WorldWideScience

Sample records for prototype cerenkov ring

  1. The SLD Cerenkov Ring Imaging Detector: Progress report

    International Nuclear Information System (INIS)

    Ashford, V.; Bienz, T.; Bird, F.

    1986-10-01

    We describe test beam results from a prototype Cerenkov Ring Imaging Detector (CRID) for the SLD experiment at the SLAC Linear Collider (SLC). The system includes both liquid and gas radiators, a long drift box containing gaseous TMAE and a proportional wire chamber with charge division readout. Measurements of the multiplicity and detection resolution of Cerenkov photons, from both radiators are presented. Various design aspects of a new engineering prototype, currently under construction, are discussed and recent R and D results relevant to this effort are reported

  2. Status of /hacek C/erenkov Ring Imaging systems

    International Nuclear Information System (INIS)

    Leith, D.W.G.S.

    1987-06-01

    Cerenkov Ring Imaging is briefly introduced, and the problems or choices of designing such a counter are discussed. Recent results from the DELPHI and SLD prototype are presented and compared to the expected performances. 13 refs., 33 figs., 2 tabs

  3. Status of /hacek C/erenkov Ring Imaging systems

    Energy Technology Data Exchange (ETDEWEB)

    Leith, D.W.G.S.

    1987-06-01

    Cerenkov Ring Imaging is briefly introduced, and the problems or choices of designing such a counter are discussed. Recent results from the DELPHI and SLD prototype are presented and compared to the expected performances. 13 refs., 33 figs., 2 tabs.

  4. A ring image Cerenkov detector for the CERN Omega Spectrometer

    International Nuclear Information System (INIS)

    Davenport, M.; Deol, R.S.; Flower, P.S.

    1983-05-01

    A development program has been undertaken to produce a large ring image Cerenkov detector (RICH) for use at the CERN Omega Spectrometer. A prototype Cerenkov counter has been constructed and successfully operated in a high energy particle beam, Cerenkov rings having been observed in an experimental time projection chamber (TPC) using the photoionising agents Triethylamine (TEA) and Tetrakis (dimethylamine) ethylene (TMAE). Systematic measurements have been made of the optical properties of window materials and reflecting surfaces in the vacuum ultraviolet region. Results of these tests are presented, and the design of the large detector based on these experiences together with Monte Carlo simulations of the events expected in the WA69 experiment, is discussed. (author)

  5. Preliminary results on tests of a Cerenkov ring imaging device employing a photoionizing PWC

    Energy Technology Data Exchange (ETDEWEB)

    Durkin, S.; Honma, A.; Leith, D.W.G.S.

    1978-08-01

    A brief description of techniques and problems of ring imaging Cerenkov detectors employing photoionizing PWC's is discussed. Preliminary results on a one dimensional ring imaging device tested at SLAC in May and June of 1978 are then presented. These results include rough measurements of the Cerenkov ring in nitrogen, argon, neon, and helium produced by a collimated positron beam.

  6. The Cerenkov ring-imaging detector recent progress and future development

    CERN Document Server

    Ekelöf, T J C; Tocqueville, J; Ypsilantis, Thomas

    1981-01-01

    Results are reported on measurements of Cerenkov ring images using a multistage MWPC with an argon-TEA gas mixture. A specific detector response of N/sub 0/=56 cm/sup -1/ was obtained. It is shown that with some minor modifications to the detector, this value can be raised to N/sub 0/=90 cm/sup -1/. Using an argon-methane-TEA mixture in the MWPC, it is shown that efficient single-photoelectron detection can be achieved with proportional wire amplification without preamplification. A design of a new type of drift chamber (TPC) detector for two-dimensional measurement of the ring image is described. The use of the Cerenkov ring-imaging technique in high- energy physics experimentation is discussed, and in particular a full solid-angle detector for LEP is suggested. (10 refs).

  7. A review of 4π Cerenkov ring imaging detectors

    International Nuclear Information System (INIS)

    Leith, D.W.G.S

    1989-06-01

    The design choices for 4π ring imaging Cerenkov counters -- both those of principle and those of practice -- are reviewed. The progress in construction and the performance of the devices being built for DELPHI and SLD are discussed. 13 refs., 22 figs

  8. The Omega Ring Imaging Cerenkov Detector readout system user's guide

    International Nuclear Information System (INIS)

    Hallewell, G.

    1984-11-01

    The manual describes the electronic readout system of the Ring Imaging Cerenkov Detector at the CERN Omega Spectrometer. The system is described in its configuration of September 1984 after the Rich readout system had been used in two Omega experiments. (U.K.)

  9. The technique of Cerenkov ring image detection

    International Nuclear Information System (INIS)

    Langerveld, D.

    1990-01-01

    Charged particles with an energy between 2 GeV and 25 GeV can be identified in the DELPHI barrel RICH detector by using the technique of Cerenkov ring image detection. The method of identification is based on a determination of the Cerenkov angle by measuring the positions of the emitted Cerenkov photons to high precision in a photon detector. The resolution in the photon that can be obtained depends mainly on the chromatic dispersion in the radiators and on the resolution in the photon detector is used in the barrel RICH in combination with two radiators. The photon detector consists of 48 drift tubes, constructed from quarz plates, each equipped with a wire chamber at the end. The drift gas with which the tubes are filled contains a small admixture of TMAE vapour from which the Cerenkov photons can liberate photoelectrons. It is shown in this thesis that an efficient photon detection and an accurate localization of the photon conversion points is possible. The spatial resolution of the photon detector is determind by the resolution of the wire chambe, the accuracy of the drift measurement, the distortions in the paths of the drifting electrons. The resolution of the wire chamber has been measured to be 0.8 mm in the x- and 1.7 mm in the y-coordinate. The error in the z-coordinate introduced by the drift time measurement is 0.2 mm. The distortions in the paths of the drifting electrons have been measured both in the x and y-direction. The longitudinal and transverse diffusion coefficients have been measured as a function of the field strength for two different drift gas mixtures. (author). 96 refs.; 61 figs.; 11 tabs

  10. A Ring Imaging Cerenkov detector for the CERN OMEGA spectrometer

    International Nuclear Information System (INIS)

    Apsimon, R.J.; Cowell, J.; Flower, P.S.

    1984-12-01

    A large acceptance Ring Imaging Cerenkov detector has been constructed for use at the CERN Omega Spectrometer. The design of the detector is discussed, with attention paid to its principal components, and preliminary results are given which show that the detector is capable of identifying pions and protons at 100 GeV/c. (author)

  11. High gain multigap avalanche detectors for Cerenkov ring imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, R.S.; Lavender, W.M.; Leith, D.W.G.S.; Williams, S.H.

    1980-10-01

    We report on a continuing study of multigap parallel plate avalanche chambers, primarily as photoelectron detectors for use with Cerenkov ring imaging counters. By suitable control of the fields in successive gaps and by introducing screens to reduce photon feedback to the cathode the gain many be increased considerably. We have obtained gains in excess of 6 x 10/sup 7/ for photoelectrons with a good pulse height spectrum and expect to increase this further. We discuss the use of resistive anodes to give avalanche positions in two dimensions by charge division.

  12. Lorentz angle studies for the SLD endcap Cerenkov Ring Imaging Detector

    International Nuclear Information System (INIS)

    Coyle, P.; Cavalli-Sforza, M.; Coyne, D.

    1987-11-01

    The design of the endcap Cerenkov Ring Imaging Detectors for SLD requires a detailed understanding of how electrons drift in gases under the influence of crossed electric and magnetic fields. In this report, we present recent measurements of Lorentz angles and drift velocities in gases suitable for the endcap CRID photon detectors. We compare these measurements to predictions from a theoretical model; good agreement is observed. Based on our results we present a design for detectors operating in a 0.6 Tesla transverse magnetic field. 14 refs., 10 figs., 4 tabs

  13. Recent operational performance of the CERN Omega Ring Imaging Cerenkov Detector

    International Nuclear Information System (INIS)

    Apsimon, R.J.; Flower, P.S.; Freeston, K.A.

    1985-10-01

    We discuss the design and construction of the Time Projection chambers (TPCs) of the Omega Ring Imaging Cerenkov Detector (RICH). Details are given of the TPC high voltage system and its monitoring and control. In addition, the operation and monitoring of the readout is described together with results of tests on the performance of the front end amplifiers. The operation of the RICH TPCs and electronics during the first data run of WA69, in 1984, is discussed together with relevant results from laboratory tests. Results from the preliminary analysis of a sample of data from the 1984 run are also presented

  14. Component and system tests of the SLD Cerenkov Ring Imaging Detector

    International Nuclear Information System (INIS)

    Antilogus, P.; Bird, F.; Aston, D.; Dasu, S.; Dunwoodie, W.; Hallewell, G.; Kawahara, H.; Kwon, Y.; Leith, D.; Nagamine, T.; Pavel, T.; Muller, D.; Williams, S.; Bienz, T.; Dolinsky, S.; Solodov, E.; Coyle, P.; Cavalli-Sforza, M.; Coyne, D.; Gagnon, P.; Liu, X.; Williams, D.A.

    1990-01-01

    The components of the SLD barrel Cerenkov Ring Imaging Detector (CRID) are now built and are being installed. This paper reports on tests of these components, including tests of the fiber optic calibration system, detailed studies of electron drift paths on production drift boxes and detectors, tests of the dynamic gating system and its effect on drift path distortions due to space-charge, and a measurement of the electron lifetime in a production drift box. In addition, the authors report on the UV transmission of recirculated liquid freon and on the effects of CRID construction materials on electron lifetime

  15. Component and system tests of the SLD Cerenkov Ring Imaging Detector

    International Nuclear Information System (INIS)

    Antilogus, P.; Aston, D.; Bienz, T.; Bird, F.; Dasu, S.; Dolinsky, S.; Dunwoodie, W.; Hallewell, G.; Kawahara, H.; Kwon, Y.; Leith, D.; Muller, D.; Nagamine, T.; Pavel, T.; Ratcliff, B.; Rensing, P.; Schultz, D.; Shapiro, S.; Simopoulos, C.; Solodov, E.; Toge, N.; Va'vra, J.; Williams, S.; Cavalli-Sforza, M.; Coyle, P.; Coyne, D.; Gagnon, P.; Liu, X.; Williams, D.A.; Whitaker, J.S.; Wilson, R.J.; Bean, A.; Caldwell, D.; Duboscq, J.; Huber, J.; Lu, A.; Mathys, L.; McHugh, S.; Witherell, M.; Yellin, S.; D'Oliveira, A.; Johnson, R.A.; Martinez, J.L.; Meadows, B.; Nussbaum, M.; Santha, A.K.S.; Shoup, A.; Stockdale, I.; Baird, K.; Jacques, P.; Kalelkar, M.; Plano, R.; Stamer, P.; Word, G.; Abe, K.; Hasegawa, K.; Suekane, F.; Yuta, H.

    1991-02-01

    The components of the SLD barrel Cerenkov Ring Imaging Detector (CRID) are now built and are being installed. We report on tests of these, including tests of the fiber optic calibration system, detailed studies of electron drift paths on production drift boxes and detectors, tests of the dynamic gating system and its effect on drift path distortions due to space-charge, and a measurement of the electron lifetime in a production drift box. In addition, we report on the UV transmission of recirculated liquid C 6 F 14 and on the effects of CRID construction materials on electron lifetime. 9 refs., 11 figs

  16. Component and system tests of the SLD Cerenkov Ring Imaging Detector

    International Nuclear Information System (INIS)

    Antilogus, P.; Aston, D.; Bienz, T.; Bird, F.; Dasu, S.; Dolinsky, S.; Dunwoodie, W.; Hallewell, G.; Kawahara, H.; Kwon, Y.; Leith, D.; Muller, D.; Nagamine, T.; Pavel, T.; Ratcliff, B.; Rensing, P.; Schultz, D.; Shapiro, S.; Simopoulos, C.; Solodov, E.; Toge, N.; Va'vra, J.; Williams, S.; Cavalli-Sforza, M.; Coyle, P.; Coyne, D.; Gagnon, P.; Liu, X.; Williams, D.A.; Whitaker, J.S.; Wilson, R.J.; Bean, A.; Caldwell, D.; Duboscq, J.; Huber, J.; Lu, A.; Mathys, L.; McHugh, S.; Witherell, M.; Yellin, S.; d'Oliveira, A.; Johnson, R.A.; Martinez, J.; Meadows, B.; Nussbaum, M.; Santha, A.K.S.; Shoup, A.; Stockdale, I.; Jacques, P.; Kalelkar, M.; Plano, R.; Stamer, P.; Abe, K.; Hasegawa, K.; Suekane, F.; Yuta, H.

    1990-10-01

    The components of the SLD barrel Cerenkov Ring Imaging Detector (CRID) are now built and are being installed. We report on tests of these components, including tests of the fiber optic calibration system, detailed studies of electron drift paths on production drift boxes and detectors, tests of the dynamic gating systems and its effect on drift path distortions due to space-charge, and a measurement of the electron lifetime in a production drift box. In addition, we report on the UV transmission of recirculated liquid freon and on the effects of CRID construction materials on electron lifetime. 16 refs., 12 figs

  17. Cerenkov ring imaging detector development at SLAC

    International Nuclear Information System (INIS)

    Williams, S.H.

    1984-06-01

    The imaging of Cerenkov light on to photosensitive detectors promises to be a powerful technique for identifying particles in colliding beam spectrometers. Toward this end two and three dimensional imaging photon detectors are being developed at SLAC. The present techniques involve photon conversion using easily ionized exotic chemicals like tetrakisdimethyl-amino-ethylene (TMAE) in a drift and amplifying gas mixture of methane and isobutane. Single photoelectrons from Cerenkov light are currently being drifted 20 cm and a new device under study will be used to study drifting up to 80 cm along a magnetic field. A short description of a large device currently being designed for the SLD spectrometer at the Stanford Linear Collider will be given

  18. A fast VUV light pulser for testing ring-imaging Cerenkov counters

    International Nuclear Information System (INIS)

    Margulies, S.; Ozelis, J.

    1986-01-01

    A simple, fast, VUV light pulser for testing a TMAE-based, time-projection-chamber-type photon detector for a ring-imaging Cerenkov counter is described. The pulser consists of an automobile spark plug fired in a controlled atmosphere by a relaxation oscillator. The resulting VUV spectrum, spark-current pulse, and light pulse were investigated for hydrogen, xenon, krypton, and nitrogen fills. The best pulse (3.5 ns FWHM) was obtained with hydrogen at 60 kPa absolute pressure. Xenon was, generally, unsuitable because it continued to emit light for more than a microsecond after excitation. With krypton and nitrogen, no light was emitted in the wavelength region of interest except for a series of sharp lines attributable to the electrodes

  19. Development of CRID [Cerenkov Ring Imaging Detector] single electron wire detector

    International Nuclear Information System (INIS)

    Aston, D.; Bean, A.; Bienz, T.

    1989-02-01

    We describe the R and D effort to define the design parameters, method of construction and experimental results from the single electron wire detectors. These detectors will be used for particle identification using the Cerenkov Ring Imaging techniques in the SLD experiment at SLAC. We present measurements of pulse heights for several gases as a function of gas gain, charge division performance on a single electron signal using both 7 μm and 33 μm diameter carbon wires, photon feedback in TMAE laden gas, average pulse shape, and its comparison with the predicted shape and cross-talk. In addition, we present results of wire aging tests, and other tests associated with construction of this unusual type of wire chamber. 12 refs., 9 figs

  20. Particle identification in Lep-Delphi experience. Experimental study of photoelectron detection and of Cerenkov angle resolution with the Barrel Rich prototype

    International Nuclear Information System (INIS)

    Dracos, M.

    1987-06-01

    One of the four LEP experiments, DELPHI, will be equipped with Ring Cherenkov (RICH) detectors for hadrons identification. These detectors will provide pion, kaon, proton identification for momenta from 0.3 to 25 GeV/c over nearly all the solid angle. The technique of the long drift is used which combines liquid and gas radiators on opposite sides of a simple photosensitive drift volume. A full-scale prototype of the DELPHI Barrel RICH was built to study the feasibility and the performances of a big RICH system. We have obtained: - an absorption length of photoelectrons in the drift gas more than 10 m; - a merit factor of 53 cm -1 for the liquid radiator (perfluoro-hexane C 6 F 14 ) and 77 cm -1 for the gas radiator (isobutance iC 4 H 10 ) - a resolution of the single photon Cerenkov angle of 11.5 mrad for the liquid radiator and 4.5 mrad for the gas radiator [fr

  1. The design of the optical components and gas control systems of the CERN Omega Ring Imaging Cerenkov Detector

    International Nuclear Information System (INIS)

    Apsimon, R.J.; Cowell, J.; Flower, P.S.

    1985-06-01

    A large Ring Imaging Cerenkov Detector (RICH) has been commissioned for use at the CERN Omega Spectrometer. The general design of the device is discussed, and the dependence of the attainable spatial resolution and range of particle identification on its optical parameters is illustrated. The construction and performance of the major optical components and gas systems of the detector are also described. (author)

  2. Prototype moving-ring reactor

    International Nuclear Information System (INIS)

    Smith, A.C. Jr.; Ashworth, C.P.; Abreu, K.E.

    1982-01-01

    We have completed a design of the Prototype Moving-Ring Reactor. The fusion fuel is confined in current-carrying rings of magnetically-field-reversed plasma (Compact Toroids). The plasma rings, formed by a coaxial plasma gun, undergo adiabatic magnetic compression to ignition temperature while they are being injected into the reactor's burner section. The cylindrical burner chamber is divided into three burn stations. Separator coils and a slight axial guide field gradient are used to shuttle the ignited toroids rapidly from one burn station to the next, pausing for 1/3 of the total burn time at each station. D-T- 3 He ice pellets refuel the rings at a rate which maintains constant radiated power

  3. JASA: A prototype water-Cerenkov air-shower detector

    International Nuclear Information System (INIS)

    Berley, D.; Dion, C.; Goodman, J.A.; Haines, T.J.; Kwok, P.W.; Stark, M.J.; Svoboda, R.C.; Ferguson, H.; Hoffman, C.M.; Horch, E.; Ellsworth, R.W.; Delay, R.S.; Lu, X.; Yodh, G.B.

    1991-01-01

    A small pilot experiment to examine the use of the water-Cerenkov technique for air shower detection was installed near the center of the CYGNUS air shower array. Preliminary results showing general agreement with simulations are presented. Thus, the technique promises to offer significant advances for VHE-UHE γ-ray astronomy

  4. A microwave inverse Cerenkov Accelerator (MICA)

    International Nuclear Information System (INIS)

    Hirshfield, Jay L.

    1999-01-01

    The objective of this Phase II SBIR research program was to complete the final design originated during Phase I for a prototype Microwave Inverse Cerenkov Accelerator (MICA), to fabricate the-prototype MICA, and to test its performance as an electron accelerator. This report contains details of the design, predictions of accelerator performance, results of cold tests on the MICA structure, and details of the installation of MICA on the Yale Beam Physics Laboratory 6-MeV beamline. Discussion of future work is also included

  5. Cerenkov imaging.

    Science.gov (United States)

    Das, Sudeep; Thorek, Daniel L J; Grimm, Jan

    2014-01-01

    Cerenkov luminescence (CL) has been used recently in a plethora of medical applications like imaging and therapy with clinically relevant medical isotopes. The range of medical isotopes used is fairly large and expanding. The generation of in vivo light is useful since it circumvents depth limitations for excitation light. Cerenkov luminescence imaging (CLI) is much cheaper in terms of infrastructure than positron emission tomography (PET) and is particularly useful for imaging of superficial structures. Imaging can basically be done using a sensitive camera optimized for low-light conditions, and it has a better resolution than any other nuclear imaging modality. CLI has been shown to effectively diagnose disease with regularly used PET isotope ((18)F-FDG) in clinical setting. Cerenkov luminescence tomography, Cerenkov luminescence endoscopy, and intraoperative Cerenkov imaging have also been explored with positive conclusions expanding the current range of applications. Cerenkov has also been used to improve PET imaging resolution since the source of both is the radioisotope being used. Smart imaging agents have been designed based on modulation of the Cerenkov signal using small molecules and nanoparticles giving better insight of the tumor biology. © 2014 Elsevier Inc. All rights reserved.

  6. Development of a High Sensitivity Digital Cerenkov Viewing Device. Prototype Digital Cerenkov Viewing Device. Field test in Sweden

    International Nuclear Information System (INIS)

    Chen, J.D.; Gerwing, A.F.; Lewis, P.D.; Larsson, M.; Jansson, K.; Lindberg, B.; Sundkvist, E.; Ohlsson, M.

    2002-05-01

    The Swedish and Canadian Safeguards Support Programs have developed a prototype Digital Cerenkov Viewing Device (DCVD) to verify long-cooled spent fuel. The instrument consists of a camera system and a custom portable computer equipped with a liquid crystal and a wearable heads-up display. The camera was coupled to a hardware user interface (HUI) and was operated with a computer program designed to image spent fuel and store the images. Measurements were taken at the CLAB facility on pressurized-water reactor fuel and non-fuel assemblies, a number of boiling-water reactor fuel assemblies, and long-cooled Aagesta fuel assemblies. The camera head, attached to the HUI, a battery-operated computer carried in a backpack and the heads-up display were field tested for portability. The ergonomics of this system is presented in the report. For the examination of long-cooled spent fuel, the camera head was mounted on a bracket that rested on the railing of a moving bridge. The DCVD instrument is approximately 100 times higher in sensitivity than the Mark IVe CVD. The oldest fuel with the lowest burnup at the CLAB facility was positively verified. The measurement capability of this instrument greatly exceeds the verification criteria of 10,000 MWd/t U and 40 years cooling

  7. Cerenkov Counter for In-Situ Groundwater Monitoring of 90Sr

    Directory of Open Access Journals (Sweden)

    Lindsay C. Todd

    2005-02-01

    Full Text Available Groundwater contamination from 90Sr is an environmental challenge posed topresent and former nuclear weapons related sites. Traditional methods of extractinggroundwater samples and performing laboratory analyses are expensive, time-consumingand induce significant disposal challenges. The authors present here a prototype countercapable of measuring 90Sr groundwater concentrations in-situ at or below the drinking waterlimit of 8 pCi/liter. The 90Y daughter of 90Sr produces high-energy electrons, which cancreate Cerenkov light. Photomultiplier tubes convert the Cerenkov light into an electronicpulse, which then undergoes signal processing with standard electronics. Strontium-90concentrations near the drinking water limit can be measured in a matter of hours if it is insecular equilibrium with the 90Y daughter. The prototype counter is compact, can bedeployed in an American Standard 6-inch, well while operated by a single person, andtransmits the results to a central monitoring location.

  8. Fabrication and test of prototype ring magnets for the ALS [Advanced Light Source

    International Nuclear Information System (INIS)

    Tanabe, J.; Avery, R.; Caylor, R.; Green, M.I.; Hoyer, E.; Halbach, K.; Hernandez, S.; Humphries, D.; Kajiyama, Y.; Keller, R.; Low, W.; Marks, S.; Milburn, J.; Yee, D.

    1989-03-01

    Prototype Models for the Advanced Light Source (ALS) Booster Dipole, Quadrupole and Sextupole and the Storage Ring Gradient Magnet, Quadrupole and Sextupole have been constructed. The Booster Magnet Prototypes have been tested. The Storage Ring Magnets are presently undergoing tests and magnetic measurements. This paper reviews the designs and parameters for these magnets, briefly describes features of the magnet designs which respond to the special constraints imposed by the requirements for both accelerator rings, and reviews some of the results of magnet measurements for the prototype. 13 refs., 7 figs., 1 tab

  9. Cerenkov radiation from cosmic rays

    International Nuclear Information System (INIS)

    Turver, K.E.

    1988-01-01

    It is almost 40 years since it was suggested that Cerenkov radiations may be produced in the atmosphere by the passage of the cosmic radiation and account for a small part of the night sky brightness. The first detection of this visible Cerenkov radiation followed within a few years and by the 1960s the atmospheric Cerenkov radiation technique was established as a tool in high energy astrophysics. An exciting new field of astronomy, high energy gamma ray astronomy, has developed which relies on the atmospheric Cerenkov light. We here review the mechanism for the production of Cerenkov light in the atmosphere and summarize the contributions to high energy astrophysics made using the technique. (author)

  10. Progress on a prototype main ring rf cavity

    International Nuclear Information System (INIS)

    Swain, G.; Kandarian, R.; Thiessen, H.A.; Poirier, R.; Smythe, W.R.

    1989-01-01

    A prototype rf cavity and rf drive system for a hadron facility main ring has been designed and will be tested in the Proton Storage Ring (PSR) at Los Alamos as a part of a collaborative effort between LANL and TRIUMF. The cavity uses an orthogonally biased ferrite tuner. The design provides for accelerating gap voltages up to 200 kV for the 49.3 to 50.8 MHz range. Progress on the cavity construction and testing is described. 13 refs., 5 figs

  11. HISTRAP [Heavy Ion Storage Ring for Atomic Physics] prototype hardware studies

    International Nuclear Information System (INIS)

    Olsen, D.K.; Atkins, W.H.; Dowling, D.T.; Johnson, J.W.; Lord, R.S.; McConnell, J.W.; Milner, W.T.; Mosko, S.W.; Tatum, B.A.

    1989-01-01

    HISTRAP, Heavy Ion Storage Ring for Atomic Physics, is a proposed 2.67-Tm synchrotron/cooler/storage ring optimized for advanced atomic physics research which will be injected with ions from either the HHIRF 25-MV tandem accelerator or a dedicated ECR source and RFQ linac. Over the last two years, hardware prototypes have been developed for difficult and long lead-time components. A vacuum test stand, the rf cavity, and a prototype dipole magnet have been designed, constructed, and tested. 7 refs., 8 figs., 2 tabs

  12. Cerenkov Imaging

    OpenAIRE

    Das, Sudeep; Thorek, Daniel L.J.; Grimm, Jan

    2014-01-01

    Cerenkov luminescence (CL) has been used recently in a plethora of medical applications like imaging and therapy with clinically relevant medical isotopes. The range of medical isotopes used is fairly large and expanding. The generation of in vivo light is useful since it circumvents depth limitations for excitation light. Cerenkov luminescence imaging (CLI) is much cheaper in terms of infrastructure than positron emission tomography (PET) and is particularly useful for imaging of superficial...

  13. Monte Carlo simulation of gas Cerenkov detectors

    International Nuclear Information System (INIS)

    Mack, J.M.; Jain, M.; Jordan, T.M.

    1984-01-01

    Theoretical study of selected gamma-ray and electron diagnostic necessitates coupling Cerenkov radiation to electron/photon cascades. A Cerenkov production model and its incorporation into a general geometry Monte Carlo coupled electron/photon transport code is discussed. A special optical photon ray-trace is implemented using bulk optical properties assigned to each Monte Carlo zone. Good agreement exists between experimental and calculated Cerenkov data in the case of a carbon-dioxide gas Cerenkov detector experiment. Cerenkov production and threshold data are presented for a typical carbon-dioxide gas detector that converts a 16.7 MeV photon source to Cerenkov light, which is collected by optics and detected by a photomultiplier

  14. Planning and Prototyping for a Storage Ring Measurement of the Proton Electric Dipole Moment

    Energy Technology Data Exchange (ETDEWEB)

    Talman, Richard [Cornell Univ., Ithaca, NY (United States)

    2015-07-01

    Electron and proton EDM's can be measured in "frozen spin" (with the beam polarization always parallel to the orbit, for example) storage rings. For electrons the "magic" kinetic energy at which the beam can be frozen is 14.5 MeV. For protons the magic kinetic energy is 230 MeV. The currently measured upper limit for the electron EDM is much smaller than the proton EDM upper limit, which is very poorly known. Nevertheless, because the storage ring will be an order of magnitude cheaper, a sensible plan is to first build an all-electric electron storage ring as a prototype. Such an electron ring was successfully built at Brookhaven, in 1954, as a prototype for their AGS ring. This leaves little uncertainty concerning the cost and performance of such a ring. (This is documentedin one of the Physical Review papers mentioned above.)

  15. Development of a single-ring OpenPET prototype

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Eiji, E-mail: rush@nirs.go.jp; Tashima, Hideaki; Wakizaka, Hidekatsu; Nishikido, Fumihiko; Hirano, Yoshiyuki; Inadama, Naoko; Murayama, Hideo; Ito, Hiroshi; Yamaya, Taiga

    2013-11-21

    One of the challenging applications of PET is implementing it for in-beam PET, which is an in situ monitoring method for charged particle therapy. For this purpose, we have previously proposed an open-type PET scanner, OpenPET. The original OpenPET had a physically opened field-of-view (FOV) between two detector rings through which irradiation beams pass. This dual-ring OpenPET (DROP) had a wide axial FOV including the gap. This geometry was not necessarily the most efficient for application to in-beam PET in which only a limited FOV around the irradiation field is required. Therefore, we have proposed a new single-ring OpenPET (SROP) geometry which can provide an accessible and observable open space with higher sensitivity and a reduced number of detectors than the DROP. The proposed geometry was a cylinder shape with its ends cut at a slant, in which the shape of each cut end became an ellipse. In this work, we developed and evaluated a small prototype of the SROP geometry for proof-of-concept. The SROP prototype was designed with 2 ellipse-shaped detector rings of 16 depth-of-interaction (DOI) detectors each. The DOI detectors consisted of 1024 GSOZ scintillator crystals which were arranged in 4 layers of 16×16 arrays, coupled to a 64-channel FP-PMT. Each ellipse-shaped detector ring had a major axis of 281.6 mm and a minor axis of 207.5 mm. For the slant mode, the rings were placed at a 45-deg slant from the axial direction and for the non-slant mode (used as a reference) they were at 90 deg from the axial direction with no gap. The system sensitivity measured from a {sup 22}Na point source was 5.0% for the slant mode. The average spatial resolutions of major and minor axis directions were calculated as 3.8 mm FWHM and 4.9 mm FWHM, respectively for the slant mode. This difference resulted from the ellipsoidal ring geometry and the spatial resolution of the minor axis direction degraded by the parallax error. Comparison between the slant mode and the non

  16. Stable confinement of toroidal electron plasma in an internal conductor device Prototype-Ring Trap

    International Nuclear Information System (INIS)

    Saitoh, H.; Yoshida, Z.; Watanabe, S.

    2005-01-01

    A pure electron plasma has been produced in an internal conductor device Prototype-Ring Trap (Proto-RT). The temporal evolution of the electron plasma was investigated by the measurement of electrostatic fluctuations. Stable confinement was realized when the potential profile adjusted to match the magnetic surfaces. The confinement time varies as a function of the magnetic field strength and the neutral gas pressure, and is comparable to the diffusion time of electrons determined by the classical collisions with neutral gas. Although the addition of a toroidal magnetic field stabilized the electrostatic fluctuation of the plasma, the effects of the magnetic shear shortened the stable confinement time, possibly because of the obstacles of coil support structures

  17. The Track Imaging Cerenkov Experiment

    Science.gov (United States)

    Wissel, S. A.; Byrum, K.; Cunningham, J. D.; Drake, G.; Hays, E.; Horan, D.; Kieda, D.; Kovacs, E.; Macgill, S.; Nodulman, L.; hide

    2012-01-01

    We describe a dedicated cosmic-ray telescope that explores a new method for detecting Cerenkov radiation from high-energy primary cosmic rays and the large particle air shower they induce upon entering the atmosphere. Using a camera comprising 16 multi-anode photomultiplier tubes for a total of 256 pixels, the Track Imaging Cerenkov Experiment (TrICE) resolves substructures in particle air showers with 0.086deg resolution. Cerenkov radiation is imaged using a novel two-part optical system in which a Fresnel lens provides a wide-field optical trigger and a mirror system collects delayed light with four times the magnification. TrICE records well-resolved cosmic-ray air showers at rates ranging between 0.01-0.1 Hz.

  18. Development of a PET/Cerenkov-light hybrid imaging system

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Hamamura, Fuka; Kato, Katsuhiko; Ogata, Yoshimune; Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu; Hatazawa, Jun; Watabe, Hiroshi

    2014-01-01

    Purpose: Cerenkov-light imaging is a new molecular imaging technology that detects visible photons from high-speed electrons using a high sensitivity optical camera. However, the merit of Cerenkov-light imaging remains unclear. If a PET/Cerenkov-light hybrid imaging system were developed, the merit of Cerenkov-light imaging would be clarified by directly comparing these two imaging modalities. Methods: The authors developed and tested a PET/Cerenkov-light hybrid imaging system that consists of a dual-head PET system, a reflection mirror located above the subject, and a high sensitivity charge coupled device (CCD) camera. The authors installed these systems inside a black box for imaging the Cerenkov-light. The dual-head PET system employed a 1.2 × 1.2 × 10 mm 3 GSO arranged in a 33 × 33 matrix that was optically coupled to a position sensitive photomultiplier tube to form a GSO block detector. The authors arranged two GSO block detectors 10 cm apart and positioned the subject between them. The Cerenkov-light above the subject is reflected by the mirror and changes its direction to the side of the PET system and is imaged by the high sensitivity CCD camera. Results: The dual-head PET system had a spatial resolution of ∼1.2 mm FWHM and sensitivity of ∼0.31% at the center of the FOV. The Cerenkov-light imaging system's spatial resolution was ∼275μm for a 22 Na point source. Using the combined PET/Cerenkov-light hybrid imaging system, the authors successfully obtained fused images from simultaneously acquired images. The image distributions are sometimes different due to the light transmission and absorption in the body of the subject in the Cerenkov-light images. In simultaneous imaging of rat, the authors found that 18 F-FDG accumulation was observed mainly in the Harderian gland on the PET image, while the distribution of Cerenkov-light was observed in the eyes. Conclusions: The authors conclude that their developed PET/Cerenkov-light hybrid imaging

  19. Radiation-Hard Quartz Cerenkov Calorimeters

    International Nuclear Information System (INIS)

    Akgun, U.; Onel, Y.

    2006-01-01

    New generation hadron colliders are going to reach unprecedented energies and radiation levels. Quartz has been identified as a radiation-hard material that can be used for Cerenkov calorimeters of the future experiments. We report from the radiation hardness tests performed on quartz fibers, as well as the characteristics of the quartz fiber and plate Cerenkov calorimeters that have been built, designed, and proposed for the CMS experiment

  20. Cerenkov ring imaging and spectroscopy of charged KSTAR interactions at 11 GeV/c

    International Nuclear Information System (INIS)

    Bird, P.F.

    1988-11-01

    The physics and technology of this new Cerenkov detector are discussed, including materials studies, construction techniques, and resolution measurements. Sources of resolution error are individually identified and measured where possible. The results of all studied indicate that the measurement resolution is understood. This work has led to the adoption of a large scale ring imaging detector as part of a new high energy physics spectrometer, the SLD, at the Stanford Linear Accelerator Center. Results from an amplitude analysis of strange meson final states in K/sup /minus//p → /ovr K/sub 0//π/sup /minus//p interactions are presented. The data derive from a 4 event/nb exposure of the LASS (large Aperture Superconducting Solenoid) spectrometer to an 11 GeV/c K/sup /minus// beam. The data sample consists of /approximately/100,000 vents distributed over the Dalitz plot of the channel. The process is observed to be dominated by the production and decay of natural spin-parity (J/sup P/ = 1/sup /minus//,2 + ,3/sup /minus//,/hor ellipsis/) strange meson states. The data can be understood in terms of a simple model in which the resonant /ovr K*/sup -// are produced predominantly via natural parity exchange in the t channel. The leading K*(890), K 2 *(1430), and K*(1780) resonances are clearly observed and measured, and the underlying spectroscopy is also extracted. Indications of higher mass resonance production are also shown. The observed properties of these states are used to confront current models of quark spectroscopy in strange meson systems. 94 refs., 96 figs., 23 tabs

  1. Aerogel Cerenkov counters at DESY

    International Nuclear Information System (INIS)

    Poelz, G.

    1984-11-01

    In high energy physics it is common to identify a charged particle and its kinematical parameters by the measurement of its momentum and its velocity. Cerenkov detectors have developed into a standard tool because they operate in the γ = (1-β 2 )sup(-1/2) range from about 1 to 100 which is not easily accessible by other devices. Pions, kaons and protons in present high energy experiments reach energies of several GeV. Threshold Cerenkov detectors for these particles need indices of refraction below 1.1 which are often produced with gases under high pressure. The design for chambers operating in this region was drasticly simplified when porous materials serving as Cerenkov radiators were invented. These chambers complement the time-of-flight counters, which cover the low energy region. Aerogel of silica is up to now the only porous substance with sufficient optical transparency. Its quality has been improved substantially in recent times so that large size detectors can be constructed. (orig.)

  2. Cerenkov methodology for monitoring irradiated reactor fuel

    International Nuclear Information System (INIS)

    Nicholson, N.; Dowdy, E.J.

    1984-01-01

    Attribute measurement methods for confirming declared irradiated fuel inventories at nuclear installations under safeguards surveillance are of significant interest to inspectors. High-gain measurements of the intensity of the Cerenkov glow from exposed assemblies in water-filled storage ponds are promising for this purpose because the measured intensities depend on cooling times and burnup. We have developed a Cerenkov Measuring Device, a hand-held instrument that examines irradiated fuel assemblies in water-filled storage ponds and measures the intensity of the associated Cerenkov glow. In addition, we have developed a method for making such high-gain measurements in the presence of intense ambient light

  3. Cerenkov fiber sampling calorimeters

    International Nuclear Information System (INIS)

    Arrington, K.; Kefford, D.; Kennedy, J.; Pisani, R.; Sanzeni, C.; Segall, K.; Wall, D.; Winn, D.R.; Carey, R.; Dye, S.; Miller, J.; Sulak, L.; Worstell, W.; Efremenko, Y.; Kamyshkov, Y.; Savin, A.; Shmakov, K.; Tarkovsky, E.

    1994-01-01

    Clear optical fibers were used as a Cerenkov sampling media in Pb (electromagnetic) and Cu (hadron) absorbers in spaghetti calorimeters, for high rate and high radiation dose experiments, such as the forward region of high energy colliders. The fiber axes were aligned close to the direction of the incident particles (1 degree--7 degree). The 7 λ deep hadron tower contained 2.8% by volume 1.5 mm diameter core clear plastic fibers. The 27 radiation length deep electromagnetic towers had packing fractions of 6.8% and 7.2% of 1 mm diameter core quartz fibers as the active Cerenkov sampling medium. The energy resolution on electrons and pions, energy response, pulse shapes and angular studies are presented

  4. High resolution Cerenkov light imaging of induced positron distribution in proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Fujii, Kento; Morishita, Yuki; Okumura, Satoshi; Komori, Masataka [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Aichi 461-8673 (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Aichi 462-8508 (Japan)

    2014-11-01

    Purpose: In proton therapy, imaging of the positron distribution produced by fragmentation during or soon after proton irradiation is a useful method to monitor the proton range. Although positron emission tomography (PET) is typically used for this imaging, its spatial resolution is limited. Cerenkov light imaging is a new molecular imaging technology that detects the visible photons that are produced from high-speed electrons using a high sensitivity optical camera. Because its inherent spatial resolution is much higher than PET, the authors can measure more precise information of the proton-induced positron distribution with Cerenkov light imaging technology. For this purpose, they conducted Cerenkov light imaging of induced positron distribution in proton therapy. Methods: First, the authors evaluated the spatial resolution of our Cerenkov light imaging system with a {sup 22}Na point source for the actual imaging setup. Then the transparent acrylic phantoms (100 × 100 × 100 mm{sup 3}) were irradiated with two different proton energies using a spot scanning proton therapy system. Cerenkov light imaging of each phantom was conducted using a high sensitivity electron multiplied charge coupled device (EM-CCD) camera. Results: The Cerenkov light’s spatial resolution for the setup was 0.76 ± 0.6 mm FWHM. They obtained high resolution Cerenkov light images of the positron distributions in the phantoms for two different proton energies and made fused images of the reference images and the Cerenkov light images. The depths of the positron distribution in the phantoms from the Cerenkov light images were almost identical to the simulation results. The decay curves derived from the region-of-interests (ROIs) set on the Cerenkov light images revealed that Cerenkov light images can be used for estimating the half-life of the radionuclide components of positrons. Conclusions: High resolution Cerenkov light imaging of proton-induced positron distribution was possible. The

  5. High resolution Cerenkov light imaging of induced positron distribution in proton therapy

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Fujii, Kento; Morishita, Yuki; Okumura, Satoshi; Komori, Masataka; Toshito, Toshiyuki

    2014-01-01

    Purpose: In proton therapy, imaging of the positron distribution produced by fragmentation during or soon after proton irradiation is a useful method to monitor the proton range. Although positron emission tomography (PET) is typically used for this imaging, its spatial resolution is limited. Cerenkov light imaging is a new molecular imaging technology that detects the visible photons that are produced from high-speed electrons using a high sensitivity optical camera. Because its inherent spatial resolution is much higher than PET, the authors can measure more precise information of the proton-induced positron distribution with Cerenkov light imaging technology. For this purpose, they conducted Cerenkov light imaging of induced positron distribution in proton therapy. Methods: First, the authors evaluated the spatial resolution of our Cerenkov light imaging system with a 22 Na point source for the actual imaging setup. Then the transparent acrylic phantoms (100 × 100 × 100 mm 3 ) were irradiated with two different proton energies using a spot scanning proton therapy system. Cerenkov light imaging of each phantom was conducted using a high sensitivity electron multiplied charge coupled device (EM-CCD) camera. Results: The Cerenkov light’s spatial resolution for the setup was 0.76 ± 0.6 mm FWHM. They obtained high resolution Cerenkov light images of the positron distributions in the phantoms for two different proton energies and made fused images of the reference images and the Cerenkov light images. The depths of the positron distribution in the phantoms from the Cerenkov light images were almost identical to the simulation results. The decay curves derived from the region-of-interests (ROIs) set on the Cerenkov light images revealed that Cerenkov light images can be used for estimating the half-life of the radionuclide components of positrons. Conclusions: High resolution Cerenkov light imaging of proton-induced positron distribution was possible. The authors

  6. Cerenkov and radioluminescence imaging of brain tumor specimens during neurosurgery

    Science.gov (United States)

    Spinelli, Antonello Enrico; Schiariti, Marco P.; Grana, Chiara M.; Ferrari, Mahila; Cremonesi, Marta; Boschi, Federico

    2016-05-01

    We presented the first example of Cerenkov luminescence imaging (CLI) and radioluminescence imaging (RLI) of human tumor specimens. A patient with a brain meningioma localized in the left parietal region was injected with 166 MBq of Y90-DOTATOC the day before neurosurgery. The specimens of the tumor removed during surgery were imaged using both CLI and RLI using an optical imager prototype developed in our laboratory. The system is based on a cooled electron multiplied charge coupled device coupled with an f/0.95 17-mm C-mount lens. We showed for the first time the possibility of obtaining CLI and RLI images of fresh human brain tumor specimens removed during neurosurgery.

  7. Method for monitoring irradiated nuclear fuel using cerenkov radiation

    International Nuclear Information System (INIS)

    Caldwell, J.T.; Dowdy, E.J.; Nicholson, N.

    1983-01-01

    A method is provided for monitoring irradiated nuclear fuel inventories located in a water-filled storage pond wherein the intensity of the cerenkov radiation emitted from the water in the vicinity of the nuclear fuel is measured. This intensity is then compared with the expected intensity for nuclear fuel having a corresponding degree of irradiation exposure and time period after removal from a reactor core. Where the nuclear fuel inventory is located in an assembly having fuel pins or rods with intervening voids, the cerenkov light intensity measurement is taken at selected bright spots corresponding to the water-filled interstices of the assembly in the water storage, the waterfilled interstices acting as cerenkov light channels so as to reduce cross-talk. On-line digital analysis of an analog video signal is possible, or video tapes may be used for later measurement using a video editor and an electrometer. Direct measurement of the cerenkov radiation intensity also is possible using spot photometers pointed at the assembly

  8. A digitalising board for the prototype array of LHAASO WCDA

    International Nuclear Information System (INIS)

    Hao Xinjun; Liu Shubin; Zhao Lei; An Qi

    2011-01-01

    In this paper, a digitalising board for readout of PMT signals in the prototype array of WCDA (water Cerenkov detector array) for LHAASO (Large high altitude air shower observatory)is designed. The prototype array is composed of 9 PMTs, including the pulse time and charge measurement from the PMTs, and clock generation and trigger decision. In the digitalising board, FPGA reconfiguration and data readout via VME bus are implemented. Test results show that the performances meet well with the requirements of readout electronics. It has been installed in Yangbajing and tests with the prototype array and DAQ is ongoing. (authors)

  9. Prototype moving-ring reactor

    International Nuclear Information System (INIS)

    Smith, A.C. Jr.; Ashworth, C.P.; Abreu, K.E.

    1981-01-01

    The objective of this work was to design a prototype fusion reactor based on fusion plasmas confined as ''Compact Toruses.' Six major criteria guided the prototype design. The prototype must: (1) produce net electricity decisively (P/sub net/ >70% of P/sub gross/), with P/sub net/ approximately 100 MW(e); (2) have small physical size (low project cost) but commercial plant; (3) have all features required of commerical plants; (4) avoid unreasonable extrapolation of technology; (5) minimize nuclear issues substantially, i.e. accident and waste issues of public concern, and (6) be modular (to permit repetitive fabrication of parts) and be maintainable with low occupational radiological exposures

  10. The DosiMap, a new 2D scintillating dosimeter for IMRT quality assurance: Characterization of two Cerenkov discrimination methods

    International Nuclear Information System (INIS)

    Frelin, A-M.; Fontbonne, J-M.; Ban, G.; Colin, J.; Labalme, M.; Batalla, A.; Vela, A.; Boher, P.; Braud, M.; Leroux, T.

    2008-01-01

    New radiation therapy techniques such as IMRT present significant efficiency due to their highly conformal dose distributions. A consequence of the complexity of their dose distributions (high gradients, small irradiation fields, low dose distribution, ...) is the requirement for better precision quality assurance than in classical radiotherapy in order to compare the conformation of the delivered dose with the planned dose distribution and to guarantee the quality of the treatment. Currently this control is mostly performed by matrices of ionization chambers, diode detectors, dosimetric films, portal imaging, or dosimetric gels. Another approach is scintillation dosimetry, which has been developed in the last 15 years mainly through scintillating fiber devices. Despite having many advantages over other methods it is still at an experimental level for routine dosimetry because the Cerenkov radiation produced under irradiation represents an important stem effect. A new 2D water equivalent scintillating dosimeter, the DosiMap, and two different Cerenkov discrimination methods were developed with the collaboration of the Laboratoire de Physique Corpusculaire of Caen, the Comprehensive Cancer Center Francois Baclesse, and the ELDIM Co., in the frame of the MAESTRO European project. The DosiMap consists of a plastic scintillating sheet placed inside a transparent polystyrene phantom. The light distribution produced under irradiation is recorded by a CCD camera. Our first Cerenkov discrimination technique is subtractive. It uses a chessboard pattern placed in front of the scintillator, which provides a background signal containing only Cerenkov light. Our second discrimination technique is colorimetric. It performs a spectral analysis of the light signal, which allows the unfolding of the Cerenkov radiation and the scintillation. Tests were carried out with our DosiMap prototype and the performances of the two discrimination methods were assessed. The comparison of the

  11. The DosiMap, a new 2D scintillating dosimeter for IMRT quality assurance: characterization of two Cerenkov discrimination methods.

    Science.gov (United States)

    Frelin, A M; Fontbonne, J M; Ban, G; Colin, J; Labalme, M; Batalla, A; Vela, A; Boher, P; Braud, M; Leroux, T

    2008-05-01

    New radiation therapy techniques such as IMRT present significant efficiency due to their highly conformal dose distributions. A consequence of the complexity of their dose distributions (high gradients, small irradiation fields, low dose distribution, ...) is the requirement for better precision quality assurance than in classical radiotherapy in order to compare the conformation of the delivered dose with the planned dose distribution and to guarantee the quality of the treatment. Currently this control is mostly performed by matrices of ionization chambers, diode detectors, dosimetric films, portal imaging, or dosimetric gels. Another approach is scintillation dosimetry, which has been developed in the last 15 years mainly through scintillating fiber devices. Despite having many advantages over other methods it is still at an experimental level for routine dosimetry because the Cerenkov radiation produced under irradiation represents an important stem effect. A new 2D water equivalent scintillating dosimeter, the DosiMap, and two different Cerenkov discrimination methods were developed with the collaboration of the Laboratoire de Physique Corpusculaire of Caen, the Comprehensive Cancer Center François Baclesse, and the ELDIM Co., in the frame of the MAESTRO European project. The DosiMap consists of a plastic scintillating sheet placed inside a transparent polystyrene phantom. The light distribution produced under irradiation is recorded by a CCD camera. Our first Cerenkov discrimination technique is subtractive. It uses a chessboard pattern placed in front of the scintillator, which provides a background signal containing only Cerenkov light. Our second discrimination technique is colorimetric. It performs a spectral analysis of the light signal, which allows the unfolding of the Cerenkov radiation and the scintillation. Tests were carried out with our DosiMap prototype and the performances of the two discrimination methods were assessed. The comparison of the

  12. Cerenkov counter for the experiment NA3

    CERN Multimedia

    1978-01-01

    The program of the NA3 experiment included the study of hadronic interactions with a large transverse momentum pT, thus the inclusion in the set-up of three gas threshold Cerenkov counters of large acceptance. The photo shows the downstream part of the second Cerenkov (located at the output of the magnet). The yellow membrane is a temporary protection for the optics (shown in photo 7810540X) to be taken away when fixing this part to the gas tank (entering the magnet and not shown). The photomultipliers all around are heavily shielded.

  13. Determining reactor fuel elements broken by Cerenkov counting

    International Nuclear Information System (INIS)

    Guo Juhao; Dong Shiyuan; Feng Yuying

    1996-01-01

    The basis and method of determining fuel elements broken in a reactor by Cerenkov counting measured with liquid scintillation spectrometer are introduced. The radioactive characteristic of the radiation nuclides generating Cherenkov radiation in the primary water of 200 MW nuclear district heating reactor is analyzed. The activity of the activation products in the primary water and the fission products in the fuel elements are calculated. A feasibility of Cerenkov counting measure was analyzed. This method is simple and quick

  14. SU-F-J-46: Feasibility of Cerenkov Emission for Absorption Spectroscopy

    International Nuclear Information System (INIS)

    Oraiqat, I; Rehemtulla, A; Lam, K; Ten Haken, R; El Naqa, I; Clarke, R

    2016-01-01

    Purpose: Cerenkov emission (CE) is a promising tool for online tumor microenvironment interrogation and targeting during radiotherapy. In this work, we utilize CE generated during radiotherapy as a broadband excitation source for real-time absorption spectroscopy. We demonstrate the feasibility of CE spectroscopy using a controlled experiment of materials with known emission/absorption properties. Methods: A water tank is irradiated with 20 MeV electron beam to induce Cerenkov emission. Food coloring dyes (Yellow #5, Red #40, and Blue #1), which have known emission/absorption properties were added to the water tank with increasing concentration (1 drop (0.05 mL), 2 drops, and 4 drops from a dispenser bottle). The signal is collected using a condensing lens which is coupled into a 20m optical fiber that is fed into a spectrometer that measures the emitted spectra. The resulting spectra from water/food coloring dye solutions were normalized by the reference spectrum, which is the Cerenkov spectrum of pure water, correcting for both the nonlinearity of the broadband Cerenkov emission spectrum as well as the non-uniform spectral response of the spectrometer. The emitted spectra were then converted into absorbance and their characteristics were analyzed. Results: The food coloring dye had a drastic change on the Cerenkov emission, shifting its wavelength according to its visible color. The collected spectra showed various absorbance peaks which agrees with tabulated peak positions of the dyes added within 0.3% for yellow, 1.7% for red, and 0.16% for blue. The CE peak heights proportionally increased as the dye concentration is increased. Conclusion: This work shows the potential for real-time functional spectroscopy using Cerenkov emission during radiotherapy. It was demonstrated that molecule identification as well as relative concentration can be extracted from the Cerenkov emission color shift.

  15. SU-F-J-46: Feasibility of Cerenkov Emission for Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oraiqat, I; Rehemtulla, A; Lam, K; Ten Haken, R; El Naqa, I [University of Michigan, Radiation Oncology, Ann Arbor, MI (United States); Clarke, R [University of Michigan, Physics Department, Ann Arbor, MI (United States)

    2016-06-15

    Purpose: Cerenkov emission (CE) is a promising tool for online tumor microenvironment interrogation and targeting during radiotherapy. In this work, we utilize CE generated during radiotherapy as a broadband excitation source for real-time absorption spectroscopy. We demonstrate the feasibility of CE spectroscopy using a controlled experiment of materials with known emission/absorption properties. Methods: A water tank is irradiated with 20 MeV electron beam to induce Cerenkov emission. Food coloring dyes (Yellow #5, Red #40, and Blue #1), which have known emission/absorption properties were added to the water tank with increasing concentration (1 drop (0.05 mL), 2 drops, and 4 drops from a dispenser bottle). The signal is collected using a condensing lens which is coupled into a 20m optical fiber that is fed into a spectrometer that measures the emitted spectra. The resulting spectra from water/food coloring dye solutions were normalized by the reference spectrum, which is the Cerenkov spectrum of pure water, correcting for both the nonlinearity of the broadband Cerenkov emission spectrum as well as the non-uniform spectral response of the spectrometer. The emitted spectra were then converted into absorbance and their characteristics were analyzed. Results: The food coloring dye had a drastic change on the Cerenkov emission, shifting its wavelength according to its visible color. The collected spectra showed various absorbance peaks which agrees with tabulated peak positions of the dyes added within 0.3% for yellow, 1.7% for red, and 0.16% for blue. The CE peak heights proportionally increased as the dye concentration is increased. Conclusion: This work shows the potential for real-time functional spectroscopy using Cerenkov emission during radiotherapy. It was demonstrated that molecule identification as well as relative concentration can be extracted from the Cerenkov emission color shift.

  16. Plastic scintillation dosimetry: comparison of three solutions for the Cerenkov challenge

    Energy Technology Data Exchange (ETDEWEB)

    Liu, P Z Y; Suchowerska, N; Lambert, J; Abolfathi, P; McKenzie, D R, E-mail: pliu@physics.usyd.edu.au [School of Physics, University of Sydney, NSW 2006 (Australia)

    2011-09-21

    In scintillation dosimetry, a Cerenkov background signal is generated when a conventional fibre optic is exposed to radiation produced by a megavoltage linear accelerator. Three methods of measuring dose in the presence of Cerenkov background are compared. In the first method, a second background fibre is used to estimate the Cerenkov signal in the signal fibre. In the second method, a colour camera is used to measure the combined scintillation and Cerenkov light in two wavelength ranges and a mathematical process is used to extract the scintillation signal. In the third method, a hollow air core light guide is used to carry the scintillation signal through the primary radiation field. In this paper, the strengths and weaknesses of each dosimetry system are identified and recommendations for the optimum method for common clinical dosimetry situations are made.

  17. Observations of visual sensations produced by Cerenkov radiation from high-energy electrons

    International Nuclear Information System (INIS)

    Steidley, K.D.; Eastman, R.M.; Stabile, R.J.

    1989-01-01

    Ten cancer patients whose eyes were therapeutically irradiated with 6-18 MeV electrons reported visual light sensations. Nine reported seeing blue light and one reported seeing white light. Controls reported seeing no light. Additionally, tests with patients ruled out the x-ray contamination of the electron beam as being important. The photon yield due to Cerenkov radiation produced by radium and its daughters for both electrons and gamma rays was calculated; it was found to account for a turn-of-the-century human observation of the radium phosphene. We conclude that the dominant mechanism of this phosphene is Cerenkov radiation, primarily from betas. From our own patient data, based on the color seen and the Cerenkov production rates, we conclude that the dominant mechanism is Cerenkov radiation and that high-energy electrons are an example of particle induced visual sensations

  18. Cerenkov radiation simulation in the Auger water ground detector

    International Nuclear Information System (INIS)

    Le Van Ngoc; Vo Van Thuan; Dang Quang Thieu

    2003-01-01

    The simulation of response of the Auger water Cerenkov ground detector to atmospheric shower muons in practically needed for the experimental research of cosmic rays at extreme energies. We consider here a simulation model for the process of emission and diffusion of Cerenkov photons concerned with muons moving through the detector volume with the velocity greater than the phase velocity of light in the water on purpose to define photons producing signal in the detector. (author)

  19. Air core detectors for Cerenkov-free scintillation dosimetry of brachytherapy β-sources.

    Science.gov (United States)

    Eichmann, Marion; Thomann, Benedikt

    2017-09-01

    Plastic scintillation detectors are used for dosimetry in small radiation fields with high dose gradients, e.g., provided by β-emitting sources like 106 Ru/ 106 Rh eye plaques. A drawback is a background signal caused by Cerenkov radiation generated by electrons passing the optical fibers (light guides) of this dosimetry system. Common approaches to correct for the Cerenkov signal are influenced by uncertainties resulting from detector positioning and calibration procedures. A different approach to avoid any correction procedure is to suppress the Cerenkov signal by replacing the solid core optical fiber with an air core light guide, previously shown for external beam therapy. In this study, the air core concept is modified and applied to the requirements of dosimetry in brachytherapy, proving its usability for measuring water energy doses in small radiation fields. Three air core detectors with different air core lengths are constructed and their performance in dosimetry for brachytherapy β-sources is compared with a standard two-fiber system, which uses a second fiber for Cerenkov correction. The detector systems are calibrated with a 90 Sr/ 90 Y secondary standard and tested for their angular dependence as well as their performance in depth dose measurements of 106 Ru/ 106 Rh sources. The signal loss relative to the standard detector increases with increasing air core length to a maximum value of 58.3%. At the same time, however, the percentage amount of Cerenkov light in the total signal is reduced from at least 12.1% to a value below 1.1%. There is a linear correlation between induced dose and measured signal current. The air core detectors determine the dose rates for 106 Ru/ 106 Rh sources without any form of correction for the Cerenkov signal. The air core detectors show advantages over the standard two-fiber system especially when measuring in radiation fields with high dose gradients. They can be used as simple one-fiber systems and allow for an almost

  20. Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas - part 2: experimental prototype

    NARCIS (Netherlands)

    Zhuang, L.; Roeloffzen, C.G.H.; Meijerink, Arjan; Burla, M.; Marpaung, D.A.I.; Leinse, Arne; Hoekman, M.; Heideman, Rene; van Etten, Wim

    2010-01-01

    An experimental prototype is presented that illustrates the implementation aspects and feasibility of the novel ring resonator-based optical beamformer concept that has been developed and analyzed in Part I of this paper . This concept can be used for seamless control of the reception angle in

  1. Cerenkov counters at ISABELLE

    International Nuclear Information System (INIS)

    Ashford, V.; Etkin, A.; Honma, A.; Kostoulas, I.; Lanou, R.; Watts, T.

    1978-01-01

    Particle mass identification capability will be very important for much of the physics at ISABELLE. It will be required for studying quantum number flow in quark--quark scattering (jet and high P/sub t/ physics), hadronic decays of W's and Z's, and ''onium'' states. It will be essential for detecting and studying ''naked flavor'' states and generally required or at least very useful for most hadronic physics at ISABELLE. The large all-purpose detectors envisioned for ISABELLE require particle identification covering up to 4π solid angle with high multiplicity capability, high rate capability, insensitivity to high magnetic fields, and large dynamic range (1 to 400 GeV/c). In addition, it would be desirable to have this information for on-line event selection. At present there are only four practical methods for doing charged hadron identification: time-of-flight, dE/dX (ionization sampling), transition radiation, and Cerenkov radiation. All these methods need independent momentum determination and are effective over only limited kinematic ranges. Although the status and foreseeable development of these techniques are discussed at length elsewhere their expected capabilities are summarized in order to compare them with Cerenkov techniques. For the sake of argument a 4π steradian detector with an inner radius of 2 m is assumed

  2. Development of gamma-photon/Cerenkov-light hybrid system for simultaneous imaging of I-131 radionuclide

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi; Suzuki, Mayumi; Kato, Katsuhiko [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu [Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine (Japan); Ogata, Yoshimune [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Hatazawa, Jun [Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine (Japan)

    2016-09-11

    Although iodine 131 (I-131) is used for radionuclide therapy, high resolution images are difficult to obtain with conventional gamma cameras because of the high energy of I-131 gamma photons (364 keV). Cerenkov-light imaging is a possible method for beta emitting radionuclides, and I-131 (606 MeV maximum beta energy) is a candidate to obtain high resolution images. We developed a high energy gamma camera system for I-131 radionuclide and combined it with a Cerenkov-light imaging system to form a gamma-photon/Cerenkov-light hybrid imaging system to compare the simultaneously measured images of these two modalities. The high energy gamma imaging detector used 0.85-mm×0.85-mm×10-mm thick GAGG scintillator pixels arranged in a 44×44 matrix with a 0.1-mm thick reflector and optical coupled to a Hamamatsu 2 in. square position sensitive photomultiplier tube (PSPMT: H12700 MOD). The gamma imaging detector was encased in a 2 cm thick tungsten shield, and a pinhole collimator was mounted on its top to form a gamma camera system. The Cerenkov-light imaging system was made of a high sensitivity cooled CCD camera. The Cerenkov-light imaging system was combined with the gamma camera using optical mirrors to image the same area of the subject. With this configuration, we simultaneously imaged the gamma photons and the Cerenkov-light from I-131 in the subjects. The spatial resolution and sensitivity of the gamma camera system for I-131 were respectively ~3 mm FWHM and ~10 cps/MBq for the high sensitivity collimator at 10 cm from the collimator surface. The spatial resolution of the Cerenkov-light imaging system was 0.64 mm FWHM at 10 cm from the system surface. Thyroid phantom and rat images were successfully obtained with the developed gamma-photon/Cerenkov-light hybrid imaging system, allowing direct comparison of these two modalities. Our developed gamma-photon/Cerenkov-light hybrid imaging system will be useful to evaluate the advantages and disadvantages of these two

  3. Endoscopic Cerenkov luminescence imaging: in vivo small animal tumor model validation

    Science.gov (United States)

    Song, Tianming; Bao, Chengpeng; Hu, Zhenhua; Wang, Kun; Liu, Xia; Tian, Jie

    2015-03-01

    Background: Cerenkov luminescence imaging (CLI) provides a great potential for clinical translation of optical molecular imaging techniques through using clinical approved radiotracers. However, it is difficult to obtain the Cerenkov luminescence signal of deeper biological tissues due to the small magnitude of the signal. To efficiently acquire the weak Cerenkov luminescence, we developed an endoscopic Cerenkov luminescence imaging (ECLI) system to reduce the in vivo imaging depth with minimum invasion, and validated the system on small animal tumor models. Methods: For the ECLI system, the laparoscope was connected to a high sensitive charge-couple device (CCD) camera (DU888+, Andor, UK) by a custom made adapter. We conducted a series of in vitro and in vivo experiments by use of the system. In the in vitro experiment, the endoscopic luminescence images of the 18F-FDG with various activities in EP tubes were acquired using ECLI system, and the sensitivity was compared with conventional CLI system. In the in vivo tumor experiment, 18F-FDG with the activity of 200μCi were intravenously injected into 3 tumor mice. Then the ECLI system was used to acquire the optical images for both non-invasive and invasive conditions. Conclusion: Experimental data showed the ECLI system could detect the 18F-FDG with the activity as low as 1μCi. Furthermore, our preliminary results indicated the possibility of ECLI technique for detecting Cerenkov signals inside the tumor tissue with deeper depth and guiding the surgical operation of tumor excision. We believe that this technique can help to accelerate the clinical translation of CLI.

  4. Measurement of the pulse night spectrum Cerenkov flashes in the atmosphere

    International Nuclear Information System (INIS)

    Schlemmer, G.

    1981-03-01

    The determination of the energy spectrum of Cosmic Rays is difficult because of the low particle density at high energies. Normally such observations would require detectors with large collecting areas and long measurement periods. However the difficulty can be overcome by measuring shower induced Cerenkov radiation, the photon density of which is proportional to the shower energy. The Cerenkov radiation measurements reported here were made using two photomultipliers connected to a coincidence counter unit. The shower energy was deduced from measurements of the height of the pulses observed at the multiplier output,which should be proportional to the number of Cerenkov photons arriving at the photocathode. In order to make meaningful statements about the shower energy the statistical response of the photomultiplier system had to be standardized. This calibration was carried out by illuminating the photomultiplier cathode with a pulsed LED of pulsewidth 5 ns. For different light intensities of the LED a pulse-height spectrum was taken at the multiplier output. In addition to the Cerenkov photons counted by the photomultipliers, there exists a strong constant background light intensity. This background can be eliminated by employing a coincidence amplifier with a resolution time of 10 ns. To reduce background induced accidental coincidences the apparatus was equipped with a variable trigger level. To test the apparatus the Cerenkov radiation induced by cosmic rays in a water basin and in the photomultiplier window itself was measured and compared to theoretical estimates. The agreement was good. The pulse height spectrum of atmospheric Cerenkov radiation was obtained at the Cosmic Ray Physics Laboratory at the Hafelekar Observatory near Innsbruck. The measurements obtained there allowed the exponnent $delta in the differential energy spectrum N(E) dE c.Esup(-$delta)dE of the primary Cosmic Radiation to be evaluated. The value of $delta in the energy range 2,5 x 10 14

  5. Colour quenching corrections on the measurement of 90Sr through Cerenkov counting

    International Nuclear Information System (INIS)

    Mosqueda, F.; Villa, M.; Vaca, F.; Bolivar, J.P.

    2007-01-01

    The determination of 90 Sr through the Cerenkov radiation emitted by its descendant 90 Y is a well-known method and firmly established in literature. Nevertheless, in order to obtain an accurate result based on a Cerenkov measurement, the experimental work must be extremely rigorous because the efficiency of Cerenkov counting is especially sensitive to the presence of colour. Any traces of colour in the sample produce a decrease in the number of photons detected in the photomultipliers and, therefore, this might cause a diminution in Cerenkov counting efficiency. It is essential not only to detect the effect of colour quenching in the sample but also to correct the decrease in counting efficiency. For this reason, colour quenching correction curves versus counting efficiency are usually done when measuring through Cerenkov counting. One of the most widely used techniques to evaluate colour quenching in these measurements is the channel ratio method, which consists of the measurement of the shift of the spectrum measuring the ratio of counts in two different windows. The selection of the windows for the application of the corrections might have an influence on the quality of the fitting parameters of the correction curves efficiency versus colour quenching degree and hence on the final 90 Sr result. This work is focused on the calculation of the counting efficiency decrease using the channel ratio method and on obtaining the best fitting correction curve. For this purpose, empirical curves obtained through artificial quenchers have been studied and the results have been tested in real samples. Additionally, given that the Packard Tri-Carb 3170 TR/SL liquid scintillation counter is a novel detector for use in Cerenkov counting, the previous calibration of the Tri-Carb 3170 TR/SL detector, necessary for the measurement of 90 Sr, is included

  6. On the elimination of numerical Cerenkov radiation in PIC simulations

    International Nuclear Information System (INIS)

    Greenwood, Andrew D.; Cartwright, Keith L.; Luginsland, John W.; Baca, Ernest A.

    2004-01-01

    Particle-in-cell (PIC) simulations are a useful tool in modeling plasma in physical devices. The Yee finite difference time domain (FDTD) method is commonly used in PIC simulations to model the electromagnetic fields. However, in the Yee FDTD method, poorly resolved waves at frequencies near the cut off frequency of the grid travel slower than the physical speed of light. These slowly traveling, poorly resolved waves are not a problem in many simulations because the physics of interest are at much lower frequencies. However, when high energy particles are present, the particles may travel faster than the numerical speed of their own radiation, leading to non-physical, numerical Cerenkov radiation. Due to non-linear interaction between the particles and the fields, the numerical Cerenkov radiation couples into the frequency band of physical interest and corrupts the PIC simulation. There are two methods of mitigating the effects of the numerical Cerenkov radiation. The computational stencil used to approximate the curl operator can be altered to improve the high frequency physics, or a filtering scheme can be introduced to attenuate the waves that cause the numerical Cerenkov radiation. Altering the computational stencil is more physically accurate but is difficult to implement while maintaining charge conservation in the code. Thus, filtering is more commonly used. Two previously published filters by Godfrey and Friedman are analyzed and compared to ideally desired filter properties

  7. Fabrication and tests of prototype quadrupole magnets for the storage ring of the Advanced Photon Source

    International Nuclear Information System (INIS)

    Kim, S.H.; Thompson, K.M.; Black, E.L.; Jagger, J.M.

    1991-01-01

    Prototype quadrupole magnets for the APS storage ring have been fabricated and tested. Mechanical stability of the magnet poles and acceptable field quality have been achieved. Geometries of the pole-end bevels have been studied in order to simplify the design of the magnet end-plate. The field saturation at different segments of the magnet has been measured to evaluate the magnet efficiency

  8. The first C4-functionalisation of condensed tannins. Phlobatannins as prototype of a new class of C-ring isomerised oligomers

    International Nuclear Information System (INIS)

    Steenkamp, J.A.

    1986-06-01

    This thesis comprises besides the characterisation of new oligomeric flavenoids from the core wood of the indigeneous Colophosphermum mopane, an investigation into the C 4 -functionalisation of flavan-3-ol analogues. The first peltogynoid biflavenoid and prototypes of a new series C-ring isomerised condensed tannins, namely the phlobatannins, were isolated. Besides 1 H- nmr-parameters for structure analysis, the natural phlobatannins were characterised and the unique ring isomerisation was investigated

  9. SU-E-T-238: Monte Carlo Estimation of Cerenkov Dose for Photo-Dynamic Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Chibani, O; Price, R; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States); Eldib, A [Fox Chase Cancer Center, Philadelphia, PA (United States); University Cairo (Egypt); Mora, G [de Lisboa, Codex, Lisboa (Portugal)

    2014-06-01

    Purpose: Estimation of Cerenkov dose from high-energy megavoltage photon and electron beams in tissue and its impact on the radiosensitization using Protoporphyrine IX (PpIX) for tumor targeting enhancement in radiotherapy. Methods: The GEPTS Monte Carlo code is used to generate dose distributions from 18MV Varian photon beam and generic high-energy (45-MV) photon and (45-MeV) electron beams in a voxel-based tissueequivalent phantom. In addition to calculating the ionization dose, the code scores Cerenkov energy released in the wavelength range 375–425 nm corresponding to the pick of the PpIX absorption spectrum (Fig. 1) using the Frank-Tamm formula. Results: The simulations shows that the produced Cerenkov dose suitable for activating PpIX is 4000 to 5500 times lower than the overall radiation dose for all considered beams (18MV, 45 MV and 45 MeV). These results were contradictory to the recent experimental studies by Axelsson et al. (Med. Phys. 38 (2011) p 4127), where Cerenkov dose was reported to be only two orders of magnitude lower than the radiation dose. Note that our simulation results can be corroborated by a simple model where the Frank and Tamm formula is applied for electrons with 2 MeV/cm stopping power generating Cerenkov photons in the 375–425 nm range and assuming these photons have less than 1mm penetration in tissue. Conclusion: The Cerenkov dose generated by high-energy photon and electron beams may produce minimal clinical effect in comparison with the photon fluence (or dose) commonly used for photo-dynamic therapy. At the present time, it is unclear whether Cerenkov radiation is a significant contributor to the recently observed tumor regression for patients receiving radiotherapy and PpIX versus patients receiving radiotherapy only. The ongoing study will include animal experimentation and investigation of dose rate effects on PpIX response.

  10. Irradiated fuel examination using the Cerenkov technique

    International Nuclear Information System (INIS)

    Nicholson, N.; Dowdy, E.J.

    1981-03-01

    A technique for monitoring irradiated nuclear fuel inventories located in water filled storage ponds has been developed and demonstrated. This technique provides sufficient qualitative information to be useful as a confirmatory technique to International Atomic Energy Agency inspectors. Measurements have been made on the Cerenkov glow light intensity from irradiated fuel that show the intensity of this light to be proportional to the cooling time. Fieldable instruments used in several tests confirm that such measurements can be made easily and rapidly, without fuel assembly movement or the introduction of apparatus into the storage ponds. The Cerenkov technique and instrumentation have been shown to be of potential use to operators of reactor spent fuel facilities and away from reactor storage facilities, and to the International Atomic Energy Agency inspectors who provide surveillance of the irradiated fuel stored in these facilities

  11. Cerenkov counters at the Omega Facility

    CERN Multimedia

    1975-01-01

    P. Petroff on the left. Here one sees both the gas Cerenkov counters sitting in front of the magnet to select forward emitted particles. The smaller one, working at high pressure, sits nearest to the Omega magnet (see photo 7505073X), the other (see photo 7505071X) works at atmospheric pressure.

  12. Colour quenching corrections on the measurement of {sup 90}Sr through Cerenkov counting

    Energy Technology Data Exchange (ETDEWEB)

    Mosqueda, F. [Dpto. de Fisica Aplicada, Facultad de Ciencias Experimentales, Universidad de Huelva, Campus de El Carmen, 21071 Huelva (Spain)], E-mail: fernando.mosqueda@dfa.uhu.es; Villa, M. [Centro de Investigacion, Tecnologia e Innovacion, Universidad de Sevilla, Av. Reina Mercedes 4B, E41012 Sevilla (Spain); Vaca, F.; Bolivar, J.P. [Dpto. de Fisica Aplicada, Facultad de Ciencias Experimentales, Universidad de Huelva, Campus de El Carmen, 21071 Huelva (Spain)

    2007-12-05

    The determination of {sup 90}Sr through the Cerenkov radiation emitted by its descendant {sup 90}Y is a well-known method and firmly established in literature. Nevertheless, in order to obtain an accurate result based on a Cerenkov measurement, the experimental work must be extremely rigorous because the efficiency of Cerenkov counting is especially sensitive to the presence of colour. Any traces of colour in the sample produce a decrease in the number of photons detected in the photomultipliers and, therefore, this might cause a diminution in Cerenkov counting efficiency. It is essential not only to detect the effect of colour quenching in the sample but also to correct the decrease in counting efficiency. For this reason, colour quenching correction curves versus counting efficiency are usually done when measuring through Cerenkov counting. One of the most widely used techniques to evaluate colour quenching in these measurements is the channel ratio method, which consists of the measurement of the shift of the spectrum measuring the ratio of counts in two different windows. The selection of the windows for the application of the corrections might have an influence on the quality of the fitting parameters of the correction curves efficiency versus colour quenching degree and hence on the final {sup 90}Sr result. This work is focused on the calculation of the counting efficiency decrease using the channel ratio method and on obtaining the best fitting correction curve. For this purpose, empirical curves obtained through artificial quenchers have been studied and the results have been tested in real samples. Additionally, given that the Packard Tri-Carb 3170 TR/SL liquid scintillation counter is a novel detector for use in Cerenkov counting, the previous calibration of the Tri-Carb 3170 TR/SL detector, necessary for the measurement of {sup 90}Sr, is included.

  13. Interference of dissolved salts in Cerenkov and liquid scintillation estimation of 90Sr

    International Nuclear Information System (INIS)

    Pulhani, Vandana; Jha, S.K.; Tripathi, R.M.; Reddy, Priyanka; Bhade, Sonali

    2014-01-01

    Quenching is the most important effect occurring in Cerenkov and LSC because it affects the efficiency of conversion of β particles into light. Bore well water samples are very often concentrated by evaporation to reduce the detection limit which can also increase the dissolved solid content (TDS) in the sample. Some ground waters are inherently having higher TDS. Self-absorption of beta-particle radiation by the sample especially the lower-energy beta particles depends on sample thickness and density. Environmental samples, after applying the radiochemical procedure, are also estimated by Cerenkov/LSC and might be affected by colour quenching. To get best measurements using Liquid Scintillation and Cerenkov radiations, it is necessary to avoid high salt concentrations and colors which may weaken energy transfers within scintillator cocktails and sample medium. Therefore the degree of self-absorption and quench should be evaluated and taken into account in the calibration. Efficiency is represented as a function spectral quench parameter of external standard SQP(E). The quenching effect of dissolved solids on the efficiency of estimation of 90 Sr by Cerenkov and Liquid Scintillation are studied

  14. Cerenkov luminescence tomography based on preconditioning orthogonal matching pursuit

    Science.gov (United States)

    Liu, Haixiao; Hu, Zhenhua; Wang, Kun; Tian, Jie; Yang, Xin

    2015-03-01

    Cerenkov luminescence imaging (CLI) is a novel optical imaging method and has been proved to be a potential substitute of the traditional radionuclide imaging such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT). This imaging method inherits the high sensitivity of nuclear medicine and low cost of optical molecular imaging. To obtain the depth information of the radioactive isotope, Cerenkov luminescence tomography (CLT) is established and the 3D distribution of the isotope is reconstructed. However, because of the strong absorption and scatter, the reconstruction of the CLT sources is always converted to an ill-posed linear system which is hard to be solved. In this work, the sparse nature of the light source was taken into account and the preconditioning orthogonal matching pursuit (POMP) method was established to effectively reduce the ill-posedness and obtain better reconstruction accuracy. To prove the accuracy and speed of this algorithm, a heterogeneous numerical phantom experiment and an in vivo mouse experiment were conducted. Both the simulation result and the mouse experiment showed that our reconstruction method can provide more accurate reconstruction result compared with the traditional Tikhonov regularization method and the ordinary orthogonal matching pursuit (OMP) method. Our reconstruction method will provide technical support for the biological application for Cerenkov luminescence.

  15. Cerenkov Luminescence Tomography for In Vivo Radiopharmaceutical Imaging

    Directory of Open Access Journals (Sweden)

    Jianghong Zhong

    2011-01-01

    Full Text Available Cerenkov luminescence imaging (CLI is a cost-effective molecular imaging tool for biomedical applications of radiotracers. The introduction of Cerenkov luminescence tomography (CLT relative to planar CLI can be compared to the development of X-ray CT based on radiography. With CLT, quantitative and localized analysis of a radiopharmaceutical distribution becomes feasible. In this contribution, a feasibility study of in vivo radiopharmaceutical imaging in heterogeneous medium is presented. Coupled with a multimodal in vivo imaging system, this CLT reconstruction method allows precise anatomical registration of the positron probe in heterogeneous tissues and facilitates the more widespread application of radiotracers. Source distribution inside the small animal is obtained from CLT reconstruction. The experimental results demonstrated that CLT can be employed as an available in vivo tomographic imaging of charged particle emitters in a heterogeneous medium.

  16. Treatment of Cerenkov radiation from electric and magnetic charges in dispersive and dissipative media

    International Nuclear Information System (INIS)

    Saffouri, M.H.

    1982-07-01

    A rigorous treatment of the problem of Cerenkov radiation from fast moving electric and magnetic charges is presented. This is based on the rigorous solution of Maxwell's equations in a general dispersive medium possessing dielectric and magnetic properties and with, and without, dissipation. It is shown that the fields are completely determined by one scalar function. Expressions for the exact fields are obtained. From the asymptotic fields all the relevant properties of Cerenkov radiation are reproduced. In particular, it is shown that in the absence of dissipation the energy in each mode travels with the phase velocity of that mode. For a dissipative medium the electric field develops a longitudinal component and the energy propagates at an angle to the phase velocity. Application to the case of a Tachyon shows that it must emit Cerenkov radiation in vacuum. An estimate is given for the resulting linear density of emitted radiation. Finally, two suggestions are made for the experimental detection of magnetic charges and electric dipole moments of elementary particles based upon the Cerenkov radiation which they would emit in dispersive media. (author)

  17. Prototype_Matematikforløb_Sct-Hans

    DEFF Research Database (Denmark)

    Davidsen, Helle Munkholm; Sørensen, Kirsten Bonde; Klitø, Nanna Breinholt

    2015-01-01

    Forløbet udgør en prototype på et matematikforløb til 8. klasse, som er udviklet til at styrke og fastholde elevers motivation for læring. Formålet med denne prototype er at styrke motivationen for læring gennem synlige læringsmål, faglig differentiering og elevernes medbestemmelse. Didaktisk mål...

  18. Prototype_Danskforløb_Sct.Hans

    DEFF Research Database (Denmark)

    Davidsen, Helle Munkholm; Sørensen, Kirsten Bonde; Klitø, Nanna Breinholt

    2015-01-01

    Forløbet udgør en prototype på et danskforløb til 4. klasse, som er udviklet til at styrke og fastholde elevers motivation for læring. Formålet med denne prototype er at styrke motivationen for læring gennem synlige læringsmål, faglig differentiering og elevernes medbestemmelse. Didaktisk mål: at...

  19. Construction and testing of the SLD Cerenkov ring imaging detector

    International Nuclear Information System (INIS)

    Cavalli-Sforza, M.; Coyle, P.; Coyne, D.; Gagnon, P.; Williams, D.A.; Abe, K.; Hasegawa, K.; Suekane, F.; Yuta, H.

    1990-01-01

    The authors report on the construction of the Cherenkov Ring Imaging Detector (CRID) for the SLD experiment at the SLAC Linear Collider and the testing of its components. The authors include results from testing the drift boxes, liquid radiator trays, and mirrors for the barrel CRID. The authors also discuss development of the support systems essential for the operation of the CRID: gas and liquid recirculator systems and monitoring

  20. Measurement of {sup 40}K by Cerenkov Effect in foods; Medicion de {sup 40}K por Efecto Cerenkov en alimentos

    Energy Technology Data Exchange (ETDEWEB)

    Davila R, J. I.; Cancino T, F.; Lopez del R, H.; Mireles G, F., E-mail: idavilara@gmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98060 Zacatecas (Mexico)

    2013-10-15

    The {sup 40}K is a natural radioactive isotope of the potassium element that decays mainly by beta and gamma radiation emission. Although the gamma spectrometry is generally used for its measuring, the energy of the beta radiation is enough to produce Cerenkov radiation in water. Taking advantage of the high efficiency of the liquid scintillation counting, a procedure to measure {sup 40}K was developed through the Cerenkov radiation using a liquid scintillation counter. The methodology was applied in foods with high content of potassium like tomato, banana, and in olive. The efficiency and sensibility of the counting were superior to those reported for gamma spectrometry and the chemical recovery of potassium was of 82.3%. The activity of {sup 40}K varied between 2.9 and 8.4 Bq/kg in banana, between 12.3 and 19 Bq/kg in tomato, and in olive was minor to the detectable minimum activity of the method. (Author)

  1. Cerenkov Detectors for Fission Product Monitoring in Reactor Coolant Water

    Energy Technology Data Exchange (ETDEWEB)

    Strindehag, O

    1967-09-15

    The expected properties of Cerenkov detectors when used for fission product monitoring in water cooled reactors and test loops are discussed from the point of view of the knowledge of the sensitivity of these detectors to some beta emitting isotopes. The basic theory for calculation of the detector response is presented, taking the optical transmission in the sample container and the properties of the photomultiplier tube into account. Special attention is paid to the energy resolution of this type of Cerenkov detector. For the design of practical detectors the results from several investigations of various window and reflector materials are given, and the selection of photomultiplier tubes is briefly discussed. In the case of optical reflectors and photomultiplier tubes reference is made to two previous reports by the author. The influence of the size and geometry of the sample container on the energy resolution follows from a separate investigation, as well as the relative merits of sample containers with transparent inner walls. Provided that the energy resolution of the Cerenkov detector is sufficiently high, there are several reasons for using this detector type for failed-fuel-element detection. It seems possible to attain the desired energy resolution by careful detector design.

  2. Utilizing the power of Cerenkov light with nanotechnology

    Science.gov (United States)

    Shaffer, Travis M.; Pratt, Edwin C.; Grimm, Jan

    2017-02-01

    The characteristic blue glow of Cerenkov luminescence (CL) arises from the interaction between a charged particle travelling faster than the phase velocity of light and a dielectric medium, such as water or tissue. As CL emanates from a variety of sources, such as cosmic events, particle accelerators, nuclear reactors and clinical radionuclides, it has been used in applications such as particle detection, dosimetry, and medical imaging and therapy. The combination of CL and nanoparticles for biomedicine has improved diagnosis and therapy, especially in oncological research. Although radioactive decay itself cannot be easily modulated, the associated CL can be through the use of nanoparticles, thus offering new applications in biomedical research. Advances in nanoparticles, metamaterials and photonic crystals have also yielded new behaviours of CL. Here, we review the physics behind Cerenkov luminescence and associated applications in biomedicine. We also show that by combining advances in nanotechnology and materials science with CL, new avenues for basic and applied sciences have opened.

  3. Tests of the new STIC scintillator ring prototype, the photomultipliers and optic fibers cables of the 40 deg C counters

    International Nuclear Information System (INIS)

    Silva, Tatiana da

    1997-01-01

    This paper reports the tests performed on the semicircular prototype of the new scintillator ring with readings obtained by WLS optic fibers. The prototype intends to verify the light collecting and investigate a method for fiber gluing in a circular surface, without the appearing of air bubbles which may restrain the light transmission. Also the optic fiber cables and the photomultipliers used in the 40 deg C counters have been tested in order to verify the electromagnetic energy which may leak from failures in the barrel, aiming the hermeticity enhancement, and also the existence of any damaged cable

  4. Calibration of a liquid scintillation counter for alpha, beta and Cerenkov counting

    International Nuclear Information System (INIS)

    Scarpitta, S.C.; Fisenne, I.M.

    1996-07-01

    Calibration data are presented for 25 radionuclides that were individually measured in a Packard Tri-Carb 2250CA liquid scintillation (LS) counter by both conventional and Cerenkov detection techniques. The relationships and regression data between the quench indicating parameters and the LS counting efficiencies were determined using microliter amounts of tracer added to low 40 K borosilicate glass vials containing 15 mL of Insta-Gel XF scintillation cocktail. Using 40 K, the detection efficiencies were linear over a three order of magnitude range (10 - 10,000 mBq) in beta activity for both LS and Cerenkov counting. The Cerenkov counting efficiency (CCE) increased linearly (42% per MeV) from 0.30 to 2.0 MeV, whereas the LS efficiency was >90% for betas with energy in excess of 0.30 MeV. The CCE was 20 - 50% less than the LS counting efficiency for beta particles with maximum energies in excess of 1 MeV. Based on replicate background measurements, the lower limit of detection (LLD) for a 1-h count at the 95% confidence level, using water as a solvent, was 0.024 counts sec- -1 and 0.028 counts sec-1 for plastic and glass vials, respectively. The LLD for a 1-h-count ranged from 46 to 56 mBq (2.8 - 3.4 dpm) for both Cerenkov and conventional LS counting. This assumes: (1) a 100% counting efficiency, (2) a 50% yield of the nuclide of interest, (3) a 1-h measurement time using low background plastic vials, and (4) a 0-50 keV region of interest. The LLD is reduced an order of magnitude when the yield recovery exceeds 90% and a lower background region is used (i.e., 100 - 500 keV alpha region of interest). Examples and applications of both Cerenkov and LS counting techniques are given in the text and appendices

  5. Measurement of Cerenkov Radiation Induced by the Gamma-Rays of Co-60 Therapy Units Using Wavelength Shifting Fiber

    Directory of Open Access Journals (Sweden)

    Kyoung Won Jang

    2014-04-01

    Full Text Available In this study, a wavelength shifting fiber that shifts ultra-violet and blue light to green light was employed as a sensor probe of a fiber-optic Cerenkov radiation sensor. In order to characterize Cerenkov radiation generated in the developed wavelength shifting fiber and a plastic optical fiber, spectra and intensities of Cerenkov radiation were measured with a spectrometer. The spectral peaks of light outputs from the wavelength shifting fiber and the plastic optical fiber were measured at wavelengths of 500 and 510 nm, respectively, and the intensity of transmitted light output of the wavelength shifting fiber was 22.2 times higher than that of the plastic optical fiber. Also, electron fluxes and total energy depositions of gamma-ray beams generated from a Co-60 therapy unit were calculated according to water depths using the Monte Carlo N-particle transport code. The relationship between the fluxes of electrons over the Cerenkov threshold energy and the energy depositions of gamma-ray beams from the Co-60 unit is a near-identity function. Finally, percentage depth doses for the gamma-ray beams were obtained using the fiber-optic Cerenkov radiation sensor, and the results were compared with those obtained by an ionization chamber. The average dose difference between the results of the fiber-optic Cerenkov radiation sensor and those of the ionization chamber was about 2.09%.

  6. Cerenkov radiation imaging as a method for quantitative measurements of beta particles in a microfluidic chip

    International Nuclear Information System (INIS)

    Cho, Jennifer S; Taschereau, Richard; Olma, Sebastian; Liu Kan; Chen Yichun; Shen, Clifton K-F; Van Dam, R Michael; Chatziioannou, Arion F

    2009-01-01

    It has been observed that microfluidic chips used for synthesizing 18 F-labeled compounds demonstrate visible light emission without nearby scintillators or fluorescent materials. The origin of the light was investigated and found to be consistent with the emission characteristics from Cerenkov radiation. Since 18 F decays through the emission of high-energy positrons, the energy threshold for beta particles, i.e. electrons or positrons, to generate Cerenkov radiation was calculated for water and polydimethylsiloxane (PDMS), the most commonly used polymer-based material for microfluidic chips. Beta particles emitted from 18 F have a continuous energy spectrum, with a maximum energy that exceeds this energy threshold for both water and PDMS. In addition, the spectral characteristics of the emitted light from 18 F in distilled water were also measured, yielding a broad distribution from 300 nm to 700 nm, with higher intensity at shorter wavelengths. A photograph of the 18 F solution showed a bluish-white light emitted from the solution, further suggesting Cerenkov radiation. In this study, the feasibility of using this Cerenkov light emission as a method for quantitative measurements of the radioactivity within the microfluidic chip in situ was evaluated. A detector previously developed for imaging microfluidic platforms was used. The detector consisted of a charge-coupled device (CCD) optically coupled to a lens. The system spatial resolution, minimum detectable activity and dynamic range were evaluated. In addition, the calibration of a Cerenkov signal versus activity concentration in the microfluidic chip was determined. This novel method of Cerenkov radiation measurements will provide researchers with a simple yet robust quantitative imaging tool for microfluidic applications utilizing beta particles.

  7. Weight Multispectral Reconstruction Strategy for Enhanced Reconstruction Accuracy and Stability With Cerenkov Luminescence Tomography.

    Science.gov (United States)

    Hongbo Guo; Xiaowei He; Muhan Liu; Zeyu Zhang; Zhenhua Hu; Jie Tian

    2017-06-01

    Cerenkov luminescence tomography (CLT) provides a novel technique for 3-D noninvasive detection of radiopharmaceuticals in living subjects. However, because of the severe scattering of Cerenkov light, the reconstruction accuracy and stability of CLT is still unsatisfied. In this paper, a modified weight multispectral CLT (wmCLT) reconstruction strategy was developed which split the Cerenkov radiation spectrum into several sub-spectral bands and weighted the sub-spectral results to obtain the final result. To better evaluate the property of the wmCLT reconstruction strategy in terms of accuracy, stability and practicability, several numerical simulation experiments and in vivo experiments were conducted and the results obtained were compared with the traditional multispectral CLT (mCLT) and hybrid-spectral CLT (hCLT) reconstruction strategies. The numerical simulation results indicated that wmCLT strategy significantly improved the accuracy of Cerenkov source localization and intensity quantitation and exhibited good stability in suppressing noise in numerical simulation experiments. And the comparison of the results achieved from different in vivo experiments further indicated significant improvement of the wmCLT strategy in terms of the shape recovery of the bladder and the spatial resolution of imaging xenograft tumors. Overall the strategy reported here will facilitate the development of nuclear and optical molecular tomography in theoretical study.

  8. The high pressure gas Cerenkov counter at the Omega Facility.

    CERN Multimedia

    1975-01-01

    The high-pressure gas Cerenkov was used to measure reactions as pion (or kaon)- hydrogen --> forward proton - X. It was built by the Ecole Polytechnique (Palaiseu). Here Peter Sonderegger and Patrick Fleury,

  9. Cerenkov luminescence imaging of medical isotopes.

    Science.gov (United States)

    Ruggiero, Alessandro; Holland, Jason P; Lewis, Jason S; Grimm, Jan

    2010-07-01

    The development of novel multimodality imaging agents and techniques represents the current frontier of research in the field of medical imaging science. However, the combination of nuclear tomography with optical techniques has yet to be established. Here, we report the use of the inherent optical emissions from the decay of radiopharmaceuticals for Cerenkov luminescence imaging (CLI) of tumors in vivo and correlate the results with those obtained from concordant immuno-PET studies. In vitro phantom studies were used to validate the visible light emission observed from a range of radionuclides including the positron emitters (18)F, (64)Cu, (89)Zr, and (124)I; beta-emitter (131)I; and alpha-particle emitter (225)Ac for potential use in CLI. The novel radiolabeled monoclonal antibody (89)Zr-desferrioxamine B [DFO]-J591 for immuno-PET of prostate-specific membrane antigen (PSMA) expression was used to coregister and correlate the CLI signal observed with the immuno-PET images and biodistribution studies. Phantom studies confirmed that Cerenkov radiation can be observed from a range of positron-, beta-, and alpha-emitting radionuclides using standard optical imaging devices. The change in light emission intensity versus time was concordant with radionuclide decay and was also found to correlate linearly with both the activity concentration and the measured PET signal (percentage injected dose per gram). In vivo studies conducted in male severe combined immune deficient mice bearing PSMA-positive, subcutaneous LNCaP tumors demonstrated that tumor-specific uptake of (89)Zr-DFO-J591 could be visualized by both immuno-PET and CLI. Optical and immuno-PET signal intensities were found to increase over time from 24 to 96 h, and biodistribution studies were found to correlate well with both imaging modalities. These studies represent the first, to our knowledge, quantitative assessment of CLI for measuring radiotracer uptake in vivo. Many radionuclides common to both nuclear

  10. First observation of Cherenkov rings with a large area CsI-TGEM-based RICH prototype

    CERN Document Server

    Peskov, V; Di Mauro, A; Martinengo, P; Mayani, D; Molnar, L; Nappi, E; Paic, G; Smirnov, N; Anand, H; Shukla, I

    2012-01-01

    We have built a RICH detector prototype consisting of a liquid C6F14 radiator and six triple Thick Gaseous Electron Multipliers (TGEMs), each of them having an active area of 10x10 cm2. One triple TGEM has been placed behind the liquid radiator in order to detect the beam particles, whereas the other five have been positioned around the central one at a distance to collect the Cherenkov photons. The upstream electrode of each of the TGEM stacks has been coated with a 0.4 micron thick CsI layer. In this paper, we will present the results from a series of laboratory tests with this prototype carried out using UV light, 6 keV photons from 55Fe and electrons from 90Sr as well as recent results of tests with a beam of charged pions where for the first time Cherenkov Ring images have been successfully recorded with TGEM photodetectors. The achieved results prove the feasibility of building a large area Cherenkov detector consisting of a matrix of TGEMs.

  11. Some properties of Cerenkov radiation due to the finite thickness of the radiator

    International Nuclear Information System (INIS)

    Kobzev, A.P.; Frank, I.M.

    1981-01-01

    The properties of Cerenkov radiation are analyzed for a small radiator thickness. It is shown that the directionality of the radiation, its threshold properties, and also the dependence on the electron energy and radiator thickness differ substantially from the well known characteristics of Cerenkov radiation corresponding to the case of an unlimited particle trajectory in an extended medium. We have experimentally studied the directionality and energy characteristics of radiation excited by electrons in a mica target of thickness 12 400 A at wavelength 4000 A. The experimental results are in good agreement with the calculations

  12. Construction and operation of a support facilities (Building 729) for operation/testing of a prototype accelerator/storage ring (XLS) and machine shop for the National Synchrotron Light Source at Brookhaven National Laboratory, Upton, New York

    International Nuclear Information System (INIS)

    1992-06-01

    Proposed action is to construct at BNL a 5,600-ft 2 support building, install and operate a prototypic 200 MeV accelerator and a prototypic 700 MeV storage ring within, and to construct and operate a 15 kV substation to power the building. The accelerator and storage ring would comprise the x-ray lithography source or XLS

  13. Study of a total reflection Cerenkov counter

    International Nuclear Information System (INIS)

    Didelez, J.P.

    1979-01-01

    A Monte Carlo program simulates the emission and collection of Cerenkov light due to P and π (0.6 to 1.4 GeV/c) going through a rectangular parallelepiped of plexiglas. Without taking into account the knocked out electrons (delta) a good theoretical separation is obtained between P and π. The contribution of delta electrons has been calculated separately. Experimental tests are under way using cosmic rays [fr

  14. Cerenkov Radiator Driven by a Superconducting RF Electron Gun

    International Nuclear Information System (INIS)

    Poole, B.R.; Harris, J.R.

    2011-01-01

    The Naval Postgraduate School (NPS), Niowave, Inc., and Boeing have recently demonstrated operation of the first superconducting RF electron gun based on a quarter wave resonator structure. In preliminary tests, this gun has produced 10 ps long bunches with charge in excess of 78 pC, and with beam energy up to 396 keV. Initial testing occurred at Niowave's Lansing, MI facility, but the gun and diagnostic beam line are planned for installation in California in the near future. The design of the diagnostic beam line is conducive to the addition of a Cerenkov radiator without interfering with other beam line operations. Design and simulations of a Cerenkov radiator, consisting of a dielectric lined waveguide will be presented. The dispersion relation for the structure is determined and the beam interaction is studied using numerical simulations. The characteristics of the microwave radiation produced in both the short and long bunch regimes will be presented.

  15. Measurement of 40K by Cerenkov Effect in foods

    International Nuclear Information System (INIS)

    Davila R, J. I.; Cancino T, F.; Lopez del R, H.; Mireles G, F.

    2013-10-01

    The 40 K is a natural radioactive isotope of the potassium element that decays mainly by beta and gamma radiation emission. Although the gamma spectrometry is generally used for its measuring, the energy of the beta radiation is enough to produce Cerenkov radiation in water. Taking advantage of the high efficiency of the liquid scintillation counting, a procedure to measure 40 K was developed through the Cerenkov radiation using a liquid scintillation counter. The methodology was applied in foods with high content of potassium like tomato, banana, and in olive. The efficiency and sensibility of the counting were superior to those reported for gamma spectrometry and the chemical recovery of potassium was of 82.3%. The activity of 40 K varied between 2.9 and 8.4 Bq/kg in banana, between 12.3 and 19 Bq/kg in tomato, and in olive was minor to the detectable minimum activity of the method. (Author)

  16. Looking for anomalons with a segmented Cerenkov detector

    International Nuclear Information System (INIS)

    Olson, D.L.

    1984-10-01

    An experiment performed at the Lawrence Berkeley Laboratory Bevalac, Expt. 676H, to study the anomalon effect with a segmented total-internal-reflection Cerenkov detector is reported. Radiators of 3mm thick BK7W optical glass and 2mm thick fused silica and a beam of 40 Ca at 2.1 GeV/nucleon were used. Results are presented and discussed

  17. Cerenkov maser operation at lower-mm wavelengths

    International Nuclear Information System (INIS)

    Garate, E.; Cook, R.; Heim, P.; Layman, R.; Walsh, J.

    1985-01-01

    The basic operating principles of Cerenkov maser oscillators are briefly reviewed and the experimental performance of a 3-mm device is discussed. A power level of approximately 100 kW was achieved at 88 GHz and voltage tuning from 84 to 128 GHz on the fundamental TM 01 mode was observed. Operation on higher-order modes at frequencies up to 300--320 GHz was demonstrated, and a two-stage buncher-amplifier configuration was investigated

  18. A single-particle calculation of the FEL-Cerenkov gain

    International Nuclear Information System (INIS)

    Dattoli, G.; Doria, A.; Gallerano, G.P.; Renieri, A.; Schettini, G.; Torre, A.

    1988-01-01

    In this work it is shown that the basic FEL-Cerenkov dynamics can be modelled using a pendulumlike equation in close analogy with FEL undulator case. The analysis, including the inhomogeneous broadening effects, is worked out in the hypothesis of single-slab geometry. Two-dimensional motion dynamics effects are also included

  19. Inorganic glass ceramic slip rings

    Science.gov (United States)

    Glossbrenner, E. W.; Cole, S. R.

    1972-01-01

    Prototypes of slip rings have been fabricated from ceramic glass, a material which is highly resistant to deterioration due to high temperature. Slip ring assemblies were not structurally damaged by mechanical tests and performed statisfactorily for 200 hours.

  20. Cerenkov light spectrum in an optical fiber exposed to a photon or electron radiation therapy beam

    International Nuclear Information System (INIS)

    Lambert, Jamil; Yin Yongbai; McKenzie, David R.; Law, Sue; Suchowerska, Natalka

    2009-01-01

    A Cerenkov signal is generated when energetic charged particles enter the core of an optical fiber. The Cerenkov intensity can be large enough to interfere with signals transmitted through the fiber. We determine the spectrum of the Cerenkov background signal generated in a poly(methyl methacrylate) optical fiber exposed to photon and electron therapeutic beams from a linear accelerator. This spectral measurement is relevant to discrimination of the signal from the background, as in scintillation dosimetry using optical fiber readouts. We find that the spectrum is approximated by the theoretical curve after correction for the wavelength dependent attenuation of the fiber. The spectrum does not depend significantly on the angle between the radiation beam and the axis of the fiber optic but is dependent on the depth in water at which the fiber is exposed to the beam.

  1. Silica aerogel Cerenkov counter

    International Nuclear Information System (INIS)

    Yasumi, S.; Masaike, A.; Yamamoto, A.; Yoshimura, Y.; Kawai, H.

    1984-03-01

    In order to obtain silica aerogel radiators of good quality, the prescription used by Saclay group has been developed. We have done several experiments using beams from KEK.PS to test the performance of a Cerenkov counter with aerogel modules produced in KEK. It turned out that these modules had excellent quality. The production rate of silica aerogel in KEK is 15 -- 20 litres a week. Silica aerogel modules of 20 x 10 x 3 cm 3 having the refractive index of 1.058 are successfully being used by Kyoto University group in the KEK experiment E92 (Σ). Methodes to produce silica aerogel with higher refractive index than 1.06 has been investigated both by heating an module with the refractive index of 1.06 and by hydrolyzing tetraethyl silicate. (author)

  2. Observation of lateral substructures in EAS by measurement of the time distribution of atmospheric Cerenkov light

    International Nuclear Information System (INIS)

    Bosia, G.; Navarra, G.; Saavedra, O.

    1975-01-01

    The lateral structure of EAS is derived from the arrival time distribution of atmospheric Cerenkov light assuming a strict correlation between time structure and lateral particle distribution. Results of the Pic du Midi experiment are presented. Substructures in the time distribution of the Cerenkov light can be related to structures in the lateral density distribution of electrons. The frequency (a few %) of substructures can be explained within conventional models of high energy interactions. (orig.) [de

  3. The UCLA/SLAC Ultra-High Gradient Cerenkov Wakefield Accelerator Experiment

    CERN Document Server

    Thompson, Matthew C; Hogan, Mark; Ischebeck, Rasmus; Muggli, Patric; Rosenzweig, James E; Scott, A; Siemann, Robert; Travish, Gil; Walz, Dieter; Yoder, Rodney

    2005-01-01

    An experiment is planned to study the performance of dielectric Cerenkov wakefield accelerating structures at extremely high gradients in the GV/m range. This new UCLA/SLAC collaboration will take advantage of the unique SLAC FFTB electron beam and its demonstrated ultra-short pulse lengths and high currents (e.g., sz = 20 μm at Q = 3 nC). The electron beam will be focused down and sent through varying lengths of fused silica capillary tubing with two different sizes: ID = 200 μm / OD = 325 μm and ID = 100 μm / OD = 325 μm. The pulse length of the electron beam will be varied in order to alter the accelerating gradient and probe the breakdown threshold of the dielectric structures. In addition to breakdown studies, we plan to collect and measure coherent Cerenkov radiation emitted from the capillary tube to gain information about the strength of the accelerating fields. Status and progress on the experiment are reported.

  4. Gas Cerenkov detector for measuring 16.7-MeV gamma rays from the D(T,γ)5He reaction

    International Nuclear Information System (INIS)

    Brolley, J.E.; Ladish, J.S.; Lyons, P.B.

    1983-01-01

    A gas Cerenkov detector has been developed for measuring radiation from the 16.7-MeV gamma branch of the D-T reaction. This has useful applications as a diagnostic tool for weapons tests at the Nevada Test Site (NTS), as well as for evaluation of ICF targets and Tokomak plasmas. The Cerenkov process was chosen because of excellent time response. A gas radiator allows threshold control to eliminate low-energy background, such as gamma radiation produced by a neutron capture or scattering. The detector consists of a thin aluminum converter to provide energetic pair and Compton electrons, a deflecting magnet, a Cerenkov radiator, and an optical system for collection and detection of Cerenkov light. The radiator is a gas chamber filled with approximately one atmosphere of carbon dioxide. A photodiode is used for light detection. The electron beam from the DOE/EG and G electron linear accelerator at EG and G's Santa Barbara Operations has been used to measure the detector response as functions of electron energy and gas pressure. A Monte Carlo production-transport code is used to calculate geometrical properties of the pair and Compton electron distributions as they enter the Cerenkov radiator. Fluorescence, transition radiation, and other optical backgrounds produced by subthreshold electrons are being evaluated in order to optimize the detector design

  5. First C/sub 4/-functionalisation of condensed tannins. Phlobatannins as prototype of a new class of C-ring isomerised oligomers. Die eerste C/sub 4/-funksionalisering van gekondenseerde tanniene. Flobatanniene as prototipe van 'n nuwe klas van C-ring geisomeriseerde oligomere

    Energy Technology Data Exchange (ETDEWEB)

    Steenkamp, J A

    1986-06-01

    This thesis comprises besides the characterisation of new oligomeric flavenoids from the core wood of the indigeneous Colophosphermum mopane, an investigation into the C/sub 4/-functionalisation of flavan-3-ol analogues. The first peltogynoid biflavenoid and prototypes of a new series C-ring isomerised condensed tannins, namely the phlobatannins, were isolated. Besides /sup 1/H- nmr-parameters for structure analysis, the natural phlobatannins were characterised and the unique ring isomerisation was investigated.

  6. Anomalous dispersion enhanced Cerenkov phase-matching

    Energy Technology Data Exchange (ETDEWEB)

    Kowalczyk, T.C.; Singer, K.D. [Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Physics; Cahill, P.A. [Sandia National Labs., Albuquerque, NM (United States)

    1993-11-01

    The authors report on a scheme for phase-matching second harmonic generation in polymer waveguides based on the use of anomalous dispersion to optimize Cerenkov phase matching. They have used the theoretical results of Hashizume et al. and Onda and Ito to design an optimum structure for phase-matched conversion. They have found that the use of anomalous dispersion in the design results in a 100-fold enhancement in the calculated conversion efficiency. This technique also overcomes the limitation of anomalous dispersion phase-matching which results from absorption at the second harmonic. Experiments are in progress to demonstrate these results.

  7. Separation of PbWO4 and BGO signals into Cerenkov and scintillation components

    International Nuclear Information System (INIS)

    Voena, C

    2009-01-01

    We present results from beam tests performed in 2007 on PbWO 4 and BGO crystals in the context of the DREAM project. Signals from high energy electrons and pions are analyzed and the possibility of separating the contributions from Cerenkov (C) and scintillation (S) light for individual events is investigated. Different methods exploiting the difference in timing, in the spectra and in the directionality of the two types of light have been developed to determine the contribution of the two components. In the BGO crystal, Cerenkov signals have been enhanced with the use of optical filters and the ratio C/S is measured with good precision (∼20-30% for energy deposits less than 1 GeV).

  8. Chemical Sensors Based on Optical Ring Resonators

    Science.gov (United States)

    Homer, Margie; Manfreda, Allison; Mansour, Kamjou; Lin, Ying; Ksendzov, Alexander

    2005-01-01

    Chemical sensors based on optical ring resonators are undergoing development. A ring resonator according to this concept is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, is a made of a polymer that (1) has an index of refraction lower than that of the waveguide core and (2) absorbs chemicals from the surrounding air. The index of refraction of the polymer changes with the concentration of absorbed chemical( s). The resonator is designed to operate with relatively strong evanescent-wave coupling between the outer polymer layer and the electromagnetic field propagating along the waveguide core. By virtue of this coupling, the chemically induced change in index of refraction of the polymer causes a measurable shift in the resonance peaks of the ring. In a prototype that has been used to demonstrate the feasibility of this sensor concept, the ring resonator is a dielectric optical waveguide laid out along a closed path resembling a racetrack (see Figure 1). The prototype was fabricated on a silicon substrate by use of standard techniques of thermal oxidation, chemical vapor deposition, photolithography, etching, and spin coating. The prototype resonator waveguide features an inner cladding of SiO2, a core of SixNy, and a chemical-sensing outer cladding of ethyl cellulose. In addition to the ring Chemical sensors based on optical ring resonators are undergoing development. A ring resonator according to this concept is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, is a made of a polymer that (1) has an index of refraction lower than that of the waveguide core and (2) absorbs chemicals from the surrounding air. The index of refraction of the polymer changes with the concentration of absorbed chemical( s). The resonator is designed to operate with relatively strong

  9. Surface-coupling of Cerenkov radiation from a modified metallic metamaterial slab via Brillouin-band folding.

    Science.gov (United States)

    Bera, Anirban; Barik, Ranjan Kumar; Sattorov, Matlabjon; Kwon, Ohjoon; Min, Sun-Hong; Baek, In-Keun; Kim, Seontae; So, Jin-Kyu; Park, Gun-Sik

    2014-02-10

    Metallic metamaterials with positive dielectric responses are promising as an alternative to dielectrics for the generation of Cerenkov radiation [J.-K. So et al., Appl. Phys. Lett. 97(15), 151107 (2010)]. We propose here by theoretical analysis a mechanism to couple out Cerenkov radiation from the slab surfaces in the transverse direction. The proposed method based on Brillouin-zone folding is to periodically modify the thickness of the metamaterial slab in the axial direction. Moreover, the intensity of the surface-coupled radiation by this mechanism shows an order-of-magnitude enhancement compared to that of ordinary Smith-Purcell radiation.

  10. SNS EXTRACTION KICKER POWER SUPPLY PROTOTYPE TEST

    International Nuclear Information System (INIS)

    MI, J.L.; SANDBERG, J.; SANDERS, R.; SOUKAS, A.; ZHANG, W.

    2000-01-01

    The SNS (Spallation Neutron Source) accumulator ring Extraction System consists of a Fast kicker and a Lambertson Septum magnet. The proposed design will use 14 kicker magnets powered by an Extraction Kicker Power Supply System. They will eject the high power beam from the SNS accumulator ring into RTBT (Ring to Target Beam Tunnel) through a Lambertson Septum magnet. This paper describes some test results of the SNS Extraction Kicker power supply prototype. The high repetition rate of 60 pulse per second operation is the challenging part of the design. In the prototype testing, a 3 kA damp current of 700ns pulse-width, 200 nS rise time and 60 Hz repetition rate at 32 kV PFN operation voltage has been demonstrated. An Extraction kicker power supply system design diagram is depicted

  11. Particle detection and identification through Cerenkov effect in silica aerogels

    International Nuclear Information System (INIS)

    Engelmann, J.J.; Cantin, M.

    1978-01-01

    Cerenkov counters are largely used in high energy physics and in nuclear astrophysics to identify the charge of high energy particles and to measure their velocity. Good velocity resolution is obtained only near the Cerenkov threshold, which is directly dependent on the refractive index of the radiator. It is therefore very important to dispose of materials of various refractive indices. The silica aerogel allows to cover a range of indices between 1.015 and 1.2 which is intermediate between the indices given by gas and liquids. The samples most often built until now are hexagonal blocks of 1.06 refractive index and 0.24 g/cm 3 density. Blocks of one liter in volume have been assembled to form a mosaic of large dimension. For lower refractive indices, 1.015 for instance, the material becomes too brittle. So we have been led to use an aerogel sand made of aerogel grains of controlled granulometry. Radiators of both types blocks and sand are used in the franco-danish experiment to be launched aboard the NASA satellite HEAO-C in July 1979 [fr

  12. Pixel-based parametric source depth map for Cerenkov luminescence imaging

    International Nuclear Information System (INIS)

    Altabella, L.; Spinelli, A.E.; Boschi, F.

    2016-01-01

    Optical tomography represents a challenging problem in optical imaging because of the intrinsically ill-posed inverse problem due to photon diffusion. Cerenkov luminescence tomography (CLT) for optical photons produced in tissues by several radionuclides (i.e.: 32P, 18F, 90Y), has been investigated using both 3D multispectral approach and multiviews methods. Difficult in convergence of 3D algorithms can discourage to use this technique to have information of depth and intensity of source. For these reasons, we developed a faster 2D corrected approach based on multispectral acquisitions, to obtain source depth and its intensity using a pixel-based fitting of source intensity. Monte Carlo simulations and experimental data were used to develop and validate the method to obtain the parametric map of source depth. With this approach we obtain parametric source depth maps with a precision between 3% and 7% for MC simulation and 5–6% for experimental data. Using this method we are able to obtain reliable information about the source depth of Cerenkov luminescence with a simple and flexible procedure

  13. Plastic scintillation dosimetry for radiation therapy: minimizing capture of Cerenkov radiation noise

    International Nuclear Information System (INIS)

    Beddar, A Sam; Suchowerska, Natalka; Law, Susan H

    2004-01-01

    Over the last decade, there has been an increased interest in scintillation dosimetry using small water-equivalent plastic scintillators, because of their favourable characteristics when compared with other more commonly used detector systems. Although plastic scintillators have been shown to have many desirable dosimetric properties, as yet there is no successful commercial detector system of this type available for routine clinical use in radiation oncology. The main factor preventing this new technology from realizing its full potential in commercial applications is the maximization of signal coupling efficiency and the minimization of noise capture. A principal constituent of noise is Cerenkov radiation. This study reports the calculated capture of Cerenkov radiation by an optical fibre in the special case where the radiation is generated by a relativistic particle on the fibre axis and the fibre axis is parallel to the Cerenkov cone. The fraction of radiation captured is calculated as a function of the fibre core refractive index and the refractive index difference between the core and the cladding of the fibre for relativistic particles. This is then used to deduce the relative intensity captured for a range of fibre core refractive indices and fibre core-cladding refractive index differences. It is shown that the core refractive index has little effect on the amount of radiation captured compared to the refractive index difference. The implications of this result for the design of radiation therapy plastic scintillation dosimeters are considered

  14. A Study on the Response Characteristics of a Fiber-Optic Radiation Sensor Model Based on Cerenkov Principle

    Energy Technology Data Exchange (ETDEWEB)

    Han, Hwa Jeong; Kim, Beom Kyu; Park, Byung Gi [Soonchunhyang Univ., Asan (Korea, Republic of)

    2016-10-15

    In recent year, various fiber-optic radiation sensors using Cerenkov principle have been developed without employing any scintillators for measuring high-energy photon, electron, etc. The main advantages of the optical fibers are the remote transmission of the light signal and immunity to pressure and electromagnetic waves. Therefore, the sensors utilizing the optical fibers can be used in hazardous radiation environments, such as the high-level radiation areas of a nuclear facility. The study to be simulated a fiber-optic radiation sensor based on Cerenkov principle and to be analyzed the response characteristics of the sensor. For the aforementioned study, the GEANT simulation toolkit was used. It is able to take into all the optical properties of fibers and is found to be appropriate to realistically describe the response of fiber-optic radiation sensor. In the recently, the fiber-optic radiation sensor have been developed in nuclear industry. Because sensor can detect gamma ray in harsh nuclear environments. In this study, we analyzed response characteristics of the fiber-optic radiation sensor. We have simulated the Monte Carlo model, for detecting the Cerenkov radiation using the fiber-optic radiation sensor. And the y-axis distribution of Cerenkov photons was obtained using output file. Simulation is performed with reference to the method of the previous research, and then the simulation results exhibited a good agreement with the previous research.

  15. A Study on the Response Characteristics of a Fiber-Optic Radiation Sensor Model Based on Cerenkov Principle

    International Nuclear Information System (INIS)

    Han, Hwa Jeong; Kim, Beom Kyu; Park, Byung Gi

    2016-01-01

    In recent year, various fiber-optic radiation sensors using Cerenkov principle have been developed without employing any scintillators for measuring high-energy photon, electron, etc. The main advantages of the optical fibers are the remote transmission of the light signal and immunity to pressure and electromagnetic waves. Therefore, the sensors utilizing the optical fibers can be used in hazardous radiation environments, such as the high-level radiation areas of a nuclear facility. The study to be simulated a fiber-optic radiation sensor based on Cerenkov principle and to be analyzed the response characteristics of the sensor. For the aforementioned study, the GEANT simulation toolkit was used. It is able to take into all the optical properties of fibers and is found to be appropriate to realistically describe the response of fiber-optic radiation sensor. In the recently, the fiber-optic radiation sensor have been developed in nuclear industry. Because sensor can detect gamma ray in harsh nuclear environments. In this study, we analyzed response characteristics of the fiber-optic radiation sensor. We have simulated the Monte Carlo model, for detecting the Cerenkov radiation using the fiber-optic radiation sensor. And the y-axis distribution of Cerenkov photons was obtained using output file. Simulation is performed with reference to the method of the previous research, and then the simulation results exhibited a good agreement with the previous research

  16. Cerenkov light and the production of photoreactivatable damage in X-irradiated E. coli

    International Nuclear Information System (INIS)

    Redpath, J.L.; Zabilansky, E.; Morgan, T.; Ward, J.F.

    1981-01-01

    Survival curve data for oxygenated E. coli AB2480 irradiated with 6 MVp photons in the absence and presence of DNA are presented for bacteria which have or have not received photoreactivation treatment following x-ray exposure. At the concentration of DNA used (OD = 4.4 at 260 nm) partial protection against induction of photoreactivatable damage was attained. Following photoreactivation the survival curves had the same slope, irrespective of the presence or absence of DNA. Survival data for oxygenated E.coli AB2480 irradiated with 50 Gy of 6 MVp photons in the presence of DNA at varying concentrations (OD range 0.5 to 12) and then processed with or without exposure to photoreactivating light are also presented. Survival increased with DNA concentration in the absence, but not in the presence, of photoreactivation. It is concluded that theoretical considerations and experimental data are consistent with Cerenkov light being responsible for the production of a major part of the photoreactivatable damage induced in E.coli DNA by high energy X-,γ- or electron irradiation, but that the data obtained with low energy X-rays (300 kVp) and with high energy X-rays (6 MVp) plus DNA as a 'scavenger' of Cerenkov light, are indicative of a component of the photoreactivatable damage being induced by a mechanism not involving Cerenkov light. (U.K.)

  17. Cerenkov light and the production of photoreactivatable damage in X-irradiated E. coli

    Energy Technology Data Exchange (ETDEWEB)

    Redpath, J L; Zabilansky, E; Morgan, T [California Univ., Irvine (USA). Dept. of Radiological Sciences; Ward, J F [California Univ., San Diego, La Jolla (USA). Dept. of Radiology

    1981-05-01

    Survival curve data for oxygenated E. coli AB2480 irradiated with 6 MVp photons in the absence and presence of DNA are presented for bacteria which have or have not received photoreactivation treatment following x-ray exposure. At the concentration of DNA used (OD = 4.4 at 260 nm) partial protection against induction of photoreactivatable damage was attained. Following photoreactivation the survival curves had the same slope, irrespective of the presence or absence of DNA. Survival data for oxygenated E.coli AB2480 irradiated with 50 Gy of 6 MVp photons in the presence of DNA at varying concentrations (OD range 0.5 to 12) and then processed with or without exposure to photoreactivating light are also presented. Survival increased with DNA concentration in the absence, but not in the presence, of photoreactivation. It is concluded that theoretical considerations and experimental data are consistent with Cerenkov light being responsible for the production of a major part of the photoreactivatable damage induced in E. coli DNA by high energy X-, ..gamma..- or electron irradiation, but that the data obtained with low energy X-rays (300 kVp) and with high energy X-rays (6 MVp) plus DNA as a scavenger of Cerenkov light, are indicative of a component of the photoreactivatable damage being induced by a mechanism not involving Cerenkov light.

  18. Accuracy of Cerenkov measurements using a liquid scintillation spectrometer

    International Nuclear Information System (INIS)

    Takiue, Makoto; Natake, Takashi

    1996-01-01

    Cerenkov counting efficiency varies with colour quenching and sample turbidity. The activity in a plastic vial can be determined accurately with a colour quenching correction technique, regardless of the presence or absence or turbidity in a sample. On the other hand, the error of the measured activity in a glass vial becomes large with increasing sample turbidity due to the dissimilarity of the quench correction curves for non-turbid and turbid samples. (Author)

  19. Determination of phosphorous in cannabis by neutron activation analysis - measurement of 32P Cerenkov radiation by liquid scintillaton spectrometer

    International Nuclear Information System (INIS)

    Shinogi, M.; Mori, I.

    1977-05-01

    Thermal neutron activaton analysis with measurement of 32 P Cerenkov radiation by liquid scintillation spectrometer was used to determine phosphorus in cannabis. After irradiation of the sample, wet ashing was carried out with conc. nitric acid and 70% perchloric acid. The solution in l M perchloric acid transferred to an inorganic ion-exchange column containing acid aluminium oxide and phosphorus was quantitatively eluted with 1M hydrofluoric acid. The 32 P radioactivity of each fraction of the eluate was counted with Cerenkov radiation by a liquid scintillation spectrometer from 2 to 7 weeks after the irradiation. The activity curve decayed with 32 P half-life. The isotope channel ratio technique was applied for the quench correction. The optimal experimental conditions for chemical separation of phosphorus and for measuring the 32 P Cerenkov radiation were also examined. (Author)

  20. Possible influence of cosmic ray Cerenkov photons on infrared interferometric search for non-solar planets

    International Nuclear Information System (INIS)

    Lerche, I.

    1980-01-01

    It is shown that the pervasive cosmic-ray protons in the vicinity of the Earth would produce infrared photons by Cerenkov radiation in the material walls, and mirrors, of an orbiting infrared interferometer designed to search for non-solar planets. The flux of such photons is at least comparable to the zodiacal infrared background radiation. It is found that for the worst possible conditions a minimum time of about six weeks is indicated for planetary detection using a fourth-harmonic noise analysis. It is suggested that direct laboratory measurement of a simulated cosmic-ray-induced Cerenkov flux be undertaken to settle the question of the background contaminant produced by this effect. (Auth.)

  1. A large multi-cell threshold gas Cerenkov counter

    International Nuclear Information System (INIS)

    Declais, Y.; Aubert, J.J.; Bassompierre, G.; Payre, P.; Thenard, J.M.; Urban, L.

    1980-08-01

    A large multi-cell threshold gas Cerenkov counter consisting of 78 cells has been built for use in a high energy muon scattering experiment at CERN (European Muon Collaboration). It is used with neon, nitrogen or a mixture of those two gases, allowing the pion threshold to be varied between 6 and 20 GeV/c. The sensitive region of the counter has a length of 4.0 m and entrance and exit windows of 1.1 x 2.4 m 2 and 2.4 x 5.0 m 2 , respectively

  2. Cerenkov detector for heavy-ion velocity measurements

    International Nuclear Information System (INIS)

    Olson, D.L.; Baumgartner, M.; Dufour, J.P.; Girard, J.G.; Greiner, D.E.; Lindstrom, P.J.; Symons, T.J.M.; Crawford, H.J.

    1984-08-01

    We have developed a highly sensitive velocity measuring detector using total-internal-reflection Cerenkov counters of a type mentioned by Jelly in 1958. If the velocity of the particle is above the threshold for total-internal-reflection these counters have a charge resolution of sigma = 0.18e for a 3mm thick glass radiator. For the velocity measurement we use a fused silica radiator so that the velocity of the particles are near the threshold for total-internal reflection. For momentum-analyzed projectile fragments of 1.6 GeV/nucleon 40 Ar, we have measured a mass resolution of sigma = 0.1u for isotope identification

  3. Inverse Cerenkov laser acceleration experiment at ATF

    International Nuclear Information System (INIS)

    Wang, X.J.; Pogorelsky, I.; Fernow, R.; Kusche, K.P.; Liu, Y.; Kimura, W.D.; Kim, G.H.; Romea, R.D.; Steinhauer, L.C.

    1994-01-01

    Inverse Cerenkov laser acceleration was demonstrated using an axicon optical system at the Brookhaven Accelerator Test Facility (ATF). The ATF S-band linac and a high power 10.6 μm CO 2 laser were used for the experiment. Experimental arrangement and the laser and the electron beams synchronization are discussed. The electrons were accelerated more than 0.7 MeV for a 34 MW CO 2 laser power. More than 3.7 MeV acceleration was measured with 0.7 GW CO 2 laser power, which is more than 20 times of the previous ICA experiment. The experimental results are compared with computer program TRANSPORT simulations

  4. Why Cerenkov Radiation May Not Occur, Even When It Is Allowed by Lorentz-Violating Kinematics

    Directory of Open Access Journals (Sweden)

    Brett Altschul

    2017-10-01

    Full Text Available In a Lorentz-violating quantum field theory, the energy-momentum relations for the field quanta are typically modified. This affects the kinematics, and processes that are normally forbidden may become allowed. One reaction that clearly becomes kinematically possible when photons’ phase speeds are less than 1 is vacuum Cerenkov radiation. However, in spite of expectations, and in defiance of phase space estimates, a electromagnetic Chern–Simons theory with a timelike Lorentz violation coefficient does not feature any energy losses through Cerenkov emission. There is an unexpected cancelation, made possible by the existence of unstable long-wavelength modes of the field. The fact that the theory possesses a more limited form of gauge symmetry than conventional electrodynamics also plays a role.

  5. Pressure pulsation in Kaplan turbines: Prototype-CFD comparison

    International Nuclear Information System (INIS)

    Rivetti, A; Lucino, C; Liscia, S; Muguerza, D; Avellan, F

    2012-01-01

    Pressure pulsation phenomena in a large Kaplan turbine are investigated by means of numerical simulations (CFD) and prototype measurements in order to study the dynamic behavior of flow due to the blade passage and its interaction with other components of the turbine. Numerical simulations are performed with the commercial software Ansys CFX code, solving the incompressible Unsteady Reynolds-Averaged-Navier Stokes equations under a finite volume scheme. The computational domain involves the entire machine at prototype scale. Special care is taken in the discretization of the wicket gate overhang and runner blade gap. Prototype measurements are performed using pressure transducers at different locations among the wicket gate outlet and the draft tube inlet. Then, CFD results are compared with temporary signals of prototype measurements at identical locations to validate the numerical model. A detailed analysis was focused on the tip gap flow and the pressure field at the discharge ring. From a rotating reference frame perspective, it is found that the mean pressure fluctuates accordingly the wicket gate passage. Moreover, in prototype measurements the pressure frequency that reveals the presence of modulated cavitation at the discharge ring is distinguished, as also verified from the shape of erosion patches in concordance with the number of wicket gates.

  6. Pressure pulsation in Kaplan turbines: Prototype-CFD comparison

    Science.gov (United States)

    Rivetti, A.; Lucino1, C.; Liscia, S.; Muguerza, D.; Avellan, F.

    2012-11-01

    Pressure pulsation phenomena in a large Kaplan turbine are investigated by means of numerical simulations (CFD) and prototype measurements in order to study the dynamic behavior of flow due to the blade passage and its interaction with other components of the turbine. Numerical simulations are performed with the commercial software Ansys CFX code, solving the incompressible Unsteady Reynolds-Averaged-Navier Stokes equations under a finite volume scheme. The computational domain involves the entire machine at prototype scale. Special care is taken in the discretization of the wicket gate overhang and runner blade gap. Prototype measurements are performed using pressure transducers at different locations among the wicket gate outlet and the draft tube inlet. Then, CFD results are compared with temporary signals of prototype measurements at identical locations to validate the numerical model. A detailed analysis was focused on the tip gap flow and the pressure field at the discharge ring. From a rotating reference frame perspective, it is found that the mean pressure fluctuates accordingly the wicket gate passage. Moreover, in prototype measurements the pressure frequency that reveals the presence of modulated cavitation at the discharge ring is distinguished, as also verified from the shape of erosion patches in concordance with the number of wicket gates.

  7. Optimization of an aerogel cerenkov detector having a mirror light collection system

    International Nuclear Information System (INIS)

    Johansson, K.E.; Aakesson, T.; Norrby, J.

    1979-01-01

    Cerenkov detectors with silica aerogel of refractive indec 1.03 as the radiator have been tested in a particle beam at the CERN Proton Synchrotron. With a detector surface of 22 x 50 cm 2 and 9 cm thickness of aerogel, the number of photoelectrons was found to be 6.5 for β = 1 particles. (author)

  8. Review of recent progress in the development of Cerenkov Ring Imaging Detectors

    International Nuclear Information System (INIS)

    Leith, D.W.G.S.

    1985-11-01

    The principle behind the Cherenkov Ring Imaging Detectors (CRIDs) involves focussing the Cherenkov light, emitted by a relativistic charged particle in passing through a radiator medium, onto a high efficiency photocathode which can be in turn read out with good spatial resolution, to localize the point of origin of the photoelectrons. This information permits the reconstruction of the circle of Cherenkov light for each particle above threshold, and hence the determination of the Cherenkov angle to an accuracy of a few percent. The groups currently working on these detectors are discussed, the status of these projects is examined, and progress is reported on the R and D on two 4-pi devices being prepared for physics at the Z 0 . The activities are being done at Fermilab, CERN, and SLAC. 8 refs., 32 figs

  9. Enhanced Cerenkov second-harmonic generation in a planar nonlinear waveguide that reproduces a one-dimensional photonic bandgap structure

    International Nuclear Information System (INIS)

    Pezzetta, D.; Sibilia, C.; Bertolotti, M.; Ramponi, R.; Osellame, R.; Marangoni, M.; Haus, J. W.; Scalora, M.; Bloemer, M. J.; Bowden, C. M.

    2002-01-01

    Second-harmonic generation in the Cerenkov configuration is investigated under conditions for which the use of a linear grating fabricated on top of the waveguide reproduces a photonic bandgap structure. The fundamental mode of the guide at the fundamental frequency is tuned at the photonic band-edge resonance, thus producing great confinement and enhancement of the electromagnetic field inside the structure. The conversion efficiency achieved in both the forward and the backward directions is at least 1 order of magnitude greater than that of a conventional Cerenkov emission in a waveguide of the same length. An analysis of the tolerances of the grating period on the conversion efficiency is presented

  10. Inductive fault current limiter based on multiple superconducting rings of small diameter

    International Nuclear Information System (INIS)

    Osorio, M R; Cabo, L; Veira, J A; Vidal, F

    2004-01-01

    We present a fault current limiter prototype based on the use of a secondary comprised of an array of magnetic cores of small sections, each one of them with several superconducting rings. The main advantage of this configuration is that it is easier to make small diameter superconducting rings which, in addition, are more homogeneous and allow better refrigeration. We then present detailed measurements that show that, in addition to these advantages, this prototype offers the same limitation performances than when using a unique core and a superconducting ring with an equivalent area as the array of small section cores

  11. Cerenkov light generated in optical fibres and other light pipes irradiated by electron beams

    International Nuclear Information System (INIS)

    Beddar, A.S.; Mackie, T.R.; Attix, F.H.

    1992-01-01

    The use of a small plastic scintillator coupled to an optical fibre bundle light pipe for the dosimetry of radiotherapy x-ray or electron beams in a phantom has been studied. Under such conditions, some light is generated by the direct action of the radiation on the optical fibres themselves, and this 'background' signal must be correctly accounted for. Electron beams were incident on fused silica optical fibres and other light pipes made of polymethylmethacrylate (PMMA), polystyrene and water. The observed light signal generated in all cases was found to depend strongly on the angle between the electron direction and the light pipe axis, and to correlate well with the angular characteristics uniquely associated with Cerenkov radiation. The use of a parallel fibre bundle light pipe, identical to the one that carries light from the scintillator, offers a suitable means of generating a similar background Cerenkov light signal that can be subtracted to obtain output from the scintillation dosimeter alone. (author)

  12. The potential of a Cerenkov Array for Supersymmetry and Cosmology

    International Nuclear Information System (INIS)

    Vasileiadis, G.; Falvard, A.; Giraud, E.; Lavalle, J.; Sajjad, S.

    2005-01-01

    If R-parity is sufficiently well conserved, most of the supersymmetric models predict the existence of a stable, neutral particle, the neutralino, which would be a natural candidate for dark matter. Such particles can annihilate through various channels producing in particular, a faint flux of high energy photons in galactic and extragalactic high density regions. We have considered the potential of a Cerenkov array for exploring a significant fraction of the supersymmetric parameter space. The main constraints are the flux limit, which requires a very large effective area, and the energy threshold which needs reaching lower limit of the order of 15-20 GeV due to the lowest neutralino mass given by accelerators. Combining such constraints leads to an array of at least 16-19 Cerenkov reflectors with diameters of the order of 18m, located at high altitude (5000 m). This instrument would combine wide angle camera and large detection areas. It would also serve as a major tool in Observational Cosmology and Astrophysics above 15-20 GeV up to 1 TeV. Coming after GLAST, it would allow studying in details, at higher energy, the sources detected by this satellite. This instrument would not be able to explore the 10 GeV to sub-10 GeV domain unless higher QE detectors are discovered or larger diameters are considered. A very interesting site would be the Chajnantor-Toco area for this project which requires clear UBV photometric nights

  13. Imaging performance of a full-ring prototype PET-MRI system based on four-layer DOI-PET detectors integrated with a RF coil

    Energy Technology Data Exchange (ETDEWEB)

    Nishikido, Fumihiko; Tashima, Hideaki [National Institute of Radiological Sciences, Chiba (Japan); Suga, Mikio [Chiba University, Chiba (Japan); Inadama, Naoko; Eiji, Yoshida; Obata, Takayuki; Yamaya, Taiga [National Institute of Radiological Sciences, Chiba (Japan)

    2015-05-18

    We are developing a PET system integrated with a birdcage RF-coil for PET-MRI in order to realize both high sensitivity and high spatial resolution of the PET image by using the 4-layered depth-of-interaction (DOI) PET detector. We constructed a full-ring prototype system and evaluated performances, especially imaging performance, of the prototype system in simultaneous measurement. The prototype system consists of eight four-layer DOI-PET detectors and a prototype birdcage RF-coil developed for the proposed system. The PET detectors consist of six monolithic multi-pixel photon counter array (S11064-050P), a readout circuit, fourlayer DOI scintillator arrays and a shielding box made of 35 μm thick copper foil. The crystal array consists of 2.0 mm x 2.0 mm x 5.0 mm LYSO crystals arranged in 38 x 6 x 4 layer. The RF-coil has eight coil elements and the eight PET detectors are positioned at each element gap. The diameter of the RF-coil elements is 261 mm. We conducted performance tests of the prototype system with a 3.0 T MRI (MAGNETOM Verio). Only the PET detectors, the RF-coil and the cables were in an MRI room during measurements. A data acquisition system and power supplies for the MPPCs and preamplifiers were outside the MRI room and connected to all the detectors through a penetration panel. As a result, the spatial resolutions of a Na-22 point source in the PET image were lower than 1.6 mm in whole the FOV due to the DOI capability. In addition, the influence of the simultaneous measurements on the PET performance is negligible. On the other hand, the SNR of the phantom image in the magnitude images was degraded from 259.7 to 209.4 due to noise contamination from the power supplies.

  14. Imaging performance of a full-ring prototype PET-MRI system based on four-layer DOI-PET detectors integrated with a RF coil

    International Nuclear Information System (INIS)

    Nishikido, Fumihiko; Tashima, Hideaki; Suga, Mikio; Inadama, Naoko; Eiji, Yoshida; Obata, Takayuki; Yamaya, Taiga

    2015-01-01

    We are developing a PET system integrated with a birdcage RF-coil for PET-MRI in order to realize both high sensitivity and high spatial resolution of the PET image by using the 4-layered depth-of-interaction (DOI) PET detector. We constructed a full-ring prototype system and evaluated performances, especially imaging performance, of the prototype system in simultaneous measurement. The prototype system consists of eight four-layer DOI-PET detectors and a prototype birdcage RF-coil developed for the proposed system. The PET detectors consist of six monolithic multi-pixel photon counter array (S11064-050P), a readout circuit, fourlayer DOI scintillator arrays and a shielding box made of 35 μm thick copper foil. The crystal array consists of 2.0 mm x 2.0 mm x 5.0 mm LYSO crystals arranged in 38 x 6 x 4 layer. The RF-coil has eight coil elements and the eight PET detectors are positioned at each element gap. The diameter of the RF-coil elements is 261 mm. We conducted performance tests of the prototype system with a 3.0 T MRI (MAGNETOM Verio). Only the PET detectors, the RF-coil and the cables were in an MRI room during measurements. A data acquisition system and power supplies for the MPPCs and preamplifiers were outside the MRI room and connected to all the detectors through a penetration panel. As a result, the spatial resolutions of a Na-22 point source in the PET image were lower than 1.6 mm in whole the FOV due to the DOI capability. In addition, the influence of the simultaneous measurements on the PET performance is negligible. On the other hand, the SNR of the phantom image in the magnitude images was degraded from 259.7 to 209.4 due to noise contamination from the power supplies.

  15. Near-Infrared Quantum Dot and (89)Zr Dual-Labeled Nanoparticles for in Vivo Cerenkov Imaging

    NARCIS (Netherlands)

    Zhao, Yiming; Shaffer, Travis M.; Das, Sudeep; Pérez-Medina, Carlos; Mulder, Willem J. M.; Grimm, Jan

    2017-01-01

    Cerenkov luminescence (CL) is an emerging imaging modality that utilizes the light generated during the radioactive decay of many clinical used isotopes. Although it is increasingly used for background-free imaging and deep tissue photodynamic therapy, in vivo applications of CL suffer from limited

  16. Monte Carlo simulations support non-Cerenkov radioluminescence production in tissue

    Science.gov (United States)

    Ackerman, Nicole L.; Boschi, Federico; Spinelli, Antonello E.

    2017-08-01

    There is experimental evidence for the production of non-Cerenkov radioluminescence in a variety of materials, including tissue. We constructed a Geant4 Monte Carlo simulation of the radiation from P32 and Tc99m interacting in chicken breast and used experimental imaging data to model a scintillation-like emission. The same radioluminescence spectrum is visible from both isotopes and cannot otherwise be explained through fluorescence or filter miscalibration. We conclude that chicken breast has a near-infrared scintillation-like response with a light yield three orders of magnitude smaller than BGO.

  17. Charge and velocity resolution of Cerenkov counters in a beam of accelerated heavy nuclei

    International Nuclear Information System (INIS)

    Cantin, M.; Goret, P.; Jorrand, J.; Jouan, R.; Juliusson, E.; Koch, L.; Maubras, Y.; Mestreau, P.; Petrou, N.; Rio, Y.; Soutoul, A.; Cawood, P.; Linney, A.

    1975-01-01

    The response of various Cerenkov radiators to oxygen and nitrogen nuclei with energies ranging between 2.1GeV/n and 300MeV/n is presented. The velocity and charge resolutions are analyzed in relation to the possible use of these counters for chemical and isotopic analysis of the primary cosmic ray nuclei [fr

  18. Estimating the Cerenkov neutron sensitivity of Suprasil (SiO2) and Lucite (C5H8O2)

    International Nuclear Information System (INIS)

    Clark, D.

    1982-01-01

    Fast neutrons hitting a sample of suprasil will produce light. This light is Cerenkov light produced by high energy (> .2 MeV) electrons traversing the transparent medium. Neutrons produce these electrons in a two step process. First, the neutrons inelastically scatter with either the silicon (Si) or the oxygen (O) atoms producing inelastic gamma rays. Some of these gammas, in turn, will also react producing, primarily, Compton electrons with some pair production electrons possible. The majority of these Compton electrons will have enough energy to induce Cerenkov light production. For intermediate energy neutrons (2 to 20 MeV), this process is efficient enough to produce a relatively simple neutron detector with some desirable properties. Estimations of the Cherenkov/neutron sensitivities of suprasil and lucite are presented

  19. The Role of Cerenkov Radiation in the Pressure Balance of Cool Core Clusters of Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Lieu, Richard [Department of Physics, University of Alabama, Huntsville, AL 35899 (United States)

    2017-03-20

    Despite the substantial progress made recently in understanding the role of AGN feedback and associated non-thermal effects, the precise mechanism that prevents the core of some clusters of galaxies from collapsing catastrophically by radiative cooling remains unidentified. In this Letter, we demonstrate that the evolution of a cluster's cooling core, in terms of its density, temperature, and magnetic field strength, inevitably enables the plasma electrons there to quickly become Cerenkov loss dominated, with emission at the radio frequency of ≲350 Hz, and with a rate considerably exceeding free–free continuum and line emission. However, the same does not apply to the plasmas at the cluster's outskirts, which lacks such radiation. Owing to its low frequency, the radiation cannot escape, but because over the relevant scale size of a Cerenkov wavelength the energy of an electron in the gas cannot follow the Boltzmann distribution to the requisite precision to ensure reabsorption always occurs faster than stimulated emission, the emitting gas cools before it reheats. This leaves behind the radiation itself, trapped by the overlying reflective plasma, yet providing enough pressure to maintain quasi-hydrostatic equilibrium. The mass condensation then happens by Rayleigh–Taylor instability, at a rate determined by the outermost radius where Cerenkov radiation can occur. In this way, it is possible to estimate the rate at ≈2 M {sub ⊙} year{sup −1}, consistent with observational inference. Thus, the process appears to provide a natural solution to the longstanding problem of “cooling flow” in clusters; at least it offers another line of defense against cooling and collapse should gas heating by AGN feedback be inadequate in some clusters.

  20. COOL DUST IN THE OUTER RING OF NGC 1291

    International Nuclear Information System (INIS)

    Hinz, J. L.; Engelbracht, C. W.; Skibba, R.; Montiel, E.; Crocker, A.; Calzetti, D.; Donovan Meyer, J.; Sandstrom, K.; Walter, F.; Groves, B.; Meidt, S. E.; Johnson, B. D.; Hunt, L.; Aniano, G.; Draine, B.; Murphy, E. J.; Armus, L.; Dale, D. A.; Galametz, M.; Kennicutt, R. C.

    2012-01-01

    We examine Herschel Space Observatory images of one nearby prototypical outer ring galaxy, NGC 1291, and show that the ring becomes more prominent at wavelengths longer than 160 μm. The mass of cool dust in the ring dominates the total dust mass of the galaxy, accounting for at least 70% of it. The temperature of the emitting dust in the ring (T = 19.5 ± 0.3 K) is cooler than that of the inner galaxy (T = 25.7 ± 0.7 K). We discuss several explanations for the difference in dust temperature, including age and density differences in the stellar populations of the ring versus the bulge.

  1. Moving-ring field-reversed mirror reactor

    International Nuclear Information System (INIS)

    Smith, A.C. Jr.; Ashworth, C.P.; Abreu, K.E.

    1981-01-01

    We describe a first prototype fusion reactor design of the Moving-Ring Field-Reversed Mirror Reactor. The fusion fuel is confined in current-carrying rings of magnetically-field-reversed plasma. The plamsa rings, formed by a coaxial plasma gun, are magnetically compressed to ignition temperature while they are being injected into the reactor's burner section. DT ice pellets refuel the rings during the burn at a rate which maintains constant fusion power. A steady train of plasma rings moves at constant speed through the reactor under the influence of a slightly diverging magnetic field. The aluminum first wall and breeding zone structure minimize induced radioactivity; hands-on maintenance is possible on reactor components outside the breeding blanket. Helium removes the heat from the Li 2 O tritium breeding blanket and is used to generate steam. The reactor produces a constant, net power of 376 MW

  2. Fourth-generation storage rings

    International Nuclear Information System (INIS)

    Galayda, J. N.

    1999-01-01

    It seems clear that a linac-driven free-electron laser is the accepted prototype of a fourth-generation facility. This raises two questions: can a storage ring-based light source join the fourth generation? Has the storage ring evolved to its highest level of performance as a synchrotrons light source? The answer to the second question is clearly no. The author thinks the answer to the first question is unimportant. While the concept of generations has been useful in motivating thought and effort towards new light source concepts, the variety of light sources and their performance characteristics can no longer be usefully summed up by assignment of a ''generation'' number

  3. Design and Measurement of the NSLS II Quadrupole Prototypes

    Energy Technology Data Exchange (ETDEWEB)

    Rehak,M.; Jain, A. K.; Skaritka, J.; Spataro, C.

    2009-05-04

    The design and measurement of the NSLS-II ring quadrupoles prototypes are presented. These magnets are part of a larger prototype program described in [1]. Advances in software, hardware, and manufacturing have led to some new level of insight in the quest for the perfect magnet design. Three geometric features are used to minimize the first three allowed harmonics by way of optimization. Validations through measurement and confidence levels in calculations are established.

  4. Cerenkov emission of acoustic phonons electrically generated from three-dimensional Dirac semimetals

    Energy Technology Data Exchange (ETDEWEB)

    Kubakaddi, S. S., E-mail: sskubakaddi@gmail.com [Department of Physics, Karnatak University, Dharwad 580 003, Karnataka (India)

    2016-05-21

    Cerenkov acoustic phonon emission is theoretically investigated in a three-dimensional Dirac semimetal (3DDS) when it is driven by a dc electric field E. Numerical calculations are made for Cd{sub 3}As{sub 2} in which mobility and electron concentration are large. We find that Cerenkov emission of acoustic phonons takes place when the electron drift velocity v{sub d} is greater than the sound velocity v{sub s}. This occurs at small E (∼few V/cm) due to large mobility. Frequency (ω{sub q}) and angular (θ) distribution of phonon emission spectrum P(ω{sub q}, θ) are studied for different electron drift velocities v{sub d} (i.e., different E) and electron concentrations n{sub e}. The frequency dependence of P(ω{sub q}, θ) shows a maximum P{sub m}(ω{sub q}, θ) at about ω{sub m} ≈ 1 THz and is found to increase with the increasing v{sub d} and n{sub e}. The value of ω{sub m} shifts to higher region for larger n{sub e}. It is found that ω{sub m}/n{sub e}{sup 1/3} and P{sub m}(ω{sub q}, θ)/n{sub e}{sup 2/3} are nearly constants. The latter is in contrast with the P{sub m}(ω{sub q}, θ)n{sub e}{sup 1/2 }= constant in conventional bulk semiconductor. Each maximum is followed by a vanishing spectrum at nearly “2k{sub f} cutoff,” where k{sub f} is the Fermi wave vector. Angular dependence of P(ω{sub q}, θ) and the intensity P(θ) of the phonon emission shows a maximum at an emission angle 45° and is found to increase with increasing v{sub d}. P(θ) is found to increase linearly with n{sub e} giving the ratio P(θ)/(n{sub e}v{sub d}) nearly a constant. We suggest that it is possible to have the controlled Cerenkov emission and generation of acoustic phonons with the proper choice of E, θ, and n{sub e}. 3DDS with large n{sub e} and mobility can be a good source of acoustic phonon generation in ∼THz regime.

  5. Commissioning of the Cryogenic Plant for the Cryogenic Storage Ring (CSR) at Heidelberg

    CERN Document Server

    von Hahn, R; Grieser, M; Haberstroh, C; Kaiser, D; Lange, M; Laux, F; Menk, S; Orlov, D A; Repnow, R; Sieber, T; Quack, H; Varju, J; Wolf A

    2009-01-01

    At the Max-Planck-Institute for Nuclear Physics in Heidelberg a next generation electrostatic storage ring for low velocity atomic and molecular ion beams is under construction. In contrast to existing electrostatic storage rings, the Cryogenic Storage Ring CSR will be cooled down to temperatures below 2 K. Thus acting as a large cryopump it will provide long storage times and, in addition, open a new field of quantum state controlled molecular physics due to a low heat radiation background from space-like environment. A concept for cooling the storage ring has been developed and is presently tested by means of a linear trap as a prototype with a length of 1/10 of the planned ring. A commercial refrigerator with 21 W at 2 K has been successfully commissioned and was connected to the prototype. This paper presents the status of the cryogenic plant after the commissioning and one year of operation.

  6. Preparation of silica aerogel for Cerenkov counters

    International Nuclear Information System (INIS)

    Poelz, G.; Riethmueller, R.

    1981-09-01

    Aerogel of silica was produced with an index of refraction of n = 1.024 to equip the TASSO Cerenkov detector with 1700 litres of this radiator medium. In the production process, which is described in detail, different parameters were varied to determine their influence on the shape and the optical quality of the aerogel samples. With the present equipment samples with a size of 17 x 17 x 2.3 cm 3 were manufactured at a rate of 144 pieces per week. A production efficiency of about 90% was obtained. The index of refraction for all samples around n = 1.024 is distributed with sigmasub(n) = 1.3 x 10 -3 . They have an optical transmission length of Λ = 2.64 cm at a wavelength lambda = 438 nm with sigmasub(Λ) = 0.22 cm. For samples with n = 1.017, Λ is found to be about 30% higher. (orig.) [de

  7. Rapid determination of strontium-89 and strontium-90 in food and environmental samples by Cerenkov counting

    International Nuclear Information System (INIS)

    Melin, Judith; Suomela, Jorma

    1995-01-01

    The method has been developed for emergency situations. Minimum detectable concentrations of 5 Bq/liter, kilogram of strontium-89 and strontium-90 respectively is achievable in the presence of nuclides considered to be released under accidental conditions. Result on the strontium-89 and strontium-90 content in a sample can be obtained within 12 hours. One technician can easily handle 8-10 samples during a working day of eight hours. The determination of the strontium isotopes is accomplished by monitoring the Cerenkov radiation from strontium-89 and yttrium-90 in a liquid scintillation counter. The latter is the daughter product of strontium-90. Prior to the Cerenkov counting the sample is separated from interfering nuclides by oxalate precipitation, chromate precipitation and HDEHP-extraction. The method has to be further improved and evaluated with respect to different soil types such as forest mineral soil layers, agricultural soils and pastures. Furthermore, the decontamination procedure should be evaluated for a sample containing freshly irradiated uranium. (author)

  8. Automatic scanning of Cerenkov light photograms from a multistep avalanche chamber using a television digitizer

    International Nuclear Information System (INIS)

    Vascon, M.; Zanella, G.

    1980-01-01

    A television digitizer and its application to automatic scanning of Cerenkov imaging using the multistep avalanche chamber in front of optical spark chamber are described. The results are of interest in the adoption of the automatic scanning of photographic plates of these events or for the on-line application of the television digitizer itself. (orig.)

  9. Study of various photomultiplier tubes with muon beams and Cerenkov light produced in electron showers

    International Nuclear Information System (INIS)

    2010-01-01

    The PMTs of the CMS Hadron Forward calorimeter were found to generate a large size signal when their windows were traversed by energetic charged particles. This signal, which is due to Cerenkov light production at the PMT window, could interfere with the calorimeter signal and mislead the measurements. In order to find a viable solution to this problem, the response of four different types of PMTs to muons traversing their windows at different orientations is measured at the H2 beam-line at CERN. Certain kinds of PMTs with thinner windows show significantly lower response to direct muon incidence. For the four anode PMT, a simple and powerful algorithm to identify such events and recover the PMT signal using the signals of the quadrants without window hits is also presented. For the measurement of PMT responses to Cerenkov light, the Hadron Forward calorimeter signal was mimicked by two different setups in electron beams and the PMT performances were compared with each other. Superior performance of particular PMTs was observed.

  10. First observation of Cherenkov ring images using hybrid photon detectors

    International Nuclear Information System (INIS)

    Albrecht, E.; Wilkinson, G.; Bibby, J.H.; Giles, R.; Harnew, N.; Smale, N.; Brook, N.H.; Halley, A.W.; O'Shea, V.; French, M.; Gibson, V.; Wotton, S.A.; Schomaker, R.

    1998-01-01

    A ring-imaging Cherenkov detector, equipped with hybrid photon detectors, has been operated in a charged-particle beam. Focussed ring images from various particle types were detected using silica aerogel, air and C 4 F 10 gas radiators. The detector, a prototype for the CERN LHC-B experiment, is described and first observations are reported. (orig.)

  11. First observation of Cherenkov ring images using hybrid photon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, E.; Wilkinson, G. [European Organization for Nuclear Research, Geneva (Switzerland). Div. Particle Physics Experiments; Barber, G.; Duane, A.; John, M.; Miller, D.G.; Websdale, D. [Imperial College of Science Technology and Medicine, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Bibby, J.H.; Giles, R.; Harnew, N.; Smale, N. [University of Oxford, Department of Nuclear Physics, Keble Road, Oxford OX1 3RH (United Kingdom); Brook, N.H.; Halley, A.W.; O`Shea, V. [University of Glasgow, Department of Physics, Glasgow G12 8QQ (United Kingdom); French, M. [Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Gibson, V.; Wotton, S.A. [University of Cambridge, Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE (United Kingdom); Schomaker, R. [Delft Electronic Products BV, 9300 AB Roden (Netherlands)

    1998-07-11

    A ring-imaging Cherenkov detector, equipped with hybrid photon detectors, has been operated in a charged-particle beam. Focussed ring images from various particle types were detected using silica aerogel, air and C{sub 4}F{sub 10} gas radiators. The detector, a prototype for the CERN LHC-B experiment, is described and first observations are reported. (orig.)

  12. Air injection test on a Kaplan turbine: prototype - model comparison

    Science.gov (United States)

    Angulo, M.; Rivetti, A.; Díaz, L.; Liscia, S.

    2016-11-01

    Air injection is a very well-known resource to reduce pressure pulsation magnitude in turbines, especially on Francis type. In the case of large Kaplan designs, even when not so usual, it could be a solution to mitigate vibrations arising when tip vortex cavitation phenomenon becomes erosive and induces structural vibrations. In order to study this alternative, aeration tests were performed on a Kaplan turbine at model and prototype scales. The research was focused on efficiency of different air flow rates injected in reducing vibrations, especially at the draft tube and the discharge ring and also in the efficiency drop magnitude. It was found that results on both scales presents the same trend in particular for vibration levels at the discharge ring. The efficiency drop was overestimated on model tests while on prototype were less than 0.2 % for all power output. On prototype, air has a beneficial effect in reducing pressure fluctuations up to 0.2 ‰ of air flow rate. On model high speed image computing helped to quantify the volume of tip vortex cavitation that is strongly correlated with the vibration level. The hydrophone measurements did not capture the cavitation intensity when air is injected, however on prototype, it was detected by a sonometer installed at the draft tube access gallery.

  13. Prototype and proposed ISABELLE dipoles

    International Nuclear Information System (INIS)

    McInturff, A.D.; Sampson, W.B.; Robins, K.E.; Dahl, P.F.; Damm, R.

    1977-01-01

    Data are presented on the latest dipole prototypes to update the operational parameters possible for ISABELLE. This data base will constantly expand until the start of construction of the storage rings. The data will include field quality, stray field magnitudes, quench temperature and propagation times, protection capabilities singly and in multiple units, maximum central fields obtained and training behavior. Performance of the dipoles versus temperature and mode of refrigeration will be discussed. The single layer cosine theta turns distribution coils' parameters are better than those required for the operation of the 200 x 200 GeV version of ISABELLE. The double layer prototype has exceeded the magnetic field performance and two dimensional quality of field needed for the 400 x 400 GeV version of ISABELLE

  14. TH-C-17A-02: New Radioluminescence Strategies Based On CRET (Cerenkov Radiation Energy Transfer) for Imaging and Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Volotskova, O; Sun, C; Pratx, G; Xing, L [Stanford University, Stanford, CA (United States)

    2014-06-15

    Purpose: Cerenkov photons are produced when charged particles, emitted from radionuclides, travel through a media with a speed greater than that of the light in the media. Cerenkov radiation is mostly in the UV/Blue region and, thus, readily absorbed by biological tissue. Cerenkov Radiation Energy Transfer (CRET) is a wavelength-shifting phenomenon from blue Cerenkov light to more penetrating red wavelengths. We demonstrate the feasibility of in-depth imaging of CRET light originating from radionuclides realized by down conversion of gold nanoclusters (AuNCs, a novel particle composed of few atoms of gold coated with serum proteins) in vivo. Methods: Bovine Serum Albumin, Human Serum Albumin and Transferrin conjugated gold nanoclusters were synthesized, characterized and examined for CRET. Three different clinically used radiotracers: 18F-FDG, 90Y and 99mTc were used. Optical spectrum (440–750 nm) was recorded by sensitive bioluminescence imaging system at physiological temperature. Dose dependence (activity range from 0.5 up to 800uCi) and concentration dependence (0.01 to 1uM) studies were carried out. The compound was also imaged in a xenograft mouse model. Results: Only β+ and β--emitting radionuclides (18F-FDG, 90Y) are capable of CRET; no signal was found in 99mTc (γ-emitter). The emission peak of CRET by AuNCs was found to be ∼700 nm and was ∼3 fold times of background. In vitro studies showed a linear dependency between luminescence intensity and dose and concentration. CRET by gold nanoclusters was observed in xenografted mice injected with 100uCi of 18F-FDG. Conclusion: The unique optical, transport and chemical properties of AuNCs (gold nanoclusters) make them ideal candidates for in-vivo imaging applications. Development of new molecular imaging probes will allow us to achieve substantially improved spatiotemporal resolution, sensitivity and specificity for tumor imaging and detection.

  15. Conceptual design of a moving-ring reactor

    International Nuclear Information System (INIS)

    Smith, A.C.; Carlson, G.A.; Ashworth, C.P.

    1986-01-01

    A design of a prototype moving-ring reactor was completed, and a development plan for a pilot reactor is outlined. The fusion fuel is confined in current-carrying rings of magnetically field-reversed plasma (''compact toroids''). The plasma rings, formed by a coaxial plasma gun, undergo adiabatic magnetic compression to ignition temperature while they are being injected into the reactor's burner section. The cylindrical burner chamber is divided into three ''burn stations.'' Separator coils and a slight axial guide field gradient are used to shuttle the ignited toroids rapidly from one burn station to the next, pausing for one-third of the total burn time at each station. Deuterium-tritium- 3 He ice pellets refuel the rings at a rate that maintains constant radiated power. The fusion power per ring is approx. =105.5 MW. The burn time to reach a fusion energy gain of Q = 30 is 5.9 s

  16. A method for unique identification of relativistic /greater than 0.5/ magnetic monopoles with a fast film Cerenkov detector

    Science.gov (United States)

    Pinsky, L. S.; Hagstrom, R.

    1975-01-01

    A magnetic monopole traversing a dielectric medium at a velocity greater than the phase velocity of light in that medium, will give rise to Cerenkov radiation with the electric field tangent to the cone generated by the photon wave propagation vector, and the magnetic field normal to that surface. This is the opposite polarization to that encountered with an electric charge. It is proposed that either by inserting a linearly polarizing layer between the radiator and the photographic emulsion, or by selecting a linearly polarizing material as the radiator, one could directly observe the field polarization by examining the photographic image and thus uniquely identify a magnetic monopole. The ability of the detector is further enhanced by the index of refraction dependence of the Cerenkov output from a magnetic monopole.

  17. Determination of phosphorus-32 in wet-digested plant leaves by Cerenkov counting

    International Nuclear Information System (INIS)

    Wahid, P.A.; Kamalam, N.V.; Sankar, S.J.

    1985-01-01

    A method of determination of 32 P activity in leaf samples by Cerenkov counting technique is described. The method involves wet digestion of oven-dried leaves with 1:1 nitric-perchloric acid mixture followed by transferring the digest into a scintillation counting vial with distilled water upto a final volume of 20 mL, and determining the activity in a liquid scintillation system. Reproducible count rates can be obtained if the vials are counted after 4h allowing the silica in the digest to settle. (author)

  18. Calculation of the decay rate of tachyonic neutrinos against charged-lepton-pair and neutrino-pair Cerenkov radiation

    Science.gov (United States)

    Jentschura, Ulrich D.; Nándori, István; Ehrlich, Robert

    2017-10-01

    We consider in detail the calculation of the decay rate of high-energy superluminal neutrinos against (charged) lepton pair Cerenkov radiation, and neutrino pair Cerenkov radiation, i.e., against the decay channels ν \\to ν {e}+ {e}- and ν \\to ν \\overline{ν } ν . Under the hypothesis of a tachyonic nature of neutrinos, these decay channels put constraints on the lifetime of high-energy neutrinos for terrestrial experiments as well as on cosmic scales. For the oncoming neutrino, we use the Lorentz-covariant tachyonic relation {E}ν =\\sqrt{{p}2-{m}ν 2}, where m ν is the tachyonic mass parameter. We derive both threshold conditions as well as on decay and energy loss rates, using the plane-wave fundamental bispinor solutions of the tachyonic Dirac equation. Various intricacies of rest frame versus lab frame calculations are highlighted. The results are compared to the observations of high-energy IceCube neutrinos of cosmological origin.

  19. Performance of 1m long/100 mm bore superconducting dipole prototypes for HERA

    International Nuclear Information System (INIS)

    Horlitz, G; Wolff, S.

    1983-01-01

    Three 1 m long superconducting dipole prototypes with 100 mm inner coil diameter for the proposed HERA electron-proton storage ring have been built and tested. Main design principles are a two layer coil clamped with stainless steel collars inside a cryostat with warm beam tube and surrounded by a warm iron yoke. All prototypes have been tested without yoke and one of them with yoke. The design induction of 4.73 Tesla at 4.6 K has been easily surpassed up to short sample fields with negligible training. The quench behaviour has been investigated between temperatures of 3.8 K and 5.0 K. The field quality has been found well within the specified limits given by the requirements of the storage ring optics. The reproducibility found in this sample of magnets gives great confidence for the production of dipole prototypes of full length

  20. Hybrid model based unified scheme for endoscopic Cerenkov and radio-luminescence tomography: Simulation demonstration

    Science.gov (United States)

    Wang, Lin; Cao, Xin; Ren, Qingyun; Chen, Xueli; He, Xiaowei

    2018-05-01

    Cerenkov luminescence imaging (CLI) is an imaging method that uses an optical imaging scheme to probe a radioactive tracer. Application of CLI with clinically approved radioactive tracers has opened an opportunity for translating optical imaging from preclinical to clinical applications. Such translation was further improved by developing an endoscopic CLI system. However, two-dimensional endoscopic imaging cannot identify accurate depth and obtain quantitative information. Here, we present an imaging scheme to retrieve the depth and quantitative information from endoscopic Cerenkov luminescence tomography, which can also be applied for endoscopic radio-luminescence tomography. In the scheme, we first constructed a physical model for image collection, and then a mathematical model for characterizing the luminescent light propagation from tracer to the endoscopic detector. The mathematical model is a hybrid light transport model combined with the 3rd order simplified spherical harmonics approximation, diffusion, and radiosity equations to warrant accuracy and speed. The mathematical model integrates finite element discretization, regularization, and primal-dual interior-point optimization to retrieve the depth and the quantitative information of the tracer. A heterogeneous-geometry-based numerical simulation was used to explore the feasibility of the unified scheme, which demonstrated that it can provide a satisfactory balance between imaging accuracy and computational burden.

  1. Photomultiplier tubes for Low Level Cerenkov Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Strindehag, O

    1965-03-15

    Tube backgrounds of several 2-inch photomultiplier types having S11, 'S' , S13 and S20 cathodes are compared by measuring signal and background pulse height distributions at pulse heights corresponding to a few photo-electrons. The reference signal is generated by means of a {beta}-source and a plexiglass radiator. It is found that comparatively good results are obtained with selected tubes of the EMI types 6097B and 9514B having equivalent dark current dc values down to 10{sup -12} input lumens. Special interest is devoted to the correlation between the measured tube backgrounds and the dark current dc values of the tubes, as a good correlation between these parameters simplifies the selection of photomultiplier tubes. The equivalent dark currents of the tested tubes extend over the range 10{sup -12} to 10{sup -9} input lumens. Although the investigation deals with photomultiplier tubes intended for use in low level Cerenkov detectors it is believed that the results could be valuable in other fields where photomultiplier tubes are utilized for the detection of weak light pulses.

  2. Photomultiplier tubes for Low Level Cerenkov Detectors

    International Nuclear Information System (INIS)

    Strindehag, O.

    1965-03-01

    Tube backgrounds of several 2-inch photomultiplier types having S11, 'S' , S13 and S20 cathodes are compared by measuring signal and background pulse height distributions at pulse heights corresponding to a few photo-electrons. The reference signal is generated by means of a β-source and a plexiglass radiator. It is found that comparatively good results are obtained with selected tubes of the EMI types 6097B and 9514B having equivalent dark current dc values down to 10 -12 input lumens. Special interest is devoted to the correlation between the measured tube backgrounds and the dark current dc values of the tubes, as a good correlation between these parameters simplifies the selection of photomultiplier tubes. The equivalent dark currents of the tested tubes extend over the range 10 -12 to 10 -9 input lumens. Although the investigation deals with photomultiplier tubes intended for use in low level Cerenkov detectors it is believed that the results could be valuable in other fields where photomultiplier tubes are utilized for the detection of weak light pulses

  3. CRYOGENIC AND VACUUM TECHNOLOGICAL ASPECTS OF THE LOW-ENERGY ELECTROSTATIC CRYOGENIC STORAGE RING

    International Nuclear Information System (INIS)

    Orlov, D. A.; Lange, M.; Froese, M.; Hahn, R. von; Grieser, M.; Mallinger, V.; Sieber, T.; Weber, T.; Wolf, A.; Rappaport, M.

    2008-01-01

    The cryogenic and vacuum concepts for the electrostatic Cryogenic ion Storage Ring (CSR), under construction at the Max-Planck-Institut fuer Kernphysik in Heidelberg, is presented. The ring will operate in a broad temperature range from 2 to 300 K and is required to be bakeable up to 600 K. Extremely high vacuum and low temperatures are necessary to achieve long lifetimes of the molecular ions stored in the ring so that the ions will have enough time to cool by radiation to their vibrational and rotational ground states. To test cryogenic and vacuum technological aspects of the CSR, a prototype is being built and will be connected to the commercial cryogenic refrigerator recently installed, including a specialized 2-K connection system. The first results and the status of current work with the prototype are also presented

  4. A novel method of flat YBCO rings development for shield-type superconducting fault current limiters fabrication

    International Nuclear Information System (INIS)

    Hekmati, Arsalan; Hosseini, Mehdi; Vakilian, Mehdi; Fardmanesh, Mehdi

    2012-01-01

    A method has been proposed for flat YBCO ring Fabrication. A prototype SFCL with proposed design has been fabricated using the rings. J c characteristics of the rings are measured using an innovative method. The application of flat superconductor rings has been investigated in the structure of inductive shield-type high temperature superconducting fault current limiters, HT c -SFCL. A laboratory scale inductive shield-type HT c -SFCL has been designed and fabricated using flat superconductor rings. The fabrication process has been fully presented. YBCO powder has been used for the fabrication of superconductor rings. This fabrication process, being quite innovative, is introduced completely. The method of the trapped field measurement has been used for the critical current density measurement of the fabricated superconductor rings. The device with nominal current of 2 A was tested in a 30 V circuit. The SFCL successfully limited the fault currents of up to 10 times the nominal current to an approximately fixed value of 3 A. The voltage-current characteristic of the fabricated prototype has also been obtained and has shown compatibility with the fault current limitation results.

  5. Modular focusing ring imaging Cherenkov detector for electron-ion collider experiments

    Science.gov (United States)

    Wong, C. P.; Alfred, M.; Allison, L.; Awadi, M.; Azmoun, B.; Barbosa, F.; Barion, L.; Bennett, J.; Brooks, W.; Butler, C.; Cao, T.; Chiu, M.; Cisbani, E.; Contalbrigo, M.; Datta, A.; Del Dotto, A.; Demarteau, M.; Durham, J. M.; Dzhygadlo, R.; Elder, T.; Fields, D.; Furletova, Y.; Gleason, C.; Grosse-Perdekamp, M.; Harris, J.; Haseler, T. O. S.; He, X.; van Hecke, H.; Horn, T.; Hruschka, A.; Huang, J.; Hyde, C.; Ilieva, Y.; Kalicy, G.; Kimball, M.; Kistenev, E.; Kulinich, Y.; Liu, M.; Majka, R.; McKisson, J.; Mendez, R.; Nadel-Turonski, P.; Park, K.; Peters, K.; Rao, T.; Pisani, R.; Qiang, Y.; Rescia, S.; Rossi, P.; Sarajlic, O.; Sarsour, M.; Schwarz, C.; Schwiening, J.; da Silva, C. L.; Smirnov, N.; Stien, H. D.; Stevens, J.; Sukhanov, A.; Syed, S.; Tate, A. C.; Toh, J.; Towell, C. L.; Towell, R. S.; Tsang, T.; Turisini, M.; Wagner, R.; Wang, J.; Woody, C.; Xi, W.; Xie, J.; Zhao, Z. W.; Zihlmann, B.; Zorn, C.

    2017-11-01

    A powerful new electron-ioncollider (EIC) has been recommended in the 2015 Long Range Plan for Nuclear Science for probing the partonic structure inside nucleons and nuclei with unprecedented precision and versatility [1]. EIC detectors are currently under development [2], all of which require hadron identification over a broad kinematic range. A prototype ring imaging Cherenkov detector has been developed for hadron identification in the momentum range from 3 GeV/c to 10 GeV/c. The key feature of this new detector is a compact and modular design, achieved by using aerogel as radiator and a Fresnel lens for ring focusing. In this paper, the results from a beam test of a prototype device at Fermilab are reported.

  6. MPACT Fast Neutron Multiplicity System Prototype Development

    Energy Technology Data Exchange (ETDEWEB)

    D.L. Chichester; S.A. Pozzi; J.L. Dolan; M.T. Kinlaw; S.J. Thompson; A.C. Kaplan; M. Flaska; A. Enqvist; J.T. Johnson; S.M. Watson

    2013-09-01

    This document serves as both an FY2103 End-of-Year and End-of-Project report on efforts that resulted in the design of a prototype fast neutron multiplicity counter leveraged upon the findings of previous project efforts. The prototype design includes 32 liquid scintillator detectors with cubic volumes 7.62 cm in dimension configured into 4 stacked rings of 8 detectors. Detector signal collection for the system is handled with a pair of Struck Innovative Systeme 16-channel digitizers controlled by in-house developed software with built-in multiplicity analysis algorithms. Initial testing and familiarization of the currently obtained prototype components is underway, however full prototype construction is required for further optimization. Monte Carlo models of the prototype system were performed to estimate die-away and efficiency values. Analysis of these models resulted in the development of a software package capable of determining the effects of nearest-neighbor rejection methods for elimination of detector cross talk. A parameter study was performed using previously developed analytical methods for the estimation of assay mass variance for use as a figure-of-merit for system performance. A software package was developed to automate these calculations and ensure accuracy. The results of the parameter study show that the prototype fast neutron multiplicity counter design is very nearly optimized under the restraints of the parameter space.

  7. Determination of 90Sr in radioactive liquid waste-a comparative study using 'SrCO3 precipitation, extraction chromatography and Cerenkov radiation counting' techniques

    International Nuclear Information System (INIS)

    Mani, A.G.S.; Renganathan, K.; Rao, S.V.S.; Sinha, P.K.

    2007-01-01

    In the wastes generated at nuclear power plants, 90 Sr and 90 Y are responsible for approximately 7% and 38% of the total fission product activity after 1 year and 10 years respectively. Monitoring of the liquid waste produced in nuclear facilities for 90 Sr before and after releasing to the aquatic environment is essential, as it can cause a long term biological hazard due to its chemical similarity with Ca, high fission yield (5.9%) and long radioactive and biological half lives of 28 and 49.3 years respectively. As conventional carbonate precipitation method for 90 Sr- 90 Y estimation is laborious and time consuming, the other methods like extraction chromatography technique using strontium selective crown ether and Cerenkov radiation counting by liquid scintillation analyser (LSA) were also investigated. This paper describe procedures involved in the estimation of strontium in low-level radioactive liquid effluent by using above methods and deals with the comparison of results. Cerenkov radiation counting by LSA has an edge over the other methods in the determination of 90 Sr as it is a simple and rapid technique. Experiences gained in the estimation of 90 Sr in low-level radioactive liquid effluent using Cerenkov radiation counting technique is discussed in detail in this paper. (author)

  8. Visualization of Cerenkov radiation and the fields of a moving charge

    International Nuclear Information System (INIS)

    Pfeifer, Robert N C; Nieminen, Timo A

    2006-01-01

    For some physics students, the concept of a particle travelling faster than the speed of light holds endless fascination, and Cerenkov radiation is a visible consequence of a charged particle travelling through a medium at locally superluminal velocities. The Heaviside-Feynman equations for calculating the magnetic and electric fields of a moving charge have been known for many decades, but it is only recently that the computing power to plot the fields of such a particle has become readily available for student use. This paper investigates and illustrates the calculation of Maxwell's D field in homogeneous isotropic media for arbitrary, including superluminal, constant velocity, and uses the results as a basis for discussing energy transfer in the electromagnetic field

  9. Computational Modelling of Piston Ring Dynamics in 3D

    Directory of Open Access Journals (Sweden)

    Dlugoš Jozef

    2014-12-01

    Full Text Available Advanced computational models of a piston assembly based on the level of virtual prototypes require a detailed description of piston ring behaviour. Considering these requirements, the piston rings operate in regimes that cannot, in general, be simplified into an axisymmetric model. The piston and the cylinder liner do not have a perfect round shape, mainly due to machining tolerances and external thermo-mechanical loads. If the ring cannot follow the liner deformations, a local loss of contact occurs resulting in blow-by and increased consumption of lubricant oil in the engine. Current computational models are unable to implement such effects. The paper focuses on the development of a flexible 3D piston ring model based on the Timoshenko beam theory using the multibody system (MBS. The MBS model is compared to the finite element method (FEM solution.

  10. Ring to measure magnetic permeability at cryogenic temperatures

    CERN Multimedia

    1977-01-01

    While for magn. permeability measurements at room temperature a split-coil permeameter is used (see photo 7708553X), for measurements at cryogenic temperatures the excitation and the flux-measuring coils are wound directly on the ring sample by means of a toroidal winding machine. The ring in the picture was made to select the mild steel for the ISR Prototype Superconducting Quadrupole(see photo 7702690X). The excitation coil was wound with 1 mm diam. copper wire and had about 2730 turns. For measurements at 4.2 K a max. current of 90 A was used. See also photos 7708553X,7708100,7708103.

  11. Development of dapivirine vaginal ring for HIV prevention.

    Science.gov (United States)

    Devlin, Bríd; Nuttall, Jeremy; Wilder, Susan; Woodsong, Cynthia; Rosenberg, Zeda

    2013-12-01

    In the continuing effort to develop effective HIV prevention methods for women, a vaginal ring containing the non-nucleoside reverse transcriptase inhibitor dapivirine is currently being tested in two safety and efficacy trials. This paper reviews dapivirine ring's pipeline development process, including efforts to determine safe and effective dosing levels as well as identify delivery platforms with the greatest likelihood of success for correct and consistent use. Dapivirine gel and other formulations were developed and tested in preclinical and clinical studies. Multiple vaginal ring prototypes were also tested, resulting in the current ring design as well as additional designs under consideration for future testing. Efficacy results from clinical trials are expected in 2015. Through ongoing consultations with national regulatory authorities, licensure requirements for dapivirine vaginal ring approval have been defined. This article is based on a presentation at the "Product Development Workshop 2013: HIV and Multipurpose Prevention Technologies," held in Arlington, Virginia on February 21-22, 2013. It forms part of a special supplement to Antiviral Research. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Injection seeded, diode pumped regenerative ring Nd:YAG amplifier for spaceborne laser ranging technology development

    Science.gov (United States)

    Coyle, D. Barry; Kay, Richard B.; Degnan, John J.; Krebs, Danny J.; Seery, Bernard D.

    1992-01-01

    A small, all solid state, regenerative ring amplifier designed as a prototype for space application is discussed. Novel features include dual side pumping of the Nd:YAG crystal and a triangular ring cavity design which minimizes the number of optical components and losses. The amplifier is relatively small (3 ns round trip time) even though standard optical elements are employed. The ring regeneratively amplifies a 100 ps single pulse by approximately 10(exp 5) at a repetition rate of 10 to 100 Hz. The amplifier is designed to be injection seeded with a pulsed, 100 ps laser diode at 1.06 microns, but another Nd:YAG laser system supplying higher pulse energies was employed for laboratory experiment. This system is a prototype laser oscillator for the Geoscience Laser Ranging System (GLRS) platform. Results on measurements of beam quality, astigmatism, and gain are given.

  13. A ring imaging Cherenkov counter for the AMS experiment: simulation, prototype and perspective; Un imageur d'anneaux tcherenkov pour l'experience AMS: simulation, prototypie et perspectives physiques

    Energy Technology Data Exchange (ETDEWEB)

    Thuillier, T

    2000-05-01

    The AMS spectrometer is scheduled to be installed on the International Space Station ISS in 2003. The detector will be equipped with a Ring Imaging Cherenkov Counter (RICH). The report starts with a presentation of the physics goals of AMS and continues with a description of the spectrometer. The RICH detector response and event reconstruction is then described and detailed. The presentation proceeds with a simulation study of cosmic ray nuclei expected with the AMS RICH counter in space. Next, the thesis reports on the research and development of a RICH prototype built and tested in the period 1997-1999 in the Grenoble Institute of Nuclear Science (ISN). The response of the prototype and its calibration are described. Tests have been performed with cosmic rays at ground and ion beam at GSI-Darmstadt. The data analysis of the test campaigns is then presented and compared with simulation results. Finally, a dedicated test of Albedo particle Rejection Power of the RICH detector is reported. (author)

  14. Event reconstruction for the RICH prototype beamtest data 2012 and 2014

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Semen [II. Physikalisches Institut, JLU Giessen (Germany); Collaboration: CBM-Collaboration

    2016-07-01

    The Compressed Baryonic Matter (CBM) experiment at the future FAIR facility will investigate the QCD phase diagram at high net baryon densities and moderate temperatures in A+A collisions from 2-11 AGeV (SIS100). Electron identification in CBM will be performed by a Ring Imaging Cherenkov (RICH) detector and Transition Radiation Detectors (TRD). A real size prototype of the RICH detector was tested together with other CBM prototypes (TRD, TOF) at the CERN PS/T9 beam line in 2012 and 2014. In 2014 for the first time the data format used the FLESnet protocol from CBM delivering free streaming data. The analysis was fully performed within the CBMROOT framework. In this contribution the event reconstruction methods which were used for obtained data are discussed. Rings were reconstructed using an algorithm based on the Hough Transform method and their parameters were derived with high accuracy by circle and ellipse fitting procedures. Results of the application of the presented algorithms are also presented.

  15. Longitudinal development of air-shower electrons studied from the arrival time distributions of atmospheric Cerenkov light measured at 5200 m above sea level

    International Nuclear Information System (INIS)

    Inoue, N.; Kaneko, T.; Yoshii, H.

    1985-01-01

    The longitudinal development of electrons in extensive air showers before the maximum has been studied by measuring the arrival time distributions of atmospheric Cerenkov light from air showers, with primary energies in the range 6 x 10 15 to 2 x 10 17 eV, in the Chacaltaya air-shower array. These arrival time distributions are consistent with those calculated using a model of particle interactions which contain Feynman scaling in the fragmentation region, an Esup(1/2) multiplicity law in the pionisation region and a rising cross section for primary protons. Such a model also reproduces the arrival time distributions of Cerenkov light measured in the Akeno air-shower array as described in the preceding paper, which implies a very fast development before the maximum and a slow development after the maximum. (author)

  16. A conduction-cooled, 680-mm-long warm bore, 3-T Nb3Sn solenoid for a Cerenkov free electron laser

    NARCIS (Netherlands)

    Wessel, Wilhelm A.J.; den Ouden, A.; Krooshoop, Hendrikus J.G.; ten Kate, Herman H.J.; Wieland, J.; van der Slot, Petrus J.M.

    1999-01-01

    A compact, cryocooler cooled Nb3Sn superconducting magnet system for a Cerenkov free electron laser has been designed, fabricated and tested. The magnet is positioned directly behind the electron gun of the laser system. The solenoidal field compresses and guides a tube-shaped 100 A, 500 kV electron

  17. Large high altitude air shower observatory (LHAASO) project

    International Nuclear Information System (INIS)

    He Huihai

    2010-01-01

    The Large High Altitude Air Shower Observatory (LHAASO) project focuses mainly on the study of 40 GeV-1 PeV gamma ray astronomy and 10 TeV-1 EeV cosmic ray physics. It consists of a 1 km 2 extensive air shower array with 40 000 m 2 muon detectors, 90,000m 2 water Cerenkov detector array, 5 000 m 2 shower core detector array and an air Cerenkov/fluorescence telescope array. Prototype detectors are designed with some of them already in operation. A prototype array of 1% size of LHAASO will be built at the Yangbajing Cosmic Ray Observatory and used to coincidently measure cosmic rays with the ARGO-YBJ experiment. (authors)

  18. Comparison of analysis techniques by liquid scintillation and Cerenkov Effect for 40K quantification in aqueous samples

    International Nuclear Information System (INIS)

    Miranda C, L.; Davila R, J. I.; Lopez del R, H.; Mireles G, F.

    2015-09-01

    In this work the counting by liquid scintillation and Cerenkov Effect to quantify 40 K in aqueous samples was used. The performance of both techniques was studied by comparing the response of three commercial liquid scintillation OptiPhase HiSafe 3, Ultima Gold Ab and OptiPhase TriSafe, the vial type and presentation conditions of the sample for counting. In liquid scintillation, the ability to form homogeneous mixtures depended on the ionic strength of the aqueous solutions. The scintillator OptiPhase HiSafe 3 showed a greater charge capacity for solutions with high ionic strength (<3.4), while the scintillator OptiSafe TriSafe no form homogeneous mixtures for solutions of ionic strength higher than 0.3. Counting efficiencies for different proportions of sample and scintillator near 100% for the scintillators OptiSafe HiSafe 3 and Ultima Gold Ab were obtained. In the counting by Cerenkov Effect, the efficiency and sensitivity depended of the vial type; polyethylene vials were more suitable for counting that the glass vials. The sample volume had not significant effect on counting efficiency, obtaining an average value of 44.8% for polyethylene vials and 37.3% for glass vials. Therefore, the liquid scintillation was more efficient and sensitive for the measurement of 40 K in aqueous solutions. (Author)

  19. Multimodality imaging of 131I uptake in nude mice thyroid based on Cerenkov radiation

    International Nuclear Information System (INIS)

    Hu Zhenhua; Liang Jimin; Qu Xiaochao; Yang Weidong; Ma Xiaowei; Wang Jing; Tian Jie

    2012-01-01

    Objective: To perform the multimodality 131 I thyroid imaging using Cerenkov luminescence tomography (CLT) and gamma imaging, and to compare the results of CLT and gamma imaging. Methods The nude mice (n=4, mass: (21 ±3) g) were injected with 1.67 ×10 7 Bq 131 I. CLT and gamma imaging were acquired at 0.5, 3, 12 and 24 h after the injection. Three-dimensional biodistribution of 131 I uptake in thyroid was reconstructed using Cerenkov source reconstruction method based on the diffusion equation (DE), and the reconstructed power of 131 I in different acquisition time points was obtained. Additionally, the ROIs were drawn over the gamma images of the mouse neck, and the counts were read. The correlation between the reconstructed power of CLT and gamma ray counts of gamma imaging was analyzed. Results: The power of 131 I uptake in thyroid at 0.5, 3, 12 and 24 h were 7.80 ×10 -13 , 1.62×10 -12 , 2.20×10 -12 and 2.68 × 10 -12 W, respectively. CLT results showed that reconstructed power increased with the increasing of acquisition time. Gamma imaging results indicated that 131 I uptake decreased in abdomen and increased in thyroid with the collection time. The results of CLT were consistent with that of gamma imaging (r 2 =0.7620, P<0.05). Conclusion: CLT has the potential to identify and monitor functioning thyroid tissue at before and (or) after 131 I treatment. (authors)

  20. Performance characteristics of CdTe drift ring detector

    Science.gov (United States)

    Alruhaili, A.; Sellin, P. J.; Lohstroh, A.; Veeramani, P.; Kazemi, S.; Veale, M. C.; Sawhney, K. J. S.; Kachkanov, V.

    2014-03-01

    CdTe and CdZnTe material is an excellent candidate for the fabrication of high energy X-ray spectroscopic detectors due to their good quantum efficiency and room temperature operation. The main material limitation is associated with the poor charge transport properties of holes. The motivation of this work is to investigate the performance characteristics of a detector fabricated with a drift ring geometry that is insensitive to the transport of holes. The performance of a prototype Ohmic CdTe drift ring detector fabricated by Acrorad with 3 drift rings is reported; measurements include room temperature current voltage characteristics (IV) and spectroscopic performance. The data shows that the energy resolution of the detector is limited by leakage current which is a combination of bulk and surface leakage currents. The energy resolution was studied as a function of incident X-ray position with an X-ray microbeam at the Diamond Light Source. Different ring biasing schemes were investigated and the results show that by increasing the lateral field (i.e. the bias gradient across the rings) the active area, evaluated by the detected count rate, increased significantly.

  1. Development of an Acoustic Levitation Linear Transportation System Based on a Ring-Type Structure.

    Science.gov (United States)

    Thomas, Gilles P L; Andrade, Marco A B; Adamowski, Julio Cezar; Silva, Emilio Carlos Nelli

    2017-05-01

    A linear acoustic levitation transportation system based on a ring-type vibrator is presented. The system is composed by two 21-kHz Langevin transducers connected to a ring-shaped structure formed by two semicircular sections and two flat plates. In this system, a flexural standing wave is generated along the ring structure, producing an acoustic standing wave between the vibrating ring and a plane reflector located at a distance of approximately a half wavelength from the ring. The acoustic standing wave in air has a series of pressure nodes, where small particles can be levitated and transported. The ring-type transportation system was designed and analyzed by using the finite element method. Additionally, a prototype was built and the acoustic levitation and transport of a small polystyrene particle was demonstrated.

  2. Cerenkov-ΔE-Cerenkov detector for high-energy cosmic-ray isotopes and an accelerator study of 40Ar and 56Fe fragmentation

    International Nuclear Information System (INIS)

    Lau, K.H.

    1985-01-01

    This thesis has two major parts. The first part of the thesis will describe a high energy cosmic ray detector - the High Energy Isotope Spectrometer Telescope (HEIST). HEIST is a large area (0.25 m 2 sr) balloon-borne isotope spectrometer designed to make high-resolution measurements of isotopes in the element range from neon to nickel (10 less than or equal to Z less than or equal to 28) at energies of about 2 GeV/nucleon. The instrument consists of a stack of 12 NaI(Tl) scintillators, two Cerenkov counters, and two plastic scintillators. The second part of this thesis presents an experimental measurement of the isotopic composition of the fragments from the breakup of high energy 40 Ar and 56 Fe nuclei. Cosmic ray composition studies rely heavily on semi-empirical estimates of the cross-sections for the nuclear fragmentation reactions which alter the composition during propagation through the interstellar medium. Experimentally measured yields of isotopes from the fragmentation of 40 Ar and 56 Fe are compared with calculated yields based on semi-empirical cross-section formulae

  3. Computation of a quadrupole magnet for the APS storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Turner, L.R.; Kim, S.H.; Thompson, K.M.

    1990-01-01

    The storage ring of the Advanced Photon Source will include 400 quadrupole magnets for focusing the beam. A prototype quadrupole has been designed, constructed, and measured. This paper describes the two- and three-dimensional (2-D and 3-D) field computations performed for this design. 2 refs., 6 figs., 1 tab.

  4. Performance of hybrid photon detector prototypes with encapsulated silicon pixel detector and readout for the RICH counters of LHCb

    International Nuclear Information System (INIS)

    Campbell, M.; George, K.A.; Girone, M.; Gys, T.; Jolly, S.; Piedigrossi, D.; Riedler, P.; Rozema, P.; Snoeys, W.; Wyllie, K.

    2003-01-01

    These proceedings report on the performance of the latest prototype pixel hybrid photon detector in preparation for the LHCb Ring Imaging Cherenkov detectors. The prototype encapsulates a silicon pixel detector bump-bonded to a binary read-out chip with short (25 ns) peaking time and low ( - ) detection threshold. A brief description of the prototype is given, followed by the preliminary results of the characterisation of the prototype behaviour when tested using a low intensity pulsed light emitting diode. The results obtained are in good agreement with those obtained using previous prototypes. The proceedings conclude with a summary of the current status and future plans

  5. Enhanced counting efficiency of Cerenkov radiation from bismuth-210

    International Nuclear Information System (INIS)

    Peck, G.A.; Smith, J.D.

    1998-01-01

    This paper describes the measurement of 210 Bi by Cerenkov counting in a commercial liquid scintillation counter. The counting efficiency in water is 0.17 counts per second per Becquerel (17%). When the enhancers Triton X-100 (15% v/v) and sodium salicylate (1% m/v) are added to the solution the counting efficiency for 210 Bi increases from 17% to 75%. The 210 Po daughter of 210 Bi causes interference of 0.85 counts per second per Becquerel in the presence of the enhancers but not in water. When 210 Bi and 210 Po are present in secular equilibrium the total counting efficiency is 160%. When 210 Bi and 210 Po are not in secular equilibrium the 210 Po can be removed immediately before counting by plating onto silver foil. The use of the enhancers gives a substantial increase in counting efficiency compared to counting in water. Compared with solutions used in liquid scintillation counting the enhancer solution is inexpensive and can be disposed of without environmental hazard. (author)

  6. Development of Stripline Kickers for Low Emittance Rings: Application to the Beam Extraction Kicker for CLIC Damping Rings

    CERN Document Server

    AUTHOR|(SzGeCERN)728476; Toral Fernandez, Fernando

    In the framework of the design study of Future Linear Colliders, the Compact Linear Collider (CLIC) aims for electron-positron collisions with high luminosity at a nominal centre-of-mass energy of 3 TeV. To achieve the luminosity requirements, Pre-Damping Rings (PDRs) and Damping Rings (DRs) are required: they reduce the beam emittance before the beam is accelerated in the main linac. Several injection and extraction systems are needed to inject and extract the beam from the PDRs and DRs. The work of this Thesis consists of the design, fabrication and laboratory tests of the first stripline kicker prototype for beam extraction from the CLIC DRs, although the methodology proposed can be extended to stripline kickers for any low emittance ring. The excellent field homogeneity required, as well as a good transmission of the high voltage pulse through the electrodes, has been achieved by choosing a novel electrode shape. With this new geometry, it has been possible to benefit from all the advantages that the most...

  7. Linear theory of a dielectric-loaded rectangular Cerenkov maser with a sheet electron beam

    International Nuclear Information System (INIS)

    Chen Ye; Wan Xiao-Sheng; Zhao Ding; Liu Wen-Xin; Wang Yong

    2012-01-01

    A three-dimensional model of a dielectric-loaded rectangular Cerenkov maser with a sheet electron beam for the beam-wave interaction is proposed. Based on this model, the hybrid-mode dispersion equation is derived with the Borgnis potential function by using the field-matching method. Its approximate solution is obtained under the assumption of a dilute electron beam. By using the Ansoft high frequency structural simulator (HFSS) code, the electromagnetic field distribution in the interaction structure is given. Through numerical calculations, the effects of beam thickness, beam and dielectric-layer gap distance, beam voltage, and current density on the resonant growth rate are analysed in detail

  8. Comparison of analysis techniques by liquid scintillation and Cerenkov Effect for {sup 40}K quantification in aqueous samples; Comparacion de las tecnicas de analisis por centelleo liquido y efecto Cerenkov para la cuantificacion {sup 40}K en muestras acuosas

    Energy Technology Data Exchange (ETDEWEB)

    Miranda C, L.; Davila R, J. I.; Lopez del R, H.; Mireles G, F., E-mail: lilimica20@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico)

    2015-09-15

    In this work the counting by liquid scintillation and Cerenkov Effect to quantify {sup 40}K in aqueous samples was used. The performance of both techniques was studied by comparing the response of three commercial liquid scintillation OptiPhase HiSafe 3, Ultima Gold Ab and OptiPhase TriSafe, the vial type and presentation conditions of the sample for counting. In liquid scintillation, the ability to form homogeneous mixtures depended on the ionic strength of the aqueous solutions. The scintillator OptiPhase HiSafe 3 showed a greater charge capacity for solutions with high ionic strength (<3.4), while the scintillator OptiSafe TriSafe no form homogeneous mixtures for solutions of ionic strength higher than 0.3. Counting efficiencies for different proportions of sample and scintillator near 100% for the scintillators OptiSafe HiSafe 3 and Ultima Gold Ab were obtained. In the counting by Cerenkov Effect, the efficiency and sensitivity depended of the vial type; polyethylene vials were more suitable for counting that the glass vials. The sample volume had not significant effect on counting efficiency, obtaining an average value of 44.8% for polyethylene vials and 37.3% for glass vials. Therefore, the liquid scintillation was more efficient and sensitive for the measurement of {sup 40}K in aqueous solutions. (Author)

  9. PEP-II prototype klystron

    International Nuclear Information System (INIS)

    Fowkes, W.R.; Caryotakis, G.; Lee, T.G.; Pearson, C.; Wright, E.L.

    1993-04-01

    A 540-kW continuous-wave (cw) klystron operating at 476 MHz was developed for use as a power source for testing PEP-II rf accelerating cavities and rf windows. It also serves as a prototype for a 1.2 MW cw klystron presently being developed as a potential rf source for asymmetric colliding ring use. The design incorporates the concepts and many of the parts used in the original 353 MHz PEP klystron developed sixteen years ago. The superior computer simulation codes available today result in improved performance with the cavity frequencies, drift lengths, and output circuit optimized for the higher frequency.The design and operating results of this tube are described with particular emphasis on the factors which affect efficiency and stability

  10. Cosmic AntiParticle Ring Imaging Cerenkov Experiment

    CERN Multimedia

    2002-01-01

    %RE2A \\\\ \\\\ %title \\\\ \\\\The CAPRICE experiment studies antimatter and light nuclei in the cosmic rays as well as muons in the atmosphere. The experiment is performed with the spectrometer shown in the figure which is lifted by a balloon to an altitude of 35-40 km. At this altitude less than half a percent of the atmosphere is above the 2 ton spectrometer which makes it possible to study the cosmic ray flux without too much background from atmospherically produced particles. The spectrometer includes time-of-flight scintillators, a gaseous RICH counter, a drift chamber tracker and a silicon electromagnetic calorimeter. The important feature of the spectrometer is to discriminate between different particles.\\\\ \\\\ The experiment aims at measuring the flux of the antiparticles (antiprotons and positrons) above about 5 GeV and relate the fluxes to models including exotic production of antiparticles like dark matter supersymmetric particles. The flux of muons is measured during descent of the balloon through the at...

  11. The Prototype Inductive Adder With Droop Compensation for the CLIC Kicker Systems

    CERN Document Server

    Holma, J

    2014-01-01

    The Compact Linear Collider (CLIC) study is exploring the scheme for an electron-positron collider with high luminosity and a nominal center-of-mass energy of 3 TeV. The CLIC predamping rings and damping rings (DRs) will produce, through synchrotron radiation, an ultralow emittance beam with high bunch charge. To avoid beam emittance increase, the DR kicker systems must provide extremely flat, high-voltage, pulses. The specifications for the extraction kickers of the DRs are particularly demanding: the flattops of the pulses must be ±12.5 kV with a combined ripple and droop of not more than ±0.02% (±2.5 V). An inductive adder is a very promising approach to meeting the specifications. Recently, a five-layer prototype has been built at CERN. Passive analog modulation has been applied to compensate the voltage droop, for example of the pulse capacitors. The output waveforms of the prototype inductive adder have been compared with predictions of the voltage droop and pulse shape. Conclusions are drawn concern...

  12. Rapid determination of strontium-90 in environmental samples by single Cerenkov counting using two different colour quench curves

    Energy Technology Data Exchange (ETDEWEB)

    Torres, J.M.; Garcia, J.F.; Llaurado, M.; Rauret, G. [Barcelona Univ. (Spain). Dept. de Quimica Analitica

    1996-11-01

    The validation of the Cerenkov radiation measurement of {sup 90}Y to determine the activity concentration of {sup 90}Sr in environmental samples is described. Liquid-liquid extraction with di-2-ethyhexylphosphoric acid in toluene was used to separate {sup 90}Y from {sup 90}Sr. Optimum conditions for Cerenkov counting (low-level counting option, counting windows, mass of solution to be measured) were established. The need for a counting efficiency correction by using a colour quench curve is stated to be essential, otherwise a significant error may occur. Two different colour quench curves (counting efficiency versus the channel ratio or spectral index parameter) were used and the results were compared. The method was applied to 12 environmental matrices: sea-water, algae, carobs, milk, almonds, hake, honey, shellfish, lamb meat, sardine, pork meat and shore sand. No significant differences were observed on using either of the two colour quench curves for any of these environmental matrices. In order to validate the proposed method, a certified soil reference material (CRM IAEA-375) was used, together with participation in an interlaboratory exercise to determine {sup 90}Sr in a natural water sample. Again, efficiency correction was performed by using either of the two colour quench curves and in both instances the calculated {sup 90}Sr activity concentration was in good agreement with the known values. (Author).

  13. Conceptual design of a moving-ring reactor

    International Nuclear Information System (INIS)

    Smith, A.C. Jr.; Ashworth, C.P.; Abreu, K.E.

    1983-01-01

    A design of a prototype Moving-Ring Reactor has been completed. The fusion fuel is confined in current-carrying rings of magnetically field-reversed plasma (''compact toroids''). The plasma rings, formed by a coaxial plasma gun, undergo adiabatic magnetic compression to ignition temperature while they are being injected into the reactor's burner section. The cylindrical burner chamber is divided into three ''burn stations''. Separator coils and a slight axial guide-field gradient are used to shuttle the ignited toroids rapidly from one burn station to the next, pausing for one third of the total burn time at each station. D-T- 3 He ice pellets refuel the rings at a rate which maintains constant radiated power. The first wall and tritium breeding blanket designs make credible use of helium cooling, SiC and Li 2 O to minimize structural radioactivity. ''Hands-on'' maintenance is possible on all reactor components outside the blanket. The first wall and blanket are designed to shut the reactor down passively in the event of a loss-of-coolant or loss-of-flow accident. Helium removes heat from the first wall, blanket and shield, and is used in a closed-cycle gas turbine to produce electricity. Energy residing in the plasma ring at the end of the burn is recovered via magnetic expansion. Electrostatic direct conversion is not used in this design. The reactor produces a constant net power of 99 MW(e). (author)

  14. A mm-Wave, Table Top Cerenkov Free-Electron Laser

    CERN Document Server

    De la Fuente, Isabel; Van der Slot, Peter

    2004-01-01

    We have designed and constructed a compact (0.5 x 1.5 m), 100 kV Cerenkov FEL operating at a frequency of 50 GHz. The electron beam is produced by a gridded thermionic electron gun with a beam current of 800 mA. Simulations shows that 800 mA is sufficient to produce an output power of ~ 1 kW peak at 50 GHz using a total cavity reflectivity of about 10 to 20 %. The average power approaches 1 kW when the electron pulse length is extended to CW. A depressed collector will be used to increase the overall efficiency of this device. Special attention has been given to the outcoupler that has to combine multiple functions. First it has to separate the radiation field from the electron beam. Second it has to be transparent for the electron beam and acts as a partial reflector for radiation. Finally it has to convert the generated TM01 mode in the interaction region into the fundamental TE01 mode of the standard rectangular output port. We will present the overall design and experimental set-up, first experimental res...

  15. Noise Source Identification of a Ring-Plate Cycloid Reducer Based on Coherence Analysis

    Directory of Open Access Journals (Sweden)

    Bing Yang

    2013-01-01

    Full Text Available A ring-plate-type cycloid speed reducer is one of the most important reducers owing to its low volume, compactness, smooth and high performance, and high reliability. The vibration and noise tests of the reducer prototype are completed using the HEAD acoustics multichannel noise test and analysis system. The characteristics of the vibration and noise are obtained based on coherence analysis and the noise sources are identified. The conclusions provide the bases for further noise research and control of the ring-plate-type cycloid reducer.

  16. Fast-extraction modulators for Los Alamos Scientific LaboratorY Proton Storage Ring

    International Nuclear Information System (INIS)

    Nunnally, W.C.; Hudgings, D.W.; Sarjeant, W.J.

    1980-01-01

    The development of a short-bunch mode fast-extraction modulator for the LASL proton storage ring has made necessary the design and development of a resonant transformer charging circuit and the design of a new FIB line circuit to provide bipolar pulse outputs with low prepulse, postpulse, and an optimum high-voltage switch environments. The systems are now being developed to operate reliably at the high-average powers required. The short-bunch mode fast-extraction modulator prototype is presently operating. The initial construction of the long-bunch mode fast-extraction modulator prototype is under way, with results expected within the year

  17. Modelling a Java Ring based implementation of an N-Count payment system

    NARCIS (Netherlands)

    Revill, J.D.; Hartel, Pieter H.

    N-Count is a system for offline value transfer. A prototype of an N-Count payment system has been designed, and it has been implemented in Java. We have used the Java Ring with the Java Card API as a secure device. The system has also been modelled using the Spin model checker. The combined

  18. Methodology for estimation of 32P in bioassay samples by Cerenkov counting

    International Nuclear Information System (INIS)

    Wankhede, Sonal; Sawant, Pramilla D.; Yadav, R.K.B.; Rao, D.D.

    2016-01-01

    Radioactive phosphorus ( 32 P) as phosphate is used to effectively reduce bone pain in terminal cancer patients. Several hospitals in India carry out this palliative care procedure on a regular basis. Thus, production as well as synthesis of 32 P compounds has increased over the years to meet this requirement. Monitoring of radiation workers handling 32 P compounds is important for further strengthening of radiological protection program at processing facility. 32 P being a pure beta emitter (β max = 1.71 MeV, t 1/2 = 14.3 d), bioassay is the preferred individual monitoring technique. Method standardized at Bioassay Lab, Trombay, includes estimation of 32 P in urine by co-precipitation with ammonium phosphomolybdate (AMP) followed by gross beta counting. In the present study, feasibility of Cerenkov counting for detection of 32 P in bioassay samples was explored and the results obtained were compared with the gross beta counting technique

  19. Omnidirectional piezo-optical ring sensor for enhanced guided wave structural health monitoring

    International Nuclear Information System (INIS)

    Giurgiutiu, Victor; Roman, Catalin; Lin, Bin; Frankforter, Erik

    2015-01-01

    This paper presents a novel method for the detection of ultrasonic waves from acoustic emission events using piezoelectric wafer ac3tive sensors (PWAS) and optical fiber Bragg grating (FBG) sensing combined with mechanical resonance amplification principles. The method is best suited for detecting the out-of-plane motion of the AE wave with preference for a certain frequency that can be adjusted by design. Several issues are discussed: (a) study the mode shapes of the sensors under different resonance frequencies in order to understand the behavior of the ring in a frequency band of interest; (b) comparison of analytical results and mode shapes with FEM predictions; (c) choice of the final piezo-optical ring sensor shape; (d) testing of the piezo-optical ring sensor prototype; (e) discussion of the ring-sensor test results in comparison with conventional results from PWAS and FBG sensors mounted directly on the test structure. The paper ends with summary, conclusions, and suggestions for further work. (paper)

  20. Test-beam Results from a RICH Detector Prototype Using Aerogel Radiator and Pixel Hybrid Photon Detectors

    CERN Document Server

    Aglieri-Rinella, G; Van Lysebetten, A; Piedigrossi, D; Wyllie, K; Bellunato, T F; Calvi, M; Matteuzzi, C; Musy, M; Perego, D L; Somerville, L P; Newby, C; Easo, S; Wotton, S

    2006-01-01

    A test-beam study was performed at CERN with a Ring Imaging Cherenkov (RICH) prototype using three pixel Hybrid Photon Detectors. Results on the photon yield and Cherenkov angle resolution are presented here, for the Aerogel radiator and also for reference runs taken with Nitrogen radiator.

  1. Enhancement of Cerenkov luminescence imaging by dual excitation of Er(3+,Yb(3+-doped rare-earth microparticles.

    Directory of Open Access Journals (Sweden)

    Xiaowei Ma

    Full Text Available Cerenkov luminescence imaging (CLI has been successfully utilized in various fields of preclinical studies; however, CLI is challenging due to its weak luminescent intensity and insufficient penetration capability. Here, we report the design and synthesis of a type of rare-earth microparticles (REMPs, which can be dually excited by Cerenkov luminescence (CL resulting from the decay of radionuclides to enhance CLI in terms of intensity and penetration.Yb(3+- and Er(3+- codoped hexagonal NaYF4 hollow microtubes were synthesized via a hydrothermal route. The phase, morphology, and emission spectrum were confirmed for these REMPs by power X-ray diffraction (XRD, scanning electron microscopy (SEM, and spectrophotometry, respectively. A commercial CCD camera equipped with a series of optical filters was employed to quantify the intensity and spectrum of CLI from radionuclides. The enhancement of penetration was investigated by imaging studies of nylon phantoms and nude mouse pseudotumor models.the REMPs could be dually excited by CL at the wavelengths of 520 and 980 nm, and the emission peaks overlaid at 660 nm. This strategy approximately doubled the overall detectable intensity of CLI and extended its maximum penetration in nylon phantoms from 5 to 15 mm. The penetration study in living animals yielded similar results.this study demonstrated that CL can dually excite REMPs and that the overlaid emissions in the range of 660 nm could significantly enhance the penetration and intensity of CL. The proposed enhanced CLI strategy may have promising applications in the future.

  2. Optical imaging as an expansion of nuclear medicine: Cerenkov-based luminescence vs fluorescence-based luminescence

    International Nuclear Information System (INIS)

    Chin, Patrick T.K.; Welling, Mick M.; Leeuwen, Fijs W.B. van; Meskers, Stefan C.J.; Valdes Olmos, Renato A.; Tanke, Hans

    2013-01-01

    Integration of optical imaging technologies can further strengthen the field of radioguided surgery. Rather than using two separate chemical entities to achieve this extension, hybrid imaging agents can be used that contain both radionuclear and optical properties. Two types of such hybrid imaging agents are available: (1) hybrid imaging agents generated by Cerenkov luminescence imaging (CLI) of β-emitters and (2) hybrid imaging agents that contain both a radioactive moiety and a fluorescent dye. One major challenge clinicians are now facing is to determine the potential value of these approaches. With this tutorial review we intend to clarify the differences between the two approaches and highlight the clinical potential of hybrid imaging during image-guided surgery applications. (orig.)

  3. Optical imaging as an expansion of nuclear medicine: Cerenkov-based luminescence vs fluorescence-based luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Patrick T.K.; Welling, Mick M.; Leeuwen, Fijs W.B. van [Leiden University Medical Center, Interventional Molecular Imaging Laboratory, Department of Radiology, P.O. Box 9600, Leiden (Netherlands); Meskers, Stefan C.J. [Eindhoven University of Technology, Molecular Materials and Nanosystems, P.O. Box 513, Eindhoven (Netherlands); Valdes Olmos, Renato A. [Leiden University Medical Center, Interventional Molecular Imaging Laboratory, Department of Radiology, P.O. Box 9600, Leiden (Netherlands); Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Department of Nuclear Medicine, Amsterdam (Netherlands); Tanke, Hans [Leiden University Medical Center, Department of Molecular Cell Biology, P.O. Box 9600, Leiden (Netherlands)

    2013-08-15

    Integration of optical imaging technologies can further strengthen the field of radioguided surgery. Rather than using two separate chemical entities to achieve this extension, hybrid imaging agents can be used that contain both radionuclear and optical properties. Two types of such hybrid imaging agents are available: (1) hybrid imaging agents generated by Cerenkov luminescence imaging (CLI) of {beta}-emitters and (2) hybrid imaging agents that contain both a radioactive moiety and a fluorescent dye. One major challenge clinicians are now facing is to determine the potential value of these approaches. With this tutorial review we intend to clarify the differences between the two approaches and highlight the clinical potential of hybrid imaging during image-guided surgery applications. (orig.)

  4. Gamma-ray burst observations with new generation imaging atmospheric Cerenkov Telescopes in the FERMI era

    International Nuclear Information System (INIS)

    Covino, S.; Campana, S.; Garczarczyk, M.; Galante, N.; Gaug, M.; Antonelli, A.; Bastieri, D.; Longo, F.; Scapin, V.

    2009-01-01

    After the launch and successful beginning of operations of the FERMI satellite, the topics related to high-energy observations of gamma-ray bursts have obtained a considerable attention by the scientific community. Undoubtedly, the diagnostic power of high-energy observations in constraining the emission processes and the physical conditions of gamma-ray burst is relevant. We briefly discuss how gamma-ray burst observations with ground-based imaging array Cerenkov telescopes, in the GeV-TeV range, can compete and cooperate with FERMI observations, in the MeV-GeV range, to allow researchers to obtain a more detailed and complete picture of the prompt and afterglow phases of gamma-ray bursts.

  5. Natural occupation numbers in two-electron quantum rings.

    Science.gov (United States)

    Tognetti, Vincent; Loos, Pierre-François

    2016-02-07

    Natural orbitals (NOs) are central constituents for evaluating correlation energies through efficient approximations. Here, we report the closed-form expression of the NOs of two-electron quantum rings, which are prototypical finite-extension systems and new starting points for the development of exchange-correlation functionals in density functional theory. We also show that the natural occupation numbers for these two-electron paradigms are in general non-vanishing and follow the same power law decay as atomic and molecular two-electron systems.

  6. Natural occupation numbers in two-electron quantum rings

    Energy Technology Data Exchange (ETDEWEB)

    Tognetti, Vincent, E-mail: vincent.tognetti@univ-rouen.fr [Normandy Univ., COBRA UMR 6014 & FR 3038, Université de Rouen, INSA Rouen, CNRS, 1 rue Tesniére, 76821 Mont Saint Aignan, Cedex (France); Loos, Pierre-François [Research School of Chemistry, Australian National University, Canberra ACT 2601 (Australia)

    2016-02-07

    Natural orbitals (NOs) are central constituents for evaluating correlation energies through efficient approximations. Here, we report the closed-form expression of the NOs of two-electron quantum rings, which are prototypical finite-extension systems and new starting points for the development of exchange-correlation functionals in density functional theory. We also show that the natural occupation numbers for these two-electron paradigms are in general non-vanishing and follow the same power law decay as atomic and molecular two-electron systems.

  7. A Prototype RICH Detector Using Multi-Anode Photo Multiplier Tubes and Hybrid Photo-Diodes

    CERN Document Server

    Albrecht, E; Bibby, J H; Brook, N H; Doucas, G; Duane, A; Easo, S; Eklund, L; French, M; Gibson, V; Gys, Thierry; Halley, A W; Harnew, N; John, M; Piedigrossi, D; Rademacker, J; Simmons, B; Smale, N J; Teixeira-Dias, P; Toudup, L W; Websdale, David M; Wilkinson, G R; Wotton, S A

    2001-01-01

    The performance of a prototype Ring Imaging Cherenkov Detector is studied using a charged particle beam. The detector performance, using CF4 and air as radiators, is described. Cherenkov angle precision and photoelectron yield using hybrid photo-diodes and multi-anode PMTs agree with simulations and are assessed in terms of the requirements of the LHCb experiment.

  8. Discovery Of B Ring Propellers In Cassini UVIS, And ISS

    Science.gov (United States)

    Sremcevic, Miodrag; Stewart, G. R.; Albers, N.; Esposito, L. W.

    2012-10-01

    We present evidence for the existence of propellers in Saturn's B ring by combining data from Cassini Ultraviolet Imaging Spectrograph (UVIS) and Imaging Science Subsystem (ISS) experiments. We identify two propeller populations: (1) tens of degrees wide propellers in the dense B ring core, and (2) smaller, more A ring like, propellers populating the inner B ring. The prototype of the first population is an object observed at 18 different epochs between 2005 and 2010. The ubiquitous propeller "S" shape is seen both in UVIS occultations as an optical depth depletion and in ISS as a 40 degrees wide bright stripe in unlit geometries and dark in lit geometries. Combining the available Cassini data we infer that the object is a partial gap embedded in the high optical depth region of the B ring. The gap moves at orbital speed consistent with its radial location. From the radial separation of the propeller wings we estimate that the embedded body, which causes the propeller structure, is about 1.5km in size located at a=112,921km. The UVIS occultations indicate an asymmetric propeller "S" shape. Since the object is located at an edge between high and relatively low optical depth, this asymmetry is most likely a consequence of the strong surface mass density gradient. We estimate that there are possibly dozen up to 100 other propeller objects in Saturn's B ring. The location of the discovered body, at an edge of a dense ringlet within the B ring, suggests a novel mechanism for the up to now illusive B ring irregular large-scale structure of alternating high and low optical depth ringlets. We propose that this B ring irregular structure may have its cause in the presence of many embedded bodies that shepherd the individual B ring ringlets.

  9. Search for Primordial Black Holes with the Whipple Atmospheric Cerenkov Telescope

    Science.gov (United States)

    Linton, Eric

    2005-04-01

    Stephen Hawking's prediction that black holes should radiate like black bodies has several important consequences, including the possibility for the detection of small (˜10^15 g) black holes created in the very early universe. The detection of such primordial black holes (PBHs) would not only validate Hawking's theory, but would provide useful insights into the history of the early universe. A search through 5.5 years of archival data from the Whipple Atmospheric Cerenkov Telescope was made for TeV gamma-ray bursts on 1 s, 3 s, and 5 s timescales. Based on a null result, an upper-limit on the evaporation rate of PBHs of 2.69 x10^6 pc-3 yr^- 1 (99% CL) was made, assuming the Standard Model of particle physics. When combined with the results of an earlier search through Whipple data, this limit was lowered to 1.33 x10^6 pc-3 yr-1, which is nearly a factor of 2 better than the previous limit at this energy range.

  10. Architectures of prototypes and architectural prototyping

    DEFF Research Database (Denmark)

    Hansen, Klaus Marius; Christensen, Michael; Sandvad, Elmer

    1998-01-01

    together as a team, but developed a prototype that more than fulfilled the expectations of the shipping company. The prototype should: - complete the first major phase within 10 weeks, - be highly vertical illustrating future work practice, - continuously live up to new requirements from prototyping......This paper reports from experience obtained through development of a prototype of a global customer service system in a project involving a large shipping company and a university research group. The research group had no previous knowledge of the complex business of shipping and had never worked...... sessions with users, - evolve over a long period of time to contain more functionality - allow for 6-7 developers working intensively in parallel. Explicit focus on the software architecture and letting the architecture evolve with the prototype played a major role in resolving these conflicting...

  11. Collaborative Prototyping

    DEFF Research Database (Denmark)

    Bogers, Marcel; Horst, Willem

    2014-01-01

    of the prototyping process, the actual prototype was used as a tool for communication or development, thus serving as a platform for the cross-fertilization of knowledge. In this way, collaborative prototyping leads to a better balance between functionality and usability; it translates usability problems into design......This paper presents an inductive study that shows how collaborative prototyping across functional, hierarchical, and organizational boundaries can improve the overall prototyping process. Our combined action research and case study approach provides new insights into how collaborative prototyping...... can provide a platform for prototype-driven problem solving in early new product development (NPD). Our findings have important implications for how to facilitate multistakeholder collaboration in prototyping and problem solving, and more generally for how to organize collaborative and open innovation...

  12. Determination of migration of phosphorus-based additives from food packaging material into food-simulating solvents by neutron activation/Cerenkov counting

    International Nuclear Information System (INIS)

    Lickly, T.D.; Quinn, T.; Blanchard, F.A.; Murphy, P.G.

    1988-01-01

    Samples of food-simulating solvents exposed to food-packaging materials that contain phosphorus-based additives have been examined for migration of phosphorus-containing compounds from the packaging material, using neutron activation/Cerenkov counting. This method has the advantage that commercially produced packaging materials can be used (no elaborate sample preparation as with other radiotracer methods) and no elaborate sample processing techniques are needed to reach the desired levels (low ng/mL) as is usual with most chromatographic or spectroscopic techniques. (author)

  13. Rethink! prototyping transdisciplinary concepts of prototyping

    CERN Document Server

    Nagy, Emilia; Stark, Rainer

    2016-01-01

    In this book, the authors describe the findings derived from interaction and cooperation between scientific actors employing diverse practices. They reflect on distinct prototyping concepts and examine the transformation of development culture in their fusion to hybrid approaches and solutions. The products of tomorrow are going to be multifunctional, interactive systems – and already are to some degree today. Collaboration across multiple disciplines is the only way to grasp their complexity in design concepts. This underscores the importance of reconsidering the prototyping process for the development of these systems, particularly in transdisciplinary research teams. “Rethinking Prototyping – new hybrid concepts for prototyping” was a transdisciplinary project that took up this challenge. The aim of this programmatic rethinking was to come up with a general concept of prototyping by combining innovative prototyping concepts, which had been researched and developed in three sub-projects: “Hybrid P...

  14. Optimization of speed-up network component values for the 30 Ω resistively terminated prototype kicker magnet

    International Nuclear Information System (INIS)

    Barnes, M.J.; Wait, G.D.

    1993-01-01

    Kicker magnets are required for all ring-to-ring transfers in the 5 rings of the proposed KAON factory synchrotron. The kick must rise from 1% to 99% of full strength during the time interval of gaps created in the beam (80 ns to 160 ns) so that the beam can be extracted with minimum losses. In order to achieve the specified rise-time and open-quote flatness close-quote for the kick it is necessary to utilize speed-up networks, comprising a capacitor and a resistor, in the electrical circuit. Speed-up networks may be connected electrically on both the input and output of the kicker magnet. In addition it is advantageous to connect a open-quote speed-up close-quote network on the input of the resistive terminator(s). A sequence which may minimize the number of mathematical simulations required to optimize the values of the 8 possible speed-up components is presented. PE2D has been utilized to determine inductance and capacitance values for the resistive terminator; this data has been used in PSpice transient analyses. Results of the PE2D predictions are also presented. The research has culminated in a predicted kick rise time (1% to 99%) of less than 50 ns for a TRIUMF 10 cell prototype kicker magnet. The proposed improvements are currently being implemented on our prototype kicker system

  15. A conduction-cooled, 680-mm-long warm bore, 3-T Nb3Sn solenoid for a Cerenkov free electron laser

    OpenAIRE

    Wessel, Wilhelm A.J.; den Ouden, A.; Krooshoop, Hendrikus J.G.; ten Kate, Herman H.J.; Wieland, J.; van der Slot, Petrus J.M.

    1999-01-01

    A compact, cryocooler cooled Nb3Sn superconducting magnet system for a Cerenkov free electron laser has been designed, fabricated and tested. The magnet is positioned directly behind the electron gun of the laser system. The solenoidal field compresses and guides a tube-shaped 100 A, 500 kV electron beam. A two-stage GM cryocooler, equipped with a first generation ErNi5 regenerator, cools the epoxy impregnated solenoid down to the operating temperature of about 7.5 K. This leaves a conservati...

  16. Field theory of a terahertz staggered double-grating arrays waveguide Cerenkov traveling wave amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Wenqiu; He, Fangming [Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Zicheng; Luo, Jirun; Zhao, Ding; Liu, Qinglun [Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-04-15

    Based on a rectilinear sheet electron beam propagating through the tunnel of a staggered double-grating arrays waveguide (SDGAW) slow-wave structure (SWS), a three dimensional field theory for describing the modes and the beam-wave interaction is presented, in which the higher order terms inside the grooves are retained. The fields' distribution and the conductivity losses are also calculated utilizing the theoretical model. With the optimized parameters of the SWS and the electron beam, a 1 THz SDGAW Cerenkov traveling wave amplifier may obtain a moderate net gain (the peak gain is 12.7 dB/cm) and an ultra 3 dB wideband (0.19 THz) considering the serious Ohmic losses. The theoretical results have been compared with those calculated by 3D HFSS code and CST STUDIO particle-in-cell simulations.

  17. High Isolation Dual-Polarized Patch Antenna with Hybrid Ring Feeding

    Directory of Open Access Journals (Sweden)

    Xian-Jing Lin

    2017-01-01

    Full Text Available This paper presents a hybrid ring feeding dual-polarized patch antenna with high isolation in a wide working band. The proposed antenna consists of a circular radiating patch printed on the upper horizontal substrate, two pairs of Γ shaped strips printed on two vertical substrates, and a hybrid ring feeding network printed on the lower two horizontal substrates. The proposed antenna adopts Γ shape strips coupled feeding structure to achieve a wide operating band. Furthermore, a hybrid ring feeding structure with high isolation in a wide bandwidth, which is firstly proposed, is applied as feeding network. When one port is excited, the feeding network can realize twice the power cancellation. Thus, high ports isolation characteristics can be obtained. A prototype of the proposed antenna is fabricated and measured. Measured results show that the 10 dB reflection coefficient bandwidths of the two ports are both about 38.7%, with port isolation higher than 40 dB through most of the band, and the cross-polarizations are below −24 dB.

  18. SU-G-TeP3-06: Nanoparticle-Aided External Beam Radiotherapy Leveraging the Cerenkov Effect

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Z; Ngwa, W [University of Massachusetts Lowell, Lowell, MA (United States); Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School (United States); Liu, B; Sajo, E [University of Massachusetts Lowell, Lowell, MA (United States); Yasmin-Karim, S [Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School (United States)

    2016-06-15

    Purpose: This study investigates the feasibility of exploiting the Cerenkov radiation (CR) present during external beam radiotherapy (EBRT) for significant therapeutic gain, using titanium dioxide nanoparticles (titania) delivered via a new design of radiotherapy biomaterials. Methods: Recently published work has shown that CR generated by radionuclides during PET imaging could substantially enhance damage to cancer cells in the presence of 0.625 µg/g titania. We hypothesize that equal or greater damage can be achieved during EBRT. To test this hypothesis, Monte Carlo simulation was done using GEANT4 in order to get the total CR yield inside a tumor volume during EBRT compared to that of the radionuclides. We considered a novel approach where a sufficiently potent concentration of the titania was delivered directly into the tumor using radiotherapy biomaterials (e.g. fiducials) loaded with the titania. The intra-tumor distribution/diffusion of titania released from the fiducials was calculated. An in-vitro MTS assay experiment was also carried out to establish the relative non-toxicity of titania for concentrations of up to 1 µg/g. Results: For a radiotherapy biomaterial loaded with 15 µg/g of 2-nm titania, at least 0.625 µg/g could be delivered through out a tumor sub-volume of 2-cm diameter after 14 days. This concentration level could inflict substantial damage to tumor cells during EBRT. The Monte Carlo results showed the CR yield in tumor by 6 MV radiation was higher than the radionuclides and hence potentially greater damage may be obtained during EBRT. No significant cell viability change was observed for 1 µg/g titania. Conclusion: Altogether, these preliminary findings demonstrate a potential new approach that can be used to take advantage of the CR present during megavoltage EBRT to boost damage to tumor cells. The results provide significant impetus for further experimental studies towards development of nanoparticle-aided EBRT powered by the

  19. Enhancement and wavelength-shifted emission of Cerenkov luminescence using multifunctional microspheres

    International Nuclear Information System (INIS)

    Li, Joanne; Dobrucki, Lawrence W; Marjanovic, Marina; Chaney, Eric J; Suslick, Kenneth S; Boppart, Stephen A

    2015-01-01

    Cerenkov luminescence (CL) imaging is a new molecular imaging modality that utilizes the photons emitted during radioactive decay when charged particles travel faster than the phase velocity of light in a dielectric medium. Here we present a novel agent to convert and increase CL emission at longer wavelengths using multimodal protein microspheres (MSs). The 64 Cu-labeled protein microspheres contain quantum dots (QDs) encapsulated within a high-refractive-index-oil core. Dark box imaging of the MSs was conducted to demonstrate the improvement in CL emission at longer wavelengths. To illustrate the versatile design of these MSs and the potential of CL in disease diagnosis, these MSs were utilized for in vitro cell targeting and ex vivo CL-excited QD fluorescence (CL-FL) imaging of atherosclerotic plaques in rats. It was shown that by utilizing both QDs and MSs with a high-refractive-index-oil core, the CL emission increases by four-fold at longer wavelengths. Furthermore, we demonstrate that these MSs generate both an in vivo and ex vivo contrast signal. The design concept of utilizing QDs and high-index core MSs may contribute to future developments of in vivo CL imaging. (paper)

  20. Three-dimensional noninvasive monitoring iodine-131 uptake in the thyroid using a modified Cerenkov luminescence tomography approach.

    Science.gov (United States)

    Hu, Zhenhua; Ma, Xiaowei; Qu, Xiaochao; Yang, Weidong; Liang, Jimin; Wang, Jing; Tian, Jie

    2012-01-01

    Cerenkov luminescence tomography (CLT) provides the three-dimensional (3D) radiopharmaceutical biodistribution in small living animals, which is vital to biomedical imaging. However, existing single-spectral and multispectral methods are not very efficient and effective at reconstructing the distribution of the radionuclide tracer. In this paper, we present a semi-quantitative Cerenkov radiation spectral characteristic-based source reconstruction method named the hybrid spectral CLT, to efficiently reconstruct the radionuclide tracer with both encouraging reconstruction results and less acquisition and image reconstruction time. We constructed the implantation mouse model implanted with a 400 µCi Na(131)I radioactive source and the physiological mouse model received an intravenous tail injection of 400 µCi radiopharmaceutical Iodine-131 (I-131) to validate the performance of the hybrid spectral CLT and compared the reconstruction results, acquisition, and image reconstruction time with that of single-spectral and multispectral CLT. Furthermore, we performed 3D noninvasive monitoring of I-131 uptake in the thyroid and quantified I-131 uptake in vivo using hybrid spectral CLT. Results showed that the reconstruction based on the hybrid spectral CLT was more accurate in localization and quantification than using single-spectral CLT, and was more efficient in the in vivo experiment compared with multispectral CLT. Additionally, 3D visualization of longitudinal observations suggested that the reconstructed energy of I-131 uptake in the thyroid increased with acquisition time and there was a robust correlation between the reconstructed energy versus the gamma ray counts of I-131 (r(2) = 0.8240). The ex vivo biodistribution experiment further confirmed the I-131 uptake in the thyroid for hybrid spectral CLT. Results indicated that hybrid spectral CLT could be potentially used for thyroid imaging to evaluate its function and monitor its treatment for thyroid cancer.

  1. Tests of a Roman Pot Prototype for the TOTEM Experiment

    CERN Document Server

    Deile, M.; Anelli, G.M.; Antchev, G.A.; Ayache, M.; Caspers, F.; Dimovasili, E.; Dinapoli, R.; Drouhin, F.D.; Eggert, K.; Escourrou, L.; Fochler, O.; Gill, K.; Grabit, R.; Haug, F.; Jarron, P.; Kaplon, J.; Kroyer, T.; Luntama, T.; Macina, D.; Mattelon, E.; Mirabito, L.; Niewiadomski, H.; Noschis, E.P.; Oriunno, M.; Park, A.; Perrot, A.L.; Pirotte, O.; Quetsch, J.M.; Regnier, F.; Ruggiero, G.; Saramad, S.; Siegrist, P.; Snoeys, W.; Souissi, T.; Szczygiel, R.; Troska, J.; Vasey, F.; Verdier, A.; Avati, V.; Jarvinen, M.; Kalliokoski, M.; Kalliopuska, J.; Kurvinen, K.; Lauhakangas, R.; Oljemark, F.; Orava, R.; Palmieri, V.; Saarikko, H.; Soininen, A.; Osterberg, K.; Berardi, V.; Catanesi, M.G.; Radicioni, E.; Boccone, V.; Bozzo, M.; Buzzo, A.; Cuneo, S.; Ferro, F.; Macri, M.; Minutoli, S.; Morelli, A.; Musico, P.; Negri, M.; Santroni, A.; Sette, G.; Sobol, A.; Da Via, C.; Hasi, J.; Kok, A.; Watts, S.; Kasper, J.; Kundrat, V.; Lokajicek, M.; Smotlacha, J.

    2005-01-01

    The TOTEM collaboration has developed and tested the first prototype of its Roman Pots to be operated in the LHC. TOTEM Roman Pots contain stacks of 10 silicon detectors with strips oriented in two orthogonal directions. To measure proton scattering angles of a few microradians, the detectors will approach the beam centre to a distance of 10 sigma + 0.5 mm (= 1.3 mm). Dead space near the detector edge is minimised by using two novel "edgeless" detector technologies. The silicon detectors are used both for precise track reconstruction and for triggering. The first full-sized prototypes of both detector technologies as well as their read-out electronics have been developed, built and operated. The tests took place first in a fixed-target muon beam at CERN's SPS, and then in the proton beam-line of the SPS accelerator ring. We present the test beam results demonstrating the successful functionality of the system despite slight technical shortcomings to be improved in the near future.

  2. Tests of a Roman Pot prototype for the TOTEM experiment

    Science.gov (United States)

    Deile, M.; Alagoz, E.; Anelli, G.; Antchev, G.; Ayache, M.; Caspers, F.; Dimovasili, E.; Dinapoli, R.; Drouhin, F.; Eggert, K.; Escourrou, J.L; Fochler, O.; Gill, K.; Grabit, R.; Haung, F.; Jarron, P.; Kaplon, J.; Kroyer, T.; Luntama, T.; Macina, D.; Mattelon, E.; Niewiadomski, H.; Mirabito, L.; Noschis, E.P.; Oriunno, M.; Park, a.; Perrot, A.-L.; Pirotte, O.; Quetsch, J.M.; Regnier, F.; Ruggiero, G.; Saramad, S.; Siegrist, P.; Snoeys, W.; sSouissi, T.; Szczygiel, R.; Troska, J.; Vasey, F.; Verdier, A.; Da Vià, C.; Hasi, J.; Kok, A.; Watts, S.; Kašpar, J.; Kundrát, V.; Lokajíček, M.V.; Smotlacha, J.; Avati, V.; Järvinen, M.; Kalliokoski, M.; Kalliopuska, J.; Kurvinen, K.; Lauhakangas, R.; Oljemark, F.; Orava, R.; Österberg, K.; Palmieri, V.; Saarikko, H.; Soininen, A.; Boccone, V.; Bozzo, M.; Buzzo, A.; Cuneo, S.; Ferro, F.; Macrí, M.; Minutoli, S.; Morelli, A.; Musico, P.; Negri, M.; Santroni, A.; Sette, G.; Sobol, A.; sBerardi, V.; Catanesi, M.G.; Radicioni, E.

    The TOTEM collaboration has developed and tested the first prototype of its Roman Pots to be operated in the LHC. TOTEM Roman Pots contain stacks of 10 silicon detectors with strips oriented in two orthogonal directions. To measure proton scattering angles of a few microradians, the detectors will approach the beam centre to a distance of 10 sigma + 0.5 mm (= 1.3 mm). Dead space near the detector edge is minimised by using two novel "edgeless" detector technologies. The silicon detectors are used both for precise track reconstruction and for triggering. The first full-sized prototypes of both detector technologies as well as their read-out electronics have been developed, built and operated. The tests took place first in a fixed-target muon beam at CERN's SPS, and then in the proton beam-line of the SPS accelerator ring. We present the test beam results demonstrating the successful functionality of the system despite slight technical shortcomings to be improved in the near future.

  3. Response of APS storage ring basemat to ambient vibration

    International Nuclear Information System (INIS)

    Jendrzejczyk, J.A.; Wambsganss, M.W.; Smith, R.K.

    1992-08-01

    The storage ring of the Advanced Photon Source (APS) facility at Argonne is very sensitive to vibration. Large vibration amplitudes would result in degraded machine performance. Because the storage ring assembly is supported on the storage ring basemat, the dynamics of the basemat are critical to successful operation. Before construction began, a survey of site ground vibration indicated that the site was acceptable from a vibration standpoint. When construction of the linear accelerator (Linac) floor slab and shielding walls was completed, dynamic-response measurements were conducted. The slab/wall system showed attenuation of soilborne vibrations in the horizontal directions, but an amplification (approximately a factor of 1.5) of vertical vibration at a frequency of 7.7 Hz. Vibration response of the slab/wall system at all other frequencies showed attenuation of soilborne vibrations. Dynamic-response measurements were also conducted on an incomplete section of the storage ring basemat. Although this section was not prototypical, results were similar to those of the Linac floor in the horizontal direction, showing large damping and attenuation of horizontal soilborne vibrations. While the basemat followed the soil vibration in the vertical direction, no large amplification was observed. However, measured vertical amplitudes on the basemat were a function of location, indicating a modal response. A series of vibration response measurements was conducted on a completed section of the storage ring basemat/tunnel adjacent and to the west of the Early Assembly Area (EAA) on May 21, 1992, and is the subject of this report

  4. Status of the Cryogenic Storage Ring (CSR)

    Energy Technology Data Exchange (ETDEWEB)

    Menk, Sebastian; Becker, Arno; Berg, Felix; Blaum, Klaus; Fellenberger, Florian; Froese, Michael; Goullon, Johannes; Grieser, Manfred; Krantz, Claude; Lange, Michael; Laux, Felix; Repnow, Roland; Schornikov, Andrey; Hahn, Robert von; Wolf, Andreas [Max-Planck-Institut fuer Kernphysik (MPIK), 69117 Heidelberg (Germany); Spruck, Kaija [Institut fuer Atom- und Molekuelphysik Justus-Liebig-Universitaet, 35392 Giessen (Germany)

    2012-07-01

    A novel cryogenic storage ring is currently under construction at the MPIK. By electrostatic ion optical elements, the 35 m circumference Cryogenic Storage Ring will be able to store ions at energies of up to 300 keV per charge unit without any mass limitations. The CSR consists of a cryogenic ({proportional_to}5 K) beam pipe surrounded by two radiation shields (40 and 80 K) in a large outer, thermal insulation vacuum. Extreme vacuum (density {proportional_to}10{sup 3} cm{sup -3}) will be achieved by 2 K cryopumping as demonstrated in a prototype ion beam trap. The ion optics was completely assembled within the precision cryogenic mounting and shielding structure of the first corner. There, cooldown tests to {proportional_to}40 K were performed which confirmed the required sub-millimeter accuracy of the specially designed electrode positioning under large temperature changes. The high-voltage connections to the cryogenic electrodes were installed and breakdown tests will be reported. Based on the test results the beam pipe, electrode mounting and shielding structures are under final construction for mounting during 2012.

  5. CMS Hadronic EndCap Calorimeter Upgrade R&D Studies

    CERN Document Server

    Akgun, Ugur; Onel, Yasar

    2012-01-01

    Due to an expected increase in radiation damage in LHC, we propose to replace the active material of the CMS Hadronic EndCap calorimeters with radiation hard quartz plate. Quartz is proven to be radiation hard with radiation damage tests using electron, proton, neutron and gamma beams. However, the light produced in quartz is from Cerenkov process, which yields drastically fewer photons than scintillators. To increase the light collection efficiency we pursue two separate methods: First method: use wavelength shifting (WLS) fibers, which have been shown to collect efficiently the Cerenkov light generated in quartz plates. A quartz plate calorimeter prototype with WLS fibers has been constructed and tested at CERN that shows this method is feasible. Second proposed solution is to treat the quartz plates with radiation hard wavelength shifters, p-terphenyl, doped zinc oxide, or doped CdS. Another calorimeter prototype has been constructed with p-terphenyl deposited quartz plates, and showed superior calorimeter...

  6. A Study of Storage Ring Requirements for an Explosive Detection System Using NRA Method.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, T. F. (Tai-Sen F.); Kwan, T. J. T. (Thomas J. T.)

    2005-01-01

    The technical feasibility of an explosives detection system based on the nuclear resonance absorption (NRA) of gamma rays in nitrogen-rich materials was demonstrated at Los Alamos National Laboratory (LANL) in 1993 by using an RFQ proton accelerator and a tomographic imaging prototype. The study is being continued recently to examine deployment of such an active interrogation system in realistic scenarios. The approach is to use an accelerator and electron-cooling-equipped storage rings(s) to provide the high quality and high current proton beam needed in a practical application. In this work, we investigate the requirements on the storage ring(s) with external gamma-ray-production target for a variant of the airport luggage inspection system considered in the earlier LANL experiments. Estimations are carried out based on the required inspection throughput, the gamma ray yield, the proton beam emittance growth due to scatters with the photon-production target, beam current limit in the storage ring, and the electron-cooling rate. Studies using scaling and reasonable parameter values indicate that it is possible to use no more than a few storage rings per inspection station in a practical NRA luggage inspection complex having more than ten inspection stations.

  7. Architectural prototyping

    DEFF Research Database (Denmark)

    Bardram, Jakob Eyvind; Christensen, Henrik Bærbak; Hansen, Klaus Marius

    2004-01-01

    A major part of software architecture design is learning how specific architectural designs balance the concerns of stakeholders. We explore the notion of "architectural prototypes", correspondingly architectural prototyping, as a means of using executable prototypes to investigate stakeholders...

  8. Glow discharge processing vs bakeout for aluminum storage ring vacuum chambers

    International Nuclear Information System (INIS)

    Dean, N.R.; Hoyt, E.W.; Palrang, M.T.; Walker, B.G.

    1977-11-01

    Experiments were carried out on laboratory and prototype scale systems in order to establish the feasibility of argon discharge processing the PEP storage ring aluminum vacuum chambers. Electron-induced desorption rates showed significant reductions following bakeout and/or argon glow discharge treatment (>10 19 ions cm -1 ). Data are presented and discussed in relation to advantages and problems associated with: water removal, argon trapping and subsequent release, electron energy dependence, discharge distribution, and surface plasma chemical effects

  9. Ring Theory

    CERN Document Server

    Jara, Pascual; Torrecillas, Blas

    1988-01-01

    The papers in this proceedings volume are selected research papers in different areas of ring theory, including graded rings, differential operator rings, K-theory of noetherian rings, torsion theory, regular rings, cohomology of algebras, local cohomology of noncommutative rings. The book will be important for mathematicians active in research in ring theory.

  10. SU-F-T-174: Patient-Specific Point Dose Measurement Using Fiber Optic Radiation Sensor Using Cerenkov Radiation for Proton Therapeutic Beam

    Energy Technology Data Exchange (ETDEWEB)

    Son, J [Korea University, Seoul, Seoul (Korea, Republic of); National Cancer Center, Goyang-si (Korea, Republic of); Kim, M [Dongnam Institute of Radiological & Medical Sciences, Busan, Busan (Korea, Republic of); Yoon, M [Korea University, Seoul (Korea, Republic of); Shin, D [National Cancer Center, Goyang-si (Korea, Republic of)

    2016-06-15

    Purpose: A fiber-optic radiation sensor using Cerenkov radiation (FOCR) has been widely studied for use as a dosimeter for proton therapeutic beam. We developed the FOCR, and it applied to patient-specific point dose measurement in order to evaluate the effectiveness of the FOCR system for proton therapy QA. Methods: Calibration of FOCR was performed with an ionization chamber whose absolute doses were determined according to the IAEA TRS-398 protocol. To determine the calibration curve, the FOCR was irradiated perpendicularly to the proton beam at the 13 dose levels steps. We selected five actual patient treatment plans performed at proton therapy center and compared the resulting FOCR measurements with the ionization chamber measurements. Results: The Cerenkov light yield of the FOCR increases linearly with as the dose measured using the ionization chamber increases from 0 cGy to 500 cGy. The results indicate that the fitting curve is linear, suggesting that dose measurement based on the light yield of the FOCR is possible. The results of proton radiation dose QA performed using the FOCR for 10 proton fields and five patients are good agreement with an ionization chamber. Conclusion: We carried out the patient QA using the FOCR for proton therapeutic beam and evaluated the effectiveness of the FOCR as a proton therapy QA tool. Our results indicate that the FOCR is suitable for use in patient QA of clinical proton beams.

  11. Performance of Water-Based Liquid Scintillator: An Independent Analysis

    Directory of Open Access Journals (Sweden)

    D. Beznosko

    2014-01-01

    Full Text Available The water-based liquid scintillator (WbLS is a new material currently under development. It is based on the idea of dissolving the organic scintillator in water using special surfactants. This material strives to achieve the novel detection techniques by combining the Cerenkov rings and scintillation light, as well as the total cost reduction compared to pure liquid scintillator (LS. The independent light yield measurement analysis for the light yield measurements using three different proton beam energies (210 MeV, 475 MeV, and 2000 MeV for water, two different WbLS formulations (0.4% and 0.99%, and pure LS conducted at Brookhaven National Laboratory, USA, is presented. The results show that a goal of ~100 optical photons/MeV, indicated by the simulation to be an optimal light yield for observing both the Cerenkov ring and the scintillation light from the proton decay in a large water detector, has been achieved.

  12. Report of the eRHIC Ring-Ring Working Group

    Energy Technology Data Exchange (ETDEWEB)

    Aschenauer, E. C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Berg, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brennan, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fedotov, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Litvinenko, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Montag, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Palmer, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Parker, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Peggs, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tepikian, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Trbojevic, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Willeke, F. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-10-13

    This report evaluates the ring-ring option for eRHIC as a lower risk alternative to the linac-ring option. The reduced risk goes along with a reduced initial luminosity performance. However, a luminosity upgrade path is kept open. This upgrade path consists of two branches, with the ultimate upgrade being either a ring-ring or a linac-ring scheme. The linac-ring upgrade could be almost identical to the proposed linac-ring scheme, which is based on an ERL in the RHIC tunnel. This linac-ring version has been studied in great detail over the past ten years, and its significant risks are known. On the other hand, no detailed work on an ultimate performance ring-ring scenario has been performed yet, other than the development of a consistent parameter set. Pursuing the ring-ring upgrade path introduces high risks and requires significant design work that is beyond the scope of this report.

  13. Helium Leak Test for the PLS Storage Ring Chamber

    International Nuclear Information System (INIS)

    Choi, M. H.; Kim, H. J.; Choi, W. C.

    1993-01-01

    The storage ring vacuum system for the Pohang Light Source (PLS) has been designed to maintain the vacuum pressure of 10 1 0 Torr which requires UHV welding to have helium leak rate less than 1x10 1 0 Torr·L/sec. In order to develop new technique (PLS) welding technique), a prototype vacuum chamber has been welded by using Tungsten Inert Gas welding method and all the welded joints have been tested with a non-destructive method, so called helium leak detection, to investigate the vacuum tightness of the weld joints. The test was performed with a detection limit of 1x10 1 0 Torr·L/sec for helium and no detectable leaks were found for all the welded joints. Thus the performance of welding technique is proven to meet the criteria of helium leak rate required in the PLS Storage Ring. Both the principle and the procedure for the helium leak detection are also discussed

  14. Parametric effect of a spatially periodic voltage depression on operation of Cerenkov sources of electromagnetic radiation

    International Nuclear Information System (INIS)

    Nusinovich, G.S.; Vlasov, A.N.

    1994-01-01

    In microwave sources of coherent Cerenkov radiation the electrons usually propagate near the rippled wall of a slow-wave structure. These ripples cause the periodic modulation of electron potential depression, and therefore, lead to periodic modulation of electron axial velocities. Since the period of this electrostatic pumping is the period of the slow-wave structure the parametric coupling of electrons to originally nonsynchronous spatial harmonics of the microwave field may occur. This effect can be especially important for backward-wave oscillators (BWO's) driven by high current, relativistic electron beams. In the paper both linear and nonlinear theories of the relativistic resonant BWO with periodic modulation of electron axial velocities are developed and results illustrating the evolution of the linear gain function and the efficiency of operation in the large-signal regime are presented

  15. Ring-shaped inductive sensor design and application to pressure sensing

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Myoung Gyu; Baek, Seong Ki; Park, Young Woo [Dept. of Mechatronics Engineering, Chungnam National University, Daejeon (Korea, Republic of); Kim, Sun Young [Samsung Electro-Mechanics, Busan (Korea, Republic of)

    2015-10-15

    Inductive sensors are versatile and economical devices that are widely used to measure a wide variety of physical variables, such as displacement, force, and pressure. In this paper, we propose a simple inductive sensor consisting of a thin partial ring and a coil set. The self-inductance of the sensor was estimated using magnetic circuit analysis and validated through finite element analysis (FEA). The natural frequency of the ring was estimated using Castigliano's theorem and the method of equivalent mass. The estimation was validated through experiments and FEA. A prototype sensor with a signal processing circuit is built and applied to noninvasively sense the pressure inside a flexible tube. The obtained sensor outputs show quadratic behavior with respect to the pressure. When fitted to a quadratic equation, the least-square measurement error was less than 2%. The results confirm the feasibility of pressure sensing using the proposed inductive sensor.

  16. Ring-shaped inductive sensor design and application to pressure sensing

    International Nuclear Information System (INIS)

    Noh, Myoung Gyu; Baek, Seong Ki; Park, Young Woo; Kim, Sun Young

    2015-01-01

    Inductive sensors are versatile and economical devices that are widely used to measure a wide variety of physical variables, such as displacement, force, and pressure. In this paper, we propose a simple inductive sensor consisting of a thin partial ring and a coil set. The self-inductance of the sensor was estimated using magnetic circuit analysis and validated through finite element analysis (FEA). The natural frequency of the ring was estimated using Castigliano's theorem and the method of equivalent mass. The estimation was validated through experiments and FEA. A prototype sensor with a signal processing circuit is built and applied to noninvasively sense the pressure inside a flexible tube. The obtained sensor outputs show quadratic behavior with respect to the pressure. When fitted to a quadratic equation, the least-square measurement error was less than 2%. The results confirm the feasibility of pressure sensing using the proposed inductive sensor

  17. Sensitivity improvement of Cerenkov luminescence endoscope with terbium doped Gd{sub 2}O{sub 2}S nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xin; Chen, Xueli, E-mail: xlchen@xidian.edu.cn, E-mail: jimleung@mail.xidian.edu.cn; Cao, Xu; Zhan, Yonghua; Liang, Jimin, E-mail: xlchen@xidian.edu.cn, E-mail: jimleung@mail.xidian.edu.cn [Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education and School of Life Science and Technology, Xidian University, Xi' an, Shaanxi 710071 (China); Kang, Fei; Wang, Jing [Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China); Wu, Kaichun [Department of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China)

    2015-05-25

    Our previous study showed a great attenuation for the Cerenkov luminescence endoscope (CLE), resulting in relatively low detection sensitivity of radiotracers. Here, a kind of radioluminescence nanoparticles (RLNPs), terbium doped Gd{sub 2}O{sub 2}S was mixed with the radionuclide {sup 68}Ga to enhance the intensity of emitted luminescence, which finally improved the detection sensitivity of the CLE by using the radioluminescence imaging technique. With the in vitro and in vivo pseudotumor experiments, we showed that the use of RLNPs mixed with the radionuclide {sup 68}Ga enabled superior sensitivity compared with the radionuclide {sup 68}Ga only, with 50-fold improvement on detection sensitivity, which guaranteed meeting the demands of the clinical diagnosis of gastrointestinal tract tumors.

  18. Prototyping Practice

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette; Tamke, Martin

    2015-01-01

    This paper examines the role of the prototyping in digital architecture. During the past decade, a new research field has emerged exploring the digital technology’s impact on the way we think, design and build our environment. In this practice the prototype, the pavilion, installation or demonstr......This paper examines the role of the prototyping in digital architecture. During the past decade, a new research field has emerged exploring the digital technology’s impact on the way we think, design and build our environment. In this practice the prototype, the pavilion, installation...

  19. SU-G-TeP2-15: Feasibility Study of Fiber-Optic Cerenkov Radiation Sensors for in Vivo Measurement: Dosimetric Characterization and Clinical Application in Proton Beams

    Energy Technology Data Exchange (ETDEWEB)

    Lah, J [Myongji Hospital, Goyang-si (Korea, Republic of); Son, J [Korea University, Seoul (Korea, Republic of); Kim, G [University of California, San Diego, La Jolla, CA (United States); Shin, D [National Cancer Center, Goyang-si (Korea, Republic of)

    2016-06-15

    Purpose: To evaluate the possibility of a fiber-optic Cerenkov radiation sensor (FCRS) for in vivo dose verification in proton therapy. Methods: The Cerenkov radiation due to the proton beam was measured using a homemade phantom, consisting of a plastic optical fiber (POF, PGSCD1001-13-E, Toray, Tokyo, Japan) connected to each channel of a multianode photomultiplier tube (MAPMT:H7546, Hamamatsu Photonics, Shizuoka, Japan). Data were acquired using a multi-anode photomultiplier tube with the NI-DAQ system (National Instruments Texas, USA). The real-time monitoring graphic user interface was programmed using Labview. The FCRS was analyzed for its dosimetrics characteristic in proton beam. To determine the accuracy of the FCRS in proton dose measurements, we compared the ionization chamber dose measurements using a water phantom. We investigated the feasibility of the FCRS for the measurement of dose distributions near the superficial region for proton plans with a varying separation between the target volume and the surface of 3 patients using a humanoid phantom. Results: The dose-response has good linearity. Dose-rate and energy dependence were found to be within 1%. Depth-dose distributions in non-modulated proton beams obtained with the FCRS was in good agreement with the depth-dose measurements from the ionization chamber. To evaluate the dosimetric accuracy of the FCRS, the difference of isocenter dose between the delivery dose calculated by the treatment planning system and that measured by the FCRS was within 3%. With in vivo dosimetry using the humanoid phantom, the calculated surface doses overestimated measurements by 4%–8% using FCRS. Conclusion: In previous study, our results indicate that the performance of the array-type FCRS was comparable to that of the currently used a multi-layer ion chamber system. In this study, we also believe that the fiber-optic Cerenkov radiation sensor has considerable potential for use with in vivo patient proton dosimetry.

  20. Electric dipole moment planning with a resurrected BNL Alternating Gradient Synchrotron electron analog ring

    Directory of Open Access Journals (Sweden)

    Richard M. Talman

    2015-07-01

    Full Text Available There has been much recent interest in directly measuring the electric dipole moments (EDM of the proton and the electron, because of their possible importance in the present day observed matter/antimatter imbalance in the Universe. Such a measurement will require storing a polarized beam of “frozen spin” particles, 15 MeV electrons or 230 MeV protons, in an all-electric storage ring. Only one such relativistic electric accelerator has ever been built—the 10 MeV “electron analog” ring at Brookhaven National Laboratory in 1954; it can also be referred to as the “AGS analog” ring to make clear it was a prototype for the Alternating Gradient Synchrotron (AGS proton ring under construction at that time at BNL. (Its purpose was to investigate nonlinear resonances as well as passage through “transition” with the newly invented alternating gradient proton ring design. By chance this electron ring, long since dismantled and its engineering drawings disappeared, would have been appropriate both for measuring the electron EDM and to serve as an inexpensive prototype for the arguably more promising, but 10 times more expensive, proton EDM measurement. Today it is cheaper yet to “resurrect” the electron analog ring by simulating its performance computationally. This is one purpose for the present paper. Most existing accelerator simulation codes cannot be used for this purpose because they implicitly assume magnetic bending. The new ual/eteapot code, described in detail in an accompanying paper, has been developed for modeling storage ring performance, including spin evolution, in electric rings. Illustrating its use, comparing its predictions with the old observations, and describing new expectations concerning spin evolution and code performance, are other goals of the paper. To set up some of these calculations has required a kind of “archeological physics” to reconstitute the detailed electron analog lattice design from a

  1. DIRC, the internally reflecting ring imaging Cherenkov detector for BABAR

    International Nuclear Information System (INIS)

    Adam, I.; Aston, D.

    1997-11-01

    The DIRC is a new type of Cherenkov imaging device that will be used for the first time in the BABAR detector at the asymmetric B-factory, PEP-II. It is based on total internal reflection and uses long, rectangular bars made from synthetic fused silica as Cherenkov radiator and light guide. The principles of the DIRC ring imaging Cherenkov technique are explained and results from the prototype program are presented. Its choice for the BABAR detector particle identification system is motivated, followed by a discussion of the quartz radiator properties and the detector design

  2. The GINGER project and status of the GINGERino prototype at LNGS

    Science.gov (United States)

    Ortolan, A.; Belfi, J.; Bosi, F.; Di Virgilio, A.; Beverini, N.; Carelli, G.; Maccioni, E.; Santagata, R.; Simonelli, A.; Beghi, A.; Cuccato, D.; Donazzan, A.; Naletto, G.

    2016-05-01

    GINGER (Gyroscopes IN GEneral Relativity) is a proposal for measuring in a ground-based laboratory the Lense-Thirring effect, known also as inertial frame dragging, that is predicted by General Relativity, and is induced by the rotation of a massive source. GINGER will consist in an array of at least three square ring lasers, mutually orthogonal, with about 6-10 m side, and located in a deep underground site, possibly the INFN - National Laboratories of Gran Sasso. The tri-axial design will provide a complete estimation of the laboratory frame angular velocity, to be compared with the Earths rotation estimate provided by IERS with respect the fixed stars frame. Large-size ring lasers have already reached a very high sensitivity, allowing for relevant geodetic measurements. The accuracy required for Lense-Thirring effect measurement is higher than 10-14 rad/s and therefore Earth angular velocity must be measured within one part in 10-9. A 3.6 m side, square ring laser, called GINGERino, has been recently installed inside the Gran Sasso underground laboratories in order to qualify the site for a future installation of GINGER. We discuss the current status of the experimental work, and in particular of the GINGERino prototype.

  3. ASSOCIATIVE RINGS SOLVED AS LIE RINGS

    Directory of Open Access Journals (Sweden)

    M. B. Smirnov

    2011-01-01

    Full Text Available The paper has proved that an associative ring which is solvable of a n- class as a Lie ring has a nilpotent ideal of the nilpotent class not more than 3×10n–2  and a corresponding quotient ring satisfies an identity [[x1, x2, [x3, x4

  4. The insertion device magnetic measurement facility: Prototype and operational procedures

    International Nuclear Information System (INIS)

    Burkel, L.; Dejus, R.; Maines, J.; O'Brien, J.; Vasserman, I.; Pfleuger, J.

    1993-03-01

    This report is a description of the current status of the magnetic measurement facility and is a basic instructional manual for the operation of the facility and its components. Please refer to the appendices for more detailed information about specific components and procedures. The purpose of the magnetic measurement facility is to take accurate measurements of the magnetic field in the gay of the IDs in order to determine the effect of the ID on the stored particle beam and the emitted radiation. The facility will also play an important role when evaluating new ideas, novel devices, and inhouse prototypes as part of the ongoing research and development program at the APS. The measurements will be performed with both moving search coils and moving Hall probes. The IDs will be evaluated by computer modeling of the emitted radiation for any given (measured) magnetic field map. The quality of the magnetic field will be described in terms of integrated multipoles for the effect on Storage Ring performance and in terms of the derived trajectories for the emitted radiation. Before being installed on the Storage Ring, every device will be measured and characterized to assure that it is compatible with Storage Ring requirements and radiation specifications. The accuracy that the APS needs to achieve for magnetic measurements will be based on these specifications

  5. A Study of Storage Ring Requirements for an Explosive Detection System Using NRA Method

    CERN Document Server

    Wang, Tai-Sen

    2005-01-01

    The technical feasibility of an explosives detection system based on the nuclear resonance absorption (NRA) of gamma rays in nitrogen-rich materials was demonstrated at Los Alamos National Laboratory (LANL) in 1993 by using an RFQ proton accelerator and a tomographic imaging prototype.* The study is being continued recently to examine deployment of such an active interrogation system in realistic scenarios. The approach is to use a cyclotron and electron-cooling-equipped storage rings(s) to provide the high quality and high current proton beam needed in a practical application. In this work, we investigate the storage ring requirements for a variant of the airport luggage inspection system considered in the earlier LANL experiments. Estimations are carried out based on the required inspection throughput, the gamma ray yield, the proton beam emittance growth due to scattering with the photon-production target, beam current limit in the storage ring, and the electron cooling rate. Studies using scaling and reas...

  6. India-based Neutrino Observatory

    Indian Academy of Sciences (India)

    2012-11-17

    Nov 17, 2012 ... The charge identification capability of ICAL would make it complementary to large water Cerenkov and other detectors worldwide. The status of the design of the 50 kt magnet, the construction of a prototype ICAL detector, the experience with resistive plate chambers which will be the active elements in ICAL ...

  7. An investigation of various wavelength-shifting compounds for improving counting efficiency when 32P-Cerenkov radiation is measured in aqueous samples

    International Nuclear Information System (INIS)

    Ginkel, G. van

    1980-01-01

    Various water-soluble wavelength-shifting compounds were investigated to assess their suitability for the improvement of counting efficiency when Cerenkov radiation from phosphorous-32 is measured in a liquid scintillation counter. Of these compounds esculin, β-methyl-umbelliferon and sodium salicylate led to the greatest improvement in counting efficiency. Especially esculin and β-methyl-umbelliferon are fairly stable under a variety of experimental conditions and improve counting efficiencies by a factor of about 1.3 and 1.2 respectively. The use of ethanol as a water-miscible solvent combined with wavelength shifters soluble in both solvents does not improve counting efficiency. (author)

  8. Studies of cosmic ray events in ATLAS sTGC muon chamber prototypes

    CERN Document Server

    AUTHOR|(CDS)2097847; Warburton, Andreas

    Four years after its first long shutdown in 2015, the Large Hadron Collider (LHC) will be shut down once more for a luminosity upgrade. During that time, the ATLAS detector on the LHC ring will also follow an upgrade program, one upgrade being the replacement of the Small Muon Wheels for a New Small Wheel containing small-strip Thin Gap Chambers (sTGCs). The sTGCs built in Canada will be tested at McGill University before their installation in ATLAS. A testing facility has been constructed and a 40 × 60 cm^2 sTGC prototype has been used to deliver preliminary measurements from cosmic rays. This thesis will present the development of a robust tracking algorithm which can handle extra clusters and multiple tracks in an sTGC detector. This algorithm also categorizes events based on their number of clusters and tracks. By modifying the trigger time window of the sTGC prototype, the evolution of the distribution of events over this categorization is shown.

  9. Mapping Ring Particle Cooling across Saturn's Rings with Cassini CIRS

    Science.gov (United States)

    Brooks, Shawn M.; Spilker, L. J.; Edgington, S. G.; Pilorz, S. H.; Deau, E.

    2010-10-01

    Previous studies have shown that the rings' thermal inertia, a measure of their response to changes in the thermal environment, varies from ring to ring. Thermal inertia can provide insight into the physical structure of Saturn's ring particles and their regoliths. Low thermal inertia and quick temperature responses are suggestive of ring particles that have more porous or fluffy regoliths or that are riddled with cracks. Solid, coherent particles can be expected to have higher thermal inertias (Ferrari et al. 2005). Cassini's Composite Infrared Spectrometer has recorded millions of spectra of Saturn's rings since its arrival at Saturn in 2004 (personal communication, M. Segura). CIRS records far infrared radiation between 10 and 600 cm-1 (16.7 and 1000 µm) at focal plane 1 (FP1), which has a field of view of 3.9 mrad. Thermal emission from Saturn's rings peaks in this wavelength range. FP1 spectra can be used to infer ring temperatures. By tracking how ring temperatures vary, we can determine the thermal inertia of the rings. In this work we focus on CIRS observations of the shadowed portion of Saturn's rings. The thermal budget of the rings is dominated by the solar radiation absorbed by its constituent particles. When ring particles enter Saturn's shadow this source of energy is abruptly cut off. As a result, ring particles cool as they traverse Saturn's shadow. From these shadow observations we can create cooling curves at specific locations across the rings. We will show that the rings' cooling curves and thus their thermal inertia vary not only from ring to ring, but by location within the individual rings. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Copyright 2010 California Institute of Technology. Government sponsorship acknowledged.

  10. Enhancing experience prototyping by the help of mixed-fidelity prototypes

    OpenAIRE

    Yasar, Ansar-Ul-Haque

    2007-01-01

    In this research review I undertook the problem related to the usage of a new concept known as the Mixed- Fidelity Prototype which is a mixture of its predecessors Low- and High- Fidelity Prototypes in Experience Prototyping. Experience Prototyping is a good way to explore, communicate and interact with the designs we develop like experiencing cycling on the ice, although the mood, snow conditions, bicycle type and many other factors really matter and tend to change with time. Experience Prot...

  11. A proposal for a precision test of the standard model by neutrino-electron scattering (Large /hacek C/erenkov Detector Project)

    International Nuclear Information System (INIS)

    Allen, R.C.; Lu, X-Q.; Gollwitzer, K.

    1988-04-01

    A precision measurement of neutrino-electron elastic scattering from a beam stop neutrino source at LAMPF is proposed. The total error in sin 2 θ/sub W/ is estimated to be +-0.89/percent/. The experiment also will be sensitive to neutrino oscillations and supernova-neutrino bursts, and should set improved limits on the neutrino-charge radius and magnetic-dipole moment. The detector consists of a 2.5-million-gallon tank of water with approximately 14,000 photomultiplier tubes lining the surfaces of the tank. Neutrino-electron scattering events will be observed from the /hacek C/erenkov radiation emitted by the electrons in the water. 19 refs

  12. A proposal for a precision test of the standard model by neutrino-electron scattering (Large /hacek C/erenkov Detector Project)

    Energy Technology Data Exchange (ETDEWEB)

    Allen, R.C.; Lu, X-Q.; Gollwitzer, K.; Igo, G.J.; Gulmez, E.; Whitten, C.; VanDalen, G.; Layter, J.; Fung, Sun Yui; Shen, B.C.

    1988-04-01

    A precision measurement of neutrino-electron elastic scattering from a beam stop neutrino source at LAMPF is proposed. The total error in sin/sup 2/theta/sub W/ is estimated to be +-0.89/percent/. The experiment also will be sensitive to neutrino oscillations and supernova-neutrino bursts, and should set improved limits on the neutrino-charge radius and magnetic-dipole moment. The detector consists of a 2.5-million-gallon tank of water with approximately 14,000 photomultiplier tubes lining the surfaces of the tank. Neutrino-electron scattering events will be observed from the /hacek C/erenkov radiation emitted by the electrons in the water. 19 refs.

  13. Status of magnet power supply development for the APS storage ring

    International Nuclear Information System (INIS)

    McGhee, D.

    1989-01-01

    To simplify installation and speed testing of the Advanced Photon Source (APS) storage ring magnets, vacuum chambers and magnet power supplies, a modular approach was developed. All but the dipole magnets are independently controlled. Pulse width modulated dc-to-dc converters are used to power the individual magnets, with 12-pulse power supplies providing the raw dc to the converters. A magnet support base is the heart of a module and may hold as many as 7 magnets with 8 individually powered coils. The dc-to-dc converters are part of each magnet base module. This paper will show the modular approach which is used for the storage ring magnet systems and will give the test results of the prototype topology for the cd-to-cd converters that are being built and tested to power 680 quadrupole and sextupole magnets. 4 refs., 11 figs., 1 tab

  14. Performance of hybrid photon detector prototypes with 80% active area for the rich counters of LHCB

    International Nuclear Information System (INIS)

    Albrecht, E.; Alemi, M.; Barber, G.; Bibby, J.; Campbell, M.; Duane, A.; Gys, T.; Montenegro, J.; Piedigrossi, D.; Schomaker, R.; Snoeys, W.; Wotton, S.; Wyllie, K.

    2000-01-01

    We report on the ongoing work towards a hybrid photon detector with integrated silicon pixel readout for the ring imaging Cherenkov detectors of the LHCb experiment at the Large Hadron Collider at CERN. The photon detector is based on an electrostatically focussed image intensifier tube geometry where the image is de-magnified by a factor of ∼5. The anode consists of a silicon pixel array, bump-bonded to a binary readout chip with matching pixel electronics. The performance of full-scale prototypes equipped with 61-pixel anodes and external analogue readout is presented. The average signal-to-noise ratio is ∼11 with a peaking time of 1.2 μs. The tube active-to-total surface ratio is 81.7%, which meets the LHCb requirements. The spatial precision is measured to be better than 90 μm. A cluster of three such tubes has been installed in the LHCb RICH 1 prototype where Cherenkov gas rings have been successfully detected. Progress towards the encapsulation of new pixel electronics into a tube is also reported. In particular, the status of the development of a binary readout chip with a peaking time of 25 ns and a low and uniform detection threshold is summarized

  15. Performance of hybrid photon detector prototypes with 80% active area for the rich counters of LHCB

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, E.; Alemi, M.; Barber, G.; Bibby, J.; Campbell, M.; Duane, A.; Gys, T. E-mail: thierry.gys@cern.ch; Montenegro, J.; Piedigrossi, D.; Schomaker, R.; Snoeys, W.; Wotton, S.; Wyllie, K

    2000-03-11

    We report on the ongoing work towards a hybrid photon detector with integrated silicon pixel readout for the ring imaging Cherenkov detectors of the LHCb experiment at the Large Hadron Collider at CERN. The photon detector is based on an electrostatically focussed image intensifier tube geometry where the image is de-magnified by a factor of {approx}5. The anode consists of a silicon pixel array, bump-bonded to a binary readout chip with matching pixel electronics. The performance of full-scale prototypes equipped with 61-pixel anodes and external analogue readout is presented. The average signal-to-noise ratio is {approx}11 with a peaking time of 1.2 {mu}s. The tube active-to-total surface ratio is 81.7%, which meets the LHCb requirements. The spatial precision is measured to be better than 90 {mu}m. A cluster of three such tubes has been installed in the LHCb RICH 1 prototype where Cherenkov gas rings have been successfully detected. Progress towards the encapsulation of new pixel electronics into a tube is also reported. In particular, the status of the development of a binary readout chip with a peaking time of 25 ns and a low and uniform detection threshold is summarized.

  16. Noise Source Identification of a Ring-Plate Cycloid Reducer Based on Coherence Analysis

    OpenAIRE

    Yang, Bing; Liu, Yan

    2013-01-01

    A ring-plate-type cycloid speed reducer is one of the most important reducers owing to its low volume, compactness, smooth and high performance, and high reliability. The vibration and noise tests of the reducer prototype are completed using the HEAD acoustics multichannel noise test and analysis system. The characteristics of the vibration and noise are obtained based on coherence analysis and the noise sources are identified. The conclusions provide the bases for further noise research and ...

  17. In vivo evaluation of biosensors volumetric bio-distribution for measurement of metabolic activity by X-ray correlation, fluorescence, Cerenkov image and radioisotope; Evaluacion in vivo de la biodistribucion volumetrica de biosensores para medicion de la actividad metabolica por correlacion de rayos X, fluorescencia, imagen Cerenkov y radioisotopica

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez N, G. J.

    2016-07-01

    The aim of this study was to characterize the in vivo volumetric distribution of three folate based biosensors by different imaging modalities (X-ray, fluorescence, Cerenkov luminescence and radioisotopic imaging) through the development of a tri dimensional (3D) image reconstruction algorithm. The preclinical and multimodal Xtreme imaging system, with a Multimodal Animal Rotation System (Mars), was used to acquire bidimensional (2D) images, which were processed to obtain the 3D reconstruction. Images of mice at different times (biosensor distribution) were simultaneously obtained from the four imaging modalities. The filtered backprojection and inverse Radon transformation were used as main image-processing techniques. In the first instance, the algorithm developed in Mat lab was able to reconstruct in the 3D form the skeleton of the mice under study. Subsequently, the algorithm was able to get the volumetric profiles of {sup 99m}Tc-Folate-Bombesin (radioisotopic image), {sup 177}Lu-Folate-Bombesin (Cerenkov image), and FolateRSense 680 (fluorescence image) in the tumors and kidneys of the mice. No significant differences were detected between the volumetric quantifications using the standard measurement techniques and the quantifications obtained with the proposal made in this study, nor between the volumetric uptakes in the structures of interest. With the structures reconstructed in the 3D form, the fusion of anatomical (as the skeleton) and functional structures derived from the images of the biosensors uptake was achieved The imaging 3D reconstruction algorithm can be easily extrapolated to different 2D acquisition-type images. This characteristic flexibility of the algorithm developed in this study is an advantage in comparison to similar reconstruction methods. (Author)

  18. Investigating the role of implicit prototypes in the prototype willingness model.

    Science.gov (United States)

    Howell, Jennifer L; Ratliff, Kate A

    2017-06-01

    One useful theory to predict health behavior is the prototype-willingness model (PWM), which posits that people are more willing to engage in behavior to the extent that they have a positive view of the prototypical person who performs that behavior. The goal of the present research is to test whether adding an implicit measure of prototype favorability might improve explanatory power in the PWM. Two studies examined whether implicit prototype favorability uniquely predicted White women's intentions to engage in healthy sun behavior over the next 3-6 months, and their willingness to engage in risky sun behavior, should the opportunity arise. The results suggested that implicit prototype favorability, particularly implicit prototypes of those who engage in risky UV-related behaviors, uniquely predicted intentions to engage in healthy sun behavior and willingness to engage in risky sun behavior in the PWM.

  19. Software Prototyping

    Science.gov (United States)

    Del Fiol, Guilherme; Hanseler, Haley; Crouch, Barbara Insley; Cummins, Mollie R.

    2016-01-01

    Summary Background Health information exchange (HIE) between Poison Control Centers (PCCs) and Emergency Departments (EDs) could improve care of poisoned patients. However, PCC information systems are not designed to facilitate HIE with EDs; therefore, we are developing specialized software to support HIE within the normal workflow of the PCC using user-centered design and rapid prototyping. Objective To describe the design of an HIE dashboard and the refinement of user requirements through rapid prototyping. Methods Using previously elicited user requirements, we designed low-fidelity sketches of designs on paper with iterative refinement. Next, we designed an interactive high-fidelity prototype and conducted scenario-based usability tests with end users. Users were asked to think aloud while accomplishing tasks related to a case vignette. After testing, the users provided feedback and evaluated the prototype using the System Usability Scale (SUS). Results Survey results from three users provided useful feedback that was then incorporated into the design. After achieving a stable design, we used the prototype itself as the specification for development of the actual software. Benefits of prototyping included having 1) subject-matter experts heavily involved with the design; 2) flexibility to make rapid changes, 3) the ability to minimize software development efforts early in the design stage; 4) rapid finalization of requirements; 5) early visualization of designs; 6) and a powerful vehicle for communication of the design to the programmers. Challenges included 1) time and effort to develop the prototypes and case scenarios; 2) no simulation of system performance; 3) not having all proposed functionality available in the final product; and 4) missing needed data elements in the PCC information system. PMID:27081404

  20. Event reconstruction for the CBM-RICH prototype beamtest data in 2014

    Science.gov (United States)

    Adamczewski-Musch, J.; Akishin, P.; Becker, K.-H.; Belogurov, S.; Bendarouach, J.; Boldyreva, N.; Deveaux, C.; Dobyrn, V.; Dürr, M.; Eschke, J.; Förtsch, J.; Heep, J.; Höhne, C.; Kampert, K.-H.; Kochenda, L.; Kopfer, J.; Kravtsov, P.; Kres, I.; Lebedev, S.; Lebedeva, E.; Leonova, E.; Linev, S.; Mahmoud, T.; Michel, J.; Miftakhov, N.; Niebur, W.; Ovcharenko, E.; Patel, V.; Pauly, C.; Pfeifer, D.; Querchfeld, S.; Rautenberg, J.; Reinecke, S.; Riabov, Y.; Roshchin, E.; Samsonov, V.; Schetinin, V.; Tarasenkova, O.; Traxler, M.; Ugur, C.; Vznuzdaev, E.; Vznuzdaev, M.

    2017-12-01

    The Compressed Baryonic Matter (CBM) experiment at the future FAIR facility will investigate the QCD phase diagram at high net baryon densities and moderate temperatures in A+A collisions from 2 to 11 AGeV (SIS100). Electron identification in CBM will be performed by a Ring Imaging Cherenkov (RICH) detector and Transition Radiation Detectors (TRD). A real size prototype of the RICH detector was tested together with other CBM groups at the CERN PS/T9 beam line in 2014. For the first time the data format used the FLESnet protocol from CBM delivering free streaming data. The analysis was fully performed within the CBMROOT framework. In this contribution the data analysis and the event reconstruction methods which were used for obtained data are discussed. Rings were reconstructed using an algorithm based on the Hough Transform method and their parameters were derived with high accuracy by circle and ellipse fitting procedures. We present results of the application of the presented algorithms. In particular we compare results with and without Wavelength shifting (WLS) coating.

  1. CERN-built prototype RICH detector back from the USA

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    In summer 1999, a ring-imaging Cherenkov detector (RICH) developed, constructed and tested at CERN was dismantled and sent to the Brookhaven National Laboratory (BNL) where it was used to extend the particle identification range of the STAR detector at the Relativistic Heavy Ion Collider (RHIC). The RICH was a prototype of part of the ALICE-HMPID detector. Here we see members of the STAR-RICH team from ALICE-HMPID group with the detector, still in its shipping crates, back from BNL. L. to r.: A.Braem, E. Schyns, D. Fraissard, C. David, A. Di Mauro, J. van Beelen, G. Paic, Y. Lesenechal, F. Piuz, P. Martinengo, D. Di Bari, G. De Cataldo, Y. Andres, M. Davenport, V. Barozier, E. Nappi, T. D. Williams.

  2. Rapid and Accurate Assembly Method for a New Laue Lens Prototype

    DEFF Research Database (Denmark)

    Wade, Colin; Barriere, Nicolas; Hanlon, Lorraine

    2015-01-01

    The Laue lens is a technology for gamma-ray astrophysics whereby gamma-rays of particular energies can be focused by a suitable arrangement of crystals. The Laue lens assembly station at UC Berkeley was used to build a technological demonstrator addressing the key issues of crystal mounting speed......, crystal position and orientation accuracy, and crystal reflectivity. The new prototype is a lens segment containing a total of 48 5 x 5 mm2 crystals - 36 Iron and 12 Aluminium. The segment is composed of 8 partial rings, each of which is aligned to diffract an energy between 95 and 130 keV from a source...

  3. Magnetic Measurements of Storage Ring Magnets for the APS Upgrade Project

    Energy Technology Data Exchange (ETDEWEB)

    Doose, C.; Dejus, R.; Jaski, M.; Jansma, W.; Collins, J.; Donnelly, A.; Liu, J.; Cease, H.; Decker, G.; Jain, A.; DiMarco, J.

    2017-06-01

    Extensive prototyping of storage ring magnets is ongoing at the Advanced Photon Source (APS) in support of the APS Multi-Bend Achromat (MBA) upgrade project (APS-U) [1]. As part of the R&D activities four quadrupole magnets with slightly different geometries and pole tip materials, and one sextupole magnet with vanadium permendur (VP) pole tips were designed, built and tested. Magnets were measured individually using a rotating coil and a Hall probe for detailed mapping of the magnetic field. Magnets were then assembled and aligned relative to each other on a steel support plate and concrete plinth using precision machined surfaces to gain experience with the alignment method chosen for the APS-U storage ring magnets. The required alignment of magnets on a common support structure is 30 μm rms. Measurements of magnetic field quality, strength and magnet alignment after subjecting the magnets and assemblies to different tests are presented.

  4. Acoustic Levitation Transportation of Small Objects Using a Ring-type Vibrator

    Science.gov (United States)

    Thomas, Gilles P. L.; Andrade, Marco A. B.; Adamowski, Julio C.; Silva, Eḿílio C. N.

    A new device for noncontact transportation of small solid objects is presented here. Ultrasonic flexural vibrations are generated along the ring shaped vibrator using two Langevin transducers and by using a reflector parallel to the vibrator, small particles are trapped at the nodal points of the resulting acoustic standing wave. The particles are then moved by generating a traveling wave along the vibrator, which can be done by modulating the vibration amplitude of the transducers. The working principle of the traveling wave along the vibrator has been modeled by the superposition of two orthogonal standing waves, and the position of the particles can be predicted by using finite element analysis of the vibrator and the resulting acoustic field. A prototype consisting of a 3 mm thick, 220 mm long, 50 mm wide and 52 mm radius aluminum ring-type vibrator and a reflector of the same length and width was built and small polystyrene spheres have been successfully transported along the straight parts of the vibrator.

  5. Solution Prototype

    DEFF Research Database (Denmark)

    Efeoglu, Arkin; Møller, Charles; Serie, Michel

    2013-01-01

    This paper outlines an artifact building and evaluation proposal. Design Science Research (DSR) studies usually consider encapsulated artifact that have relationships with other artifacts. The solution prototype as a composed artifact demands for a more comprehensive consideration in its systematic...... environment. The solution prototype that is composed from blending product and service prototype has particular impacts on the dualism of DSR’s “Build” and “Evaluate”. Since the mix between product and service prototyping can be varied, there is a demand for a more agile and iterative framework. Van de Ven......’s research framework seems to fit this purpose. Van de Ven allows for an iterative research approach to problem solving with flexible starting point. The research activity is the result between the iteration of two dimensions. This framework focuses on the natural evaluation, particularly on ex...

  6. Black rings

    International Nuclear Information System (INIS)

    Emparan, Roberto; Reall, Harvey S

    2006-01-01

    A black ring is a five-dimensional black hole with an event horizon of topology S 1 x S 2 . We provide an introduction to the description of black rings in general relativity and string theory. Novel aspects of the presentation include a new approach to constructing black ring coordinates and a critical review of black ring microscopics. (topical review)

  7. A novel tubular linear motor equipped with radially anisotropic NdFeB ring magnets

    International Nuclear Information System (INIS)

    Hor, P.J.

    1998-01-01

    The paper describes the design synthesis and optimisation of a novel tubular linear motor employing radially magnetised anisotropic ring magnets. Design issues, related to optimising the dimensions for maximum acceleration capability, minimum cogging force and low harmonic distortion in the emf waveform, are discussed. The influence of inhomogeneities in the magnets on the performance of a prototype motor is discussed, and its dynamic performance is validated experimentally against a typical target specification for automated high-speed manufacturing applications. (orig.)

  8. Prototype rf cavity for the HISTRAP accelerator

    International Nuclear Information System (INIS)

    Mosko, S.W.; Dowling, D.T.; Olsen, D.K.

    1989-01-01

    HISTRAP, a proposed synchrotron-cooling-storage ring designed to both accelerate and decelerate very highly charged very heavy ions for atomic physics research, requires an rf accelerating system to provide /+-/2.5 kV of peak accelerating voltage per turn while tuning through a 13.5:1 frequency range in a fraction of a second. A prototype half-wave, single gap rf cavity with biased ferrite tuning was built and tested over a continuous tuning range of 200 kHz through 2.7 MHz. Initial test results establish the feasibility of using ferrite tuning at the required rf power levels. The resonant system is located entirely outside of the accelerator's 15cm ID beam line vacuum enclosure except for a single rf window which serves as an accelerating gap. Physical separation of the cavity and the beam line permits in situ vacuum baking of the beam line at 300/degree/C

  9. Variations in Ring Particle Cooling across Saturn's Rings with Cassini CIRS

    Science.gov (United States)

    Brooks, S. M.; Spilker, L. J.; Pilorz, S.; Edgington, S. G.; Déau, E.; Altobelli, N.

    2010-12-01

    Cassini's Composite Infrared Spectrometer has recorded over two million of spectra of Saturn's rings in the far infrared since arriving at Saturn in 2004. CIRS records far infrared radiation between 10 and 600 cm-1 ( 16.7 and 1000 μ {m} ) at focal plane 1 (FP1), which has a field of view of 3.9 mrad. Thermal emission from Saturn’s rings peaks in this wavelength range. Ring temperatures can be inferred from FP1 data. By tracking how ring temperatures vary, we can determine the thermal inertia of the rings. Previous studies have shown that the rings' thermal inertia, a measure of their response to changes in the thermal environment, varies from ring to ring. Thermal inertia can provide insight into the physical structure of Saturn's ring particles and their regoliths. Low thermal inertia and rapidly changing temperatures are suggestive of ring particles that have more porous or fluffy regoliths or that are riddled with cracks. Solid particles can be expected to have higher thermal inertias. Ferrari et al. (2005) fit thermal inertia values of 5218 {Jm)-2 {K}-1 {s}-1/2 to their B ring data and 6412 {Jm)-2 {K}-1 {s}-1/2 to their C ring data. In this work we focus on CIRS observations of the shadowed portion of Saturn's rings. The rings’ thermal budget is dominated by its absorption of solar radiation. As a result, ring particles abruptly cool as they traverse Saturn's shadow. From these shadow observations we can create cooling curves at specific locations across the rings. We will show that the rings' cooling curves and thus their thermal inertia vary not only from ring to ring, but by location within the individual rings. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Copyright 2010 California Institute of Technology. Government sponsorship acknowledged.

  10. First high-power model of the annular-ring coupled structure for use in the Japan Proton Accelerator Research Complex linac

    Directory of Open Access Journals (Sweden)

    Hiroyuki Ao

    2012-01-01

    Full Text Available A prototype cavity for the annular-ring coupled structure (ACS for use in the Japan Proton Accelerator Research Complex (J-PARC linac has been developed to confirm the feasibility of achieving the required performance. This prototype cavity is a buncher module, which includes ten accelerating cells in total. The ACS cavity is formed by the silver brazing of ACS half-cell pieces stacked in a vacuum furnace. The accelerating cell of the ACS is surrounded by a coupling cell. We, therefore, tuned the frequencies of the accelerating and coupling cells by an ultraprecision lathe before brazing, taking into account the frequency shift due to brazing. The prototype buncher module was successfully conditioned up to 600 kW, which corresponds to an accelerating field that is higher than the designed field of 4.1  MV/m by 30%. We describe the frequency-tuning results for the prototype buncher module and its high-power conditioning.

  11. The multi-stage proportional chamber in the detection of Cherenkov rings for particle recognition

    International Nuclear Information System (INIS)

    Sauli, F.

    1979-01-01

    The multi-stage proportional chamber enables very high gains of 10 6 or more to be reached in gaseous mixtures offering a very good quantum efficiency in the far ultra-violet range. This makes it an ideal instrument for detecting and locating the photons emitted by Cerenkov effect in appropriate radiators [fr

  12. Overview of the data acquisition electronics system design for the SLAC Linear Collider Detector (SLD)

    International Nuclear Information System (INIS)

    Larsen, R.S.

    1985-09-01

    The SLD Detector will contain five major electronics subsystems: Vertex, Drift, Liquid Argon Calorimeter, Cerenkov Ring Imaging, and Warm Iron Calorimeter. To implement the approximately 170,000 channels of electronics, extensive miniaturization and heavy use of multiplexing techniques are required. Design criteria for each subsystem, overall system architecture, and the R and D program are described

  13. Cooperative Prototyping Experiments

    DEFF Research Database (Denmark)

    Bødker, Susanne; Grønbæk, Kaj

    1989-01-01

    This paper describes experiments with a design technique that we denote cooperative prototyping. The experiments consider design of a patient case record system for municipal dental clinics in which we used HyperCard, an off the shelf programming environment for the Macintosh. In the ecperiments we...... tried to achieve a fluent work-like evaluation of prototypes where users envisioned future work with a computer tool, at the same time as we made on-line modifications of prototypes in cooperation with the users when breakdown occur in their work-like evaluation. The experiments showed...... that it was possible to make a number of direct manipulation changes of prototypes in cooperation with the users, in interplay with their fluent work-like evaluation of these. However, breakdown occurred in the prototyping process when we reached the limits of the direct manipulation support for modification. From...

  14. Unikabeton Prototype

    DEFF Research Database (Denmark)

    Søndergaard, Asbjørn; Dombernowsky, Per

    2011-01-01

    The Unikabeton prototype structure was developed as the finalization of the cross-disciplinary research project Unikabeton, exploring the architectural potential in linking the computational process of topology optimisation with robot fabrication of concrete casting moulds. The project was elabor......The Unikabeton prototype structure was developed as the finalization of the cross-disciplinary research project Unikabeton, exploring the architectural potential in linking the computational process of topology optimisation with robot fabrication of concrete casting moulds. The project...... of Architecture was to develop a series of optimisation experiments, concluding in the design and optimisation of a full scale prototype concrete structure....

  15. Alternative loop rings

    CERN Document Server

    Goodaire, EG; Polcino Milies, C

    1996-01-01

    For the past ten years, alternative loop rings have intrigued mathematicians from a wide cross-section of modern algebra. As a consequence, the theory of alternative loop rings has grown tremendously. One of the main developments is the complete characterization of loops which have an alternative but not associative, loop ring. Furthermore, there is a very close relationship between the algebraic structures of loop rings and of group rings over 2-groups. Another major topic of research is the study of the unit loop of the integral loop ring. Here the interaction between loop rings and group ri

  16. Primitivity and weak distributivity in near rings and matrix near rings

    International Nuclear Information System (INIS)

    Abbasi, S.J.

    1993-08-01

    This paper shows the structure of matrix near ring constructed over a weakly distributive and primative near ring. It is proved that a weakly distributive primitive near ring is a ring and the matrix near rings constructed over it is also a bag. (author). 14 refs

  17. Micro-ring structures stabilize microdroplets to enable long term spheroid culture in 384 hanging drop array plates.

    Science.gov (United States)

    Hsiao, Amy Y; Tung, Yi-Chung; Kuo, Chuan-Hsien; Mosadegh, Bobak; Bedenis, Rachel; Pienta, Kenneth J; Takayama, Shuichi

    2012-04-01

    Using stereolithography, 20 different structural variations comprised of millimeter diameter holes surrounded by trenches, plateaus, or micro-ring structures were prepared and tested for their ability to stably hold arrays of microliter sized droplets within the structures over an extended period of time. The micro-ring structures were the most effective in stabilizing droplets against mechanical and chemical perturbations. After confirming the importance of micro-ring structures using rapid prototyping, we developed an injection molding tool for mass production of polystyrene 3D cell culture plates with an array of 384 such micro-ring surrounded through-hole structures. These newly designed and injection molded polystyrene 384 hanging drop array plates with micro-rings were stable and robust against mechanical perturbations as well as surface fouling-facilitated droplet spreading making them capable of long term cell spheroid culture of up to 22 days within the droplet array. This is a significant improvement over previously reported 384 hanging drop array plates which are susceptible to small mechanical shocks and could not reliably maintain hanging drops for longer than a few days. With enhanced droplet stability, the hanging drop array plates with micro-ring structures provide better platforms and open up new opportunities for high-throughput preparation of microscale 3D cell constructs for drug screening and cell analysis.

  18. In vivo evaluation of biosensors volumetric bio-distribution for measurement of metabolic activity by X-ray correlation, fluorescence, Cerenkov image and radioisotope

    International Nuclear Information System (INIS)

    Ramirez N, G. J.

    2016-01-01

    The aim of this study was to characterize the in vivo volumetric distribution of three folate based biosensors by different imaging modalities (X-ray, fluorescence, Cerenkov luminescence and radioisotopic imaging) through the development of a tri dimensional (3D) image reconstruction algorithm. The preclinical and multimodal Xtreme imaging system, with a Multimodal Animal Rotation System (Mars), was used to acquire bidimensional (2D) images, which were processed to obtain the 3D reconstruction. Images of mice at different times (biosensor distribution) were simultaneously obtained from the four imaging modalities. The filtered backprojection and inverse Radon transformation were used as main image-processing techniques. In the first instance, the algorithm developed in Mat lab was able to reconstruct in the 3D form the skeleton of the mice under study. Subsequently, the algorithm was able to get the volumetric profiles of "9"9"mTc-Folate-Bombesin (radioisotopic image), "1"7"7Lu-Folate-Bombesin (Cerenkov image), and FolateRSense 680 (fluorescence image) in the tumors and kidneys of the mice. No significant differences were detected between the volumetric quantifications using the standard measurement techniques and the quantifications obtained with the proposal made in this study, nor between the volumetric uptakes in the structures of interest. With the structures reconstructed in the 3D form, the fusion of anatomical (as the skeleton) and functional structures derived from the images of the biosensors uptake was achieved The imaging 3D reconstruction algorithm can be easily extrapolated to different 2D acquisition-type images. This characteristic flexibility of the algorithm developed in this study is an advantage in comparison to similar reconstruction methods. (Author)

  19. Rectangular Ring Antenna Excited by Circular Disc Monopole for WiMAX System

    Directory of Open Access Journals (Sweden)

    Souphanna Vongsack

    2014-01-01

    Full Text Available This research presents a rectangular ring antenna excited by a circular disc monopole (CDM mounted in front of a square reflector. The proposed antenna is designed to cover a frequency range of 2.300–5.825 GHz and thereby is suitable for WiMAX applications. Multiple parametric studies were carried out using the CST Microwave Studio simulation program. A prototype antenna was fabricated and experimented. The measurements were taken and compared with the simulation results, which indicates good agreement between both results. The prototype antenna produces an impedance bandwidth (|S11| < −10 dB that covers the WiMAX frequency range and a constant unidirectional radiation pattern (θ=0° and ∅=90°. The minimum and maximum gains are 3.7 and 8.7 dBi, respectively. The proposed antenna is of compact size and has good unidirectional radiation performance. Thus, it is very suitable for a multitude of WiMAX applications.

  20. Interaction of ring dark solitons with ring impurities in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Xue Jukui

    2005-01-01

    The interaction of ring dark solitons/vortexes with the ring-shaped repulsive and attractive impurities in two-dimensional Bose-Einstein condensates is investigated numerically. Very rich interaction phenomena are obtained, i.e., not only the interaction between the ring soliton and the impurity, but also the interaction between vortexes and the impurity. The interaction characters, i.e., snaking of ring soliton, quasitrapping or reflection of ring soliton and vortexes by the impurity, strongly depend on initial ring soliton velocity, impurity strength, initial position of ring soliton and impurity. The numerical results also reveal that ring dark solitons/vortexes can be trapped and dragged by an adiabatically moving attractive ring impurity

  1. Storage Rings

    International Nuclear Information System (INIS)

    Fischer, W.

    2010-01-01

    Storage rings are circular machines that store particle beams at a constant energy. Beams are stored in rings without acceleration for a number of reasons (Tab. 1). Storage rings are used in high-energy, nuclear, atomic, and molecular physics, as well as for experiments in chemistry, material and life sciences. Parameters for storage rings such as particle species, energy, beam intensity, beam size, and store time vary widely depending on the application. The beam must be injected into a storage ring but may not be extracted (Fig. 1). Accelerator rings such as synchrotrons are used as storage rings before and after acceleration. Particles stored in rings include electrons and positrons; muons; protons and anti-protons; neutrons; light and heavy, positive and negative, atomic ions of various charge states; molecular and cluster ions, and neutral polar molecules. Spin polarized beams of electrons, positrons, and protons were stored. The kinetic energy of the stored particles ranges from 10 -6 eV to 3.5 x 10 12 eV (LHC, 7 x 10 12 eV planned), the number of stored particles from one (ESR) to 1015 (ISR). To store beam in rings requires bending (dipoles) and transverse focusing (quadrupoles). Higher order multipoles are used to correct chromatic aberrations, to suppress instabilities, and to compensate for nonlinear field errors of dipoles and quadrupoles. Magnetic multipole functions can be combined in magnets. Beams are stored bunched with radio frequency systems, and unbunched. The magnetic lattice and radio frequency system are designed to ensure the stability of transverse and longitudinal motion. New technologies allow for better storage rings. With strong focusing the beam pipe dimensions became much smaller than previously possible. For a given circumference superconducting magnets make higher energies possible, and superconducting radio frequency systems allow for efficient replenishment of synchrotron radiation losses of large current electron or positron beams

  2. Prototyping real-time systems

    OpenAIRE

    Clynch, Gary

    1994-01-01

    The traditional software development paradigm, the waterfall life cycle model, is defective when used for developing real-time systems. This thesis puts forward an executable prototyping approach for the development of real-time systems. A prototyping system is proposed which uses ESML (Extended Systems Modelling Language) as a prototype specification language. The prototyping system advocates the translation of non-executable ESML specifications into executable LOOPN (Language of Object ...

  3. Rings in drugs.

    Science.gov (United States)

    Taylor, Richard D; MacCoss, Malcolm; Lawson, Alastair D G

    2014-07-24

    We have analyzed the rings, ring systems, and frameworks in drugs listed in the FDA Orange Book to understand the frequency, timelines, molecular property space, and the application of these rings in different therapeutic areas and target classes. This analysis shows that there are only 351 ring systems and 1197 frameworks in drugs that came onto the market before 2013. Furthermore, on average six new ring systems enter drug space each year and approximately 28% of new drugs contain a new ring system. Moreover, it is very unusual for a drug to contain more than one new ring system and the majority of the most frequently used ring systems (83%) were first used in drugs developed prior to 1983. These observations give insight into the chemical novelty of drugs and potentially efficient ways to assess compound libraries and develop compounds from hit identification to lead optimization and beyond.

  4. Design of the 1.8 Tesla wiggler for the DAΦNE Main Rings

    International Nuclear Information System (INIS)

    Sanelli, C.; Hsieh, H.

    1992-01-01

    The electromagnetic and mechanical design of the eight wiggler magnets for DAΦNE Main Rings is described. The wigglers have a large 1.8 Tesla flat top magnetic field, 64 cm period and 4 cm gap. The magnetic 3-D calculations, the electromagnetic design and the adopted mechanical solutions, with particular attention to the vacuum chamber problems are described. A full scale prototype (5 full poles and two half pole) will be constructed in order to verify the accuracy of magnetic calculations, the end pole design and the multipole content. (author) 4 figs.; 1 tab

  5. Prototype studies of a 1 MHz chopper for the KAON Factory

    International Nuclear Information System (INIS)

    Wait, G.D.; Barnes, M.J.; Bishop, D.; Waters, G.; Figley, C.B.

    1991-05-01

    A 1.025 MHz (≅ 10 6 discrete pulses/s) beam chopper is required for the injection line into the accumulator ring of the KAON Factory at TRIUMF. The beam chopper will create 108 ns gaps in the 1 GeV/c H - beam to allow enough time for the magnetic field to be established in the kicker magnets in each of the 5 rings. The required deflection of 1 mrad can be achieved with a set of plates 5 cm apart in which the product of voltage difference and plate length is 37.7 kV.m. The 'kick' must have a rise and fall time of less than 39 ns and a flat top of 49 ns on alternate pulses. A novel design concept for a 1 MHz chopper has been developed involving an energy storage system where the electric pulses are stored in a large diameter (10 cm) low loss coaxial cable. Measurements on the performance of a high voltage prototype are presented. Results are encouraging and show that this novel design can be implemented successfully for the KAON Factory. (Author) 11 refs., 6 figs., tab

  6. Superconducting magnets for high energy storage rings

    International Nuclear Information System (INIS)

    Sampson, W.B.

    1977-01-01

    Superconducting dipole and quadrupole magnets were developed for the proton-proton intersecting storage accelerator ISABELLE. Full size prototypes of both kinds of magnets were constructed and successfully tested. The coils are fabricated from a single layer of wide braided superconductor and employ a low temperature iron core. This method of construction leads to two significant performance advantages; little or no training, and the ability of the coil to absorb its total magnetic stored energy without damage. A high pressure (15 atm) helium gas system is used for cooling. Measurements of the random field errors are compared with the expected field distribution. Three magnets (two dipoles and one quadrupole) were assembled into a segment of the accelerator ring structure (half cell). The performance of this magnet array, which is coupled in series both electrically and cryogenically, is also summarized

  7. SU-C-209-05: Monte Carlo Model of a Prototype Backscatter X-Ray (BSX) Imager for Projective and Selective Object-Plane Imaging

    International Nuclear Information System (INIS)

    Rolison, L; Samant, S; Baciak, J; Jordan, K

    2016-01-01

    Purpose: To develop a Monte Carlo N-Particle (MCNP) model for the validation of a prototype backscatter x-ray (BSX) imager, and optimization of BSX technology for medical applications, including selective object-plane imaging. Methods: BSX is an emerging technology that represents an alternative to conventional computed tomography (CT) and projective digital radiography (DR). It employs detectors located on the same side as the incident x-ray source, making use of backscatter and avoiding ring geometry to enclose the imaging object. Current BSX imagers suffer from low spatial resolution. A MCNP model was designed to replicate a BSX prototype used for flaw detection in industrial materials. This prototype consisted of a 1.5mm diameter 60kVp pencil beam surrounded by a ring of four 5.0cm diameter NaI scintillation detectors. The imaging phantom consisted of a 2.9cm thick aluminum plate with five 0.6cm diameter holes drilled halfway. The experimental image was created using a raster scanning motion (in 1.5mm increments). Results: A qualitative comparison between the physical and simulated images showed very good agreement with 1.5mm spatial resolution in plane perpendicular to incident x-ray beam. The MCNP model developed the concept of radiography by selective plane detection (RSPD) for BSX, whereby specific object planes can be imaged by varying kVp. 10keV increments in mean x-ray energy yielded 4mm thick slice resolution in the phantom. Image resolution in the MCNP model can be further increased by increasing the number of detectors, and decreasing raster step size. Conclusion: MCNP modelling was used to validate a prototype BSX imager and introduce the RSPD concept, allowing for selective object-plane imaging. There was very good visual agreement between the experimental and MCNP imaging. Beyond optimizing system parameters for the existing prototype, new geometries can be investigated for volumetric image acquisition in medical applications. This material is

  8. SU-C-209-05: Monte Carlo Model of a Prototype Backscatter X-Ray (BSX) Imager for Projective and Selective Object-Plane Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rolison, L; Samant, S; Baciak, J; Jordan, K [University of Florida, Gainesville, FL (United States)

    2016-06-15

    Purpose: To develop a Monte Carlo N-Particle (MCNP) model for the validation of a prototype backscatter x-ray (BSX) imager, and optimization of BSX technology for medical applications, including selective object-plane imaging. Methods: BSX is an emerging technology that represents an alternative to conventional computed tomography (CT) and projective digital radiography (DR). It employs detectors located on the same side as the incident x-ray source, making use of backscatter and avoiding ring geometry to enclose the imaging object. Current BSX imagers suffer from low spatial resolution. A MCNP model was designed to replicate a BSX prototype used for flaw detection in industrial materials. This prototype consisted of a 1.5mm diameter 60kVp pencil beam surrounded by a ring of four 5.0cm diameter NaI scintillation detectors. The imaging phantom consisted of a 2.9cm thick aluminum plate with five 0.6cm diameter holes drilled halfway. The experimental image was created using a raster scanning motion (in 1.5mm increments). Results: A qualitative comparison between the physical and simulated images showed very good agreement with 1.5mm spatial resolution in plane perpendicular to incident x-ray beam. The MCNP model developed the concept of radiography by selective plane detection (RSPD) for BSX, whereby specific object planes can be imaged by varying kVp. 10keV increments in mean x-ray energy yielded 4mm thick slice resolution in the phantom. Image resolution in the MCNP model can be further increased by increasing the number of detectors, and decreasing raster step size. Conclusion: MCNP modelling was used to validate a prototype BSX imager and introduce the RSPD concept, allowing for selective object-plane imaging. There was very good visual agreement between the experimental and MCNP imaging. Beyond optimizing system parameters for the existing prototype, new geometries can be investigated for volumetric image acquisition in medical applications. This material is

  9. Superconducting ring magnets of the PIOTRON Pi-meson therapy facility at SIN

    Energy Technology Data Exchange (ETDEWEB)

    Maix, R K; Meyer, G; Roman, T; Horvath, I; Vecsey, G; Zellweger, J

    1982-01-01

    Negative Pi-mesons seem to be very promising for cancer therapy, because of their well defined penetration depth and their enhanced energy deposition in the absorption region. A prototype Pi-meson therapy facility, called PIOTRON, has been constructed at SIN, where also pion beams of sufficient intensity are available. The central part of this system are two ring magnets, consisting each of 60 superconducting flat coils, with the aid of which 60 pion beams can be guided around a heavy iron shield and focused on the patient. In this paper the fabrication and the initial operation of these magnets is discussed.

  10. A digital feedback system for transverse orbit stabilization in the NSLS rings

    International Nuclear Information System (INIS)

    Friedman, A.; Bozoki, E.

    1993-01-01

    We are reporting on the design and preliminary results of a prototype digital feedback system for the storage rings at the NSLS. the system will use a nolinear eigenvector decomposition algorithm. It will have a wide dynamic range and will be able to correct noise in the orbit over a bandwidth in excess of 60 Hz. A Motorola-162 CPU board is used to sample the PUE's at a minimum rate of 200 Hz and an HP-742rt board is used to read the sampled signals and to generate a correction signal for the orbit correctors

  11. The vacuum system for the PEP II high energy ring straight sections

    International Nuclear Information System (INIS)

    Wienands, U.; Daly, E.; Heifets, S.A.; Kulikov, A.; Kurita, N.; Nordby, M.; Perkins, C.; Reuter, E.; Seeman, J.T.; Belser, F.C.; Berg, J.; Holdener, F.R.; Kerns, J.A.; McDaniel, M.R.; Stoeffl, W.

    1995-01-01

    The six straight sections of the PEP II High Energy Ring (HER) serve various functions: lattice tuning, beam injection and abort, providing space for rf cavities, longitudinal and transverse feedback, beam diagnostics and the interaction point. A stainless steel vacuum system has been designed; prototypes are currently being built. Cooling is required due to radiation coming from the last arc dipole and resistive losses in the vacuum chamber. Although the nominal beam current of the HER is 1 A the vacuum system is designed for 3 A to provide margin and an upgrade path. 5 refs., 7 figs

  12. Imagining the prototype

    OpenAIRE

    Brouwer, C. E.; Bhomer, ten, M.; Melkas, H.; Buur, J.

    2013-01-01

    This article reports on the analysis of a design session, employing conversation analysis. In the design session three experts and a designer discuss a prototype of a shirt, which has been developed with the input from these experts. The analysis focuses on the type of involvement of the participants with the prototype and how they explicate the points they make in the discussion with or without making use of the prototype. Three techniques for explicating design issues that exploit the proto...

  13. Study of a prototype electromagnetic calorimeter in the CALICE experiment under the Linear Collider International project

    International Nuclear Information System (INIS)

    Benyamna, Mustapha

    2010-01-01

    This thesis is conducted within the framework of the International Linear Collider and the international collaboration so called CALICE. This work focuses on a study of a prototype of the electromagnetic calorimeter. This prototype has been used in various test period at CERN, DESY and FNAL. The author presents two subjects of study: The first part is about the instrumentation for the resolution of the square event discovered during the taking data in 2006 at CERN. To explain the origin and solve the problem caused by crosstalk between peripherals pixels and the guard ring that surrounds the sensor, two studies were made: a simulation study using SILVACO software and a test bench to study several kinds of sensors. The second part of this thesis is a study on the identification of photons using estimators that are related to the parameters of the electromagnetic pattern of the shower. (author)

  14. White Ring; White ring

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, H.; Yuzawa, H. [Nikken Sekkei Ltd., Osaka (Japan)

    1998-01-05

    White Ring is a citizen`s gymnasium used for figure skating and short track speed skating games of 18th Winter Olympic Games in 1998. White Ring is composed of a main-arena and a sub-arena. For the main-arena with an area 41mtimes66m, an ice link can be made by disengaging the potable floor and by flowing brine in the bridged polystyrene pipes embedded in the concrete floor. Due to the fortunate groundwater in this site, well water is used for the outside air treatment energy in 63% during heating and in 35% during cooling. Ammonia is used as a cooling medium for refrigerating facility. For the heating of audience area in the large space, heat load from the outside is reduced by enhancing the heat insulation performance of the roof of arena. The audience seats are locally heated using heaters. For the White Ring, high quality environment is realized for games through various functions of the large-scale roof of the large space. Success of the big event was expected. 15 figs., 4 tabs.

  15. Token Ring Project

    Directory of Open Access Journals (Sweden)

    Adela Ionescu

    2007-01-01

    Full Text Available Ring topology is a simple configuration used to connect processes that communicate among themselves. A number of network standards such as token ring, token bus, and FDDI are based on the ring connectivity. This article will develop an implementation of a ring of processes that communicate among themselves via pipe links. The processes are nodes in the ring. Each process reads from its standard input and writes in its standard output. N-1 process redirects the its standard output to a standard input of the process through a pipe. When the ring-structure is designed, the project can be extended to simulate networks or to implement algorithms for mutual exclusion

  16. Experimental validation of prototype high voltage bushing

    Science.gov (United States)

    Shah, Sejal; Tyagi, H.; Sharma, D.; Parmar, D.; M. N., Vishnudev; Joshi, K.; Patel, K.; Yadav, A.; Patel, R.; Bandyopadhyay, M.; Rotti, C.; Chakraborty, A.

    2017-08-01

    Prototype High voltage bushing (PHVB) is a scaled down configuration of DNB High Voltage Bushing (HVB) of ITER. It is designed for operation at 50 kV DC to ensure operational performance and thereby confirming the design configuration of DNB HVB. Two concentric insulators viz. Ceramic and Fiber reinforced polymer (FRP) rings are used as double layered vacuum boundary for 50 kV isolation between grounded and high voltage flanges. Stress shields are designed for smooth electric field distribution. During ceramic to Kovar brazing, spilling cannot be controlled which may lead to high localized electrostatic stress. To understand spilling phenomenon and precise stress calculation, quantitative analysis was performed using Scanning Electron Microscopy (SEM) of brazed sample and similar configuration modeled while performing the Finite Element (FE) analysis. FE analysis of PHVB is performed to find out electrical stresses on different areas of PHVB and are maintained similar to DNB HV Bushing. With this configuration, the experiment is performed considering ITER like vacuum and electrical parameters. Initial HV test is performed by temporary vacuum sealing arrangements using gaskets/O-rings at both ends in order to achieve desired vacuum and keep the system maintainable. During validation test, 50 kV voltage withstand is performed for one hour. Voltage withstand test for 60 kV DC (20% higher rated voltage) have also been performed without any breakdown. Successful operation of PHVB confirms the design of DNB HV Bushing. In this paper, configuration of PHVB with experimental validation data is presented.

  17. Semi-algebraic function rings and reflectors of partially ordered rings

    CERN Document Server

    Schwartz, Niels

    1999-01-01

    The book lays algebraic foundations for real geometry through a systematic investigation of partially ordered rings of semi-algebraic functions. Real spectra serve as primary geometric objects, the maps between them are determined by rings of functions associated with the spectra. The many different possible choices for these rings of functions are studied via reflections of partially ordered rings. Readers should feel comfortable using basic algebraic and categorical concepts. As motivational background some familiarity with real geometry will be helpful. The book aims at researchers and graduate students with an interest in real algebra and geometry, ordered algebraic structures, topology and rings of continuous functions.

  18. Status of magnet power supply development for the APS [Advanced Photon Source] storage ring

    International Nuclear Information System (INIS)

    McGhee, D.

    1989-01-01

    To simplify installation and speed testing of the Advanced Photon Source (APS) storage ring magnets, vacuum chambers and magnet power supplies, a modular approach was developed. All but the dipole magnets are independently controlled. Pulse width modulated dc-to-dc converters are used to power the individual magnets, with 12-pulse power supplies providing the raw dc to the converters. A magnet support base is the heart of a module and may hold as many as 7 magnets with 8 individually powered coils. The dc-to-dc converters are part of each magnet base module. This paper will show the modular approach which is used for the storage ring magnet systems and will give the test results of the prototype topology for the dc-to-dc converters that are being built and tested to power 680 quadrupole and sextupole magnets. 4 refs., 11 figs., 1 tab

  19. Rotating ring-ring electrode theory and experiment

    NARCIS (Netherlands)

    Kuiken, H.K.; Bakkers, E.P.A.M.; Ligthart, H.; Kellyb, J.J.

    2000-01-01

    A model is presented for the rotating ring-ring electrode. Although the electrode is defined by four characteristic lengths, it is shown that the collection efficiency depends on only two dimensionless parameters. A simple relationship between these and the corresponding parameters for the rotating

  20. Topological ring currents in the "empty" ring of benzo-annelated perylenes.

    Science.gov (United States)

    Dickens, Timothy K; Mallion, Roger B

    2011-01-27

    Cyclic conjugation in benzo-annelated perylenes is examined by means of the topological π-electron ring currents calculated for each of their constituent rings, in a study that is an exact analogy of a recent investigation by Gutman et al. based on energy-effect values for the corresponding rings in each of these structures. "Classical" approaches, such as Kekulé structures, Clar "sextet" formulas, and circuits of conjugation, predict that the central ring in perylene is "empty" and thus contributes negligibly to cyclic conjugation. However, conclusions from the present calculations of topological ring currents agree remarkably with those arising from the earlier study involving energy-effect values in that, contrary to what would be predicted from the classical approaches, rings annelated in an angular fashion relative to the central ring of these perylene structures materially increase the extent of that ring's involvement in cyclic conjugation. It is suggested that such close quantitative agreement between the predictions of these two superficially very different indices (energy effect and topological ring current) might be due to the fact that, ultimately, both depend, albeit in ostensibly quite different ways, only on an adjacency matrix that contains information about the carbon-carbon connectivity of the conjugated system in question.

  1. The read-out electronics of the AMS prototype RICH detector

    International Nuclear Information System (INIS)

    Gallin-Martel, L.; Eraud, L.; Pouxe, J.; Aguayo de Hoyos, P.; Marin Munoz, J.; Martinez Botella, G.

    2003-01-01

    A Ring Imaging Cherenkov (RICH) counter dedicated to the AMS experiment is under development. An integrated circuit has been designed with the Austriamicrosystems 0.6 πm CMOS technology to process the signals of the 16 anode PMTs used in the photon detection. To improve the detector compactness, the read out electronics is placed very close to the PMTs. This lead to the design of a detection cell that comprises: a light guide, a PMT, a high voltage divider, an analog front end chip and an analog to digital converter. The analog front-end chips were extensively and successfully tested in a laboratory environment, 96 of them are now mounted on the RICH prototype. Tests with cosmic rays have started. Ion beam tests are planed in a near future. (authors)

  2. Magnetic field distribution inside the aperture of a steerer magnet prototype

    International Nuclear Information System (INIS)

    Chiriţă, Ionel; Dan, Daniel; Tănase, Nicolae

    2015-01-01

    The High Energy Storage Ring (HESR), an important part of the Facility for Antiproton and Ion Research (FAIR) international project [1], which will be set up in Darmstadt in the next years, contains, among other magnets, several corrector magnets used for vertical and horizontal beam deviation. A prototype of a 2mrad vertical steerer magnet was designed by National Institute for R and D in Electrical Engineering (ICPE-CA) Romania in close cooperation with Forschungszentrum Jülich Germany [2] and then manufactured and tested by ICPE-CA [3], Romanian Institute for Electrical Engineering—Advanced Research. Magnetic field measurements using a 3D Hall probe were performed. Measured data and their analysis are presented. The system used for Hall probe positioning and data acquisition is also described. (paper)

  3. Particle identification at an asymmetric B Factory

    International Nuclear Information System (INIS)

    Coyle, P.; Eigen, G.; Hitlin, D.; Oddone, P.; Ratcliff, B.; Roe, N.; Va'vra, J.; Ypsilantis, T.

    1991-09-01

    Particle identification systems are an important component of any detector at a high-luminosity, asymmetric B Factory. In particular, excellent hadron identification is required to probe CP violation in B 0 decays to CP eigenstates. The particle identification systems discussed below also provide help in separating leptons from hadrons at low momenta. We begin this chapter with a discussion of the physics motivation for providing particle identification, the inherent limitations due to interactions and decays in flight, and the requirements for hermiticity and angular coverage. A special feature of an asymmetric B Factory is the resulting asymmetry in the momentum distribution as a function of polar angle; this will also be quantified and discussed. In the next section the three primary candidates, time-of-flight (TOF), energy loss (dE/dx), and Cerenkov counters, both ring-imaging and threshold, will be briefly described and evaluated. Following this, one of the candidates, a long-drift Cerenkov ring-imaging device, is described in detail to provide a reference design. Design considerations for a fast RICH are then described. A detailed discussion of aerogel threshold counter designs and associated R ampersand D conclude the chapter. 56 refs., 64 figs., 13 tabs

  4. Kayser-Fleischer Rings

    Science.gov (United States)

    ... Support Contacts Lab Tracker/Copper Calculator Stories Programs & Research ... About Everything you need to know about Wilson Disease Kayser-Fleischer Rings Definition Kayser-Fleischer Ring: Clinical sign. Brownish-yellow ring visible around the corneo- ...

  5. Planetary Rings

    Science.gov (United States)

    Nicholson, P. D.

    2001-11-01

    A revolution in the studies in planetary rings studies occurred in the period 1977--1981, with the serendipitous discovery of the narrow, dark rings of Uranus, the first Voyager images of the tenuous jovian ring system, and the many spectacular images returned during the twin Voyager flybys of Saturn. In subsequent years, ground-based stellar occultations, HST observations, and the Voyager flybys of Uranus (1986) and Neptune (1989), as well as a handful of Galileo images, provided much additional information. Along with the completely unsuspected wealth of detail these observations revealed came an unwelcome problem: are the rings ancient or are we privileged to live at a special time in history? The answer to this still-vexing question may lie in the complex gravitational interactions recent studies have revealed between the rings and their retinues of attendant satellites. Among the four known ring systems, we see elegant examples of Lindblad and corotation resonances (first invoked in the context of galactic disks), electromagnetic resonances, spiral density waves and bending waves, narrow ringlets which exhibit internal modes due to collective instabilities, sharp-edged gaps maintained via tidal torques from embedded moonlets, and tenuous dust belts created by meteoroid impact onto parent bodies. Perhaps most puzzling is Saturn's multi-stranded, clumpy F ring, which continues to defy a simple explanation 20 years after it was first glimpsed in grainy images taken by Pioneer 11. Voyager and HST images reveal a complex, probably chaotic, dynamical interaction between unseen parent bodies within this ring and its two shepherd satellites, Pandora and Prometheus. The work described here reflects contributions by Joe Burns, Jeff Cuzzi, Luke Dones, Dick French, Peter Goldreich, Colleen McGhee, Carolyn Porco, Mark Showalter, and Bruno Sicardy, as well as those of the author. This research has been supported by NASA's Planetary Geology and Geophysics program and the

  6. Supporting Active User Involvment in Prototyping

    DEFF Research Database (Denmark)

    Grønbæk, Kaj

    1990-01-01

    The term prototyping has in recent years become a buzzword in both research and practice of system design due to a number of claimed advantages of prototyping techniques over traditional specification techniques. In particular it is often stated that prototyping facilitates the users' involvement...... in the development process. But prototyping does not automatically imply active user involvement! Thus a cooperative prototyping approach aiming at involving users actively and creatively in system design is proposed in this paper. The key point of the approach is to involve users in activities that closely couple...... development of prototypes to early evaluation of prototypes in envisioned use situations. Having users involved in such activities creates new requirements for tool support. Tools that support direct manipulation of prototypes and simulation of behaviour have shown promise for cooperative prototyping...

  7. Engineering prototypes for theta-pinch devices

    International Nuclear Information System (INIS)

    Hansborough, L.D.; Hammer, C.F.; Hanks, K.W.; McDonald, T.E.; Nunnally, W.C.

    1975-01-01

    Past, present, and future engineering prototypes for theta-pinch plasma-physics devices at Los Alamos Scientific Laboratory are discussed. Engineering prototypes are designed to test and evaluate all components under system conditions expected on actual plasma-physics experimental devices. The importance of engineering prototype development increases as the size and complexity of the plasma-physics device increases. Past experiences with the Scyllac prototype and the Staged Theta-Pinch prototype are discussed and evaluated. The design of the proposed Staged Scyllac prototype and the Large Staged Scyllac implosion prototype assembly are discussed

  8. Preparation for electron ring - plasma ring merging experiments in RECE-MERGE

    International Nuclear Information System (INIS)

    Taggart, D.; Sekiguchi, A.; Fleischmann, H.H.

    1986-01-01

    The formation of a mixed-CT using relativistic electron rings and gun-produced plasma rings by MERGE-ing them axially is simulated. This process is similar to the axial stacking of relativistic electron rings in RECE-Christa. The results of their first plasm production experiment are reported here. After study of the gun-produced plasma's properties is completed, the gun will be mounted at the downstream end of the vacuum tank and the source of relativistic electron rings will be at the upstream end. The two rings, formed at opposite ends of the tank, will be translated axially and merged

  9. Testing prototypes of novel radiator for LHCb-RICH

    CERN Document Server

    Saini, Divya

    2017-01-01

    The LHCb experiment at CERN aims to look for signals for physics beyond the standard model in particle physics. The data from Ring Imaging Cherenkov detector (RICH) in LHCb are used to identify the hadronic particles that are produced in proton-proton collisions in different momentum ranges. The particle identification performance of the current detector in the 1-10 GeV/c range needs a significant improvement. For this an R&D project to use a new type of radiator using photonic crystals is underway. In a laboratory at CERN, prototypes of crystals will be exposed to charged particles from a source and the Cherenkov photons created will be detected using multianode photomultiplier tubes (MaPMTs). The data collected will be compared with expectations from optical simulations. These simulations use the solutions of Maxwell’s equations based on the quantum mechanical properties of the crystals. The MaPMTs and the optical components outside the crystals are simulated using GEANT4 and analysis involve using t...

  10. EPCiR prototype

    DEFF Research Database (Denmark)

    2003-01-01

    A prototype of a residential pervasive computing platform based on OSGi involving among other a mock-up of an health care bandage.......A prototype of a residential pervasive computing platform based on OSGi involving among other a mock-up of an health care bandage....

  11. Fast-prototyping of VLSI

    International Nuclear Information System (INIS)

    Saucier, G.; Read, E.

    1987-01-01

    Fast-prototyping will be a reality in the very near future if both straightforward design methods and fast manufacturing facilities are available. This book focuses, first, on the motivation for fast-prototyping. Economic aspects and market considerations are analysed by European and Japanese companies. In the second chapter, new design methods are identified, mainly for full custom circuits. Of course, silicon compilers play a key role and the introduction of artificial intelligence techniques sheds a new light on the subject. At present, fast-prototyping on gate arrays or on standard cells is the most conventional technique and the third chapter updates the state-of-the art in this area. The fourth chapter concentrates specifically on the e-beam direct-writing for submicron IC technologies. In the fifth chapter, a strategic point in fast-prototyping, namely the test problem is addressed. The design for testability and the interface to the test equipment are mandatory to fulfill the test requirement for fast-prototyping. Finally, the last chapter deals with the subject of education when many people complain about the lack of use of fast-prototyping in higher education for VLSI

  12. HISTRAP: Proposal for a Heavy Ion Storage Ring for Atomic Physics

    Energy Technology Data Exchange (ETDEWEB)

    1988-11-01

    This paper presents an overview of the physics capabilities of HISTRAP together with a brief description of the facility and a sampling of the beams which will be available for experimentation, and surveys some of the lines of investigation in the physics of multicharged ions, molecular ion spectroscopy, condensed beams, and nuclear physics that will become possible with the advent of HISTRAP. Details of the accelerator design are discussed, including computer studies of beam tracking in the HISTRAP lattice, a discussion of the HHIRF tandem and ECR/RFQ injectors, and a description of the electron beam cooling system. In the past three years, HISTRAP has received substantial support from Oak Ridge National Laboratory management and staff. The project has used discretionary funds to develop hardware prototypes and carry out design studies. Construction has been completed on a vacuum test stand which models 1/16 of the storage ring and has attained a pressure of 4 x 10/sup -12/ Torr; a prototype rf cavity capable of accelerating beams up to 90 MeV/nucleon and decelerating to 20 keV/nucleon; and a prototype dipole magnet, one of the eight required for the HISTRAP lattice. This paper also contains a summary of the work on electron cooling carried out by one of our staff members at CERN. Building structures and services are described. Details of cost and schedule are also discussed. 77 refs.

  13. HISTRAP: Proposal for a Heavy Ion Storage Ring for Atomic Physics

    International Nuclear Information System (INIS)

    1988-11-01

    This paper presents an overview of the physics capabilities of HISTRAP together with a brief description of the facility and a sampling of the beams which will be available for experimentation, and surveys some of the lines of investigation in the physics of multicharged ions, molecular ion spectroscopy, condensed beams, and nuclear physics that will become possible with the advent of HISTRAP. Details of the accelerator design are discussed, including computer studies of beam tracking in the HISTRAP lattice, a discussion of the HHIRF tandem and ECR/RFQ injectors, and a description of the electron beam cooling system. In the past three years, HISTRAP has received substantial support from Oak Ridge National Laboratory management and staff. The project has used discretionary funds to develop hardware prototypes and carry out design studies. Construction has been completed on a vacuum test stand which models 1/16 of the storage ring and has attained a pressure of 4 x 10 -12 Torr; a prototype rf cavity capable of accelerating beams up to 90 MeV/nucleon and decelerating to 20 keV/nucleon; and a prototype dipole magnet, one of the eight required for the HISTRAP lattice. This paper also contains a summary of the work on electron cooling carried out by one of our staff members at CERN. Building structures and services are described. Details of cost and schedule are also discussed. 77 refs

  14. Development and evaluation of accelerated drug release testing methods for a matrix-type intravaginal ring.

    Science.gov (United States)

    Externbrink, Anna; Eggenreich, Karin; Eder, Simone; Mohr, Stefan; Nickisch, Klaus; Klein, Sandra

    2017-01-01

    Accelerated drug release testing is a valuable quality control tool for long-acting non-oral extended release formulations. Currently, several intravaginal ring candidates designed for the long-term delivery of steroids or anti-infective drugs are being in the developing pipeline. The present article addresses the demand for accelerated drug release methods for these formulations. We describe the development and evaluation of accelerated release methods for a steroid releasing matrix-type intravaginal ring. The drug release properties of the formulation were evaluated under real-time and accelerated test conditions. Under real-time test conditions drug release from the intravaginal ring was strongly affected by the steroid solubility in the release medium. Under sufficient sink conditions that were provided in release media containing surfactants drug release was Fickian diffusion driven. Both temperature and hydro-organic dissolution media were successfully employed to accelerate drug release from the formulation. Drug release could be further increased by combining the temperature effect with the application of a hydro-organic release medium. The formulation continued to exhibit a diffusion controlled release kinetic under the investigated accelerated conditions. Moreover, the accelerated methods were able to differentiate between different prototypes of the intravaginal ring that exhibited different release profiles under real-time test conditions. Overall, the results of the present study indicate that both temperature and hydro-organic release media are valid parameters for accelerating drug release from the intravaginal ring. Variation of either a single or both parameters yielded release profiles that correlated well with real-time release. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The Measurement of Aerosol Optical Properties Using Continuous Wave Cavity Ring-Down Techniques

    Science.gov (United States)

    Strawa, A. W.; Owano, T.; Castaneda, R.; Baer, D. S.; Paldus, B. A.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Large uncertainties in the effects that aerosols have on climate require improved in-situ measurements of extinction coefficient and single-scattering albedo. This abstract describes the use of continuous wave cavity ring-down (CW-CRD) technology to address this problem. The innovations in this instrument are the use of CW-CRD to measure aerosol extinction coefficient, the simultaneous measurement of scattering coefficient, and small size suitable for a wide range of aircraft applications. Our prototype instrument measures extinction and scattering coefficient at 690 nm and extinction coefficient at 1550 nm. The instrument itself is small (60 x 48 x 15 cm) and relatively insensitive to vibrations. The prototype instrument has been tested in our lab and used in the field. While improvements in performance are needed, the prototype has been shown to make accurate and sensitive measurements of extinction and scattering coefficients. Combining these two parameters, one can obtain the single-scattering albedo and absorption coefficient, both important aerosol properties. The use of two wavelengths also allows us to obtain a quantitative idea of the size of the aerosol through the Angstrom exponent. Minimum sensitivity of the prototype instrument is 1.5 x 10(exp -6)/m (1.5/Mm). Validation of the measurement of extinction coefficient has been accomplished by comparing the measurement of calibration spheres with Mie calculations. This instrument and its successors have potential to help reduce uncertainty currently associated with aerosol optical properties and their spatial and temporal variation. Possible applications include studies of visibility, climate forcing by aerosol, and the validation of aerosol retrieval schemes from satellite data.

  16. Ring faults and ring dikes around the Orientale basin on the Moon.

    Science.gov (United States)

    Andrews-Hanna, Jeffrey C; Head, James W; Johnson, Brandon; Keane, James T; Kiefer, Walter S; McGovern, Patrick J; Neumann, Gregory A; Wieczorek, Mark A; Zuber, Maria T

    2018-08-01

    The Orientale basin is the youngest and best-preserved multiring impact basin on the Moon, having experienced only modest modification by subsequent impacts and volcanism. Orientale is often treated as the type example of a multiring basin, with three prominent rings outside of the inner depression: the Inner Rook Montes, the Outer Rook Montes, and the Cordillera. Here we use gravity data from NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission to reveal the subsurface structure of Orientale and its ring system. Gradients of the gravity data reveal a continuous ring dike intruded into the Outer Rook along the plane of the fault associated with the ring scarp. The volume of this ring dike is ~18 times greater than the volume of all extrusive mare deposits associated with the basin. The gravity gradient signature of the Cordillera ring indicates an offset along the fault across a shallow density interface, interpreted to be the base of the low-density ejecta blanket. Both gravity gradients and crustal thickness models indicate that the edge of the central cavity is shifted inward relative to the equivalent Inner Rook ring at the surface. Models of the deep basin structure show inflections along the crust-mantle interface at both the Outer Rook and Cordillera rings, indicating that the basin ring faults extend from the surface to at least the base of the crust. Fault dips range from 13-22° for the Cordillera fault in the northeastern quadrant, to 90° for the Outer Rook in the northwestern quadrant. The fault dips for both outer rings are lowest in the northeast, possibly due to the effects of either the direction of projectile motion or regional gradients in pre-impact crustal thickness. Similar ring dikes and ring faults are observed around the majority of lunar basins.

  17. Groups, rings, modules

    CERN Document Server

    Auslander, Maurice

    2014-01-01

    This classic monograph is geared toward advanced undergraduates and graduate students. The treatment presupposes some familiarity with sets, groups, rings, and vector spaces. The four-part approach begins with examinations of sets and maps, monoids and groups, categories, and rings. The second part explores unique factorization domains, general module theory, semisimple rings and modules, and Artinian rings. Part three's topics include localization and tensor products, principal ideal domains, and applications of fundamental theorem. The fourth and final part covers algebraic field extensions

  18. Saturn's Rings Edge-on

    Science.gov (United States)

    1995-01-01

    In one of nature's most dramatic examples of 'now-you see-them, now-you-don't', NASA's Hubble Space Telescope captured Saturn on May 22, 1995 as the planet's magnificent ring system turned edge-on. This ring-plane crossing occurs approximately every 15 years when the Earth passes through Saturn's ring plane.For comparison, the top picture was taken by Hubble on December 1, 1994 and shows the rings in a more familiar configuration for Earth observers.The bottom picture was taken shortly before the ring plane crossing. The rings do not disappear completely because the edge of the rings reflects sunlight. The dark band across the middle of Saturn is the shadow of the rings cast on the planet (the Sun is almost 3 degrees above the ring plane.) The bright stripe directly above the ring shadow is caused by sunlight reflected off the rings onto Saturn's atmosphere. Two of Saturn's icy moons are visible as tiny starlike objects in or near the ring plane. They are, from left to right, Tethys (slightly above the ring plane) and Dione.This observation will be used to determine the time of ring-plane crossing and the thickness of the main rings and to search for as yet undiscovered satellites. Knowledge of the exact time of ring-plane crossing will lead to an improved determination of the rate at which Saturn 'wobbles' about its axis (polar precession).Both pictures were taken with Hubble's Wide Field Planetary Camera 2. The top image was taken in visible light. Saturn's disk appears different in the bottom image because a narrowband filter (which only lets through light that is not absorbed by methane gas in Saturn's atmosphere) was used to reduce the bright glare of the planet. Though Saturn is approximately 900 million miles away, Hubble can see details as small as 450 miles across.The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.This image and other images and

  19. Prototypes as Platforms for Participation

    DEFF Research Database (Denmark)

    Horst, Willem

    developers, and design it accordingly. Designing a flexible prototype in combination with supportive tools to be used by both interaction designers and non-designers during development is introduced as a way to open up the prototyping process to these users. Furthermore I demonstrate how such a flexible...... on prototyping, by bringing to attention that the prototype itself is an object of design, with its users and use context, which deserves further attention. Moreover, in this work I present concrete tools and methods that can be used by interaction designers in practice. As such this work addresses both......The development of interactive products in industry is an activity involving different disciplines – such as different kinds of designers, engineers, marketers and managers – in which prototypes play an important role. On the one hand, prototypes can be powerful boundary objects and an effective...

  20. The Rotating Ring-Ring Electrode. Theory and Experiment

    NARCIS (Netherlands)

    Kuiken, H.K.; Bakkers, E.P.A.M.; Ligthart, H.; Kelly, J.J.

    2000-01-01

    A model is presented for the rotating ring-ring electrode. Although the electrode is defined by four characteristic lengths, it is shown that the collection efficiency depends on only two dimensionless parameters. A simple relationship between these and the corresponding parameters for the rotating

  1. Experimental investigation on sandwich structure ring-type ultrasonic motor.

    Science.gov (United States)

    Peng, Taijiang; Shi, Hongyan; Liang, Xiong; Luo, Feng; Wu, Xiaoyu

    2015-02-01

    This paper presents a manufacture method for a sandwich structure Ultrasonic Motor (USM) and experiment. Two pieces of rotor clamped on a stator, and a stainless steel disk-spring is bonded on the hollow rotor disk to provide the press by a nut assembled on the shaft. The stator is made of a double-side Printed-Circuit Board (PCB) which is sawed out the ring in the center and connected on the board with three legs. On each side of the ring surface, there are electrodes connected at the same position via through hole. The three layer drive circuit for sine, cosine, and ground signal is connected on the board through each leg. There are many piezoelectric components (PZT) bonded between two electrodes and fill soldering tin on each electrode. Then PZT is welded on PCB by reflow soldering. Finally, rub the gibbous soldering tin down to the position of PZT surface makes sure the surface contacts with rotor evenly. The welding process can also be completed by Surface Mounted Technology (SMT). A prototype motor is manufactured by this method. Two B03 model shapes of the stator are obtained by the finite element analysis and the optimal frequency of the motor is 56.375 kHz measured by impedance instrument. The theoretical analysis is conducted for the relationship between the revolving speed of the USM and thickness of stator ring, number of the travelling waves, PZT amplitude, frequency and the other parameters. The experiment result shows that the maximum revolving speed is 116 RPM and the maximum torque is 25 N mm, when the actuate voltage is 200 VAC. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Deep drawing experiences of niobium disk for PEFP SRF cavity prototype

    International Nuclear Information System (INIS)

    Kim, Han Sung; An, Sun; Zhang, Liping; Tang, Yazhe; Li, Ying Min; Kwon, Hyeok Jung; Cho, Yong Sub

    2009-01-01

    A superconducting radio frequency (SRF) cavity with a geometrical beta of 0.42 has been designed to accelerate a proton beam after 100 MeV for an extension of Proton Engineering Frontier Project (PEFP). The designed cavity shape is an elliptical and the resonant frequency is 700 MHz. In order to confirm the RF and mechanical properties of the cavity, two prototypes of copper cavities have been fabricated and tested. Based on the experiences gained with the copper prototypes, two niobium prototypes have been designed. One is two-cell cavity and the other is five cell cavity. The two-cell cavity is for finalizing the niobium cavity production procedure and testing the cavity RF properties at a low temperature and moderate power level. The five-cell cavity is for checking the production quality and testing vertical test system in the future. Both of them are under fabrication. Through the fabrication of the niobium prototype, several issues such as deep drawing, electron beam welding and surface treatment will be addressed. The drawing of the PEPF SRF low beta cavity is shown in Fig. 1. Major parameters for the cavity are like following. - Frequency: 700 MHz - Operating mode: TM010 pi mode - Cavity type: Elliptical - Geometrical beta: 0.42 - Number of cells: 5 per cavity - Accelerating gradient: 8 MV/m - Epeak/Eacc: 3.71 - Bpeak/Eacc: 7.47 mT/(MV/m) - R/Q: 102.3 ohm - Epeak: 29.68 MV/m - Field flatness: 1.56 % - Cell to cell coupling: 1.41 % - Geometrical factor: 121.68 ohm - Cavity wall thickness: 4.3 mm - Lorentz force detuning: 0.4 Hz/(MV/m)2 - Stiffening structure: Double ring - Effective length: 0.45 m - External Q of FPC: 8.0E5 ±20 % - HOM load: less than 2 W - HOM Qext requirement: less than 3.0E5 At present, all the niobium disk and plates for cavity and NbTi flanges for beam pipe flange are prepared

  3. Recent developments with a prototype fan-beam optical CT scanner

    Science.gov (United States)

    Campbell, W. G.; Jirasek, A.; Wells, D.

    2013-06-01

    The latest design of a prototype fan-beam optical computed tomography scanner is presented. A new beam creation system consists of a 635 nm laser diode module with variable, DC voltage-controlled beam intensity. A change in scanner alignment allows for the elimination of ring artefacts caused by data corruption that is spaced symmetrically across the detector array. These artefacts, as well as a pair of streaking artefacts caused by flask seams, are removed in sinogram space. A flask registration technique has been developed that allows for accurate, reproducible dosimeter placement. Protocol investigations with gel dosimeters have indicated the importance of: i) proper cooling techniques during gel manufacture, and ii) scanning the dosimeter while it is at room temperature. Latest reconstructions of a normoxic polymer gel dosimeter are presented as an indicator of current system performance.

  4. Recent developments with a prototype fan-beam optical CT scanner

    International Nuclear Information System (INIS)

    Campbell, W G; Jirasek, A; Wells, D

    2013-01-01

    The latest design of a prototype fan-beam optical computed tomography scanner is presented. A new beam creation system consists of a 635 nm laser diode module with variable, DC voltage-controlled beam intensity. A change in scanner alignment allows for the elimination of ring artefacts caused by data corruption that is spaced symmetrically across the detector array. These artefacts, as well as a pair of streaking artefacts caused by flask seams, are removed in sinogram space. A flask registration technique has been developed that allows for accurate, reproducible dosimeter placement. Protocol investigations with gel dosimeters have indicated the importance of: i) proper cooling techniques during gel manufacture, and ii) scanning the dosimeter while it is at room temperature. Latest reconstructions of a normoxic polymer gel dosimeter are presented as an indicator of current system performance.

  5. Wear Analysis of Top Piston Ring to Reduce Top Ring Reversal Bore Wear

    Directory of Open Access Journals (Sweden)

    P. Ilanthirayan

    2017-12-01

    Full Text Available The piston rings are the most important part in engine which controls the lubricating oil consumption and blowby of the gases. The lubricating film of oil is provided to seal of gases towards crankcase and also to give smooth friction free translatory motion between rings and liner. Of the three rings present top ring is more crucial as it does the main work of restricting gases downwards the crankcase. Boundary lubrication is present at the Top dead centre (TDC and Bottom dead centre (BDC of the liner surface. In addition to this, top ring is exposed to high temperature gases which makes the oil present near the top ring to get evaporated and decreasing its viscosity, making metal-metal contact most of the time. Due to this at TDC, excess wear happens on the liner which is termed as Top ring reversal bore wear. The wear rate depends upon many parameters such as lubrication condition, viscosity index, contact type, normal forces acting on ring, geometry of ring face, surface roughness, material property. The present work explores the wear depth for different geometries of barrel ring using Finite Element model with the help of Archard wear law and the same is validated through experimentation. The study reveals that Asymmetric barrel rings have less contact pressure which in turn reduces the wear at Top dead centre.

  6. PREFACE: Special section on vortex rings Special section on vortex rings

    Science.gov (United States)

    Fukumoto, Yasuhide

    2009-10-01

    This special section of Fluid Dynamics Research includes five articles on vortex rings in both classical and quantum fluids. The leading scientists of the field describe the trends in and the state-of-the-art development of experiments, theories and numerical simulations of vortex rings. The year 2008 was the 150th anniversary of 'vortex motion' since Hermann von Helmholtz opened up this field. In 1858, Helmholtz published a paper in Crelle's Journal which put forward the concept of 'vorticity' and made the first analysis of vortex motion. Fluid mechanics before that was limited to irrotational motion. In the absence of vorticity, the motion of an incompressible homogeneous fluid is virtually equivalent to a rigid-body motion in the sense that the fluid motion is determined once the boundary configuration is specified. Helmholtz proved, among other things, that, without viscosity, a vortex line is frozen into the fluid. This Helmholtz's law immediately implies the preservation of knots and links of vortex lines and its implication is enormous. One of the major trends of fluid mechanics since the latter half of the 20th century is to clarify the topological meaning of Helmholtz's law and to exploit it to develop theoretical and numerical methods to find the solutions of the Euler equations and to develop experimental techniques to gain an insight into fluid motion. Vortex rings are prominent coherent structures in a variety of fluid motions from the microscopic scale, through human and mesoscale to astrophysical scales, and have attracted people's interest. The late professor Philip G Saffman (1981) emphasized the significance of studies on vortex rings. One particular motion exemplifies the whole range of problems of vortex motion and is also a commonly known phenomenon, namely the vortex ring or smoke ring. Vortex rings are easily produced by dropping drops of one liquid into another, or by puffing fluid out of a hole, or by exhaling smoke if one has the skill

  7. Vortex rings

    CERN Document Server

    Akhmetov, D G

    2009-01-01

    This text on vortex rings covers their theoretical foundation, systematic investigations, and practical applications such as the extinction of fires at gushing oil wells. It pays special attention to the formation and motion of turbulent vortex rings.

  8. Application of rapid prototyping technology in the prototype manufacturing for evaluation of NPP components and equipments

    International Nuclear Information System (INIS)

    Park, C. Y.; Kim, J. W.; Shon, H. K.; Choi, H. S.; Yang, D. Y.

    2001-01-01

    A brief overview of rapid prototyping technology in which a part with complex shape can be produced easily and rapidly in a layer-by-layer additive manner is given in this article. In addition, a prototype model of a complex fan is manufactured using three-dimensional solid CAD modeling and Laminated Object Manufacturing (LOM), a rapid prototyping technology. This enables designers to verify and modify design rapidly at an early stage of product development; and the prototype model of a fan can be used as a pattern for various secondary casting process such as vacumm casting, lost-paper casting to make prototypes of a fan. It has been shown that the combination of three-dimensional solid CAD modeling and rapid prototyping technology can reduce greatly the cost and time of prototyping of fans and turbine blades in comparison with conventional CNC machining. It should also be noted that rapid prototyping technology enables the visualization of various physical and chemical defects at a nuclear power plant so that it can help engineers understand those defects in an effective way

  9. Evaluation of pulmonary nodules: comparison of a prototype dual crystal (LSO/NAI) dual head coincidence camera and full ring positron emission tomography (PET)

    International Nuclear Information System (INIS)

    Joshi, U.; Raijmakers, P.G.H.M.; Lingen, A. van; Comans, E.F.I.; Pijpers, R.; Teule, G.J.J.; Hoekstra, O.S.

    2005-01-01

    Purpose: To determine the concordance of a prototype dual head coincidence camera (LSO-PS) and full ring PET (BGO-PET) using 18 F-fluorodeoxyglucose (FDG) in the evaluation of pulmonary nodules (PNs). Materials and methods: Patients referred for evaluation of ≤3 PNs (≤3 cm diameter) were prospectively studied on the same day with both BGO-PET and LSO-PS. Imaging was performed at 60 and 120 min after injection of 370 MBq FDG, respectively. Images were independently interpreted by four observers with each observer blinded to the other modality for the same patient. Lesions were scored in terms of relative intensity versus background. Non-attenuation corrected (nonAC) BGO-PET was used as the reference test. Results: Forty-seven patients with 54 PNs (mean diameter 1.7 cm, S.D. 0.7) were included. Twelve nodules were in the ≤1.0 cm - 27 in the 1.1-2.0 cm - and 15 in the 2.1-3.0 cm range. Interobserver agreement was similar for both FDG imaging modalities. Using a sensitive assessment strategy with LSO-PS (≥ faint intensity deemed positive), there was a 97% (38/39, 95%CI 87-100%) concordance with BGO-PET and one false positive case with LSO-PS. Conservative reading (moderate or intense intensity deemed positive) resulted in a 92% (36/39, 95%CI 80-97%) concordance with BGO-PET, without false positives. The only lesion missed by LSO-PS using both assessment strategies involved a nodule 1.5 cm diameter that demonstrated moderate increased FDG uptake on BGO-PET. Conclusion: Depending on the test positivity criteria, LSO-PS demonstrates a high concordance (92-97%) with nonAC BGO-PET for the characterization of pulmonary nodules

  10. FUZZY RINGS AND ITS PROPERTIES

    Directory of Open Access Journals (Sweden)

    Karyati Karyati

    2017-01-01

      One of algebraic structure that involves a binary operation is a group that is defined  an un empty set (classical with an associative binary operation, it has identity elements and each element has an inverse. In the structure of the group known as the term subgroup, normal subgroup, subgroup and factor group homomorphism and its properties. Classical algebraic structure is developed to algebraic structure fuzzy by the researchers as an example semi group fuzzy and fuzzy group after fuzzy sets is introduced by L. A. Zadeh at 1965. It is inspired of writing about semi group fuzzy and group of fuzzy, a research on the algebraic structure of the ring is held with reviewing ring fuzzy, ideal ring fuzzy, homomorphism ring fuzzy and quotient ring fuzzy with its properties. The results of this study are obtained fuzzy properties of the ring, ring ideal properties fuzzy, properties of fuzzy ring homomorphism and properties of fuzzy quotient ring by utilizing a subset of a subset level  and strong level  as well as image and pre-image homomorphism fuzzy ring.   Keywords: fuzzy ring, subset level, homomorphism fuzzy ring, fuzzy quotient ring

  11. A prototype analysis of vengeance

    NARCIS (Netherlands)

    Elshout, Maartje; Nelissen, Rob; van Beest, Ilja

    2015-01-01

    The authors examined the concept of vengeance from a prototype perspective. In 6 studies, the prototype structure of vengeance was mapped. Sixty-nine features of vengeance were identified (Study 1), and rated on centrality (Study 2). Further studies confirmed the prototype structure. Compared to

  12. Influence of Segmentation of Ring-Shaped NdFeB Magnets with Parallel Magnetization on Cylindrical Actuators

    Directory of Open Access Journals (Sweden)

    Paulo Roberto Eckert

    2014-07-01

    Full Text Available This work analyses the effects of segmentation followed by parallel magnetization of ring-shaped NdFeB permanent magnets used in slotless cylindrical linear actuators. The main purpose of the work is to evaluate the effects of that segmentation on the performance of the actuator and to present a general overview of the influence of parallel magnetization by varying the number of segments and comparing the results with ideal radially magnetized rings. The analysis is first performed by modelling mathematically the radial and circumferential components of magnetization for both radial and parallel magnetizations, followed by an analysis carried out by means of the 3D finite element method. Results obtained from the models are validated by measuring radial and tangential components of magnetic flux distribution in the air gap on a prototype which employs magnet rings with eight segments each with parallel magnetization. The axial force produced by the actuator was also measured and compared with the results obtained from numerical models. Although this analysis focused on a specific topology of cylindrical actuator, the observed effects on the topology could be extended to others in which surface-mounted permanent magnets are employed, including rotating electrical machines.

  13. Influence of segmentation of ring-shaped NdFeB magnets with parallel magnetization on cylindrical actuators.

    Science.gov (United States)

    Eckert, Paulo Roberto; Goltz, Evandro Claiton; Flores Filho, Aly Ferreira

    2014-07-21

    This work analyses the effects of segmentation followed by parallel magnetization of ring-shaped NdFeB permanent magnets used in slotless cylindrical linear actuators. The main purpose of the work is to evaluate the effects of that segmentation on the performance of the actuator and to present a general overview of the influence of parallel magnetization by varying the number of segments and comparing the results with ideal radially magnetized rings. The analysis is first performed by modelling mathematically the radial and circumferential components of magnetization for both radial and parallel magnetizations, followed by an analysis carried out by means of the 3D finite element method. Results obtained from the models are validated by measuring radial and tangential components of magnetic flux distribution in the air gap on a prototype which employs magnet rings with eight segments each with parallel magnetization. The axial force produced by the actuator was also measured and compared with the results obtained from numerical models. Although this analysis focused on a specific topology of cylindrical actuator, the observed effects on the topology could be extended to others in which surface-mounted permanent magnets are employed, including rotating electrical machines.

  14. Review on CNC-Rapid Prototyping

    International Nuclear Information System (INIS)

    M Nafis O Z; Nafrizuan M Y; Munira M A; Kartina J

    2012-01-01

    This article reviewed developments of Computerized Numerical Control (CNC) technology in rapid prototyping process. Rapid prototyping (RP) can be classified into three major groups; subtractive, additive and virtual. CNC rapid prototyping is grouped under the subtractive category which involves material removal from the workpiece that is larger than the final part. Richard Wysk established the use of CNC machines for rapid prototyping using sets of 2½-D tool paths from various orientations about a rotary axis to machine parts without refixturing. Since then, there are few developments on this process mainly aimed to optimized the operation and increase the process capabilities to stand equal with common additive type of RP. These developments include the integration between machining and deposition process (hybrid RP), adoption of RP to the conventional machine and optimization of the CNC rapid prototyping process based on controlled parameters. The article ended by concluding that the CNC rapid prototyping research area has a vast space for improvement as in the conventional machining processes. Further developments and findings will enhance the usage of this method and minimize the limitation of current approach in building a prototype.

  15. First operation of a hybrid photon detector prototype with electrostatic cross-focussing and integrated silicon pixel readout

    International Nuclear Information System (INIS)

    Alemi, M.; Campbell, M.; Gys, T.; Mikulec, B.; Piedigrossi, D.; Puertolas, D.; Rosso, E.; Schomaker, R.; Snoeys, W.; Wyllie, K.

    2000-01-01

    We report on the first operation of a hybrid photon detector prototype with integrated silicon pixel readout for the ring imaging Cherenkov detectors of the LHCb experiment. The photon detector is based on a cross-focussed image intensifier tube geometry where the image is de-magnified by a factor of 4. The anode consists of a silicon pixel array, bump-bonded to a binary readout chip with matching pixel electronics. The prototype has been characterized using a low-intensity light-emitting diode operated in pulsed mode. Its performance in terms of single-photoelectron detection efficiency and imaging properties is presented. A model of photoelectron detection is proposed, and is shown to be in good agreement with the experimental data. It includes an estimate of the charge signal generated in the silicon detector, and the combined effects of the comparator threshold spread of the pixel readout chip, charge sharing at the pixel boundaries and back-scattering of the photoelectrons at the silicon detector surface

  16. First operation of a hybrid photon detector prototype with electrostatic cross-focussing and integrated silicon pixel readout

    Energy Technology Data Exchange (ETDEWEB)

    Alemi, M.; Campbell, M.; Gys, T. E-mail: thierry.gys@cern.ch; Mikulec, B.; Piedigrossi, D.; Puertolas, D.; Rosso, E.; Schomaker, R.; Snoeys, W.; Wyllie, K

    2000-07-11

    We report on the first operation of a hybrid photon detector prototype with integrated silicon pixel readout for the ring imaging Cherenkov detectors of the LHCb experiment. The photon detector is based on a cross-focussed image intensifier tube geometry where the image is de-magnified by a factor of 4. The anode consists of a silicon pixel array, bump-bonded to a binary readout chip with matching pixel electronics. The prototype has been characterized using a low-intensity light-emitting diode operated in pulsed mode. Its performance in terms of single-photoelectron detection efficiency and imaging properties is presented. A model of photoelectron detection is proposed, and is shown to be in good agreement with the experimental data. It includes an estimate of the charge signal generated in the silicon detector, and the combined effects of the comparator threshold spread of the pixel readout chip, charge sharing at the pixel boundaries and back-scattering of the photoelectrons at the silicon detector surface.

  17. Polarization Insensitivity in Double-Split Ring and Triple-Split Ring Terahertz Resonators

    International Nuclear Information System (INIS)

    Wu Qian-Nan; Lan Feng; Tang Xiao-Pin; Yang Zi-Qiang

    2015-01-01

    A modified double-split ring resonator and a modified triple-split ring resonator, which offer polarization-insensitive performance, are investigated, designed and fabricated. By displacing the two gaps of the conventional double-split ring resonator away from the center, the second resonant frequency for the 0° polarized wave and the resonant frequency for the 90° polarized wave become increasingly close to each other until they are finally identical. Theoretical and experimental results show that the modified double-split ring resonator and the modified triple-split ring resonator are insensitive to different polarized waves and show strong resonant frequency dips near 433 and 444 GHz, respectively. The results of this work suggest new opportunities for the investigation and design of polarization-dependent terahertz devices based on split ring resonators. (paper)

  18. Modification of MEA modulator-klystron units enabling short pulse injection into a pulse-stretcher ring

    International Nuclear Information System (INIS)

    Kroes, F.B.; Heine, E.

    1989-01-01

    In order to modify the present 500 MeV, 1% duty factor electron accelerator MEA into a 900 MeV, 0.1% d.f. injector for a newly to be build pulse- stretching ring, the present modulator-klystron units have to be adapted from 4 MW, 2% d.f. mode of operation into the 10 MW, 0.2% d.f. mode. Suitable klystrons are commercially available, the matching modulators, however, will be obtained by modifying the present ones, which policy is dictated by economical considerations. The design principles of these modulators -a proto-type is presently under construction- will be discussed. Special attention is given to the video-pulse shape requirements, dictated by the future performance of the pulse-stretcher. This device has to deliver low emittance, high duty factor (n90%) beams for nuclear physics experiments. Some proto-type tests of the video-pulse forming modifications will be presented. (author). 5 refs.; 11 figs.; 2 tabs

  19. Prototyping in theory and in practice

    DEFF Research Database (Denmark)

    Yu, Fei; Brem, Alexander; Pasinell, Michele

    2018-01-01

    and functions of a prototype and needed to meet specific goals in order to push the process forward. Designers, on the other hand, used prototypes to investigate the design space for new possibilities, and were more open to a variety of prototyping materials and tools, especially for low-fidelity prototypes...

  20. Wideband Circularly Polarized Printed Ring Slot Antenna for 5 GHz – 6 GHz

    Science.gov (United States)

    Nasrun Osman, Mohamed; Rahim, Mohamad Helmi A.; Jusoh, Muzammil; Sabapathy, Thennarasan; Rahim, Mohamad Kamal A.; Norlyana Azemi, Saidatul

    2018-03-01

    This paper presents the design of circularly polarized printed slot antenna operating at 5 – 6 GHz. The proposed antenna consists of L-shaped feedline on the top of structure and circular ring slot positioned at the ground plane underneath the substrate as a radiator. A radial and narrow slot in the ground plane provides coupling between the L-shaped feedline and circular ring slot. The circular polarization is realized by implementing the slits perturbation located diagonally to perturb the current flow on the slot structure. The antenna prototype is fabricated on FR4 substrate. The simulated and measured results are compared and analyzed to demonstrate the performance of the antenna. Good measured of simulated results are obtained at the targeted operating frequency. The simulated -10dB reflection coefficient bandwidths and axial ratio are 750 MHz and 165 MHz, respectively. The investigation on the affect of the important parameters towards the reflection coefficient and axial are also presented. The proposed antenna is highly potential to be used for wireless local area network (WLAN) and wireless power transfer (WPT).

  1. Measurements on Prototype Inductive Adders with Ultra-Flat-Top Output Pulses for CLIC DR Kickers

    CERN Document Server

    Holma, J; Belver-Aguilar, C

    2014-01-01

    The CLIC study is investigating the technical feasibility of an electron-positron collider with high luminosity and a nominal centre-of-mass energy of 3 TeV. The CLIC pre-damping rings and damping rings (DRs) will produce ultra-low emittance beam with high bunch charge. To avoid beam emittance increase, the DR kicker systems must provide extremely flat, high-voltage, pulses. The specifications for the DR extraction kickers call for a 160 ns duration flat-top pulses of ±12.5 kV, 250 A, with a combined ripple and droop of not more than ±0.02 % (±2.5 V). An inductive adder is a very promising approach to meeting the specifications because this topology allows the use of both passive and analogue modulation methods to adjust the output waveform. Recently, two five-layer, 3.5 kV, prototype inductive adders have been built at CERN. The first of these has been used to test the passive and active analogue modulation methods to compensate voltage droop and ripple of the output pulses. Pulse waveforms have been reco...

  2. RINGED ACCRETION DISKS: EQUILIBRIUM CONFIGURATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, D.; Stuchlík, Z., E-mail: d.pugliese.physics@gmail.com, E-mail: zdenek.stuchlik@physics.cz [Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo náměstí 13, CZ-74601 Opava (Czech Republic)

    2015-12-15

    We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.

  3. Stirling engine piston ring

    Science.gov (United States)

    Howarth, Roy B.

    1983-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  4. Physics of quantum rings

    International Nuclear Information System (INIS)

    Fomin, Vladimir M.

    2014-01-01

    Presents the new class of materials of quantum rings. Provides an elemental basis for low-cost high-performance devices promising for electronics, optoelectronics, spintronics and quantum information processing. Explains the physical properties of quantum rings to cover a gap in scientific literature. Presents the application of most advanced nanoengineering and nanocharacterization techniques. This book deals with a new class of materials, quantum rings. Innovative recent advances in experimental and theoretical physics of quantum rings are based on the most advanced state-of-the-art fabrication and characterization techniques as well as theoretical methods. The experimental efforts allow to obtain a new class of semiconductor quantum rings formed by capping self-organized quantum dots grown by molecular beam epitaxy. Novel optical and magnetic properties of quantum rings are associated with non-trivial topologies at the nanoscale. An adequate characterization of quantum rings is possible on the basis of modern characterization methods of nanostructures, such as Scanning Tunneling Microscopy. A high level of complexity is demonstrated to be needed for a dedicated theoretical model to adequately represent the specific features of quantum rings. The findings presented in this book contribute to develop low-cost high-performance electronic, spintronic, optoelectronic and information processing devices based on quantum rings.

  5. How does the blue-ringed octopus (Hapalochlaena lunulata) flash its blue rings?

    Science.gov (United States)

    Mäthger, Lydia M; Bell, George R R; Kuzirian, Alan M; Allen, Justine J; Hanlon, Roger T

    2012-11-01

    The blue-ringed octopus (Hapalochlaena lunulata), one of the world's most venomous animals, has long captivated and endangered a large audience: children playing at the beach, divers turning over rocks, and biologists researching neurotoxins. These small animals spend much of their time in hiding, showing effective camouflage patterns. When disturbed, the octopus will flash around 60 iridescent blue rings and, when strongly harassed, bite and deliver a neurotoxin that can kill a human. Here, we describe the flashing mechanism and optical properties of these rings. The rings contain physiologically inert multilayer reflectors, arranged to reflect blue-green light in a broad viewing direction. Dark pigmented chromatophores are found beneath and around each ring to enhance contrast. No chromatophores are above the ring; this is unusual for cephalopods, which typically use chromatophores to cover or spectrally modify iridescence. The fast flashes are achieved using muscles under direct neural control. The ring is hidden by contraction of muscles above the iridophores; relaxation of these muscles and contraction of muscles outside the ring expose the iridescence. This mechanism of producing iridescent signals has not previously been reported in cephalopods and we suggest that it is an exceptionally effective way to create a fast and conspicuous warning display.

  6. α-Skew π-McCoy Rings

    Directory of Open Access Journals (Sweden)

    Areej M. Abduldaim

    2013-01-01

    Full Text Available As a generalization of α-skew McCoy rings, we introduce the concept of α-skew π-McCoy rings, and we study the relationships with another two new generalizations, α-skew π1-McCoy rings and α-skew π2-McCoy rings, observing the relations with α-skew McCoy rings, π-McCoy rings, α-skew Armendariz rings, π-regular rings, and other kinds of rings. Also, we investigate conditions such that α-skew π1-McCoy rings imply α-skew π-McCoy rings and α-skew π2-McCoy rings. We show that in the case where R is a nonreduced ring, if R is 2-primal, then R is an α-skew π-McCoy ring. And, let R be a weak (α,δ-compatible ring; if R is an α-skew π1-McCoy ring, then R is α-skew π2-McCoy.

  7. Mobile prototyping with Axure 7

    CERN Document Server

    Hacker, Will

    2013-01-01

    This book is a step-by-step tutorial which includes hands-on examples and downloadable Axure files to get you started with mobile prototyping immediately. You will learn how to develop an application from scratch, and will be guided through each and every step.If you are a mobile-centric developer/designer, or someone who would like to take their Axure prototyping skills to the next level and start designing and testing mobile prototypes, this book is ideal for you. You should be familiar with prototyping and Axure specifically, before you read this book.

  8. Prototype-Incorporated Emotional Neural Network.

    Science.gov (United States)

    Oyedotun, Oyebade K; Khashman, Adnan

    2017-08-15

    Artificial neural networks (ANNs) aim to simulate the biological neural activities. Interestingly, many ''engineering'' prospects in ANN have relied on motivations from cognition and psychology studies. So far, two important learning theories that have been subject of active research are the prototype and adaptive learning theories. The learning rules employed for ANNs can be related to adaptive learning theory, where several examples of the different classes in a task are supplied to the network for adjusting internal parameters. Conversely, the prototype-learning theory uses prototypes (representative examples); usually, one prototype per class of the different classes contained in the task. These prototypes are supplied for systematic matching with new examples so that class association can be achieved. In this paper, we propose and implement a novel neural network algorithm based on modifying the emotional neural network (EmNN) model to unify the prototype- and adaptive-learning theories. We refer to our new model as ``prototype-incorporated EmNN''. Furthermore, we apply the proposed model to two real-life challenging tasks, namely, static hand-gesture recognition and face recognition, and compare the result to those obtained using the popular back-propagation neural network (BPNN), emotional BPNN (EmNN), deep networks, an exemplar classification model, and k-nearest neighbor.

  9. VUV optical ring resonator for Duke storage ring free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.H.; Litvinenko, V.N.; Madey, J.M.J. [Duke Univ., Durham, NC (United States)] [and others

    1995-12-31

    The conceptual design of the multifaceted-mirror ring resonator for Duke storage ring VUV FEL is presented. The expected performance of the OK-4 FEL with ring resonator is described. We discuss in this paper our plans to study reflectivity of VUV mirrors and their resistivity to soft X-ray spontaneous radiation from OK-4 undulator.

  10. Prototype Effect and the Persuasiveness of Generalizations.

    Science.gov (United States)

    Dahlman, Christian; Sarwar, Farhan; Bååth, Rasmus; Wahlberg, Lena; Sikström, Sverker

    An argument that makes use of a generalization activates the prototype for the category used in the generalization. We conducted two experiments that investigated how the activation of the prototype affects the persuasiveness of the argument. The results of the experiments suggest that the features of the prototype overshadow and partly overwrite the actual facts of the case. The case is, to some extent, judged as if it had the features of the prototype instead of the features it actually has. This prototype effect increases the persuasiveness of the argument in situations where the audience finds the judgment more warranted for the prototype than for the actual case (positive prototype effect), but decreases persuasiveness in situations where the audience finds the judgment less warranted for the prototype than for the actual case (negative prototype effect).

  11. Interaction Region Design for a Ring-Ring LHeC

    CERN Document Server

    Thompson, L N S; Bernard, N R; Fitterer, M; Holzer, B; Klein, M; Kostka, P

    2011-01-01

    tively low energy and moderately high intensity provides high luminosity TeV-scale e-p collisions at one of the LHC interaction points, running simultaneously with existing experiments. Two designs are studied; an electron ring situated in the LHC tunnel, and an electron linac. The focus of this paper is on the ring design. Designing an e-p machine presents interesting accelerator physics and design challenges, particularly when considering the interaction region. These include coupled optics, beam separation and unconventional mini-beta focusing schemes. Designs are constrained by an array of interdependent factors, including beam-beam interaction, detector dimensions and acceptance, luminosity and synchrotron radiation. Methods of addressing these complex issues are discussed. The current designs for the LHeC Ring-Ring interaction region and long straight section are presented and discussed, in the context of the project goals and design challenges encountered. Future developments and work are also discusse...

  12. Development of a small prototype for a proof-of-concept of OpenPET imaging

    International Nuclear Information System (INIS)

    Yamaya, Taiga; Yoshida, Eiji; Wakizaka, Hidekatsu; Kokuryo, Daisuke; Tsuji, Atsushi; Mitsuhashi, Takayuki; Tashima, Hideaki; Nishikido, Fumihiko; Inadama, Naoko; Murayama, Hideo; Kinouchi, Shoko; Inaniwa, Taku; Sato, Shinji; Nakajima, Yasunori; Kawai, Hideyuki; Haneishi, Hideaki; Suga, Mikio

    2011-01-01

    The OpenPET geometry is our new idea to visualize a physically opened space between two detector rings. In this paper, we developed the first small prototype to show a proof-of-concept of OpenPET imaging. Two detector rings of 110 mm diameter and 42 mm axial length were placed with a gap of 42 mm. The basic imaging performance was confirmed through phantom studies; the open imaging was realized at the cost of slight loss of axial resolution and 24% loss of sensitivity. For a proof-of-concept of PET image-guided radiation therapy, we carried out the in-beam tests with 11 C radioactive beam irradiation in the heavy ion medical accelerator in Chiba to visualize in situ distribution of primary particles stopped in a phantom. We showed that PET images corresponding to dose distribution were obtained. For an initial proof-of-concept of real-time multimodal imaging, we measured a tumor-inoculated mouse with 18 F-FDG, and an optical image of the mouse body surface was taken during the PET measurement by inserting a digital camera in the ring gap. We confirmed that the tumor in the gap was clearly visualized. The result also showed the extension effect of an axial field-of-view (FOV); a large axial FOV of 126 mm was obtained with the detectors that originally covered only an 84 mm axial FOV. In conclusion, our initial imaging studies showed promising performance of the OpenPET.

  13. Development of a small prototype for a proof-of-concept of OpenPET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yamaya, Taiga; Yoshida, Eiji; Wakizaka, Hidekatsu; Kokuryo, Daisuke; Tsuji, Atsushi; Mitsuhashi, Takayuki; Tashima, Hideaki; Nishikido, Fumihiko; Inadama, Naoko; Murayama, Hideo; Kinouchi, Shoko [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Inaniwa, Taku; Sato, Shinji [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Nakajima, Yasunori [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503 (Japan); Kawai, Hideyuki; Haneishi, Hideaki; Suga, Mikio, E-mail: taiga@nirs.go.jp [Chiba University, 1-33 Yayoicho, Inage-ku, Chiba 263-8522 (Japan)

    2011-02-21

    The OpenPET geometry is our new idea to visualize a physically opened space between two detector rings. In this paper, we developed the first small prototype to show a proof-of-concept of OpenPET imaging. Two detector rings of 110 mm diameter and 42 mm axial length were placed with a gap of 42 mm. The basic imaging performance was confirmed through phantom studies; the open imaging was realized at the cost of slight loss of axial resolution and 24% loss of sensitivity. For a proof-of-concept of PET image-guided radiation therapy, we carried out the in-beam tests with {sup 11}C radioactive beam irradiation in the heavy ion medical accelerator in Chiba to visualize in situ distribution of primary particles stopped in a phantom. We showed that PET images corresponding to dose distribution were obtained. For an initial proof-of-concept of real-time multimodal imaging, we measured a tumor-inoculated mouse with {sup 18}F-FDG, and an optical image of the mouse body surface was taken during the PET measurement by inserting a digital camera in the ring gap. We confirmed that the tumor in the gap was clearly visualized. The result also showed the extension effect of an axial field-of-view (FOV); a large axial FOV of 126 mm was obtained with the detectors that originally covered only an 84 mm axial FOV. In conclusion, our initial imaging studies showed promising performance of the OpenPET.

  14. Development and test of a prototype for the PANDA barrel DIRC detector at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Kalicy, Grzegorz

    2014-07-01

    The PANDA experiment at FAIR will perform world class physics studies using high-intensity cooled antiproton beams with momenta between 1.5 and 15 GeV/c. A rich physics program requires very good particle identification (PID). Charged hadron PID for the barrel section of the target spectrometer has to cover the angular range of 22-140 and separate pions from kaons for momenta up to 3.5 GeV/c with a separation power of at least 3 standard deviations. The system that will provide it has to be thin and operate in a strong magnetic field. A ring imaging Cherenkov detector using the DIRC principle meets those requirements. The design of the PANDA Barrel DIRC is based on the successful BABAR DIRC counter with several important changes to improve the performance and optimize the costs. The design options are being studied in detailed Monte Carlo simulation, and implemented in increasingly complex system prototypes and tested in particle beams. Before building the full system prototypes the radiator bars and lenses are measured on the test benches. The performance of the DIRC prototype was quantified in terms of the single photon Cherenkov angle resolution and the photon yield. Results for two full system prototypes will be presented. The prototype in 2011 aimed at investigating the full size expansion volume. It was found that the resolution for this configuration is at the level of in good agreement with ray tracing simulation results. A more complex prototype, tested in 2012, provided the first experience with a compact fused silica prism expansion volume, a wide radiator plate, and several advanced lens options for the focusing system. The performance of the baseline configuration of the prototype with a standard lens and an air gap met the requirements for the PANDA PID for most of the polar angle range but failed at polar angles around 90 due to photon loss at the air gap. Measurements with a prototype high-refractive index compound lens without an air gap at a polar

  15. Development and test of a prototype for the PANDA barrel DIRC detector at FAIR

    International Nuclear Information System (INIS)

    Kalicy, Grzegorz

    2014-01-01

    The PANDA experiment at FAIR will perform world class physics studies using high-intensity cooled antiproton beams with momenta between 1.5 and 15 GeV/c. A rich physics program requires very good particle identification (PID). Charged hadron PID for the barrel section of the target spectrometer has to cover the angular range of 22-140 and separate pions from kaons for momenta up to 3.5 GeV/c with a separation power of at least 3 standard deviations. The system that will provide it has to be thin and operate in a strong magnetic field. A ring imaging Cherenkov detector using the DIRC principle meets those requirements. The design of the PANDA Barrel DIRC is based on the successful BABAR DIRC counter with several important changes to improve the performance and optimize the costs. The design options are being studied in detailed Monte Carlo simulation, and implemented in increasingly complex system prototypes and tested in particle beams. Before building the full system prototypes the radiator bars and lenses are measured on the test benches. The performance of the DIRC prototype was quantified in terms of the single photon Cherenkov angle resolution and the photon yield. Results for two full system prototypes will be presented. The prototype in 2011 aimed at investigating the full size expansion volume. It was found that the resolution for this configuration is at the level of in good agreement with ray tracing simulation results. A more complex prototype, tested in 2012, provided the first experience with a compact fused silica prism expansion volume, a wide radiator plate, and several advanced lens options for the focusing system. The performance of the baseline configuration of the prototype with a standard lens and an air gap met the requirements for the PANDA PID for most of the polar angle range but failed at polar angles around 90 due to photon loss at the air gap. Measurements with a prototype high-refractive index compound lens without an air gap at a polar

  16. Project management strategies for prototyping breakdowns

    DEFF Research Database (Denmark)

    Granlien, Maren Sander; Pries-Heje, Jan; Baskerville, Richard

    2009-01-01

    , managing the explorative and iterative aspects of prototyping projects is not a trivial task. We examine the managerial challenges in a small scale prototyping project in the Danish healthcare sector where a prototype breakdown and project escalation occurs. From this study we derive a framework...... of strategies for coping with escalation in troubled prototyping projects; the framework is based on project management triangle theory and is useful when considering how to manage prototype breakdown and escalation. All strategies were applied in the project case at different points in time. The strategies led...

  17. Uniquely Strongly Clean Group Rings

    Institute of Scientific and Technical Information of China (English)

    WANG XIU-LAN

    2012-01-01

    A ring R is called clean if every element is the sum of an idempotent and a unit,and R is called uniquely strongly clean (USC for short) if every element is uniquely the sum of an idempotent and a unit that commute.In this article,some conditions on a ring R and a group G such that RG is clean are given.It is also shown that if G is a locally finite group,then the group ring RG is USC if and only if R is USC,and G is a 2-group.The left uniquely exchange group ring,as a middle ring of the uniquely clean ring and the USC ring,does not possess this property,and so does the uniquely exchange group ring.

  18. Influence of ring growth rate on damage development in hot ring rolling

    NARCIS (Netherlands)

    Wang, C.; Geijselaers, H. J.M.; Omerspahic, E.; Recina, V.; van den Boogaard, A. H.

    2015-01-01

    As an incremental forming process of bulk metal, ring rolling provides a cost effective process route to manufacture seamless rings. In the production of hot rolled rings, defects such as porosity can sometimes be found in high alloyed steel, manufactured from ingots having macro-segregation. For

  19. Specifications in software prototyping

    OpenAIRE

    Luqi; Chang, Carl K.; Zhu, Hong

    1998-01-01

    We explore the use of software speci®cations for software prototyping. This paper describes a process model for software prototyping, and shows how specifications can be used to support such a process via a cellular mobile phone switch example.

  20. Courthouse Prototype Building

    Energy Technology Data Exchange (ETDEWEB)

    Malhotra, Mini [ORNL; New, Joshua Ryan [ORNL; Im, Piljae [ORNL

    2018-02-01

    As part of DOE's support of ANSI/ASHRAE/IES Standard 90.1 and IECC, researchers at Pacific Northwest National Laboratory (PNNL) apply a suite of prototype buildings covering 80% of the commercial building floor area in the U.S. for new construction. Efforts have started on expanding the prototype building suite to cover 90% of the commercial building floor area in the U.S., by developing prototype models for additional building types including place of worship, public order and safety, public assembly. Courthouse is courthouse is a sub-category under the “Public Order and Safety" building type category; other sub-categories include police station, fire station, and jail, reformatory or penitentiary.ORNL used building design guides, databases, and documented courthouse projects, supplemented by personal communication with courthouse facility planning and design experts, to systematically conduct research on the courthouse building and system characteristics. This report documents the research conducted for the courthouse building type and proposes building and system characteristics for developing a prototype building energy model to be included in the Commercial Building Prototype Model suite. According to the 2012 CBECS, courthouses occupy a total of 436 million sqft of floor space or 0.5% of the total floor space in all commercial buildings in the US, next to fast food (0.35%), grocery store or food market (0.88%), and restaurant or cafeteria (1.2%) building types currently included in the Commercial Prototype Building Model suite. Considering aggregated average, courthouse falls among the larger with a mean floor area of 69,400 sqft smaller fuel consumption intensity building types and an average of 94.7 kBtu/sqft compared to 77.8 kBtu/sqft for office and 80 kBtu/sqft for all commercial buildings.Courthouses range in size from 1000 sqft to over a million square foot building gross square feet and 1 courtroom to over 100 courtrooms. Small courthouses

  1. Ring rotational speed trend analysis by FEM approach in a Ring Rolling process

    Science.gov (United States)

    Allegri, G.; Giorleo, L.; Ceretti, E.

    2018-05-01

    Ring Rolling is an advanced local incremental forming technology to fabricate directly precise seamless ring-shape parts with various dimensions and materials. In this process two different deformations occur in order to reduce the width and the height of a preform hollow ring; as results a diameter expansion is obtained. In order to guarantee a uniform deformation, the preform is forced toward the Driver Roll whose aim is to transmit the rotation to the ring. The ring rotational speed selection is fundamental because the higher is the speed the higher will be the axial symmetry of the deformation process. However, it is important to underline that the rotational speed will affect not only the final ring geometry but also the loads and energy needed to produce it. Despite this importance in industrial environment, usually, a constant value for the Driver Roll angular velocity is set so to result in a decreasing trend law for the ring rotational speed. The main risk due to this approach is not fulfilling the axial symmetric constrain (due to the diameter expansion) and to generate a high localized ring section deformation. In order to improve the knowledge about this topic in the present paper three different ring rotational speed trends (constant, linearly increasing and linearly decreasing) were investigated by FEM approach. Results were compared in terms of geometrical and dimensional analysis, loads and energies required.

  2. Mechanical improvement of metal reinforcement rings for a finite ring-shaped superconducting bulk

    Science.gov (United States)

    Huang, Chen-Guang; Zhou, You-He

    2018-03-01

    As a key technique, reinforcement of type-II superconducting bulks with metal rings can efficiently improve their mechanical properties to enhance the maximum trapped field. In this paper, we study the magnetostrictive and fracture behaviors of a finite superconducting ring bulk reinforced by three typical reinforcing structures composed of metal rings during the magnetizing process by means of the minimization of magnetic energy and the finite element method. After a field-dependent critical current density is adopted, the magnetostriction, pinning-induced stress, and crack tip stress intensity factor are calculated considering the demagnetization effects. The results show that the mechanical properties of the ring bulk are strongly dependent on the reinforcing structure and the material and geometrical parameters of the metal rings. Introducing the metal ring can significantly reduce the hoop stress, and the reduction effect by internal reinforcement is much improved relative to external reinforcement. By comparison, bilateral reinforcement seems to be the best candidate structure. Only when the metal rings have particular Young's modulus and radial thickness will they contribute to improve the mechanical properties the most. In addition, if an edge crack is pre-existing in the ring bulk, the presence of metal rings can effectively avoid crack propagation since it reduces the crack tip stress intensity factor by nearly one order of magnitude.

  3. Ring correlations in random networks.

    Science.gov (United States)

    Sadjadi, Mahdi; Thorpe, M F

    2016-12-01

    We examine the correlations between rings in random network glasses in two dimensions as a function of their separation. Initially, we use the topological separation (measured by the number of intervening rings), but this leads to pseudo-long-range correlations due to a lack of topological charge neutrality in the shells surrounding a central ring. This effect is associated with the noncircular nature of the shells. It is, therefore, necessary to use the geometrical distance between ring centers. Hence we find a generalization of the Aboav-Weaire law out to larger distances, with the correlations between rings decaying away when two rings are more than about three rings apart.

  4. Implicit face prototype learning from geometric information.

    Science.gov (United States)

    Or, Charles C-F; Wilson, Hugh R

    2013-04-19

    There is evidence that humans implicitly learn an average or prototype of previously studied faces, as the unseen face prototype is falsely recognized as having been learned (Solso & McCarthy, 1981). Here we investigated the extent and nature of face prototype formation where observers' memory was tested after they studied synthetic faces defined purely in geometric terms in a multidimensional face space. We found a strong prototype effect: The basic results showed that the unseen prototype averaged from the studied faces was falsely identified as learned at a rate of 86.3%, whereas individual studied faces were identified correctly 66.3% of the time and the distractors were incorrectly identified as having been learned only 32.4% of the time. This prototype learning lasted at least 1 week. Face prototype learning occurred even when the studied faces were further from the unseen prototype than the median variation in the population. Prototype memory formation was evident in addition to memory formation of studied face exemplars as demonstrated in our models. Additional studies showed that the prototype effect can be generalized across viewpoints, and head shape and internal features separately contribute to prototype formation. Thus, implicit face prototype extraction in a multidimensional space is a very general aspect of geometric face learning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Novice designers’ use of prototypes in engineering design

    Science.gov (United States)

    Deininger, Michael; Daly, Shanna R.; Sienko, Kathleen H.; Lee, Jennifer C.

    2017-01-01

    Prototypes are essential tools in product design processes, but are often underutilized by novice designers. To help novice designers use prototypes more effectively, we must first determine how they currently use prototypes. In this paper, we describe how novice designers conceptualized prototypes and reported using them throughout a design project, and compare reported prototyping use to prototyping best practices. We found that some of the reported prototyping practices by novice designers, such as using inexpensive prototypes early and using prototypes to define user requirements, occurred infrequently and lacked intentionality. Participants’ initial descriptions of prototypes were less sophisticated than how they later described using them and only upon prompted reflection did participants recognize more specific benefits of using prototypes. PMID:29398740

  6. Alpha - Skew Pi - Armendariz Rings

    Directory of Open Access Journals (Sweden)

    Areej M Abduldaim

    2018-03-01

    Full Text Available In this article we introduce a new concept called Alpha-skew Pi-Armendariz rings (Alpha - S Pi - ARas a generalization of the notion of Alpha-skew Armendariz rings.Another important goal behind studying this class of rings is to employ it in order to design a modern algorithm of an identification scheme according to the evolution of using modern algebra in the applications of the field of cryptography.We investigate general properties of this concept and give examples for illustration. Furthermore, this paperstudy the relationship between this concept and some previous notions related to Alpha-skew Armendariz rings. It clearly presents that every weak Alpha-skew Armendariz ring is Alpha-skew Pi-Armendariz (Alpha-S Pi-AR. Also, thisarticle showsthat the concepts of Alpha-skew Armendariz rings and Alpha-skew Pi- Armendariz rings are equivalent in case R is 2-primal and semiprime ring.Moreover, this paper proves for a semicommutative Alpha-compatible ringR that if R[x;Alpha] is nil-Armendariz, thenR is an Alpha-S Pi-AR. In addition, if R is an Alpha - S Pi -AR, 2-primal and semiprime ring, then N(R[x;Alpha]=N(R[x;Alpha]. Finally, we look forwardthat Alpha-skew Pi-Armendariz rings (Alpha-S Pi-ARbe more effect (due to their properties in the field of cryptography than Pi-Armendariz rings, weak Armendariz rings and others.For these properties and characterizations of the introduced concept Alpha-S Pi-AR, we aspire to design a novel algorithm of an identification scheme.

  7. Prototyping of user interfaces for mobile applications

    CERN Document Server

    Bähr, Benjamin

    2017-01-01

    This book investigates processes for the prototyping of user interfaces for mobile apps, and describes the development of new concepts and tools that can improve the prototype driven app development in the early stages. It presents the development and evaluation of a new requirements catalogue for prototyping mobile app tools that identifies the most important criteria such tools should meet at different prototype-development stages. This catalogue is not just a good point of orientation for designing new prototyping approaches, but also provides a set of metrics for a comparing the performance of alternative prototyping tools. In addition, the book discusses the development of Blended Prototyping, a new approach for prototyping user interfaces for mobile applications in the early and middle development stages, and presents the results of an evaluation of its performance, showing that it provides a tool for teamwork-oriented, creative prototyping of mobile apps in the early design stages.

  8. The prototype cameras for trans-Neptunian automatic occultation survey

    Science.gov (United States)

    Wang, Shiang-Yu; Ling, Hung-Hsu; Hu, Yen-Sang; Geary, John C.; Chang, Yin-Chang; Chen, Hsin-Yo; Amato, Stephen M.; Huang, Pin-Jie; Pratlong, Jerome; Szentgyorgyi, Andrew; Lehner, Matthew; Norton, Timothy; Jorden, Paul

    2016-08-01

    The Transneptunian Automated Occultation Survey (TAOS II) is a three robotic telescope project to detect the stellar occultation events generated by TransNeptunian Objects (TNOs). TAOS II project aims to monitor about 10000 stars simultaneously at 20Hz to enable statistically significant event rate. The TAOS II camera is designed to cover the 1.7 degrees diameter field of view of the 1.3m telescope with 10 mosaic 4.5k×2k CMOS sensors. The new CMOS sensor (CIS 113) has a back illumination thinned structure and high sensitivity to provide similar performance to that of the back-illumination thinned CCDs. Due to the requirements of high performance and high speed, the development of the new CMOS sensor is still in progress. Before the science arrays are delivered, a prototype camera is developed to help on the commissioning of the robotic telescope system. The prototype camera uses the small format e2v CIS 107 device but with the same dewar and also the similar control electronics as the TAOS II science camera. The sensors, mounted on a single Invar plate, are cooled to the operation temperature of about 200K as the science array by a cryogenic cooler. The Invar plate is connected to the dewar body through a supporting ring with three G10 bipods. The control electronics consists of analog part and a Xilinx FPGA based digital circuit. One FPGA is needed to control and process the signal from a CMOS sensor for 20Hz region of interests (ROI) readout.

  9. Plasma-ring, fast-opening switch

    International Nuclear Information System (INIS)

    Hartman, C.W.; Eddleman, J.; Hammer, J.H.

    1986-01-01

    The authors discuss a fast-opening switch concept based on magnetically confined plasma rings, PROS (for Plasma Ring Opening Switch). In PROS, the plasma ring, confined by Bθ /sub and B/poloidal /sub fields of a compact torus, provide a low mass, localized conduction path between coaxial electrodes. To operate the switch, driver current is passed across the electrodes through the ring, storing inductive energy in external inductance and between the electrodes on the driver side of the ring. The ring is accelerated away from the driver by the field of the driver current and passes over a load gap transferring the current to the load. The authors distinguish two configurations in PROS, straight PROS where the electrodes are coaxial cylinders, and cone PROS with conical electrodes. In straight PROS ring acceleration takes place during the inductive store period as in foil switches, but with the localized ring providing the current path. Increased performance is predicted for the cone PROS (see figure) which employs compression of the ring in the cone during the inductive store period. Here, the B/θ /sub field of the driver forces the ring towards the apex of the cone but the force is in near balance with the opposing component of the radial equilibrium force of the ring along the cone. As a result, the ring undergoes a slow, quasistatic compression limited only by resistive decay of the ring field. Slow compression allows inductive storage with low-power drivers (homopoloar, magneto cumulative generators, high C-low V capacitor banks, etc.). Near the apex of the cone, near peak compression, the ring is allowed to enter a straight coaxial section where, because of low-mass, it rapidly accelerates to high velocity and crosses the load gap

  10. Fusion Rings for Quantum Groups

    DEFF Research Database (Denmark)

    Andersen, Henning Haahr; Stroppel, Catharina

    2014-01-01

    We study the fusion rings of tilting modules for a quantum group at a root of unity modulo the tensor ideal of negligible tilting modules. We identify them in type A with the combinatorial rings from Korff, C., Stroppel, C.: The sl(ˆn)k-WZNW fusion ring: a combinato-rial construction...... and a realisation as quotient of quantum cohomology. Adv. Math. 225(1), 200–268, (2010) and give a similar description of the sp2n-fusion ring in terms of non-commutative symmetric functions. Moreover we give a presentation of all fusion rings in classical types as quotients of polynomial rings. Finally we also...... compute the fusion rings for type G2....

  11. EUCLID ARCHIVE SYSTEM PROTOTYPE

    NARCIS (Netherlands)

    Belikov, Andrey; Williams, Owen; Droge, Bob; Tsyganov, Andrey; Boxhoorn, Danny; McFarland, John; Verdoes Kleijn, Gijs; Valentijn, E; Altieri, Bruno; Dabin, Christophe; Pasian, F.; Osuna, Pedro; Soille, P.; Marchetti, P.G.

    2014-01-01

    The Euclid Archive System prototype is a functional information system which is used to address the numerous challenges in the development of fully functional data processing system for Euclid. The prototype must support the highly distributed nature of the Euclid Science Ground System, with Science

  12. The LSU Electron Storage Ring, the first commercially-built storage ring

    International Nuclear Information System (INIS)

    Sah, R.

    1990-01-01

    The Brobeck Division of Maxwell Laboratories, Inc., is building the first industrially-produced storage ring. It will be located at Louisiana State University (LSU) at the Center for Advanced Microstructures and Devices (CAMD) in Baton Rouge. The purpose of this electron storage ring is to provide intense beams of x-rays to advance the state-of-the-art in lithography and to permit research in a broad area. This facility consists of a 1.2 GeV, 400 mA electron storage ring with a 200 MeV linac injector. The magnet lattice is a Chasman-Green design (double-bend achromat), and the ring circumference is 55.2 meters. There are four 3.0 meter, dispersion-free straight sections, one for injection, one for the 500 MHz RF cavity, and two for possible future insertion devices. The storge ring construction project is in the detailed-design stage, and many systems are in the initial stages of fabrication. 4 figs., 1 tab

  13. Fusion rings and fusion ideals

    DEFF Research Database (Denmark)

    Andersen, Troels Bak

    by the so-called fusion ideals. The fusion rings of Wess-Zumino-Witten models have been widely studied and are well understood in terms of precise combinatorial descriptions and explicit generating sets of the fusion ideals. They also appear in another, more general, setting via tilting modules for quantum......This dissertation investigates fusion rings, which are Grothendieck groups of rigid, monoidal, semisimple, abelian categories. Special interest is in rational fusion rings, i.e., fusion rings which admit a finite basis, for as commutative rings they may be presented as quotients of polynomial rings...

  14. PRMS Data Warehousing Prototype

    Science.gov (United States)

    Guruvadoo, Eranna K.

    2002-01-01

    Project and Resource Management System (PRMS) is a web-based, mid-level management tool developed at KSC to provide a unified enterprise framework for Project and Mission management. The addition of a data warehouse as a strategic component to the PRMS is investigated through the analysis, design and implementation processes of a data warehouse prototype. As a proof of concept, a demonstration of the prototype with its OLAP's technology for multidimensional data analysis is made. The results of the data analysis and the design constraints are discussed. The prototype can be used to motivate interest and support for an operational data warehouse.

  15. Designing and testing prototypes

    NARCIS (Netherlands)

    Vereijken, P.; Wijnands, F.; Stol, W.

    1995-01-01

    This second progress report focuses on designing a theoretical prototype by linking parameters to methods and designing the methods in this context until they are ready for initial testing. The report focuses also on testing and improving the prototype in general and the methods in particular until

  16. Evaluation of ring impedance of the Photon Factory storage ring

    International Nuclear Information System (INIS)

    Kiuchi, T.; Izawa, M.; Tokumoto, S.; Hori, Y.; Sakanaka, S.; Kobayashi, M.; Kobayakawa, H.

    1992-05-01

    The loss parameters of the ducts in the Photon Factory (PF) storage ring were evaluated using the wire method and the code TBCI. Both the measurement and the calculation were done for a different bunch length (σ) ranging from 23 to 80 ps. The PF ring impedance was estimated to be |Z/n|=3.2 Ω using the broadband impedance model. The major contribution to the impedance comes from the bellows and the gate valve sections. Improvements of these components will lower the ring impedance by half. (author)

  17. RF Beam Position Monitor for the SNS Ring

    International Nuclear Information System (INIS)

    Vetter, Kurt; Cameron, Peter; Dawson, Craig; Degen, Chris; Kesselman, Martin; Mead, Joseph

    2004-01-01

    The Spallation Neutron Source Ring accumulates 1060 pulses of 38-mA peak current 1-GeV H-minus particles from the Linac through the HEBT line, then delivers this accumulated beam in a single pulse to a mercury target via the RTBT line. The dynamic range over the course of the accumulation cycle is 60 dB. As a result of particle energy distribution the 402.5-MHz RF bunching frequency quickly de-coheres during the first few turns. In order to measure first-turn position a dual-mode BPM has been designed to process 402.5-MHz signal energy during the first few turns then switch to a Baseband mode to process de-cohered energy in the low MHz region. The design has been implemented as a dual mother/daughter board PCI architecture. Both Baseband and RF calibration are included on the RF BPM board. A prototype system has been installed in the SNS Linac

  18. Alpha particle response for a prototype radiation survey meter based on poly(ethylene terephthalate) with un-doping fluorescent guest molecules

    International Nuclear Information System (INIS)

    Nguyen, Philip; Nakamura, Hidehito; Sato, Nobuhiro; Takahashi, Tomoyuki; Maki, Daisuke; Kanayama, Masaya; Takahashi, Sentaro; Kitamura, Hisashi; Shirakawa, Yoshiyuki

    2016-01-01

    There is no radiation survey meter that can discriminate among alpha particles, beta particles, and gamma-rays with one material. Previously, undoped poly(ethylene terephthalate) (PET) has been shown to be an effective material for beta particle and gamma-ray detection. Here, we demonstrate a prototype survey meter for alpha particles based on undoped PET. A 140 × 72 × 1-mm PET substrate was fabricated with mirrored surfaces. It was incorporated in a unique detection section of the survey meter that directly detects alpha particles. The prototype exhibited an unambiguous response to alpha particles from a 241 Am radioactive source. These results demonstrate that undoped PET can perform well in survey meters for alpha particle detection. Overall, the PET-based survey meter has the potential to detect multiple types of radiation, and will spawn an unprecedented type of radiation survey meter based on undoped aromatic ring polymers. (author)

  19. Prototypes in engineering design: Definitions and strategies

    DEFF Research Database (Denmark)

    Jensen, Lasse Skovgaard; Özkil, Ali Gürcan; Mortensen, Niels Henrik

    2016-01-01

    By reviewing literature, we investigate types, purposes and definitions of prototypes. There is no overarching definition of a prototype, but we identify five categories of prototypes in litterature. We further synthesize and reference previous work to create an overview of aspects in prototyping...

  20. The study about planetary gearbox virtual prototyping with nonlinear gear contact characteristics

    International Nuclear Information System (INIS)

    Yin Huabing; Zhou Guangming

    2010-01-01

    The virtual prototypes of gear transmission system built in most multi-body dynamic software have difficulties in describing the gear mesh characteristics. The gear mesh contact is modelled as rigid contact and this is not accurate for the gear mesh contact, which is elastic or flexible. The gear contact formula used in the multi-body dynamic software does not reveal the gear contact nonlinear stiffness characteristic. The model built with gear meshing contact is difficult to solve because of its time-consuming algorithm. In the paper a new method is put forward to build the virtual prototype of planetary gearbox system according to the nonlinear mesh stiffness and mesh phase obtained through FEM models. This new FEM method of gear mesh stiffness calculation is much more accurate than the common formulas. The gear mesh nonlinear stiffness of sun gear- pinion and pinion-ring gear of all the planetary gear sets in gearbox are obtained through MATALB code, which is used to read and plot the analyzing result data. The gear mesh phase differences between different pinions with suns or rings of different planetary gear set can be also obtained. With all these data modelled in simulink (or other software) and integrated with the multi-body dynamic planetary gearbox model and the gear meshing contact problem in multi-body gear models is solved easily and accurately. The interfaces for gear mesh stiffness and mesh phases are designed for multi-body dynamic model and simulink. The nonlinear planetary gear set prototyping models are integrated to become the whole planetary gear box model and the whole vehicle system model built in multi-body dynamic software can be integrated to simulate different duty conditions. At last high speed input is put into the nonlinear planetary transmission model and the different duty cases are simulated. The dynamic characteristics of different parts are obtained. The dynamic characteristic comparison between nonlinear and linear models is made

  1. Prototype detector development for measurement of high altitude Martian dust using a future orbiter platform

    Science.gov (United States)

    Pabari, Jayesh; Patel, Darshil; Chokhawala, Vimmi; Bogavelly, Anvesh

    2016-07-01

    Dust devils mostly occur during the mid of Southern hemisphere summer on Mars and play a key role in the background dust opacity. Due to continuous bombardment of micrometeorites, secondary ejecta come out from the Moons of the Mars and can easily escape. This phenomenon can contribute dust around the Moons and therefore, also around the Mars. Similar to the Moons of the Earth, the surfaces of the Martian Moons get charged and cause the dust levitation to occur, adding to the possible dust source. Also, interplanetary dust particles may be able to reach the Mars and contribute further. It is hypothesized that the high altitude Martian dust could be in the form of a ring or tori around the Mars. However, no such rings have been detected to the present day. Typically, width and height of the dust torus is ~5 Mars radii wide (~16950 km) in both the planes as reported in the literature. Recently, very high altitude dust at about 1000 km has been found by MAVEN mission and it is expected that the dust may be concentrated at about 150 to 500 km. However, a langmuir probe cannot explain the source of such dust particles. It is a puzzling question to the space scientist how dust has reached to such high altitudes. A dedicated dust instrument on future Mars orbiter may be helpful to address such issues. To study origin, abundance, distribution and seasonal variation of Martian dust, a Mars Orbit Dust Experiment (MODEX) is proposed. In order to measure the Martian dust from a future orbiter, design of a prototype of an impact ionization dust detector has been initiated at PRL. This paper presents developmental aspects of the prototype dust detector and initial results. The further work is underway.

  2. Tree Rings: Timekeepers of the Past.

    Science.gov (United States)

    Phipps, R. L.; McGowan, J.

    One of a series of general interest publications on science issues, this booklet describes the uses of tree rings in historical and biological recordkeeping. Separate sections cover the following topics: dating of tree rings, dating with tree rings, tree ring formation, tree ring identification, sample collections, tree ring cross dating, tree…

  3. Vibrational characteristics of a superconducting magnetic bearing employed for a prototype polarization modulator

    Science.gov (United States)

    Sakurai, Yuki; Matsumura, Tomotake; Sugai, Hajime; Katayama, Nobuhiko; Ohsaki, Hiroyuki; Terao, Yutaka; Terachi, Yusuke; Kataza, Hirokazu; Utsunomiya, Shin; Yamamoto, Ryo

    2017-07-01

    We present the vibrational characteristics of a levitating rotor in a superconducting magnetic bearing (SMB) system operating at below 10 K. We develop a polarization modulator that requires a continuously rotating optical element, called half-wave plate (HWP), for a cosmic microwave background polarization experiment. The HWP has to operate at the temperature below 10 K, and thus an SMB provides a smooth rotation of the HWP at the cryogenic temperature of about 10 K with minimal heat dissipation. In order to understand the potential interference to the cosmological observations due to the vibration of the HWP, it is essential to characterize the vibrational properties of the levitating rotor of the SMB. We constructed a prototype model that consists of an SMB with an array of high temperature superconductors, YBCO, and a permanent magnet ring, NdFeB. The rotor position is monitored by a laser displacement gauge, and a cryogenic Hall sensor via the magnetic field. In this presentation, we present the measurement results of the vibration characteristics using our prototype SMB system. We characterize the vibrational properties as the spring constant and the damping, and discuss the projected performance of this technology toward the use in future space missions.

  4. Vibrational characteristics of a superconducting magnetic bearing employed for a prototype polarization modulator

    International Nuclear Information System (INIS)

    Sakurai, Yuki; Matsumura, Tomotake; Sugai, Hajime; Katayama, Nobuhiko; Utsunomiya, Shin; Ohsaki, Hiroyuki; Terao, Yutaka; Terachi, Yusuke; Kataza, Hirokazu; Yamamoto, Ryo

    2017-01-01

    We present the vibrational characteristics of a levitating rotor in a superconducting magnetic bearing (SMB) system operating at below 10 K. We develop a polarization modulator that requires a continuously rotating optical element, called half-wave plate (HWP), for a cosmic microwave background polarization experiment. The HWP has to operate at the temperature below 10 K, and thus an SMB provides a smooth rotation of the HWP at the cryogenic temperature of about 10 K with minimal heat dissipation. In order to understand the potential interference to the cosmological observations due to the vibration of the HWP, it is essential to characterize the vibrational properties of the levitating rotor of the SMB. We constructed a prototype model that consists of an SMB with an array of high temperature superconductors, YBCO, and a permanent magnet ring, NdFeB. The rotor position is monitored by a laser displacement gauge, and a cryogenic Hall sensor via the magnetic field. In this presentation, we present the measurement results of the vibration characteristics using our prototype SMB system. We characterize the vibrational properties as the spring constant and the damping, and discuss the projected performance of this technology toward the use in future space missions. (paper)

  5. Structural dimensioning of dual purpose cask prototype

    International Nuclear Information System (INIS)

    Silva, Luiz Leite da; Mourao, Rogerio Pimenta; Lopes, Claudio Cunha

    2005-01-01

    The structural dimensioning of a Type B(U) dual purpose cask prototype is part of the scope of work of the Brazilian institute CDTN in the IAEA regional project involving Latin American countries which operate research reactors (Argentina, Brazil, Chile, Mexico and Peru). In order to meet the dimensional and operational characteristics of the reactor facilities in these countries, a maximum weight of 10.000 kgf and a maximum dimension of 1 m in at least one direction were set for the cask. With these design restrictions, the cask's payload is either 21 MTR or 78 TRIGA fuel elements. The cask's most important components are main body, primary and secondary lids, basket and impact limiters. The main body has a sandwich-like wall with internal and external layers made of AISI 304 stainless steel with lead in-between. The lead provides biological shielding. The primary lid is similarly layered, but in the axial direction. It is provided with a double system of metallic rings and has ports for pressurization, sampling and containment verification. The secondary lid has the main function of protecting the primary lid against mechanical impacts. The basket structure is basically a tube array reinforced by bottom plate, feet and spacers. Square tubes are used for MTR elements and circular tubes for TRIGA elements. Finally, the impact limiters are structures made of an external stainless steel thin covering and a filling made of the wood composite OSB - Oriented Strand Board. The prototype is provided with bottom and top impact limiters, which are attached to each other by means of four threaded rods. The limiters are not rigidly attached to the cask body. A half scale cask model was designed to be submitted to a testing program. As its volume scales down to 1:8, the model weight is 1,250 kgf. This paper presents the methodology for the preliminary structural dimensioning of the critical parameters of the cask prototype. Both normal conditions of operation and hypothetical

  6. Some Aspects of Ring Theory

    CERN Document Server

    Herstein, IN

    2011-01-01

    S. Amitsur: Associative rings with identities.- I.N. Herstein: Topics in ring theory.- N. Jacobson: Representation theory of Jordan algebras.- I. Kaplansky: The theory of homological dimension.- D. Buchsbaum: Complexes in local ring theory.- P.H. Cohn: Two topics in ring theory.- A.W. Goldie: Non-commutative localisation.

  7. Improving the Accuracy of Laplacian Estimation with Novel Variable Inter-Ring Distances Concentric Ring Electrodes

    Directory of Open Access Journals (Sweden)

    Oleksandr Makeyev

    2016-06-01

    Full Text Available Noninvasive concentric ring electrodes are a promising alternative to conventional disc electrodes. Currently, the superiority of tripolar concentric ring electrodes over disc electrodes, in particular, in accuracy of Laplacian estimation, has been demonstrated in a range of applications. In our recent work, we have shown that accuracy of Laplacian estimation can be improved with multipolar concentric ring electrodes using a general approach to estimation of the Laplacian for an (n + 1-polar electrode with n rings using the (4n + 1-point method for n ≥ 2. This paper takes the next step toward further improving the Laplacian estimate by proposing novel variable inter-ring distances concentric ring electrodes. Derived using a modified (4n + 1-point method, linearly increasing and decreasing inter-ring distances tripolar (n = 2 and quadripolar (n = 3 electrode configurations are compared to their constant inter-ring distances counterparts. Finite element method modeling and analytic results are consistent and suggest that increasing inter-ring distances electrode configurations may decrease the truncation error resulting in more accurate Laplacian estimates compared to respective constant inter-ring distances configurations. For currently used tripolar electrode configuration, the truncation error may be decreased more than two-fold, while for the quadripolar configuration more than a six-fold decrease is expected.

  8. Improving the Accuracy of Laplacian Estimation with Novel Variable Inter-Ring Distances Concentric Ring Electrodes

    Science.gov (United States)

    Makeyev, Oleksandr; Besio, Walter G.

    2016-01-01

    Noninvasive concentric ring electrodes are a promising alternative to conventional disc electrodes. Currently, the superiority of tripolar concentric ring electrodes over disc electrodes, in particular, in accuracy of Laplacian estimation, has been demonstrated in a range of applications. In our recent work, we have shown that accuracy of Laplacian estimation can be improved with multipolar concentric ring electrodes using a general approach to estimation of the Laplacian for an (n + 1)-polar electrode with n rings using the (4n + 1)-point method for n ≥ 2. This paper takes the next step toward further improving the Laplacian estimate by proposing novel variable inter-ring distances concentric ring electrodes. Derived using a modified (4n + 1)-point method, linearly increasing and decreasing inter-ring distances tripolar (n = 2) and quadripolar (n = 3) electrode configurations are compared to their constant inter-ring distances counterparts. Finite element method modeling and analytic results are consistent and suggest that increasing inter-ring distances electrode configurations may decrease the truncation error resulting in more accurate Laplacian estimates compared to respective constant inter-ring distances configurations. For currently used tripolar electrode configuration, the truncation error may be decreased more than two-fold, while for the quadripolar configuration more than a six-fold decrease is expected. PMID:27294933

  9. Radar imaging of Saturn's rings

    Science.gov (United States)

    Nicholson, Philip D.; French, Richard G.; Campbell, Donald B.; Margot, Jean-Luc; Nolan, Michael C.; Black, Gregory J.; Salo, Heikki J.

    2005-09-01

    We present delay-Doppler images of Saturn's rings based on radar observations made at Arecibo Observatory between 1999 and 2003, at a wavelength of 12.6 cm and at ring opening angles of 20.1°⩽|B|⩽26.7°. The average radar cross-section of the A ring is ˜77% relative to that of the B ring, while a stringent upper limit of 3% is placed on the cross-section of the C ring and 9% on that of the Cassini Division. These results are consistent with those obtained by Ostro et al. [1982, Icarus 49, 367-381] from radar observations at |B|=21.4°, but provide higher resolution maps of the rings' reflectivity profile. The average cross-section of the A and B rings, normalized by their projected unblocked area, is found to have decreased from 1.25±0.31 to 0.74±0.19 as the rings have opened up, while the circular polarization ratio has increased from 0.64±0.06 to 0.77±0.06. The steep decrease in cross-section is at variance with previous radar measurements [Ostro et al., 1980, Icarus 41, 381-388], and neither this nor the polarization variations are easily understood within the framework of either classical, many-particle-thick or monolayer ring models. One possible explanation involves vertical size segregation in the rings, whereby observations at larger elevation angles which see deeper into the rings preferentially see the larger particles concentrated near the rings' mid-plane. These larger particles may be less reflective and/or rougher and thus more depolarizing than the smaller ones. Images from all four years show a strong m=2 azimuthal asymmetry in the reflectivity of the A ring, with an amplitude of ±20% and minima at longitudes of 67±4° and 247±4° from the sub-Earth point. We attribute the asymmetry to the presence of gravitational wakes in the A ring as invoked by Colombo et al. [1976, Nature 264, 344-345] to explain the similar asymmetry long seen at optical wavelengths. A simple radiative transfer model suggests that the enhancement of the azimuthal

  10. Study of improvement in 1st ring`s gas-seal; Top ring no gas seal seino kojo no kento

    Energy Technology Data Exchange (ETDEWEB)

    Ando, H; Tateishi, Y; Fujimura, K; Hitosugi, H [Nippon Piston Ring Co. Ltd., Tokyo (Japan)

    1997-10-01

    The authors studied the effect of an angle of 1st ring twist on the amount of blow-by concerning higher speed/higher output engines for motorcycles. As a result, the authors found the twist made the ring restrained in a ring groove of piston , and confirmed its suitable range for blow-by. By means of the developed optimization method, the authors have achieved significant reduction in blow-by at high engine speed. 1 ref., 9 figs., 2 tabs.

  11. Slice of the LHC prototype beam tubes in dipole magnet

    CERN Multimedia

    1995-01-01

    A slice of the LHC accelerator prototype beam tubes surrounded by magnets. The LHC will accelerate two proton beams in opposite directions. The high bending and accelerating fields needed can only be reached using superconductors. At very low temperatures superconductors have no electrical resistance and therefore no power loss. The LHC will be the largest superconducting installation ever built, a unique challenge for CERN and its industrial partners. About dipole magnets: There will be 1232 dipole magnets in the LHC, used to guide the particles around the 27 km ring. Dipole magnets must have an extremely uniform field, which means the current flowing in the coils has to be very precisely controlled. Nowhere before has such precision been achieved at such high currents. The temperature is measured to five thousandths of a degree, the current to one part in a million. The current creating the magnetic field will pass through superconducting wires at up to 12 500 amps, about 30 000 times the current flowing ...

  12. Viscosity of ring polymer melts

    KAUST Repository

    Pasquino, Rossana

    2013-10-15

    We have measured the linear rheology of critically purified ring polyisoprenes, polystyrenes, and polyethyleneoxides of different molar masses. The ratio of the zero-shear viscosities of linear polymer melts η0,linear to their ring counterparts η0,ring at isofrictional conditions is discussed as a function of the number of entanglements Z. In the unentangled regime η0,linear/η 0,ring is virtually constant, consistent with the earlier data, atomistic simulations, and the theoretical expectation η0,linear/ η0,ring = 2. In the entanglement regime, the Z-dependence of ring viscosity is much weaker than that of linear polymers, in qualitative agreement with predictions from scaling theory and simulations. The power-law extracted from the available experimental data in the rather limited range 1 < Z < 20, η0,linear/η0,ring ∼ Z 1.2±0.3, is weaker than the scaling prediction (η0,linear/η0,ring ∼ Z 1.6±0.3) and the simulations (η0,linear/ η0,ring ∼ Z2.0±0.3). Nevertheless, the present collection of state-of-the-art experimental data unambiguously demonstrates that rings exhibit a universal trend clearly departing from that of their linear counterparts, and hence it represents a major step toward resolving a 30-year-old problem. © 2013 American Chemical Society.

  13. Viscosity of ring polymer melts

    KAUST Repository

    Pasquino, Rossana; Vasilakopoulos, Thodoris C.; Jeong, Youncheol; Lee, Hyojoon; Rogers, Simon A.; Sakellariou, Georgios; Allgaier, Jü rgen B.; Takano, Atsushi; Brá s, Ana Rita E; Chang, Taihyun; Gooß en, Sebastian; Pyckhout-Hintzen, Wim; Wischnewski, Andreas; Hadjichristidis, Nikolaos; Richter, Dieter R.; Rubinstein, Michael H.; Vlassopoulos, Dimitris

    2013-01-01

    We have measured the linear rheology of critically purified ring polyisoprenes, polystyrenes, and polyethyleneoxides of different molar masses. The ratio of the zero-shear viscosities of linear polymer melts η0,linear to their ring counterparts η0,ring at isofrictional conditions is discussed as a function of the number of entanglements Z. In the unentangled regime η0,linear/η 0,ring is virtually constant, consistent with the earlier data, atomistic simulations, and the theoretical expectation η0,linear/ η0,ring = 2. In the entanglement regime, the Z-dependence of ring viscosity is much weaker than that of linear polymers, in qualitative agreement with predictions from scaling theory and simulations. The power-law extracted from the available experimental data in the rather limited range 1 < Z < 20, η0,linear/η0,ring ∼ Z 1.2±0.3, is weaker than the scaling prediction (η0,linear/η0,ring ∼ Z 1.6±0.3) and the simulations (η0,linear/ η0,ring ∼ Z2.0±0.3). Nevertheless, the present collection of state-of-the-art experimental data unambiguously demonstrates that rings exhibit a universal trend clearly departing from that of their linear counterparts, and hence it represents a major step toward resolving a 30-year-old problem. © 2013 American Chemical Society.

  14. ring og refleksion

    DEFF Research Database (Denmark)

    Wahlgren, B.; Rattleff, Pernille; Høyrup, S.

    State of the art inden for forskning om læring på arbejdspladsen samt gennemgang af læringsteori og refleksionsbegrebet hos Dewey, Dreyfus, Schön, Argyris, Kolb, Jarvis, Mezirow og Brookfield. Afsluttes med diskussion af syntetiseret model for læring på arbejdspladsen.......State of the art inden for forskning om læring på arbejdspladsen samt gennemgang af læringsteori og refleksionsbegrebet hos Dewey, Dreyfus, Schön, Argyris, Kolb, Jarvis, Mezirow og Brookfield. Afsluttes med diskussion af syntetiseret model for læring på arbejdspladsen....

  15. Birth Control Ring

    Science.gov (United States)

    ... Health Food & Fitness Diseases & Conditions Infections Drugs & Alcohol School & Jobs Sports Expert Answers (Q&A) Staying Safe Videos for Educators Search English Español Birth Control Ring KidsHealth / For Teens / Birth Control Ring What's ...

  16. From coffee ring to spherulites ring of poly(ethylene oxide) film from drying droplet

    Science.gov (United States)

    Hu, Yinchun; Zhang, Xuerong; Qiu, Maibo; Wei, Yan; Zhou, Qiong; Huang, Di

    2018-03-01

    We discuss how the "spherulites ring" morphology and "coffee ring" profile of PEO film formed by the drying droplet at glass substrate with different heating rate. Upon increasing the heating rate of substrate, it is found that deposited PEO film from drying droplet shows the unusually observed "coffee ring" profile and "spherulites ring" morphology. The main mechanism for this phenomenon is proposed to be an enhanced Marangoni convection which is induced by the increased solute concentration gradient and reduced viscous force above 70 °C. A simple formation mechanism of the unusually observed "coffee ring" profile and "spherulites ring" morphology is proposed. These findings can be exploited to trace the center of Marangoni convection, with potential applications in designing the spherulite patterns of crystalline polymer films in ink-jet printing and self-assembly fields.

  17. APS Storage Ring Monopulse RF BPM Upgrade

    Science.gov (United States)

    Lill, R.; Pietryla, A.; Norum, E.; Lenkszus, F.

    2004-11-01

    The Advanced Photon Source (APS) is a third-generation synchrotron light source in its ninth year of operation. The storage ring monopulse radio frequency (rf) beam position monitor (BPM) was designed to measure single-turn and multi-turn beam positions for operations and machine physics studies. Many of the components used in the original design are obsolete and costly to replace. In this paper we present a proposal to upgrade the monopulse rf BPMs in which the existing system hardware is repartitioned and the aging data acquisition system is replaced. By replacing only the data acquisition system, we will demonstrate a cost-effective approach to improved beam stability, reliability, and enhanced postmortem capabilities. An eight-channel ADC/digitizer VXI board with sampling rate of up to 105 MHz (per channel) and 14-bit resolution coupled with a field-programmable gate array and embedded central processing will provide the flexibility to revitalize this system for another decade of operation. We will discuss the upgrade system specifications, design, and prototype test results.

  18. Systematic Search for Rings around Kepler Planet Candidates: Constraints on Ring Size and Occurrence Rate

    Science.gov (United States)

    Aizawa, Masataka; Masuda, Kento; Kawahara, Hajime; Suto, Yasushi

    2018-05-01

    We perform a systematic search for rings around 168 Kepler planet candidates with sufficient signal-to-noise ratios that are selected from all of the short-cadence data. We fit ringed and ringless models to their light curves and compare the fitting results to search for the signatures of planetary rings. First, we identify 29 tentative systems, for which the ringed models exhibit statistically significant improvement over the ringless models. The light curves of those systems are individually examined, but we are not able to identify any candidate that indicates evidence for rings. In turn, we find several mechanisms of false positives that would produce ringlike signals, and the null detection enables us to place upper limits on the size of the rings. Furthermore, assuming the tidal alignment between axes of the planetary rings and orbits, we conclude that the occurrence rate of rings larger than twice the planetary radius is less than 15%. Even though the majority of our targets are short-period planets, our null detection provides statistical and quantitative constraints on largely uncertain theoretical models of the origin, formation, and evolution of planetary rings.

  19. Cooling the APS storage ring radio-frequency accelerating cavities: Thermal/stress/fatigue analysis and cavity cooling configuration

    International Nuclear Information System (INIS)

    Primdahl, K.; Kustom, R.

    1995-01-01

    The 7-GeV Advanced Photon Source positron storage ring requires sixteen separate 352-MHz radio-frequency (rf) accelerating cavities. Cavities are installed as groups of four, in straight sections used elsewhere for insertion devices. They occupy the first such straight section after injection, along with the last three just before injection. Cooling is provided by a subsystem of the sitewide deionized water system. Pumping equipment is located in a building directly adjacent to the accelerator enclosure. A prototype cavity was fabricated and tested where cooling was via twelve 19-mm-diameter [3/4 in] brazed-on tubes in a series-parallel flow configuration. Unfortunately, the thermal contact to some tubes was poor due to inadequate braze filler. Here, heat transfer studies, including finite-element analysis and test results, of the Advanced Photon Source (APS) storage ring 352-MHz rf accelerating cavities are described. Stress and fatigue life of the copper are discussed. Configuration of water cooling is presented

  20. Towards an Operational Framework for Architectural Prototyping

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak

    2005-01-01

    We use a case study in architectural prototyping as input for presenting a first, tentative, framework describing key concepts and their relationships in architectural prototyping processes.......We use a case study in architectural prototyping as input for presenting a first, tentative, framework describing key concepts and their relationships in architectural prototyping processes....

  1. Evaluation of a prototype infrasound system

    International Nuclear Information System (INIS)

    Whitaker, R.; Sandoval, T.; Breding, D.; Kromer, D.

    1997-01-01

    Under Department of Energy sponsorship, Sandia National Laboratories and Los Alamos National Laboratory cooperated to develop a prototype infrasonic array, with associated documentation, that could be used as part of the International Monitoring System. The United States Government or foreign countries could procure commercially available systems based on this prototype to fulfill their Comprehensive Test Ban Treaty (CTBT) obligations. The prototype is a four-element array in a triangular layout as recommended in CD/NTB/WP.224 with an element at each corner and one in the center. The prototype test configuration utilize an array spacing of 1 km. The prototype infrasound system has the following objectives: (1) Provide a prototype that reliably acquires and transmits near real-time infrasonic data to facilitate the rapid location and identification of atmospheric events. (2) Provide documentation that could be used by the United States and foreign countries to procure infrasound systems commercially to fulfill their CTBT responsibilities. Infrasonic monitoring is an effective, low cost technology for detecting atmospheric explosions. The low frequency components of explosion signals propagate to long ranges (few thousand kilometers) where they can be detected with an array of sensors. Los Alamos National Laboratory's expertise in infrasound systems and phenomenology when combined with Sandia's expertise in providing verification quality system for treaty monitoring make an excellent team to provide the prototype infrasound sensor system. By September 1997, the prototype infrasound system will have been procured, integrated, evaluated and documented. Final documentation will include a system requirements document, an evaluation report and a hardware design document. The hardware design document will describe the various hardware components used in the infrasound prototype and their interrelationships

  2. EUSO-TA prototype telescope

    Energy Technology Data Exchange (ETDEWEB)

    Bisconti, Francesca, E-mail: francesca.bisconti@kit.edu

    2016-07-11

    EUSO-TA is one of the prototypes developed for the JEM-EUSO project, a space-based large field-of-view telescope to observe the fluorescence light emitted by cosmic ray air showers in the atmosphere. EUSO-TA is a ground-based prototype located at the Telescope Array (TA) site in Utah, USA, where an Electron Light Source and a Central Laser Facility are installed. The purpose of the EUSO-TA project is to calibrate the prototype with the TA fluorescence detector in presence of well-known light sources and cosmic ray air showers. In 2015, the detector started the first measurements and tests using the mentioned light sources have been performed successfully. A first cosmic ray candidate has been observed, as well as stars of different magnitude and color index. Since Silicon Photo-Multipliers (SiPMs) are very promising for fluorescence telescopes of next generation, they are under consideration for the realization of a new prototype of EUSO Photo Detector Module (PDM). The response of this sensor type is under investigation through simulations and laboratory experimentation.

  3. EUSO-TA prototype telescope

    Science.gov (United States)

    Bisconti, Francesca; JEM-EUSO Collaboration

    2016-07-01

    EUSO-TA is one of the prototypes developed for the JEM-EUSO project, a space-based large field-of-view telescope to observe the fluorescence light emitted by cosmic ray air showers in the atmosphere. EUSO-TA is a ground-based prototype located at the Telescope Array (TA) site in Utah, USA, where an Electron Light Source and a Central Laser Facility are installed. The purpose of the EUSO-TA project is to calibrate the prototype with the TA fluorescence detector in presence of well-known light sources and cosmic ray air showers. In 2015, the detector started the first measurements and tests using the mentioned light sources have been performed successfully. A first cosmic ray candidate has been observed, as well as stars of different magnitude and color index. Since Silicon Photo-Multipliers (SiPMs) are very promising for fluorescence telescopes of next generation, they are under consideration for the realization of a new prototype of EUSO Photo Detector Module (PDM). The response of this sensor type is under investigation through simulations and laboratory experimentation.

  4. The new RD52 (DREAM) fiber calorimeter

    International Nuclear Information System (INIS)

    Wigmans, Richard

    2012-01-01

    Simultaneous detection of the Cerenkov light and scintillation light produced in hadron showers makes it possible to measure the electromagnetic shower fraction event by event and thus eliminate the detrimental effects of fluctuations in this fraction on the performance of calorimeters. In the RD52 (DREAM) project, the possibilities of this dual-readout calorimetry are investigated and optimized. In this talk, the first test results of prototype modules for the new full-scale fiber calorimeter are presented.

  5. Rapid Prototyping of Formally Modelled Distributed Systems

    OpenAIRE

    Buchs, Didier; Buffo, Mathieu; Titsworth, Frances M.

    1999-01-01

    This paper presents various kinds of prototypes, used in the prototyping of formally modelled distributed systems. It presents the notions of prototyping techniques and prototype evolution, and shows how to relate them to the software life-cycle. It is illustrated through the use of the formal modelling language for distributed systems CO-OPN/2.

  6. Structure and dynamics of ringed galaxies

    International Nuclear Information System (INIS)

    Buta, R.J.

    1984-01-01

    In many spiral and SO galaxies, single or multiple ring structures are visible in the disk. These inner rings (r), outer rings (R), and nuclear rings (nr) were investigated by means of morphology, photometry, and spectroscopy in order to provide basic data on a long neglected phenomenon. The metric properties of each ring are investigated and found to correlate with the structure of the parent galaxy. When properly calibrated, inner rings in barred (SB) systems can be used as geometric extragalactic distance indicators to distances in excess of 100 Mpc. Other statistics are presented that confirm previous indications that the rings have preferred shapes, relative sizes, and orientations with respect to bars. A survey is made of the less homogeneous non-barred (SA) ringed systems, and the causes of the inhomogeneity are isolated. It is shown that rings can be identified in multiple-ring SA systems that are exactly analogous to those in barred spirals

  7. THE COMMON HUMANE SHARING IN DIFFERENT MYTHOLOGIES OF THE LORD OF THE RINGS AND 1984

    Directory of Open Access Journals (Sweden)

    Aslı Bülbül CANDAŞ

    2014-05-01

    Full Text Available John Ronald Reuel Tolkien's collection The Silmarillion, which is a utopic creation myth of Middle-earth, Valinor, Numenor and Beleriand, and his novel The Lord of the Rings, which is a saga taking place only in Middle-earth, seem to be completely irrelevant to George Orwell's dystopian world 1984 at first view but when they are examined in detail, two striking common points would be obvious that these myths support the idea of cultural variety's importance and they consist of a war against cultural dominance. In The Lord of the Rings, it is the battle and collaboration of cultures that makes sense in the mythological surrounding of the plot; the creatures come together to defend their cultural history against a single body; Sauron and the Orcs under his rule. As for 1984, the reader is presented with the struggle of a couple, Winston and Julia, to continue their cultural heritage against the dictatorship of Ingsoc which offers the society with an artificial and prototypical culture.

  8. Multiplicative Structure and Hecke Rings of Generator Matrices for Codes over Quotient Rings of Euclidean Domains

    Directory of Open Access Journals (Sweden)

    Hajime Matsui

    2017-12-01

    Full Text Available In this study, we consider codes over Euclidean domains modulo their ideals. In the first half of the study, we deal with arbitrary Euclidean domains. We show that the product of generator matrices of codes over the rings mod a and mod b produces generator matrices of all codes over the ring mod a b , i.e., this correspondence is onto. Moreover, we show that if a and b are coprime, then this correspondence is one-to-one, i.e., there exist unique codes over the rings mod a and mod b that produce any given code over the ring mod a b through the product of their generator matrices. In the second half of the study, we focus on the typical Euclidean domains such as the rational integer ring, one-variable polynomial rings, rings of Gaussian and Eisenstein integers, p-adic integer rings and rings of one-variable formal power series. We define the reduced generator matrices of codes over Euclidean domains modulo their ideals and show their uniqueness. Finally, we apply our theory of reduced generator matrices to the Hecke rings of matrices over these Euclidean domains.

  9. Architectural Prototyping in Industrial Practice

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak; Hansen, Klaus Marius

    2008-01-01

    Architectural prototyping is the process of using executable code to investigate stakeholders’ software architecture concerns with respect to a system under development. Previous work has established this as a useful and cost-effective way of exploration and learning of the design space of a system......, in addressing issues regarding quality attributes, in addressing architectural risks, and in addressing the problem of knowledge transfer and conformance. Little work has been reported so far on the actual industrial use of architectural prototyping. In this paper, we report from an ethnographical study...... and focus group involving architects from four companies in which we have focused on architectural prototypes. Our findings conclude that architectural prototypes play an important role in resolving problems experimentally, but less so in exploring alternative solutions. Furthermore, architectural...

  10. PEAR: Prototyping Expressive Animated Robots - A framework for social robot prototyping

    OpenAIRE

    Balit , Etienne; Vaufreydaz , Dominique; Reignier , Patrick

    2018-01-01

    International audience; Social robots are transitioning from lab experiments to commercial products, creating new needs for proto-typing and design tools. In this paper, we present a framework to facilitate the prototyping of expressive animated robots. For this, we start by reviewing the design of existing social robots in order to define a set of basic components of social robots. We then show how to extend an existing 3D animation software to enable the animation of these components. By co...

  11. Binomial Rings: Axiomatisation, Transfer and Classification

    OpenAIRE

    Xantcha, Qimh Richey

    2011-01-01

    Hall's binomial rings, rings with binomial coefficients, are given an axiomatisation and proved identical to the numerical rings studied by Ekedahl. The Binomial Transfer Principle is established, enabling combinatorial proofs of algebraical identities. The finitely generated binomial rings are completely classified. An application to modules over binomial rings is given.

  12. AN N-BODY INTEGRATOR FOR GRAVITATING PLANETARY RINGS, AND THE OUTER EDGE OF SATURN'S B RING

    International Nuclear Information System (INIS)

    Hahn, Joseph M.; Spitale, Joseph N.

    2013-01-01

    A new symplectic N-body integrator is introduced, one designed to calculate the global 360° evolution of a self-gravitating planetary ring that is in orbit about an oblate planet. This freely available code is called epi i nt, and it is distinct from other such codes in its use of streamlines to calculate the effects of ring self-gravity. The great advantage of this approach is that the perturbing forces arise from smooth wires of ring matter rather than discreet particles, so there is very little gravitational scattering and so only a modest number of particles are needed to simulate, say, the scalloped edge of a resonantly confined ring or the propagation of spiral density waves. The code is applied to the outer edge of Saturn's B ring, and a comparison of Cassini measurements of the ring's forced response to simulations of Mimas's resonant perturbations reveals that the B ring's surface density at its outer edge is σ 0 = 195 ± 60 g cm –2 , which, if the same everywhere across the ring, would mean that the B ring's mass is about 90% of Mimas's mass. Cassini observations show that the B ring-edge has several free normal modes, which are long-lived disturbances of the ring-edge that are not driven by any known satellite resonances. Although the mechanism that excites or sustains these normal modes is unknown, we can plant such a disturbance at a simulated ring's edge and find that these modes persist without any damping for more than ∼10 5 orbits or ∼100 yr despite the simulated ring's viscosity ν s = 100 cm 2 s –1 . These simulations also indicate that impulsive disturbances at a ring can excite long-lived normal modes, which suggests that an impact in the recent past by perhaps a cloud of cometary debris might have excited these disturbances, which are quite common to many of Saturn's sharp-edged rings

  13. Galactic rings revisited - I. CVRHS classifications of 3962 ringed galaxies from the Galaxy Zoo 2 Database

    Science.gov (United States)

    Buta, Ronald J.

    2017-11-01

    Rings are important and characteristic features of disc-shaped galaxies. This paper is the first in a series that re-visits galactic rings with the goals of further understanding the nature of the features and for examining their role in the secular evolution of galaxy structure. The series begins with a new sample of 3962 galaxies drawn from the Galaxy Zoo 2 citizen science data base, selected because zoo volunteers recognized a ring-shaped pattern in the morphology as seen in Sloan Digital Sky Survey colour images. The galaxies are classified within the framework of the Comprehensive de Vaucouleurs revised Hubble-Sandage system. It is found that zoo volunteers cued on the same kinds of ring-like features that were recognized in the 1995 Catalogue of Southern Ringed Galaxies. This paper presents the full catalogue of morphological classifications, comparisons with other sources of classifications and some histograms designed mainly to highlight the content of the catalogue. The advantages of the sample are its large size and the generally good quality of the images; the main disadvantage is the low physical resolution that limits the detectability of linearly small rings such as nuclear rings. The catalogue includes mainly inner and outer disc rings and lenses. Cataclysmic (`encounter-driven') rings (such as ring and polar ring galaxies) are recognized in less than 1 per cent of the sample.

  14. The thin-wall tube drift chamber operating in vacuum (prototype)

    Science.gov (United States)

    Alexeev, G. D.; Glonti, L. N.; Kekelidze, V. D.; Malyshev, V. L.; Piskun, A. A.; Potrbenikov, Yu. K.; Rodionov, V. K.; Samsonov, V. A.; Tokmenin, V. V.; Shkarovskiy, S. N.

    2013-08-01

    The goal of this work was to design drift tubes and a chamber operating in vacuum, and to develop technologies for tubes independent assembly and mounting in the chamber. These design and technology were tested on the prototype. The main features of the chamber are the following: the drift tubes are made of flexible mylar film (wall thickness 36 μm, diameter 9.80 mm, length 2160 mm) using ultrasonic welding along the generatrix; the welding device and methods were developed at JINR. Drift tubes with end plugs, anode wires and spacers were completely assembled outside the chamber. "Self-centering" spacers and bushes were used for precise setting of the anode wires and tubes. The assembled tubes were sealed with O-rings in their seats in the chamber which simplified the chamber assembling. Moreover the tube assembly and the chamber manufacture can be performed independently and in parallel; this sufficiently reduces the total time of chamber manufacture and assembling, its cost and allows tubes to be tested outside the chamber. The technology of independent tube assembling is suitable for a chamber of any shape but a round chamber is preferable for operation in vacuum. Single channel amplifier-discriminator boards which are more stable against cross talks were used for testing the tubes. Independently assembled tubes were mounted into the chamber prototype and its performance characteristic measured under the vacuum conditions. The results showed that both the structure and the tubes themselves normally operate. They are suitable for making a full-scale drift chamber for vacuum.

  15. The thin-wall tube drift chamber operating in vacuum (prototype)

    International Nuclear Information System (INIS)

    Alexeev, G.D.; Glonti, L.N.; Kekelidze, V.D.; Malyshev, V.L.; Piskun, A.A.; Potrbenikov, Yu.K.; Rodionov, V.K.; Samsonov, V.A.; Tokmenin, V.V.; Shkarovskiy, S.N.

    2013-01-01

    The goal of this work was to design drift tubes and a chamber operating in vacuum, and to develop technologies for tubes independent assembly and mounting in the chamber. These design and technology were tested on the prototype. The main features of the chamber are the following: the drift tubes are made of flexible mylar film (wall thickness 36 μm, diameter 9.80 mm, length 2160 mm) using ultrasonic welding along the generatrix; the welding device and methods were developed at JINR. Drift tubes with end plugs, anode wires and spacers were completely assembled outside the chamber. “Self-centering” spacers and bushes were used for precise setting of the anode wires and tubes. The assembled tubes were sealed with O-rings in their seats in the chamber which simplified the chamber assembling. Moreover the tube assembly and the chamber manufacture can be performed independently and in parallel; this sufficiently reduces the total time of chamber manufacture and assembling, its cost and allows tubes to be tested outside the chamber. The technology of independent tube assembling is suitable for a chamber of any shape but a round chamber is preferable for operation in vacuum. Single channel amplifier-discriminator boards which are more stable against cross talks were used for testing the tubes. Independently assembled tubes were mounted into the chamber prototype and its performance characteristic measured under the vacuum conditions. The results showed that both the structure and the tubes themselves normally operate. They are suitable for making a full-scale drift chamber for vacuum

  16. The thin-wall tube drift chamber operating in vacuum (prototype)

    Energy Technology Data Exchange (ETDEWEB)

    Alexeev, G.D. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Glonti, L.N., E-mail: glonti@sunse.jinr.ru [Joint Institute for Nuclear Research, Dubna (Russian Federation); Kekelidze, V.D.; Malyshev, V.L.; Piskun, A.A.; Potrbenikov, Yu.K.; Rodionov, V.K.; Samsonov, V.A.; Tokmenin, V.V.; Shkarovskiy, S.N. [Joint Institute for Nuclear Research, Dubna (Russian Federation)

    2013-08-01

    The goal of this work was to design drift tubes and a chamber operating in vacuum, and to develop technologies for tubes independent assembly and mounting in the chamber. These design and technology were tested on the prototype. The main features of the chamber are the following: the drift tubes are made of flexible mylar film (wall thickness 36 μm, diameter 9.80 mm, length 2160 mm) using ultrasonic welding along the generatrix; the welding device and methods were developed at JINR. Drift tubes with end plugs, anode wires and spacers were completely assembled outside the chamber. “Self-centering” spacers and bushes were used for precise setting of the anode wires and tubes. The assembled tubes were sealed with O-rings in their seats in the chamber which simplified the chamber assembling. Moreover the tube assembly and the chamber manufacture can be performed independently and in parallel; this sufficiently reduces the total time of chamber manufacture and assembling, its cost and allows tubes to be tested outside the chamber. The technology of independent tube assembling is suitable for a chamber of any shape but a round chamber is preferable for operation in vacuum. Single channel amplifier-discriminator boards which are more stable against cross talks were used for testing the tubes. Independently assembled tubes were mounted into the chamber prototype and its performance characteristic measured under the vacuum conditions. The results showed that both the structure and the tubes themselves normally operate. They are suitable for making a full-scale drift chamber for vacuum.

  17. Quantum Fourier Transform Over Galois Rings

    OpenAIRE

    Zhang, Yong

    2009-01-01

    Galois rings are regarded as "building blocks" of a finite commutative ring with identity. There have been many papers on classical error correction codes over Galois rings published. As an important warm-up before exploring quantum algorithms and quantum error correction codes over Galois rings, we study the quantum Fourier transform (QFT) over Galois rings and prove it can be efficiently preformed on a quantum computer. The properties of the QFT over Galois rings lead to the quantum algorit...

  18. The Scintillator Tile Hadronic Calorimeter Prototype

    International Nuclear Information System (INIS)

    Rusinov, V.

    2006-01-01

    A high granularity scintillator hadronic calorimeter prototype is described. The calorimeter is based on a novel photodetector - Silicon Photo-Multiplier (SiPM). The main parameters of SiPM are discussed as well as readout cell construction and optimization. The experience with a small prototype production and testing is described. A new 8 k channel prototype is being manufactured now

  19. Novel manifestations of the Aharonov-Bohm effect in quantum rings and Moebius rings

    International Nuclear Information System (INIS)

    Fomin, Vladimir M.

    2013-01-01

    - An overview is given on the recent experimental and theoretical advancements in studies of novel manifestations of the Aharonov-Bohm quantum-interference effect for excitons confined to self assembled quantum rings and other semiconductor nanostructures with ring-like states of charge carriers as well as for electrons in Moebius rings at the micro- and nanoscale. The exciton Aharonov-Bohm effect can be effectively controlled by an out-of-plane magnetic field, a vertical electric field, a spin disorder. A 'delocalization-to-localization' transition for the electron ground state occurs in a Moebius ring as it is made more inhomogeneous. (authors)

  20. Ring closure in actin polymers

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Supurna, E-mail: supurna@rri.res.in [Raman Research Institute, Bangalore 560080 (India); Chattopadhyay, Sebanti [Doon University, Dehradun 248001 (India)

    2017-03-18

    We present an analysis for the ring closure probability of semiflexible polymers within the pure bend Worm Like Chain (WLC) model. The ring closure probability predicted from our analysis can be tested against fluorescent actin cyclization experiments. We also discuss the effect of ring closure on bend angle fluctuations in actin polymers. - Highlights: • Ring closure of biopolymers. • Worm like chain model. • Predictions for experiments.

  1. On P-coherent endomorphism rings

    Indian Academy of Sciences (India)

    A ring is called right -coherent if every principal right ideal is finitely presented. Let M R be a right -module. We study the -coherence of the endomorphism ring of M R . It is shown that is a right -coherent ring if and only if every endomorphism of M R has a pseudokernel in add M R ; S is a left -coherent ring if and ...

  2. Overview of the SLD

    International Nuclear Information System (INIS)

    Breidenbach, M.

    1985-10-01

    The SLD is a second generation detector for the SLAC Linear Collider (SLC). It is optimized for Z 0 physics and exploration of new physics in the Z 0 energy region. The SLD will have a CCD vertex detector, high resolution drift chambers for momentum measurement, a Cerenkov Ring Imaging Detector for particle identification, and calorimetry based on lead/liquid argon followed by an iron/gas system. The detector covers the full solid angle. 13 refs., 7 figs

  3. Collaborative Simulation and Testing of the Superconducting Dipole Prototype Magnet for the FAIR Project

    International Nuclear Information System (INIS)

    Zhu Yinfeng; Zhu Zhe; Wu Weiyue; Xu Houchang

    2012-01-01

    The superconducting dipole prototype magnet of the collector ring for the Facility for Antiproton and Ion Research (FAIR) is an international cooperation project. The collaborative simulation and testing of the developed prototype magnet is presented in this paper. To evaluate the mechanical strength of the coil case during quench, a 3-dimensional (3D) electromagnetic (EM) model was developed based on the solid97 magnetic vector element in the ANSYS commercial software, which includes the air region, coil and yoke. EM analysis was carried out with a peak operating current at 278 A. Then, the solid97 element was transferred into the solid185 element, the coupled analysis was switched from electromagnetic to structural, and the finite element model for the coil case and glass-fiber reinforced composite (G10) spacers was established by the ANSYS Parametric Design Language based on the 3D model from the CATIA V5 software. However, to simulate the friction characteristics inside the coil case, the conta173 surface-to-surface contact element was established. The results for the coil case and G10 spacers show that they are safe and have sufficient strength, on the basis of testing in discharge and quench scenarios. (fusion engineering)

  4. Micropole Undulators In Synchrotron Radiation Technology: Design And Construction Of A Submillimeter Period Prototype With A 3 Kilogauss Peak Field At SSRL

    Science.gov (United States)

    Tatchyn, Roman; Csonka, Paul

    1986-01-01

    The availability of undulators with submillimeter periods will profoundly affect the future development of soft x-ray sources and their attendant instrumentation. Outputs comparable to those of present-day conventional undulators, obtainable with much lower energy storage rings, is only one promising aspect of such devices. This paper critically examines some of the future prospects of such devices and describes the design and practical construction of a 1" long prototype consisting of 35 periods. A proposed experiment to test this device on a linac is described.

  5. Micropole undulators in synchrotron radiation technology: Design and construction of a submillimeter period prototype with a 3 kilogauss peak field at SSRL

    International Nuclear Information System (INIS)

    Tatchyn, R.; Csonka, P.

    1987-01-01

    The availability of undulators with submillimeter periods profoundly affects the future development of soft x-ray sources and their attendant instrumentation. Outputs comparable to those of present-day conventional undulators, obtainable with much lower energy storage rings, is only one promising aspect of such devices. This paper critically examines some of the future prospects of such devices and describes the design and practical construction of a 1'' long prototype consisting of 35 periods. A proposed experiment to test this device on a linac is described

  6. Faithfully quadratic rings

    CERN Document Server

    Dickmann, M

    2015-01-01

    In this monograph the authors extend the classical algebraic theory of quadratic forms over fields to diagonal quadratic forms with invertible entries over broad classes of commutative, unitary rings where -1 is not a sum of squares and 2 is invertible. They accomplish this by: (1) Extending the classical notion of matrix isometry of forms to a suitable notion of T-isometry, where T is a preorder of the given ring, A, or T = A^2. (2) Introducing in this context three axioms expressing simple properties of (value) representation of elements of the ring by quadratic forms, well-known to hold in

  7. Virtual Video Prototyping for Healthcare Systems

    DEFF Research Database (Denmark)

    Bardram, Jakob Eyvind; Bossen, Claus; Lykke-Olesen, Andreas

    2002-01-01

    Virtual studio technology enables the mixing of physical and digital 3D objects and thus expands the way of representing design ideas in terms of virtual video prototypes, which offers new possibilities for designers by combining elements of prototypes, mock-ups, scenarios, and conventional video....... In this article we report our initial experience in the domain of pervasive healthcare with producing virtual video prototypes and using them in a design workshop. Our experience has been predominantly favourable. The production of a virtual video prototype forces the designers to decide very concrete design...... issues, since one cannot avoid paying attention to the physical, real-world constraints and to details in the usage-interaction between users and technology. From the users' perspective, during our evaluation of the virtual video prototype, we experienced how it enabled users to relate...

  8. BERKELEY: ALS ring

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-06-15

    Everybody at Lawrence Berkeley Laboratory's Center for Beam Physics is pleased with the rapid progress in commissioning LBL's Advanced Light Source (ALS) electron storage ring, the foundation for this third-generation synchrotron radiation facility. Designed for a maximum current of 400 mA, the ALS storage ring reached 407 mA just 24 days after storing the first beam on 16 March. ALS construction as a US Department of Energy (DOE) national user facility to provide high-brightness vacuum ultra-violet and soft x-ray radiation began in October 1987. One technical requirement marking project completion was to accumulate a 50-mA current in the storage ring. The ALS passed this milestone on 24 March, a week ahead of the official deadline. Once injected, the electron beam decays quasi-exponentially primarily because of interactions with residual gas molecules in the storage-ring vacuum chamber. Eventually, when the pressure in the vacuum chamber with beam decreases toward the expected operating level of 1 nano Torr, it will only be necessary to refill the storage ring at intervals of four to eight hours. At present the vacuum is improving rapidly as surfaces are irradiated (scrubbed) by the synchrotron radiation itself. At 100 mA, beam lifetime was about one hour (9 April)

  9. Compressible Vortex Ring

    Science.gov (United States)

    Elavarasan, Ramasamy; Arakeri, Jayawant; Krothapalli, Anjaneyulu

    1999-11-01

    The interaction of a high-speed vortex ring with a shock wave is one of the fundamental issues as it is a source of sound in supersonic jets. The complex flow field induced by the vortex alters the propagation of the shock wave greatly. In order to understand the process, a compressible vortex ring is studied in detail using Particle Image Velocimetry (PIV) and shadowgraphic techniques. The high-speed vortex ring is generated from a shock tube and the shock wave, which precedes the vortex, is reflected back by a plate and made to interact with the vortex. The shadowgraph images indicate that the reflected shock front is influenced by the non-uniform flow induced by the vortex and is decelerated while passing through the vortex. It appears that after the interaction the shock is "split" into two. The PIV measurements provided clear picture about the evolution of the vortex at different time interval. The centerline velocity traces show the maximum velocity to be around 350 m/s. The velocity field, unlike in incompressible rings, contains contributions from both the shock and the vortex ring. The velocity distribution across the vortex core, core diameter and circulation are also calculated from the PIV data.

  10. BERKELEY: ALS ring

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Everybody at Lawrence Berkeley Laboratory's Center for Beam Physics is pleased with the rapid progress in commissioning LBL's Advanced Light Source (ALS) electron storage ring, the foundation for this third-generation synchrotron radiation facility. Designed for a maximum current of 400 mA, the ALS storage ring reached 407 mA just 24 days after storing the first beam on 16 March. ALS construction as a US Department of Energy (DOE) national user facility to provide high-brightness vacuum ultra-violet and soft x-ray radiation began in October 1987. One technical requirement marking project completion was to accumulate a 50-mA current in the storage ring. The ALS passed this milestone on 24 March, a week ahead of the official deadline. Once injected, the electron beam decays quasi-exponentially primarily because of interactions with residual gas molecules in the storage-ring vacuum chamber. Eventually, when the pressure in the vacuum chamber with beam decreases toward the expected operating level of 1 nano Torr, it will only be necessary to refill the storage ring at intervals of four to eight hours. At present the vacuum is improving rapidly as surfaces are irradiated (scrubbed) by the synchrotron radiation itself. At 100 mA, beam lifetime was about one hour (9 April)

  11. Accidental ingestion of BiTine ring and a note on inefficient ring separation forceps

    Directory of Open Access Journals (Sweden)

    Baghele ON

    2011-05-01

    Full Text Available Om Nemichand Baghele1, Mangala Om Baghele21Department of Periodontology, SMBT Dental College and Hospital, Sangamner, Ahmednagar, Maharashtra, India; 2Private General Dental Practice, Mumbai, IndiaBackground: Accidental ingestion of medium-to-large instruments is relatively uncommon during dental treatment but can be potentially dangerous. A case of BiTine ring ingestion is presented with a note on inefficient ring separation forceps.Case description: A 28-year-old male patient accidentally ingested the BiTine ring (2 cm diameter, 0.5 cm outward projections while it was being applied to a distoproximal cavity in tooth # 19. The ring placement forceps were excessively flexible; bending of the beaks towards the ring combined with a poor no-slippage mechanism led to sudden disengagement of the ring and accelerated movement towards the pharynx. We followed the patient with bulk forming agents and radiographs. Fortunately the ring passed out without any complications.Clinical implications: Checking equipment and methods is as important as taking precautions against any preventable medical emergency. It is the responsibility of the clinician to check, verify and then use any instrument/equipment.Keywords: foreign bodies/radiography, foreign bodies/complications, equipment failure, dental instrument, accidental ingestion

  12. Precision analog signal processor for beam position measurements in electron storage rings

    International Nuclear Information System (INIS)

    Hinkson, J.A.; Unser, K.B.

    1995-05-01

    Beam position monitors (BPM) in electron and positron storage rings have evolved from simple systems composed of beam pickups, coaxial cables, multiplexing relays, and a single receiver (usually a analyzer) into very complex and costly systems of multiple receivers and processors. The older may have taken minutes to measure the circulating beam closed orbit. Today instrumentation designers are required to provide high-speed measurements of the beam orbit, often at the ring revolution frequency. In addition the instruments must have very high accuracy and resolution. A BPM has been developed for the Advanced Light Source (ALS) in Berkeley which features high resolution and relatively low cost. The instrument has a single purpose; to measure position of a stable stored beam. Because the pickup signals are multiplexed into a single receiver, and due to its narrow bandwidth, the receiver is not intended for single-turn studies. The receiver delivers normalized measurements of X and Y position entirely by analog means at nominally 1 V/mm. No computers are involved. No software is required. Bergoz, a French company specializing in precision beam instrumentation, integrated the ALS design m their new BPM analog signal processor module. Performance comparisons were made on the ALS. In this paper we report on the architecture and performance of the ALS prototype BPM

  13. On the Laurent polynomial rings

    International Nuclear Information System (INIS)

    Stefanescu, D.

    1985-02-01

    We describe some properties of the Laurent polynomial rings in a finite number of indeterminates over a commutative unitary ring. We study some subrings of the Laurent polynomial rings. We finally obtain two cancellation properties. (author)

  14. The Hi-Ring DCN Architecture

    DEFF Research Database (Denmark)

    Galili, Michael; Kamchevska, Valerija; Ding, Yunhong

    2016-01-01

    We will review recent work on the proposed hierarchical ring-based architecture (HiRing) proposed for data center networks. We will discuss the architecture and initial demonstrations of optical switching performance and time-domain synchronization......We will review recent work on the proposed hierarchical ring-based architecture (HiRing) proposed for data center networks. We will discuss the architecture and initial demonstrations of optical switching performance and time-domain synchronization...

  15. Insertion device development in the X13 straight of the NSLS X-Ray Ring

    International Nuclear Information System (INIS)

    Stefan, P.M.; Krinsky, S.; Kao, C.C.; Rakowsky, G.; Singh, O.; Solomon, L.

    1997-01-01

    On the NSLS X-Ray Storage Ring, the X13 straight section and beamline have been used for insertion-device-related R and D since 1990. The authors will describe three important projects: The Prototype Small-Gap Undulator (PSGU), the In-Vacuum Undulator (IVUN), and the Time Varying Elliptically Polarized Wiggler (EPW). The PSGU has successfully operated with a vertical aperture of only 3 mm, with minimal reduction in electron beam lifetime. The EPW has successfully run during regular user operations while switching at either 2 Hz or 100 Hz, with no adverse effects on other experiments. The IVUN project is a collaboration between NSLS and Spring-8, and installation is scheduled for May 1997

  16. Prompt and Precise Prototyping

    Science.gov (United States)

    2003-01-01

    For Sanders Design International, Inc., of Wilton, New Hampshire, every passing second between the concept and realization of a product is essential to succeed in the rapid prototyping industry where amongst heavy competition, faster time-to-market means more business. To separate itself from its rivals, Sanders Design aligned with NASA's Marshall Space Flight Center to develop what it considers to be the most accurate rapid prototyping machine for fabrication of extremely precise tooling prototypes. The company's Rapid ToolMaker System has revolutionized production of high quality, small-to-medium sized prototype patterns and tooling molds with an exactness that surpasses that of computer numerically-controlled (CNC) machining devices. Created with funding and support from Marshall under a Small Business Innovation Research (SBIR) contract, the Rapid ToolMaker is a dual-use technology with applications in both commercial and military aerospace fields. The advanced technology provides cost savings in the design and manufacturing of automotive, electronic, and medical parts, as well as in other areas of consumer interest, such as jewelry and toys. For aerospace applications, the Rapid ToolMaker enables fabrication of high-quality turbine and compressor blades for jet engines on unmanned air vehicles, aircraft, and missiles.

  17. EBT ring physics

    International Nuclear Information System (INIS)

    Uckan, N.A.

    1980-04-01

    This workshop attempted to evaluate the status of the current experimental and theoretical understanding of hot electron ring properties. The dominant physical processes that influence ring formation, scaling, and their optimal behavior are also studied. Separate abstracts were prepared for each of the 27 included papers

  18. Rapid prototyping: een veelbelovende methode

    NARCIS (Netherlands)

    Haverman, T.M.; Karagozoglu, K.H.; Prins, H.; Schulten, E.A.J.M.; Forouzanfar, T.

    2013-01-01

    Rapid prototyping is a method which makes it possible to produce a three-dimensional model based on two-dimensional imaging. Various rapid prototyping methods are available for modelling, such as stereolithography, selective laser sintering, direct laser metal sintering, two-photon polymerization,

  19. Baking of the vacuum vessel prototype of the Spanish stellarator with a control system based on neural network

    International Nuclear Information System (INIS)

    Botija, J.; Alonso, J.; Blaumoser, M.

    1995-01-01

    To bake uniformly, up to 150 C, the vacuum vessel of the Spanish Stellarator TJ-II represents a difficult task to be demonstrated. In order to study the temperature distribution in the vessel, a prototype of this vacuum vessel, mounted in a stainless steel structure, has been heated by means of electrical panels and eddy currents. The induction heating system is provided applying 498 A/11.7 V at 50 Hz to the toroidal field coil located in the middle of the vessel prototype. Practically, this system only heats adequately the rings and poorly the so called groove of the vacuum vessel. On the contrary, the electrical heaters, with a power density of 0.5 W/cm 2 , heat the external part of the sectors and ports. The high density of temperature sensors ensures the uniformity of the heating process during the long heating cycles, making advisable a fault-tolerant control system based on Artificial Neural Networks (ANNs) that implements the control loop to regulate and protect both heating systems. This paper deals with the results of this experiment

  20. Ground Movement in SSRL Ring

    International Nuclear Information System (INIS)

    Sunikumar, Nikita

    2011-01-01

    Users of the Stanford Synchrotron Radiation Lightsource (SSRL) are being affected by diurnal motion of the synchrotron's storage ring, which undergoes structural changes due to outdoor temperature fluctuations. In order to minimize the effects of diurnal temperature fluctuations, especially on the vertical motion of the ring floor, scientists at SSRL tried three approaches: painting the storage ring white, covering the asphalt in the middle of the ring with highly reflective Mylar and installing Mylar on a portion of the ring roof and walls. Vertical motion in the storage ring is measured by a Hydrostatic Leveling System (HLS), which calculates the relative height of water in a pipe that extends around the ring. The 24-hr amplitude of the floor motion was determined using spectral analysis of HLS data, and the ratio of this amplitude before and after each experiment was used to quantitatively determine the efficacy of each approach. The results of this analysis showed that the Mylar did not have any significant effect on floor motion, although the whitewash project did yield a reduction in overall HLS variation of 15 percent. However, further analysis showed that the reduction can largely be attributed to a few local changes rather than an overall reduction in floor motion around the ring. Future work will consist of identifying and selectively insulating these local regions in order to find the driving force behind diurnal floor motion in the storage ring.

  1. Field evaluation of prototype electrofibrous filters

    International Nuclear Information System (INIS)

    Kuhl, W.D.; Bergman, W.; Biermann, A.H.; Lum, B.Y.

    1982-01-01

    New prototype electrofibrous filters were designed, built and evaluated in laboratory tests and in field installations. Two prototypes were designed for use in nuclear ventilation ducts as prefilters to HEPA filters. One prototype is designed to be a permanent component of the ventilation system while the other is a disposable unit. The disposable electrofibrous prefilter was installed in the exhaust stream of a glove box in which barrels of uranium turnings are burned. Preliminary tests show the disposal prefilter is effectively prolonging the HEPA filter life. An earlier prototype of the rolling prefilter was upgraded to meet the increased requirements for installation in a nuclear facility. This upgraded prototype was evaluated in the fire test facility at LLNL and shown to be effective in protecting HEPA filters from plugging under the most severe smoke conditions. The last prototype described in this report is a recirculating air filter. After demonstrating a high performance in laboratory tests the unit was shipped to Savannah River where it is awaiting installation in a Pu fuel fabrication facility. An analysis of the particulate problem in Savannah River indicates that four recirculating air filter will save $172,000 per year in maintenance costs

  2. Token ring technology report

    CERN Document Server

    2013-01-01

    Please note this is a Short Discount publication. This report provides an overview of the IBM Token-Ring technology and products built by IBM and compatible vendors. It consists of two sections: 1. A summary of the design trade-offs for the IBM Token-Ring. 2. A summary of the products of the major token-ring compatible vendors broken down by adapters and components, wiring systems, testing, and new chip technology.

  3. Window prototypes during the project

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe

    1996-01-01

    The conditions for the PASSYS test and the results of the measurements on one of the aerogel window prototypes are described.......The conditions for the PASSYS test and the results of the measurements on one of the aerogel window prototypes are described....

  4. Test case preparation using a prototype

    OpenAIRE

    Treharne, Helen; Draper, J.; Schneider, Steve A.

    1998-01-01

    This paper reports on the preparation of test cases using a prototype within the context of a formal development. It describes an approach to building a prototype using an example. It discusses how a prototype contributes to the testing activity as part of a lifecycle based on the use of formal methods. The results of applying the approach to an embedded avionics case study are also presented.

  5. Polycomb Group Proteins RING1A and RING1B Regulate the Vegetative Phase Transition in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Jian Li

    2017-05-01

    Full Text Available Polycomb group (PcG protein-mediated gene silencing is a major regulatory mechanism in higher eukaryotes that affects gene expression at the transcriptional level. Here, we report that two conserved homologous PcG proteins, RING1A and RING1B (RING1A/B, are required for global H2A monoubiquitination (H2Aub in Arabidopsis. The mutation of RING1A/B increased the expression of members of the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL gene family and caused an early vegetative phase transition. The early vegetative phase transition observed in ring1a ring1b double mutant plants was dependent on an SPL family gene, and the H2Aub status of the chromatin at SPL locus was dependent on RING1A/B. Moreover, mutation in RING1A/B affected the miRNA156a-mediated vegetative phase transition, and RING1A/B and the AGO7-miR390-TAS3 pathway were found to additively regulate this transition in Arabidopsis. Together, our results demonstrate that RING1A/B regulates the vegetative phase transition in Arabidopsis through the repression of SPL family genes.

  6. Researches on the Piston Ring

    Science.gov (United States)

    Ehihara, Keikiti

    1944-01-01

    In internal combustion engines, steam engines, air compressors, and so forth, the piston ring plays an important role. Especially, the recent development of Diesel engines which require a high compression pressure for their working, makes, nowadays, the packing action of the piston ring far more important than ever. Though a number of papers have been published in regard to researches on the problem of the piston ring, none has yet dealt with an exact measurement of pressure exerted on the cylinder wall at any given point of the ring. The only paper that can be traced on this subject so far is Mr. Nakagawa's report on the determination of the relative distribution of pressure on the cylinder wall, but the measuring method adopted therein appears to need further consideration. No exact idea has yet been obtained as to how the obturation of gas between the piston and cylinder, the frictional resistance of the piston, and the wear of the cylinder wall are affected by the intensity and the distribution of the radial pressure of the piston ring. Consequently, the author has endeavored, by employing an apparatus of his own invention, to get an exact determination of the pressure distribution of the piston ring. By means of a newly devised ring tester, to which piezoelectricity of quartz was applied, the distribution of the radial pressure of many sample rings on the market was accurately determined. Since many famous piston rings show very irregular pressure distribution, the author investigated and achieved a manufacturing process of the piston ring which will exert uniform pressure on the cylinder wall. Temperature effects on the configuration and on the mean spring power have also been studied. Further, the tests were performed to ascertain how the gas tightness of the piston ring may be affected by the number or spring power. The researches as to the frictional resistance between the piston ring and the cylinder wall were carried out, too. The procedure of study, and

  7. Rapid prototyping and stereolithography in dentistry

    Science.gov (United States)

    Nayar, Sanjna; Bhuminathan, S.; Bhat, Wasim Manzoor

    2015-01-01

    The word rapid prototyping (RP) was first used in mechanical engineering field in the early 1980s to describe the act of producing a prototype, a unique product, the first product, or a reference model. In the past, prototypes were handmade by sculpting or casting, and their fabrication demanded a long time. Any and every prototype should undergo evaluation, correction of defects, and approval before the beginning of its mass or large scale production. Prototypes may also be used for specific or restricted purposes, in which case they are usually called a preseries model. With the development of information technology, three-dimensional models can be devised and built based on virtual prototypes. Computers can now be used to create accurately detailed projects that can be assessed from different perspectives in a process known as computer aided design (CAD). To materialize virtual objects using CAD, a computer aided manufacture (CAM) process has been developed. To transform a virtual file into a real object, CAM operates using a machine connected to a computer, similar to a printer or peripheral device. In 1987, Brix and Lambrecht used, for the first time, a prototype in health care. It was a three-dimensional model manufactured using a computer numerical control device, a type of machine that was the predecessor of RP. In 1991, human anatomy models produced with a technology called stereolithography were first used in a maxillofacial surgery clinic in Viena. PMID:26015715

  8. Rapid prototyping and stereolithography in dentistry.

    Science.gov (United States)

    Nayar, Sanjna; Bhuminathan, S; Bhat, Wasim Manzoor

    2015-04-01

    The word rapid prototyping (RP) was first used in mechanical engineering field in the early 1980s to describe the act of producing a prototype, a unique product, the first product, or a reference model. In the past, prototypes were handmade by sculpting or casting, and their fabrication demanded a long time. Any and every prototype should undergo evaluation, correction of defects, and approval before the beginning of its mass or large scale production. Prototypes may also be used for specific or restricted purposes, in which case they are usually called a preseries model. With the development of information technology, three-dimensional models can be devised and built based on virtual prototypes. Computers can now be used to create accurately detailed projects that can be assessed from different perspectives in a process known as computer aided design (CAD). To materialize virtual objects using CAD, a computer aided manufacture (CAM) process has been developed. To transform a virtual file into a real object, CAM operates using a machine connected to a computer, similar to a printer or peripheral device. In 1987, Brix and Lambrecht used, for the first time, a prototype in health care. It was a three-dimensional model manufactured using a computer numerical control device, a type of machine that was the predecessor of RP. In 1991, human anatomy models produced with a technology called stereolithography were first used in a maxillofacial surgery clinic in Viena.

  9. Generation of stable mixed-compact-toroid rings by inducing plasma currents in strong E rings

    International Nuclear Information System (INIS)

    Jayakumar, R.; Taggart, D.P.; Parker, M.R.; Fleischmann, H.H.

    1989-01-01

    In the RECE-Christa device, hybrid-type compact toroid rings are generated by inducing large toroidal plasma currents I rho in strong electron rings using a thin induction coil positioned along the ring axis. Starting from field-reversal values δ ο = 50 - 120 percent of the original pure fast-electron ring, the induced plasma current I rho raises δ to a maximum value of up to 240 percent with I rho contributing more than 50 percent of the total ring current. Quite interestingly, the generated hybrid compact toroid configurations appear gross-stable during the full I rho pulse length (half-amplitude width about 100 μs)

  10. Magnetization of two coupled rings

    International Nuclear Information System (INIS)

    Avishai, Y; Luck, J M

    2009-01-01

    We investigate the persistent currents and magnetization of a mesoscopic system consisting of two clean metallic rings sharing a single contact point in a magnetic field. Many novel features with respect to the single-ring geometry are underlined, including the explicit dependence of wavefunctions on the Aharonov-Bohm fluxes, the complex pattern of two-fold and three-fold degeneracies, the key role of length and flux commensurability, and in the case of commensurate ring lengths the occurrence of idle levels which do not carry any current. Spin-orbit interactions, induced by the electric fields of charged wires threading the rings, give rise to a peculiar version of the Aharonov-Casher effect where, unlike for a single ring, spin is not conserved. Remarkably enough, this can only be realized when the Aharonov-Bohm fluxes in both rings are neither integer nor half-integer multiples of the flux quantum

  11. Radioactive gold ring dermatitis

    International Nuclear Information System (INIS)

    Miller, R.A.; Aldrich, J.E.

    1990-01-01

    A superficial squamous cell carcinoma developed in a woman who wore a radioactive gold ring for more than 30 years. Only part of the ring was radioactive. Radiation dose measurements indicated that the dose to basal skin layer was 2.4 Gy (240 rad) per week. If it is assumed that the woman continually wore her wedding ring for 37 years since purchase, she would have received a maximum dose of approximately 4600 Gy

  12. Analytical model for double split ring resonators with arbitrary ring width

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Jensen, Thomas; Krozer, Viktor

    2008-01-01

    For the first time, the analytical model for a double split ring resonator with unequal width rings is developed. The proposed models for the resonators with equal and unequal widths are based on an impedance matrix representation and provide the prediction of performance in a wide frequency range...

  13. Pure subrings of the rings

    International Nuclear Information System (INIS)

    Tsarev, Andrei V

    2009-01-01

    Pure subrings of finite rank in the Z-adic completion of the ring of integers and in its homomorphic images are considered. Certain properties of these rings are studied (existence of an identity element, decomposability into a direct sum of essentially indecomposable ideals, condition for embeddability into a csp-ring, etc.). Additive groups of these rings and conditions under which these rings are subrings of algebraic number fields are described. Bibliography: 12 titles.

  14. Role model and prototype matching

    DEFF Research Database (Denmark)

    Lykkegaard, Eva; Ulriksen, Lars

    2016-01-01

    ’ meetings with the role models affected their thoughts concerning STEM students and attending university. The regular self-to-prototype matching process was shown in real-life role-models meetings to be extended to a more complex three-way matching process between students’ self-perceptions, prototype...

  15. Ring accelerators

    International Nuclear Information System (INIS)

    Gisler, G.; Faehl, R.

    1983-01-01

    We present two-dimensional simulations in (r-z) and r-theta) cylinderical geometries of imploding-liner-driven accelerators of rings of charged particles. We address issues of azimuthal and longitudinal stability of the rings. We discuss self-trapping designs in which beam injection and extraction is aided by means of external cusp fields. Our simulations are done with the 2-1/2-D particle-in-cell plasma simulation code CLINER, which combines collisionless, electromagnetic PIC capabilities with a quasi-MHD finite element package

  16. High confidence in falsely recognizing prototypical faces.

    Science.gov (United States)

    Sampaio, Cristina; Reinke, Victoria; Mathews, Jeffrey; Swart, Alexandra; Wallinger, Stephen

    2018-06-01

    We applied a metacognitive approach to investigate confidence in recognition of prototypical faces. Participants were presented with sets of faces constructed digitally as deviations from prototype/base faces. Participants were then tested with a simple recognition task (Experiment 1) or a multiple-choice task (Experiment 2) for old and new items plus new prototypes, and they showed a high rate of confident false alarms to the prototypes. Confidence and accuracy relationship in this face recognition paradigm was found to be positive for standard items but negative for the prototypes; thus, it was contingent on the nature of the items used. The data have implications for lineups that employ match-to-suspect strategies.

  17. Manipulation of vortex rings for flow control

    International Nuclear Information System (INIS)

    Toyoda, Kuniaki; Hiramoto, Riho

    2009-01-01

    This paper reviews the dynamics of vortex rings and the control of flow by the manipulation of vortex rings. Vortex rings play key roles in many flows; hence, the understanding of the dynamics of vortex rings is crucial for scientists and engineers dealing with flow phenomena. We describe the structures and motions of vortex rings in circular and noncircular jets, which are typical examples of flows evolving into vortex rings. For circular jets the mechanism of evolving, merging and breakdown of vortex rings is described, and for noncircular jets the dynamics of three-dimensional deformation and interaction of noncircular vortex rings under the effect of self- and mutual induction is discussed. The application of vortex-ring manipulation to the control of various flows is reviewed with successful examples, based on the relationship between the vortex ring dynamics and the flow properties. (invited paper)

  18. The Rings of Saturn

    Science.gov (United States)

    Cuzzi, J. N.; Filacchione, G.; Marouf, E. A.

    2018-03-01

    One could become an expert on Saturn's iconic rings pretty easily in the early 1970s, as very little was known about them beyond the distinction between the A, B, and C rings, and the Cassini Division or "gap" between rings A and B (Alexander, 1962; Bobrov, 1970). Water ice was discovered spectroscopically on the ring particle surfaces, and radar and microwave emission observations proved that the particles must be centimeters to meters in size, consisting primarily, not just superficially, of water ice (Pollack, 1975). While a 2:1 orbital resonance with Mimas had long been suspected of having something to do with the Cassini Division, computers of the time were unable to model the subtle dynamical effects that we now know to dominate ring structure. This innocent state of affairs was exploded by the Voyager 1 and 2 encounters in 1980 and 1981. Spectacular images revealed filigree structure and odd regional color variations, and exquisitely detailed radial profiles of fluctuating particle abundance were obtained from the first stellar and radio occultations, having resolution almost at the scale of single particles. Voyager-era understanding was reviewed by Cuzzi et al. (1984) and Esposito et al. (1984). While the Voyager data kept ring scientists busy for decades, planning which led to the monumentally successful NASA-ESA-ASI Cassini mission, which arrived in 2004, had been under way even before Voyager got to Saturn. A review of pre-Cassini knowledge of Saturn's Rings can be found in Orton et al. (2009). This chapter will build on recent topical and process-specific reviews that treat the gamut of ring phenomena and its underlying physics in considerable detail (Colwell et al., 2009; Cuzzi et al., 2009; Horányi et al., 2009; Schmidt et al., 2009; Esposito, 2010; Tiscareno, 2013b; Esposito, 2014). We will follow and extend the general organization of Cuzzi et al. (2010), the most recent general discussion of Saturn's rings. For brevity and the benefit of the

  19. Prototype effect and the persuasiveness of generalizations

    OpenAIRE

    Dahlman, Christian; Sarwar, Farhan; Bååth, Rasmus; Wahlberg, Lena; Sikström, Sverker

    2015-01-01

    An argument that makes use of a generalization activates the prototype for the category used in the generalization. We conducted two experiments that investigated how the activation of the prototype affects the persuasiveness of the argument. The results of the experiments suggest that the features of the prototype overshadow and partly overwrite the actual facts of the case. The case is, to some extent, judged as if it had the features of the prototype instead of the features it actually ...

  20. Examination techniques for non-magnetic rings

    International Nuclear Information System (INIS)

    Metala, M.J.; Kilpatrick, N.L.; Frank, W.W.

    1990-01-01

    Until the introduction of 18Mn18Cr rings a few years ago, most non-magnetic steel rings for generator rotors were made from 18Mn5Cr alloy steel, which is highly susceptible to stress corrosion cracking in the presence of water. This, the latest in a series of papers on the subject of non-magnetic rings by the authors' company, provides a discussion of nondestructive examination of 18Mn5Cr rings for stress corrosion distress. With rings on the rotor, fluorescent penetrant, ultrasonic and special visual techniques are applied. With rings off the rotor, the fluorescent penetrant technique is used, with and without stress enhancement

  1. Ionization cooling ring for muons

    Directory of Open Access Journals (Sweden)

    R. Palmer

    2005-06-01

    Full Text Available Practical ionization cooling rings could lead to lower cost or improved performance in neutrino factory or muon collider designs. The ring modeled here uses realistic three-dimensional fields. The performance of the ring compares favorably with the linear cooling channel used in the second U.S. Neutrino Factory Study. The normalized 6D emittance of an ideal ring is decreased by a factor of approximately 240, compared with a factor of only 15 for the linear channel. We also examine such real-world effects as windows on the absorbers and rf cavities and leaving empty lattice cells for injection and extraction. For realistic conditions the ring decreases the normalized 6D emittance by a factor of 49.

  2. Self-gravitation in Saturn's rings

    International Nuclear Information System (INIS)

    Salo, H.; Lukkari, J.

    1982-01-01

    In a ring-shaped collisional system self-gravitation reduces the equilibrium values of the geometric and optical thickness. In Saturn's rings both effects are appreciable. The previously found discrepancy between the calculated profile and the observed profile of the rings is chiefly caused by the omission of self-gravitation. (Auth.)

  3. Rapid Prototyping: An Alternative Instructional Design Strategy.

    Science.gov (United States)

    Tripp, Steven D.; Bichelmeyer, Barbara

    1990-01-01

    Discusses the nature of instructional design and describes rapid prototyping as a feasible model for instructional system design (ISD). The use of prototyping in software engineering is described, similarities between software design and instructional design are discussed, and an example is given which uses rapid prototyping in designing a…

  4. Saturn’s ring temperatures at equinox

    Science.gov (United States)

    Spilker, Linda J.; Ferrari, C.; Morishima, R.

    2013-10-01

    Modeling the thermal emission of Saturn's rings is challenging due to the numerous heating sources as well as the structural properties of the disk and of the particles that are closely related. At equinox, however, the main rings are externally heated by Saturn alone and the problem is somewhat simplified. We test the abilities of our current models to reproduce the temperatures observed with the Cassini CIRS instrument around equinox in August 2009. A simple semi-analytic model which includes mutual shadowing effects can mostly explain the radial profile of the equinox ring temperatures, except the model predicts lower temperatures than those observed for the A ring. The temperature variation at a given saturnocentric radius is primarily caused by observational geometry variations relative to Saturn. The observed temperature increases with decreasing Saturn-ring-observer angle. In addition, we found evidence that the leading hemispheres of particles are warmer than the trailing hemispheres at least for the C ring and probably for the A and B rings as well. This is explained if some fraction of particles has spin rates lower than the synchronous rotation rate as predicted by N-body simulations. The spin model for a monolayer ring (Ferrari, C., Leyrat, C., 2006, Astron. Astrophys. 447, 745-760) can fit the temperature variations with spacecraft longitude observed in the C ring with currently known thermal properties and a mixing of slow and fast rotators. The multilayer model (Morishima, R., Salo, H., Ohtsuki, K., 2009, Icarus 201, 634-654) can reproduce the temperatures of the B and C rings but gives A ring temperatures that are significantly lower than those observed as does the simple semi-analytic model. More advanced models which take into account self-gravity wakes may explain the A ring temperature behavior.

  5. Miniature chemical sensor combining molecular recognition with evanescent wave cavity ring-down spectroscopy

    International Nuclear Information System (INIS)

    Pipino, Andrew C. R.

    2004-01-01

    A new chemical detection technology has been realized that addresses DOE environmental management needs. The new technology is based on a variant of the sensitive optical absorption technique, cavity ring-down spectroscopy (CRDS). Termed evanescent-wave cavity ring-down spectroscopy (EW-CRDS), the technology employs a miniature solid-state optical resonator having an extremely high Q-factor as the sensing element, where the high-Q is achieved by using ultra-low-attenuation optical materials, ultra-smooth surfaces, and ultra-high reflectivity coatings, as well as low-diffraction-loss designs. At least one total-internal reflection (TIR) mirror is integral to the resonator permitting the concomitant evanescent wave to probe the ambient environment. Several prototypes have been designed, fabricated, characterized, and applied to chemical detection. Moreover, extensions of the sensing concept have been explored to enhance selectivity, sensitivity, and range of application. Operating primarily in the visible and near IR regions, the technology inherently enables remote detection by optical fiber. Producing 11 archival publications, 5 patents, 19 invited talks, 4 conference proceedings, a CRADA, and a patent-license agreement, the project has realized a new chemical detection technology providing >100 times more sensitivity than comparable technologies, while also providing practical advantages

  6. RF Spectrum Sensing Based on an Overdamped Nonlinear Oscillator Ring for Cognitive Radios

    Directory of Open Access Journals (Sweden)

    Zhi-Ling Tang

    2016-06-01

    Full Text Available Existing spectrum-sensing techniques for cognitive radios require an analog-to-digital converter (ADC to work at high dynamic range and a high sampling rate, resulting in high cost. Therefore, in this paper, a spectrum-sensing method based on a unidirectionally coupled, overdamped nonlinear oscillator ring is proposed. First, the numerical model of such a system is established based on the circuit of the nonlinear oscillator. Through numerical analysis of the model, the critical condition of the system’s starting oscillation is determined, and the simulation results of the system’s response to Gaussian white noise and periodic signal are presented. The results show that once the radio signal is input into the system, it starts oscillating when in the critical region, and the oscillating frequency of each element is fo/N, where fo is the frequency of the radio signal and N is the number of elements in the ring. The oscillation indicates that the spectrum resources at fo are occupied. At the same time, the sampling rate required for an ADC is reduced to the original value, 1/N. A prototypical circuit to verify the functionality of the system is designed, and the sensing bandwidth of the system is measured.

  7. Split ring containment attachment device

    International Nuclear Information System (INIS)

    Sammel, A.G.

    1996-01-01

    A containment attachment device is described for operatively connecting a glovebag to plastic sheeting covering hazardous material. The device includes an inner split ring member connected on one end to a middle ring member wherein the free end of the split ring member is inserted through a slit in the plastic sheeting to captively engage a generally circular portion of the plastic sheeting. A collar potion having an outer ring portion is provided with fastening means for securing the device together wherein the glovebag is operatively connected to the collar portion. 5 figs

  8. An N-body Integrator for Planetary Rings

    Science.gov (United States)

    Hahn, Joseph M.

    2011-04-01

    A planetary ring that is disturbed by a satellite's resonant perturbation can respond in an organized way. When the resonance lies in the ring's interior, the ring responds via an m-armed spiral wave, while a ring whose edge is confined by the resonance exhibits an m-lobed scalloping along the ring-edge. The amplitude of these disturbances are sensitive to ring surface density and viscosity, so modelling these phenomena can provide estimates of the ring's properties. However a brute force attempt to simulate a ring's full azimuthal extent with an N-body code will likely fail because of the large number of particles needed to resolve the ring's behavior. Another impediment is the gravitational stirring that occurs among the simulated particles, which can wash out the ring's organized response. However it is possible to adapt an N-body integrator so that it can simulate a ring's collective response to resonant perturbations. The code developed here uses a few thousand massless particles to trace streamlines within the ring. Particles are close in a radial sense to these streamlines, which allows streamlines to be treated as straight wires of constant linear density. Consequently, gravity due to these streamline is a simple function of the particle's radial distance to all streamlines. And because particles are responding to smooth gravitating streamlines, rather than discrete particles, this method eliminates the stirring that ordinarily occurs in brute force N-body calculations. Note also that ring surface density is now a simple function of streamline separations, so effects due to ring pressure and viscosity are easily accounted for, too. A poster will describe this N-body method in greater detail. Simulations of spiral density waves and scalloped ring-edges are executed in typically ten minutes on a desktop PC, and results for Saturn's A and B rings will be presented at conference time.

  9. Minimal Gromov-Witten rings

    International Nuclear Information System (INIS)

    Przyjalkowski, V V

    2008-01-01

    We construct an abstract theory of Gromov-Witten invariants of genus 0 for quantum minimal Fano varieties (a minimal class of varieties which is natural from the quantum cohomological viewpoint). Namely, we consider the minimal Gromov-Witten ring: a commutative algebra whose generators and relations are of the form used in the Gromov-Witten theory of Fano varieties (of unspecified dimension). The Gromov-Witten theory of any quantum minimal variety is a homomorphism from this ring to C. We prove an abstract reconstruction theorem which says that this ring is isomorphic to the free commutative ring generated by 'prime two-pointed invariants'. We also find solutions of the differential equation of type DN for a Fano variety of dimension N in terms of the generating series of one-pointed Gromov-Witten invariants

  10. 16 CFR 1633.4 - Prototype testing requirements.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Prototype testing requirements. 1633.4... STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS The Standard § 1633.4 Prototype testing... three specimens of each prototype to be tested according to § 1633.7 and obtain passing test results...

  11. Computational logic with square rings of nanomagnets

    Science.gov (United States)

    Arava, Hanu; Derlet, Peter M.; Vijayakumar, Jaianth; Cui, Jizhai; Bingham, Nicholas S.; Kleibert, Armin; Heyderman, Laura J.

    2018-06-01

    Nanomagnets are a promising low-power alternative to traditional computing. However, the successful implementation of nanomagnets in logic gates has been hindered so far by a lack of reliability. Here, we present a novel design with dipolar-coupled nanomagnets arranged on a square lattice to (i) support transfer of information and (ii) perform logic operations. We introduce a thermal protocol, using thermally active nanomagnets as a means to perform computation. Within this scheme, the nanomagnets are initialized by a global magnetic field and thermally relax on raising the temperature with a resistive heater. We demonstrate error-free transfer of information in chains of up to 19 square rings and we show a high level of reliability with successful gate operations of ∼94% across more than 2000 logic gates. Finally, we present a functionally complete prototype NAND/NOR logic gate that could be implemented for advanced logic operations. Here we support our experiments with simulations of the thermally averaged output and determine the optimal gate parameters. Our approach provides a new pathway to a long standing problem concerning reliability in the use of nanomagnets for computation.

  12. Electro-optical hybrid slip ring

    Science.gov (United States)

    Hong, En

    2005-11-01

    The slip ring is a rotary electrical interface, collector, swivel or rotary joint. It is a physical system that can perform continuous data transfer and data exchange between a stationary and a rotating structure. A slip ring is generally used to transfer data or power from an unrestrained, continuously rotating electro-mechanical system in real-time, thereby simplifying operations and eliminating damage-prone wires dangling from moving joints. Slip rings are widely used for testing, evaluating, developing and improving various technical equipment and facilities with rotating parts. They are widely used in industry, especially in manufacturing industries employing turbo machinery, as in aviation, shipbuilding, aerospace, defense, and in precise facilities having rotating parts such as medical Computerized Tomography (CT) and MRI scanners and so forth. Therefore, any improvement in slip ring technology can impact large markets. Research and development in this field will have broad prospects long into the future. The goal in developing the current slip ring technology is to improve and increase the reliability, stability, anti-interference, and high data fidelity between rotating and stationary structures. Up to now, there have been numerous approaches used for signal and data transfer utilizing a slip ring such as metal contacts, wires, radio transmission, and even liquid media. However, all suffer from drawbacks such as data transfer speed limitations, reliability, stability, electro-magnetic interference and durability. The purpose of the current research is to break through these basic limitations using an optical solution, thereby improving performance in current slip ring applications. This dissertation introduces a novel Electro-Optical Hybrid Slip Ring technology, which makes "through the air" digital-optical communication between stationary and rotating systems a reality with high data transfer speed, better reliability and low interference susceptibility

  13. Double acting stirling engine piston ring

    Science.gov (United States)

    Howarth, Roy B.

    1986-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  14. Close encounters of the prototype kind

    CERN Multimedia

    2005-01-01

    CERN is building a new control centre for the operation of its entire accelerator complex and technical infrastructure. The prototype console for the new centre has just been installed and tested. Close encounters of the prototype kind CERN is building a new control centre for the operation of its entire accelerator complex and technical infrastructure. The prototype console for the new centre has just been installed and tested. The prototype of the control consoles that will be at the heart of the future CERN Control Centre (CCC) has just been installed in the Roy Billinge Room in Building 354. Until now, there have been four separate control rooms for the CERN accelerators and technical infrastructure. The CCC, which will be located on the Prévessin site, will bring them all together in a single room. The Centre will consist of 40 consoles for four different areas (LHC, SPS, PS complex and technical infrastructure). The prototype was tested by the technicians for a month. Following installation and con...

  15. On the design of a miniature haptic ring for cutaneous force feedback using shape memory alloy actuators

    Science.gov (United States)

    Hwang, Donghyun; Lee, Jaemin; Kim, Keehoon

    2017-10-01

    This paper proposes a miniature haptic ring that can display touch/pressure and shearing force to the user’s fingerpad. For practical use and wider application of the device, it is developed with the aim of achieving high wearability and mobility/portability as well as cutaneous force feedback functionality. A main body of the device is designed as a ring-shaped lightweight structure with a simple driving mechanism, and thin shape memory alloy (SMA) wires having high energy density are applied as actuating elements. Also, based on a band-type wireless control unit including a wireless data communication module, the whole device could be realized as a wearable mobile haptic device system. These features enable the device to take diverse advantages on functional performances and to provide users with significant usability. In this work, the proposed miniature haptic ring is systematically designed, and its working performances are experimentally evaluated with a fabricated functional prototype. The experimental results obviously demonstrate that the proposed device exhibits higher force-to-weight ratio than conventional finger-wearable haptic devices for cutaneous force feedback. Also, it is investigated that operational performances of the device are strongly influenced by electro-thermomechanical behaviors of the SMA actuator. In addition to the experiments for performance evaluation, we conduct a preliminary user test to assess practical feasibility and usability based on user’s qualitative feedback.

  16. Fusion Rings for Quantum Groups

    DEFF Research Database (Denmark)

    Andersen, Henning Haahr; Stroppel, Catharina

    2012-01-01

    We study the fusion rings of tilting modules for a quantum group at a root of unity modulo the tensor ideal of negligible tilting modules. We identify them in type A with the combinatorial rings from [12] and give a similar description of the sp2n-fusion ring in terms of noncommutative symmetric...

  17. Topological rings

    CERN Document Server

    Warner, S

    1993-01-01

    This text brings the reader to the frontiers of current research in topological rings. The exercises illustrate many results and theorems while a comprehensive bibliography is also included. The book is aimed at those readers acquainted with some very basic point-set topology and algebra, as normally presented in semester courses at the beginning graduate level or even at the advanced undergraduate level. Familiarity with Hausdorff, metric, compact and locally compact spaces and basic properties of continuous functions, also with groups, rings, fields, vector spaces and modules, and with Zorn''s Lemma, is also expected.

  18. 46 CFR 161.013-11 - Prototype test.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Prototype test. 161.013-11 Section 161.013-11 Shipping...: SPECIFICATIONS AND APPROVAL ELECTRICAL EQUIPMENT Electric Distress Light for Boats § 161.013-11 Prototype test. (a) Each manufacturer must test a prototype light identical to the lights to be certified prior to...

  19. Designing Instructor-Led Schools with Rapid Prototyping.

    Science.gov (United States)

    Lange, Steven R.; And Others

    1996-01-01

    Rapid prototyping involves abandoning many of the linear steps of traditional prototyping; it is instead a series of design iterations representing each major stage. This article describes the development of an instructor-led course for midlevel auditors using the principles and procedures of rapid prototyping, focusing on the savings in time and…

  20. Energy spectra of quantum rings.

    Science.gov (United States)

    Fuhrer, A; Lüscher, S; Ihn, T; Heinzel, T; Ensslin, K; Wegscheider, W; Bichler, M

    2001-10-25

    Quantum mechanical experiments in ring geometries have long fascinated physicists. Open rings connected to leads, for example, allow the observation of the Aharonov-Bohm effect, one of the best examples of quantum mechanical phase coherence. The phase coherence of electrons travelling through a quantum dot embedded in one arm of an open ring has also been demonstrated. The energy spectra of closed rings have only recently been studied by optical spectroscopy. The prediction that they allow persistent current has been explored in various experiments. Here we report magnetotransport experiments on closed rings in the Coulomb blockade regime. Our experiments show that a microscopic understanding of energy levels, so far limited to few-electron quantum dots, can be extended to a many-electron system. A semiclassical interpretation of our results indicates that electron motion in the rings is governed by regular rather than chaotic motion, an unexplored regime in many-electron quantum dots. This opens a way to experiments where even more complex structures can be investigated at a quantum mechanical level.

  1. Forandringslæring med autismediagnoser?

    DEFF Research Database (Denmark)

    Gustafson, Kari Ingrid; Mørck, Line Lerche

    2013-01-01

    Artiklen drøfter en række aktuelle spørgsmål omkring læring hos børn og unge med autisme-spektrum-forstyrrelses diagnoser. Der introduceres til en social praksisteoretisk forståelse af forandringslæring, der diskuterer forandring ikke kun i relation til en persons identitet, men også aktuelle og...... potentielle forandringer, når det gælder overskridelse af binær logik i autisme versus normalitet, samt i relation til at overskride individualiserede og dualistiske problem-forståelser af fejl og mangler ved det autistiske barn. Det illustreres, hvordan disse former for dualistisk tænkning er forankret i et...... Rasmus’ ændringer i læring, selvforståelse og tilhørsforhold perspektiveres med andre ASF-diagnostiseredes læring udforsket bl.a. gennem gruppeinterviews i regi af Asperger-foreningen. Artiklen byder således på et alternativ i form af at forstå forandringslæring som overskridende læring, med langt større...

  2. The Lord of Rings - the mysterious case of the stolen rings: a critical analysis

    Science.gov (United States)

    Sandrelli, S.

    The Lord of Rings - the mysterious case of the stolen rings: a critical analysis S. Sandrelli INAF - Osservatorio Astronomico di Brera, Milano, Italy (stefano.sandrelli@brera.inaf.it / Fax: 02 72001600 / Phone: +39 02 72320337) "The Lord of Rings - the mysterious case of the stolen rings" is a live astronomical role-playing game for kids aged 10 -13. Its goal is to introduce them to some of the main topics of the Solar System: a) the role of gravity; b) the distribution of mass & light; c) the effects of rotation; d) the distribution of water. The game was held both at the Perugia (2004) and the Genova Science Festival (2005), obtaining great success. Teams of about 6-8 members are introduced to Mr Schioppanelli, the astro-detective of the town (the name is a pun: it reminds Schiaparelli, the famous italian astronomer, and it is a slang expression meaning "ring-breaker"). Mr Schioppanelli has his office in an "gastronomical astronomical observatory", known as The Red Giant Pizzeria. Schioppanelli informs the kids that a mysterious Centaur succeded in stealing the rings of Saturn. The partecipants are appointed astro-detectives in-charge and asked to find the rings by browsing around the Solar System, which is scaled so as to fit the town historical centre or a pedestrian area, going from the Sun to Saturn or beyond, depending on the actual area at disposal. Great care must be taken allowing children playing only in a car-free area of the town. At the right scaled distances, the partecipants meet characters playing as the various planets. The kids can talk to them after solving a riddle, obtaining useful informations. A special characters play as a comet, timely going in and out of the inner solar system. The teams can also talk to some shepherd-moons of the rings. They easily discover that the rings were totally destroyed by the Centaur: a real disaster! They are also suggested to gather the necessary ingredients (gravity, light, rotation, inclination, dust and

  3. Vortex rings in classical and quantum systems

    International Nuclear Information System (INIS)

    Barenghi, C F; Donnelly, R J

    2009-01-01

    The study of vortex rings has been pursued for decades and is a particularly difficult subject. However, the discovery of quantized vortex rings in superfluid helium has greatly increased interest in vortex rings with very thin cores. While rapid progress has been made in the simulation of quantized vortex rings, there has not been comparable progress in laboratory studies of vortex rings in a viscous fluid such as water. This article overviews the history and current frontiers of classical and quantum vortex rings. After introducing the classical results, this review discusses thin-cored vortex rings in superfluid helium in section 2, and recent progress in understanding vortex rings of very thin cores propagating in water in section 3. (invited paper)

  4. The OPAL vertex detector prototype

    International Nuclear Information System (INIS)

    Roney, J.M.; Armitage, J.C.; Carnegie, R.K.; Giles, G.L.; Hemingway, R.J.; McPherson, A.C.; Pinfold, J.L.; Waterhouse, J.; Godfrey, L.; Hargrove, C.K.

    1989-01-01

    The prototype test results of a high resolution charged particle tracking detector are reported. The detector is designed to measure vertex topologies of particles produced in the e + e - collisions of the OPAL experiment at LEP. The OPAL vertex detector is a 1 m long, 0.46 m diameter cylindrical drift chamber consisting of an axial and stereo layer each of which is divided into 36 jet cells. A prototype chamber containing four axial and two stereo cells was studied using a pion test beam at CERN. The studies examined the prototype under a variety of operating conditions. An r-Φ resolution of 60 μm was obtained when the chamber was operated with argon (50%)-ethane (50%) at 3.75 bar, and when CO 2 (80%)-isobutane (20%) at 2.5 bar was used a 25 μm resolution was achieved. A z measurement using end-to-end time difference has a resolution of 3.5 cm. The details of these prototype studies are discussed in this paper. (orig.)

  5. Rule-based emergency action level monitor prototype

    International Nuclear Information System (INIS)

    Touchton, R.A.; Gunter, A.D.; Cain, D.

    1985-01-01

    In late 1983, the Electric Power Research Institute (EPRI) began a program to encourage and stimulate the development of artificial intelligence (AI) applications for the nuclear industry. Development of a rule-based emergency action level classification system prototype is discussed. The paper describes both the full prototype currently under development and the completed, simplified prototype

  6. Laparoscopic appendicectomy using endo-ring applicator and fallope rings

    International Nuclear Information System (INIS)

    Ali, Iyoob V; Maliekkal, Joji I

    2009-01-01

    Wider adoption of laparoscopic appendicectomy (LA) is limited by problems in securing the appendiceal base as well as the cost and the duration compared with the open procedure. The objective of this study was to assess the feasibility and efficacy of a new method for securing the appendiceal base in LA, so as to make the entire procedure simpler and cheaper, and hence, more popular. Twenty-five patients who were candidates for appendicectomy (emergency as well as elective) and willing for the laparoscopic procedure were selected for this study. Ports used were 10 mm at the umbilicus, 5 mm at the lower right iliac fossa, and 10 mm at the left iliac fossa. Extremely friable, ruptured, or turgid organs of diameters larger than 8 mm were excluded from the study. The mesoappendix was divided close to the appendix by diathermy. Fallope rings were applied to the appendiceal base using a special ring applicator, and the appendix was divided and extracted through the lumen of the applicator. The procedure was successful in 23 (92%) cases, and the mean duration of the procedure was 20 minutes (15-32 minutes). There were no procedural complications seen during a median follow-up of two weeks. The equipment and rings were cheaper when compared with that of the standard methods of securing the base of the appendix. LA using fallope rings is a safe, simple, easy-to-learn, and economically viable method. (author)

  7. An Empirical Investigation of Architectural Prototyping

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak; Hansen, Klaus Marius

    2010-01-01

    Architectural prototyping is the process of using executable code to investigate stakeholders’ software architecture concerns with respect to a system under development. Previous work has established this as a useful and cost-effective way of exploration and learning of the design space of a system...... and in addressing issues regarding quality attributes, architectural risks, and the problem of knowledge transfer and conformance. However, the actual industrial use of architectural prototyping has not been thoroughly researched so far. In this article, we report from three studies of architectural prototyping...... in practice. First, we report findings from an ethnographic study of practicing software architects. Secondly, we report from a focus group on architectural prototyping involving architects from four companies. And, thirdly, we report from a survey study of 20 practicing software architects and software...

  8. SMARANDACHE NON-ASSOCIATIVE RINGS

    OpenAIRE

    Vasantha, Kandasamy

    2002-01-01

    An associative ring is just realized or built using reals or complex; finite or infinite by defining two binary operations on it. But on the contrary when we want to define or study or even introduce a non-associative ring we need two separate algebraic structures say a commutative ring with 1 (or a field) together with a loop or a groupoid or a vector space or a linear algebra. The two non-associative well-known algebras viz. Lie algebras and Jordan algebras are mainly built using a vecto...

  9. Heavy ion storage rings

    International Nuclear Information System (INIS)

    Schuch, R.

    1987-01-01

    A brief overview of synchrotron storage rings for heavy ions, which are presently under construction in different accelerator laboratories is given. Ions ranging from protons up to uranium ions at MeV/nucleon energies will be injected into these rings using multiturn injection from the accelerators available or being built in these laboratories. After injection, it is planned to cool the phase space distribution of the ions by merging them with cold electron beams or laser beams, or by using stochastic cooling. Some atomic physics experiments planned for these rings are presented. 35 refs

  10. Rapid Prototyping and the Human Factors Engineering Process

    Science.gov (United States)

    2016-08-29

    conventional systems development techniques. It is not clear, however, exactly how rapid prototyping could be used in relation to conventional human...factors engineering analyses. Therefore, an investigation of the use of the V APS virtual prototyping system was carried out in five organizations. The...results show that a variety of task analysis approaches can be used to initiate rapid prototyping . Overall, it appears that rapid prototyping

  11. Moving ring reactor 'Karin-1'

    International Nuclear Information System (INIS)

    1983-12-01

    The conceptual design of a moving ring reactor ''Karin-1'' has been carried out to advance fusion system design, to clarify the research and development problems, and to decide their priority. In order to attain these objectives, a D-T reactor with tritium breeding blanket is designed, a commercial reactor with net power output of 500 MWe is designed, the compatibility of plasma physics with fusion engineering is demonstrated, and some other guideline is indicated. A moving ring reactor is composed mainly of three parts. In the first formation section, a plasma ring is formed and heated up to ignition temperature. The plasma ring of compact torus is transported from the formation section through the next burning section to generate fusion power. Then the plasma ring moves into the last recovery section, and the energy and particles of the plasma ring are recovered. The outline of a moving ring reactor ''Karin-1'' is described. As a candidate material for the first wall, SiC was adopted to reduce the MHD effect and to minimize the interaction with neutrons and charged particles. The thin metal lining was applied to the SiC surface to solve the problem of the compatibility with lithium blanket. Plasma physics, the engineering aspect and the items of research and development are described. (Kako, I.)

  12. Tinkering at the main-ring lattice

    Energy Technology Data Exchange (ETDEWEB)

    Ohnuma, S.

    1982-08-23

    To improve production of usable antiprotons using the proton beam from the main ring and the lossless injection of cooled antiprotons into the main ring, modifications of the main ring lattice are recommended.

  13. The ring plus project: safety and acceptability of vaginal rings that protect women from unintended pregnancy

    OpenAIRE

    Schurmans, C?line; De Baetselier, Irith; Kestelyn, Evelyne; Jespers, Vicky; Delvaux, Th?r?se; Agaba, Stephen K; van Loen, Harry; Menten, Joris; van de Wijgert, Janneke; Crucitti, Tania

    2015-01-01

    Background Research is ongoing to develop multipurpose vaginal rings to be used continuously for contraception and to prevent Human Immunodeficiency Virus (HIV) infection. Contraceptive vaginal rings (CVRs) are available in a number of countries and are most of the time used intermittently i.e. three weeks out of a 4-week cycle. Efficacy trials with a dapivirine-containing vaginal ring for HIV prevention are ongoing and plans to develop multi-purpose vaginal rings for prevention of both HIV a...

  14. Precision analog signal processor for beam position measurements in electron storage rings

    International Nuclear Information System (INIS)

    Hinkson, J.A.; Unser, K.B.

    1995-01-01

    Beam position monitors (BPM) in electron and positron storage rings have evolved from simple systems composed of beam pickups, coaxial cables, multiplexing relays, and a single receiver (usually a analyzer) into very complex and costly systems of multiple receivers and processors. The older may have taken minutes to measure the circulating beam closed orbit. Today instrumentation designers are required to provide high-speed measurements of the beam orbit, often at the ring revolution frequency. In addition the instruments must have very high accuracy and resolution. A BPM has been developed for the Advanced Light Source (ALS) in Berkeley which features high resolution and relatively low cost. The instrument has a single purpose; to measure position of a stable stored beam. Because the pickup signals are multiplexed into a single receiver, and due to its narrow bandwidth, the receiver is not intended for single-turn studies. The receiver delivers normalized measurements of X and Y posit ion entirely by analog means at nominally 1 V/mm. No computers are involved. No software is required. Bergoz, a French company specializing in precision beam instrumentation, integrated the ALS design m their new BPM analog signal processor module. Performance comparisons were made on the ALS. In this paper we report on the architecture and performance of the ALS prototype BPM

  15. Compact circularly polarized truncated square ring slot antenna with suppressed higher resonances.

    Directory of Open Access Journals (Sweden)

    Mursyidul Idzam Sabran

    Full Text Available This paper presents a compact circularly polarized (CP antenna with an integrated higher order harmonic rejection filter. The proposed design operates within the ISM band of 2.32 GHz- 2.63 GHz and is suitable for example for wireless power transfer applications. Asymmetrical truncated edges on a square ring create a defected ground structure to excite the CP property, simultaneously realizing compactness. It offers a 50.5% reduced patch area compared to a conventional design. Novel stubs and slot shapes are integrated in the transmission line to reduce higher (up to the third order harmonics. The proposed prototype yields a -10 dB reflection coefficient (S11 impedance bandwidth of 12.53%, a 3 dB axial ratio bandwidth of 3.27%, and a gain of 5.64 dBi. Measurements also show good agreement with simulations.

  16. From prototype to product

    DEFF Research Database (Denmark)

    Andersen, Tariq Osman; Bansler, Jørgen P.; Kensing, Finn

    2017-01-01

    This paper delves into the challenges of engaging patients, clinicians and industry stakeholders in the participatory design of an mHealth platform for patient-clinician collaboration. It follows the process from the development of a research prototype to a commercial software product. In particu......This paper delves into the challenges of engaging patients, clinicians and industry stakeholders in the participatory design of an mHealth platform for patient-clinician collaboration. It follows the process from the development of a research prototype to a commercial software product....... In particular, we draw attention to four major challenges of (a) aligning the different concerns of patients and clinicians, (b) designing according to clinical accountability, (c) ensuring commercial interest, and (d) dealing with regulatory constraints when prototyping safety critical health Information...... Technology. Using four illustrative cases, we discuss what these challenges entail and the implications they pose to Participatory Design. We conclude the paper by presenting lessons learned....

  17. Pyrimidine-pyridine ring interconversion

    NARCIS (Netherlands)

    Plas, van der H.C.

    2003-01-01

    This chapter discusses the pyrimidine-to-pyridine ring transformation and pyridine-to-pyrimidine ring transformation. In nucleophile-induced pyrimidine-to-pyridine rearrangements, two types of reactions can be distinguished depending on the structure of the nucleophile: (1) reactions in which the

  18. Electron beam cooling at a magnetic storage ring, TARN II, and an electrostatic storage ring

    International Nuclear Information System (INIS)

    Tanabe, Tetsumi

    2006-01-01

    At the High Energy Accelerator Research Organization (KEK), a magnetic storage ring, TARN II, with an electron cooler was operated from 1989 to 1999, while an electrostatic storage ring with a small electron cooler has been operational since 2000. In this paper, the electron cooling at TARN II and the electrostatic storage ring is described. (author)

  19. Leapfrogging of multiple coaxial viscous vortex rings

    International Nuclear Information System (INIS)

    Cheng, M.; Lou, J.; Lim, T. T.

    2015-01-01

    A recent theoretical study [Borisov, Kilin, and Mamaev, “The dynamics of vortex rings: Leapfrogging, choreographies and the stability problem,” Regular Chaotic Dyn. 18, 33 (2013); Borisov et al., “The dynamics of vortex rings: Leapfrogging in an ideal and viscous fluid,” Fluid Dyn. Res. 46, 031415 (2014)] shows that when three coaxial vortex rings travel in the same direction in an incompressible ideal fluid, each of the vortex rings alternately slips through (or leapfrogs) the other two ahead. Here, we use a lattice Boltzmann method to simulate viscous vortex rings with an identical initial circulation, radius, and separation distance with the aim of studying how viscous effect influences the outcomes of the leapfrogging process. For the case of two identical vortex rings, our computation shows that leapfrogging can be achieved only under certain favorable conditions, which depend on Reynolds number, vortex core size, and initial separation distance between the two rings. For the case of three coaxial vortex rings, the result differs from the inviscid model and shows that the second vortex ring always slips through the leading ring first, followed by the third ring slipping through the other two ahead. A simple physical model is proposed to explain the observed behavior

  20. Very high energy gamma ray astrophysics

    International Nuclear Information System (INIS)

    Lamb, R.C.; Lewis, D.A.

    1986-01-01

    The Whipple Observatory's atmospheric Cerenkov camera has detected TeV radiation from four galactic sources: the Crab Nebula, Cygnus X-3, Hercules X-1, and 4U0115+63. Recent simulations encourage the view that unwanted cosmic-ray background showers may be suppressed by a large factor. Emphasis in the coming year will be on determining optimum selection criteria for enhancing gamma-ray signals and in developing a prototype camera with finer angular resolution as a first step towards implementation of the HERCULES concept