a generic method for the assembly of living cells on specific areas of substrates is proposed. It consists in assembling the living cells within the patterns of microstructured, functionalized poly-dimethylsiloxane (PDMS) stamps using convective/capillary deposition. This versatile approach is validated by applying it to two systems of foremost importance in biotechnology and medicine: Saccharomyces cerevisiae yeasts and Aspergillus fumigatus fungal spores. We show that this method allows multiplexing AFM nanomechanical measurements by force spectroscopy on S. cerevisiae yeasts and high-resolution AFM imaging of germinated Aspergillus conidia in buffer medium. These two examples clearly demonstrate the immense potential of micro-organism assembly on functionalized, microstructured PDMS stamps by convective/capillary deposition for performing rigorous AFM bio-experiments on living cells.

  12. A minimally invasive micro sampler for quantitative sampling with an ultrahigh-aspect-ratio microneedle and a PDMS actuator.

    Science.gov (United States)

    Liu, Long; Wang, Yan; Yao, Jinyuan; Yang, Cuijun; Ding, Guifu

    2016-08-01

    This study describes a novel micro sampler consisting of an ultrahigh-aspect-ratio microneedle and a PDMS actuator. The microneedle was fabricated by a new method which introduced reshaped photoresist technology to form a flow channel inside. The microneedle includes two parts: shaft and pedestal. In this study, the shaft length is 1500 μm with a 45° taper angle on the tip and pedestal is 1000 μm. Besides, the shaft and pedestal are connected by an arc connection structure with a length of 600 μm. The microneedles have sufficient mechanical strength to insert into skin with a wide safety margin which was proved by mechanics tests. Moreover, a PDMS actuator with a chamber inside was designed and fabricated in this study. The chamber, acting as a reservoir in sampling process as well as providing power, was optimized by finite element analysis (FEA) to decrease dead volume and improve sampling precision. The micro sampler just needs finger press to activate the sampling process as well as used for quantitative micro injection to some extent. And a volume of 31.5 ± 0.8 μl blood was successfully sampled from the ear artery of a rabbit. This micro sampler is suitable for micro sampling for diagnose or therapy in biomedical field.

  13. Methodical evaluation and improvement of matrix compatible PDMS-overcoated coating for direct immersion solid phase microextraction gas chromatography (DI-SPME-GC)-based applications.

    Science.gov (United States)

    Souza-Silva, Érica A; Gionfriddo, Emanuela; Shirey, Robert; Sidisky, Len; Pawliszyn, Janusz

    2016-05-12

    The main quest for the implementation of direct SPME to complex matrices has been the development of matrix compatible coatings that provide sufficient sensitivity towards the target analytes. In this context, we present here a thorough evaluation of PDMS-overcoated fibers suitable for simultaneous extraction of different polarities analytes, while maintaining adequate matrix compatibility. For this, eleven analytes were selected, from various application classes (pesticides, industrial chemicals and pharmaceuticals) and with a wide range of log P values (ranging from 1.43 to 6). The model matrix chosen was commercial Concord grape juice, which is rich in pigments such as anthocyanins, and contains approximately 20% of sugar (w/w). Two types of PDMS, as well as other intrinsic factors associated with the PDMS-overcoated fiber fabrication are studied. The evaluation showed that the PDMS-overcoated fibers considerably slowed down the coating fouling process during direct immersion in complex matrices of high sugar content. Longevity differences could be seen between the two types of PDMS tested, with a proprietary Sylgard(®) giving superior performance because of lesser amount of reactive groups and enhanced hydrophobicity. Conversely, the thickness of the outer layer did not seem to have a significant effect on the fiber lifetime. We also demonstrate that the uniformity of the overcoated PDMS layer is paramount to the achievement of reliable data and extended fiber lifetime. Employing the optimum overcoated fiber, limits of detection (LOD) in the range of 0.2-1.3 ng/g could be achieved. Additional improvement is attainable by introducing washing of the coatings after desorption, so that any carbon build-up (fouling) left on the coating surface after thermal desorption can be removed. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Low-friction nanojoint prototype

    Science.gov (United States)

    Vlassov, Sergei; Oras, Sven; Antsov, Mikk; Butikova, Jelena; Lõhmus, Rünno; Polyakov, Boris

    2018-05-01

    High surface energy of individual nanostructures leads to high adhesion and static friction that can completely hinder the operation of nanoscale systems with movable parts. For instance, silver or gold nanowires cannot be moved on silicon substrate without plastic deformation. In this paper, we experimentally demonstrate an operational prototype of a low-friction nanojoint. The movable part of the prototype is made either from a gold or silver nano-pin produced by laser-induced partial melting of silver and gold nanowires resulting in the formation of rounded bulbs on their ends. The nano-pin is then manipulated into the inverted pyramid (i-pyramids) specially etched in a Si wafer. Due to the small contact area, the nano-pin can be repeatedly tilted inside an i-pyramid as a rigid object without noticeable deformation. At the same time in the absence of external force the nanojoint is stable and preserves its position and tilt angle. Experiments are performed inside a scanning electron microscope and are supported by finite element method simulations.

  15. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 4 discusses the following topics: Rod Compaction/Loading System Test Results and Analysis Report; Waste Collection System Test Results and Analysis Report; Waste Container Transfer Fixture Test Results and Analysis Report; Staging and Cutting Table Test Results and Analysis Report; and Upper Cutting System Test Results and Analysis Report

  16. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 5 discusses the following topics: Lower Cutting System Test Results and Analysis Report; NFBC Loading System Test Results and Analysis Report; Robotic Bridge Transporter Test Results and Analysis Report; RM-10A Remotec Manipulator Test Results and Analysis Report; and Manipulator Transporter Test Results and Analysis Report

  17. Fabrication of a zirconia MEMS-based microthruster by gel casting on PDMS soft molds

    International Nuclear Information System (INIS)

    Cheah, K H; Khiew, P S; Chin, J K

    2012-01-01

    A zirconia microelectromechanical-system-based microthruster was fabricated through a newly developed fabrication route. Gel casting of homogenously dispersed zirconia suspension on polydimethylsiloxane soft mold was utilized to replicate the geometries of microthruster design onto a ceramic layer of about 1.2 mm thick. Lamination of the patterned ceramic layer to another flat ceramic layer and subsequent sintering produced the microthruster. Characterizations on the fabricated prototype showed good shape retention on the replicated geometries and good quality of lamination. Shrinkage of about 10–15% was noted after sintering. The current fabrication route is particularly promising for the development of high-performance micropropulsion systems which require their structural material to survive in an extreme environment which is corrosive, of high temperature and highly oxidative. (paper)

  18. Prototype moving-ring reactor

    International Nuclear Information System (INIS)

    Smith, A.C. Jr.; Ashworth, C.P.; Abreu, K.E.

    1982-01-01

    We have completed a design of the Prototype Moving-Ring Reactor. The fusion fuel is confined in current-carrying rings of magnetically-field-reversed plasma (Compact Toroids). The plasma rings, formed by a coaxial plasma gun, undergo adiabatic magnetic compression to ignition temperature while they are being injected into the reactor's burner section. The cylindrical burner chamber is divided into three burn stations. Separator coils and a slight axial guide field gradient are used to shuttle the ignited toroids rapidly from one burn station to the next, pausing for 1/3 of the total burn time at each station. D-T- 3 He ice pellets refuel the rings at a rate which maintains constant radiated power

  19. LEP vacuum chamber, early prototype

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    The structure of LEP, with long bending magnets and little access to the vacuum chamber between them, required distributed pumping. This is an early prototype for the LEP vacuum chamber, made from extruded aluminium. The main opening is for the beam. The small channel to the right is for cooling water, to carry away the heat deposited by the synchroton radiation from the beam. The 4 slots in the channel to the left house the strip-shaped ion-getter pumps (see 7810255). The ion-getter pumps depended on the magnetic field of the bending magnets, too low at injection energy for the pumps to function well. Also, a different design was required outside the bending magnets. This design was therefore abandoned, in favour of a thermal getter pump (see 8301153 and 8305170).

  20. Prototype international quality assurance program

    International Nuclear Information System (INIS)

    Broadway, J.A.; Chambless, D.A.; Sapozhnikov, Yu.A.; Kalmykov, S.N.

    1998-01-01

    The international community presently lacks the ability to determine the quality and credibility of environmental measurements that is required to make sound decisions in matters related to international security, public health, and investment-related considerations. The ultimate goal of the work described in this article is to develop a credible information base including measurement capability for determination of environmental contamination and the potential for proliferation of material components of chemical or nuclear weapons. This study compared the accuracy obtained by six Russian and six U.S. laboratories for samples representative of classes of trace metals, dioxing-furans, and radioactive substances. The results obtained in this work indicate that current estimates for laboratory accuracy are likely overly optimistic. The weaknesses discovered by this prototype U.S. - Russia study also exist within the broader international community of laboratories. Further work is proposed to address the urgent need for the international community to improve performance evaluations for analytical measurements. (author)

  1. Prototype of industrial electrons accelerator

    International Nuclear Information System (INIS)

    Lopez, V.H.; Valdovinos, A.M.

    1992-01-01

    The interest and the necessity of Mexico's industry in the use of irradiation process has been increased in the last years. As examples are the irradiation of combustion gases (elimination of NO x and SO 2 ) and the polymer cross-linking between others. At present time at least twelve enterprises require immediately of them which have been contacted by electron accelerators suppliers of foreign countries. The first project step consisted in to identify the electrons accelerator type that in can be constructed in Mexico with the major number of possible equipment, instruments, components and acquisition materials local and useful for the major number of users. the characteristics of the accelerator prototype are: accelerator type transformer with multiple secondary insulated and rectifier circuits with a potential of 0.8 MV of voltage, the second step it consisted in an economic study that permitted to demonstrate the economic feasibility of its construction. (Author)

  2. Hadron therapy information sharing prototype

    CERN Document Server

    Roman, Faustin Laurentiu; Kanellopoulos, Vassiliki; Amoros, Gabriel; Davies, Jim; Dosanjh, Manjit; Jena, Raj; Kirkby, Norman; Peach, Ken; Salt, Jose

    2013-01-01

    The European PARTNER project developed a prototypical system for sharing hadron therapy data. This system allows doctors and patients to record and report treatment-related events during and after hadron therapy. It presents doctors and statisticians with an integrated view of adverse events across institutions, using open-source components for data federation, semantics, and analysis. There is a particular emphasis upon semantic consistency, achieved through intelligent, annotated form designs. The system as presented is ready for use in a clinical setting, and amenable to further customization. The essential contribution of the work reported here lies in the novel data integration and reporting methods, as well as the approach to software sustainability achieved through the use of community-supported open-source components.

  3. PEP-II prototype klystron

    International Nuclear Information System (INIS)

    Fowkes, W.R.; Caryotakis, G.; Lee, T.G.; Pearson, C.; Wright, E.L.

    1993-04-01

    A 540-kW continuous-wave (cw) klystron operating at 476 MHz was developed for use as a power source for testing PEP-II rf accelerating cavities and rf windows. It also serves as a prototype for a 1.2 MW cw klystron presently being developed as a potential rf source for asymmetric colliding ring use. The design incorporates the concepts and many of the parts used in the original 353 MHz PEP klystron developed sixteen years ago. The superior computer simulation codes available today result in improved performance with the cavity frequencies, drift lengths, and output circuit optimized for the higher frequency.The design and operating results of this tube are described with particular emphasis on the factors which affect efficiency and stability

  4. The Yucca Mountain Project Prototype Testing Program

    International Nuclear Information System (INIS)

    1989-10-01

    The Yucca Mountain Project is conducting a Prototype Testing Program to ensure that the Exploratory Shaft Facility (ESF) tests can be completed in the time available and to develop instruments, equipment, and procedures so the ESF tests can collect reliable and representative site characterization data. This report summarizes the prototype tests and their status and location and emphasizes prototype ESF and surface tests, which are required in the early stages of the ESF site characterization tests. 14 figs

  5. Test case preparation using a prototype

    OpenAIRE

    Treharne, Helen; Draper, J.; Schneider, Steve A.

    1998-01-01

    This paper reports on the preparation of test cases using a prototype within the context of a formal development. It describes an approach to building a prototype using an example. It discusses how a prototype contributes to the testing activity as part of a lifecycle based on the use of formal methods. The results of applying the approach to an embedded avionics case study are also presented.

  6. A prototype for JDEM science data processing

    International Nuclear Information System (INIS)

    Gottschalk, Erik E

    2011-01-01

    Fermilab is developing a prototype science data processing and data quality monitoring system for dark energy science. The purpose of the prototype is to demonstrate distributed data processing capabilities for astrophysics applications, and to evaluate candidate technologies for trade-off studies. We present the architecture and technical aspects of the prototype, including an open source scientific execution and application development framework, distributed data processing, and publish/subscribe message passing for quality control.

  7. Rapid prototyping using CBCT: an initial experience

    International Nuclear Information System (INIS)

    Yovchev, D.; Deliverska, E.; Indjova, J.; Ugrinov, R.

    2011-01-01

    This report presents a case of fibrous dysplasia in the left lower jaw of a 12-year-old girl, scanned with CBCT. On the basis of CBCT scan a model of affected jaw was produced using a rapid-prototyping three-dimensional printer. The case demonstrates the possibility to get a prototype by CBCT data. Prototypes can be used to support the diagnosis, planning, training (students and postgraduates) and to obtain informed consent from the patient.

  8. Prototype calorimeters for the NA3 experiment

    CERN Multimedia

    1975-01-01

    The NA3 Experiment was set-up on the North Area of the SPS by the CERN/ Ecole Polytechnique/College de France/ Orsay/Saclay Collaboration, to study high transverse momentum leptons and hadrons from hadron collisions. The calorimeters measured the energy of hadrons (prototype on the right) and leptons (prototype on the left). They used a new type of plastic scintillator (plexipop). (see CERN Courier of November 1975) energy (prototype on the right)

  9. 3D Printing, Ink Casting and Micromachined Lamination (3D PICLμM): A Makerspace Approach to the Fabrication of Biological Microdevices

    OpenAIRE

    Avra Kundu; Tariq Ausaf; Swaminathan Rajaraman

    2018-01-01

    We present a novel benchtop-based microfabrication technology: 3D printing, ink casting, micromachined lamination (3D PICLμM) for rapid prototyping of lab-on-a-chip (LOC) and biological devices. The technology uses cost-effective, makerspace-type microfabrication processes, all of which are ideally suited for low resource settings, and utilizing a combination of these processes, we have demonstrated the following devices: (i) 2D microelectrode array (MEA) targeted at in vitro neural and cardi...

  10. Post Curing as an Effective Means of Ensuring the Long-term Reliability of PDMS Thin Films for Dielectric Elastomer Applications

    DEFF Research Database (Denmark)

    Zakaria, Shamsul Bin; Madsen, Frederikke Bahrt; Skov, Anne Ladegaard

    2017-01-01

    ’s moduli at 5% strain increase with post curing. Furthermore, the determined dielectric breakdown parameters from Weibull analyses showed that greater electrical stability and reliability could be achieved by post curing the PDMS films before usage, and this method therefore paves a way toward more...

  11. Self-diffusion investigations on a series of PEP-PDMS diblock copolymers with different morphologies by pulsed field gradient NMR

    DEFF Research Database (Denmark)

    Rittig, F.; Karger, J.; Papadakis, C.M.

    1999-01-01

    We report on temperature-dependent self-diffusion measurements of compositionally different and non-entangled poly(ethylene-co-propylene)-b-poly(dimethylsiloxane) PEP-PDMS diblock copolymers in the melt above and below the order-to-disorder transition temperature. Depending on the dimensionality...

  12. Fabrication of PDMS through-holes using the MIMIC method and the surface treatment by atmospheric-pressure CH4/He RF plasma

    Science.gov (United States)

    Choi, Jongchan; Lee, Kyeong-Hwan; Yang, Sung

    2011-09-01

    This note presents a simple fabrication process for patterning micro through-holes in a PDMS layer by a combination of the micromolding in capillaries (MIMIC) method and the surface treatment by atmospheric-pressure CH4/He RF plasma. The fabrication process is confirmed by forming micro through-holes with various shapes including circle, C-shape, open microfluidic channel and hemisphere. All micro through-holes of various shapes in a wide range of diameters and heights are well fabricated by the proposed method. Also, a 3D micromixer containing a PDMS micro through-hole layer formed by the proposed method is built and its performance is tested as another practical demonstration of the proposed fabrication method. Therefore, we believe that the proposed fabrication process will build a PDMS micro through-hole layer in a simple and easy way and will contribute to developing highly efficient multi-layered microfluidic systems, which may require PDMS micro through-hole layers.

  13. Morphology evolution of PS-b-PDMS block copolymer and its hierarchical directed self-assembly on block copolymer templates

    DEFF Research Database (Denmark)

    Rasappa, Sozaraj; Schulte, Lars; Borah, Dipu

    2018-01-01

    Cylinder-forming polystyrene-block-polydimethylsiloxane (PS-b-PDMS, 27.2k-b-11.7k, SD39) block copolymer having a total molecular weight of 39 kg mol−1 was exploited to achieve in-plane morphologies of lines, dots and antidots. Brush-free self-assembly of the SD39 on silicon substrates was invest...... substrates provides a simplified method for surface nanopatterning, templated growth of nanomaterials and nanofabrication....... the pattern into the underlying substrate. Directed self-assembly and hierarchical directed self-assembly on block copolymer templates for confinement of dots was successfully demonstrated. The strategy for achieving multiple morphologies using one BCP by mere choice of the annealing solvents on unmodified...

  14. Fast selective trapping and release of picoliter droplets in a 3D microfluidic PDMS multi-trap system with bubbles.

    Science.gov (United States)

    Rambach, Richard W; Biswas, Preetika; Yadav, Ashutosh; Garstecki, Piotr; Franke, Thomas

    2018-02-12

    The selective manipulation and incubation of individual picoliter drops in high-throughput droplet based microfluidic devices still remains challenging. We used a surface acoustic wave (SAW) to induce a bubble in a 3D designed multi-trap polydimethylsiloxane (PDMS) device to manipulate multiple droplets and demonstrate the selection, incubation and on-demand release of aqueous droplets from a continuous oil flow. By controlling the position of the acoustic actuation, individual droplets are addressed and selectively released from a droplet stream of 460 drops per s. A complete trapping and releasing cycle can be as short as 70 ms and has no upper limit for incubation time. We characterize the fluidic function of the hybrid device in terms of electric power, pulse duration and acoustic path.

  15. Enhancing experience prototyping by the help of mixed-fidelity prototypes

    OpenAIRE

    Yasar, Ansar-Ul-Haque

    2007-01-01

    In this research review I undertook the problem related to the usage of a new concept known as the Mixed- Fidelity Prototype which is a mixture of its predecessors Low- and High- Fidelity Prototypes in Experience Prototyping. Experience Prototyping is a good way to explore, communicate and interact with the designs we develop like experiencing cycling on the ice, although the mood, snow conditions, bicycle type and many other factors really matter and tend to change with time. Experience Prot...

  16. Resealable, optically accessible, PDMS-free fluidic platform for ex vivo interrogation of pancreatic islets.

    Science.gov (United States)

    Lenguito, Giovanni; Chaimov, Deborah; Weitz, Jonathan R; Rodriguez-Diaz, Rayner; Rawal, Siddarth A K; Tamayo-Garcia, Alejandro; Caicedo, Alejandro; Stabler, Cherie L; Buchwald, Peter; Agarwal, Ashutosh

    2017-02-28

    We report the design and fabrication of a robust fluidic platform built out of inert plastic materials and micromachined features that promote optimized convective fluid transport. The platform is tested for perfusion interrogation of rodent and human pancreatic islets, dynamic secretion of hormones, concomitant live-cell imaging, and optogenetic stimulation of genetically engineered islets. A coupled quantitative fluid dynamics computational model of glucose stimulated insulin secretion and fluid dynamics was first utilized to design device geometries that are optimal for complete perfusion of three-dimensional islets, effective collection of secreted insulin, and minimization of system volumes and associated delays. Fluidic devices were then fabricated through rapid prototyping techniques, such as micromilling and laser engraving, as two interlocking parts from materials that are non-absorbent and inert. Finally, the assembly was tested for performance using both rodent and human islets with multiple assays conducted in parallel, such as dynamic perfusion, staining and optogenetics on standard microscopes, as well as for integration with commercial perfusion machines. The optimized design of convective fluid flows, use of bio-inert and non-absorbent materials, reversible assembly, manual access for loading and unloading of islets, and straightforward integration with commercial imaging and fluid handling systems proved to be critical for perfusion assay, and particularly suited for time-resolved optogenetics studies.

  17. Prototyping SOS meta-theory in Maude

    NARCIS (Netherlands)

    Mousavi, M.R.; Reniers, M.A.; Mosses, P.D.; Ulidowski, I.

    2006-01-01

    We present a prototype implementation of SOS meta-theory in the Maude term rewriting language. The prototype defines the basic concepts of SOS meta-theory (e.g., transition formulae, deduction rules and transition system specifications) in Maude. Besides the basic definitions, we implement methods

  18. OPAL jet chamber full-scale prototype

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, H M; Hauschild, M; Hartmann, H; Hegerath, A; Boerner, H; Burckhart, H J; Dittmar, M; Hammarstroem, R; Heuer, R D; Mazzone, L

    1986-12-01

    The concept of a jet chamber for the central detector of OPAL was tested with a full scale prototype. The design of this prototype, its mechanical and electrical structure and its support system for high voltage, gas, laser calibration, and readout are described. Operating experience was gathered since summer 1984. The chamber performance in terms of spatial resolution and particle identification capability is given.

  19. Gamification in a Prototype Household Energy Game

    NARCIS (Netherlands)

    Fijnheer, J.D.L.; van Oostendorp, H.; Veltkamp, R.C.

    2016-01-01

    Research where gamification is used to influence household energy consumption is an emerging field. This paper reviews design features of the prototype Powersaver Game. The aim of this game is to influence household energy consumption in the long-term. The evaluation of the design of the prototype,

  20. Rapid Prototyping in Instructional Design: Creating Competencies

    Science.gov (United States)

    Fulton, Carolyn D.

    2010-01-01

    Instructional designers working in rapid prototyping environments currently do not have a list of competencies that help to identify the knowledge, skills, and attitudes (KSAs) required in these workplaces. This qualitative case study used multiple cases in an attempt to identify rapid prototyping competencies required in a rapid prototyping…

  1. Dissipative Prototyping Methods: A Manifesto

    Science.gov (United States)

    Beesley, P.

    Taking a designer's unique perspective using examples of practice in experimental installation and digital protoyping, this manifesto acts as provocation for change and unlocking new potential by encouraging changes of perspective about the material realm. Diffusive form-language is proposed as a paradigm for architectural design. This method of design is applied through 3D printing and related digital fabrication methods, offering new qualities that can be implemented in design of realms including present earth and future interplanetary environments. A paradigm shift is encouraged by questioning conventional notions of geometry that minimize interfaces and by proposing the alternatives of maximized interfaces formed by effusive kinds of formal composition. A series of projects from the Canadian research studio of the Hylozoic Architecture group are described, providing examples of component design methods employing diffusive forms within combinations of tension-integrity structural systems integrated with hybrid metabolisms employing synthetic biology. Cultural implications are also discussed, drawing from architectural theory and natural philosophy. The conclusion of this paper suggests that the practice of diffusive prototyping can offer formative strategies contributing to design of future living systems.

  2. A French fuel cell prototype

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    A French prototype of a fuel cell based on the PEM (proton exchange membrane) technology has been designed by Helion, a branch of Technicatome, this fuel cell delivers 300 kW and will be used in naval applications and terrestrial transport. The main advantages of fuel cell are: 1) no contamination, even if the fuel used is natural gas the quantities of CO 2 and CO emitted are respectively 17 and 75 times as little as the maximal quantities allowed by European regulations, 2) efficiency, the electric yield is up to 60 % and can reach 80 % if we include the recovery of heat, 3) silent, the fuel cell itself does not make noise. The present price of fuel cell is the main reason that hampers its industrial development, this price is in fact strongly dependant on the cost of its different components: catalyzers, membranes, bipolar plates and the hydrogen supply. This article gives the technical characteristics of the Helion's fuel cell. (A.C.)

  3. Wireless Augmented Reality Prototype (WARP)

    Science.gov (United States)

    Devereaux, A. S.

    1999-01-01

    Initiated in January, 1997, under NASA's Office of Life and Microgravity Sciences and Applications, the Wireless Augmented Reality Prototype (WARP) is a means to leverage recent advances in communications, displays, imaging sensors, biosensors, voice recognition and microelectronics to develop a hands-free, tetherless system capable of real-time personal display and control of computer system resources. Using WARP, an astronaut may efficiently operate and monitor any computer-controllable activity inside or outside the vehicle or station. The WARP concept is a lightweight, unobtrusive heads-up display with a wireless wearable control unit. Connectivity to the external system is achieved through a high-rate radio link from the WARP personal unit to a base station unit installed into any system PC. The radio link has been specially engineered to operate within the high- interference, high-multipath environment of a space shuttle or space station module. Through this virtual terminal, the astronaut will be able to view and manipulate imagery, text or video, using voice commands to control the terminal operations. WARP's hands-free access to computer-based instruction texts, diagrams and checklists replaces juggling manuals and clipboards, and tetherless computer system access allows free motion throughout a cabin while monitoring and operating equipment.

  4. Virtual Video Prototyping of Pervasive Healthcare Systems

    DEFF Research Database (Denmark)

    Bardram, Jakob Eyvind; Bossen, Claus; Madsen, Kim Halskov

    2002-01-01

    Virtual studio technology enables the mixing of physical and digital 3D objects and thus expands the way of representing design ideas in terms of virtual video prototypes, which offers new possibilities for designers by combining elements of prototypes, mock-ups, scenarios, and conventional video....... In this article we report our initial experience in the domain of pervasive healthcare with producing virtual video prototypes and using them in a design workshop. Our experience has been predominantly favourable. The production of a virtual video prototype forces the designers to decide very concrete design...... issues, since one cannot avoid paying attention to the physical, real-world constraints and to details in the usage-interaction between users and technology. From the users' perspective, during our evaluation of the virtual video prototype, we experienced how it enabled users to relate...

  5. Virtual Video Prototyping for Healthcare Systems

    DEFF Research Database (Denmark)

    Bardram, Jakob Eyvind; Bossen, Claus; Lykke-Olesen, Andreas

    2002-01-01

    Virtual studio technology enables the mixing of physical and digital 3D objects and thus expands the way of representing design ideas in terms of virtual video prototypes, which offers new possibilities for designers by combining elements of prototypes, mock-ups, scenarios, and conventional video....... In this article we report our initial experience in the domain of pervasive healthcare with producing virtual video prototypes and using them in a design workshop. Our experience has been predominantly favourable. The production of a virtual video prototype forces the designers to decide very concrete design...... issues, since one cannot avoid paying attention to the physical, real-world constraints and to details in the usage-interaction between users and technology. From the users' perspective, during our evaluation of the virtual video prototype, we experienced how it enabled users to relate...

  6. High confidence in falsely recognizing prototypical faces.

    Science.gov (United States)

    Sampaio, Cristina; Reinke, Victoria; Mathews, Jeffrey; Swart, Alexandra; Wallinger, Stephen

    2018-06-01

    We applied a metacognitive approach to investigate confidence in recognition of prototypical faces. Participants were presented with sets of faces constructed digitally as deviations from prototype/base faces. Participants were then tested with a simple recognition task (Experiment 1) or a multiple-choice task (Experiment 2) for old and new items plus new prototypes, and they showed a high rate of confident false alarms to the prototypes. Confidence and accuracy relationship in this face recognition paradigm was found to be positive for standard items but negative for the prototypes; thus, it was contingent on the nature of the items used. The data have implications for lineups that employ match-to-suspect strategies.

  7. Prototypical versus contemporary Mediterranean Diet.

    Science.gov (United States)

    Rizza, W; De Gara, L; Antonelli Incalzi, R; Pedone, C

    2016-10-01

    To investigate the evolution of the Mediterranean Diet (MD) in a delimited area of Southern Italy, by comparing the diet adopted 60-70 years ago (Prototypical Mediterranean Diet, PMD) with the contemporary one (Contemporary Mediterranean Diet, CMD), and to verify to what extent they fitted the recommendations of the Italian and the USDA dietary guidelines. We recruited a total of 106 participants, divided in two groups. PMD group included 52 women aged >80 years, with a good cognitive function and full independence in basic and instrumental activities of daily living. CMD group included 20 men and 34 women aged 50-60 years. Food intake was assessed by administering the EPIC food frequency questionnaire to each participant, and an additional survey to the PMD subjects only. Both PMD and CMD showed adequate intakes of macronutrients, although some deficiencies related to micronutrient requirements were evident. CMD showed a slightly greater use of animal products, processed and sugary foods, and higher intakes of simple sugars, animal proteins (49.6 vs 28.3 g/day), animal lipids (37.8 vs 20.1 g/day), saturated fats (25.0 vs 15.8 g/day) and cholesterol (305.0 vs 258.5 g/day). PMD showed many similarities to the original version of the MD in terms of macronutrients distribution and food choices. The documented evolution of the dietary habits over a 70 years timespan suggests that nowadays Mediterranean regions adhere less strictly to the original MD, although nutrients intakes are adequate to LARN and USDA recommendations. Copyright © 2016 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.

  8. Rapid Prototyping of a Cyclic Olefin Copolymer Microfluidic Device for Automated Oocyte Culturing.

    Science.gov (United States)

    Berenguel-Alonso, Miguel; Sabés-Alsina, Maria; Morató, Roser; Ymbern, Oriol; Rodríguez-Vázquez, Laura; Talló-Parra, Oriol; Alonso-Chamarro, Julián; Puyol, Mar; López-Béjar, Manel

    2017-10-01

    Assisted reproductive technology (ART) can benefit from the features of microfluidic technologies, such as the automation of time-consuming labor-intensive procedures, the possibility to mimic in vivo environments, and the miniaturization of the required equipment. To date, most of the proposed approaches are based on polydimethylsiloxane (PDMS) as platform substrate material due to its widespread use in academia, despite certain disadvantages, such as the elevated cost of mass production. Herein, we present a rapid fabrication process for a cyclic olefin copolymer (COC) monolithic microfluidic device combining hot embossing-using a low-temperature cofired ceramic (LTCC) master-and micromilling. The microfluidic device was suitable for trapping and maturation of bovine oocytes, which were further studied to determine their ability to be fertilized. Furthermore, another COC microfluidic device was fabricated to store sperm and assess its quality parameters over time. The study herein presented demonstrates a good biocompatibility of the COC when working with gametes, and it exhibits certain advantages, such as the nonabsorption of small molecules, gas impermeability, and low fabrication costs, all at the prototyping and mass production scale, thus taking a step further toward fully automated microfluidic devices in ART.

  9. Prototype-Incorporated Emotional Neural Network.

    Science.gov (United States)

    Oyedotun, Oyebade K; Khashman, Adnan

    2017-08-15

    Artificial neural networks (ANNs) aim to simulate the biological neural activities. Interestingly, many ''engineering'' prospects in ANN have relied on motivations from cognition and psychology studies. So far, two important learning theories that have been subject of active research are the prototype and adaptive learning theories. The learning rules employed for ANNs can be related to adaptive learning theory, where several examples of the different classes in a task are supplied to the network for adjusting internal parameters. Conversely, the prototype-learning theory uses prototypes (representative examples); usually, one prototype per class of the different classes contained in the task. These prototypes are supplied for systematic matching with new examples so that class association can be achieved. In this paper, we propose and implement a novel neural network algorithm based on modifying the emotional neural network (EmNN) model to unify the prototype- and adaptive-learning theories. We refer to our new model as ``prototype-incorporated EmNN''. Furthermore, we apply the proposed model to two real-life challenging tasks, namely, static hand-gesture recognition and face recognition, and compare the result to those obtained using the popular back-propagation neural network (BPNN), emotional BPNN (EmNN), deep networks, an exemplar classification model, and k-nearest neighbor.

  10. Rapid prototyping and stereolithography in dentistry

    Science.gov (United States)

    Nayar, Sanjna; Bhuminathan, S.; Bhat, Wasim Manzoor

    2015-01-01

    The word rapid prototyping (RP) was first used in mechanical engineering field in the early 1980s to describe the act of producing a prototype, a unique product, the first product, or a reference model. In the past, prototypes were handmade by sculpting or casting, and their fabrication demanded a long time. Any and every prototype should undergo evaluation, correction of defects, and approval before the beginning of its mass or large scale production. Prototypes may also be used for specific or restricted purposes, in which case they are usually called a preseries model. With the development of information technology, three-dimensional models can be devised and built based on virtual prototypes. Computers can now be used to create accurately detailed projects that can be assessed from different perspectives in a process known as computer aided design (CAD). To materialize virtual objects using CAD, a computer aided manufacture (CAM) process has been developed. To transform a virtual file into a real object, CAM operates using a machine connected to a computer, similar to a printer or peripheral device. In 1987, Brix and Lambrecht used, for the first time, a prototype in health care. It was a three-dimensional model manufactured using a computer numerical control device, a type of machine that was the predecessor of RP. In 1991, human anatomy models produced with a technology called stereolithography were first used in a maxillofacial surgery clinic in Viena. PMID:26015715

  11. Rapid prototyping and stereolithography in dentistry.

    Science.gov (United States)

    Nayar, Sanjna; Bhuminathan, S; Bhat, Wasim Manzoor

    2015-04-01

    The word rapid prototyping (RP) was first used in mechanical engineering field in the early 1980s to describe the act of producing a prototype, a unique product, the first product, or a reference model. In the past, prototypes were handmade by sculpting or casting, and their fabrication demanded a long time. Any and every prototype should undergo evaluation, correction of defects, and approval before the beginning of its mass or large scale production. Prototypes may also be used for specific or restricted purposes, in which case they are usually called a preseries model. With the development of information technology, three-dimensional models can be devised and built based on virtual prototypes. Computers can now be used to create accurately detailed projects that can be assessed from different perspectives in a process known as computer aided design (CAD). To materialize virtual objects using CAD, a computer aided manufacture (CAM) process has been developed. To transform a virtual file into a real object, CAM operates using a machine connected to a computer, similar to a printer or peripheral device. In 1987, Brix and Lambrecht used, for the first time, a prototype in health care. It was a three-dimensional model manufactured using a computer numerical control device, a type of machine that was the predecessor of RP. In 1991, human anatomy models produced with a technology called stereolithography were first used in a maxillofacial surgery clinic in Viena.

  12. Review on CNC-Rapid Prototyping

    International Nuclear Information System (INIS)

    M Nafis O Z; Nafrizuan M Y; Munira M A; Kartina J

    2012-01-01

    This article reviewed developments of Computerized Numerical Control (CNC) technology in rapid prototyping process. Rapid prototyping (RP) can be classified into three major groups; subtractive, additive and virtual. CNC rapid prototyping is grouped under the subtractive category which involves material removal from the workpiece that is larger than the final part. Richard Wysk established the use of CNC machines for rapid prototyping using sets of 2½-D tool paths from various orientations about a rotary axis to machine parts without refixturing. Since then, there are few developments on this process mainly aimed to optimized the operation and increase the process capabilities to stand equal with common additive type of RP. These developments include the integration between machining and deposition process (hybrid RP), adoption of RP to the conventional machine and optimization of the CNC rapid prototyping process based on controlled parameters. The article ended by concluding that the CNC rapid prototyping research area has a vast space for improvement as in the conventional machining processes. Further developments and findings will enhance the usage of this method and minimize the limitation of current approach in building a prototype.

  13. Evaluation of a prototype infrasound system

    International Nuclear Information System (INIS)

    Whitaker, R.; Sandoval, T.; Breding, D.; Kromer, D.

    1997-01-01

    Under Department of Energy sponsorship, Sandia National Laboratories and Los Alamos National Laboratory cooperated to develop a prototype infrasonic array, with associated documentation, that could be used as part of the International Monitoring System. The United States Government or foreign countries could procure commercially available systems based on this prototype to fulfill their Comprehensive Test Ban Treaty (CTBT) obligations. The prototype is a four-element array in a triangular layout as recommended in CD/NTB/WP.224 with an element at each corner and one in the center. The prototype test configuration utilize an array spacing of 1 km. The prototype infrasound system has the following objectives: (1) Provide a prototype that reliably acquires and transmits near real-time infrasonic data to facilitate the rapid location and identification of atmospheric events. (2) Provide documentation that could be used by the United States and foreign countries to procure infrasound systems commercially to fulfill their CTBT responsibilities. Infrasonic monitoring is an effective, low cost technology for detecting atmospheric explosions. The low frequency components of explosion signals propagate to long ranges (few thousand kilometers) where they can be detected with an array of sensors. Los Alamos National Laboratory's expertise in infrasound systems and phenomenology when combined with Sandia's expertise in providing verification quality system for treaty monitoring make an excellent team to provide the prototype infrasound sensor system. By September 1997, the prototype infrasound system will have been procured, integrated, evaluated and documented. Final documentation will include a system requirements document, an evaluation report and a hardware design document. The hardware design document will describe the various hardware components used in the infrasound prototype and their interrelationships

  14. Eight years' operation of the SGHWR prototype

    International Nuclear Information System (INIS)

    Phillips, J.L.

    1976-01-01

    Experience gained of the SGHWR system during the first eight years of operation of the UKAEA's 100 MW(e) prototype at AEE Winfrith is discussed. Modifications and additions have been made to the plant to overcome problems which only operation of a prototype unit can reveal. No problems have arisen which could not be overcome by the application of normal engineering resources, and there is no reason why the commercial successor to the prototype should be other than a fully viable proposition. (author)

  15. Field Data Logger Prototype for Power Converters

    DEFF Research Database (Denmark)

    Chaudhary, Sanjay; Ghimire, Pramod; Thøgersen, Paul Bach

    2014-01-01

    and subsequent analysis of the data. This paper presents the development of a low cost prototype field data logger prototype using Raspberry PI and industrial sensors. The functionalities of the data logger prototype are described. An online rainflow count algorithm has been implemented as well.......Mission profile data is very important for the cost effective and reliable design of power converters. The converter design can be improved on the basis of actual field data. Actual mission profile data can be collected for the power converters using field data loggers over a long period of time...

  16. NIF/LMJ prototype amplifier mechanical design

    International Nuclear Information System (INIS)

    Horvath, J.

    1996-10-01

    Amplifier prototypes for the National Ignition Facility and the Laser Megajoule will be tested at Lawrence Livermore National Laboratory. The prototype amplifier, which is an ensemble of modules from LLNL and Centre d'Etudes de Limeil-Valenton, is cassette-based with bottom access for maintenance. A sealed maintenance transfer vehicle which moves optical cassettes between the amplifier and the assembly cleanroom, and a vacuum gripper which holds laser slabs during cassette assembly will also be tested. The prototype amplifier will be used to verify amplifier optical performance, thermal recovery time, and cleanliness of mechanical operations

  17. Rapid prototyping using robot welding : process description

    OpenAIRE

    Ribeiro, António Fernando; Norrish, John

    1997-01-01

    Rapid Prototyping is a relatively recent technique to produce component prototypes for industry in a much shorter period of time, since the time to market a product is essential to its success. A new Rapid Prototyping process which uses metal as the raw material had been under development at Cranfield University in the last few years. The process uses a Gas Metal Arc fusion welding robot which deposits successive layers of metal in such way that it forms a 3D solid component. Firstly, a CAD s...

  18. Initial performance of the PIGMI prototype

    International Nuclear Information System (INIS)

    Stovall, J.E.

    1979-01-01

    The PIGMI (Pion Generator for Medical Irradiations) program at LASL is an accelerator development program aimed at completing the design of an accelerator suitable for use as a pion generator in a hospital-based radiotherapy program. The major thrust of the program has been the design of a 7 MeV prototype accelerator which emphasizes compactness, economy of construction, and operation and reliability. To achieve these goals the design of the prototype has exploited a number of innovations in proton linac technology. An overview of the program discussing the major innovative features of the prototype is presented. The initial operating experience is discussed and initial performance measurements are presented

  19. [Rapid prototyping: a very promising method].

    Science.gov (United States)

    Haverman, T M; Karagozoglu, K H; Prins, H-J; Schulten, E A J M; Forouzanfar, T

    2013-03-01

    Rapid prototyping is a method which makes it possible to produce a three-dimensional model based on two-dimensional imaging. Various rapid prototyping methods are available for modelling, such as stereolithography, selective laser sintering, direct laser metal sintering, two-photon polymerization, laminated object manufacturing, three-dimensional printing, three-dimensional plotting, polyjet inkjet technology,fused deposition modelling, vacuum casting and milling. The various methods currently being used in the biomedical sector differ in production, materials and properties of the three-dimensional model which is produced. Rapid prototyping is mainly usedforpreoperative planning, simulation, education, and research into and development of bioengineering possibilities.

  20. VO for Education: Archive Prototype

    Science.gov (United States)

    Ramella, M.; Iafrate, G.; De Marco, M.; Molinaro, M.; Knapic, C.; Smareglia, R.; Cepparo, F.

    2014-05-01

    The number of remote control telescopes dedicated to education is increasing in many countries, leading to correspondingly larger and larger amount of stored educational data that are usually available only to local observers. Here we present the project for a new infrastructure that will allow teachers using educational telescopes to archive their data and easily publish them within the Virtual Observatory (VO) avoiding the complexity of professional tools. Students and teachers anywhere will be able to access these data with obvious benefits for the realization of grander scale collaborative projects. Educational VO data will also be an important resource for teachers not having direct access to any educational telescopes. We will use the educational telescope at our observatory in Trieste as a prototype for the future VO educational data archive resource. The publishing infrastructure will include: user authentication, content and curation validation, data validation and ingestion, VO compliant resource generation. All of these parts will be performed by means of server side applications accessible through a web graphical user interface (web GUI). Apart from user registration, that will be validated by a natural person responsible for the archive (after having verified the reliability of the user and inspected one or more test files), all the subsequent steps will be automated. This means that at the very first data submission through the webGUI, a complete resource including archive and published VO service will be generated, ready to be registered to the VO. The efforts required to the registered user will consist only in describing herself/himself at registration step and submitting the data she/he selects for publishing after each observation sessions. The infrastructure will be file format independent and the underlying data model will use a minimal set of standard VO keywords, some of which will be specific for outreach and education, possibly including VO

  1. Characterization of Prototype LSST CCDs

    Energy Technology Data Exchange (ETDEWEB)

    OCONNOR,P.; FRANK, J.; GEARY, J.C.; GILMORE, D.K.; KOTOV, I.; RADEKA, V.; TAKACS, P.; TYSON, J.A.

    2008-06-23

    The ambitious science goals of the Large Synoptic Survey Telescope (LSST) will be achieved in part by a wide-field imager that will achieve a new level of performance in terms of area, speed, and sensitivity. The instrument performance is dominated by the focal plane sensors, which are now in development. These new-generation sensors will make use of advanced semiconductor technology and will be complemented by a highly integrated electronics package located inside the cryostat. A test laboratory has been set up at Brookhaven National Laboratory (BNL) to characterize prototype sensors and to develop test and assembly techniques for eventual integration of production sensors and electronics into modules that will form the final focal plane. As described in [1], the key requirements for LSST sensors are wideband quantum efficiency (QE) extending beyond lpm in the red, control of point spread function (PSF), and fast readout using multiple amplifiers per chip operated in parallel. In addition, LSST's fast optical system (f71.25) places severe constraints on focal plane flatness. At the chip level this involves packaging techniques to minimize warpage of the silicon die, and at the mosaic level careful assembly and metrology to achieve a high coplanarity of the sensor tiles. In view of the long lead time to develop the needed sensor technology, LSST undertook a study program with several vendors to fabricate and test devices which address the most critical performance features [2]. The remainder of this paper presents key results of this study program. Section 2 summarizes the sensor requirements and the results of design optimization studies, and Section 3 presents the sensor development plan. In Section 4 we describe the test bench at BNL. Section 5 reports measurement results obtained to date oh devices fabricated by several vendors. Section 6 presents a summary of the paper and an outlook for the future work. We present characterization methods and results on

  2. User prototypes as partly unconscious communication

    DEFF Research Database (Denmark)

    Glasemann, Marie; Kanstrup, Anne Marie

    2010-01-01

    In this paper, we introduce user prototypes as a technique that supports users’ articulation of emotions relevant for design: dreams, fears, motivations – their feelings and aspirations. Following Bateson’s writings about communication through art, we consider user prototypes as “partly unconscious...... communication” and propose to analyze them by focusing on the emotional articulations integrated in the users’ design language. We illustrate this with an example from a design research project on designing learning technology for young diabetics. The example shows how young people with diabetes can express...... emotional themes related to youth identity, the burden of being young with a chronic illness, and the need to be connected and feel safe through design of prototypes. The new conceptual space that arises from user prototypes shows potential for addressing emotions when designing for health and for further...

  3. Homogeneity of Prototypical Attributes in Soccer Teams

    Directory of Open Access Journals (Sweden)

    Christian Zepp

    2015-09-01

    Full Text Available Research indicates that the homogeneous perception of prototypical attributes influences several intragroup processes. The aim of the present study was to describe the homogeneous perception of the prototype and to identify specific prototypical subcategories, which are perceived as homogeneous within sport teams. The sample consists of N = 20 soccer teams with a total of N = 278 athletes (age M = 23.5 years, SD = 5.0 years. The results reveal that subcategories describing the cohesiveness of the team and motivational attributes are mentioned homogeneously within sport teams. In addition, gender, identification, team size, and the championship ranking significantly correlate with the homogeneous perception of prototypical attributes. The results are discussed on the basis of theoretical and practical implications.

  4. Norcal Prototype LNG Truck Fleet: Final Results

    Energy Technology Data Exchange (ETDEWEB)

    2004-07-01

    U.S. DOE and National Renewable Energy Laboratory evaluated Norcal Waste Systems liquefied natural gas (LNG) waste transfer trucks. Trucks had prototype Cummins Westport ISXG engines. Report gives final evaluation results.

  5. Gesture recognition for an exergame prototype

    NARCIS (Netherlands)

    Gacem, Brahim; Vergouw, Robert; Verbiest, Harm; Cicek, Emrullah; Kröse, Ben; van Oosterhout, Tim; Bakkes, S.C.J.

    2011-01-01

    We will demonstrate a prototype exergame aimed at the serious domain of elderly fitness. The exergame incorporates straightforward means to gesture recognition, and utilises a Kinect camera to obtain 2.5D sensory data of the human user.

  6. System design document for the INFLO prototype.

    Science.gov (United States)

    2014-03-01

    This report documents the high level System Design Document (SDD) for the prototype development and : demonstration of the Intelligent Network Flow Optimization (INFLO) application bundle, with a focus on the Speed : Harmonization (SPD-HARM) and Queu...

  7. Power test for first prototype LIBO module

    CERN Multimedia

    Laurent Guiraud

    2000-01-01

    The Linac Booster (LIBO) is a prototype machine for producing particle beams for cancer therapy. Hadron therapy techniques are able to reach deep tumours with less damage to surrounding tissue than with conventional radiotherapy.

  8. An Empirical Investigation of Architectural Prototyping

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak; Hansen, Klaus Marius

    2010-01-01

    Architectural prototyping is the process of using executable code to investigate stakeholders’ software architecture concerns with respect to a system under development. Previous work has established this as a useful and cost-effective way of exploration and learning of the design space of a system...... and in addressing issues regarding quality attributes, architectural risks, and the problem of knowledge transfer and conformance. However, the actual industrial use of architectural prototyping has not been thoroughly researched so far. In this article, we report from three studies of architectural prototyping...... in practice. First, we report findings from an ethnographic study of practicing software architects. Secondly, we report from a focus group on architectural prototyping involving architects from four companies. And, thirdly, we report from a survey study of 20 practicing software architects and software...

  9. Presentation Trainer Prototype 1.0

    NARCIS (Netherlands)

    Börner, Dirk; Specht, Marcus

    2014-01-01

    This software sketch comprises the first prototype of the presentation trainer. The application uses the Microsoft Kinect sensor and was built using the Processing 1.5.1 development environment. Available under the GNU LGPL licence version 3 or higher.

  10. OPAL jet chamber full scale prototype

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, H M; Hauschild, M; Hartmann, H; Hegerath, A; Boerner, H; Burckhart, H J; Dittmar, M; Hammarstroem, R; Heuer, R D; Mazzone, L

    1986-12-01

    The concept of a jet chamber for the central detector of OPAL has been tested with a full scale prototype. The design of this prototype, its mechanical and electrical structure and its support system for high voltage, gas, laser calibration and readout are described. Operating experience has been gathered since summer 1984. The chamber performance in terms of spatial resolution and particle identification capability is given.

  11. OPAL jet chamber full scale prototype

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, H M; Hauschild, M; Hartmann, H; Hegerath, A; Boerner, H; Burckhart, H J; Dittmar, M; Hammarstreom, R; Heuer, R D; Mazzone, L

    1986-05-22

    The concept of a jet chamber for the central detector of OPAL has been tested with a full scale prototype. The design of this prototype, its mechanical and electrical structure and its support system for high voltage, gas, laser calibration and readout are described. The operating experience gathered since the summer of 1984 and the chamber performance as measured by its spatial resolution and ability to identify particles are also given.

  12. Light Guide Collector Prototype: Laboratory Testing

    Directory of Open Access Journals (Sweden)

    Jitka - Mohelnikova

    2017-12-01

    Full Text Available The article reviews the potential of light guide system equipped by a concentrator device capturing daylight applicable for illumination of building interiors and presents results of experiments on performance of its prototype. The main goal is focused on the comparison of traditional solutions and newly developed prototype of the light guide system and presents examination of its light transmission efficiency based on the laboratory experiments.

  13. Light Guide Collector Prototype: Laboratory Testing

    OpenAIRE

    Jitka - Mohelnikova; Stanislav Darula; Ayodeji Omishore; Petr Mohelnik; Denis Micek

    2017-01-01

    The article reviews the potential of light guide system equipped by a concentrator device capturing daylight applicable for illumination of building interiors and presents results of experiments on performance of its prototype. The main goal is focused on the comparison of traditional solutions and newly developed prototype of the light guide system and presents examination of its light transmission efficiency based on the laboratory experiments.

  14. Software testing for evolutionary iterative rapid prototyping

    OpenAIRE

    Davis, Edward V., Jr.

    1990-01-01

    Approved for public release; distribution unlimited. Rapid prototyping is emerging as a promising software development paradigm. It provides a systematic and automatable means of developing a software system under circumstances where initial requirements are not well known or where requirements change frequently during development. To provide high software quality assurance requires sufficient software testing. The unique nature of evolutionary iterative prototyping is not well-suited for ...

  15. Automated prototyping tool-kit (APT)

    OpenAIRE

    Nada, Nader; Shing, M.; Berzins, V.; Luqi

    2002-01-01

    Automated prototyping tool-kit (APT) is an integrated set of software tools that generate source programs directly from real-time requirements. The APT system uses a fifth-generation prototyping language to model the communication structure, timing constraints, 1/0 control, and data buffering that comprise the requirements for an embedded software system. The language supports the specification of hard real-time systems with reusable components from domain specific component libraries. APT ha...

  16. Prototype_Matematikforløb_Sct-Hans

    DEFF Research Database (Denmark)

    Davidsen, Helle Munkholm; Sørensen, Kirsten Bonde; Klitø, Nanna Breinholt

    2015-01-01

    Forløbet udgør en prototype på et matematikforløb til 8. klasse, som er udviklet til at styrke og fastholde elevers motivation for læring. Formålet med denne prototype er at styrke motivationen for læring gennem synlige læringsmål, faglig differentiering og elevernes medbestemmelse. Didaktisk mål...

  17. Prototype_Danskforløb_Sct.Hans

    DEFF Research Database (Denmark)

    Davidsen, Helle Munkholm; Sørensen, Kirsten Bonde; Klitø, Nanna Breinholt

    2015-01-01

    Forløbet udgør en prototype på et danskforløb til 4. klasse, som er udviklet til at styrke og fastholde elevers motivation for læring. Formålet med denne prototype er at styrke motivationen for læring gennem synlige læringsmål, faglig differentiering og elevernes medbestemmelse. Didaktisk mål: at...

  18. Synthesis, morphological, electromechanical characterization of (CaMgFex)Fe1-xTi3O12-δ/PDMS nanocomposite thin films for energy storage application

    Science.gov (United States)

    Tripathy, Ashis; Sharma, Priyaranjan; Sahoo, Narayan

    2018-03-01

    At the present time, flexible and stretchable electronics has intended to use the new cutting-edge technologies for advanced electronic application. Currently, Polymers are being employed for such applications but they are not effective due to their low dielectric constant. To enhance the dielectric properties of polymer for energy storage application, it is necessary to add ceramic material of high dielectric constant to synthesize a polymer-ceramic composite. Therefore, a novel attempt has been made to enhance the dielectric properties of the Polydimethylsiloxane (PDMS) polymer by adding (CaMgFex)Fe1-xTi3O12-δ(0ceramic powder. The newly developed CMFTO2/PDMS composite based thin film shows a higher dielectric constant (ε‧) value (~350), extremely low tangent loss (tanδ) ( 90%), which can make it a potential material for advanced flexible electronic devices, energy storage and biomedical applications.

  19. Simple and cost-effective fabrication of microvalve arrays in PDMS using laser cut molds with application to C. elegans manipulation in microfluidics

    International Nuclear Information System (INIS)

    Samuel, R; Gale, B K; Thacker, C M; Maricq, A V

    2014-01-01

    We present a new fabrication protocol for fabricating pneumatically controlled microvalve arrays (consisting of 100 s of microvalves) in PDMS substrates. The protocol utilizes rapid and cost-effective fabrication of molds using laser cutting of adhesive vinyl tapes and replica molding of PDMS. Hence the protocol is fast, simple and avoids cleanroom use. The results show that effective doormat-style microvalves can be easily fabricated in arrays by manipulating the stiffness of the actuating membrane through varying the valve-chamber area/shape. Three frequently used valve-chamber shapes (circle, square and capsule) were tested and all showed advantages in different situations. Circular valve chambers were best for small valves, square valves were best for medium-sized valves, and the capsule valves were best for larger valves. An application of this protocol has been demonstrated in the fabrication of a microfluidic 32-well plate for high-throughput manipulation of C. elegans for biomedical research. (paper)

  20. Field evaluation of prototype electrofibrous filters

    International Nuclear Information System (INIS)

    Kuhl, W.D.; Bergman, W.; Biermann, A.H.; Lum, B.Y.

    1982-01-01

    New prototype electrofibrous filters were designed, built and evaluated in laboratory tests and in field installations. Two prototypes were designed for use in nuclear ventilation ducts as prefilters to HEPA filters. One prototype is designed to be a permanent component of the ventilation system while the other is a disposable unit. The disposable electrofibrous prefilter was installed in the exhaust stream of a glove box in which barrels of uranium turnings are burned. Preliminary tests show the disposal prefilter is effectively prolonging the HEPA filter life. An earlier prototype of the rolling prefilter was upgraded to meet the increased requirements for installation in a nuclear facility. This upgraded prototype was evaluated in the fire test facility at LLNL and shown to be effective in protecting HEPA filters from plugging under the most severe smoke conditions. The last prototype described in this report is a recirculating air filter. After demonstrating a high performance in laboratory tests the unit was shipped to Savannah River where it is awaiting installation in a Pu fuel fabrication facility. An analysis of the particulate problem in Savannah River indicates that four recirculating air filter will save $172,000 per year in maintenance costs

  1. MPACT Fast Neutron Multiplicity System Prototype Development

    Energy Technology Data Exchange (ETDEWEB)

    D.L. Chichester; S.A. Pozzi; J.L. Dolan; M.T. Kinlaw; S.J. Thompson; A.C. Kaplan; M. Flaska; A. Enqvist; J.T. Johnson; S.M. Watson

    2013-09-01

    This document serves as both an FY2103 End-of-Year and End-of-Project report on efforts that resulted in the design of a prototype fast neutron multiplicity counter leveraged upon the findings of previous project efforts. The prototype design includes 32 liquid scintillator detectors with cubic volumes 7.62 cm in dimension configured into 4 stacked rings of 8 detectors. Detector signal collection for the system is handled with a pair of Struck Innovative Systeme 16-channel digitizers controlled by in-house developed software with built-in multiplicity analysis algorithms. Initial testing and familiarization of the currently obtained prototype components is underway, however full prototype construction is required for further optimization. Monte Carlo models of the prototype system were performed to estimate die-away and efficiency values. Analysis of these models resulted in the development of a software package capable of determining the effects of nearest-neighbor rejection methods for elimination of detector cross talk. A parameter study was performed using previously developed analytical methods for the estimation of assay mass variance for use as a figure-of-merit for system performance. A software package was developed to automate these calculations and ensure accuracy. The results of the parameter study show that the prototype fast neutron multiplicity counter design is very nearly optimized under the restraints of the parameter space.

  2. Investigating the role of implicit prototypes in the prototype willingness model.

    Science.gov (United States)

    Howell, Jennifer L; Ratliff, Kate A

    2017-06-01

    One useful theory to predict health behavior is the prototype-willingness model (PWM), which posits that people are more willing to engage in behavior to the extent that they have a positive view of the prototypical person who performs that behavior. The goal of the present research is to test whether adding an implicit measure of prototype favorability might improve explanatory power in the PWM. Two studies examined whether implicit prototype favorability uniquely predicted White women's intentions to engage in healthy sun behavior over the next 3-6 months, and their willingness to engage in risky sun behavior, should the opportunity arise. The results suggested that implicit prototype favorability, particularly implicit prototypes of those who engage in risky UV-related behaviors, uniquely predicted intentions to engage in healthy sun behavior and willingness to engage in risky sun behavior in the PWM.

  3. Fabrication and characterization of a magnetic micro-actuator based on deformable Fe-doped PDMS artificial cilium using 3D printing

    Science.gov (United States)

    Liu, Fengli; Alici, Gursel; Zhang, Binbin; Beirne, Stephen; Li, Weihua

    2015-03-01

    This paper proposes the use of a 3D extrusion printer to fabricate artificial magnetic cilium. The cilia are fabricated using polydimethylsiloxane (PDMS) doped with iron particles so that they remain slender and flexible. They can be driven by a magnetic field to closely mimic the behaviour of biological cilia. Doping iron particles to the polymers has already been done; however, to the best of our knowledge, printing such active and soft magnetic structures has not. The existing methods for manufacturing magnetic polymeric structures are complex and difficult to use for the fabrication of micro-sized high-aspect-ratio cilia. The 3D printing technique we propose here is simple and inexpensive compared to previously suggested fabrication methods. In this study, free-standing magnetic PDMS cilia were fabricated in different sizes up to 5 mm in length and 1 mm in width. The stress-strain curves of the PDMS cilia were experimentally obtained to quantify the effect of the concentration of the iron particles on the modulus of elasticity of the cilia. The higher the iron concentration, the higher the modulus of elasticity. We have quantified the characteristics of the cilia made of 40% w/w iron particles in PDMS. A single cilium (5 × 1 × 0.0035 mm) can output up to 27 μN blocking force under a magnetic field of 160 mT. These cilia can be used as a mixer in lap-on-chip applications and as the anchoring and propulsion legs of endoscopic capsule robots operating within the gastrointestinal tract of humans. Analytical expressions estimating the blocking force are established and compared with the experimental results.

  4. Fabrication and characterization of a magnetic micro-actuator based on deformable Fe-doped PDMS artificial cilium using 3D printing

    International Nuclear Information System (INIS)

    Liu, Fengli; Alici, Gursel; Li, Weihua; Zhang, Binbin; Beirne, Stephen

    2015-01-01

    This paper proposes the use of a 3D extrusion printer to fabricate artificial magnetic cilium. The cilia are fabricated using polydimethylsiloxane (PDMS) doped with iron particles so that they remain slender and flexible. They can be driven by a magnetic field to closely mimic the behaviour of biological cilia. Doping iron particles to the polymers has already been done; however, to the best of our knowledge, printing such active and soft magnetic structures has not. The existing methods for manufacturing magnetic polymeric structures are complex and difficult to use for the fabrication of micro-sized high-aspect-ratio cilia. The 3D printing technique we propose here is simple and inexpensive compared to previously suggested fabrication methods. In this study, free-standing magnetic PDMS cilia were fabricated in different sizes up to 5 mm in length and 1 mm in width. The stress-strain curves of the PDMS cilia were experimentally obtained to quantify the effect of the concentration of the iron particles on the modulus of elasticity of the cilia. The higher the iron concentration, the higher the modulus of elasticity. We have quantified the characteristics of the cilia made of 40% w/w iron particles in PDMS. A single cilium (5 × 1 × 0.0035 mm) can output up to 27 μN blocking force under a magnetic field of 160 mT. These cilia can be used as a mixer in lap-on-chip applications and as the anchoring and propulsion legs of endoscopic capsule robots operating within the gastrointestinal tract of humans. Analytical expressions estimating the blocking force are established and compared with the experimental results. (paper)

  5. A PDMS/paper/glass hybrid microfluidic biochip integrated with aptamer-functionalized graphene oxide nano-biosensors for one-step multiplexed pathogen detection

    OpenAIRE

    Zuo, Peng; Li, XiuJun; Dominguez, Delfina C.; Ye, Bang-Ce

    2013-01-01

    Infectious pathogens often cause serious public health concerns throughout the world. There is an increasing demand for simple, rapid and sensitive approaches for multiplexed pathogen detection. In this paper we have developed a polydimethylsiloxane (PDMS)/paper/glass hybrid microfluidic system integrated with aptamer-functionalized graphene oxide (GO) nano-biosensors for simple, one-step, multiplexed pathogen detection. The paper substrate used in this hybrid microfluidic system facilitated ...

  6. A novel assessment of the traction forces upon settlement of two typical marine fouling invertebrates using PDMS micropost arrays

    Directory of Open Access Journals (Sweden)

    Kang Xiao

    2018-01-01

    Full Text Available Marine biofouling poses a severe threat to maritime and aquaculture industries. To prevent the attachment of marine biofouling organisms on man-made structures, countless cost and effort was spent annually. In particular, most attention has been paid on the development of efficient and environmentally friendly fouling-resistant coatings, as well as larval settlement mechanism of several major biofouling invertebrates. In this study, polydimethylsiloxane (PDMS micropost arrays were utilized as the settlement substrata and opposite tractions were identified during early settlement of the barnacle Amphibalanus amphitrite and the bryozoan Bugula neritina. The settling A. amphitrite pushed the periphery microposts with an average traction force of 376.2 nN, while settling B. neritina pulled the periphery microposts with an average traction force of 205.9 nN. These micropost displacements are consistent with the body expansion of A. amphitrite during early post-settlement metamorphosis stage and elevation of wall epithelium of B. neritina during early pre-ancestrula stage, respectively. As such, the usage of micropost array may supplement the traditional histological approach to indicate the early settlement stages or even the initiation of larval settlement of marine fouling organisms, and could finally aid in the development of automatic monitoring platform for the real-time analysis on this complex biological process.

  7. Facile fabrication of functional PDMS surfaces with tunable wettablity and high adhesive force via femtosecond laser textured templating

    Directory of Open Access Journals (Sweden)

    Yanlei Hu

    2014-12-01

    Full Text Available Femtosecond laser processing is emerged as a promising tool to functionalize surfaces of various materials, including metals, semiconductors, and polymers. However, the productivity of this technique is limited by the low efficiency of laser raster scanning. Here we report a facile approach for efficiently producing large-area functional polymer surfaces, by which metal is firstly textured by a femtosecond laser, and the as-prepared hierarchical structures are subsequently transferred onto polydimethylsiloxane (PDMS surfaces. Aluminum pieces covered by laser induced micro/nano-structures act as template masters and their performance of displaying diverse colors are investigated. Polymer replicas are endowed with tunable wetting properties, which are mainly attributed to the multi-scale surface structures. Furthermore, the surfaces are found to have extremely high adhesive force for water drops because of the high water penetration depth and the resultant high contact angle hysteresis. This characteristic facilitates many potential applications like loss-free tiny water droplets transportation. The reusability of metal master and easiness of soft lithography make it to be a very simple, fast and cost-efficient way for mass production of functional polymeric surfaces.

  8. Quasi-static motion of microparticles at the depinning contact line of an evaporating droplet on PDMS surface

    Science.gov (United States)

    Yu, Ying-Song; Xia, Xue-Lian; Zheng, Xu; Huang, Xianfu; Zhou, Jin-Zhi

    2017-09-01

    In this paper, evaporation of sessile water droplets containing fluorescent polystyrene (PS) microparticles on polydimethylsiloxane (PDMS) surfaces with different curing ratios was studied experimentally using laser confocal microscopy. At the beginning, there were some microparticles located at the contact line and some microparticles moved towards the line. Due to contact angle hysteresis, at first both the contact line and the microparticles were pinned. With the depinning contact line, the microparticles moved together spontaneously. Using the software ImageJ, the location of contact lines at different time were acquired and the circle centers and radii of the contact lines were obtained via the least square method. Then the average distance of two neighbor contact lines at a certain time interval was obtained to characterize the motion of the contact line. Fitting the distance-time curve at the depinning contact line stage with polynomials and differentiating the polynomials with time, we obtained the velocity and acceleration of both the contact line and the microparticles located at the line. The velocity and the maximum acceleration were, respectively, of the orders of 1 μm/s and 20-200 nm/s2, indicating that the motion of the microparticles located at the depinning contact line was quasi-static. Finally, we presented a theoretical model to describe the quasi-static process, which may help in understanding both self-pinning and depinning of microparticles.

  9. Low-cost fabrication and performance testing of Polydimethylsiloxane (PDMS) micromixers using an improved print-and-Peel (PAP) method

    Science.gov (United States)

    Abagon, Ma. Victoria; Buendia, Neil Daniel; Jasper Caracas, Corine; July Yap, Kristian

    2018-03-01

    The research presents different configurations of microfluidic mixers made from polydimethylsiloxane (PDMS) fabricated using an improved, low-cost print-and-peel (PAP) method. Processes, such as mixing, operated in the micro scale allow decreased equipment size-to-production capacity ratio and decreased energy consumption per unit product. In the study, saturated solutions of blue and yellow food dyes were introduced inside the channels using a LEGO® improvised microsyringe pump. Scanning Electron Microscopy (SEM) was used to determine the average depth of the fabricated micromixers which was found to be around 14 ¼m. The flows were observed and images were taken using a light microscope. The color intensities of the images were then measured using MATLAB®. From the relationship between color intensity and concentration, the mixing indices were calculated and found to be 0.9435 to 0.9941, which falls within the standard mixing index range (0.8 - 1.0) regardless of the flow rate and the configuration of the micromixer as verified through the two-way ANOVA. From the cost analysis, the cost of the device fabricated in this study is a hundred-fold less than expenses from standard fabrication procedures. Hence, the fabricated device provides an alternative for micromixers produced from expensive and conventional lithographic methods.

  10. Fracto-mechanoluminescent light emission of EuD4TEA-PDMS composites subjected to high strain-rate compressive loading

    Science.gov (United States)

    Ryu, Donghyeon; Castaño, Nicolas; Bhakta, Raj; Kimberley, Jamie

    2017-08-01

    The objective of this study is to understand light emission characteristics of fracto-mechanoluminescent (FML) europium tetrakis(dibenzoylmethide)-triethylammonium (EuD4TEA) crystals under high strain-rate compressive loading. As a sensing material that can play a pivotal role for the self-powered impact sensor technology, it is important to understand transformative light emission characteristics of the FML EuD4TEA crystals under high strain-rate compressive loading. First, EuD4TEA crystals were synthesized and embedded into polydimethylsiloxane (PDMS) elastomer to fabricate EuD4TEA-PDMS composite test specimens. Second, the prepared EuD4TEA-PDMS composites were tested using the modified Kolsky bar setup equipped with a high-speed camera. Third, FML light emission was captured to yield 12 bit grayscale video footage, which was processed to quantify the FML light emission. Finally, quantitative parameters were generated by taking into account pixel values and population of pixels of the 12 bit grayscale images to represent FML light intensity. The FML light intensity was correlated with high strain-rate compressive strain and strain rate to understand the FML light emission characteristics under high strain-rate compressive loading that can result from impact occurrences.

  11. Effects of strain rate, mixing ratio, and stress-strain definition on the mechanical behavior of the polydimethylsiloxane (PDMS) material as related to its biological applications.

    Science.gov (United States)

    Khanafer, Khalil; Duprey, Ambroise; Schlicht, Marty; Berguer, Ramon

    2009-04-01

    Tensile tests on Polydimethylsiloxane (PDMS) materials were conducted to illustrate the effects of mixing ratio, definition of the stress-strain curve, and the strain rate on the elastic modulus and stress-strain curve. PDMS specimens were prepared according to the ASTM standards for elastic materials. Our results indicate that the physiological elastic modulus depends strongly on the definition of the stress-strain curve, mixing ratio, and the strain rate. For various mixing ratios and strain rates, true stress-strain definition results in higher stress and elastic modulus compared with engineering stress-strain and true stress-engineering strain definitions. The elastic modulus increases as the mixing ratio increases up-to 9:1 ratio after which the elastic modulus begins to decrease even as the mixing ratio continues to increase. The results presented in this study will be helpful to assist the design of in vitro experiments to mimic blood flow in arteries and to understand the complex interaction between blood flow and the walls of arteries using PDMS elastomer.

  12. A simple and cost-effective method for fabrication of integrated electronic-microfluidic devices using a laser-patterned PDMS layer

    KAUST Repository

    Li, Ming

    2011-12-03

    We report a simple and cost-effective method for fabricating integrated electronic-microfluidic devices with multilayer configurations. A CO 2 laser plotter was employed to directly write patterns on a transferred polydimethylsiloxane (PDMS) layer, which served as both a bonding and a working layer. The integration of electronics in microfluidic devices was achieved by an alignment bonding of top and bottom electrode-patterned substrates fabricated with conventional lithography, sputtering and lift-off techniques. Processes of the developed fabrication method were illustrated. Major issues associated with this method as PDMS surface treatment and characterization, thickness-control of the transferred PDMS layer, and laser parameters optimization were discussed, along with the examination and testing of bonding with two representative materials (glass and silicon). The capability of this method was further demonstrated by fabricating a microfluidic chip with sputter-coated electrodes on the top and bottom substrates. The device functioning as a microparticle focusing and trapping chip was experimentally verified. It is confirmed that the proposed method has many advantages, including simple and fast fabrication process, low cost, easy integration of electronics, strong bonding strength, chemical and biological compatibility, etc. © Springer-Verlag 2011.

  13. Novice designers’ use of prototypes in engineering design

    Science.gov (United States)

    Deininger, Michael; Daly, Shanna R.; Sienko, Kathleen H.; Lee, Jennifer C.

    2017-01-01

    Prototypes are essential tools in product design processes, but are often underutilized by novice designers. To help novice designers use prototypes more effectively, we must first determine how they currently use prototypes. In this paper, we describe how novice designers conceptualized prototypes and reported using them throughout a design project, and compare reported prototyping use to prototyping best practices. We found that some of the reported prototyping practices by novice designers, such as using inexpensive prototypes early and using prototypes to define user requirements, occurred infrequently and lacked intentionality. Participants’ initial descriptions of prototypes were less sophisticated than how they later described using them and only upon prompted reflection did participants recognize more specific benefits of using prototypes. PMID:29398740

  14. Prototyping for surgical and prosthetic treatment.

    Science.gov (United States)

    Goiato, Marcelo Coelho; Santos, Murillo Rezende; Pesqueira, Aldiéris Alves; Moreno, Amália; dos Santos, Daniela Micheline; Haddad, Marcela Filié

    2011-05-01

    Techniques of rapid prototyping were introduced in the 1980s in the field of engineering for the fabrication of a solid model based on a computed file. After its introduction in the biomedical field, several applications were raised for the fabrication of models to ease surgical planning and simulation in implantology, neurosurgery, and orthopedics, as well as for the fabrication of maxillofacial prostheses. Hence, the literature has described the evolution of rapid prototyping technique in health care, which allowed easier technique, improved surgical results, and fabrication of maxillofacial prostheses. Accordingly, a literature review on MEDLINE (PubMed) database was conducted using the keywords rapid prototyping, surgical planning, and maxillofacial prostheses and based on articles published from 1981 to 2010. After reading the titles and abstracts of the articles, 50 studies were selected owing to their correlations with the aim of the current study. Several studies show that the prototypes have been used in different dental-medical areas such as maxillofacial and craniofacial surgery; implantology; neurosurgery; orthopedics; scaffolds of ceramic, polymeric, and metallic materials; and fabrication of personalized maxillofacial prostheses. Therefore, prototyping has been an indispensable tool in several studies and helpful for surgical planning and fabrication of prostheses and implants.

  15. Refrigerating liquid prototype for LED's thermal management

    International Nuclear Information System (INIS)

    Faranda, Roberto; Guzzetti, Stefania; Lazaroiu, George Cristian; Leva, Sonia

    2012-01-01

    The heat management is the critical factor for high performance operation of LED. A new heat management application of refrigerating liquid integrated within a fabricated prototype is proposed and investigated. A series of experiments considering different heights of liquid level were performed to evaluate the heat dissipation performance and optical characteristics of the refrigerating liquid based prototype. The results reveal that the junction temperature decreases as the level of refrigerating liquid increases. The experimental results report that the refrigerating liquid reduces the junction temperature, and can positively influence the luminous radiation performances. An optimization investigation of the proposed solution was carried out to find an optimum thermal performance. The experiments indicated that refrigerating liquid cooling is a powerful way for heat dissipation of high power LEDs, and the fabrication of prototype was feasible and useful. - Highlights: ► New heat management application of refrigerating liquid on a fabricated LED prototype. ► Thermal models setup and comparison between the classical and the new solutions. ► The impact of refrigerating liquid level on LED thermal and luminous performances. ► The relationship between different levels of liquid with LED prototype performances.

  16. Prototype superconducting magnet for the FFAG accelerator

    International Nuclear Information System (INIS)

    Obana, T.; Ogitsu, T.; Yamamoto, A.; Yoshimoto, M.; Mori, Y.; Fujii, T.; Iwasa, M.; Orikasa, T.

    2006-01-01

    A study of a superconducting magnet for the Fixed Field Alternating Gradient (FFAG) accelerator has been performed. The FFAG accelerator requires static magnetic field, and it is suitable for superconducting magnet applications, because problems associated with time varying magnetic field such as eddy current loss can be eliminated. The superconducting magnet, which can generate high magnetic field, is possible to realize a higher beam energy with a given accelerator size or the size to be smaller for a given beam energy. The FFAG accelerator magnet is demanded to have a complicated nonlinear magnetic field with high accuracy. As a first prototype superconducting coil, the coil configuration which consists of left-right asymmetric cross-section and large aperture has been designed. The prototype coil has been successfully developed by using a 6-axis Computer Numerical Control (CNC) winding machine. The magnetic field of the prototype coil has been demonstrated in warm measurement. As a consequence, the technical feasibility has been verified with the prototype coil development and the performance test. In addition, the technology components developed in the prototype coil have a possibility to transfer to a fusion magnet

  17. Close encounters of the prototype kind

    CERN Multimedia

    2005-01-01

    CERN is building a new control centre for the operation of its entire accelerator complex and technical infrastructure. The prototype console for the new centre has just been installed and tested. Close encounters of the prototype kind CERN is building a new control centre for the operation of its entire accelerator complex and technical infrastructure. The prototype console for the new centre has just been installed and tested. The prototype of the control consoles that will be at the heart of the future CERN Control Centre (CCC) has just been installed in the Roy Billinge Room in Building 354. Until now, there have been four separate control rooms for the CERN accelerators and technical infrastructure. The CCC, which will be located on the Prévessin site, will bring them all together in a single room. The Centre will consist of 40 consoles for four different areas (LHC, SPS, PS complex and technical infrastructure). The prototype was tested by the technicians for a month. Following installation and con...

  18. Seguimiento por espectroscopia infrarroja (FT-IR de la copolimerización de TEOS (tetraetilortosilicato y PDMS (polidimetilsiloxano en presencia de tbt (tetrabutiltitanio

    Directory of Open Access Journals (Sweden)

    Téllez, L.

    2004-10-01

    Full Text Available Hybrid materials have been prepared in this work through the reactions of Si and Ti alkoxides (TEOS and TBT, respectively and polydimethil siloxane (PDMS. These reactions have been studied by means of FT-IR spectroscopy during the whole reaction time. The hydrolysis of TEOS molecule has been followed by the 880 cm-1 band, and the self-condensation reactions through the 1180 and 1150 cm-1 bands. Polycondesation reaction between Si-OH groups and PDMS molecules has been followed by the 850 cm-1 band. On the other hand, the hydrolysis reaction of TBT and the self-condensation of Ti-OH groups have been followed by the 1130 and 770-510 cm-1 bands, respectively. Finally the condensation reaction between Si-OH and Ti-OH groups have been studied by the 936 cm-1 band. Results have shown that hydrolysis and condensation reactions are depending on TBT concentration. The formation of Si-O-Si cross-linked structures increases with the TBT concentrations in the reaction. The selfcondensation reaction of Si-OH grups or Ti-OH grous is very reapid forming Si-O-Si and Ti-O-Ti bonds, respectively. However, the Si-O-Ti bonds which are formed during the first moments of reaction are also rapidly broken due to H2O molecules or the reaction medium. The evolution of PDMS linear and cyclic molecules is also studied.

    Se han preparado materiales híbridos por medio de reacciones de hidrólisis y condensación de alcóxidos de Si y Ti (TEOS y TBT, respectivamente y de reacciones de copolimerización de éstos con polidimetilsiloxano (PDMS. Se han estudiado las citadas reacciones mediante espectroscopia FT-IR, desde el mismo comienzo hasta la obtención del material final. La hidrólisis del TEOS así como la autocondensación del os grupos Si-OH generados tanto para formar cadenas entrecruzadas como lineales se han seguido mediante las bandas situadas a 880, 1180 y 1150 cm-1, respectivamente. La policondensación de dichos grupos con PDMS se ha seguido por la banda a

  19. Application of rapid prototyping technology in the prototype manufacturing for evaluation of NPP components and equipments

    International Nuclear Information System (INIS)

    Park, C. Y.; Kim, J. W.; Shon, H. K.; Choi, H. S.; Yang, D. Y.

    2001-01-01

    A brief overview of rapid prototyping technology in which a part with complex shape can be produced easily and rapidly in a layer-by-layer additive manner is given in this article. In addition, a prototype model of a complex fan is manufactured using three-dimensional solid CAD modeling and Laminated Object Manufacturing (LOM), a rapid prototyping technology. This enables designers to verify and modify design rapidly at an early stage of product development; and the prototype model of a fan can be used as a pattern for various secondary casting process such as vacumm casting, lost-paper casting to make prototypes of a fan. It has been shown that the combination of three-dimensional solid CAD modeling and rapid prototyping technology can reduce greatly the cost and time of prototyping of fans and turbine blades in comparison with conventional CNC machining. It should also be noted that rapid prototyping technology enables the visualization of various physical and chemical defects at a nuclear power plant so that it can help engineers understand those defects in an effective way

  20. The Prototype as Mediator of Embodied Experience in Fashion Design

    DEFF Research Database (Denmark)

    Kristensen, Tore; Ræbild, Ulla

    . It is based on photographic material obtained in design studios during prototype development. The prototype is considered a core fashion design competence. Yet, companies increasingly cut costs by reducing or omitting prototype development. We intend to show, how the garment prototype acts as an important...

  1. A COMPUTERIZED OPERATOR SUPPORT SYSTEM PROTOTYPE

    Energy Technology Data Exchange (ETDEWEB)

    Thomas A. Ulrich; Roger Lew; Ronald L. Boring; Ken Thomas

    2015-03-01

    A computerized operator support system (COSS) is proposed for use in nuclear power plants to assist control room operators in addressing time-critical plant upsets. A COSS is a collection of technologies to assist operators in monitoring overall plant performance and making timely, informed decisions on appropriate control actions for the projected plant condition. A prototype COSS was developed in order to demonstrate the concept and provide a test bed for further research. The prototype is based on four underlying elements consisting of a digital alarm system, computer-based procedures, piping and instrumentation diagram system representations, and a recommender module for mitigation actions. The initial version of the prototype is now operational at the Idaho National Laboratory using the Human System Simulation Laboratory.

  2. Generalizing Prototype Theory: A Formal Quantum Framework

    Science.gov (United States)

    Aerts, Diederik; Broekaert, Jan; Gabora, Liane; Sozzo, Sandro

    2016-01-01

    Theories of natural language and concepts have been unable to model the flexibility, creativity, context-dependence, and emergence, exhibited by words, concepts and their combinations. The mathematical formalism of quantum theory has instead been successful in capturing these phenomena such as graded membership, situational meaning, composition of categories, and also more complex decision making situations, which cannot be modeled in traditional probabilistic approaches. We show how a formal quantum approach to concepts and their combinations can provide a powerful extension of prototype theory. We explain how prototypes can interfere in conceptual combinations as a consequence of their contextual interactions, and provide an illustration of this using an intuitive wave-like diagram. This quantum-conceptual approach gives new life to original prototype theory, without however making it a privileged concept theory, as we explain at the end of our paper. PMID:27065436

  3. Prototype Hanford Surface Barrier: Design basis document

    International Nuclear Information System (INIS)

    Myers, D.R.; Duranceau, D.A.

    1994-11-01

    The Hanford Site Surface Barrier Development Program (BDP) was organized in 1985 to develop the technology needed to provide a long-term surface barrier capability for the Hanford Site and other arid sites. This document provides the basis of the prototype barrier. Engineers and scientists have momentarily frozen evolving barrier designs and incorporated the latest findings from BDP tasks. The design and construction of the prototype barrier has required that all of the various components of the barrier be brought together into an integrated system. This integration is particularly important because some of the components of the protective barreir have been developed independently of other barreir components. This document serves as the baseline by which future modifications or other barrier designs can be compared. Also, this document contains the minutes of meeting convened during the definitive design process in which critical decisions affecting the prototype barrier's design were made and the construction drawings

  4. Mobile Prototyping Platforms for Remote Engineering Applications

    Directory of Open Access Journals (Sweden)

    Karsten Henke

    2009-08-01

    Full Text Available This paper describes a low-cost mobile communication platform as a universal rapid-prototyping system, which is based on the Quadrocopter concept. At the Integrated Hardware and Software Systems Group at the Ilmenau University of Technology these mobile platforms are used to motivate bachelor and master students to study Computer Engineering sciences. This could be done by increasing their interest in technical issues, using this platform as integral part of a new ad-hoc lab to demonstrate different aspects in the area of Mobile Communication as well as universal rapid prototyping nodes to investigate different mechanisms for self-organized mobile communication systems within the International Graduate School on Mobile Communications. Beside the three fields of application, the paper describes the current architecture concept of the mobile prototyping platform as well as the chosen control mechanism and the assigned sensor systems to fulfill all the required tasks.

  5. Iterative Prototyping of Strategy Implementation Workshop Design

    DEFF Research Database (Denmark)

    Kryger, Anders

    2018-01-01

    Purpose: The purpose of this paper is to demonstrate how a strategy implementation workshop design can be developed and tested while minimizing the time spent on developing the design. Design/methodology/approach: This multiple case study at a diesel engine company shows how iterative prototyping...... can be used to structure the design process of a strategy implementation workshop. Findings: Strategy implementation workshop design can be developed in resource-constrained environments through iterative prototyping of the workshop design. Each workshop iteration can generate value in its own right...... draw on his/her experience as well as add to his/her knowledge base. Originality/value: Introducing iterative prototyping in an organizational context can facilitate fast yet structured development of a rigorous workshop design. Strategy consultants are provided with empirical examples of how...

  6. Generalizing Prototype Theory: A Formal Quantum Framework

    Directory of Open Access Journals (Sweden)

    Diederik eAerts

    2016-03-01

    Full Text Available Theories of natural language and concepts have been unable to model the flexibility, creativity, context-dependence, and emergence, exhibited by words, concepts and their combinations. The mathematical formalism of quantum theory has instead been successful in capturing these phenomena such as graded membership, situational meaning, composition of categories, and also more complex decision making situations, which cannot be modeled in traditional probabilistic approaches. We show how a formal quantum approach to concepts and their combinations can provide a powerful extension of prototype theory. We explain how prototypes can interfere in conceptual combinations as a consequence of their contextual interactions, and provide an illustration of this using an intuitive wave-like diagram. This quantum-conceptual approach gives new life to original prototype theory, without however making it a privileged concept theory, as we explain at the end of our paper.

  7. Licensing management system prototype system design

    International Nuclear Information System (INIS)

    Immerman, W.H.; Arcuni, A.A.; Elliott, J.M.; Chapman, L.D.

    1983-11-01

    This report is a design document for a prototype implementation of a licensing management system (LMS) as defined in SAND83-7080. It describes the concept of operations for full implementation of an LMS in accordance with the previously defined functional requirements. It defines a subset of a full LMS suitable for meeting prototype implementation goals, and proposes a system design for this subset. The report describes overall system design considerations consistent with, but more explicit than the general characteristics required by the LMS functional definition. A high level design is presented for just those functions selected for prototype implementation. The report also provides a data element dictionary describing the structured logical data elements required to implement the selected functions

  8. 3D Printing, Ink Casting and Micromachined Lamination (3D PICLμM: A Makerspace Approach to the Fabrication of Biological Microdevices

    Directory of Open Access Journals (Sweden)

    Avra Kundu

    2018-02-01

    Full Text Available We present a novel benchtop-based microfabrication technology: 3D printing, ink casting, micromachined lamination (3D PICLμM for rapid prototyping of lab-on-a-chip (LOC and biological devices. The technology uses cost-effective, makerspace-type microfabrication processes, all of which are ideally suited for low resource settings, and utilizing a combination of these processes, we have demonstrated the following devices: (i 2D microelectrode array (MEA targeted at in vitro neural and cardiac electrophysiology, (ii microneedle array targeted at drug delivery through a transdermal route and (iii multi-layer microfluidic chip targeted at multiplexed assays for in vitro applications. The 3D printing process has been optimized for printing angle, temperature of the curing process and solvent polishing to address various biofunctional considerations of the three demonstrated devices. We have depicted that the 3D PICLμM process has the capability to fabricate 30 μm sized MEAs (average 1 kHz impedance of 140 kΩ with a double layer capacitance of 3 μF, robust and reliable microneedles having 30 μm radius of curvature and ~40 N mechanical fracture strength and microfluidic devices having 150 μm wide channels and 400 μm fluidic vias capable of fluid mixing and transmitted light microparticle visualization. We believe our 3D PICLμM is ideally suited for applications in areas such as electrophysiology, drug delivery, disease in a dish, organ on a chip, environmental monitoring, agricultural therapeutic delivery and genomic testing.

  9. A new water absorbable mechanical Epidermal skin equivalent: the combination of hydrophobic PDMS and hydrophilic PVA hydrogel.

    Science.gov (United States)

    Morales-Hurtado, M; Zeng, X; Gonzalez-Rodriguez, P; Ten Elshof, J E; van der Heide, E

    2015-06-01

    Research on human skin interactions with healthcare and lifestyle products is a topic continuously attracting scientific studies over the past years. It is possible to evaluate skin mechanical properties based on human or animal experimentation, yet in addition to possible ethical issues, these samples are hard to obtain, expensive and give rise to highly variable results. Therefore, the design of a skin equivalent is essential. This paper describes the design and characterization of a new Epidermal Skin Equivalent (ESE). The material resembles the properties of epidermis and is a first approach to mimic the mechanical properties of the human skin structure, variable with the length scale. The ESE is based on a mixture of Polydimethyl Siloxane (PDMS) and Polyvinyl Alcohol (PVA) hydrogel cross-linked with Glutaraldehyde (GA). It was chemically characterized by XPS and FTIR measurements and its cross section was observed by macroscopy and cryoSEM. Confocal Microscope analysis on the surface of the ESE showed an arithmetic roughness (Ra) between 14-16 μm and contact angle (CA) values between 50-60°, both of which are close to the values of in vivo human skins reported in the literature. The Equilibrium Water Content (ECW) was around 33.8% and Thermo Gravimetric Analysis (TGA) confirmed the composition of the ESE samples. Moreover, the mechanical performance was determined by indentation tests and Dynamo Thermo Mechanical Analysis (DTMA) shear measurements. The indentation results were in good agreement with that of the target epidermis reported in the literature with an elastic modulus between 0.1-1.5 MPa and it showed dependency on the water content. According to the DTMA measurements, the ESE exhibits a viscoelastic behavior, with a shear modulus between 1-2.5MPa variable with temperature, frequency and the hydration of the samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Biomimetic PDMS-hydroxyurethane terminated with catecholic moieties for chemical grafting on transition metal oxide-based surfaces

    Science.gov (United States)

    de Aguiar, Kelen R.; Rischka, Klaus; Gätjen, Linda; Noeske, Paul-Ludwig Michael; Cavalcanti, Welchy Leite; Rodrigues-Filho, Ubirajara P.

    2018-01-01

    The aim of this work was to synthesize a non-isocyanate poly(dimethylsiloxane) hydroxyurethane with biomimetic terminal catechol moieties, as a candidate for inorganic and metallic surface modification. Such surface modifier is capable to strongly attach onto metallic and inorganic substrates forming layers and, in addition, providing water-repellent surfaces. The non-isocyanate route is based on carbon dioxide cycloaddition into bis-epoxide, resulting in a precursor bis(cyclic carbonate)-polydimethylsiloxane (CCPDMS), thus fully replacing isocyanate in the manufacture process. A biomimetic approach was chosen with the molecular composition being inspired by terminal peptides present in adhesive proteins of mussels, like Mefp (Mytilus edulis foot protein), which bear catechol moieties and are strong adhesives even under natural and saline water. The catechol terminal groups were grafted by aminolysis reaction into a polydimethylsiloxane backbone. The product, PDMSUr-Dopamine, presented high affinity towards inhomogeneous alloy surfaces terminated by native oxide layers as demonstrated by quartz crystal microbalance (QCM-D), as well as stability against desorption by rinsing with ethanol. As revealed by QCM-D, X-ray photoelectron spectroscopy (XPS) and computational studies, the thickness and composition of the resulting nanolayers indicated an attachment of PDMSUr-Dopamine molecules to the substrate through both terminal catechol groups, with the adsorbate exposing the hydrophobic PDMS backbone. This hypothesis was investigated by classical molecular dynamic simulation (MD) of pure PDMSUr-Dopamine molecules on SiO2 surfaces. The computationally obtained PDMSUr-Dopamine assembly is in agreement with the conclusions from the experiments regarding the conformation of PDMSUr-Dopamine towards the surface. The tendency of the terminal catechol groups to approach the surface is in agreement with proposed model for the attachment PDMSUr-Dopamine. Remarkably, the versatile

  11. From research plots to prototype biomass plantations

    Energy Technology Data Exchange (ETDEWEB)

    Kenney, W.A.; Vanstone, B.J.; Gambles, R.L.; Zsuffa, L. [Univ. of Toronto, Ontario (Canada)

    1993-12-31

    The development of biomass energy plantations is now expanding from the research plot phase into the next level of development at larger scale plantings. This is necessary to provide: more accurate information on biomass yields, realistic production cost figures, venues to test harvesting equipment, demonstration sites for potential producers, and a supply of feedstock for prototype conversion facilities. The paper will discuss some of these objectives and some of the challenges encountered in the scale-up process associated with a willow prototype plantation project currently under development in Eastern Canada.

  12. Modelling and Control of the Wavestar Prototype

    DEFF Research Database (Denmark)

    Hansen, Rico Hjerm; Kramer, Morten M.

    2011-01-01

    Algorithm (WPEA), applied to the full-scale Wavestar Prototype for maximizing energy extraction. The WPEA is optimized based on simulations of the point absorbers in different sea states. Hence, a presentation of a hydrodynamic model of the Wavestar is included in the paper. A simplified Power Take-Off (PTO......) is also added to the model, enabling the optimization of the WPEA to take into account the PTO constraints of PTO bandwidth and force limitations. The predicted results of the optimized WPEA are compared to real measurements from theWavestar Prototype, showing good compliance....

  13. Rapid Prototyping: Technologies, Materials and Advances

    Directory of Open Access Journals (Sweden)

    Dudek P.

    2016-06-01

    Full Text Available In the context of product development, the term rapid prototyping (RP is widely used to describe technologies which create physical prototypes directly from digital data. Recently, this technology has become one of the fastest-growing methods of manufacturing parts. The paper provides brief notes on the creation of composites using RP methods, such as stereolithography, selective laser sintering or melting, laminated object modelling, fused deposition modelling or three-dimensional printing. The emphasis of this work is on the methodology of composite fabrication and the variety of materials used in these technologies.

  14. RK-TBA prototype RF source

    International Nuclear Information System (INIS)

    Houck, T.; Anderson, D.; Giordano, G.

    1996-01-01

    A prototype rf power source based on the Relativistic Klystron Two-Beam Accelerator (RK-TBA) concept is being constructed at the Lawrence Berkeley National Laboratory to study physics, engineering, and costing issues. The prototype is described and compared to a full scale design appropriate for driving the Next Linear Collider (NLC). Specific details of the induction core tests and pulsed power system are presented. The 1-MeV, 1.2-kA induction gun currently under construction is also described in detail

  15. The prototype of radioactive ion source

    CERN Document Server

    Aleksandrov, A V; Kot, N K; Andrighetto, A; Stroe, L

    2001-01-01

    The design and experimental results of the RIB source prototype are presented.A source will have the container of sup 2 sup 3 sup 5 U compounds heated up to 2200-2500 degree C. Vapors of uranium fission obtained when the ion source is irradiated by the high-energy neutron flux, are then ionized and extracted from the source. In the experiments with the prototype loaded by sup 1 sup 2 C the source working temperature 2700 degree C was reached, the carbon ion current 10 nA was obtained. The total operation time of more than 100 hours with no performance degradation was demonstrated.

  16. Prototype of an excimer laser for microprocessing

    Science.gov (United States)

    Iwanejko, Leszek; Pokora, Ludwik J.; Wolinski, Wieslaw L.

    1991-08-01

    The paper presents a brief description of a prototype of a XeC1 excimer laser for micraprocessing of materials. The planned main parameters of the laserare as follows: wavelength . . . . . . . . . . . . . . . . . . . . . . . . . 308 nm -''energyofapulse. . . . . . . . . . . . . lOOmJ -pulseduration (FWHM) . . . . . . . . . . . . . . . 2Ons repetition frequency . . . . . . . . . . . . . . 1O Hz peak power of a pulse . . . . . . . . . . . . . . . 5 MW With respect to currently carrried works with the prototype we show only preliminary results of testing of a laser head. The obtained maximum laser pulse energy exceeded 90 ml. However it should be pointed out that this value was obtained without any opt i mi z at i on of the 1 aser.

  17. Prototype ion source for JT-60 neutral beam injectors

    International Nuclear Information System (INIS)

    Akiba, M.

    1981-01-01

    A prototype ion source for JT-60 neutral beam injectors has been fabricated and tested. Here, we review the construction of the prototype ion source and report the experimental results about the source characteristics that has been obtained at this time. The prototype ion source is now installed at the prototype unit of JT-60 neutral beam injection units and the demonstration of the performances of the ion source and the prototype unit has just started

  18. ABOUT MODERN TECHNICAL GRAPHICS USING IN THE VIRTUAL PROTOTYPING

    OpenAIRE

    GHERGHINA George; POPA Dragos; BOGDAN Mihaela; GLUGA Cristian

    2008-01-01

    The paper presents aspects concerning the using of modern technical graphics elements in the virtual prototyping. The virtual prototyping is a process which uses a virtual prototype in place of physical prototype for the testing and the evaluation of specific features of designed product. The virtual prototype is created by computer such as it could assign the specific features as close as possible to the real conditions which permit its function simulation in the conditions for which is desi...

  19. Ceramic microfabrication by rapid prototyping process chains

    Indian Academy of Sciences (India)

    Ceramic microfabrication by rapid prototyping process chains ... is nearly impossible, shaping has to be done by a replication step in the green, unfired state. ... This process chain combines the fast and inexpensive supply of master models by ...

  20. Pancultural nostalgia : Prototypical conceptions across cultures

    NARCIS (Netherlands)

    Hepper, Erica G.; Wildschut, Tim; Sedikides, Constantine; Ritchie, Timothy D.; Yung, Yiu-Fai; Hansen, Nina; Abakoumkin, Georgios; Arikan, Gizem; Cisek, Sylwia Z.; Demassosso, Didier B.; Gebauer, Jochen E.; Gerber, J. P.; Gonzalez, Roberto; Kusumi, Takashi; Misra, Girishwar; Rusu, Mihaela; Ryan, Oisin; Stephan, Elena; Vingerhoets, Ad J. J.; Zhou, Xinyue

    2014-01-01

    Nostalgia is a frequently experienced complex emotion, understood by laypersons in the United Kingdom and United States of America to (a) refer prototypically to fond, self-relevant, social memories and (b) be more pleasant (e.g., happy, warm) than unpleasant (e.g., sad, regretful). This research