WorldWideScience

Sample records for prototype instrument based

  1. Development of prototype induced-fission-based Pu accountancy instrument for safeguards applications.

    Science.gov (United States)

    Seo, Hee; Lee, Seung Kyu; An, Su Jung; Park, Se-Hwan; Ku, Jeong-Hoe; Menlove, Howard O; Rael, Carlos D; LaFleur, Adrienne M; Browne, Michael C

    2016-09-01

    Prototype safeguards instrument for nuclear material accountancy (NMA) of uranium/transuranic (U/TRU) products that could be produced in a future advanced PWR fuel processing facility has been developed and characterized. This is a new, hybrid neutron measurement system based on fast neutron energy multiplication (FNEM) and passive neutron albedo reactivity (PNAR) methods. The FNEM method is sensitive to the induced fission rate by fast neutrons, while the PNAR method is sensitive to the induced fission rate by thermal neutrons in the sample to be measured. The induced fission rate is proportional to the total amount of fissile material, especially plutonium (Pu), in the U/TRU product; hence, the Pu amount can be calibrated as a function of the induced fission rate, which can be measured using either the FNEM or PNAR method. In the present study, the prototype system was built using six (3)He tubes, and its performance was evaluated for various detector parameters including high-voltage (HV) plateau, efficiency profiles, dead time, and stability. The system's capability to measure the difference in the average neutron energy for the FNEM signature also was evaluated, using AmLi, PuBe, (252)Cf, as well as four Pu-oxide sources each with a different impurity (Al, F, Mg, and B) and producing (α,n) neutrons with different average energies. Future work will measure the hybrid signature (i.e., FNEM×PNAR) for a Pu source with an external interrogating neutron source after enlarging the cavity size of the prototype system to accommodate a large-size Pu source (~600g Pu). Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Prototype of a Laser-Induced Fluorescence Ground-Based Instrument for Measurements of Atmospheric Iodine Monoxide (IO)

    Science.gov (United States)

    Thurlow, M. E.; Co, D. T.; Hanisco, T. F.; Lapson, L. B.; Anderson, J. G.

    2008-12-01

    High abundances of iodine monoxide (IO) are known to exist and to participate in local photochemistry of the marine boundary layer: (1) IO participates in depletion episodes of O3 and in the removal of mercury in the Arctic polar spring by enhancing atomic Br mixing ratios. Recent observations and computer simulations suggest that mercury sequestration is closely tied to halogen photochemistry and that gaseous atomic Hg depletion can be enhanced significantly by the presence of small amounts of iodine-containing compounds. (2) IO and higher- order iodine oxides are involved in the formation of new particles in coastal marine environments. Studies using smog chamber experiments simulating coastal atmospheric conditions have demonstrated that new particles can form from condensable iodine-containing vapors and that their concentrations over the open ocean are sufficient to influence marine particle formation. (3) IO has also been shown to affect the oxidizing capacity of the troposphere by altering the partitioning of NO2/NO and HO2/HO and by activating chlorine and bromine in sea salt aerosols. In the stratosphere, these same processes can lead to enhanced ozone loss rates. Detailed photochemical models that include iodine photochemistry, however, are hampered by the lack of observational data. The distribution of IO in vertical, horizontal, and temporal coordinates is unknown, so the impact of IO on global photochemistry cannot be predicted. The resolution of these important scientific issues requires an in situ IO instrument. A fully functional nanosecond Nd:YAG-pumped Ti:Sapphire laser system and a prototype IO ground-based instrument have been built in our lab. With the current setup, the laser system was situated 10 m from the field station, and the laser light was coupled via an optical fiber. With the use of highly efficient fluorescence detection optics and photon counting techniques, sensitivities of better than 0.1 ppt in 1 s for IO was achieved in the

  3. Prototyping a GNSS-Based Passive Radar for UAVs: An Instrument to Classify the Water Content Feature of Lands

    Directory of Open Access Journals (Sweden)

    Micaela Troglia Gamba

    2015-11-01

    Full Text Available Global Navigation Satellite Systems (GNSS broadcast signals for positioning and navigation, which can be also employed for remote sensing applications. Indeed, the satellites of any GNSS can be seen as synchronized sources of electromagnetic radiation, and specific processing of the signals reflected back from the ground can be used to estimate the geophysical properties of the Earth’s surface. Several experiments have successfully demonstrated GNSS-reflectometry (GNSS-R, whereas new applications are continuously emerging and are presently under development, either from static or dynamic platforms. GNSS-R can be implemented at a low cost, primarily if small devices are mounted on-board unmanned aerial vehicles (UAVs, which today can be equipped with several types of sensors for environmental monitoring. So far, many instruments for GNSS-R have followed the GNSS bistatic radar architecture and consisted of custom GNSS receivers, often requiring a personal computer and bulky systems to store large amounts of data. This paper presents the development of a GNSS-based sensor for UAVs and small manned aircraft, used to classify lands according to their soil water content. The paper provides details on the design of the major hardware and software components, as well as the description of the results obtained through field tests.

  4. Surrogates-based prototyping

    NARCIS (Netherlands)

    Du Bois, E.; Horvath, I.

    2014-01-01

    The research is situated in the system development phase of interactive software products. In this detailed design phase, we found a need for fast testable prototyping to achieve qualitative change proposals on the system design. In this paper, we discuss a literature study on current software

  5. The first Swedish nuclear reactor - from technical prototype to scientific instrument; Sveriges foersta kaernreaktor - fraan teknisk prototyp till vetenskapligt instrument

    Energy Technology Data Exchange (ETDEWEB)

    Fjaestad, M. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of History of Science and Technology

    2001-01-01

    The first Swedish reactor R1, constructed at the Royal Inst. of Technology in Stockholm, went critical in July 1954. This report presents historical aspects of the reactor, in particular about the reactor as a research instrument and a centre for physical science. The tensions between its role as a prototype and a step in the development of power reactors and that as a scientific instrument are especially focused.

  6. Hanford double shell tank corrosion monitoring instrument tree prototype

    International Nuclear Information System (INIS)

    Nelson, J.L.; Edgemon, G.L.; Ohl, P.C.

    1995-11-01

    High-level nuclear wastes at the Hanford site are stored underground in carbon steel double-shell and single-shell tanks (DSTs and SSTs). The installation of a prototype corrosion monitoring instrument tree into DST 241-A-101 was completed in December 1995. The instrument tree has the ability to detect and discriminate between uniform corrosion, pitting, and stress corrosion cracking (SCC) through the use of electrochemical noise measurements and a unique stressed element, three-electrode probe. The tree itself is constructed of AISI 304L stainless steel (UNS S30403), with probes in the vapor space, vapor/liquid interface and liquid. Successful development of these trees will allow their application to single shell tanks and the transfer of technology to other US Department of Energy (DOE) sites. Keywords: Hanford, radioactive waste, high-level waste tanks, electrochemical noise, probes, double-shell tanks, single-shell tanks, corrosion

  7. Nuclear instrumentation systems in prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Vijayakumaran, P.M.; Nagaraj, C.P.; Paramasivan-Pillai, C.; Ramakrishnan, R.; Sivaramakrishna, M.

    2004-01-01

    The nuclear instrumentation systems of the Prototype Fast Breeder Reactor (PFBR) primarily comprise of global Neutron Flux Monitoring, Failed Fuel Detection and Location, Radiation Monitoring and Post-Accident Monitoring. High temperature fission chambers are provided at in-vessel locations for monitoring neutron flux. Failed fuel detection and location is by monitoring the cover gas for fission gases and primary sodium for delayed neutrons. Signals of the core monitoring detectors are used to initiate SCRAM (safety action) to protect the reactor from various postulated initiating events. Radiation levels in all potentially radioactive areas are monitored to act as an early warning system to keep the release of radioactivity to the environment and exposure to personnel well below the permissible limits. Fission Chambers and Gamma Ionisation Chambers are located in the reactor vault concrete for monitoring the neutron flux and gamma radiation levels during and after an accident. (authors)

  8. Design of a Prototype Differential Die‐Away Instrument Proposed for Swedish Spent Nuclear Fuel Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Martinik, Tomas, E-mail: tomas.martinik@physics.uu.se [Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Henzl, Vladimir [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Grape, Sophie; Jansson, Peter [Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Swinhoe, Martyn T.; Goodsell, Alison V. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Tobin, Stephen J. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Swedish Nuclear Fuel and Waste Management Company, Blekholmstorget 30, Box 250, SE-101 24 Stockholm (Sweden)

    2016-06-11

    As part of the United States (US) Department of Energy's Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) project, the traditional Differential Die-Away (DDA) method that was originally developed for waste drum assay has been investigated and modified to provide a novel application to characterize or verify spent nuclear fuel (SNF). Following the promising, yet largely theoretical and simulation based, research of physics aspects of the DDA technique applied to SNF assay during the early stages of the NGSI-SF project, the most recent effort has been focused on the practical aspects of developing the first fully functional and deployable DDA prototype instrument for spent fuel. As a result of the collaboration among US research institutions and Sweden, the opportunity to test the newly proposed instrument's performance with commercial grade SNF at the Swedish Interim Storage Facility (Clab) emerged. Therefore the design of this instrument prototype has to accommodate the requirements of the Swedish regulator as well as specific engineering constrains given by the unique industrial environment. Within this paper, we identify key components of the DDA based instrument and we present methodology for evaluation and the results of a selection of the most relevant design parameters in order to optimize the performance for a given application, i.e. test-deployment, including assay of 50 preselected spent nuclear fuel assemblies of both pressurized (PWR) as well as boiling (BWR) water reactor type.

  9. Prototyping a Global Soft X-Ray Imaging Instrument for Heliophysics, Planetary Science, and Astrophysics Science

    Science.gov (United States)

    Collier, M. R.; Porter, F. S.; Sibeck, D. G.; Carter, J. A.; Chiao, M. P.; Chornay, D. J.; Cravens, T.; Galeazzi, M.; Keller, J. W.; Koutroumpa, D.; hide

    2012-01-01

    We describe current progress in the development of a prototype wide field-of-view soft X-ray imager that employs Lobstereye optics and targets heliophysics, planetary, and astrophysics science. The prototype will provide proof-of-concept for a future flight instrument capable of imaging the entire dayside magnetosheath from outside the magnetosphere. Such an instrument was proposed for the ESA AXIOM mission.

  10. Prototyping a Global Soft X-ray Imaging Instrument for Heliophysics, Planetary Science, and Astrophysics Science

    Science.gov (United States)

    Collier, Michael R.; Porter, F. Scott; Sibeck, David G.; Carter, Jenny A.; Chiao, Meng P.; Chornay, Dennis J.; Cravens, Thomas; Galeazzi, Massimiliano; Keller, John W.; Koutroumpa, Dimitra; hide

    2012-01-01

    We describe current progress in the development of a prototype wide field-of-view soft X-ray imager that employs Lobster-eye optics and targets heliophysics, planetary, and astrophysics science. The prototype will provide proof-of-concept for a future flight instrument capable of imaging the entire dayside magnetosheath from outside the magnetosphere. Such an instrument was proposed for the FSA AXIOM mission

  11. Prototype-based models in machine learning

    NARCIS (Netherlands)

    Biehl, Michael; Hammer, Barbara; Villmann, Thomas

    2016-01-01

    An overview is given of prototype-based models in machine learning. In this framework, observations, i.e., data, are stored in terms of typical representatives. Together with a suitable measure of similarity, the systems can be employed in the context of unsupervised and supervised analysis of

  12. Linear time relational prototype based learning.

    Science.gov (United States)

    Gisbrecht, Andrej; Mokbel, Bassam; Schleif, Frank-Michael; Zhu, Xibin; Hammer, Barbara

    2012-10-01

    Prototype based learning offers an intuitive interface to inspect large quantities of electronic data in supervised or unsupervised settings. Recently, many techniques have been extended to data described by general dissimilarities rather than Euclidean vectors, so-called relational data settings. Unlike the Euclidean counterparts, the techniques have quadratic time complexity due to the underlying quadratic dissimilarity matrix. Thus, they are infeasible already for medium sized data sets. The contribution of this article is twofold: On the one hand we propose a novel supervised prototype based classification technique for dissimilarity data based on popular learning vector quantization (LVQ), on the other hand we transfer a linear time approximation technique, the Nyström approximation, to this algorithm and an unsupervised counterpart, the relational generative topographic mapping (GTM). This way, linear time and space methods result. We evaluate the techniques on three examples from the biomedical domain.

  13. ECCE Toolkit: Prototyping Sensor-Based Interaction

    Directory of Open Access Journals (Sweden)

    Andrea Bellucci

    2017-02-01

    Full Text Available Building and exploring physical user interfaces requires high technical skills and hours of specialized work. The behavior of multiple devices with heterogeneous input/output channels and connectivity has to be programmed in a context where not only the software interface matters, but also the hardware components are critical (e.g., sensors and actuators. Prototyping physical interaction is hindered by the challenges of: (1 programming interactions among physical sensors/actuators and digital interfaces; (2 implementing functionality for different platforms in different programming languages; and (3 building custom electronic-incorporated objects. We present ECCE (Entities, Components, Couplings and Ecosystems, a toolkit for non-programmers that copes with these issues by abstracting from low-level implementations, thus lowering the complexity of prototyping small-scale, sensor-based physical interfaces to support the design process. A user evaluation provides insights and use cases of the kind of applications that can be developed with the toolkit.

  14. Prototype-based models in machine learning.

    Science.gov (United States)

    Biehl, Michael; Hammer, Barbara; Villmann, Thomas

    2016-01-01

    An overview is given of prototype-based models in machine learning. In this framework, observations, i.e., data, are stored in terms of typical representatives. Together with a suitable measure of similarity, the systems can be employed in the context of unsupervised and supervised analysis of potentially high-dimensional, complex datasets. We discuss basic schemes of competitive vector quantization as well as the so-called neural gas approach and Kohonen's topology-preserving self-organizing map. Supervised learning in prototype systems is exemplified in terms of learning vector quantization. Most frequently, the familiar Euclidean distance serves as a dissimilarity measure. We present extensions of the framework to nonstandard measures and give an introduction to the use of adaptive distances in relevance learning. © 2016 Wiley Periodicals, Inc.

  15. Validation of Reverse-Engineered and Additive-Manufactured Microsurgical Instrument Prototype.

    Science.gov (United States)

    Singh, Ramandeep; Suri, Ashish; Anand, Sneh; Baby, Britty

    2016-12-01

    With advancements in imaging techniques, neurosurgical procedures are becoming highly precise and minimally invasive, thus demanding development of new ergonomically aesthetic instruments. Conventionally, neurosurgical instruments are manufactured using subtractive manufacturing methods. Such a process is complex, time-consuming, and impractical for prototype development and validation of new designs. Therefore, an alternative design process has been used utilizing blue light scanning, computer-aided designing, and additive manufacturing direct metal laser sintering (DMLS) for microsurgical instrument prototype development. Deviations of DMLS-fabricated instrument were studied by superimposing scan data of fabricated instrument with the computer-aided designing model. Content and concurrent validity of the fabricated prototypes was done by a group of 15 neurosurgeons by performing sciatic nerve anastomosis in small laboratory animals. Comparative scoring was obtained for the control and study instrument. T test was applied to the individual parameters and P values for force (P direct application of these additive-manufactured instruments in the operating room requires further validation. © The Author(s) 2016.

  16. Total ozone measurement: Intercomparison of prototype New Zealand filter instrument and Dobson spectrophotometer

    Science.gov (United States)

    Basher, R. E.

    1978-01-01

    A five month intercomparison showed that the total ozone amounts of a prototype narrowband interference filter instrument were 7% less than those of a Dobson instrument for an ozone range of 0.300 to 0.500 atm cm and for airmasses less than two. The 7% bias was within the intercomparison calibration uncertainty. An airmass dependence in the Dobson instrument made the bias relationship airmass-dependent but the filter instrument's ozone values were generally constant to 2% up to an airmass of four. Long term drift in the bias was negligible.

  17. The first Swedish nuclear reactor - from technical prototype to scientific instrument

    International Nuclear Information System (INIS)

    Fjaestad, M.

    2001-01-01

    The first Swedish reactor R1, constructed at the Royal Inst. of Technology in Stockholm, went critical in July 1954. This report presents historical aspects of the reactor, in particular about the reactor as a research instrument and a centre for physical science. The tensions between its role as a prototype and a step in the development of power reactors and that as a scientific instrument are especially focused

  18. Prototype-based active learning for lemmatization

    CSIR Research Space (South Africa)

    Daelemans, W

    2009-09-01

    Full Text Available ] and Word Length [Long to Short] with the prototypical curves (e.g. Word Frequency [High to Low] and [Word Length Short to Long]). (With regard to the learning curves representing word frequency, refer to 4.1 for an explanation of why [High to Low... of language usage [15]. Secondly, in memory-based language processing [16] it has been argued, on the basis of com- parative machine learning experiments on natural lan- guage processing data, that exceptions are crucial for obtaining high generalization...

  19. Microcontroller Based Robot Prototype Manual Control with Atmega8535 Joystick

    OpenAIRE

    Azella Maulidya; Luyung Dinaini, Skom, MMSi

    2008-01-01

    In writing that I make with the title "PROTOTYPE ROBOT WITH MANUAL CONTROLS microcontroller ATMega8535 joystick" is intended to be a control instrument to be developed further into a tool of control that can be more useful again .

  20. Web-Based Honorarium Confirmation System Prototype

    Science.gov (United States)

    Wisswani, N. W.; Catur Bawa, I. G. N. B.

    2018-01-01

    Improving services in academic environment can be applied by regulating salary payment process for all employees. As a form of control to maintain financial transparency, employees should have information concerning salary payment process. Currently, notification process of committee honorarium will be accepted by the employees in a manual manner. The salary will be received by the employee bank account and to know its details, they should go to the accounting unit to find out further information. Though there are some employees entering the accounting unit, they still find difficulty to obtain information about detailed honor information that they received in their accounts. This can be caused by many data collected and to be managed. Based on this issue, this research will design a prototype of web-based system for accounting unit system in order to provide detailed financial transaction confirmation to employee bank accounts that have been informed through mobile banking system. This prototype will be developed with Waterfall method through testing on final users after it is developed through PHP program with MySQL as DBMS

  1. Rule-based emergency action level monitor prototype

    International Nuclear Information System (INIS)

    Touchton, R.A.; Gunter, A.D.; Cain, D.

    1985-01-01

    In late 1983, the Electric Power Research Institute (EPRI) began a program to encourage and stimulate the development of artificial intelligence (AI) applications for the nuclear industry. Development of a rule-based emergency action level classification system prototype is discussed. The paper describes both the full prototype currently under development and the completed, simplified prototype

  2. Multichannel prototype of coordinate detector based on segmented straws

    International Nuclear Information System (INIS)

    Gusakov, Yu.V.; Davkov, V.I.; Davkov, K.I.; Zhukov, I.A.; Lutsenko, V.M.; Myalkovskij, V.V.; Peshekhonov, V.D.; Savenkov, A.A.

    2010-01-01

    The design and assembly technology of a detector prototype based on segmented straws is considered. The granularity of the prototype is 4 cm 2 . The prototype has a sensitive area of 400 x 200 mm, and contains two straw planes displaced against each other by 2 mm. The number of registration channels is 360. Preliminary results of the bench study of the prototype are presented

  3. Prototype Theory Based Feature Representation for PolSAR Images

    OpenAIRE

    Huang Xiaojing; Yang Xiangli; Huang Pingping; Yang Wen

    2016-01-01

    This study presents a new feature representation approach for Polarimetric Synthetic Aperture Radar (PolSAR) image based on prototype theory. First, multiple prototype sets are generated using prototype theory. Then, regularized logistic regression is used to predict similarities between a test sample and each prototype set. Finally, the PolSAR image feature representation is obtained by ensemble projection. Experimental results of an unsupervised classification of PolSAR images show that our...

  4. ITER Fast Plant System Controller prototype based on PXIe platform

    International Nuclear Information System (INIS)

    Ruiz, M.; Vega, J.; Castro, R.; Sanz, D.; López, J.M.; Arcas, G. de; Barrera, E.; Nieto, J.; Gonçalves, B.; Sousa, J.; Carvalho, B.; Utzel, N.; Makijarvi, P.

    2012-01-01

    Highlights: ► Implementation of Fast Plant System Controller (FPSC) for ITER CODAC. ► Efficient data acquisition and data movement using EPICS. ► Performance of PCIe technologies in the implementation of FPSC. - Abstract: The ITER Fast Plant System Controller (FPSC) is based on embedded technologies. The FPSC will be devoted to both data acquisition tasks (sampling rates higher than 1 kHz) and control purposes (feedback loop actuators). Some of the essential requirements of these systems are: (a) data acquisition and data preprocessing; (b) interfacing with different networks and high speed links (Plant Operation Network, timing network based on IEEE1588, synchronous data transference and streaming/archiving networks); and (c) system setup and operation using EPICS (Experimental Physics and Industrial Control System) process variables. CIEMAT and UPM have implemented a prototype of FPSC using a PXIe (PCI eXtension for Instrumentation) form factor in a R and D project developed in two phases. The paper presents the main features of the two prototypes developed that have been named alpha and beta. The former was implemented using LabVIEW development tools as it was focused on modeling the FPSC software modules, using the graphical features of LabVIEW applications, and measuring the basic performance in the system. The alpha version prototype implements data acquisition with time-stamping, EPICS monitoring using waveform process variables (PVs), and archiving. The beta version prototype is a complete IOC implemented using EPICS with different software functional blocks. These functional blocks are integrated and managed using an ASYN driver solution and provide the basic functionalities required by ITER FPSC such as data acquisition, data archiving, data pre-processing (using both CPU and GPU) and streaming.

  5. Studying the Technology of Creating Cortical Electrode Instruments using the Rapid Prototyping Technology

    Directory of Open Access Journals (Sweden)

    Ablyaz T. R.

    2017-06-01

    Full Text Available This paper shows the results of studying the technology of manufacturing cortical electrode-instruments (EI with the use of indirect methods of the Rapid Prototyping technology. Functional EI prototypes were made by layered synthesis of the photopolymer material with the use of the stereolithography technology (SLA - Stereo Lithography Apparatus. The article is focused on two methods of indirect EI manufacturing. One of the EI prototypes was used for making a molded wax model for hot investment casting, followed by applying copper coating. The second prototype was used for applying copper plating to a prepared current-conductive layer. As a result of EDMing a steel workpiece, both EIs reached the desired depth, which is 1 mm. The copper plating applied to the EI preserves its integrity. Through the use of the casting technology, there is a possibility to cut the economic costs by 35%. Using a prototype with preliminarily applied conductive coating makes it possible to make geometrically-complex EIs.

  6. Rapid Prototyping of an Electrically-Small Antenna for Binaural-Hearing Instruments

    DEFF Research Database (Denmark)

    Ruaro, Andrea; Thaysen, Jesper; Jakobsen, Kaj Bjarne

    2015-01-01

    Rapid prototyping is emerging as a technology that can provide detailed mechanical parts, e.g., for use in antenna mock-ups, in a short lead time. Nevertheless, one of the main issues associated with it is that the materials suitable for 3D printing are not characterized at radio frequencies (RF......). This study analyzes the main RF parameters (dielectric constant, loss tangent, surface roughness) and applies the results to the modeling of the prototype of an electrically small (ESA) antenna for binaural hearing instruments applications. After discussing the specific technology choices...... and their relevancies, it is shown how the analyzed parameters can be used to obtain good correlation between simulations and measurements....

  7. CIMEX: a prototype Instrument to observe from space the amazon forest In the near and shortwave infrared

    Science.gov (United States)

    Guerin, François; Dantes, Didier; Savaria, Eric; Selingardi, Mario Luis; Montes, Amauri Silva

    2018-04-01

    This paper, "CIMEX: a prototype Instrument to observe from space the amazon forest In the near and shortwave infrared," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.

  8. Design of Object-based Information System Prototype

    OpenAIRE

    Suhyeon Yoo; Sumi Shin; Hyesun Kim

    2014-01-01

    Researchers who use science and technology information were found to ask an information service in which they can excerpt the contents they needed, rather than using the information at article level. In this study, we micronized the contents of scholarly articles into text, image, and table and then constructed a micro-content DB to design a new information system prototype based on this micro-content. After designing the prototype, we performed usability test for this prototype so as to conf...

  9. The Gravity-Probe-B relativity gyroscope experiment - Development of the prototype flight instrument

    Science.gov (United States)

    Turneaure, J. P.; Everitt, C. W. F.; Parkinson, B. W.; Bardas, D.; Breakwell, J. V.

    1989-01-01

    The Gravity-Probe-B relativity gyroscope experiment (GP-B) will measure the geodetic and frame-dragging precession rates of gyroscopes in a 650 km high polar orbit about the earth. The goal is to measure these two effects, which are predicted by Einstein's General Theory of Relativity, to 0.01 percent (geodetic) and 1 percent (frame-dragging). This paper presents the development progress for full-size prototype flight hardware including the gyroscopes, gyro readout and magnetic shielding system, and an integrated ground test instrument.

  10. Knowledge based expert system approach to instrumentation selection (INSEL

    Directory of Open Access Journals (Sweden)

    S. Barai

    2004-08-01

    Full Text Available The selection of appropriate instrumentation for any structural measurement of civil engineering structure is a complex task. Recent developments in Artificial Intelligence (AI can help in an organized use of experiential knowledge available on instrumentation for laboratory and in-situ measurement. Usually, the instrumentation decision is based on the experience and judgment of experimentalists. The heuristic knowledge available for different types of measurement is domain dependent and the information is scattered in varied knowledge sources. The knowledge engineering techniques can help in capturing the experiential knowledge. This paper demonstrates a prototype knowledge based system for INstrument SELection (INSEL assistant where the experiential knowledge for various structural domains can be captured and utilized for making instrumentation decision. In particular, this Knowledge Based Expert System (KBES encodes the heuristics on measurement and demonstrates the instrument selection process with reference to steel bridges. INSEL runs on a microcomputer and uses an INSIGHT 2+ environment.

  11. Activity Based Startup Plan for Prototype Vertical Denitration Calciner

    International Nuclear Information System (INIS)

    SUTTER, C.S.

    1999-01-01

    Testing activation on the Prototype Vertical Denitration Calciner at PFP were suspended in January 1997 due to the hold on fissile material handling in the facility. The restart of testing activities will require a review through an activity based startup process based upon Integrated Safety Management (ISM) principles to verify readiness. The Activity Based Startup Plan for the Prototype vertical Denitration Calciner has been developed for this process

  12. Research on seamless development of surgical instruments based on biological mechanisms using CAD and 3D printer.

    Science.gov (United States)

    Yamamoto, Ikuo; Ota, Ren; Zhu, Rui; Lawn, Murray; Ishimatsu, Takakazu; Nagayasu, Takeshi; Yamasaki, Naoya; Takagi, Katsunori; Koji, Takehiko

    2015-01-01

    In the area of manufacturing surgical instruments, the ability to rapidly design, prototype and test surgical instruments is critical. This paper provides a simple case study of the rapid development of two bio-mechanism based surgical instruments which are ergonomic, aesthetic and were successfully designed, prototyped and conceptually tested in a very short period of time.

  13. FPGA-based prototype of portable environmental radiation monitor

    Energy Technology Data Exchange (ETDEWEB)

    Benahmed, A.; Elkarch, H. [CNESTEN -Centre National de l' Energie des Sciences et Techniques Nucleaires (Morocco)

    2015-07-01

    This new portable radiological environmental monitor consists of 2 main components, Gamma ionization chamber and a FPGA-based electronic enclosure linked to convivial software for treatment and analyzing. The HPIC ion chamber is the heart of this radiation measurement system and is running in range from 0 to 100 mR/h, so that the sensitivity at the output is 20 mV/μR/h, with a nearly flat energy response from 0,07 to 10 MEV. This paper presents a contribution for developing a new nuclear measurement data acquisition system based on Cyclone III FPGA Starter Kit ALTERA, and a user-friendly software to run real-time control and data processing. It was developed to substitute the older radiation monitor RSS-112 PIC installed in CNESTEN's Laboratory in order to improve some of its functionalities related to acquisition time and data memory capacity. As for the associated acquisition software, it was conceived under the virtual LabView platform from National Instrument, and offers a variety of system setup for radiation environmental monitoring. It gives choice to display both the statistical data and the dose rate. Statistical data shows a summary of current data, current time/date and dose integrator values, and the dose rate displays the current dose rate in large numbers for viewing from a distance as well as the date and time. The prototype version of this new instrument and its data processing software has been successfully tested and validated for viewing and monitoring the environmental radiation of Moroccan nuclear center. (authors)

  14. Testing the Deployment Repeatability of a Precision Deployable Boom Prototype for the Proposed SWOT Karin Instrument

    Science.gov (United States)

    Agnes, Gregory S.; Waldman, Jeff; Hughes, Richard; Peterson, Lee D.

    2015-01-01

    NASA's proposed Surface Water Ocean Topography (SWOT) mission, scheduled to launch in 2020, would provide critical information about Earth's oceans, ocean circulation, fresh water storage, and river discharge. The mission concept calls for a dual-antenna Ka-band radar interferometer instrument, known as KaRIn, that would map the height of water globally along two 50 km wide swaths. The KaRIn antennas, which would be separated by 10 meters on either side of the spacecraft, would need to be precisely deployable in order to meet demanding pointing requirements. Consequently, an effort was undertaken to design build and prototype a precision deployable Mast for the KaRIn instrument. Each mast was 4.5-m long with a required dilitation stability of 2.5 microns over 3 minutes. It required a minimum first mode of 7 Hz. Deployment repeatability was less than +/- 7 arcsec in all three rotation directions. Overall mass could not exceed 41.5 Kg including any actuators and thermal blanketing. This set of requirements meant the boom had to be three times lighter and two orders of magnitude more precise than the existing state of the art for deployable booms.

  15. Designing a nuclear data base prototype using Oracle and Prolog

    International Nuclear Information System (INIS)

    Paviotti-Corcuera, R.; Ford, C.E.; Perez, R.B.

    1988-11-01

    An ever-increasing demand exists for easily accessible nuclear data base systems. The purpose of this work is to analyze the feasibility of using artificial intelligence methods as tools to provide the necessary functionality to extract information from nuclear data files in a user-friendly manner. For the prototype of this work, a sample of data that can be later enlarged to a complete, evaluated nuclear data base has been used. To implement this prototype, two approaches have been followed: a conventional approach using the commercially available Oracle relational data base management system; and an artificial intelligence approach using the Prolog programming language. This prototypic work shows the feasibility of applying artificial intelligence methods to data bases, and represents a first step toward development of intelligent nuclear data base systems. The characteristics of the query language from both approaches make the second one preferable from a user's point of view. 23 refs., 7 tabs

  16. Instrumentation of the model in scaled 1:10 to prototype of the AquaBuOY wave energy converter

    DEFF Research Database (Denmark)

    Margheritini, Lucia; Frigaard, Peter

    The objective of this report is to provide guidelines for the instrumentation of a model in scale 1:10 to prototype of the AquaBuOY wave energy converter. The model will be located in Nissum Bredning area: this is an important waterway already used by Aalborg University for real sea tests of wave...... energy converters....

  17. Detection of pigments of halophilic endoliths from gypsum: Raman portable instrument and European Space Agency's prototype analysis

    Science.gov (United States)

    Culka, Adam; Osterrothová, Kateřina; Hutchinson, Ian; Ingley, Richard; McHugh, Melissa; Oren, Aharon; Edwards, Howell G. M.; Jehlička, Jan

    2014-01-01

    A prototype instrument, under development at the University of Leicester, for the future European Space Agency (ESA) ExoMars mission, was used for the analysis of microbial pigments within a stratified gypsum crust from a hypersaline saltern evaporation pond at Eilat (Israel). Additionally, the same samples were analysed using a miniaturized Raman spectrometer, featuring the same 532 nm excitation. The differences in the position of the specific bands, attributed to carotenoid pigments from different coloured layers, were minor when analysed by the ESA prototype instrument; therefore, making it difficult to distinguish among the different pigments. The portable Delta Nu Advantage instrument allowed for the discrimination of microbial carotenoids from the orange/green and purple layers. The purpose of this study was to complement previous laboratory results with new data and experience with portable or handheld Raman systems, even with a dedicated prototype Raman system for the exploration of Mars. The latter is equipped with an excitation wavelength falling within the carotenoid polyene resonance region. The ESA prototype Raman instrument detected the carotenoid pigments (biomarkers) with ease, although further detailed distinctions among them were not achieved. PMID:25368354

  18. Detection of pigments of halophilic endoliths from gypsum: Raman portable instrument and European Space Agency's prototype analysis.

    Science.gov (United States)

    Culka, Adam; Osterrothová, Kateřina; Hutchinson, Ian; Ingley, Richard; McHugh, Melissa; Oren, Aharon; Edwards, Howell G M; Jehlička, Jan

    2014-12-13

    A prototype instrument, under development at the University of Leicester, for the future European Space Agency (ESA) ExoMars mission, was used for the analysis of microbial pigments within a stratified gypsum crust from a hypersaline saltern evaporation pond at Eilat (Israel). Additionally, the same samples were analysed using a miniaturized Raman spectrometer, featuring the same 532 nm excitation. The differences in the position of the specific bands, attributed to carotenoid pigments from different coloured layers, were minor when analysed by the ESA prototype instrument; therefore, making it difficult to distinguish among the different pigments. The portable Delta Nu Advantage instrument allowed for the discrimination of microbial carotenoids from the orange/green and purple layers. The purpose of this study was to complement previous laboratory results with new data and experience with portable or handheld Raman systems, even with a dedicated prototype Raman system for the exploration of Mars. The latter is equipped with an excitation wavelength falling within the carotenoid polyene resonance region. The ESA prototype Raman instrument detected the carotenoid pigments (biomarkers) with ease, although further detailed distinctions among them were not achieved. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  19. Studies of a full-scale mechanical prototype line for the ANTARES neutrino telescope and tests of a prototype instrument for deep-sea acoustic measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ageron, M. [CPPM-Centre de Physique des Particules de Marseille, CNRS/IN2P3 et Universite de la Mediterranee, 163 Avenue de Luminy, Case 902, 13288 Marseille Cedex 9 (France); Aguilar, J.A. [IFIC-Instituto de Fisica Corpuscular, Edificios Investigacion de Paterna, CSIC-Universitat de Valencia, Apdo. de Correos 22085, 46071 Valencia (Spain); Albert, A. [GRPHE-Groupe de Recherche en Physique des Hautes Energies, Universite de Haute Alsace, 61 Rue Albert Camus, 68093 Mulhouse Cedex (France); Ameli, F. [Dipartimento di Fisica dell' Universita ' La Sapienza' e Sezione INFN, P.le Aldo Moro 2, 00185 Roma (Italy); Anghinolfi, M. [Dipartimento di Fisica dell' Universita e Sezione INFN, Via Dodecaneso 33, 16146 Genova (Italy); Anton, G. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Physikalisches Institut, Erwin-Rommel-Str. 1, D-91058 Erlangen (Germany); Anvar, S.; Ardellier-Desages, F. [DSM/DAPNIA-Direction des Sciences de la Matiere, Laboratoire de Recherche sur les lois Fondamentales de l' Univers, CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); Aslanides, E.; Aubert, J.-J. [CPPM-Centre de Physique des Particules de Marseille, CNRS/IN2P3 et Universite de la Mediterranee, 163 Avenue de Luminy, Case 902, 13288 Marseille Cedex 9 (France); Auer, R. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Physikalisches Institut, Erwin-Rommel-Str. 1, D-91058 Erlangen (Germany); Barbarito, E. [Dipartimento Interateneo di Fisica e Sezione INFN, Via E. Orabona 4, 70126 Bari (Italy); Basa, S. [LAM-Laboratoire d' Astrophysique de Marseille, CNRS/INSU et Universite de Provence, Traverse du Siphon-Les Trois Lucs, BP 8, 13012 Marseille Cedex 12 (France); Battaglieri, M. [Dipartimento di Fisica dell' Universita e Sezione INFN, Via Dodecaneso 33, 16146 Genova (Italy); Bazzotti, M.; Becherini, Y. [Dipartimento di Fisica dell' Universita e Sezione INFN, Viale Berti Pichat 6/2, 40127 Bologna (Italy)] (and others)

    2007-11-01

    A full-scale mechanical prototype line was deployed to a depth of 2500 m to test the leak tightness of the electronics containers and the pressure-resistant properties of an electromechanical cable under evaluation for use in the ANTARES deep-sea neutrino telescope. During a month-long immersion study, line parameter data were taken using miniature autonomous data loggers and shore-based optical time domain reflectometry. Details of the mechanical prototype line, the electromechanical cable and data acquisition are presented. Data taken during the immersion study revealed deficiencies in the pressure resistance of the electromechanical cable terminations at the entry points to the electronics containers. The improvements to the termination, which have been integrated into subsequent detection lines, are discussed. The line also allowed deep-sea acoustic measurements with a prototype hydrophone system. The technical setup of this system is described, and the first results of the data analysis are presented.

  20. Studies of a full-scale mechanical prototype line for the ANTARES neutrino telescope and tests of a prototype instrument for deep-sea acoustic measurements

    International Nuclear Information System (INIS)

    Ageron, M.; Aguilar, J.A.; Albert, A.; Ameli, F.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardellier-Desages, F.; Aslanides, E.; Aubert, J.-J.; Auer, R.; Barbarito, E.; Basa, S.; Battaglieri, M.; Bazzotti, M.; Becherini, Y.

    2007-01-01

    A full-scale mechanical prototype line was deployed to a depth of 2500 m to test the leak tightness of the electronics containers and the pressure-resistant properties of an electromechanical cable under evaluation for use in the ANTARES deep-sea neutrino telescope. During a month-long immersion study, line parameter data were taken using miniature autonomous data loggers and shore-based optical time domain reflectometry. Details of the mechanical prototype line, the electromechanical cable and data acquisition are presented. Data taken during the immersion study revealed deficiencies in the pressure resistance of the electromechanical cable terminations at the entry points to the electronics containers. The improvements to the termination, which have been integrated into subsequent detection lines, are discussed. The line also allowed deep-sea acoustic measurements with a prototype hydrophone system. The technical setup of this system is described, and the first results of the data analysis are presented

  1. Prototype-based analysis of GAMA galaxy catalogue data

    NARCIS (Netherlands)

    Nolte, A.; Wang, L.; Biehl, M; Verleysen, Michel

    2018-01-01

    We present a prototype-based machine learning analysis of labeled galaxy catalogue data containing parameters from the Galaxy and Mass Assembly (GAMA) survey. Using both an unsupervised and supervised method, the Self-Organizing Map and Generalized Relevance Matrix Learning Vec- tor Quantization, we

  2. Advanced prototyping tools for project- and problem-based learning

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Bech, Michael Møller; Holm, Allan J.

    2002-01-01

    A new approach in prototyping for project- and problem-based learning is achieved by using the new Total Development Environment concept introduced by dSPACE that allows a full visual block-oriented programming of dynamic real-time systems to be achieved  using the Matlab/Simulink environment...

  3. Gum-compliant uncertainty propagations for Pu and U concentration measurements using the 1st-prototype XOS/LANL hiRX instrument; an SRNL H-Canyon Test Bed performance evaluation project

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Michael K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); O' Rourke, Patrick E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-05-04

    An SRNL H-Canyon Test Bed performance evaluation project was completed jointly by SRNL and LANL on a prototype monochromatic energy dispersive x-ray fluorescence instrument, the hiRX. A series of uncertainty propagations were generated based upon plutonium and uranium measurements performed using the alpha-prototype hiRX instrument. Data reduction and uncertainty modeling provided in this report were performed by the SRNL authors. Observations and lessons learned from this evaluation were also used to predict the expected uncertainties that should be achievable at multiple plutonium and uranium concentration levels provided instrument hardware and software upgrades being recommended by LANL and SRNL are performed.

  4. Biomedical device prototype based on small scale hydrodynamic cavitation

    Directory of Open Access Journals (Sweden)

    Morteza Ghorbani

    2018-03-01

    Full Text Available This study presents a biomedical device prototype based on small scale hydrodynamic cavitation. The application of small scale hydrodynamic cavitation and its integration to a biomedical device prototype is offered as an important alternative to other techniques, such as ultrasound therapy, and thus constitutes a local, cheap, and energy-efficient solution, for urinary stone therapy and abnormal tissue ablation (e.g., benign prostate hyperplasia (BPH. The destructive nature of bubbly, cavitating, flows was exploited, and the potential of the prototype was assessed and characterized. Bubbles generated in a small flow restrictive element (micro-orifice based on hydrodynamic cavitation were utilized for this purpose. The small bubbly, cavitating, flow generator (micro-orifice was fitted to a small flexible probe, which was actuated with a micromanipulator using fine control. This probe also houses an imaging device for visualization so that the emerging cavitating flow could be locally targeted to the desired spot. In this study, the feasibility of this alternative treatment method and its integration to a device prototype were successfully accomplished.

  5. Biomedical device prototype based on small scale hydrodynamic cavitation

    Science.gov (United States)

    Ghorbani, Morteza; Sozer, Canberk; Alcan, Gokhan; Unel, Mustafa; Ekici, Sinan; Uvet, Huseyin; Koşar, Ali

    2018-03-01

    This study presents a biomedical device prototype based on small scale hydrodynamic cavitation. The application of small scale hydrodynamic cavitation and its integration to a biomedical device prototype is offered as an important alternative to other techniques, such as ultrasound therapy, and thus constitutes a local, cheap, and energy-efficient solution, for urinary stone therapy and abnormal tissue ablation (e.g., benign prostate hyperplasia (BPH)). The destructive nature of bubbly, cavitating, flows was exploited, and the potential of the prototype was assessed and characterized. Bubbles generated in a small flow restrictive element (micro-orifice) based on hydrodynamic cavitation were utilized for this purpose. The small bubbly, cavitating, flow generator (micro-orifice) was fitted to a small flexible probe, which was actuated with a micromanipulator using fine control. This probe also houses an imaging device for visualization so that the emerging cavitating flow could be locally targeted to the desired spot. In this study, the feasibility of this alternative treatment method and its integration to a device prototype were successfully accomplished.

  6. Challenge Based Innovation @ mediterranean - final presentations & prototype expo

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Challenge Based Innovation @ mediterranean - Final presentations & prototype expo Challenge Based Innovation (CBI) is a six-month project course, where multidisciplinary student teams and their instructors collaborate with researchers at CERN to discover novel solutions for the future of humankind. The projects are an elaborate mixture, where societal, human-driven needs meet research at CERN. More info about CBI from the course website, cbi-course.com The Gala on 10.12. will introduce the proof-of concept prototypes the four student teams have developed to answer a wide range of societal challenges, inspired by people and research at CERN.   Dress code: a suit / dress  is not required - come as you are! Register for live attendance & CERN access for external visitors. Webcast and/or recorded presentations will be available here in the Indico page for anyone interested.  The space is limited to 50 participants, so act quickly! &...

  7. Authentic Performance in the Instrumental Analysis Laboratory: Building a Visible Spectrophotometer Prototype

    Science.gov (United States)

    Wilson, Mark V.; Wilson, Erin

    2017-01-01

    In this work we describe an authentic performance project for Instrumental Analysis in which students designed, built, and tested spectrophotometers made from simple components. The project addressed basic course content such as instrument design principles, UV-vis spectroscopy, and spectroscopic instrument components as well as skills such as…

  8. Challenge Based Innovation @ mediterranean - final presentations & prototype expo

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Challenge Based Innovation @ mediterranean - Final presentations & prototype expo Note - presentation location has been changed to the council chamber (503-1-001) due to the large amount of signups. External participants are guided from the main reception (building 33), more information over email on Wednesday. Prototype presentations are still at IdeaSquare (3179) 18.00 - 19.30, guided walking from the presentations.  Challenge Based Innovation (CBI) is a four month project course, where multidisciplinary student teams and their instructors collaborate with researchers at CERN to discover novel solutions for the future of humankind. The projects are an elaborate mixture, where societal, human-driven needs meet research at CERN. More info about CBI from the course website, cbi-course.com The Gala on 1.12. will introduce the proof-of concept prototypes the five student teams have developed to answer a wide range of societal challenges, inspired by people and r...

  9. Market-based Economic Instruments

    DEFF Research Database (Denmark)

    Klemmensen, Børge

    2007-01-01

    Grundkategorien her er markedet som den optimale allokeringsmekanisme for de belastninger, som de økonomiske instrumenter / miljøskatterne påfører. Det mest omfattende og spektakulære eksempel på markedet som allokatorer af skatter er EU's børs for forureningstilladelser, dvs reelt CO-2 beskatnin...

  10. New Prototype of Photovoltaic Solar Tracker Based on Arduino

    Directory of Open Access Journals (Sweden)

    Carlos Morón

    2017-08-01

    Full Text Available The global increase in energy demand and exponential exhaustion of fossil recourses has favored the development of new systems of electricity production. Photovoltaic solar energy is undoubtedly one that has the highest application in housings, due to its simplicity and easy implementation. In this work, a new prototype of photovoltaic solar tracker with Arduino platform was developed. Feedback control system that allows carrying out solar tracking with two axes using a stepper motor and linear actuator was established through an electronic circuit based on photodiodes. Moreover, real construction of the prototype was carried out, where the effectiveness of the design and its capacity to draw a maximum benefit of an incident radiation can be observed, placing the panel perpendicularly to the received energy and improving its performance for its application in future installations in housings. Results obtained from the comparison between the developed prototype and a static panel oriented according to the latitude of the area, show about 18% energy gain.

  11. A knowledge-based system for prototypical reasoning

    Science.gov (United States)

    Lieto, Antonio; Minieri, Andrea; Piana, Alberto; Radicioni, Daniele P.

    2015-04-01

    In this work we present a knowledge-based system equipped with a hybrid, cognitively inspired architecture for the representation of conceptual information. The proposed system aims at extending the classical representational and reasoning capabilities of the ontology-based frameworks towards the realm of the prototype theory. It is based on a hybrid knowledge base, composed of a classical symbolic component (grounded on a formal ontology) with a typicality based one (grounded on the conceptual spaces framework). The resulting system attempts to reconcile the heterogeneous approach to the concepts in Cognitive Science with the dual process theories of reasoning and rationality. The system has been experimentally assessed in a conceptual categorisation task where common sense linguistic descriptions were given in input, and the corresponding target concepts had to be identified. The results show that the proposed solution substantially extends the representational and reasoning 'conceptual' capabilities of standard ontology-based systems.

  12. DEVELOPING MUSHROOM GYMNASTIC INSTRUMENT PROTOTYPE FOR MEN’S ARTISTIC GYMNASTIC SPORT IN CENTRAL JAVA PROVINCE

    Directory of Open Access Journals (Sweden)

    Tommy Soenyoto

    2014-03-01

    Full Text Available This study aims to develop mushroom gymnastic instrument for men’s artistic gymnastic athletes of junior and senior levels. The instrument is aimed at improving movement skills on horse saddle. Aside from its use as an exercise instrument for beginner, junior and senior levels of men’s artistic gymnastic athletes, this instrument can also be used for beginners’ level competition. This study used qualitative approach in which the data are collected from the initial step to the trial. The main procedure involved five steps: (1 the analysis of product development; (2 the development of initial product; (3 the expert validation; (4 the trial; and (5 the product revision. This study found that the mushroom gymnastic instrument can be used for men’s artistic gymnastic sport, particularly (1 for improving movement skill development on horse saddle for junior and senior athletes; (2 as an exercise instrument for beginner, junior and senior level of men’s artistic gymnastic athletes; (3 as an instrument used in competition for men’s artistic gymnastic for beginners’ level.

  13. Text-Based On-Line Conferencing: A Conceptual and Empirical Analysis Using a Minimal Prototype.

    Science.gov (United States)

    McCarthy, John C.; And Others

    1993-01-01

    Analyzes requirements for text-based online conferencing through the use of a minimal prototype. Topics discussed include prototyping with a minimal system; text-based communication; the system as a message passer versus the system as a shared data structure; and three exercises that showed how users worked with the prototype. (Contains 61…

  14. “In vitro” Implantation Technique Based on 3D Printed Prosthetic Prototypes

    Science.gov (United States)

    Tarnita, D.; Boborelu, C.; Geonea, I.; Malciu, R.; Grigorie, L.; Tarnita, D. N.

    2018-06-01

    In this paper, Rapid Prototyping ZCorp 310 system, based on high-performance composite powder and on resin-high strength infiltration system and three-dimensional printing as a manufacturing method are used to obtain physical prototypes of orthopaedic implants and prototypes of complex functional prosthetic systems directly from the 3D CAD data. These prototypes are useful for in vitro experimental tests and measurements to optimize and obtain final physical prototypes. Using a new elbow prosthesis model prototype obtained by 3D printing, the surgical technique of implantation is established. Surgical implantation was performed on male corpse elbow joint.

  15. A Prototype SSVEP Based Real Time BCI Gaming System.

    Science.gov (United States)

    Martišius, Ignas; Damaševičius, Robertas

    2016-01-01

    Although brain-computer interface technology is mainly designed with disabled people in mind, it can also be beneficial to healthy subjects, for example, in gaming or virtual reality systems. In this paper we discuss the typical architecture, paradigms, requirements, and limitations of electroencephalogram-based gaming systems. We have developed a prototype three-class brain-computer interface system, based on the steady state visually evoked potentials paradigm and the Emotiv EPOC headset. An online target shooting game, implemented in the OpenViBE environment, has been used for user feedback. The system utilizes wave atom transform for feature extraction, achieving an average accuracy of 78.2% using linear discriminant analysis classifier, 79.3% using support vector machine classifier with a linear kernel, and 80.5% using a support vector machine classifier with a radial basis function kernel.

  16. An FPGA-based rapid prototyping platform for wavelet coprocessors

    Science.gov (United States)

    Vera, Alonzo; Meyer-Baese, Uwe; Pattichis, Marios

    2007-04-01

    MatLab/Simulink-based design flows are being used by DSP designers to improve time-to-market of FPGA implementations. 1 Commonly, digital signal processing cores are integrated in an embedded system as coprocessors. Existing CAD tools do not fully address the integration of a DSP coprocessor into an embedded system design. This integration might prove to be time consuming and error prone. It also requires that the DSP designer has an excellent knowledge of embedded systems and computer architecture details. We present a prototyping platform and design flow that allows rapid integration of embedded systems with a wavelet coprocessor. The platform comprises of software and hardware modules that allow a DSP designer a painless integration of a coprocessor with a PowerPC-based embedded system. The platform has a wide range of applications, from industrial to educational environments.

  17. Prototype of smart office system using based security system

    Science.gov (United States)

    Prasetyo, T. F.; Zaliluddin, D.; Iqbal, M.

    2018-05-01

    Creating a new technology in the modern era gives a positive impact on business and industry. Internet of Things (IoT) as a new communication technology is very useful in realizing smart systems such as: smart home, smart office, smart parking and smart city. This study presents a prototype of the smart office system which was designed as a security system based on IoT. Smart office system development method used waterfall model. IoT-based smart office system used platform (project builder) cayenne so that. The data can be accessed and controlled through internet network from long distance. Smart office system used arduino mega 2560 microcontroller as a controller component. In this study, Smart office system is able to detect threats of dangerous objects made from metals, earthquakes, fires, intruders or theft and perform security monitoring outside the building by using raspberry pi cameras on autonomous robots in real time to the security guard.

  18. A Prototype SSVEP Based Real Time BCI Gaming System

    Directory of Open Access Journals (Sweden)

    Ignas Martišius

    2016-01-01

    Full Text Available Although brain-computer interface technology is mainly designed with disabled people in mind, it can also be beneficial to healthy subjects, for example, in gaming or virtual reality systems. In this paper we discuss the typical architecture, paradigms, requirements, and limitations of electroencephalogram-based gaming systems. We have developed a prototype three-class brain-computer interface system, based on the steady state visually evoked potentials paradigm and the Emotiv EPOC headset. An online target shooting game, implemented in the OpenViBE environment, has been used for user feedback. The system utilizes wave atom transform for feature extraction, achieving an average accuracy of 78.2% using linear discriminant analysis classifier, 79.3% using support vector machine classifier with a linear kernel, and 80.5% using a support vector machine classifier with a radial basis function kernel.

  19. Laboratory test of an APS-based sun sensor prototype

    Science.gov (United States)

    Rufino, Giancarlo; Perrotta, Alessandro; Grassi, Michele

    2017-11-01

    This paper deals with design and prototype development of an Active Pixel Sensor - based miniature sun sensor and a laboratory facility for its indoor test and calibration. The miniature sun sensor is described and the laboratory test facility is presented in detail. The major focus of the paper is on tests and calibration of the sensor. Two different calibration functions have been adopted. They are based, respectively, on a geometrical model, which has required least-squares optimisation of system physical parameters estimates, and on neural networks. Calibration results are presented for the above solutions, showing that accuracy in the order of 0.01° has been achieved. Neural calibration functions have attained better performance thanks to their intrinsic auto-adaptive structure.

  20. Evaluation of Computer-Based Procedure System Prototype

    Energy Technology Data Exchange (ETDEWEB)

    Johanna Oxstrand; Katya Le Blanc; Seth Hays

    2012-09-01

    relevant for the task and situation at hand, which has potential consequences of taking up valuable time when operators must be responding to the situation, and potentially leading operators down an incorrect response path. Other challenges related to PBPs are the management of multiple procedures, place-keeping, finding the correct procedure for the task at hand, and relying on other sources of additional information to ensure a functional and accurate understanding of the current plant status (Converse, 1995; Fink, Killian, Hanes, & Naser, 2009; Le Blanc & Oxstrand, 2012). The main focus of this report is to describe the research activities conducted to address the remaining two objectives; Develop a prototype CBP system based on requirements identified and Evaluate the CBP prototype. The emphasis will be on the evaluation of an initial CBP prototype in at a Nuclear Power Plant.

  1. Predictor Development and Pilot Testing of a Prototype Selection Instrument for Army Flight Training

    Science.gov (United States)

    2007-02-01

    called the Automated Pilot Examination System, or "APEX") during the preliminary validation reserach . The current version of the ASTB includes subtests... methodology described in this report will be used to produce a scientifically sound instrument to predict the likelihood that individuals will successfully

  2. Prototype design based on NX subdivision modeling application

    Science.gov (United States)

    Zhan, Xianghui; Li, Xiaoda

    2018-04-01

    Prototype design is an important part of the product design, through a quick and easy way to draw a three-dimensional product prototype. Combined with the actual production, the prototype could be modified several times, resulting in a highly efficient and reasonable design before the formal design. Subdivision modeling is a common method of modeling product prototypes. Through Subdivision modeling, people can in a short time with a simple operation to get the product prototype of the three-dimensional model. This paper discusses the operation method of Subdivision modeling for geometry. Take a vacuum cleaner as an example, the NX Subdivision modeling functions are applied. Finally, the development of Subdivision modeling is forecasted.

  3. 78 FR 16275 - Extension of the Duration of Programmatic Agreements Based on the Department of Energy Prototype...

    Science.gov (United States)

    2013-03-14

    ... Based on the Department of Energy Prototype Programmatic Agreement for Its Weatherization Assistance... Department of Energy Prototype Programmatic Agreement for its Weatherization Assistance Program, State Energy... under the prototype Programmatic Agreement (PA) for the Office of Weatherization and Intergovernmental...

  4. A Computer-based 21st Century Prototype

    Directory of Open Access Journals (Sweden)

    Pannathon Sangarun

    2015-01-01

    Full Text Available Abstract This paper describes a prototype computer-based reading comprehension program. It begins with a short description, at a general level, of theoretical issues relating to the learning of comprehension skills in a foreign/second language learning. These issues cover such areas as personal meaning-making on the basis of individual differences and the need for individualized intervention to maximize the comprehension process. Modern technology facilitates this process and enables simultaneous support of large numbers of students. Specifically, from a learning perspective, the program focuses on students’ personal understandings while, from a reading perspective, the construction of meaning is based on an interactive model where both high-level (global, inferential structures are elicited/studied as well as low-level structures (e.g. vocabulary, grammar. These principles are strengthened with research findings from studies in awareness and language processing based on eye-movement analysis. As part of its reading comprehensions focus, the system also has a strong commitment to the development of critical thinking skills, recognized as one of the most important 21st Century skills. The program is then described in detail, including its ability to store students’ responses and to be administered through standard learning management systems. Finally, an outline of planned future developments and enhancements is presented.

  5. FPGA-based prototype storage system with phase change memory

    Science.gov (United States)

    Li, Gezi; Chen, Xiaogang; Chen, Bomy; Li, Shunfen; Zhou, Mi; Han, Wenbing; Song, Zhitang

    2016-10-01

    With the ever-increasing amount of data being stored via social media, mobile telephony base stations, and network devices etc. the database systems face severe bandwidth bottlenecks when moving vast amounts of data from storage to the processing nodes. At the same time, Storage Class Memory (SCM) technologies such as Phase Change Memory (PCM) with unique features like fast read access, high density, non-volatility, byte-addressability, positive response to increasing temperature, superior scalability, and zero standby leakage have changed the landscape of modern computing and storage systems. In such a scenario, we present a storage system called FLEET which can off-load partial or whole SQL queries to the storage engine from CPU. FLEET uses an FPGA rather than conventional CPUs to implement the off-load engine due to its highly parallel nature. We have implemented an initial prototype of FLEET with PCM-based storage. The results demonstrate that significant performance and CPU utilization gains can be achieved by pushing selected query processing components inside in PCM-based storage.

  6. PSC/PSI power supply control prototype based on RTEMS

    International Nuclear Information System (INIS)

    Shi Haoli; Wang Chunhong; Tang Jingyu

    2010-01-01

    A PSC/PSI power supply control prototype was developed by using an open-source real-time operating system RTEMS and PSC/PSI power supply controller developed by BNL. The structure of the prototype, development procedures as well as testing result with a power supply of a corrector magnet were described. It can switch on/off the power supply, ramp up/down the current, and monitor the real-time states of the power supply. (authors)

  7. Attitudes toward stuttering of nonstuttering preschool and kindergarten children: A comparison using a standard instrument prototype.

    Science.gov (United States)

    Weidner, Mary E; St Louis, Kenneth O; Burgess, Megan E; LeMasters, Staci N

    2015-06-01

    This study investigated attitudes of nonstuttering preschool and kindergarten children toward peers who stutter in order to identify differences by age groups and better understand the genesis of stuttering attitudes. The study also examined the use of a new stuttering attitudes instrument designed for use with young children. The newly developed Public Opinion Survey on Human Attributes-Stuttering/Child was verbally administered to 27 preschool and 24 kindergarten children who do not stutter in the mid-Atlantic region of the USA. Overall, preschoolers held more negative stuttering attitudes than kindergarteners, but results were not uniformly in that direction. In both groups, the attribute of stuttering was viewed more negatively than individuals who stutter. Children viewed the potential of peers who stutter as quite positive, whereas their knowledge about and experience with stuttering were generally limited and some of their beliefs quite negative. Negative or uninformed stuttering attitudes among nonstuttering children begin as early as the preschool years. This study provides empirical evidence for the need to educate young children about the nature of stuttering and how to respond appropriately to peers who stutter. Readers should be able to: (a) describe attitudinal differences between kindergarteners and preschoolers toward peers who stutter; (b) describe the parameters of the POSHA-S/Child; (c) describe the nature of stuttering attitudes in young children relative to their beliefs and self reactions; and (d) describe the implications and future direction of stuttering attitude research in young children. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. A SiPM-based scintillator prototype for the upgrade of the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Johannes; Bretz, Thomas; Hebbeker, Thomas; Kemp, Julian; Meissner, Rebecca; Middendorf, Lukas; Niggemann, Tim; Peters, Christine [III. Physikalisches Institut A, RWTH Aachen University (Germany); Collaboration: Pierre-Auger-Collaboration

    2016-07-01

    Plastic scintillator-based detectors are simple and yet powerful instruments, commonly used in particle physics experiments. These detectors are also planned to be installed at the Pierre Auger Observatory as part of the upgrade called AugerPrime. Here, a single detector module will consist of several large-sized scintillator bars. Embedded wavelength shifting fibres read out the scintillation light and are coupled to a single photo-sensitive device. We investigate the application of silicon photomultipliers (SiPMs) in this scope, which benefits from high photon detection efficiency and stability. We show the performance of a SiPM-based prototype device installed in the 2 m{sup 2} detector ASCII - an early prototype of the scintillating detector planned for AugerPrime. We focus on the electronics, the optical coupling and the in situ calibration. As ASCII has been operating with SiPMs for several months now, we also highlight first high-energy events seen in coincidence with the Surface Detector of the Pierre Auger Observatory.

  9. Rapid instrument prototyping with open source hardware and software: Application to water quality in hypersaline estuaries.

    Science.gov (United States)

    Loose, B.; O'Shea, R.

    2016-02-01

    We describe the design and deployment of a water quality sonde that utilizes mobile phone networks for near-real time data telemetry. The REOL or Realtime Estuary Ocean Logger has the unique and valuable capability of logging data internally and simultaneously relaying the information to a webserver using a cellular modem. The internal circuitry consists of a GSM cellular modem, a microcontroller, and an SD card for data storage - these components are low cost, and backed up with circuit diagrams and programming libraries that are published under open source license. This configuration is versatile and is capable of reading instrument output from a broad spectrum of devices, including serial, TTL, analog voltage (0 - 5V), and analog current (typically 4-20 mA). We find the greatest challenges lie in development of smart software that is capable of handling the conditions brought on by this harsh environment. We have programmed the sonde to first determine whether it is submerged by water, and record the temperature on the electronics before deciding whether to telemeter measurements over the cellular network. The Google App EngineTM provides an interactive visualization platform. We have tested the REOL with a variety of water quality sensors. In the configuration described here, we use a thermistor, depth gauge and torroidal conductivity sensor to measure water temperature, water level and conductivity up to 200 mS/cm. The latter is necessary for studies in hypersaline estuaries, where porewater salinity can exceed 100 g/kg. We present data from two estuaries in West Africa and from a longer-term deployment in the Narragansett Bay, Rhode Island.

  10. Open-Ended Interaction in Cooperative Pro-to-typing: A Video-based Analysis

    DEFF Research Database (Denmark)

    Bødker, Susanne; Grønbæk, Kaj; Trigg, Randal

    1991-01-01

    Cooperative Prototyping can be characterized as the use and development of prototypes as catalysts during discussions between designers and potential users – the overall intention being one of mutual learning. On the one hand, the designers learn more about the work practices of the users in ways...... that are tied concretely to some current version of the prototype. On the other hand, the users learn more about the potential for change in their work practice, whether computer-based or otherwise. This paper presents the results of a field study of the cooperative prototyping process. The study is based...... on a fine-grained video-based analysis of a single prototyping session, and focuses on the effects of an open-ended style of interaction between users and designers around a prototype. An analysis of focus shifts, initiative and storytelling during the session is brought to bear on the question of whether...

  11. Design, construction, and test of a passive optical prototype high voltage instrument transformer

    DEFF Research Database (Denmark)

    Christensen, Lars Hofmann

    1995-01-01

    This paper describes an optical voltage transformer (OVT) for a 132-130 kV system based on the Pockels effect in a Bi4Ge3O12 crystal. Different from the majority of OVTs reported, this construction does not use any capacitive voltage division. To accomplish this, it was necessary to redesign the ...

  12. Supervision in the PC based prototype for the ATLAS event filter

    CERN Document Server

    Bee, C P; Etienne, F; Fede, E; Meessen, C; Nacasch, R; Qian, Z; Touchard, F

    1999-01-01

    A prototype of the ATLAS event filter based on commodity PCs linked by a Fast Ethernet switch has been developed in Marseille. The present contribution focus on the supervision aspects of the prototype based on Java and Java mobile agents technology. (5 refs).

  13. A prototype knowledge based system for pressure vessel design

    Energy Technology Data Exchange (ETDEWEB)

    Gunnarsson, L.

    1991-11-22

    The usage of expert system techniques in the area of mechanical engineering design has been studied. A prototype expert system for pressure vessel design has been developed. The work has been carried out in two steps. Firstly, a pre-processor for the finite element system PCFEMP, named INFEMP, was developed. Secondly, an expert supported system for pressure vessel design, named PVES, was developed. Both INFEMP and PVES are integrated to the AutoCAD system, and AutoCAD`s language AutoLISP has been used. A practical example has been investigated to demonstrate the principal ideas of the prototype. (au).

  14. A prototype knowledge based system for pressure vessel design

    Energy Technology Data Exchange (ETDEWEB)

    Gunnarsson, L.

    1991-11-22

    The usage of expert system techniques in the area of mechanical engineering design has been studied. A prototype expert system for pressure vessel design has been developed. The work has been carried out in two steps. Firstly, a pre-processor for the finite element system PCFEMP, named INFEMP, was developed. Secondly, an expert supported system for pressure vessel design, named PVES, was developed. Both INFEMP and PVES are integrated to the AutoCAD system, and AutoCAD's language AutoLISP has been used. A practical example has been investigated to demonstrate the principal ideas of the prototype. (au).

  15. A prototype knowledge based system for pressure vessel design

    International Nuclear Information System (INIS)

    Gunnarsson, L.

    1991-01-01

    The usage of expert system techniques in the area of mechanical engineering design has been studied. A prototype expert system for pressure vessel design has been developed. The work has been carried out in two steps. Firstly, a pre-processor for the finite element system PCFEMP, named INFEMP, was developed. Secondly, an expert supported system for pressure vessel design, named PVES, was developed. Both INFEMP and PVES are integrated to the AutoCAD system, and AutoCAD's language AutoLISP has been used. A practical example has been investigated to demonstrate the principal ideas of the prototype. (au)

  16. Studies of a full-scale mechanical prototype line for the ANTARES neutrino telescope and tests of a prototype instrument for deep-sea acoustic measurements

    NARCIS (Netherlands)

    Ageron, M.; Kooijman, P.

    2007-01-01

    A full-scale mechanical prototype line was deployed to a depth of 2500 m to test the leak tightness of the electronics containers and the pressure-resistant properties of an electromechanical cable under evaluation for use in the ANTARES deep-sea neutrino telescope. During a month-long immersion

  17. Gender-Based Prototype Formation in Face Recognition

    Science.gov (United States)

    Baudouin, Jean-Yves; Brochard, Renaud

    2011-01-01

    The role of gender categories in prototype formation during face recognition was investigated in 2 experiments. The participants were asked to learn individual faces and then to recognize them. During recognition, individual faces were mixed with faces, which were blended faces of same or different genders. The results of the 2 experiments showed…

  18. An inductive database prototype based on virtual mining views

    NARCIS (Netherlands)

    Blockeel, H.; Calders, T.; Fromont, É.; Goethals, B.; Prado, A.; Robardet, C.

    2008-01-01

    We present a prototype of an inductive database. Our system enables the user to query not only the data stored in the database but also generalizations (e.g. rules or trees) over these data through the use of virtual mining views. The mining views are relational tables that virtually contain the

  19. Prototype selection based on FCM and its application in discrimination between nuclear explosion and earthquake

    International Nuclear Information System (INIS)

    Han Shaoqing; Li Xihai; Song Zibiao; Liu Daizhi

    2007-01-01

    The synergetic pattern recognition is a new way of pattern recognition with many excellent features such as noise resistance and deformity resistance. But when it is used in the discrimination between nuclear explosion and earthquake using existing methods of prototype selection, the results are not satisfying. A new method of prototype selection based on FCM is proposed in this paper. First, each group of training samples is clustered into c groups using FCM; then c barycenters or centers are chosen as prototypes. Experiment results show that compared with existing methods of prototype selection this new method is effective and it increases the recognition ratio greatly. (authors)

  20. NetCDF based data archiving system applied to ITER Fast Plant System Control prototype

    International Nuclear Information System (INIS)

    Castro, R.; Vega, J.; Ruiz, M.; De Arcas, G.; Barrera, E.; López, J.M.; Sanz, D.; Gonçalves, B.; Santos, B.; Utzel, N.; Makijarvi, P.

    2012-01-01

    Highlights: ► Implementation of a data archiving solution for a Fast Plant System Controller (FPSC) for ITER CODAC. ► Data archiving solution based on scientific NetCDF-4 file format and Lustre storage clustering. ► EPICS control based solution. ► Tests results and detailed analysis of using NetCDF-4 and clustering technologies on fast acquisition data archiving. - Abstract: EURATOM/CIEMAT and Technical University of Madrid (UPM) have been involved in the development of a FPSC (Fast Plant System Control) prototype for ITER, based on PXIe (PCI eXtensions for Instrumentation). One of the main focuses of this project has been data acquisition and all the related issues, including scientific data archiving. Additionally, a new data archiving solution has been developed to demonstrate the obtainable performances and possible bottlenecks of scientific data archiving in Fast Plant System Control. The presented system implements a fault tolerant architecture over a GEthernet network where FPSC data are reliably archived on remote, while remaining accessible to be redistributed, within the duration of a pulse. The storing service is supported by a clustering solution to guaranty scalability, so that FPSC management and configuration may be simplified, and a unique view of all archived data provided. All the involved components have been integrated under EPICS (Experimental Physics and Industrial Control System), implementing in each case the necessary extensions, state machines and configuration process variables. The prototyped solution is based on the NetCDF-4 (Network Common Data Format) file format in order to incorporate important features, such as scientific data models support, huge size files management, platform independent codification, or single-writer/multiple-readers concurrency. In this contribution, a complete description of the above mentioned solution is presented, together with the most relevant results of the tests performed, while focusing in the

  1. Multipotenciostat System Based on Virtual Instrumentation

    Directory of Open Access Journals (Sweden)

    Arrieta-Almario Álvaro Angel

    2014-07-01

    Full Text Available To carry out this project an electronic multichannel system of electrochemical measurement or multipotenciostat was developed. It is based on the cyclic voltammetry measurement technique, controlled by a computer that monitors, by means of an electronic circuit, both the voltage generated from the Pc and supplied to an electrolytic cell, and the current that flows through the electrodes of it. To design the application software and the user interface, Virtual Instrumentation was used. On the other hand, to perform the communication between the multipotenciostat circuit and the designed software, the National Instruments NI9263 and NI9203 acquisition modules were used. The system was tested on a substance with a known REDOX property, as well as to discriminate and classify some samples of coffee.

  2. SU-E-T-66: A Prototype for Couch Based Real-Time Dosimetry in External Beam Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Ramachandran, P [Peter MacCallum Cancer Centre, Bendigo (Australia)

    2015-06-15

    Purpose: The main purpose of this study is to design a prototype for couch-based based real time dosimetry system in external beam radiotherapy Methods: A prototype of 100 ionization chambers was designed on a printed circuit board by etching the copper layer and each ionization chamber was wired to a 50 pin connector. The signals from the two 50 pin connectors collected from the ionization chambers were then transferred to a PXI module from National Instruments. The PXI module houses a current amplifier that amplifies the charge collected from the ionization chamber. The amplified signal is then sent to a digital multimeter module for converting the analog signal to digital signal. A software was designed in labview to read and display the signals obtained from the PXI module. A couch attachment frame was designed to house the 100 ionization chamber module. The frame was fixed underneath the treatment couch for measuring the dose during treatment. Resutls: The ionization chamber based prototype dosimetry was tested for simple radiotherapy treatment fields and found to be a useful device for measuring real time dosimetry at the treatment couch plane. This information could be used to assess the delivered dose to a patient during radiotherapy. It could be used as an invivo dosimeter during radiotherapy. Conclusion: In this study, a prototype for couch based real time dosimetry system was designed and tested. The prototype forms a basis for the development of large scale couch based real time dosimetry system that could be used to perform morning QA prior to treatment, assess real time doses delivered to patient and as a device to monitor the output of the treatment beam. Peter MacCallum Cancer Foundation.

  3. SU-E-T-66: A Prototype for Couch Based Real-Time Dosimetry in External Beam Radiotherapy

    International Nuclear Information System (INIS)

    Ramachandran, P

    2015-01-01

    Purpose: The main purpose of this study is to design a prototype for couch-based based real time dosimetry system in external beam radiotherapy Methods: A prototype of 100 ionization chambers was designed on a printed circuit board by etching the copper layer and each ionization chamber was wired to a 50 pin connector. The signals from the two 50 pin connectors collected from the ionization chambers were then transferred to a PXI module from National Instruments. The PXI module houses a current amplifier that amplifies the charge collected from the ionization chamber. The amplified signal is then sent to a digital multimeter module for converting the analog signal to digital signal. A software was designed in labview to read and display the signals obtained from the PXI module. A couch attachment frame was designed to house the 100 ionization chamber module. The frame was fixed underneath the treatment couch for measuring the dose during treatment. Resutls: The ionization chamber based prototype dosimetry was tested for simple radiotherapy treatment fields and found to be a useful device for measuring real time dosimetry at the treatment couch plane. This information could be used to assess the delivered dose to a patient during radiotherapy. It could be used as an invivo dosimeter during radiotherapy. Conclusion: In this study, a prototype for couch based real time dosimetry system was designed and tested. The prototype forms a basis for the development of large scale couch based real time dosimetry system that could be used to perform morning QA prior to treatment, assess real time doses delivered to patient and as a device to monitor the output of the treatment beam. Peter MacCallum Cancer Foundation

  4. Digital Microdroplet Ejection Technology-Based Heterogeneous Objects Prototyping

    Science.gov (United States)

    Yang, Jiquan; Feng, Chunmei; Yang, Jianfei; Zhu, Liya; Guo, Aiqing

    2016-01-01

    An integrate fabrication framework is presented to build heterogeneous objects (HEO) using digital microdroplets injecting technology and rapid prototyping. The heterogeneous materials part design and manufacturing method in structure and material was used to change the traditional process. The net node method was used for digital modeling that can configure multimaterials in time. The relationship of material, color, and jetting nozzle was built. The main important contributions are to combine the structure, material, and visualization in one process and give the digital model for manufacture. From the given model, it is concluded that the method is effective for HEO. Using microdroplet rapid prototyping and the model given in the paper HEO could be gotten basically. The model could be used in 3D biomanufacturing. PMID:26981110

  5. Digital Microdroplet Ejection Technology-Based Heterogeneous Objects Prototyping.

    Science.gov (United States)

    Li, Na; Yang, Jiquan; Feng, Chunmei; Yang, Jianfei; Zhu, Liya; Guo, Aiqing

    2016-01-01

    An integrate fabrication framework is presented to build heterogeneous objects (HEO) using digital microdroplets injecting technology and rapid prototyping. The heterogeneous materials part design and manufacturing method in structure and material was used to change the traditional process. The net node method was used for digital modeling that can configure multimaterials in time. The relationship of material, color, and jetting nozzle was built. The main important contributions are to combine the structure, material, and visualization in one process and give the digital model for manufacture. From the given model, it is concluded that the method is effective for HEO. Using microdroplet rapid prototyping and the model given in the paper HEO could be gotten basically. The model could be used in 3D biomanufacturing.

  6. Digital Microdroplet Ejection Technology-Based Heterogeneous Objects Prototyping

    Directory of Open Access Journals (Sweden)

    Na Li

    2016-01-01

    Full Text Available An integrate fabrication framework is presented to build heterogeneous objects (HEO using digital microdroplets injecting technology and rapid prototyping. The heterogeneous materials part design and manufacturing method in structure and material was used to change the traditional process. The net node method was used for digital modeling that can configure multimaterials in time. The relationship of material, color, and jetting nozzle was built. The main important contributions are to combine the structure, material, and visualization in one process and give the digital model for manufacture. From the given model, it is concluded that the method is effective for HEO. Using microdroplet rapid prototyping and the model given in the paper HEO could be gotten basically. The model could be used in 3D biomanufacturing.

  7. Digital Microdroplet Ejection Technology-Based Heterogeneous Objects Prototyping

    OpenAIRE

    Li, Na; Yang, Jiquan; Feng, Chunmei; Yang, Jianfei; Zhu, Liya; Guo, Aiqing

    2016-01-01

    An integrate fabrication framework is presented to build heterogeneous objects (HEO) using digital microdroplets injecting technology and rapid prototyping. The heterogeneous materials part design and manufacturing method in structure and material was used to change the traditional process. The net node method was used for digital modeling that can configure multimaterials in time. The relationship of material, color, and jetting nozzle was built. The main important contributions are to combi...

  8. Autobalancing and FDIR for a space-based centrifuge prototype

    Science.gov (United States)

    Wilson, Edward; Mah, Robert W.

    2005-01-01

    This report summarizes centrifuge-related work performed at the Smart Systems Research Laboratory at NASA Ames Research Center's Computational Sciences Division from 1995 through 2003. The goal is to develop an automated system that will sense an imbalance (both static and dynamic3) in a centrifuge and issue control commands to drive counterweights to eliminate the effects of the imbalance. This autobalancing development began when the ISS centrifuge design was not yet finalized, and was designed to work with the SSRL Centrifuge laboratory prototype, constructed in 1993-1995. Significant differences between that prototype and the current International Space Station (ISS) Centrifuge design are that: the spin axis for the SSRL Centrifuge prototype can translate freely in x and y, but not wobble, whereas the ISS centrifuge spin axis has 3 translational and two rotational degrees of freedom, supported by a vibration 34. The imbalance sensors are strained gauges both in the rotor and the stator, measuring the imbalance forces, whereas the ISS centrifuge uses eddy current displacement sensors to measure the displacements resulting from imbalance. High fidelity autobalancing and FDIR systems (for both counterweights and strain gauges) are developed and tested in MATLAB simulation, for the SSRL Centrifuge configuration. Hardware implementation of the autobalancing technology was begun in 1996, but was terminated due to lack of funding. The project lay dormant until 2001-2002 when the FDIR capability was added.

  9. INTRODUCTION OF INTERNET OF THING TECHNOLOGY BASED ON PROTOTYPE

    Directory of Open Access Journals (Sweden)

    Anthony Sutera Genadiarto

    2017-01-01

    Full Text Available Internet of thing has been able to attract people compete to create various devices. Devices developed have various benefits, but the point is to make life easier. So many vendors create products related to the internet of things, so the user gets confused to determine which is good and appropriate for the needs. To simplify the user in choosing IoT product, this research will discuss about technology that is widely used in IoT, the advantages of each technology, in terms of security, operating system, microcontroller, IoT platform, tools and communication technology. This research makes prototype with one of existing technology. The results of this research provide knowledge, skills and experience in the field of IoT as well as information related to IoT technology, which is widely in the market. Furthermore, the prototype also has the expected functionalities, but it does not close the opportunity for further improvements. The results of this research provide knowledge, skills and experience in the field of IoT as well as information related to IoT technology, which is widely in the market. Furthermore, the prototype also has the expected functionalities, but it does not close the opportunity for further improvements.

  10. Coordinate measuring system based on microchip lasers for reverse prototyping

    Science.gov (United States)

    Iakovlev, Alexey; Grishkanich, Alexsandr S.; Redka, Dmitriy; Tsvetkov, Konstantin

    2017-02-01

    According to the current great interest concerning Large-Scale Metrology applications in many different fields of manufacturing industry, technologies and techniques for dimensional measurement have recently shown a substantial improvement. Ease-of-use, logistic and economic issues, as well as metrological performance, are assuming a more and more important role among system requirements. The project is planned to conduct experimental studies aimed at identifying the impact of the application of the basic laws of chip and microlasers as radiators on the linear-angular characteristics of existing measurement systems. The project is planned to conduct experimental studies aimed at identifying the impact of the application of the basic laws of microlasers as radiators on the linear-angular characteristics of existing measurement systems. The system consists of a distributed network-based layout, whose modularity allows to fit differently sized and shaped working volumes by adequately increasing the number of sensing units. Differently from existing spatially distributed metrological instruments, the remote sensor devices are intended to provide embedded data elaboration capabilities, in order to share the overall computational load.

  11. Relative gravimeter prototype based on micro electro mechanical system

    Science.gov (United States)

    Rozy, A. S. A.; Nugroho, H. A.; Yusuf, M.

    2018-03-01

    This research to make gravity measurement system by utilizing micro electro mechanical system based sensor in Gal order. System design consists of three parts, design of hardware, software, and interface. The design of the hardware include of designing the sensor design to measure the value of a stable gravity acceleration. The ADXL345 and ADXL335 sensors are tuned to obtain stable measurements. The design of the instrumentation system the next stage by creating a design to integrate between the sensor, microcontroller, and GPS. The design of programming algorithm is done with Arduino IDE software. The interface design uses a 20x4 LCD display to display the gravity acceleration value and store data on the storage media. The system uses a box made of iron and plate leveling to minimize measurement errors. The sensor test shows the ADXL345 sensor has a more stable value. The system is examined by comparing with gravity measurement of gravimeter A-10 results in Bandung observation post. The result of system test resulted the average of system correction value equal to 0.19 Gal. The system is expected to use for mineral exploration, water supply analyze, and earthquake precursor.

  12. An interplay of fusiform gyrus and hippocampus enables prototype- and exemplar-based category learning.

    Science.gov (United States)

    Lech, Robert K; Güntürkün, Onur; Suchan, Boris

    2016-09-15

    The aim of the present study was to examine the contributions of different brain structures to prototype- and exemplar-based category learning using functional magnetic resonance imaging (fMRI). Twenty-eight subjects performed a categorization task in which they had to assign prototypes and exceptions to two different families. This test procedure usually produces different learning curves for prototype and exception stimuli. Our behavioral data replicated these previous findings by showing an initially superior performance for prototypes and typical stimuli and a switch from a prototype-based to an exemplar-based categorization for exceptions in the later learning phases. Since performance varied, we divided participants into learners and non-learners. Analysis of the functional imaging data revealed that the interaction of group (learners vs. non-learners) and block (Block 5 vs. Block 1) yielded an activation of the left fusiform gyrus for the processing of prototypes, and an activation of the right hippocampus for exceptions after learning the categories. Thus, successful prototype- and exemplar-based category learning is associated with activations of complementary neural substrates that constitute object-based processes of the ventral visual stream and their interaction with unique-cue representations, possibly based on sparse coding within the hippocampus. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Ontology Based Vocabulary Matching for Oceanographic Instruments

    Science.gov (United States)

    Chen, Yu; Shepherd, Adam; Chandler, Cyndy; Arko, Robert; Leadbetter, Adam

    2014-05-01

    Data integration act as the preliminary entry point as we enter the era of big data in many scientific domains. However the reusefulness of various dataset has met the hurdle due to different initial of interests of different parties, therefore different vocabularies in describing similar or semantically related concepts. In this scenario it is vital to devise an automatic or semi-supervised algorithm to facilitate the convergence of different vocabularies. The Ocean Data Interoperability Platform (ODIP) seeks to increase data sharing across scientific domains and international boundaries by providing a forum to harmonize diverse regional data systems. ODIP participants from the US include the Rolling Deck to Repository (R2R) program, whose mission is to capture, catalog, and describe the underway/environmental sensor data from US oceanographic research vessels and submit the data to public long-term archives. In an attempt to harmonize these regional data systems, especially vocabularies, R2R recognizes the value of the SeaDataNet vocabularies served by the NERC Vocabulary Server (NVS) hosted at the British Oceanographic Data Centre as a trusted, authoritative source for describing many oceanographic research concepts such as instrumentation. In this work, we make use of the semantic relations in the vocabularies served by NVS to build a Bayesian network and take advantage of the idea of entropy in evaluating the correlation between different concepts and keywords. The performance of the model is evaluated against matching instruments from R2R against the SeaDataNet instrument vocabularies based on calculated confidence scores in the instrument pairings. These pairings with their scores can then be analyzed for assertion growing the interoperability of the R2R vocabulary through its links to the SeaDataNet entities.

  14. Advanced ESPI-based medical instruments for otolaryngology

    Science.gov (United States)

    Castracane, James; Conerty, M.; Cacace, Anthony T.; Gardner, Glendon M.; Miller, Mitchell B.; Parnes, Steven M.

    1993-05-01

    Optical fibers have long been used for visual inspection inside the human body for medical diagnoses and treatment. By making use of sophisticated optical interferometric and ultra- small imaging techniques, combined with automated image processing, it is possible to extract significantly increased information for more accurate medical diagnoses. With support from NIH under the SBIR program, we have been developing a range of such instruments. One of these supported by the NIDCD is capable of providing detailed spatial information on the vibratory response of the tympanic membrane (TM). This instrument involves the examination of the TM by means of high speed electronic speckle pattern interferometry (ESPI). This provides a real time view of the vibration patterns of the TM for clinical diagnosis. This Interferometric Otoscope consists of mode conserving fiber optics, miniature diode lasers and high speed solid state detector arrays. We present the current status of the research including holography and ESPI of TM models and excised temporal bone preparations. A second instrument, also developed with support from NIDCD, is for application to the larynx. This system is also ESPI based but will incorporate features for direct vocal cord (VC) examination. By careful examination of the vibratory response of the VC during phonation, the characteristics of the mucosal wave may be examined. Adynamic regions of the cords can signal the start of lesions or cysts. Results of surgery can be evaluated in a quantitative manner. The design of a clinical prototype and preliminary electro-optic experiments on excised larynges and VC models will be presented.

  15. Web based remote instrumentation and control

    International Nuclear Information System (INIS)

    Dhekne, P.S.; Patil, Jitendra; Kulkarni, Jitendra; Babu, Prasad; Lad, U.C.; Rahurkar, A.G.; Kaura, H.K.

    2001-01-01

    The Web-based technology provides a very powerful communication medium for transmitting effectively multimedia information containing data generated from various sources, which may be in the form of audio, video, text, still or moving images etc. Large number of sophisticated web based software tools are available that can be used to monitor and control distributed electronic instrumentation projects. For example data can be collected online from various smart sensors/instruments such as images from CCD camera, pressure/ humidity sensor, light intensity transducer, smoke detectors etc and uploaded in real time to a central web server. This information can be processed further, to take control action in real time from any remote client, of course with due security care. The web-based technology offers greater flexibility, higher functionality, and high degree of integration providing standardization. Further easy to use standard browser based interface at the client end to monitor, view and control the desired process parameters allow you to cut down the development time and cost to a great extent. A system based on a web client-server approach has been designed and developed at Computer division, BARC and is operational since last year to monitor and control remotely various environmental parameters of distributed computer centers. In this paper we shall discuss details of this system, its current status and additional features which are currently under development. This type of system is typically very useful for Meteorology, Environmental monitoring of Nuclear stations, Radio active labs, Nuclear waste immobilization plants, Medical and Biological research labs., Security surveillance and in many such distributed situations. A brief description of various tools used for this project such as Java, CGI, Java Script, HTML, VBScript, M-JPEG, TCP/IP, UDP, RTP etc. along with their merits/demerits have also been included

  16. Low-cost rapid prototyping of flexible plastic paper based microfluidic devices

    KAUST Repository

    Fan, Yiqiang; Li, Huawei; Yi, Ying; Foulds, Ian G.

    2013-01-01

    This research presents a novel rapid prototyping method for paper-based flexible microfluidic devices. The microchannels were fabricated using laser ablation on a piece of plastic paper (permanent paper), the dimensions of the microchannels

  17. Rapid Prototyping of a Smart Device-based Wireless Reflectance Photoplethysmograph

    Science.gov (United States)

    Ghamari, M.; Aguilar, C.; Soltanpur, C.; Nazeran, H.

    2017-01-01

    This paper presents the design, fabrication, and testing of a wireless heart rate (HR) monitoring device based on photoplethysmography (PPG) and smart devices. PPG sensors use infrared (IR) light to obtain vital information to assess cardiac health and other physiologic conditions. The PPG data that are transferred to a computer undergo further processing to derive the Heart Rate Variability (HRV) signal, which is analyzed to generate quantitative markers of the Autonomic Nervous System (ANS). The HRV signal has numerous monitoring and diagnostic applications. To this end, wireless connectivity plays an important role in such biomedical instruments. The photoplethysmograph consists of an optical sensor to detect the changes in the light intensity reflected from the illuminated tissue, a signal conditioning unit to prepare the reflected light for further signal conditioning through amplification and filtering, a low-power microcontroller to control and digitize the analog PPG signal, and a Bluetooth module to transmit the digital data to a Bluetooth-based smart device such as a tablet. An Android app is then used to enable the smart device to acquire and digitally display the received analog PPG signal in real-time on the smart device. This article is concluded with the prototyping of the wireless PPG followed by the verification procedures of the PPG and HRV signals acquired in a laboratory environment. PMID:28959119

  18. Rapid Prototyping of a Smart Device-based Wireless Reflectance Photoplethysmograph.

    Science.gov (United States)

    Ghamari, M; Aguilar, C; Soltanpur, C; Nazeran, H

    2016-03-01

    This paper presents the design, fabrication, and testing of a wireless heart rate (HR) monitoring device based on photoplethysmography (PPG) and smart devices. PPG sensors use infrared (IR) light to obtain vital information to assess cardiac health and other physiologic conditions. The PPG data that are transferred to a computer undergo further processing to derive the Heart Rate Variability (HRV) signal, which is analyzed to generate quantitative markers of the Autonomic Nervous System (ANS). The HRV signal has numerous monitoring and diagnostic applications. To this end, wireless connectivity plays an important role in such biomedical instruments. The photoplethysmograph consists of an optical sensor to detect the changes in the light intensity reflected from the illuminated tissue, a signal conditioning unit to prepare the reflected light for further signal conditioning through amplification and filtering, a low-power microcontroller to control and digitize the analog PPG signal, and a Bluetooth module to transmit the digital data to a Bluetooth-based smart device such as a tablet. An Android app is then used to enable the smart device to acquire and digitally display the received analog PPG signal in real-time on the smart device. This article is concluded with the prototyping of the wireless PPG followed by the verification procedures of the PPG and HRV signals acquired in a laboratory environment.

  19. CO2 Laser-Based Rapid Prototyping of Micropumps

    Directory of Open Access Journals (Sweden)

    Zachary Strike

    2018-05-01

    Full Text Available The fabrication of microdevices for fluidic control often requires the use of flexible diaphragms in a way that requires cleanroom equipment and compromises performance. We use a CO 2 laser to perform the standard ablative techniques of cutting and engraving materials, but we also apply a method that we call laser placement. This allows us to fabricate precisely-positioned and precisely-sized, isolated diaphragms. This in turn enables the rapid prototyping of integrated multilayer microfluidic devices to form complex structures without the need for manual positioning or cleanroom equipment. The fabrication process is also remarkably rapid and capable of being scaled to manufacturing levels of production. We explore the use of these devices to construct a compact system of peristaltic pumps that can form water in oil droplets without the use of the non-pulsatile pumping systems typically required. Many devices can be fabricated at a time on a sheet by sheet basis with a fabrication process that, to our knowledge, is the fastest reported to date for devices of this type (requiring only 3 h. Moreover, this system is unusually compact and self-contained.

  20. Fuzzy prototype classifier based on items and its application in recommender system

    Directory of Open Access Journals (Sweden)

    Mei Cai

    2017-01-01

    Full Text Available Currently, recommender systems (RS are incorporating implicit information from social circle of the Internet. The implicit social information in human mind is not easy to reflect in appropriate decision making techniques. This paper consists of 2 contributions. First, we develop an item-based prototype classifier (IPC in which a prototype represents a social circlers preferences as a pattern classification technique. We assume the social circle which distinguishes with others by the items their members like. The prototype structure of the classifier is defined by two2-dimensional matrices. We use information gain and OWA aggregator to construct a feature space. The item-based classifier assigns a new item to some prototypes with different prototypicalities. We reform a typical data setmIris data set in UCI Machine Learning Repository to verify our fuzzy prototype classifier. The second proposition of this paper is to give the application of IPC in recommender system to solve new item cold-start problems. We modify the dataset of MovieLens to perform experimental demonstrations of the proposed ideas.

  1. MIXS on BepiColombo and its DEPFET based focal plane instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Treis, J., E-mail: jft@hll.mpg.d [MPI Semiconductor Laboratory, Otto-Hahn-Ring 6, 81739 Munich (Germany); MPI for Solar System Research, Max-Planck-Strasse 2, 37191 Katlenburg-Lindau (Germany); Andricek, L. [MPI Semiconductor Laboratory, Otto-Hahn-Ring 6, 81739 Munich (Germany); MPI for Physics, Foehringer Ring 6, 80805 Munich (Germany); Aschauer, F. [MPI Semiconductor Laboratory, Otto-Hahn-Ring 6, 81739 Munich (Germany); MPI for Extraterrestrial Physics, Giessenbachstrasse, 85748 Garching (Germany); Heinzinger, K. [MPI Semiconductor Laboratory, Otto-Hahn-Ring 6, 81739 Munich (Germany); PNSensor GmbH, Roemerstrasse 28, 80803 Munich (Germany); Herrmann, S. [MPI Semiconductor Laboratory, Otto-Hahn-Ring 6, 81739 Munich (Germany); MPI for Extraterrestrial Physics, Giessenbachstrasse, 85748 Garching (Germany); Hilchenbach, M. [MPI for Solar System Research, Max-Planck-Strasse 2, 37191 Katlenburg-Lindau (Germany); Lauf, T. [MPI Semiconductor Laboratory, Otto-Hahn-Ring 6, 81739 Munich (Germany); MPI for Extraterrestrial Physics, Giessenbachstrasse, 85748 Garching (Germany); Lechner, P.; Lutz, G.; Majewski, P. [MPI Semiconductor Laboratory, Otto-Hahn-Ring 6, 81739 Munich (Germany); PNSensor GmbH, Roemerstrasse 28, 80803 Munich (Germany); Porro, M. [MPI Semiconductor Laboratory, Otto-Hahn-Ring 6, 81739 Munich (Germany); MPI for Extraterrestrial Physics, Giessenbachstrasse, 85748 Garching (Germany); Richter, R.H. [MPI Semiconductor Laboratory, Otto-Hahn-Ring 6, 81739 Munich (Germany); MPI for Physics, Foehringer Ring 6, 80805 Munich (Germany); Schaller, G. [MPI Semiconductor Laboratory, Otto-Hahn-Ring 6, 81739 Munich (Germany); MPI for Extraterrestrial Physics, Giessenbachstrasse, 85748 Garching (Germany); Schnecke, M. [MPI Semiconductor Laboratory, Otto-Hahn-Ring 6, 81739 Munich (Germany); MPI for Physics, Foehringer Ring 6, 80805 Munich (Germany)

    2010-12-11

    Focal plane instrumentation based on DEPFET Macropixel devices, being a combination of the Detector-Amplifier structure DEPFET with a silicon drift chamber (SDD), has been proposed for the MIXS (Mercury Imaging X-ray Spectrometer) instrument on ESA's Mercury exploration mission BepiColombo. MIXS images X-ray fluorescent radiation from the Mercury surface with a lightweight X-ray mirror system on the focal plane detector to measure the spatially resolved element abundance in Mercury's crust. The sensor needs to have an energy resolution better than 200 eV FWHM at 1 keV and is required to cover an energy range from 0.5 to 10 keV, for a pixel size of 300x300{mu}m{sup 2}. Main challenges for the instrument are radiation damage and the difficult thermal environment in the mercury orbit. The production of the first batch of flight devices has been finished at the MPI semiconductor laboratory. Prototype modules have been assembled to verify the electrical properties of the devices; selected results are presented here. The prototype devices, Macropixel prototypes for the SIMBOL-X focal plane, are electrically fully compatible, but have a pixel size of 0.5x0.5 mm{sup 2}. Excellent homogeneity and near Fano-limited energy resolution at high readout speeds have been observed on these devices.

  2. MIXS on BepiColombo and its DEPFET based focal plane instrumentation

    International Nuclear Information System (INIS)

    Treis, J.; Andricek, L.; Aschauer, F.; Heinzinger, K.; Herrmann, S.; Hilchenbach, M.; Lauf, T.; Lechner, P.; Lutz, G.; Majewski, P.; Porro, M.; Richter, R.H.; Schaller, G.; Schnecke, M.

    2010-01-01

    Focal plane instrumentation based on DEPFET Macropixel devices, being a combination of the Detector-Amplifier structure DEPFET with a silicon drift chamber (SDD), has been proposed for the MIXS (Mercury Imaging X-ray Spectrometer) instrument on ESA's Mercury exploration mission BepiColombo. MIXS images X-ray fluorescent radiation from the Mercury surface with a lightweight X-ray mirror system on the focal plane detector to measure the spatially resolved element abundance in Mercury's crust. The sensor needs to have an energy resolution better than 200 eV FWHM at 1 keV and is required to cover an energy range from 0.5 to 10 keV, for a pixel size of 300x300μm 2 . Main challenges for the instrument are radiation damage and the difficult thermal environment in the mercury orbit. The production of the first batch of flight devices has been finished at the MPI semiconductor laboratory. Prototype modules have been assembled to verify the electrical properties of the devices; selected results are presented here. The prototype devices, Macropixel prototypes for the SIMBOL-X focal plane, are electrically fully compatible, but have a pixel size of 0.5x0.5 mm 2 . Excellent homogeneity and near Fano-limited energy resolution at high readout speeds have been observed on these devices.

  3. MIXS on BepiColombo and its DEPFET based focal plane instrumentation

    Science.gov (United States)

    Treis, J.; Andricek, L.; Aschauer, F.; Heinzinger, K.; Herrmann, S.; Hilchenbach, M.; Lauf, T.; Lechner, P.; Lutz, G.; Majewski, P.; Porro, M.; Richter, R. H.; Schaller, G.; Schnecke, M.; Schopper, F.; Soltau, H.; Stefanescu, A.; Strüder, L.; de Vita, G.

    2010-12-01

    Focal plane instrumentation based on DEPFET Macropixel devices, being a combination of the Detector-Amplifier structure DEPFET with a silicon drift chamber (SDD), has been proposed for the MIXS (Mercury Imaging X-ray Spectrometer) instrument on ESA's Mercury exploration mission BepiColombo. MIXS images X-ray fluorescent radiation from the Mercury surface with a lightweight X-ray mirror system on the focal plane detector to measure the spatially resolved element abundance in Mercury's crust. The sensor needs to have an energy resolution better than 200 eV FWHM at 1 keV and is required to cover an energy range from 0.5 to 10 keV, for a pixel size of 300×300μm2. Main challenges for the instrument are radiation damage and the difficult thermal environment in the mercury orbit. The production of the first batch of flight devices has been finished at the MPI semiconductor laboratory. Prototype modules have been assembled to verify the electrical properties of the devices; selected results are presented here. The prototype devices, Macropixel prototypes for the SIMBOL-X focal plane, are electrically fully compatible, but have a pixel size of 0.5×0.5 mm2. Excellent homogeneity and near Fano-limited energy resolution at high readout speeds have been observed on these devices.

  4. Larmor-precession based neutron scattering instrumentation

    International Nuclear Information System (INIS)

    Ioffe, Alexander

    2009-01-01

    The Larmor precession of the neutron spin in a magnetic field allows the attachment of a Larmor clock to every neutron. Such Larmor labelling opens the possibility for the development of unusual neutron scattering techniques, where the energy (momentum) resolution does not require the initial and final states to be well selected. This principally allows for achievement of very high energy (momentum) resolution that is not feasible at all with conventional neutron scattering techniques, because the required neutron beam monochromatization (collimation) will result in intolerable intensity losses. Such decoupling of resolution and collimation allows, for example, for a significant increase in the luminosity of small-angle scattering or high-resolution diffractometers; the fact that opens new perspectives for their implementation at middle flux neutron sources. Different kinds of Larmor clock-based instrumentation, particularly two alternative NSE techniques using rotating and time-gradient magnetic field arrangements, which can be considered as inexpensive and affordable alternatives to present day NSE techniques, will be discussed and results of simulations and first experiments will be presented. (author)

  5. Designing clinically valuable telehealth resources: processes to develop a community-based palliative care prototype.

    Science.gov (United States)

    Tieman, Jennifer Joy; Morgan, Deidre Diane; Swetenham, Kate; To, Timothy Hong Man; Currow, David Christopher

    2014-09-04

    Changing population demography and patterns of disease are increasing demands on the health system. Telehealth is seen as providing a mechanism to support community-based care, thus reducing pressure on hospital services and supporting consumer preferences for care in the home. This study examined the processes involved in developing a prototype telehealth intervention to support palliative care patients involved with a palliative care service living in the community. The challenges and considerations in developing the palliative care telehealth prototype were reviewed against the Center for eHealth Research (CeHRes) framework, a telehealth development model. The project activities to develop the prototype were specifically mapped against the model's first four phases: multidisciplinary project management, contextual inquiry, value specification, and design. This project has been developed as part of the Telehealth in the Home: Aged and Palliative Care in South Australia initiative. Significant issues were identified and subsequently addressed during concept and prototype development. The CeHRes approach highlighted the implicit diversity in views and opinions among participants and stakeholders and enabled issues to be considered, resolved, and incorporated during design through continuous engagement. The CeHRes model provided a mechanism that facilitated "better" solutions in the development of the palliative care prototype by addressing the inherent but potentially unrecognized differences in values and beliefs of participants. This collaboration enabled greater interaction and exchange among participants resulting in a more useful and clinically valuable telehealth prototype.

  6. Research on Web-Based Networked Virtual Instrument System

    International Nuclear Information System (INIS)

    Tang, B P; Xu, C; He, Q Y; Lu, D

    2006-01-01

    The web-based networked virtual instrument (NVI) system is designed by using the object oriented methodology (OOM). The architecture of the NVI system consists of two major parts: client-web server interaction and instrument server-virtual instrument (VI) communication. The web server communicates with the instrument server and the clients connected to it over the Internet, and it handles identifying the user's name, managing the connection between the user and the instrument server, adding, removing and configuring VI's information. The instrument server handles setting the parameters of VI, confirming the condition of VI and saving the VI's condition information into the database. The NVI system is required to be a general-purpose measurement system that is easy to maintain, adapt and extend. Virtual instruments are connected to the instrument server and clients can remotely configure and operate these virtual instruments. An application of The NVI system is given in the end of the paper

  7. Cellular telephone-based radiation detection instrument

    Science.gov (United States)

    Craig, William W [Pittsburg, CA; Labov, Simon E [Berkeley, CA

    2011-06-14

    A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.

  8. Game-based versus storyboard-based evaluations of crew support prototypes for long duration missions

    Science.gov (United States)

    Smets, N. J. J. M.; Abbing, M. S.; Neerincx, M. A.; Lindenberg, J.; van Oostendorp, H.

    2010-03-01

    The Mission Execution Crew Assistant (MECA) is developing a distributed system of electronic partners (ePartners) to support astronauts performing nominal and off- nominal actions in long duration missions. The ePartners' support should adequately deal with the dynamics of the context, operations, team and personal conditions, which will change over time substantially. Such support—with the concerning context effects—should be thoroughly tested in all stages of the development process. A major question is how to address the context effects of in-space operations for evaluations of crew support prototypes. Via game-technology, the prototype can be tested with astronauts or their representatives, immersed in the envisioned, simulated context. We investigated if a game-based evaluation better addresses the context effects by producing a more elaborate, in-depth and realistic user experience than a "classical" storyboard-based evaluation. In the game-based evaluation, the participants showed higher arousal levels where expected, a more intense feeling of spatial presence, better situation awareness, and faster performance where needed. Such an evaluation can be used as an alternative or complement of field or micro-world tests when context dynamics cannot be simulated in these last tests cost-efficiently.

  9. Some suggestions based on the instrumentation installation experience at RAPP

    International Nuclear Information System (INIS)

    Raghunath, M.R.; Singh, S.; Jain, V.K.

    1977-01-01

    Suggestions regarding installation of reactor instrumentation have been made based on the instrumentation installation experience at the Rajasthan Atomic Power Plant. It has been mentioned that the instrumentation installation work has to proceed simultaneously with that of the heavy equipment and piping errection work, to meet the commissioning target dates. (S.K.K.)

  10. A Computer-Based Instrument That Identifies Common Science Misconceptions

    Science.gov (United States)

    Larrabee, Timothy G.; Stein, Mary; Barman, Charles

    2006-01-01

    This article describes the rationale for and development of a computer-based instrument that helps identify commonly held science misconceptions. The instrument, known as the Science Beliefs Test, is a 47-item instrument that targets topics in chemistry, physics, biology, earth science, and astronomy. The use of an online data collection system…

  11. PCI express hotplug implementation for ATCA based instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Paulo F.; Santos, Bruno; Correia, Miguel; Combo, Álvaro M.; Rodrigues, António P. [Instituto Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa (Portugal); Pereira, Rita C., E-mail: pricardofc@ipfn.ist.utl.pt [Instituto Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa (Portugal); Fernandes, Ana; Cruz, Nuno; Sousa, Jorge; Carvalho, Bernardo B.; Batista, António J.N. [Instituto Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa (Portugal); Correia, Carlos M.B.A. [Centro de Instrumentação, Departamento de Física, Universidade de Coimbra, 3004-516 Coimbra (Portugal); Gonçalves, Bruno [Instituto Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa (Portugal)

    2015-10-15

    Highlights: • Hotplug capabilities are designed as an expected or graceful methodology in which the user is not permitted to install or remove a PCIe endpoint device without first notifying the system software. • Hotswap capabilities allow endpoints or PCIe switches with endpoints to be inserted or removed from a PCIe system gracefully or unexpectedly without special consideration. • ATCA, advanced telecommunication computer architecture is a new specification with high availability and high reliability key features which improves data acquisition systems. • Data acquisition systems are used almost everywhere and a demand in the nuclear fusion research field. • Nuclear fusion is a future alternative for power and energy resources generation for world humanity consumption. - Abstract: This paper describes a Peripheral Component Interconnect Express (PCIe) hotplug and hotswap capability implementation for advanced telecommunication computer architecture (ATCA) based instrumentation. PCIe hotplug provides card insertion and removal capability from a running PCIe-based platform without causing system damages and not requiring an entire system shutdown. PCIe hotswap allows endpoints or PCIe switches with endpoint cards to be inserted or removed from a PCIe system gracefully or unexpectedly without special considerations. Control and data acquisition (C&DAQ) cards need to be replaced from a system for fault-condition repair, hardware malfunction, firmware updates or upgrades and hardware reconfiguration. ATCA specification key features such as high reliability and high availability for C&DAQ systems strongly benefits from these capabilities taking advantage from Redhat Enterprise Linux, installed operating system, and corresponding kernel with built-in mechanisms and embedded software modules for hotplug and hotswap support. PCIe hotplug and hotswap implemented solutions in the ATCA-based prototype provides described capabilities to the C&DAQ and PCIe switch

  12. Utilizing a Rapid Prototyping Approach in the Building of a Hypermedia-Based Reference Station.

    Science.gov (United States)

    Sell, Dan

    This paper discusses the building of a hypermedia-based reference station at the Wright Laboratory Technical Library, Wright-Patterson Air Force Base, Ohio. Following this, the paper focuses on an electronic user survey from which data is collected and analysis is made. The survey data is used in a rapid prototyping approach, which is defined as…

  13. Results from a data acquisition system prototype project using a switch-based event builder

    International Nuclear Information System (INIS)

    Black, D.; Andresen, J.; Barsotti, E.; Baumbaugh, A.; Esterline, D.; Knickerbocker, K.; Kwarciany, R.; Moore, G.; Patrick, J.; Swoboda, C.; Treptow, K.; Trevizo, O.; Urish, J.; VanConant, R.; Walsh, D.; Bowden, M.; Booth, A.; Cancelo, G.

    1991-11-01

    A prototype of a high bandwidth parallel event builder has been designed and tested. The architecture is based on a simple switching network and is adaptable to a wide variety of data acquisition systems. An eight channel system with a peak throughput of 160 Megabytes per second has been implemented. It is modularly expandable to 64 channels (over one Gigabyte per second). The prototype uses a number of relatively recent commercial technologies, including very high speed fiber-optic data links, high integration crossbar switches and embedded RISC processors. It is based on an open architecture which permits the installation of new technologies with little redesign effort. 5 refs., 6 figs

  14. Results from a data acquisition system prototype project using a switch-based event builder

    Energy Technology Data Exchange (ETDEWEB)

    Black, D.; Andresen, J.; Barsotti, E.; Baumbaugh, A.; Esterline, D.; Knickerbocker, K.; Kwarciany, R.; Moore, G.; Patrick, J.; Swoboda, C.; Treptow, K.; Trevizo, O.; Urish, J.; VanConant, R.; Walsh, D. (Fermi National Accelerator Lab., Batavia, IL (United States)); Bowden, M.; Booth, A. (Superconducting Super Collider Lab., Dallas, TX (United States)); Cancelo, G. (La Plata Univ. Nacional (Argentina))

    1991-11-01

    A prototype of a high bandwidth parallel event builder has been designed and tested. The architecture is based on a simple switching network and is adaptable to a wide variety of data acquisition systems. An eight channel system with a peak throughput of 160 Megabytes per second has been implemented. It is modularly expandable to 64 channels (over one Gigabyte per second). The prototype uses a number of relatively recent commercial technologies, including very high speed fiber-optic data links, high integration crossbar switches and embedded RISC processors. It is based on an open architecture which permits the installation of new technologies with little redesign effort. 5 refs., 6 figs.

  15. Logic Foundry: Rapid Prototyping for FPGA-Based DSP Systems

    Directory of Open Access Journals (Sweden)

    Bhattacharyya Shuvra S

    2003-01-01

    Full Text Available We introduce the Logic Foundry, a system for the rapid creation and integration of FPGA-based digital signal processing systems. Recognizing that some of the greatest challenges in creating FPGA-based systems occur in the integration of the various components, we have proposed a system that targets the following four areas of integration: design flow integration, component integration, platform integration, and software integration. Using the Logic Foundry, a system can be easily specified, and then automatically constructed and integrated with system level software.

  16. Software development methodology for computer based I&C systems of prototype fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Manimaran, M., E-mail: maran@igcar.gov.in; Shanmugam, A.; Parimalam, P.; Murali, N.; Satya Murty, S.A.V.

    2015-10-15

    Highlights: • Software development methodology adopted for computer based I&C systems of PFBR is detailed. • Constraints imposed as part of software requirements and coding phase are elaborated. • Compliance to safety and security requirements are described. • Usage of CASE (Computer Aided Software Engineering) tools during software design, analysis and testing phase are explained. - Abstract: Prototype Fast Breeder Reactor (PFBR) is sodium cooled reactor which is in the advanced stage of construction in Kalpakkam, India. Versa Module Europa bus based Real Time Computer (RTC) systems are deployed for Instrumentation & Control of PFBR. RTC systems have to perform safety functions within the stipulated time which calls for highly dependable software. Hence, well defined software development methodology is adopted for RTC systems starting from the requirement capture phase till the final validation of the software product. V-model is used for software development. IEC 60880 standard and AERB SG D-25 guideline are followed at each phase of software development. Requirements documents and design documents are prepared as per IEEE standards. Defensive programming strategies are followed for software development using C language. Verification and validation (V&V) of documents and software are carried out at each phase by independent V&V committee. Computer aided software engineering tools are used for software modelling, checking for MISRA C compliance and to carry out static and dynamic analysis. Various software metrics such as cyclomatic complexity, nesting depth and comment to code are checked. Test cases are generated using equivalence class partitioning, boundary value analysis and cause and effect graphing techniques. System integration testing is carried out wherein functional and performance requirements of the system are monitored.

  17. Software development methodology for computer based I&C systems of prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Manimaran, M.; Shanmugam, A.; Parimalam, P.; Murali, N.; Satya Murty, S.A.V.

    2015-01-01

    Highlights: • Software development methodology adopted for computer based I&C systems of PFBR is detailed. • Constraints imposed as part of software requirements and coding phase are elaborated. • Compliance to safety and security requirements are described. • Usage of CASE (Computer Aided Software Engineering) tools during software design, analysis and testing phase are explained. - Abstract: Prototype Fast Breeder Reactor (PFBR) is sodium cooled reactor which is in the advanced stage of construction in Kalpakkam, India. Versa Module Europa bus based Real Time Computer (RTC) systems are deployed for Instrumentation & Control of PFBR. RTC systems have to perform safety functions within the stipulated time which calls for highly dependable software. Hence, well defined software development methodology is adopted for RTC systems starting from the requirement capture phase till the final validation of the software product. V-model is used for software development. IEC 60880 standard and AERB SG D-25 guideline are followed at each phase of software development. Requirements documents and design documents are prepared as per IEEE standards. Defensive programming strategies are followed for software development using C language. Verification and validation (V&V) of documents and software are carried out at each phase by independent V&V committee. Computer aided software engineering tools are used for software modelling, checking for MISRA C compliance and to carry out static and dynamic analysis. Various software metrics such as cyclomatic complexity, nesting depth and comment to code are checked. Test cases are generated using equivalence class partitioning, boundary value analysis and cause and effect graphing techniques. System integration testing is carried out wherein functional and performance requirements of the system are monitored

  18. A Prototype Knowledge-Based System for Satellite Mission Planning.

    Science.gov (United States)

    1986-12-01

    used by different groups in an operational environment. 6 II. Literature Review As management science has recognized, it is not practical to separate...schedule only one satellite per set of requirements. A -4 .............. er.- Appendix B O9perational Conce~t Usin a Knowlede -Based System There are many

  19. A prototype case-based reasoning human assistant for space crew assessment and mission management

    Science.gov (United States)

    Owen, Robert B.; Holland, Albert W.; Wood, Joanna

    1993-01-01

    We present a prototype human assistant system for space crew assessment and mission management. Our system is based on case episodes from American and Russian space missions and analog environments such as polar stations and undersea habitats. The general domain of small groups in isolated and confined environments represents a near ideal application area for case-based reasoning (CBR) - there are few reliable rules to follow, and most domain knowledge is in the form of cases. We define the problem domain and outline a unique knowledge representation system driven by conflict and communication triggers. The prototype system is able to represent, index, and retrieve case studies of human performance. We index by social, behavioral, and environmental factors. We present the problem domain, our current implementation, our research approach for an operational system, and prototype performance and results.

  20. Displacement characteristics of a piezoactuator-based prototype microactuator with a hydraulic displacement amplification system

    International Nuclear Information System (INIS)

    Muralidhara; Rao, Rathnamala

    2015-01-01

    In this study, a new piezoactuator-based prototype microactuator is proposed with a hydraulic displacement amplification system. A piezoactuator is used to deflect a diaphragm which displaces a certain volume of hydraulic fluid into a smaller-diameter piston chamber, thereby amplifying the displacement at the other end of the piston. An electro-mechanical model is implemented to estimate the displacement of a multilayer piezoelectric actuator for the applied input voltage considering the hysteresis behavior. The displacement characteristics of the proposed microactuator are studied for triangular actuation voltage signal. Results of the experiments and simulation of the displacement behavior of the stacked piezoactuator and the amplified displacement of the prototype actuator were compared. Experimental results suggest that the mathematical model developed for the new piezoactuator-based prototype actuator is capable of estimating its displacement behavior accurately, within an error of 1.2%.

  1. Displacement characteristics of a piezoactuator-based prototype microactuator with a hydraulic displacement amplification system

    Energy Technology Data Exchange (ETDEWEB)

    Muralidhara [NMAMIT, Nitte (India); Rao, Rathnamala [NITK, Surathkal (India)

    2015-11-15

    In this study, a new piezoactuator-based prototype microactuator is proposed with a hydraulic displacement amplification system. A piezoactuator is used to deflect a diaphragm which displaces a certain volume of hydraulic fluid into a smaller-diameter piston chamber, thereby amplifying the displacement at the other end of the piston. An electro-mechanical model is implemented to estimate the displacement of a multilayer piezoelectric actuator for the applied input voltage considering the hysteresis behavior. The displacement characteristics of the proposed microactuator are studied for triangular actuation voltage signal. Results of the experiments and simulation of the displacement behavior of the stacked piezoactuator and the amplified displacement of the prototype actuator were compared. Experimental results suggest that the mathematical model developed for the new piezoactuator-based prototype actuator is capable of estimating its displacement behavior accurately, within an error of 1.2%.

  2. CIMIDx: Prototype for a Cloud-Based System to Support Intelligent Medical Image Diagnosis With Efficiency.

    Science.gov (United States)

    Bhavani, Selvaraj Rani; Senthilkumar, Jagatheesan; Chilambuchelvan, Arul Gnanaprakasam; Manjula, Dhanabalachandran; Krishnamoorthy, Ramasamy; Kannan, Arputharaj

    2015-03-27

    The Internet has greatly enhanced health care, helping patients stay up-to-date on medical issues and general knowledge. Many cancer patients use the Internet for cancer diagnosis and related information. Recently, cloud computing has emerged as a new way of delivering health services but currently, there is no generic and fully automated cloud-based self-management intervention for breast cancer patients, as practical guidelines are lacking. We investigated the prevalence and predictors of cloud use for medical diagnosis among women with breast cancer to gain insight into meaningful usage parameters to evaluate the use of generic, fully automated cloud-based self-intervention, by assessing how breast cancer survivors use a generic self-management model. The goal of this study was implemented and evaluated with a new prototype called "CIMIDx", based on representative association rules that support the diagnosis of medical images (mammograms). The proposed Cloud-Based System Support Intelligent Medical Image Diagnosis (CIMIDx) prototype includes two modules. The first is the design and development of the CIMIDx training and test cloud services. Deployed in the cloud, the prototype can be used for diagnosis and screening mammography by assessing the cancers detected, tumor sizes, histology, and stage of classification accuracy. To analyze the prototype's classification accuracy, we conducted an experiment with data provided by clients. Second, by monitoring cloud server requests, the CIMIDx usage statistics were recorded for the cloud-based self-intervention groups. We conducted an evaluation of the CIMIDx cloud service usage, in which browsing functionalities were evaluated from the end-user's perspective. We performed several experiments to validate the CIMIDx prototype for breast health issues. The first set of experiments evaluated the diagnostic performance of the CIMIDx framework. We collected medical information from 150 breast cancer survivors from hospitals

  3. Rapid Prototyping of a Map-Based Android App

    OpenAIRE

    Flanagan, Nicholas M; Theller, Eric; Theller, Larry

    2013-01-01

    This project tries to provide a mobile phone-based solution app named “DriftWatch Pollinator Mapper” that will allow beekeepers, apiary inspectors, and association staff to easily register and map a hive into the Driftwatch system, where local pesticide applicators will notice it and be aware of the presence of pollinators. The purpose of the mobile application is to speed the process of registering beekeepers within DriftWatch, since many beekeepers have significant trouble using only web-ba...

  4. A small animal PET prototype based on Silicon Photomultipliers

    International Nuclear Information System (INIS)

    Marcatili, S; Belcari, N.; Bisogni, M.G.; Del Guerra, A.; Collazuol, G.; Pedreschi, E.; Spinella, F.; Sportelli, G.; Marzocca, C.

    2011-01-01

    Next generation PET scanners should full fill very high requirements in terms of spatial, energy and timing resolution. Modern scanner performances are inherently limited by the use of standard photomultiplier tubes. The use of Silicon Photomultiplier (Si P M) matrices is proposed for the construction of a small animal PET system consisting of two detector heads based on Lyso continuos crystals. The use of large area multi-pixel Silicon Photomultiplier (Si P M) detectors requires the development of a multichannel Digital Acquisition system (DAQ) as well as of a dedicated front-end in order not to degrade the intrinsic detector capabilities. At the University of Pisa and INFN Pisa we developed a DAQ board for the read-out of 2 64-pixel Si P M matrices in time coincidence for Positron Emission Tomography (PET) applications. The proof of principles is based on 64-pixel detectors, but the whole system has been conceived to be easily scalable to a higher number of channels. Here we describe the Group-V INFN DASi P M 2 (Development and Application of Si P M) project and related results.

  5. Prototype Biology-Based Radiation Risk Module Project

    Science.gov (United States)

    Terrier, Douglas; Clayton, Ronald G.; Patel, Zarana; Hu, Shaowen; Huff, Janice

    2015-01-01

    Biological effects of space radiation and risk mitigation are strategic knowledge gaps for the Evolvable Mars Campaign. The current epidemiology-based NASA Space Cancer Risk (NSCR) model contains large uncertainties (HAT #6.5a) due to lack of information on the radiobiology of galactic cosmic rays (GCR) and lack of human data. The use of experimental models that most accurately replicate the response of human tissues is critical for precision in risk projections. Our proposed study will compare DNA damage, histological, and cell kinetic parameters after irradiation in normal 2D human cells versus 3D tissue models, and it will use a multi-scale computational model (CHASTE) to investigate various biological processes that may contribute to carcinogenesis, including radiation-induced cellular signaling pathways. This cross-disciplinary work, with biological validation of an evolvable mathematical computational model, will help reduce uncertainties within NSCR and aid risk mitigation for radiation-induced carcinogenesis.

  6. Three-Dimensional Printed PCL-Based Implantable Prototypes of Medical Devices for Controlled Drug Delivery

    DEFF Research Database (Denmark)

    Hollander, Jenny; Genina, Natalja; Jukarainen, Harri

    2016-01-01

    The goal of the present study was to fabricate drug-containing T-shaped prototypes of intrauterine system (IUS) with the drug incorporated within the entire backbone of the medical device using 3-dimensional (3D) printing technique, based on fused deposition modeling (FDM™). Indomethacin was used...... prototypes were dependent on the amount of drug loading. The drug release profiles from the printed devices were faster than from the corresponding filaments due to a lower degree of the drug crystallinity in IUS in addition to the differences in the external/internal structure and geometry between...

  7. A prototype of behavior selection mechanism based on emotion

    Science.gov (United States)

    Zhang, Guofeng; Li, Zushu

    2007-12-01

    In bionic methodology rather than in design methodology more familiar with, summarizing the psychological researches of emotion, we propose the biologic mechanism of emotion, emotion selection role in creature evolution and a anima framework including emotion similar to the classical control structure; and consulting Prospect Theory, build an Emotion Characteristic Functions(ECF) that computer emotion; two more emotion theories are added to them that higher emotion is preferred and middle emotion makes brain run more efficiently, emotional behavior mechanism comes into being. A simulation of proposed mechanism are designed and carried out on Alife Swarm software platform. In this simulation, a virtual grassland ecosystem is achieved where there are two kinds of artificial animals: herbivore and preyer. These artificial animals execute four types of behavior: wandering, escaping, finding food, finding sex partner in their lives. According the theories of animal ethnology, escaping from preyer is prior to other behaviors for its existence, finding food is secondly important behavior, rating is third one and wandering is last behavior. In keeping this behavior order, based on our behavior characteristic function theory, the specific functions of emotion computing are built of artificial autonomous animals. The result of simulation confirms the behavior selection mechanism.

  8. A UNIX-based prototype biomedical virtual image processor

    International Nuclear Information System (INIS)

    Fahy, J.B.; Kim, Y.

    1987-01-01

    The authors have developed a multiprocess virtual image processor for the IBM PC/AT, in order to maximize image processing software portability for biomedical applications. An interprocess communication scheme, based on two-way metacode exchange, has been developed and verified for this purpose. Application programs call a device-independent image processing library, which transfers commands over a shared data bridge to one or more Autonomous Virtual Image Processors (AVIP). Each AVIP runs as a separate process in the UNIX operating system, and implements the device-independent functions on the image processor to which it corresponds. Application programs can control multiple image processors at a time, change the image processor configuration used at any time, and are completely portable among image processors for which an AVIP has been implemented. Run-time speeds have been found to be acceptable for higher level functions, although rather slow for lower level functions, owing to the overhead associated with sending commands and data over the shared data bridge

  9. Study of a high spatial resolution {sup 10}B-based thermal neutron detector for application in neutron reflectometry: the Multi-Blade prototype

    Energy Technology Data Exchange (ETDEWEB)

    Piscitelli, F; Buffet, J C; Clergeau, J F; Cuccaro, S; Guérard, B; Khaplanov, A; Manna, Q La; Rigal, J M; Esch, P Van, E-mail: piscitelli@ill.fr [Institut Laue-Langevin (ILL), 6, Jules Horowitz, 38042, Grenoble (France)

    2014-03-01

    Although for large area detectors it is crucial to find an alternative to detect thermal neutrons because of the {sup 3}He shortage, this is not the case for small area detectors. Neutron scattering science is still growing its instruments' power and the neutron flux a detector must tolerate is increasing. For small area detectors the main effort is to expand the detectors' performances. At Institut Laue-Langevin (ILL) we developed the Multi-Blade detector which wants to increase the spatial resolution of {sup 3}He-based detectors for high flux applications. We developed a high spatial resolution prototype suitable for neutron reflectometry instruments. It exploits solid {sup 10}B-films employed in a proportional gas chamber. Two prototypes have been constructed at ILL and the results obtained on our monochromatic test beam line are presented here.

  10. Prototype performance studies of a Full Mesh ATCA-based General Purpose Data Processing Board

    CERN Document Server

    Okumura, Yasuyuki; Liu, Tiehui Ted; Yin, Hang

    2013-01-01

    High luminosity conditions at the LHC pose many unique challenges for potential silicon based track trigger systems. One of the major challenges is data formatting, where hits from thousands of silicon modules must first be shared and organized into overlapping eta-phi trigger towers. Communication between nodes requires high bandwidth, low latency, and flexible real time data sharing, for which a full mesh backplane is a natural solution. A custom Advanced Telecommunications Computing Architecture data processing board is designed with the goal of creating a scalable architecture abundant in flexible, non-blocking, high bandwidth board to board communication channels while keeping the design as simple as possible. We have performed the first prototype board testing and our first attempt at designing the prototype system has proven to be successful. Leveraging the experience we gained through designing, building and testing the prototype board system we are in the final stages of laying out the next generatio...

  11. Prototype-based Models for the Supervised Learning of Classification Schemes

    Science.gov (United States)

    Biehl, Michael; Hammer, Barbara; Villmann, Thomas

    2017-06-01

    An introduction is given to the use of prototype-based models in supervised machine learning. The main concept of the framework is to represent previously observed data in terms of so-called prototypes, which reflect typical properties of the data. Together with a suitable, discriminative distance or dissimilarity measure, prototypes can be used for the classification of complex, possibly high-dimensional data. We illustrate the framework in terms of the popular Learning Vector Quantization (LVQ). Most frequently, standard Euclidean distance is employed as a distance measure. We discuss how LVQ can be equipped with more general dissimilarites. Moreover, we introduce relevance learning as a tool for the data-driven optimization of parameterized distances.

  12. A prototype distributed object-oriented architecture for image-based automatic laser alignment

    International Nuclear Information System (INIS)

    Stout, E.A.; Kamm, V.J.M.; Spann, J.M.; Van Arsdall, P.J.

    1996-01-01

    Designing a computer control system for the National Ignition Facility (NIF) is a complex undertaking because of the system's large size and its distributed nature. The controls team is addressing that complexity by adopting the object-oriented programming paradigm, designing reusable software frameworks, and using the Common Object Request Broker Architecture (CORBA) for distribution. A prototype system for image-based automatic laser alignment has been developed to evaluate and gain experience with CORBA and OOP in a small distributed system. The prototype is also important in evaluating alignment concepts, image processing techniques, speed and accuracy of automatic alignment objectives for the NIF, and control hardware for aligment devices. The prototype system has met its inital objectives and provides a basis for continued development

  13. Development of a Prototype Model-Form Uncertainty Knowledge Base

    Science.gov (United States)

    Green, Lawrence L.

    2016-01-01

    Uncertainties are generally classified as either aleatory or epistemic. Aleatory uncertainties are those attributed to random variation, either naturally or through manufacturing processes. Epistemic uncertainties are generally attributed to a lack of knowledge. One type of epistemic uncertainty is called model-form uncertainty. The term model-form means that among the choices to be made during a design process within an analysis, there are different forms of the analysis process, which each give different results for the same configuration at the same flight conditions. Examples of model-form uncertainties include the grid density, grid type, and solver type used within a computational fluid dynamics code, or the choice of the number and type of model elements within a structures analysis. The objectives of this work are to identify and quantify a representative set of model-form uncertainties and to make this information available to designers through an interactive knowledge base (KB). The KB can then be used during probabilistic design sessions, so as to enable the possible reduction of uncertainties in the design process through resource investment. An extensive literature search has been conducted to identify and quantify typical model-form uncertainties present within aerospace design. An initial attempt has been made to assemble the results of this literature search into a searchable KB, usable in real time during probabilistic design sessions. A concept of operations and the basic structure of a model-form uncertainty KB are described. Key operations within the KB are illustrated. Current limitations in the KB, and possible workarounds are explained.

  14. Evaluation of Revised Computer-Based Procedure System Prototype

    Energy Technology Data Exchange (ETDEWEB)

    Katya Le Blanc; Johanna Oxstrand; Cheradan Fikstad

    2013-01-01

    The nuclear power industry is very procedure driven, i.e. almost all activities that take place at a nuclear power plant are conducted by following procedures. The paper-based procedures (PBPs) currently used by the industry do a good job at keeping the industry safe. However, these procedures are most often paired with methods and tools put in place to anticipate, prevent, and catch errors related to hands-on work. These tools are commonly called human performance tools. The drawback with the current implementation of these tools is that the task of performing one procedure becomes time and labor intensive. For example, concurrent and independent verification of procedure steps are required at times, which essentially means that at least two people have to be actively involved in the task. Even though the current use of PBPs and human performance tools are keeping the industry safe, there is room for improvement. The industry could potentially increase their efficiency and safety by replacing their existing PBPs with CBPs. If implemented correctly, the CBP system could reduce the time and focus spent on using the human performance tools. Some of the tools can be completely incorporated in the CBP system in a manner that the performer does not think about the fact that these tools are being used. Examples of these tools are procedure use and adherence, placekeeping, and peer checks. Other tools can be partly integrated in a fashion that reduce the time and labor they require, such as concurrent and independent verification. The incorporation of advanced technology, such as CBP systems, may help to manage the effects of aging systems, structures, and components. The introduction of advanced technology may also make the existing LWR fleet more attractive to the future workforce, which will be of importance when the future workforce will chose between existing fleet and the newly built nuclear power plants.

  15. Virginia Power's computer-based interactive videodisc training: a prototype for the future

    International Nuclear Information System (INIS)

    Seigler, G.G.; Adams, R.H.

    1987-01-01

    Virginia Power has developed a system and internally produced a prototype for computer-based interactive videodisc (CBIV) training. Two programs have been developed using the CBIV instructional methodology: Fire Team Retraining and General Employee Training (practical factors). In addition, the company developed a related program for conducting a videodisc tour of their nuclear power stations using a videodisc information management system (VIMS)

  16. Development of Prototype Outcomes-Based Training Modules for Aesthetic Dentistry

    Science.gov (United States)

    Andres, Maricar Joy T.; Borabo, Milagros L.

    2015-01-01

    The objective of the study is to know the essential components of Aesthetic Dentistry that will be a basis for prototype Outcomes-based training modules. Using a 5-point Likert scale, the researcher-made questionnaire assessed the different elements of Aesthetic Dentistry which are needed in the designing of the training module, the manner of…

  17. Prototype Development of an ICT System to Support Construction Management Based on Virtual Models and RFID

    DEFF Research Database (Denmark)

    Sørensen, Kristian Birch; Christiansson, Per; Svidt, Kjeld

    2009-01-01

    early example) of an ICT system was carried out to identify and formalise user needs in relation to construction management based on virtual models and radio frequency identification (RFID). The prototype was developed to support working processes in real-time project progress management, quality...

  18. New Strategies for Powder Compaction in Powder-based Rapid Prototyping Techniques

    NARCIS (Netherlands)

    Budding, A.; Vaneker, Thomas H.J.

    2013-01-01

    In powder-based rapid prototyping techniques, powder compaction is used to create thin layers of fine powder that are locally bonded. By stacking these layers of locally bonded material, an object is made. The compaction of thin layers of powder mater ials is of interest for a wide range of

  19. Category Rating Is Based on Prototypes and Not Instances: Evidence from Feedback-Dependent Context Effects

    Science.gov (United States)

    Petrov, Alexander A.

    2011-01-01

    Context effects in category rating on a 7-point scale are shown to reverse direction depending on feedback. Context (skewed stimulus frequencies) was manipulated between and feedback within subjects in two experiments. The diverging predictions of prototype- and exemplar-based scaling theories were tested using two representative models: ANCHOR…

  20. Feasibility of a Prototype Web-Based Acceptance and Commitment Therapy Prevention Program for College Students

    Science.gov (United States)

    Levin, Michael E.; Pistorello, Jacqueline; Seeley, John R.; Hayes, Steven C.

    2014-01-01

    Objective: This study examined the feasibility of a prototype Web-based acceptance and commitment therapy (ACT) program for preventing mental health problems among college students. Participants: Undergraduate first-year students ("N" = 76) participated between May and November 2011. Methods: Participants were randomized to ACT or a…

  1. Prototypic implementations of the building block for component based open Hypermedia systems (BB/CB-OHSs)

    DEFF Research Database (Denmark)

    Mohamed, Omer I. Eldai

    2005-01-01

    In this paper we describe the prototypic implementations of the BuildingBlock (BB/CB-OHSs) that proposed to address some of the Component-based Open Hypermedia Systems (CB-OHSs) issues, including distribution and interoperability [4, 11, 12]. Four service implementations were described below. The...

  2. Development of an Adolescent Alcohol Misuse Intervention Based on the Prototype Willingness Model: A Delphi Study

    Science.gov (United States)

    Davies, Emma; Martin, Jilly; Foxcroft, David

    2016-01-01

    Purpose: The purpose of this paper is to report on the use of the Delphi method to gain expert feedback on the identification of behaviour change techniques (BCTs) and development of a novel intervention to reduce adolescent alcohol misuse, based on the Prototype Willingness Model (PWM) of health risk behaviour. Design/methodology/approach: Four…

  3. Instrumentation

    International Nuclear Information System (INIS)

    Prieur, G.; Nadi, M.; Hedjiedj, A.; Weber, S.

    1995-01-01

    This second chapter on instrumentation gives little general consideration on history and classification of instrumentation, and two specific states of the art. The first one concerns NMR (block diagram of instrumentation chain with details on the magnets, gradients, probes, reception unit). The first one concerns precision instrumentation (optical fiber gyro-meter and scanning electron microscope), and its data processing tools (programmability, VXI standard and its history). The chapter ends with future trends on smart sensors and Field Emission Displays. (D.L.). Refs., figs

  4. Development of BC based nuclear instrument

    International Nuclear Information System (INIS)

    Nolida Yussup; Atsushi Birumachi; Kazuaki Shimizu

    2005-01-01

    This paper describes the development of a low-power portable dose rate meter with RS232 interface for data acquisition during 6 months course under MEXT Nuclear Researchers Exchange Program 2004 at JAERI, Japan. The development involved defining the system, selection of detector and components, designing the pre-amplifier, main amplifier, noise discriminator and testing. Software programming was developed on PC to acquire the data via RS232 and display the real-time data. This will allow a small nuclear instrument to have powerful data processing and bigger data storage capability. (Author)

  5. Instrumentation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Provides instrumentation support for flight tests of prototype weapons systems using a vast array of airborne sensors, transducers, signal conditioning and encoding...

  6. Technical requirements on knowledge base and instrumentation system for decision making in plant operation and maintenance

    International Nuclear Information System (INIS)

    Kitamura, Masaharu; Yoshikawa, Shinji; Hasegawa, Makoto

    1998-03-01

    A series of technical surveys and studies are described in this report to examine and identify technical requirements to be posed on knowledge base and instrumentation system as the fundamental in high reliability computational decision making in operation and maintenance of nuclear power plants. Monitoring and diagnosis are focused as the important tasks among the operation/maintenance-related tasks. A concrete monitoring and diagnosis system configuration has been proposed consisting of distributed symptom database and of on-demand measurement subsystem. An prototype of the proposed system configuration has been successfully verified. (author)

  7. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2000-01-01

    SCK-CEN's research and development programme on instrumentation aims at evaluating the potentials of new instrumentation technologies under the severe constraints of a nuclear application. It focuses on the tolerance of sensors to high radiation doses, including optical fibre sensors, and on the related intelligent data processing needed to cope with the nuclear constraints. Main achievements in these domains in 1999 are summarised

  8. Prototype explosives detection system based on nuclear resonance absorption in nitrogen

    International Nuclear Information System (INIS)

    Morgado, R.E.; Arnone, G.J.; Cappiello, C.C.

    1996-01-01

    A laboratory prototype system has been developed for the experimental evaluation of an explosives detection technique based on nuclear resonance absorption of gamma rays in nitrogen. Major subsystems include a radiofrequency quadrupole proton accelerator and associated beam transport system, a high-power gamma-ray production target, an airline-luggage tomographic inspection system, and an image- processing/detection-alarm subsystem. The detection system performance, based on a limited experimental test, is reported

  9. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2001-04-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor.

  10. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2001-01-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor

  11. Design and development of a 3D cadastral prototype based on the LADM and 3D topology

    NARCIS (Netherlands)

    Ying, S.; Guo, R.; Li, L.; Van Oosterom, P.J.M.; Ledoux, H.; Stoter, J.E.

    2011-01-01

    In this paper the design and development of a prototype 3D Cadastral system will be presented. The key aspects of this system are that the model is based on Land Administration Domain Model (LADM) and that the spatial profile is based on a full 3D topological structure. The prototype development

  12. Predictors of non- hookah smoking among high-school students based on prototype/willingness model.

    Science.gov (United States)

    Abedini, Sedigheh; MorowatiSharifabad, MohammadAli; Chaleshgar Kordasiabi, Mosharafeh; Ghanbarnejad, Amin

    2014-01-01

    The aim of the study was to determine predictors of refraining from hookah smoking among high-school students in Bandar Abbas, southern Iran based on Prototype/Willingness model. This cross- sectional with analytic approach was performed on 240 high-school students selected by a cluster random sampling. The data of demographic and Prototype-Willingness Model constructs were acquired via a self-administrated questionnaire. Data were analyzed by mean, frequency, correlation, liner and logistic regression statistical tests. Statistically significant determinants of the intention to refrain from hookah smoking were subjective norms, willingness, and attitude. Regression model indicated that the three items together explained 46.9% of the non-smoking hookah intention variance. Attitude and subjective norms predicted 36.0% of the non-smoking hookah intention variance. There was a significant relationship between the participants' negative prototype about the hookah smokers and the willingness to avoid from hookah smoking (P=0.002). Also willingness predicted non-smoking hookah better than the intention (P<0.001). Deigning intervention to increase negative prototype about the hookah smokers and reducing situations and conditions which facilitate hookah smoking, such as easy access to tobacco products in the cafés, beaches can be useful results among adolescents to hookah smoking prevention.

  13. First Compton telescope prototype based on continuous LaBr3-SiPM detectors

    International Nuclear Information System (INIS)

    Llosá, G.; Cabello, J.; Callier, S.; Gillam, J.E.; Lacasta, C.; Rafecas, M.; Raux, L.; Solaz, C.; Stankova, V.; La Taille, C. de; Trovato, M.; Barrio, J.

    2013-01-01

    A first prototype of a Compton camera based on continuous scintillator crystals coupled to silicon photomultiplier (SiPM) arrays has been successfully developed and operated. The prototype is made of two detector planes. The first detector is made of a continuous 16×18×5 mm 3 LaBr 3 crystal coupled to a 16-elements SiPM array. The elements have a size of 3×3 mm 3 in a 4.5×4.05 mm 2 pitch. The second detector, selected by availability, consists of a continuous 16×18×5 mm 3 LYSO crystal coupled to a similar SiPM array. The SPIROC1 ASIC is employed in the readout electronics. Data have been taken with a 22 Na source placed at different positions and images have been reconstructed with the simulated one-pass list-mode (SOPL) algorithm. Detector development for the construction of a second prototype with three detector planes is underway. LaBr 3 crystals of 32×36 mm 2 size and 5/10 mm thickness have been acquired and tested with a PMT. The resolution obtained is 3.5% FWHM at 511 keV. Each crystal will be coupled to four MPPC arrays. Different options are being tested for the prototype readout

  14. Software Prototyping

    Science.gov (United States)

    Del Fiol, Guilherme; Hanseler, Haley; Crouch, Barbara Insley; Cummins, Mollie R.

    2016-01-01

    Summary Background Health information exchange (HIE) between Poison Control Centers (PCCs) and Emergency Departments (EDs) could improve care of poisoned patients. However, PCC information systems are not designed to facilitate HIE with EDs; therefore, we are developing specialized software to support HIE within the normal workflow of the PCC using user-centered design and rapid prototyping. Objective To describe the design of an HIE dashboard and the refinement of user requirements through rapid prototyping. Methods Using previously elicited user requirements, we designed low-fidelity sketches of designs on paper with iterative refinement. Next, we designed an interactive high-fidelity prototype and conducted scenario-based usability tests with end users. Users were asked to think aloud while accomplishing tasks related to a case vignette. After testing, the users provided feedback and evaluated the prototype using the System Usability Scale (SUS). Results Survey results from three users provided useful feedback that was then incorporated into the design. After achieving a stable design, we used the prototype itself as the specification for development of the actual software. Benefits of prototyping included having 1) subject-matter experts heavily involved with the design; 2) flexibility to make rapid changes, 3) the ability to minimize software development efforts early in the design stage; 4) rapid finalization of requirements; 5) early visualization of designs; 6) and a powerful vehicle for communication of the design to the programmers. Challenges included 1) time and effort to develop the prototypes and case scenarios; 2) no simulation of system performance; 3) not having all proposed functionality available in the final product; and 4) missing needed data elements in the PCC information system. PMID:27081404

  15. A decision support system prototype including human factors based on the TOGA meta-theory approach

    International Nuclear Information System (INIS)

    Cappelli, M.; Memmi, F.; Gadomski, A. M.; Sepielli, M.

    2012-01-01

    The human contribution to the risk of operation of complex technological systems is often not negligible and sometimes tends to become significant, as shown by many reports on incidents and accidents occurred in the past inside Nuclear Power Plants (NPPs). An error of a human operator of a NPP can derive by both omission and commission. For instance, complex commission errors can also lead to significant catastrophic technological accidents, as for the case of the Three Mile Island accident. Typically, the problem is analyzed by focusing on the single event chain that has provoked the incident or accident. What is needed is a general framework able to include as many parameters as possible, i.e. both technological and human factors. Such a general model could allow to envisage an omission or commission error before it can happen or, alternatively, suggest preferred actions to do in order to take countermeasures to neutralize the effect of the error before it becomes critical. In this paper, a preliminary Decision Support System (DSS) based on the so-called (-) TOGA meta-theory approach is presented. The application of such a theory to the management of nuclear power plants has been presented in the previous ICAPP 2011. Here, a human factor simulator prototype is proposed in order to include the effect of human errors in the decision path. The DSS has been developed using a TRIGA research reactor as reference plant, and implemented using the LabVIEW programming environment and the Finite State Machine (FSM) model The proposed DSS shows how to apply the Universal Reasoning Paradigm (URP) and the Universal Management Paradigm (UMP) to a real plant context. The DSS receives inputs from instrumentation data and gives as output a suggested decision. It is obtained as the result of an internal elaborating process based on a performance function. The latter, describes the degree of satisfaction and efficiency, which are dependent on the level of responsibility related to

  16. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2002-01-01

    SCK-CEN's R and D programme on instrumentation involves the development of advanced instrumentation systems for nuclear applications as well as the assessment of the performance of these instruments in a radiation environment. Particular emphasis is on the use of optical fibres as umbilincal links of a remote handling unit for use during maintanance of a fusion reacor, studies on the radiation hardening of plasma diagnostic systems; investigations on new instrumentation for the future MYRRHA accelerator driven system; space applications related to radiation-hardened lenses; the development of new approaches for dose, temperature and strain measurements; the assessment of radiation-hardened sensors and motors for remote handling tasks and studies of dose measurement systems including the use of optical fibres. Progress and achievements in these areas for 2001 are described

  17. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    SCK-CEN's R and D programme on instrumentation involves the development of advanced instrumentation systems for nuclear applications as well as the assessment of the performance of these instruments in a radiation environment. Particular emphasis is on the use of optical fibres as umbilincal links of a remote handling unit for use during maintanance of a fusion reacor, studies on the radiation hardening of plasma diagnostic systems; investigations on new instrumentation for the future MYRRHA accelerator driven system; space applications related to radiation-hardened lenses; the development of new approaches for dose, temperature and strain measurements; the assessment of radiation-hardened sensors and motors for remote handling tasks and studies of dose measurement systems including the use of optical fibres. Progress and achievements in these areas for 2001 are described.

  18. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2000-07-01

    SCK-CEN's research and development programme on instrumentation aims at evaluating the potentials of new instrumentation technologies under the severe constraints of a nuclear application. It focuses on the tolerance of sensors to high radiation doses, including optical fibre sensors, and on the related intelligent data processing needed to cope with the nuclear constraints. Main achievements in these domains in 1999 are summarised.

  19. Calibration Base Lines for Electronic Distance Measuring Instruments (EDMI)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A calibration base line (CBL) is a precisely measured, straight-line course of approximately 1,400 m used to calibrate Electronic Distance Measuring Instruments...

  20. Instrumentation

    International Nuclear Information System (INIS)

    Umminger, K.

    2008-01-01

    A proper measurement of the relevant single and two-phase flow parameters is the basis for the understanding of many complex thermal-hydraulic processes. Reliable instrumentation is therefore necessary for the interaction between analysis and experiment especially in the field of nuclear safety research where postulated accident scenarios have to be simulated in experimental facilities and predicted by complex computer code systems. The so-called conventional instrumentation for the measurement of e. g. pressures, temperatures, pressure differences and single phase flow velocities is still a solid basis for the investigation and interpretation of many phenomena and especially for the understanding of the overall system behavior. Measurement data from such instrumentation still serves in many cases as a database for thermal-hydraulic system codes. However some special instrumentation such as online concentration measurement for boric acid in the water phase or for non-condensibles in steam atmosphere as well as flow visualization techniques were further developed and successfully applied during the recent years. Concerning the modeling needs for advanced thermal-hydraulic codes, significant advances have been accomplished in the last few years in the local instrumentation technology for two-phase flow by the application of new sensor techniques, optical or beam methods and electronic technology. This paper will give insight into the current state of instrumentation technology for safety-related thermohydraulic experiments. Advantages and limitations of some measurement processes and systems will be indicated as well as trends and possibilities for further development. Aspects of instrumentation in operating reactors will also be mentioned.

  1. TUTORIAL: Focused-ion-beam-based rapid prototyping of nanoscale magnetic devices

    Science.gov (United States)

    Khizroev, S.; Litvinov, D.

    2004-03-01

    In this tutorial, focused-ion-beam (FIB)-based fabrication is considered from a very unconventional angle. FIB is considered not as a fabrication tool that can be used for mass production of electronic devices, similar to optical and E-beam—based lithography, but rather as a powerful tool to rapidly fabricate individual nanoscale magnetic devices for prototyping future electronic applications. Among the effects of FIB-based fabrication of magnetic devices, the influence of Ga+-ion implantation on magnetic properties is presented. With help of magnetic force microscopy (MFM), it is shown that there is a critical doze of ions that a magnetic material can be exposed to without experiencing a change in the magnetic properties. Exploiting FIB from such an unconventional perspective is especially favourable today when the future of so many novel technologies depends on the ability to rapidly fabricate prototype nanoscale magnetic devices. As one of the most illustrative examples, the multi-billion-dollar data storage industry is analysed as the technology field that strongly benefited from implementing FIB in the above-described role. The essential role of FIB in the most recent trend of the industry towards perpendicular magnetic recording is presented. Moreover, other emerging and fast-growing technologies are considered as examples of nanoscale technologies whose future could strongly depend on the implementation of FIB in the role of a nanoscale fabrication tool for rapid prototyping. Among the other described technologies are 'ballistic' magnetoresistance, patterned magnetic media, magnetoresistive RAM (MRAM), and magnetic force microscopy.

  2. Evolution of a web-based, prototype Personal Health Application for diabetes self-management.

    Science.gov (United States)

    Fonda, Stephanie J; Kedziora, Richard J; Vigersky, Robert A; Bursell, Sven-Erik

    2010-10-01

    Behaviors carried out by the person with diabetes (e.g., healthy eating, physical activity, judicious use of medication, glucose monitoring, coping and problem-solving, regular clinic visits, etc.) are of central importance in diabetes management. To assist with these behaviors, we developed a prototype PHA for diabetes self-management that was based on User-Centered Design principles and congruent with the anticipatory vision of Project Health Design (PHD). This article presents aspects of the prototype PHA's functionality as conceived under PHD and describes modifications to the PHA now being undertaken under new sponsorship, in response to user feedback and timing tests we have performed. In brief, the prototype Personal Health Application (PHA) receives data on the major diabetes management domains from a Personal Health Record (PHR) and analyzes and provides feedback based on clinically vetted educational content. The information is presented within "gadgets" within a portal-based website. The PHR used for the first implementation was the Common Platform developed by PHD. Key changes include a re-conceptualization of the gadgets by topic areas originally defined by the American Association of Diabetes Educators, a refocusing on low-cost approaches to diabetes monitoring and data entry, and synchronization with a new PHR, Microsoft® HealthVault™. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Scaling up graph-based semisupervised learning via prototype vector machines.

    Science.gov (United States)

    Zhang, Kai; Lan, Liang; Kwok, James T; Vucetic, Slobodan; Parvin, Bahram

    2015-03-01

    When the amount of labeled data are limited, semisupervised learning can improve the learner's performance by also using the often easily available unlabeled data. In particular, a popular approach requires the learned function to be smooth on the underlying data manifold. By approximating this manifold as a weighted graph, such graph-based techniques can often achieve state-of-the-art performance. However, their high time and space complexities make them less attractive on large data sets. In this paper, we propose to scale up graph-based semisupervised learning using a set of sparse prototypes derived from the data. These prototypes serve as a small set of data representatives, which can be used to approximate the graph-based regularizer and to control model complexity. Consequently, both training and testing become much more efficient. Moreover, when the Gaussian kernel is used to define the graph affinity, a simple and principled method to select the prototypes can be obtained. Experiments on a number of real-world data sets demonstrate encouraging performance and scaling properties of the proposed approach. It also compares favorably with models learned via l1 -regularization at the same level of model sparsity. These results demonstrate the efficacy of the proposed approach in producing highly parsimonious and accurate models for semisupervised learning.

  4. Development of a Prototype Web-Based Decision Support System for Watershed Management

    Directory of Open Access Journals (Sweden)

    Dejian Zhang

    2015-02-01

    Full Text Available Using distributed hydrological models to evaluate the effectiveness of reducing non-point source pollution by applying best management practices (BMPs is an important support to decision making for watershed management. However, complex interfaces and time-consuming simulations of the models have largely hindered the applications of these models. We designed and developed a prototype web-based decision support system for watershed management (DSS-WMRJ, which is user friendly and supports quasi-real-time decision making. DSS-WMRJ is based on integrating an open-source Web-based Geographical Information Systems (Web GIS tool (Geoserver, a modeling component (SWAT, Soil and Water Assessment Tool, a cloud computing platform (Hadoop and other open source components and libraries. In addition, a private cloud is used in an innovative manner to parallelize model simulations, which are time consuming and computationally costly. Then, the prototype DSS-WMRJ was tested with a case study. Successful implementation and testing of the prototype DSS-WMRJ lay a good foundation to develop DSS-WMRJ into a fully-fledged tool for watershed management. DSS-WMRJ can be easily customized for use in other watersheds and is valuable for constructing other environmental decision support systems, because of its performance, flexibility, scalability and economy.

  5. Feasibility of Optical Instruments Based on Multiaperture Optics.

    Science.gov (United States)

    1984-10-16

    system may be configured. The optical elements may be nonimaging concentrators (light horns), the field of view (FOV) of which may be controlled by a...RD-RI58 868 FEASIBILITY OF OPTICAL INSTRUMENTS BASED ON i/I MULTIAPERTURE OPTICS (U) FLORIDA UNIV GAINESVILLE DEPT OF NUCLEAR ENGINEERING SCIENCES J D...d Subtitle) 5. TYPE OF REPORT & PERIOD COVERED ’ 0 Feasibility of Optical Instruments Based on Final Report * CD Multiaperature Optics 615/83 to 9/30

  6. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Yordanova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...

  7. Design Method of ADAS for Urban Electric Vehicle Based on Virtual Prototyping

    Directory of Open Access Journals (Sweden)

    Katarzyna Jezierska-Krupa

    2018-01-01

    Full Text Available Since 2012, the Smart Power Team has been actively participating in the Shell Eco-marathon, which is a worldwide competition. From the very beginning, the team has been working to increase driver’s safety on the road by developing Advanced Driver Assistance Systems. This paper presents unique method for designing ADAS systems in order to minimize the costs of the design phase and system implementation and, at the same time, to maximize the positive effect the system has on driver and vehicle safety. The described method is based on using virtual prototyping tool to simulate the system performance in real-life situations. This approach enabled an iterative design process, which resulted in reduction of errors with almost no prototyping and testing costs.

  8. Calibration of an air monitor prototype for a radiation surveillance network based on gamma spectrometry

    International Nuclear Information System (INIS)

    Baeza, A.; Caballero, J.M.; Corbacho, J.Á.; Ontalba-Salamanca, M.Á.; Vasco, J.

    2014-01-01

    The objective of this work is to present the improvements that have been made in quasi-real-time air radioactivity concentration monitors which were initially based on overall activity determinations, by incorporating gamma spectrometry into the current prototype. To this end it was necessary to develop a careful efficiency calibration procedure for both the particulate and the gaseous fractions of the air being sampled. The work also reports the values of the minimum detectable activity calculated for different isotopes and acquisition times. - Highlights: • Deficiencies of a commercial air monitoring system are detailed. • Gamma spectrometry introduction is the basis of the new prototype. • Efficiency calibration procedure is described for aerosol and gaseous fractions. • MDA is evaluated for different isotopes and acquisition times

  9. Results from a prototype chicane-based energy spectrometer for a linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Lyapin, A. [Univ. College London (United Kingdom); London Univ., Egham (United Kingdom). Royal Holloway; Schreiber, H.J.; Viti, M. [Deutsches Electronen Synchrotron DESY, Hamburg (Germany); Deutsches Electronen Synchrotron DESY, Zeuthen (DE)] (and others)

    2010-11-15

    The International Linear Collider (ILC) and other proposed high energy e{sup +}e{sup -} machines aim to measure with unprecedented precision Standard Model quantities and new, not yet discovered phenomena. One of the main requirements for achieving this goal is a measurement of the incident beam energy with an uncertainty close to 10{sup -4}. This article presents the analysis of data from a prototype energy spectrometer commissioned in 2006-2007 in SLAC's End Station A beamline. The prototype was a 4-magnet chicane equipped with beam position monitors measuring small changes of the beam orbit through the chicane at different beam energies. A single bunch energy resolution close to 5 . 10{sup -4} was measured, which is satisfactory for most scenarios. We also report on the operational experience with the chicane-based spectrometer and suggest ways of improving its performance. (orig.)

  10. A prototype of on-line digital flow rate meter based on cross-correlation principle

    International Nuclear Information System (INIS)

    Sun Xiaodong; Dai Zhenxi; Xu Jijun

    1997-01-01

    An on-line, digital prototype of flow rate measurement system based on cross-correlation principle is developed. Laboratory measurements using the prototype show that sufficiently large temperature fluctuations exist naturally and that measurements are possible. Temperature fluctuations are detected by two identical thermocouples spaced along the flow direction and are pre-processed by a thermocouple signal amplifier. The pre-processed temperature fluctuations are analyzed by a cross-correlator which measures the transit time of temperature fluctuations between two thermocouples directly. Thus, the so-called correlation velocity can be determined by a chip microprocessor 8031. Experimental results with single-phase under steady conditions also show that the distance between two thermocouples and the Reynolds number of fluid are the most important parameters to the measurement

  11. Personality prototypes in individuals with compulsive buying based on the Big Five Model.

    Science.gov (United States)

    Mueller, Astrid; Claes, Laurence; Mitchell, James E; Wonderlich, Steve A; Crosby, Ross D; de Zwaan, Martina

    2010-09-01

    Personality prototypes based on the Big Five factor model were investigated in a treatment-seeking sample of 68 individuals with compulsive buying (CB). Cluster analysis of the NEO Five-Factor Inventory (NEO-FFI) scales yielded two distinct personality clusters. Participants in cluster II scored significantly higher than those in cluster I on neuroticism and lower on the other four personality traits. Subjects in cluster II showed higher severity of CB, lower degree of control over CB symptoms, and were more anxious, interpersonally sensitive and impulsive. Furthermore, cluster II was characterized by higher rates of comorbid anxiety disorders, and cluster B personality disorders. The two personality prototypes did not differ with respect to obsessive-compulsive features. Finally and of considerable clinical significance, participants in cluster II reported lower remission rates after undergoing cognitive-behavioral therapy. Implications of the results for treatment are discussed. 2010 Elsevier Ltd. All rights reserved.

  12. Fault Risk Assessment of Underwater Vehicle Steering System Based on Virtual Prototyping and Monte Carlo Simulation

    Directory of Open Access Journals (Sweden)

    He Deyu

    2016-09-01

    Full Text Available Assessing the risks of steering system faults in underwater vehicles is a human-machine-environment (HME systematic safety field that studies faults in the steering system itself, the driver’s human reliability (HR and various environmental conditions. This paper proposed a fault risk assessment method for an underwater vehicle steering system based on virtual prototyping and Monte Carlo simulation. A virtual steering system prototype was established and validated to rectify a lack of historic fault data. Fault injection and simulation were conducted to acquire fault simulation data. A Monte Carlo simulation was adopted that integrated randomness due to the human operator and environment. Randomness and uncertainty of the human, machine and environment were integrated in the method to obtain a probabilistic risk indicator. To verify the proposed method, a case of stuck rudder fault (SRF risk assessment was studied. This method may provide a novel solution for fault risk assessment of a vehicle or other general HME system.

  13. Prototype of a Web-based Participative Decision Support Platform in Natural Hazards and Risk Management

    Directory of Open Access Journals (Sweden)

    Zar Chi Aye

    2015-07-01

    Full Text Available This paper presents the current state and development of a prototype web-GIS (Geographic Information System decision support platform intended for application in natural hazards and risk management, mainly for floods and landslides. This web platform uses open-source geospatial software and technologies, particularly the Boundless (formerly OpenGeo framework and its client side software development kit (SDK. The main purpose of the platform is to assist the experts and stakeholders in the decision-making process for evaluation and selection of different risk management strategies through an interactive participation approach, integrating web-GIS interface with decision support tool based on a compromise programming approach. The access rights and functionality of the platform are varied depending on the roles and responsibilities of stakeholders in managing the risk. The application of the prototype platform is demonstrated based on an example case study site: Malborghetto Valbruna municipality of North-Eastern Italy where flash floods and landslides are frequent with major events having occurred in 2003. The preliminary feedback collected from the stakeholders in the region is discussed to understand the perspectives of stakeholders on the proposed prototype platform.

  14. VC and ACIS/HOOPS based semi-physical virtual prototype design and motion simulation of 2D scanning mirror

    Science.gov (United States)

    Liu, Xiangyan; Dai, Xiaobing; He, Xudong; Gao, Pengcheng

    2013-10-01

    Image-spectrum integrated instrument is an infrared scanning system which integrates optics, mechanics, electrics and information processing. Not only can it achieve scene imaging, but also it can detect, track and identify targets of interests in the scene through acquiring their spectra. After having a brief introduction to image-spectrum integrated instrument and analyzing how 2D scanning mirror works, this paper built 3D model of 2D scanning mirror and simulated its motion using two PCs basing on VC++ and ACIS/HOOPS. Two PCs communicate with each other through serial ports. One PC serves as host computer, on which controlling software runs, is responsible for loading image sequence, image processing, target detecting, and generating and sending motion commands to scanning mirror. The other serves as slave computer, on which scanning mirror motion simulation software runs, is responsible for receiving motion commands to control scanning mirror to finish corresponding movements. This method proposed in this paper adopted semi-physical virtual prototype technology and used real scene image sequence to control virtual 2D scanning mirror and simulates motion of real 2D scanning mirror. It has no need for real scanning mirror and is of important practical significance for debugging controlling software of 2D scanning mirror.

  15. Avoidance-based human Pavlovian-to-instrumental transfer

    Science.gov (United States)

    Lewis, Andrea H.; Niznikiewicz, Michael A.; Delamater, Andrew R.; Delgado, Mauricio R.

    2013-01-01

    The Pavlovian-to-instrumental transfer (PIT) paradigm probes the influence of Pavlovian cues over instrumentally learned behavior. The paradigm has been used extensively to probe basic cognitive and motivational processes in studies of animal learning but, more recently, PIT and its underlying neural basis have been extended to investigations in humans. These initial neuroimaging studies of PIT have focused on the influence of appetitively conditioned stimuli on instrumental responses maintained by positive reinforcement, and highlight the involvement of the striatum. In the current study, we sought to understand the neural correlates of PIT in an aversive Pavlovian learning situation when instrumental responding was maintained through negative reinforcement. Participants exhibited specific PIT, wherein selective increases in instrumental responding to conditioned stimuli occurred when the stimulus signaled a specific aversive outcome whose omission negatively reinforced the instrumental response. Additionally, a general PIT effect was observed such that when a stimulus was associated with a different aversive outcome than was used to negatively reinforce instrumental behavior, the presence of that stimulus caused a non-selective increase in overall instrumental responding. Both specific and general PIT behavioral effects correlated with increased activation in corticostriatal circuitry, particularly in the striatum, a region involved in cognitive and motivational processes. These results suggest that avoidance-based PIT utilizes a similar neural mechanism to that seen with PIT in an appetitive context, which has implications for understanding mechanisms of drug-seeking behavior during addiction and relapse. PMID:24118624

  16. Detector evaluation of a prototype amorphous selenium-based full field digital mammography system

    Science.gov (United States)

    Jesneck, Jonathan L.; Saunders, Robert S.; Samei, Ehsan; Xia, Jessie Q.; Lo, Joseph Y.

    2005-04-01

    This study evaluated the physical performance of a selenium-based direct full-field digital mammography prototype detector (Siemens Mammomat NovationDR), including the pixel value vs. exposure linearity, the modulation transfer function (MTF), the normalized noise power spectrum (NNPS), and the detective quantum efficiency (DQE). The current detector is the same model which received an approvable letter from FDA for release to the US market. The results of the current prototype are compared to those of an earlier prototype. Two IEC standard beam qualities (RQA-M2: Mo/Mo, 28 kVp, 2 mm Al; RQA-M4: Mo/Mo, 35 kVp, 2 mm Al) and two additional beam qualities (MW2: W/Rh, 28 kVp, 2 mm Al; MW4: W/Rh, 35 kVp, 2 mm Al) were investigated. To calculate the modulation transfer function (MTF), a 0.1 mm Pt-Ir edge was imaged at each beam quality. Detector pixel values responded linearly against exposure values (R2 0.999). As before, above 6 cycles/mm Mo/Mo MTF was slightly higher along the chest-nipple axis compared to the left-right axis. MTF was comparable to the previously reported prototype, with slightly reduced resolution. The DQE peaks ranged from 0.71 for 3.31 μC/kg (12.83 mR) to 0.4 for 0.48 μC/kg (1.86 mR) at 1.75 cycles/mm for Mo/Mo at 28 kVp. The DQE range for W/Rh at 28 kVP was 0.81 at 2.03 μC/kg (7.87 mR) to 0.50 at 0.50 μC/kg (1.94 mR) at 1 cycle/mm. NNPS tended to increase with greater exposures, while all exposures had a significant low-frequency component. Bloom and detector edge artifacts observed previously were no longer present in this prototype. The new detector shows marked noise improvement, with slightly reduced resolution. There remain artifacts due to imperfect gain calibration, but at a reduced magnitude compared to a prototype detector.

  17. Instruments

    International Nuclear Information System (INIS)

    Buehrer, W.

    1996-01-01

    The present paper mediates a basic knowledge of the most commonly used experimental techniques. We discuss the principles and concepts necessary to understand what one is doing if one performs an experiment on a certain instrument. (author) 29 figs., 1 tab., refs

  18. An ergonomics based design research method for the arrangement of helicopter flight instrument panels.

    Science.gov (United States)

    Alppay, Cem; Bayazit, Nigan

    2015-11-01

    In this paper, we study the arrangement of displays in flight instrument panels of multi-purpose civil helicopters following a user-centered design method based on ergonomics principles. Our methodology can also be described as a user-interface arrangement methodology based on user opinions and preferences. This study can be outlined as gathering user-centered data using two different research methods and then analyzing and integrating the collected data to come up with an optimal instrument panel design. An interview with helicopter pilots formed the first step of our research. In that interview, pilots were asked to provide a quantitative evaluation of basic interface arrangement principles. In the second phase of the research, a paper prototyping study was conducted with same pilots. The final phase of the study entailed synthesizing the findings from interviews and observational studies to formulate an optimal flight instrument arrangement methodology. The primary results that we present in our paper are the methodology that we developed and three new interface arrangement concepts, namely relationship of inseparability, integrated value and locational value. An optimum instrument panel arrangement is also proposed by the researchers. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  19. Safeguards instrumentation: a computer-based catalog

    International Nuclear Information System (INIS)

    Fishbone, L.G.; Keisch, B.

    1981-08-01

    The information contained in this catalog is needed to provide a data base for safeguards studies and to help establish criteria and procedures for international safeguards for nuclear materials and facilities. The catalog primarily presents information on new safeguards equipment. It also describes entire safeguards systems for certain facilities, but it does not describe the inspection procedures. Because IAEA safeguards do not include physical security, devices for physical protection (as opposed to containment and surveillance) are not included. An attempt has been made to list capital costs, annual maintenance costs, replacement costs, and useful lifetime for the equipment. For equipment which is commercially available, representative sources have been listed whenever available

  20. Safeguards instrumentation: a computer-based catalog

    Energy Technology Data Exchange (ETDEWEB)

    Fishbone, L.G.; Keisch, B.

    1981-08-01

    The information contained in this catalog is needed to provide a data base for safeguards studies and to help establish criteria and procedures for international safeguards for nuclear materials and facilities. The catalog primarily presents information on new safeguards equipment. It also describes entire safeguards systems for certain facilities, but it does not describe the inspection procedures. Because IAEA safeguards do not include physical security, devices for physical protection (as opposed to containment and surveillance) are not included. An attempt has been made to list capital costs, annual maintenance costs, replacement costs, and useful lifetime for the equipment. For equipment which is commercially available, representative sources have been listed whenever available.

  1. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  2. Realization of OFCC based Transimpedance Mode Instrumentation Amplifier

    Directory of Open Access Journals (Sweden)

    Neeta Pandey

    2016-01-01

    Full Text Available The paper presents an instrumentation amplifier suitable for amplifying the current source transducer signals. It provides a voltage output. It has a high gain, common mode rejection ratio and gain independent bandwidth. It uses three Operational Floating Current Conveyors (OFCCs and four resistors. The effect of nonidealities of OFCC on performance of proposed transimpedance instrumentation amplifier (TIA is also analyzed. The proposal has been verified through SPICE simulations using CMOS based schematicThe paper presents an instrumentation amplifier suitable for amplifying the current source transducer signals. It provides a voltage output. It has a high gain, common mode rejection ratio and gain independent bandwidth. It uses three operational floating current conveyors (OFCCs and four resistors. The effect of nonidealities of OFCC on performance of proposed transimpedance instrumentation amplifier (TIA is also analyzed. The proposal has been verified through SPICE simulations using CMOS based schematic.

  3. New Strategies for Powder Compaction in Powder-based Rapid Prototyping Techniques

    OpenAIRE

    Budding, A.; Vaneker, T.H.J.

    2013-01-01

    In powder-based rapid prototyping techniques, powder compaction is used to create thin layers of fine powder that are locally bonded. By stacking these layers of locally bonded material, an object is made. The compaction of thin layers of powder mater ials is of interest for a wide range of applications, but this study solely focuses on the application for powder -based three-dimensional printing (e.g. SLS, 3DP). This research is primarily interested in powder compaction for creating membrane...

  4. Project B-610 instrument data base. Revision 6

    International Nuclear Information System (INIS)

    Silvan, G.R.

    1994-01-01

    The following technical information document contains the published data base listing for the instrumentation to be connected into the new MICON distributed control computer. Project B-610 PFP Instrument Upgrade (PFP HVAC Control Room Upgrade) will install the MICON system in PFP and provide for a new control room at the present site of the new SWP change room EDT-150750 1/11/93

  5. EPROM-based LSI-11 for distributed instrumentation control

    International Nuclear Information System (INIS)

    Hunt, D.N.

    1981-01-01

    The LLNL Nuclear Chemistry Counting Facility (NCCF) is being converted to a modern production facility. A computer network has been designed and built to implement this conversion. The outermost node of the computer network is a dedicated EPROM-based controller. The controller handles the details of driving the attached nuclear instrumentation, providing a standard interface to the remainder of the network. This paper addresses the design and the implementation of the dedicated instrumentation controller

  6. Instrumentation

    International Nuclear Information System (INIS)

    Muehllehner, G.; Colsher, J.G.

    1982-01-01

    This chapter reviews the parameters which are important to positron-imaging instruments. It summarizes the options which various groups have explored in designing tomographs and the methods which have been developed to overcome some of the limitations inherent in the technique as well as in present instruments. The chapter is not presented as a defense of positron imaging versus single-photon or other imaging modality, neither does it contain a description of various existing instruments, but rather stresses their common properties and problems. Design parameters which are considered are resolution, sampling requirements, sensitivity, methods of eliminating scattered radiation, random coincidences and attenuation. The implementation of these parameters is considered, with special reference to sampling, choice of detector material, detector ring diameter and shielding and variations in point spread function. Quantitation problems discussed are normalization, and attenuation and random corrections. Present developments mentioned are noise reduction through time-of-flight-assisted tomography and signal to noise improvements through high intrinsic resolution. Extensive bibliography. (U.K.)

  7. Preliminary investigations on TINI based distributed instrumentation systems

    International Nuclear Information System (INIS)

    Bezboruah, T.; Kalita, M.

    2006-04-01

    A prototype web enabled distributed instrumentation system is being proposed in the Department of Electronics Science, Gauhati University, Assam, India. The distributed instrumentation system contains sensors, legacy hardware, TCP/IP protocol converter, TCP/IP network Ethernet, Database Server, Web/Application Server and Client PCs. As part of the proposed work, Tiny Internet Interface (TINI, TBM390: Dallas Semiconductor) has been deployed as TCP/IP stack, and java programming language as software tools. A feature supported by Java, that is particularly relevant to the distributed system is its applet. An applet is a java class that can be downloaded from the web server and can be run in a context application such as web browser or an applet viewer. TINI has been installed as TCP/IP stack, as it is the best suited embedded system with java programming language and it has been uniquely designed for communicating over One Wire Devices (OWD) over network. Here we will discuss the hardware and software aspects of TINI with OWD for the present system. (author)

  8. Architectural prototyping

    DEFF Research Database (Denmark)

    Bardram, Jakob Eyvind; Christensen, Henrik Bærbak; Hansen, Klaus Marius

    2004-01-01

    A major part of software architecture design is learning how specific architectural designs balance the concerns of stakeholders. We explore the notion of "architectural prototypes", correspondingly architectural prototyping, as a means of using executable prototypes to investigate stakeholders...

  9. A smartphone-based prototype system for incident/work zone management driven by crowd-sourced data.

    Science.gov (United States)

    2015-02-01

    This project develops a smartphone-based prototype system that supplements the 511 system to improve its dynamic traffic : routing service to state highway users under non-recurrent congestion. This system will save considerable time to provide cruci...

  10. LabVIEW-based control software for para-hydrogen induced polarization instrumentation

    International Nuclear Information System (INIS)

    Agraz, Jose; Grunfeld, Alexander; Li, Debiao; Cunningham, Karl; Willey, Cindy; Pozos, Robert; Wagner, Shawn

    2014-01-01

    The elucidation of cell metabolic mechanisms is the modern underpinning of the diagnosis, treatment, and in some cases the prevention of disease. Para-Hydrogen induced polarization (PHIP) enhances magnetic resonance imaging (MRI) signals over 10 000 fold, allowing for the MRI of cell metabolic mechanisms. This signal enhancement is the result of hyperpolarizing endogenous substances used as contrast agents during imaging. PHIP instrumentation hyperpolarizes Carbon-13 ( 13 C) based substances using a process requiring control of a number of factors: chemical reaction timing, gas flow, monitoring of a static magnetic field (B o ), radio frequency (RF) irradiation timing, reaction temperature, and gas pressures. Current PHIP instruments manually control the hyperpolarization process resulting in the lack of the precise control of factors listed above, resulting in non-reproducible results. We discuss the design and implementation of a LabVIEW based computer program that automatically and precisely controls the delivery and manipulation of gases and samples, monitoring gas pressures, environmental temperature, and RF sample irradiation. We show that the automated control over the hyperpolarization process results in the hyperpolarization of hydroxyethylpropionate. The implementation of this software provides the fast prototyping of PHIP instrumentation for the evaluation of a myriad of 13 C based endogenous contrast agents used in molecular imaging

  11. LabVIEW-based control software for para-hydrogen induced polarization instrumentation.

    Science.gov (United States)

    Agraz, Jose; Grunfeld, Alexander; Li, Debiao; Cunningham, Karl; Willey, Cindy; Pozos, Robert; Wagner, Shawn

    2014-04-01

    The elucidation of cell metabolic mechanisms is the modern underpinning of the diagnosis, treatment, and in some cases the prevention of disease. Para-Hydrogen induced polarization (PHIP) enhances magnetic resonance imaging (MRI) signals over 10,000 fold, allowing for the MRI of cell metabolic mechanisms. This signal enhancement is the result of hyperpolarizing endogenous substances used as contrast agents during imaging. PHIP instrumentation hyperpolarizes Carbon-13 ((13)C) based substances using a process requiring control of a number of factors: chemical reaction timing, gas flow, monitoring of a static magnetic field (Bo), radio frequency (RF) irradiation timing, reaction temperature, and gas pressures. Current PHIP instruments manually control the hyperpolarization process resulting in the lack of the precise control of factors listed above, resulting in non-reproducible results. We discuss the design and implementation of a LabVIEW based computer program that automatically and precisely controls the delivery and manipulation of gases and samples, monitoring gas pressures, environmental temperature, and RF sample irradiation. We show that the automated control over the hyperpolarization process results in the hyperpolarization of hydroxyethylpropionate. The implementation of this software provides the fast prototyping of PHIP instrumentation for the evaluation of a myriad of (13)C based endogenous contrast agents used in molecular imaging.

  12. Prototype Centralized Managing Permissions System Based on the Election Multibiometric Authentication

    Directory of Open Access Journals (Sweden)

    Alexey Nikolaevich Ruchay

    2013-02-01

    Full Text Available This work aims to develop a prototype system of centralized managing permissions based on the election multibiometric authentication. The novelty of this work is to develop the principles of distinction and multi-factor authentication, because at the moment there is no such development. Depending on various conditions and factors, including the availability of electronic means and convenience, resistance to attacks and exploits, disease or injury of users the biometric authentication can be selected on the basis of any such biometrics as rhythm password, voice, dynamic signatures and graphics recognition.

  13. Kryptonate-based instrumentation development for automobile exhaust pollutants. Phase III report: design and construction of four (4) experimental models

    International Nuclear Information System (INIS)

    Goodman, P.; Donaghue, T.

    This phase of the program encompasses the design, construction and evaluation of four (4) prototype instruments for the detection of automobile exhaust pollutant. These instruments employ the radio release mechanism utilized by Panametrics in detection of various trace gases. The prototype instruments are of two (2) designs. One design is operable from a power source supplied by an automobile battery. The second design is operable from 110 volts AC power. Successful evaluation in the laboratory as well as with various automobiles were performed with both type instruments. Scale-up of the quantity of sensor material prepared introduced unexpected problems with respect to detection lifetime which were not satisfactorily resolved within the time and funds available to the program. Nevertheless, a Kryptonate-based instrument using a single detection method for the measurement of hydrocarbons, CO and NO/sub x/ as pollutants by automobile exhausts was shown to be operable with actual automobile exhausts, to provide more than adequate sensitivity for inspection purposes, and to provide response and recovery times for full scale reading in the range 10-15 secs. (auth)

  14. Intercomparison of radiation protection instruments based on microdosimetric principles

    International Nuclear Information System (INIS)

    Dietze, G.; Guldbakke, S.; Kluge, H.; Schmitz, T.

    1986-11-01

    Dosemeters based on low-pressure tissue-equivalent proportional counters were developed for the application in radiation protection area monitoring by several groups in Europe. Five different prototypes have been intercompared in a 60 Co photon field, in monoenergetic neutron fields with various energies between 73 keV and 5 MeV and in three neutron fields at a 252 Cf source moderated by a D 2 O sphere. This report describes the radiation fields, the measuring devices and first results of the intercomparison. Additional measurements with a system used in microdosimetry and with a conventional dose equivalent rate meter for neutrons (Rem Counter) were also described. (orig.) [de

  15. Computer-based instrumentation for partial discharge detection in GIS

    International Nuclear Information System (INIS)

    Md Enamul Haque; Ahmad Darus; Yaacob, M.M.; Halil Hussain; Feroz Ahmed

    2000-01-01

    Partial discharge is one of the prominent indicators of defects and insulation degradation in a Gas Insulated Switchgear (GIS). Partial discharges (PD) have a harmful effect on the life of insulation of high voltage equipment. The PD detection using acoustic technique and subsequent analysis is currently an efficient method of performing non-destructive testing of GIS apparatus. A low cost PC-based acoustic PD detection instrument has been developed for the non-destructive diagnosis of GIS. This paper describes the development of a PC-based instrumentation system for partial discharge detection in GIS and some experimental results have also presented. (Author)

  16. Effects of Hydrocarbon-Based Grease on Rapid Prototype Material Used for Grease Retention Shrouds

    Science.gov (United States)

    Zakrajsek, Andrew J.; Valco, Daniel J.; Street, Kenneth W., Jr.

    2010-01-01

    Effects of hydrocarbon-based greases on specific rapid prototype (RP) materials used to fabricate grease retention shrouds (GRS) were explored in this study. Grease retention shrouds are being considered as a way to maintain adequate grease lubrication at the gear mesh in a prototype research transmission system. Due to their design and manufacturing flexibility, rapid prototype materials were chosen for the grease retention shrouds. In order to gain a better understanding of the short and long term effects grease pose on RP materials, research was conducted on the interaction of hydrocarbon-based grease with RP materials. The materials used in this study were durable polyamide (nylon), acrylonitrile butadiene styrene (ABS), and WaterClear 10120. Testing was conducted using Mobilgrease 28 and Syn-Tech 3913G grease (gear coupling grease). These greases were selected due to their regular use with mechanical components. To investigate the effect that grease has on RP materials, the following methods were used to obtain qualitative and quantitative data: Fourier transform infrared spectroscopy (FT-IR), interference profilometer measurements, digital camera imaging, physical shape measurement, and visual observations. To record the changes in the RP materials due to contact with the grease, data was taken before and after the grease application. Results showed that the WaterClear 10120 RP material provided the best resistance to grease penetration as compared to nylon and ABS RP materials. The manufacturing process, and thus resulting surface conditions of the RP material, played a key role in the grease penetration properties and resilience of these materials.

  17. Rapid prototyping of 2D glass microfluidic devices based on femtosecond laser assisted selective etching process

    Science.gov (United States)

    Kim, Sung-Il; Kim, Jeongtae; Koo, Chiwan; Joung, Yeun-Ho; Choi, Jiyeon

    2018-02-01

    Microfluidics technology which deals with small liquid samples and reagents within micro-scale channels has been widely applied in various aspects of biological, chemical, and life-scientific research. For fabricating microfluidic devices, a silicon-based polymer, PDMS (Polydimethylsiloxane), is widely used in soft lithography, but it has several drawbacks for microfluidic applications. Glass has many advantages over PDMS due to its excellent optical, chemical, and mechanical properties. However, difficulties in fabrication of glass microfluidic devices that requires multiple skilled steps such as MEMS technology taking several hours to days, impedes broad application of glass based devices. Here, we demonstrate a rapid and optical prototyping of a glass microfluidic device by using femtosecond laser assisted selective etching (LASE) and femtosecond laser welding. A microfluidic droplet generator was fabricated as a demonstration of a microfluidic device using our proposed prototyping. The fabrication time of a single glass chip containing few centimeter long and complex-shaped microfluidic channels was drastically reduced in an hour with the proposed laser based rapid and simple glass micromachining and hermetic packaging technique.

  18. PhoneSat: Ground Testing of a Phone-Based Prototype Bus

    Science.gov (United States)

    Felix, Carmen; Howard, Benjamin; Reyes, Matthew; Snarskiy, Fedor; Hickman, Ryan; Boshuizen, Christopher; Marshall, William

    2010-01-01

    Most of the key capabilities that are requisite of a satellite bus are housed in today's smart phones. PhoneSat refers to an initiative to build a ground-based prototype vehicle that could all the basic functionality of a satellite, including attitude control, using a smart Phone as its central hardware. All components used were also low cost Commercial off the Shelf (COTS). In summer 2009, an initial prototype was created using the LEGO Mindstorm toolkit demonstrating simple attitude control. Here we report on a follow up initiative to design, build and test a vehicle based on the Google s smart phone Nexus One. The report includes results from initial thermal-vacuum chamber tests and low altitude sub-orbital rocket flights which show that, at least for short durations, the Nexus One phone is able to withstand key aspects of the space environment without failure. We compare the sensor data from the Phone's accelerometers and magnetometers with that of an external microelectronic inertial measurement unit.

  19. Mobile application to induce lifestyle modifications in type 2 diabetic patients: prototype based on international guidelines

    Science.gov (United States)

    García-Jaramillo, M.; Delgado, J. S.; León-Vargas, F.

    2015-12-01

    This paper describes a prototype app to induce lifestyle modifications in newly diagnosed type 2 diabetic patients. The app design is based on International Diabetes Federation guidelines and recommendations from clinical studies related to diabetes health-care. Two main approaches, lifestyle modification and self-management education are used owing to significant benefits reported. The method used is based on setting goals under medical support related to physical activity, nutritional habits and weight loss, in addition to educational messages. This is specially implemented to address the main challenges that have limited the success of similar mobile applications already validated on diabetic patients. A traffic light is used to show the overall state of the goals compliance. This state could be understood as excellent (green), there are aspects to improve (yellow), or some individual goals are not carrying out (red). An example of how works this method is presented in results. Furthermore, the app provides recommendations to the user in case the overall state was in yellow or red. The recommendations pretend to induce the user to make changes in their eating habits and physical activity. According to international guidelines and clinical studies, a prototype of mobile application to induce a lifestyle modification in order to prevent adverse risk factors related to diabetes was presented. The resulting application is apparently consistent with clinical judgments, but a formal clinical validation is required. The effectiveness of this app is currently under consideration for the Colombian population with type 2 diabetes.

  20. Prototyping Tool for Web-Based Multiuser Online Role-Playing Game

    Science.gov (United States)

    Okamoto, Shusuke; Kamada, Masaru; Yonekura, Tatsuhiro

    This letter proposes a prototyping tool for Web-based Multiuser Online Role-Playing Game (MORPG). The design goal is to make this tool simple and powerful. The tool is comprised of a GUI editor, a translator and a runtime environment. The GUI editor is used to edit state-transition diagrams, each of which defines the behavior of the fictional characters. The state-transition diagrams are translated into C program codes, which plays the role of a game engine in RPG system. The runtime environment includes PHP, JavaScript with Ajax and HTML. So the prototype system can be played on the usual Web browser, such as Fire-fox, Safari and IE. On a click or key press by a player, the Web browser sends it to the Web server to reflect its consequence on the screens which other players are looking at. Prospected users of this tool include programming novices and schoolchildren. The knowledge or skill of any specific programming languages is not required to create state-transition diagrams. Its structure is not only suitable for the definition of a character behavior but also intuitive to help novices understand. Therefore, the users can easily create Web-based MORPG system with the tool.

  1. Prototypes of risk-based flood forecasting systems in the Netherlands and Italy

    Directory of Open Access Journals (Sweden)

    Bachmann D.

    2016-01-01

    Full Text Available Flood forecasting, warning and emergency response are important components of flood management. Currently, the model-based prediction of discharge and/or water level in a river is common practice for operational flood forecasting. Based on the prediction of these values decisions about specific emergency measures are made within emergency response. However, the information provided for decision support is often restricted to pure hydrological or hydraulic aspects of a flood. Information about weak sections within the flood defences, flood prone areas and assets at risk in the protected areas are rarely used in current early warning and response systems. This information is often available for strategic planning, but is not in an appropriate format for operational purposes. This paper presents the extension of existing flood forecasting systems with elements of strategic flood risk analysis, such as probabilistic failure analysis, two dimensional flood spreading simulation and the analysis of flood impacts and consequences. This paper presents the first results from two prototype applications of the new developed concept: The first prototype is applied to the Rotterdam area situated in the western part of the Netherlands. The second pilot study focusses on a rural area between the cities of Mantua and Ferrara along the Po river (Italy.

  2. Mobile device-based optical instruments for agriculture

    Science.gov (United States)

    Sumriddetchkajorn, Sarun

    2013-05-01

    Realizing that a current smart-mobile device such as a cell phone and a tablet can be considered as a pocket-size computer embedded with a built-in digital camera, this paper reviews and demonstrates on how a mobile device can be specifically functioned as a portable optical instrument for agricultural applications. The paper highlights several mobile device-based optical instruments designed for searching small pests, measuring illumination level, analyzing spectrum of light, identifying nitrogen status in the rice field, estimating chlorine in water, and determining ripeness level of the fruit. They are suitable for individual use as well as for small and medium enterprises.

  3. A prototype for evidence-based pharmaceutical opinions to promote physician-pharmacist communication around deprescribing

    Science.gov (United States)

    Tannenbaum, Cara

    2018-01-01

    Context: Interprofessional communication is an effective mechanism for reducing inappropriate prescriptions among older adults. Physicians’ views about which elements are essential for pharmacists to include in an evidence-based pharmaceutical opinion for deprescribing remain unknown. Objective: To develop a prototype for an evidence-based pharmaceutical opinion that promotes physician-pharmacist communication around deprescribing. Methods: A standardized template for an evidence-based pharmaceutical opinion was developed with input from a convenience sample of 32 primary care physicians and 61 primary care pharmacists, recruited from conferences and community settings in Montreal, Canada. Participants were asked to comment on the need for clarifying treatment goals, including personalized patient data and biomarkers, highlighting evidence about drug harms, listing the credibility and source of the recommendations, providing therapeutic alternatives and formalizing official documentation of decision making. The content and format of the prototype underwent revision by community physicians and pharmacists until consensus was reached on a final recommended template. Results: The majority of physicians (84%-97%) requested that the source of the deprescribing recommendations be cited, that alternative management options be provided and that the information be tailored to the patient. Sixteen percent of physicians expressed concern about the information in the opinions being too dense. Pharmacists also questioned the length of the opinion and asked that additional space be provided for the physician’s response. A statement was added making the opinion a valid prescription upon receipt of a signature from physicians. Compared to a nonstandardized opinion, the majority of pharmacists believed the template was easier to use, more evidence based, more time efficient and more likely to lead to deprescribing. Conclusion: Physicians and pharmacists endorsed a standardized

  4. Safety Evaluation of Kartini Reactor Based on Instrumentation System Design

    International Nuclear Information System (INIS)

    Tjipta Suhaemi; Djen Djen Dj; Itjeu K; Johnny S; Setyono

    2003-01-01

    The safety of Kartini reactor has been evaluated based on instrumentation system aspect. The Kartini reactor is designed by BATAN. Design power of the reactor is 250 kW, but it is currently operated at 100 kW. Instrumentation and control system function is to monitor and control the reactor operation. Instrumentation and control system consists of safety system, start-up and automatic power control, and process information system. The linear power channel and logarithmic power channel are used for measuring power. There are 3 types of control rod for controlling the power, i.e. safety rod, shim rod, and regulating rod. The trip and interlock system are used for safety. There are instrumentation equipment used for measuring radiation exposure, flow rate, temperature and conductivity of fluid The system of Kartini reactor has been developed by introducing a process information system, start-up system, and automatic power control. It is concluded that the instrumentation of Kartini reactor has followed the requirement and standard of IAEA. (author)

  5. Beam diagnostics based on virtual instrument technology for HLS

    International Nuclear Information System (INIS)

    Sun Baogen; Lu Ping; Wang Xiaohui; Wang Baoyun; Wang Junhua; Gu Liming; Fang Jia; Ma Tianji

    2009-01-01

    The paper introduce the beam diagnostics system using virtual instrument technology for Hefei Light Source (HLS), which includes a GPIB bus-based DCCT measurement system to measure the beam DC current and beam life, a VXIbus-based closed orbit measurement system to measure the beam position, a PCIbus-based beam profile measurement system to measure the beam profile and emittance, a GPIB-LAN based bunch length system using photoelectric method, and a Ethernet-based photon beam position measurement system. The software is programmed by LabVIEW, which reduces much developing work. (authors)

  6. Design of Prototype Payment Application System With Near Field Communication (NFC Technology based on Android

    Directory of Open Access Journals (Sweden)

    Huda Ubaya

    2012-06-01

    Full Text Available Since the late 1990s, people have enjoyed a comfortable lifestyle. Mobile devices supported by the development of wireless networks have spread throughout the world. People can get information, order tickets, download songs and perform commercial transactions, called mobile commerce. Mobile commerce applications become the most popular application for mobile device users who want to do business and financial transactions easily and securely, anytime and anywhere they are. Today the use of physical cash is experiencing a decline in popularity in the business world, because it is being replaced by non-physical payments are often called electronic money (e-money. An important technology behind mobile payments is called Near Field Communication (NFC. As an indication that the NFC has tremendous business potential, leading companies like Nokia, Microsoft, Visa Inc., and MasterCard Worldwide and NXP Semiconductors, is actively engaged on them. Payment processing integrated with NFC technology based mobile operating system that is a trend today is Android that support NFC technology is version 2.3.3 Gingerbread. The prototype application is designed to pay for 2 on the user side of the user as consumer and the merchant side as a trader or seller by using the handset that already have NFC technology is Google Samsung Nexus S. Pay an application prototype also implements the concept of security in e-commerce transactions by using the protocol-to-Tag Tag so that the user needs for security and comfort during the financial transaction are met.

  7. Rapid prototyping of an EEG-based brain-computer interface (BCI).

    Science.gov (United States)

    Guger, C; Schlögl, A; Neuper, C; Walterspacher, D; Strein, T; Pfurtscheller, G

    2001-03-01

    The electroencephalogram (EEG) is modified by motor imagery and can be used by patients with severe motor impairments (e.g., late stage of amyotrophic lateral sclerosis) to communicate with their environment. Such a direct connection between the brain and the computer is known as an EEG-based brain-computer interface (BCI). This paper describes a new type of BCI system that uses rapid prototyping to enable a fast transition of various types of parameter estimation and classification algorithms to real-time implementation and testing. Rapid prototyping is possible by using Matlab, Simulink, and the Real-Time Workshop. It is shown how to automate real-time experiments and perform the interplay between on-line experiments and offline analysis. The system is able to process multiple EEG channels on-line and operates under Windows 95 in real-time on a standard PC without an additional digital signal processor (DSP) board. The BCI can be controlled over the Internet, LAN or modem. This BCI was tested on 3 subjects whose task it was to imagine either left or right hand movement. A classification accuracy between 70% and 95% could be achieved with two EEG channels after some sessions with feedback using an adaptive autoregressive (AAR) model and linear discriminant analysis (LDA).

  8. Generation of three-dimensional prototype models based on cone beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lambrecht, J.T.; Berndt, D.C.; Zehnder, M. [University of Basel, Department of Oral Surgery, University Hospital for Oral Surgery, Oral Radiology and Oral Medicine, Basel (Switzerland); Schumacher, R. [University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Institute for Medical and Analytical Technologies, Muttenz (Switzerland)

    2009-03-15

    The purpose of this study was to generate three-dimensional models based on digital volumetric data that can be used in basic and advanced education. Four sets of digital volumetric data were established by cone beam computed tomography (CBCT) (Accuitomo, J. Morita, Kyoto, Japan). Datasets were exported as Dicom formats and imported into Mimics and Magic software programs to separate the different tissues such as nerve, tooth and bone. These data were transferred to a Polyjet 3D Printing machine (Eden 330, Object, Israel) to generate the models. Three-dimensional prototype models of certain limited anatomical structures as acquired volumetrically were fabricated. Generating three-dimensional models based on CBCT datasets is possible. Automated routine fabrication of these models, with the given infrastructure, is too time-consuming and therefore too expensive. (orig.)

  9. Generation of three-dimensional prototype models based on cone beam computed tomography

    International Nuclear Information System (INIS)

    Lambrecht, J.T.; Berndt, D.C.; Zehnder, M.; Schumacher, R.

    2009-01-01

    The purpose of this study was to generate three-dimensional models based on digital volumetric data that can be used in basic and advanced education. Four sets of digital volumetric data were established by cone beam computed tomography (CBCT) (Accuitomo, J. Morita, Kyoto, Japan). Datasets were exported as Dicom formats and imported into Mimics and Magic software programs to separate the different tissues such as nerve, tooth and bone. These data were transferred to a Polyjet 3D Printing machine (Eden 330, Object, Israel) to generate the models. Three-dimensional prototype models of certain limited anatomical structures as acquired volumetrically were fabricated. Generating three-dimensional models based on CBCT datasets is possible. Automated routine fabrication of these models, with the given infrastructure, is too time-consuming and therefore too expensive. (orig.)

  10. Design of reactor alarm instrument based on SOPC

    International Nuclear Information System (INIS)

    Li Meng; Lu Yi; Rong Ru

    2008-01-01

    The design of embedded alarm instrument in reactors based on Nios II CPU is introduced in this paper. This design uses the SOPC technology based on the Cyclone series FPGA as a digital bench, and connects the MPU and drivers and interface of times, RS232, sdram,and etc. into a FPGA chip. It is proved that the system achieves the design goals in primary experimentation. (authors)

  11. A prototype Infrastructure for Cloud-based distributed services in High Availability over WAN

    Science.gov (United States)

    Bulfon, C.; Carlino, G.; De Salvo, A.; Doria, A.; Graziosi, C.; Pardi, S.; Sanchez, A.; Carboni, M.; Bolletta, P.; Puccio, L.; Capone, V.; Merola, L.

    2015-12-01

    In this work we present the architectural and performance studies concerning a prototype of a distributed Tier2 infrastructure for HEP, instantiated between the two Italian sites of INFN-Romal and INFN-Napoli. The network infrastructure is based on a Layer-2 geographical link, provided by the Italian NREN (GARR), directly connecting the two remote LANs of the named sites. By exploiting the possibilities offered by the new distributed file systems, a shared storage area with synchronous copy has been set up. The computing infrastructure, based on an OpenStack facility, is using a set of distributed Hypervisors installed in both sites. The main parameter to be taken into account when managing two remote sites with a single framework is the effect of the latency, due to the distance and the end-to-end service overhead. In order to understand the capabilities and limits of our setup, the impact of latency has been investigated by means of a set of stress tests, including data I/O throughput, metadata access performance evaluation and network occupancy, during the life cycle of a Virtual Machine. A set of resilience tests has also been performed, in order to verify the stability of the system on the event of hardware or software faults. The results of this work show that the reliability and robustness of the chosen architecture are effective enough to build a production system and to provide common services. This prototype can also be extended to multiple sites with small changes of the network topology, thus creating a National Network of Cloud-based distributed services, in HA over WAN.

  12. A prototype Infrastructure for Cloud-based distributed services in High Availability over WAN

    International Nuclear Information System (INIS)

    Bulfon, C.; De Salvo, A.; Graziosi, C.; Carlino, G.; Doria, A; Pardi, S; Sanchez, A.; Carboni, M; Bolletta, P; Puccio, L.; Capone, V; Merola, L

    2015-01-01

    In this work we present the architectural and performance studies concerning a prototype of a distributed Tier2 infrastructure for HEP, instantiated between the two Italian sites of INFN-Romal and INFN-Napoli. The network infrastructure is based on a Layer-2 geographical link, provided by the Italian NREN (GARR), directly connecting the two remote LANs of the named sites. By exploiting the possibilities offered by the new distributed file systems, a shared storage area with synchronous copy has been set up. The computing infrastructure, based on an OpenStack facility, is using a set of distributed Hypervisors installed in both sites. The main parameter to be taken into account when managing two remote sites with a single framework is the effect of the latency, due to the distance and the end-to-end service overhead. In order to understand the capabilities and limits of our setup, the impact of latency has been investigated by means of a set of stress tests, including data I/O throughput, metadata access performance evaluation and network occupancy, during the life cycle of a Virtual Machine. A set of resilience tests has also been performed, in order to verify the stability of the system on the event of hardware or software faults.The results of this work show that the reliability and robustness of the chosen architecture are effective enough to build a production system and to provide common services. This prototype can also be extended to multiple sites with small changes of the network topology, thus creating a National Network of Cloud-based distributed services, in HA over WAN. (paper)

  13. A prototype DAQ system for the ALICE experiment based on SCI

    International Nuclear Information System (INIS)

    Skaali, B.; Ingebrigtsen, L.; Wormald, D.; Polovnikov, S.; Roehrig, H.

    1998-01-01

    A prototype DAQ system for the ALICE/PHOS beam test an commissioning program is presented. The system has been taking data since August 1997, and represents one of the first applications of the Scalable Coherent Interface (SCI) as interconnect technology for an operational DAQ system. The front-end VMEbus address space is mapped directly from the DAQ computer memory space through SCI via PCI-SCI bridges. The DAQ computer is a commodity PC running the Linux operating system. The results of measurements of data transfer rate and latency for the PCI-SCI bridges in a PC-VMEbus SCI-configuration are presented. An optical SCI link based on the Motorola Optobus I data link is described

  14. Low-cost rapid prototyping of flexible plastic paper based microfluidic devices

    KAUST Repository

    Fan, Yiqiang

    2013-04-01

    This research presents a novel rapid prototyping method for paper-based flexible microfluidic devices. The microchannels were fabricated using laser ablation on a piece of plastic paper (permanent paper), the dimensions of the microchannels was carefully studied for various laser powers and scanning speeds. After laser ablation of the microchannels on the plastic paper, a transparent poly (methyl methacrylate)(PMMA) film was thermally bonded to the plastic paper to enclose the channels. After connection of tubing, the device was ready to use. An example microfluidic device (droplet generator) was also fabricated using this technique. Due to the flexibility of the fabricated device, this technique can be used to fabricate 3D microfluidic devices. The fabrication process was simple and rapid without any requirement of cleanroom facilities. © 2013 IEEE.

  15. Rapid prototyping of nanotube-based devices using topology-optimized microgrippers

    DEFF Research Database (Denmark)

    Sardan, Özlem; Eichhorn, Volkmar; Petersen, D.H.

    2008-01-01

    Nanorobotic handling of carbon nanotubes (CNTs) using microgrippers is one of the most promising approaches for the rapid characterization of the CNTs and also for the assembly of prototypic nanotube-based devices. In this paper, we present pick-and-place nanomanipulation of multi-walled CNTs...... in a rapid and a reproducible manner. We placed CNTs on copper TEM grids for structural analysis and on AFM probes for the assembly of AFM super-tips. We used electrothermally actuated polysilicon microgrippers designed using topology optimization in the experiments. The microgrippers are able to open...... with an amorphous carbon layer, which is locally removed at the contact points with the microgripper. The assembled AFM super-tips are used for AFM measurements of microstructures with high aspect ratios....

  16. Collaborative Prototyping

    DEFF Research Database (Denmark)

    Bogers, Marcel; Horst, Willem

    2014-01-01

    of the prototyping process, the actual prototype was used as a tool for communication or development, thus serving as a platform for the cross-fertilization of knowledge. In this way, collaborative prototyping leads to a better balance between functionality and usability; it translates usability problems into design......This paper presents an inductive study that shows how collaborative prototyping across functional, hierarchical, and organizational boundaries can improve the overall prototyping process. Our combined action research and case study approach provides new insights into how collaborative prototyping...... can provide a platform for prototype-driven problem solving in early new product development (NPD). Our findings have important implications for how to facilitate multistakeholder collaboration in prototyping and problem solving, and more generally for how to organize collaborative and open innovation...

  17. Instrumentation for Kinetic-Inductance-Detector-Based Submillimeter Radio Astronomy

    Science.gov (United States)

    Duan, Ran

    A substantial amount of important scientific information is contained within astronomical data at the submillimeter and far-infrared (FIR) wavelengths, including information regarding dusty galaxies, galaxy clusters, and star-forming regions; however, these wavelengths are among the least-explored fields in astronomy because of the technological difficulties involved in such research. Over the past 20 years, considerable efforts have been devoted to developing submillimeter- and millimeter-wavelength astronomical instruments and telescopes. The number of detectors is an important property of such instruments and is the subject of the current study. Future telescopes will require as many as hundreds of thousands of detectors to meet the necessary requirements in terms of the field of view, scan speed, and resolution. A large pixel count is one benefit of the development of multiplexable detectors that use kinetic inductance detector (KID) technology. This dissertation presents the development of a KID-based instrument including a portion of the millimeter-wave bandpass filters and all aspects of the readout electronics, which together enabled one of the largest detector counts achieved to date in submillimeter-/millimeter-wavelength imaging arrays: a total of 2304 detectors. The work presented in this dissertation has been implemented in the MUltiwavelength Submillimeter Inductance Camera (MUSIC), a new instrument for the Caltech Submillimeter Observatory (CSO).

  18. OFCC based voltage and transadmittance mode instrumentation amplifier

    Science.gov (United States)

    Nand, Deva; Pandey, Neeta; Pandey, Rajeshwari; Tripathi, Prateek; Gola, Prashant

    2017-07-01

    The operational floating current conveyor (OFCC) is a versatile active block due to the availability of both low and high input and output impedance terminals. This paper addresses the realization of OFCC based voltage and transadmittance mode instrumentation amplifiers (VMIA and TAM IA). It employs three OFCCs and seven resistors. The transadmittance mode operation can easily be obtained by simply connecting an OFCC based voltage to current converter at the output. The effect of non-idealities of OFCC, in particular finite transimpedance and tracking error, on system performance is also dealt with and corresponding mathematical expressions are derived. The functional verification is performed through SPICE simulation using CMOS based implementation of OFCC.

  19. Integration of an OWL-DL knowledge base with an EHR prototype and providing customized information.

    Science.gov (United States)

    Jing, Xia; Kay, Stephen; Marley, Tom; Hardiker, Nicholas R

    2014-09-01

    When clinicians use electronic health record (EHR) systems, their ability to obtain general knowledge is often an important contribution to their ability to make more informed decisions. In this paper we describe a method by which an external, formal representation of clinical and molecular genetic knowledge can be integrated into an EHR such that customized knowledge can be delivered to clinicians in a context-appropriate manner.Web Ontology Language-Description Logic (OWL-DL) is a formal knowledge representation language that is widely used for creating, organizing and managing biomedical knowledge through the use of explicit definitions, consistent structure and a computer-processable format, particularly in biomedical fields. In this paper we describe: 1) integration of an OWL-DL knowledge base with a standards-based EHR prototype, 2) presentation of customized information from the knowledge base via the EHR interface, and 3) lessons learned via the process. The integration was achieved through a combination of manual and automatic methods. Our method has advantages for scaling up to and maintaining knowledge bases of any size, with the goal of assisting clinicians and other EHR users in making better informed health care decisions.

  20. Design of the task-based display prototype and the first user-test

    International Nuclear Information System (INIS)

    Svengren, Haakan; Strand, Stine

    2005-09-01

    This report provides a description of the Task-based displays prototype for BWRs, and documents the results of the first user-test. Three different kinds of Task-based displays were designed: 1) displays for performing first checks and obtaining overview in emergency situations, 2) displays for performing emergency procedures, and 3) displays that facilitate understanding of the process and logic. The procedures included an expert-help function to support the operators in performing the procedures. The design was only implemented on the reactor side of the plant. The user-test was conducted using the HAMBO simulator in HAMMLAB. 6 crews from Forsmark 3 and Oskarshamn 3 participated in the test. The crews participated in 4 scenarios, which all were considered as highly complex scenarios that included actuation of several reactor protection signals. The data collection techniques (questionnaires and interviews) intended to cover usability-related issues and mainly involved the reactor operators. The results demonstrated that the Task-based design approach was very well received by the operators, and that the work initiated by the design of this first prototype should be continued. The operators generally found the procedure-implementation and the displays useful and easy to understand. They considered the amount of information contained in the procedures and the displays as good, and associated with low levels of frustration. The expert-help provided in the current test was very premature. This resulted in somewhat poorer usability ratings compared to the procedures and the displays. However, the operators explicitly stated the usefulness of providing expert-help in the combination with computerized procedures. The operators rated the computer-based procedures as slightly easier, less time-consuming, and slightly less mentally demanding than paper-based procedures. All the operators considered navigation within and between the procedures as easy, although some

  1. Role of land-based prototype plants in propulsion nuclear power plants engineering

    International Nuclear Information System (INIS)

    Voronin, V.E.; Prokhorov, Yu.A.

    1993-01-01

    Prototype plants provide a powerful tool for accomplishing tasks of development and construction of newly designed new power plants (NPPs). Leaving aside momentary political or economical considerations, one should admit that the use of prototype plants in testing of new NPPs is quite a necessity. To make the most of prototype plant, its commissioning should precede lead plant construction by 2-3 years. To make good use of prototype plants, a set of basic requirements should be fulfilled: greatest possible identity beteen the facility under test and a new series NPP; provision of high performance data acquisitoin, processing and storage firmware and a modelling system using update computer technique; and developed science infrastructure, engineering support and adequate maintenance. Prototype plants should comply with safety requirements to meet environmental protection standards

  2. Free-free and fixed base modal survey tests of the Space Station Common Module Prototype

    Science.gov (United States)

    Driskill, T. C.; Anderson, J. B.; Coleman, A. D.

    1992-01-01

    This paper describes the testing aspects and the problems encountered during the free-free and fixed base modal surveys completed on the original Space Station Common Module Prototype (CMP). The CMP is a 40-ft long by 14.5-ft diameter 'waffle-grid' cylinder built by the Boeing Company and housed at the Marshall Space Flight Center (MSFC) near Huntsville, AL. The CMP modal survey tests were conducted at MSFC by the Dynamics Test Branch. The free-free modal survey tests (June '90 to Sept. '90) included interface verification tests (IFVT), often referred to as impedance measurements, mass-additive testing and linearity studies. The fixed base modal survey tests (Feb. '91 to April '91), including linearity studies, were conducted in a fixture designed to constrain the CMP in 7 total degrees-of-freedom at five trunnion interfaces (two primary, two secondary, and the keel). The fixture also incorporated an airbag off-load system designed to alleviate the non-linear effects of friction in the primary and secondary trunnion interfaces. Numerous test configurations were performed with the objective of providing a modal data base for evaluating the various testing methodologies to verify dynamic finite element models used for input to coupled load analysis.

  3. Assessment of the structural integrity of a prototypical instrumented IFMIF high flux test module rig by fully 3D X-ray microtomography

    Energy Technology Data Exchange (ETDEWEB)

    Tiseanu, Ion [National Institute for Laser, Plasma and Radiation Physics, Plasma Physics and Nuclear Fusion Laboratory NILPRP, P.O. Box MG-36, R-77125 Bucharest-Magurele (Romania)], E-mail: tiseanu@infim.ro; Simon, Martin [Hans Waelischmiller GmbH (HWM), Schiessstattweg 16, D-88677 Markdorf (Germany); Craciunescu, Teddy; Mandache, Bogdan N. [National Institute for Laser, Plasma and Radiation Physics, Plasma Physics and Nuclear Fusion Laboratory NILPRP, P.O. Box MG-36, R-77125 Bucharest-Magurele (Romania); Heinzel, Volker; Stratmanns, Erwin; Simakov, Stanislaw P.; Leichtle, Dieter [Forschungszentrum Karlsruhe (FZK), Institut fuer Reaktorsicherheit IRS, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2007-10-15

    An inspection procedure to assess the mechanical integrity of the International Fusion Materials Irradiation Facility (IFMIF) capsules and rigs during the irradiation campaign is necessary. Due to its penetration ability and contrast mechanism, the X-ray microtomography is the only known tool that could meet these requirements. In the high flux test module (HFTM) of IFMIF miniaturized specimens are densely packed in capsules. The capsules, which wear electric heaters and thermocouples, are housed in rigs. To assure a well-defined thermal contact the heater wires have to be attached to the capsules by brazing them into grooves. The examination of the quality of the braze material layer is of crucial interest in order to assure the best heat coupling of the heater wires to the capsule. A high density of the heaters is necessary to maintain the required temperature and, in addition NaK filling of narrow channels is employed for improving the 3D-heat transfer between the irradiation specimens and the capsule wall. Fully 3D tomographic inspections of a prototypical HFTM instrumented capsule, developed and manufactured at FZK, were conducted. In order to identify the optimum irradiation parameters and scanning configuration we carried out a comparative NDT analysis on two microtomography facilities: a compact, high magnification installation at NILPRP and a high-end industrial tomography facility with higher X-ray energy and intensity at HWM. At optimum inspection parameters of a directional microfocus X-ray source (U = 220 kV and I = 300 {mu}A) the geometry resolution was about 30 microns for characteristic dimension of the sample of 50 mm. Voids of 30 microns diameter and cracks of about 20 microns width can be detected. The absolute error of geometrical measurements is sufficient for the assessment of the structural integrity of the irradiation capsule and for the geometry description within the thermal-hydraulic modeling. The space resolution and the overall

  4. Assessment of the structural integrity of a prototypical instrumented IFMIF high flux test module rig by fully 3D X-ray microtomography

    International Nuclear Information System (INIS)

    Tiseanu, Ion; Simon, Martin; Craciunescu, Teddy; Mandache, Bogdan N.; Heinzel, Volker; Stratmanns, Erwin; Simakov, Stanislaw P.; Leichtle, Dieter

    2007-01-01

    An inspection procedure to assess the mechanical integrity of the International Fusion Materials Irradiation Facility (IFMIF) capsules and rigs during the irradiation campaign is necessary. Due to its penetration ability and contrast mechanism, the X-ray microtomography is the only known tool that could meet these requirements. In the high flux test module (HFTM) of IFMIF miniaturized specimens are densely packed in capsules. The capsules, which wear electric heaters and thermocouples, are housed in rigs. To assure a well-defined thermal contact the heater wires have to be attached to the capsules by brazing them into grooves. The examination of the quality of the braze material layer is of crucial interest in order to assure the best heat coupling of the heater wires to the capsule. A high density of the heaters is necessary to maintain the required temperature and, in addition NaK filling of narrow channels is employed for improving the 3D-heat transfer between the irradiation specimens and the capsule wall. Fully 3D tomographic inspections of a prototypical HFTM instrumented capsule, developed and manufactured at FZK, were conducted. In order to identify the optimum irradiation parameters and scanning configuration we carried out a comparative NDT analysis on two microtomography facilities: a compact, high magnification installation at NILPRP and a high-end industrial tomography facility with higher X-ray energy and intensity at HWM. At optimum inspection parameters of a directional microfocus X-ray source (U = 220 kV and I = 300 μA) the geometry resolution was about 30 microns for characteristic dimension of the sample of 50 mm. Voids of 30 microns diameter and cracks of about 20 microns width can be detected. The absolute error of geometrical measurements is sufficient for the assessment of the structural integrity of the irradiation capsule and for the geometry description within the thermal-hydraulic modeling. The space resolution and the overall

  5. Assessment of the Structural Integrity of a Prototypical Instrumented IFMIF High Flux Test Module Rig by Fully 3D X-Ray Microtomography

    International Nuclear Information System (INIS)

    Tiseanu, I.; Craciunescu, T.; Mandache, B.N.; Simon, M.; Heinzel, V.; Stratmanns, E.; Simakov, S.P.; Leichtle, D.

    2006-01-01

    An inspection procedure to asses the mechanical integrity of IFMIF (International Fusion Materials Irradiation Facility) capsules and rigs during the irradiation campaign is necessary. Due to its penetration ability and contrast mechanism, the X-ray micro-tomography is the only known tool that could meet these requirements. In the High Flux Test Module (HFTM) of IFMIF miniaturized specimens are densely packed in capsules. The capsules which wear electric heaters and thermocouples are housed in rigs. To assure a well defined thermal contact the heater wires have to be attached to the capsules by brazing them into grooves. The examination of the quality of the braze material layer is of crucial interest in order to assure the best heat coupling of the heater wires to the capsule. A high density of the heaters is necessary to maintain the required temperature and, in addition NaK filling of narrow channels is employed for improving the 3D-heat transfer between the irradiation specimens and the capsule wall. Fully 3D tomographic inspections of a prototypical HFTM instrumented capsule, developed and manufactures at FZK, were conducted. In order to identify the optimum irradiation parameters and scanning configuration we carried out a comparative NDT analysis on two micro-tomography facilities, our compact, high magnification installation at NILPRP and two high-end industrial tomography facilities with higher X-ray energy and intensity at HWM. At optimum inspection parameters of a microfocus X-ray source (U=220 kV and I=300 μA) the geometry resolution was about 30-50 microns for characteristic dimension of the sample of 50 mm. Voids of 30 microns diameter and cracks of about 20 microns width can be detected. The absolute error of geometrical measurements should be sufficient for the assessment of the structural integrity of the irradiation capsule and for the geometry description within the thermal-hydraulic modeling. Space resolution could be further improved if one

  6. EPCiR prototype

    DEFF Research Database (Denmark)

    2003-01-01

    A prototype of a residential pervasive computing platform based on OSGi involving among other a mock-up of an health care bandage.......A prototype of a residential pervasive computing platform based on OSGi involving among other a mock-up of an health care bandage....

  7. Lunar EVA Dosimetry: MIcroDosimeter iNstrument (MIDN) System Suitable for Space Flight

    Data.gov (United States)

    National Aeronautics and Space Administration — MIDN PROTOTYPE FLIGHT INSTRUMENT 1. Based on our experience with the MIDN development, we designed and developed an advanced version of the instrument. 2. A...

  8. Fuel cell-based instrumentation for ethanol determination in alcoholic beverages, fermentations, and biofluids

    Energy Technology Data Exchange (ETDEWEB)

    Parry, K W

    1988-01-01

    The main aim of this project was to devise an alternative method for ethanol assay, employing an electrochemical fuel cell sensor. Thus, the early part of this thesis describes the work carried out in the development of a new analytical technique for this purpose. This work resulted in the production of a successful prototype unit which has led to the development of a commercial instrument, vis., the Lion Drinks Alcolmeter (DA-1) available from Lion Laboratories Ltd. The problem of determining the ethanol content of a fermenting liquor at any point during a fermentation process was also broached and a novel technique combining a flow dilution system, dynamic headspace analysis and a fuel cell sensor was developed. This procedure, suitably automated, will enable the ethanolic content of a fermenting beverage to be determined at any stage during a fermentation, the results obtained in this manner being in excellent agreement with those obtained gas chromatographically. Methods of extending the linear working range of a fuel cell-based sampling system are reported in the hope that the encouraging results obtained may initiate further progress in this field. Finally, the sensing system used in this work has also been utilized with an alternative sampling procedure for the determination of ethanol in biological fluids, mainly for clinical and forensic applications. This work has also led to the production of a commercial instrument, viz. the Lion AE-D3 Alcolmeter.

  9. Stabilized FE simulation of prototype thermal-hydraulics problems with integrated adjoint-based capabilities

    International Nuclear Information System (INIS)

    Shadid, J.N.; Smith, T.M.; Cyr, E.C.; Wildey, T.M.; Pawlowski, R.P.

    2016-01-01

    A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. In this respect the understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In this study we report on initial efforts to apply integrated adjoint-based computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier–Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. Initial results are presented that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.

  10. Wireless Prototype Based on Pressure and Bending Sensors for Measuring Gate Quality

    Science.gov (United States)

    Grenez, Florent; Villarejo, María Viqueira; Zapirain, Begoña García; Zorrilla, Amaia Méndez

    2013-01-01

    This paper presents a technological solution based on sensors controlled remotely in order to monitor, track and evaluate the gait quality in people with or without associated pathology. Special hardware simulating a shoe was developed, which consists of three pressure sensors, two bending sensors, an Arduino mini and a Bluetooth module. The obtained signals are digitally processed, calculating the standard deviation and establishing thresholds obtained empirically. A group of users was chosen with the aim of executing two modalities: natural walking and dragging the left foot. The gait was parameterized with the following variables: as far as pressure sensors are concerned, one pressure sensor under the first metatarsal (right sensor), another one under the fifth metatarsal (left) and a third one under the heel were placed. With respect to bending sensors, one bending sensor was placed for the ankle movement and another one for the foot sole. The obtained results show a rate accuracy oscillating between 85% (right sensor) and 100% (heel and bending sensors). Therefore, the developed prototype is able to differentiate between healthy gait and pathological gait, and it will be used as the base of a more complex and integral technological solution, which is being developed currently. PMID:23899935

  11. Wireless prototype based on pressure and bending sensors for measuring gait [corrected] quality.

    Science.gov (United States)

    Grenez, Florent; Viqueira Villarejo, María; García Zapirain, Begoña; Méndez Zorrilla, Amaia

    2013-07-29

    This paper presents a technological solution based on sensors controlled remotely in order to monitor, track and evaluate the gait quality in people with or without associated pathology. Special hardware simulating a shoe was developed, which consists of three pressure sensors, two bending sensors, an Arduino mini and a Bluetooth module. The obtained signals are digitally processed, calculating the standard deviation and establishing thresholds obtained empirically. A group of users was chosen with the aim of executing two modalities: natural walking and dragging the left foot. The gait was parameterized with the following variables: as far as pressure sensors are concerned, one pressure sensor under the first metatarsal (right sensor), another one under the fifth metatarsal (left) and a third one under the heel were placed. With respect to bending sensors, one bending sensor was placed for the ankle movement and another one for the foot sole. The obtained results show a rate accuracy oscillating between 85% (right sensor) and 100% (heel and bending sensors). Therefore, the developed prototype is able to differentiate between healthy gait and pathological gait, and it will be used as the base of a more complex and integral technological solution, which is being developed currently.

  12. Processing of pure Ti by rapid prototyping based on laser cladding

    Science.gov (United States)

    Arias-González, F.; del Val, J.; Comesaña, R.; Lusquiños, F.; Quintero, F.; Riveiro, A.; Boutinguiza, M.; Pou, J.

    2013-11-01

    Rapid prototyping based on laser cladding is an additive manufacturing (AM) process based on the overlapping of cladding tracks to produce functional components. Powder or wire are fed into a melting pool created using laser radiation as a heat source and the relative movement between the beam and the work piece makes possible to generate pieces layer-by-layer. This technique can be applied for any material which can be melted and the components can be manufactured directly according to a computer aided design (CAD) model. Additive manufacturing is particularly interesting to produce titanium components because, in this case, the loss of material produced by subtractive manufacturing methods is highly costly. Moreover, titanium and its alloys are widely used in biomedical, aircraft, chemical and marine industries due to their biocompatibility, excellent corrosion resistance and superior strength-to-weight ratio. In this research work, a near-infrared laser delivering a maximum power of 500W is used to produce pure titanium thin parts. Dimensions and surface morphology are characterized using Optical Microscopy (OM) and Scanning Electron Microscopy (SEM), the hardness by nanoindentation and the composition by X-Ray Diffraction (XRD) and Energy Dispersive X-Ray Spectroscopy (EDS). The aim of this work is to establish the conditions under which satisfactory properties are obtained and to understand the relationship between microstructure/properties and deposition parameters.

  13. Biosphere 2: a prototype project for a permanent and evolving life system for Mars base.

    Science.gov (United States)

    Nelson, M; Allen, J P; Dempster, W F

    1992-01-01

    As part of the ground-based preparation for creating long-term life systems needed for space habitation and settlement, Space Biospheres Ventures (SBV) is undertaking the Biosphere 2 project near Oracle, Arizona. Biosphere 2, currently under construction, is scheduled to commence its operations in 1991 with a two-year closure period with a crew of eight people. Biosphere 2 is a facility which will be essentialy materially-closed to exchange with the outside environment. It is open to information and energy flow. Biosphere 2 is designed to achieve a complex life-support system by the integration of seven areas or "biomes"--rainforest, savannah, desert, marsh, ocean, intensive agriculture and human habitat. Unique bioregenerative technologies, such as soil bed reactors for air purification, aquatic waste processing systems, real-time analytic systems and complex computer monitoring and control systems are being developed for the Biosphere 2 project. Its operation should afford valuable insight into the functioning of complex life systems necessary for long-term habitation in space. It will serve as an experimental ground-based prototype and testbed for the stable, permanent life systems needed for human exploration of Mars.

  14. Biosphere 2: A prototype project for a permanent and evolving life system for Mars base

    Science.gov (United States)

    Nelson, Mark; Allen, John P.; Dempster, William F.

    As part of the ground-based preparation for creating long-term life systems needed for space habitation and settlement, Space Biopsheres Ventures (SBV) is undertaking the Biosphere 2 project near Oracle, Arizona. Biosphere 2, currently under construction, is scheduled to commence its operations in 1991 with a two-year closure period with a crew of eight people. Biosphere 2 is a facility which will be essentially materially-closed to exchange with the outside environment. It is open to information and energy flow. Biosphere 2 is designed to achieve a complex life-support system by the integration of seven areas or ``biomes'' - rainforest, savannah, desert, marsh, ocean, intensive agriculture and human habitat. Unique bioregenerative technologies, such as soil bed reactors for air purification, aquatic waste processing systems, real-time analytic systems and complex computer monitoring and control systems are being developed for the Biosphere 2 project. Its operation should afford valuable insight into the functioning of complex life systems necessary for long-term habitation in space. It will serve as an experimental ground-based prototype and testbed for the stable, permanent life systems needed for human exploration of Mars.

  15. Stabilized FE simulation of prototype thermal-hydraulics problems with integrated adjoint-based capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Shadid, J.N., E-mail: jnshadi@sandia.gov [Sandia National Laboratories, Computational Mathematics Department (United States); Department of Mathematics and Statistics, University of New Mexico (United States); Smith, T.M. [Sandia National Laboratories, Multiphysics Applications Department (United States); Cyr, E.C. [Sandia National Laboratories, Computational Mathematics Department (United States); Wildey, T.M. [Sandia National Laboratories, Optimization and UQ Department (United States); Pawlowski, R.P. [Sandia National Laboratories, Multiphysics Applications Department (United States)

    2016-09-15

    A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. In this respect the understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In this study we report on initial efforts to apply integrated adjoint-based computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier–Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. Initial results are presented that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.

  16. The Osseus platform: a prototype for advanced web-based distributed simulation

    Science.gov (United States)

    Franceschini, Derrick; Riecken, Mark

    2016-05-01

    Recent technological advances in web-based distributed computing and database technology have made possible a deeper and more transparent integration of some modeling and simulation applications. Despite these advances towards true integration of capabilities, disparate systems, architectures, and protocols will remain in the inventory for some time to come. These disparities present interoperability challenges for distributed modeling and simulation whether the application is training, experimentation, or analysis. Traditional approaches call for building gateways to bridge between disparate protocols and retaining interoperability specialists. Challenges in reconciling data models also persist. These challenges and their traditional mitigation approaches directly contribute to higher costs, schedule delays, and frustration for the end users. Osseus is a prototype software platform originally funded as a research project by the Defense Modeling & Simulation Coordination Office (DMSCO) to examine interoperability alternatives using modern, web-based technology and taking inspiration from the commercial sector. Osseus provides tools and services for nonexpert users to connect simulations, targeting the time and skillset needed to successfully connect disparate systems. The Osseus platform presents a web services interface to allow simulation applications to exchange data using modern techniques efficiently over Local or Wide Area Networks. Further, it provides Service Oriented Architecture capabilities such that finer granularity components such as individual models can contribute to simulation with minimal effort.

  17. Prototype Web-based continuing medical education using FlashPix images.

    Science.gov (United States)

    Landman, A; Yagi, Y; Gilbertson, J; Dawson, R; Marchevsky, A; Becich, M J

    2000-01-01

    Continuing Medical Education (CME) is a requirement among practicing physicians to promote continuous enhancement of clinical knowledge to reflect new developments in medical care. Previous research has harnessed the Web to disseminate complete pathology CME case studies including history, images, diagnoses, and discussions to the medical community. Users submit real-time diagnoses and receive instantaneous feedback, eliminating the need for hard copies of case material and case evaluation forms. This project extends the Web-based CME paradigm with the incorporation of multi-resolution FlashPix images and an intuitive, interactive user interface. The FlashPix file format combines a high-resolution version of an image with a hierarchy of several lower resolution copies, providing real-time magnification via a single image file. The Web interface was designed specifically to simulate microscopic analysis, using the latest Javascript, Java and Common Gateway Interface tools. As the project progresses to the evaluation stage, it is hoped that this active learning format will provide a practical and efficacious environment for continuing medical education with additional application potential in classroom demonstrations, proficiency testing, and telepathology. Using Microsoft Internet Explorer 4.0 and above, the working prototype Web-based CME environment is accessible at http://telepathology.upmc.edu/WebInterface/NewInterface/welcome.html.

  18. Wireless Prototype Based on Pressure and Bending Sensors for Measuring Gate Quality

    Directory of Open Access Journals (Sweden)

    Amaia Méndez Zorrilla

    2013-07-01

    Full Text Available This paper presents a technological solution based on sensors controlled remotely in order to monitor, track and evaluate the gait quality in people with or without associated pathology. Special hardware simulating a shoe was developed, which consists of three pressure sensors, two bending sensors, an Arduino mini and a Bluetooth module. The obtained signals are digitally processed, calculating the standard deviation and establishing thresholds obtained empirically. A group of users was chosen with the aim of executing two modalities: natural walking and dragging the left foot. The gait was parameterized with the following variables: as far as pressure sensors are concerned, one pressure sensor under the first metatarsal (right sensor, another one under the fifth metatarsal (left and a third one under the heel were placed. With respect to bending sensors, one bending sensor was placed for the ankle movement and another one for the foot sole. The obtained results show a rate accuracy oscillating between 85% (right sensor and 100% (heel and bending sensors. Therefore, the developed prototype is able to differentiate between healthy gait and pathological gait, and it will be used as the base of a more complex and integral technological solution, which is being developed currently.

  19. Project management for complex ground-based instruments: MEGARA plan

    Science.gov (United States)

    García-Vargas, María. Luisa; Pérez-Calpena, Ana; Gil de Paz, Armando; Gallego, Jesús; Carrasco, Esperanza; Cedazo, Raquel; Iglesias, Jorge

    2014-08-01

    The project management of complex instruments for ground-based large telescopes is a challenge itself. A good management is a clue for project success in terms of performance, schedule and budget. Being on time has become a strict requirement for two reasons: to assure the arrival at the telescope due to the pressure on demanding new instrumentation for this first world-class telescopes and to not fall in over-costs. The budget and cash-flow is not always the expected one and has to be properly handled from different administrative departments at the funding centers worldwide distributed. The complexity of the organizations, the technological and scientific return to the Consortium partners and the participation in the project of all kind of professional centers working in astronomical instrumentation: universities, research centers, small and large private companies, workshops and providers, etc. make the project management strategy, and the tools and procedures tuned to the project needs, crucial for success. MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is a facility instrument of the 10.4m GTC (La Palma, Spain) working at optical wavelengths that provides both Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) capabilities at resolutions in the range R=6,000-20,000. The project is an initiative led by Universidad Complutense de Madrid (Spain) in collaboration with INAOE (Mexico), IAA-CSIC (Spain) and Universidad Politécnica de Madrid (Spain). MEGARA is being developed under contract with GRANTECAN.

  20. Rapid Control Prototyping and PIL Co-Simulation of a Quadrotor UAV Based on NI myRIO-1900 Board

    OpenAIRE

    Soufiene Bouallègue; Rabii Fessi

    2016-01-01

    In this paper, a new Computer Aided Design (CAD) methodology for the Processor-In-the-Loop (PIL) co-simulation and Rapid Control Prototyping (RCP) of a Quadrotor Vertical Take-Off and Landing (VTOL) type of Unmanned Arial Vehicle (UAV) is proposed and successfully implemented around an embedded NI myRIO-1900 target and a host PC. The developed software (SW) and hardware (HW) prototyping platform is based on the Control Design and Simulation (CDSim) module of LabVIEW environment and an establi...

  1. Technology infusion of intellectual 3D printers-based prototyping of products into learning process

    Science.gov (United States)

    Boshhenko, T. V.; Chepur, P. V.

    2018-03-01

    The article considers the prospects for the technologies of intellectual design and prototyping applying 3D printers. It presents basic technologies of 3D printing, currently developed and released for construction. The experience of educational activities in the University to train students for the Academic Competitions on three-dimensional modeling and prototyping is described in the present article. Requirements for the prototyping implementation are given, allowing obtaining a positive effect from the technology infusion released for construction. The results of activities to train students for the Academic Competition are stated. It is established that the proposed approaches to the training of students have led to the highest score in the national contest in Novosibirsk when performing tasks for prototyping a stand for a cell phone and manufacturing the product on a 3D printer at the SLS technology, selective laser sintering. The conclusions about the possibilities and prospects of development of this direction in the industry in the entire country are drawn.

  2. Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas - part 2: experimental prototype

    NARCIS (Netherlands)

    Zhuang, L.; Roeloffzen, C.G.H.; Meijerink, Arjan; Burla, M.; Marpaung, D.A.I.; Leinse, Arne; Hoekman, M.; Heideman, Rene; van Etten, Wim

    2010-01-01

    An experimental prototype is presented that illustrates the implementation aspects and feasibility of the novel ring resonator-based optical beamformer concept that has been developed and analyzed in Part I of this paper . This concept can be used for seamless control of the reception angle in

  3. Laboratory Scale Prototype of a Low-Speed Electrodynamic Levitation System Based on a Halbach Magnet Array

    Science.gov (United States)

    Iniguez, J.; Raposo, V.

    2009-01-01

    In this paper we analyse the behaviour of a small-scale model of a magnetic levitation system based on the Inductrack concept. Drag and lift forces acting on our prototype, moving above a continuous copper track, are studied analytically following a simple low-speed approach. The experimental results are in good agreement with the theoretical…

  4. Prototype tests for a highly granular scintillator-based hadronic calorimeter

    OpenAIRE

    Liu, Yong; Collaboration, for the CALICE

    2017-01-01

    Within the CALICE collaboration, several concepts for the hadronic calorimeter of a future lepton collider detector are studied. After having demonstrated the capabilities of the measurement methods in "physics prototypes", the focus now lies on improving their implementation in "technological prototypes", that are scalable to the full linear collider detector. The Analogue Hadronic Calorimeter (AHCAL) concept is a sampling calorimeter of tungsten or steel absorber plates and plastic scintill...

  5. OSIRIS (Observing System Including PolaRisation in the Solar Infrared Spectrum) instrument: a multi-directional, polarized radiometer in the visible and shortwave infrared, airborne prototype of 3MI / EPS-SG Eumetsat - ESA mission

    Science.gov (United States)

    Matar, C.; Auriol, F.; Nicolas, J. M.; Parol, F.; Riedi, J.; Djellali, M. S.; Cornet, C.; Waquet, F.; Catalfamo, M.; Delegove, C.; Loisil, R.

    2017-12-01

    OSIRIS instrument largely inherits from the POLDER concept developed and operated between 1991 (first airborne prototype) and 2013 (end of the POLDER-3/PARASOL space-borne mission). It consists in two optical systems, one covering the visible to near infrared range (440, 490, 670, 763, 765, 870, 910 and 940 nm) and a second one for the shortwave infrared (940, 1020, 1240, 1360, 1620 and 2200 nm). Each optical system is composed of a wide field-of-view optics (114° and 105° respectively) associated to two rotating wheels with interferential filters (spectral) and analyzers filters (polarization) respectively, and a 2D array of detectors. For each channel, radiance is measured once without analyzer, followed by sequential measurements with the three analyzers shifted by an angle of 60° to reconstruct the total and polarized radiances. The complete acquisition sequence for all spectral channels last a couple of seconds according to the chosen measurement protocol. Thanks to the large field of view of the optics, any target is seen under several viewing angles during the aircraft motion. In a first step we will present the new ground characterization of the instrument based on laboratory measurements (linearity, flat-field, absolute calibration, induced polarization, polarizers efficiency and position), the radiometric model and the Radiometric Inverted Model (RIM) used to develop the Level 1 processing chain that is used to produce level 1 products (normalized radiances, polarized or not, with viewing geometries) from the instrument generated level 0 files (Digital Counts) and attitude information from inertial system. The stray light issues will be specifically discussed. In a second step we will present in-flight radiometric and geometric methods applied to OSIRIS data in order to control and validate ground-based calibrated products: molecular scattering method and sun-glint cross-band method for radiometric calibration, glories, rainbows and sun-glint targets

  6. A microcontroller platform for the rapid prototyping of functional electrical stimulation-based gait neuroprostheses.

    Science.gov (United States)

    Luzio de Melo, Paulo; da Silva, Miguel Tavares; Martins, Jorge; Newman, Dava

    2015-05-01

    Functional electrical stimulation (FES) has been used over the last decades as a method to rehabilitate lost motor functions of individuals with spinal cord injury, multiple sclerosis, and post-stroke hemiparesis. Within this field, researchers in need of developing FES-based control solutions for specific disabilities often have to choose between either the acquisition and integration of high-performance industry-level systems, which are rather expensive and hardly portable, or develop custom-made portable solutions, which despite their lower cost, usually require expert-level electronic skills. Here, a flexible low-cost microcontroller-based platform for rapid prototyping of FES neuroprostheses is presented, designed for reduced execution complexity, development time, and production cost. For this reason, the Arduino open-source microcontroller platform was used, together with off-the-shelf components whenever possible. The developed system enables the rapid deployment of portable FES-based gait neuroprostheses, being flexible enough to allow simple open-loop strategies but also more complex closed-loop solutions. The system is based on a modular architecture that allows the development of optimized solutions depending on the desired FES applications, even though the design and testing of the platform were focused toward drop foot correction. The flexibility of the system was demonstrated using two algorithms targeting drop foot condition within different experimental setups. Successful bench testing of the device in healthy subjects demonstrated these neuroprosthesis platform capabilities to correct drop foot. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  7. Prototyping Practice

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette; Tamke, Martin

    2015-01-01

    This paper examines the role of the prototyping in digital architecture. During the past decade, a new research field has emerged exploring the digital technology’s impact on the way we think, design and build our environment. In this practice the prototype, the pavilion, installation or demonstr......This paper examines the role of the prototyping in digital architecture. During the past decade, a new research field has emerged exploring the digital technology’s impact on the way we think, design and build our environment. In this practice the prototype, the pavilion, installation...

  8. High-power liquid-lithium target prototype for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Bisyakoev, M; Eliyahu, I; Feinberg, G; Hazenshprung, N; Kijel, D; Nagler, A; Silverman, I

    2011-12-01

    A prototype of a compact Liquid-Lithium Target (LiLiT), which will possibly constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals, was built. The LiLiT setup is presently being commissioned at Soreq Nuclear Research Center (SNRC). The liquid-lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power generated using a high-intensity proton beam (>10 kW), necessary for sufficient neutron flux. In off-line circulation tests, the liquid-lithium loop generated a stable lithium jet at high velocity, on a concave supporting wall; the concept will first be tested using a high-power electron beam impinging on the lithium jet. High intensity proton beam irradiation (1.91-2.5 MeV, 2-4 mA) will take place at Soreq Applied Research Accelerator Facility (SARAF) superconducting linear accelerator currently in construction at SNRC. Radiological risks due to the (7)Be produced in the reaction were studied and will be handled through a proper design, including a cold trap and appropriate shielding. A moderator/reflector assembly is planned according to a Monte Carlo simulation, to create a neutron spectrum and intensity maximally effective to the treatment and to reduce prompt gamma radiation dose risks. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Development of Prototype Laboratory Setup for Selective Detection of Ethylene Based on Multiwalled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    J. Kathirvelan

    2014-01-01

    Full Text Available We report here a prototype laboratory setup for detecting ethylene (C2H4 in ppm level employing a sensor made of multiwalled carbon nanotubes of 40 nm average tube diameter. The proposed reversible chemoresistive ethylene sensor is fabricated using Kapton as the substrate onto which carbon nanotubes are coated using thick film technology. IDT silver electrodes are printed using piezo head based ink-jet printing technology. The increases in electrical resistance of the sensor element are measured on exposure to ethylene for different ethylene concentrations using a potentiostat and data acquisition system. The increase in resistance of the calibrated sensor element on exposure to ethylene (analyte is about 18.4% at room temperature for 50 ppm ethylene concentration. This change is reversible. Our sensor element exhibits a better performance than those reported earlier (1.8% and it has got the rise and fall time of 10 s and 60 s, respectively. It could be used for testing the ripening of fruits.

  10. Prototype of a file-based high-level trigger in CMS

    International Nuclear Information System (INIS)

    Bauer, G; Darlea, G-L; Gomez-Ceballos, G; Bawej, T; Chaze, O; Coarasa, J A; Deldicque, C; Dobson, M; Dupont, A; Gigi, D; Glege, F; Gomez-Reino, R; Hartl, C; Hegeman, J; Masetti, L; Behrens, U; Branson, J; Cittolin, S; Holzner, A; Erhan, S

    2014-01-01

    The DAQ system of the CMS experiment at the LHC is upgraded during the accelerator shutdown in 2013/14. To reduce the interdependency of the DAQ system and the high-level trigger (HLT), we investigate the feasibility of using a file-system-based HLT. Events of ∼1 MB size are built at the level-1 trigger rate of 100 kHz. The events are assembled by ∼50 builder units (BUs). Each BU writes the raw events at ∼2GB/s to a local file system shared with Q(10) filter-unit machines (FUs) running the HLT code. The FUs read the raw data from the file system, select Q(1%) of the events, and write the selected events together with monitoring meta-data back to a disk. This data is then aggregated over several steps and made available for offline reconstruction and online monitoring. We present the challenges, technical choices, and performance figures from the prototyping phase. In addition, the steps to the final system implementation will be discussed.

  11. Three-dimensional bioactive glass implants fabricated by rapid prototyping based on CO(2) laser cladding.

    Science.gov (United States)

    Comesaña, R; Lusquiños, F; Del Val, J; López-Álvarez, M; Quintero, F; Riveiro, A; Boutinguiza, M; de Carlos, A; Jones, J R; Hill, R G; Pou, J

    2011-09-01

    Three-dimensional bioactive glass implants were produced by rapid prototyping based on laser cladding without using moulds. CO(2) laser radiation was employed to melt 45S5 and S520 bioactive glass particles and to deposit the material layer by layer following a desired geometry. Controlled thermal input and cooling rate by fine tuning of the processing parameters allowed the production of crack-free fully dense implants. Microstructural characterization revealed chemical composition stability, but crystallization during processing was extensive when 45S5 bioactive glass was used. Improved results were obtained using the S520 bioactive glass, which showed limited surface crystallization due to an expanded sintering window (the difference between the glass transition temperature and crystallization onset temperature). Ion release from the S520 implants in Tris buffer was similar to that of amorphous 45S5 bioactive glass prepared by casting in graphite moulds. Laser processed S520 scaffolds were not cytotoxic in vitro when osteoblast-like MC3T3-E1 cells were cultured with the dissolution products of the glasses; and the MC3T3-E1 cells attached and spread well when cultured on the surface of the materials. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Interoperability of Geographic Information: A Communication Process –Based Prototype

    Directory of Open Access Journals (Sweden)

    Jean Brodeur

    2005-04-01

    Full Text Available Since 1990, municipal, state/provincial, and federal governments have developed numerous geographic databases over the years to fulfill organizations' specific needs. As such, same real world topographic phenomena have been abstracted differently, for instance vegetation (surface, trees (surface, wooded area (line, wooded area (point and line, milieu boisé (surface, zone boisée (unknown geometry. Today, information about these geographic phenomena is accessible on the Internet from Web infrastructures specially developed to simplify their access. Early in the nineties, the development of interoperability of geographic information has been undertaken to solve syntactic, structural, and semantic heterogeneities as well as spatial and temporal heterogeneities to facilitate sharing and integration of such data. Recently, we have proposed a new conceptual framework for interoperability of geographic information based on the human communication process, cognitive science, and ontology, and introduced geosemantic proximity, a reasoning methodology to qualify dynamically the semantic similarity between geographic abstractions. This framework could be of interest to other disciplines. This paper presents the details of our framework for interoperability of geographic information as well as a prototype.

  13. Transforming paper-based assessment forms to a digital format: Exemplified by the Housing Enabler prototype app.

    Science.gov (United States)

    Svarre, Tanja; Lunn, Tine Bieber Kirkegaard; Helle, Tina

    2017-11-01

    The aim of this paper is to provide the reader with an overall impression of the stepwise user-centred design approach including the specific methods used and lessons learned when transforming paper-based assessment forms into a prototype app, taking the Housing Enabler as an example. Four design iterations were performed, building on a domain study, workshops, expert evaluation and controlled and realistic usability tests. The user-centred design process involved purposefully selected participants with different Housing Enabler knowledge and housing adaptation experience. The design iterations resulted in the development of a Housing Enabler prototype app. The prototype app has several features and options that are new compared with the original paper-based Housing Enabler assessment form. These new features include a user friendly overview of the assessment form; easy navigation by swiping back and forth between items; onsite data analysis; and ranking of the accessibility score, photo documentation and a data export facility. Based on the presented stepwise approach, a high-fidelity Housing Enabler prototype app was successfully developed. The development process has emphasized the importance of combining design participants' knowledge and experiences, and has shown that methods should seem relevant to participants to increase their engagement.

  14. Development of Novel, Optically-Based Instrumentation for Aircraft System Testing and Control, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design, build and evaluate a prototype of a compact, robust, optically-based sensor for making temperature and multi-species concentration measurements...

  15. Prototype of a silicon nitride ceramic-based miniplate osteofixation system for the midface.

    Science.gov (United States)

    Neumann, Andreas; Unkel, Claus; Werry, Christoph; Herborn, Christoh U; Maier, Horst R; Ragoss, Christian; Jahnke, Klaus

    2006-06-01

    The favorable properties of silicon nitride (Si3N4) ceramics, such as high mean strength level and fracture toughness, suggest biomedical use as an implant material. Minor reservations about the biocompatibility of Si3N4 ceramics were cleared up by previous in vitro and in vivo investigations. A Si3N4 prototype minifixation system was manufactured and implanted for osteosynthesis of artificial frontal bone defects in 3 minipigs. After 3 months, histological sections, computed tomography (CT) scans, and magnetic resonance imaging (MRI) scans were obtained. Finite element modeling (FEM) was used to simulate stresses and strains on Si3N4 miniplates and screws to calculate survival probabilities. Si3N4 miniplates and screws showed satisfying intraoperative workability. There was no implant loss, displacement, or fracture. Bone healing was complete in all animals. The formation of new bone was observed in direct contact to the implants. The implants showed no artifacts on CT and MRI scanning. FEM simulation confirmed the mechanical reliability of the screws, whereas simulated plate geometries regarding pullout forces at maximum load showed limited safety in a bending situation. Si3N4 ceramics show a good biocompatibility outcome both in vitro and in vivo. In ENT surgery, this ceramic may serve as a biomaterial for osteosynthesis (eg, of the midface including reconstruction the floor of the orbit and the skull base). To our knowledge, this is the first introduction of a ceramic-based miniplate-osteofixation system. Advantages compared with titanium are no risk of implantation to bone with mucosal attachment, no need for explantation, and no interference with radiologic imaging. Disadvantages include the impossibility of individual bending of the miniplates.

  16. An advanced method for classifying atmospheric circulation types based on prototypes connectivity graph

    Science.gov (United States)

    Zagouras, Athanassios; Argiriou, Athanassios A.; Flocas, Helena A.; Economou, George; Fotopoulos, Spiros

    2012-11-01

    Classification of weather maps at various isobaric levels as a methodological tool is used in several problems related to meteorology, climatology, atmospheric pollution and to other fields for many years. Initially the classification was performed manually. The criteria used by the person performing the classification are features of isobars or isopleths of geopotential height, depending on the type of maps to be classified. Although manual classifications integrate the perceptual experience and other unquantifiable qualities of the meteorology specialists involved, these are typically subjective and time consuming. Furthermore, during the last years different approaches of automated methods for atmospheric circulation classification have been proposed, which present automated and so-called objective classifications. In this paper a new method of atmospheric circulation classification of isobaric maps is presented. The method is based on graph theory. It starts with an intelligent prototype selection using an over-partitioning mode of fuzzy c-means (FCM) algorithm, proceeds to a graph formulation for the entire dataset and produces the clusters based on the contemporary dominant sets clustering method. Graph theory is a novel mathematical approach, allowing a more efficient representation of spatially correlated data, compared to the classical Euclidian space representation approaches, used in conventional classification methods. The method has been applied to the classification of 850 hPa atmospheric circulation over the Eastern Mediterranean. The evaluation of the automated methods is performed by statistical indexes; results indicate that the classification is adequately comparable with other state-of-the-art automated map classification methods, for a variable number of clusters.

  17. A COMPUTERIZED OPERATOR SUPPORT SYSTEM PROTOTYPE

    Energy Technology Data Exchange (ETDEWEB)

    Thomas A. Ulrich; Roger Lew; Ronald L. Boring; Ken Thomas

    2015-03-01

    A computerized operator support system (COSS) is proposed for use in nuclear power plants to assist control room operators in addressing time-critical plant upsets. A COSS is a collection of technologies to assist operators in monitoring overall plant performance and making timely, informed decisions on appropriate control actions for the projected plant condition. A prototype COSS was developed in order to demonstrate the concept and provide a test bed for further research. The prototype is based on four underlying elements consisting of a digital alarm system, computer-based procedures, piping and instrumentation diagram system representations, and a recommender module for mitigation actions. The initial version of the prototype is now operational at the Idaho National Laboratory using the Human System Simulation Laboratory.

  18. Separation of musical instruments based on amplitude and frequency comodulation

    Science.gov (United States)

    Jacobson, Barry D.; Cauwenberghs, Gert; Quatieri, Thomas F.

    2002-05-01

    In previous work, amplitude comodulation was investigated as a basis for monaural source separation. Amplitude comodulation refers to similarities in amplitude envelopes of individual spectral components emitted by particular types of sources. In many types of musical instruments, amplitudes of all resonant modes rise/fall, and start/stop together during the course of normal playing. We found that under certain well-defined conditions, a mixture of constant frequency, amplitude comodulated sources can unambiguously be decomposed into its constituents on the basis of these similarities. In this work, system performance was improved by relaxing the constant frequency requirement. String instruments, for example, which are normally played with vibrato, are both amplitude and frequency comodulated sources, and could not be properly tracked under the constant frequency assumption upon which our original algorithm was based. Frequency comodulation refers to similarities in frequency variations of individual harmonics emitted by these types of sources. The analytical difficulty is in defining a representation of the source which properly tracks frequency varying components. A simple, fixed filter bank can only track an individual spectral component for the duration in which it is within the passband of one of the filters. Alternatives are therefore explored which are amenable to real-time implementation.

  19. Prototype development of a web-based participative decision support platform in risk management

    Science.gov (United States)

    Aye, Zar Chi; Olyazadeh, Roya; Jaboyedoff, Michel; Derron, Marc-Henri

    2014-05-01

    This paper discusses the proposed background architecture and prototype development of an internet-based decision support system (DSS) in the field of natural hazards and risk management using open-source geospatial software and web technologies. It is based on a three-tier, client-server architecture with the support of boundless (opengeo) framework and its client side SDK application environment using customized gxp components and data utility classes. The main purpose of the system is to integrate the workflow of risk management systematically with the diverse involvement of stakeholders from different organizations dealing with natural hazards and risk for evaluation of management measures through the active online participation approach. It aims to develop an adaptive user friendly, web-based environment that allows the users to set up risk management strategies based on actual context and data by integrating web-GIS and DSS functionality associated with process flow and other visualization tools. Web-GIS interface has been integrated within the DSS to deliver maps and provide certain geo-processing capabilities on the web, which can be easily accessible and shared by different organizations located in case study sites of the project. This platform could be envisaged not only as a common web-based platform for the centralized sharing of data such as hazard maps, elements at risk maps and additional information but also to ensure an integrated platform of risk management where the users could upload data, analyze risk and identify possible alternative scenarios for risk reduction especially for floods and landslides, either quantitatively or qualitatively depending on the risk information provided by the stakeholders in case study regions. The level of involvement, access to and interaction with the provided functionality of the system varies depending on the roles and responsibilities of the stakeholders, for example, only the experts (planners, geological

  20. Landslide and Flood Warning System Prototypes based on Wireless Sensor Networks

    Science.gov (United States)

    Hloupis, George; Stavrakas, Ilias; Triantis, Dimos

    2010-05-01

    Wireless sensor networks (WSNs) are one of the emerging areas that received great attention during the last few years. This is mainly due to the fact that WSNs have provided scientists with the capability of developing real-time monitoring systems equipped with sensors based on Micro-Electro-Mechanical Systems (MEMS). WSNs have great potential for many applications in environmental monitoring since the sensor nodes that comprised from can host several MEMS sensors (such as temperature, humidity, inertial, pressure, strain-gauge) and transducers (such as position, velocity, acceleration, vibration). The resulting devices are small and inexpensive but with limited memory and computing resources. Each sensor node contains a sensing module which along with an RF transceiver. The communication is broadcast-based since the network topology can change rapidly due to node failures [1]. Sensor nodes can transmit their measurements to central servers through gateway nodes without any processing or they make preliminary calculations locally in order to produce results that will be sent to central servers [2]. Based on the above characteristics, two prototypes using WSNs are presented in this paper: A Landslide detection system and a Flood warning system. Both systems sent their data to central processing server where the core of processing routines exists. Transmission is made using Zigbee and IEEE 802.11b protocol but is capable to use VSAT communication also. Landslide detection system uses structured network topology. Each measuring node comprises of a columnar module that is half buried to the area under investigation. Each sensing module contains a geophone, an inclinometer and a set of strain gauges. Data transmitted to central processing server where possible landslide evolution is monitored. Flood detection system uses unstructured network topology since the failure rate of sensor nodes is expected higher. Each sensing module contains a custom water level sensor

  1. Semiportable load-cell-based weighing system prototype of 18.14-metric-ton (20-ton) capacity for UF6 cylinder weight verifications: description and testing procedure

    International Nuclear Information System (INIS)

    McAuley, W.A.

    1984-01-01

    The 18.14-metric-ton-capacity (20-ton) Load-Cell-Based Weighing System (LCBWS) prototype tested at the Oak Ridge (Tennessee) Gaseous Diffusion Plant March 20-30, 1984, is semiportable and has the potential for being highly accurate. Designed by Brookhaven National Laboratory, it can be moved to cylinders for weighing as opposed to the widely used operating philosophy of most enrichment facilities of moving cylinders to stationary accountability scales. Composed mainly of commercially available, off-the-shelf hardware, the system's principal elements are two load cells that sense the weight (i.e., force) of a uranium hexafluoride (UF 6 ) cylinder suspended from the LCBWS while the cylinder is in the process of being weighed. Portability is achieved by its attachment to a double-hook, overhead-bridge crane. The LCBWS prototype is designed to weigh 9.07- and 12.70-metric ton (10- and 14-ton) UF 6 cylinders. A detailed description of the LCBWS is given, design information and criteria are supplied, a testing procedure is outlined, and initial test results are reported. A major objective of the testing is to determine the reliability and accuracy of the system. Other testing objectives include the identification of (1) potential areas for system improvements and (2) procedural modifications that will reflect an improved and more efficient system. The testing procedure described includes, but is not limited to, methods that account for temperature sensitivity of the instrumentation, the local variation in the acceleration due to gravity, and buoyance effects. Operational and safety considerations are noted. A preliminary evaluation of the March test data indicates that the LCBWS prototype has the potential to have an accuracy in the vicinity of 1 kg

  2. Design of the ILC Prototype FONT4 Digital Intra-Train Beam-Based Feedback System

    International Nuclear Information System (INIS)

    Burrows, P.; Queen Mary, U. of London; Christian, G.B.; Hartin, A.F.; Dabiri Khah, H.; White, G.R.; Oxford U.; Clarke, C.C.; Perry, C.; Oxford Instruments; Kalinin, A.; Daresbury; McCormick, D.J.; Molloy, S.; Ross, M.C.; SLAC

    2007-01-01

    We present the design of the FONT4 digital intra-train beam position feedback system prototype and preliminary results of initial beam tests at the Accelerator Test Facility (ATF) at KEK. The feedback system incorporates a fast analogue beam position monitor (BPM) front-end signal processor, a digital feedback board, and a kicker driver amplifier. The short bunchtrain, comprising 3 electron bunches separated by c. 150ns, in the ATF extraction line was used to test components of the prototype feedback system

  3. SOLID2: an antibody array-based life-detector instrument in a Mars Drilling Simulation Experiment (MARTE).

    Science.gov (United States)

    Parro, Víctor; Fernández-Calvo, Patricia; Rodríguez Manfredi, José A; Moreno-Paz, Mercedes; Rivas, Luis A; García-Villadangos, Miriam; Bonaccorsi, Rosalba; González-Pastor, José Eduardo; Prieto-Ballesteros, Olga; Schuerger, Andrew C; Davidson, Mark; Gómez-Elvira, Javier; Stoker, Carol R

    2008-10-01

    A field prototype of an antibody array-based life-detector instrument, Signs Of LIfe Detector (SOLID2), has been tested in a Mars drilling mission simulation called MARTE (Mars Astrobiology Research and Technology Experiment). As one of the analytical instruments on the MARTE robotic drilling rig, SOLID2 performed automatic sample processing and analysis of ground core samples (0.5 g) with protein microarrays that contained 157 different antibodies. Core samples from different depths (down to 5.5 m) were analyzed, and positive reactions were obtained in antibodies raised against the Gram-negative bacterium Leptospirillum ferrooxidans, a species of the genus Acidithiobacillus (both common microorganisms in the Río Tinto area), and extracts from biofilms and other natural samples from the Río Tinto area. These positive reactions were absent when the samples were previously subjected to a high-temperature treatment, which indicates the biological origin and structural dependency of the antibody-antigen reactions. We conclude that an antibody array-based life-detector instrument like SOLID2 can detect complex biological material, and it should be considered as a potential analytical instrument for future planetary missions that search for life.

  4. Innovative instrumentation for VVERs based in non-invasive techniques

    International Nuclear Information System (INIS)

    Jeanneau, H.; Favennec, J.M.; Tournu, E.; Germain, J.L.

    2000-01-01

    Nuclear power plants such as VVERs can greatly benefit from innovative instrumentation to improve plant safety and efficiency. In recent years innovative instrumentation has been developed for PWRs with the aim of providing additional measurements of physical parameters on the primary and secondary circuits: the addition of new instrumentation is made possible by using non-invasive techniques such as ultrasonics and radiation detection. These innovations can be adapted for upgrading VVERs presently in operation and also in future VVERs. The following innovative instrumentation for the control, monitoring or testing at VVERs is described: 1. instrumentation for more accurate primary side direct measurements (for a better monitoring of the primary circuit); 2. instrumentation to monitor radioactivity leaks (for a safer plant); 3. instrumentation-related systems to improve the plant efficiency (for a cheaper kWh)

  5. Design and Prototyping Flow of Flexible and Efficient NISC-Based Architectures for MIMO Turbo Equalization and Demapping

    Directory of Open Access Journals (Sweden)

    Mostafa Rizk

    2016-08-01

    Full Text Available In the domain of digital wireless communication, flexible design implementations are increasingly explored for different applications in order to cope with diverse system configurations imposed by the emerging wireless communication standards. In fact, shrinking the design time to meet market pressure, on the one hand, and adding the emerging flexibility requirement and, hence, increasing system complexity, on the other hand, require a productive design approach that also ensures final design quality. The no instruction set computer (NISC approach fulfills these design requirements by eliminating the instruction set overhead. The approach offers static scheduling of the datapath, automated register transfer language (RTLsynthesis and allows the designer to have direct control of hardware resources. This paper presents a complete NISC-based design and prototype flow, from architecture specification till FPGA implementation. The proposed design and prototype flow is illustrated through two case studies of flexible implementations, which are dedicated to low-complexity MIMO turbo-equalizer and a universal turbo-demapper. Moreover, the flexibility of the proposed prototypes allows supporting all communication modes defined in the emerging wireless communication standards, such LTE, LTE-Advanced, WiMAX, WiFi and DVB-RCS. For each prototype, its functionality is evaluated, and the resultant performance is verified for all system configurations.

  6. Smart phone-based Chemistry Instrumentation: Digitization of Colorimetric Measurements

    International Nuclear Information System (INIS)

    Chang, Byoung Yong

    2012-01-01

    This report presents a mobile instrumentation platform based on a smart phone using its built-in functions for colorimetric diagnosis. The color change as a result of detection is taken as a picture through a CCD camera built in the smart phone, and is evaluated in the form of the hue value to give the well-defined relationship between the color and the concentration. To prove the concept in the present work, proton concentration measurements were conducted on pH paper coupled with a smart phone for demonstration. This report is believed to show the possibility of adapting a smart phone to a mobile analytical transducer, and more applications for bioanalysis are expected to be developed using other built-in functions of the smart phone

  7. Embedded design based virtual instrument program for positron beam automation

    International Nuclear Information System (INIS)

    Jayapandian, J.; Gururaj, K.; Abhaya, S.; Parimala, J.; Amarendra, G.

    2008-01-01

    Automation of positron beam experiment with a single chip embedded design using a programmable system on chip (PSoC) which provides easy interfacing of the high-voltage DC power supply is reported. Virtual Instrument (VI) control program written in Visual Basic 6.0 ensures the following functions (i) adjusting of sample high voltage by interacting with the programmed PSoC hardware, (ii) control of personal computer (PC) based multi channel analyzer (MCA) card for energy spectroscopy, (iii) analysis of the obtained spectrum to extract the relevant line shape parameters, (iv) plotting of relevant parameters and (v) saving the file in the appropriate format. The present study highlights the hardware features of the PSoC hardware module as well as the control of MCA and other units through programming in Visual Basic

  8. Electronically Tunable Transimpedance Instrumentation Amplifier Based on OTRA

    Directory of Open Access Journals (Sweden)

    Rajeshwari Pandey

    2013-01-01

    Full Text Available Operational transresistance amplifier (OTRA is the most suitable analog building block (ABB for transimpedance type signal processing due to its very nature of current input and voltage output. In this paper, OTRA-based transimpedance instrumentation amplifier (TIA is presented. It provides high differential gain and bandwidth, which is independent of gain. It also offers high common-mode rejection ratio (CMRR. The amplifier gain can be controlled electronically by implementing resistors using MOS transistors operating in linear region. The circuit can be made fully integrated. The proposed circuit is insensitive to parasitic input capacitances and input resistances due to the internally grounded input terminals of OTRA. Theoretical analysis is verified through PSPICE simulations and experimentation.

  9. Unikabeton Prototype

    DEFF Research Database (Denmark)

    Søndergaard, Asbjørn; Dombernowsky, Per

    2011-01-01

    The Unikabeton prototype structure was developed as the finalization of the cross-disciplinary research project Unikabeton, exploring the architectural potential in linking the computational process of topology optimisation with robot fabrication of concrete casting moulds. The project was elabor......The Unikabeton prototype structure was developed as the finalization of the cross-disciplinary research project Unikabeton, exploring the architectural potential in linking the computational process of topology optimisation with robot fabrication of concrete casting moulds. The project...... of Architecture was to develop a series of optimisation experiments, concluding in the design and optimisation of a full scale prototype concrete structure....

  10. Advanced Process Chains for Prototyping and Pilot Production based on Additive Manufacturing

    DEFF Research Database (Denmark)

    Mischkot, Michael

    2015-01-01

    For many years, Additive Manufacturing (AM) has been a well-established production technology used mainly for rapid prototyping. But the need for increased flexibility and economic low volume production led to the discovery of Additive Manufacturing as a suitable fabrication technique (Mellor 2013...

  11. Prototype of a web - based participative decision support platform in natural hazards and risk management

    NARCIS (Netherlands)

    Aye, Z.C.; Jaboyedoff, M.; Derron, M.H.; van Westen, C.J.

    2015-01-01

    This paper presents the current state and development of a prototype web-GIS (Geographic Information System) decision support platform intended for application in natural hazards and risk management, mainly for floods and landslides. This web platform uses open-source geospatial software and

  12. Open-Source Wax RepRap 3-D Printer for Rapid Prototyping Paper-Based Microfluidics.

    Science.gov (United States)

    Pearce, J M; Anzalone, N C; Heldt, C L

    2016-08-01

    The open-source release of self-replicating rapid prototypers (RepRaps) has created a rich opportunity for low-cost distributed digital fabrication of complex 3-D objects such as scientific equipment. For example, 3-D printable reactionware devices offer the opportunity to combine open hardware microfluidic handling with lab-on-a-chip reactionware to radically reduce costs and increase the number and complexity of microfluidic applications. To further drive down the cost while improving the performance of lab-on-a-chip paper-based microfluidic prototyping, this study reports on the development of a RepRap upgrade capable of converting a Prusa Mendel RepRap into a wax 3-D printer for paper-based microfluidic applications. An open-source hardware approach is used to demonstrate a 3-D printable upgrade for the 3-D printer, which combines a heated syringe pump with the RepRap/Arduino 3-D control. The bill of materials, designs, basic assembly, and use instructions are provided, along with a completely free and open-source software tool chain. The open-source hardware device described here accelerates the potential of the nascent field of electrochemical detection combined with paper-based microfluidics by dropping the marginal cost of prototyping to nearly zero while accelerating the turnover between paper-based microfluidic designs. © 2016 Society for Laboratory Automation and Screening.

  13. Development of microcontroller based instrumentation for low dose implantation

    International Nuclear Information System (INIS)

    Suresh, K.; Saravanan, K.; Panigrahi, B.K.; Nair, K.G.M.

    2011-01-01

    In experiments like ion implantation based ion track formations, the sample is implanted to low doses of the order of 10 10 ions/cm 2 , limiting the ion beam currents to be less than 1-5 x 10 -12 A. However the standard current integrators available are not sensitive to very low currents, causing an unacceptable high level of error in dose measurement. Hence a low dose implantation measurement system has been developed. It consists of a very sensitive low current preamplifier with full scale input 1nA/100pA, a standard current integrator, a microcontroller based interface circuit, which are connected to a personal computer(PC) through USB. Two types of the software are developed for the system: the microcontroller firmware using C and windows based virtual instrument programs using LabVIEW 7.0. Necessary precautions associated with pA level measurement like rigidly fastened good quality cables, low ripple DC power supply, shielding, close mounting of the preamplifier to the sample are adopted. After necessary calibrations with an ECIL make low current source, the system has been put into regular use. Design and development details, salient features are discussed in this paper. (author)

  14. Prototype of a Standards-Based EHR and Genetic Test Reporting Tool Coupled with HL7-Compliant Infobuttons

    Science.gov (United States)

    Crump, Jacob K.; Del Fiol, Guilherme; Williams, Marc S.; Freimuth, Robert R.

    2018-01-01

    Integration of genetic information is becoming increasingly important in clinical practice. However, genetic information is often ambiguous and difficult to understand, and clinicians have reported low-self-efficacy in integrating genetics into their care routine. The Health Level Seven (HL7) Infobutton standard helps to integrate online knowledge resources within Electronic Health Records (EHRs) and is required for EHR certification in the US. We implemented a prototype of a standards-based genetic reporting application coupled with infobuttons leveraging the Infobutton and Fast Healthcare Interoperability Resources (FHIR) Standards. Infobutton capabilities were provided by Open Infobutton, an open source package compliant with the HL7 Infobutton Standard. The resulting prototype demonstrates how standards-based reporting of genetic results, coupled with curated knowledge resources, can provide dynamic access to clinical knowledge on demand at the point of care. The proposed functionality can be enabled within any EHR system that has been certified through the US Meaningful Use program.

  15. A knowledge-based support system for mechanical ventilation of the lungs. The KUSIVAR concept and prototype.

    Science.gov (United States)

    Rudowski, R; Frostell, C; Gill, H

    1989-09-01

    The KUSIVAR is an expert system for mechanical ventilation of adult patients suffering from respiratory insufficiency. Its main objective is to provide guidance in respirator management. The knowledge base includes both qualitative, rule-based knowledge and quantitative knowledge expressed in the form of mathematical models (expert control) which is used for prediction of arterial gas tensions and optimization purposes. The system is data driven and uses a forward chaining mechanism for rule invocation. The interaction with the user will be performed in advisory, critiquing, semi-automatic and automatic modes. The system is at present in an advanced prototype stage. Prototyping is performed using KEE (Knowledge Engineering Environment) on a Sperry Explorer workstation. For further development and clinical use the expert system will be downloaded to an advanced PC. The system is intended to support therapy with a Siemens-Elema Servoventilator 900 C.

  16. Solution Prototype

    DEFF Research Database (Denmark)

    Efeoglu, Arkin; Møller, Charles; Serie, Michel

    2013-01-01

    This paper outlines an artifact building and evaluation proposal. Design Science Research (DSR) studies usually consider encapsulated artifact that have relationships with other artifacts. The solution prototype as a composed artifact demands for a more comprehensive consideration in its systematic...... environment. The solution prototype that is composed from blending product and service prototype has particular impacts on the dualism of DSR’s “Build” and “Evaluate”. Since the mix between product and service prototyping can be varied, there is a demand for a more agile and iterative framework. Van de Ven......’s research framework seems to fit this purpose. Van de Ven allows for an iterative research approach to problem solving with flexible starting point. The research activity is the result between the iteration of two dimensions. This framework focuses on the natural evaluation, particularly on ex...

  17. Laboratory scale prototype of a low-speed electrodynamic levitation system based on a Halbach magnet array

    International Nuclear Information System (INIS)

    Iniguez, J; Raposo, V

    2009-01-01

    In this paper we analyse the behaviour of a small-scale model of a magnetic levitation system based on the Inductrack concept. Drag and lift forces acting on our prototype, moving above a continuous copper track, are studied analytically following a simple low-speed approach. The experimental results are in good agreement with the theoretical calculations. 3D-numerical simulations are also used to highlight the significance of the edge effects and to extrapolate the results to higher speeds

  18. Laboratory scale prototype of a low-speed electrodynamic levitation system based on a Halbach magnet array

    Energy Technology Data Exchange (ETDEWEB)

    Iniguez, J; Raposo, V [Departamento de Fisica Aplicada, Universidad de Salamanca, E-37071 (Spain)

    2009-03-15

    In this paper we analyse the behaviour of a small-scale model of a magnetic levitation system based on the Inductrack concept. Drag and lift forces acting on our prototype, moving above a continuous copper track, are studied analytically following a simple low-speed approach. The experimental results are in good agreement with the theoretical calculations. 3D-numerical simulations are also used to highlight the significance of the edge effects and to extrapolate the results to higher speeds.

  19. Robotic, MEMS-based Multi Utility Sample Preparation Instrument for ISS Biological Workstation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop a multi-functional, automated sample preparation instrument for biological wet-lab workstations on the ISS. The instrument is based on a...

  20. Measurement of radiation dose with a PC-based instrument

    International Nuclear Information System (INIS)

    Jangland, L.; Neubeck, R.

    1994-01-01

    The purpose of this study was to investigate in what way the introduction of Digital Subtraction Angiography has influenced absorbed doses to the patient and personnel. Calculation of the energy imparted to the patient, ε, was based on measurements of the dose-area product, tube potential and tube current which were registered with a PC-based instrument. The absorbed doses to the personnel were measured with TLD. The measurements on the personnel were made only at the digital system. The results indicate large variations in ε between different types of angiographic examinations of the same type. The total ε were similar on both systems, although the relative contribution from image acquisition and fluoroscopy were different. At the conventional system fluoroscopy and image acquisition contributed almost equally to the total ε. At the digital system 25% of the total ε was due to fluoroscopy and 75% to image acquisition. The differences were due to longer fluoroscopic times on the conventional system, mainly due to lack of image memory and road mapping, and lower ε/image, due to lower dose settings to the film changer compared to the image intensifier on the digital system. 11 refs., 8 figs., 9 tabs

  1. A Universal Motor Performance Test System Based on Virtual Instrument

    Directory of Open Access Journals (Sweden)

    Wei Li

    2014-09-01

    Full Text Available With the development of technology universal motors play a more and more important role in daily life and production, they have been used in increasingly wide field and the requirements increase gradually. How to control the speed and monitor the real-time temperature of motors are key issues. The cost of motor testing system based on traditional technology platform is very high in many reasons. In the paper a universal motor performance test system which based on virtual instrument is provided. The system achieves the precise control of the current motor speed and completes the measurement of real-time temperature of motor bearing support in order to realize the testing of general-purpose motor property. Experimental result shows that the system can work stability in controlling the speed and monitoring the real-time temperature. It has advantages that traditional using of SCM cannot match in speed, stability, cost and accuracy aspects. Besides it is easy to expand and reconfigure.

  2. CO2 Reduction Assembly Prototype Using Microlith-Based Sabatier Reactor for Ground Demonstration

    Science.gov (United States)

    Junaedi, Christian; Hawley, Kyle; Walsh, Dennis; Roychoudhury, Subir; Abney, Morgan B.; Perry, Jay L.

    2014-01-01

    The utilization of CO2 to produce life support consumables, such as O2 and H2O, via the Sabatier reaction is an important aspect of NASA's cabin Atmosphere Revitalization System (ARS) and In-Situ Resource Utilization (ISRU) architectures for both low-earth orbit and long-term manned space missions. Carbon dioxide can be reacted with H2, obtained from the electrolysis of water, via Sabatier reaction to produce methane and H2O. Methane can be stored and utilized as propellant while H2O can be either stored or electrolyzed to produce oxygen and regain the hydrogen atoms. Depending on the application, O2 can be used to replenish the atmosphere in human-crewed missions or as an oxidant for robotic and return missions. Precision Combustion, Inc. (PCI), with support from NASA, has previously developed an efficient and compact Sabatier reactor based on its Microlith® catalytic technology and demonstrated the capability to achieve high CO2 conversion and CH4 selectivity (i.e., =90% of the thermodynamic equilibrium values) at high space velocities and low operating temperatures. This was made possible through the use of high-heat-transfer and high-surface-area Microlith catalytic substrates. Using this Sabatier reactor, PCI designed, developed, and demonstrated a stand-alone CO2 Reduction Assembly (CRA) test system for ground demonstration and performance validation. The Sabatier reactor was integrated with the necessary balance-of-plant components and controls system, allowing an automated, single "push-button" start-up and shutdown. Additionally, the versatility of the test system prototype was demonstrated by operating it under H2-rich (H2/CO2 of >4), stoichiometric (ratio of 4), and CO2-rich conditions (ratio of <4) without affecting its performance and meeting the equilibrium-predicted water recovery rates. In this paper, the development of the CRA test system for ground demonstration will be discussed. Additionally, the performance results from testing the system at

  3. Virtual Reality based User Interface for Conceptual Design and Rapid Prototyping

    OpenAIRE

    Jadhav, Saurabh Subhash

    2017-01-01

    Computer Aided Design and Engineering (CAD/ CAE) tools currently available in the market have dramatically improved since their inception. In product development, CAD/ CAE has enabled the user to design, test, analyze and optimize the product virtually even before the first prototype is built. Use of direct modeling for product conceptualization allows the designer to create concept design iterations freely, quickly, flexibly and fast optimization. While modeling geometric databases have been...

  4. Prototype system for proton beam range measurement based on gamma electron vertex imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Han Rim [Neutron Utilization Technology Division, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Kim, Sung Hun; Park, Jong Hoon [Department of Nuclear Engineering, Hanyang University, Seongdong-gu, Seoul 04763 (Korea, Republic of); Jung, Won Gyun [Heavy-ion Clinical Research Division, Korean Institute of Radiological & Medical Sciences, Seoul 01812 (Korea, Republic of); Lim, Hansang [Department of Electronics Convergence Engineering, Kwangwoon University, Seoul 01897 (Korea, Republic of); Kim, Chan Hyeong, E-mail: chkim@hanyang.ac.kr [Department of Nuclear Engineering, Hanyang University, Seongdong-gu, Seoul 04763 (Korea, Republic of)

    2017-06-11

    In proton therapy, for both therapeutic effectiveness and patient safety, it is very important to accurately measure the proton dose distribution, especially the range of the proton beam. For this purpose, recently we proposed a new imaging method named gamma electron vertex imaging (GEVI), in which the prompt gammas emitting from the nuclear reactions of the proton beam in the patient are converted to electrons, and then the converted electrons are tracked to determine the vertices of the prompt gammas, thereby producing a 2D image of the vertices. In the present study, we developed a prototype GEVI system, including dedicated signal processing and data acquisition systems, which consists of a beryllium plate (= electron converter) to convert the prompt gammas to electrons, two double-sided silicon strip detectors (= hodoscopes) to determine the trajectories of those converted electrons, and a plastic scintillation detector (= calorimeter) to measure their kinetic energies. The system uses triple coincidence logic and multiple energy windows to select only the events from prompt gammas. The detectors of the prototype GEVI system were evaluated for electronic noise level, energy resolution, and time resolution. Finally, the imaging capability of the GEVI system was tested by imaging a {sup 90}Sr beta source, a {sup 60}Co gamma source, and a 45-MeV proton beam in a PMMA phantom. The overall results of the present study generally show that the prototype GEVI system can image the vertices of the prompt gammas produced by the proton nuclear interactions.

  5. Results from prototypes of environmental and health alarm devices based on gaseous detectors operating in air in counting mode

    CERN Document Server

    Martinengo, P; Peskov, V; Benaben, P; Charpak, G; Breuil, P

    2011-01-01

    We have developed and successfully tested two prototypes of detectors of dangerous gases based on wire-type counters operating in air in avalanche mode: one is for radon (Rn) detection whereas the other one is for the detection of gases with an ionization potential less than the air components. Due to the operation in pulse counting mode these prototypes have sensitivities comparable to (in the case of the Rn detector) or much higher than (in the case of the detector for low ionization gases) the best commercial devices currently available on the market. We believe that due to their high sensitivity, simplicity and low cost such new detectors will find massive applications. One of them, discussed in this paper, could be the on-line monitoring of Rn for the prediction of earthquakes. (C) 2010 Elsevier B.V. All rights reserved.

  6. Using an integrative mock-up simulation approach for evidence-based evaluation of operating room design prototypes.

    Science.gov (United States)

    Bayramzadeh, Sara; Joseph, Anjali; Allison, David; Shultz, Jonas; Abernathy, James

    2018-07-01

    This paper describes the process and tools developed as part of a multidisciplinary collaborative simulation-based approach for iterative design and evaluation of operating room (OR) prototypes. Full-scale physical mock-ups of healthcare spaces offer an opportunity to actively communicate with and to engage multidisciplinary stakeholders in the design process. While mock-ups are increasingly being used in healthcare facility design projects, they are rarely evaluated in a manner to support active user feedback and engagement. Researchers and architecture students worked closely with clinicians and architects to develop OR design prototypes and engaged clinical end-users in simulated scenarios. An evaluation toolkit was developed to compare design prototypes. The mock-up evaluation helped the team make key decisions about room size, location of OR table, intra-room zoning, and doors location. Structured simulation based mock-up evaluations conducted in the design process can help stakeholders visualize their future workspace and provide active feedback. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. The construction and evaluation of a prototype system for an image intensifier-based volume computed tomography imager

    International Nuclear Information System (INIS)

    Ning, R.

    1989-01-01

    A volumetric reconstruction of a three-dimensional (3-D) object has been at the forefront of exploration in medical applications for a long time. To achieve this goal, a prototype system for an image intensifier(II)-based volume computed tomography (CT) imager has been constructed. This research has been concerned with constructing and evaluating such a prototype system by phantom studies. The prototype system consists of a fixed x-ray tube, a specially designed aluminum filter that will reduce the dynamic range of projection data, an antiscatter grid, a conventional image intensifier optically coupled to a charge-coupled device (CCC) camera, a computer controlled turntable on which phantoms are placed, a digital computer including an A/D converter and a graphic station that displays the reconstructed images. In this study, three different phantoms were used: a vascular phantom, a resolution phantom and a Humanoid reg-sign chest phantom. The direct 3-D reconstruction from the projections was performed using a cone beam algorithm and vascular reconstruction algorithms. The image performance of the system for the direct 3-D reconstruction was evaluated. The spatial resolution limits of the system were estimated through observing the reconstructed images of the resolution phantom. By observing the images reconstructed from the projections, it can be determined that the image performance of the prototype system for a direct 3-D reconstruction is reasonably good and that the vascular reconstruction algorithms work very well. The results also indicate that the 3-D reconstructions obtained with the 11-based volume CT imager have nearly equally good resolution in x, y and z directions and are superior to a conventional CT in the resolution of the z direction

  8. An Electron Beam Profile Instrument Based on FBGs

    Directory of Open Access Journals (Sweden)

    Dan Sporea

    2014-08-01

    Full Text Available Along with the dose rate and the total irradiation dose measurements, the knowledge of the beam localization and the beam profile/energy distribution in the beam are parameters of interest for charged particle accelerator installations when they are used in scientific investigations, industrial applications or medical treatments. The transverse profile of the beam, its position, its centroid location, and its focus or flatness depend on the instrument operating conditions or on the beam exit setup. Proof-of-concept of a new type of charged particle beam diagnostics based on fiber Bragg gratings (FBGs was demonstrated. Its operating principle relies on the measurement of the peak wavelength changes for an array of FBG sensors as function of the temperature following the exposure to an electron beam. Periodically, the sensor irradiation is stopped and the FBG are force cooled to a reference temperature with which the temperature influencing each sensor during beam exposure is compared. Commercially available FBGs, and FBGs written in radiation resistant optical fibers, were tested under electron beam irradiation in order to study their possible use in this application.

  9. PROTOTYPE OF WEB BASED INFORMATION LITERACY TO ENHANCE STUDENT INFORMATION LITERACY SKILL IN STATE ISLAMIC HIGH SCHOOL INSAN CENDEKIA

    Directory of Open Access Journals (Sweden)

    Indah Kurnianingsih

    2017-07-01

    Full Text Available Abstract. Information Literacy (IL Program is a library program that aims to improve the ability of library users to recognize when information is needed and have the ability to locate, evaluate, and use effectively the needed information. Information literacy learning is essential to be taught and applied in education from the beginning of the school so that students are able to find and organize information effectively and efficiently particularly regard to the school assignment and learning process. At present, various educational institutions began to implement online learning model to improve the quality of teaching and research quality. Due to the advancement of information technology, the information literacy program should be adjusted with the needs of library users. The purpose of this study was to design web-based information literacy model for school library. This research conducted through several stages which are: identifying the needs of web-based IL, designing web-based IL, determining the model and the contents of a web-based IL tutorial, and creating a prototype webbased IL. The results showed that 90,74% of respondents stated the need of web-based learning IL. The prototype of web-based learning IL is consisted of six main units using combination of the Big6 Skills model and 7 Concept of Information Literacy by Shapiro and Hughes. The main fiveth units are Library Skill, Resource Skill, Research Skill, Reading Skill, and Presenting Literacy. This prototype web-based information literacy is expected to support the information literacy learning in a holistic approach.

  10. Design of a TFT-LCD Based Digital Automobile Instrument

    Directory of Open Access Journals (Sweden)

    Yunsong Xu

    2014-01-01

    instrument and gives an introduction to the sampling circuits and interfaces related to these signals. Following this is the functional categorizing of the circuit modules, such as video buffer circuit, CAN bus interface circuit, and TFT-LCD drive circuit. Additionally, the external EEPROM stores information of the vehicle for history data query, and the external FLASH enables the display of high quality figures. On the whole, the accomplished automobile instrument meets the requirements of automobile instrument markets with its characters of low cost, favorable compatibility, friendly interfaces, and easy upgrading.

  11. PRMS Data Warehousing Prototype

    Science.gov (United States)

    Guruvadoo, Eranna K.

    2002-01-01

    Project and Resource Management System (PRMS) is a web-based, mid-level management tool developed at KSC to provide a unified enterprise framework for Project and Mission management. The addition of a data warehouse as a strategic component to the PRMS is investigated through the analysis, design and implementation processes of a data warehouse prototype. As a proof of concept, a demonstration of the prototype with its OLAP's technology for multidimensional data analysis is made. The results of the data analysis and the design constraints are discussed. The prototype can be used to motivate interest and support for an operational data warehouse.

  12. Biosensors for EVA: Improved Instrumentation for Ground-based Studies

    Science.gov (United States)

    Soller, B.; Ellerby, G.; Zou, F.; Scott, P.; Jin, C.; Lee, S. M. C.; Coates, J.

    2010-01-01

    During lunar excursions in the EVA suit, real-time measurement of metabolic rate is required to manage consumables and guide activities to ensure safe return to the base. Metabolic rate, or oxygen consumption (VO2), is normally measured from pulmonary parameters but cannot be determined with standard techniques in the oxygen-rich environment of a spacesuit. Our group has developed novel near infrared spectroscopic (NIRS) methods to calculate muscle oxygen saturation (SmO 2), hematocrit, and pH, and we recently demonstrated that we can use our NIRS sensor to measure VO 2 on the leg during cycling. Our NSBRI project has 4 objectives: (1) increase the accuracy of the metabolic rate calculation through improved prediction of stroke volume; (2) investigate the relative contributions of calf and thigh oxygen consumption to metabolic rate calculation for walking and running; (3) demonstrate that the NIRS-based noninvasive metabolic rate methodology is sensitive enough to detect decrement in VO 2 in a space analog; and (4) improve instrumentation to allow testing within a spacesuit. Over the past year we have made progress on all four objectives, but the most significant progress was made in improving the instrumentation. The NIRS system currently in use at JSC is based on fiber optics technology. Optical fiber bundles are used to deliver light from a light source in the monitor to the patient, and light reflected back from the patient s muscle to the monitor for spectroscopic analysis. The fiber optic cables are large and fragile, and there is no way to get them in and out of the test spacesuit used for ground-based studies. With complimentary funding from the US Army, we undertook a complete redesign of the sensor and control electronics to build a novel system small enough to be used within the spacesuit and portable enough to be used by a combat medic. In the new system the filament lamp used in the fiber optic system was replaced with a novel broadband near infrared

  13. Instrumentation for PSD based neutron diffractometers at Dhruva reactor

    International Nuclear Information System (INIS)

    Pande, S.S.; Borkar, S.P.; Prafulla, S.; Srivastava, V.D.; Behare, A.; Mukhopadhyay, P.K.; Ghodgaonkar, M.D.; Kataria, S.K.

    2004-01-01

    Linear position sensitive detectors (PSDs) are widely used to configure neutron diffractometers and other instruments. Necessary front-end electronics and a data acquisition system is developed to cater to such instruments built around the Dhruva research reactor in BARC. These include three diffractometers with multiple PSDs and four with single PSD. The front-end electronics consists of high voltage units, preamplifiers, shaping amplifiers, ratio ADCs (RDC). The data acquisition system consists of an interface card and software. Commercially available hardware like temperature controller or stepper motor controller connected over GPIB or RS232 are also integrated in the data acquisition system. The data acquisition is automated so that it can continue unattended for control parameter like temperature, thus enabling optimum utilization of available beam time. The instrumentation is scalable and can be easily configured for various instrumental requirements. The front-end electronics and the data acquisition system are described here. (author)

  14. Instrumentation for PSD-based neutron diffractometers at Dhruva reactor

    Science.gov (United States)

    Pande, S. S.; Borkar, S. P.; Prafulla, S.; Srivastava, V. D.; Behare, A.; Mukhopadhyay, P. K.; Ghodgaonkar, M. D.; Kataria, S. K.

    2004-08-01

    Linear position sensitive detectors (PSDs) are widely used to configure neutron diffractometers and other instruments. Necessary front-end electronics and a data acquisition system [1] is developed to cater to such instruments built around the Dhruva research reactor in BARC. These include three diffractometers with multiple PSDs and four with single PSD. The front-end electronics consists of high voltage units, preamplifiers [2], shaping amplifiers, ratio ADCs (RDC) [3]. The data acquisition system consists of an interface card and software. Commercially available hardware like temperature controller or stepper motor controller connected over GPIB or RS232 are also integrated in the data acquisition system. The data acquisition is automated so that it can continue unattended for control parameter like temperature, thus enabling optimum utilization of available beam time. The instrumentation is scalable and can be easily configured for various instrumental requirements. The front-end electronics and the data acquisition system are described here.

  15. Use of modern software - based instrumentation in safety critical systems

    International Nuclear Information System (INIS)

    Emmett, J.; Smith, B.

    2005-01-01

    Many Nuclear Power Plants are now ageing and in need of various degrees of refurbishment. Installed instrumentation usually uses out of date 'analogue' technology and is often no longer available in the market place. New technology instrumentation is generally un-qualified for nuclear use and specifically the new 'smart' technology contains 'firmware', (effectively 'soup' (Software of Uncertain Pedigree)) which must be assessed in accordance with relevant safety standards before it may be used in a safety application. Particular standards are IEC 61508 [1] and the British Energy (BE) PES (Programmable Electronic Systems) guidelines EPD/GEN/REP/0277/97. [2] This paper outlines a new instrument evaluation system, which has been developed in conjunction with the UK Nuclear Industry. The paper concludes with a discussion about on-line monitoring of Smart instrumentation in safety critical applications. (author)

  16. Evaluation of Position Resolution for a Prototype Whole-Body PET Detector Based on Suppressing Backgrounds by Compton Scattering

    Science.gov (United States)

    Fujihara, Kento; Emoto, Yusaku; Ito, Hiroshi; Kaneko, Naomi; Kaneko, Hideyuki; Kawai, Hideyuki; Kobayashi, Atsushi; Mizuno, Takahiro

    2018-01-01

    Existing PET (Positron Emission Tomography) systems make clear images in demonstration (measuring small PET reagent in pure water), however images in real diagnosis become unclear. The authors suspected that this problem was caused by Compton scattering in a detector. When PET systems observe plural photomultiplier tube outputs, an original emission point is regarded as centroid of the outputs. However, even if plural emission in Compton scattering occur, these systems calculate original point in the same way as single emission. Therefore, the authors considered that rejecting Compton scattering events makes PET systems much better, and made prototype counter. Main components of the prototype counter are plate-like high-growth-rate (HGR) La-GPS scintillators and wavelength shifting fibers (WLSF). HGR crystals grow 10 times as fast as a mono-crystal (a normal mono-crystal grows at 2 - 3 mm an hour). Thus, it includes microbubble and its transparency get worth. Consequently, HGR crystals usually are not used in radiation measuring instruments. However, this time they are used on the purpose. Because of their low transparency, scintillation lights come out right above and right under of emission position. Therefore, Compton scattering events is rejected easily. The prototype detector has an effective area of 300 by 300 square mm. The detector consists of 24 layers. One layer consists of HGR La-GPS scintillator of 1 mm thickness. Top and bottom surface of scintillator were covered by dual sheets of WLSF with a diameter of 0.2 mm. Sheets of WLSF on top and bottom of the scintillator make a right angle with each other, and measure X- and Y-components. Z-component is measured by difference of WLSF outputs between top and bottom. If plural layers output signals, this counter regards the event as Compton scattering event, and reject the event. Even if only a layer output signals, the event is rejected when number output signals from WLSF is more than 1.5 times of single

  17. FPGA-based quench detection system for super-FRS super-ferric dipole prototype

    International Nuclear Information System (INIS)

    Yang Tongjun; Wu Wei; Yao Qinggao; Yuan Ping; He Yuan; Han Shaofei; Ma Lizhen

    2011-01-01

    The quench detection system for Super-FRS super-ferric dipole prototype magnet of FAIR has been designed and built. The balance bridge was used to detect quench signal. In order to avoid blind zone of quench detection, two independent bridges were used. NI PXI-7830R FPGA was used to implement filter to quench signal and algorithm of quench decision and to produce quench trigger signal. Pre-sample technique was used in quench data acquisition. The data before and after quench could be recorded for analysis later. The test result indicated that the quench of the dipole's superconducting coil could be reliably detected by the quench detection module. (authors)

  18. NeuLAND MRPC-based detector prototypes tested with fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Caesar, C., E-mail: c.caesar@gsi.de [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Aumann, T. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Bemmerer, D. [Forschungszentrum Dresden-Rossendorf, Dresden (Germany); Boretzky, K. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Elekes, Z. [Forschungszentrum Dresden-Rossendorf, Dresden (Germany); ATOMKI, Debrecen (Hungary); Gonzalez-Diaz, D.; Hehner, J.; Heil, M. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Kempe, M. [Forschungszentrum Dresden-Rossendorf, Dresden (Germany); Maroussov, V. [Universitaet zu Koeln, Koeln (Germany); Nusair, O. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Al-Balqa Applied University, Salt (Jordan); Reifarth, R.; Rossi, D.; Simon, H. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Stach, D.; Wagner, A.; Yakorev, D. [Forschungszentrum Dresden-Rossendorf, Dresden (Germany); Zilges, A. [ATOMKI, Debrecen (Hungary)

    2012-01-01

    Recent results from a first irradiation of multi-gap resistive plate chambers with fast neutrons are presented. The counters have been built at GSI and FZD. The experiment was performed at the 'The Svedberg Laboratory' (TSL) in Uppsala, Sweden, utilizing a quasi-monoenergetic neutron beam with an energy E{sub n}=175 MeV. For a 2 Multiplication-Sign 4 gap prototype operated at E=100 kV/cm, an efficiency of (0.77 {+-}0.33)% was measured.

  19. First observation of Cherenkov rings with a large area CsI-TGEM-based RICH prototype

    CERN Document Server

    Peskov, V; Di Mauro, A; Martinengo, P; Mayani, D; Molnar, L; Nappi, E; Paic, G; Smirnov, N; Anand, H; Shukla, I

    2012-01-01

    We have built a RICH detector prototype consisting of a liquid C6F14 radiator and six triple Thick Gaseous Electron Multipliers (TGEMs), each of them having an active area of 10x10 cm2. One triple TGEM has been placed behind the liquid radiator in order to detect the beam particles, whereas the other five have been positioned around the central one at a distance to collect the Cherenkov photons. The upstream electrode of each of the TGEM stacks has been coated with a 0.4 micron thick CsI layer. In this paper, we will present the results from a series of laboratory tests with this prototype carried out using UV light, 6 keV photons from 55Fe and electrons from 90Sr as well as recent results of tests with a beam of charged pions where for the first time Cherenkov Ring images have been successfully recorded with TGEM photodetectors. The achieved results prove the feasibility of building a large area Cherenkov detector consisting of a matrix of TGEMs.

  20. Applying Evolutionary Prototyping In Developing LMIS: A Spatial Web-Based System For Land Management

    Science.gov (United States)

    Agustiono, W.

    2018-01-01

    Software development project is a difficult task. Especially for software designed to comply with regulations that are constantly being introduced or changed, it is almost impossible to make just one change during the development process. Even if it is possible, nonetheless, the developers may take bulk of works to fix the design to meet specified needs. This iterative work also means that it takes additional time and potentially leads to failing to meet the original schedule and budget. In such inevitable changes, it is essential for developers to carefully consider and use an appropriate method which will help them carry out software project development. This research aims to examine the implementation of a software development method called evolutionary prototyping for developing software for complying regulation. It investigates the development of Land Management Information System (pseudonym), initiated by the Australian government, for use by farmers to meet regulatory demand requested by Soil and Land Conservation Act. By doing so, it sought to provide understanding the efficacy of evolutionary prototyping in helping developers address frequent changing requirements and iterative works but still within schedule. The findings also offer useful practical insights for other developers who seek to build similar regulatory compliance software.

  1. Electromagnetic nonlinearities in a Roebel-cable-based accelerator magnet prototype: variational approach

    Science.gov (United States)

    Ruuskanen, J.; Stenvall, A.; Lahtinen, V.; Pardo, E.

    2017-02-01

    Superconducting magnets are the most expensive series of components produced in the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN). When developing such magnets beyond state-of-the-art technology, one possible option is to use high-temperature superconductors (HTS) that are capable of tolerating much higher magnetic fields than low-temperature superconductors (LTS), carrying simultaneously high current densities. Significant cost reductions due to decreased prototype construction needs can be achieved by careful modelling of the magnets. Simulations are used, e.g. for designing magnets fulfilling the field quality requirements of the beampipe, and adequate protection by studying the losses occurring during charging and discharging. We model the hysteresis losses and the magnetic field nonlinearity in the beampipe as a function of the magnet’s current. These simulations rely on the minimum magnetic energy variation principle, with optimization algorithms provided by the open-source optimization library interior point optimizer. We utilize this methodology to investigate a research and development accelerator magnet prototype made of REBCO Roebel cable. The applicability of this approach, when the magnetic field dependence of the superconductor’s critical current density is considered, is discussed. We also scrutinize the influence of the necessary modelling decisions one needs to make with this approach. The results show that different decisions can lead to notably different results, and experiments are required to study the electromagnetic behaviour of such magnets further.

  2. The Prototype of Real-time Object Detection System Based on SMS

    Directory of Open Access Journals (Sweden)

    M. Hana Mirza

    2010-08-01

    Full Text Available The powerful algorithm to detect object movement in development of room monitoring system is very urgent. The commond algorithm needs complex computation. In this research, the prototype of real-time object detection system using simple algorithm is developed, i.e. using the determination of the max noise/pixel value and the tolerance threshold of image accurately, and then the system automatically send a SMS (short message services to user when the object movement is detected. The developed prototype used a Logitech QuickCam webcam, a Siemens C45 mobile phone and a data cable, and the Borland Delphi 7 with additional components and Serial PortNG Tvideo as system software. The application also includes a database to store the captured images whenever object movement is detected. The test results by varying conditions of light intensities using a 5-watt light bulb, fluorescent lamp 20 and 40 watts indicate that the application is able to automatically detect the presence of moving objects with 100% success rate. The success rate is strongly influenced by the determination of the max noise/pixel value and the tolerance threshold during system configuration. This application is also capable of sending SMS automatically when the system detects a moving object with an average time of 8.35 seconds.

  3. Prototype of interactive Web Maps: an approach based on open sources

    Directory of Open Access Journals (Sweden)

    Jürgen Philips

    2004-07-01

    Full Text Available To explore the potentialities available in the World Wide Web (WWW, a prototype with interactive Web map was elaborated using standardized codes and open sources, such as eXtensible Markup Language (XML, Scalable Vector Graphics (SVG, Document Object Model (DOM , script languages ECMAScript/JavaScript and “PHP: Hypertext Preprocessor”, and PostgreSQL and its extension, the PostGIS, to disseminate information related to the urban real estate register. Data from the City Hall of São José - Santa Catarina, were used, referring to Campinas district. Using Client/Server model, a prototype of a Web map with standardized codes and open sources was implemented, allowing a user to visualize Web maps using only the Adobe’s plug-in Viewer 3.0 in his/her browser. Aiming a good cartographic project for the Web, it was obeyed rules of graphical translation and was implemented different functionalities of interaction, like interactive legends, symbolization and dynamic scale. From the results, it can be recommended the use of using standardized codes and open sources in interactive Web mapping projects. It is understood that, with the use of Open Source code, in the public and private administration, the possibility of technological development is amplified, and consequently, a reduction with expenses in the acquisition of computer’s program. Besides, it stimulates the development of computer applications targeting specific demands and requirements.

  4. Physical Layer Multi-Core Prototyping A Dataflow-Based Approach for LTE eNodeB

    CERN Document Server

    Pelcat, Maxime; Piat, Jonathan; Nezan, Jean-François

    2013-01-01

    Base stations developed according to the 3GPP Long Term Evolution (LTE) standard require unprecedented processing power. 3GPP LTE enables data rates beyond hundreds of Mbits/s by using advanced technologies, necessitating a highly complex LTE physical layer. The operating power of base stations is a significant cost for operators, and is currently optimized using state-of-the-art hardware solutions, such as heterogeneous distributed systems. The traditional system design method of porting algorithms to heterogeneous distributed systems based on test-and-refine methods is a manual, thus time-expensive, task.   Physical Layer Multi-Core Prototyping: A Dataflow-Based Approach for LTE eNodeB provides a clear introduction to the 3GPP LTE physical layer and to dataflow-based prototyping and programming. The difficulties in the process of 3GPP LTE physical layer porting are outlined, with particular focus on automatic partitioning and scheduling, load balancing and computation latency reduction, specifically in sys...

  5. Safeguards instrumentation: a computer-based catalog. Second edition

    International Nuclear Information System (INIS)

    Auerbach, C.

    1985-04-01

    This catalog contains entries on new developments and on items listed in BNL 51450, which have either been carried over unchanged or been updated. More than 70 entries were deleted because of either obsolescence, insufficient interest in terms of safeguards, or lack of documentable development activities in recent years. Some old listings as well as new material was consolidated into more generic entries. As in the earlier document, the emphasis is on devices and instruments that are either in field use at this time or under active development. A few items such as NDA reference materials, instrument vans and certain shipping containers are included because they are important adjuncts to optimum utilization of safeguards instrumentation. This catalog does not include devices for physical protection. As was the case with its predecessor, most of the material in this catalog originated in the US and Canada; a few contributions came from member states of the European Community

  6. Safeguards instrumentation: a computer-based catalog. Second edition

    Energy Technology Data Exchange (ETDEWEB)

    Auerbach, C.

    1985-04-01

    This catalog contains entries on new developments and on items listed in BNL 51450, which have either been carried over unchanged or been updated. More than 70 entries were deleted because of either obsolescence, insufficient interest in terms of safeguards, or lack of documentable development activities in recent years. Some old listings as well as new material was consolidated into more generic entries. As in the earlier document, the emphasis is on devices and instruments that are either in field use at this time or under active development. A few items such as NDA reference materials, instrument vans and certain shipping containers are included because they are important adjuncts to optimum utilization of safeguards instrumentation. This catalog does not include devices for physical protection. As was the case with its predecessor, most of the material in this catalog originated in the US and Canada; a few contributions came from member states of the European Community.

  7. Gas Detection Instrument Based on Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    ANSONG FENG

    2013-06-01

    Full Text Available The wireless sensor network is used to simulate poisonous gas generating system in the Fire-Fighting Simulated Training System. In the paper, we use the wireless signal to simulate the poisonous gas source and use received signal strength indicator (RSSI to simulate the distance between the fireman and the gas source. The gas detection instrument samples the temperature and sphygmus of the trainee and uses the wireless signal as poisonous gas signal. When the trainee enters into the poisonous gas area, the gas detection instrument warns with sound and light and sends the type, density value, the location of the poisonous gas and vital signs of the trainee to host. The paper discusses the software and hardware design of the gas detection instrument. The system has been used to the several of Fire-Fighting training systems.

  8. Development of multifunctional radiation monitoring instrument based on PLC technology

    International Nuclear Information System (INIS)

    Li Ziqiang; Zhu Yuye; Zhuang Min

    2007-01-01

    This eight-channel multifunctional Radiation Monitoring Instrument is developed by making use of the built-in high-speed counters and the powerful instruction system of the SIEMES SIMATICS S7 series Programmable Logic Controllers (PLC) to record and process the pulse signal output by the detectors. The instrument with functions, such as analog and digital display, digital storage of digital data, pulse signal generator, network communication, can connect various types of pulse detectors. The initial process can be translated between Graduation Apparatus method and Formula method. the logicality of the high-dosage warning system is processed itself. The signal output will drive the alarm lights and bell directly. This paper mainly describes the configuration, programming and feature of the instrument. (authors)

  9. [Research on medical instrument information integration technology based on IHE PCD].

    Science.gov (United States)

    Zheng, Jianli; Liao, Yun; Yang, Yongyong

    2014-06-01

    Integrating medical instruments with medical information systems becomes more and more important in healthcare industry. To make medical instruments without standard communication interface possess the capability of interoperating and sharing information with medical information systems, we developed a medical instrument integration gateway based on Integrating the Healthcare Enterprise Patient Care Device (IHE PCD) integration profiles in this research. The core component is an integration engine which is implemented according to integration profiles and Health Level Seven (HL7) messages defined in IHE PCD. Working with instrument specific Javascripts, the engine transforms medical instrument data into HL7 ORU message. This research enables medical instruments to interoperate and exchange medical data with information systems in a standardized way, and is valuable for medical instrument integration, especially for traditional instruments.

  10. STRUTEX: A prototype knowledge-based system for initially configuring a structure to support point loads in two dimensions

    Science.gov (United States)

    Rogers, James L.; Feyock, Stefan; Sobieszczanski-Sobieski, Jaroslaw

    1988-01-01

    The purpose of this research effort is to investigate the benefits that might be derived from applying artificial intelligence tools in the area of conceptual design. Therefore, the emphasis is on the artificial intelligence aspects of conceptual design rather than structural and optimization aspects. A prototype knowledge-based system, called STRUTEX, was developed to initially configure a structure to support point loads in two dimensions. This system combines numerical and symbolic processing by the computer with interactive problem solving aided by the vision of the user by integrating a knowledge base interface and inference engine, a data base interface, and graphics while keeping the knowledge base and data base files separate. The system writes a file which can be input into a structural synthesis system, which combines structural analysis and optimization.

  11. A Prototype Lisp-Based Soft Real-Time Object-Oriented Graphical User Interface for Control System Development

    Science.gov (United States)

    Litt, Jonathan; Wong, Edmond; Simon, Donald L.

    1994-01-01

    A prototype Lisp-based soft real-time object-oriented Graphical User Interface for control system development is presented. The Graphical User Interface executes alongside a test system in laboratory conditions to permit observation of the closed loop operation through animation, graphics, and text. Since it must perform interactive graphics while updating the screen in real time, techniques are discussed which allow quick, efficient data processing and animation. Examples from an implementation are included to demonstrate some typical functionalities which allow the user to follow the control system's operation.

  12. Study on a prototype and by simulation of an antineutrino detector based on a lithium 6 scintillator

    International Nuclear Information System (INIS)

    Ait-Boubker, S.

    1989-01-01

    A detector based on Lithium-6 loaded liquid scintillator has been developed by the BUGEY collaboration in order to study neutrino's fundamental properties. This thesis reports on a study concerning a prototype cell of size 85x8.5x8.5 cm 3 , of the discrimination properties between neutrons and gammas and thermal neutron identification. Monte-Carlo simulation has allowed us to precise the light collection features in the cell. The last part of this memorandum deals with a cosmic detector presenting 2.5 m 2 active surface. We have obtained for this detector a very good homogenization of light response [fr

  13. An X-ray scanner prototype based on a novel hybrid gaseous detector

    CERN Document Server

    Iacobaeus, C; Lund-Jensen, B; Peskov, Vladimir

    2007-01-01

    We have developed a prototype of a new type of hybrid X-ray detector. It contains a thin wall (few μm) edge- illuminated lead glass capillary plate (acting as a converter of X-rays photons to primary electrons) combined with a microgap parallel-plate avalanche chamber operating in various gas mixtures at 1 atm. The operation of these converters was studied in a wide range of X-ray energies (from 6 to 60 keV) at incident angles varying from 0° to 90°. The detection efficiency, depending on the geometry, photon's energy, incident angle and the mode of operation, was between a few and 40%. The position resolution achieved was 50 μm in digital form and was practically independent of the photon's energy or gas mixture. The developed detector may open new possibilities for medical imaging, for example in mammography, portal imaging, radiography (including security devices), crystallography and many other applications.

  14. Anti-voice adaptation suggests prototype-based coding of voice identity

    Directory of Open Access Journals (Sweden)

    Marianne eLatinus

    2011-07-01

    Full Text Available We used perceptual aftereffects induced by adaptation with anti-voice stimuli to investigate voice identity representations. Participants learned a set of voices then were tested on a voice identification task with vowel stimuli morphed between identities, after different conditions of adaptation. In Experiment 1, participants chose the identity opposite to the adapting anti-voice significantly more often than the other two identities (e.g., after being adapted to anti-A, they identified the average voice as A. In Experiment 2, participants showed a bias for identities opposite to the adaptor specifically for anti-voice, but not for non anti-voice adaptors. These results are strikingly similar to adaptation aftereffects observed for facial identity. They are compatible with a representation of individual voice identities in a multidimensional perceptual voice space referenced on a voice prototype.

  15. A digital signal processor based rf control system for the TRIUMF ISAC RFQ prototype

    International Nuclear Information System (INIS)

    Fong, K.; Fang, S.; Laverty, M.

    1996-01-01

    A stand alone digital signal processor is used to control the RFQ prototype in the TRIUMF ISAC development program. The advantage of a digital control system over the traditional analogue system is that it offers the higher degree of flexibility necessary for a development system. For this application the system is designed to have the outward appearance of an analogue system, and uses dials, knobs, and switches as the operator interface. The digital signal processor is used as a feedback controller during CW rf operation, with the feedback gain parameters continually adjustable. It is also able to perform the same regulation during pulsed operation, with additional feedforward compensation for initial pulse on duration. Using a low cost analogue-to-digital converter with a sample rate of 100 kHz, a regulation bandwidth of 10 kHz is achieved. (author)

  16. Prototype of an expert system based nuclear power plant information systems

    International Nuclear Information System (INIS)

    Vegh, J.; Bodnar, M.; Buerger, L.; Tanyi, M.; Sefesik, F.

    1994-01-01

    The components and functioning of the GPCS information system applicable for intelligent process monitoring and alarm generation in a WWER-440 type nuclear power plant are described. The prototype system has been developed by using the G2 expert system, plant measurements were simulated by a WWER-440 compact simulator and by archive replay sessions performed by the VERONA-u core monitoring system. The GPCS contains an object oriented description of the basic subsystems of the plant and concentrates on the fast evaluation/displaying of measurements and alarms. The high-level information reflecting actual plant safety status is synthesized from primary measured data, by forming global alarms and by evaluating logical diagrams. (author). 10 refs, 4 figs

  17. Identify super quality markers from prototype-based pharmacokinetic markers of Tangzhiqing tablet (TZQ) based on in vitro dissolution/ permeation and in vivo absorption correlations.

    Science.gov (United States)

    Li, Ziqiang; Liu, Jia; Li, Yazhuo; Du, Xi; Li, Yanfen; Wang, Ruihua; Lv, Chunxiao; He, Xin; Wang, Baohe; Huang, Yuhong; Zhang, Deqin

    2018-06-01

    A quality marker (Q-marker) is defined as an inherent chemical compound that is used for the quality control of a drug. Its biological activities are closely related to safety and therapeutic effects. Generally, a multiple-component herbal medicine may have many Q-markers. We therefore proposed a concept of "super Q-marker" satisfying both the criterion of Q-markers and PK-markers to be used in more effective quality control of herbal medicine. The first aim was to find suitable prototype-based PK-markers from Tangzhiqing tablets (TZQ), a Chinese patent medicine. Then super Q-markers were expected to be identified from the prototype-based PK-markers based on an in vitro-in vivo correlation study. Potentially eligible prototype-based PK-markers were identified in a single- and multiple-dose pharmacokinetic study on TZQ in 30 healthy volunteers. The in vitro dissolution and permeation profiles of the prototype-based PK-markers of TZQ were evaluated by the physiologically-based drug dissolution/absorption simulating system (DDASS). An in vitro-in vivo correlation analysis was conducted between the dissolution/permeation behaviors in DDASS and the actual absorption profiles in human to test the transferability and traceability of the promising super Q-markers for TZQ. In human, plasma paeoniflorin and nuciferine as prototype-based PK-markers exhibited the appropriate pharmacokinetic properties, including dose-dependent systemic exposure (AUC, C max ) and a proper elimination half-life (1∼3h). In DDASS, it was predicted that paeoniflorin and nuciferine are highly permeable but the absorption rates are primarily limited by the dissolution rates. Moreover, the established in vitro-in vivo correlations of paeoniflorin and nuciferine were in support of the super Q-markers features. Paeoniflorin and nuciferine are identified as the super Q-markers from the prototype-based PK-markers of TZQ based on findings from a combination of in vitro, in vivo, and in vitro-in vivo

  18. IOT Overview: IR Instruments

    Science.gov (United States)

    Mason, E.

    In this instrument review chapter the calibration plans of ESO IR instruments are presented and briefly reviewed focusing, in particular, on the case of ISAAC, which has been the first IR instrument at VLT and whose calibration plan served as prototype for the coming instruments.

  19. The Prototype HyspIRI Thermal Infrared Radiometer (PHyTIR): A High Speed, Multispectral, Thermal Instrument Development in Support of HyspIRI-TIR

    Science.gov (United States)

    Hook, Simon

    2011-01-01

    The Prototype HyspIRI Thermal Infrared Radiometer (PHyTIR) is being developed as part of the risk reduction activities associated with the Hyperspectral Infrared Imager (HyspIRI). The HyspIRI mission was recommended by the National Research Council Decadal Survey and includes a visible shortwave infrared (SWIR) pushboom spectrometer and a multispectral whiskbroom thermal infrared (TIR) imager. Data from the HyspIRI mission will be used to address key science questions related to the Solid Earth and Carbon Cycle and Ecosystems focus areas of the NASA Science Mission Directorate. The HyspIRI TIR system will have 60m ground resolution, better than 200mK noise equivalent delta temperature (NEDT), 0.5C absolute temperature resolution with a 5-day repeat from LEO orbit. PHyTIR addresses the technology readiness level (TRL) of certain key subsystems of the TIR imager, primarily the detector assembly and scanning mechanism. PHyTIR will use Mercury Cadmium Telluride (MCT) technology at the focal plane and operate in time delay integration mode. A custom read out integrated circuit (ROIC) will provide the high speed readout hence allowing the high data rates needed for the 5 day repeat. PHyTIR will also demonstrate a newly developed interferometeric metrology system. This system will provide an absolute measurement of the scanning mirror to an order of magnitude better than conventional optical encoders. This will minimize the reliance on ground control points hence minimizing post-processing (e.g. geo-rectification computations).

  20. Radiation protection instruments based on tissue equivalent proportional counters: Part II of an international intercomparison

    International Nuclear Information System (INIS)

    Alberts, W.G.; Dietz, E.; Guldbakke, S.; Kluge, H.; Schumacher, H.

    1988-04-01

    This report describes the irradiation conditions and procedures of Part II of an international intercomparison of tissue-equivalent proportional counters used for radiation protection measurements. The irradiations took place in monoenergetic reference neutron fields produced by the research reactor and accelerator facilities of the PTB Braunschweig in the range from thermal neutrons to 14.8 MeV. In addition measurements were performed in 60 Co and D 2 O-moderated 252 Cf radiation fields. Prototype instruments from 7 European groups were investigated. The results of the measurements are summarized and compared with the reference data of the irradiations. (orig.) [de

  1. An automotive vehicle dynamics prototyping platform based on a remote control model car

    OpenAIRE

    SOLMAZ, Selim; COŞKUN, Türker

    2013-01-01

    The use of a modified remote control (RC) model car as a vehicle dynamics testing and development platform is detailed. Vehicle dynamics testing is an important aspect of automotive engineering and it plays a key role during the design and tuning of active safety control systems. Considering the fact that such tests are conductedi at great expense, scaled model cars can potentially be used to help with the process to reduce the costs. With this view, we instrument and develop a stand...

  2. A review of instruments to measure interprofessional team-based primary care.

    Science.gov (United States)

    Shoemaker, Sarah J; Parchman, Michael L; Fuda, Kathleen Kerwin; Schaefer, Judith; Levin, Jessica; Hunt, Meaghan; Ricciardi, Richard

    2016-07-01

    Interprofessional team-based care is increasingly regarded as an important feature of delivery systems redesigned to provide more efficient and higher quality care, including primary care. Measurement of the functioning of such teams might enable improvement of team effectiveness and could facilitate research on team-based primary care. Our aims were to develop a conceptual framework of high-functioning primary care teams to identify and review instruments that measure the constructs identified in the framework, and to create a searchable, web-based atlas of such instruments (available at: http://primarycaremeasures.ahrq.gov/team-based-care/ ). Our conceptual framework was developed from existing frameworks, the teamwork literature, and expert input. The framework is based on an Input-Mediator-Output model and includes 12 constructs to which we mapped both instruments as a whole, and individual instrument items. Instruments were also reviewed for relevance to measuring team-based care, and characterized. Instruments were identified from peer-reviewed and grey literature, measure databases, and expert input. From nearly 200 instruments initially identified, we found 48 to be relevant to measuring team-based primary care. The majority of instruments were surveys (n = 44), and the remainder (n = 4) were observational checklists. Most instruments had been developed/tested in healthcare settings (n = 30) and addressed multiple constructs, most commonly communication (n = 42), heedful interrelating (n = 42), respectful interactions (n = 40), and shared explicit goals (n = 37). The majority of instruments had some reliability testing (n = 39) and over half included validity testing (n = 29). Currently available instruments offer promise to researchers and practitioners to assess teams' performance, but additional work is needed to adapt these instruments for primary care settings.

  3. Automatic track counting with an optic RAM-based instrument

    International Nuclear Information System (INIS)

    Staderini, E.M.; Castellano, Alfredo

    1986-01-01

    A new image sensor, the optic RAM, is now used in a microprocessor controlled instrument to read and digitize images from CR39 solid state nuclear track detectors. The system performs image analysis, filtering, tracks counting and evaluation in a fully automatic way, not requiring an optic microscope, nor photographic or television devices. The proposed system is a very compact and low power device. (author)

  4. Aerometrics' laser-based lane-tracker sensor: engineering and on-the-road evaluation of advanced prototypes

    Science.gov (United States)

    Schuler, Carlos A.; Tapos, Francis M.; Alayleh, Mehyeddine M.; Bachalo, William D.

    1997-02-01

    Aerometrics initiated and continues on the development an innovative laser-diode based device that provides a warning signal when a motor-vehicle deviates from the center of the lane. The device is based on a sensor that scans the roadway on either side of the vehicle and determines the lateral position relative to the existing painted lines marking the lane. The principles of operation of the sensor, and the results of Aerometrics' early testing were presented last year in this forum. This paper presents Aerometrics' continuing efforts in bringing the technology to market. New prototypes have been developed and tested. Aerometrics' engineering efforts and the use of latest technologies have resulted in a 24-fold reduction in sensor volume when compared to their predecessors and similar reductions in weight. The current prototype measures less than 9 cm X 8 cm X 7 cm, and can be easily fit within the cavity of rear-view mirror holders used in most present-day vehicles. Also, advances in signal conditioning and processing have improved the reliability of the sensor. Results of continuing testing of the sensor will be presented.

  5. Prototyping and tests for an MRPC-based time-of-flight detector for 1 GeV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Yakorev, D. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Aumann, T. [GSI Helmholtz zentrum fuer Schwerionenforschung, Darmstadt (Germany); Technische Universitaet Darmstadt (Germany); Bemmerer, D., E-mail: d.bemmerer@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Boretzky, K. [GSI Helmholtz zentrum fuer Schwerionenforschung, Darmstadt (Germany); Caesar, C. [GSI Helmholtz zentrum fuer Schwerionenforschung, Darmstadt (Germany); Technische Universitaet Darmstadt (Germany); Ciobanu, M. [GSI Helmholtz zentrum fuer Schwerionenforschung, Darmstadt (Germany); Cowan, T.; Elekes, Z. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Elvers, M. [Universitaet zu Koeln (Germany); Gonzalez Diaz, D. [GSI Helmholtz zentrum fuer Schwerionenforschung, Darmstadt (Germany); Technische Universitaet Darmstadt (Germany); Tsinghua University, Beijing (China); Hannaske, R. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Hehner, J.; Heil, M. [GSI Helmholtz zentrum fuer Schwerionenforschung, Darmstadt (Germany); Kempe, M. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Maroussov, V. [Universitaet zu Koeln (Germany); Nusair, O. [GSI Helmholtz zentrum fuer Schwerionenforschung, Darmstadt (Germany); Al Balqa' Applied University, Salt (Jordan); Simon, H. [GSI Helmholtz zentrum fuer Schwerionenforschung, Darmstadt (Germany); Sobiella, M.; Stach, D.; Wagner, A. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); and others

    2011-10-21

    The NeuLAND detector at the R{sup 3}B experiment at the future FAIR facility in Darmstadt aims to detect fast neutrons (0.2-1.0 GeV) with high time and spatial resolutions ({sigma}{sub t}<100ps,{sigma}{sub x,y,z}<1cm). This task can be performed either with a scintillator or based on the multigap resistive plate chamber (MRPC) technology. Here, prototyping and test for an MRPC-based solution are discussed. In order to reach 90% detection efficiency, the final detector must consist of 50 consecutive MRPC stacks. Each stack contains a 4 mm thick anode made of iron converter material, with an additional 4 mm of converter material between two stacks. The secondary charged particles stemming from hadronic interactions of the high energetic neutrons in the converter will be detected in the MRPCs. As part of the ongoing development effort, a number of prototypes for this detector have been developed and built. They have been tested in experiments with a single-electron beam with picosecond resolution at the superconducting linac ELBE (Dresden, Germany). The results of the tests are presented here, and an outlook is given.

  6. Musical Instrument Classification Based on Nonlinear Recurrence Analysis and Supervised Learning

    Directory of Open Access Journals (Sweden)

    R.Rui

    2013-04-01

    Full Text Available In this paper, the phase space reconstruction of time series produced by different instruments is discussed based on the nonlinear dynamic theory. The dense ratio, a novel quantitative recurrence parameter, is proposed to describe the difference of wind instruments, stringed instruments and keyboard instruments in the phase space by analyzing the recursive property of every instrument. Furthermore, a novel supervised learning algorithm for automatic classification of individual musical instrument signals is addressed deriving from the idea of supervised non-negative matrix factorization (NMF algorithm. In our approach, the orthogonal basis matrix could be obtained without updating the matrix iteratively, which NMF is unable to do. The experimental results indicate that the accuracy of the proposed method is improved by 3% comparing with the conventional features in the individual instrument classification.

  7. Software organization for a prolog-based prototyping system for machine vision

    Science.gov (United States)

    Jones, Andrew C.; Hack, Ralf; Batchelor, Bruce G.

    1996-11-01

    We describe PIP (prolog image processing)--a prototype system for interactive image processing using Prolog, implemented on an Apple Macintosh computer. PIP is the latest in a series of products that the third author has been involved in the implementation of, under the collective title Prolog+. PIP differs from our previous systems in two particularly important respects. The first is that whereas we previously required dedicated image processing hardware, the present system implements image processing routines using software. The second difference is that our present system is hierarchical in structure, where the top level of the hierarchy emulates Prolog+, but there is a flexible infrastructure which supports more sophisticated image manipulation which we will be able to exploit in due course . We discuss the impact of the Apple Macintosh operating system upon the implementation of the image processing functions, and the interface between these functions and the Prolog system. We also explain how the existing set of Prolog+ commands has been implemented. PIP is now nearing maturity, and we will make a version of it generally available in the near future. However, although the represent version of PIP constitutes a complete image processing tool, there are a number of ways in which we are intending to enhance future versions, with a view to added flexibility and efficiency: we discuss these ideas briefly near the end of the present paper.

  8. Recognition of risk situations based on endoscopic instrument tracking and knowledge based situation modeling

    Science.gov (United States)

    Speidel, Stefanie; Sudra, Gunther; Senemaud, Julien; Drentschew, Maximilian; Müller-Stich, Beat Peter; Gutt, Carsten; Dillmann, Rüdiger

    2008-03-01

    Minimally invasive surgery has gained significantly in importance over the last decade due to the numerous advantages on patient-side. The surgeon has to adapt special operation-techniques and deal with difficulties like the complex hand-eye coordination, limited field of view and restricted mobility. To alleviate these constraints we propose to enhance the surgeon's capabilities by providing a context-aware assistance using augmented reality (AR) techniques. In order to generate a context-aware assistance it is necessary to recognize the current state of the intervention using intraoperatively gained sensor data and a model of the surgical intervention. In this paper we present the recognition of risk situations, the system warns the surgeon if an instrument gets too close to a risk structure. The context-aware assistance system starts with an image-based analysis to retrieve information from the endoscopic images. This information is classified and a semantic description is generated. The description is used to recognize the current state and launch an appropriate AR visualization. In detail we present an automatic vision-based instrument tracking to obtain the positions of the instruments. Situation recognition is performed using a knowledge representation based on a description logic system. Two augmented reality visualization programs are realized to warn the surgeon if a risk situation occurs.

  9. Design of a current based readout chip and development of a DEPFET pixel prototype system for the ILC vertex detector

    International Nuclear Information System (INIS)

    Trimpl, M.

    2005-12-01

    The future TeV-scale linear collider ILC (International Linear Collider) offers a large variety of precision measurements complementary to the discovery potential of the LHC (Large Hadron Collider). To fully exploit its physics potential, a vertex detector with unprecedented performance is needed. One proposed technology for the ILC vertex detector is the DEPFET active pixel sensor. The DEPFET sensor offers particle detection with in-pixel amplification by incorporating a field effect transistor into a fully depleted high-ohmic silicon substrate. The device provides an excellent signal-to-noise ratio and a good spatial resolution at the same time. To establish a very fast readout of a DEPFET pixel matrix with row rates of 20 MHz and more, the 128 channel CURO II ASIC has been designed and fabricated. The architecture of the chip is completely based on current mode techniques (SI) perfectly adapted to the current signal of the sensor. For the ILC vertex detector a prototype system with a 64 x 128 DEPFET pixel matrix read out by the CURO II chip has been developed. The design issues and the standalone performance of the readout chip as well as first results with the prototype system will be presented. (orig.)

  10. EFFICIENCY OF COMPUTER-GENERATED TRAINING EXERCISES OF THE SUBJECT «INFORMATION TECHNOLOGIES IN PHARMACY BASED ON COGNITIVE PROTOTYPES

    Directory of Open Access Journals (Sweden)

    A. M. Popov

    2015-05-01

    Full Text Available The paper describes a research to corroborate a hypothesis that wor king on training exercises based on prototypes of human cognitive structures helps enhance student’s knowledge digestion and engagement in learning process, gain a higher level of t h eir progress in studies and achieve a better academic performance. The results of t he research confirmed the hypothesis of better and more rapid digestion of declarative knowledge on the subject of “Information Technologies in Pharmacy”, represented in the tor m of prototypes of human cognitive structures. The results of the entrance test controls showed better on average by 10 % (p<0.05 theoretical achievements of students in the experimental group who wor ked on training exercises in the format of cognitive structures. Drowning a ch art of students’ perfor mance in control and experimental groups for ten lessons and a trend line (linear regression on it allowed us to hi ghlight the si gnificant difference in the inclinations of the lines with indices of 0.067 and 0.111 in the control and experimental group, respectively. This indicated a stable acceleration of knowledge by students in t he experimental group in comparison with the control group and proved an enhanced academic perfor mance among the groups of students.

  11. Design of a current based readout chip and development of a DEPFET pixel prototype system for the ILC vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Trimpl, M.

    2005-12-15

    The future TeV-scale linear collider ILC (International Linear Collider) offers a large variety of precision measurements complementary to the discovery potential of the LHC (Large Hadron Collider). To fully exploit its physics potential, a vertex detector with unprecedented performance is needed. One proposed technology for the ILC vertex detector is the DEPFET active pixel sensor. The DEPFET sensor offers particle detection with in-pixel amplification by incorporating a field effect transistor into a fully depleted high-ohmic silicon substrate. The device provides an excellent signal-to-noise ratio and a good spatial resolution at the same time. To establish a very fast readout of a DEPFET pixel matrix with row rates of 20 MHz and more, the 128 channel CURO II ASIC has been designed and fabricated. The architecture of the chip is completely based on current mode techniques (SI) perfectly adapted to the current signal of the sensor. For the ILC vertex detector a prototype system with a 64 x 128 DEPFET pixel matrix read out by the CURO II chip has been developed. The design issues and the standalone performance of the readout chip as well as first results with the prototype system will be presented. (orig.)

  12. Baking of the vacuum vessel prototype of the Spanish stellarator with a control system based on neural network

    International Nuclear Information System (INIS)

    Botija, J.; Alonso, J.; Blaumoser, M.

    1995-01-01

    To bake uniformly, up to 150 C, the vacuum vessel of the Spanish Stellarator TJ-II represents a difficult task to be demonstrated. In order to study the temperature distribution in the vessel, a prototype of this vacuum vessel, mounted in a stainless steel structure, has been heated by means of electrical panels and eddy currents. The induction heating system is provided applying 498 A/11.7 V at 50 Hz to the toroidal field coil located in the middle of the vessel prototype. Practically, this system only heats adequately the rings and poorly the so called groove of the vacuum vessel. On the contrary, the electrical heaters, with a power density of 0.5 W/cm 2 , heat the external part of the sectors and ports. The high density of temperature sensors ensures the uniformity of the heating process during the long heating cycles, making advisable a fault-tolerant control system based on Artificial Neural Networks (ANNs) that implements the control loop to regulate and protect both heating systems. This paper deals with the results of this experiment

  13. Performance test and analysis to the prototype of fiber-based portable large area surface contamination monitor

    International Nuclear Information System (INIS)

    Qu Yantao; Liu Yang; Wang Wei; Wang Ying; Hou Jie

    2013-01-01

    The feasibility was studied of using large area plastic scintillation (sensitive area up to 1200 cm 2 ) and wavelength-shifting fiber (WLS) to measure β surface contamination that led to a tentative adoption of direct coupling method of wavelength-shifting fiber array and plastic scintillator. Based on above, a calculation program was established, by which the optical transmission was simulated enabling optimizations to the design of the system such as the size of the plastic scintillator, the quantity of the wavelength-shifting fiber and the configuration mode of the wavelength-shifting fiber. As a result, a special experimental prototype was developed and tested. Results prove that the sensitive detection area is up to 1200 cm 2 , the detection efficiency is about 15.4%, the inconsistency of the different sensitive area is about 9.7%, and the minimum detectable limit is about 0.05 Bq/cm 2 , all of which indicate that the experimental prototype could satisfy requirements of surface pollution monitoring for both normal and accident conditions. (authors)

  14. Characterisation of prototype Nurmi cultures using culture-based microbiological techniques and PCR-DGGE.

    Science.gov (United States)

    Waters, Sinéad M; Murphy, Richard A; Power, Ronan F G

    2006-08-01

    Undefined Nurmi-type cultures (NTCs) have been used successfully to prevent salmonella colonisation in poultry for decades. Such cultures are derived from the caecal contents of specific-pathogen-free birds and are administered via drinking water or spray application onto eggs in the hatchery. These cultures consist of many non-culturable and obligately anaerobic bacteria. Due to their undefined nature it is difficult to obtain approval from regulatory agencies to use these preparations as direct fed microbials for poultry. In this study, 10 batches of prototype NTCs were produced using an identical protocol over a period of 2 years. Traditional microbiological techniques and a molecular culture-independent methodology, polymerase chain reaction combined with denaturing gradient gel electrophoresis (PCR-DGGE), were applied to characterise these cultures and also to examine if the constituents of the NTCs were identical. Culture-dependent analysis of these cultures included plating on a variety of selective and semi-selective agars, examination of colony morphology, Gram-staining and a series of biochemical tests (API, BioMerieux, France). Two sets of PCR-DGGE studies were performed. These involved the amplification of universal and subsequently lactic acid bacteria (LAB)-specific hypervariable regions of a 16S rRNA gene by PCR. Resultant amplicons were subjected to DGGE. Sequence analysis was performed on subsequent bands present in resultant DGGE profiles using the Basic Local Alignment Search Tool (BLAST). Microbiological culturing techniques tended to isolate common probiotic bacterial species from the genera Lactobacillus, Lactococcus, Bifidobacterium, Enterococcus, Clostridium, Escherichia, Pediococcus and Enterobacterium as well as members of the genera, Actinomyces, Bacteroides, Propionibacterium, Capnocytophaga, Proteus, and Klebsiella. Bacteroides, Enterococcus, Escherichia, Brevibacterium, Klebsiella, Lactobacillus, Clostridium, Bacillus, Eubacterium

  15. A Kinect-Based Real-Time Compressive Tracking Prototype System for Amphibious Spherical Robots

    Directory of Open Access Journals (Sweden)

    Shaowu Pan

    2015-04-01

    Full Text Available A visual tracking system is essential as a basis for visual servoing, autonomous navigation, path planning, robot-human interaction and other robotic functions. To execute various tasks in diverse and ever-changing environments, a mobile robot requires high levels of robustness, precision, environmental adaptability and real-time performance of the visual tracking system. In keeping with the application characteristics of our amphibious spherical robot, which was proposed for flexible and economical underwater exploration in 2012, an improved RGB-D visual tracking algorithm is proposed and implemented. Given the limited power source and computational capabilities of mobile robots, compressive tracking (CT, which is the effective and efficient algorithm that was proposed in 2012, was selected as the basis of the proposed algorithm to process colour images. A Kalman filter with a second-order motion model was implemented to predict the state of the target and select candidate patches or samples for the CT tracker. In addition, a variance ratio features shift (VR-V tracker with a Kalman estimation mechanism was used to process depth images. Using a feedback strategy, the depth tracking results were used to assist the CT tracker in updating classifier parameters at an adaptive rate. In this way, most of the deficiencies of CT, including drift and poor robustness to occlusion and high-speed target motion, were partly solved. To evaluate the proposed algorithm, a Microsoft Kinect sensor, which combines colour and infrared depth cameras, was adopted for use in a prototype of the robotic tracking system. The experimental results with various image sequences demonstrated the effectiveness, robustness and real-time performance of the tracking system.

  16. A Kinect-based real-time compressive tracking prototype system for amphibious spherical robots.

    Science.gov (United States)

    Pan, Shaowu; Shi, Liwei; Guo, Shuxiang

    2015-04-08

    A visual tracking system is essential as a basis for visual servoing, autonomous navigation, path planning, robot-human interaction and other robotic functions. To execute various tasks in diverse and ever-changing environments, a mobile robot requires high levels of robustness, precision, environmental adaptability and real-time performance of the visual tracking system. In keeping with the application characteristics of our amphibious spherical robot, which was proposed for flexible and economical underwater exploration in 2012, an improved RGB-D visual tracking algorithm is proposed and implemented. Given the limited power source and computational capabilities of mobile robots, compressive tracking (CT), which is the effective and efficient algorithm that was proposed in 2012, was selected as the basis of the proposed algorithm to process colour images. A Kalman filter with a second-order motion model was implemented to predict the state of the target and select candidate patches or samples for the CT tracker. In addition, a variance ratio features shift (VR-V) tracker with a Kalman estimation mechanism was used to process depth images. Using a feedback strategy, the depth tracking results were used to assist the CT tracker in updating classifier parameters at an adaptive rate. In this way, most of the deficiencies of CT, including drift and poor robustness to occlusion and high-speed target motion, were partly solved. To evaluate the proposed algorithm, a Microsoft Kinect sensor, which combines colour and infrared depth cameras, was adopted for use in a prototype of the robotic tracking system. The experimental results with various image sequences demonstrated the effectiveness, robustness and real-time performance of the tracking system.

  17. Study on the communication technology of instrument based on LabVIEW

    International Nuclear Information System (INIS)

    Jiang Wei; Lai Qinggui; Zhang Xiaobo

    2012-01-01

    The hardware and software structure of communication of universal instrument is discussed based on LabVIEW, the several realization of remote communication is compared too. In the control and measure system of LIA, using LabVIEW, the communication is realized among the plenty of instruments which have the various interfaces, in this paper the frame of hardware and software about instrument communication is showed. (authors)

  18. New methods of magnet-based instrumentation for NOTES.

    Science.gov (United States)

    Magdeburg, Richard; Hauth, Daniel; Kaehler, Georg

    2013-12-01

    Laparoscopic surgery has displaced open surgery as the standard of care for many clinical conditions. NOTES has been described as the next surgical frontier with the objective of incision-free abdominal surgery. The principal challenge of NOTES procedures is the loss of triangulation and instrument rigidity, which is one of the fundamental concepts of laparoscopic surgery. To overcome these problems necessitates the development of new instrumentation. material and methods: We aimed to assess the use of a very simple combination of internal and external magnets that might allow the vigorous multiaxial traction/counter-traction required in NOTES procedures. The magnet retraction system consisted of an external magnetic assembly and either small internal magnets attached by endoscopic clips to the designated tissue (magnet-clip-approach) or an endoscopic grasping forceps in a magnetic deflector roll (magnet-trocar-approach). We compared both methods regarding precision, time and efficacy by performing transgastric partial uterus resections with better results for the magnet-trocar-approach. This proof-of-principle animal study showed that the combination of external and internal magnets generates sufficient coupling forces at clinically relevant abdominal wall thicknesses, making them suitable for use and evaluation in NOTES procedures, and provides the vigorous multiaxial traction/counter-traction required by the lack of additional abdominal trocars.

  19. An Automated Sorting System Based on Virtual Instrumentation Techniques

    Directory of Open Access Journals (Sweden)

    Rodica Holonec

    2008-07-01

    Full Text Available The application presented in this paper represents an experimental model and it refers to the implementing of an automated sorting system for pieces of same shape but different sizes and/or colors. The classification is made according to two features: the color and weight of these pieces. The system is a complex combination of NI Vision hardware and software tools, strain gauges transducers, signal conditioning connected to data acquisition boards, motion and control elements. The system is very useful for students to learn and experiment different virtual instrumentation techniques in order to be able to develop a large field of applications from inspection and process control to sorting and assembly

  20. Optimization of Orchestral Layouts Based on Instrument Directivity Patterns

    Science.gov (United States)

    Stroud, Nathan Paul

    The experience of hearing an exceptional symphony orchestra perform in an excel- lent concert hall can be profound and moving, causing a level of excitement not often reached for listeners. Romantic period style orchestral music, recognized for validating the use of intense emotion for aesthetic pleasure, was the last significant development in the history of the orchestra. In an age where orchestral popularity is waning, the possibil- ity of evolving the orchestral sound in our modern era exists through the combination of our current understanding of instrument directivity patterns and their interaction with architectural acoustics. With the aid of wave field synthesis (WFS), newly proposed variations on orchestral layouts are tested virtually using a 64-channel WFS array. Each layout is objectively and subjectively compared for determination of which layout could optimize the sound of the orchestra and revitalize the excitement of the performance.

  1. An instrument for the assessment of diarrhoeal severity based on a longitudinal community-based study

    Science.gov (United States)

    Lee, Gwenyth; Peñataro Yori, Pablo; Paredes Olortegui, Maribel; Caulfield, Laura E; Sack, David A; Fischer-Walker, Christa; Black, Robert E; Kosek, Margaret

    2014-01-01

    Objective Diarrhoea is a significant contributer to morbidity and is among the leading causes of death of children living in poverty. As such, the incidence, duration and severity of diarrhoeal episodes in the household are often key variables of interest in a variety of community-based studies. However, there currently exists no means of defining diarrhoeal severity that are (A) specifically designed and adapted for community-based studies, (B) associated with poorer child outcomes and (C) agreed on by the majority of researchers. Clinical severity scores do exist and are used in healthcare settings, but these tend to focus on relatively moderate-to-severe dehydrating and dysenteric disease, require trained observation of the child and, given the variability of access and utilisation of healthcare, fail to sufficiently describe the spectrum of disease in the community setting. Design Longitudinal cohort study. Setting Santa Clara de Nanay, a rural community in the Northern Peruvian Amazon. Participants 442 infants and children 0–72 months of age. Main outcome measures Change in weight over 1-month intervals and change in length/height over 9-month intervals. Results Diarrhoeal episodes with symptoms of fever, anorexia, vomiting, greater number of liquid stools per day and greater number of total stools per day were associated with poorer weight gain compared with episodes without these symptoms. An instrument to measure the severity was constructed based on the duration of these symptoms over the course of a diarrhoeal episode. Conclusions In order to address limitations of existing diarrhoeal severity scores in the context of community-based studies, we propose an instrument comprised of diarrhoea-associated symptoms easily measured by community health workers and based on the association of these symptoms with poorer child growth. This instrument can be used to test the impact of interventions on the burden of diarrhoeal disease. PMID:24907244

  2. Single-item screening for agoraphobic symptoms : validation of a web-based audiovisual screening instrument

    NARCIS (Netherlands)

    van Ballegooijen, Wouter; Riper, Heleen; Donker, Tara; Martin Abello, Katherina; Marks, Isaac; Cuijpers, Pim

    2012-01-01

    The advent of web-based treatments for anxiety disorders creates a need for quick and valid online screening instruments, suitable for a range of social groups. This study validates a single-item multimedia screening instrument for agoraphobia, part of the Visual Screener for Common Mental Disorders

  3. Design of software platform based on linux operating system for γ-spectrometry instrument

    International Nuclear Information System (INIS)

    Hong Tianqi; Zhou Chen; Zhang Yongjin

    2008-01-01

    This paper described the design of γ-spectrometry instrument software platform based on s3c2410a processor with arm920t core, emphases are focused on analyzing the integrated application of embedded linux operating system, yaffs file system and qt/embedded GUI development library. It presented a new software platform in portable instrument for γ measurement. (authors)

  4. The Domain Five Observation Instrument: A Competency-Based Coach Evaluation Tool

    Science.gov (United States)

    Shangraw, Rebecca

    2017-01-01

    The Domain Five Observation Instrument (DFOI) is a competency-based observation instrument recommended for sport leaders or researchers who wish to evaluate coaches' instructional behaviors. The DFOI includes 10 behavior categories and four timed categories that encompass 34 observable instructional benchmarks outlined in domain five of the…

  5. Track distortion in a micromegas based large prototype of a Time Projection Chamber for the International Linear Collider

    International Nuclear Information System (INIS)

    Bhattacharya, Deb Sankar; Majumdar, Nayana; Sarkar, S.; Bhattacharya, S.; Mukhopadhyay, Supratik; Bhattacharya, P.; Attie, D.; Colas, P.; Ganjour, S.; Bhattacharya, Aparajita

    2016-01-01

    The principal particle tracker at the International Linear Collider (ILC) is planned to be a large Time Projection Chamber (TPC) where different Micro Pattern Gaseous Detector (MPGDs) candidate as the gaseous amplifier. A Micromegas (MM) based TPC can meet the ILC requirement of continuous and precise pattern recognition. Seven MM modules, working as the end-plate of a Large Prototype TPC (LPTPC) installed at DESY, have been tested with a 5 GeV electron beam. Due to the grounded peripheral frame of the MM modules, at low drift, the electric field lines near the detector edge remain no longer parallel to the TPC axis. This causes signal loss along the boundaries of the MM modules as well as distortion in the reconstructed track. In presence of magnetic field, the distorted electric field introduces ExB effect

  6. Study on virtual instrument developing system based on intelligent virtual control

    International Nuclear Information System (INIS)

    Tang Baoping; Cheng Fabin; Qin Shuren

    2005-01-01

    The paper introduces a non-programming developing system of a virtual instrument (VI), i.e., a virtual measurement instrument developing system (VMIDS) based on intelligent virtual control (IVC). The background of the IVC-based VMIDS is described briefly, and the hierarchical message bus (HMB)-based software architecture of VMIDS is discussed in detail. The three parts and functions of VMIDS are introduced, and the process of non-programming developing VI is further described

  7. Study on virtual instrument developing system based on intelligent virtual control

    Energy Technology Data Exchange (ETDEWEB)

    Tang Baoping; Cheng Fabin; Qin Shuren [Test Center, College of Mechanical Engineering, Chongqing University , Chongqing 400030 (China)

    2005-01-01

    The paper introduces a non-programming developing system of a virtual instrument (VI), i.e., a virtual measurement instrument developing system (VMIDS) based on intelligent virtual control (IVC). The background of the IVC-based VMIDS is described briefly, and the hierarchical message bus (HMB)-based software architecture of VMIDS is discussed in detail. The three parts and functions of VMIDS are introduced, and the process of non-programming developing VI is further described.

  8. Z Andromedae: the prototype

    International Nuclear Information System (INIS)

    Viotti, R.; Giangrande, A.; Ricciardi, O.; Cassatella, A.

    1982-01-01

    Z And is considered as the ''prototype'' of the symbiotic stars. Besides its symbiotic spectrum, the star is also known for its characteristic light curve (and for the related spectral variations). Since many theoretical speculations on Z And and similar objects have been based on the luminosity and spectral variations of this star, the authors critically analyse the observational data concerning it. (Auth.)

  9. Applying XML-Based Technologies to Developing Online Courses: The Case of a Prototype Learning Environment

    Science.gov (United States)

    Jedrzejowicz, Joanna; Neumann, Jakub

    2007-01-01

    Purpose: This paper seeks to describe XML technologies and to show how they can be applied for developing web-based courses and supporting authors who do not have much experience with the preparation of web-based courses. Design/methodology/approach: When developing online courses the academic staff has to address the following problem--how to…

  10. The Yucca Mountain Project Prototype Testing Program

    International Nuclear Information System (INIS)

    1989-10-01

    The Yucca Mountain Project is conducting a Prototype Testing Program to ensure that the Exploratory Shaft Facility (ESF) tests can be completed in the time available and to develop instruments, equipment, and procedures so the ESF tests can collect reliable and representative site characterization data. This report summarizes the prototype tests and their status and location and emphasizes prototype ESF and surface tests, which are required in the early stages of the ESF site characterization tests. 14 figs

  11. Microcalcification detectability using a bench-top prototype photon-counting breast CT based on a Si strip detector.

    Science.gov (United States)

    Cho, Hyo-Min; Ding, Huanjun; Barber, William C; Iwanczyk, Jan S; Molloi, Sabee

    2015-07-01

    To investigate the feasibility of detecting breast microcalcification (μCa) with a dedicated breast computed tomography (CT) system based on energy-resolved photon-counting silicon (Si) strip detectors. The proposed photon-counting breast CT system and a bench-top prototype photon-counting breast CT system were simulated using a simulation package written in matlab to determine the smallest detectable μCa. A 14 cm diameter cylindrical phantom made of breast tissue with 20% glandularity was used to simulate an average-sized breast. Five different size groups of calcium carbonate grains, from 100 to 180 μm in diameter, were simulated inside of the cylindrical phantom. The images were acquired with a mean glandular dose (MGD) in the range of 0.7-8 mGy. A total of 400 images was used to perform a reader study. Another simulation study was performed using a 1.6 cm diameter cylindrical phantom to validate the experimental results from a bench-top prototype breast CT system. In the experimental study, a bench-top prototype CT system was constructed using a tungsten anode x-ray source and a single line 256-pixels Si strip photon-counting detector with a pixel pitch of 100 μm. Calcium carbonate grains, with diameter in the range of 105-215 μm, were embedded in a cylindrical plastic resin phantom to simulate μCas. The physical phantoms were imaged at 65 kVp with an entrance exposure in the range of 0.6-8 mGy. A total of 500 images was used to perform another reader study. The images were displayed in random order to three blinded observers, who were asked to give a 4-point confidence rating on each image regarding the presence of μCa. The μCa detectability for each image was evaluated by using the average area under the receiver operating characteristic curve (AUC) across the readers. The simulation results using a 14 cm diameter breast phantom showed that the proposed photon-counting breast CT system can achieve high detection accuracy with an average AUC greater

  12. Practical guidelines for developing a smartphone-based survey instrument

    DEFF Research Database (Denmark)

    Ohme, Jakob; de Vreese, Claes Holger; Albæk, Erik

    The increasing relevance of mobile surveys makes it important to gather empirical evidence on designs of such surveys. This research note presents the results of a test study conducted to identify the best set-up for a smartphone-based survey. We base our analysis on a random sample of Danish...

  13. A system for rapid prototyping of hearts with congenital malformations based on the medical imaging interaction toolkit (MITK)

    Science.gov (United States)

    Wolf, Ivo; Böttger, Thomas; Rietdorf, Urte; Maleike, Daniel; Greil, Gerald; Sieverding, Ludger; Miller, Stephan; Mottl-Link, Sibylle; Meinzer, Hans-Peter

    2006-03-01

    Precise knowledge of the individual cardiac anatomy is essential for diagnosis and treatment of congenital heart disease. Complex malformations of the heart can best be comprehended not from images but from anatomic specimens. Physical models can be created from data using rapid prototyping techniques, e.g., lasersintering or 3D-printing. We have developed a system for obtaining data that show the relevant cardiac anatomy from high-resolution CT/MR images and are suitable for rapid prototyping. The challenge is to preserve all relevant details unaltered in the produced models. The main anatomical structures of interest are the four heart cavities (atria, ventricles), the valves and the septum separating the cavities, and the great vessels. These can be shown either by reproducing the morphology itself or by producing a model of the blood-pool, thus creating a negative of the morphology. Algorithmically the key issue is segmentation. Practically, possibilities allowing the cardiologist or cardiac surgeon to interactively check and correct the segmentation are even more important due to the complex, irregular anatomy and imaging artefacts. The paper presents the algorithmic and interactive processing steps implemented in the system, which is based on the open-source Medical Imaging Interaction Toolkit (MITK, www.mitk.org). It is shown how the principles used in MITK enable to assemble the system from modules (functionalities) developed independently from each other. The system allows to produce models of the heart (and other anatomic structures) of individual patients as well as to reproduce unique specimens from pathology collections for teaching purposes.

  14. Plug-and-play paper-based toolkit for rapid prototyping of microfluidics and electronics towards point-of-care diagnostic solutions

    CSIR Research Space (South Africa)

    Smith, S

    2015-11-01

    Full Text Available We present a plug-and-play toolkit for the rapid assembly of paper-based microfluidic and electronic components for quick prototyping of paper-based components towards point-of-care diagnostic solutions. Individual modules, each with a specific...

  15. A prototype knowledge-based system for material selection of ceramic matrix composites of automotive engine components

    Energy Technology Data Exchange (ETDEWEB)

    Sapuan, S.M.; Jacob, M.S.D.; Mustapha, F.; Ismail, N

    2002-12-15

    A prototype knowledge based system (KBS) for material selection of ceramic matrix composites (CMC) for engine components such as piston, connecting rod and piston ring is proposed in this paper. The main aim of this research work is to select the most suitable material for the automotive engine components. The selection criteria are based upon the pre-defined constraint value. The constraint values are mechanical, physical properties and manufacturing techniques. The constraint values are the safety values for the product design. The constraint values are selected from the product design specification. The product design specification values are selected from the past design calculation and some values are calculated by the help of past design data. The knowledge-based system consists of several modules such as knowledge acquisition module, inference module and user interface module. The domains of the knowledge-based system are defined as objects and linked together by hierarchical graph. The system is capable of selecting the most suitable materials and ranks the materials with respect to their properties. The design engineers can choose the required materials related to the materials property.

  16. Rapid prototyping: een veelbelovende methode

    NARCIS (Netherlands)

    Haverman, T.M.; Karagozoglu, K.H.; Prins, H.; Schulten, E.A.J.M.; Forouzanfar, T.

    2013-01-01

    Rapid prototyping is a method which makes it possible to produce a three-dimensional model based on two-dimensional imaging. Various rapid prototyping methods are available for modelling, such as stereolithography, selective laser sintering, direct laser metal sintering, two-photon polymerization,

  17. A population study comparing screening performance of prototypes for depression and anxiety with standard scales

    Directory of Open Access Journals (Sweden)

    Christensen Helen

    2011-11-01

    Full Text Available Abstract Background Screening instruments for mental disorders need to be short, engaging, and valid. Current screening instruments are usually questionnaire-based and may be opaque to the user. A prototype approach where individuals identify with a description of an individual with typical symptoms of depression, anxiety, social phobia or panic may be a shorter, faster and more acceptable method for screening. The aim of the study was to evaluate the accuracy of four new prototype screeners for predicting depression and anxiety disorders and to compare their performance with existing scales. Methods Short and ultra-short prototypes were developed for Major Depressive Disorder (MDD, Generalised Anxiety Disorder (GAD, Panic Disorder (PD and Social Phobia (SP. Prototypes were compared to typical short and ultra-short self-report screening scales, such as the Centre for Epidemiology Scale, CES-D and the GAD-7, and their short forms. The Mini International Neuropsychiatric Interview (MINI version 6 1 was used as the gold standard for obtaining clinical criteria through a telephone interview. From a population sample, 225 individuals who endorsed a prototype and 101 who did not were administered the MINI. Receiver operating characteristic (ROC curves were plotted for the short and ultra short prototypes and for the short and ultra short screening scales. Results The study found that the rates of endorsement of the prototypes were commensurate with prevalence estimates. The short-form and ultra short scales outperformed the short and ultra short prototypes for every disorder except GAD, where the GAD prototype outperformed the GAD 7. Conclusions The findings suggest that people may be able to self-identify generalised anxiety more accurately than depression based on a description of a prototypical case. However, levels of identification were lower than expected. Considerable benefits from this method of screening may ensue if our prototypes can be

  18. Radioisotope instruments

    CERN Document Server

    Cameron, J F; Silverleaf, D J

    1971-01-01

    International Series of Monographs in Nuclear Energy, Volume 107: Radioisotope Instruments, Part 1 focuses on the design and applications of instruments based on the radiation released by radioactive substances. The book first offers information on the physical basis of radioisotope instruments; technical and economic advantages of radioisotope instruments; and radiation hazard. The manuscript then discusses commercial radioisotope instruments, including radiation sources and detectors, computing and control units, and measuring heads. The text describes the applications of radioisotop

  19. Developing evaluation instrument based on CIPP models on the implementation of portfolio assessment

    Science.gov (United States)

    Kurnia, Feni; Rosana, Dadan; Supahar

    2017-08-01

    This study aimed to develop an evaluation instrument constructed by CIPP model on the implementation of portfolio assessment in science learning. This study used research and development (R & D) method; adapting 4-D by the development of non-test instrument, and the evaluation instrument constructed by CIPP model. CIPP is the abbreviation of Context, Input, Process, and Product. The techniques of data collection were interviews, questionnaires, and observations. Data collection instruments were: 1) the interview guidelines for the analysis of the problems and the needs, 2) questionnaire to see level of accomplishment of portfolio assessment instrument, and 3) observation sheets for teacher and student to dig up responses to the portfolio assessment instrument. The data obtained was quantitative data obtained from several validators. The validators consist of two lecturers as the evaluation experts, two practitioners (science teachers), and three colleagues. This paper shows the results of content validity obtained from the validators and the analysis result of the data obtained by using Aikens' V formula. The results of this study shows that the evaluation instrument based on CIPP models is proper to evaluate the implementation of portfolio assessment instruments. Based on the experts' judgments, practitioners, and colleagues, the Aikens' V coefficient was between 0.86-1,00 which means that it is valid and can be used in the limited trial and operational field trial.

  20. Testing Differential Effects of Computer-Based, Web-Based and Paper-Based Administration of Questionnaire Research Instruments

    Science.gov (United States)

    Hardre, Patricia L.; Crowson, H. Michael; Xie, Kui; Ly, Cong

    2007-01-01

    Translation of questionnaire instruments to digital administration systems, both self-contained and web-based, is widespread and increasing daily. However, the literature is lean on controlled empirical studies investigating the potential for differential effects of administrative methods. In this study, two university student samples were…

  1. Strategies to Enhance Online Learning Teams. Team Assessment and Diagnostics Instrument and Agent-based Modeling

    Science.gov (United States)

    2010-08-12

    Strategies to Enhance Online Learning Teams Team Assessment and Diagnostics Instrument and Agent-based Modeling Tristan E. Johnson, Ph.D. Learning ...REPORT DATE AUG 2010 2. REPORT TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Strategies to Enhance Online Learning ...TeamsTeam Strategies to Enhance Online Learning Teams: Team Assessment and Diagnostics Instrument and Agent-based Modeling 5a. CONTRACT NUMBER 5b. GRANT

  2. Evaluating a Prototype Approach to Validating a DDS-based System Architecture for Automated Manufacturing Environments

    NARCIS (Netherlands)

    Essers, M.S.; Vaneker, Thomas H.J.

    2014-01-01

    Data Distribution Services (DDS) are emerging as communication systems in manufacturing environments. One of the key features of a DDS based system is the ability to regain performance levels after the introduction or removal of a DDS participant. In implementing a DDS participant to an existing

  3. Plugging 3G mobile networks into the internet : a prototype-based evaluation

    NARCIS (Netherlands)

    Oredope, A.; Liotta, A.

    2006-01-01

    The third generation mobile network aims at providing present and future Internet services everywhere and at anytime using cellular technologies. This is based on its all-IP core network known as the IP multimedia subsystem which provides end-users with better QoS, charging and integration of

  4. Development of a prototype acquisition and data processing system based on FPGA

    International Nuclear Information System (INIS)

    Romero, L; Bellino, P

    2012-01-01

    We present the first stage of the expansion and improvement of a signal acquisition system based on FPGA. This system will acquire and process signals from nuclear detectors working in both pulse and current mode. The aim of this development is to unify all the actual systems for physical measurements in nuclear facilities and reactors (author)

  5. A prototype data base for IGCP project 163—IGBA

    Science.gov (United States)

    Li, Shu Zhong; Chayes, Felix

    Access to the data base of a proposed IGBA information system is by hashing function with specimen location as the primary key. Currently established secondary keys are stratigraphic age and rock name. Key chains are stored in a direct-access indexing table that also contains other information frequently used in deciding whether a particular specimen description should be retrieved.

  6. Robotic Transnasal Endoscopic Skull Base Surgery: Systematic Review of the Literature and Report of a Novel Prototype for a Hybrid System (Brescia Endoscope Assistant Robotic Holder).

    Science.gov (United States)

    Bolzoni Villaret, Andrea; Doglietto, Francesco; Carobbio, Andrea; Schreiber, Alberto; Panni, Camilla; Piantoni, Enrico; Guida, Giovanni; Fontanella, Marco Maria; Nicolai, Piero; Cassinis, Riccardo

    2017-09-01

    Although robotics has already been applied to several surgical fields, available systems are not designed for endoscopic skull base surgery (ESBS). New conception prototypes have been recently described for ESBS. The aim of this study was to provide a systematic literature review of robotics for ESBS and describe a novel prototype developed at the University of Brescia. PubMed and Scopus databases were searched using a combination of terms, including Robotics OR Robot and Surgery OR Otolaryngology OR Skull Base OR Holder. The retrieved papers were analyzed, recording the following features: interface, tools under robotic control, force feedback, safety systems, setup time, and operative time. A novel hybrid robotic system has been developed and tested in a preclinical setting at the University of Brescia, using an industrial manipulator and readily available off-the-shelf components. A total of 11 robotic prototypes for ESBS were identified. Almost all prototypes present a difficult emergency management as one of the main limits. The Brescia Endoscope Assistant Robotic holder has proven the feasibility of an intuitive robotic movement, using the surgeon's head position: a 6 degree of freedom sensor was used and 2 light sources were added to glasses that were therefore recognized by a commercially available sensor. Robotic system prototypes designed for ESBS and reported in the literature still present significant technical limitations. Hybrid robot assistance has a huge potential and might soon be feasible in ESBS. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Blue electroluminescence nanodevice prototype based on vertical ZnO nanowire/polymer film on silicon substrate

    International Nuclear Information System (INIS)

    He Ying; Wang Junan; Chen Xiaoban; Zhang Wenfei; Zeng Xuyu; Gu Qiuwen

    2010-01-01

    We present a polymer-complexing soft template technique to construct the ZnO-nanowire/polymer light emitting device prototype that exhibits blue electrically driven emission with a relatively low-threshold voltage at room temperature in ambient atmosphere, and the ZnO-nanowire-based LED's emission wavelength is easily tuned by controlling the applied-excitation voltage. The nearly vertically aligned ZnO-nanowires with polymer film were used as emissive layers in the devices. The method uses polymer as binder in the LED device and dispersion medium in the luminescence layer, which stabilizes the quasi-arrays of ZnO nanowires embedding in a thin polymer film on silicon substrate and passivates the surface of ZnO nanocrystals, to prevent the quenching of luminescence. Additionally, the measurements of electrical properties showed that ZnO-nanowire/polymer film could significantly improve the conductivity of the film, which could be attributed to an increase in both Hall mobility and carrier concentration. The results indicated that the novel technique is a low-cost process for ZnO-based UV or blue light emission and reduces the requirement for achieving robust p-doping of ZnO film. It suggests that such ZnO-nanowire/polymer-based LEDs will be suitable for the electro-optical application.

  8. A PC-based Flexible Solution for Virtual Instrumentation of a Multi-Purpose Test Bed

    Directory of Open Access Journals (Sweden)

    Benatzky Christian

    2006-11-01

    Full Text Available The aim of the paper is to give an overview of a test bed set up for lightweight flexible structures. The purpose of the test bed is to compare different concepts for suppressing structural vibrations. It is demonstrated that such a complex measurement and actuation task can be easily implemented on a single PC using standard software like Matlab/SIMULINK® with a minimum of custom hardware. With the help of this PC standard engineering tasks like measuring, identification of transfer functions, as well as controller design and implementation in soft real-time can be carried out easily (rapid prototyping. The resulting system is flexible and scalable, enabling an engineer to perform all the above mentioned tasks for a given test object within minimum time. Additionally, the utilization of Matlab/SIMULINK® facilitates the realization of a versatile virtual instrumentation system which is easy to use and may also be remote-controlled.

  9. Automatic classification of minimally invasive instruments based on endoscopic image sequences

    Science.gov (United States)

    Speidel, Stefanie; Benzko, Julia; Krappe, Sebastian; Sudra, Gunther; Azad, Pedram; Müller-Stich, Beat Peter; Gutt, Carsten; Dillmann, Rüdiger

    2009-02-01

    Minimally invasive surgery is nowadays a frequently applied technique and can be regarded as a major breakthrough in surgery. The surgeon has to adopt special operation-techniques and deal with difficulties like the complex hand-eye coordination and restricted mobility. To alleviate these constraints we propose to enhance the surgeon's capabilities by providing a context-aware assistance using augmented reality techniques. To analyze the current situation for context-aware assistance, we need intraoperatively gained sensor data and a model of the intervention. A situation consists of information about the performed activity, the used instruments, the surgical objects, the anatomical structures and defines the state of an intervention for a given moment in time. The endoscopic images provide a rich source of information which can be used for an image-based analysis. Different visual cues are observed in order to perform an image-based analysis with the objective to gain as much information as possible about the current situation. An important visual cue is the automatic recognition of the instruments which appear in the scene. In this paper we present the classification of minimally invasive instruments using the endoscopic images. The instruments are not modified by markers. The system segments the instruments in the current image and recognizes the instrument type based on three-dimensional instrument models.

  10. Prototype of an energy enhancer for mask based laser materials processing

    DEFF Research Database (Denmark)

    Bastue, Jens; Olsen, Flemmming Ove

    1997-01-01

    In general mask based laser material processing (MBLMP) is a process which suffers from a low energy efficiency, because the majority of the laser light is absorbed in or reflected by the mask. We have developed a device called an energy enhancer which is capable of improving the energy efficienc...... component reflectivity and alignment sensitivity are investigated in order to evaluate the possibility of making commercial use of the device. The obtainable image quality and how this is influenced by the focusing and imaging system is discussed in some detail....... by a factor of 2 - 4 for a typical TEA-CO2 system for mask based laser marking. A simple ray-tracing model has been built in order to design and optimise the energy enhancer. Thus we present experimental results as well as simulations and show fine accordance between the two. Important system parameters like...

  11. Design of a sensitive grating-based phase contrast mammography prototype (Conference Presentation)

    Science.gov (United States)

    Arboleda Clavijo, Carolina; Wang, Zhentian; Köhler, Thomas; van Stevendaal, Udo; Martens, Gerhard; Bartels, Matthias; Villanueva-Perez, Pablo; Roessl, Ewald; Stampanoni, Marco

    2017-03-01

    Grating-based phase contrast mammography can help facilitate breast cancer diagnosis, as several research works have demonstrated. To translate this technique to the clinics, it has to be adapted to cover a large field of view within a limited exposure time and with a clinically acceptable radiation dose. This indicates that a straightforward approach would be to install a grating interferometer (GI) into a commercial mammography device. We developed a wave propagation based optimization method to select the most convenient GI designs in terms of phase and dark-field sensitivities for the Philips Microdose Mammography (PMM) setup. The phase sensitivity was defined as the minimum detectable breast tissue electron density gradient, whereas the dark-field sensitivity was defined as its corresponding signal-to-noise Ratio (SNR). To be able to derive sample-dependent sensitivity metrics, a visibility reduction model for breast tissue was formulated, based on previous research works on the dark-field signal and utilizing available Ultra-Small-Angle X-ray Scattering (USAXS) data and the outcomes of measurements on formalin-fixed breast tissue specimens carried out in tube-based grating interferometers. The results of this optimization indicate the optimal scenarios for each metric are different and fundamentally depend on the noise behavior of the signals and the visibility reduction trend with respect to the system autocorrelation length. In addition, since the inter-grating distance is constrained by the space available between the breast support and the detector, the best way we have to improve sensitivity is to count on a small G2 pitch.

  12. Microcontroller-based data logging instrumentation system for wind ...

    African Journals Online (AJOL)

    In this study, a microcontroller based data logger for measuring wind speed and wind direction has been designed. The designed system uses the Atmel microcontroller family which consists of sensor inputs, a microcontroller and a data storage device. The system was designed and developed to measure the wind speed ...

  13. Validation of a Piezoelectric Sensor Array-Based Device for Measurement of Carotid-Femoral Pulse Wave Velocity: The Philips Prototype.

    Science.gov (United States)

    Xu, Shao-Kun; Hong, Xiang-Fei; Cheng, Yi-Bang; Liu, Chang-Yuan; Li, Yan; Yin, Bin; Wang, Ji-Guang

    2018-03-01

    Multiple piezoelectric pressure mechanotransducers topologized into an array might improve efficiency and accuracy in collecting arterial pressure waveforms for measurement of pulse wave velocity (PWV). In the present study, we validated a piezoelectric sensor array-based prototype (Philips) against the validated and clinically widely used Complior device (Alam Medical). We recruited 33 subjects with a wide distribution of PWV. For the validation, PWV was measured sequentially with the Complior device (four times) and the Philips prototype (three times). With the 99 paired PWV values, we investigated the agreement between the Philips prototype and the Complior device using Pearson correlation analysis and Bland-Altman plot. We also performed analysis on the determinants and reproducibility of PWV measured with both devices. The correlation coefficient for PWV measured with the two devices was 0.92 ( p prototype slightly overestimated PWV by 0.24 (± 2 standard deviations, ± 1.91) m/s, especially when PWV was high. The correlation coefficient between the difference and the average of the Philips and Complior measurements was 0.21 ( p = 0.035). Nonetheless, they had similar determinants. Age, mean arterial pressure, and sex altogether explained 81.6 and 83.9% of the variance of PWV values measured with the Philips prototype and Complior device, respectively. When the two extremes of the three PWV values measured with the Philips prototype and the Complior device were investigated, the coefficients of variation were 8.26 and 3.26%, respectively. Compared with the Complior device, the Philips prototype had similar accuracy, determinants, and reproducibility in measuring PWV.

  14. Development of a MPPC-based prototype gantry for future MRI-PET scanners

    Science.gov (United States)

    Kurei, Y.; Kataoka, J.; Kato, T.; Fujita, T.; Ohshima, T.; Taya, T.; Yamamoto, S.

    2014-12-01

    We have developed a high spatial resolution, compact Positron Emission Tomography (PET) module designed for small animals and intended for use in magnetic resonance imaging (MRI) systems. This module consists of large-area, 4 × 4 ch MPPC arrays (S11830-3344MF; Hamamatsu Photonics K.K.) optically coupled with Ce-doped (Lu,Y)2(SiO4)O (Ce:LYSO) scintillators fabricated into 16 × 16 matrices of 0.5 × 0.5 mm2 pixels. We set the temperature sensor (LM73CIMK-0; National Semiconductor Corp.) at the rear of the MPPC acceptance surface, and apply optimum voltage to maintain the gain. The eight MPPC-based PET modules and coincidence circuits were assembled into a gantry arranged in a ring 90 mm in diameter to form the MPPC-based PET system. We have developed two types PET gantry: one made of non-magnetic metal and the other made of acrylonitrile butadiene styrene (ABS) resins. The PET gantry was positioned around the RF coil of the 4.7 T MRI system. We took an image of a point }22Na source under fast spin echo (FSE) and gradient echo (GE), in order to measure the interference between the MPPC-based PET and MRI. The spatial resolution of PET imaging in a transaxial plane of about 1 mm (FWHM) was achieved in all cases. Operating with PET made of ABS has no effect on MR images, while operating with PET made of non-magnetic metal has a significant detrimental effect on MR images. This paper describes our quantitative evaluations of PET images and MR images, and presents a more advanced version of the gantry for future MRI/DOI-PET systems.

  15. Innovative Approaches to Space-Based Manufacturing and Rapid Prototyping of Composite Materials

    Science.gov (United States)

    Hill, Charles S.

    2012-01-01

    The ability to deploy large habitable structures, construct, and service exploration vehicles in low earth orbit will be an enabling capability for continued human exploration of the solar system. It is evident that advanced manufacturing methods to fabricate replacement parts and re-utilize launch vehicle structural mass by converting it to different uses will be necessary to minimize costs and allow flexibility to remote crews engaged in space travel. Recent conceptual developments and the combination of inter-related approaches to low-cost manufacturing of composite materials and structures are described in context leading to the possibility of on-orbit and space-based manufacturing.

  16. Polarimetry noise in fiber-based optical coherence tomography instrumentation

    Science.gov (United States)

    Zhang, Ellen Ziyi; Vakoc, Benjamin J.

    2011-01-01

    High noise levels in fiber-based polarization-sensitive optical coherence tomography (PS-OCT) have broadly limited its clinical utility. In this study we investigate contribution of polarization mode dispersion (PMD) to the polarimetry noise. We develop numerical models of the PS-OCT system including PMD and validate these models with empirical data. Using these models, we provide a framework for predicting noise levels, for processing signals to reduce noise, and for designing an optimized system. PMID:21935044

  17. Elementary study of encapsulation of radioisotope battery prototype based on 63Ni radio-voltaic effect

    International Nuclear Information System (INIS)

    Gao Hui; Zhang Huaming; Luo Shunzhong; Wang Heyi; Fu Zhonghua

    2012-01-01

    For isotope battery application, it is necessary to encapsulate in a certain method. After having accomplished selection of material composing and proportion, procedure and encapsulating process based on GD3217Y detector. the different types of device come from untouched, loaded by slip of stainless steel with or without 63 Ni isotope were encapsulated respectively. Despite necessary reliability of package has been evaluated in the previous work. in view of specialty due to the incorporation of radioactive isotopes into device, the reliability issue must be further taken into account for actual application. Hence, we emphasize on the comparison about electrical capability of types of devices under the different situations, namely, before and after encapsulation, the natural aging and artificial accelerated aging. The results of the comparison indicate that the adoption of the method of the encapsulation supply effectively stable electrical capability at the condition of ensuring safety of radioactive source besides improving environmental adaptability for device. Further, it offers technological support for the encapsulation of radioisotope battery based on β radio-voltaic effect. (authors)

  18. Enabling Fast ASIP Design Space Exploration: An FPGA-Based Runtime Reconfigurable Prototyper

    Directory of Open Access Journals (Sweden)

    Paolo Meloni

    2012-01-01

    Full Text Available Application Specific Instruction-set Processors (ASIPs expose to the designer a large number of degrees of freedom. Accurate and rapid simulation tools are needed to explore the design space. To this aim, FPGA-based emulators have recently been proposed as an alternative to pure software cycle-accurate simulator. However, the advantages of on-hardware emulation are reduced by the overhead of the RTL synthesis process that needs to be run for each configuration to be emulated. The work presented in this paper aims at mitigating this overhead, exploiting a form of software-driven platform runtime reconfiguration. We present a complete emulation toolchain that, given a set of candidate ASIP configurations, identifies and builds an overdimensioned architecture capable of being reconfigured via software at runtime, emulating all the design space points under evaluation. The approach has been validated against two different case studies, a filtering kernel and an M-JPEG encoding kernel. Moreover, the presented emulation toolchain couples FPGA emulation with activity-based physical modeling to extract area and power/energy consumption figures. We show how the adoption of the presented toolchain reduces significantly the design space exploration time, while introducing an overhead lower than 10% for the FPGA resources and lower than 0.5% in terms of operating frequency.

  19. PROTOTYPE CONTENT BASED IMAGE RETRIEVAL UNTUK DETEKSI PEN YAKIT KULIT DENGAN METODE EDGE DETECTION

    Directory of Open Access Journals (Sweden)

    Erick Fernando

    2016-05-01

    Full Text Available Dokter spesialis kulit melakukan pemeriksa secara visual objek mata, capture objek dengan kamera digital dan menanyakan riwayat perjalanan penyakit pasien, tanpa melakukan perbandingan terhadap gejala dan tanda yang ada sebelummnya. Sehingga pemeriksaan dan perkiraan jenis penyakit kulit. Pengolahan data citra dalam bentuk digital khususnya citra medis sudah sangat dibutuhkan dengan pra-processing. Banyak pasien yang dilayani di rumah sakit masih menggunakan data citra analog. Data analog ini membutuhkan ruangan khusus untuk menyimpan guna menghindarkan kerusakan mekanis. Uraian mengatasi permasalahan ini, citra medis dibuat dalam bentuk digital dan disimpan dalam sistem database dan dapat melihat kesamaan citra kulit yang baru. Citra akan dapat ditampilkan dengan pra- processing dengan identifikasi kesamaan dengan Content Based Image Retrieval (CBIR bekerja dengan cara mengukur kemiripan citra query dengan semua citra yang ada dalam database sehingga query cost berbanding lurus dengan jumlah citra dalam database.

  20. Extension Activity Support System (EASY: A Web-Based Prototype for Facilitating Farm Management

    Directory of Open Access Journals (Sweden)

    Christopher Pettit

    2012-01-01

    Full Text Available In response to disparate advances in delivering spatial information to support agricultural extension activities, the Extension Activity Support System (EASY project was established to develop a vision statement and conceptual design for such a system based on a national needs assessment. Personnel from across Australia were consulted and a review of existing farm information/management software undertaken to ensure that any system that is eventually produced from the EASY vision will build on the strengths of existing efforts. This paper reports on the collaborative consultative process undertaken to create the EASY vision as well as the conceptual technical design and business models that could support a fully functional spatially enabled online system.

  1. Knowledge base to develop expert system prototype for predicting groundwater pollution from nitrogen fertilizer

    International Nuclear Information System (INIS)

    Ta-oun, M.; Daud, M.; Bardaie, M.Z.; Jusop, S.

    1999-01-01

    An expert system for prediction the impact of nitrogen fertilizer on groundwater pollution potential was established by using CLIPS (NASA's Jonson Space Centre). The knowledge base could be extracted from FAO reports, ministry of agriculture and rural development Malaysia report, established literature and domain expert for preparing an expert system skeleton. An expert system was used to correlate the availability of nitrogen fertilizer with the vulnerability of groundwater to pollution in Peninsula Malaysia and to identify potential groundwater quality problems. An n-fertilizer groundwater pollution potential index produced b using the vulnerability of groundwater to pollution yields a more accurate screening toll for identifying potential pollution problems than by considering vulnerability alone. An expert system can predict the groundwater pollution potential under several conditions of agricultural activities and existing environments. (authors)

  2. DESIGN OF A DIDACTIC PROTOTYPE FOR WIRELESS SENSOR NETWORKS IMPLEMENTATION BASED IN ZIGBEE PROTOCOL

    Directory of Open Access Journals (Sweden)

    Gerardo Cázarez-Ayala

    2011-09-01

    Full Text Available The present work tries to describe the design and implementation of a didactic wireless data acquisition station (node with the capacity of net operation. Which nodes, are based in the Xbee wireless communication module of Digi International, which are capable of achieve long periods of autonomous energetic, approximately 30 months with just a simple 9 volts battery and under specific conditions of transference of data via RF.We think that the present work has a very important contribution and significant impact in the automation of processes of nature environment monitoring like ecological reserves, health of the forests, early forest fires detection, monitoring of the diverse variables of the sows in a greenhouse or out of them, monitoring and supervision of variables in shrimp and Tilapia farms in the region up to the energy save through the implementation of smart spaces and the demotic.

  3. Fiber-optic based instrumentation for water and air monitoring

    International Nuclear Information System (INIS)

    MacCraith, B.D.

    1991-01-01

    In this paper real-time in-situ water and air monitoring capabilities based on fiber-optic sensing technology are described. This relatively new technology combines advances in fiber optic and optoelectronics with chemical spectorscopic techniques to enable field environmental monitoring of sub ppm quantities of specific pollutants. The advantages of this technology over conventional sampling methods are outlined. As it is the more developed area the emphasis is on water quality monitoring rather than air. Examples of commercially available, soon-to be available and laboratory systems are presented. One such example is a system used to detect hydrocarbon spills and leaking of underground hydrocarbon storage tanks

  4. Cloud computing geospatial application for water resources based on free and open source software and open standards - a prototype

    Science.gov (United States)

    Delipetrev, Blagoj

    2016-04-01

    Presently, most of the existing software is desktop-based, designed to work on a single computer, which represents a major limitation in many ways, starting from limited computer processing, storage power, accessibility, availability, etc. The only feasible solution lies in the web and cloud. This abstract presents research and development of a cloud computing geospatial application for water resources based on free and open source software and open standards using hybrid deployment model of public - private cloud, running on two separate virtual machines (VMs). The first one (VM1) is running on Amazon web services (AWS) and the second one (VM2) is running on a Xen cloud platform. The presented cloud application is developed using free and open source software, open standards and prototype code. The cloud application presents a framework how to develop specialized cloud geospatial application that needs only a web browser to be used. This cloud application is the ultimate collaboration geospatial platform because multiple users across the globe with internet connection and browser can jointly model geospatial objects, enter attribute data and information, execute algorithms, and visualize results. The presented cloud application is: available all the time, accessible from everywhere, it is scalable, works in a distributed computer environment, it creates a real-time multiuser collaboration platform, the programing languages code and components are interoperable, and it is flexible in including additional components. The cloud geospatial application is implemented as a specialized water resources application with three web services for 1) data infrastructure (DI), 2) support for water resources modelling (WRM), 3) user management. The web services are running on two VMs that are communicating over the internet providing services to users. The application was tested on the Zletovica river basin case study with concurrent multiple users. The application is a state

  5. The design of a simple radon-detecting instrument based on MCU

    International Nuclear Information System (INIS)

    Du Genyuan; Qiu Yingyu; Zhang Jiang

    2007-01-01

    Introduction are given on the internal composition of the radon-detecting instrument based on MCU and the working of the real electric circuit. The single-chip microcomputer P89C58 of PHILIPS is adopted as the micro-controller of the instrument, realizing such functions as counting input pulses within fixed time, data processing, liquid crystal display, keyboard interface, serial communication, etc. The instrument turns out to be low in work consumption, with relatively high degree of concentration and computerization, and is recommended for field operations. (authors)

  6. The design of a simple radon-detecting instrument based on MCU

    International Nuclear Information System (INIS)

    Du Genyuan; Chen Jianjun; Zhang Jiang

    2008-01-01

    Introduction are given on the internal composition of the radon-detecting instrument based on MCU and the working of the real electric circuit. The single-chip microcomputer P89C58 of PHILIPS is adopted as the micro-controller of the instrument, realizing such functions as counting input pulses within fixed time, data processing, liquid crystal display, keyboard interface, serial communication, etc. The instrument turns out to be low in work consumption, with relatively high degree of concentration and computerization, and is recommended for field operations. (authors)

  7. The design of a simple portable γ ray detecting instrument based on MCU

    International Nuclear Information System (INIS)

    Liu Chunmei; Cao Wen; Zhang Jiang

    2008-01-01

    The internal composition of the γ ray detecting instrument based on MCU and the working of the real electric circuit are introduced. The single-chip microcomputer of PHILIPS is adopted as the micro-controller of the instrument, realizing such functions as counting input pulses within fixed time, data processing, liquid crystal display, keyboard interface, serial communication, etc. The instrument turns out to be low in work consumption, with relatively high degree of concentration and computerization, and is recommended for field operations. (authors)

  8. A leak-detection instrument for long buried pipelines based on radioactive tracer measurements

    International Nuclear Information System (INIS)

    Lu Qingqian; Zhou Shuxuan; Tang Yonghua; Sun Xiaolei; Hu Xusheng; Li Deyi; Yin Liqiang

    1987-01-01

    The instrument introduced provides a means for leak detection of long buried pipelines based on the radioactive tracer technique. The principle, block diagram and performances for the instrument are described. The leak-detecting method and the determination of some related parameters are also presented. Leak-detection sensitivity of the instrument is 185 kBq (5 μCi). Accuracy for leak localization is within 2.5 m (per km). It is suitable for the buried light oil (gasoline, kerosene, diesel oil) and industrial water pipelines with a diameter of 15 or 20 cm. The detection length for a single operation reaches up to 50 km

  9. Fabrication of a two-level tumor bone repair biomaterial based on a rapid prototyping technique

    Energy Technology Data Exchange (ETDEWEB)

    Kai He; Yan Yongnian; Zhang Renji; Wang Xiaohong [Key Laboratory for Advanced Materials Processing Technology, Ministry of Education and Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Wang Xinluan; Madhukar, Kumta Shekhar; Qin Ling [Department of Orthoapedics and Traumatology, The Chinese University of Hong Kong. Shatin, NT (Hong Kong)], E-mail: wangxiaohong@tsinghua.edu.cn, E-mail: kumta@cuhk.edu.hk, E-mail: qin@ort.cuhk.edu.hk

    2009-06-01

    After the removal of the giant cell tumor (GCT) of bone, it is necessary to fill the defects with adequate biomaterials. A new functional bone repair material with both stimulating osteoblast growth and inhibiting osteoclast activity has been developed with phosphorylated chitosan (P-chitosan) and disodium (1 {yields} 4)-2-deoxy-2-sulfoamino-{beta}-D-glucopyranuronan (S-chitosan) as the additives of poly(lactic acid-co-glycolic acid) (PLGA)/calcium phosphate (TCP) scaffolds based on a double-nozzle low-temperature deposition manufacturing technique. A computer-assisted design model was used and the optimal fabrication parameters were determined through the manipulation of a pure PLGA/TCP system. The microscopic structures, water absorbability and mechanical properties of the samples with different P-chitosan and S-chitosan concentrations were characterized correspondingly. The results suggested that this unique composite porous scaffold material is a potential candidate for the repair of large bone defects after a surgical removal of GCT.

  10. Laser-based instrumentation for the detection of chemical agents

    International Nuclear Information System (INIS)

    Hartford, A. Jr.; Sander, R.K.; Quigley, G.P.; Radziemski, L.J.; Cremers, D.A.

    1982-01-01

    Several laser-based techniques are being evaluated for the remote, point, and surface detection of chemical agents. Among the methods under investigation are optoacoustic spectroscopy, laser-induced breakdown spectroscopy (LIBS), and synchronous detection of laser-induced fluorescence (SDLIF). Optoacoustic detection has already been shown to be capable of extremely sensitive point detection. Its application to remote sensing of chemical agents is currently being evaluated. Atomic emission from the region of a laser-generated plasma has been used to identify the characteristic elements contained in nerve (P and F) and blister (S and Cl) agents. Employing this LIBS approach, detection of chemical agent simulants dispersed in air and adsorbed on a variety of surfaces has been achieved. Synchronous detection of laser-induced fluorescence provides an attractive alternative to conventional LIF, in that an artificial narrowing of the fluorescence emission is obtained. The application of this technique to chemical agent simulants has been successfully demonstrated. 19 figures

  11. Analysis and research of PWR instrument commissioning based on Simulink

    International Nuclear Information System (INIS)

    Luan Zhenhua; Liu Daoguang; Qiu Shaoshuai; Yang Zongwei; Feng Guangyu

    2013-01-01

    Based on Simulink platform, a mathematical model of the lead lag link, differential unit, arithmetic logic module is built. Considering the specific problems encountered in the debug field work, this model is applied in the analysis of key modules and controller and in the resolving of eddy current problems. The test process dynamic control characteristic is simulated, to analyze the trend of the actual response, and conduct the simulation study and propose the concrete solutions. The actual debugging process proved that the use of simulation technology to find the problem, optimize the control data, and adjust the control strategy is very important for the early detection of problems and to speed the test process, shorten the debug duration and increase the debug quality. (authors)

  12. A Preliminary Trial of a Prototype Internet Dissonance-Based Eating Disorder Prevention Program for Young Women with Body Image Concerns

    Science.gov (United States)

    Stice, Eric; Rohde, Paul; Durant, Shelley; Shaw, Heather

    2012-01-01

    Objective: A group dissonance-based eating disorder prevention program, in which young women critique the thin ideal, reduces eating disorder risk factors and symptoms, but it can be difficult to identify school clinicians with the time and expertise to deliver the intervention. Thus, we developed a prototype Internet version of this program and…

  13. Performance of a Highly Granular Scintillator-SiPM Based Hadron Calorimeter Prototype in Strong Magnetic Fields

    OpenAIRE

    Graf, Christian; collaboration, for the CALICE

    2017-01-01

    Within the CALICE collaboration, several concepts for the hadronic calorimeter of a future linear collider detector are studied. After having demonstrated the capabilities of the measurement methods in "physics prototypes", the focus now lies on improving their implementation in "engineering prototypes", that are scalable to the full linear collider detector. The Analog Hadron Calorimeter (AHCAL) concept is a sampling calorimeter of tungsten or steel absorber plates and plastic scintillator t...

  14. VME-based remote instrument control without ground loops

    CERN Document Server

    Belleman, J; González, J L

    1997-01-01

    New electronics has been developed for the remote control of the pick-up electrodes at the CERN Proton Synchrotron (PS). Communication between VME-based control computers and remote equipment is via full duplex point-to-point digital data links. Data are sent and received in serial format over simple twisted pairs at a rate of 1 Mbit/s, for distances of up to 300 m. Coupling transformers are used to avoid ground loops. The link hardware consists of a general-purpose VME-module, the 'TRX' (transceiver), containing four FIFO-buffered communication channels, and a dedicated control card for each remote station. Remote transceiver electronics is simple enough not to require micro-controllers or processors. Currently, some sixty pick-up stations of various types, all over the PS Complex (accelerators and associated beam transfer lines) are equipped with the new system. Even though the TRX was designed primarily for communication with pick-up electronics, it could also be used for other purposes, for example to for...

  15. Development of a web based instrument on higher education structures of industrial engineering

    OpenAIRE

    Tarba Ioan-Cristian

    2017-01-01

    The research and development of assisted operational instruments on higher education structures of industrial engineering represent a continuous and complex process. The present paper contributes to the building up of support elements and an assisted operational instrument on higher education structures of industrial engineering, with focus on the specific curricula. The use of tested and validated constructive solutions from other projects, as base for the new design, reduces the design time.

  16. [Design and implementation of medical instrument standard information retrieval system based on APS.NET].

    Science.gov (United States)

    Yu, Kaijun

    2010-07-01

    This paper Analys the design goals of Medical Instrumentation standard information retrieval system. Based on the B /S structure,we established a medical instrumentation standard retrieval system with ASP.NET C # programming language, IIS f Web server, SQL Server 2000 database, in the. NET environment. The paper also Introduces the system structure, retrieval system modules, system development environment and detailed design of the system.

  17. Drinker prototype alteration and cue reminders as strategies in a tailored web-based intervention reducing adults' alcohol consumption: randomized controlled trial.

    Science.gov (United States)

    van Lettow, Britt; de Vries, Hein; Burdorf, Alex; Boon, Brigitte; van Empelen, Pepijn

    2015-02-04

    Excessive alcohol use is a prevalent and worldwide problem. Excessive drinking causes a significant burden of disease and is associated with both morbidity and excess mortality. Prototype alteration and provision of a cue reminder could be useful strategies to enhance the effectiveness of online tailored interventions for excessive drinking. Through a Web-based randomized controlled trial, 2 strategies (ie, prototype alteration and cue reminders) within an existing online personalized feedback intervention (Drinktest) aimed to reduce adults' excessive drinking. It was expected that both strategies would add to Drinktest and would result in reductions in alcohol consumption by intrinsic motivation and the seizure of opportunities to act. Participants were recruited online and through printed materials. Excessive drinking adults (N=2634) were randomly assigned to 4 conditions: original Drinktest, Drinktest plus prototype alteration, Drinktest plus cue reminder, and Drinktest plus prototype alteration and cue reminder. Evaluation took place at 1-month posttest and 6-month follow-up. Differences in drinking behavior, intentions, and behavioral willingness (ie, primary outcomes) were assessed by means of longitudinal multilevel analyses using a last observation carried forward method. Measures were based on self-reports. All conditions showed reductions in drinking behavior and willingness to drink, and increased intentions to reduce drinking. Prototype alteration (B=-0.15, Pprototypes. Thus, prototype alteration and cue reminder usage may be feasible and simple intervention strategies to promote reductions in alcohol consumption among adults, with an effect up to 6 months. Nederlands Trial Register (NTR): 4169; http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=4169 (Archived by WebCite at http://www.webcitation.org/6VD2jnxmB).

  18. Drinker Prototype Alteration and Cue Reminders as Strategies in a Tailored Web-Based Intervention Reducing Adults’ Alcohol Consumption: Randomized Controlled Trial

    Science.gov (United States)

    2015-01-01

    Background Excessive alcohol use is a prevalent and worldwide problem. Excessive drinking causes a significant burden of disease and is associated with both morbidity and excess mortality. Prototype alteration and provision of a cue reminder could be useful strategies to enhance the effectiveness of online tailored interventions for excessive drinking. Objective Through a Web-based randomized controlled trial, 2 strategies (ie, prototype alteration and cue reminders) within an existing online personalized feedback intervention (Drinktest) aimed to reduce adults’ excessive drinking. It was expected that both strategies would add to Drinktest and would result in reductions in alcohol consumption by intrinsic motivation and the seizure of opportunities to act. Methods Participants were recruited online and through printed materials. Excessive drinking adults (N=2634) were randomly assigned to 4 conditions: original Drinktest, Drinktest plus prototype alteration, Drinktest plus cue reminder, and Drinktest plus prototype alteration and cue reminder. Evaluation took place at 1-month posttest and 6-month follow-up. Differences in drinking behavior, intentions, and behavioral willingness (ie, primary outcomes) were assessed by means of longitudinal multilevel analyses using a last observation carried forward method. Measures were based on self-reports. Results All conditions showed reductions in drinking behavior and willingness to drink, and increased intentions to reduce drinking. Prototype alteration (B=–0.15, Pprototypes. Thus, prototype alteration and cue reminder usage may be feasible and simple intervention strategies to promote reductions in alcohol consumption among adults, with an effect up to 6 months. Trial Registration Nederlands Trial Register (NTR): 4169; http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=4169 (Archived by WebCite at http://www.webcitation.org/6VD2jnxmB). PMID:25653199

  19. Ride comfort optimization of a multi-axle heavy motorized wheel dump truck based on virtual and real prototype experiment integrated Kriging model

    Directory of Open Access Journals (Sweden)

    Bian Gong

    2015-06-01

    Full Text Available The optimization of hydro-pneumatic suspension parameters of a multi-axle heavy motorized wheel dump truck is carried out based on virtual and real prototype experiment integrated Kriging model in this article. The root mean square of vertical vibration acceleration, in the center of sprung mass, is assigned as the optimization objective. The constraints are the natural frequency, the working stroke, and the dynamic load of wheels. The suspension structure for the truck is the adjustable hydro-pneumatic suspension with ideal vehicle nonlinear characteristics, integrated with elastic and damping elements. Also, the hydraulic systems of two adjacent hydro-pneumatic suspension are interconnected. Considering the high complexity of the engineering model, a novel kind of meta-model called virtual and real prototype experiment integrated Kriging is proposed in this article. The interpolation principle and the construction of virtual and real prototype experiment integrated Kriging model were elucidated. Being different from traditional Kriging, virtual and real prototype experiment integrated Kriging combines the respective advantages of actual test and Computer Aided Engineering simulation. Based on the virtual and real prototype experiment integrated Kriging model, the optimization results, obtained by experimental verification, showed significant improvement in the ride comfort by 12.48% for front suspension and 11.79% for rear suspension. Compared with traditional Kriging, the optimization effect was improved by 3.05% and 3.38% respectively. Virtual and real prototype experiment integrated Kriging provides an effective way to approach the optimal solution for the optimization of high-complexity engineering problems.

  20. New layer-based imaging and rapid prototyping techniques for computer-aided design and manufacture of custom dental restoration.

    Science.gov (United States)

    Lee, M-Y; Chang, C-C; Ku, Y C

    2008-01-01

    Fixed dental restoration by conventional methods greatly relies on the skill and experience of the dental technician. The quality and accuracy of the final product depends mostly on the technician's subjective judgment. In addition, the traditional manual operation involves many complex procedures, and is a time-consuming and labour-intensive job. Most importantly, no quantitative design and manufacturing information is preserved for future retrieval. In this paper, a new device for scanning the dental profile and reconstructing 3D digital information of a dental model based on a layer-based imaging technique, called abrasive computer tomography (ACT) was designed in-house and proposed for the design of custom dental restoration. The fixed partial dental restoration was then produced by rapid prototyping (RP) and computer numerical control (CNC) machining methods based on the ACT scanned digital information. A force feedback sculptor (FreeForm system, Sensible Technologies, Inc., Cambridge MA, USA), which comprises 3D Touch technology, was applied to modify the morphology and design of the fixed dental restoration. In addition, a comparison of conventional manual operation and digital manufacture using both RP and CNC machining technologies for fixed dental restoration production is presented. Finally, a digital custom fixed restoration manufacturing protocol integrating proposed layer-based dental profile scanning, computer-aided design, 3D force feedback feature modification and advanced fixed restoration manufacturing techniques is illustrated. The proposed method provides solid evidence that computer-aided design and manufacturing technologies may become a new avenue for custom-made fixed restoration design, analysis, and production in the 21st century.

  1. Courthouse Prototype Building

    Energy Technology Data Exchange (ETDEWEB)

    Malhotra, Mini [ORNL; New, Joshua Ryan [ORNL; Im, Piljae [ORNL

    2018-02-01

    represent a majority of courthouse buildings. However, collectively they comprise a small fraction of total courthouse floor area in the US. Spaces and operation of courthouse also varies depending on the court type (federal court vs state court; district, appellate, versus Supreme Court) and jurisdiction (general jurisdiction, general jurisdiction trial, or special courts). Based on the statistics on courthouses, general jurisdiction trial court is considered for the prototype model. The model is assumed to be a 4-courtroom, small, 72,000 sqft three-story building including a ground level/ basement.

  2. A prototype operational earthquake loss model for California based on UCERF3-ETAS – A first look at valuation

    Science.gov (United States)

    Field, Edward; Porter, Keith; Milner, Kevn

    2017-01-01

    We present a prototype operational loss model based on UCERF3-ETAS, which is the third Uniform California Earthquake Rupture Forecast with an Epidemic Type Aftershock Sequence (ETAS) component. As such, UCERF3-ETAS represents the first earthquake forecast to relax fault segmentation assumptions and to include multi-fault ruptures, elastic-rebound, and spatiotemporal clustering, all of which seem important for generating realistic and useful aftershock statistics. UCERF3-ETAS is nevertheless an approximation of the system, however, so usefulness will vary and potential value needs to be ascertained in the context of each application. We examine this question with respect to statewide loss estimates, exemplifying how risk can be elevated by orders of magnitude due to triggered events following various scenario earthquakes. Two important considerations are the probability gains, relative to loss likelihoods in the absence of main shocks, and the rapid decay of gains with time. Significant uncertainties and model limitations remain, so we hope this paper will inspire similar analyses with respect to other risk metrics to help ascertain whether operationalization of UCERF3-ETAS would be worth the considerable resources required.

  3. A new experimental carotid siphon aneurysm model in canine based on the MR angiography and rapid prototyping technology

    International Nuclear Information System (INIS)

    Xie Jian; Li Minghua; Tan Huaqiao; Zhu Yueqi; Hu Dingjun; Qiao Ruihua; Fan Chunhua

    2009-01-01

    Objective: The aim of the experiment is to make an intracranial aneurysm model in canine. Methods: A digital tube was made based on raw magnetic resonance images of the human intracranial carotid artery. Then 6 tubes were made in the 3D rapid prototyping machine and coated with silicone. Finally we isolated the common carotid arteries of 6 canines and made them go through the tubes and anastomosed them end-to-side to get the aneurysm model. Six stents were implanted after one week. Results: Six aneurysm models were successfully made in canines. The parent artery had similar geometry of the human carotid siphon. All the aneurysms and parent arteries were patent in one week's follow-up. One canine died of excessive anesthesia after stenting. Two vascular models kept patent in one month without stenosis. The other 3 had some stenosis on the bends of the vessel. Conclusions: The aneurysm model in the experiment has high flexibility and reliability. The model provides an effective tool for research and testing neurovascular devices. It's also a useful device to train the neuroradiologists and interventional physicians. (authors)

  4. Prototype tokamak fusion reactor based on SiC/SiC composite material focusing on easy maintenance

    International Nuclear Information System (INIS)

    Nishio, S.; Ueda, S.; Kurihara, R.; Kuroda, T.; Miura, H.; Sako, K.; Takase, H.; Seki, Y.; Adachi, J.; Yamazaki, S.; Hashimoto, T.; Mori, S.; Shinya, K.; Murakami, Y.; Senda, I.; Okano, K.; Asaoka, Y.; Yoshida, T.

    2000-01-01

    If the major part of the electric power demand is to be supplied by tokamak fusion power plants, the tokamak reactor must have an ultimate goal, i.e. must be excellent in construction cost, safety aspect and operational availability (maintainability and reliability), simultaneously. On way to the ultimate goal, the approach focusing on the safety and the availability (including reliability and maintainability) issues must be the more promising strategy. The tokamak reactor concept with the very high aspect ratio configuration and the structural material of SiC/SiC composite is compatible with this approach, which is called the DRastically Easy Maintenance (DREAM) approach. This is because SiC/SiC composite is a low activation material and an insulation material, and the high aspect ratio configuration leads to a good accessibility for the maintenance machines. As the intermediate steps along this strategy between the experimental reactor such as international thermonuclear experimental reactor (ITER) and the ultimate goal, a prototype reactor and an initial phase commercial reactor have been investigated. Especially for the prototype reactor, the material and technological immaturities are considered. The major features of the prototype and commercial type reactors are as follows. The fusion powers of the prototype and the commercial type are 1.5 and 5.5 GW, respectively. The major/minor radii for the prototype and the commercial type are of 12/1.5 m and 16/2 m, respectively. The plasma currents for the prototype and the commercial type are 6 and 9.2 MA, respectively. The coolant is helium gas, and the inlet/outlet temperatures of 500/800 and 600/900 deg. C for the prototype and the commercial type, respectively. The thermal efficiencies of 42 and 50% are obtainable in the prototype and the commercial type, respectively. The maximum toroidal field strengths of 18 and 20 tesla are assumed in the prototype and the commercial type, respectively. The thermal

  5. Database Replication Prototype

    OpenAIRE

    Vandewall, R.

    2000-01-01

    This report describes the design of a Replication Framework that facilitates the implementation and com-parison of database replication techniques. Furthermore, it discusses the implementation of a Database Replication Prototype and compares the performance measurements of two replication techniques based on the Atomic Broadcast communication primitive: pessimistic active replication and optimistic active replication. The main contributions of this report can be split into four parts....

  6. A Reliability and Validity of an Instrument to Evaluate the School-Based Assessment System: A Pilot Study

    Science.gov (United States)

    Ghazali, Nor Hasnida Md

    2016-01-01

    A valid, reliable and practical instrument is needed to evaluate the implementation of the school-based assessment (SBA) system. The aim of this study is to develop and assess the validity and reliability of an instrument to measure the perception of teachers towards the SBA implementation in schools. The instrument is developed based on a…

  7. Endoscopic vision-based tracking of multiple surgical instruments during robot-assisted surgery.

    Science.gov (United States)

    Ryu, Jiwon; Choi, Jaesoon; Kim, Hee Chan

    2013-01-01

    Robot-assisted minimally invasive surgery is effective for operations in limited space. Enhancing safety based on automatic tracking of surgical instrument position to prevent inadvertent harmful events such as tissue perforation or instrument collisions could be a meaningful augmentation to current robotic surgical systems. A vision-based instrument tracking scheme as a core algorithm to implement such functions was developed in this study. An automatic tracking scheme is proposed as a chain of computer vision techniques, including classification of metallic properties using k-means clustering and instrument movement tracking using similarity measures, Euclidean distance calculations, and a Kalman filter algorithm. The implemented system showed satisfactory performance in tests using actual robot-assisted surgery videos. Trajectory comparisons of automatically detected data and ground truth data obtained by manually locating the center of mass of each instrument were used to quantitatively validate the system. Instruments and collisions could be well tracked through the proposed methods. The developed collision warning system could provide valuable information to clinicians for safer procedures. © 2012, Copyright the Authors. Artificial Organs © 2012, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  8. Towards Implementing an MR-based PET Attenuation Correction Method for Neurological Studies on the MR-PET Brain Prototype

    Science.gov (United States)

    Catana, Ciprian; van der Kouwe, Andre; Benner, Thomas; Michel, Christian J.; Hamm, Michael; Fenchel, Matthias; Fischl, Bruce; Rosen, Bruce; Schmand, Matthias; Sorensen, A. Gregory

    2013-01-01

    A number of factors have to be considered for implementing an accurate attenuation correction (AC) in a combined MR-PET scanner. In this work, some of these challenges were investigated and an AC method based entirely on the MR data obtained with a single dedicated sequence was developed and used for neurological studies performed with the MR-PET human brain scanner prototype. Methods The focus was on the bone/air segmentation problem, the bone linear attenuation coefficient selection and the RF coil positioning. The impact of these factors on the PET data quantification was studied in simulations and experimental measurements performed on the combined MR-PET scanner. A novel dual-echo ultra-short echo time (DUTE) MR sequence was proposed for head imaging. Simultaneous MR-PET data were acquired and the PET images reconstructed using the proposed MR-DUTE-based AC method were compared with the PET images reconstructed using a CT-based AC. Results Our data suggest that incorrectly accounting for the bone tissue attenuation can lead to large underestimations (>20%) of the radiotracer concentration in the cortex. Assigning a linear attenuation coefficient of 0.143 or 0.151 cm−1 to bone tissue appears to give the best trade-off between bias and variability in the resulting images. Not identifying the internal air cavities introduces large overestimations (>20%) in adjacent structures. Based on these results, the segmented CT AC method was established as the “silver standard” for the segmented MR-based AC method. Particular to an integrated MR-PET scanner, ignoring the RF coil attenuation can cause large underestimations (i.e. up to 50%) in the reconstructed images. Furthermore, the coil location in the PET field of view has to be accurately known. Good quality bone/air segmentation can be performed using the DUTE data. The PET images obtained using the MR-DUTE- and CT-based AC methods compare favorably in most of the brain structures. Conclusion An MR-DUTE-based AC

  9. Microprocessor-based, on-line decision aid for resolving conflicting nuclear reactor instrumentation

    International Nuclear Information System (INIS)

    Alesso, H.P.

    1981-01-01

    We describe one design for a microprocessor-based, on-line decision aid for identifying and resolving false, conflicting, or misleading instrument indications resulting from certain systems interactions for a pressurized water reactor. The system processes sensor signals from groups of instruments that track together under nominal transient and certain accident conditions, and alarms when they do not track together. We examine multiple-casualty systems interaction and formulate a trial grouping of variables that track together under specified conditions. A two-of-three type redundancy check of key variables provides alarm and indication of conflicting information when one signal suddenly tracks in opposition due to multiple casualty, instrument failure, and/or locally abnormal conditions. Since a vote count of two of three variables in conflict as inconclusive evidence, the system is not designed to provide tripping or corrective action, but improves the operator/instrument interface by providing additional and partially digested information

  10. Application of instrument platform based embedded Linux system on intelligent scaler

    International Nuclear Information System (INIS)

    Wang Jikun; Yang Run'an; Xia Minjian; Yang Zhijun; Li Lianfang; Yang Binhua

    2011-01-01

    It designs a instrument platform based on embedded Linux system and peripheral circuit, by designing Linux device driver and application program based on QT Embedded, various functions of the intelligent scaler are realized. The system architecture is very reasonable, so the stability and the expansibility and the integration level are increased, the development cycle is shorten greatly. (authors)

  11. The Scintillator Tile Hadronic Calorimeter Prototype

    International Nuclear Information System (INIS)

    Rusinov, V.

    2006-01-01

    A high granularity scintillator hadronic calorimeter prototype is described. The calorimeter is based on a novel photodetector - Silicon Photo-Multiplier (SiPM). The main parameters of SiPM are discussed as well as readout cell construction and optimization. The experience with a small prototype production and testing is described. A new 8 k channel prototype is being manufactured now

  12. Development of an international standard on instruments setpoints based on ISA S67.04 - 1994

    International Nuclear Information System (INIS)

    Quinn, E.L.

    1996-01-01

    This is a summary of the application for and development of an international standard on instrument setpoints, based on the Instrument Society of America (ISA) Standard S67.04 - 1994. The forum this new standard was proposed in is the International Electrotechnique Commission (IEC), based in Geneva, Switzerland, which is the international commission which oversees electrical and instrumentation standards for all applications around the world. The Instrument Society of America (ISA) is a United States based Society for the advancement of instrumentation and controls related science and technology and has 30,000 members. A division within the ISA is the Standard and Practices board which has over 5000 members actively involved in standards development and approval. In 1994, the ISA SP67, Nuclear Power Plant Standards Committee authorized that the IEC be approached to develop and issue an IEC standard on Instrument Setpoints. This application was formally submitted in January, 1995 to the IEC and approved for ballot to member countries in June, 1995. Approval for standard development by IEC was received in October, 1995 and the first draft vas issued in February, 1996, and is currently under review by the IEC working group. It is very important to focus on the approach that the U.S. and other countries are taking toward development of IEC standards that can apply to all nuclear instrumentation applications around the world. By referencing IEC standards in design specification, vendors can be solicited from many different countries, thereby ensuring that the highest quality products can be used. This also offsets the need to specify individual standards in the specification, based on the country that each vendor solicited, represents. In summary, this standard development process, with support from the American National Standards Institute (ANSI) will assist U.S. suppliers in competing in the global market for products and services into the next century. (author)

  13. Experimental Test and Simulations on a Linear Generator-Based Prototype of a Wave Energy Conversion System Designed with a Reliability-Oriented Approach

    Directory of Open Access Journals (Sweden)

    Valeria Boscaino

    2017-01-01

    Full Text Available In this paper, we propose a reliability-oriented design of a linear generator-based prototype of a wave energy conversion (WEC, useful for the production of hydrogen in a sheltered water area like Mediterranean Sea. The hydrogen production has been confirmed by a lot of experimental testing and simulations. The system design is aimed to enhance the robustness and reliability and is based on an analysis of the main WEC failures reported in literature. The results of this analysis led to some improvements that are applied to a WEC system prototype for hydrogen production and storage. The proposed WEC system includes the electrical linear generator, the power conversion system, and a sea-water electrolyzer. A modular architecture is conceived to provide ease of extension of the power capability of the marine plant. The experimental results developed on the permanent magnet linear electric generator have allowed identification of the stator winding typology and, consequently, ability to size the power electronics system. The produced hydrogen has supplied a low-power fuel cell stack directly connected to the hydrogen output from the electrolyzer. The small-scale prototype is designed to be installed, in the near future, into the Mediterranean Sea. As shown by experimental and simulation results, the small-scale prototype is suitable for hydrogen production and storage from sea water in this area.

  14. Prototype and Evaluation of AutoHelp: A Case-based, Web-accessible Help Desk System for EOSDIS

    Science.gov (United States)

    Mitchell, Christine M.; Thurman, David A.

    1999-01-01

    AutoHelp is a case-based, Web-accessible help desk for users of the EOSDIS. Its uses a combination of advanced computer and Web technologies, knowledge-based systems tools, and cognitive engineering to offload the current, person-intensive, help desk facilities at the DAACs. As a case-based system, AutoHelp starts with an organized database of previous help requests (questions and answers) indexed by a hierarchical category structure that facilitates recognition by persons seeking assistance. As an initial proof-of-concept demonstration, a month of email help requests to the Goddard DAAC were analyzed and partially organized into help request cases. These cases were then categorized to create a preliminary case indexing system, or category structure. This category structure allows potential users to identify or recognize categories of questions, responses, and sample cases similar to their needs. Year one of this research project focused on the development of a technology demonstration. User assistance 'cases' are stored in an Oracle database in a combination of tables linking prototypical questions with responses and detailed examples from the email help requests analyzed to date. When a potential user accesses the AutoHelp system, a Web server provides a Java applet that displays the category structure of the help case base organized by the needs of previous users. When the user identifies or requests a particular type of assistance, the applet uses Java database connectivity (JDBC) software to access the database and extract the relevant cases. The demonstration will include an on-line presentation of how AutoHelp is currently structured. We will show how a user might request assistance via the Web interface and how the AutoHelp case base provides assistance. The presentation will describe the DAAC data collection, case definition, and organization to date, as well as the AutoHelp architecture. It will conclude with the year 2 proposal to more fully develop the

  15. Comparison between lighting performance of a virtual natural lighting solutions prototype and a real window based on computer simulation

    Directory of Open Access Journals (Sweden)

    R.A. Mangkuto

    2014-12-01

    Full Text Available This article discusses the measurement and simulation of a first generation prototype of Virtual Natural Lighting Solutions (VNLS, which are systems that can artificially provide natural lighting as well as a realistic outside view, with properties comparable to those of real windows and skylights. Examples of employing Radiance as a simulation tool to predict the lighting performance of such solutions are shown, for a particular case study of a VNLS prototype displaying variations of a simplified view of overcast, clear, and partly cloudy skies. Measurement and simulation were conducted to evaluate the illuminance distribution on workplane level. The key point of this study is to show that simulations can be used to compare an actual VNLS prototype with a hypothetical real window under the same sky scenes, which was physically not possible, since the test room was not located at the building׳s façade. It is found that the investigated prototype yields a less rapidly drop illuminance distribution and a larger average illuminance than the corresponding real window, under the overcast (52 lx compared to 28 lx and partly cloudy (102 lx compared to 80 lx sky scenes. Under the clear sky scene, the real window yields a larger average illuminance (97 lx compared to the prototype (71 lx, due to the influence of direct sunlight.

  16. Reliability assessment of a peer evaluation instrument in a team-based learning course

    Directory of Open Access Journals (Sweden)

    Wahawisan J

    2016-03-01

    Full Text Available Objective: To evaluate the reliability of a peer evaluation instrument in a longitudinal team-based learning setting. Methods: Student pharmacists were instructed to evaluate the contributions of their peers. Evaluations were analyzed for the variance of the scores by identifying low, medium, and high scores. Agreement between performance ratings within each group of students was assessed via intra-class correlation coefficient (ICC. Results: We found little variation in the standard deviation (SD based on the score means among the high, medium, and low scores within each group. The lack of variation in SD of results between groups suggests that the peer evaluation instrument produces precise results. The ICC showed strong concordance among raters. Conclusions: Findings suggest that our student peer evaluation instrument provides a reliable method for peer assessment in team-based learning settings.

  17. Microcontroller based instrumentation for heater control circuit of tin oxide based hydrogen sensor

    International Nuclear Information System (INIS)

    Premalatha, S.; Krithika, P.; Gunasekaran, G.; Ramakrishnan, R.; Ramanarayanan, R.R.; Prabhu, E.; Jayaraman, V.; Parthasarathy, R.

    2015-01-01

    A thin film sensor based on tin oxide developed in IGCAR is used to monitor very low levels of hydrogen (concentration ranging from 2 ppm to 80 ppm). The heater and the sensor patterns are integrated on a miniature alumina substrate and necessary electrical leads are taken out. For proper functioning of the sensor, the heater has to be maintained at a constant temperature of 350°C. The sensor output (voltage signal) varies with H 2 concentration. In fast breeder reactors, liquid sodium is used as coolant. The sensor is used to detect water/steam leak in secondary sodium circuit. During the start up of the reactor, steam leak into sodium circuit generates hydrogen gas as a product that doesn't dissolve in sodium, but escapes to the surge tank containing argon i.e. in cover gas plenum of sodium circuit. On-line monitoring of hydrogen in cover gas is done to detect an event of water/steam leakage. The focus of this project is on the instrumentation pertaining to the temperature control for the sensor heater. The tin oxide based hydrogen sensor is embedded in a substrate which consists of a platinum heater, essentially a resistor. There is no provision of embedding a temperature sensor on the heater surface due to the physical constraints, without which maintaining a constant heater temperature is a complex task

  18. A compact HV supply for field/PC based nuclear instrumentation

    International Nuclear Information System (INIS)

    Manna, A.; Nikhare, D.M.; Madhavi, V.; Bayala, A.K.; Mukhopadhyay, P.K.; Kataria, S.K.

    2001-01-01

    In the recent years, most of the nuclear instruments that were earlier based on NIM Bin standards, are becoming available as PC Add-on cards. This trend is due to the decreasing prices of desktop personal computers and the necessity for automation in radioactivity measurements. This paper describes the design and development of a HV supply module and its PC Add-on card version for field portable/ PC based nuclear instrumentation. The HV supply though being very compact in size meets all the stringent specifications required for detector biasing applications and it has been tested for use with NaI, BF 3 . (author)

  19. A Method for Modeling the Virtual Instrument Automatic Test System Based on the Petri Net

    Institute of Scientific and Technical Information of China (English)

    MA Min; CHEN Guang-ju

    2005-01-01

    Virtual instrument is playing the important role in automatic test system. This paper introduces a composition of a virtual instrument automatic test system and takes the VXIbus based a test software platform which is developed by CAT lab of the UESTC as an example. Then a method to model this system based on Petri net is proposed. Through this method, we can analyze the test task scheduling to prevent the deadlock or resources conflict. At last, this paper analyzes the feasibility of this method.

  20. Suborbital Reusable Launch Vehicles as an Opportunity to Consolidate and Calibrate Ground Based and Satellite Instruments

    Science.gov (United States)

    Papadopoulos, K.

    2014-12-01

    XCOR Aerospace, a commercial space company, is planning to provide frequent, low cost access to near-Earth space on the Lynx suborbital Reusable Launch Vehicle (sRLV). Measurements in the external vacuum environment can be made and can launch from most runways on a limited lead time. Lynx can operate as a platform to perform suborbital in situ measurements and remote sensing to supplement models and simulations with new data points. These measurements can serve as a quantitative link to existing instruments and be used as a basis to calibrate detectors on spacecraft. Easier access to suborbital data can improve the longevity and cohesiveness of spacecraft and ground-based resources. A study of how these measurements can be made on Lynx sRLV will be presented. At the boundary between terrestrial and space weather, measurements from instruments on Lynx can help develop algorithms to optimize the consolidation of ground and satellite based data as well as assimilate global models with new data points. For example, current tides and the equatorial electrojet, essential to understanding the Thermosphere-Ionosphere system, can be measured in situ frequently and on short notice. Furthermore, a negative-ion spectrometer and a Faraday cup, can take measurements of the D-region ion composition. A differential GPS receiver can infer the spatial gradient of ionospheric electron density. Instruments and optics on spacecraft degrade over time, leading to calibration drift. Lynx can be a cost effective platform for deploying a reference instrument to calibrate satellites with a frequent and fast turnaround and a successful return of the instrument. A calibrated reference instrument on Lynx can make collocated observations as another instrument and corrections are made for the latter, thus ensuring data consistency and mission longevity. Aboard a sRLV, atmospheric conditions that distort remotely sensed data (ground and spacecraft based) can be measured in situ. Moreover, an

  1. Prototype moving-ring reactor

    International Nuclear Information System (INIS)

    Smith, A.C. Jr.; Ashworth, C.P.; Abreu, K.E.

    1981-01-01

    The objective of this work was to design a prototype fusion reactor based on fusion plasmas confined as ''Compact Toruses.' Six major criteria guided the prototype design. The prototype must: (1) produce net electricity decisively (P/sub net/ >70% of P/sub gross/), with P/sub net/ approximately 100 MW(e); (2) have small physical size (low project cost) but commercial plant; (3) have all features required of commerical plants; (4) avoid unreasonable extrapolation of technology; (5) minimize nuclear issues substantially, i.e. accident and waste issues of public concern, and (6) be modular (to permit repetitive fabrication of parts) and be maintainable with low occupational radiological exposures

  2. The Pediatrics Milestones Assessment Pilot: Development of Workplace-Based Assessment Content, Instruments, and Processes.

    Science.gov (United States)

    Hicks, Patricia J; Margolis, Melissa; Poynter, Sue E; Chaffinch, Christa; Tenney-Soeiro, Rebecca; Turner, Teri L; Waggoner-Fountain, Linda; Lockridge, Robin; Clyman, Stephen G; Schwartz, Alan

    2016-05-01

    To report on the development of content and user feedback regarding the assessment process and utility of the workplace-based assessment instruments of the Pediatrics Milestones Assessment Pilot (PMAP). One multisource feedback instrument and two structured clinical observation instruments were developed and refined by experts in pediatrics and assessment to provide evidence for nine competencies based on the Pediatrics Milestones (PMs) and chosen to inform residency program faculty decisions about learners' readiness to serve as pediatric interns in the inpatient setting. During the 2012-2013 PMAP study, 18 U.S. pediatric residency programs enrolled interns and subinterns. Faculty, residents, nurses, and other observers used the instruments to assess learner performance through direct observation during a one-month rotation. At the end of the rotation, data were aggregated for each learner, milestone levels were assigned using a milestone classification form, and feedback was provided to learners. Learners and site leads were surveyed and/or interviewed about their experience as participants. Across the sites, 2,338 instruments assessing 239 learners were completed by 630 unique observers. Regarding end-of-rotation feedback, 93% of learners (128/137) agreed the assessments and feedback "helped me understand how those with whom I work perceive my performance," and 85% (117/137) agreed they were "useful for constructing future goals or identifying a developmental path." Site leads identified several benefits and challenges to the assessment process. PM-based instruments used in workplace-based assessment provide a meaningful and acceptable approach to collecting evidence of learner competency development. Learners valued feedback provided by PM-based assessment.

  3. DEVELOPMENT OF PERFORMANCE ASSESSMENT INSTRUMENT FOR NURSES BASED ON WEB IN INPATIENT UNIT

    Directory of Open Access Journals (Sweden)

    Aprilia Nuryanti

    2017-06-01

    Full Text Available Introduction: Performance assessment instrument will be problematic when it is not representative in describing the competency because it is not obvious indicators and inappropriate performance standard to nursing’s task. The purpose of this study is to develop nurses’ performance assessment instrument based on the web from multi sources assessment inpatient unit at SMC Hospital. Methods: This study had two phases. The first phase was an explanatory overview of the performance assessment system using questionnaires completed by 53 respondents of nurses, selected by purposive sampling. Instrument development based on FGD with six decision makers in the hospital. Validity was tested by Pearson Product Moment Correlation and reliability of instrument’s was tested by alpha Cronbach. The second phase was socialization and instrument test to observe the quality of instrument using a questionnaire by 47 respondents and recommendations made by 8 participants of FGD. The samples were selected by purposive sampling technique. Performance assessment system was moderate at 58.49%. All questions which aimed to measure the performance of nurses were valid and reliable. The quality of nurses’ performance assessment instruments based on the web was a good category, which was functionality: 81.60; reliability: 78.16; efficiency: 80.85; usability: 81.70 and portability: 81.70. Results: The result was a web-based assessment format, scoring with Likert scale, resource assessment by the direct supervisor which was a multisource evaluator, the development of performance graph, and confidentiality of data on the database server. Discussion: Recommendations for hospital is to make policy based on the final value of the performance assessment by the supervisor which was multisource feedback and it needs a global writing on a form of performance assessment result.

  4. Applications of TRMM-based Multi-Satellite Precipitation Estimation for Global Runoff Simulation: Prototyping a Global Flood Monitoring System

    Science.gov (United States)

    Hong, Yang; Adler, Robert F.; Huffman, George J.; Pierce, Harold

    2008-01-01

    Advances in flood monitoring/forecasting have been constrained by the difficulty in estimating rainfall continuously over space (catchment-, national-, continental-, or even global-scale areas) and flood-relevant time scale. With the recent availability of satellite rainfall estimates at fine time and space resolution, this paper describes a prototype research framework for global flood monitoring by combining real-time satellite observations with a database of global terrestrial characteristics through a hydrologically relevant modeling scheme. Four major components included in the framework are (1) real-time precipitation input from NASA TRMM-based Multi-satellite Precipitation Analysis (TMPA); (2) a central geospatial database to preprocess the land surface characteristics: water divides, slopes, soils, land use, flow directions, flow accumulation, drainage network etc.; (3) a modified distributed hydrological model to convert rainfall to runoff and route the flow through the stream network in order to predict the timing and severity of the flood wave, and (4) an open-access web interface to quickly disseminate flood alerts for potential decision-making. Retrospective simulations for 1998-2006 demonstrate that the Global Flood Monitor (GFM) system performs consistently at both station and catchment levels. The GFM website (experimental version) has been running at near real-time in an effort to offer a cost-effective solution to the ultimate challenge of building natural disaster early warning systems for the data-sparse regions of the world. The interactive GFM website shows close-up maps of the flood risks overlaid on topography/population or integrated with the Google-Earth visualization tool. One additional capability, which extends forecast lead-time by assimilating QPF into the GFM, also will be implemented in the future.

  5. Alpha particle response for a prototype radiation survey meter based on poly(ethylene terephthalate) with un-doping fluorescent guest molecules

    International Nuclear Information System (INIS)

    Nguyen, Philip; Nakamura, Hidehito; Sato, Nobuhiro; Takahashi, Tomoyuki; Maki, Daisuke; Kanayama, Masaya; Takahashi, Sentaro; Kitamura, Hisashi; Shirakawa, Yoshiyuki

    2016-01-01

    There is no radiation survey meter that can discriminate among alpha particles, beta particles, and gamma-rays with one material. Previously, undoped poly(ethylene terephthalate) (PET) has been shown to be an effective material for beta particle and gamma-ray detection. Here, we demonstrate a prototype survey meter for alpha particles based on undoped PET. A 140 × 72 × 1-mm PET substrate was fabricated with mirrored surfaces. It was incorporated in a unique detection section of the survey meter that directly detects alpha particles. The prototype exhibited an unambiguous response to alpha particles from a 241 Am radioactive source. These results demonstrate that undoped PET can perform well in survey meters for alpha particle detection. Overall, the PET-based survey meter has the potential to detect multiple types of radiation, and will spawn an unprecedented type of radiation survey meter based on undoped aromatic ring polymers. (author)

  6. Target Diagnostic Instrument-Based Controls Framework for the National Ignition Facility

    International Nuclear Information System (INIS)

    Shelton, R; O'Brien, D; Nelson, J; Kamperschroer, J

    2007-01-01

    NIF target diagnostics are being developed to observe and measure the extreme physics of targets irradiated by the 192-beam laser. The response time of target materials can be on the order of 100ps--the time it takes light to travel 3 cm--temperatures more than 100 times hotter than the surface of the sun, and pressures that exceed 109 atmospheres. Optical and x-ray diagnostics were developed and fielded to observe and record the results of the first 4-beam experiments at NIF. Hard and soft x-ray spectra were measured, and time-integrated and gated x-ray images of hydrodynamics experiments were recorded. Optical diagnostics recorded backscatter from the target, and VISAR laser velocimetry measurements were taken of laser-shocked target surfaces. Additional diagnostics are being developed and commissioned to observe and diagnose ignition implosions, including various neutron and activation diagnostics. NIF's diagnostics are being developed at LLNL and with collaborators at other sites. To accommodate the growing number of target diagnostics, an Instrument-Based Controls hardware-software framework has been developed to facilitate development and ease integration into the NIF Integrated Computer Control System (ICCS). Individual WindowsXP PC controllers for each digitizer, power supply and camera (i.e., instruments) execute controls software unique to each instrument model. Each hardware-software controller manages a single instrument, in contrast to the complexity of combining all the controls software needed for a diagnostic into a single controller. Because of this simplification, controllers can be more easily tested on the actual hardware, evaluating all normal and off-normal conditions. Each target diagnostic is then supported by a number of instruments, each with its own hardware-software instrument-based controller. Advantages of the instrument-based control architecture and framework include reusability, testability, and improved reliability of the deployed

  7. Target Diagnostic Instrument-Based Controls Framework for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Shelton, R; O' Brien, D; Nelson, J; Kamperschroer, J

    2007-05-07

    NIF target diagnostics are being developed to observe and measure the extreme physics of targets irradiated by the 192-beam laser. The response time of target materials can be on the order of 100ps--the time it takes light to travel 3 cm--temperatures more than 100 times hotter than the surface of the sun, and pressures that exceed 109 atmospheres. Optical and x-ray diagnostics were developed and fielded to observe and record the results of the first 4-beam experiments at NIF. Hard and soft x-ray spectra were measured, and time-integrated and gated x-ray images of hydrodynamics experiments were recorded. Optical diagnostics recorded backscatter from the target, and VISAR laser velocimetry measurements were taken of laser-shocked target surfaces. Additional diagnostics are being developed and commissioned to observe and diagnose ignition implosions, including various neutron and activation diagnostics. NIF's diagnostics are being developed at LLNL and with collaborators at other sites. To accommodate the growing number of target diagnostics, an Instrument-Based Controls hardware-software framework has been developed to facilitate development and ease integration into the NIF Integrated Computer Control System (ICCS). Individual WindowsXP PC controllers for each digitizer, power supply and camera (i.e., instruments) execute controls software unique to each instrument model. Each hardware-software controller manages a single instrument, in contrast to the complexity of combining all the controls software needed for a diagnostic into a single controller. Because of this simplification, controllers can be more easily tested on the actual hardware, evaluating all normal and off-normal conditions. Each target diagnostic is then supported by a number of instruments, each with its own hardware-software instrument-based controller. Advantages of the instrument-based control architecture and framework include reusability, testability, and improved reliability of the

  8. Development and validity of mathematical learning assessment instruments based on multiple intelligence

    Directory of Open Access Journals (Sweden)

    Helmiah Suryani

    2017-06-01

    Full Text Available This study was aimed to develop and produce an assessment instrument of mathematical learning results based on multiple intelligence. The methods in this study used Borg & Gall-Research and Development approach (Research & Development. The subject of research was 289 students. The results of research: (1 Result of Aiken Analysis showed 58 valid items were between 0,714 to 0,952. (2 Result of the Exploratory on factor analysis indicated the instrument consist of three factors i.e. mathematical logical intelligence-spatial intelligence-and linguistic intelligence. KMO value was 0.661 df 0.780 sig. 0.000 with valid category. This research succeeded to developing the assessment instrument of mathematical learning results based on multiple intelligence of second grade in elementary school with characteristics of logical intelligence of mathematics, spatial intelligence, and linguistic intelligence.

  9. Design of coordinated controller in nuclear power plant based on digital instrument and control technology

    International Nuclear Information System (INIS)

    Cheng Shouyu; Peng Minjun; Liu Xinkai; Zhao Qiang; Deng Xiangxin

    2014-01-01

    Nuclear power plant (NPP) is a multi-input and multi-output, no-linear and time-varying complex system. The conventional PID controller is usually used in NPP control system which is based on analog instrument. The system parameters are easy to overshoot and the response time is longer in the control mode of the conventional PID. In order to improve this condition, a new coordinated control strategy which is based on expert system and the original controllers in the digital instrument and control technology was presented. In order to verify and validate it, the proposed coordinated control technology was tested by the full-scope real-time simulation system. The results prove that using digital instrument and control technology to achieve coordinated controller is feasible, the coordinated controller can effectively improve the dynamic operating characteristics of the system, and the coordinated controller is superior to the conventional PID controller in control performance. (authors)

  10. Cavity-enhanced quantum-cascade laser-based instrument for carbon monoxide measurements.

    Science.gov (United States)

    Provencal, Robert; Gupta, Manish; Owano, Thomas G; Baer, Douglas S; Ricci, Kenneth N; O'Keefe, Anthony; Podolske, James R

    2005-11-01

    An autonomous instrument based on off-axis integrated cavity output spectroscopy has been developed and successfully deployed for measurements of carbon monoxide in the troposphere and tropopause onboard a NASA DC-8 aircraft. The instrument (Carbon Monoxide Gas Analyzer) consists of a measurement cell comprised of two high-reflectivity mirrors, a continuous-wave quantum-cascade laser, gas sampling system, control and data-acquisition electronics, and data-analysis software. CO measurements were determined from high-resolution CO absorption line shapes obtained by tuning the laser wavelength over the R(7) transition of the fundamental vibration band near 2172.8 cm(-1). The instrument reports CO mixing ratio (mole fraction) at a 1-Hz rate based on measured absorption, gas temperature, and pressure using Beer's Law. During several flights in May-June 2004 and January 2005 that reached altitudes of 41,000 ft (12.5 km), the instrument recorded CO values with a precision of 0.2 ppbv (1-s averaging time) and an accuracy limited by the reference CO gas cylinder (uncertainty < 1.0%). Despite moderate turbulence and measurements of particulate-laden airflows, the instrument operated consistently and did not require any maintenance, mirror cleaning, or optical realignment during the flights.

  11. UVSiPM: A light detector instrument based on a SiPM sensor working in single photon counting

    Energy Technology Data Exchange (ETDEWEB)

    Sottile, G.; Russo, F.; Agnetta, G. [Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, IASF-Pa/INAF, Palermo (Italy); Belluso, M.; Billotta, S. [Osservatorio Astrofisico di Catania, OACT/INAF, Catania (Italy); Biondo, B. [Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, IASF-Pa/INAF, Palermo (Italy); Bonanno, G. [Osservatorio Astrofisico di Catania, OACT/INAF, Catania (Italy); Catalano, O.; Giarrusso, S. [Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, IASF-Pa/INAF, Palermo (Italy); Grillo, A. [Osservatorio Astrofisico di Catania, OACT/INAF, Catania (Italy); Impiombato, D.; La Rosa, G.; Maccarone, M.C.; Mangano, A. [Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, IASF-Pa/INAF, Palermo (Italy); Marano, D. [Osservatorio Astrofisico di Catania, OACT/INAF, Catania (Italy); Mineo, T.; Segreto, A.; Strazzeri, E. [Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, IASF-Pa/INAF, Palermo (Italy); Timpanaro, M.C. [Osservatorio Astrofisico di Catania, OACT/INAF, Catania (Italy)

    2013-06-15

    UVSiPM is a light detector designed to measure the intensity of electromagnetic radiation in the 320–900 nm wavelength range. It has been developed in the framework of the ASTRI project whose main goal is the design and construction of an end-to-end Small Size class Telescope prototype for the Cherenkov Telescope Array. The UVSiPM instrument is composed by a multipixel Silicon Photo-Multiplier detector unit coupled to an electronic chain working in single photon counting mode with 10 nanosecond double pulse resolution, and by a disk emulator interface card for computer connection. The detector unit of UVSiPM is of the same kind as the ones forming the camera at the focal plane of the ASTRI prototype. Eventually, the UVSiPM instrument can be equipped with a collimator to regulate its angular aperture. UVSiPM, with its peculiar characteristics, will permit to perform several measurements both in lab and on field, allowing the absolute calibration of the ASTRI prototype.

  12. An unsupervised meta-graph clustering based prototype-specific feature quantification for human re-identification in video surveillance

    Directory of Open Access Journals (Sweden)

    Aparajita Nanda

    2017-06-01

    Full Text Available Human re-identification is an emerging research area in the field of visual surveillance. It refers to the task of associating the images of the persons captured by one camera (probe set with the images captured by another camera (gallery set at different locations in different time instances. The performance of these systems are often challenged by some factors—variation in articulated human pose and clothing, frequent occlusion with various objects, change in light illumination, and the cluttered background are to name a few. Besides, the ambiguity in recognition increases between individuals with similar appearance. In this paper, we present a novel framework for human re-identification that finds the correspondence image pair across non-overlapping camera views in the presence of the above challenging scenarios. The proposed framework handles the visual ambiguity having similar appearance by first segmenting the gallery instances into disjoint prototypes (groups, where each prototype represents the images with high commonality. Then, a weighing scheme is formulated that quantifies the selective and distinct information about the features concerning the level of contribution against each prototype. Finally, the prototype specific weights are utilized in the similarity measure and fused with the existing generic weighing to facilitates improvement in the re-identification. Exhaustive simulation on three benchmark datasets alongside the CMC (Cumulative Matching Characteristics plot enumerate the efficacy of our proposed framework over the counterparts.

  13. The Convergent and Concurrent Validity of Trait-Based Prototype Assessment of Personality Disorder Categories in Homeless Persons

    Science.gov (United States)

    Samuel, Douglas B.; Connolly, Adrian J.; Ball, Samuel A.

    2012-01-01

    The "DSM-5" proposal indicates that personality disorders (PDs) be defined as collections of maladaptive traits but does not provide a specific diagnostic method. However, researchers have previously suggested that PD constructs can be assessed by comparing individuals' trait profiles with those prototypic of PDs and evidence from the…

  14. Developing Learning Model Based on Local Culture and Instrument for Mathematical Higher Order Thinking Ability

    Science.gov (United States)

    Saragih, Sahat; Napitupulu, E. Elvis; Fauzi, Amin

    2017-01-01

    This research aims to develop a student-centered learning model based on local culture and instrument of mathematical higher order thinking of junior high school students in the frame of the 2013-Curriculum in North Sumatra, Indonesia. The subjects of the research are seventh graders which are taken proportionally random consisted of three public…

  15. Design of embedded hardware platform in intelligent γ-spectrometry instrument based on ARM9

    International Nuclear Information System (INIS)

    Hong Tianqi; Fang Fang

    2008-01-01

    This paper described the design of embedded hardware platform based on ARM9 S3C2410A, emphases are focused on analyzing the methods of design the circuits of memory, LCD and keyboard ports. It presented a new solution of hardware platform in intelligent portable instrument for γ measurement. (authors)

  16. A Checklist for Reporting Valuation Studies of Multi-Attribute Utility-Based Instruments (CREATE)

    NARCIS (Netherlands)

    Xie, Feng; Pickard, A. Simon; Krabbe, Paul F. M.; Revicki, Dennis; Viney, Rosalie; Devlin, Nancy; Feeny, David

    Multi-attribute utility-based instruments (MAUIs) assess health status and provide an index score on the full health-dead scale, and are widely used to support reimbursement decisions for new healthcare interventions worldwide. A valuation study is a key part of the development of MAUIs, with the

  17. Explaining perceived oral texture of starch-based custard desserts from standard and novel instrumental tests

    NARCIS (Netherlands)

    Wijk, R.A.de; Prinz, J.F.; Janssen, A.M.

    2006-01-01

    A number of in vitro and in vivo instrumental tests have been developed to reflect various aspects of the perceived oral texture of starch-based vanilla custard desserts. These tests include measurements of the food's infra-red reflectance (IRR), of the turbidity of spat-out rinse water, and of the

  18. Climatological lower thermosphere winds as seen by ground-based and space-based instruments

    Directory of Open Access Journals (Sweden)

    J. M. Forbes

    2004-06-01

    Full Text Available Comparisons are made between climatological dynamic fields obtained from ground-based (GB and space-based (SB instruments with a view towards identifying SB/GB intercalibration issues for TIMED and other future aeronomy satellite missions. SB measurements are made from the High Resolution Doppler Imager (HRDI instrument on the Upper Atmosphere Research Satellite (UARS. The GB data originate from meteor radars at Obninsk, (55° N, 37° E, Shigaraki (35° N, 136° E and Jakarta (6° S, 107° E and MF spaced-antenna radars at Hawaii (22° N, 160° W, Christmas I. (2° N, 158° W and Adelaide (35° S, 138° E. We focus on monthly-mean prevailing, diurnal and semidiurnal wind components at 96km, averaged over the 1991-1999 period. We perform space-based (SB analyses for 90° longitude sectors including the GB sites, as well as for the zonal mean. Taking the monthly prevailing zonal winds from these stations as a whole, on average, SB zonal winds exceed GB determinations by ~63%, whereas meridional winds are in much better agreement. The origin of this discrepancy remains unknown, and should receive high priority in initial GB/SB comparisons during the TIMED mission. We perform detailed comparisons between monthly climatologies from Jakarta and the geographically conjugate sites of Shigaraki and Adelaide, including some analyses of interannual variations. SB prevailing, diurnal and semidiurnal tides exceed those measured over Jakarta by factors, on the average, of the order of 2.0, 1.6, 1.3, respectively, for the eastward wind, although much variability exists. For the meridional component, SB/GB ratios for the diurnal and semidiurnal tide are about 1.6 and 1.7. Prevailing and tidal amplitudes at Adelaide are significantly lower than SB values, whereas similar net differences do not occur at the conjugate Northern Hemisphere location of Shigaraki. Adelaide diurnal phases lag SB phases by several hours, but excellent agreement between the two data

  19. BpWrapper: BioPerl-based sequence and tree utilities for rapid prototyping of bioinformatics pipelines.

    Science.gov (United States)

    Hernández, Yözen; Bernstein, Rocky; Pagan, Pedro; Vargas, Levy; McCaig, William; Ramrattan, Girish; Akther, Saymon; Larracuente, Amanda; Di, Lia; Vieira, Filipe G; Qiu, Wei-Gang

    2018-03-02

    Automated bioinformatics workflows are more robust, easier to maintain, and results more reproducible when built with command-line utilities than with custom-coded scripts. Command-line utilities further benefit by relieving bioinformatics developers to learn the use of, or to interact directly with, biological software libraries. There is however a lack of command-line utilities that leverage popular Open Source biological software toolkits such as BioPerl ( http://bioperl.org ) to make many of the well-designed, robust, and routinely used biological classes available for a wider base of end users. Designed as standard utilities for UNIX-family operating systems, BpWrapper makes functionality of some of the most popular BioPerl modules readily accessible on the command line to novice as well as to experienced bioinformatics practitioners. The initial release of BpWrapper includes four utilities with concise command-line user interfaces, bioseq, bioaln, biotree, and biopop, specialized for manipulation of molecular sequences, sequence alignments, phylogenetic trees, and DNA polymorphisms, respectively. Over a hundred methods are currently available as command-line options and new methods are easily incorporated. Performance of BpWrapper utilities lags that of precompiled utilities while equivalent to that of other utilities based on BioPerl. BpWrapper has been tested on BioPerl Release 1.6, Perl versions 5.10.1 to 5.25.10, and operating systems including Apple macOS, Microsoft Windows, and GNU/Linux. Release code is available from the Comprehensive Perl Archive Network (CPAN) at https://metacpan.org/pod/Bio::BPWrapper . Source code is available on GitHub at https://github.com/bioperl/p5-bpwrapper . BpWrapper improves on existing sequence utilities by following the design principles of Unix text utilities such including a concise user interface, extensive command-line options, and standard input/output for serialized operations. Further, dozens of novel methods for

  20. A Tower-based Prototype VHF/UHF Radar for Subsurface Sensing: System Description and Data Inversion Results

    Science.gov (United States)

    Moghaddam, Mahta; Pierce, Leland; Tabatabaeenejad, Alireza; Rodriguez, Ernesto

    2005-01-01

    Knowledge of subsurface characteristics such as permittivity variations and layering structure could provide a breakthrough in many terrestrial and planetary science disciplines. For Earth science, knowledge of subsurface and subcanopy soil moisture layers can enable the estimation of vertical flow in the soil column linking surface hydrologic processes with that in the subsurface. For planetary science, determining the existence of subsurface water and ice is regarded as one of the most critical information needs for the study of the origins of the solar system. The subsurface in general can be described as several near-parallel layers with rough interfaces. Each homogenous rough layer can be defined by its average thickness, permittivity, and rms interface roughness assuming a known surface spectral distribution. As the number and depth of layers increase, the number of measurements needed to invert for the layer unknowns also increases, and deeper penetration capability would be required. To nondestructively calculate the characteristics of the rough layers, a multifrequency polarimetric radar backscattering approach can be used. One such system is that we have developed for data prototyping of the Microwave Observatory of Subcanopy and Subsurface (MOSS) mission concept. A tower-mounted radar makes backscattering measurements at VHF, UHF, and L-band frequencies. The radar is a pulsed CW system, which uses the same wideband antenna to transmit and receive the signals at all three frequencies. To focus the beam at various incidence angles within the beamwidth of the antenna, the tower is moved vertically and measurements made at each position. The signals are coherently summed to achieve focusing and image formation in the subsurface. This requires an estimate of wave velocity profiles. To solve the inverse scattering problem for subsurface velocity profile simultaneously with radar focusing, we use an iterative technique based on a forward numerical solution of

  1. USB port compatible virtual instrument based automation for x-ray diffractometer setup

    International Nuclear Information System (INIS)

    Jayapandian, J.; Sheela, O.K.; Mallika, R.; Thiruarul, A.; Purniah, B.

    2004-01-01

    Windows based virtual instrument (VI) programs in graphic language simplify the design automation in R and D laboratories. With minimal hardware and maximum support of software, the automation becomes easier and user friendly. A novel design approach for the automation of SIEMENS make x-ray diffractometer setup is described in this paper. The automation is achieved with an indigenously developed virtual instrument program in labVIEW ver.6.0 and with a simple hardware design using 89C2051 micro-controller compatible with PC's USB port for the total automation of the experiment. (author)

  2. Design and implementation of embedded ion mobility spectrometry instrument based on SOPC

    Science.gov (United States)

    Zhang, Genwei; Zhao, Jiang; Yang, Liu; Liu, Bo; Jiang, Yanwei; Yang, Jie

    2015-02-01

    On the hardware platform with single CYCLONE IV FPGA Chip based on SOPC technology, the control functions of IP cores of a Ion Mobility Spectrometry instrument was tested, including 32 bit Nios II soft-core processor, high-voltage module, ion gate switch, gas flow, temperature and pressure sensors, signal acquisition and communication protocol. Embedded operating system μCLinux was successfully transplanted to the hardware platform, used to schedule all the tasks, such as system initialization, parameter setting, signal processing, recognition algorithm and results display. The system was validated using the IMS diagram of Acetone reagent, and the instrument was proved to have a strong signal resolution.

  3. Advancement of High Power Quasi-CW Laser Diode Arrays For Space-based Laser Instruments

    Science.gov (United States)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, nathaniel R.; Baggott, Renee S.; Singh, Upendra N.; Kavaya, Michael J.

    2004-01-01

    Space-based laser and lidar instruments play an important role in NASA s plans for meeting its objectives in both Earth Science and Space Exploration areas. Almost all the lidar instrument concepts being considered by NASA scientist utilize moderate to high power diode-pumped solid state lasers as their transmitter source. Perhaps the most critical component of any solid state laser system is its pump laser diode array which essentially dictates instrument efficiency, reliability and lifetime. For this reason, premature failures and rapid degradation of high power laser diode arrays that have been experienced by laser system designers are of major concern to NASA. This work addresses these reliability and lifetime issues by attempting to eliminate the causes of failures and developing methods for screening laser diode arrays and qualifying them for operation in space.

  4. Portable generator-based X RF instrument for non-destructive analysis at crime scenes

    International Nuclear Information System (INIS)

    Schweitzer, Jeffrey S.; Trombka, Jacob I.; Floyd, Samuel; Selavka, Carl; Zeosky, Gerald; Gahn, Norman; McClanahan, Timothy; Burbine, Thomas

    2005-01-01

    Unattended and remote detection systems find applications in space exploration, telemedicine, teleforensics, homeland security and nuclear non-proliferation programs. The National Institute of Justice (NIJ) and the National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC) have teamed up to explore the use of NASA developed technologies to help criminal justice agencies and professionals investigate crimes. The objective of the program is to produce instruments and communication networks that have application within both NASA's space program and NIJ, together with state and local forensic laboratories. A general-purpose X-ray fluorescence system has been built for non-destructive analyses of trace and invisible material at crime scenes. This portable instrument is based on a generator that can operate to 60 kV and a Schottky CdTe detector. The instrument has been shown to be successful for the analysis of gunshot residue and a number of bodily fluids at crime scenes

  5. The roles of lesson study in the development of mathematics learning instrument based on learning trajectory

    Science.gov (United States)

    Misnasanti; Dien, C. A.; Azizah, F.

    2018-03-01

    This study is aimed to describe Lesson Study (LS) activity and its roles in the development of mathematics learning instruments based on Learning Trajectory (LT). This study is a narrative study of teacher’s experiences in joining LS activity. Data collecting in this study will use three methods such as observation, documentations, and deep interview. The collected data will be analyzed with Milles and Huberman’s model that consists of reduction, display, and verification. The study result shows that through LS activity, teachers know more about how students think. Teachers also can revise their mathematics learning instrument in the form of lesson plan. It means that LS activity is important to make a better learning instruments and focus on how student learn not on how teacher teach.

  6. Project management strategies for prototyping breakdowns

    DEFF Research Database (Denmark)

    Granlien, Maren Sander; Pries-Heje, Jan; Baskerville, Richard

    2009-01-01

    , managing the explorative and iterative aspects of prototyping projects is not a trivial task. We examine the managerial challenges in a small scale prototyping project in the Danish healthcare sector where a prototype breakdown and project escalation occurs. From this study we derive a framework...... of strategies for coping with escalation in troubled prototyping projects; the framework is based on project management triangle theory and is useful when considering how to manage prototype breakdown and escalation. All strategies were applied in the project case at different points in time. The strategies led...

  7. Safety critical FPGA-based NPP instrumentation and control systems: assessment, development and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Bakhmach, E. S.; Siora, A. A.; Tokarev, V. I. [Research and Production Corporation Radiy, 29 Geroev Stalingrada Str., Kirovograd 25006 (Ukraine); Kharchenko, V. S.; Sklyar, V. V.; Andrashov, A. A., E-mail: marketing@radiy.co [Center for Safety Infrastructure-Oriented Research and Analysis, 37 Astronomicheskaya Str., Kharkiv 61085 (Ukraine)

    2010-10-15

    The stages of development, production, verification, licensing and implementation methods and technologies of safety critical instrumentation and control systems for nuclear power plants (NPP) based on FPGA (Field Programmable Gates Arrays) technologies are described. A life cycle model and multi-version technologies of dependability and safety assurance of FPGA-based instrumentation and control systems are discussed. An analysis of NPP instrumentation and control systems construction principles developed by Research and Production Corporation Radiy using FPGA-technologies and results of these systems implementation and operation at Ukrainian and Bulgarian NPP are presented. The RADIY{sup TM} platform has been designed and developed by Research and Production Corporation Radiy, Ukraine. The main peculiarity of the RADIY{sup TM} platform is the use of FPGA as programmable components for logic control operation. The FPGA-based RADIY{sup TM} platform used for NPP instrumentation and control systems development ensures sca lability of system functions types, volume and peculiarities (by changing quantity and quality of sensors, actuators, input/output signals and control algorithms); sca lability of dependability (safety integrity) (by changing a number of redundant channel, tiers, diagnostic and reconfiguration procedures); sca lability of diversity (by changing types, depth and method of diversity selection). (Author)

  8. Safety critical FPGA-based NPP instrumentation and control systems: assessment, development and implementation

    International Nuclear Information System (INIS)

    Bakhmach, E. S.; Siora, A. A.; Tokarev, V. I.; Kharchenko, V. S.; Sklyar, V. V.; Andrashov, A. A.

    2010-10-01

    The stages of development, production, verification, licensing and implementation methods and technologies of safety critical instrumentation and control systems for nuclear power plants (NPP) based on FPGA (Field Programmable Gates Arrays) technologies are described. A life cycle model and multi-version technologies of dependability and safety assurance of FPGA-based instrumentation and control systems are discussed. An analysis of NPP instrumentation and control systems construction principles developed by Research and Production Corporation Radiy using FPGA-technologies and results of these systems implementation and operation at Ukrainian and Bulgarian NPP are presented. The RADIY TM platform has been designed and developed by Research and Production Corporation Radiy, Ukraine. The main peculiarity of the RADIY TM platform is the use of FPGA as programmable components for logic control operation. The FPGA-based RADIY TM platform used for NPP instrumentation and control systems development ensures sca lability of system functions types, volume and peculiarities (by changing quantity and quality of sensors, actuators, input/output signals and control algorithms); sca lability of dependability (safety integrity) (by changing a number of redundant channel, tiers, diagnostic and reconfiguration procedures); sca lability of diversity (by changing types, depth and method of diversity selection). (Author)

  9. EVA: laparoscopic instrument tracking based on Endoscopic Video Analysis for psychomotor skills assessment.

    Science.gov (United States)

    Oropesa, Ignacio; Sánchez-González, Patricia; Chmarra, Magdalena K; Lamata, Pablo; Fernández, Alvaro; Sánchez-Margallo, Juan A; Jansen, Frank Willem; Dankelman, Jenny; Sánchez-Margallo, Francisco M; Gómez, Enrique J

    2013-03-01

    The EVA (Endoscopic Video Analysis) tracking system is a new system for extracting motions of laparoscopic instruments based on nonobtrusive video tracking. The feasibility of using EVA in laparoscopic settings has been tested in a box trainer setup. EVA makes use of an algorithm that employs information of the laparoscopic instrument's shaft edges in the image, the instrument's insertion point, and the camera's optical center to track the three-dimensional position of the instrument tip. A validation study of EVA comprised a comparison of the measurements achieved with EVA and the TrEndo tracking system. To this end, 42 participants (16 novices, 22 residents, and 4 experts) were asked to perform a peg transfer task in a box trainer. Ten motion-based metrics were used to assess their performance. Construct validation of the EVA has been obtained for seven motion-based metrics. Concurrent validation revealed that there is a strong correlation between the results obtained by EVA and the TrEndo for metrics, such as path length (ρ = 0.97), average speed (ρ = 0.94), or economy of volume (ρ = 0.85), proving the viability of EVA. EVA has been successfully validated in a box trainer setup, showing the potential of endoscopic video analysis to assess laparoscopic psychomotor skills. The results encourage further implementation of video tracking in training setups and image-guided surgery.

  10. Validation of an empirically based instrument for the assessment of the quality of teaching in medicine

    OpenAIRE

    Prescher, Anja

    2016-01-01

    Measuring the quality of teaching is a necessary prerequisite for the evaluation and development of medical education and thus for high-quality patient care. Corresponding quality indicators can make the feedback for teachers comprehensible. A completely empirically based instrument for the assessment of the quality of teaching in medicine has not yet been described. Ten empirically based criteria from the field of general pedagogy were developed: clear structure, amount of true learning time...

  11. Rethink! prototyping transdisciplinary concepts of prototyping

    CERN Document Server

    Nagy, Emilia; Stark, Rainer

    2016-01-01

    In this book, the authors describe the findings derived from interaction and cooperation between scientific actors employing diverse practices. They reflect on distinct prototyping concepts and examine the transformation of development culture in their fusion to hybrid approaches and solutions. The products of tomorrow are going to be multifunctional, interactive systems – and already are to some degree today. Collaboration across multiple disciplines is the only way to grasp their complexity in design concepts. This underscores the importance of reconsidering the prototyping process for the development of these systems, particularly in transdisciplinary research teams. “Rethinking Prototyping – new hybrid concepts for prototyping” was a transdisciplinary project that took up this challenge. The aim of this programmatic rethinking was to come up with a general concept of prototyping by combining innovative prototyping concepts, which had been researched and developed in three sub-projects: “Hybrid P...

  12. Architectures of prototypes and architectural prototyping

    DEFF Research Database (Denmark)

    Hansen, Klaus Marius; Christensen, Michael; Sandvad, Elmer

    1998-01-01

    together as a team, but developed a prototype that more than fulfilled the expectations of the shipping company. The prototype should: - complete the first major phase within 10 weeks, - be highly vertical illustrating future work practice, - continuously live up to new requirements from prototyping......This paper reports from experience obtained through development of a prototype of a global customer service system in a project involving a large shipping company and a university research group. The research group had no previous knowledge of the complex business of shipping and had never worked...... sessions with users, - evolve over a long period of time to contain more functionality - allow for 6-7 developers working intensively in parallel. Explicit focus on the software architecture and letting the architecture evolve with the prototype played a major role in resolving these conflicting...

  13. Design and validation of a standards-based science teacher efficacy instrument

    Science.gov (United States)

    Kerr, Patricia Reda

    National standards for K--12 science education address all aspects of science education, with their main emphasis on curriculum---both science subject matter and the process involved in doing science. Standards for science teacher education programs have been developing along a parallel plane, as is self-efficacy research involving classroom teachers. Generally, studies about efficacy have been dichotomous---basing the theoretical underpinnings on the work of either Rotter's Locus of Control theory or on Bandura's explanations of efficacy beliefs and outcome expectancy. This study brings all three threads together---K--12 science standards, teacher education standards, and efficacy beliefs---in an instrument designed to measure science teacher efficacy with items based on identified critical attributes of standards-based science teaching and learning. Based on Bandura's explanation of efficacy being task-specific and having outcome expectancy, a developmental, systematic progression from standards-based strategies and activities to tasks to critical attributes was used to craft items for a standards-based science teacher efficacy instrument. Demographic questions related to school characteristics, teacher characteristics, preservice background, science teaching experience, and post-certification professional development were included in the instrument. The instrument was completed by 102 middle level science teachers, with complete data for 87 teachers. A principal components analysis of the science teachers' responses to the instrument resulted in two components: Standards-Based Science Teacher Efficacy: Beliefs About Teaching (BAT, reliability = .92) and Standards-Based Science Teacher Efficacy: Beliefs About Student Achievement (BASA, reliability = .82). Variables that were characteristic of professional development activities, science content preparation, and school environment were identified as members of the sets of variables predicting the BAT and BASA

  14. Optimized scheme in coal-fired boiler combustion based on information entropy and modified K-prototypes algorithm

    Science.gov (United States)

    Gu, Hui; Zhu, Hongxia; Cui, Yanfeng; Si, Fengqi; Xue, Rui; Xi, Han; Zhang, Jiayu

    2018-06-01

    An integrated combustion optimization scheme is proposed for the combined considering the restriction in coal-fired boiler combustion efficiency and outlet NOx emissions. Continuous attribute discretization and reduction techniques are handled as optimization preparation by E-Cluster and C_RED methods, in which the segmentation numbers don't need to be provided in advance and can be continuously adapted with data characters. In order to obtain results of multi-objections with clustering method for mixed data, a modified K-prototypes algorithm is then proposed. This algorithm can be divided into two stages as K-prototypes algorithm for clustering number self-adaptation and clustering for multi-objective optimization, respectively. Field tests were carried out at a 660 MW coal-fired boiler to provide real data as a case study for controllable attribute discretization and reduction in boiler system and obtaining optimization parameters considering [ maxηb, minyNOx ] multi-objective rule.

  15. Development and testing of a prototype NPP information system based on the G2 expert system shell

    International Nuclear Information System (INIS)

    Vegh, J.; Bodnar, M.; Brueger, L.; Tanyi, M.; Sefcsik, F.

    1994-01-01

    The components and functioning of the GPCS information system is described as applied for process monitoring and alarm generation in WWER-440 type nuclear power plant. The prototype system was developed by using the G2 real-time expert system shell, measurements were simulated by a WWER-440 compact simulator and by the archive replay of a core monitoring system. The benefits of the object oriented technology description, expert system approach and information integration are emphasized. (author) 21 refs.; 17 figs

  16. A prototype Ultraviolet Light Sensor based on ZnO Nanoparticles/Graphene Oxide Nanocomposite Using Low Temperature Hydrothermal Method

    International Nuclear Information System (INIS)

    Al-Fandi, M; Oweis, R; Khwailah, H; Al-Hattami, S; Al-Shawwa, E; Albiss, B A; Al-Akhras, M-Ali; Qutaish, H; AlZoubi, T

    2015-01-01

    A new prototype UV nanosensor using ZnO nanoparticles (NPs)/graphene oxide (GO) nanocomposite (ZnO-NP/GO) on silicon substrate is reported in this paper. The hybrid nanocomposite structure has been developed by an optimized hydrothermal process at low growth temperature (∼50 °C). In this hybrid nanosensor, the ZnO nanoparticles act as UV- absorbing and charge carrier generating material, while graphene with its superior electrical conductivity has been used as a charge transporting material. Various nanostructure characterization techniques were intensively utilized including SEM, EDX, XRD, FTIR and UV-VIS. Also, the I-V measurement was employed to evaluate the prototype sensor. The morphological SEM analysis showed that the ZnO-NPs (average diameter of 20 nm) were dispersed evenly on the GO sheets. As well, the EDX spectra confirmed the exact chemical composition of the intended structure. The room temperature UV-VIS measurement revealed an enhanced optical absorption of UV-light at an absorption band centered on 375 nm. The improved optical and electrical properties were observed at an optimum relative concentration of 1:10. Under UV light illumination, the measured I-V characteristic of the prototype detector exhibited a considerable photocurrent increase of the ZnO-NP/GO nanocomposite compared to pristine ZnO nanostructure. These results can be promising for future enhanced UV- sensing applications. (paper)

  17. Progress toward studies of bubble-geometry Bose-Einstein condensates in microgravity with a ground-based prototype of NASA CAL

    Science.gov (United States)

    Lundblad, Nathan; Jarvis, Thomas; Paseltiner, Daniel; Lannert, Courtney

    2016-05-01

    We have proposed using NASA's Cold Atom Laboratory (CAL, launching to the International Space Station in 2017) to generate bubble-geometry Bose-Einstein condensates through radiofrequency dressing of an atom-chip magnetic trap. This geometry has not been truly realized terrestrially due to the perturbing influence of gravity, making it an ideal candidate for microgravity investigation aboard CAL. We report progress in the construction of a functional prototype of the orbital BEC apparatus: a compact atom-chip machine loaded by a 2D+MOT source, conventional 3D MOT, quadrupole trap, and transfer coil. We also present preliminary modeling of the dressed trap uniformity, which will crucially inform the geometric closure of the BEC shell surface as atom number, bubble radius, and bubble aspect ratio are varied. Finally, we discuss plans for experimental sequences to be run aboard CAL guided by intuition from ground-based prototype operation. JPL 1502172.

  18. Instrumental Develovement of 50 Meters Free Style Swimming Speed Measurement Based on Microcontroller Arduino Uno

    Science.gov (United States)

    Badruzaman; Rusdiana, A.; Gilang, M. R.; Martini, T.

    2017-03-01

    This study is purposed to make a software and hardware instrument in controlling the velocity of 50 meters free style swimming speed measurement based on microcontroller Arduino Uno. The writer uses 6 participants of advanced 2015 college students of sport education. The materials he uses are electronical series of microcontroller Arduino Uno base, laser sensors shone on light dependent resistor, laser receiver functions as a detector of laser cutting block, cables as connector transfering the data. This device consist of 4 installable censors in every 10 meters with the result of swimming speed showed on the monitors using visual basic 6.0 software. This instrument automatically works when the buzzer is pushed and also runs the timer on the application. For the procedure, the writer asks the participants to swim in free style along 50 meters. When the athlete swims, they will cut the laser of every censors so that it gives a signal to stop the running timer on the monitoring application. The output result the writer gets from this used instrument is to know how fast a swimmer swim in maximum speed, to know the time and distance of acceleration and decelaration that happens. The result of validity instrument shows 0,605 (high), while the reliability is 0,833 (very high).

  19. A progress report of the switch-based data acquisition system prototype project and the application of switches from industry to high-energy physics event building

    International Nuclear Information System (INIS)

    Barsotti, E.; Booth, A.; Bowden, M.; Swoboda, C.

    1990-01-01

    A prototype of a data acquisition system based on a new scalable, highly-parallel, open-system architecture is being developed at Fermilab. The major component of the new architecture, the parallel event builder, is based on a telecommunications industry technique used in the implementation of switching systems, a barrel-shift switch. The architecture is scalable both in the expandability of the number of input channels and in the throughput of the system. Because of its scalability, the system is well suited for low to high-rate experiments, test beams and all SSC detectors. The architecture is open in that as new technologies are developed and made into commercial products (e.g., arrays of processors and workstations and standard data links), these new products can be easily integrated into the system with minimal system modifications and no modifications to the system's basic architecture. Scalability and openness should guarantee that the data acquisition system does not become obsolete during the lifetime of the experiment. The paper first gives a description of the architecture and the prototype project and then details both the prototype project's software and hardware status including details of some architecture simulation studies. Suggestions for future R and D work on the new data acquisition system architecture are then described. The paper concludes by examining interconnection networks from industry and their application to event building and to other areas of high-energy physics data acquisition systems

  20. Development of a Symptom-Based Patient-Reported Outcome Instrument for Functional Dyspepsia: A Preliminary Conceptual Model and an Evaluation of the Adequacy of Existing Instruments.

    Science.gov (United States)

    Taylor, Fiona; Reasner, David S; Carson, Robyn T; Deal, Linda S; Foley, Catherine; Iovin, Ramon; Lundy, J Jason; Pompilus, Farrah; Shields, Alan L; Silberg, Debra G

    2016-10-01

    The aim was to document, from the perspective of the empirical literature, the primary symptoms of functional dyspepsia (FD), evaluate the extent to which existing questionnaires target those symptoms, and, finally, identify any missing evidence that would impact the questionnaires' use in regulated clinical trials to assess treatment efficacy claims intended for product labeling. A literature review was conducted to identify the primary symptoms of FD and existing symptom-based FD patient-reported outcome (PRO) instruments. Following a database search, abstracts were screened and articles were retrieved for review. The primary symptoms of FD were organized into a conceptual model and the PRO instruments were evaluated for conceptual coverage as well as compared against evidentiary requirements presented in the FDA's PRO Guidance for Industry. Fifty-six articles and 16 instruments assessing FD symptoms were reviewed. Concepts listed in the Rome III criteria for FD (n = 7), those assessed by existing FD instruments (n = 34), and symptoms reported by patients in published qualitative research (n = 6) were summarized in the FD conceptual model. Except for vomiting, all of the identified symptoms from the published qualitative research reports were also specified in the Rome III criteria. Only three of the 16 instruments, the Dyspepsia Symptom Severity Index (DSSI), Nepean Dyspepsia Index (NDI), and Short-Form Nepean Dyspepsia Index (SF-NDI), measure all seven FD symptoms defined by the Rome III criteria. Among these three, each utilizes a 2-week recall period and 5-point Likert-type scale, and had evidence of patient involvement in development. Despite their coverage, when these instruments were evaluated in light of regulatory expectations, several issues jeopardized their potential qualification for substantiation of a labeling claim. No existing PRO instruments that measured all seven symptoms adhered to the regulatory principles necessary to support product

  1. Replacement of the control and instrumentation system with the microprocessor based systems in Japanese PWR plants

    International Nuclear Information System (INIS)

    Hayashi, N.

    1998-01-01

    In Ohi Units 3 and 4, Ikata Unit 3, and Genkai Units 3 and 4, the latest of PWR plants now under operation in Japan, the reactor control system and turbine control system employ the microprocessor base digital control systems with a view to improving reliability, operability and maintainability. In the next stage plants, another application of such digital system is also planned for the instrumentation rack for the reactor protection system for further improvement. On the other hand, in Mihama Unit 1, the first of domestic PWR plants, and later plants except for the latest 5 plants, analog control systems are employed for the instrumentation racks. For the analog control systems of these plants, FOXBORO H-Line instruments, equivalent domestic box type instruments or WH7300 Series card type instruments were initially employed, and later replaced with domestic card type control systems after 10-15 year operation. However, 8-12 years have passed since these replacements, so the 15th year generally quoted as an interval for replacing C and I systems is near at hand. This is the time to consider next replacement. This replacement will be based on the latest digital technology. However, it is not practical way for the existing plants to apply the same integrated digital C and I system configuration for the next stage plants, because it requires the drastic change of the C and I system configuration and significant cost-up. Therefore, we must investigate the optimum digital C and I system configuration for the existing system. (author)

  2. Quality of persian addiction websites: a survey based on silberg, discern and wqet instruments (2011).

    Science.gov (United States)

    Zahedi, Razieh; Taheri, Behjat; Shahrzadi, Leila; Tazhibi, Mehdi; Ashrafi-rizi, Hasan

    2013-03-01

    Nowadays, World Wide Web is an accessible and widespread resource to attain medical information. So physicians and health institutions try to inform patients about different domains of medicine through Web. Addiction is a noteworthy subject in medicine and a controversial issue among them. However, quality of health information on the internet is doubtful. The objective of this study is to determine the quality of Persian addiction websites to offer recommendation for their improvement. This was survey and an applied study that the study population was all Persian addiction websites. Sample of this study was 28 Persian addiction website which were chosen by searching Persian equivalences of 7 key terms (addiction, addict, addiction center, drug, treatment of addiction, recovery of addiction, addiction withdrawal) into the Google and Yahoo search engines. Finally, the websites were ranked based on the Silberg, DISCERN and WQET instruments. Data were analyzed with Excel software using descriptive statistics. The overall mean of websites in Silberg, DISCERN and WQET instruments were 1.42, 41.89, 64.57. Also the results showed that "Unit of Substance Abuse Treatment" belonging to Mashhad University of Medical Sciences was ranked first based on the Silberg, DISCERN and WQET instruments. 5 (from total of 9), 60 (from total of 80) and 82 (from total of normalized grade 82) were grades for this website for these instruments respectively. It showed that the quality of Persian websites according to Silberg, DISCERN and WQET instruments was "low", "more than half" and "very good" respectively. Not assigning date of entering data, author names, and references of information (authority) were most important missing characteristics of these websites. In addition, lack of interactive opportunities like chat rooms was another problem that leads to dissatisfaction of users.

  3. Tundish Cover Flux Thickness Measurement Method and Instrumentation Based on Computer Vision in Continuous Casting Tundish

    Directory of Open Access Journals (Sweden)

    Meng Lu

    2013-01-01

    Full Text Available Thickness of tundish cover flux (TCF plays an important role in continuous casting (CC steelmaking process. Traditional measurement method of TCF thickness is single/double wire methods, which have several problems such as personal security, easily affected by operators, and poor repeatability. To solve all these problems, in this paper, we specifically designed and built an instrumentation and presented a novel method to measure the TCF thickness. The instrumentation was composed of a measurement bar, a mechanical device, a high-definition industrial camera, a Siemens S7-200 programmable logic controller (PLC, and a computer. Our measurement method was based on the computer vision algorithms, including image denoising method, monocular range measurement method, scale invariant feature transform (SIFT, and image gray gradient detection method. Using the present instrumentation and method, images in the CC tundish can be collected by camera and transferred to computer to do imaging processing. Experiments showed that our instrumentation and method worked well at scene of steel plants, can accurately measure the thickness of TCF, and overcome the disadvantages of traditional measurement methods, or even replace the traditional ones.

  4. The Prototype as Mediator of Embodied Experience in Fashion Design

    DEFF Research Database (Denmark)

    Kristensen, Tore; Ræbild, Ulla

    . It is based on photographic material obtained in design studios during prototype development. The prototype is considered a core fashion design competence. Yet, companies increasingly cut costs by reducing or omitting prototype development. We intend to show, how the garment prototype acts as an important...

  5. Development of drift-flux model based on 8 x 8 BWR rod bundle geometry experiments under prototypic temperature and pressure conditions

    International Nuclear Information System (INIS)

    Ozaki, Tetsuhiro; Suzuki, Riichiro; Mashiko, Hiroyuki; Hibiki, Takashi

    2013-01-01

    The drift-flux model is one of the imperative concepts used to consider the effects of phase coupling on two-phase flow dynamics. Several drift-flux models are available that apply to rod bundle geometries and some of these are implemented in several nuclear safety analysis codes. However, these models are not validated by well-designed prototypic full bundle test data, and therefore, the scalability of these models has not necessarily been verified. The Nuclear Power Engineering Corporation (NUPEC) conducted void fraction measurement tests in Japan with prototypic 8 x 8 BWR (boiling water reactor) rod bundles under prototypic temperature and pressure conditions. Based on these NUPEC data, a new drift-flux model applicable to predicting the void fraction in a rod bundle geometry has been developed. The newly developed drift-flux model is compared with the other existing data such as the two-phase flow test facility (TPTF) data taken at the Japan Atomic Energy Research Institute (JAERI) [currently, Japan Atomic Energy Agency (JAEA)] and low pressure adiabatic 8 x 8 bundle test data taken at Purdue University in the United States. The results of these comparisons show good agreement between the test data and the predictions. The effects of power distribution, spacer grids, and the bundle geometry on the newly developed drift-flux model have been discussed using the NUPEC data. (author)

  6. An ergonomics prototype of adjustable chin stands aid for visual mechanical inspection at electronic manufacturing-based company in Kuantan, Malaysia

    Science.gov (United States)

    Elias, Nurainaa; Mat Yahya, Nafrizuan

    2018-04-01

    Chin stands aid is a device designed to reduce fatigue on the chin during the Visual Mechanical Inspection (VMI) task for operators in TT Electronic Sdn Bhd, Kuantan, Malaysia. It is also used to reduce cycle time and also improve employee well-being in terms of comfort. In this project, a 3D model of chin stands aid with an ergonomics approach is created using SOLIDWORKS software. Two different concepts were designed and the best one is chosen based on the Pugh concept selection method, concept screening and also concept scoring. After the selection of concepts is done, a prototype of chin stands aid will be developed and a simulation of the prototype is performed. The simulation has been executed by using Workbench ANSYS software as a tool. Stress analysis, deformation analysis, and fatigue analysis have been done to know the strength and lifespan of the product. The prototype also has been tested to know the functionality and also comfortability for the user to use the chin stands aid.

  7. Playing a Musical Instrument as a Protective Factor against Dementia and Cognitive Impairment: A Population-Based Twin Study.

    Science.gov (United States)

    Balbag, M Alison; Pedersen, Nancy L; Gatz, Margaret

    2014-01-01

    Increasing evidence supports that playing a musical instrument may benefit cognitive development and health at young ages. Whether playing an instrument provides protection against dementia has not been established. In a population-based cotwin control study, we examined the association between playing a musical instrument and whether or not the twins developed dementia or cognitive impairment. Participation in playing an instrument was taken from informant-based reports of twins' leisure activities. Dementia diagnoses were based on a complete clinical workup using standard diagnostic criteria. Among 157 twin pairs discordant for dementia and cognitive impairment, 27 pairs were discordant for playing an instrument. Controlling for sex, education, and physical activity, playing a musical instrument was significantly associated with less likelihood of dementia and cognitive impairment (odds ratio [OR] = 0.36 [95% confidence interval 0.13-0.99]). These findings support further consideration of music as a modifiable protective factor against dementia and cognitive impairment.

  8. The relative efficiency of market-based environmental policy instruments with imperfect compliance

    OpenAIRE

    Rousseau, Sandra; Proost, Stef

    2004-01-01

    This paper examines to what extent incomplete compliance of environmental regulation mitigates the distortions caused by pre-existing labour taxes. We study the relative cost efficiency of three market-based instruments: emission taxes, tradable permits and output taxes. In a first-best setting and given that monitoring and enforcement is costless, we find that the same utility levels can be reached with and without incomplete compliance. However, allowing for violations makes the policy i...

  9. AFRRI's conversion to a microprocessor-based reactor instrumentation and control system

    International Nuclear Information System (INIS)

    Moore, Mark L.; Hodgdon, Kenneth M.

    1986-01-01

    The Armed Forces Radiobiology Research Institute (AFRRI) is procuring a state-of- the-art microprocessor-based instrumentation and control system to operate AFRRI's 1 MW (steady-state), 3000 MW (pulse) TRIGA Mark-F reactor. This system will replace the current control console while improving or maintaining the existing operational capabilities and safety characteristics. The new unit will have a 15-year design life using state-of-the-art components

  10. Prototype Stilbene Neutron Collar

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, M. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shumaker, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Snyderman, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Verbeke, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wong, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-26

    A neutron collar using stilbene organic scintillator cells for fast neutron counting is described for the assay of fresh low enriched uranium (LEU) fuel assemblies. The prototype stilbene collar has a form factor similar to standard He-3 based collars and uses an AmLi interrogation neutron source. This report describes the simulation of list mode neutron correlation data on various fuel assemblies including some with neutron absorbers (burnable Gd poisons). Calibration curves (doubles vs 235U linear mass density) are presented for both thermal and fast (with Cd lining) modes of operation. It is shown that the stilbene collar meets or exceeds the current capabilities of He-3 based neutron collars. A self-consistent assay methodology, uniquely suited to the stilbene collar, using triples is described which complements traditional assay based on doubles calibration curves.

  11. The Development of an Instrument to Measure the Project Competences of College Students in Online Project-Based Learning

    Science.gov (United States)

    Lin, Chien-Liang

    2018-01-01

    This study sought to develop a self-report instrument to be used in the assessment of the project competences of college students engaged in online project-based learning. Three scales of the KIPSSE instrument developed for this study, namely, the knowledge integration, project skills, and self-efficacy scales, were based on related theories and…

  12. ANUSANSKAR: a 16 channel frontend electronics (FEE) ASIC targeted for silicon pixel array detector based prototype Alice FOCAL

    International Nuclear Information System (INIS)

    Mukhopadhyay, Sourav; Chandratre, V.B.; Sukhwani, Menka; Pithawa, C.K.; Singaraju, Ramnarayan; Muhuri, Sanjib; Nayak, T.; Khan, S.A.; Saini, Jogendra

    2013-01-01

    ANUSANSKAR is a 16 channel pulse processing ASIC with analog multiplexed output designed in 0.7 um standard CMOS technology with each channel consisting of CSA, Semi Gaussian pulse shaper, DC cancellation and pedestal control, track and hold, output buffer blocks. The ASIC's analog multiplexed output can be read serially in daisy-chain topology. Testing, characterization and validation of ANUSANSKAR ASIC as readout for prototype ALICE forward calorimeter (FOCAL) has been carried out in PS beam line at CERN with up to 6 GeV of pion and electron beam. This paper describes the ANUSANSKAR ASIC along with the experimental results. (author)

  13. Tests of prototype magnets and study on a MCP based proton detector for the neutron lifetime experiment PENeLOPE

    International Nuclear Information System (INIS)

    Materne, Stefan

    2013-01-01

    The precision experiment PENeLOPE will store ultra-cold neutrons in a magnetic trap and determine the neutron lifetime via the time-resolved counting of the decay-protons. The thesis reports on training and performance tests of prototypes of the superconducting coils. Additionally, a magnetic field mapper for PENeLOPE was characterized. In the second part of the thesis, microchannel plates (MCPs) were studied with alpha particles and protons as a possible candidate for the decay particle detector in PENeLOPE.

  14. Instrumentation for low noise nanopore-based ionic current recording under laser illumination

    Science.gov (United States)

    Roelen, Zachary; Bustamante, José A.; Carlsen, Autumn; Baker-Murray, Aidan; Tabard-Cossa, Vincent

    2018-01-01

    We describe a nanopore-based optofluidic instrument capable of performing low-noise ionic current recordings of individual biomolecules under laser illumination. In such systems, simultaneous optical measurements generally introduce significant parasitic noise in the electrical signal, which can severely reduce the instrument sensitivity, critically hindering the monitoring of single-molecule events in the ionic current traces. Here, we present design rules and describe simple adjustments to the experimental setup to mitigate the different noise sources encountered when integrating optical components to an electrical nanopore system. In particular, we address the contributions to the electrical noise spectra from illuminating the nanopore during ionic current recording and mitigate those effects through control of the illumination source and the use of a PDMS layer on the SiNx membrane. We demonstrate the effectiveness of our noise minimization strategies by showing the detection of DNA translocation events during membrane illumination with a signal-to-noise ratio of ˜10 at 10 kHz bandwidth. The instrumental guidelines for noise minimization that we report are applicable to a wide range of nanopore-based optofluidic systems and offer the possibility of enhancing the quality of synchronous optical and electrical signals obtained during single-molecule nanopore-based analysis.

  15. Local high precision 3D measurement based on line laser measuring instrument

    Science.gov (United States)

    Zhang, Renwei; Liu, Wei; Lu, Yongkang; Zhang, Yang; Ma, Jianwei; Jia, Zhenyuan

    2018-03-01

    In order to realize the precision machining and assembly of the parts, the geometrical dimensions of the surface of the local assembly surfaces need to be strictly guaranteed. In this paper, a local high-precision three-dimensional measurement method based on line laser measuring instrument is proposed to achieve a high degree of accuracy of the three-dimensional reconstruction of the surface. Aiming at the problem of two-dimensional line laser measuring instrument which lacks one-dimensional high-precision information, a local three-dimensional profile measuring system based on an accurate single-axis controller is proposed. First of all, a three-dimensional data compensation method based on spatial multi-angle line laser measuring instrument is proposed to achieve the high-precision measurement of the default axis. Through the pretreatment of the 3D point cloud information, the measurement points can be restored accurately. Finally, the target spherical surface is needed to make local three-dimensional scanning measurements for accuracy verification. The experimental results show that this scheme can get the local three-dimensional information of the target quickly and accurately, and achieves the purpose of gaining the information and compensating the error for laser scanner information, and improves the local measurement accuracy.

  16. Content comparison of occupation-based instruments in adult rheumatology and musculoskeletal rehabilitation based on the International Classification of Functioning, Disability and Health.

    Science.gov (United States)

    Stamm, Tanja A; Cieza, Alarcos; Machold, Klaus P; Smolen, Josef S; Stucki, Gerold

    2004-12-15

    To compare the content of clinical, occupation-based instruments that are used in adult rheumatology and musculoskeletal rehabilitation in occupational therapy based on the International Classification of Functioning, Disability and Health (ICF). Clinical instruments of occupational performance and occupation in adult rehabilitation and rheumatology were identified in a literature search. All items of these instruments were linked to the ICF categories according to 10 linking rules. On the basis of the linking, the content of these instruments was compared and the relationship between the capacity and performance component explored. The following 7 instruments were identified: the Canadian Occupational Performance Measure, the Assessment of Motor and Process Skills, the Sequential Occupational Dexterity Assessment, the Jebson Taylor Hand Function Test, the Moberg Picking Up Test, the Button Test, and the Functional Dexterity Test. The items of the 7 instruments were linked to 53 different ICF categories. Five items could not be linked to the ICF. The areas covered by the 7 occupation-based instruments differ importantly: The main focus of all 7 instruments is on the ICF component activities and participation. Body functions are covered by 2 instruments. Two instruments were linked to 1 single ICF category only. Clinicians and researchers who need to select an occupation-based instrument must be aware of the areas that are covered by this instrument and the potential areas that are not covered at all.

  17. Yucca Mountain project prototype testing

    International Nuclear Information System (INIS)

    Hughes, W.T.; Girdley, W.A.

    1990-01-01

    The U.S. DOE is responsible for characterizing the Yucca Mountain site in Nevada to determine its suitability for development as a geologic repository to isolate high-level nuclear waste for at least 10,000 years. This unprecedented task relies in part on measurements made with relatively new methods or applications, such as dry coring and overcoring for studies to be conducted from the land surface and in an underground facility. The Yucca Mountain Project has, since 1988, implemented a program of equipment development and methods development for a broad spectrum of hydrologic, geologic, rock mechanics, and thermomechanical tests planned for use in an Exploratory Shaft during site characterization at the Yucca Mountain site. A second major program was fielded beginning in April 1989 to develop and test methods and equipment for surface drilling to obtain core samples from depth using only air as a circulating medium. The third major area of prototype testing has been during the ongoing development of the Instrumentation/ Data Acquisition System (IDAS), designed to collect and monitor data from down-hole instrumentation in the unsaturated zone, and store and transmit the data to a central archiving computer. Future prototype work is planned for several programs including the application of vertical seismic profiling methods and flume design to characterizing the geology at Yucca Mountain. The major objectives of this prototype testing are to assure that planned Site Characterization testing can be carried out effectively at Yucca Mountain, both in the Exploratory Shaft Facility (ESF), and from the surface, and to avoid potential major failures or delays that could result from the need to re-design testing concepts or equipment. This paper will describe the scope of the Yucca Mountain Project prototype testing programs and summarize results to date. 3 figs

  18. A preliminary evaluation of a reusable digital sterilization indicator prototype.

    Science.gov (United States)

    Puttaiah, R; Griggs, J; D'Onofrio, M

    2014-09-01

    Sterilization of critical and semicritical instruments used in patient care must undergo a terminal process of sterilization. Use of chemical and physical indicators are important in providing information on the sterilizer's performance during each cycle. Regular and periodic monitoring of sterilizers using biological indicators is necessary in periodically validating performance of sterilizers. Data loggers or independent digital parametric indicators are innovative devices that provide more information than various classes chemical indicators. In this study we evaluated a prototype of an independent digital parametric indicator's use in autoclaves. The purpose of this study was to evaluate the performance of an independent digital indicator/data logger prototype (DS1922F) that could be used for multiple cycles within an autoclave.MG Materials and methods: Three batches of the DS1922F (150 samples) were used in this study that was conducted in a series. The first batch was challenged with 300 sterilization cycles within an autoclave and the data loggers evaluated to study failures and the reason for failure, make corrections and improve the prototype design. After changes made based on studying the first batch, the second batch of the prototype (150 samples) were challenged once again with 300 sterilization cycles within an autoclave and failure studied again in further improvement of the prototype. The final batch (3rd batch) of the prototype (150 samples) was challenged again but with 600 cycles to see how long they would last. Kaplan-Meier survival analysis analyses of all three batches was conducted (α = 0.05) and failed samples qualitatively studied in understanding the variables involved in the failure of the prototype, and in improving quality. Each tested batch provided crucial information on device failure and helped in improvement of the prototype. Mean lifetime survival of the final batch (Batch 3) of prototype was 498 (480, 516) sterilization cycles

  19. Protocol of the COSMIN study: COnsensus-based Standards for the selection of health Measurement INstruments

    Directory of Open Access Journals (Sweden)

    Patrick DL

    2006-01-01

    Full Text Available Abstract Background Choosing an adequate measurement instrument depends on the proposed use of the instrument, the concept to be measured, the measurement properties (e.g. internal consistency, reproducibility, content and construct validity, responsiveness, and interpretability, the requirements, the burden for subjects, and costs of the available instruments. As far as measurement properties are concerned, there are no sufficiently specific standards for the evaluation of measurement properties of instruments to measure health status, and also no explicit criteria for what constitutes good measurement properties. In this paper we describe the protocol for the COSMIN study, the objective of which is to develop a checklist that contains COnsensus-based Standards for the selection of health Measurement INstruments, including explicit criteria for satisfying these standards. We will focus on evaluative health related patient-reported outcomes (HR-PROs, i.e. patient-reported health measurement instruments used in a longitudinal design as an outcome measure, excluding health care related PROs, such as satisfaction with care or adherence. The COSMIN standards will be made available in the form of an easily applicable checklist. Method An international Delphi study will be performed to reach consensus on which and how measurement properties should be assessed, and on criteria for good measurement properties. Two sources of input will be used for the Delphi study: (1 a systematic review of properties, standards and criteria of measurement properties found in systematic reviews of measurement instruments, and (2 an additional literature search of methodological articles presenting a comprehensive checklist of standards and criteria. The Delphi study will consist of four (written Delphi rounds, with approximately 30 expert panel members with different backgrounds in clinical medicine, biostatistics, psychology, and epidemiology. The final checklist will

  20. Improvement of Dimensional Accuracy of 3-D Printed Parts using an Additive/Subtractive Based Hybrid Prototyping Approach

    Science.gov (United States)

    Amanullah Tomal, A. N. M.; Saleh, Tanveer; Raisuddin Khan, Md.

    2017-11-01

    At present, two important processes, namely CNC machining and rapid prototyping (RP) are being used to create prototypes and functional products. Combining both additive and subtractive processes into a single platform would be advantageous. However, there are two important aspects need to be taken into consideration for this process hybridization. First is the integration of two different control systems for two processes and secondly maximizing workpiece alignment accuracy during the changeover step. Recently we have developed a new hybrid system which incorporates Fused Deposition Modelling (FDM) as RP Process and CNC grinding operation as subtractive manufacturing process into a single setup. Several objects were produced with different layer thickness for example 0.1 mm, 0.15 mm and 0.2 mm. It was observed that pure FDM method is unable to attain desired dimensional accuracy and can be improved by a considerable margin about 66% to 80%, if finishing operation by grinding is carried out. It was also observed layer thickness plays a role on the dimensional accuracy and best accuracy is achieved with the minimum layer thickness (0.1 mm).

  1. Flight Telerobotic Servicer prototype simulator

    Science.gov (United States)

    Schein, Rob; Krauze, Linda; Hartley, Craig; Dickenson, Alan; Lavecchia, Tom; Working, Bob

    A prototype simulator for the Flight Telerobotic Servicer (FTS) system is described for use in the design development of the FTS, emphasizing the hand controller and user interface. The simulator utilizes a graphics workstation based on rapid prototyping tools for systems analyses of the use of the user interface and the hand controller. Kinematic modeling, manipulator-control algorithms, and communications programs are contained in the software for the simulator. The hardwired FTS panels and operator interface for use on the STS Orbiter are represented graphically, and the simulated controls function as the final FTS system configuration does. The robotic arm moves based on the user hand-controller interface, and the joint angles and other data are given on the prototype of the user interface. This graphics simulation tool provides the means for familiarizing crewmembers with the FTS system operation, displays, and controls.

  2. Method comparison and validation of a prototype device for measurement of ionized calcium concentrations cow-side against a point-of-care instrument and a benchtop blood-gas analyzer reference method.

    Science.gov (United States)

    Neves, R C; Stokol, T; Bach, K D; McArt, J A A

    2018-02-01

    The objective of this study was to assess an optimized ion-selective electrode Ca-module prototype as a potential cow-side device for ionized Ca (iCa) measurements in bovine blood. A linearity experiment showed no deviation from linearity over a range of iCa concentrations compared with a commercial point-of-care (POC) device commonly used in the field (POC VS ; VetScan i-STAT, Abaxis North America, Union City, CA) and a laboratory gold standard benchtop blood-gas analyzer [reference analyzer (RA); ABL-800 FLEX, Radiometer Medical, Copenhagen, Denmark]. Coefficient of variation on 3 samples with high, within-range, and low iCa concentrations ranged from 1.0 to 3.9% for the prototype. A follow-up validation experiment was performed, in which our objectives were to (1) assess the performance of the prototype cow-side against the POC VS (farm gold-standard) using fresh non-anticoagulated whole-blood samples; (2) assess the performance of the prototype and the POC VS against the RA in a diagnostic laboratory using blood collected in a heparin-balanced syringe; and (3) assess the agreement of the prototype and POC VS on-farm (fresh non-anticoagulated whole blood) against the RA on heparin-balanced blood. Finally, sensitivity and specificity of the results obtained by the prototype and the POC VS cow-side compared with the results obtained by the laboratory RA using 3 different iCa cut points for classification of subclinical hypocalcemia were calculated. A total of 101 periparturient Holstein cows from 3 dairy farms in New York State were used for the second experiment. Ionized Ca results from the prototype cow-side were, on average, 0.06 mmol/L higher than the POC VS . With heparin-balanced samples under laboratory conditions, the prototype and POC VS measured an average 0.04 mmol/L higher and lower, respectively, compared with the RA. Results from the prototype and POC VS cow-side were 0.01 mmol/L higher and 0.05 mmol/L lower, respectively, compared with results from

  3. Computer-based nuclear radiation detection and instrumentation teaching laboratory system

    International Nuclear Information System (INIS)

    Ellis, W.H.; He, Q.

    1993-01-01

    The integration of computers into the University of Florida's Nuclear Engineering Sciences teaching laboratories is based on the innovative use of MacIntosh 2 microcomputers, IEEE-488 (GPIB) communication and control bus system and protocol, compatible modular nuclear instrumentation (NIM) and test equipment, LabVIEW graphics and applications software, with locally prepared, interactive, menu-driven, HyperCard based multi-exercise laboratory instruction sets and procedures. Results thus far have been highly successful with the majority of the laboratory exercises having been implemented

  4. Evaluation of a reconfigurable portable instrument for copper determination based on luminescent carbon dots.

    Science.gov (United States)

    Salinas-Castillo, Alfonso; Morales, Diego P; Lapresta-Fernández, Alejandro; Ariza-Avidad, María; Castillo, Encarnación; Martínez-Olmos, Antonio; Palma, Alberto J; Capitan-Vallvey, Luis Fermin

    2016-04-01

    A portable reconfigurable platform for copper (Cu(II)) determination based on luminescent carbon dot (Cdots) quenching is described. The electronic setup consists of a light-emitting diode (LED) as the carbon dot optical exciter and a photodiode as a light-to-current converter integrated in the same instrument. Moreover, the overall analog conditioning is simply performed with one integrated solution, a field-programmable analog array (FPAA), which makes it possible to reconfigure the filter and gain stages in real time. This feature provides adaptability to use the platform as an analytical probe for carbon dots coming from different batches with some variations in luminescence characteristics. The calibration functions obtained that fit a modified Stern-Volmer equation were obtained using luminescence signals from Cdots quenching by Cu(II). The analytical applicability of the reconfigurable portable instrument for Cu(II) using Cdots has been successfully demonstrated in tap water analysis.

  5. Development and design of a late-model fitness test instrument based on LabView

    Science.gov (United States)

    Xie, Ying; Wu, Feiqing

    2010-12-01

    Undergraduates are pioneers of China's modernization program and undertake the historic mission of rejuvenating our nation in the 21st century, whose physical fitness is vital. A smart fitness test system can well help them understand their fitness and health conditions, thus they can choose more suitable approaches and make practical plans for exercising according to their own situation. following the future trends, a Late-model fitness test Instrument based on LabView has been designed to remedy defects of today's instruments. The system hardware consists of fives types of sensors with their peripheral circuits, an acquisition card of NI USB-6251 and a computer, while the system software, on the basis of LabView, includes modules of user register, data acquisition, data process and display, and data storage. The system, featured by modularization and an open structure, is able to be revised according to actual needs. Tests results have verified the system's stability and reliability.

  6. Robust IFE Based Order Analysis of Rotating Machinery in Virtual Instrument

    International Nuclear Information System (INIS)

    Guo, Y; Chi, Y L; Huang, Y Y; Qin, S R

    2006-01-01

    Character analysis plays an important role in fault-find and diagnosis of rotating machinery. Order analysis is one of the major methods in character analysis for the analysis of non-stationary vibration signals in run-up or coast down of rotating machinery. An order analysis method, which employs instantaneous frequency estimation based on time-frequency analysis, is introduced. In contrast with traditional order analysis methods, this method avoids the use of tachometer and other special hardware; hence it makes the application of order analysis simplified. The order analysis introduced in the paper with the character that only software is depended for order tracking makes it specially satisfy the requirement of Virtual Instruments. Corresponding order analysis items, such as order spectrum, order spectrum matrix and tracking order spectrum etc., which are applied in Virtual Instruments, are also introduced. A test example is provided to demonstrate the validity of the method presented

  7. Recent applications of microprocessor-based instruments in nuclear power stations

    International Nuclear Information System (INIS)

    Cash, N.R.; Dennis, U.E.

    1988-01-01

    The incorporation of microprocessors in the design of nuclear power plant instrumentation has led to levels of measurement and control not available previously. In addition to the expected expansion of functional (system) capability, numerous desirable features now are possible. The added ability to both self-calibrate and perform compensation algorithms has led to dramatic improvements in accuracies, response times, and noise rejection. Automated performance checking and self-testing simplify troubleshooting and required periodic surveillance. Alphanumeric displays allow both menu-driven operation and user-prompting, which, in turn, contribute to mistake avoidance. New features of these microprocessor-based instruments are of specific benefit in nuclear power reactors, were safety is of prime concern. Greater reliability and accuracy can be provided. Shortened calibration, surveillance, and repair times reduce the exposure to unnecessary challenges of the plant's protection systems that can arise from spurious noise signals

  8. Virtual instrumention-based linearity test platform for DCCT of digital power supply at SSRF

    International Nuclear Information System (INIS)

    Tang Junlong; Li Deming; Shen Tianjian; Liu Hong

    2008-01-01

    Based on virtual instrumentation, a reliable and effective test platform, performing instrument control, data acquisition and data recording, has been established to evaluate linearity of high performance DCCT (DC current transducer) for digital power supply at Shanghai Synchrotron Radiation Facility (SSRF). The software in LabVIEW language was developed to perform computer communication via serial communication (RS232) and GPIB, providing a friendly user interface to the linearity test platform. This makes it easy to test the linearity and control power on or off and current output of high-precision and high-current DC constant current output power supply. The experimental data, stored in an EXCEL file, can be processed to obtain DCCT linearity, and provide basis to further analyze DCCT performance in the future. (authors)

  9. Test case preparation using a prototype

    OpenAIRE

    Treharne, Helen; Draper, J.; Schneider, Steve A.

    1998-01-01

    This paper reports on the preparation of test cases using a prototype within the context of a formal development. It describes an approach to building a prototype using an example. It discusses how a prototype contributes to the testing activity as part of a lifecycle based on the use of formal methods. The results of applying the approach to an embedded avionics case study are also presented.

  10. A model of the demand for Islamic banks debt-based financing instrument

    Science.gov (United States)

    Jusoh, Mansor; Khalid, Norlin

    2013-04-01

    This paper presents a theoretical analysis of the demand for debt-based financing instruments of the Islamic banks. Debt-based financing, such as through baibithamanajil and al-murabahah, is by far the most prominent of the Islamic bank financing and yet it has been largely ignored in Islamic economics literature. Most studies instead have been focusing on equity-based financing of al-mudharabah and al-musyarakah. Islamic bank offers debt-based financing through various instruments derived under the principle of exchange (ukud al-mu'awadhat) or more specifically, the contract of deferred sale. Under such arrangement, Islamic debt is created when goods are purchased and the payments are deferred. Thus, unlike debt of the conventional bank which is a form of financial loan contract to facilitate demand for liquid assets, this Islamic debt is created in response to the demand to purchase goods by deferred payment. In this paper we set an analytical framework that is based on an infinitely lived representative agent model (ILRA model) to analyze the demand for goods to be purchased by deferred payment. The resulting demand will then be used to derive the demand for Islamic debt. We also investigate theoretically, factors that may have an impact on the demand for Islamic debt.

  11. P3-7: On Prototyping a Visual Prosthesis System with Artificial Retina and Optic Nerve Based on Arrayed Microfibers

    Directory of Open Access Journals (Sweden)

    Jian Hong Chen

    2012-10-01

    Full Text Available The traditional visual prosthesis system combines both a camera and a microelectrode array implanted on the visual neural network including retina, optic nerve, and visual cortex. Here, we introduce a new visual prosthesis system in which an artificial retina and optic nerve are demonstrated. The prototype of optic nerve for image transmission is comprised of arrayed PMMA microfibers with both ends connected with two planes, one functioned as retina for light reception and another attached to visual cortex. The microfibers are drawn from the thin film prepared by PMMA/chlorobenzene solution. Each micro fiber serves as an optical waveguide for the delivery of a single image pixel. It is demonstrated that with proper imaging optics, arrayed micro fibers could be lit as discrete light spots in accordance with the input image. Each micro fiber is expected to function as a stimulation unit for optical neural modulation in a visual prosthesis system.

  12. An Intelligent System Prototype to support and sharing diagnoses of maligned tumours, based on personalized medicine philosophy

    Directory of Open Access Journals (Sweden)

    Víctor Manuel Flores Fonseca

    2016-12-01

    Full Text Available Circulatory systems diseases are one of the most important causes of death in Chilean population according to a report presented by the Chilean National Bureau of Statistics (INE. Undoubtedly, these sad numbers arise an opportunity to analyse ways to improve this situation. Personalized Medicine is a new approach used to adapt standard medical treatments to individual characteristics of patients. Currently, several kinds of personalized-medicine software applications are building using Artificial Intelligent techniques and supported by techniques as Cloud Computing and Big Data. This architecture provides complex and varied information access, such as clinical data, genome data, patients’ treatment or drugs information, among others. This document describes a proposal to produce a method for generating and sharing medical information, particularly of maligned tumors in Chile. The prototype will be developed within the framework of the personalized medicine.

  13. DESIGNING AFFECTIVE INSTRUMENT BASED ON SCIENTIFIC APPROACH FOR ENGLISH LANGUAGE LEARNING

    Directory of Open Access Journals (Sweden)

    Maisarah Ira

    2018-01-01

    Full Text Available This research was describing the designing of instrument for affective assessment in English language teaching. The focus of the designing was only for observation sheet that will be used by English teachers during the teaching and learning process. The instrument was designed based on scientific approach that has five stages namely observing, questioning, experimenting, associating, and communicating. In the designing process, ADDIE Model was used as the method of research. The designing of instrument was considering the gap between the reality and the teachers’ need. The result showed that the designing was also notice to the affective taxonomy such as receiving, responding, valuing, organization, and characterization. Then, three key words were used as the indicator to show the five levels of affective taxonomy such as seriously, volunteer, and without asked by teacher. Furthermore, eighteen types of affective such as religious, honesty, responsible, discipline, hard work, self confidence, logical thinking, critical thinking, creative, innovative, independent, curiosity, love knowledge, respect, polite, democracy, emotional intelligence, and pluralist were put on each stage of scientific approach. So, it is hoped that can be implemented in all of context of English language teaching at schools and can assess the students’ affective comprehensively.

  14. Promoting Environmental Justice through Civil-Based Instruments in South Africa

    Directory of Open Access Journals (Sweden)

    Michelle Toxopeüs and Louis J. Kotzé

    2017-06-01

    Full Text Available Achieving environmental justice in South Africa is critically important, not only because of historical reasons rooted in the country’s apartheid past, but also to ensure that everyone in the country, especially marginalized and vulnerable sectors of society, are properly protected from disproportional environmental impacts. Another aim of environmental justice in South Africa is to ensure that everyone equally shares in the benefits of the country’s resources. In this article, we interrogate ways through which to achieve environmental justice in South Africa through the use of civil-based instruments (CBIs of environmental governance. The central hypothesis is that CBIs are particularly well-suited to contribute to the achievement of environmental justice since they are essentially instruments which empower civil society to become central stakeholders in environmental governance by fostering active participation in the decisions that may impact on the environment and people’s health and well-being. Through these instruments all of society, particularly disenfranchised people suffering most from environmental injustice, are afforded a platform to pursue their environment-related interests that may be affected by the decisions taken by government and private actors such as polluting companies. For the purpose of the discussion we focus specifically on public participation, access to information and access to justice, all of which are generally accepted as CBIs, including in international law.

  15. Portable generator-based X RF instrument for non-destructive analysis at crime scenes

    Energy Technology Data Exchange (ETDEWEB)

    Schweitzer, Jeffrey S. [University of Connecticut, Department of Physics, Unit 3046 Storrs, CT 06269-3046 (United States)]. E-mail: schweitz@phys.uconn.edu; Trombka, Jacob I. [Goddard Space Flight Center, Code 691, Greenbelt Road, Greenbelt, MD 20771 (United States); Floyd, Samuel [Goddard Space Flight Center, Code 691, Greenbelt Road, Greenbelt, MD 20771 (United States); Selavka, Carl [Massachusetts State Police Crime Laboratory, 59 Horse Pond Road, Sudbury, MA 01776 (United States); Zeosky, Gerald [Forensic Investigation Center, Crime Laboratory Building, 22 State Campus, Albany, NY 12226 (United States); Gahn, Norman [Assistant District Attorney, Milwaukee County, District Attorney' s Office, 821 West State Street, Milwaukee, WI 53233-1427 (United States); McClanahan, Timothy [Goddard Space Flight Center, Code 691, Greenbelt Road, Greenbelt, MD 20771 (United States); Burbine, Thomas [Goddard Space Flight Center, Code 691, Greenbelt Road, Greenbelt, MD 20771 (United States)

    2005-12-15

    Unattended and remote detection systems find applications in space exploration, telemedicine, teleforensics, homeland security and nuclear non-proliferation programs. The National Institute of Justice (NIJ) and the National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC) have teamed up to explore the use of NASA developed technologies to help criminal justice agencies and professionals investigate crimes. The objective of the program is to produce instruments and communication networks that have application within both NASA's space program and NIJ, together with state and local forensic laboratories. A general-purpose X-ray fluorescence system has been built for non-destructive analyses of trace and invisible material at crime scenes. This portable instrument is based on a generator that can operate to 60 kV and a Schottky CdTe detector. The instrument has been shown to be successful for the analysis of gunshot residue and a number of bodily fluids at crime scenes.

  16. Improved retrieval of cloud base heights from ceilometer using a non-standard instrument method

    Science.gov (United States)

    Wang, Yang; Zhao, Chuanfeng; Dong, Zipeng; Li, Zhanqing; Hu, Shuzhen; Chen, Tianmeng; Tao, Fa; Wang, Yuzhao

    2018-04-01

    Cloud-base height (CBH) is a basic cloud parameter but has not been measured accurately, especially under polluted conditions due to the interference of aerosol. Taking advantage of a comprehensive field experiment in northern China in which a variety of advanced cloud probing instruments were operated, different methods of detecting CBH are assessed. The Micro-Pulse Lidar (MPL) and the Vaisala ceilometer (CL51) provided two types of backscattered profiles. The latter has been employed widely as a standard means of measuring CBH using the manufacturer's operational algorithm to generate standard CBH products (CL51 MAN) whose quality is rigorously assessed here, in comparison with a research algorithm that we developed named value distribution equalization (VDE) algorithm. It was applied to both the profiles of lidar backscattering data from the two instruments. The VDE algorithm is found to produce more accurate estimates of CBH for both instruments and can cope with heavy aerosol loading conditions well. By contrast, CL51 MAN overestimates CBH by 400 m and misses many low level clouds under such conditions. These findings are important given that CL51 has been adopted operationally by many meteorological stations in China.

  17. The Gaia spectrophotometric standard stars survey: II. Instrumental effects of six ground-based observing campaigns

    Science.gov (United States)

    Altavilla, G.; Marinoni, S.; Pancino, E.; Galleti, S.; Ragaini, S.; Bellazzini, M.; Cocozza, G.; Bragaglia, A.; Carrasco, J. M.; Castro, A.; Di Fabrizio, L.; Federici, L.; Figueras, F.; Gebran, M.; Jordi, C.; Masana, E.; Schuster, W.; Valentini, G.; Voss, H.

    2015-08-01

    The Gaia SpectroPhotometric Standard Stars (SPSS) survey started in 2006, was awarded almost 450 observing nights and accumulated almost 100 000 raw data frames with both photometric and spectroscopic observations. Such large observational effort requires careful, homogeneous, and automatic data reduction and quality control procedures. In this paper, we quantitatively evaluate instrumental effects that might have a significant (i.e., ≥ 1 %) impact on the Gaia SPSS flux calibration. The measurements involve six different instruments, monitored over the eight years of observations dedicated to the Gaia flux standards campaigns: DOLORES@TNG in La Palma, EFOSC2@NTT and ROSS@REM in La Silla, CAFOS@2.2 m in Calar Alto, BFOSC@Cassini in Loiano, and LaRuca@1.5 m in San Pedro Mártir. We examine and quantitatively evaluate the following effects: CCD linearity and shutter times, calibration frames stability, lamp flexures, second order contamination, light polarization, and fringing. We present methods to correct for the relevant effects which can be applied to a wide range of observational projects at similar instruments. Based on data obtained with BFOSC@Cassini in Loiano, Italy; EFOSC2@NTT in La Silla, Chile; DOLORES@TNG in La Palma, Spain; CAFOS@2.2 m in Calar Alto, Spain; LaRuca@1.5 m in San Pedro Mártir, Mexico (see acknowledgements for more details).

  18. Micro-controller based air pressure monitoring instrumentation system using optical fibers as sensor

    Science.gov (United States)

    Hazarika, D.; Pegu, D. S.

    2013-03-01

    This paper describes a micro-controller based instrumentation system to monitor air pressure using optical fiber sensors. The principle of macrobending is used to develop the sensor system. The instrumentation system consists of a laser source, a beam splitter, two multi mode optical fibers, two Light Dependent Resistance (LDR) based timer circuits and a AT89S8252 micro-controller. The beam splitter is used to divide the laser beam into two parts and then these two beams are launched into two multi mode fibers. One of the multi mode fibers is used as the sensor fiber and the other one is used as the reference fiber. The use of the reference fiber is to eliminate the environmental effects while measuring the air pressure magnitude. The laser beams from the sensor and reference fibers are applied to two identical LDR based timer circuits. The LDR based timer circuits are interfaced to a micro-controller through its counter pins. The micro-controller samples the frequencies of the timer circuits using its counter-0 and counter-1 and the counter values are then processed to provide the measure of air pressure magnitude.

  19. Imagining the prototype

    OpenAIRE

    Brouwer, C. E.; Bhomer, ten, M.; Melkas, H.; Buur, J.

    2013-01-01

    This article reports on the analysis of a design session, employing conversation analysis. In the design session three experts and a designer discuss a prototype of a shirt, which has been developed with the input from these experts. The analysis focuses on the type of involvement of the participants with the prototype and how they explicate the points they make in the discussion with or without making use of the prototype. Three techniques for explicating design issues that exploit the proto...

  20. Multitemporal Monitoring of the Air Quality in Bulgaria by Satellite Based Instruments

    Science.gov (United States)

    Nikolov, Hristo; Borisova, Denitsa

    2015-04-01

    Nowadays the effect on climate changes on the population and environment caused by air pollutants at local and regional scale by pollution concentrations higher than allowed is undisputable. Main sources of gas releases are due to anthropogenic emissions caused by the economic and domestic activities of the inhabitants, and to less extent having natural origin. Complementary to pollutants emissions the local weather parameters such as temperature, precipitation, wind speed, clouds, atmospheric water vapor, and wind direction control the chemical reactions in the atmosphere. It should be noted that intrinsic property of the air pollution is its "transboundary-ness" and this is why the air quality (AQ) is not affecting the population of one single country only. This why the exchange of information concerning AQ at EU level is subject to well established legislation and one of EU flagship initiatives for standardization in data exchange, namely INSPIRE, has to cope with. It should be noted that although good reporting mechanism with regard to AQ is already established between EU member states national networks suffer from a serious disadvantage - they don't form a regular grid which is a prerequisite for verification of pollutants transport modeling. Alternative sources of information for AQ are the satellite observations (i.e. OMI, TOMS instruments) providing daily data for ones of the major contributors to air pollution such as O3, NOX and SO2. Those data form regular grids and are processed the same day of the acquisition so they could be used in verification of the outputs generated by numerical modeling of the AQ and pollution transfer. In this research we present results on multitemporal monitoring of several regional "hot spots" responsible for greenhouse gases emissions in Bulgaria with emphasis on satellite-based instruments. Other output from this study is a method for validation of the AQ forecasts and also providing feedback to the service that prepares