WorldWideScience

Sample records for prototype cathodes developed

  1. Research and Development of a New Field Enhanced Low Temperature Thermionic Cathode that Enables Fluorescent Dimming and Loan Shedding without Auxiliary Cathode Heating

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jin

    2009-01-07

    This is the final report for project entitled 'Research and development of a new field enhanced low temperature thermionic cathode that enables fluorescent dimming and load shedding without auxiliary cathode heating', under Agreement Number: DE-FC26-04NT-42329. Under this project, a highly efficient CNT based thermionic cathode was demonstrated. This cathode is capable of emitting electron at a current density two order of magnitude stronger then a typical fluorescent cathode at same temperatures, or capable of emitting at same current density but at temperature about 300 C lower than that of a fluorescent cathode. Detailed fabrication techniques were developed including CVD growth of CNTs and sputter deposition of oxide thin films on CNTs. These are mature technologies that have been widely used in industry for large scale materials processing and device fabrications, thus, with further development work, the techniques developed in this project can be scaled-up in manufacturing environment. The prototype cathodes developed in this project were tested in lighting plasma discharge environment. In many cases, they not only lit and sustain the plasma, but also out perform the fluorescent cathodes in key parameters such like cathode fall voltages. More work will be needed to further evaluate more detailed and longer term performance of the prototype cathode in lighting plasma.

  2. NMS Prototype development final report

    International Nuclear Information System (INIS)

    Lepetich, J.E.

    1993-01-01

    Program for development of NMS prototype for LAMPF consisted of 5 tasks: crystal procurement specification, inspection/evaluation of CsI crystals, design/fabrication of crystal housing, design/fabrication of PMT shields, and packaging of crystals in the housing

  3. Using prototyping in software development

    OpenAIRE

    Šinkovec, Miha

    2010-01-01

    Today the business system changers faster than the usual conventional cascade life cycle. Because of that, we can conclude, that today's programming system will no longer be presented as the answer to this topic in the developing age of ever changing user requirements. Neither increased performance or higher productivity will decrease the problem. The appropriate solution to this stated problem is prototyping. Instead of building and developing the whole system, we build a module that can...

  4. Development of plasma cathode electron guns

    Science.gov (United States)

    Oks, Efim M.; Schanin, Peter M.

    1999-05-01

    The status of experimental research and ongoing development of plasma cathode electron guns in recent years is reviewed, including some novel upgrades and applications to various technological fields. The attractiveness of this kind of e-gun is due to its capability of creating high current, broad or focused beams, both in pulsed and steady-state modes of operation. An important characteristic of the plasma cathode electron gun is the absence of a thermionic cathode, a feature which leads to long lifetime and reliable operation even in the presence of aggressive background gas media and at fore-vacuum gas pressure ranges such as achieved by mechanical pumps. Depending on the required beam parameters, different kinds of plasma discharge systems can be used in plasma cathode electron guns, such as vacuum arcs, constricted gaseous arcs, hollow cathode glows, and two kinds of discharges in crossed E×B fields: Penning and magnetron. At the present time, plasma cathode electron guns provide beams with transverse dimension from fractional millimeter up to about one meter, beam current from microamperes to kiloamperes, beam current density up to about 100 A/cm2, pulse duration from nanoseconds to dc, and electron energy from several keV to hundreds of keV. Applications include electron beam melting and welding, surface treatment, plasma chemistry, radiation technologies, laser pumping, microwave generation, and more.

  5. A FED Prototype Using Patterned DLC Thin Films as the Cathode

    Science.gov (United States)

    Li, W.; Feng, T.; Mao, D. S.; Wang, X.; Liu, X. H.; Zou, S. C.; Zhu, Y. K.; Li, Q.; Xu, J. F.; Jin, S.; Zheng, J. S.

    In our study, diamond-like-carbon (DLC) thin films were prepared by filtered arc deposition (FAD), which provided a way to deposit DLC thin films on large areas at room temperature. Glass slides coated 100nm chromium or titanium thin films were used as cathode substrates. Millions of rectangular holes with sizes of 5 × 5μm were made on the DLC films using a routine patterning process. Here a special reactive ion beam etching method was applied to etch the DLC films. The anodes of the devices were made by electrophoretic deposition. ZnO:Zn phosphor (P15) was employed, which has a broad band bluish green (centered at 490nm). Before electrophoretic deposition, the anode substrates (ITO glass slides) had been patterned into 50 anode electrodes. In order to improve the adherence of phosphor layers, the as-deposited screens were treated in Na2SiO3 solution for 24h to add additional binder. A kind of matrix-addressed diode FED prototype was designed and packaged. 50-100μm-thick glass slides were used as spacers and getters were applied to maintain the vacuum after the exhaustion. The applied DC voltage was ranged in 0-3000V and much higher current density was measured in the cathode-patterned prototypes than the unpatterned ones during the test. As a result, characters could be well displayed.

  6. Design and development of a cathode processor for electrometallurgical treatment of spent nuclear fuel

    International Nuclear Information System (INIS)

    Brunsvold, A. R.; Roach, P. D.; Westphal, B. R.

    1999-01-01

    The electrometallurgical processing of spent fuel developed at Argonne National Laboratory produces a cathode which contains dendrites of heavy metal (principally U), salts, and residual cadmium. The cathode requires further treatment which is accomplished by loading it into a cathode processor to first purify and then consolidate the heavy metal. The principal steps in cathode processing are: the cathode is loaded into a crucible and both loaded into the cathode processor; the crucible is heated under vacuum to an intermediate temperature to distill the salt and cadmium from the crucible; the crucible is heated further to melt and consolidate the heavy metal; the crucible and charge are then cooled forming a heavy metal ingot in the crucible mold. The cathode processor development program has progressed through the design, fabrication, qualification, and demonstration phases. Two identical units were built. One (a prototype unit) has been installed at Argonne's site in Illinois and the other (the production unit) has been installed in the Fuel Conditioning Facility (FCF) at Argonne's Idaho site. Both units are presently in operation. The most recent activities completed in the FCF fuel processing project were the EBR-II driver fuel and blanket fuel demonstration phases. All of the cathode processor success criteria were met during these demonstration phases. These included finalizing the operation conditions applicable to irradiated fuel and process throughput criteria

  7. MPACT Fast Neutron Multiplicity System Prototype Development

    Energy Technology Data Exchange (ETDEWEB)

    D.L. Chichester; S.A. Pozzi; J.L. Dolan; M.T. Kinlaw; S.J. Thompson; A.C. Kaplan; M. Flaska; A. Enqvist; J.T. Johnson; S.M. Watson

    2013-09-01

    This document serves as both an FY2103 End-of-Year and End-of-Project report on efforts that resulted in the design of a prototype fast neutron multiplicity counter leveraged upon the findings of previous project efforts. The prototype design includes 32 liquid scintillator detectors with cubic volumes 7.62 cm in dimension configured into 4 stacked rings of 8 detectors. Detector signal collection for the system is handled with a pair of Struck Innovative Systeme 16-channel digitizers controlled by in-house developed software with built-in multiplicity analysis algorithms. Initial testing and familiarization of the currently obtained prototype components is underway, however full prototype construction is required for further optimization. Monte Carlo models of the prototype system were performed to estimate die-away and efficiency values. Analysis of these models resulted in the development of a software package capable of determining the effects of nearest-neighbor rejection methods for elimination of detector cross talk. A parameter study was performed using previously developed analytical methods for the estimation of assay mass variance for use as a figure-of-merit for system performance. A software package was developed to automate these calculations and ensure accuracy. The results of the parameter study show that the prototype fast neutron multiplicity counter design is very nearly optimized under the restraints of the parameter space.

  8. Development of cathode material for lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Rustam Mukhtaruly Turganaly

    2014-08-01

    Full Text Available The electrochemical characteristics of the cathode material coated with carbon layer has been developed. Various carbon coating methods. There  has been carried out a comparative electrochemical analysis of the coated and uncoated with carbon cathode material. 

  9. Development of spark cathode E-guns. Draft final reprt, Phase I, July--October 1978

    International Nuclear Information System (INIS)

    Loda, G.; Lindstrand, R.

    1979-01-01

    A 12 sided spark cathode is designed and constructed to replace the bladed, cold cathode structure in the electron gun of the Los Alamos Scientific Laboratory Antares prototype power amplifier. Design work includes computer modeling and full scale low voltage modeling. Life testing to 100,000 pulses is documented. The spark cathode offers precise control of emission site location and a high reliability

  10. DARHT 2 kA Cathode Development

    Energy Technology Data Exchange (ETDEWEB)

    Henestroza, E.; Houck, T.; Kwan, J.W.; Leitner, M.; Miram, G.; Prichard, B.; Roy, P.K.; Waldron, W.; Westenskow, G.; Yu, S.; Bieniosek, F.M.

    2009-03-09

    In the campaign to achieve 2 kA of electron beam current, we have made several changes to the DARHT-II injector during 2006-2007. These changes resulted in a significant increase in the beam current, achieving the 2 kA milestone. Until recently (before 2007), the maximum beam current that was produced from the 6.5-inch diameter (612M) cathode was about 1300 A when the cathode was operating at a maximum temperature of 1140 C. At this temperature level, the heat loss was dominated by radiation which is proportional to temperature to the fourth power. The maximum operating temperature was limited by the damage threshold of the potted filament and the capacity of the filament heater power supply, as well as the shortening of the cathode life time. There were also signs of overheating at other components in the cathode assembly. Thus it was clear that our approach to increase beam current could not be simply trying to run at a higher temperature and the preferred way was to operate with a cathode that has a lower work function. The dispenser cathode initially used was the type 612M made by SpectraMat. According to the manufacturer's bulletin, this cathode should be able to produce more than 10 A/cm{sup 2} of current density (corresponding to 2 kA of total beam current) at our operating conditions. Instead the measured emission (space charge limited) was 6 A/cm{sup 2}. The result was similar even after we had revised the activation and handling procedures to adhere more closely to the recommend steps (taking longer time and nonstop to do the out-gassing). Vacuum was a major concern in considering the cathode's performance. Although the vacuum gauges at the injector vessel indicated 10{sup -8} Torr, the actual vacuum condition near the cathode in the central region of the vessel, where there might be significant out-gassing from the heater region, was never determined. Poor vacuum at the surface of the cathode degraded the emission (by raising the work function

  11. DARHT 2 kA Cathode Development

    International Nuclear Information System (INIS)

    Henestroza, E.; Houck, T.; Kwan, J.W.; Leitner, M.; Miram, G.; Prichard, B.; Roy, P.K.; Waldron, W.; Westenskow, G.; Yu, S.; Bieniosek, F.M.

    2009-01-01

    In the campaign to achieve 2 kA of electron beam current, we have made several changes to the DARHT-II injector during 2006-2007. These changes resulted in a significant increase in the beam current, achieving the 2 kA milestone. Until recently (before 2007), the maximum beam current that was produced from the 6.5-inch diameter (612M) cathode was about 1300 A when the cathode was operating at a maximum temperature of 1140 C. At this temperature level, the heat loss was dominated by radiation which is proportional to temperature to the fourth power. The maximum operating temperature was limited by the damage threshold of the potted filament and the capacity of the filament heater power supply, as well as the shortening of the cathode life time. There were also signs of overheating at other components in the cathode assembly. Thus it was clear that our approach to increase beam current could not be simply trying to run at a higher temperature and the preferred way was to operate with a cathode that has a lower work function. The dispenser cathode initially used was the type 612M made by SpectraMat. According to the manufacturer's bulletin, this cathode should be able to produce more than 10 A/cm 2 of current density (corresponding to 2 kA of total beam current) at our operating conditions. Instead the measured emission (space charge limited) was 6 A/cm 2 . The result was similar even after we had revised the activation and handling procedures to adhere more closely to the recommend steps (taking longer time and nonstop to do the out-gassing). Vacuum was a major concern in considering the cathode's performance. Although the vacuum gauges at the injector vessel indicated 10 -8 Torr, the actual vacuum condition near the cathode in the central region of the vessel, where there might be significant out-gassing from the heater region, was never determined. Poor vacuum at the surface of the cathode degraded the emission (by raising the work function value). We reexamined

  12. Developments in cathodic protection. Ontwikkelingen in de kathodische bescherming

    Energy Technology Data Exchange (ETDEWEB)

    Van Bruchem, H. (VEG-Gasinstituut NV, Apeldoorn (Netherlands))

    1990-07-01

    Developments in cathodic protection of underground steel pipelines used for the transport of natural gas in the Netherlands are outlined. Besides criteria like applied negative potential in relation to ohmic resistances of soil, overprotection and the influence of stray currents, for instance in the vicinity of railroad tracks, are discussed. Control measurements of cathodic protection are described; a new method, wave form analysis, is outlined. 5 figs., 4 refs., 5 ills.

  13. Space-time-dependent development of the plasma in a pulsed hollow-cathode discharge

    International Nuclear Information System (INIS)

    Schaefer, G.; Wages, M.

    1988-01-01

    This paper presents streak camera investigations on the space-time-dependent development of pulsed hollow-cathode discharges (HCD's) starting from low-current preionization discharges. The discharges started closer to the end of the cathode, then moved further into the cathode, and then spread over a longer range along the axis of the cathode. The depth range of the intense pulsed hollow-cathode plasma was found to be two to eight times the cathode diameter

  14. Developing IEC prototypes for adolescents. IEC workshop.

    Science.gov (United States)

    1997-01-01

    Participants of the IEC Workshop for the Production of OHP Material on Reproductive Health for Adolescents and Young Adults held November 25-30 in Japan developed innovative, visually appealing overhead projector (OHP) transparencies to serve as prototype information, education, and communication (IEC) materials for the Asian Region. The materials cover a wide range of topics from early marriage to unwanted pregnancy. This paper briefly describes the prototypes. One group focused upon early marriage, an issue of considerable importance to the health and welfare of young women in countries such as Bhutan, India, and Nepal. Participants from China, Laos, Malaysia, and Thailand focused upon the issue of gender equality, while a third group developed OHP material to teach a range of issues related to young people's sexual and reproductive health. Finally, the fourth group, drawn from Indonesia, the Philippines, and Vietnam, focused upon the topic of menstruation with a prototype targeted to boys and girls aged 9-14 years. Boys were included to foster their understanding of menstruation as a natural phenomenon.

  15. Prototype development of user specific climate services

    Science.gov (United States)

    Jacob, Daniela

    2017-04-01

    Systematic consultations in the last years with representatives from sectors particularly affected by climate change have helped the Climate Service Center Germany (GERICS) to identify the most pressing needs of stakeholders from public and private sectors. Besides the development of innovative climate service products and methods, areas are also identified, for which intensive research activities have to be initiated. An example is the demand of decision makers for high-resolution climate change information needed at regional to local levels for their activities towards climate change adaptation. For questions concerning adaptation to climate change, no standard solutions can be provided. Different from mitigation measures, adaptation measures must be framed in accordance with the specific circumstances prevailing in the local situation. Here, individual solutions, which satisfy the individual requirements and needs, are necessary. They have to be developed in close co-operation with the customers and users. For example, the implications of climate change on strategic and operative decisions, e.g. in enterprises and urban planning, are becoming increasingly important. Therefore, high-quality consultancy for businesses and public administration is needed, in order to support decision makers in identifying associated risks and opportunities. For the development of prototype products, GERICS has framed a general methodological approach, including the idea generation, the iterative development, and the prototype testing in co-development with the user. High process transparency and high product quality are prerequisite for the success of a product. The co-development process ensures the best possible communication of user tailored climate change information for different target groups.

  16. Prototype development and demonstration for integrated dynamic transit operations.

    Science.gov (United States)

    2016-01-01

    This document serves as the Final Report specific to the Integrated Dynamic Transit Operations (IDTO) Prototype Development and Deployment Project, hereafter referred to as IDTO Prototype Deployment or IDTO PD project. This project was performed unde...

  17. TH-CD-207B-01: BEST IN PHYSICS (IMAGING): Development of High Brightness Multiple-Pixel X-Ray Source Using Oxide Coated Cathodes

    International Nuclear Information System (INIS)

    Kandlakunta, P; Pham, R; Zhang, T

    2016-01-01

    Purpose: To develop and characterize a high brightness multiple-pixel thermionic emission x-ray (MPTEX) source. Methods: Multiple-pixel x-ray sources allow for designs of novel x-ray imaging techniques, such as fixed gantry CT, digital tomosynthesis, tetrahedron beam computed tomography, etc. We are developing a high-brightness multiple-pixel thermionic emission x-ray (MPTEX) source based on oxide coated cathodes. Oxide cathode is chosen as the electron source due to its high emission current density and low operating temperature. A MPTEX prototype has been developed which may contain up to 41 micro-rectangular oxide cathodes in 4 mm pixel spacing. Electronics hardware was developed for source control and switching. The cathode emission current was evaluated and x-ray measurements were performed to estimate the focal spot size. Results: The oxide cathodes were able to produce ∼110 mA cathode current in pulse mode which corresponds to an emission current density of 0.55 A/cm 2 . The maximum kVp of the MPTEX prototype currently is limited to 100 kV due to the rating of high voltage feedthrough. Preliminary x-ray measurements estimated the focal spot size as 1.5 × 1.3 mm 2 . Conclusion: A MPTEX source was developed with thermionic oxide coated cathodes and preliminary source characterization was successfully performed. The MPTEX source is able to produce an array of high brightness x-ray beams with a fast switching speed.

  18. Z-2 Prototype Space Suit Development

    Science.gov (United States)

    Ross, Amy; Rhodes, Richard; Graziosi, David; Jones, Bobby; Lee, Ryan; Haque, Bazle Z.; Gillespie, John W., Jr.

    2014-01-01

    NASA's Z-2 prototype space suit is the highest fidelity pressure garment from both hardware and systems design perspectives since the Space Shuttle Extravehicular Mobility Unit (EMU) was developed in the late 1970's. Upon completion the Z-2 will be tested in the 11 foot human-rated vacuum chamber and the Neutral Buoyancy Laboratory (NBL) at the NASA Johnson Space Center to assess the design and to determine applicability of the configuration to micro-, low- (asteroid), and planetary- (surface) gravity missions. This paper discusses the 'firsts' that the Z-2 represents. For example, the Z-2 sizes to the smallest suit scye bearing plane distance for at least the last 25 years and is being designed with the most intensive use of human models with the suit model.

  19. Resource Prospector (RP) - Early Prototyping and Development

    Science.gov (United States)

    Andrews, D.; Colaprete, A.; Quinn, J.; Bluethmann, B.; Trimble, J.

    2015-01-01

    exploration of near-Earth asteroids (NEAs) and Mars. In order to reduce risk and explore system designs, the RP project is attempting two-fold approaches to development as it looks towards flight. We continue to explore flight planning, requirements, and interfaces definition by using Engineering Test Units (ETUs), looking towards lunar deployment, while also using fiscal year 2015 to develop, build and test an earth-terrestrial prototype rover and payload system. This terrestrial prototype, called "RP15", is built to both inform the system design, and to be a partnership advocacy tool for this unique mission. RP15 must be affordable within the resource and time constraints of fiscal year 2015, while working to the following Needs, Goals, and Objectives provided by HEOMD/AES: 1. Demonstrate rover mobility in a 1g environment 2. The Surface Segment (prototype rover + payload system) shall represent the flight system concept with as much fidelity as affordable (limited by cost and schedule) - Surface Segment shall be the approximate size/dimension/footprint -Surface Segment shall package all the expected devices (instruments, systems, etc.), even if some facets are mocked-up due to time/cost constraints -Overall Surface Segment fidelity negotiable to make achievable 3. Priority should be given to illustrating mission functionality over support functionality, which exists solely to support mission functionality This paper will provide an overview of RP project developments, including the design and build, capturing the development and initial integrated testing of RP15 in relevant environments.

  20. Space shuttle prototype check valve development

    Science.gov (United States)

    Tellier, G. F.

    1976-01-01

    Contaminant-resistant seal designs and a dynamically stable prototype check valve for the orbital maneuvering and reaction control helium pressurization systems of the space shuttle were developed. Polymer and carbide seal models were designed and tested. Perfluoroelastomers compatible with N2O4 and N2H4 types were evaluated and compared with Teflon in flat and captive seal models. Low load sealing and contamination resistance tests demonstrated cutter seal superiority over polymer seals. Ceramic and carbide materials were evaluated for N2O4 service using exposure to RFNA as a worst case screen; chemically vapor deposited tungsten carbide was shown to be impervious to the acid after 6 months immersion. A unique carbide shell poppet/cutter seat check valve was designed and tested to demonstrate low cracking pressure ( 2.0 psid), dynamic stability under all test bench flow conditions, contamination resistance (0.001 inch CRES wires cut with 1.5 pound seat load) and long life of 100,000 cycles (leakage 1.0 scc/hr helium from 0.1 to 400 psig).

  1. New developments in surface technology and prototyping

    Science.gov (United States)

    Himmer, Thomas; Beyer, Eckhard

    2003-03-01

    Novel lightweight applications in the automotive and aircraft industries require advanced materials and techniques for surface protection as well as direct and rapid manufacturing of the related components and tools. The manufacturing processes presented in this paper are based on multiple additive and subtractive technologies such as laser cutting, laser welding, direct laser metal deposition, laser/plasma hybrid spraying technique or CNC milling. The process chain is similar to layer-based Rapid Prototyping Techniques. In the first step, the 3D CAD geometry is sliced into layers by a specially developed software. These slices are cut by high speed laser cutting and then joined together. In this way laminated tools or parts are built. To improve surface quality and to increase wear resistance a CNC machining center is used. The system consists of a CNC milling machine, in which a 3 kW Nd:YAG laser, a coaxial powder nozzle and a digitizing system are integrated. Using a new laser/plasma hybrid spraying technique, coatings can be deposited onto parts for surface protection. The layers show a low porosity and high adhesion strength, the thickness is up to 0.3 mm, and the lower effort for preliminary surface preparation reduces time and costs of the whole process.

  2. An experimental study of molten salt electrorefining of uranium using solid iron cathode and liquid cadmium cathode for development of pyrometallurgical reprocessing

    International Nuclear Information System (INIS)

    Koyama, Tadafumi; Iizuka, Masatoshi; Tanaka, Hiroshi; Tokiwai, Moriyasu; Shoji, Yuichi; Fujita, Reiko; Kobayashi, Tsuguyuki.

    1997-01-01

    Electrorefining of uranium was studied for developing pyrometallurgical reprocessing technology of metal fuel cycle. After concentration dependence of polarization curve was measured, uranium was electrodeposited either on solid iron cathode or in liquid cadmium cathode. Design and operational conditions of the cathode were improved for obtaining much greater quantity of deposit, resulting in recovery of 732g of dendritic uranium on a single solid cathode, and of 232g of uranium in 2,344g of a liquid cadmium cathode. The behaviors of electro-codeposition of rare earth elements with uranium were observed for liquid cadmium cathode, and were found to follow the local equilibrium between salt electrolyte and cathode. The decontamination factors of FP simulating elements from uranium were tentatively determined as >2,000 for deposition to solid cathode and as >7 for deposition to liquid cadmium cathode, respectively. (author)

  3. Maritime Analytics Prototype: Final Development Report

    Science.gov (United States)

    2014-04-01

    includes all of the source code required to connect to a Postgres database and manipulate persistent MVAP data objects. 2.2.1 MVAP Data Import Scripts...The MVAP project includes a simple browser based user interface which can be used to populate the Postgres database. To use the DB interface, open a... Postgres ) is the database management system used by the prototype. 5. Download the one-click installer of PostgreSQL: 99 http

  4. Status and first Results of the CBM TRD Prototype Development

    International Nuclear Information System (INIS)

    Arend, Andreas

    2013-01-01

    The measurement of decay products from rare particles in the CBM experiment defines the requirements for the used detector systems. This report describes the approaches for the Transition Radiation Detector to fulfil these requirements and presents the current status of the prototype development. First results from beam tests with these prototypes are discussed.

  5. Development of alloy-film coated dispenser cathode for terahertz vacuum electron devices application

    International Nuclear Information System (INIS)

    Barik, R.K.; Bera, A.; Raju, R.S.; Tanwar, A.K.; Baek, I.K.; Min, S.H.; Kwon, O.J.; Sattorov, M.A.; Lee, K.W.; Park, G.-S.

    2013-01-01

    High power terahertz vacuum electron devices demand high current density and uniform emission dispenser cathode. It was found that the coating of noble metals e.g., Os, Ir, and Re on the surface of tungsten dispenser cathodes enhances the emission capabilities and uniformity. Hence metal coated cathode might be the best candidate for terahertz devices applications. In this study, ternary-alloy-film cathode (2Os:2Re:1 W) and Os coated cathode have been developed and the results are presented. The cathodes made out of this alloy coating showed 1.5 times higher emission and 0.02 eV emission uniformity as compared to those of simply Os coated cathodes which can be used in terahertz devices application.

  6. Development of alloy-film coated dispenser cathode for terahertz vacuum electron devices application

    Energy Technology Data Exchange (ETDEWEB)

    Barik, R. K.; Bera, A. [School of Electrical Engineering and Computer Science, Seoul National University, Seoul (Korea, Republic of); Raju, R. S. [Central Electronics Engineering Research Institute (CEERI), Rajasthan (India); Tanwar, A. K.; Baek, I. K.; Min, S. H.; Kwon, O. J.; Sattorov, M. A. [Department of Physics and Astronomy, Center for THz-Bio Application Systems, and Seoul-Teracom Inc., Seoul National University, Seoul (Korea, Republic of); Lee, K. W. [LIG Nex1, Seoul (Korea, Republic of); Park, G.-S., E-mail: gunsik@snu.ac.kr [School of Electrical Engineering and Computer Science, Seoul National University, Seoul (Korea, Republic of); Department of Physics and Astronomy, Center for THz-Bio Application Systems, and Seoul-Teracom Inc., Seoul National University, Seoul (Korea, Republic of); Advanced Institute of Convergence Technology, Suwon-si, Gyeonggi-do (Korea, Republic of)

    2013-07-01

    High power terahertz vacuum electron devices demand high current density and uniform emission dispenser cathode. It was found that the coating of noble metals e.g., Os, Ir, and Re on the surface of tungsten dispenser cathodes enhances the emission capabilities and uniformity. Hence metal coated cathode might be the best candidate for terahertz devices applications. In this study, ternary-alloy-film cathode (2Os:2Re:1 W) and Os coated cathode have been developed and the results are presented. The cathodes made out of this alloy coating showed 1.5 times higher emission and 0.02 eV emission uniformity as compared to those of simply Os coated cathodes which can be used in terahertz devices application.

  7. Development and test of prototype components for ITER

    International Nuclear Information System (INIS)

    Biel, Wolfgang; Behr, Wilfried; Castano-Bardawil, David

    2015-08-01

    The scientific program of the project is divided into the following partial projects: (1.) ITER Diagnostic Port Plug for the charge-exchange spectroscopy (CXRS) with the subthemes: (a) Development of prototypes for critical mechanical components, (b) development of a roboter for the laser welding of vacuum seals and pipings at the Port Plug, (c) mirror studies, (d) CXRS prototype spectrometer, (2.) ITER tritium retention diagnostics (TR), (3.) ITER disruption mitigation ventile (DMV).

  8. TH-CD-207B-01: BEST IN PHYSICS (IMAGING): Development of High Brightness Multiple-Pixel X-Ray Source Using Oxide Coated Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Kandlakunta, P; Pham, R; Zhang, T [Washington University School of Medicine, St. Louis, MO (United States)

    2016-06-15

    Purpose: To develop and characterize a high brightness multiple-pixel thermionic emission x-ray (MPTEX) source. Methods: Multiple-pixel x-ray sources allow for designs of novel x-ray imaging techniques, such as fixed gantry CT, digital tomosynthesis, tetrahedron beam computed tomography, etc. We are developing a high-brightness multiple-pixel thermionic emission x-ray (MPTEX) source based on oxide coated cathodes. Oxide cathode is chosen as the electron source due to its high emission current density and low operating temperature. A MPTEX prototype has been developed which may contain up to 41 micro-rectangular oxide cathodes in 4 mm pixel spacing. Electronics hardware was developed for source control and switching. The cathode emission current was evaluated and x-ray measurements were performed to estimate the focal spot size. Results: The oxide cathodes were able to produce ∼110 mA cathode current in pulse mode which corresponds to an emission current density of 0.55 A/cm{sup 2}. The maximum kVp of the MPTEX prototype currently is limited to 100 kV due to the rating of high voltage feedthrough. Preliminary x-ray measurements estimated the focal spot size as 1.5 × 1.3 mm{sup 2}. Conclusion: A MPTEX source was developed with thermionic oxide coated cathodes and preliminary source characterization was successfully performed. The MPTEX source is able to produce an array of high brightness x-ray beams with a fast switching speed.

  9. Development of 3000 m Subsea Blowout Preventer Experimental Prototype

    Science.gov (United States)

    Cai, Baoping; Liu, Yonghong; Huang, Zhiqian; Ma, Yunpeng; Zhao, Yubin

    2017-12-01

    A subsea blowout preventer experimental prototype is developed to meet the requirement of training operators, and the prototype consists of hydraulic control system, electronic control system and small-sized blowout preventer stack. Both the hydraulic control system and the electronic system are dual-mode redundant systems. Each system works independently and is switchable when there are any malfunctions. And it significantly improves the operation reliability of the equipment.

  10. Development of multi-pixel x-ray source using oxide-coated cathodes.

    Science.gov (United States)

    Kandlakunta, Praneeth; Pham, Richard; Khan, Rao; Zhang, Tiezhi

    2017-07-07

    Multiple pixel x-ray sources facilitate new designs of imaging modalities that may result in faster imaging speed, improved image quality, and more compact geometry. We are developing a high-brightness multiple-pixel thermionic emission x-ray (MPTEX) source based on oxide-coated cathodes. Oxide cathodes have high emission efficiency and, thereby, produce high emission current density at low temperature when compared to traditional tungsten filaments. Indirectly heated micro-rectangular oxide cathodes were developed using carbonates, which were converted to semiconductor oxides of barium, strontium, and calcium after activation. Each cathode produces a focal spot on an elongated fixed anode. The x-ray beam ON and OFF control is performed by source-switching electronics, which supplies bias voltage to the cathode emitters. In this paper, we report the initial performance of the oxide-coated cathodes and the MPTEX source.

  11. Hollow Cathode Assembly Development for the HERMeS Hall Thruster

    Science.gov (United States)

    Sarver-Verhey, Timothy R.; Kamhawi, Hani; Goebel, Dan M.; Polk, James E.; Peterson, Peter Y.; Robinson, Dale A.

    2016-01-01

    To support the operation of the HERMeS 12.5 kW Hall Thruster for NASA's Asteroid Redirect Robotic Mission, hollow cathodes using emitters based on barium oxide impregnate and lanthanum hexaboride are being evaluated through wear-testing, performance characterization, plasma modeling, and review of integration requirements. This presentation will present the development approach used to assess the cathode emitter options. A 2,000-hour wear-test of development model Barium Oxide (BaO) hollow cathode is being performed as part of the development plan. Specifically this test is to identify potential impacts cathode emitter life during operation in the HERMeS thruster. The cathode was operated with a magnetic field-equipped anode that simulates the HERMeS hall thruster operating environment. Cathode discharge performance has been stable with the device accumulating 743 hours at the time of this report. Observed voltage changes are attributed to keeper surface condition changes during testing. Cathode behavior during characterization sweeps exhibited stable behavior, including cathode temperature. The details of the cathode assembly operation of the wear-test will be presented.

  12. Model driven development of user interface prototypes

    DEFF Research Database (Denmark)

    Störrle, Harald

    2010-01-01

    the whole UI development life cycle, connect all stakeholders involved, and support a wide range of levels of granularity and abstraction. This is achieved by using Window/Event-Diagrams (WEDs), a UI specification notation based on UML 2 state machines. It affords closer collaboration between different user...

  13. Network data analysis server (NDAS) prototype development

    International Nuclear Information System (INIS)

    Marka, Szabolcs; Mours, Benoit; Williams, Roy

    2002-01-01

    We have developed a simple and robust system based on standard UNIX tools and frame library code to transfer and merge data from multiple gravitational wave detectors distributed worldwide. The transfer and merger take place with less than 20 minute delay and the output frames are available for all participants. Presently VIRGO and LIGO participate in the exchange and only environmental data are shared. The system is modular to allow future improvements and the use of new tools like Grid

  14. Development of Hollow Cathode of High Power Middle Pressure Arcjet

    National Research Council Canada - National Science Library

    Vaulin, Eujeni

    1995-01-01

    ...: Determine integral performances of arcjet devices in nitrogen, ammonia, and their mixtures using hollow cathode devices at low and high current levels, perform short term tests (up to 50 hours...

  15. Development of extruded resistive plastic tubes for proportional chamber cathodes

    International Nuclear Information System (INIS)

    Kondo, K.

    1982-01-01

    Carbon mixed plastic tubes with resistivity of 10 3 approx. 10 4 Ωcm have been molded with an extrusion method and used for the d.c. cathode of a proportional counter and a multi-wire proportional chamber. The signal by gas multiplication was picked up from a strip r.f. cathode set outside the tube. The characteristics of the counter in the proportional and limited streamer modes have been studied

  16. Utilization of virtual prototyping in development of CMM

    International Nuclear Information System (INIS)

    Raneda, A.; Pessi, P.; Siuko, M.; Handroos, H.; Palmer, J.; Vilenius, M.

    2003-01-01

    The characteristic advantages of hydraulics (high power density, simple construction and reliability) together with the characteristics of water as the pressure medium (fire and environmentally safe, chemically neutral, not activated nor affected by radiation) are highlighted in critical applications such as remote handling operations in International Thermonuclear Experimental Reactor (ITER). However, component cost and lack of wide selection of water hydraulic components make it difficult to build and to test complex water hydraulic systems. The use of virtual prototyping for the development of water hydraulic tools can be used to address this problem. Rapidly increased computational power has created conditions for extensive numerical calculations, enabling computer aided virtual prototyping to replace physical prototype phases in product development

  17. Developing novel extensions to support prototyping for interactive social robots

    NARCIS (Netherlands)

    Bhömer, ten M.; Bartneck, C.; Hu, J.; Ahn, R.M.C.; Tuyls, K.P.; Delbressine, F.L.M.; Feijs, L.M.G.

    2009-01-01

    Lego Mindstorms NXT is a platform highly suitable for prototyping in the field of interactive social robotics. During a technology masterclass at Eindhoven University of Technology students from the department of Industrial Design have developed five novel extensions (sensors and actuators) for the

  18. Development of molten salt electrorefining process. Basic behavior of deposition on the stirred liquid cadmium cathode

    International Nuclear Information System (INIS)

    Kondou, Naruhito; Koyama, Masashi; Iizuka, Masatoshi

    1996-01-01

    An impeller type liquid metal cathode has been studied by the authors for designing and developing a liquid cadmium cathode which is capable of collects the mixture of plutonium and uranium without formation of dendritic uranium. In this study, radial profile of the liquid surface was measured with various rotating speed and dimension of the impeller. Then, electrodepositions of zinc metal in the liquid gallium metal cathode was carried out for obtaining operational conditions such as current density and Reynolds number. The obtained result can be written in the following form, w c ∞i -1 ·N Re 0.3 , where w c is the maximum concentration in the liquid metal cathode, i is the cathode current density and N Re is the agitational Reynolds number. (author)

  19. A glucose bio-battery prototype based on a GDH/poly(methylene blue) bioanode and a graphite cathode with an iodide/tri-iodide redox couple.

    Science.gov (United States)

    Wang, Jen-Yuan; Nien, Po-Chin; Chen, Chien-Hsiao; Chen, Lin-Chi; Ho, Kuo-Chuan

    2012-07-01

    A glucose bio-battery prototype independent of oxygen is proposed based on a glucose dehydrogenase (GDH) bioanode and a graphite cathode with an iodide/tri-iodide redox couple. At the bioanode, a NADH electrocatalyst, poly(methylene blue) (PMB), which can be easily grown on the electrode (screen-printed carbon paste electrode, SPCE) by electrodeposition, is harnessed and engineered. We find that carboxylated multi-walled carbon nanotubes (MWCNTs) are capable of significantly increasing the deposition amount of PMB and thus enhancing the PMB's electrocatalysis of NADH oxidation and the glucose bio-battery's performance. The choice of the iodide/tri-iodide redox couple eliminates the dependence of oxygen for this bio-battery, thus enabling the bio-battery with a constant current-output feature similar to that of the solar cells. The present glucose bio-battery prototype can attain a maximum power density of 2.4 μW/cm(2) at 25 °C. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  20. Design for effective development and prototyping of the HL-20

    Science.gov (United States)

    Urie, David M.; Floreck, Paul A.; McMorris, John A.; Elvin, John D.

    1993-10-01

    A feasibility study of the HL-20 personnel launch system (PLS) concept was conducted by a team which focused on creating a PLS design approach and an accelerated development plan consistent with the historical 'Skunk Works' approach to rapid prototyping. Technical design, manufacturing, system testing, and operations and support elements of the predefined baseline concept were evaluated. An initial phase program, featuring a concurrent system test during design and development, leading to the orbital flight of an unmanned HL-20 prototype on a Titan III launch system, was prescribed. A second-phase development and manufacturing plan leading to system operational status was also formulated. Baseline design feature modifications were made when necessary, without compromise to performance, to satisfy the prototype development plan. Technical design details and off-the-shelf hardware candidates were also identified for several subsystems, including the launch-system interface adapter/emergency escape system. The technical feasibility of the system and applicability of the Skunk Works approach to development of the HL-20/PLS were verified.

  1. Development of a prototype GIS for risk-hazard assessment

    International Nuclear Information System (INIS)

    Devonport, C.

    1992-01-01

    A collaborative research agreement between the Supervising Scientist for the Alligator Rivers Region (OSS) and the Northern Territory University (NTU) aims to develop and assess a computer-based Geographic Information System (GIS) to integrate terrain and geological data for risk-hazard analysis and modelling. This paper outlines initial design and development of the prototype GIS including the input of trial data of various types. It is recognised that the GIS must be flexible enough to accommodate change and provide a base for a variety of research needs. Such functionality is likely to be provided best by an initially small, generic prototype GIS to which functions and data are added as required. Properties of the prototype identified as critical to its usefulness include integration of different types of data into the system, understanding and accommodating inconsistencies between data sets and the recognition and recording of error. Various types of data (elevation data, maps and images) available at the outset of the project are outlined together with a brief discussion on their source, integration into the database, derivative products and the potential usefulness of, and problems associated with, the different data formats. The analytical possibilities offered by the trial data will be explored next and the results of the first development cycle presented by the end of 1992. Subsequently, additional data will be incorporated into the database, analytical techniques will be used to build models, and user-driven development will enable the GIS to begin to support a decision research process. 20 refs

  2. Development of Prototype HTS Components for Magnetic Suspension Applications

    Science.gov (United States)

    Haldar, P.; Hoehn, J., Jr.; Selvamanickam, V.; Farrell, R. A.; Balachandran, U.; Iyer, A. N.; Peterson, E.; Salazar, K.

    1996-01-01

    We have concentrated on developing prototype lengths of bismuth and thallium based silver sheathed superconductors by the powder-in-tube approach to fabricate high temperature superconducting (HTS) components for magnetic suspension applications. Long lengths of mono and multi filament tapes are presently being fabricated with critical current densities useful for maglev and many other applications. We have recently demonstrated the prototype manufacture of lengths exceeding 1 km of Bi-2223 multi filament conductor. Long lengths of thallium based multi-filament conductor have also been fabricated with practical levels of critical current density and improved field dependence behavior. Test coils and magnets have been built from these lengths and characterized over a range of temperatures and background fields to determine their performance. Work is in progress to develop, fabricate and test HTS windings that will be suitable for magnetic suspension, levitation and other electric power related applications.

  3. Applying a manufacturing vision development prototype in practice

    DEFF Research Database (Denmark)

    Wang, Chengbo; Luxhøj, James T.; Johansen, John

    2005-01-01

    The primary objective of this paper is to summarise the empirical application of a designed case-based manufacturing vision (MV) development prototype (CBRM). This empirical application is undertaken using case study strategy, due to its ability to answer the research questions regarding...... enterprise. The three real world cases (companies) were selected in the USA within different industrial segments. The application results suggest that the CBRM is supportive of the decision-making process for tackling strategic manufacturing issues....

  4. A prototype for a mammographic head and related developments

    Energy Technology Data Exchange (ETDEWEB)

    Amendolia, S.R.; Annovazzi, A.; Bigongiari, A.; Bisogni, M.G.; Catarsi, F.; Cesqui, F.; Cetronio, A.; Chianella, M.; Delogu, P.; Fantacci, M.E.; Galimberti, D.; Lanzieri, C.; Lavanga, S.; Novelli, M.; Passuello, G.; Stefanini, A.; Testa, A.; Venturelli, L

    2004-02-01

    The Integrated Mammographic Imaging (IMI) project aims to realize innovative instrumentations for morphological and functional mammography, in particular, one of the research topics is the design and development of a prototype of a mammographic head. Innovative industrial processes for the production of GaAs pixel detectors and for their bump-bonding to the read-out VLSI electronics have been developed by AMS. The data acquisition and processing have been developed by LABEN; the power supply and distribution system has been realized by CAEN; while the integration of the head in a standard mammograph has been carried on by the Laboratori di Ricerca Gilardoni.

  5. A prototype for a mammographic head and related developments

    International Nuclear Information System (INIS)

    Amendolia, S.R.; Annovazzi, A.; Bigongiari, A.; Bisogni, M.G.; Catarsi, F.; Cesqui, F.; Cetronio, A.; Chianella, M.; Delogu, P.; Fantacci, M.E.; Galimberti, D.; Lanzieri, C.; Lavanga, S.; Novelli, M.; Passuello, G.; Stefanini, A.; Testa, A.; Venturelli, L.

    2004-01-01

    The Integrated Mammographic Imaging (IMI) project aims to realize innovative instrumentations for morphological and functional mammography, in particular, one of the research topics is the design and development of a prototype of a mammographic head. Innovative industrial processes for the production of GaAs pixel detectors and for their bump-bonding to the read-out VLSI electronics have been developed by AMS. The data acquisition and processing have been developed by LABEN; the power supply and distribution system has been realized by CAEN; while the integration of the head in a standard mammograph has been carried on by the Laboratori di Ricerca Gilardoni

  6. Research to develop guidelines for cathodic protection of concentric neutral cables, volume 3

    Science.gov (United States)

    Hanck, J. A.; Nekoksa, G.

    1982-08-01

    Data associated with the corrosion of concentric neutral (CN) wires of direct buried primary cables were statistically analyzed, and guidelines for cathodic protection of CN wires for the electric utility industry were developed. The cathodic protection are reported. Field tests conducted at 36 bellholes excavated in California, Oklahoma, and North Carolina are described. Details of the electrochemical, chemical, bacteriological, and sieve analyses of native soil and imported backfill samples are also included.

  7. Prototype development of radio frequency cavity and quadrupole for ADSS - initial efforts by mechanical design and prototype development section

    International Nuclear Information System (INIS)

    Kumar, Manish; Kamble, Sunil; Choughule, L.S.; Kumar, Sunil; Patankar, S.R.; Phalke, V.M.; Dharmik, D.A.; Singh, Tejinder; Ram, Y.; Chaudhari, A.T.; Pathak, Kavindra; Prasad, N.K.; Marathe, V.V.; Matkar, A.W.

    2007-01-01

    Mechanical Design and Prototype Development Section has participated in the efforts for development of RF cavity and Quadrupole for ADSS. Recently prototype Super conducting RF cavity, Radio Frequency Quadrupole (RFQ), Radio Frequency Quadrupole (RFQ) Simulation Chamber and related experimental setups were developed, fabricated and delivered for the characterisation of various relevant parameters. Under the program for development of Super conducting RF Cavity for high-energy section of LINAC of ADS first prototype RF Cavity of ETP copper was developed by machining and brazing process. The prototype cavity having elliptical and circular profile is the heart of this setup. The cavity is made up of two symmetrical cups joined together by welding or brazing. Various methods are being tried out by MD and PDS for the fabrication of cups and joining them together. Manufacturing of cup by machining and joining them by conventional brazing technique to make the cavity was the first step in this direction. Another method of manufacturing and joining viz forming of cup by deep drawing and joining them by EB welding is in progress. RFQ is a versatile and efficient system for accelerating ion beams especially at low energy. It works in quadrupole mode, which is at 350M Hz. RFQ Focuses, Bunches and Accelerates the beam simultaneously. The bunching is done in this RFQ, which results in more than 95% transmission where as in the normal buncher the transmission is less than 40%. The actual RFQ, which is designed for the PURNIMA facility, will be fabricated from OFHC copper that will accelerate a deuteron (D+) ion beam from 50keV to 400keV over its 1.37meter length. For the validation of manufacturing process and characterisation of various parameters at low frequency a 500mm long prototype RFQ in Aluminium with an accuracy of ± 25microns and surface finish of 1.6 micron has been fabricated by MD and PDS. A simplified simulation chamber to facilitate the development of RFQ for

  8. Simulation of cathode spot crater formation and development on CuCr alloy in vacuum arc

    Science.gov (United States)

    Wang, Lijun; Zhang, Xiao; Wang, Yuan; Yang, Ze; Jia, Shenli

    2018-04-01

    The two-dimensional (2D) rotary axisymmetric model is used to describe the formation and development of a cathode spot on a copper-chromium alloy (CuCr) in a vacuum arc. The model includes hydrodynamic equations and the heat transfer equation. Parameters used in this model come from experiments and other researchers' work. The influence of parameters is analyzed, and the simulation results are compared with pure metal simulation results. In simulation, the depth of the cathode crater is from 0.5 μm to 1.1 μm, the radius of the cathode crater is from 1.6 μm to 2.6 μm, the maximum velocity of the droplet is from 200 m/s to 600 m/s, and the maximum temperature is from 3500 K to 5000 K which is located in the area with a radius of 0.5-1.5 μm. The simulation results show that a smooth cathode surface is advantageous for reducing ablation, the ablation on the CuCr alloy is smaller than that on the pure metal cathode electrode, and the cathode spot appears on the chromium grain only on CuCr. The simulation results are in good agreement with the experiment.

  9. Design and development of a prototype hot spot identification system

    International Nuclear Information System (INIS)

    Jain, Amit; Thakur, Vaishali M.; Anilkumar, Rekha; Sawant, Pravin; Chaudhury, Probal; Pradeepkumar, K.S.

    2015-01-01

    The proper assessment of radiological environments inside nuclear facilities require accurate spatial mapping of the gamma ray field. A prototype Hotspot Identification System has been designed and developed in-house for gamma ray imaging by combining a gamma spectrometer with a pinhole collimator and a digital camera. The system can rapidly determine the location, distribution and intensity of gamma ray sources by carrying a scan of the suspected locations. The measured data was compared with simulated values for NaI(Tl) response, generated using the MCNP 4B Transport code. The data obtained by experimental and theoretical method are in good agreement. (author)

  10. CMS Level-1 Upgrade Calorimeter Trigger Prototype Development

    CERN Document Server

    Klabbers, Pamela Renee

    2013-01-01

    As the LHC increases luminosity and energy, it will become increasingly difficult to select interesting physics events and remain within the readout bandwidth limitations. An upgrade to the CMS Calorimeter Trigger implementing more complex algorithms is proposed. It utilizes AMC cards with Xilinx FPGAs running in micro-TCA crate with card interconnections via crate backplanes and optical links operating at up to 10 Gbps. Prototype cards with Virtex-6 and Virtex-7 FPGAs have been built and software frameworks for operation and monitoring developed. The physics goals, hardware architectures, and software will be described in this talk. More details can be found in a separate poster at this conference.

  11. Development of prototype digital LLRF system at RRCAT

    International Nuclear Information System (INIS)

    Tiwari, Nitesh; Bagduwal, Pritam S.; Sharma, Dheeraj; Chakraborty, Shoubhik; Lad, Mahendra; Hannurkar, P.R.

    2013-01-01

    RF field is used in accelerator to accelerate the charge particles. The beam parameters depend highly on the stability of the RF field. Due to dynamic beam loading conditions the variations in RF parameters of accelerating structures needs to be controlled precisely, hence low level RF feedback control system plays vital role. Considering revolutionary development in the field of digital electronics and inherent advantages of digital systems, digital LLRF control system work was taken up. The digital LLRF system consists of two major units namely RF processing and digital processing. RF processing unit uses I/Q modulator for amplitude and phase control. This unit provides synchronized clock using ÷16 pre-scalar and also performs up conversion and down conversion for synchronized LO and IF generation respectively, along with required amplification and filtering. Digital processing unit takes down converted IF signal with appropriate sampling rate for I/Q detection. To extract the amplitude and phase information I/Q data is digitally filtered and processed using CORDIC algorithm in FPGA. I/Q modulator is used for controlling the amplitude and phase of RF field. Prototype development of digital LLRF control system for 325 MHz, 650 MHz is in progress. Digital LLRF system at 505 MHz has been installed in one RF station of Indus-2 RF system. In this paper development of prototype Digital LLRF system at RFSD, Raja Ramanna Centre for Advanced Technology and results are presented. (author)

  12. Development of a compressive sampling hyperspectral imager prototype

    Science.gov (United States)

    Barducci, Alessandro; Guzzi, Donatella; Lastri, Cinzia; Nardino, Vanni; Marcoionni, Paolo; Pippi, Ivan

    2013-10-01

    Compressive sensing (CS) is a new technology that investigates the chance to sample signals at a lower rate than the traditional sampling theory. The main advantage of CS is that compression takes place during the sampling phase, making possible significant savings in terms of the ADC, data storage memory, down-link bandwidth, and electrical power absorption. The CS technology could have primary importance for spaceborne missions and technology, paving the way to noteworthy reductions of payload mass, volume, and cost. On the contrary, the main CS disadvantage is made by the intensive off-line data processing necessary to obtain the desired source estimation. In this paper we summarize the CS architecture and its possible implementations for Earth observation, giving evidence of possible bottlenecks hindering this technology. CS necessarily employs a multiplexing scheme, which should produce some SNR disadvantage. Moreover, this approach would necessitate optical light modulators and 2-dim detector arrays of high frame rate. This paper describes the development of a sensor prototype at laboratory level that will be utilized for the experimental assessment of CS performance and the related reconstruction errors. The experimental test-bed adopts a push-broom imaging spectrometer, a liquid crystal plate, a standard CCD camera and a Silicon PhotoMultiplier (SiPM) matrix. The prototype is being developed within the framework of the ESA ITI-B Project titled "Hyperspectral Passive Satellite Imaging via Compressive Sensing".

  13. Development of a prototype of a candidate camera payload

    OpenAIRE

    Oltedal, Jon Kalevi

    2016-01-01

    The second prototype for the NUTS camera module have been tested to confirm if changes made from the first prototype were successful. The first prototype suffered from noise issues when operating at the maximum clock frequency of 96MHz. This needed to be fixed for the MT9P031 image sensor to be usable in further designs. Debugging and testing using the camera prototype hardware and software proved that the prototype managed to produce noise free images with bright parts in the images. These r...

  14. Development and Test of a Prototype 100MVA Superconducting Generator

    Energy Technology Data Exchange (ETDEWEB)

    Fogarty, James M.; Bray, James W.

    2007-05-25

    In 2002, General Electric and the US Department of Energy (DOE) entered into a cooperative agreement for the development of a commercialized 100 MVA generator using high temperature superconductors (HTS) in the field winding. The intent of the program was to: • Identify and develop technologies that would be needed for such a generator. • Develop conceptual designs for generators with ratings of 100 MVA and higher using HTS technology. • Perform proof of concept tests at the 1.5 MW level for GE’s proprietary warm iron rotor HTS generator concept. • Design, build, and test a prototype of a commercially viable 100 MVA generator that could be placed on the power grid. This report summarizes work performed during the program and is provided as one of the final program deliverables.

  15. Development and Testing of High Current Hollow Cathodes for High Power Hall Thrusters

    Science.gov (United States)

    Kamhawi, Hani; Van Noord, Jonathan

    2012-01-01

    NASA's Office of the Chief Technologist In-Space Propulsion project is sponsoring the testing and development of high power Hall thrusters for implementation in NASA missions. As part of the project, NASA Glenn Research Center is developing and testing new high current hollow cathode assemblies that can meet and exceed the required discharge current and life-time requirements of high power Hall thrusters. This paper presents test results of three high current hollow cathode configurations. Test results indicated that two novel emitter configurations were able to attain lower peak emitter temperatures compared to state-of-the-art emitter configurations. One hollow cathode configuration attained a cathode orifice plate tip temperature of 1132 degC at a discharge current of 100 A. More specifically, test and analysis results indicated that a novel emitter configuration had minimal temperature gradient along its length. Future work will include cathode wear tests, and internal emitter temperature and plasma properties measurements along with detailed physics based modeling.

  16. Using elastin protein to develop highly efficient air cathodes for lithium-O2 batteries

    International Nuclear Information System (INIS)

    Guo, Guilue; Ang, Huixiang; Tan, Huiteng; Zhang, Yu; Guo, Yuanyuan; Fong, Eileen; Yan, Qingyu; Yao, Xin

    2016-01-01

    Transition metal-nitrogen/carbon (M-N/C, M = Fe, Co) catalysts are synthesized using environmentally friendly histidine-tag-rich elastin protein beads, metal sulfate and water soluble carbon nanotubes followed by post-annealing and acid leaching processes. The obtained catalysts are used as cathode materials in lithium-O 2 batteries. It has been discovered that during discharge, Li 2 O 2 nanoparticles first nucleate and grow around the bead-decorated CNT regions (M-N/C centres) and coat on the catalysts at a high degree of discharge. The Fe-N/C catalyst-based cathodes deliver a capacity of 12 441 mAh g −1 at a current density of 100 mA g −1 . When they were cycled at a limited capacity of 800 mAh g −1 at current densities of 200 or 400 mA g −1 , these cathodes showed stable charge voltages of ∼3.65 or 3.90 V, corresponding to energy efficiencies of ∼71.2 or 65.1%, respectively. These results are considerably superior to those of the cathodes based on bare annealed CNTs, which prove that the Fe-N/C catalysts developed here are promising for use in non-aqueous lithium-O 2 battery cathodes. (paper)

  17. Using elastin protein to develop highly efficient air cathodes for lithium-O2 batteries

    Science.gov (United States)

    Guo, Guilue; Yao, Xin; Ang, Huixiang; Tan, Huiteng; Zhang, Yu; Guo, Yuanyuan; Fong, Eileen; Yan, Qingyu

    2016-01-01

    Transition metal-nitrogen/carbon (M-N/C, M = Fe, Co) catalysts are synthesized using environmentally friendly histidine-tag-rich elastin protein beads, metal sulfate and water soluble carbon nanotubes followed by post-annealing and acid leaching processes. The obtained catalysts are used as cathode materials in lithium-O2 batteries. It has been discovered that during discharge, Li2O2 nanoparticles first nucleate and grow around the bead-decorated CNT regions (M-N/C centres) and coat on the catalysts at a high degree of discharge. The Fe-N/C catalyst-based cathodes deliver a capacity of 12 441 mAh g-1 at a current density of 100 mA g-1. When they were cycled at a limited capacity of 800 mAh g-1 at current densities of 200 or 400 mA g-1, these cathodes showed stable charge voltages of ˜3.65 or 3.90 V, corresponding to energy efficiencies of ˜71.2 or 65.1%, respectively. These results are considerably superior to those of the cathodes based on bare annealed CNTs, which prove that the Fe-N/C catalysts developed here are promising for use in non-aqueous lithium-O2 battery cathodes.

  18. Development and Physical Control Research on Prototype Artificial Leg

    Directory of Open Access Journals (Sweden)

    Fei Li

    2016-03-01

    Full Text Available To provide an ideal platform for research on intelligent bionic leg (IBL, this paper proposes a model of a biped robot with heterogeneous legs (BRHL. A prototype of an artificial leg is developed based on biological structure and motion principle analysis of human lower extremities. With regard to the driving sources, servomotors are chosen for the hip joint and ankle joint, while pneumatic muscle actuators (PMAs are chosen for the knee joint. The control system of the bionic artificial leg is designed and a physical experimental platform is established. The physical control experiments are done based on proportional-integral-derivative (PID control strategy. The experimental results show that such a system can realize the expected goals.

  19. Developments in the Material Fabrication and Performance of LiMn2O4 dCld Cathode Material

    Science.gov (United States)

    2016-06-13

    manganese oxide spinel materials exhibit promising electrochemical performance and good thermodynamic and kinetic stability when used as a cathode in... oxide spinel (LiMn2O4) is a potential viable active cathode material for use in these versatile applications due to its low toxicity, good capacity...Developments in the Material Fabrication and Performance of LiMn2O4-dCld Cathode Material Paula C Latorre, Ashley L Ruth, and Terrill B Atwater

  20. Development of an air-breathing direct methanol fuel cell with the cathode shutter current collectors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yufeng; Liu, Xiaowei [Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin 150001 (China); MEMS Center, Harbin Institute of Technology, Harbin 150001 (China); Zhang, Peng; Zhang, Bo; Li, Jianmin; Deng, Huichao [MEMS Center, Harbin Institute of Technology, Harbin 150001 (China)

    2010-06-15

    An air-breathing direct methanol fuel cell with a novel cathode shutter current collector is fabricated to develop the power sources for consumer electronic devices. Compared with the conventional circular cathode current collector, the shutter one improves the oxygen consumption and mass transport. The anode and cathode current collectors are made of stainless steel using thermal stamping die process. Moreover, an encapsulation method using the tailor-made clamps is designed to assemble the current collectors and MEA for distributing the stress of the edges and inside uniformly. It is observed that the maximum power density of the air-breathing DMFC operating with 1 M methanol solution achieves 19.7 mW/cm{sup 2} at room temperature. Based on the individual DMFCs, the air-breathing stack consisting of 36 DMFC units is achieved and applied to power a notebook computer. (author)

  1. Development of a high-performance composite cathode for LT-SOFC

    Science.gov (United States)

    Lee, Byung Wook

    Solid Oxide Fuel Cell (SOFC) has drawn considerable attention for decades due to its high efficiency and low pollution, which is made possible since chemical energy is directly converted to electrical energy through the system without combustion. However, successful commercialization of SOFC has been delayed due to its high production cost mainly related with using high cost of interconnecting materials and the other structural components required for high temperature operation. This is the reason that intermediate (IT) or low temperature (LT)-SOFC operating at 600~800°C or 650°C and below, respectively, is of particular significance because it allows the wider selection of cheaper materials such as stainless steel for interconnects and the other structural components. Also, extended lifetime and system reliability are expected due to less thermal stress through the system with reduced temperature. More rapid start-up/shut-down procedure is another advantage of lowering the operating temperatures. As a result, commercialization of SOFC will be more viable. However, there exists performance drop with reduced operating temperature due to increased polarization resistances from the electrode electrochemical reactions and decreased electrolyte conductivity. Since ohmic polarization of the electrolyte can be significantly reduced with state-of-the art thin film technology and cathode polarization has more drastic effect on total SOFC electrochemical performance than anode polarization as temperature decreases, development of the cathode with high performance operating at IT or LT range is thus essential. On the other hand, chemical stability of the cathode and its chemical compatibility with the electrolyte should also be considered for cathode development since instability and incompatibility of the cathode will also cause substantial performance loss. Based on requirements of the cathode mentioned above, in this study, several chemico-physical approaches were

  2. Development and Evaluation of the Virtual Prototype of the First Saudi Arabian-Designed Car

    Directory of Open Access Journals (Sweden)

    Mustufa H. Abidi

    2016-10-01

    Full Text Available Prototyping and evaluation are imperative phases of the present product design and development process. Although digital modeling and analysis methods are widely employed at various product development stages, still, building a physical prototype makes the present typical process expensive and time consuming. Therefore, it is necessary to implement new technologies, such as virtual prototyping, which can enable industry to have a rapid and more controlled decision making process. Virtual prototyping has come a long way in recent years, where current environments enable stereoscopic visuals, surround sound and ample interaction with the generated models. It is also important to evaluate how representative the developed virtual prototype is when compared to the real-world counterpart and the sense of presence reported by users of the virtual prototype. This paper describes the systematic procedure to develop a virtual prototype of Gazal-1 (i.e., the first car prototype designed by Saudi engineers in a semi-immersive virtual environment. The steps to develop a virtual prototype from CAD (computer-aided design models are explained in detail. Various issues involved in the different phases for the development of the virtual prototype are also discussed comprehensively. The paper further describes the results of the subjective assessment of a developed virtual prototype of a Saudi Arabian-designed automobile. User’s feedback is recorded using a presence questionnaire. Based on the user-based study, it is revealed that the virtual prototype is representative of the real Saudi Arabian car and offers a flexible environment to analyze design features when compared against its physical prototype. The capabilities of the virtual environment are validated with the application of the car prototype. Finally, vital requirements and directions for future research are also presented.

  3. Developing a Prototype ALHAT Human System Interface for Landing

    Science.gov (United States)

    Hirsh, Robert L.; Chua, Zarrin K.; Heino, Todd A.; Strahan, Al; Major, Laura; Duda, Kevin

    2011-01-01

    The goal of the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project is to safely execute a precision landing anytime/anywhere on the moon. This means the system must operate in any lighting conditions, operate in the presence of any thruster generated regolith clouds, and operate without the help of redeployed navigational aids or prepared landing site at the landing site. In order to reach this ambitious goal, computer aided technologies such as ALHAT will be needed in order to permit these landings to be done safely. Although there will be advanced autonomous capabilities onboard future landers, humans will still be involved (either onboard as astronauts or remotely from mission control) in any mission to the moon or other planetary body. Because many time critical decisions must be made quickly and effectively during the landing sequence, the Descent and Landing displays need to be designed to be as effective as possible at presenting the pertinent information to the operator, and allow the operators decisions to be implemented as quickly as possible. The ALHAT project has established the Human System Interface (HSI) team to lead in the development of these displays and to study the best way to provide operators enhanced situational awareness during landing activities. These displays are prototypes that were developed based on multiple design and feedback sessions with the astronaut office at NASA/ Johnson Space Center. By working with the astronauts in a series of plan/build/evaluate cycles, the HSI team has obtained astronaut feedback from the very beginning of the design process. In addition to developing prototype displays, the HSI team has also worked to provide realistic lunar terrain (and shading) to simulate a "out the window" view that can be adjusted to various lighting conditions (based on a desired date/time) to allow the same terrain to be viewed under varying lighting terrain. This capability will be critical to determining the

  4. Development of an ITER prototype disruption mitigation valve

    Energy Technology Data Exchange (ETDEWEB)

    Czymek, G., E-mail: g.czymek@fz-juelich.de [Institute of Energy and Climate Research – Plasma Physics, Forschungszentrum Jülich GmbH, D52425 Jülich (Germany); Giesen, B., E-mail: ingenieurbuero.giesen@gmx.de [IBG, Sibertstr. 22, D-52525 Heinsberg (Germany); Charl, A.; Panin, A.; Hiller, A.; Nicolai, D.; Neubauer, O.; Koslowski, H.R.; Sandri, N. [Institute of Energy and Climate Research – Plasma Physics, Forschungszentrum Jülich GmbH, D52425 Jülich (Germany)

    2015-10-15

    Highlights: • An ITER-DMV prototype for 100 bar, D = 80 mm, opening time 3.5 ms, is ready for fabrication. • The vacuum part is sealed against the working gas by stainless steel bellows for 110 bar. • The conical Laval gas outlet allows maximal mass flow rate. • The eddy current drive turn ratio was optimized for low tilting moment. • Polyimide is used for the head sealing, the decelerator and for the bearing of the guide tube. - Abstract: Disruptions in tokamaks seem to be unavoidable. Consequences of disruptions are (i) high heat loads on plasma-facing components, (ii) large forces on the vacuum vessel, and (iii) the generation of runaway electron beams. In ITER, the thermal energy of the plasma needs to be evenly distributed on the first wall in order to prevent melting, forces from vertical displacement events have to be minimized, and the generation of runaway electrons suppressed. Massive gas injection using fast valves is a concept for disruption mitigation which is presently being explored in many tokamaks. Fast disruption mitigation valves based on an electromagnetic eddy current drive have been developed in Jülich since the 1990s and models of various sizes have been built and are in operation in the TEXTOR, MAST, and JET tokamaks. A disruption mitigation valve for ITER is of necessity larger with an estimated injected gas volume of ∼20 kPa m{sup 3}[7] for runaway electron suppression and all materials used have to be resistant to much higher levels of neutron and gamma radiation than in existing tokamaks. During the last 5 years, the concept for an ITER prototype disruption mitigation valve has been developed up to the stage that a fully functional valve could be built and tested. Special emphasis was given to the development and functional testing of some critical items: (i) the injection chamber seal, (ii) the piston seal, (iii) the eddy current drive, and (iv) a braking mechanism to avoid too fast closure of the valve, which could damage

  5. Development of E-learning prototype for MUET assessment

    Science.gov (United States)

    Mit Anak Mawan, Amylia; Mohamed, Rozlini; Othman, Muhaini; Yusof, Munirah Mohd

    2017-08-01

    This paper aims to discuss the development of E-learning prototype for MUET assessment in Fakulti Sains Komputer dan Teknologi Maklumat (FSKTM), Universiti Tun Hussein Onn Malaysia (UTHM) namely, MUET Online System. The system is considered as a learning centre to study MUET examination that follows the MUET syllabus. The system will be used to assist students in making preparation before sitting for MUET examination. Before student can gain access to the system, students need to sign up and pay some fees before they are enrolled into virtual MUET class. The class will be guided by the English language lecturer from Faculty of Science, Technology and Human Development (FSTPI), UTHM as teacher. The system provides learning modules, quiz and test section. At the end of learning session students’ performance are assessed through quizzes and test measure the level of student understands. The teacher will evaluate the student’s mark and provide advices to the student. Therefore, the MUET Online System will be able to improve student knowledge in English language and subsequently help student to obtain the best result in MUET by providing more guided references and practices.

  6. High Performance Cathodes for Li-Air Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Yangchuan

    2013-08-22

    The overall objective of this project was to develop and fabricate a multifunctional cathode with high activities in acidic electrolytes for the oxygen reduction and evolution reactions for Li-air batteries. It should enable the development of Li-air batteries that operate on hybrid electrolytes, with acidic catholytes in particular. The use of hybrid electrolytes eliminates the problems of lithium reaction with water and of lithium oxide deposition in the cathode with sole organic electrolytes. The use of acid electrolytes can eliminate carbonate formation inside the cathode, making air breathing Li-air batteries viable. The tasks of the project were focused on developing hierarchical cathode structures and bifunctional catalysts. Development and testing of a prototype hybrid Li-air battery were also conducted. We succeeded in developing a hierarchical cathode structure and an effective bifunctional catalyst. We accomplished integrating the cathode with existing anode technologies and made a pouch prototype Li-air battery using sulfuric acid as catholyte. The battery cathodes contain a nanoscale multilayer structure made with carbon nanotubes and nanofibers. The structure was demonstrated to improve battery performance substantially. The bifunctional catalyst developed contains a conductive oxide support with ultra-low loading of platinum and iridium oxides. The work performed in this project has been documented in seven peer reviewed journal publications, five conference presentations, and filing of two U.S. patents. Technical details have been documented in the quarterly reports to DOE during the course of the project.

  7. Development and Analysis of Desiccant Enhanced Evaporative Air Conditioner Prototype

    Energy Technology Data Exchange (ETDEWEB)

    Kozubal, E.; Woods, J.; Judkoff, R.

    2012-04-01

    This report documents the design of a desiccant enhanced evaporative air conditioner (DEVAP AC) prototype and the testing to prove its performance. Previous numerical modeling and building energy simulations indicate a DEVAP AC can save significant energy compared to a conventional vapor compression AC (Kozubal et al. 2011). The purposes of this research were to build DEVAP prototypes, test them to validate the numerical model, and identify potential commercialization barriers.

  8. Development of prototype reactor maintenance. (2) Application to piping support of sodium-cooled reactor prototype

    International Nuclear Information System (INIS)

    Arai, Masanobu; Kunogi, Kosuke; Aizawa, Kosuke; Chikazawa, Yoshitaka; Takaya, Shigeru; Kubo, Shigenobu; Kotake, Shoji; Ito, Takaya; Yamaguchi, Akira

    2017-01-01

    A maintenance program on piping support of prototype fast breeder reactor Monju are studied. Based on degradation mechanism, snubbers in Monju primary cooling system showed lifetime more than the plant lifetime of 30 years by experiments conservatively. For the first step during construction, visual inspection on accessible all supports could be available. In that visual inspection, mounting conditions and damages of all accessible supports could be monitored. One of major features of the Monju primary piping system is large thermal expansion due to large temperature difference between maintenance and operation conditions. Thanks to that large thermal expansion, integrity of piping supports could be monitored by measuring piping displacement. When technologies of piping displacement monitoring are matured in Monju, visual inspection on piping support could be shifted to piping displacement monitoring. At that stage, the visual inspection could be limited only on representative supports. (author)

  9. Cathodic protection of reinforced concrete structures in the Netherlands - Experience and developments: Cathodic protection of concrete - 10 years experience

    NARCIS (Netherlands)

    Polder, R.B.

    1998-01-01

    Cathodic protection (CP) of reinforcing steel in concrete structures has been used successfully for over 20 years. CP is able to stop corrosion in a reliable and economical way where chloride contamination has caused reinforcement corrosion and subsequent concrete damage. To new structures where

  10. Development of a single-ring OpenPET prototype

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Eiji, E-mail: rush@nirs.go.jp; Tashima, Hideaki; Wakizaka, Hidekatsu; Nishikido, Fumihiko; Hirano, Yoshiyuki; Inadama, Naoko; Murayama, Hideo; Ito, Hiroshi; Yamaya, Taiga

    2013-11-21

    One of the challenging applications of PET is implementing it for in-beam PET, which is an in situ monitoring method for charged particle therapy. For this purpose, we have previously proposed an open-type PET scanner, OpenPET. The original OpenPET had a physically opened field-of-view (FOV) between two detector rings through which irradiation beams pass. This dual-ring OpenPET (DROP) had a wide axial FOV including the gap. This geometry was not necessarily the most efficient for application to in-beam PET in which only a limited FOV around the irradiation field is required. Therefore, we have proposed a new single-ring OpenPET (SROP) geometry which can provide an accessible and observable open space with higher sensitivity and a reduced number of detectors than the DROP. The proposed geometry was a cylinder shape with its ends cut at a slant, in which the shape of each cut end became an ellipse. In this work, we developed and evaluated a small prototype of the SROP geometry for proof-of-concept. The SROP prototype was designed with 2 ellipse-shaped detector rings of 16 depth-of-interaction (DOI) detectors each. The DOI detectors consisted of 1024 GSOZ scintillator crystals which were arranged in 4 layers of 16×16 arrays, coupled to a 64-channel FP-PMT. Each ellipse-shaped detector ring had a major axis of 281.6 mm and a minor axis of 207.5 mm. For the slant mode, the rings were placed at a 45-deg slant from the axial direction and for the non-slant mode (used as a reference) they were at 90 deg from the axial direction with no gap. The system sensitivity measured from a {sup 22}Na point source was 5.0% for the slant mode. The average spatial resolutions of major and minor axis directions were calculated as 3.8 mm FWHM and 4.9 mm FWHM, respectively for the slant mode. This difference resulted from the ellipsoidal ring geometry and the spatial resolution of the minor axis direction degraded by the parallax error. Comparison between the slant mode and the non

  11. Micro-Cathode Arc Thruster (μCAT) System Development

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this project is to develop a highly reliable smallsat class micro propulsion guidance, navigation, and control (GN&C) actuator that will be used...

  12. Countertransference as a Prototype: The Development of a Measure

    Science.gov (United States)

    Hofsess, Christy D.; Tracey, Terence J. G.

    2010-01-01

    Countertransference is a concept that is widely acknowledged, but there exists little definitional consensus, making research in the area difficult. The authors adopted a prototype theory (E. H. Rosch, 1973a, 1973b; see C. B. Mervis & E. Rosch, 1981, for a review) to examine this construct because it conceptually fits well with constructs that…

  13. Developing a visualized cultural knowledge transfer proto-type

    DEFF Research Database (Denmark)

    Rodil, Kasper; Eskildsen, Søren; Rehm, Matthias

    2011-01-01

    Youth in Sub-Saharan Africa suffers from a loss of valuable cultural knowledge, which has been a foundation for the coming generations’ survival and cultural self-awareness. By transferring cultural knowledge contexts into 3D visualizations, we prototyped and evaluated a system to bridge the gap...

  14. Design and Development of a Counter Swarm Prototype Air Vehicle

    Science.gov (United States)

    2017-12-01

    18 Figure 3. Generic Product Design Process. Source: [33]. ............................ 19 Figure 4. Design of a System Requires Balancing...proceed either to further refinement as required (especially in the case of review of conceptual designs ) or alteration for manufacture vice prototype in... design process presented in Figure 3. Figure 3. Generic Product Design Process. Source: [33]. The generic design process does not include

  15. Collaborative Prototyping

    DEFF Research Database (Denmark)

    Bogers, Marcel; Horst, Willem

    2014-01-01

    of the prototyping process, the actual prototype was used as a tool for communication or development, thus serving as a platform for the cross-fertilization of knowledge. In this way, collaborative prototyping leads to a better balance between functionality and usability; it translates usability problems into design......This paper presents an inductive study that shows how collaborative prototyping across functional, hierarchical, and organizational boundaries can improve the overall prototyping process. Our combined action research and case study approach provides new insights into how collaborative prototyping...... can provide a platform for prototype-driven problem solving in early new product development (NPD). Our findings have important implications for how to facilitate multistakeholder collaboration in prototyping and problem solving, and more generally for how to organize collaborative and open innovation...

  16. Fundamental understanding of oxygen reduction and reaction behavior and developing high performance and stable hetero-structured cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xingbo [West Virginia Univ., Morgantown, WV (United States)

    2016-11-14

    New unique hetero-structured cathode has been developed in this project. La2NiO4+δ (LNO) as a surface catalyst with interstitial oxygen defects was introduced onto the state-of-the-art (La0.6Sr0.4)0.95Co0.2Fe0.8O3-δ (LSCF) cathode to enhance the surface-limited ORR kinetics on SOFC cathode. Furthermore, the hetero-structured cathode surface maintains high activity under electrode polarization with much less negative effects from surface cation segregation of Sr, which is known to cause degradation issues for conventional LSCF and LSC cathodes, thus improving the cathode long-term stability. The interface chemistry distribution and oxygen transport properties have been studied to prove the enhancement of power out and stability of LNO-infiltrated LSCF cathode. The further investigation demonstrates that CeO2 & La2-xNiO4+δ (x=0-0.2) co-infiltration is a simple and cost-effective method to improve both performance and stability of LSCF cathode by limiting nano-particles growth/delamination and further improve the surface stability. For the first time, a physical model is proposed to illustrate how unique interstitial species on hetero-structured cathode surface work to regulate the exchange rate of the incorporation reaction. Meanwhile, fundamental investigation of the surface oxygen exchange and bulk oxygen transport properties under over-potential conditions across cathode materials have been carried out in this project, which were discussed and compared to the Nernst equation that is generally applied to treat any oxide electrodes under equilibrium.

  17. Development And Evaluation Of A Prototype Household Wooden Silo

    African Journals Online (AJOL)

    A prototype household wooden silo with 8 kg capacity for storing shelled maize was designed, constructed and evaluated for performance. The structure was rectangular in shape, of total height of 0.6 m and width of 0.3 m, with a conical top inclined at an angle of 30 º with 0.1 m height and 0.3 m width. The silo had a top ...

  18. Development of long lifetime-high current plasma cathode ion source

    International Nuclear Information System (INIS)

    Yabe, Eiji; Takayama, Kazuo; Fukui, Ryota.

    1987-01-01

    A long lifetime ion source with plasma cathode has been developed for use in ion implantation. In this ion source, a plasma of a nonreactive working gas serves as a cathode in place of a thermionic tungsten filament used in the Freeman ion source. In an applied magnetic field, the plasma cathode is convergent, i.e. filament-like; in zero magnetic field, it turns divergent and spray-like. In the latter case, the plasma exhibits a remarkable ability when the working gas has an ionization potential larger than the feed gas. By any combination of a working gas of either argon or neon and a feed gas of AsF 5 or PF 5 , the lifetime of this ion source was found to be more than 90 hours with an extraction voltage of 40 kV and the corresponding ion current density 20 mA/cm 2 . Mass spectrometry results show that this ion source has an ability of generating a considerable amount of As + and P + ions from AsF 5 and PF 5 , and hence will be useful for realizing a fully cryopumped ion implanter system. This ion source is eminently suitable for use in oxygen ion production. (author)

  19. Fairchild Stratos Division's Type II prototype lockhopper valve: METC Prototype Test Valve No. F-1 prototype lockhopper valve-testing and development project. Static test report

    Energy Technology Data Exchange (ETDEWEB)

    Goff, D. R.; Cutright, R. L.; Griffith, R. A.; Loomis, R. B.; Maxfield, D. A.; Moritz, R. S.

    1981-10-01

    METC Prototype Test Valve No. F-1 is a hybrid design, based on a segmented ball termed a visor valve, developed and manufactured by Fairchild Stratos Division under contract to the Department of Energy. The valve uses a visor arm that rotates into position and then translates to seal. This valve conditionally completed static testing at METC with clean gas to pressures of 1600 psig and internal valve temperatures to 600/sup 0/F. External leakage was excessive due to leakage through the stuffing box, purge fittings, external bolts, and other assemblies. The stuffing box was repacked several times and redesigned midway through the testing, but external leakage was still excessive. Internal leakage through the seats, except for a few anomalies, was very low throughout the 2409 cycles of testing. As shown by the low internal leakage, the visor valve concept appears to have potential for lock-hopper valve applications. The problems that are present with METC Prototype Test Valve No. F-1 are in the seals, which are equivalent to the shaft and bonnet seals in standard valve designs. The operating conditions at these seals are well within the capabilities of available seal designs and materials. Further engineering and minor modifications should be able to resolve the problems identified during static testing.

  20. Planar array stack design aided by rapid prototyping in development of air-breathing PEMFC

    Science.gov (United States)

    Chen, Chen-Yu; Lai, Wei-Hsiang; Weng, Biing-Jyh; Chuang, Huey-Jan; Hsieh, Ching-Yuan; Kung, Chien-Chih

    The polymer electrolyte membrane fuel cell (PEMFC) is one of the most important research topics in the new and clean energy area. The middle or high power PEMFCs can be applied to the transportation or the distributed power system. But for the small power application, it is needed to match the power requirement of the product generally. On the other hand, the direct methanol fuel cell (DMFC) is one of the most common type that researchers are interested in, but recently the miniature or the micro-PEMFCs attract more attention due to their advantages of high open circuit voltage and high power density. The objective of this study is to develop a new air-breathing planar array fuel cell stacked from 10 cells made by rapid prototyping technology which has potential for fast commercial design, low cost manufacturing, and even without converters/inverters for the system. In this paper, the main material of flow field plates is acrylonitrile-butadiene-styrene (ABS) which allows the fuel cell be mass-manufactured by plastic injection molding technology. The rapid prototyping technology is applied to construct the prototype and verify the practicability of the proposed stack design. A 10-cell air-breathing miniature PEMFC stack with a volume of 6 cm × 6 cm × 0.9 cm is developed and tested. Its segmented membrane electrode assembly (MEA) is designed with the active surface area of 1.3 cm × 1.3 cm in each individual MEA. The platinum loading at anode and cathode are 0.2 mg cm -2 and 0.4 mg cm -2, respectively. Results show that the peak power densities of the parallel connected and serial connected stack are 99 mW cm -2 at 0.425 V and 92 mW cm -2 at 4.25 V, respectively under the conditions of 70 °C relative saturated humidity (i.e., dew point temperature), ambient temperature and free convection air. Besides, the stack performance is increased under forced convection. If the cell surface air is blown by an electric fan, the peak power densities of parallel connected and

  1. Developing e-banking services for rural India: making use of socio-technical prototypes

    DEFF Research Database (Denmark)

    Dittrich, Yvonne; Vaidyanathan, Lakshmi; Gonsalves, Timothy A

    2017-01-01

    an experience report based on systematic debriefing of involved project leaders and initiators, triangulated with additional documentation. The concept of Socio-Technical Prototype is developed and used to show how to mitigate the challenges of ICT based banking service provision for socially constrained...... communities. The concept of Socio-Technical Prototype extends the notion of prototypes, as it implies a full functioning implementation of the service including all relevant stakeholders. In order to not only prototype end-user functionality but also the interaction of the solution with the specific social......, technical and physical environment. The implications for software engineering in the development of such large-scale prototypes and pilots are outlined....

  2. Subsea production prototype development for deep water applications

    Energy Technology Data Exchange (ETDEWEB)

    Weibye, B; Varvin, K; Mellingen, T [ed.

    1986-01-01

    The paper presents general goals and preliminary results from a prototype and testing program for the next generation of deepwater subsea production systems, in the following main areas: Transportation pipeline pull-in/connection and pig launching systems for multiwell manifolded diverless gas production systems; Inductive and conductive subsea electrical connectors; control system pilot valves and hydraulic fluids; Subsea electric power generation; monitoring of sand particles in gas flow; tools for remotely operated vehicles; pipeline insulation materials; corrosion inhibition and material selection for transporation of unprocessed hydrocarbons. 5 drawings.

  3. Prototype bellows sealed nuclear valve development -reliability through testing

    International Nuclear Information System (INIS)

    Dixon, D.F.; Abbas, M.

    1978-01-01

    To assist in appraising bellows sealed valve performance, 10 tests were done on a ''1 in.'' prototype bellows sealed valve design. The tests simulated primary heat transport (PHT) system conditions for a 600 MWe CANDU-PHW. The design approach was to have all valve components outlast the bellows in endurance tests; this was achieved. The valve design meets the Atomic Energy of Canada Limited specification. For comparison, bellows fatigue failure data were fitted to both log-normal and Weibull distributions. A numerical example shows how to select valve stroke amplitude on the basis of valve flow requirement and the minimum acceptable fatigue life. (author)

  4. Development of prototype DC superconducting cable for railway system

    International Nuclear Information System (INIS)

    Tomita, Masaru; Fukumoto, Yusuke; Suzuki, Kenji; Miryala, Muralidhar

    2010-01-01

    High Temperature Superconducting (HTSC) wire has significant potential for railway system applications. HTSC wire is currently a promising candidate for various engineering applications such as transformers and motors for railway system. HTSC direct current (DC) cable is ideal for a feeder of the overhead contact line system between the substation and the electric train. We completed a prototype Bi-2223 tape based direct current cable for trial purposes of several meters length. In the energizing experiment the current of 1720 A successfully constantly flew.

  5. Prototyping and Active User Involvement in System Development: Towards a Cooperative Prototyping Approach

    DEFF Research Database (Denmark)

    Grønbæk, Kaj

    and techniques that support the cooperation between the actors in system development" at the Computer Science Department, Aarhus University. This project was aimed at continuing the master thesis work carried out by me and two fellow students. In the same period a research program on "Computer Support...... approach in practice. This work was supported economically by the Natural Science Faculty and the Computer Science Department at Aarhus University; and the Natural Science Council with travel funding and project support. I owe several people grateful thanks for their constructive support to my work...

  6. Design and Development of a Prototype Electrotherapy Device

    Science.gov (United States)

    Rocha, J. G.; Correia, V. M. G.; Martins, M. S.; Cabral, J. M.

    2013-01-01

    This article describes a complete prototype system that can be used in electrotherapy treatments, that is, in medical treatments involving electric currents. The system is composed of two main blocks: the master and the slave. The Master block, whose main component is a CPU, controls the user interface. The Slave block, which is composed of a microcontroller and a wave generator, produces the appropriated voltages and currents compatible with the desired treatment. The whole system is powered by a 12 V power supply and the output signal voltage ranges between -100 V and 100 V. Despite the prototype being able of performing all the electrotherapy treatments in the low-medium frequency ranges, it was tested in aesthetic mesotherapy, namely in anticellulite, located anticellulite, antistretch, and antiflaccidity. In these treatments, the output signal is composed of an overlap of two frequencies: the first one is selected in the range of 1.2 kHz - 1.8 kHz and the second in the range of 0.07 Hz - 2 Hz. The system was tested in a clinical environment with real patients. It showed good results both in effectiveness of treatments and in terms of pain suffered by the patients. PMID:24339835

  7. Long-term cathode performance and the microbial communities that develop in microbial fuel cells fed different fermentation endproducts

    KAUST Repository

    Kiely, Patrick D.

    2011-01-01

    To better understand how cathode performance and substrates affected communities that evolved in these reactors over long periods of time, microbial fuel cells were operated for more than 1year with individual endproducts of lignocellulose fermentation (acetic acid, formic acid, lactic acid, succinic acid, or ethanol). Large variations in reactor performance were primarily due to the specific substrates, with power densities ranging from 835±21 to 62±1mW/m3. Cathodes performance degraded over time, as shown by an increase in power of up to 26% when the cathode biofilm was removed, and 118% using new cathodes. Communities that developed on the anodes included exoelectrogenic families, such as Rhodobacteraceae, Geobacteraceae, and Peptococcaceae, with the Deltaproteobacteria dominating most reactors. Pelobacter propionicus was the predominant member in reactors fed acetic acid, and it was abundant in several other MFCs. These results provide valuable insights into the effects of long-term MFC operation on reactor performance. © 2010 Elsevier Ltd.

  8. Development and Testing of a Prototype Connected Vehicle Wrong-Way Driving Detection and Management System

    Science.gov (United States)

    2018-02-01

    The primary objective of Phase II was to develop a prototype connected vehicle wrong-way driving detection and management system at the Texas A&M University Respect, Excellence, Leadership, Loyalty, Integrity, Selfless Service (RELLIS) campus. The pu...

  9. Development and Assessment of Planetary Gear Unit for Experimental Prototype of Vertical Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    Urbahs A.

    2017-10-01

    Full Text Available The theoretical calculation for development of planetary gear unit of wind turbine (WT and its experimental tests are presented in the paper. Development of experimental prototypes from composite materials is essential to determine capability of element and its impact on feature. Two experimental scale prototypes of planetary gear unit for WT were developed for such purposes. Hall transducer, servomechanisms and optical tachometers were used to obtain results, comparison analysis of theoretical and actual data was performed as well as quality assessment of experimental prototypes of planetary gear unit. After kinematic and load analysis as well as control of rotation frequency, it is possible to declare that the unit is able to operate at designated quality. Theoretical calculations and test results obtained are used for industrial WT prototype development.

  10. Development and Assessment of Planetary Gear Unit for Experimental Prototype of Vertical Axis Wind Turbine

    Science.gov (United States)

    Urbahs, A.; Urbaha, M.; Carjova, K.

    2017-10-01

    The theoretical calculation for development of planetary gear unit of wind turbine (WT) and its experimental tests are presented in the paper. Development of experimental prototypes from composite materials is essential to determine capability of element and its impact on feature. Two experimental scale prototypes of planetary gear unit for WT were developed for such purposes. Hall transducer, servomechanisms and optical tachometers were used to obtain results, comparison analysis of theoretical and actual data was performed as well as quality assessment of experimental prototypes of planetary gear unit. After kinematic and load analysis as well as control of rotation frequency, it is possible to declare that the unit is able to operate at designated quality. Theoretical calculations and test results obtained are used for industrial WT prototype development.

  11. In-silico approach to the development of a prototype clinical ...

    African Journals Online (AJOL)

    International Journal of Natural and Applied Sciences ... In-silico approaches to information management of pediatrics sections of hospitals could ... This study was aimed at developing a prototype clinic information system for keeping track of ...

  12. Designing clinically valuable telehealth resources: processes to develop a community-based palliative care prototype.

    Science.gov (United States)

    Tieman, Jennifer Joy; Morgan, Deidre Diane; Swetenham, Kate; To, Timothy Hong Man; Currow, David Christopher

    2014-09-04

    Changing population demography and patterns of disease are increasing demands on the health system. Telehealth is seen as providing a mechanism to support community-based care, thus reducing pressure on hospital services and supporting consumer preferences for care in the home. This study examined the processes involved in developing a prototype telehealth intervention to support palliative care patients involved with a palliative care service living in the community. The challenges and considerations in developing the palliative care telehealth prototype were reviewed against the Center for eHealth Research (CeHRes) framework, a telehealth development model. The project activities to develop the prototype were specifically mapped against the model's first four phases: multidisciplinary project management, contextual inquiry, value specification, and design. This project has been developed as part of the Telehealth in the Home: Aged and Palliative Care in South Australia initiative. Significant issues were identified and subsequently addressed during concept and prototype development. The CeHRes approach highlighted the implicit diversity in views and opinions among participants and stakeholders and enabled issues to be considered, resolved, and incorporated during design through continuous engagement. The CeHRes model provided a mechanism that facilitated "better" solutions in the development of the palliative care prototype by addressing the inherent but potentially unrecognized differences in values and beliefs of participants. This collaboration enabled greater interaction and exchange among participants resulting in a more useful and clinically valuable telehealth prototype.

  13. Decision aid prototype development for parents considering adenotonsillectomy for their children with sleep disordered breathing

    OpenAIRE

    Maguire, Erin; Hong, Paul; Ritchie, Krista; Meier, Jeremy; Archibald, Karen; Chorney, Jill

    2016-01-01

    Background To describe the process involved in developing a decision aid prototype for parents considering adenotonsillectomy for their children with sleep disordered breathing. Methods A paper-based decision aid prototype was developed using the framework proposed by the International Patient Decision Aids Standards Collaborative. The decision aid focused on two main treatment options: watchful waiting and adenotonsillectomy. Usability was assessed with parents of pediatric patients and prov...

  14. Development and test of prototype components for ITER; Entwicklung und Test von Prototypkomponenten fuer ITER

    Energy Technology Data Exchange (ETDEWEB)

    Biel, Wolfgang; Behr, Wilfried; Castano-Bardawil, David; and others

    2015-08-15

    The scientific program of the project is divided into the following partial projects: (1.) ITER Diagnostic Port Plug for the charge-exchange spectroscopy (CXRS) with the subthemes: (a) Development of prototypes for critical mechanical components, (b) development of a roboter for the laser welding of vacuum seals and pipings at the Port Plug, (c) mirror studies, (d) CXRS prototype spectrometer, (2.) ITER tritium retention diagnostics (TR), (3.) ITER disruption mitigation ventile (DMV).

  15. Development of a prototype lignin concentration sensor. Final report. Draft

    Energy Technology Data Exchange (ETDEWEB)

    Jeffers, L.A.

    1994-11-01

    The ultimate objective of the DOE-sponsored program discussed in this report is to commercialize an instrument for real-time, in-situ measurement of lignin in wood pulp at a variety of locations in the pulp process stream. The instrument will be used as a primary sensor for process control in the pulp and paper industry. Work done by B&W prior to the initiation of this program had shown: there is a functional relationship between the fluorescence intensity and the Kappa number as measured at the pulp mill laboratory. Kappa number is a standard wet chemical method for determination of the lignin concentration; the relationship is one of decreasing intensity with Kappa number, indicating operation in the quenched fluorescence regime; a great deal of scatter in the data. Because of the preliminary nature of the study, the origin of the scatter was not identified. This report documents the results of laboratory measurements made on a variety of well defined pulp samples to generate the data necessary to: determine the feasibility of an instrument for on-line lignin concentration measurement using laser fluorescence; identify the preferred measurement strategy; define the range of applicability of the instrument; and to provide background information to guide the design of a field-worthy prototype.

  16. Development of a high average current polarized electron source with long cathode operational lifetime

    Energy Technology Data Exchange (ETDEWEB)

    C. K. Sinclair; P. A. Adderley; B. M. Dunham; J. C. Hansknecht; P. Hartmann; M. Poelker; J. S. Price; P. M. Rutt; W. J. Schneider; M. Steigerwald

    2007-02-01

    Substantially more than half of the electromagnetic nuclear physics experiments conducted at the Continuous Electron Beam Accelerator Facility of the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory) require highly polarized electron beams, often at high average current. Spin-polarized electrons are produced by photoemission from various GaAs-based semiconductor photocathodes, using circularly polarized laser light with photon energy slightly larger than the semiconductor band gap. The photocathodes are prepared by activation of the clean semiconductor surface to negative electron affinity using cesium and oxidation. Historically, in many laboratories worldwide, these photocathodes have had short operational lifetimes at high average current, and have often deteriorated fairly quickly in ultrahigh vacuum even without electron beam delivery. At Jefferson Lab, we have developed a polarized electron source in which the photocathodes degrade exceptionally slowly without electron emission, and in which ion back bombardment is the predominant mechanism limiting the operational lifetime of the cathodes during electron emission. We have reproducibly obtained cathode 1/e dark lifetimes over two years, and 1/e charge density and charge lifetimes during electron beam delivery of over 2?105???C/cm2 and 200 C, respectively. This source is able to support uninterrupted high average current polarized beam delivery to three experimental halls simultaneously for many months at a time. Many of the techniques we report here are directly applicable to the development of GaAs photoemission electron guns to deliver high average current, high brightness unpolarized beams.

  17. Development of ITER shielding blanket prototype mockup by HIP bonding

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Satoshi; Furuya, Kazuyuki; Hatano, Toshihisa; Kuroda, Toshimasa; Enoeda, Mikio; Ohara, Yoshihiro [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Takatsu, Hideyuki [Japan Atomic Energy Research Inst., Office of ITER Project Promotion, Tokyo (Japan)

    2000-07-01

    A prototype ({approx}900{sup H} x 1700{sup W} x 350{sup T} mm) of the ITER shielding blanket module has been fabricated following the previous successful fabrication of a small-scale ({approx}500{sup H} x 400{sup W} x 150{sup T} mm) and mid-scale ({approx}800{sup H} x 500{sup W} x 350{sup T} mm) mock-ups. This prototype incorporates most of key design features essential to the fabrication of the ITER shielding blanket module such as 1) the first wall heat sink made of Al{sub 2}O{sub 3} dispersion strengthened Cu (DSCu) with built-in SS316L coolant tubes bonded to a massive SS316LN shield block, 2) toroidally curved first wall with a radius of 5106 mm while straight in poloidal direction, 3) coolant channels oriented in poloidal direction in the first wall and in toroidal direction in the shield block, 4) the first wall coolant channel routing to avoid the interference with the front access holes, 5) coolant channels drilled through the forged SS316LN-IG shield block, and 6) four front access holes of 30 mm in diameter penetrated through the first wall and the shield block. For the joining method, especially for the first wall/side wall parts and the shield block, the solid HIP (Hot Isostatic Pressing) process was applied. It is difficult to apply conventional joining methods such as field welding, brazing, explosion bonding and mechanical one-axial diffusion bonding to a wide area bonding because sufficient mechanical strengths can not be obtained and excessive deformations occurs. In order to solve these fabrication issues, HIP bonding was applied. The first wall stainless steel (SS) coolant tubes of 10 mm in inner diameter and l mm in thickness were sandwiched by semi-circular grooved DSCu plates at the first wall and the front region of the side wall, and by semi-circular grooved SS plates at the back region of the side wall. After assembling of these first wall/side wall parts with the shield block, they were simultaneously bonded by single step HIP in order to

  18. Development of a see-through hollow cathode discharge lamp for (Li/Ne) optogalvanic studies

    Science.gov (United States)

    Saini, V. K.; Kumar, P.; Sarangpani, K. K.; Dixit, S. K.; Nakhe, S. V.

    2017-09-01

    Development of a demountable and see-through hollow cathode (HC) discharge lamp suitable for optogalvanic (OG) spectroscopy is described. The design of the HC lamp is simple, compact, and inexpensive. Lithium, investigated rarely by the OG method, is selected for cathode material as its isotopes are important for nuclear industry. The HC lamp is characterized electrically and optically for discharge oscillations free OG effect. Strong OG signals of lithium as well as neon (as buffer gas) are produced precisely upon copper vapor laser pumped tunable dye laser irradiation. The HC lamp is capable of generating a clean OG resonance spectrum in the available dye laser wavelength scanning range (627.5-676 nm) obtained with 4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran dye. About 28 resonant OG lines are explicitly observed. Majority of them have been identified using j-l coupling scheme and assigned to the well-known neon transitions. One line that corresponds to wavelength near about 670.80 nm is assigned to lithium and resolved for its fine (2S1/2 → 2P1/2, 3/2) transitions. These OG transitions allow 0.33 cm-1 accuracy and can be used to supplement the OG transition data available from other sources to calibrate the wavelength of a scanning dye laser with precision at atomic levels.

  19. National preceptor development program (PDP) prototype. The third of a 3-part series.

    Science.gov (United States)

    Cox, Craig D; Mulherin, Katrina; Walter, Sheila

    2018-03-01

    Preceptor development is critical to successful delivery of experiential learning. Although many preceptor development programs exist, a more individualized approach to training is needed. To accomplish this a national preceptor development program should be considered based on the continuing professional development model. A detailed prototype for this program has been described. In this final installment of the series, the twelve evidence-based recommendations from the first installment were utilized to construct a prototype for a preceptor development program. Over a three-month period, investigators experimented with different designs and models before approving the final prototype. The prototype took the form of an electronic learning platform. Several categories were integral to the design and included sections entitled preceptor spotlight, mentorship, global outreach, choose your own adventure, continuing professional development, feedback, virtual online community, highlights/advertisements, what's new, competency assessment, and frequently asked questions. A graphic was developed to depict the process by which a preceptor would navigate through the web-based learning platform. The authors purposefully maintained a creative and unlimited vision for preceptor development. This conceptual model is intended to spark discussion and augment, refine, or develop entirely innovative ideas to meet preceptor needs. Development of a preceptor development platform could foster improved competency performance, enhanced interest in learning, and promote continuing professional development. With a greater focus on experiential education in pharmacy, the need for a national preceptor development resource is only expected to increase. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Development of the EtsaTrans translation system prototype and its ...

    African Journals Online (AJOL)

    The issue of multilingualism at the University of the Free State (UFS) gained momentum with the development of the EtsaTrans translation system which is being developed according to the principles of example-based machine translation. In this article the development of the system prototype is described, and an ...

  1. A prototype of a documentation system that supports the development and maintenance of product configuration systems

    DEFF Research Database (Denmark)

    Haug, Anders; Degn, Anders; Poulsen, Bjarne

    2007-01-01

    , such as shorter lead times, reductions of resources needed and fewer errors. A procedure for the development and maintenance of PCSs, which has been applied in configuration projects for more than ten years, includes three main modelling techniques to support the development and maintenance of PCSs. Unfortunately...... system that supports the development and maintenance of PCSs. This article describes how some of this research has been converted into a prototype of a documentation system and what has been learned from the evaluation of the prototype...

  2. Nano-Filament Field Emission Cathode Development Final Report CRADA No. TSB-0731-93

    Energy Technology Data Exchange (ETDEWEB)

    Bernhardt, Tony [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fahlen, Ted [Candescent Technologies Corporation, San Jose, CA (United States)

    2018-01-17

    At the time the CRADA was established, Silicon Video Corporation, of Cupertino, CA was a one-year-old rapidly growing start-up company. SVC was developing flat panel displays (FPDs) to replace Cathode Ray Terminals (CRTs) for personal computers, work stations and televisions. They planned to base their products on low cost and energy efficient field emission technology. It was universally recognized that the display was both the dominant cost item and differentiating feature of many products such as laptop computers and hand-held electronics and that control of the display technology through U.S. sources was essential to success in these markets. The purpose of this CRADA project was to determine if electrochemical planarization would be a viable, inexpensive alternative to current optical polishing techniques for planarizing the surface of a ceramic backplate of a thin film display.

  3. Design and development of a prototype platform for gait analysis

    Science.gov (United States)

    Diffenbaugh, T. E.; Marti, M. A.; Jagani, J.; Garcia, V.; Iliff, G. J.; Phoenix, A.; Woolard, A. G.; Malladi, V. V. N. S.; Bales, D. B.; Tarazaga, P. A.

    2017-04-01

    The field of event classification and localization in building environments using accelerometers has grown significantly due to its implications for energy, security, and emergency protocols. Virginia Tech's Goodwin Hall (VT-GH) provides a robust testbed for such work, but a reduced scale testbed could provide significant benefits by allowing algorithm development to occur in a simplified environment. Environments such as VT-GH have high human traffic that contributes external noise disrupting test signals. This paper presents a design solution through the development of an isolated platform for data collection, portable demonstrations, and the development of localization and classification algorithms. The platform's success was quantified by the resulting transmissibility of external excitation sources, demonstrating the capabilities of the platform to isolate external disturbances while preserving gait information. This platform demonstrates the collection of high-quality gait information in otherwise noisy environments for data collection or demonstration purposes.

  4. Development of the Plastic Melt Waste Compactor- Design and Fabrication of the Half-Scale Prototype

    Science.gov (United States)

    Pace, Gregory S.; Fisher, John

    2005-01-01

    A half scale version of a device called the Plastic Melt Waste Compactor prototype has been developed at NASA Ames Research Center to deal with plastic based wastes that are expected to be encountered in future human space exploration scenarios such as Lunar or Martian Missions. The Plastic Melt Waste Compactor design was based on the types of wastes produced on the International Space Station, Space Shuttle, MIR and Skylab missions. The half scale prototype unit will lead to the development of a full scale Plastic Melt Waste Compactor prototype that is representative of flight hardware that would be used on near and far term space missions. This report details the progress of the Plastic Melt Waste Compactor Development effort by the Solid Waste Management group at NASA Ames Research Center.

  5. Medication Reconciliation: Work Domain Ontology, prototype development, and a predictive model.

    Science.gov (United States)

    Markowitz, Eliz; Bernstam, Elmer V; Herskovic, Jorge; Zhang, Jiajie; Shneiderman, Ben; Plaisant, Catherine; Johnson, Todd R

    2011-01-01

    Medication errors can result from administration inaccuracies at any point of care and are a major cause for concern. To develop a successful Medication Reconciliation (MR) tool, we believe it necessary to build a Work Domain Ontology (WDO) for the MR process. A WDO defines the explicit, abstract, implementation-independent description of the task by separating the task from work context, application technology, and cognitive architecture. We developed a prototype based upon the WDO and designed to adhere to standard principles of interface design. The prototype was compared to Legacy Health System's and Pre-Admission Medication List Builder MR tools via a Keystroke-Level Model analysis for three MR tasks. The analysis found the prototype requires the fewest mental operations, completes tasks in the fewest steps, and completes tasks in the least amount of time. Accordingly, we believe that developing a MR tool, based upon the WDO and user interface guidelines, improves user efficiency and reduces cognitive load.

  6. Development of a high average current polarized electron source with long cathode operational lifetime

    Directory of Open Access Journals (Sweden)

    C. K. Sinclair

    2007-02-01

    Full Text Available Substantially more than half of the electromagnetic nuclear physics experiments conducted at the Continuous Electron Beam Accelerator Facility of the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory require highly polarized electron beams, often at high average current. Spin-polarized electrons are produced by photoemission from various GaAs-based semiconductor photocathodes, using circularly polarized laser light with photon energy slightly larger than the semiconductor band gap. The photocathodes are prepared by activation of the clean semiconductor surface to negative electron affinity using cesium and oxidation. Historically, in many laboratories worldwide, these photocathodes have had short operational lifetimes at high average current, and have often deteriorated fairly quickly in ultrahigh vacuum even without electron beam delivery. At Jefferson Lab, we have developed a polarized electron source in which the photocathodes degrade exceptionally slowly without electron emission, and in which ion back bombardment is the predominant mechanism limiting the operational lifetime of the cathodes during electron emission. We have reproducibly obtained cathode 1/e dark lifetimes over two years, and 1/e charge density and charge lifetimes during electron beam delivery of over 2×10^{5}   C/cm^{2} and 200 C, respectively. This source is able to support uninterrupted high average current polarized beam delivery to three experimental halls simultaneously for many months at a time. Many of the techniques we report here are directly applicable to the development of GaAs photoemission electron guns to deliver high average current, high brightness unpolarized beams.

  7. Prototype Lithium-Ion Battery Developed for Mars 2001 Lander

    Science.gov (United States)

    Manzo, Michelle A.

    2000-01-01

    In fiscal year 1997, NASA, the Jet Propulsion Laboratory, and the U.S. Air Force established a joint program to competitively develop high-power, rechargeable lithium-ion battery technology for aerospace applications. The goal was to address Department of Defense and NASA requirements not met by commercial battery developments. Under this program, contracts have been awarded to Yardney Technical Products, Eagle- Picher Technologies, LLC, BlueStar Advanced Technology Corporation, and SAFT America, Inc., to develop cylindrical and prismatic cell and battery systems for a variety of NASA and U.S. Air Force applications. The battery systems being developed range from low-capacity (7 to 20 A-hr) and low-voltage (14 to 28 V) systems for planetary landers and rovers to systems for aircraft that require up to 270 V and for Unmanned Aerial Vehicles that require capacities up to 200 A-hr. Low-Earth-orbit and geosynchronousorbit spacecraft pose additional challenges to system operation with long cycle life (>30,000 cycles) and long calendar life (>10 years), respectively.

  8. Valuation of Real Options as Competitive Prototyping in System Development

    Science.gov (United States)

    2014-07-01

    hedge technology investment risk (Benaroch, 2001), and application to design modularity (Baldwin & Clark, 2000), research and development resource...Valuation Models assume that: (a) future asset behavior and value conform to well-defined processes, (b) markets are complete and arbitrage opportunities

  9. Prototype to product—developing a commercially viable neural prosthesis

    Science.gov (United States)

    Seligman, Peter

    2009-12-01

    The Cochlear implant or 'Bionic ear' is a device that enables people who do not get sufficient benefit from a hearing aid to communicate with the hearing world. The Cochlear implant is not an amplifier, but a device that electrically stimulates the auditory nerve in a way that crudely mimics normal hearing, thus providing a hearing percept. Many recipients are able to understand running speech without the help of lipreading. Cochlear implants have reached a stage of maturity where there are now 170 000 recipients implanted worldwide. The commercial development of these devices has occurred over the last 30 years. This development has been multidisciplinary, including audiologists, engineers, both mechanical and electrical, histologists, materials scientists, physiologists, surgeons and speech pathologists. This paper will trace the development of the device we have today, from the engineering perspective. The special challenges of designing an active device that will work in the human body for a lifetime will be outlined. These challenges include biocompatibility, extreme reliability, safety, patient fitting and surgical issues. It is emphasized that the successful development of a neural prosthesis requires the partnership of academia and industry.

  10. Unikabeton Prototype

    DEFF Research Database (Denmark)

    Søndergaard, Asbjørn; Dombernowsky, Per

    2011-01-01

    The Unikabeton prototype structure was developed as the finalization of the cross-disciplinary research project Unikabeton, exploring the architectural potential in linking the computational process of topology optimisation with robot fabrication of concrete casting moulds. The project was elabor......The Unikabeton prototype structure was developed as the finalization of the cross-disciplinary research project Unikabeton, exploring the architectural potential in linking the computational process of topology optimisation with robot fabrication of concrete casting moulds. The project...... of Architecture was to develop a series of optimisation experiments, concluding in the design and optimisation of a full scale prototype concrete structure....

  11. Developing the Systems Engineering Experience Accelerator (SEEA) Prototype and Roadmap

    Science.gov (United States)

    2013-12-31

    retiring baby boomer generation , the time to develop competent SEs needs to be significantly shortened. The primary goal of the SEEA, once it is...threats to validity of Experimental design(inability to generalize results),limited availability of suitable subjects and insufficient literature to...authentic. 5. Evaluation - Inconclusive results due to threats to validity of Experimental design (inability to generalize results), limited

  12. Development of the predictive maintenance system prototype for the rod control system

    International Nuclear Information System (INIS)

    Lim, H. S.; Hong, H. P.; Koo, J. M.; Kim, Y. B.; Han, H. W.

    2003-01-01

    The demand for safety and reliability of Nuclear Power Plants (NPPs) has been constantly increasing and economical operation is also an important issue. Developing and adopting predictive maintenance technology for the major systems or equipment is considered as a way to achieve these goals. This paper describes the development of a predictive maintenance system prototype for the Rod Control System, which adopts an advanced methodology. Bayesian Belief Networks (BBN) has been adopted for the real time fault diagnosis and prediction of the system. Through a simulation test, it was confirmed that the prototype monitors and secures sound operability of rod drive mechanism and its control system, and also provides the predictive maintenance information

  13. Development of a prototype specialist shuttle vehicle for chipped woodfuel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-06-01

    This report gives details of a project to develop and test a specialist chip shuttle vehicle for conveying woodchips out of the forest with the aim of reducing the cost of woodfuel production. The design objectives are described and include the need to allow easy transfer of the chips from the chipper to the shuttle and on into haulage units, good performance and manoeuvrability on and off roads, and high-tip capacity. Estimates of the improved production and reduced woodfuel production costs are discussed along with the anticipated satisfactory operation of the chipper-shuttle combination in a forestry site.

  14. Development of the Tri-ATHLETE Lunar Vehicle Prototype

    Science.gov (United States)

    Heverly, Matt; Matthews, Jaret; Frost, Matt; Quin, Chris

    2010-01-01

    The Tri-ATHLETE (All Terrain Hex Limed Extra Terrestrial Explorer) vehicle is the second generation of a wheel-on-limb vehicle being developed to support the return of humans to the lunar surface. This paper describes the design, assembly, and test of the Tri-ATHLETE robotic system with a specific emphasis on the limb joint actuators. The design and implementation of the structural components is discussed, and a novel and low cost approach to approximating flight-like cabling is also presented. The paper concludes with a discussion of the "second system effect" and other lessons learned as well as results from a three week long field trial of the vehicle in the Arizona desert.

  15. DEVELOPMENT AND TESTING OF A PRE-PROTOTYPE RAMGEN ENGINE

    Energy Technology Data Exchange (ETDEWEB)

    Aaron Koopman

    2003-07-01

    The research and development effort of a new kind of compressor and engine is presented. The superior performance of these two products arises from the superior performance of rotating supersonic shock-wave compression. Several tasks were performed in compliance with the DOE award objectives. A High Risk Technology review was conducted and evaluated by a team of 20 senior engineers and scientists representing various branches of the federal government. The conceptual design of a compression test rig, test rotors, and test cell adaptor was completed. The work conducted lays the foundation for the completed design and testing of the compression test rig, and the design of a supersonic shock-wave compressor matched to a conventional combustor and turbine.

  16. Development of Experimental Setup of Metal Rapid Prototyping Machine using Selective Laser Sintering Technique

    Science.gov (United States)

    Patil, S. N.; Mulay, A. V.; Ahuja, B. B.

    2018-04-01

    Unlike in the traditional manufacturing processes, additive manufacturing as rapid prototyping, allows designers to produce parts that were previously considered too complex to make economically. The shift is taking place from plastic prototype to fully functional metallic parts by direct deposition of metallic powders as produced parts can be directly used for desired purpose. This work is directed towards the development of experimental setup of metal rapid prototyping machine using selective laser sintering and studies the various parameters, which plays important role in the metal rapid prototyping using SLS technique. The machine structure in mainly divided into three main categories namely, (1) Z-movement of bed and table, (2) X-Y movement arrangement for LASER movements and (3) feeder mechanism. Z-movement of bed is controlled by using lead screw, bevel gear pair and stepper motor, which will maintain the accuracy of layer thickness. X-Y movements are controlled using timing belt and stepper motors for precise movements of LASER source. Feeder mechanism is then developed to control uniformity of layer thickness metal powder. Simultaneously, the study is carried out for selection of material. Various types of metal powders can be used for metal RP as Single metal powder, mixture of two metals powder, and combination of metal and polymer powder. Conclusion leads to use of mixture of two metals powder to minimize the problems such as, balling effect and porosity. Developed System can be validated by conducting various experiments on manufactured part to check mechanical and metallurgical properties. After studying the results of these experiments, various process parameters as LASER properties (as power, speed etc.), and material properties (as grain size and structure etc.) will be optimized. This work is mainly focused on the design and development of cost effective experimental setup of metal rapid prototyping using SLS technique which will gives the feel of

  17. Development and Testing of Prototype Commercial Gasifier Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Zelepouga, Serguei [Gas Technology Inst., Des Plaines, IL (United States); Moery, Nathan [Gas Technology Inst., Des Plaines, IL (United States); Wu, Mengbai [Gas Technology Inst., Des Plaines, IL (United States); Saveliev, Alexei [Gas Technology Inst., Des Plaines, IL (United States)

    2015-01-31

    This report presents the results of the sensor development and testing at the Wabash River gasifier. The project work was initiated with modification of the sensor software (Task 2) to enable real time temperature data acquisition, and to process and provide the obtained gasifier temperature information to the gasifier operators. The software modifications were conducted by the North Carolina State University (NCSU) researchers. The modified software was tested at the Gas Technology Institute (GTI) combustion laboratory to assess the temperature recognition algorithm accuracy and repeatability. Task 3 was focused on the sensor hardware modifications needed to improve reliability of the sensor system. NCSU conducted numerical modeling of the sensor probe’s purging flow. Based on the modeling results the probe purging system was redesigned to prevent carbon particulates deposition on the probe’s sapphire window. The modified design was evaluated and approved by the Wabash representative. The modified gasifier sensor was built and installed at the Wabash River gasifier on May 1 2014. (Task 4) The sensor was tested from the startup of the gasifier on May 5, 2015 until the planned autumn gasifier outage starting in the beginning of October, 2015. (Task 5) The project team successfully demonstrated the Gasifier Sensor system’s ability to monitor gasifier temperature while maintaining unobstructed optical access for six months without any maintenance. The sensor examination upon completion of the trial revealed that the system did not sustain any damage.

  18. Preparation of JEREMI Experiment: Development of the Ground Based Prototype

    Science.gov (United States)

    Yasnou, V.; Mialdun, A.; Shevtsova, V.

    2012-12-01

    This study has been performed in the frame of preparing the space experiment JEREMI (Japanese and European Research Experiment on Marangoni Instabilities). The use of forced coaxial gas flow is proposed as a way to stabilize the Marangoni convection in liquid bridges, which might have important technological applications in the floating zone technique. A new set-up is under development and all sub-systems have passed severe tests. Here we present the design of this set-up and preliminary results of experiments for shear-driven two-phase flows in a confined volume of liquid under conditions of normal gravity. The geometry corresponds to a cylindrical liquid bridge concentrically surrounded by an annular gas channel with external solid walls. Gas enters into the annular duct, flows between solid walls and upon reaching the liquid zone entrains initially quiescent liquid. The test liquids are ethanol, n-decane and 5 cSt silicone oil, which have different degrees of viscosity and of volatility. The gas flow along the interface strongly enhances the evaporation and, correspondingly, affects the interface shape. Silhouette measurements are used for optical determination of the interface shape. From the digital images the variation of the liquid volume as a function of flow rate is calculated.

  19. Development of prototype virtual testing system for ultrasonic examination engineers

    International Nuclear Information System (INIS)

    Shohji, Hajime; Hide, Koichiro

    2015-01-01

    The reliability of inspection results is affected by the skill of examination personnel, particularly with regard to manual ultrasonic testing (UT). The number and design of test specimens are among the most important points to be considered during training or assessing the qualification of UT examination personnel. For training, a simulated UT training system using a computer mouse or touch sensor was proposed. However, this system proved to be inadequate as a replacement with for actual UT work. In this study, we have developed a novel virtual UT system that simulates actual UT work for piping welds. This system (Tool for Realistic UltraSound Testing) consists of a dummy UT probe, dummy piping, a computer system, and a 3D position detection system. It can detect the state of the dummy probe (3D position, skewing angle), and displays recorded A-scan data corresponding to the dummy probe status with random noise. Furthermore, it does not display A-scan data if the dummy probe is not in contact with the pipe. Thus, in this way, the system simulates actual UT work. Using this system, it is possible to significantly reduce the number of test specimens being utilized for training or assessing the qualification of UT examination personnel. Additionally, highly efficient training and certification will be achieved through this system. (author)

  20. Development of a prototype over-actuated biomimetic prosthetic hand.

    Directory of Open Access Journals (Sweden)

    Matthew R Williams

    Full Text Available The loss of a hand can greatly affect quality of life. A prosthetic device that can mimic normal hand function is very important to physical and mental recuperation after hand amputation, but the currently available prosthetics do not fully meet the needs of the amputee community. Most prosthetic hands are not dexterous enough to grasp a variety of shaped objects, and those that are tend to be heavy, leading to discomfort while wearing the device. In order to attempt to better simulate human hand function, a dexterous hand was developed that uses an over-actuated mechanism to form grasp shape using intrinsic joint mounted motors in addition to a finger tendon to produce large flexion force for a tight grip. This novel actuation method allows the hand to use small actuators for grip shape formation, and the tendon to produce high grip strength. The hand was capable of producing fingertip flexion force suitable for most activities of daily living. In addition, it was able to produce a range of grasp shapes with natural, independent finger motion, and appearance similar to that of a human hand. The hand also had a mass distribution more similar to a natural forearm and hand compared to contemporary prosthetics due to the more proximal location of the heavier components of the system. This paper describes the design of the hand and controller, as well as the test results.

  1. Prototypic Development and Evaluation of a Medium Format Metric Camera

    Science.gov (United States)

    Hastedt, H.; Rofallski, R.; Luhmann, T.; Rosenbauer, R.; Ochsner, D.; Rieke-Zapp, D.

    2018-05-01

    Engineering applications require high-precision 3D measurement techniques for object sizes that vary between small volumes (2-3 m in each direction) and large volumes (around 20 x 20 x 1-10 m). The requested precision in object space (1σ RMS) is defined to be within 0.1-0.2 mm for large volumes and less than 0.01 mm for small volumes. In particular, focussing large volume applications the availability of a metric camera would have different advantages for several reasons: 1) high-quality optical components and stabilisations allow for a stable interior geometry of the camera itself, 2) a stable geometry leads to a stable interior orientation that enables for an a priori camera calibration, 3) a higher resulting precision can be expected. With this article the development and accuracy evaluation of a new metric camera, the ALPA 12 FPS add|metric will be presented. Its general accuracy potential is tested against calibrated lengths in a small volume test environment based on the German Guideline VDI/VDE 2634.1 (2002). Maximum length measurement errors of less than 0.025 mm are achieved with different scenarios having been tested. The accuracy potential for large volumes is estimated within a feasibility study on the application of photogrammetric measurements for the deformation estimation on a large wooden shipwreck in the German Maritime Museum. An accuracy of 0.2 mm-0.4 mm is reached for a length of 28 m (given by a distance from a lasertracker network measurement). All analyses have proven high stabilities of the interior orientation of the camera and indicate the applicability for a priori camera calibration for subsequent 3D measurements.

  2. PROTOTYPIC DEVELOPMENT AND EVALUATION OF A MEDIUM FORMAT METRIC CAMERA

    Directory of Open Access Journals (Sweden)

    H. Hastedt

    2018-05-01

    Full Text Available Engineering applications require high-precision 3D measurement techniques for object sizes that vary between small volumes (2–3 m in each direction and large volumes (around 20 x 20 x 1–10 m. The requested precision in object space (1σ RMS is defined to be within 0.1–0.2 mm for large volumes and less than 0.01 mm for small volumes. In particular, focussing large volume applications the availability of a metric camera would have different advantages for several reasons: 1 high-quality optical components and stabilisations allow for a stable interior geometry of the camera itself, 2 a stable geometry leads to a stable interior orientation that enables for an a priori camera calibration, 3 a higher resulting precision can be expected. With this article the development and accuracy evaluation of a new metric camera, the ALPA 12 FPS add|metric will be presented. Its general accuracy potential is tested against calibrated lengths in a small volume test environment based on the German Guideline VDI/VDE 2634.1 (2002. Maximum length measurement errors of less than 0.025 mm are achieved with different scenarios having been tested. The accuracy potential for large volumes is estimated within a feasibility study on the application of photogrammetric measurements for the deformation estimation on a large wooden shipwreck in the German Maritime Museum. An accuracy of 0.2 mm–0.4 mm is reached for a length of 28 m (given by a distance from a lasertracker network measurement. All analyses have proven high stabilities of the interior orientation of the camera and indicate the applicability for a priori camera calibration for subsequent 3D measurements.

  3. WP3 Prototype development for operational planning tool

    Energy Technology Data Exchange (ETDEWEB)

    Kristoffersen, T.; Meibom, P. (Technical Univ. of Denmark. Risoe DTU (Denmark)); Apfelbeck, J.; Barth, R.; Brand, H. (IER, Univ. of Stuttgart (Germany))

    2008-04-15

    This report documents the model development carried out in work package 3 in the SUPWIND project. It was decided to focus on the estimation of the need for reserve power, and on the reservation of reserve power by TSOs. Reserve power is needed to cover deviations from the day-ahead forecasts of electricity load and wind power production, and to cover forced outages of power plants and transmission lines. Work has been carried out to include load uncertainty and forced outages in the two main components of the Wilmar Planning tool namely the Scenario Tree Tool and the Joint Market Model. This work is documented in chapter 1 and 2. The inclusion of load uncertainty and forced outages in the Scenario Tree Tool enables calculation of the demand for reserve power depending on the forecast horizon. The algorithm is given in Section 3.1. The design of a modified version of the Joint Market Model enabling estimation of the optimal amount of reserve power to reserve day-ahead before the actual operation hour is documented in Section 3.2. With regard to the evaluation of a power system, its ability to cope with extreme events is crucial to be investigated. Chapter 4 gives a definition of such extreme events. Further, the methodology to identify extreme events on the basis of the existing tools is described. Within the SUPWIND consortium there has been an interest in using the Joint Market Model to model smaller parts of a power system but with more detailed representation of the transmission and distribution grid. Chapter 5 documents this work. (author)

  4. Development of a fresh plutonium fuel container for a prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Ohtake, T.; Takahashi, S.; Mishima, T.; Kurakami, J.; Yamamoto, Y.; Ohuchi, Y.

    1989-01-01

    Japan gives a good deal of encouragement to development of a fast breeder reactor (which is considered as the most likely candidate for nuclear power generation) to secure long-term energy source. And, following an experimental fast breeder reactor Joyo, a prototype fast breeder reactor Monju is now under vigorous construction. Related to development of the prototype fast breeder reactor, it is necessary and important to develop transport container which is used for transporting fresh fuel assemblies from Plutonium Fuel Production Facility to the Monju power plant. Therefore, the container is now being developed by Power Reactor and Nuclear Fuel Development Corporation (PNC). Currently, shipment and vibration tests, handling performance tests, shielding performance tests and prototype container tests are executed with prototype containers fabricated according to a final design, in order to experimentally confirm soundness of transport container and its contents, and propriety of design technique. This paper describes the summary of general specifications and structures of this container and the summary of preliminary safety analysis of package

  5. Development of the power supplies of the prototype ion source for the EAST

    International Nuclear Information System (INIS)

    Liu Zhimin; Hu Chundong; Liu Sheng; Jiang Caichao; Song Shihua; Xie Yahong; Sheng Peng

    2011-01-01

    For the neutral beam injector (NBI) of the Experimental Advanced Superconducting Tokamak (EAST), a test stand of a high-current ion source has been in construction. The NBI power supply system includes the plasma generator power supply, plasma electrode power supply, high voltage power divider, negative high voltage power supply, and the transmission lines and the snubber. A multi-megawatt prototype ion source was developed. The arc discharge of the prototype ion source was obtained in the test. The test results for the ion source power supplies and the arc discharge of the ion source are presented. (authors)

  6. Development of a prototype regeneration carbon dioxide absorber. [for use in EVA conditions

    Science.gov (United States)

    Patel, P. S.; Baker, B. S.

    1977-01-01

    A prototype regenerable carbon dioxide absorber was developed to maintain the environmental quality of the portable life support system. The absorber works on the alkali metal carbonate-bicarbonate solid-gas reaction to remove carbon dioxide from the atmosphere. The prototype sorber module was designed, fabricated, and tested at simulated extravehicular activity conditions to arrive at optimum design. The unit maintains sorber outlet concentration below 5 mm Hg. An optimization study was made with respect to heat transfer, temperature control, sorbent utilization, sorber life and regenerability, and final size of the module. Important parameters influencing the capacity of the final absorber unit were identified and recommendations for improvement were made.

  7. Prototype development and field measurements of high etendue spatial heterodyne imaging spectrometer

    Science.gov (United States)

    Cai, Qisheng; Xiangli, Bin; Huang, Min; Han, Wei; Pei, Linlin; Bu, Meixia

    2018-03-01

    High etendue spatial heterodyne imaging spectrometer (HESHIS) is a new pushbroom Fourier transform hyperspectral imager with no moving parts. It is based on a Sagnac interferometer combined with a pair of parallel gratings. In this paper, the basic principle of HESHIS is reviewed and the first prototype of HESHIS is designed and developed. The spectral band of this prototype is designed at O2-A band (757 nm to 777 nm) and the average spectral resolution is 0.04 nm. Using the prototype, the pushbroom imaging experiments are carried out and the original interference images are obtained. The spectral data cube is generated using spectrum reconstruction method and high-resolution spectra are achieved.

  8. Tasks and challenges in prototype development with novel technology - an empirical study

    DEFF Research Database (Denmark)

    Ravn, Poul Martin; Guðlaugsson, Tómas Vignir; Mortensen, Niels Henrik

    2015-01-01

    This paper presents a thematic analysis of 138 monthly reports from a joint industrial and academic project where multiple prototypes were developed based on the same technology. The analysis was based on tasks and challenges described in the reports by project managers over a period of three years...

  9. Prototype Development of an ICT System to Support Construction Management Based on Virtual Models and RFID

    DEFF Research Database (Denmark)

    Sørensen, Kristian Birch; Christiansson, Per; Svidt, Kjeld

    2009-01-01

    early example) of an ICT system was carried out to identify and formalise user needs in relation to construction management based on virtual models and radio frequency identification (RFID). The prototype was developed to support working processes in real-time project progress management, quality...

  10. Development of a 3D CZT detector prototype for Laue Lens telescope

    DEFF Research Database (Denmark)

    Caroli, Ezio; Auricchio, Natalia; Del Sordo, Stefano

    2010-01-01

    We report on the development of a 3D position sensitive prototype suitable as focal plane detector for Laue lens telescope. The basic sensitive unit is a drift strip detector based on a CZT crystal, (~19×8 mm2 area, 2.4 mm thick), irradiated transversally to the electric field direction. The anode...

  11. Development of an Adolescent Alcohol Misuse Intervention Based on the Prototype Willingness Model: A Delphi Study

    Science.gov (United States)

    Davies, Emma; Martin, Jilly; Foxcroft, David

    2016-01-01

    Purpose: The purpose of this paper is to report on the use of the Delphi method to gain expert feedback on the identification of behaviour change techniques (BCTs) and development of a novel intervention to reduce adolescent alcohol misuse, based on the Prototype Willingness Model (PWM) of health risk behaviour. Design/methodology/approach: Four…

  12. Development and evaluation of carbon and binder loading in low-cost activated carbon cathodes for air-cathode microbial fuel cells

    KAUST Repository

    Wei, Bin; Tokash, Justin C.; Chen, Guang; Hickner, Michael A.; Logan, Bruce E.

    2012-01-01

    Activated carbon (AC) air cathodes were constructed using variable amounts of carbon (43-171 mg cm-2) and an inexpensive binder (10 wt% polytetrafluoroethylene, PTFE), and with or without a porous cloth wipe-based diffusion layer (DL) that was sealed with PDMS. The cathodes with the highest AC loading of 171 mg cm-2, and no diffusion layer, produced 1255 ± 75 mW m-2 and did not appreciably vary in performance after 1.5 months of operation. Slightly higher power densities were initially obtained using 100 mg cm-2 of AC (1310 ± 70 mW m-2) and a PDMS/wipe diffusion layer, although the performance of this cathode decreased to 1050 ± 70 mW m-2 after 1.5 months, and 1010 ± 190 mW m-2 after 5 months. AC loadings of 43 mg cm-2 and 100 mg cm-2 did not appreciably affect performance (with diffusion layers). MFCs with the Pt catalyst and Nafion binder initially produced 1295 ± 13 mW m-2, but the performance decreased to 930 ± 50 mW m -2 after 1.5 months, and then to 890 ± 20 mW m-2 after 5 months. Cathode performance was optimized for all cathodes by using the least amount of PTFE binder (10%, in tests using up to 40%). These results provide a method to construct cathodes for MFCs that use only inexpensive AC and a PTFE, while producing power densities similar to those of Pt/C cathodes. The methods used here to make these cathodes will enable further tests on carbon materials in order to optimize and extend the lifetime of AC cathodes in MFCs. © 2012 The Royal Society of Chemistry.

  13. The use of virtual prototyping and simulation in ITER maintenance device development

    International Nuclear Information System (INIS)

    Mattila, J.; Siuko, M.; Saarinen, H.; Maekinen, H.; Verho, S.; Vilenius, M.; Palmer, J.; Irving, M.

    2006-01-01

    The ITER divertor maintenance takes place approximately every second year. The maintenance occurs in very harsh and mechanically complicated environment. Due to the critical nature of the maintenance operations, the maintenance equipment design and the operation cycle will be verified in DTP2 test platform, in Tampere, Finland. TUT/IHA is working on the ITER divertor maintenance devices. Due to the complexity of the operation environment and tasks to be performed, 3d models and kinematic simulation have been valuable tool when developing the devices. Further, IHA has integrated to the models also dynamic properties of the device, so that it can be discussed as a virtual prototype. The virtual prototype can be used to verify the operation of the device, the operation cycle and also as a platform for developing the control software for the device. For device development, the virtual prototype is used to analyze the dynamic behavior, loading and flexibility of the device. The virtual prototype was also connected to real hardware to verify the operation of one joint. Then, the virtual model in computer was run and the output of the joints was given to a hydraulic cylinder representing disturbance load for an other hydraulic cylinder, which was operating under control software and aiming to move smoothly regardless of the disturbance load. By that way we were able to verify that the real system operates close enough with the simulation model. The virtual model is also used to shorten the time to get the DTP2 platform working. The CMM control software is done with virtual models as ready as possible. The CMM virtual model is connected to one-joint control hardware which allows developing the controller software one joint at time. In this paper, also other possibilities to use virtual prototypes in ITER divertor maintenance development are discussed. (author)

  14. Developing e-banking services for rural India: making use of socio-technical prototypes

    OpenAIRE

    Dittrich, Yvonne; Vaidyanathan, Lakshmi; Gonsalves, Timothy A; Jhunjhunwala, Ashok

    2017-01-01

    Information and Communication Technology (ICT) is one of the key enablers for including underserved communities in economic and societal development across the world. Our research analyzes several banking service projects developing technical solutions for rural India. This poster presents an experience report based on systematic debriefing of involved project leaders and initiators, triangulated with additional documentation. The concept of Socio-Technical Prototype is developed and used to ...

  15. A software prototype development of human system interfaces for human factors engineering validation tests of SMART MCR

    International Nuclear Information System (INIS)

    Lim, Jong Tae; Han, Kwan Ho; Yang, Seung Won

    2011-02-01

    An integrated system validation test bed used for human factors engineering validation test is being developed. This study has a goal to develop a software prototype for HFE validation of SMART MCR design. To achieve these, first, some prototype specifications of the software was developed. Then software prototypes of alarm reduction logic system, Plant Protection System, ESF-CCS, Elastic Tile Alarm Indication, and EID-based HSIs were implemented as codes. Test procedures for the software prototypes were established to verify the completeness of the codes implemented. The careful software test has been done according to these test procedures, and the result were documented

  16. Long-term cathode performance and the microbial communities that develop in microbial fuel cells fed different fermentation endproducts.

    Science.gov (United States)

    Kiely, Patrick D; Rader, Geoffrey; Regan, John M; Logan, Bruce E

    2011-01-01

    To better understand how cathode performance and substrates affected communities that evolved in these reactors over long periods of time, microbial fuel cells were operated for more than 1 year with individual endproducts of lignocellulose fermentation (acetic acid, formic acid, lactic acid, succinic acid, or ethanol). Large variations in reactor performance were primarily due to the specific substrates, with power densities ranging from 835 ± 21 to 62 ± 1mW/m(3). Cathodes performance degraded over time, as shown by an increase in power of up to 26% when the cathode biofilm was removed, and 118% using new cathodes. Communities that developed on the anodes included exoelectrogenic families, such as Rhodobacteraceae, Geobacteraceae, and Peptococcaceae, with the Deltaproteobacteria dominating most reactors. Pelobacter propionicus was the predominant member in reactors fed acetic acid, and it was abundant in several other MFCs. These results provide valuable insights into the effects of long-term MFC operation on reactor performance. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Temporal development of the composition of Zr and Cr cathodic arc plasma streams in a N2 environment

    International Nuclear Information System (INIS)

    Rosen, Johanna; Anders, Andre; Hultman, Lars; Schneider, Jochen M.

    2003-01-01

    We describe the temporal development of the plasma composition in a pulsed plasma stream generated by cathodic arc. Cathodes of Zr and Cr were operated at various nitrogen pressures. The time-resolved plasma composition for the cathode materials was analyzed with time-of-flight charge-to-mass spectrometry, and was found to be a strong function of the nitrogen pressure. Large plasma composition gradients were detected within the first 60 μs of the pulse, the nitrogen ion concentration increasing with increasing pressure. The results are explained by the formation and erosion of a compound layer formed at the cathode surface in the presence of a reactive gas. The average charge state was also found to be affected by the reactive gas pressure as well as by the time after ignition. The charge states were highest in the beginning of the pulse at low nitrogen pressure, decreasing to a steady-state value at higher pressure. These results are of importance for reactive plasma processing and for controlling the evolution of thin film composition and microstructure

  18. Design and development of a ring cathode electron gun as an evaporation source

    Energy Technology Data Exchange (ETDEWEB)

    Poyner, G T [Craswell Scientific Ltd., Cheltenham (UK)

    1976-11-01

    The RG2 ring cathode gun is a simple application of electron beam heating. The gun described was developed to provide a relatively inexpensive source for evaporating a range of metals and oxides which were otherwise difficult or impossible to evaporate by conventional resistance heating. Following several stages of improvement the gun was progressively reduced in size and the 'optics', or focusing, improved so that in its existing state an area of approximately 2mm diameter is heated. It was decided to limit the accelerating voltage as far as possible to minimize the practical problems associated with its operation and also the manufacture of the power supply. As development proceeded it became apparent that the relatively low accelerating voltage chosen improved the flexibility of the gun. Two versions are manufactured, the first, equipped with a six position rotary hearth, and the second, utilising a single hearth, is intended to be used as one of a pair. The latter design was reduced in size even further in order to minimize the distance between two adjacent guns.

  19. The design and development of a ring cathode electron gun as an evaporation source

    International Nuclear Information System (INIS)

    Poyner, G.T.

    1976-01-01

    The RG2 ring cathode gun is a simple application of electron beam heating. The gun described was developed to provide a relatively inexpensive source for evaporating a range of metals and oxides which were otherwise difficult or impossible to evaporate by conventional resistance heating. Following several stages of improvement the gun was progressively reduced in size and the 'optics', or focusing, improved so that in its existing state an area of approximately 2mm diameter is heated. It was decided to limit the accelerating voltage as far as possible to minimize the practical problems associated with its operation and also the manufacture of the power supply. As development proceeded it became apparent that the relatively low accelerating voltage chosen improved the flexibility of the gun. Two versions are manufactured, the first, equipped with a six position rotary hearth, and the second, utilising a single hearth, is intended to be used as one of a pair. The latter design was reduced in size even further in order to minimize the distance between two adjacent guns. (author)

  20. Development and performance of prototype serologic and molecular tests for hepatitis delta infection.

    Science.gov (United States)

    Coller, Kelly E; Butler, Emily K; Luk, Ka-Cheung; Rodgers, Mary A; Cassidy, Michael; Gersch, Jeffrey; McNamara, Anne L; Kuhns, Mary C; Dawson, George J; Kaptue, Lazare; Bremer, Birgit; Wedemeyer, Heiner; Cloherty, Gavin A

    2018-02-01

    Worldwide, an estimated 5% of hepatitis B virus (HBV) infected people are coinfected with hepatitis delta virus (HDV). HDV infection leads to increased mortality over HBV mono-infection, yet HDV diagnostics are not widely available. Prototype molecular (RNA) and serologic (IgG) assays were developed for high-throughput testing on the Abbott m2000 and ARCHITECT systems, respectively. RNA detection was achieved through amplification of a ribozyme region target, with a limit of detection of 5 IU/ml. The prototype serology assay (IgG) was developed using peptides derived from HDV large antigen (HDAg), and linear epitopes were further identified by peptide scan. Specificity of an HBV negative population was 100% for both assays. A panel of 145 HBsAg positive samples from Cameroon with unknown HDV status was tested using both assays: 16 (11.0%) had detectable HDV RNA, and 23 (15.7%) were sero-positive including the 16 HDV RNA positive samples. Additionally, an archival serial bleed panel from an HDV superinfected chimpanzee was tested with both prototypes; data was consistent with historic testing data using a commercial total anti-Delta test. Overall, the two prototype assays provide sensitive and specific methods for HDV detection using high throughput automated platforms, allowing opportunity for improved diagnosis of HDV infected patients.

  1. Virtual environment and computer-aided technologies used for system prototyping and requirements development

    Science.gov (United States)

    Logan, Cory; Maida, James; Goldsby, Michael; Clark, Jim; Wu, Liew; Prenger, Henk

    1993-01-01

    The Space Station Freedom (SSF) Data Management System (DMS) consists of distributed hardware and software which monitor and control the many onboard systems. Virtual environment and off-the-shelf computer technologies can be used at critical points in project development to aid in objectives and requirements development. Geometric models (images) coupled with off-the-shelf hardware and software technologies were used in The Space Station Mockup and Trainer Facility (SSMTF) Crew Operational Assessment Project. Rapid prototyping is shown to be a valuable tool for operational procedure and system hardware and software requirements development. The project objectives, hardware and software technologies used, data gained, current activities, future development and training objectives shall be discussed. The importance of defining prototyping objectives and staying focused while maintaining schedules are discussed along with project pitfalls.

  2. 19 CFR 10.91 - Prototypes used exclusively for product development and testing.

    Science.gov (United States)

    2010-04-01

    ... following use—(1) Sale. Prototypes or any part(s) of prototypes, after having been used for the purposes for...) of this section; and a detailed description of the condition of the prototype following use for the... and the date of execution. (d) Prototypes not sold following use. As to those prototypes or parts of...

  3. Cathodic processes in high-temperature molten salts for the development of new materials processing methods

    International Nuclear Information System (INIS)

    Schwandt, Carsten

    2017-01-01

    Molten salts play an important role in the processing of a range of commodity materials. This includes the large-scale production of iron, aluminium, magnesium and alkali metals as well as the refining of nuclear fuel materials. This presentation focuses on two more recent concepts in which the cathodic reactions in molten salt electrolytic cells are used to prepare high-value-added materials. Both were developed and advanced at the Department of Materials Science and Metallurgy at the University of Cambridge and are still actively being pursued. One concept is now generally known as the FFC-Cambridge process. The presentation will highlight the optimisation of the process towards high selectivities for tubes or particles depict a modification of the method to synthesize tin-filled carbon nanomaterial, and illustrate the implementation of a novel type of process control to enable the preparation of gramme quantities of material within a few hours with simple laboratory equipment. Also discussed will be the testing of these materials in lithium ion batteries

  4. Design and development of a 3D cadastral prototype based on the LADM and 3D topology

    NARCIS (Netherlands)

    Ying, S.; Guo, R.; Li, L.; Van Oosterom, P.J.M.; Ledoux, H.; Stoter, J.E.

    2011-01-01

    In this paper the design and development of a prototype 3D Cadastral system will be presented. The key aspects of this system are that the model is based on Land Administration Domain Model (LADM) and that the spatial profile is based on a full 3D topological structure. The prototype development

  5. Development of a prototype graphic simulation program for severe accident training

    International Nuclear Information System (INIS)

    Kim, Ko Ryu; Jeong, Kwang Sub; Ha, Jae Joo

    2000-05-01

    This is a report of the development process and related technologies of severe accident graphic simulators, required in industrial severe accident management and training. Here, we say 'a severe accident graphic simulator' as a graphics add-in system to existing calculation codes, which can show the severe accident phenomena dynamically on computer screens and therefore which can supplement one of main defects of existing calculation codes. With graphic simulators it is fairly easy to see the total behavior of nuclear power plants, where it was very difficult to see only from partial variable numerical information. Moreover, the fast processing and control feature of a graphic simulator can give some opportunities of predicting the severe accident advancement among several possibilities, to one who is not an expert. Utilizing graphic simulators' we expect operators' and TSC members' physical phenomena understanding enhancement from the realistic dynamic behavior of plants. We also expect that severe accident training course can gain better training effects using graphic simulator's control functions and predicting capabilities, and therefore we expect that graphic simulators will be effective decision-aids tools both in sever accident training course and in real severe accident situations. With these in mind, we have developed a prototype graphic simulator having surveyed related technologies, and from this development experiences we have inspected the possibility to build a severe accident graphic simulator. The prototype graphic simulator is developed under IBM PC WinNT environments and is suited to Uljin 3and4 nuclear power plant. When supplied with adequate severe accident scenario as an input, the prototype can provide graphical simulations of plant safety systems' dynamic behaviors. The prototype is composed of several different modules, which are phenomena display module, MELCOR data interface module and graphic database interface module. Main functions of

  6. Development of a prototype graphic simulation program for severe accident training

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ko Ryu; Jeong, Kwang Sub; Ha, Jae Joo

    2000-05-01

    This is a report of the development process and related technologies of severe accident graphic simulators, required in industrial severe accident management and training. Here, we say 'a severe accident graphic simulator' as a graphics add-in system to existing calculation codes, which can show the severe accident phenomena dynamically on computer screens and therefore which can supplement one of main defects of existing calculation codes. With graphic simulators it is fairly easy to see the total behavior of nuclear power plants, where it was very difficult to see only from partial variable numerical information. Moreover, the fast processing and control feature of a graphic simulator can give some opportunities of predicting the severe accident advancement among several possibilities, to one who is not an expert. Utilizing graphic simulators' we expect operators' and TSC members' physical phenomena understanding enhancement from the realistic dynamic behavior of plants. We also expect that severe accident training course can gain better training effects using graphic simulator's control functions and predicting capabilities, and therefore we expect that graphic simulators will be effective decision-aids tools both in sever accident training course and in real severe accident situations. With these in mind, we have developed a prototype graphic simulator having surveyed related technologies, and from this development experiences we have inspected the possibility to build a severe accident graphic simulator. The prototype graphic simulator is developed under IBM PC WinNT environments and is suited to Uljin 3and4 nuclear power plant. When supplied with adequate severe accident scenario as an input, the prototype can provide graphical simulations of plant safety systems' dynamic behaviors. The prototype is composed of several different modules, which are phenomena display module, MELCOR data interface module and graphic database

  7. Development of Graphene-based novel cathode material in MES system

    DEFF Research Database (Denmark)

    Chen, Leifeng; Aryal, Nabin; Ammam, Fariza

    2014-01-01

    Sporomusa ovata (S.O) typically have a negative outer-surface charge. The graphene oxide (GO) is the acceptor of the electron. If the GO accept electrons from the Sporomusa ovata and the GO can be reduced to graphene. This will lead to in situ construction of a bacteria/graphene network in the cathode......It has been reported that physical contact between unique nanostructures of electrode and bacteria isimportant for microbial electrosynthesis. The higher specific surface area of cathode can increase contact interface area with bacteria and enhance electron-exchange at the electrode surface...... and RamanSpectrum to character the GO and R-GO. The density of the Sporomusa ovate on the R-GO cathode can becharactered by the confocal laser-scanning fuorescence microscopyer. Acetate is measured via high performance liquid chromatography (HPLC). The images of R-GO/Sporomusa ovate can be characterizedand...

  8. Cold cathodes on ultra-dispersed diamond base

    International Nuclear Information System (INIS)

    Alimova, A.N.; Zhirnov, V.V.; Chubun, N.N.; Belobrov, P.I.

    1998-01-01

    Prospects of application of nano diamond powders for fabrication of cold cathodes are discussed.Cold cathodes based on silicon pointed structures with nano diamond coatings were prepared.The deposition technique of diamond coating was dielectrophoresis from suspension of nano diamond powder in organic liquids.The cathodes were tested in sealed prototypes of vacuum electronic devices

  9. Software Prototyping

    Science.gov (United States)

    Del Fiol, Guilherme; Hanseler, Haley; Crouch, Barbara Insley; Cummins, Mollie R.

    2016-01-01

    Summary Background Health information exchange (HIE) between Poison Control Centers (PCCs) and Emergency Departments (EDs) could improve care of poisoned patients. However, PCC information systems are not designed to facilitate HIE with EDs; therefore, we are developing specialized software to support HIE within the normal workflow of the PCC using user-centered design and rapid prototyping. Objective To describe the design of an HIE dashboard and the refinement of user requirements through rapid prototyping. Methods Using previously elicited user requirements, we designed low-fidelity sketches of designs on paper with iterative refinement. Next, we designed an interactive high-fidelity prototype and conducted scenario-based usability tests with end users. Users were asked to think aloud while accomplishing tasks related to a case vignette. After testing, the users provided feedback and evaluated the prototype using the System Usability Scale (SUS). Results Survey results from three users provided useful feedback that was then incorporated into the design. After achieving a stable design, we used the prototype itself as the specification for development of the actual software. Benefits of prototyping included having 1) subject-matter experts heavily involved with the design; 2) flexibility to make rapid changes, 3) the ability to minimize software development efforts early in the design stage; 4) rapid finalization of requirements; 5) early visualization of designs; 6) and a powerful vehicle for communication of the design to the programmers. Challenges included 1) time and effort to develop the prototypes and case scenarios; 2) no simulation of system performance; 3) not having all proposed functionality available in the final product; and 4) missing needed data elements in the PCC information system. PMID:27081404

  10. Development of the prototype data management system of the solar H-alpha full disk observation

    Science.gov (United States)

    Wei, Ka-Ning; Zhao, Shi-Qing; Li, Qiong-Ying; Chen, Dong

    2004-06-01

    The Solar Chromospheric Telescope in Yunnan Observatory generates about 2G bytes fits format data per day. Huge amounts of data will bring inconvenience for people to use. Hence, data searching and sharing are important at present. Data searching, on-line browsing, remote accesses and download are developed with a prototype data management system of the solar H-alpha full disk observation, and improved by the working flow technology. Based on Windows XP operating system and MySQL data management system, a prototype system of browse/server model is developed by JAVA and JSP. Data compression, searching, browsing, deletion need authority and download in real-time have been achieved.

  11. Golf cart prototype development and navigation simulation using ROS and Gazebo

    Directory of Open Access Journals (Sweden)

    Shimchik Ilya

    2016-01-01

    Full Text Available This paper presents our approach to development of an autonomous golf cart, which will navigate in inaccessible by regular vehicles private areas. For this purpose, we have built a virtual golf course terrain and golf cart model in Gazebo, selected and modernized ROS-based packages in order to use them with Ackermann steering vehicle simulation. To verify our simulation and algorithms, we navigated the golf cart model from one golf hole to another within a virtual 3D golf course. For the real world algorithms’ verification, we developed a small-size vehicle prototype based on Traxxas radio-controlled car model, which is equipped with an on-board controller and sensors. The autonomous navigation of Traxxas-based vehicle prototype has been tested in indoor environment, where it utilized sensory data about environment and vehicle states, and performed localization, optimal trajectory computation and dynamic obstacles’ recognition with adjusting the route in real time.

  12. Development of CNC prototype for the characterization of the nanoparticle release during physical manipulation of nanocomposites.

    Science.gov (United States)

    Gendre, Laura; Marchante, Veronica; Abhyankar, Hrushikesh A; Blackburn, Kim; Temple, Clive; Brighton, James L

    2016-01-01

    This work focuses on the release of nanoparticles from commercially used nanocomposites during machining operations. A reliable and repeatable method was developed to assess the intentionally exposure to nanoparticles, in particular during drilling. This article presents the description and validation of results obtained from a new prototype used for the measurement and monitoring of nanoparticles in a controlled environment. This methodology was compared with the methodologies applied in other studies. Also, some preliminary experiments on drilling nanocomposites are included. Size, shape and chemical composition of the released nanoparticles were investigated in order to understand their hazard potential. No significant differences were found in the amount of nanoparticles released between samples with and without nanoadditives. Also, no chemical alteration was observed between the dust generated and the bulk material. Finally, further developments of the prototype are proposed.

  13. Pestov spark counter prototype development for the CERN-LHC ALICE experiment

    International Nuclear Information System (INIS)

    Badura, E.; Eschke, J.; Gaiser, H.; Gutbrod, H.H.; Kopf, U.; Neyer, C.; Roters, B.; Schmidt, H.R.; Schulze, R.; Steinhaeuser, P.; Stelzer, H.; Frolov, A.R.

    1995-11-01

    A prototype Pestov Spark Counter with 2-dimensional position resolution has been developed. The position resolution is 0.32 mm and <2 mm in transverse and longitudinal direction, respectively. Beam tests yielded both the time resolution and the efficiency in accordance with earlier results obtained at BNIP Novosibirsk. A longterm stability test has been performed and stable behaviour for more then 3 months was observed. (orig.)

  14. Development of a prototype real-time automated filter for operational deep space navigation

    Science.gov (United States)

    Masters, W. C.; Pollmeier, V. M.

    1994-01-01

    Operational deep space navigation has been in the past, and is currently, performed using systems whose architecture requires constant human supervision and intervention. A prototype for a system which allows relatively automated processing of radio metric data received in near real-time from NASA's Deep Space Network (DSN) without any redesign of the existing operational data flow has been developed. This system can allow for more rapid response as well as much reduced staffing to support mission navigation operations.

  15. The development of a prototype level-three interoperable catalog system

    Science.gov (United States)

    Hood, Carroll A.; Howie, Randy; Verhanovitz, Rich

    1993-08-01

    The development of a level-three interoperable catalog system is defined by a new paradigm for metadata access. The old paradigm is characterized by a hierarchy of metadata layers, the transfer of control to target systems, and the requirement for the user to be familiar with the syntax and data dictionaries of several catalog system elements. Attributes of the new paradigm are exactly orthogonal: the directory and inventories are peer entities, there is a single user interface, and the system manages the complexity of interacting transparently with remote elements. We have designed and implemented a prototype level-three interoperable catalog system based on the new paradigm. Through a single intelligent interface, users can interoperably access a master directory, inventories for selected satellite datasets, and an in situ meteorological dataset inventory. This paper describes the development of the prototype system and three of the formidable challenges that were addressed in the process. The first involved the interoperable integration of satellite and in situ inventories, which to our knowledge, has never been operationally demonstrated. The second was the development of a search strategy for orbital and suborbital granules which preserves the capability to identify temporally or spatially coincident subsets between them. The third involved establishing a method of incorporating inventory-specific search criteria into user queries. We are working closely with selected science data users to obtain feedback on the system's design and performance. The lessons learned from this prototype will help direct future development efforts. Distributed data systems of the 1990s such as EOSDIS and the Global Change Data and Information System (GCDIS) will be able to build on this prototype.

  16. Nanostructured sulfur cathodes

    KAUST Repository

    Yang, Yuan

    2013-01-01

    Rechargeable Li/S batteries have attracted significant attention lately due to their high specific energy and low cost. They are promising candidates for applications, including portable electronics, electric vehicles and grid-level energy storage. However, poor cycle life and low power capability are major technical obstacles. Various nanostructured sulfur cathodes have been developed to address these issues, as they provide greater resistance to pulverization, faster reaction kinetics and better trapping of soluble polysulfides. In this review, recent developments on nanostructured sulfur cathodes and mechanisms behind their operation are presented and discussed. Moreover, progress on novel characterization of sulfur cathodes is also summarized, as it has deepened the understanding of sulfur cathodes and will guide further rational design of sulfur electrodes. © 2013 The Royal Society of Chemistry.

  17. Composite cathode materials development for intermediate temperature solid oxide fuel cell systems

    Science.gov (United States)

    Qin, Ya

    Solid oxide fuel cell (SOFC) systems are of particular interest as electrochemical power systems that can operate on various hydrocarbon fuels with high fuel-to-electrical energy conversion efficiency. Within the SOFC stack, La0.8Sr 0.2Ga0.8Mg0.115Co0.085O3-delta (LSGMC) has been reported as an optimized composition of lanthanum gallate based electrolytes to achieve higher oxygen ionic conductivity at intermediate temperatures, i.e., 500-700°C. The electrocatalytic properties of interfaces between LSGMC electrolytes and various candidate intermediate-temperature SOFC cathodes have been investigated. Sm0.5Sr0.5CoO 3-delta (SSC), and La0.6Sr0.4Co0.2Fe 0.8O3-delta (LSCF), in both pure and composite forms with LSGMC, were investigated with regards to both oxygen reduction and evolution, A range of composite cathode compositions, having ratios of SSC (in wt.%) with LSGMC (wt.%) spanning the compositions 9:1, 8:2, 7:3, 6:4 and 5:5, were investigated to determine the optimal cathode-electrolyte interface performance at intermediate temperatures. All LSGMC electrolyte and cathode powders were synthesized using the glycine-nitrate process (GNP). Symmetrical electrochemical cells were investigated with three-electrode linear dc polarization and ac impedance spectroscopy to characterize the kinetics of the interfacial reactions in detail. Composite cathodes were found to perform better than the single phase cathodes due to significantly reduced polarization resistances. Among those composite SSC-LSGMC cathodes, the 7:3 composition has demonstrated the highest current density at the equivalent overpotential values, indicating that 7:3 is an optimal mixing ratio of the composite cathode materials to achieve the best performance. For the composite SC-LSGMC cathode/LSGMC interface, the cathodic overpotential under 1 A/cm2 current density was as low as 0.085 V at 700°C, 0.062V at 750°C and 0.051V at 800°C in air. Composite LSCF-LSGMC cathode/LSGMC interfaces were found to have

  18. A Study on the Development of Prototype Seismic Isolation Device for NPP

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hongpyo; Cho, Myungsug; Kim, Sunyong; Lee, Yonghee; Kang Kyunghun [KHNP-CRI, Daejeon (Korea, Republic of)

    2014-05-15

    Korean nuclear power plants have been and still are based on seismic resistance design including all of the natural disasters. However, in regions of high seismic hazard, seismic isolation technology is needed to guarantee the seismic safety on nuclear power plants. To achieve this purpose, the research and development of seismic isolation system for the construction in high seismicity area is on-going in Korea. In this study, prototype seismic isolation devices as mentioned above are developed and tested to identify the basic shear and compressive characteristics of them. In this study, assessment performance of basic characteristics on the prototype LRB and EQS seismic isolation for nuclear power plant structures is employed to compare with design values. Based on the test results of compression and shear characteristics, it is judged that they meet the measuring efficiency range conditions which are presented in ISO 22762 and AASHOT guide specification. Therefore, prototype seismic isolation devices like LRB and EQS developed in this study can be expected to be used as reference data when designing a seismic isolation system for nuclear power plant structures in the future.

  19. Development and Testing of a Prototype Grid-Tied Photovoltaic Power System

    Science.gov (United States)

    Eichenberg, Dennis J.

    2009-01-01

    The NASA Glenn Research Center (GRC) has developed and tested a prototype 2 kW DC grid-tied photovoltaic (PV) power system at the Center. The PV system has generated in excess of 6700 kWh since operation commenced in July 2006. The PV system is providing power to the GRC grid for use by all. Operation of the prototype PV system has been completely trouble free. A grid-tied PV power system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility. The project transfers space technology to terrestrial use via nontraditional partners. GRC personnel glean valuable experience with PV power systems that are directly applicable to various space power systems, and provide valuable space program test data. PV power systems help to reduce harmful emissions and reduce the Nation s dependence on fossil fuels. Power generated by the PV system reduces the GRC utility demand, and the surplus power aids the community. Present global energy concerns reinforce the need for the development of alternative energy systems. Modern PV panels are readily available, reliable, efficient, and economical with a life expectancy of at least 25 years. Modern electronics has been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy of at least 25 years. Based upon the success of the prototype PV system, additional PV power system expansion at GRC is under consideration. The prototype grid-tied PV power system was successfully designed and developed which served to validate the basic principles described, and the theoretical work that was performed. The report concludes that grid-tied photovoltaic power systems are reliable, maintenance free, long life power systems, and are of significant value to NASA and the community.

  20. Review of US Nanocorp - SNL Joint Development of Thermal-Sprayed Thin-Film Cathodes for Thermal Batteries

    Energy Technology Data Exchange (ETDEWEB)

    GUIDOTTI,RONALD A.; REINHARDT,FREDERICK W.; DAI,JINXIANG; XIAO,T. DANNY; REISNER,DAVID E.

    2000-11-14

    The use of plasma spray to deposit thin metal-sulfide cathode films is described in this paper. Conventional electroactive stack components in thermal batteries are constructed from pressed-powder parts that are difficult to fabricate in large diameters in thicknesses <0.010. Plasma-sprayed electrodes do not steer from this difficulty, allowing greater energy densities and specific energies to be realized. Various co-spraying agents have been found suitable for improving the mechanical as well as electrochemical properties of plasma-sprayed cathodes for thermal batteries. These electrodes generally show equal or improved performance over conventional pressed-powder electrodes. A number of areas for future growth and development of plasma-spray technology is discussed.

  1. High-Current Cold Cathode Employing Diamond and Related Materials

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L. [Omega-P, Inc., New Haven, CT (United States)

    2014-10-22

    The essence of this project was for diamond films to be deposited on cold cathodes to improve their emission properties. Films with varying morphology, composition, and size of the crystals were deposited and the emission properties of the cathodes that utilize such films were studied. The prototype cathodes fabricated by the methods developed during Phase I were tested and evaluated in an actual high-power RF device during Phase II. These high-power tests used the novel active RF pulse compression system and the X-band magnicon test facility at US Naval Research Laboratory. In earlier tests, plasma switches were employed, while tests under this project utilized electron-beam switching. The intense electron beams required in the switches were supplied from cold cathodes embodying diamond films with varying morphology, including uncoated molybdenum cathodes in the preliminary tests. Tests with uncoated molybdenum cathodes produced compressed X-band RF pulses with a peak power of 91 MW, and a maximum power gain of 16.5:1. Tests were also carried out with switches employing diamond coated cathodes. The pulse compressor was based on use of switches employing electron beam triggering to effect mode conversion. In experimental tests, the compressor produced 165 MW in a ~ 20 ns pulse at ~18× power gain and ~ 140 MW at ~ 16× power gain in a 16 ns pulse with a ~ 7 ns flat-top. In these tests, molybdenum blade cathodes with thin diamond coatings demonstrated good reproducible emission uniformity with a 100 kV, 100 ns high voltage pulse. The new compressor does not have the limitations of earlier types of active pulse compressors and can operate at significantly higher electric fields without breakdown.

  2. Microstructure development in zinc oxide nanowires and iron oxohydroxide nanotubes by cathodic electrodeposition in nanopores

    NARCIS (Netherlands)

    Maas, M.G.; Rodijk, E.J.B.; Maijenburg, A.W.; Blank, David H.A.; ten Elshof, Johan E.

    2011-01-01

    The cathodic electrodeposition of crystalline ZnO nanowires and amorphous FeO(OH) nanotubes in polycarbonate track-etched membranes with pore diameters of 50–200 nm is reported. Nitrate was used as a sacrificial precursor for the electrochemical generation of hydroxyl ions that raised the pH of the

  3. Applying Evolutionary Prototyping In Developing LMIS: A Spatial Web-Based System For Land Management

    Science.gov (United States)

    Agustiono, W.

    2018-01-01

    Software development project is a difficult task. Especially for software designed to comply with regulations that are constantly being introduced or changed, it is almost impossible to make just one change during the development process. Even if it is possible, nonetheless, the developers may take bulk of works to fix the design to meet specified needs. This iterative work also means that it takes additional time and potentially leads to failing to meet the original schedule and budget. In such inevitable changes, it is essential for developers to carefully consider and use an appropriate method which will help them carry out software project development. This research aims to examine the implementation of a software development method called evolutionary prototyping for developing software for complying regulation. It investigates the development of Land Management Information System (pseudonym), initiated by the Australian government, for use by farmers to meet regulatory demand requested by Soil and Land Conservation Act. By doing so, it sought to provide understanding the efficacy of evolutionary prototyping in helping developers address frequent changing requirements and iterative works but still within schedule. The findings also offer useful practical insights for other developers who seek to build similar regulatory compliance software.

  4. Micro Cathode Arc Thruster for PhoneSat: Development and Potential Applications

    Science.gov (United States)

    Gazulla, Oriol Tintore; Perez, Andres Dono; Agasid, Elwood; Uribe, Eddie; Trinh, Greenfield; Keidar, Michael; Teel, George; Haque, Samudra; Lukas, Joseph; Salas, Alberto Guillen; hide

    2014-01-01

    NASA Ames Research Center and the George Washington University are developing an electric propulsion subsystem that will be integrated into the PhoneSat bus. Experimental tests have shown a reliable performance by firing three different thrusters at various frequencies in vacuum conditions. The interface consists of a microcontroller that sends a trigger pulse to the Pulsed Plasma Unit that is responsible for the thruster operation. A Smartphone is utilized as the main user interface for the selection of commands that control the entire system. The propellant, which is the cathode itself, is a solid cylinder made of Titanium. This simplicity in the design avoids miniaturization and manufacturing problems. The characteristics of this thruster allow an array of µCATs to perform attitude control and orbital correction maneuvers that will open the door for the implementation of an extensive collection of new mission concepts and space applications for CubeSats. NASA Ames is currently working on the integration of the system to fit the thrusters and the PPU inside a 1.5U CubeSat together with the PhoneSat bus. This satellite is intended to be deployed from the ISS in 2015 and test the functionality of the thrusters by spinning the satellite around its long axis and measure the rotational speed with the phone gyros. This test flight will raise the TRL of the propulsion system from 5 to 7 and will be a first test for further CubeSats with propulsion systems, a key subsystem for long duration or interplanetary small satellite missions.

  5. Development and Testing of a Smartphone Application Prototype for Oral Health Promotion.

    Science.gov (United States)

    Nolen, Sara L; Giblin-Scanlon, Lori J; Boyd, Linda D; Rainchuso, Lori

    2018-04-01

    Purpose: The purpose of this study was to develop and test a smartphone application (app) prototype, ToothSense, as an oral health promotion tool for the prevention of Early Childhood Caries (ECC) based on the Theory of Planned Behavior (TPB). Methods: A quantitative and qualitative design process based on the TPB was used for the app development in the first phase of the study. A behavioral intervention technologic model was used to document the app features design, accounting for Doshi's intervention strategies for the TPB. Beta-testing of the app was hosted via an online software program. Testers were presented with a series of tasks and prompts followed by a 5-point Likert-scale questionnaire that quantitatively measured perceptions of the app's interactive design based on Jakob Nielsen's principles and behavioral strategies. A Net Promotor Score was calculated to determine the tester's likelihood to recommend the app prototype. Audio and video aspects of the app were qualitatively measured using a template approach. Results: Beta testers agreed the app met the majority of the five usability statements. The Net Promotor Score indicated a likelihood to recommend the app prototype. Thematic analyses revealed the following themes: interface design, navigation, terminology, information, and oral health promotion. Conclusion: Beta testing results from this study provided health promotion project design information for the prevention of ECC using the TPB and highlighted the importance and usability of smartphone app for oral health promotion. Copyright © 2018 The American Dental Hygienists’ Association.

  6. Development of an Exploration-Class Cascade Distillation System: Flight Like Prototype Preliminary Design

    Science.gov (United States)

    Callahan, Michael R.; Sargusingh, Miriam J.

    2015-01-01

    The ability to recover and purify water through physiochemical processes is crucial for realizing long-term human space missions, including both planetary habitation and space travel. Because of their robust nature, distillation systems have been actively pursued as one of the technologies for water recovery. One such technology is the Cascade Distillation System (CDS) a multi-stage vacuum rotary distiller system designed to recover water in a microgravity environment. Its rotating cascading distiller operates similarly to the state of the art (SOA) vapor compressor distiller (VCD), but its control scheme and ancillary components are judged to be straightforward and simpler to implement into a successful design. Through the Advanced Exploration Systems (AES) Life Support Systems (LSS) Project, the NASA Johnson Space Center (JSC) in collaboration with Honeywell International is developing a second generation flight forward prototype (CDS 2.0). The key objectives for the CDS 2.0 design task is to provide a flight forward ground prototype that demonstrates improvements over the SOA system in the areas of increased reliability and robustness, and reduced mass, power and volume. It will also incorporate exploration-class automation. The products of this task are a preliminary flight system design and a high fidelity prototype of an exploration class CDS. These products will inform the design and development of the third generation CDS which is targeted for on-orbit DTO. This paper details the preliminary design of the CDS 2.0.

  7. Development of an Exploration-Class Cascade Distillation System: Flight Like Prototype Design Status

    Science.gov (United States)

    Sargusingh, Miriam C.; Callahan, Michael R.

    2016-01-01

    The ability to recover and purify water through physiochemical processes is crucial for realizing long-term human space missions, including both planetary habitation and space travel. Because of their robust nature, distillation systems have been actively pursued as one of the technologies for water recovery. One such technology is the Cascade Distillation System (CDS) a multi-stage vacuum rotary distiller system designed to recover water in a microgravity environment. The CDS provides a similar function to the state of the art (SOA) vapor compressor distiller (VCD) currently employed on the International Space Station, but its control scheme and ancillary components are judged to be more straightforward and simpler to implement into a more reliable and efficient system. Through the Advanced Exploration Systems (AES) Life Support Systems (LSS) Project, the NASA Johnson Space Center (JSC) in collaboration with Honeywell International is developing a second generation flight forward prototype (CDS 2.0). A preliminary design fo the CDS 2.0 was presented to the project in September 2014. Following this review, detailed design of the system continued. The existing ground test prototype was used as a platform to demonstrate key 2.0 design and operational concepts to support this effort and mitigate design risk. A volumetric prototype was also developed to evaluate the packaging design for operability and maintainability. The updated system design was reviewed by the AES LSS Project and other key stakeholders in September 2015. This paper details the status of the CDS 2.0 design.

  8. DEVELOPMENT OF PROTOTYPE SYSTEM FOR REGULATING THERMAL CONDITIONS OF TELECOMMUNICATIONS EQUIPMENT CABINETS

    Directory of Open Access Journals (Sweden)

    A. T. Rashidkhanov

    2017-01-01

    Full Text Available Objectives. The main objective of the study was to regulate the thermal regime and ensure the reliability of electronic equipmentMethods. In order to conduct experimental studies of the thermoelectric cooling system using heat pipes, a stand was assembled on which the developed and manufactured prototype was studied. The object of the experimental studies was a prototype cooling system, consisting of a thermoelectric battery made of conventional unified thermoelectric materials of ICE-71 type. The solution of the research problems carried out by the method of reduction to ordinary differential equations (Kantorovich method provides acceptable accuracy for such a class of problems.Results. A design of a telecommunication equipment cabinet with a thermal management system based on the use of heat pipes and thermoelectric cooling units is proposed. A mathematical model for the determination of the thermal field in the cabinet volume is considered; an experimental stand for the prototype study is described; the results of experimental studies for various power sources of heat release are presented.Conclusion. Experimental studies confirm the operability of the developed cooling system for cabinets with telecommunication equipment; this cooling method has advantages over conventional forced or natural cooling; the temperature in the block volume and the peak values of the heat sources are significantly reduced; at dissipation powers on one board within 50 W there is no need to use special means to remove heat from hot junctions of the thermoelectric battery.

  9. Development of a Prototype Web-Based Decision Support System for Watershed Management

    Directory of Open Access Journals (Sweden)

    Dejian Zhang

    2015-02-01

    Full Text Available Using distributed hydrological models to evaluate the effectiveness of reducing non-point source pollution by applying best management practices (BMPs is an important support to decision making for watershed management. However, complex interfaces and time-consuming simulations of the models have largely hindered the applications of these models. We designed and developed a prototype web-based decision support system for watershed management (DSS-WMRJ, which is user friendly and supports quasi-real-time decision making. DSS-WMRJ is based on integrating an open-source Web-based Geographical Information Systems (Web GIS tool (Geoserver, a modeling component (SWAT, Soil and Water Assessment Tool, a cloud computing platform (Hadoop and other open source components and libraries. In addition, a private cloud is used in an innovative manner to parallelize model simulations, which are time consuming and computationally costly. Then, the prototype DSS-WMRJ was tested with a case study. Successful implementation and testing of the prototype DSS-WMRJ lay a good foundation to develop DSS-WMRJ into a fully-fledged tool for watershed management. DSS-WMRJ can be easily customized for use in other watersheds and is valuable for constructing other environmental decision support systems, because of its performance, flexibility, scalability and economy.

  10. Development of Ultra-Low Platinum Alloy Cathode Catalysts for PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Popov, Branko N. [Univ. of South Carolina, Columbia, SC (United States). Dept. of Chemical Engineering; Weidner, John [Univ. of South Carolina, Columbia, SC (United States)

    2016-01-07

    The goal of this project is to synthesize a low cost PEM fuel cell cathode catalyst and support with optimized average mass activity, stability of mass activity, initial high current density performance under H2/air (power density), and catalyst and support stability able to meet 2017 DOE targets for electrocatalysts for transportation applications. Pt*/ACCS-2 catalyst was synthesized according to a novel methodology developed at USC through: (i) surface modification, (ii) metal catalyzed pyrolysis and (iii) chemical leaching to remove excess meal used to dope the support. Pt* stands for suppressed platinum catalyst synthesized with Co doped platinum. The procedure results in increasing carbon graphitization, inclusion of cobalt in the bulk and formation of non-metallic active sites on the carbon surface. Catalytic activity of the support shows an onset potential of 0.86 V for the oxygen reduction reaction (ORR) with well-defined kinetic and mass transfer regions and 2.5% H2O2 production. Pt*/ACCS-2 catalyst durability under 0.6-1.0 V potential cycling and support stability under 1.0-1.5 V potential cycling was evaluated. The results indicated excellent catalyst and support performance under simulated start-up/shut down operating conditions (1.0 – 1.5 V, 5000 cycles) which satisfy DOE 2017 catalyst and support durability and activity. The 30% Pt*/ACCS-2 catalyst showed high initial mass activity of 0.34 A/mgPGM at 0.9 ViR-free and loss of mass activity of 45% after 30,000 cycles (0.6-1.0 V). The catalyst performance under H2-air fuel cell operating conditions showed only 24 mV (iR-free) loss at 0.8 A/cm2 with an ECSA loss of 42% after 30,000 cycles (0.6-1.0 V). The support stability under 1.0-1.5 V potential cycling showed mass activity loss of 50% and potential loss of 8 mV (iR-free) at 1.5 A/cm2. The ECSA loss was 22% after 5,000 cycles. Furthermore, the Pt*/ACCS-2 catalyst showed an

  11. APPLICATION OF NEOTAME IN CATCHUP: DEVELOPMENT OF PROTOTYPES AND SENSORY STUDIES

    Directory of Open Access Journals (Sweden)

    G. C. M. C. BANNWART

    2008-11-01

    Full Text Available

    In the present study, fi ve prototypes of catchup were developed, using the sweetener Neotame (NTM as a total or partial replacer for sucrose. Initially, the ideal sweetness of NTM in this application was determined using just-about-right scale. Then, difference and preference tests were carried out to verify the effects of the substitution of sucrose by NTM, at different levels. Time-intensity studies were also performed for the attributes sweetness and tomato fl avor. The results showed that the ideal sweetness of NTM in catchup as the only sweetener is around 9.33 ppm. The substitution of sucrose for NTM is only signifi cantly perceived for the prototypes sweetened with 25:75 sucrose:NTM and 100% NTM, which were the only ones that were less preferred than the control (100% sucrose. The time-intensity studies confi rmed that the prototypes containing combinations of sucrose and NTM are similar in terms of sweetness perception, independently of the proportions. Based on the results, it was concluded that NTM is a suitable sweetener for catchup, in reducedsugar versions, as it can replace up to 50% of sucrose without negative effects on the product´s sensory properties.

  12. Development and test of the readout system for the CBM-MVD prototype

    Energy Technology Data Exchange (ETDEWEB)

    Milanovic, Borislav; Neuman, Bertram; Wiebusch, Michael; Amar-Youcef, Samir; Froehlich, Ingo; Stroth, Joachim [Institut fuer Kernphysik, Goethe-Universitaet Frankfurt, Frankfurt am Main (Germany); Collaboration: CRESST-Collaboration; CBM-MVD Collaboration

    2013-07-01

    The CBM Experiment at FAIR aims towards better understanding of the QCD phase-diagram and in-medium properties of matter under high densities. In order to enhance the detection of rare probes via their secondary decay vertices and to support the primary tracking system, the CBM Micro Vertex Detector (MVD) is foreseen. Recently, the MVD Prototype has been developed at the IKF in Frankfurt. The module contains one quarter of the first MVD station featuring four prototype-sensors MIMOSA-26 AHR thinned down to 50 μ m. The prototype has been tested at the CERN SPS accelerator with high energetic pions in November 2012. This contribution discusses the stability and scalability of the DAQ, slow-control and monitoring routines during the beamtime, as well as sensor behavior under high load of up to 700 000 particles per second. The readout system partially uses hardware from the HADES detector which will also run at FAIR. Readout rates of 98 MB/s at the limit of gigabit ethernet have been achieved showing no sign of data loss or corruption.

  13. Development and characterization of a coronary polylactic acid stent prototype generated by selective laser melting.

    Science.gov (United States)

    Flege, Christian; Vogt, Felix; Höges, Simon; Jauer, Lucas; Borinski, Mauricio; Schulte, Vera A; Hoffmann, Rainer; Poprawe, Reinhart; Meiners, Wilhelm; Jobmann, Monika; Wissenbach, Konrad; Blindt, Rüdiger

    2013-01-01

    In-stent restenosis is still an important issue and stent thrombosis is an unresolved risk after coronary intervention. Biodegradable stents would provide initial scaffolding of the stenosed segment and disappear subsequently. The additive manufacturing technology Selective Laser Melting (SLM) enables rapid, parallel, and raw material saving generation of complex 3- dimensional structures with extensive geometric freedom and is currently in use in orthopedic or dental applications. Here, SLM process parameters were adapted for poly-L-lactid acid (PLLA) and PLLA-co-poly-ε-caprolactone (PCL) powders to generate degradable coronary stent prototypes. Biocompatibility of both polymers was evidenced by assessment of cell morphology and of metabolic and adhesive activity at direct and indirect contact with human coronary artery smooth muscle cells, umbilical vein endothelial cells, and endothelial progenitor cells. γ-sterilization was demonstrated to guarantee safety of SLM-processed parts. From PLLA and PCL, stent prototypes were successfully generated and post-processing by spray- and dip-coating proved to thoroughly smoothen stent surfaces. In conclusion, for the first time, biodegradable polymers and the SLM technique were combined for the manufacturing of customized biodegradable coronary artery stent prototypes. SLM is advocated for the development of biodegradable coronary PLLA and PCL stents, potentially optimized for future bifurcation applications.

  14. Development of a laboratory prototype water quality monitoring system suitable for use in zero gravity

    Science.gov (United States)

    Misselhorn, J. E.; Witz, S.; Hartung, W. H.

    1973-01-01

    The development of a laboratory prototype water quality monitoring system for use in the evaluation of candidate water recovery systems and for study of techniques for measuring potability parameters is reported. Sensing techniques for monitoring of the most desirable parameters are reviewed in terms of their sensitivities and complexities, and their recommendations for sensing techniques are presented. Rationale for selection of those parameters to be monitored (pH, specific conductivity, Cr(+6), I2, total carbon, and bacteria) in a next generation water monitor is presented along with an estimate of flight system specifications. A master water monitor development schedule is included.

  15. Prototype development or multi-cavity ion chamber for depth dose measurement

    International Nuclear Information System (INIS)

    Nayak, M.K.; Sahu, T.K.; Haridas, G.; Bandyopadhyay, Tapas; Tripathi, R.M.; Nandedkar, R.V.

    2016-01-01

    In high energy electron accelerators, when the electrons interact with vacuum chamber or surrounding structural material, Bremsstrahlung x-rays are produced. It is having a broad spectrum extending up to the electron energies. Dose measured as a function of depth due to electromagnetic cascade will give rise to depth dose curve. To measure the online depth dose profile in an absorber medium, when high energy electron or Bremsstrahlung is incident, a prototype Multi-Cavity Ion Chamber (MCIC) detector is developed. The paper describes the design and development of the MCIC for measurement of depth dose profile

  16. Development of a Prototype Robotic System for Radiosurgery with Upper Hemispherical Workspace

    Directory of Open Access Journals (Sweden)

    Sun Young Noh

    2017-01-01

    Full Text Available This paper introduces a specialized robotic system under development for radiosurgery using a small-sized linear accelerator. The robotic system is a 5-DOF manipulator that can be installed above a patient to make an upper hemispherical workspace centered in a target point. In order to determine the optimal lengths of the link, we consider the requirements for the workspace of a linear accelerator for radiosurgery. A more suitable kinematic structure than conventional industrial manipulators is proposed, and the kinematic analysis is also provided. A graphic simulator is implemented and used for dynamic analysis. Based on those results, a prototype manipulator and its control system are under development.

  17. Development of a prototype gamma camera (Aladin) for use in decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    Imbard, G.; Carcreff, H.

    1995-01-01

    Mapping the gamma activity of irradiating zones is often an important prerequisite in dismantling nuclear facilities. This operation is necessary to define a suitable decommissioning strategy before any work begins; it is also required during the procedure to measure the residual activity wherever dose rates are too high to allow human intervention. This paper summarizes the work carried out develop a prototype imaging system designed to display radioactive sources superimposed in real time over a visible light image on a video monitor. This project was developed from an earlier off-line system. (authors). 8 refs., 7 figs., 3 tabs

  18. Research to develop guidelines for cathodic protection of concentric neutral cables, volume 1

    Science.gov (United States)

    Hanck, J. A.; Nekoksa, G.

    1981-08-01

    Data associated with corrosion of concentric neutrals (CN) of direct buried cables from field tests conducted at 36 bellholes excavated in California, Oklahoma, and North Carolina are presented. The electrochemical, chemical, bacteriological, and sieve analyses of native soil and imported backfill samples are included. Up to 129 values were determined for each bellhole and stored on cards as a data bank. All values were statistically analyzed and correlated with corrosion found. The severity of corrosion correlated best with CN corrosion potentials, CN resistance measurements, coarseness of backfill, and soil resistivity. The guidelines for installation of cathodic protection on CN cables are to be based upon the evaluation of over 100 experimental cathodic protection systems and upon laboratory testing for protection criteria with and without ac effects.

  19. Nanotube cathodes.

    Energy Technology Data Exchange (ETDEWEB)

    Overmyer, Donald L.; Lockner, Thomas Ramsbeck; Siegal, Michael P.; Miller, Paul Albert

    2006-11-01

    Carbon nanotubes have shown promise for applications in many diverse areas of technology. In this report we describe our efforts to develop high-current cathodes from a variety of nanotubes deposited under a variety of conditions. Our goal was to develop a one-inch-diameter cathode capable of emitting 10 amperes of electron current for one second with an applied potential of 50 kV. This combination of current and pulse duration significantly exceeds previously reported nanotube-cathode performance. This project was planned for two years duration. In the first year, we tested the electron-emission characteristics of nanotube arrays fabricated under a variety of conditions. In the second year, we planned to select the best processing conditions, to fabricate larger cathode samples, and to test them on a high-power relativistic electron beam generator. In the first year, much effort was made to control nanotube arrays in terms of nanotube diameter and average spacing apart. When the project began, we believed that nanotubes approximately 10 nm in diameter would yield sufficient electron emission properties, based on the work of others in the field. Therefore, much of our focus was placed on measured field emission from such nanotubes grown on a variety of metallized surfaces and with varying average spacing between individual nanotubes. We easily reproduced the field emission properties typically measured by others from multi-wall carbon nanotube arrays. Interestingly, we did this without having the helpful vertical alignment to enhance emission; our nanotubes were randomly oriented. The good emission was most likely possible due to the improved crystallinity, and therefore, electrical conductivity, of our nanotubes compared to those in the literature. However, toward the end of the project, we learned that while these 10-nm-diameter CNTs had superior crystalline structure to the work of others studying field emission from multi-wall CNT arrays, these nanotubes still

  20. Nanotube cathodes

    International Nuclear Information System (INIS)

    Overmyer, Donald L.; Lockner, Thomas Ramsbeck; Siegal, Michael P.; Miller, Paul Albert

    2006-01-01

    Carbon nanotubes have shown promise for applications in many diverse areas of technology. In this report we describe our efforts to develop high-current cathodes from a variety of nanotubes deposited under a variety of conditions. Our goal was to develop a one-inch-diameter cathode capable of emitting 10 amperes of electron current for one second with an applied potential of 50 kV. This combination of current and pulse duration significantly exceeds previously reported nanotube-cathode performance. This project was planned for two years duration. In the first year, we tested the electron-emission characteristics of nanotube arrays fabricated under a variety of conditions. In the second year, we planned to select the best processing conditions, to fabricate larger cathode samples, and to test them on a high-power relativistic electron beam generator. In the first year, much effort was made to control nanotube arrays in terms of nanotube diameter and average spacing apart. When the project began, we believed that nanotubes approximately 10 nm in diameter would yield sufficient electron emission properties, based on the work of others in the field. Therefore, much of our focus was placed on measured field emission from such nanotubes grown on a variety of metallized surfaces and with varying average spacing between individual nanotubes. We easily reproduced the field emission properties typically measured by others from multi-wall carbon nanotube arrays. Interestingly, we did this without having the helpful vertical alignment to enhance emission; our nanotubes were randomly oriented. The good emission was most likely possible due to the improved crystallinity, and therefore, electrical conductivity, of our nanotubes compared to those in the literature. However, toward the end of the project, we learned that while these 10-nm-diameter CNTs had superior crystalline structure to the work of others studying field emission from multi-wall CNT arrays, these nanotubes still

  1. Full-Scale Hollow Fiber Spacesuit Water Membrane Evaporator Prototype Development and Testing for Advanced Spacesuits

    Science.gov (United States)

    Bue, Grant; Trevino, Luis; Tsioulos, Gus; Mitchell, Keith; Dillon, Paul; Weaver, Gregg

    2009-01-01

    The spacesuit water membrane evaporator (SWME) is being developed to perform the thermal control function for advanced spacesuits to take advantage of recent advances in micropore membrane technology in providing a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. Principles of a sheet membrane SWME design were demonstrated using a prototypic test article that was tested in a vacuum chamber at JSC in July 1999. The Membrana Celgard X50-215 microporous hollow fiber (HoFi) membrane was selected after recent contamination tests as the superior candidate among commercial alternatives for HoFi SWME prototype development. Although a number of design variants were considered, one that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was deemed best for further development. An analysis of test data showed that eight layer stacks of the HoFi sheets that had good exposure on each side of the stack would evaporate water with high efficiency. A design that has 15,000 tubes, with 18 cm of exposed tubes between headers has been built and tested that meets the size, weight, and performance requirements of the SWME. This full-scale prototype consists of 30 stacks, each of which are formed into a chevron shape and separated by spacers and organized into three sectors of ten nested stacks. Testing has been performed to show contamination resistance to the constituents expected to be found in potable water produced by the distillation processes. Other tests showed the sensitivity to surfactants.

  2. Spring Internship 2018 at the Prototype Development Lab: A place of Dreamers and Makers

    Science.gov (United States)

    Rueda, Juan F.

    2018-01-01

    This paper covers the role of the design process and the methodology of creating a trophy during my Spring 2018 Internship at the Prototype Development Laboratory at the Kennedy Space Center. In the course of this project I used many new machines and materials while trying to deliver a professional product for a competition that invites college student teams from across the country. The machines covered in this paper include the wood chop saw, CNC mill, water jet, laser engraver, and the 3D printer. This paper also serves as an assembly guide for the trophy.

  3. Prototype Development Capabilities of 3D Spatial Interactions and Failures During Scenario Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Steven Prescott; Ramprasad Sampath; Curtis Smith; Tony Koonce

    2014-09-01

    Computers have been used for 3D modeling and simulation, but only recently have computational resources been able to give realistic results in a reasonable time frame for large complex models. This report addressed the methods, techniques, and resources used to develop a prototype for using 3D modeling and simulation engine to improve risk analysis and evaluate reactor structures and components for a given scenario. The simulations done for this evaluation were focused on external events, specifically tsunami floods, for a hypothetical nuclear power facility on a coastline.

  4. The Gravity-Probe-B relativity gyroscope experiment - Development of the prototype flight instrument

    Science.gov (United States)

    Turneaure, J. P.; Everitt, C. W. F.; Parkinson, B. W.; Bardas, D.; Breakwell, J. V.

    1989-01-01

    The Gravity-Probe-B relativity gyroscope experiment (GP-B) will measure the geodetic and frame-dragging precession rates of gyroscopes in a 650 km high polar orbit about the earth. The goal is to measure these two effects, which are predicted by Einstein's General Theory of Relativity, to 0.01 percent (geodetic) and 1 percent (frame-dragging). This paper presents the development progress for full-size prototype flight hardware including the gyroscopes, gyro readout and magnetic shielding system, and an integrated ground test instrument.

  5. Development of prototype liquid scintillator system for monitoring liquid radioactive waste

    International Nuclear Information System (INIS)

    Nam, Uk Won; Seon, Kwang Il; Kong, Kyoung Nam; Kim, Chang Kyu; Lee, Dong Myung; Lee, Sang Kook

    2003-01-01

    A prototype liquid scillatillator system for measurement of multiple beta-labeled mixtures was developed and its characteristic was investigated. The signal processing system consists of two photomultiplier tubes and the coincident count circuit. The characteristic of the system was analyzed using 4 beta-labeled samples ( 3 H, 14 C, 36 Cl and 90 Sr). Beta spectra from the samples were obtained without radiation shielding, and the detection limits for each nuclides were estimated based on the spectra. The estimated detection limits were compared to the legal regulation values. It is found that the liquid radioactive nuclides are detectable well below the legal regulation values

  6. EasyInterface: A toolkit for rapid development of GUIs for research prototype tools

    OpenAIRE

    Doménech, Jesús; Genaim, Samir; Johnsen, Einar Broch; Schlatte, Rudolf

    2017-01-01

    In this paper we describe EasyInterface, an open-source toolkit for rapid development of web-based graphical user interfaces (GUIs). This toolkit addresses the need of researchers to make their research prototype tools available to the community, and integrating them in a common environment, rapidly and without being familiar with web programming or GUI libraries in general. If a tool can be executed from a command-line and its output goes to the standard output, then in few minutes one can m...

  7. DEVELOPMENT OF A LOW COST INFERENTIAL NATURAL GAS ENERGY FLOW RATE PROTOTYPE RETROFIT MODULE

    Energy Technology Data Exchange (ETDEWEB)

    E. Kelner; D. George; T. Morrow; T. Owen; M. Nored; R. Burkey; A. Minachi

    2005-05-01

    In 1998, Southwest Research Institute began a multi-year project to develop a working prototype instrument module for natural gas energy measurement. The module will be used to retrofit a natural gas custody transfer flow meter for energy measurement, at a cost an order of magnitude lower than a gas chromatograph. Development and evaluation of the prototype energy meter in 2002-2003 included: (1) refinement of the algorithm used to infer properties of the natural gas stream, such as heating value; (2) evaluation of potential sensing technologies for nitrogen content, improvements in carbon dioxide measurements, and improvements in ultrasonic measurement technology and signal processing for improved speed of sound measurements; (3) design, fabrication and testing of a new prototype energy meter module incorporating these algorithm and sensor refinements; and (4) laboratory and field performance tests of the original and modified energy meter modules. Field tests of the original energy meter module have provided results in close agreement with an onsite gas chromatograph. The original algorithm has also been tested at a field site as a stand-alone application using measurements from in situ instruments, and has demonstrated its usefulness as a diagnostic tool. The algorithm has been revised to use measurement technologies existing in the module to measure the gas stream at multiple states and infer nitrogen content. The instrumentation module has also been modified to incorporate recent improvements in CO{sub 2} and sound speed sensing technology. Laboratory testing of the upgraded module has identified additional testing needed to attain the target accuracy in sound speed measurements and heating value.

  8. Developments towards the technical design and prototype evaluation of the anti PANDA Endcap Disc DIRC

    Energy Technology Data Exchange (ETDEWEB)

    Etzelmueller, Erik

    2017-04-15

    The envisaged physics program of the PANDA (antiProton ANnihilation at Darmstadt) experiment at the future Facility for Antiproton and Ion Research (FAIR) requires excellent particle identification over the full solid angle. The Endcap Disc DIRC (EDD) will cover forward polar angles between 5 and 22 and is one of three dedicated subdetectors for the identification of charged hadrons and the separation of pions and kaons in particular. DIRC stands for Detection of Internally Reflected Cherenkov light and implies that the emitted Cherenkov photons are trapped inside the radiator by total internal reflection. The central part of each DIRC detector is its optical system which is responsible for a low-loss and angle-preserving transport of the Cherenkov photons. The work at hand experimentally addresses several objectives in connection with the optical components and the system as a whole. Radiator prototypes were evaluated with high precision and adapted specifications were identified based on the results. The imaging performance of the Focusing Elements (FELs) was verified and different options regarding the coupling of the individual components were evaluated. In addition a radiation hardness study of a new fused silica material provided an insight into the long term behavior of induced defects and confirmed the material to be suitable for high energy physics experiments. A conceptual design for the mechanical integration was developed featuring a rigid optical system which is mounted into a cross-like structure. In this context the spatial constrains for the holding structure and the FELs were identified and an assembly procedure was developed. The existing prototype was revised and newly developed concepts were integrated and tested. Furthermore a data analysis of an earlier prototype test at a mixed hadron beam at CERN was carried out. It was the first evaluation of an EDD prototype which consisted of optical components made of fused silica only and had highly

  9. Development work for the manufacture of a blanket shield prototype for ITER

    International Nuclear Information System (INIS)

    Boireau, B.; Boudot, C.; Cottin, A.; Lorenzetto, P.; Jacquinot, F.; Bucci, P.; Gillia, O.; Vidotto, F.

    2006-01-01

    In the frame of the blanket development for ITER, an R-and-D programme was implemented for the manufacture of a shield prototype by powder Hot Isostatic Pressing (HIPping). The shield consists of a Stainless steel forged block drilled and machined, at the back of which 3D bent tubes are HIPped inside a powder layer. This paper describes the development work through the manufacturing of several mock ups that leads us to be confident for the shield prototype manufacturing. The paper is divided into 2 parts, the first one related to the machining development and validation, the second one relating to the HIP development and validation. A partial full scale mock up for the machining development (machined PFSMU) was manufactured with no particular problems, all the main identified difficulties in machining like deep drilling and castellation machining where overcome and the mock up was conform to the specification. The manufacturing of a HIPped PFSMU for the HIP development was done after the manufacturing of smaller mock-ups each representing a particular detailed design point. A computer simulation work gave us some design recommendation, and the compared analysis of the numerical simulation and experimental results lead us to predict the distortions on the PFSMU HIPped mock up. The HIPped distortions that were the main uncertainty were assessed through small mock ups and bigger one. The mechanical characteristics of the joints are conform to the specification. Associated to the mock up manufacturing is the ultrasonic test development which consists in designing and manufacturing a miniaturized probe travelling inside the bent tube after the HIP cycle to examine the joint tube / powder among others. This ultrasonic development allowed the examination of the HIPped PFSMU mock up that concluded this development work. (author)

  10. The development of an autonomous rendezvous and docking simulation using rapid integration and prototyping technology

    Science.gov (United States)

    Shackelford, John H.; Saugen, John D.; Wurst, Michael J.; Adler, James

    1991-01-01

    A generic planar 3 degree of freedom simulation was developed that supports hardware in the loop simulations, guidance and control analysis, and can directly generate flight software. This simulation was developed in a small amount of time utilizing rapid prototyping techniques. The approach taken to develop this simulation tool, the benefits seen using this approach to development, and on-going efforts to improve and extend this capability are described. The simulation is composed of 3 major elements: (1) Docker dynamics model, (2) Dockee dynamics model, and (3) Docker Control System. The docker and dockee models are based on simple planar orbital dynamics equations using a spherical earth gravity model. The docker control system is based on a phase plane approach to error correction.

  11. Brain-muscle-computer interface: mobile-phone prototype development and testing.

    Science.gov (United States)

    Vernon, Scott; Joshi, Sanjay S

    2011-07-01

    We report prototype development and testing of a new mobile-phone-based brain-muscle-computer interface for severely paralyzed persons, based on previous results from our group showing that humans may actively create specified power levels in two separate frequency bands of a single surface electromyography (sEMG) signal. EMG activity on the surface of a single face muscle site (auricularis superior) is recorded with a standard electrode. This analog electrical signal is imported into an Android-based mobile phone and digitized via an internal A/D converter. The digital signal is split, and then simultaneously filtered with two band-pass filters to extract total power within two separate frequency bands. The user-modulated power in each frequency band serves as two separate control channels for machine control. After signal processing, the Android phone sends commands to external devices via a Bluetooth interface. Users are trained to use the device via visually based operant conditioning, with simple cursor-to-target activities on the phone screen. The mobile-phone prototype interface is formally evaluated on a single advanced Spinal Muscle Atrophy subject, who has successfully used the interface in his home in evaluation trials and for remote control of a television. Development of this new device will not only guide future interface design for community use, but will also serve as an information technology bridge for in situ data collection to quantify human sEMG manipulation abilities for a relevant population.

  12. Development of prototype induced-fission-based Pu accountancy instrument for safeguards applications.

    Science.gov (United States)

    Seo, Hee; Lee, Seung Kyu; An, Su Jung; Park, Se-Hwan; Ku, Jeong-Hoe; Menlove, Howard O; Rael, Carlos D; LaFleur, Adrienne M; Browne, Michael C

    2016-09-01

    Prototype safeguards instrument for nuclear material accountancy (NMA) of uranium/transuranic (U/TRU) products that could be produced in a future advanced PWR fuel processing facility has been developed and characterized. This is a new, hybrid neutron measurement system based on fast neutron energy multiplication (FNEM) and passive neutron albedo reactivity (PNAR) methods. The FNEM method is sensitive to the induced fission rate by fast neutrons, while the PNAR method is sensitive to the induced fission rate by thermal neutrons in the sample to be measured. The induced fission rate is proportional to the total amount of fissile material, especially plutonium (Pu), in the U/TRU product; hence, the Pu amount can be calibrated as a function of the induced fission rate, which can be measured using either the FNEM or PNAR method. In the present study, the prototype system was built using six (3)He tubes, and its performance was evaluated for various detector parameters including high-voltage (HV) plateau, efficiency profiles, dead time, and stability. The system's capability to measure the difference in the average neutron energy for the FNEM signature also was evaluated, using AmLi, PuBe, (252)Cf, as well as four Pu-oxide sources each with a different impurity (Al, F, Mg, and B) and producing (α,n) neutrons with different average energies. Future work will measure the hybrid signature (i.e., FNEM×PNAR) for a Pu source with an external interrogating neutron source after enlarging the cavity size of the prototype system to accommodate a large-size Pu source (~600g Pu). Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Antiviral Information Management System (AIMS): a prototype for operational innovation in drug development.

    Science.gov (United States)

    Jadhav, Pravin R; Neal, Lauren; Florian, Jeff; Chen, Ying; Naeger, Lisa; Robertson, Sarah; Soon, Guoxing; Birnkrant, Debra

    2010-09-01

    This article presents a prototype for an operational innovation in knowledge management (KM). These operational innovations are geared toward managing knowledge efficiently and accessing all available information by embracing advances in bioinformatics and allied fields. The specific components of the proposed KM system are (1) a database to archive hepatitis C virus (HCV) treatment data in a structured format and retrieve information in a query-capable manner and (2) an automated analysis tool to inform trial design elements for HCV drug development. The proposed framework is intended to benefit drug development by increasing efficiency of dose selection and improving the consistency of advice from US Food and Drug Administration (FDA). It is also hoped that the framework will encourage collaboration among FDA, industry, and academic scientists to guide the HCV drug development process using model-based quantitative analysis techniques.

  14. A Multi-Year Plan for Research, Development, and Prototype Testing of Standard Modular Hydropower Technology

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Brennan T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Welch, Tim [U.S. Department of Energy (DOE), Washington, DC (United States).Office of Energy Efficiency and Renewable Energy (EERE); Witt, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stewart, Kevin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lee, Kyutae [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DeNeale, Scott T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevelhimer, Mark S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burress, Timothy A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pracheil, Brenda M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pries, Jason L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); O' Connor, Patrick W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Curd, Shelaine L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ekici, Kivanc [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Papanicolaou, Thanos [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Tsakiris, Achilleas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Kutz, Benjamin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Bishop, Norm [Knight Piesold, Denver, CO (United States); McKeown, Alisha [McKeown and Associates, Moberly, MO (United States); Rabon, Daniel [U.S. Department of Energy (DOE), Washington, DC (United States).Office of Energy Efficiency and Renewable Energy (EERE); Zimmerman, Gregory P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Uria Martinez, Rocio [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McManamay, Ryan A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-02-01

    The Multi-Year Plan for Research, Development, and Prototype Testing of Standard Modular Hydropower Technology (MYRP) presents a strategy for specifying, designing, testing, and demonstrating the efficacy of standard modular hydropower (SMH) as an environmentally compatible and cost-optimized renewable electricity generation technology. The MYRP provides the context, background, and vision for testing the SMH hypothesis: if standardization, modularity, and preservation of stream functionality become essential and fully realized features of hydropower technology, project design, and regulatory processes, they will enable previously unrealized levels of new project development with increased acceptance, reduced costs, increased predictability of outcomes, and increased value to stakeholders. To achieve success in this effort, the MYRP outlines a framework of stakeholder-validated criteria, models, design tools, testing facilities, and assessment protocols that will facilitate the development of next-generation hydropower technologies.

  15. Cathode materials review

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Claus, E-mail: danielc@ornl.gov; Mohanty, Debasish, E-mail: danielc@ornl.gov; Li, Jianlin, E-mail: danielc@ornl.gov; Wood, David L., E-mail: danielc@ornl.gov [Oak Ridge National Laboratory, 1 Bethel Valley Road, MS6472 Oak Ridge, TN 37831-6472 (United States)

    2014-06-16

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO{sub 2} cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  16. Cathode materials review

    International Nuclear Information System (INIS)

    Daniel, Claus; Mohanty, Debasish; Li, Jianlin; Wood, David L.

    2014-01-01

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO 2 cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research

  17. Cathode materials review

    Science.gov (United States)

    Daniel, Claus; Mohanty, Debasish; Li, Jianlin; Wood, David L.

    2014-06-01

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO2 cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  18. Architectural prototyping

    DEFF Research Database (Denmark)

    Bardram, Jakob Eyvind; Christensen, Henrik Bærbak; Hansen, Klaus Marius

    2004-01-01

    A major part of software architecture design is learning how specific architectural designs balance the concerns of stakeholders. We explore the notion of "architectural prototypes", correspondingly architectural prototyping, as a means of using executable prototypes to investigate stakeholders...

  19. Development of a Prototype System for Archiving Integrative/Hybrid Structure Models of Biological Macromolecules.

    Science.gov (United States)

    Vallat, Brinda; Webb, Benjamin; Westbrook, John D; Sali, Andrej; Berman, Helen M

    2018-04-09

    Essential processes in biology are carried out by large macromolecular assemblies, whose structures are often difficult to determine by traditional methods. Increasingly, researchers combine measured data and computed information from several complementary methods to obtain "hybrid" or "integrative" structural models of macromolecules and their assemblies. These integrative/hybrid (I/H) models are not archived in the PDB because of the absence of standard data representations and processing mechanisms. Here we present the development of data standards and a prototype system for archiving I/H models. The data standards provide the definitions required for representing I/H models that span multiple spatiotemporal scales and conformational states, as well as spatial restraints derived from different experimental techniques. Based on these data definitions, we have built a prototype system called PDB-Dev, which provides the infrastructure necessary to archive I/H structural models. PDB-Dev is now accepting structures and is open to the community for new submissions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Harnessing scientific literature reports for pharmacovigilance. Prototype software analytical tool development and usability testing.

    Science.gov (United States)

    Sorbello, Alfred; Ripple, Anna; Tonning, Joseph; Munoz, Monica; Hasan, Rashedul; Ly, Thomas; Francis, Henry; Bodenreider, Olivier

    2017-03-22

    We seek to develop a prototype software analytical tool to augment FDA regulatory reviewers' capacity to harness scientific literature reports in PubMed/MEDLINE for pharmacovigilance and adverse drug event (ADE) safety signal detection. We also aim to gather feedback through usability testing to assess design, performance, and user satisfaction with the tool. A prototype, open source, web-based, software analytical tool generated statistical disproportionality data mining signal scores and dynamic visual analytics for ADE safety signal detection and management. We leveraged Medical Subject Heading (MeSH) indexing terms assigned to published citations in PubMed/MEDLINE to generate candidate drug-adverse event pairs for quantitative data mining. Six FDA regulatory reviewers participated in usability testing by employing the tool as part of their ongoing real-life pharmacovigilance activities to provide subjective feedback on its practical impact, added value, and fitness for use. All usability test participants cited the tool's ease of learning, ease of use, and generation of quantitative ADE safety signals, some of which corresponded to known established adverse drug reactions. Potential concerns included the comparability of the tool's automated literature search relative to a manual 'all fields' PubMed search, missing drugs and adverse event terms, interpretation of signal scores, and integration with existing computer-based analytical tools. Usability testing demonstrated that this novel tool can automate the detection of ADE safety signals from published literature reports. Various mitigation strategies are described to foster improvements in design, productivity, and end user satisfaction.

  1. Development of novel hybrid poly(l-lactide)/chitosan scaffolds using the rapid freeze prototyping technique

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, N; Chen, X B [Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, Saskatchewan (Canada); Li, M G [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Saskatchewan (Canada); Cooper, D, E-mail: xbc719@mail.usask.ca [Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Saskatchewan (Canada)

    2011-09-15

    Engineered scaffolds have been shown to be critical to various tissue engineering applications. This paper presents the development of a novel three-dimensional scaffold made from a mixture of chitosan microspheres (CMs) and poly(l-lactide) by means of the rapid freeze prototyping (RFP) technique. The CMs were used to encapsulate bovine serum albumin (BSA) and improve the scaffold mechanical properties. Experiments to examine the BSA release were carried out; the BSA release could be controlled by adjusting the crosslink degree of the CMs and prolonged after the CMs were embedded into the PLLA scaffolds, while the examination of the mechanical properties of the scaffolds illustrates that they depend on the ratio of CMs to PLLA in the scaffolds as well as the cryogenic temperature used in the RFP fabrication process. The chemical characteristics of the PLLA/chitosan scaffolds were evaluated by Fourier transform infrared (FTIR) spectroscopy. The morphological and pore structure of the scaffolds were also examined by scanning electron microscopy and micro-tomography. The results obtained show that the scaffolds have higher porosity and enhanced pore size distribution compared to those fabricated by the dispensing-based rapid prototyping technique. This study demonstrates that the novel scaffolds have not only enhanced porous structure and mechanical properties but also showed the potential to preserve the bioactivities of the biomolecules and to control the biomolecule distribution and release rate.

  2. Development of a prototype Typhoon Risk Model over the Korean Peninsula

    Science.gov (United States)

    Kim, K. Y.; Cocke, S.; Shin, D. W.; CHOI, M.; Kwon, J.

    2016-12-01

    Risk can be defined as probability of a given hazard of a given level causing a particular level of loss of damage (Alexander, 2000). Risk management is important for mitigation and developing plans for emergencies. More effective risk management strategies can help reduce potential losses from natural disasters like typhoon, floods, earthquakes, and so on. We are developing a prototype typhoon risk model to assess the current and potentially future hazard due to typhoons in the Western Pacific. To develop the typhoon risk model, a variety of sources of data over Korea are used such as population, damage to buildings, agriculture, ships, etc. The model is based on proven concepts used in catastrophe models that have been used in the U.S. and other regions of the world. Recently, the sea surface temperatures where typhoons have occurred have tended to increase. According to recent studies of global warming, the intensity of typhoons could increase, and the frequency of typhoons may decrease in the future climate. The prototype risk model can help us determine the change in risk as a consequence of the change in typhoon activity. We focus on Korea and other regions of interest to Korean insurers, re-insurers, and related industries. The model can potentially be coupled to various damage models or emergency management systems for planning and mitigation. In addition, the assessment would be useful for emergency planners, coastal community planners, and private and governmental insurance programs. This work was funded by the Korea Meteorological Administration Research and Development Program under Grant KMIPA2016-8030.

  3. Prototype Development of a Tradespace Analysis Tool for Spaceflight Medical Resources.

    Science.gov (United States)

    Antonsen, Erik L; Mulcahy, Robert A; Rubin, David; Blue, Rebecca S; Canga, Michael A; Shah, Ronak

    2018-02-01

    The provision of medical care in exploration-class spaceflight is limited by mass, volume, and power constraints, as well as limitations of available skillsets of crewmembers. A quantitative means of exploring the risks and benefits of inclusion or exclusion of onboard medical capabilities may help to inform the development of an appropriate medical system. A pilot project was designed to demonstrate the utility of an early tradespace analysis tool for identifying high-priority resources geared toward properly equipping an exploration mission medical system. Physician subject matter experts identified resources, tools, and skillsets required, as well as associated criticality scores of the same, to meet terrestrial, U.S.-specific ideal medical solutions for conditions concerning for exploration-class spaceflight. A database of diagnostic and treatment actions and resources was created based on this input and weighed against the probabilities of mission-specific medical events to help identify common and critical elements needed in a future exploration medical capability. Analysis of repository data demonstrates the utility of a quantitative method of comparing various medical resources and skillsets for future missions. Directed database queries can provide detailed comparative estimates concerning likelihood of resource utilization within a given mission and the weighted utility of tangible and intangible resources. This prototype tool demonstrates one quantitative approach to the complex needs and limitations of an exploration medical system. While this early version identified areas for refinement in future version development, more robust analysis tools may help to inform the development of a comprehensive medical system for future exploration missions.Antonsen EL, Mulcahy RA, Rubin D, Blue RS, Canga MA, Shah R. Prototype development of a tradespace analysis tool for spaceflight medical resources. Aerosp Med Hum Perform. 2018; 89(2):108-114.

  4. Development and prototype testing of MgCl 2 /graphite foam latent heat thermal energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Dileep; Yu, Wenhua; Zhao, Weihuan; Kim, Taeil; France, David M.; Smith, Roger K.

    2018-01-01

    Composites of graphite foam infiltrated with a magnesium chloride phase-change material have been developed as high-temperature thermal energy storage media for concentrated solar power applications. This storage medium provides a high thermal energy storage density, a narrow operating temperature range, and excellent heat transfer characteristics. In this study, experimental investigations were conducted on laboratory-scale prototypes with magnesium chloride/graphite foam composite as the latent heat thermal energy storage system. Prototypes were designed and built to monitor the melt front movement during the charging/discharging tests. A test loop was built to ensure the charging/discharging of the prototypes at temperatures > 700 degrees C. Repeated thermal cycling experiments were carried out on the fabricated prototypes, and the experimental temperature profiles were compared to the predicted results from numerical simulations using COMSOL Multiphysics software. Experimental results were found to be in good agreement with the simulations to validate the thermal models.

  5. Five-Factor Model personality disorder prototypes: a review of their development, validity, and comparison to alternative approaches.

    Science.gov (United States)

    Miller, Joshua D

    2012-12-01

    In this article, the development of Five-Factor Model (FFM) personality disorder (PD) prototypes for the assessment of DSM-IV PDs are reviewed, as well as subsequent procedures for scoring individuals' FFM data with regard to these PD prototypes, including similarity scores and simple additive counts that are based on a quantitative prototype matching methodology. Both techniques, which result in very strongly correlated scores, demonstrate convergent and discriminant validity, and provide clinically useful information with regard to various forms of functioning. The techniques described here for use with FFM data are quite different from the prototype matching methods used elsewhere. © 2012 The Author. Journal of Personality © 2012, Wiley Periodicals, Inc.

  6. Low-Cost Rescue Robot for Disaster Management in a Developing Country: Development of a Prototype Using Locally Available Technology

    Science.gov (United States)

    Mahmud, Faisal; Hossain, S. G. M.; Bin, Jobair

    2010-01-01

    The use of robots in different fields is common and effective in developed countries. In case of incident management or emergency rescue after a disaster, robots are often used to lessen the human effort where it is either impossible or life-threatening for rescuers. Though developed countries can afford robotic-effort for pro-disaster management, the scenario is totally opposite for developing and under-developed countries to engage such a machine-help due to high cost of the machines and high maintenance cost as well. In this research paper, the authors proposed a low-cost "Rescue-Robot" for pro-disaster management which can overcome the budget-constraints as well as fully capable of rescue purposes for incident management. Here, all the research works were performed in Bangladesh - a developing country in South Asia. A disaster struck structure was chosen and a thorough survey was performed to understand the real-life environment for the prototype. The prototype was developed considering the results of this survey and it was manufactured using all locally available components and facilities.

  7. Design, development, and validation of a segment support actuator for the prototype segmented mirror telescope

    Science.gov (United States)

    Deshmukh, Prasanna Gajanan; Mandal, Amaresh; Parihar, Padmakar S.; Nayak, Dayananda; Mishra, Deepta Sundar

    2018-01-01

    Segmented mirror telescopes (SMT) are built using several small hexagonal mirrors positioned and aligned by the three actuators and six edge sensors per segment to maintain the shape of the primary mirror. The actuators are responsible for maintaining and tracking the mirror segments to the desired position, in the presence of external disturbances introduced by wind, vibration, gravity, and temperature. The present paper describes our effort to develop a soft actuator and the actuator controller for prototype SMT at Indian Institute of Astrophysics, Bangalore. The actuator designed, developed, and validated is a soft actuator based on the voice coil motor and flexural elements. It is designed for the range of travel of ±1.5 mm and the force range of 25 N along with an offloading mechanism to reduce the power consumption. A precision controller using a programmable system on chip (PSoC 5Lp) and a customized drive board has also been developed for this actuator. The close loop proportional-integral-derivative (PID) controller implemented in the PSoC gets position feedback from a high-resolution linear optical encoder. The optimum PID gains are derived using relay tuning method. In the laboratory, we have conducted several experiments to test the performance of the prototype soft actuator as well as the controller. We could achieve 5.73- and 10.15-nm RMS position errors in the steady state as well as tracking with a constant speed of 350 nm/s, respectively. We also present the outcome of various performance tests carried out when off-loader is in action as well as the actuator is subjected to dynamic wind loading.

  8. [Newly developed monitor for IVR: liquid crystal display (LCD) replaced with cathode ray tube (CRT)].

    Science.gov (United States)

    Ichida, Takao; Hosogai, Minoru; Yokoyama, Kouji; Ogawa, Takayoshi; Okusako, Kenji; Shougaki, Masachika; Masai, Hironao; Yamada, Eiji; Okuyama, Kazuo; Hatagawa, Masakatsu

    2004-09-01

    For physicians who monitor images during interventional radiology (VR), we have built and been using a system that employs a liquid crystal display (LCD) instead of the conventional cathode ray tube (CRT). The system incorporates a ceiling-suspension-type monitor (three-display monitor) with an LCD on each of the three displays for the head and abdominal regions and another ceiling-suspension-type monitor (5-display monitor) with an LCD on each display for the cardiac region. As these monitors are made to be thin and light in weight, they can be placed in a high position in the room, thereby saving space and allowing for more effective use of space in the X-ray room. The system has also improved the efficiency of operators in the IVR room. The three-display folding mechanism allows the displays to be viewed from multiple directions, thereby improving the environment so that the performance of IVR can be observed.

  9. Development and testing of anode-supported solid oxide fuel cells with slurry-coated electrolyte and cathode

    Energy Technology Data Exchange (ETDEWEB)

    Muccillo, R.; Muccillo, E.N.S.; Fonseca, F.C.; Franca, Y.V.; Porfirio, T.C. [Centro de Ciencia e Tecnologia de Materiais, Instituto de Pesquisas Energeticas e Nucleares, C.P. 11049, Pinheiros, S. Paulo, SP 05422-970 (Brazil); de Florio, D.Z. [Instituto de Quimica, UNESP, R. Prof. Francisco Degni s/n, Araraquara, SP 14801-970 (Brazil); Berton, M.A.C.; Garcia, C.M. [Instituto de Tecnologia para o Desenvolvimento, DPMA, C.P. 19067, Curitiba, PR 81531-980 (Brazil)

    2006-06-01

    A laboratory setup was designed and put into operation for the development of solid oxide fuel cells (SOFCs). The whole project consisted of the preparation of the component materials: anode, cathode and electrolyte, and the buildup of a hydrogen leaking-free sample chamber with platinum leads and current collectors for measuring the electrochemical properties of single SOFCs. Several anode-supported single SOFCs of the type (ZrO{sub 2}:Y{sub 2}O{sub 3}+NiO) thick anode/(ZrO{sub 2}:Y{sub 2}O{sub 3}) thin electrolyte/(La{sub 0.65}Sr{sub 0.35}MnO{sub 3}+ZrO{sub 2}:Y{sub 2}O{sub 3}) thin cathode have been prepared and tested at 700 and 800{sup o}C after in situ H{sub 2} anode reduction. The main results show that the slurry-coating method resulted in single-cells with good reproducibility and reasonable performance, suggesting that this method can be considered for fabrication of SOFCs. (author)

  10. Research and development of a NYNEX switched multi-megabit data service prototype system

    Science.gov (United States)

    Maman, K. H.; Haines, Robert; Chatterjee, Samir

    1991-02-01

    Switched Multi-megabit Data Service (SMDS) is a proposed high-speed packet-switched service which will support broadband applications such as Local Area Network (LAN) interconnections across a metropolitan area and beyond. This service is designed to take advantage of evolving Metropolitan Area Network (MAN) standards and technology which will provide customers with 45-mbps and 1 . 5-mbps access to high-speed public data communications networks. This paper will briefly discuss SMDS and review its architecture including the Subscriber Network Interface (SNI) and the SMDS Interface Protocol (SIP). It will review the fundamental features of SMDS such as address screening addressing scheme and access classes. Then it will describe the SMDS prototype system developed in-house by NYNEX Science Technology.

  11. Practice of knowledge management in Prototype and Plant Development Center (PDC)

    International Nuclear Information System (INIS)

    Mohamad Safuan Sulaiman; Rapieh Aminuddin; Rosli Darmawan; Mohd Ashhar Khalid

    2007-01-01

    As reflecting the evolvement and movement of world economy direction, Malaysia move one step a head towards knowledge based economy (K-Economy). The movement indirectly changes the Malaysian Nuclear Agency (Nuclear Malaysia) environment to contribute to the K-Economy in the field of science and technology. Therefore, the practice of knowledge management is slowly introduced to the Nuclear Malaysia community to support the K-Economy. This paper describes the detail of the practice of knowledge management at macro and micro level in an organization. The Prototype and Plant Development Center(PDC) under the Technical Support Division, Technical Service Program has been chosen to be the case study in implementing the practice of knowledge management in Nuclear Malaysia. The main objective of this paper is to introduce the right practice of Knowledge management in an organization and PDC as among the first case for this purpose. (Author)

  12. Development and characterization of a DEPFET pixel prototype system for the ILC vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Kohrs, Robert

    2008-09-15

    For the future TeV-scale linear collider ILC (International Linear Collider) a vertex detector of unprecedented performance is needed to fully exploit its physics potential. By incorporating a field effect transistor into a fully depleted sensor substrate the DEPFET (Depleted Field Effect Transistor) sensor combines radiation detection and in-pixel amplification. For the operation at a linear collider the excellent noise performance of DEPFET pixels allows building very thin detectors with a high spatial resolution and a low power consumption. With this thesis a prototype system consisting of a 64 x 128 pixels sensor, dedicated steering and readout ASICs and a data acquisition board has been developed and successfully operated in the laboratory and under realistic conditions in beam test environments at DESY and CERN. A DEPFET matrix has been successfully read out using the on-chip zero-suppression of the readout chip CURO 2. The results of the system characterization and beam test results are presented. (orig.)

  13. A Study on the Effects of Heavy Backpack and Development of a Preventative Prototype

    Directory of Open Access Journals (Sweden)

    F. M. A. Hossain

    2017-01-01

    Full Text Available Posture is a bigger concern than most think. With growing workload for school children, the weight of this issue is increasing every day. It can not only affect a child in the present but also have long-term effects on their body and render their spine vulnerable to injuries. Therefore the solutions can be either to decrease their workload, that is, decrease the weight of their backpack, or to constantly guide them to a better posture for the betterment of their spinal shape and thus their health. The aim of this paper is to find which part of the spine is affected the most by the heavy load and develop a prototype: a monitoring system that is effective in guiding a child to constantly keep their posture in check and is also simple enough to be worn every day.

  14. Development of prototype luminosity detector modules for future experiments on linear colliders

    CERN Document Server

    AUTHOR|(CDS)2081248; Idzik, Marek

    The main objective of this dissertation is to develop and validate the prototype module of the LumiCal luminosity detector. The dissertation presents the works executed from the first detector concept, through all subsequent R&D stages, ending with the test beam results obtained using the complete detector module. Firstly, the linear electron positron colliders and planned experiments are introduced, together with their role in our understanding of the basis of matter and sensing for the New Physics. The signal extraction from radiation sensors and further signal processing techniques are discussed in chapter 2. Besides the commonly accepted techniques of amplitude and time measurements, a novel readout implementation, utilizing digital signal processing and deconvolution principle, is proposed, and its properties are analyzed in details. The architecture, design, and measurements of the LumiCal readout chain components are presented in chapter 3. A dedicated test setups prepared for their parameterizatio...

  15. Chapter 43: Assessment of NE Greenland: Prototype for development of Circum-ArcticResource Appraisal methodology

    Science.gov (United States)

    Gautier, D.L.; Stemmerik, L.; Christiansen, F.G.; Sorensen, K.; Bidstrup, T.; Bojesen-Koefoed, J. A.; Bird, K.J.; Charpentier, R.R.; Houseknecht, D.W.; Klett, T.R.; Schenk, C.J.; Tennyson, Marilyn E.

    2011-01-01

    Geological features of NE Greenland suggest large petroleum potential, as well as high uncertainty and risk. The area was the prototype for development of methodology used in the US Geological Survey (USGS) Circum-Arctic Resource Appraisal (CARA), and was the first area evaluated. In collaboration with the Geological Survey of Denmark and Greenland (GEUS), eight "assessment units" (AU) were defined, six of which were probabilistically assessed. The most prospective areas are offshore in the Danmarkshavn Basin. This study supersedes a previous USGS assessment, from which it differs in several important respects: oil estimates are reduced and natural gas estimates are increased to reflect revised understanding of offshore geology. Despite the reduced estimates, the CARA indicates that NE Greenland may be an important future petroleum province. ?? 2011 The Geological Society of London.

  16. Development of a cutter-chipper prototype for tree stands; Pystypuuston katkaisuhakettimen proto

    Energy Technology Data Exchange (ETDEWEB)

    Polus, P [Tmi P. Polus, Raahe (Finland)

    1997-12-01

    Collection of chips and energy wood with conventional methods involves too many operations and hence results in a too high price of chips. The aim of the project was to develop a cutter-chipper suitable for chipping energy and pulp wood from tree stands. This equipment cuts and chips growing trees with branches and tops at site. Many stages involved in chipping would be eliminated and hence the price of chips would be more competitive, for example, with that of peat. In preliminary experiments, the prototype operated as expected. The product chips were homogeneous, did not contain long fractions or branch bits, and the chip size was. The chips were moved into the container by a conveyor. The sale of manufacturing rights for the equipment is under consideration. (orig.)

  17. The Belle II DEPFET pixel vertex detector. Development of a full-scale module prototype

    International Nuclear Information System (INIS)

    Lemarenko, Mikhail

    2013-11-01

    The Belle II experiment, which will start after 2015 at the SuperKEKB accelerator in Japan, will focus on the precision measurement of the CP-violation mechanism and on the search for physics beyond the Standard Model. A new detection system with an excellent spatial resolution and capable of coping with considerably increased background is required. To address this challenge, a pixel detector based on DEPFET technology has been proposed. A new all silicon integrated circuit, called Data Handling Processor (DHP), is implemented in 65 nm CMOS technology. It is designed to steer the detector and preprocess the generated data. The scope of this thesis covers DHP tests and optimization as well the development of its test environment, which is the first Full-Scale Module Prototype of the DEPFET Pixel Vertex detector.

  18. Development and testing of prototype alpha waste incinerator off-gas systems

    International Nuclear Information System (INIS)

    Freed, E.J.; Becker, G.W.

    1982-01-01

    A test program is in progress at Savannah River Laboratory (SRL) to confirm and develop incinerator design technology for an SRP production Alpha Waste Incinerator (AWI) to be built in the mid-1980's. The Incinerator Components Test Facility (ICTF) is a full-scale (5 kg/h), electrically heated, controlled-air prototype incinerator built to burn nonradioactive solid waste. The incinerator has been operating successfully at SRL since March 1979 and has met or exceeded all design criteria. During the first 1-1/2 years of operation, liquid scrubbers were used to remove particulates and hydrochloric acid from the incinerator exhaust gases. A dry off-gas system is currently being tested to provide data to Savannah River Plant's proposed AWI

  19. Report on Performance of Prototype Dynatronix Power Supplies Developed Under a Phase I DOE SBIR

    International Nuclear Information System (INIS)

    Hoppe, Eric W.; Merriman, Jason H.

    2011-01-01

    The purpose of this study is to evaluate the prototype power supplies fabricated by Dynatronix, Inc. This project supports the advancement of electroforming capabilities to produce ultra-high purity copper. Ultra-high purity copper is an essential material used for a range of current and future fundamental nuclear physics programs such as the MAJORANA DEMONSTRATOR. The Mach 30 power supplies are a new design built to the specifications from the requirements of Pacific Northwest National Laboratory (PNNL) with regard to timing, voltage, current output, and the required tolerances. The parameters used in these tests were developed empirically over a number of years based on a combination of thermodynamic and kinetics of the electroplating process. The power supplies were operated in a typical cleanroom environment for the production electroforming at PNNL. The units that were received by PNNL in July, 2010 have performed satisfactorily and have demonstrated short term durability.

  20. Development of a Plastic Melt Waste Compactor for Space Missions Experiments and Prototype Design

    Science.gov (United States)

    Pace, Gregory; Wignarajah, Kanapathipillai; Pisharody, Suresh; Fisher, John

    2004-01-01

    This paper describes development at NASA Ames Research Center of a heat melt compactor that can be used on both near term and far term missions. Experiments have been performed to characterize the behavior of composite wastes that are representative of the types of wastes produced on current and previous space missions such as International Space Station, Space Shuttle, MIR and Skylab. Experiments were conducted to characterize the volume reduction, bonding, encapsulation and biological stability of the waste composite and also to investigate other key design issues such as plastic extrusion, noxious off-gassing and removal of the of the plastic waste product from the processor. The experiments provided the data needed to design a prototype plastic melt waste processor, a description of which is included in the paper.

  1. Recent developments with a prototype fan-beam optical CT scanner

    Science.gov (United States)

    Campbell, W. G.; Jirasek, A.; Wells, D.

    2013-06-01

    The latest design of a prototype fan-beam optical computed tomography scanner is presented. A new beam creation system consists of a 635 nm laser diode module with variable, DC voltage-controlled beam intensity. A change in scanner alignment allows for the elimination of ring artefacts caused by data corruption that is spaced symmetrically across the detector array. These artefacts, as well as a pair of streaking artefacts caused by flask seams, are removed in sinogram space. A flask registration technique has been developed that allows for accurate, reproducible dosimeter placement. Protocol investigations with gel dosimeters have indicated the importance of: i) proper cooling techniques during gel manufacture, and ii) scanning the dosimeter while it is at room temperature. Latest reconstructions of a normoxic polymer gel dosimeter are presented as an indicator of current system performance.

  2. Recent developments with a prototype fan-beam optical CT scanner

    International Nuclear Information System (INIS)

    Campbell, W G; Jirasek, A; Wells, D

    2013-01-01

    The latest design of a prototype fan-beam optical computed tomography scanner is presented. A new beam creation system consists of a 635 nm laser diode module with variable, DC voltage-controlled beam intensity. A change in scanner alignment allows for the elimination of ring artefacts caused by data corruption that is spaced symmetrically across the detector array. These artefacts, as well as a pair of streaking artefacts caused by flask seams, are removed in sinogram space. A flask registration technique has been developed that allows for accurate, reproducible dosimeter placement. Protocol investigations with gel dosimeters have indicated the importance of: i) proper cooling techniques during gel manufacture, and ii) scanning the dosimeter while it is at room temperature. Latest reconstructions of a normoxic polymer gel dosimeter are presented as an indicator of current system performance.

  3. Development and characterization of a DEPFET pixel prototype system for the ILC vertex detector

    International Nuclear Information System (INIS)

    Kohrs, Robert

    2008-09-01

    For the future TeV-scale linear collider ILC (International Linear Collider) a vertex detector of unprecedented performance is needed to fully exploit its physics potential. By incorporating a field effect transistor into a fully depleted sensor substrate the DEPFET (Depleted Field Effect Transistor) sensor combines radiation detection and in-pixel amplification. For the operation at a linear collider the excellent noise performance of DEPFET pixels allows building very thin detectors with a high spatial resolution and a low power consumption. With this thesis a prototype system consisting of a 64 x 128 pixels sensor, dedicated steering and readout ASICs and a data acquisition board has been developed and successfully operated in the laboratory and under realistic conditions in beam test environments at DESY and CERN. A DEPFET matrix has been successfully read out using the on-chip zero-suppression of the readout chip CURO 2. The results of the system characterization and beam test results are presented. (orig.)

  4. Development of a low-cost, 11 µm spectral domain optical coherence tomography surface profilometry prototype

    Science.gov (United States)

    Suliali, Nyasha J.; Baricholo, Peter; Neethling, Pieter H.; Rohwer, Erich G.

    2017-06-01

    A spectral-domain Optical Coherence Tomography (OCT) surface profilometry prototype has been developed for the purpose of surface metrology of optical elements. The prototype consists of a light source, spectral interferometer, sample fixture and software currently running on Microsoft® Windows platforms. In this system, a broadband light emitting diode beam is focused into a Michelson interferometer with a plane mirror as its sample fixture. At the interferometer output, spectral interferograms of broadband sources were measured using a Czerny-Turner mount monochromator with a 2048-element complementary metal oxide semiconductor linear array as the detector. The software performs importation and interpolation of interferometer spectra to pre-condition the data for image computation. One dimensional axial OCT images were computed by Fourier transformation of the measured spectra. A first reflection surface profilometry (FRSP) algorithm was then formulated to perform imaging of step-function-surfaced samples. The algorithm re-constructs two dimensional colour-scaled slice images by concatenation of 21 and 13 axial scans to form a 10 mm and 3.0 mm slice respectively. Measured spectral interferograms, computed interference fringe signals and depth reflectivity profiles were comparable to simulations and correlated to displacements of a single reflector linearly translated about the arm null-mismatch point. Surface profile images of a double-step-function-surfaced sample, embedded with inclination and crack detail were plotted with an axial resolution of 11 μm. The surface shape, defects and misalignment relative to the incident beam were detected to the order of a micron, confirming high resolution of the developed system as compared to electro-mechanical surface profilometry techniques.

  5. Development of a prototype for dissolved CO2 rapid measurement and preliminary tests

    Science.gov (United States)

    Li, Meng; Guo, Jinjia; Zhang, Zhihao; Luo, Zhao; Qin, Chuan; Zheng, Ronger

    2017-10-01

    The measurements of dissolved CO2 in seawater is of great significance for the study of global carbon cycle. At present, the commercial sensors used for dissolved CO2 measurements are mostly equipped with permeable membranes for the purpose of gas-liquid separation, with the advantages of easy operation, low cost, etc.. However, most of these devices measure CO2 after reaching gas equilibrium, so it takes a few minutes to respond, which limited its applications in rapid measurements. In this paper, a set of prototype was developed for the rapid measurements of dissolved CO2. The system was built basing the direct absorption TDLAS. To detect the CO2 absorption line located at 4991.26 cm-1 , a fiber-coupled DFB laser operating at 2004 nm was selected as the light source. A Herriott type multi-pass cavity with an effective optical path length of 10 m and an inner volume of 90 mL was used for absorption measurements. A detection limit of 26 μatm can be obtained with this compact cavity. To realize the rapid measurements of dissolved CO2, a degasser with high degassing rate was necessary. A hollow fiber membrane with a large permeable area used in this paper can achieve degassing rate up to 2.88 kPa/min. Benefitted from the high degassing rate of the degasser and high sensitivity of the compact TDLAS system, a rapid measurement of dissolved CO2 in water can be achieved within 1s time, and the response time of the prototype when the dissolved CO2 concentration changed abruptly in actual measurement was 15 s. To evaluate the performance of the prototype, comparison measurements were carried out with a commercial mass spectrometer. The dissolved CO2 in both seawater and tap-water was measured, and the experimental results showed good consistent trends with R2 of 0.973 and 0.931. The experimental results proved the feasibility of dissolved CO2 rapid measurement. In the near future, more system evaluation experiments will be carried out and the system will be further

  6. Rapid prototyping systems for the development of new fuel-injection concepts for diesel engines; Einspritz-Prototyping-System zur Entwicklung neuer Einspritzkonzepte bei Dieselmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Kasper, M. [ETAS GmbH, Stuttgart (Germany)

    2004-10-01

    The article uses the example of solenoid-based fuel injectors for diesel engines to demonstrate how a combination of reconfigurable logic and microcontrollers may be employed towards the rapid implementation of new control concepts for timely testing either directly on the engine or in the vehicle. Emphasis is given to the development and optimization of electronic engine management components. In contrast to the nonexistent modification options on conventional production ECUs, the new concept allows for the modification and fine-tuning of a number of injection parameters. The rapid prototyping system is a joint development of the Research and Advanced Engineering Department of Robert Bosch GmbH and ETAS GmbH. (orig.)

  7. Applying an empathic design model to gain an understanding of consumers’ cognitive orientations and develop a product prototype

    Directory of Open Access Journals (Sweden)

    Ding-Bang Luh

    2012-06-01

    Full Text Available Purpose: Consideration of consumer opinion is a key success factor when it comes to developing a new product. However, businesses may lack suitable methods for this, and designers may lack practical training, with both situations meaning that firms are unable to precisely adopt consumer opinions. Moreover, consumer cognitions for a product are widely regarded as changeable and abstract. It is worth studying how to determine consumers’ opinions and transform them into references for prototype development. The purpose of this study is thus to create an Empathic Design Model which would be able to determine consumer cognitive orientation.Design/methodology/approach: This model includes observing related phenomena, laddering the cognition, connecting the elements of the Associations Matrix, producing the hierarchy of the following four items, attributes, functional consequences, psychosocial consequences and values, and then producing a prototype to help designers and consumers reach a consensus on the cognitive structure of products.Findings: As demonstrated in a case study of the design of an “electronic tour guide”, the authors developed a prototype that can help a guide to perform their job on a group package tour. Consequently, the Empathic Design Model can be operated and put into practice. By Mind Mapping, the prototype can be then imitated and reinvented by designers as needed.Originality/value: This model focuses on the early phase of the design process, providing the designing industry with a technique to forecast consumers’ potential needs and develop a prototype effectively.

  8. Tritium enrichment of environmental waters by electrolysis: Development of cathodes exhibiting high isotopic separation and precise measurement of tritium enrichment factors

    International Nuclear Information System (INIS)

    Taylor, C.B.

    1976-01-01

    Equations are developed for the estimation of tritium enrichment in batch, continuous feed and periodic addition electrolysis cells. Optimum enrichment and minimum variability is obtained using developed cathode surfaces which catalyse the separation of tritium, as exhibited by the results of experiments using mild steel cathodes with NaOH electrolyte. The equations and various simple refinements of technique are applied to the determination of tritium enrichment factors by the spike cell method: for batch cells the standard errors are less than 1%. (author)

  9. Development of a Prototype for the Export Control List Management System

    International Nuclear Information System (INIS)

    Kim, GwanYoung

    2011-01-01

    The international society has concerned the possibility of a diversion with strategic items into the nuclear weapon development. So they have regulated those, and our country also has done it. Following a accomplishment of a UAE nuclear power plant export contraction in December, 2009 and a Jordan research reactor export contraction in March, 2010, thousands upon thousands of the strategic goods include the strategic technology will be supposed to transfer to UAE and Jordan. A lot of manpower in the government and the company concerned in addition to an enormous amount of time are needed so as to manage transferred items to UAE and Jordan efficiently. Accordingly, the Export Control List Management System has developed 1) to decrease the administrative time required about implementations such as the classification, the export license 2) and to plan the practical use of manpower 3) and to enhance a convenience of businesses, the government and a company concerned by the KINAC and the KOSTI. That system is scheduled to complete after June, and now a management of export items has done manually. This inconvenience can be solved by developing a prototype of the Export Control List Management System. Also an understanding of the Export Control List Management will be enhanced by doing it. A procedure of a system development and results will be presented in this paper

  10. Advanced Envelope Research for Factory Built Housing, Phase 3 -- Design Development and Prototyping

    Energy Technology Data Exchange (ETDEWEB)

    Levy, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kessler, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mullens, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Rath, P. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-01-01

    The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective alternative envelope designs. In the near term, these technologies will play a central role in meeting stringent energy code requirements. For manufactured homes, the thermal requirements, last updated by statute in 1994, will move up to the more rigorous IECC 2012 levels in 2013, the requirements of which are consistent with site built and modular housing. This places added urgency on identifying envelope technologies that the industry can implement in the short timeframe. The primary goal of this research is to develop wall designs that meet the thermal requirements based on 2012 IECC standards. Given the affordable nature of manufactured homes, impact on first cost is a major consideration in developing the new envelope technologies. This work is part of a four-phase, multi-year effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three selected methods for building high performance wall systems. Phase 2 focused on the development of viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped critique and select the most viable solution to move further in the research -- stud walls with continuous exterior insulation. Phase 3, the subject of the current report, focused on the design development of the selected wall concept and explored variations on the use of exterior foam insulation. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing.

  11. Advanced Envelope Research for Factory Built Housing, Phase 3. Design Development and Prototyping

    Energy Technology Data Exchange (ETDEWEB)

    Levy, E. [ARIES Collaborative, New York, NY (United States); Kessler, B. [ARIES Collaborative, New York, NY (United States); Mullens, M. [ARIES Collaborative, New York, NY (United States); Rath, P. [ARIES Collaborative, New York, NY (United States)

    2014-01-01

    The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective alternative envelope designs. In the near term, these technologies will play a central role in meeting stringent energy code requirements. For manufactured homes, the thermal requirements, last updated by statute in 1994, will move up to the more rigorous IECC 2012 levels in 2013, the requirements of which are consistent with site built and modular housing. This places added urgency on identifying envelope technologies that the industry can implement in the short timeframe. The primary goal of this research is to develop wall designs that meet the thermal requirements based on 2012 IECC standards. Given the affordable nature of manufactured homes, impact on first cost is a major consideration in developing the new envelope technologies. This work is part of a four-phase, multi-year effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three selected methods for building high performance wall systems. Phase 2 focused on the development of viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped critique and select the most viable solution to move further in the research -- stud walls with continuous exterior insulation. Phase 3, the subject of the current report, focused on the design development of the selected wall concept and explored variations on the use of exterior foam insulation. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing.

  12. Using three-dimensional rapid prototyping in the design and development of orthopaedic screws in standardised pull-out tests.

    Science.gov (United States)

    Leslie, Laura Jane; Connolly, Ashley; Swadener, John G; Junaid, Sarah; Theivendran, Kanthan; Deshmukh, Subodh C

    2018-05-01

    The majority of orthopaedic screws are designed, tested and manufactured by existing orthopaedics companies and are predominantly developed with healthy bone in mind. The timescales and costs involved in the development of a new screw design, for example, for osteoporotic bone, are high. In this study, standard wood screws were used to analyse the concept of using three-dimensional printing, or rapid prototyping, as a viable stage of development in the design of a new bone screw. Six wood screws were reverse engineered and printed in polymeric material using stereolithography. Three of the designs were also printed in Ti6Al4V using direct metal laser sintering; however, these were not of sufficient quality to test further. Both the original metal screws (metal) and polymeric rapid prototyping screws were then tested using standard pull-out tests from low-density polyurethane blocks (Sawbones). Results showed the highest pull-out strengths for screws with the longest thread length and the smallest inner diameter. Of the six screw designs tested, five showed no more than a 17% variance between the metal and rapid prototyping results. A similar pattern of results was shown between the screw designs for both the metal and rapid prototyping screws in five of the six cases. While not producing fully comparable pull-out results to orthopaedic screws, the results from this study do provide evidence of the potential usefulness and cost-effectiveness of rapid prototyping in the early stages of design and testing of orthopaedic screws.

  13. Experimental progress on virtual-cathode very high power microwave source development

    International Nuclear Information System (INIS)

    Fazio, M.V.; Hoeberling, R.F.

    1987-01-01

    The evolution of rf accelerator technology toward high-power, high-current, low-emittance beams produces an ever-increasing demand for efficient, very high power microwave sources. The present klystron technology has performed very well but is not expected to produce reliable gigawatt peak-power units in the 1- to 10-GHz regime. Further major advancements must involve other types of sources. The reflexing electron sources can produce microwave powers at the gigawatt level and have demonstrated operation from 800 MHz to 40 GHz. Pulse length appears to be limited by electron-beam diode closure, and reflexing electron devices have been operated in a repetitively pulsed mode. An experiment is under way to investigate concepts to stabilize the frequency of the virtual cathode source. If one can successfully frequency and phase lock this source to an external signal, then this source can operate as a very high power microwave amplifier making it practical for accelerator applications. The progress on an experiment to test these concepts will be discussed

  14. Prototype of Decision Support System Development in Determining Raskin Recipients Candidate

    Directory of Open Access Journals (Sweden)

    D. Desriyanti

    2017-10-01

    Full Text Available Decision-making support systems for beneficiaries deserving of the poor are a decision support system that can be used as a tool for assessing the feasibility of providing assistance. The established system only knows the rankings of the population proposals, the population data that has not been stored in the population database, the population data that has not been integrated with the data category, the criteria data, and value data so it requires the process of data input. In the process of data collection methods used are Interviews, Observation, Documentation, Literature Review while the software development methodology used is Prototype. The process of making software by using Macromedia Dreamweaver, language programming used is PHP, Javascript, HTML, and Cascading Style Sheet (CSS. This research aims 1 Make the development of decision support system in giving assistance for the poor in Cekok Ponorogo. 2 Conduct the mapping for proposed poor family and received assistance in graphic form. The conclusions of the development of decision support systems are; 1 Population data stored in the form of database that facilitate the process of searching data. 2 The Recorded of the proposed data and who received assistance for each hamlet in Kelurahan Cekok Ponorogo in the form of a graph. 3 Reduce errors in the submission the proposed data of potential beneficiaries

  15. Metal fuel development and verification for prototype generation- IV Sodium- Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chan Bock; Cheon, Jin Sik; Kim, Sung Ho; Park, Jeong Yong; Joo, Hyung Kook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Metal fuel is being developed for the prototype generation-IV sodium-cooled fast reactor (PGSFR) to be built by 2028. U-Zr fuel is a driver for the initial core of the PGSFR, and U -transuranics (TRU)-Zr fuel will gradually replace U-Zr fuel through its qualification in the PGSFR. Based on the vast worldwide experiences of U-Zr fuel, work on U-Zr fuel is focused on fuel design, fabrication of fuel components, and fuel verification tests. U-TRU-Zr fuel uses TRU recovered through pyroelectrochemical processing of spent PWR (pressurized water reactor) fuels, which contains highly radioactive minor actinides and chemically active lanthanide or rare earth elements as carryover impurities. An advanced fuel slug casting system, which can prevent vaporization of volatile elements through a control of the atmospheric pressure of the casting chamber and also deal with chemically active lanthanide elements using protective coatings in the casting crucible, was developed. Fuel cladding of the ferritic-martensitic steel FC92, which has higher mechanical strength at a high temperature than conventional HT9 cladding, was developed and fabricated, and is being irradiated in the fast reactor.

  16. Metal Fuel Development and Verification for Prototype Generation IV Sodium-Cooled Fast Reactor

    Directory of Open Access Journals (Sweden)

    Chan Bock Lee

    2016-10-01

    Full Text Available Metal fuel is being developed for the prototype generation-IV sodium-cooled fast reactor (PGSFR to be built by 2028. U–Zr fuel is a driver for the initial core of the PGSFR, and U–transuranics (TRU–Zr fuel will gradually replace U–Zr fuel through its qualification in the PGSFR. Based on the vast worldwide experiences of U–Zr fuel, work on U–Zr fuel is focused on fuel design, fabrication of fuel components, and fuel verification tests. U–TRU–Zr fuel uses TRU recovered through pyroelectrochemical processing of spent PWR (pressurized water reactor fuels, which contains highly radioactive minor actinides and chemically active lanthanide or rare earth elements as carryover impurities. An advanced fuel slug casting system, which can prevent vaporization of volatile elements through a control of the atmospheric pressure of the casting chamber and also deal with chemically active lanthanide elements using protective coatings in the casting crucible, was developed. Fuel cladding of the ferritic–martensitic steel FC92, which has higher mechanical strength at a high temperature than conventional HT9 cladding, was developed and fabricated, and is being irradiated in the fast reactor.

  17. Prototype Development: Context-Driven Dynamic XML Ophthalmologic Data Capture Application

    Science.gov (United States)

    Schwei, Kelsey M; Kadolph, Christopher; Finamore, Joseph; Cancel, Efrain; McCarty, Catherine A; Okorie, Asha; Thomas, Kate L; Allen Pacheco, Jennifer; Pathak, Jyotishman; Ellis, Stephen B; Denny, Joshua C; Rasmussen, Luke V; Tromp, Gerard; Williams, Marc S; Vrabec, Tamara R; Brilliant, Murray H

    2017-01-01

    Background The capture and integration of structured ophthalmologic data into electronic health records (EHRs) has historically been a challenge. However, the importance of this activity for patient care and research is critical. Objective The purpose of this study was to develop a prototype of a context-driven dynamic extensible markup language (XML) ophthalmologic data capture application for research and clinical care that could be easily integrated into an EHR system. Methods Stakeholders in the medical, research, and informatics fields were interviewed and surveyed to determine data and system requirements for ophthalmologic data capture. On the basis of these requirements, an ophthalmology data capture application was developed to collect and store discrete data elements with important graphical information. Results The context-driven data entry application supports several features, including ink-over drawing capability for documenting eye abnormalities, context-based Web controls that guide data entry based on preestablished dependencies, and an adaptable database or XML schema that stores Web form specifications and allows for immediate changes in form layout or content. The application utilizes Web services to enable data integration with a variety of EHRs for retrieval and storage of patient data. Conclusions This paper describes the development process used to create a context-driven dynamic XML data capture application for optometry and ophthalmology. The list of ophthalmologic data elements identified as important for care and research can be used as a baseline list for future ophthalmologic data collection activities. PMID:28903894

  18. Rethink! prototyping transdisciplinary concepts of prototyping

    CERN Document Server

    Nagy, Emilia; Stark, Rainer

    2016-01-01

    In this book, the authors describe the findings derived from interaction and cooperation between scientific actors employing diverse practices. They reflect on distinct prototyping concepts and examine the transformation of development culture in their fusion to hybrid approaches and solutions. The products of tomorrow are going to be multifunctional, interactive systems – and already are to some degree today. Collaboration across multiple disciplines is the only way to grasp their complexity in design concepts. This underscores the importance of reconsidering the prototyping process for the development of these systems, particularly in transdisciplinary research teams. “Rethinking Prototyping – new hybrid concepts for prototyping” was a transdisciplinary project that took up this challenge. The aim of this programmatic rethinking was to come up with a general concept of prototyping by combining innovative prototyping concepts, which had been researched and developed in three sub-projects: “Hybrid P...

  19. Architectures of prototypes and architectural prototyping

    DEFF Research Database (Denmark)

    Hansen, Klaus Marius; Christensen, Michael; Sandvad, Elmer

    1998-01-01

    together as a team, but developed a prototype that more than fulfilled the expectations of the shipping company. The prototype should: - complete the first major phase within 10 weeks, - be highly vertical illustrating future work practice, - continuously live up to new requirements from prototyping......This paper reports from experience obtained through development of a prototype of a global customer service system in a project involving a large shipping company and a university research group. The research group had no previous knowledge of the complex business of shipping and had never worked...... sessions with users, - evolve over a long period of time to contain more functionality - allow for 6-7 developers working intensively in parallel. Explicit focus on the software architecture and letting the architecture evolve with the prototype played a major role in resolving these conflicting...

  20. Photogrammetry for rapid prototyping: development of noncontact 3D reconstruction technologies

    Science.gov (United States)

    Knyaz, Vladimir A.

    2002-04-01

    An important stage of rapid prototyping technology is generating computer 3D model of an object to be reproduced. Wide variety of techniques for 3D model generation exists beginning with manual 3D models generation and finishing with full-automated reverse engineering system. The progress in CCD sensors and computers provides the background for integration of photogrammetry as an accurate 3D data source with CAD/CAM. The paper presents the results of developing photogrammetric methods for non-contact spatial coordinates measurements and generation of computer 3D model of real objects. The technology is based on object convergent images processing for calculating its 3D coordinates and surface reconstruction. The hardware used for spatial coordinates measurements is based on PC as central processing unit and video camera as image acquisition device. The original software for Windows 9X realizes the complete technology of 3D reconstruction for rapid input of geometry data in CAD/CAM systems. Technical characteristics of developed systems are given along with the results of applying for various tasks of 3D reconstruction. The paper describes the techniques used for non-contact measurements and the methods providing metric characteristics of reconstructed 3D model. Also the results of system application for 3D reconstruction of complex industrial objects are presented.

  1. Development and Applications of a Prototypic SCALE Control Module for Automated Burnup Credit Analysis

    International Nuclear Information System (INIS)

    Gauld, I.C.

    2001-01-01

    Consideration of the depletion phenomena and isotopic uncertainties in burnup-credit criticality analysis places an increasing reliance on computational tools and significantly increases the overall complexity of the calculations. An automated analysis and data management capability is essential for practical implementation of large-scale burnup credit analyses that can be performed in a reasonable amount of time. STARBUCS is a new prototypic analysis sequence being developed for the SCALE code system to perform automated criticality calculations of spent fuel systems employing burnup credit. STARBUCS is designed to help analyze the dominant burnup credit phenomena including spatial burnup gradients and isotopic uncertainties. A search capability also allows STARBUCS to iterate to determine the spent fuel parameters (e.g., enrichment and burnup combinations) that result in a desired k eff for a storage configuration. Although STARBUCS was developed to address the analysis needs for spent fuel transport and storage systems, it provides sufficient flexibility to allow virtually any configuration of spent fuel to be analyzed, such as storage pools and reprocessing operations. STARBUCS has been used extensively at Oak Ridge National Laboratory (ORNL) to study burnup credit phenomena in support of the NRC Research program

  2. Prototype development and demonstration for response, emergency staging, communications, uniform management, and evacuation (R.E.S.C.U.M.E.) : R.E.S.C.U.M.E. prototype system design document.

    Science.gov (United States)

    2014-04-01

    This report documents the System Design Document (SDD) for the prototype development and demonstration of the : Response, Emergency Staging, Communications, Uniform Management, and Evacuation (R.E.S.C.U.M.E.) application : bundle, with a focus on the...

  3. Automated sorting of polymer flakes: fluorescence labeling and development of a measurement system prototype.

    Science.gov (United States)

    Brunner, S; Fomin, P; Kargel, Ch

    2015-04-01

    The extensive demand and use of plastics in modern life is associated with a significant economical impact and a serious ecological footprint. The production of plastics involves a high energy consumption and CO2 emission as well as the large need for (limited) fossil resources. Due to the high durability of plastics, large amounts of plastic garbage is mounting in overflowing landfills (plus 9.6 million tons in Europe in the year 2012) and plastic debris is floating in the world oceans or waste-to-energy combustion releases even more CO2 plus toxic substances (dioxins, heavy metals) to the atmosphere. The recycling of plastic products after their life cycle can obviously contribute a great deal to the reduction of the environmental and economical impacts. In order to produce high-quality recycling products, mono-fractional compositions of waste polymers are required. However, existing measurement technologies such as near infrared spectroscopy show limitations in the sorting of complex mixtures and different grades of polymers, especially when black plastics are involved. More recently invented technologies based on mid-infrared, Raman spectroscopy or laser-aided spectroscopy are still under development and expected to be rather expensive. A promising approach to put high sorting purities into practice is to label plastic resins with unique combinations of fluorescence markers (tracers). These are incorporated into virgin resins during the manufacturing process at the ppm (or sub ppm) concentration level, just large enough that the fluorescence emissions can be detected with sensitive instrumentation but neither affect the visual appearance nor the mechanical properties of the polymers. In this paper we present the prototype of a measurement and classification system that identifies polymer flakes (mill material of a few millimeters size) located on a conveyor belt in real time based on the emitted fluorescence of incorporated markers. Classification performance

  4. Software development methodology for computer based I&C systems of prototype fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Manimaran, M., E-mail: maran@igcar.gov.in; Shanmugam, A.; Parimalam, P.; Murali, N.; Satya Murty, S.A.V.

    2015-10-15

    Highlights: • Software development methodology adopted for computer based I&C systems of PFBR is detailed. • Constraints imposed as part of software requirements and coding phase are elaborated. • Compliance to safety and security requirements are described. • Usage of CASE (Computer Aided Software Engineering) tools during software design, analysis and testing phase are explained. - Abstract: Prototype Fast Breeder Reactor (PFBR) is sodium cooled reactor which is in the advanced stage of construction in Kalpakkam, India. Versa Module Europa bus based Real Time Computer (RTC) systems are deployed for Instrumentation & Control of PFBR. RTC systems have to perform safety functions within the stipulated time which calls for highly dependable software. Hence, well defined software development methodology is adopted for RTC systems starting from the requirement capture phase till the final validation of the software product. V-model is used for software development. IEC 60880 standard and AERB SG D-25 guideline are followed at each phase of software development. Requirements documents and design documents are prepared as per IEEE standards. Defensive programming strategies are followed for software development using C language. Verification and validation (V&V) of documents and software are carried out at each phase by independent V&V committee. Computer aided software engineering tools are used for software modelling, checking for MISRA C compliance and to carry out static and dynamic analysis. Various software metrics such as cyclomatic complexity, nesting depth and comment to code are checked. Test cases are generated using equivalence class partitioning, boundary value analysis and cause and effect graphing techniques. System integration testing is carried out wherein functional and performance requirements of the system are monitored.

  5. Software development methodology for computer based I&C systems of prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Manimaran, M.; Shanmugam, A.; Parimalam, P.; Murali, N.; Satya Murty, S.A.V.

    2015-01-01

    Highlights: • Software development methodology adopted for computer based I&C systems of PFBR is detailed. • Constraints imposed as part of software requirements and coding phase are elaborated. • Compliance to safety and security requirements are described. • Usage of CASE (Computer Aided Software Engineering) tools during software design, analysis and testing phase are explained. - Abstract: Prototype Fast Breeder Reactor (PFBR) is sodium cooled reactor which is in the advanced stage of construction in Kalpakkam, India. Versa Module Europa bus based Real Time Computer (RTC) systems are deployed for Instrumentation & Control of PFBR. RTC systems have to perform safety functions within the stipulated time which calls for highly dependable software. Hence, well defined software development methodology is adopted for RTC systems starting from the requirement capture phase till the final validation of the software product. V-model is used for software development. IEC 60880 standard and AERB SG D-25 guideline are followed at each phase of software development. Requirements documents and design documents are prepared as per IEEE standards. Defensive programming strategies are followed for software development using C language. Verification and validation (V&V) of documents and software are carried out at each phase by independent V&V committee. Computer aided software engineering tools are used for software modelling, checking for MISRA C compliance and to carry out static and dynamic analysis. Various software metrics such as cyclomatic complexity, nesting depth and comment to code are checked. Test cases are generated using equivalence class partitioning, boundary value analysis and cause and effect graphing techniques. System integration testing is carried out wherein functional and performance requirements of the system are monitored

  6. Development of a new prototype system for measuring the permittivity of dielectric materials

    Directory of Open Access Journals (Sweden)

    Jiajia Jiang

    2014-06-01

    Full Text Available A simple prototype for measuring the properties of dielectric materials is introduced in this Letter. A homogeneous dielectric sample placed in a field produced by a nearby antenna will affect the input impedance of the antenna. The permittivity and the loss of the dielectric sample can then be determined from the change of the input impedance of the antenna. The prototype has been validated by experiments.

  7. Developing and Evaluating Prototype of Waste Volume Monitoring Using Internet of Things

    Science.gov (United States)

    Fathhan Arief, Mohamad; Lumban Gaol, Ford

    2017-06-01

    In Indonesia, especially Jakarta have a lot of garbage strewn that can be an eyesore and also cause pollution that can carry diseases. Garbage strewn can cause many things, one of her dues is bins are overflowing due to the full so it can not accommodate the waste dumped from other people. Thus, the author created a new method for waste disposal more systematic. In creating new method requires a technology to supports, then the author makes a prototype for waste volume monitoring. By using the internet of things prototype of waste volume monitoring may give notification to the sanitary agency that waste in the trash bin needs to be disposal. In this study, conducted the design and manufactured of prototype waste volume monitoring using LinkItONE board based by Arduino and an ultrasonic sensor for appliance senses. Once the prototype is completed, evaluation in order to determine whether the prototype will function properly. The result showed that the expected function of a prototype waste volume monitoring can work well.

  8. A nano-graphite cold cathode for an energy-efficient cathodoluminescent light source

    Directory of Open Access Journals (Sweden)

    Alexander N. Obraztsov

    2013-08-01

    Full Text Available The development of new types of light sources is necessary in order to meet the growing demands of consumers and to ensure an efficient use of energy. The cathodoluminescence process is still under-exploited for light generation because of the lack of cathodes suitable for the energy-efficient production of electron beams and appropriate phosphor materials. In this paper we propose a nano-graphite film material as a highly efficient cold cathode, which is able to produce high intensity electron beams without energy consumption. The nano-graphite film material was produced by using chemical vapor deposition techniques. Prototypes of cathodoluminescent lamp devices with a construction optimized for the usage of nano-graphite cold cathodes were developed, manufactured and tested. The results indicate prospective advantages of this type of lamp and the possibility to provide advanced power efficiency as well as enhanced spectral and other characteristics.

  9. Latest developments on the highly granular Silicon-Tungsten Electromagnetic Calorimeter technological prototype for the International Large Detector

    CERN Document Server

    Irles, Adrián

    2017-01-01

    High precision physics at future colliders requires unprecedented highly granular calorimeters for the application of the Particle Flow (PF) algorithm. The physical proof of concept was given in the previous campaign of beam tests of physic prototypes within the CALICE collaboration. We present here the latest beam and laboratory test results and R&D developments for the Silicon-Tungsten Electromagnetic Calorimeter technological prototype with fully embedded very front-end (VFE) electronics for the International Large Detector at the International Linear Collider project.

  10. A Prototype Hail Detection Algorithm and Hail Climatology Developed with the Advanced Microwave Sounding Unit (AMSU)

    Science.gov (United States)

    Ferraro, Ralph; Beauchamp, James; Cecil, Dan; Heymsfeld, Gerald

    2015-01-01

    In previous studies published in the open literature, a strong relationship between the occurrence of hail and the microwave brightness temperatures (primarily at 37 and 85 GHz) was documented. These studies were performed with the Nimbus-7 SMMR, the TRMM Microwave Imager (TMI) and most recently, the Aqua AMSR-E sensor. This lead to climatologies of hail frequency from TMI and AMSR-E, however, limitations include geographical domain of the TMI sensor (35 S to 35 N) and the overpass time of the Aqua satellite (130 am/pm local time), both of which reduce an accurate mapping of hail events over the global domain and the full diurnal cycle. Nonetheless, these studies presented exciting, new applications for passive microwave sensors. Since 1998, NOAA and EUMETSAT have been operating the AMSU-A/B and the MHS on several operational satellites: NOAA-15 through NOAA-19; MetOp-A and -B. With multiple satellites in operation since 2000, the AMSU/MHS sensors provide near global coverage every 4 hours, thus, offering a much larger time and temporal sampling than TRMM or AMSR-E. With similar observation frequencies near 30 and 85 GHz and additionally three at the 183 GHz water vapor band, the potential to detect strong convection associated with severe storms on a more comprehensive time and space scale exists. In this study, we develop a prototype AMSU-based hail detection algorithm through the use of collocated satellite and surface hail reports over the continental U.S. for a 12-year period (2000-2011). Compared with the surface observations, the algorithm detects approximately 40 percent of hail occurrences. The simple threshold algorithm is then used to generate a hail climatology that is based on all available AMSU observations during 2000-11 that is stratified in several ways, including total hail occurrence by month (March through September), total annual, and over the diurnal cycle. Independent comparisons are made compared to similar data sets derived from other

  11. The negative electrode development for a Ni-MH battery prototype

    International Nuclear Information System (INIS)

    Cuscueta, D.J.; Ghilarducci, A.A.; Salva, H.R.; Milocco, R.H.; Castro, E.B.

    2009-01-01

    The negative electrode development for a nickel-metal hydride battery (Ni-MH) prototype was performed with the following procedure: (1) the Lm 0.95 Ni 3.8 Co 0.3 Mn 0.3 Al 0.4 (Lm=lanthanum rich mischmetal) intermetallic alloy was elaborated by melting the pure elements in an induction furnace inside a boron nitride crucible under an inert atmosphere, (2) the obtained alloy was crushed and sieved between 44 and 74 μm and mixed with teflonized carbon; (3) the compound was assembled together with a current collector and pressed in a cylindrical matrix. The obtained electrode presented a disc shape, with 11 mm diameter and approximately 1 mm thickness. The crystalline structure of the hydrogen storage alloy was examined using X-ray diffractometry. The measured hcp lattice volume was 1.78% larger than the precursor LaNi 5 intermetallic alloy, increasing the available space for hydrogen movement. Energy dispersive spectroscopy (EDS) and scanning electronic microscopy (SEM) measurements were used before and after hydriding in order to verify the alloy sample homogeneity. The negative electrode was electrochemically tested by using a laboratory cell. It activates almost totally in its first cycle, which is an excellent characteristic from the commercial point of view. The maximum discharge capacity reached was 314.2 mA h/g in the 10th cycle.

  12. An Embedded Sensory System for Worker Safety: Prototype Development and Evaluation.

    Science.gov (United States)

    Cho, Chunhee; Park, JeeWoong

    2018-04-14

    At a construction site, workers mainly rely on two senses, which are sight and sound, in order to perceive their physical surroundings. However, they are often hindered by the nature of most construction sites, which are usually dynamic, loud, and complicated. To overcome these challenges, this research explored a method using an embedded sensory system that might offer construction workers an artificial sensing ability to better perceive their surroundings. This study identified three parameters (i.e., intensity, signal length, and delay between consecutive pulses) needed for tactile-based signals for the construction workers to communicate quickly. We developed a prototype system based on these parameters, conducted experimental studies to quantify and validate the sensitivity of the parameters for quick communication, and analyzed test data to reveal what was added by this method in order to perceive information from the tactile signals. The findings disclosed that the parameters of tactile-based signals and their distinguishable ranges could be perceived in a short amount of time (i.e., a fraction of a second). Further experimentation demonstrated the capability of the identified unit signals combined with a signal mapping technique to effectively deliver simple information to individuals and offer an additional sense of awareness to the surroundings. The findings of this study could serve as a basis for future research in exploring advanced tactile-based messages to overcome challenges in environments for which communication is a struggle.

  13. Quality assurance program for prototype stereotactic system developed for neptun 10 Pc linac

    International Nuclear Information System (INIS)

    Khoshbin Khoshnazar, A.R.; Bahreyni Toossi, M.T.; Hashemiyan, A.R.; Bahreyni Toossi, M.T.; Salek, R.

    2005-01-01

    A prototype stereotactic radiosurgery set was designed and constructed for a Neptun 10 Pc linac that is currently being used at Imam Reza hospital in Mashad. Materials and Methods: A complete quality assurance program was designed and performed for the constructed system including isocentric accuracy test, localization accuracy test, dose delivery accuracy test and leakage radiation test. Target simulator, control alignment device and plexiglass phantom which were parts of the developed hardware were used to fulfill quality assurance program. Results: The average isocentric shift resulted from the gantry rotation and couch turning were respectively obtained to be 1.4 and 2 mm. The average localization error in the three coordinates was found to be 2.2 mm. The total treatment uncertainty due to all of the probable errors in the system was equal to 4.32 mm. The dose delivery accuracy test was carried out, the result indicated a 3.7% difference between the given and measured dose. Conclusion: The quality assurance tests showed consistent performance of the constructed system within the accepted limits; however, some inconsistency might exist in certain cases. The safety of stereotactic radiosurgery system method is increased when the overall uncertainty is minimized nd the treatment of the lesions adjacent to critical organs is avoided

  14. Development of long-life neutron detectors for the prototype heavy water reactor 'Fugen'

    International Nuclear Information System (INIS)

    Ohteru, Shigeru; Shirayama, Shimpey.

    1981-01-01

    The development of long-life neutron detectors as the flux monitors for the prototype heavy water reactor has been made. Three kinds of neutron monitors, namely start-up monitor (SUM), power up monitor (PUM) and local power monitor (LPM), are provided. The LPM consists of 4 ion chamber type neutron detectors and a guide tube of power calibration monitor (PCM). This is useful for reactor control and fuel soundness monitor. The improvement of the neutron detectors was made for the operation under high neutron flux and gamma-ray heating. For the long-life operation, U-234 was mixed into U-235 for the conversion in the detectors. The ratio of U-234 to U-235 is 3 to 1. The PCM is also an ion chamber type detector with U-235. The mixing ratio of U-234 to U-235 was determined by a test with the JMTR. The characteristic performance was also investigated by the JMTR. After the completion of Fugen, various tests on the long-life detectors were performed with Fugen. It was hard to test the output linearity of the detectors with a large scale reactor. Therefore, it was tested that the operation range of the detectors is within the linear region of detector output. The voltage-current characteristics and the correlation of output current and saturation current were measured. The variation of the neutron sensitivity of the detectors with the cumulative dose was also studied. (Kato, T.)

  15. Development of a small prototype for a proof-of-concept of OpenPET imaging

    International Nuclear Information System (INIS)

    Yamaya, Taiga; Yoshida, Eiji; Wakizaka, Hidekatsu; Kokuryo, Daisuke; Tsuji, Atsushi; Mitsuhashi, Takayuki; Tashima, Hideaki; Nishikido, Fumihiko; Inadama, Naoko; Murayama, Hideo; Kinouchi, Shoko; Inaniwa, Taku; Sato, Shinji; Nakajima, Yasunori; Kawai, Hideyuki; Haneishi, Hideaki; Suga, Mikio

    2011-01-01

    The OpenPET geometry is our new idea to visualize a physically opened space between two detector rings. In this paper, we developed the first small prototype to show a proof-of-concept of OpenPET imaging. Two detector rings of 110 mm diameter and 42 mm axial length were placed with a gap of 42 mm. The basic imaging performance was confirmed through phantom studies; the open imaging was realized at the cost of slight loss of axial resolution and 24% loss of sensitivity. For a proof-of-concept of PET image-guided radiation therapy, we carried out the in-beam tests with 11 C radioactive beam irradiation in the heavy ion medical accelerator in Chiba to visualize in situ distribution of primary particles stopped in a phantom. We showed that PET images corresponding to dose distribution were obtained. For an initial proof-of-concept of real-time multimodal imaging, we measured a tumor-inoculated mouse with 18 F-FDG, and an optical image of the mouse body surface was taken during the PET measurement by inserting a digital camera in the ring gap. We confirmed that the tumor in the gap was clearly visualized. The result also showed the extension effect of an axial field-of-view (FOV); a large axial FOV of 126 mm was obtained with the detectors that originally covered only an 84 mm axial FOV. In conclusion, our initial imaging studies showed promising performance of the OpenPET.

  16. Magic-Angle-Spinning NMR Magnet Development: Field Analysis and Prototypes

    Science.gov (United States)

    Voccio, John; Hahn, Seungyong; Park, Dong Keun; Ling, Jiayin; Kim, Youngjae; Bascuñán, Juan; Iwasa, Yukikazu

    2013-01-01

    We are currently working on a program to complete a 1.5 T/75 mm RT bore magic-angle-spinning nuclear magnetic resonance magnet. The magic-angle-spinning magnet comprises a z-axis 0.866-T solenoid and an x-axis 1.225-T dipole, each to be wound with NbTi wire and operated at 4.2 K in persistent mode. A combination of the fields creates a 1.5-T field pointed at 54.74 degrees (magic angle) from the rotation (z) axis. In the first year of this 3-year program, we have completed magnetic analysis and design of both coils. Also, using a winding machine of our own design and fabrication, we have wound several prototype dipole coils with NbTi wire. As part of this development, we have repeatedly made successful persistent NbTi-NbTi joints with this multifilamentary NbTi wire. PMID:24058275

  17. An Embedded Sensory System for Worker Safety: Prototype Development and Evaluation

    Science.gov (United States)

    Cho, Chunhee; Park, JeeWoong

    2018-01-01

    At a construction site, workers mainly rely on two senses, which are sight and sound, in order to perceive their physical surroundings. However, they are often hindered by the nature of most construction sites, which are usually dynamic, loud, and complicated. To overcome these challenges, this research explored a method using an embedded sensory system that might offer construction workers an artificial sensing ability to better perceive their surroundings. This study identified three parameters (i.e., intensity, signal length, and delay between consecutive pulses) needed for tactile-based signals for the construction workers to communicate quickly. We developed a prototype system based on these parameters, conducted experimental studies to quantify and validate the sensitivity of the parameters for quick communication, and analyzed test data to reveal what was added by this method in order to perceive information from the tactile signals. The findings disclosed that the parameters of tactile-based signals and their distinguishable ranges could be perceived in a short amount of time (i.e., a fraction of a second). Further experimentation demonstrated the capability of the identified unit signals combined with a signal mapping technique to effectively deliver simple information to individuals and offer an additional sense of awareness to the surroundings. The findings of this study could serve as a basis for future research in exploring advanced tactile-based messages to overcome challenges in environments for which communication is a struggle. PMID:29662008

  18. Development of the next generation code system as an engineering modeling language. (2). Study with prototyping

    International Nuclear Information System (INIS)

    Yokoyama, Kenji; Uto, Nariaki; Kasahara, Naoto; Ishikawa, Makoto

    2003-04-01

    In the fast reactor development, numerical simulation using analytical codes plays an important role for complementing theory and experiment. It is necessary that the engineering models and analysis methods can be flexibly changed, because the phenomena to be investigated become more complicated due to the diversity of the needs for research. And, there are large problems in combining physical properties and engineering models in many different fields. Aiming to the realization of the next generation code system which can solve those problems, the authors adopted three methods, (1) Multi-language (SoftWIRE.NET, Visual Basic.NET and Fortran) (2) Fortran 90 and (3) Python to make a prototype of the next generation code system. As this result, the followings were confirmed. (1) It is possible to reuse a function of the existing codes written in Fortran as an object of the next generation code system by using Visual Basic.NET. (2) The maintainability of the existing code written by Fortran 77 can be improved by using the new features of Fortran 90. (3) The toolbox-type code system can be built by using Python. (author)

  19. Development of a prototype system for prediction of the group error at the maintenance work

    International Nuclear Information System (INIS)

    Yoshino, Kenji; Hirotsu, Yuuko

    2001-01-01

    This paper described on development and performance evaluation of a prototype system for prediction of the group error at the maintenance work. The results so far are as follows. (1) When a user inputs the existence and the grade of the feature factor of the maintenance work as a prediction object, an organization and an organization factor and a group PSF put into the system. The maintenance group error to target can be predicted through the prediction model which consists of a class of seven stages. (2) This system by utilizing the information on a prediction result database, it can be use not only for prediction of a maintenance group but for various safe Activity, such as KYT(Kiken Yochi Training) and TBM(Tool Box Meeting). (3) This system predicts a cooperation error at highest rate, and subsequently. Predicts the detection error at a high rate. and to the decision-making. Error, the transfer error and the state cognitive error, and state error, it has the characteristics predicted at almost same rate. (4) if it has full knowledge even if the feature, such as the enforcement conditions of maintenance work, and organization, even if the user has neither the knowledge about a human factor, users experience, anyone of this system is slight about the extent, generating of a maintenance group error made difficult from the former logically and systematically, it can predict with business time for about 15 minutes. (author)

  20. Prototype Development: Context-Driven Dynamic XML Ophthalmologic Data Capture Application.

    Science.gov (United States)

    Peissig, Peggy; Schwei, Kelsey M; Kadolph, Christopher; Finamore, Joseph; Cancel, Efrain; McCarty, Catherine A; Okorie, Asha; Thomas, Kate L; Allen Pacheco, Jennifer; Pathak, Jyotishman; Ellis, Stephen B; Denny, Joshua C; Rasmussen, Luke V; Tromp, Gerard; Williams, Marc S; Vrabec, Tamara R; Brilliant, Murray H

    2017-09-13

    The capture and integration of structured ophthalmologic data into electronic health records (EHRs) has historically been a challenge. However, the importance of this activity for patient care and research is critical. The purpose of this study was to develop a prototype of a context-driven dynamic extensible markup language (XML) ophthalmologic data capture application for research and clinical care that could be easily integrated into an EHR system. Stakeholders in the medical, research, and informatics fields were interviewed and surveyed to determine data and system requirements for ophthalmologic data capture. On the basis of these requirements, an ophthalmology data capture application was developed to collect and store discrete data elements with important graphical information. The context-driven data entry application supports several features, including ink-over drawing capability for documenting eye abnormalities, context-based Web controls that guide data entry based on preestablished dependencies, and an adaptable database or XML schema that stores Web form specifications and allows for immediate changes in form layout or content. The application utilizes Web services to enable data integration with a variety of EHRs for retrieval and storage of patient data. This paper describes the development process used to create a context-driven dynamic XML data capture application for optometry and ophthalmology. The list of ophthalmologic data elements identified as important for care and research can be used as a baseline list for future ophthalmologic data collection activities. ©Peggy Peissig, Kelsey M Schwei, Christopher Kadolph, Joseph Finamore, Efrain Cancel, Catherine A McCarty, Asha Okorie, Kate L Thomas, Jennifer Allen Pacheco, Jyotishman Pathak, Stephen B Ellis, Joshua C Denny, Luke V Rasmussen, Gerard Tromp, Marc S Williams, Tamara R Vrabec, Murray H Brilliant. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 13.09.2017.

  1. Development of a prototype lateral flow immunoassay (LFI for the rapid diagnosis of melioidosis.

    Directory of Open Access Journals (Sweden)

    Raymond L Houghton

    2014-03-01

    Full Text Available Burkholderia pseudomallei is a soil-dwelling bacterium and the causative agent of melioidosis. Isolation of B. pseudomallei from clinical samples is the "gold standard" for the diagnosis of melioidosis; results can take 3-7 days to produce. Alternatively, antibody-based tests have low specificity due to a high percentage of seropositive individuals in endemic areas. There is a clear need to develop a rapid point-of-care antigen detection assay for the diagnosis of melioidosis. Previously, we employed In vivo Microbial Antigen Discovery (InMAD to identify potential B. pseudomallei diagnostic biomarkers. The B. pseudomallei capsular polysaccharide (CPS and numerous protein antigens were identified as potential candidates. Here, we describe the development of a diagnostic immunoassay based on the detection of CPS. Following production of a CPS-specific monoclonal antibody (mAb, an antigen-capture immunoassay was developed to determine the concentration of CPS within a panel of melioidosis patient serum and urine samples. The same mAb was used to produce a prototype Active Melioidosis Detect Lateral Flow Immunoassay (AMD LFI; the limit of detection of the LFI for CPS is comparable to the antigen-capture immunoassay (∼0.2 ng/ml. The analytical reactivity (inclusivity of the AMD LFI was 98.7% (76/77 when tested against a large panel of B. pseudomallei isolates. Analytical specificity (cross-reactivity testing determined that 97.2% of B. pseudomallei near neighbor species (35/36 were not reactive. The non-reactive B. pseudomallei strain and the reactive near neighbor strain can be explained through genetic sequence analysis. Importantly, we show the AMD LFI is capable of detecting CPS in a variety of patient samples. The LFI is currently being evaluated in Thailand and Australia; the focus is to optimize and validate testing procedures on melioidosis patient samples prior to initiation of a large, multisite pre-clinical evaluation.

  2. Multidisciplinary Management of Disorders of Sex Development in Indonesia, A Prototype in Developing Country

    Directory of Open Access Journals (Sweden)

    Nurin Aisyiyah Listyasari

    2017-06-01

    Full Text Available ABSTRACT Background : Disorder of sex development (DSD patients require comprehensive management to improve quality of life. A standardized management protocol for patients in Indonesia is not yet available resulting in patients infrequently received a proper diagnosis. This study reported a multidisciplinary management DSD in Indonesia based on minimal diagnostic facilities and expertise in developing country. Objectives : The purpose of the study is to review the management of DSD patients in Indonesia relates to providing appropriate gender assignment and to improving patients quality of life. Methodology : We analyzed the records of DSD patient admitted to the division of Human Genetics Center for Biomedical Research (CEBIOR Faculty of Medicine Diponegoro University, Semarang, Indonesia from May 2004 - December 2015. Data were collected and analyzed for physical examination, family pedigree karyotyping, hormonal assays and  psychosocial.  Other examination such as ultrasonography, Xray and Cytoscopy were also recorded for selected cases. Bimonthly, Sexual Adjustment Team (SAT meeting was recorded. Results : From the total 617 DSD cases we found 426 cases (69,04 % with 46, XY DSD, 117 cases (18,96% with 46,XX DSD and 74 cases (12% with sex chromosome DSD. Most of the patients in the group of 46, XY DSD are Unknown Male Undervirilization (UMU with 256 cases (60.09%. As the majority cases of 46, XX DSD was Congenital Adrenal Hyperplasia with 81 cases (69.23%. The remaining cases were Androgen Action Disorder (AAD with 140 cases (32.86%, 46, XY DSD Gonadal Dysgenesis with 30 cases (7.04%, Androgen Excess Disorders with 3 cases (2.56%, Defect of Mullerian Development with 19 cases (16,24%, 3 cases (2.56% of Androgen Excess and 3 cases (2.56% of 46, XX Gonadal Dysgenesis. Conclusion : Comprehensive management for DSD Patients help patient in diagnosis, gender assignment and support patient to improve quality of life. This multidisciplinary of

  3. Development of a prototype radiation surveillance equipment for a mid-sized unmanned aerial vehicle

    International Nuclear Information System (INIS)

    Smolander, P.; Kurvinen, K.; Poellaenen, R.; Kettunen, M.; Lyytinen, J.

    2003-01-01

    A prototype radiation surveillance equipment has been developed to be used in a mid-sized Ranger unmanned aerial vehicle (UAV) acquired by the Finnish Defence Forces. A multi-detector assembly was designed for the acquisition of dose rate and radionuclide concentration in the release plume. Detector assembly includes a GM-tube based dose rate meter, an inorganic scintillator detector and a semiconductor detector operating at room temperature. A sampling unit was designed for the collection of an aerosol sample of the plume for a detailed analysis in a ground based laboratory. The measurement data from all three detectors and several environmental parameters are collected by the onboard data acquisition computer. Real-time data dissemination is implemented with a TETRA based radio network. Test flights have been carried out with target drones and a small manned airplane. The Northrop KD2R-5 target drones have been used to simulate the high-G launch and vibration environment of the Ranger aerial vehicle. Target drones have been used because their air vehicle classification allows small test packages to be installed without tedious air safety protocols. Stability and survivability of the detectors, GPS navigation and radio frequency communication have been studied with the target drone test flights. Ground station software was developed to visualise the measurement data and to track the position of the air vehicle on a digital map. Test flights with the small manned airplane have been used to study the operational aspects of the detectors with greater detail. The housing for the instruments has been designed and constructed based on the experiences gained with the test flights and the laboratory measurements. The housing satisfies the aviation authority standards. Special attention has been paid to the high modularity, quick installation and ease of use. (orig.)

  4. Development of a prototype radiation surveillance equipment for a mid-sized unmanned aerial vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Smolander, P.; Kurvinen, K.; Poellaenen, R. [Radiation and Nuclear Safety Authority, Helsinki (Finland); Kettunen, M. [Forces Research Institute of Technology, Lakiala (Finland); Lyytinen, J. [Helsinki University of Technology, Laboratory of Lightweight Structures, Otaniemi (Finland)

    2003-06-01

    A prototype radiation surveillance equipment has been developed to be used in a mid-sized Ranger unmanned aerial vehicle (UAV) acquired by the Finnish Defence Forces. A multi-detector assembly was designed for the acquisition of dose rate and radionuclide concentration in the release plume. Detector assembly includes a GM-tube based dose rate meter, an inorganic scintillator detector and a semiconductor detector operating at room temperature. A sampling unit was designed for the collection of an aerosol sample of the plume for a detailed analysis in a ground based laboratory. The measurement data from all three detectors and several environmental parameters are collected by the onboard data acquisition computer. Real-time data dissemination is implemented with a TETRA based radio network. Test flights have been carried out with target drones and a small manned airplane. The Northrop KD2R-5 target drones have been used to simulate the high-G launch and vibration environment of the Ranger aerial vehicle. Target drones have been used because their air vehicle classification allows small test packages to be installed without tedious air safety protocols. Stability and survivability of the detectors, GPS navigation and radio frequency communication have been studied with the target drone test flights. Ground station software was developed to visualise the measurement data and to track the position of the air vehicle on a digital map. Test flights with the small manned airplane have been used to study the operational aspects of the detectors with greater detail. The housing for the instruments has been designed and constructed based on the experiences gained with the test flights and the laboratory measurements. The housing satisfies the aviation authority standards. Special attention has been paid to the high modularity, quick installation and ease of use. (orig.)

  5. Development of a prototype thermoelectric space cooling system using phase change material to improve the performance

    Science.gov (United States)

    Zhao, Dongliang

    The thermoelectric cooling system has advantages over conventional vapor compression cooling devices, including compact in size, light in weight, high reliability, no mechanical moving parts, no refrigerant, being powered by direct current, and easily switching between cooling and heating modes. However, it has been long suffering from its relatively high cost and low energy efficiency, which has restricted its usage to niche applications, such as space missions, portable cooling devices, scientific and medical equipment, where coefficient of performance (COP) is not as important as reliability, energy availability, and quiet operation environment. Enhancement of thermoelectric cooling system performance generally relies on two methods: improving thermoelectric material efficiency and through thermoelectric cooling system thermal design. This research has been focused on the latter one. A prototype thermoelectric cooling system integrated with phase change material (PCM) thermal energy storage unit for space cooling has been developed. The PCM thermal storage unit used for cold storage at night, functions as the thermoelectric cooling system's heat sink during daytime's cooling period and provides relatively lower hot side temperature for the thermoelectric cooling system. The experimental test of the prototype system in a reduced-scale chamber has realized an average cooling COP of 0.87, with the maximum value of 1.22. Another comparison test for efficacy of PCM thermal storage unit shows that 35.3% electrical energy has been saved from using PCM for the thermoelectric cooling system. In general, PCM faces difficulty of poor thermal conductivity at both solid and liquid phases. This system implemented a finned inner tube to increase heat transfer during PCM charging (melting) process that directly impacts thermoelectric system's performance. A simulation tool for the entire system has been developed including mathematical models for a single thermoelectric module

  6. Prototypes reflect normative perceptions: implications for the development of reasoned action theory.

    Science.gov (United States)

    Hennessy, Michael; Bleakley, Amy; Ellithorpe, Morgan

    2018-03-01

    The reasoned action approach is one of the most successful behavioral theories in the history of social psychology. This study outlines the theoretical principles of reasoned action and considers when it is appropriate to augment it with a new variable. To demonstrate, we use survey data collected from a 4 to 17 year old U.S. adolescents to test how the 'prototype' variables fit into reasoned action approach. Through confirmatory factor analysis, we find that the prototype measures are normative pressure measures and when treated as a separate theoretical construct, prototype identity is not completely mediated by the proximal predictors of behavioral intention. We discuss the assumptions of the two theories and finally consider the distinction between augmenting a specific theory versus combining measures derived from different theoretical perspectives.

  7. Development of Wave Dragon from Scale 1:50 to Prototype

    DEFF Research Database (Denmark)

    Soerensen, H. C.; Friis-Madsen, E.; Panhauser, W.

    2003-01-01

    The Wave Dragon is a 4 to 11 MW offshore wave energy converter of the overtopping type. It basically consists of two wave reflectors focusing the waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power....... In the period from 1998 to 2001 extensive testing on a scale 1:50 model was carried out. During the last month, testing has started on a prototype of the Wave Dragon in Nissum Bredning, Denmark (wave climate in scale 1:4.5 of the North Sea). The prototype has been grid connected in June 2003 as the world...

  8. Development and test of a prototype for the PANDA barrel DIRC detector at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Kalicy, Grzegorz

    2014-07-01

    The PANDA experiment at FAIR will perform world class physics studies using high-intensity cooled antiproton beams with momenta between 1.5 and 15 GeV/c. A rich physics program requires very good particle identification (PID). Charged hadron PID for the barrel section of the target spectrometer has to cover the angular range of 22-140 and separate pions from kaons for momenta up to 3.5 GeV/c with a separation power of at least 3 standard deviations. The system that will provide it has to be thin and operate in a strong magnetic field. A ring imaging Cherenkov detector using the DIRC principle meets those requirements. The design of the PANDA Barrel DIRC is based on the successful BABAR DIRC counter with several important changes to improve the performance and optimize the costs. The design options are being studied in detailed Monte Carlo simulation, and implemented in increasingly complex system prototypes and tested in particle beams. Before building the full system prototypes the radiator bars and lenses are measured on the test benches. The performance of the DIRC prototype was quantified in terms of the single photon Cherenkov angle resolution and the photon yield. Results for two full system prototypes will be presented. The prototype in 2011 aimed at investigating the full size expansion volume. It was found that the resolution for this configuration is at the level of in good agreement with ray tracing simulation results. A more complex prototype, tested in 2012, provided the first experience with a compact fused silica prism expansion volume, a wide radiator plate, and several advanced lens options for the focusing system. The performance of the baseline configuration of the prototype with a standard lens and an air gap met the requirements for the PANDA PID for most of the polar angle range but failed at polar angles around 90 due to photon loss at the air gap. Measurements with a prototype high-refractive index compound lens without an air gap at a polar

  9. Development of 63Ni-voltaic nuclear micro-battery prototype

    International Nuclear Information System (INIS)

    Zhang Huaming; Hu Rui; Wang Guanquan; Gao Hui; Liu Guoping; Luo Shunzhong

    2013-01-01

    Crystal silicon based energy-conversion unit was prepared using the parameters from theoretical simulation. A battery prototype was assembled through ascertaining the process of 63 Ni deposition, the formula of sealing materials and the sealing technique. The electric output properties were assessed with accelerating ageing and changing the temperatures. The results show that the open circuit voltage and short circuit current of the manufactured nuclear micro-battery prototype are 88.0 mV and 5.97 nA, and the maximum power output and the energy conversion efficiency are 0.255 nW and 0.561%, respectively. It preserves steadily over 220 days. (authors)

  10. Development and test of a prototype for the PANDA barrel DIRC detector at FAIR

    International Nuclear Information System (INIS)

    Kalicy, Grzegorz

    2014-01-01

    The PANDA experiment at FAIR will perform world class physics studies using high-intensity cooled antiproton beams with momenta between 1.5 and 15 GeV/c. A rich physics program requires very good particle identification (PID). Charged hadron PID for the barrel section of the target spectrometer has to cover the angular range of 22-140 and separate pions from kaons for momenta up to 3.5 GeV/c with a separation power of at least 3 standard deviations. The system that will provide it has to be thin and operate in a strong magnetic field. A ring imaging Cherenkov detector using the DIRC principle meets those requirements. The design of the PANDA Barrel DIRC is based on the successful BABAR DIRC counter with several important changes to improve the performance and optimize the costs. The design options are being studied in detailed Monte Carlo simulation, and implemented in increasingly complex system prototypes and tested in particle beams. Before building the full system prototypes the radiator bars and lenses are measured on the test benches. The performance of the DIRC prototype was quantified in terms of the single photon Cherenkov angle resolution and the photon yield. Results for two full system prototypes will be presented. The prototype in 2011 aimed at investigating the full size expansion volume. It was found that the resolution for this configuration is at the level of in good agreement with ray tracing simulation results. A more complex prototype, tested in 2012, provided the first experience with a compact fused silica prism expansion volume, a wide radiator plate, and several advanced lens options for the focusing system. The performance of the baseline configuration of the prototype with a standard lens and an air gap met the requirements for the PANDA PID for most of the polar angle range but failed at polar angles around 90 due to photon loss at the air gap. Measurements with a prototype high-refractive index compound lens without an air gap at a polar

  11. A Novel Tetrasubstituted Imidazole as a Prototype for the Development of Anti-inflammatory Drugs.

    Science.gov (United States)

    Nascimento, Marcus Vinicius P S; Munhoz, Antonio C M; Theindl, Lais C; Mohr, Eduarda Talita B; Saleh, Najla; Parisotto, Eduardo B; Rossa, Thaís A; Zamoner, Ariane; Creczynski-Pasa, Tania B; Filippin-Monteiro, Fabíola B; Sá, Marcus M; Dalmarco, Eduardo Monguilhott

    2018-04-14

    Although inflammation is a biological phenomenon that exists to protect the host against infections and/or related problems, its unceasing activation results in the aggravation of several medical conditions. Imidazoles, whether natural or synthetic, are molecules related to a broad spectrum of biological effects, including anti-inflammatory properties. In this study, we screened eight novel small molecules of the imidazole class synthesized by our research group for their in vitro anti-inflammatory activity. The effect of the selected molecules was confirmed in an in vivo inflammatory model. We also analyzed whether the effects were caused by inhibition of nuclear factor kappa B (NF-κB) transcription factor transmigration. Of the eight imidazoles tested, methyl 1-allyl-2-(4-fluorophenyl)-5-phenyl-1H-imidazole-4-acetate (8) inhibited nitric oxide metabolites and pro-inflammatory cytokine (TNF-α, IL-6, and IL-1β) secretion in J774 macrophages stimulated with LPS. It also attenuated leukocyte migration and exudate formation in the pleural cavity of mice challenged with carrageenan. Furthermore, imidazole 8 reverted the oxidative stress pattern triggered by carrageenan in the pleural cavity by diminishing myeloperoxidase, superoxide dismutase, catalase, and glutathione S-transferase activities and reducing the production of nitric oxide metabolites and thiobarbituric acid-reactive substances. Finally, these effects can be attributed, at least in part, to the ability of this compound to prevent NF-κB transmigration. In this context, our results demonstrate that imidazole 8 has promising potential as a prototype for the development of a new anti-inflammatory drug to treat inflammatory conditions in which NF-κB and oxidative stress play a prominent role. Graphical Abstract ᅟ.

  12. Development of a small prototype for a proof-of-concept of OpenPET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yamaya, Taiga; Yoshida, Eiji; Wakizaka, Hidekatsu; Kokuryo, Daisuke; Tsuji, Atsushi; Mitsuhashi, Takayuki; Tashima, Hideaki; Nishikido, Fumihiko; Inadama, Naoko; Murayama, Hideo; Kinouchi, Shoko [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Inaniwa, Taku; Sato, Shinji [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Nakajima, Yasunori [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503 (Japan); Kawai, Hideyuki; Haneishi, Hideaki; Suga, Mikio, E-mail: taiga@nirs.go.jp [Chiba University, 1-33 Yayoicho, Inage-ku, Chiba 263-8522 (Japan)

    2011-02-21

    The OpenPET geometry is our new idea to visualize a physically opened space between two detector rings. In this paper, we developed the first small prototype to show a proof-of-concept of OpenPET imaging. Two detector rings of 110 mm diameter and 42 mm axial length were placed with a gap of 42 mm. The basic imaging performance was confirmed through phantom studies; the open imaging was realized at the cost of slight loss of axial resolution and 24% loss of sensitivity. For a proof-of-concept of PET image-guided radiation therapy, we carried out the in-beam tests with {sup 11}C radioactive beam irradiation in the heavy ion medical accelerator in Chiba to visualize in situ distribution of primary particles stopped in a phantom. We showed that PET images corresponding to dose distribution were obtained. For an initial proof-of-concept of real-time multimodal imaging, we measured a tumor-inoculated mouse with {sup 18}F-FDG, and an optical image of the mouse body surface was taken during the PET measurement by inserting a digital camera in the ring gap. We confirmed that the tumor in the gap was clearly visualized. The result also showed the extension effect of an axial field-of-view (FOV); a large axial FOV of 126 mm was obtained with the detectors that originally covered only an 84 mm axial FOV. In conclusion, our initial imaging studies showed promising performance of the OpenPET.

  13. Imagining the prototype

    OpenAIRE

    Brouwer, C. E.; Bhomer, ten, M.; Melkas, H.; Buur, J.

    2013-01-01

    This article reports on the analysis of a design session, employing conversation analysis. In the design session three experts and a designer discuss a prototype of a shirt, which has been developed with the input from these experts. The analysis focuses on the type of involvement of the participants with the prototype and how they explicate the points they make in the discussion with or without making use of the prototype. Three techniques for explicating design issues that exploit the proto...

  14. Development and validation of a thermodynamic model for the performance analysis of a gamma Stirling engine prototype

    International Nuclear Information System (INIS)

    Araoz, Joseph A.; Cardozo, Evelyn; Salomon, Marianne; Alejo, Lucio; Fransson, Torsten H.

    2015-01-01

    This work presents the development and validation of a numerical model that represents the performance of a gamma Stirling engine prototype. The model follows a modular approach considering ideal adiabatic working spaces; limited internal and external heat transfer through the heat exchangers; and mechanical and thermal losses during the cycle. In addition, it includes the calculation of the mechanical efficiency taking into account the crank mechanism effectiveness and the forced work during the cycle. Consequently, the model aims to predict the work that can be effectively taken from the shaft. The model was compared with experimental data obtained in an experimental rig built for the engine prototype. The results showed an acceptable degree of accuracy when comparing with the experimental data, with errors ranging from ±1% to ±8% for the temperature in the heater side, less than ±1% error for the cooler temperatures, and ±1 to ±8% for the brake power calculations. Therefore, the model was probed adequate for study of the prototype performance. In addition, the results of the simulation reflected the limited performance obtained during the prototype experiments, and a first analysis of the results attributed this to the forced work during the cycle. The implemented model is the basis for a subsequent parametric analysis that will complement the results presented. - Highlights: • A numerical model for a Stirling engine was developed. • A mechanical efficiency analysis was included in the model. • The model was validated with experimental data of a novel prototype. • The model results permit a deeper insight into the engine operation

  15. Development of Prototype Outcomes-Based Training Modules for Aesthetic Dentistry

    Science.gov (United States)

    Andres, Maricar Joy T.; Borabo, Milagros L.

    2015-01-01

    The objective of the study is to know the essential components of Aesthetic Dentistry that will be a basis for prototype Outcomes-based training modules. Using a 5-point Likert scale, the researcher-made questionnaire assessed the different elements of Aesthetic Dentistry which are needed in the designing of the training module, the manner of…

  16. Electrochemically active functionalization of graphene for development of prototype biosensing devices

    DEFF Research Database (Denmark)

    Halder, Arnab; Ulstrup, Jens; Chi, Qijin

    nanosheets, (2) loading of different enzymes on functionalized graphene matrix, and (3) electrochemical performances of the functionalized nanaohybrid materials based prototype sensors. These latest advancements could be crucial for the design and fabrication of low-cost, flexible and disposable biosensors....

  17. Development of a prototype neutral injector for T.F.R

    International Nuclear Information System (INIS)

    Bonnal, J.F.; Druaux, J.; Oberson, R.

    1975-12-01

    This study is directly related to the project of T.F.R., plasma heating by fast neutral injection. The prototype injector is described, emphasis being put on the technological solutions that were retained. Experimental results for predicting the performance of the ten sources on T.F.R. are analyzed [fr

  18. Development and experimental results from a 1 kW prototype AMR

    DEFF Research Database (Denmark)

    Bahl, Christian R.H.; Engelbrecht, Kurt; Eriksen, Dan

    2014-01-01

    containing an active magnetic regenerator (AMR) bed. The prototype design facilitates easy exchange of the 24 cassettes, allowing the testing of different material amounts and compositions. Operating with 2.8 kg of commercial grade Gd spheres a maximum no-span cooling power of 1010 W and a maximum zero load...

  19. Mechanical properties used for the qualification of transport casks: Prototype development and extension to serial production

    International Nuclear Information System (INIS)

    Salzbrenner, R.; Crenshaw, T.B.; Sorenson, K.B.

    1991-01-01

    A thorough understanding of the mechanical behavior of material in a specific cask is required to properly analyze the structural response of the cask. An appropriate way to establish this understanding is through laboratory testing of cask material. The laboratory testing that was done to support the MOSAIK Drop Test Program is summarized as an example of how mechanical properties can be mapped for a prototype cask. The broad range behavior to be understood. This is necessary for the proper application of fracture mechanics, and focuses on fracture toughness as the inherent materials property which quantifies the fracture resistance of a material. The understanding established by a mechanics to a particular prototype, behavior of a prototype must be correctly associated with parameters which can be measured on production casks. Since the production casks cannot be destructively tested, measurements are commonly made on sub-size specimens. This may prevent direct measurement of valid design properties. An additional database may then be required to establish the correlation between sub-size specimen measurements and valid design properties. This is illustrated by outlining the additional testing which would be necessary to allow the successful verification of the MOSAIK Drop Test Program to be extended from the prototype to serially produced casks

  20. The M.A.D Experience: Multiperspective Application Development in Evolutionary Prototyping

    DEFF Research Database (Denmark)

    Christensen, Michael; Crabtree, Andy; Damm, Christian Heide

    1998-01-01

    a prototype that more than fulfilled the expectations of the shipping company. A major reason for the success of the project is due to an experimental and multiperspective approach to designing for practice. Some of the lessons to be learned for object-orientation are (1) analysis is more than finding nouns...

  1. Prototype development of a web-based participative decision support platform in risk management

    Science.gov (United States)

    Aye, Zar Chi; Olyazadeh, Roya; Jaboyedoff, Michel; Derron, Marc-Henri

    2014-05-01

    This paper discusses the proposed background architecture and prototype development of an internet-based decision support system (DSS) in the field of natural hazards and risk management using open-source geospatial software and web technologies. It is based on a three-tier, client-server architecture with the support of boundless (opengeo) framework and its client side SDK application environment using customized gxp components and data utility classes. The main purpose of the system is to integrate the workflow of risk management systematically with the diverse involvement of stakeholders from different organizations dealing with natural hazards and risk for evaluation of management measures through the active online participation approach. It aims to develop an adaptive user friendly, web-based environment that allows the users to set up risk management strategies based on actual context and data by integrating web-GIS and DSS functionality associated with process flow and other visualization tools. Web-GIS interface has been integrated within the DSS to deliver maps and provide certain geo-processing capabilities on the web, which can be easily accessible and shared by different organizations located in case study sites of the project. This platform could be envisaged not only as a common web-based platform for the centralized sharing of data such as hazard maps, elements at risk maps and additional information but also to ensure an integrated platform of risk management where the users could upload data, analyze risk and identify possible alternative scenarios for risk reduction especially for floods and landslides, either quantitatively or qualitatively depending on the risk information provided by the stakeholders in case study regions. The level of involvement, access to and interaction with the provided functionality of the system varies depending on the roles and responsibilities of the stakeholders, for example, only the experts (planners, geological

  2. The use of an automated flight test management system in the development of a rapid-prototyping flight research facility

    Science.gov (United States)

    Duke, Eugene L.; Hewett, Marle D.; Brumbaugh, Randal W.; Tartt, David M.; Antoniewicz, Robert F.; Agarwal, Arvind K.

    1988-01-01

    An automated flight test management system (ATMS) and its use to develop a rapid-prototyping flight research facility for artificial intelligence (AI) based flight systems concepts are described. The ATMS provides a flight test engineer with a set of tools that assist in flight planning and simulation. This system will be capable of controlling an aircraft during the flight test by performing closed-loop guidance functions, range management, and maneuver-quality monitoring. The rapid-prototyping flight research facility is being developed at the Dryden Flight Research Facility of the NASA Ames Research Center (Ames-Dryden) to provide early flight assessment of emerging AI technology. The facility is being developed as one element of the aircraft automation program which focuses on the qualification and validation of embedded real-time AI-based systems.

  3. Prototyping Practice

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette; Tamke, Martin

    2015-01-01

    This paper examines the role of the prototyping in digital architecture. During the past decade, a new research field has emerged exploring the digital technology’s impact on the way we think, design and build our environment. In this practice the prototype, the pavilion, installation or demonstr......This paper examines the role of the prototyping in digital architecture. During the past decade, a new research field has emerged exploring the digital technology’s impact on the way we think, design and build our environment. In this practice the prototype, the pavilion, installation...

  4. Development of a permanently controllable rotating biopsy device. Pt. I. Theoretical considerations and in-vitro results for five different prototypes

    International Nuclear Information System (INIS)

    Schaefer, Philipp Jost; Jahnke, T.; Andres, H.; Heller, M.; Schaefer, F.K.; Hedderich, J.

    2009-01-01

    Purpose: to develop different prototypes of permanently controllable rotating biopsy devices with determination of the most efficient prototype in biopsies in bovine myocardium. Materials and Methods: Five different prototypes of 18-gauge rotating biopsy devices were designed and constructed, four (1-4) with various drill-like cutting edges and one (5) cannula type with a lancet-like helically bent cutting edge. Using bovine myocardium as the biopsy tissue, n = 100 specimens per prototype were obtained, and a quantitative analysis including tissue fragmentation, length in mm and weight in mg was carried out. For statistical analysis, the chi-square test for tissue fragmentation and Kruskal-Wallis test for the parameters length and weight were calculated. Results: prototype 5 showed the highest rate of extraction of one-fragment specimens in n=66 cases and the lowest rate of failure to obtain tissue in n=11 cases. The mean length/weight were 4.15 mm/3.91 mg for prototype 1, 1.80 mm/1.66 mg for prototype 2, 4.61 mm/3.28 mg for prototype 3, 5.20 mm/3.74 mg for prototype 4, and 9.57 mm/6.97 mg for prototype 5. In all three categories, prototype 5 was significantly superior to the prototypes 1-4 with p < 0.001. Conclusion: the cannula type with a lancet-like helically bent cutting edge proved to be the most efficient prototype and may now be tested competitively against established automated biopsy devices in vitro. (orig.)

  5. Development of the ERC cold-cathode ion source for use on the PR-30 ion-implantation system

    International Nuclear Information System (INIS)

    Bird, H.M.B.; Flemming, J.P.

    1978-01-01

    The ERC cold-cathode ion source has been in routine production use on several PR-30 systems for the past three years. This source has been further developed to improve target current, lifetime, and stability. The ion-optical lens has been changed from circular to elliptical geometry in order to provide an asymmetric beam for entry into the PR-30 analyzing magnet. This measure, as well as the use of higher extraction voltages, provides higher beam currents on the PR-30 target wafers. Beam steering in the nondispersive direction has been provided to correct the effects of minor machine misalignments, further enhancing target current. The discharge chamber has been modified to increase source lifetime. A new gas-feed control system and a new method of oven temperature control have been devised to provide good source and ion beam stability. The source operates with only occasional attention by unskilled personnel, and has been used principally for boron and arsenic implants. Target currents of 1-mA boron and 4-mA arsenic can be obtained routinely. Lifetimes are of the order of 40--80 h, depending on ion species. The source has also been used to provide 5-mA phosphorus, 4-mA argon, 3-mA helium and neon, and 0.3-mA nickel and palladium ion beams

  6. Development and testing of a prototype NPP information system based on the G2 expert system shell

    International Nuclear Information System (INIS)

    Vegh, J.; Bodnar, M.; Brueger, L.; Tanyi, M.; Sefcsik, F.

    1994-01-01

    The components and functioning of the GPCS information system is described as applied for process monitoring and alarm generation in WWER-440 type nuclear power plant. The prototype system was developed by using the G2 real-time expert system shell, measurements were simulated by a WWER-440 compact simulator and by the archive replay of a core monitoring system. The benefits of the object oriented technology description, expert system approach and information integration are emphasized. (author) 21 refs.; 17 figs

  7. Development of an integrated closed loop control system with virtual reality monitoring for Prototype Robotic Articulated System (PRAS)

    International Nuclear Information System (INIS)

    Rastogi, Naveen; Dutta, Pramit; Gotewal, K.K.

    2015-01-01

    The Prototype Robotic Articulated System (PRAS) is a servo driven 4 degrees of freedom robotic arm capable of handling of upto 5 kg payload. A virtual reality based monitoring application has been developed in blender and was intergrated with the control system to read the joint values of the robotic arm at 10Hz and update the CAD model to visualize the robotic operations remotely. This paper presents the design details and implementation results of the integrated control system for PRAS

  8. EUCLID ARCHIVE SYSTEM PROTOTYPE

    NARCIS (Netherlands)

    Belikov, Andrey; Williams, Owen; Droge, Bob; Tsyganov, Andrey; Boxhoorn, Danny; McFarland, John; Verdoes Kleijn, Gijs; Valentijn, E; Altieri, Bruno; Dabin, Christophe; Pasian, F.; Osuna, Pedro; Soille, P.; Marchetti, P.G.

    2014-01-01

    The Euclid Archive System prototype is a functional information system which is used to address the numerous challenges in the development of fully functional data processing system for Euclid. The prototype must support the highly distributed nature of the Euclid Science Ground System, with Science

  9. Mechanical properties used for the qualification of transport casks: Prototype development and extension to serial production

    International Nuclear Information System (INIS)

    Salzbrenner, R.; Crenshaw, T.B.; Sorenson, K.B.

    1992-01-01

    A thorough understanding of the mechanical behavior of material in a specific cask is required to properly analyze the structural response of the cask. An appropriate way to establish this understanding is through laboratory testing of cask material. The laboratory testing that was done to support the MOSAIK Drop Test Program is summarized as an example of how mechanical properties can be mapped for a prototype cask. The broad range of measured properties allows the critical aspects of mechanical behavior to be understood. This is necessary for the proper application of fracture mechanics, and focuses on fracture toughness as the inherent materials property which quantifies the fracture resistance of a material. The general fracture mechanics approach and its application to specific cask designs are described elsewhere (Salzbrenner et al. 1990, Sorenson et al. 1992a, Sorenson et al. 1992b). The understanding established by a thorough mapping of the mechanical properties is necessary to apply fracture mechanics to a particular prototype, but it is not sufficient for qualifying serially produced casks. The mechanical behavior of a prototype must be correctly associated with parameters which can be measured on production casks. Since the production casks cannot be destructively tested, measurements are commonly made on sub-size specimens. This may prevent direct measurement of valid design properties. An additional database may then be required to establish the correlation between sub-size specimen measurements and valid design properties. This is illustrated by outlining the additional testing which would be necessary to allow the successful verification of the MOSAIK Drop Test Program to be extended from the prototype to serially produced casks

  10. Prototype Development and Evaluation of Self-Cleaning Concentrated Solar Power Collectors

    Energy Technology Data Exchange (ETDEWEB)

    Mazumder, Malay K. [Boston Univ., MA (United States); Horenstein, Mark N. [Boston Univ., MA (United States); Joglekar, Nitin R. [Boston Univ., MA (United States)

    2015-03-31

    The feasibility of integrating and retrofitting transparent electrodynamic screens (EDS) on the front surfaces of solar collectors was established as a means to provide active self-cleaning properties for parabolic trough and heliostat reflectors, solar panels, and Fresnel lenses. Prototype EDS-integrated solar collectors, including second-surface glass mirrors, metallized Acrylic-film mirrors, and dielectric mirrors, were produced and tested in environmental test chambers for removing the dust layer deposited on the front surface of the mirrors. The evaluation of the prototype EDS-integrated mirrors was conducted using dust and environmental conditions that simulate the field conditions of the Mojave Desert. Test results showed that the specular reflectivity of the mirrors could be maintained at over 90% over a wide range of dust loadings ranging from 0 to 10 g/m2, with particle diameter varying from 1 to 50 μm. The measurement of specular reflectivity (SR) was performed using a D&S Reflectometer at wavelength 660 nm. A non-contact reflectometer was designed and constructed for rapid measurement of specular reflectivity at the same wavelength. The use of this new noncontact instrument allowed us to measure SR before and after EDS activation. Several EDS prototypes were constructed and evaluated with different electrode configurations, electrode materials, and encapsulating dielectric materials.

  11. Development of a 352 MHz Cell-Coupled Drift Tube Linac Prototype

    CERN Document Server

    Cuvet, Y; Völlinger, C; Vretenar, M; Gerigk, F

    2004-01-01

    At linac energies above 40 MeV, alternative structures to the conventional Drift Tube Linac can be used to increase efficiency and to simplify construction and alignment. In the frame of the R&D activities for the CERN SPL and Linac4, a prototype of Cell-Coupled Drift Tube Linac (CCDTL) at 352 MHz has been designed and built. This particular CCDTL concept is intended to cover the energy range from 40 to 90 MeV and consists of modules of ~5 m length made of 3-gap DTL tanks linked by coupling cells. The focusing quadrupoles are placed between tanks, and are aligned independently from the RF structure. The CCDTL prototype consists of two half tanks connected by a coupling cell and requires an RF power of 120 kW to achieve the design gradient. RF tests will be made at low and high power, the latter up to a 20% duty cycle. This paper introduces the main features of this CCDTL design and describes the RF and mechanical design of the prototype.

  12. Prototyping real-time systems

    OpenAIRE

    Clynch, Gary

    1994-01-01

    The traditional software development paradigm, the waterfall life cycle model, is defective when used for developing real-time systems. This thesis puts forward an executable prototyping approach for the development of real-time systems. A prototyping system is proposed which uses ESML (Extended Systems Modelling Language) as a prototype specification language. The prototyping system advocates the translation of non-executable ESML specifications into executable LOOPN (Language of Object ...

  13. Hollow cathode for positive ion sources

    International Nuclear Information System (INIS)

    Schechter, D.E.; Kim, J.; Tsai, C.C.

    1979-01-01

    Development to incorporate hollow cathodes into high power ion sources for neutral beam injection systems is being pursued. Hollow tube LaB 6 -type cathodes, similar to a UCLA design, have been constructed and tested in several ORNL ion source configurations. Results of testing include arc discharge parameters of >1000 and 500 amps for 0.5 and 10 second pulse lengths, respectively. Details of cathode construction and additional performance results are discussed

  14. Refinement of Foam Backfill Technology for Expedient Airfield Damage Repair; Phase 2: Development of Prototype Foam Dispensing Equipment and Improved Tactics, Techniques and Procedures

    Science.gov (United States)

    2017-12-01

    ER D C TR -1 7- 14 U.S. Air Force Rapid Airfield Damage Repair Modernization Program Refinement of Foam Backfill Technology for...Backfill Technology for Expedient Airfield Damage Repair Phase II: Development of Prototype Foam Dispensing Equipment and Improved Tactics...procedures (TTPs) for rapid airfield damage repair (RADR) using foam backfill technology . Three different prototype foam dispensing systems were

  15. THE ROLE OF PROTOTYPING AND SIMULATION IN THE DEVELOPMENT PROCESS OF AN ELASTIC COUPLING WITH FLEXIBLE MEMBRANES

    Directory of Open Access Journals (Sweden)

    DOBRE Daniel

    2015-06-01

    Full Text Available In the conditions of a competitive market, the use of 3D modelling, visualisation and simulation tools enable the entire coupling to be designed and developed in the pre-manufacturing phase. Several advantages of introducing virtual prototyping are offered. The goal for the coupling prototype is to answer questions about performance and reliability in order to identify necessary engineering changes for the final coupling variant. Facilitating the virtual reality communication capability, different variations of the geometry and other characteristics can be studied and discussed in a more efficient mode. Virtual features of the coupling structure are described and analysed for the efficient realization of coupling project. At the end, the paper presents design simulations to prove the behaviour and functionality of the coupling for different operational scenarios: mechanical stress, buckling stability and modal analysis.

  16. Developing and Testing the Health Care Safety Hotline: A Prototype Consumer Reporting System for Patient Safety Events.

    Science.gov (United States)

    Schneider, Eric C; Ridgely, M Susan; Quigley, Denise D; Hunter, Lauren E; Leuschner, Kristin J; Weingart, Saul N; Weissman, Joel S; Zimmer, Karen P; Giannini, Robert C

    2017-06-01

    This article describes the design, development, and testing of the Health Care Safety Hotline, a prototype consumer reporting system for patient safety events. The prototype was designed and developed with ongoing review by a technical expert panel and feedback obtained during a public comment period. Two health care delivery organizations in one metropolitan area collaborated with the researchers to demonstrate and evaluate the system. The prototype was deployed and elicited information from patients, family members, and caregivers through a website or an 800 phone number. The reports were considered useful and had little overlap with information received by the health care organizations through their usual risk management, customer service, and patient safety monitoring systems. However, the frequency of reporting was lower than anticipated, suggesting that further refinements, including efforts to raise awareness by actively soliciting reports from subjects, might be necessary to substantially increase the volume of useful reports. It is possible that a single technology platform could be built to meet a variety of different patient safety objectives, but it may not be possible to achieve several objectives simultaneously through a single consumer reporting system while also establishing trust with patients, caregivers, and providers.

  17. Development of automated prototype for studying the effect of solar aging on sunglasses

    Science.gov (United States)

    Gomes, L. M.; Ventura, L.

    2015-06-01

    The first Brazilian standard for UV protection sunglasses, NBR15111, was drafted and published in 2003, hitherto a faithful copy (mirror) of European, BSEN1836 standard. From 2010 to 2013 the Laboratório de Instrumentação Oftálmica of the School of Engineering of São Carlos (USP) made contribution in the review and drafting of this standard and the main change so far is on the extension of the UV range analysis for protection of sunglasses, i.e. from 280 - 380nm to 280-400nm. In previous studies, there are indications that ultraviolet protection degrades with use and exposure of sunglasses to natural ultraviolet radiation. Thus, this project aims to build a prototype for irradiating sunglasses lenses, where one of the spectacles will be submitted to the solar simulator; and the other to the prototype. This prototype consists of a panel with cover, which houses 100 lenses arranged in the vertical (user's) position and which will be irradiated by the sun from sunrise until sunset. The lid opens automatically and should turn towards the sun, so that the lens will always be irradiated facing the sun. Sensors will be installed to close the cover and protect the lenses of undesirable weather conditions and to determine the ultraviolet index to which the lenses are being subjected to. The exposure time and UV index will be recorded and automatic opening or closing the lid may also be interfered by a PC by online software. Previously to irradiation, spectroscopy will be performed and then repeated after every 30 days of exposure.

  18. Development of a prototype commonality analysis tool for use in space programs

    Science.gov (United States)

    Yeager, Dorian P.

    1988-01-01

    A software tool to aid in performing commonality analyses, called Commonality Analysis Problem Solver (CAPS), was designed, and a prototype version (CAPS 1.0) was implemented and tested. The CAPS 1.0 runs in an MS-DOS or IBM PC-DOS environment. The CAPS is designed around a simple input language which provides a natural syntax for the description of feasibility constraints. It provides its users with the ability to load a database representing a set of design items, describe the feasibility constraints on items in that database, and do a comprehensive cost analysis to find the most economical substitution pattern.

  19. Development and Experimental Results from a 1 kW Prototype AMR

    DEFF Research Database (Denmark)

    Bahl, Christian; Engelbrecht, Kurt; Eriksen, Dan

    2012-01-01

    containing an active magnetic regenerator (AMR) bed. As outlined in Pryds et al. (2009) a small scale AMR test device has been used for materials choice and optimising operation, with each component being thoroughly characterised and tested before implementation. The prototype design facilitates easy......A novel rotary magnetic refrigeration device has been designed and constructed following the concepts recently outlined in Bahl et al. (2011). The magnet and flow system design allow for almost continuous usage of both the magnetic field and the magnetocaloric material in 24 cassettes, each...

  20. Long-term cathode performance and the microbial communities that develop in microbial fuel cells fed different fermentation endproducts

    KAUST Repository

    Kiely, Patrick D.; Rader, Geoffrey; Regan, John M.; Logan, Bruce E.

    2011-01-01

    fermentation (acetic acid, formic acid, lactic acid, succinic acid, or ethanol). Large variations in reactor performance were primarily due to the specific substrates, with power densities ranging from 835±21 to 62±1mW/m3. Cathodes performance degraded over

  1. Cathodic protection -- Rectifier 46

    International Nuclear Information System (INIS)

    Lane, W.M.

    1995-01-01

    This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the cathodic protection system functions as required by project criteria. The cathodic protection system is for the tank farms on the Hanford Reservation. The tank farms store radioactive waste

  2. Cathodic protection -- Rectifier 47

    International Nuclear Information System (INIS)

    Lane, W.M.

    1995-01-01

    This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the cathodic protection system functions as required by project criteria. The cathodic protection system is for the tank farms at the Hanford Reservation. The tank farms store radioactive waste

  3. Solution Prototype

    DEFF Research Database (Denmark)

    Efeoglu, Arkin; Møller, Charles; Serie, Michel

    2013-01-01

    This paper outlines an artifact building and evaluation proposal. Design Science Research (DSR) studies usually consider encapsulated artifact that have relationships with other artifacts. The solution prototype as a composed artifact demands for a more comprehensive consideration in its systematic...... environment. The solution prototype that is composed from blending product and service prototype has particular impacts on the dualism of DSR’s “Build” and “Evaluate”. Since the mix between product and service prototyping can be varied, there is a demand for a more agile and iterative framework. Van de Ven......’s research framework seems to fit this purpose. Van de Ven allows for an iterative research approach to problem solving with flexible starting point. The research activity is the result between the iteration of two dimensions. This framework focuses on the natural evaluation, particularly on ex...

  4. Development of a prototype interactive learning system using multi-media technology for mission independent training program

    Science.gov (United States)

    Matson, Jack E.

    1992-01-01

    The Spacelab Mission Independent Training Program provides an overview of payload operations. Most of the training material is currently presented in workbook form with some lecture sessions to supplement selected topics. The goal of this project was to develop a prototype interactive learning system for one of the Mission Independent Training topics to demonstrate how the learning process can be improved by incorporating multi-media technology into an interactive system. This report documents the development process and some of the problems encountered during the analysis, design, and production phases of this system.

  5. A Software Prototype Development of Human System Interfaces for Human Factors Engineering Validation Tests of SMART MCR

    International Nuclear Information System (INIS)

    Lim, Jong Tae; Kang, Young Sun; Park, Byung Yul; Han, Kwan Ho; Yang, Sung Won; Oh, In Su; Kim, Myung Ju; Bae, Mun Jin; Nam, Gi Ho; Lim, Do Yeun

    2009-12-01

    This report's aim is to develop a software prototype that will be used in the partial dynamic mockup of SMART MCR(main control room). The software mainly consist of the plant a dynamic model and various operation displays that will be installed into MCR. They includes the codes such as main data processing logics like alarm reduction logic and display methods like ecological interface display and elastic tile alarm display developed by KAERI. The unit test and integrated test of them are performed according to predefined test procedure

  6. A new protection system against high voltage vacuum breakdowns developed for the Tore Supra neutral beam injector prototype

    International Nuclear Information System (INIS)

    Fumelli, M.; Jequier, F.; Pamela, J.

    1988-01-01

    A passive protection system against high voltage vacuum breakdowns has been developed. This system is based on the principle of oscillatory discharges in an RLC circuit coupled with the use of a diode. It allows the interruption of a vacuum breakdown in a few milliseconds. This study has been made for protecting some parts of the neutral beam injectors of the Tore Supra Tokamak experiment, but its field of application should be quite large. The conception of the whole high voltage electrical circuit developed for the Tore Supra injector prototype experiments is also presented

  7. Development and test of the DAQ system for a Micromegas prototype installed into the ATLAS experiment

    CERN Document Server

    Zibell, Andre; The ATLAS collaboration; Bianco, Michele; Martoiu, Victor Sorin

    2015-01-01

    A Micromegas (MM) quadruplet prototype with an active area of 0.5 m$^2$ that adopts the general design foreseen for the upgrade of the innermost forward muon tracking systems (Small Wheels) of the ATLAS detector in 2018-2019, has been built at CERN and is going to be tested in the ATLAS cavern environment during the LHC RUN-II period 2015-2017. The integration of this prototype detector into the ATLAS data acquisition system using custom ATCA equipment is presented. An ATLAS compatible ReadOutDriver (ROD) based on the Scalable Readout System (SRS), the Scalable Readout Unit (SRU), will be used in order to transmit the data after generating valid event fragments to the high-level Read Out System (ROS). The SRU will be synchronized with the LHC bunch crossing clock (40.08 MHz) and will receive the Level-1 trigger signals from the Central Trigger Processor (CTP) through the TTCrx receiver ASIC. The configuration of the system will be driven directly from the ATLAS Run Control System. By using the ATLAS TDAQ Soft...

  8. Development of prototype components for the silicon tracking system of the CBM experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Lymanets, Anton

    2013-06-26

    . A detector module is a basic functional unit that includes a sensor, an analogue microcable and frontend electronics mounted on a support structure. The objective of the thesis is to perform quality assurance tests of the prototype module components in order to validate the concept of the detector module and to demonstrate its operation using radioactive sources and particle beams. Double-sided silicon microstrip detectors have been chosen as sensor technology for the STS because of the combination of a good spatial resolution, two-dimensional coordinate measurement achieved within low material budget (0.3%X{sub 0}), high readout speed and sufficient radiation tolerance. Several generations of double-sided silicon microstrip sensors have been manufactured in order to explore the radiation hard design features and the concept of a large-area sensor compatible with ladder-type structure of the detector module. In particular, sensors with double metal layer on both sides and active area of 62 x 62 mm{sup 2} have been produced. Electrical characterization of the sensors has been performed in order to establish the overall operability as well as to extract the device parameters. Current-voltage, capacitance-voltage characteristics and interstrip parameters have been measured. Readout of the sensors has been done using self-triggering front-end electronics. A front-end board has been developed based on the n-XYTER readout chip with data driven architecture and capable of operating at 32 MHz readout rate. The front-end board included an external analog-to-digital converter (ADC). Calibration of the ADC has been performed using both {sup 241}Am X-ray source and external pulse generator. Threshold calibration and investigation of temperature dependence of chip parameters has been carried out. Low-mass support structures have been developed using carbon fibre that has the rigidity to hold the detector modules and introduce minimal Coulomb scattering of the particle tracks

  9. Prototype development and demonstration for response, emergency staging, communications, uniform management, and evacuation (R.E.S.C.U.M.E.) : R.E.S.C.U.M.E. prototype system architecture.

    Science.gov (United States)

    2014-01-01

    This document provides the high-level system architecture for the Prototype Development and Demonstration of a : R.E.S.C.U.M.E. system. The requirements addressed in this document are based upon those that can be found in : previous R.E.S.C.U.M.E. re...

  10. Study of the feasibility of distributed cathodic arc as a plasma source for development of the technology for plasma separation of SNF and radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Amirov, R. Kh.; Vorona, N. A.; Gavrikov, A. V.; Liziakin, G. D.; Polistchook, V. P.; Samoylov, I. S.; Smirnov, V. P.; Usmanov, R. A., E-mail: ravus46@yandex.ru; Yartsev, I. M. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2015-12-15

    One of the key problems in the development of plasma separation technology is designing a plasma source which uses condensed spent nuclear fuel (SNF) or nuclear wastes as a raw material. This paper covers the experimental study of the evaporation and ionization of model materials (gadolinium, niobium oxide, and titanium oxide). For these purposes, a vacuum arc with a heated cathode on the studied material was initiated and its parameters in different regimes were studied. During the experiment, the cathode temperature, arc current, arc voltage, and plasma radiation spectra were measured, and also probe measurements were carried out. It was found that the increase in the cathode heating power leads to the decrease in the arc voltage (to 3 V). This fact makes it possible to reduce the electron energy and achieve singly ionized plasma with a high degree of ionization to fulfill one of the requirements for plasma separation of SNF. This finding is supported by the analysis of the plasma radiation spectrum and the results of the probe diagnostics.

  11. Making tomorrow's mistakes today: Evolutionary prototyping for risk reduction and shorter development time

    Science.gov (United States)

    Friedman, Gary; Schwuttke, Ursula M.; Burliegh, Scott; Chow, Sanguan; Parlier, Randy; Lee, Lorrine; Castro, Henry; Gersbach, Jim

    1993-01-01

    In the early days of JPL's solar system exploration, each spacecraft mission required its own dedicated data system with all software applications written in the mainframe's native assembly language. Although these early telemetry processing systems were a triumph of engineering in their day, since that time the computer industry has advanced to the point where it is now advantageous to replace these systems with more modern technology. The Space Flight Operations Center (SFOC) Prototype group was established in 1985 as a workstation and software laboratory. The charter of the lab was to determine if it was possible to construct a multimission telemetry processing system using commercial, off-the-shelf computers that communicated via networks. The staff of the lab mirrored that of a typical skunk works operation -- a small, multi-disciplinary team with a great deal of autonomy that could get complex tasks done quickly. In an effort to determine which approaches would be useful, the prototype group experimented with all types of operating systems, inter-process communication mechanisms, network protocols, packet size parameters. Out of that pioneering work came the confidence that a multi-mission telemetry processing system could be built using high-level languages running in a heterogeneous, networked workstation environment. Experience revealed that the operating systems on all nodes should be similar (i.e., all VMS or all PC-DOS or all UNIX), and that a unique Data Transport Subsystem tool needed to be built to address the incompatibilities of network standards, byte ordering, and socket buffering. The advantages of building a telemetry processing system based on emerging industry standards were numerous: by employing these standards, we would no longer be locked into a single vendor. When new technology came to market which offered ten times the performance at one eighth the cost, it would be possible to attach the new machine to the network, re-compile the

  12. Making tomorrow's mistakes today: Evolutionary prototyping for risk reduction and shorter development time

    Science.gov (United States)

    Friedman, Gary; Schwuttke, Ursula M.; Burliegh, Scott; Chow, Sanguan; Parlier, Randy; Lee, Lorrine; Castro, Henry; Gersbach, Jim

    1993-03-01

    In the early days of JPL's solar system exploration, each spacecraft mission required its own dedicated data system with all software applications written in the mainframe's native assembly language. Although these early telemetry processing systems were a triumph of engineering in their day, since that time the computer industry has advanced to the point where it is now advantageous to replace these systems with more modern technology. The Space Flight Operations Center (SFOC) Prototype group was established in 1985 as a workstation and software laboratory. The charter of the lab was to determine if it was possible to construct a multimission telemetry processing system using commercial, off-the-shelf computers that communicated via networks. The staff of the lab mirrored that of a typical skunk works operation -- a small, multi-disciplinary team with a great deal of autonomy that could get complex tasks done quickly. In an effort to determine which approaches would be useful, the prototype group experimented with all types of operating systems, inter-process communication mechanisms, network protocols, packet size parameters. Out of that pioneering work came the confidence that a multi-mission telemetry processing system could be built using high-level languages running in a heterogeneous, networked workstation environment. Experience revealed that the operating systems on all nodes should be similar (i.e., all VMS or all PC-DOS or all UNIX), and that a unique Data Transport Subsystem tool needed to be built to address the incompatibilities of network standards, byte ordering, and socket buffering. The advantages of building a telemetry processing system based on emerging industry standards were numerous: by employing these standards, we would no longer be locked into a single vendor. When new technology came to market which offered ten times the performance at one eighth the cost, it would be possible to attach the new machine to the network, re-compile the

  13. Development and Manufacturing Technology of Prototype Monoblock Low Pressure Rotor Shaft by 650ton Large Ingot

    Energy Technology Data Exchange (ETDEWEB)

    Song, Duk-Yong; Kim, Dong-Soo; Kim, Jungyeup; Lee, Jongwook; Ko, Seokhee [Doosan Heavy Industries and Construction, Changwon(Korea, Republic of)

    2016-10-15

    In order to establish the manufacturing technology for monoblock LP rotor shaft, DHI has produced the prototype monoblock LP rotor shaft with a maximum diameter of φ 2,800 mm using 650 ton ingot and investigated the mechanical properties and the internal quality of the ingot. As a result, the quality and mechanical properties required the large rotor shaft for nuclear power plant met a target. These results indicate that DHI can be contributed to increasing demands with high efficiency and capacity at the nuclear power plant. Additionally, some tests such as high cycle fatigue (HCF), low cycle fatigue (LCF), fracture toughness (K1C/J1C) and dynamic crack propagation velocity (da/dN) are in progress.

  14. Development in design of test infrastructure for ITER prototype cryoline test

    International Nuclear Information System (INIS)

    Ketan, Choukekar; Ritendra, Bhattacharya; Nitin, Shah; Muralidhara, Srinivasa; Himanshu, Kapoor; Pratik, Patel; Uday, Kumar; Biswanath, Sarkar

    2015-01-01

    The prototype cryoline (PTCL) for ITER is a representative cryoline from the complex network of all cryolines for the project. PTCL consist of six process pipes (of which four are operating at 4 K temperature level while two are operating at 80 K temperature level), thermal shield and outer vacuum jacket. PTCL will be tested for its thermal performance, mechanical integrity, leak tightness and functioning of components at cryogenic temperatures. The test infrastructure requirements for testing of PTCL have been identified based on the optimized test methodology. The best suited infrastructure option to test PTCL involves 80K system with helium compressor, test boxes, liquid helium Dewar, liquid nitrogen Dewar and interconnecting cryolines. Process study and various analyses have been performed to finalize the specifications of test infrastructure. The present work describes study on global thermo-hydraulic analysis of PTCL test infrastructure. Preliminary process simulation using the ASPEN HYSYS® has been performed to study the dynamic behavior of 80K system. (author)

  15. Luminosity Measurement at ATLAS Development, Construction and Test of Scintillating Fibre Prototype Detectors

    CERN Document Server

    Ask, S; Braem, André; Cheiklali, C; Efthymiopoulos, I; Fournier, D; de La Taille, C; Di Girolamo, B; Grafström, P; Joram, C; Haguenauer, Maurice; Hedberg, V; Lavigne, B; Maio, A; Mapelli, A; Mjörnmark, U; Puzo, P; Rijssenbeek, M; Santos, J; Saraiva, J G; Stenzel, H; Thioye, M; Valladolid, E; Vorobel, V

    2006-01-01

    We are reporting about a scintillating fibre tracking detector which is proposed for the precise determination of the absolute luminosity of the CERN LHC at interaction point 1 where the ATLAS experiment is located. The detector needs to track protons elastically scattered under $\\mu$rad angles in direct vicinity to the LHC beam. It is based on square shaped scintillating plastic fibres read out by multi-anode photomultiplier tubes and is housed in Roman Pots. We describe the design and construction of prototype detectors and the results of a beam test experiment at DESY. The excellent detector performance established in this test validates the detector design and supports the feasibility of the proposed challenging method of luminosity measurement.

  16. Prototype detector development for measurement of high altitude Martian dust using a future orbiter platform

    Science.gov (United States)

    Pabari, Jayesh; Patel, Darshil; Chokhawala, Vimmi; Bogavelly, Anvesh

    2016-07-01

    Dust devils mostly occur during the mid of Southern hemisphere summer on Mars and play a key role in the background dust opacity. Due to continuous bombardment of micrometeorites, secondary ejecta come out from the Moons of the Mars and can easily escape. This phenomenon can contribute dust around the Moons and therefore, also around the Mars. Similar to the Moons of the Earth, the surfaces of the Martian Moons get charged and cause the dust levitation to occur, adding to the possible dust source. Also, interplanetary dust particles may be able to reach the Mars and contribute further. It is hypothesized that the high altitude Martian dust could be in the form of a ring or tori around the Mars. However, no such rings have been detected to the present day. Typically, width and height of the dust torus is ~5 Mars radii wide (~16950 km) in both the planes as reported in the literature. Recently, very high altitude dust at about 1000 km has been found by MAVEN mission and it is expected that the dust may be concentrated at about 150 to 500 km. However, a langmuir probe cannot explain the source of such dust particles. It is a puzzling question to the space scientist how dust has reached to such high altitudes. A dedicated dust instrument on future Mars orbiter may be helpful to address such issues. To study origin, abundance, distribution and seasonal variation of Martian dust, a Mars Orbit Dust Experiment (MODEX) is proposed. In order to measure the Martian dust from a future orbiter, design of a prototype of an impact ionization dust detector has been initiated at PRL. This paper presents developmental aspects of the prototype dust detector and initial results. The further work is underway.

  17. Development of the next generation code system as an engineering modelling language. 3. Study with prototyping. 2

    International Nuclear Information System (INIS)

    Yokoyama, Kenji; Chiba, Go; Kasahara, Naoto; Ishikawa, Makoto

    2004-04-01

    In the fast reactor development, numerical simulations using analysis code play and important role for complementing theory and experiment. In order to efficiently advance the research and development of fast reactors, JNC promotes the development of next generation simulation code (NGSC). In this report, an investigation research result by prototyping which carried out for the conceptual design of the NGSC is described. From the viewpoint of the cooperative research with CEA (Commissariat a l'Energie Atomique) in France, a trend survey on several platforms for numerical analysis and an applicability evaluation of the SALOME platform in CEA for the NGSC were carried out. As a result of the evaluation, it is confirmed that the SALOME had been satisfied the features of efficiency, openness, universality, expansibility and completeness that are required by the NGSC. In addition, it is confirmed that the SALOME had the concept of the control layer required by the NGSC and would be one of the important candidates as a platform of the NGSC. In the field of the structure analysis, the prototype of the PRTS.NET code was reexamined from the viewpoint of class structure and input/output specification in order to improve the data processing efficiency and maintainability. In the field of the reactor physics analysis, a development test of a new code with C++ and a reuse test of an existing code written in Fortran was carried out in view of utilizing the SALOME for the NGSC. (author)

  18. A Prototype Lisp-Based Soft Real-Time Object-Oriented Graphical User Interface for Control System Development

    Science.gov (United States)

    Litt, Jonathan; Wong, Edmond; Simon, Donald L.

    1994-01-01

    A prototype Lisp-based soft real-time object-oriented Graphical User Interface for control system development is presented. The Graphical User Interface executes alongside a test system in laboratory conditions to permit observation of the closed loop operation through animation, graphics, and text. Since it must perform interactive graphics while updating the screen in real time, techniques are discussed which allow quick, efficient data processing and animation. Examples from an implementation are included to demonstrate some typical functionalities which allow the user to follow the control system's operation.

  19. Experimental Study of Thermoelectric Generator as Electrical Source of Impressed Current Cathodic Protection for Ship Hull

    Directory of Open Access Journals (Sweden)

    Adi Kurniawan

    2017-06-01

    Full Text Available Impressed Current Cathodic Protection (ICCP is a method to protect metallic material such as ship hull from corrosion by using electric current. In this research, a prototype of thermoelectric generator is developed in order to supply the ICCP system. This thermoelectric generator is planned to utilize the exhaust gas from main engine of the ship. Method carried in this research is assembling the prototype of thermoelectric generator followed by conducted experiment to observe the potential energy of the prototype. After that, the required number of thermoelectric generator is calculated to supply the ICCP system to protect the ship from corrosion. The object in this research is live fish carrier “Wellboat” which has 396.08 m2 wetted area. The required voltage and current to protect the ship from corrosion for three years are 16.67 Volt and 2.66 Ampere. Based on the experiment, a prototype of thermoelectric generator can generate 0.34 Ampere and 4.43 Volt, causing the need of 8 series and 4 parallels connection. It can be concluded that the corrosion rate on the ship hull can be decelerated by using impressed current cathodic protection method without needing additional cost or fuel consumption to produce electric energy.  

  20. Development and demonstration of prototype transportation equipment for emplacing HL vitrified waste canisters into small diameter bored horizontal disposal cells

    International Nuclear Information System (INIS)

    Seidler, Wolf K.; Bosgiraud, Jean-Michel; Londe, Louis

    2008-01-01

    Over a period of 4 and years the National Radioactive Waste Management Agency (Andra), working with a variety of Contractors mostly specializing in nuclear orientated mechanical applications, successfully designed, fabricated and demonstrated 2 very different prototype high level waste transport systems. The first system, based on air cushion technology, was developed primarily for very heavy loads (17 to 45 tonnes). The results of this work are described in a separate presentation (Paper 21) at this Conference. The second system, developed by Andra within the framework of the ESDRED Project, generally referred to as the 'Pushing Robot System' for vitrified waste canisters, is the subject of this paper. The 'Pushing Robot System' is a part of the French national disposal concept that is described in Andra's 'Dossier 2005'. The latter is a public document that can be viewed on Andra's web site (www.andra.fr). The 'Pushing Robot System' system is designed for the deep geological disposal (in clay formations) of 'C' type vitrified waste canisters. In its entirety the system provides for the transport, emplacement and, if necessary, the retrieval of those canisters. Nothing in the design of the Andra emplacement equipment would preclude its utilization in horizontal openings in other types of geological settings. Over a period of some 8 years Andra has developed the 'Pushing Robot System' in 3 phases. Initially there was only the 'Conceptual Design' (Phase 1) which was incorporated in the Dossier 2005. This was followed by Phase 2 i.e. the design and fabrication of a simplified full scale prototype system henceforth referred to a P1, which includes a Pushing Robot, a Dummy Canister and a Test Bench. P1 details were also incorporated in the Dossier 2005. Finally, during Phase 3, a second more comprehensive full scale prototype system P2 has been designed and is being assembled and tested this month. This system includes a Transport Shuttle, a Transfer Shielding Cask, a

  1. Development of a time-of-flight Compton camera prototype for online control of ion therapy and medical imaging

    International Nuclear Information System (INIS)

    Ley, Jean-Luc

    2015-01-01

    Hadron-therapy is one of the modalities available for treating cancer. This modality uses light ions (protons, carbon ions) to destroy cancer cells. Such particles have a ballistic accuracy thanks to their quasi-rectilinear trajectory, their path and the finished profile maximum dose in the end. Compared to conventional radiotherapy, this allows to spare the healthy tissue located adjacent downstream and upstream of the tumor. One of this modality's quality assurance challenges is to control the positioning of the dose deposited by ions in the patient. One possibility to perform this control is to detect the prompt gammas emitted during nuclear reactions induced along the ion path in the patient. A Compton camera prototype, theoretically allowing to maximize the detection efficiency of the prompt gammas, is being developed under a regional collaboration. This camera was the main focus of my thesis, and particularly the following points: i) studying, throughout Monte Carlo simulations, the operation of the prototype in construction, particularly with respect to the expected counting rates on the different types of accelerators in hadron-therapy ii) conducting simulation studies on the use of this camera in clinical imaging, iii) characterising the silicon detectors (scatterer) iv) confronting Geant4 simulations on the camera's response with measurements on the beam with the help of a demonstrator. As a result, the Compton camera prototype developed makes a control of the localization of the dose deposition in proton therapy to the scale of a spot possible, provided that the intensity of the clinical proton beam is reduced by a factor 200 (intensity of 10 8 protons/s). An application of the Compton camera in nuclear medicine seems to be attainable with the use of radioisotopes of an energy greater than 300 keV. These initial results must be confirmed by more realistic simulations (homogeneous and heterogeneous PMMA targets). Tests with the progressive

  2. Development of a prototype of the tele-localisation system in radiotherapy using personal digital assistant via wireless communication.

    Science.gov (United States)

    Wu, Vincent Wing-Cheung; Tang, Fuk-hay; Cheung, Wai-kwan; Chan, Kit-chi

    2013-02-01

    In localisation of radiotherapy treatment field, the oncologist is present at the simulator to approve treatment details produced by the therapist. Problems may arise if the oncologist is not available and the patient requires urgent treatment. The development of a tele-localisation system is a potential solution, where the oncologist uses a personal digital assistant (PDA) to localise the treatment field on the image sent from the simulator through wireless communication and returns the information to the therapist after his or her approval. Our team developed the first tele-localisation prototype, which consisted of a server workstation (simulator) for the administration of digital imaging and communication in medicine localisation images including viewing and communication with the PDA via a Wi-Fi network; a PDA (oncologist's site) installed with the custom-built programme that synchronises with the server workstation and performs treatment field editing. Trial tests on accuracy and speed of the prototype system were conducted on 30 subjects with the treatment regions covering the neck, skull, chest and pelvis. The average time required in performing the localisation using the PDA was less than 1.5 min, with the blocked field longer than the open field. The transmission speed of the four treatment regions was similar. The average physical distortion of the images was within 4.4% and the accuracy of field size indication was within 5.3%. Compared with the manual method, the tele-localisation system presented with an average deviation of 5.5%. The prototype system fulfilled the planned objectives of tele-localisation procedure with reasonable speed and accuracy. © 2012 The Authors. Journal of Medical Imaging and Radiation Oncology © 2012 The Royal Australian and New Zealand College of Radiologists.

  3. PRMS Data Warehousing Prototype

    Science.gov (United States)

    Guruvadoo, Eranna K.

    2002-01-01

    Project and Resource Management System (PRMS) is a web-based, mid-level management tool developed at KSC to provide a unified enterprise framework for Project and Mission management. The addition of a data warehouse as a strategic component to the PRMS is investigated through the analysis, design and implementation processes of a data warehouse prototype. As a proof of concept, a demonstration of the prototype with its OLAP's technology for multidimensional data analysis is made. The results of the data analysis and the design constraints are discussed. The prototype can be used to motivate interest and support for an operational data warehouse.

  4. Cathode readout with stripped resistive drift tubes

    International Nuclear Information System (INIS)

    Bychkov, V.N.; Kekelidze, G.D.; Novikov, E.A.; Peshekhonov, V.D.; Shafranov, M.D.; Zhiltsov, V.E.

    1995-01-01

    A straw tube drift chamber prototype has been constructed and tested. The straw tube material is mylar film covered with a carbon layer with a resistivity of 0.5, 30 and 70 kΩ/□. Both the anode wire and the cathode strip signals were detected to study the behaviour of the chamber in the presence of X-ray ionization. The construction and the results of the study are presented. (orig.)

  5. Cathode readout with stripped resistive drift tubes

    Science.gov (United States)

    Bychkov, V. N.; Kekelidze, G. D.; Novikov, E. A.; Peshekhonov, V. D.; Shafranov, M. D.; Zhiltsov, V. E.

    1995-12-01

    A straw tube drift chamber prototype has been constructed and tested. The straw tube material is mylar film covered with a carbon layer with a resistivity of 0.5, 30 and 70 kΩ/□. Both the anode wire and the cathode strip signals were detected to study the behaviour of the chamber in the presence of X-ray ionization. The construction and the results of the study are presented.

  6. Automated Work Packages Prototype: Initial Design, Development, and Evaluation. Light Water Reactor Sustainability Program

    Energy Technology Data Exchange (ETDEWEB)

    Oxstrand, Johanna Helene [Idaho National Lab. (INL), Idaho Falls, ID (United States); Al Rashdan, Ahmad [Idaho National Lab. (INL), Idaho Falls, ID (United States); Le Blanc, Katya Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bly, Aaron Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-07-01

    The goal of the Automated Work Packages (AWP) project is to demonstrate how to enhance work quality, cost management, and nuclear safety through the use of advanced technology. The work described in this report is part of the digital architecture for a highly automated plant project of the technical program plan for advanced instrumentation, information, and control (II&C) systems technologies. This report addresses the DOE Milestone M2LW-15IN0603112: Describe the outcomes of field evaluations/demonstrations of the AWP prototype system and plant surveillance and communication framework requirements at host utilities. A brief background to the need for AWP research is provided, then two human factors field evaluation studies are described. These studies focus on the user experience of conducting a task (in this case a preventive maintenance and a surveillance test) while using an AWP system. The remaining part of the report describes an II&C effort to provide real time status updates to the technician by wireless transfer of equipment indications and a dynamic user interface.

  7. Development of Prototype Laboratory Setup for Selective Detection of Ethylene Based on Multiwalled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    J. Kathirvelan

    2014-01-01

    Full Text Available We report here a prototype laboratory setup for detecting ethylene (C2H4 in ppm level employing a sensor made of multiwalled carbon nanotubes of 40 nm average tube diameter. The proposed reversible chemoresistive ethylene sensor is fabricated using Kapton as the substrate onto which carbon nanotubes are coated using thick film technology. IDT silver electrodes are printed using piezo head based ink-jet printing technology. The increases in electrical resistance of the sensor element are measured on exposure to ethylene for different ethylene concentrations using a potentiostat and data acquisition system. The increase in resistance of the calibrated sensor element on exposure to ethylene (analyte is about 18.4% at room temperature for 50 ppm ethylene concentration. This change is reversible. Our sensor element exhibits a better performance than those reported earlier (1.8% and it has got the rise and fall time of 10 s and 60 s, respectively. It could be used for testing the ripening of fruits.

  8. Automated Work Packages Prototype: Initial Design, Development, and Evaluation. Light Water Reactor Sustainability Program

    International Nuclear Information System (INIS)

    Oxstrand, Johanna Helene; Al Rashdan, Ahmad; Le Blanc, Katya Lee; Bly, Aaron Douglas; Agarwal, Vivek

    2015-01-01

    The goal of the Automated Work Packages (AWP) project is to demonstrate how to enhance work quality, cost management, and nuclear safety through the use of advanced technology. The work described in this report is part of the digital architecture for a highly automated plant project of the technical program plan for advanced instrumentation, information, and control (II&C) systems technologies. This report addresses the DOE Milestone M2LW-15IN0603112: Describe the outcomes of field evaluations/demonstrations of the AWP prototype system and plant surveillance and communication framework requirements at host utilities. A brief background to the need for AWP research is provided, then two human factors field evaluation studies are described. These studies focus on the user experience of conducting a task (in this case a preventive maintenance and a surveillance test) while using an AWP system. The remaining part of the report describes an II&C effort to provide real time status updates to the technician by wireless transfer of equipment indications and a dynamic user interface.

  9. Early stage structural development of prototypical zeolitic imidazolate framework (ZIF) in solution

    Energy Technology Data Exchange (ETDEWEB)

    Terban, Maxwell W.; Banerjee, Debasis; Ghose, Sanjit; Medasani, Bharat K.; Shukla, Anil K.; Legg, Benjamin A.; Zhou, Yufan; Zhu, Zihua; Sushko, Maria L.; De Yoreo, James J.; Liu, Jun; Thallapally, Praveen K.; Billinge, Simon L.

    2018-03-28

    Given the wide-ranging potential applications of metal organic frameworks (MOFs), an emerging imperative is to understand their formation with atomic scale precision. This will aid in designing syntheses for next-generation MOFs with enhanced properties and functionalities. Major challenges are to characterize the early-stage seeds, and the pathways to framework growth, which require synthesis coupled with in situ structural characterization sensitive to nanoscale structures in solution. Here we report measurements of an in situ synthesis of a prototypical MOF, ZIF-8, utilizing synchrotron X-ray atomic pair distribution function (PDF) analysis optimized for sensitivity to dilute species, complemented by mass spectrometry, electron microscopy, and density functional theory calculations. We observe that despite rapid formation of the crystalline product, a high concentration of Zn(2-MeIm)4 (2-MeIm = 2-methylimidazolate) initially forms and persists as stable clusters over long times. A secondary, amorphous phase also pervades during the synthesis, which has a structural similarity to the final ZIF-8 and may act as an intermediate to the final product.

  10. Development of a prototype plan for the effective closure of a waste disposal site in Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    Nyhan, J.; Barnes, F.

    1989-02-01

    The purpose of this study was to develop a prototype plan for the effective closure and stabilization of a semiarid low-level waste disposal site. This prototype plan will provide demonstrated closure techniques for a trench in a disposal site at Los Alamos based on previous shallow land burial (SLB) field research both at the Los Alamos Experimental Engineered Test Facility (EETF), and at a waste disposal area at Los Alamos. The accuracy of modeling soil water storage by two hydrologic models was tested by comparing simulation results with field measurements of soil moisture in eight experimental landfill cover systems at Waste Disposal Area B having a range of well-defined soil profiles and vegetative covers. Regression analysis showed that one of the two models tested represented soil moisture more accurately than the second model. The accuracy of modeling all of the parameters of the water balance equation was then evaluated using field data from the Integrated Systems Demonstration plots at the EETF. Optimized parameters were developed for one model to describe observed values of deep percolation, evapotranspiration, and runoff from the field plots containing an SLB trench cap configuration

  11. The development and evaluation of a hydrological seasonal forecast system prototype for predicting spring flood volumes in Swedish rivers

    Science.gov (United States)

    Foster, Kean; Bertacchi Uvo, Cintia; Olsson, Jonas

    2018-05-01

    Hydropower makes up nearly half of Sweden's electrical energy production. However, the distribution of the water resources is not aligned with demand, as most of the inflows to the reservoirs occur during the spring flood period. This means that carefully planned reservoir management is required to help redistribute water resources to ensure optimal production and accurate forecasts of the spring flood volume (SFV) is essential for this. The current operational SFV forecasts use a historical ensemble approach where the HBV model is forced with historical observations of precipitation and temperature. In this work we develop and test a multi-model prototype, building on previous work, and evaluate its ability to forecast the SFV in 84 sub-basins in northern Sweden. The hypothesis explored in this work is that a multi-model seasonal forecast system incorporating different modelling approaches is generally more skilful at forecasting the SFV in snow dominated regions than a forecast system that utilises only one approach. The testing is done using cross-validated hindcasts for the period 1981-2015 and the results are evaluated against both climatology and the current system to determine skill. Both the multi-model methods considered showed skill over the reference forecasts. The version that combined the historical modelling chain, dynamical modelling chain, and statistical modelling chain performed better than the other and was chosen for the prototype. The prototype was able to outperform the current operational system 57 % of the time on average and reduce the error in the SFV by ˜ 6 % across all sub-basins and forecast dates.

  12. Development of an expert system prototype for determining software functional requirements for command management activities at NASA Goddard

    Science.gov (United States)

    Liebowitz, J.

    1986-01-01

    The development of an expert system prototype for software functional requirement determination for NASA Goddard's Command Management System, as part of its process of transforming general requests into specific near-earth satellite commands, is described. The present knowledge base was formulated through interactions with domain experts, and was then linked to the existing Knowledge Engineering Systems (KES) expert system application generator. Steps in the knowledge-base development include problem-oriented attribute hierarchy development, knowledge management approach determination, and knowledge base encoding. The KES Parser and Inspector, in addition to backcasting and analogical mapping, were used to validate the expert system-derived requirements for one of the major functions of a spacecraft, the solar Maximum Mission. Knowledge refinement, evaluation, and implementation procedures of the expert system were then accomplished.

  13. Mesostructured platinum-free anode and carbon-free cathode catalysts for durable proton exchange membrane fuel cells.

    Science.gov (United States)

    Cui, Xiangzhi; Shi, Jianlin; Wang, Yongxia; Chen, Yu; Zhang, Lingxia; Hua, Zile

    2014-01-01

    As one of the most important clean energy sources, proton exchange membrane fuel cells (PEMFCs) have been a topic of extensive research focus for decades. Unfortunately, several critical technique obstacles, such as the high cost of platinum electrode catalysts, performance degradation due to the CO poisoning of the platinum anode, and carbon corrosion by oxygen in the cathode, have greatly impeded its commercial development. A prototype of a single PEMFC catalyzed by a mesostructured platinum-free WO3/C anode and a mesostructured carbon-free Pt/WC cathode catalysts is reported herein. The prototype cell exhibited 93% power output of a standard PEMFC using commercial Pt/C catalysts at 50 and 70 °C, and more importantly, CO poisoning-free and carbon corrosion-resistant characters of the anode and cathode, respectively. Consequently, the prototype cell demonstrated considerably enhanced cell operation durability. The mesostructured electrode catalysts are therefore highly promising in the future development and application of PEMFCs. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Design of a current based readout chip and development of a DEPFET pixel prototype system for the ILC vertex detector

    International Nuclear Information System (INIS)

    Trimpl, M.

    2005-12-01

    The future TeV-scale linear collider ILC (International Linear Collider) offers a large variety of precision measurements complementary to the discovery potential of the LHC (Large Hadron Collider). To fully exploit its physics potential, a vertex detector with unprecedented performance is needed. One proposed technology for the ILC vertex detector is the DEPFET active pixel sensor. The DEPFET sensor offers particle detection with in-pixel amplification by incorporating a field effect transistor into a fully depleted high-ohmic silicon substrate. The device provides an excellent signal-to-noise ratio and a good spatial resolution at the same time. To establish a very fast readout of a DEPFET pixel matrix with row rates of 20 MHz and more, the 128 channel CURO II ASIC has been designed and fabricated. The architecture of the chip is completely based on current mode techniques (SI) perfectly adapted to the current signal of the sensor. For the ILC vertex detector a prototype system with a 64 x 128 DEPFET pixel matrix read out by the CURO II chip has been developed. The design issues and the standalone performance of the readout chip as well as first results with the prototype system will be presented. (orig.)

  15. Design of a current based readout chip and development of a DEPFET pixel prototype system for the ILC vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Trimpl, M.

    2005-12-15

    The future TeV-scale linear collider ILC (International Linear Collider) offers a large variety of precision measurements complementary to the discovery potential of the LHC (Large Hadron Collider). To fully exploit its physics potential, a vertex detector with unprecedented performance is needed. One proposed technology for the ILC vertex detector is the DEPFET active pixel sensor. The DEPFET sensor offers particle detection with in-pixel amplification by incorporating a field effect transistor into a fully depleted high-ohmic silicon substrate. The device provides an excellent signal-to-noise ratio and a good spatial resolution at the same time. To establish a very fast readout of a DEPFET pixel matrix with row rates of 20 MHz and more, the 128 channel CURO II ASIC has been designed and fabricated. The architecture of the chip is completely based on current mode techniques (SI) perfectly adapted to the current signal of the sensor. For the ILC vertex detector a prototype system with a 64 x 128 DEPFET pixel matrix read out by the CURO II chip has been developed. The design issues and the standalone performance of the readout chip as well as first results with the prototype system will be presented. (orig.)

  16. Engineering study, development and prototype fabrication of the supporting system for the CLIC Two-Beam Module

    CERN Document Server

    AUTHOR|(CDS)2068725; Karyotakis, Yannis; Dahoo, Pierre Richard; Alexopoulos, Theo; MEIS, Costantin; De Conto, Jean Marie; Jeremie, Andrea; Puzot, Patrique

    CERN, the European Organization for Nuclear Research, is based on the international collaboration in the field of high-energy particle physics research. The experiments carried out in its facilities are achieved through the existing particle accelerators. In addition, advanced accelerator research and development is one of the goals of CERN. For this reason, CLIC (the Compact LInear Collider) a new electron-positron linear accelerator is being studied at CERN. CLIC is built by the assembly of the Two-Beam Modules and takes advantage of an innovative acceleration principle, the Two-Beam acceleration. Each Module contains several technical systems that contribute to its successful operation. This thesis presents the development of the prototype supporting system for the CLIC Two-Beam Module. At first, the physics requirements are translated into technical specifications and the fundamental parts of the supporting system are defined. The CLIC operational conditions are identified and the corresponding boundaries...

  17. Progress of air-breathing cathode in microbial fuel cells

    Science.gov (United States)

    Wang, Zejie; Mahadevan, Gurumurthy Dummi; Wu, Yicheng; Zhao, Feng

    2017-07-01

    Microbial fuel cell (MFC) is an emerging technology to produce green energy and vanquish the effects of environmental contaminants. Cathodic reactions are vital for high electrical power density generated from MFCs. Recently tremendous attentions were paid towards developing high performance air-breathing cathodes. A typical air-breathing cathode comprises of electrode substrate, catalyst layer, and air-diffusion layer. Prior researches demonstrated that each component influenced the performance of air-breathing cathode MFCs. This review summarized the progress in development of the individual component and elaborated main factors to the performance of air-breathing cathode.

  18. Cathodic Protection Model Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Performs Navy design and engineering of ship and submarine impressed current cathodic protection (ICCP) systems for underwater hull corrosion control and...

  19. Binder materials for the cathodes applied to self-stratifying membraneless microbial fuel cell.

    Science.gov (United States)

    Walter, Xavier Alexis; Greenman, John; Ieropoulos, Ioannis

    2018-04-19

    The recently developed self-stratifying membraneless microbial fuel cell (SSM-MFC) has been shown as a promising concept for urine treatment. The first prototypes employed cathodes made of activated carbon (AC) and polytetrafluoroethylene (PTFE) mixture. Here, we explored the possibility to substitute PTFE with either polyvinyl-alcohol (PVA) or PlastiDip (CPD; i.e. synthetic rubber) as binder for AC-based cathode in SSM-MFC. Sintered activated carbon (SAC) was also tested due to its ease of manufacturing and the fact that no stainless steel collector is needed. Results indicate that the SSM-MFC having PTFE cathodes were the most powerful measuring 1617 μW (11 W·m -3 or 101 mW·m -2 ). SSM-MFC with PVA and CPD as binders were producing on average the same level of power (1226 ± 90 μW), which was 24% less than the SSM-MFC having PTFE-based cathodes. When balancing the power by the cost and environmental impact, results clearly show that PVA was the best alternative. Power wise, the SAC cathodes were shown being the less performing (≈1070 μW). Nonetheless, the lower power of SAC was balanced by its inexpensiveness. Overall results indicate that (i) PTFE is yet the best binder to employ, and (ii) SAC and PVA-based cathodes are promising alternatives that would benefit from further improvements. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Development of a Prototype 2 mm Fiber-Coupled Seed Laser for Integration in Lidar Transmitter

    Data.gov (United States)

    National Aeronautics and Space Administration — Optimize the performance of Gallium Antimonide (GaSb)-based 2.05 mm lasers (previously developed under JPL’s Research and Technology Development (R&TD) Program)...

  1. Development of a Commercial Prototype of the Autonomous Pathogen Detection System Final Report CRADA No. TC-02077-04

    Energy Technology Data Exchange (ETDEWEB)

    Dzenitis, J. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Haigh, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-27

    This was a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL), and GE Ion Track, Inc. (GEIT) to develop a commercial prototype of the Autonomous Pathogen Detection System (APDS), an instrument that monitors the air for all three biological threat agents (bacteria, viruses and toxins). This was originally a one year CRADA project, with the cost of the work at LLNL being funded by the Department of Homeland Security's Office of National Laboratories. The original project consisted of five major tasks and deliverables. The CRADA was then amended, converting the CRADA from a programmatically funded CRADA to a funds-in CRADA, extending the project for an additional 14 months, and adding four new tasks and deliverable to the project.

  2. Development of an Exploration-Class Cascade Distillation Subsystem: Performance Testing of the Generation 1.0 Prototype

    Science.gov (United States)

    Callahan, Michael R.; Sargusingh, Miriam J.

    2015-01-01

    The ability to recover and purify water is crucial for realizing long-term human space missions. The National Aeronautics and Space Admininstration and Honeywell co-developed a five-stage vacuum rotary distillation water recovery system referred to as the Cascade Distillation Subsystem (CDS). Over the past three years, NASA's Advanced Exploration Systems (AES) Water Recovery Project (WRP) has been working toward the development of a flight-forward CDS design. In 2012 the original CDS prototype underwent a series of incremental upgrades and tests intened to both demonstrate the feasibility of a on-orbit demonstration of the system and to collect operational and performance data to be used to inform a second generation design. The latest testing of the CDS Generation 1.0 prototype was conducted May 29 through July 2, 2014. Initial system performance was benchmarked by processing deionized water and sodium chloride. Following, the system was challenged with analogue urine waste stream solutions stabilized with an Oxone-based and the two International Space Station baseline and alternative pretreatment solutions. During testing, the system processed more than 160 kilograms of wastewater with targeted water recoveries between 75 and 85% depending on the specific waste stream tested. For all wastewater streams, contaminant removals from wastewater feed to product water distillate, were estimated at greater than 99%. The average specific energy of the system was less than 120 Watt-hours/kilogram. The following paper provides detailed information and data on the performance of the CDS as challenged per the WRP test objectives.

  3. Applying XML-Based Technologies to Developing Online Courses: The Case of a Prototype Learning Environment

    Science.gov (United States)

    Jedrzejowicz, Joanna; Neumann, Jakub

    2007-01-01

    Purpose: This paper seeks to describe XML technologies and to show how they can be applied for developing web-based courses and supporting authors who do not have much experience with the preparation of web-based courses. Design/methodology/approach: When developing online courses the academic staff has to address the following problem--how to…

  4. Explosive emission cathode on the base of carbon plastic fibre

    International Nuclear Information System (INIS)

    Korenev, S.A.; Baranov, A.M.; Kostyuchenko, S.V.; Chernenko, N.M.

    1989-01-01

    A fabrication process for explosive emission cathodes on the base of carbon plastic fibre of practically any geometrical shape and dimensions is developed. Experimental studies of electron beam current collection from cathodes, 2cm in diameter, at voltages across the diode of 10 and 150-250kV. It is shown that the ignition voltage for cathode plasma is ∼2kV at the interelectrode diode gap of 5mm and residual gas pressure of ∼5x10 -5 Torr. The carbon-fibre cathode, fabricated in this way, provides more stable current collection of an electron beam (without oscillations) than other cathodes

  5. Prototypes as Platforms for Participation

    DEFF Research Database (Denmark)

    Horst, Willem

    developers, and design it accordingly. Designing a flexible prototype in combination with supportive tools to be used by both interaction designers and non-designers during development is introduced as a way to open up the prototyping process to these users. Furthermore I demonstrate how such a flexible...... on prototyping, by bringing to attention that the prototype itself is an object of design, with its users and use context, which deserves further attention. Moreover, in this work I present concrete tools and methods that can be used by interaction designers in practice. As such this work addresses both......The development of interactive products in industry is an activity involving different disciplines – such as different kinds of designers, engineers, marketers and managers – in which prototypes play an important role. On the one hand, prototypes can be powerful boundary objects and an effective...

  6. Cathode R&D for Future Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Dowell, D.H.; /SLAC; Bazarov, I.; Dunham, B.; /Cornell U., CLASSE; Harkay, K.; /Argonne; Hernandez-Garcia; /Jefferson Lab; Legg, R.; /Wisconsin U., SRC; Padmore, H.; /LBL, Berkeley; Rao, T.; Smedley, J.; /Brookhaven; Wan, W.; /LBL, Berkeley

    2010-05-26

    This paper reviews the requirements and current status of cathodes for accelerator applications, and proposes a research and development plan for advancing cathode technology. Accelerator cathodes need to have long operational lifetimes and produce electron beams with a very low emittance. The two principal emission processes to be considered are thermionic and photoemission with the photocathodes being further subdivided into metal and semi-conductors. Field emission cathodes are not included in this analysis. The thermal emittance is derived and the formulas used to compare the various cathode materials. To date, there is no cathode which provides all the requirements needed for the proposed future light sources. Therefore a three part research plan is described to develop cathodes for these future light source applications.

  7. Cathode R and D for future light sources

    Energy Technology Data Exchange (ETDEWEB)

    Dowell, D.H., E-mail: dowell@slac.stanford.ed [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Bazarov, I.; Dunham, B. [Cornell University, Cornell Laboratory for Accelerator-Based Sciences and Education (CLASSE) Wilson Laboratory, Cornell University, Ithaca, NY 14853 (United States); Harkay, K. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Il 60439 (United States); Hernandez-Garcia, C. [Thomas Jefferson Laboratory, 12000 Jefferson Ave, Free Electron Laser Suite 19 Newport News, VA 23606 (United States); Legg, R. [University of Wisconsin, SRC, 3731 Schneider Dr., Stoughton, WI 53589 (United States); Padmore, H. [Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 (United States); Rao, T.; Smedley, J. [Brookhaven National Laboratory, 20 Technology Street, Bldg. 535B, Brookhaven National Laboratory Upton, NY 11973 (United States); Wan, W. [Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 (United States)

    2010-10-21

    This paper reviews the requirements and current status of cathodes for accelerator applications, and proposes a research and development plan for advancing cathode technology. Accelerator cathodes need to have long operational lifetimes and produce electron beams with a very low emittance. The two principal emission processes to be considered are thermionic and photoemission with the photocathodes being further subdivided into metal and semi-conductors. Field emission cathodes are not included in this analysis. The thermal emittance is derived and the formulas used to compare the various cathode materials. To date, there is no cathode which provides all the requirements needed for the proposed future light sources. Therefore a three part research plan is described to develop cathodes for these future light source applications.

  8. Core Design Concept and Core Structural Material Development for a Prototype SFR

    International Nuclear Information System (INIS)

    Chang, Jinwook

    2013-01-01

    • Core design Concept: – Initial core is Uranium metal fueled core, then it will evolve into TRU core; – Tight pressure drop constraint lowers power density; – Trade-off studies with relaxed pressure drop constraint (~0.4MPa) are on-going; – Major feature will be finalized this year. • KAERI is developing advanced cladding for high burnup fuel in Ptototype SFR: – Advanced cladding materials are now developing, which shows superior high temperature mechanical property to the conventional material; – Processing technologies related to tube making process are now developed to enhance high temperature mechanical propertyl – Preliminary HT9 cladding tube was manufactured and out-of pile mechanical properties were evaluated. Advanced cladding tube is now being developed and being prepared for irradiation test

  9. The Prototype Development of Creative Thinking Skills Model’s Book

    Directory of Open Access Journals (Sweden)

    Agustiana I Gusti Ayu Tri

    2018-01-01

    Full Text Available Model of book is an important part of the research process in developing creative thinking skills. Considering the importance of creative thinking skills, it is necessary to attempt developing such skills in the learning process by applying an appropriate and effective model. This research will develop the components of learning model that includes theoretical rationale, syntax, social systems, reaction principle, support systems, and the impact instructional companion. Learning model of science is developed with syntax orientation, excavation creative ideas, research, elaboration, presenting the results of the work, evaluation, and implementation (OPPEMEI with indicators of creative thinking skills fluency, flexibility, originality, elaboration and evaluation. To achieve the goals, it should need a couple of steps, namely (1 analyzing and providing a rational basis to support the development of learning model for creative thinking skills. (2 analyzing and constructing the theories that support the development of the model. Some synthesis theories for reviews are a constructivism theory, creative thinking theories, a motivation theory, a theory of Vygotsky (the theory of socio-cultural and cognitive theory, (3 Analyzing the flow of thought decrease hypothetical OPPEMEI Model, (4 providing guidelines for the implementation of learning using OPPEMEI learning model, (5 conducting Focus Group Discussions (FGDs and (6 Revisions. Validity is assessed by expert judges in terms of content validity and construct validity. The construct validity includes the logic of stage model (syntax and the support of relevant theory at each stage. Validation of the content reflects the state of the art or the strength of the device and the content materials are assessed based on the conformity with the applicable curriculum. The learning model is stated valid, if the expert judges and practical say that the model is developed based on strong and latest theoretical

  10. Portfolio: a prototype workstation for development and evaluation of tools for analysis and management of digital portal images

    International Nuclear Information System (INIS)

    Boxwala, Aziz A.; Chaney, Edward L.; Fritsch, Daniel S.; Friedman, Charles P.; Rosenman, Julian G.

    1998-01-01

    Purpose: The purpose of this investigation was to design and implement a prototype physician workstation, called PortFolio, as a platform for developing and evaluating, by means of controlled observer studies, user interfaces and interactive tools for analyzing and managing digital portal images. The first observer study was designed to measure physician acceptance of workstation technology, as an alternative to a view box, for inspection and analysis of portal images for detection of treatment setup errors. Methods and Materials: The observer study was conducted in a controlled experimental setting to evaluate physician acceptance of the prototype workstation technology exemplified by PortFolio. PortFolio incorporates a windows user interface, a compact kit of carefully selected image analysis tools, and an object-oriented data base infrastructure. The kit evaluated in the observer study included tools for contrast enhancement, registration, and multimodal image visualization. Acceptance was measured in the context of performing portal image analysis in a structured protocol designed to simulate clinical practice. The acceptability and usage patterns were measured from semistructured questionnaires and logs of user interactions. Results: Radiation oncologists, the subjects for this study, perceived the tools in PortFolio to be acceptable clinical aids. Concerns were expressed regarding user efficiency, particularly with respect to the image registration tools. Conclusions: The results of our observer study indicate that workstation technology is acceptable to radiation oncologists as an alternative to a view box for clinical detection of setup errors from digital portal images. Improvements in implementation, including more tools and a greater degree of automation in the image analysis tasks, are needed to make PortFolio more clinically practical

  11. Prototyping of user interfaces for mobile applications

    CERN Document Server

    Bähr, Benjamin

    2017-01-01

    This book investigates processes for the prototyping of user interfaces for mobile apps, and describes the development of new concepts and tools that can improve the prototype driven app development in the early stages. It presents the development and evaluation of a new requirements catalogue for prototyping mobile app tools that identifies the most important criteria such tools should meet at different prototype-development stages. This catalogue is not just a good point of orientation for designing new prototyping approaches, but also provides a set of metrics for a comparing the performance of alternative prototyping tools. In addition, the book discusses the development of Blended Prototyping, a new approach for prototyping user interfaces for mobile applications in the early and middle development stages, and presents the results of an evaluation of its performance, showing that it provides a tool for teamwork-oriented, creative prototyping of mobile apps in the early design stages.

  12. Development and Testing of a Prototype Tuner for the CEBAF Upgrade Cryomodule

    International Nuclear Information System (INIS)

    G. Davis; J. Delayen; M. Drury; E. Feldl

    2001-01-01

    An upgrade cryomodule is being developed for CEBAF at Jefferson Lab. The high-gradient, low-current operation of the superconducting cavities puts stringent requirements on the accuracy of the frequency tuner: a resolution of 1 Hz over a range of 400 KHz. We have developed and tested such a tuner; it consists of a stepper-motor-driven coarse tuner, operating in parallel with a piezo-actuator-driven fine tuner. Tuner test procedures and results are summarized, including frequency resolution, range, and linearity (i.e. frequency vs. tuner position), as well as microphonic effects resulting from tuner operation

  13. A prototype for communitising technology: Development of a smart salt water desalination device

    Science.gov (United States)

    Fakharuddin, F. M.; Fatchurrohman, N.; Puteh, S.; Puteri, H. M. A. R.

    2018-04-01

    Desalination is defined as the process that removes minerals from saline water or commonly known as salt water. Seawater desalination is becoming an attractive source of drinking water in coastal states as the costs for desalination declines. The purpose of this study is to develop a small scale desalination device and able to do an analysis of the process flow by using suitable sensors. Thermal technology was used to aid the desalination process. A graphical user interface (GUI) for the interface was made to enable the real time data analysis of the desalination device. ArduinoTM microcontroller was used in this device in order to develop an automatic device.

  14. MWPC with highly segmented cathode pad readout

    International Nuclear Information System (INIS)

    Debbe, R.; Fischer, J.; Lissauer, D.

    1989-01-01

    Experiments being conducted with high energy heavy ion beams at Brookhaven National Laboratory and at CERN have shown the importance of developing position sensitive detectors capable of handling events with high multiplicity in environments of high track density as will also be the case in future high luminosity colliders like SSC and RHIC. In addition, these detectors are required to have a dynamic range wide enough to detect minimum ionizing particles and heavy ions like oxygen or silicon. We present here a description of work being done on a prototype of such a detector at BNL. Results from a similar counter are also presented in this Conference. The ''pad chamber'' is a detector with a cathode area subdivided into a very large number of pixel-like elements such that a charged particle traversing the detector at normal incidence leaves an induced charge on a few localized pads. The pads are interconnected by a resistive strip, and readout amplifiers are connected to the resistive strip at appropriate, carefully determined spacings. The pattern of tracks in a multi-hit event is easily recognized, and a centroid-finding readout system allows position determination to a small fraction of the basic cell size. 5 refs., 9 figs

  15. Prototype development and testing of ultrafine grain NZP ceramics. Final report, July 28, 1995--April 27, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J.J.

    1997-08-04

    The goal of this project was to demonstrate that a new low-expanding ceramic (Ca{sub 0.6},Mg{sub 0.4})Zr{sub 4}(PO{sub 4}){sub 6}, hereafter referred to as CMZP, could be used as an exhaust manifold liner in off-road diesel engines and provide improved engine efficiency (by permitting higher engine operating temperature). This study has successfully demonstrated this improvement and further engine testing (and possible manufacturing) is presently underway at Caterpillar Inc. Laboratories. Basically this program involved two subcontracts: one to Virginia Tech to develop sintering procedures for CMZP, and one to Caterpillar, Inc. to develop slip casting procedures for CMZP. Nearly 100kg of CMZP were prepared by MATVA, Inc. and Virginia Tech for use by Caterpillar. Virginia Tech developed detailed sintering procedures for CMZP and Caterpillar developed slip casting procedures and manufactured several exhaust manifold elbows. These elbows have been cast into prototype cylinder heads and have been shown to be acceptable replacements for metal manifolds. (Caterpillar advises that a new component may require up to 6 years of testing and qualification before acceptance as standard diesel engine part).

  16. A Proposed Engineering Process and Prototype Toolset for Developing C2-to-Simulation Interoperability Solutions

    NARCIS (Netherlands)

    Gautreau, B.; Khimeche, L.; Reus, N.M. de; Heffner, K.; Mevassvik, O.M.

    2014-01-01

    The Coalition Battle Management Language (C-BML) is an open standard being developed for the exchange of digitized military information among command and control (C2), simulation and autonomous systems by the Simulation Interoperability Standards Organization (SISO). As the first phase of the C-BML

  17. DEVELOPING MUSHROOM GYMNASTIC INSTRUMENT PROTOTYPE FOR MEN’S ARTISTIC GYMNASTIC SPORT IN CENTRAL JAVA PROVINCE

    Directory of Open Access Journals (Sweden)

    Tommy Soenyoto

    2014-03-01

    Full Text Available This study aims to develop mushroom gymnastic instrument for men’s artistic gymnastic athletes of junior and senior levels. The instrument is aimed at improving movement skills on horse saddle. Aside from its use as an exercise instrument for beginner, junior and senior levels of men’s artistic gymnastic athletes, this instrument can also be used for beginners’ level competition. This study used qualitative approach in which the data are collected from the initial step to the trial. The main procedure involved five steps: (1 the analysis of product development; (2 the development of initial product; (3 the expert validation; (4 the trial; and (5 the product revision. This study found that the mushroom gymnastic instrument can be used for men’s artistic gymnastic sport, particularly (1 for improving movement skill development on horse saddle for junior and senior athletes; (2 as an exercise instrument for beginner, junior and senior level of men’s artistic gymnastic athletes; (3 as an instrument used in competition for men’s artistic gymnastic for beginners’ level.

  18. Multimedia and co-operative work in new product development : A participatory approach to virtual prototyping

    NARCIS (Netherlands)

    Muller, P; vanEngelen, J; Terlouw, P; deVreede, GJ

    1996-01-01

    In order to be successful, nov product development requires a balance between market pull and technology push. On a project level this involves forging a link between the (technical) capabilities of the company and the needs of the market place. This paper describes an approach to forge this link

  19. Development of a full-size divertor cassette prototype for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Ulrickson, M.A. [Sandia National Labs., Albuquerque, NM (United States); Vieider, G.; Pacher, H.D. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany). NET Design Team] [and others

    1996-10-01

    Production of a full-size divertor cassette involves eight major components. All of the components are mounted on the cassette body. Inner divertor channel components for the vertical target design are being provided by the Japan Home Team. Outer divertor channel components for the vertical target design are being provided by the European and United States Home Teams. Gas box liners are being provided by the Russian Home Team. The full-size components manufactured by the four parties will be shipped to the US Home Team for assembly into a full size divertor cassette. The techniques for assembly and maintenance of the cassette will be demonstrated during this process. The assembled cassette will be tested for proper flow distribution and proof of the filling and draining procedures. The testing will include vacuum leak tightness at full temperature and pressure, cyclic heating to 150 {degrees}C, verification of dimensional accuracy of the assembled components, and application of thermal gradients to measure dimensional stability. The development of the divertor for the International Thermonuclear Experimental Reactor (ITER) depends on successful R&D efforts on materials, joining, and plasma materials interactions. Results of the development program are presented. The scale-up of the processes developed in the basic research and development tasks is accomplished by producing and high-heat-flux testing medium and full-scale mock- ups. The design of the mock-ups is discussed.

  20. Development of a CZT spectroscopic 3D imager prototype for hard X ray astronomy

    DEFF Research Database (Denmark)

    Auricchio, N.; Caroli, E.; Basili, A.

    2013-01-01

    The development of focusing optics based on wide band Laue lenses operating from ∼60 keV up to several hundreds of keV is particularly challenging. This type of hard X-ray or gamma ray optics requires a high performance focal plane detector in order to exploit to the best its intrinsic capabiliti...

  1. Developing a prototype for treatment of biowaste with microorganisms to produce biogas and compost

    CSIR Research Space (South Africa)

    Tawona, Neville

    2013-10-01

    Full Text Available solid waste into biogas, and the indigestible component collected for use in the compost facility to produce biofertilizer. This project is based at EThekwini Municipality’s Northdene Research and development centre, which is located within a residential...

  2. Development of a prototype acquisition and data processing system based on FPGA

    International Nuclear Information System (INIS)

    Romero, L; Bellino, P

    2012-01-01

    We present the first stage of the expansion and improvement of a signal acquisition system based on FPGA. This system will acquire and process signals from nuclear detectors working in both pulse and current mode. The aim of this development is to unify all the actual systems for physical measurements in nuclear facilities and reactors (author)

  3. Development and Evaluation of a Pilot Prototype Automated Online Sampling System

    International Nuclear Information System (INIS)

    Whitaker, M.J.

    2000-01-01

    An automated online sampling system has been developed for the BNFL-Hanford Technetium Monitoring Program. The system was designed to be flexible and allows for the collection and delivery of samples to a variety of detection devices that may be used

  4. Development of a full-size divertor cassette prototype for ITER

    International Nuclear Information System (INIS)

    Ulrickson, M.A.; Vieider, G.; Pacher, H.D.

    1996-01-01

    Production of a full-size divertor cassette involves eight major components. All of the components are mounted on the cassette body. Inner divertor channel components for the vertical target design are being provided by the Japan Home Team. Outer divertor channel components for the vertical target design are being provided by the European and United States Home Teams. Gas box liners are being provided by the Russian Home Team. The full-size components manufactured by the four parties will be shipped to the US Home Team for assembly into a full size divertor cassette. The techniques for assembly and maintenance of the cassette will be demonstrated during this process. The assembled cassette will be tested for proper flow distribution and proof of the filling and draining procedures. The testing will include vacuum leak tightness at full temperature and pressure, cyclic heating to 150 degrees C, verification of dimensional accuracy of the assembled components, and application of thermal gradients to measure dimensional stability. The development of the divertor for the International Thermonuclear Experimental Reactor (ITER) depends on successful R ampersand D efforts on materials, joining, and plasma materials interactions. Results of the development program are presented. The scale-up of the processes developed in the basic research and development tasks is accomplished by producing and high-heat-flux testing medium and full-scale mock- ups. The design of the mock-ups is discussed

  5. Forest Protection and Reforestation in Costa Rica: Evaluation of a Clean Development Mechanism Prototype.

    Science.gov (United States)

    Subak

    2000-09-01

    / Costa Rica has recently established a program that provides funds for reforestation and forest protection on private lands, partly through the sale of carbon certificates to industrialized countries. Countries purchasing these carbon offsets hope one day to receive credit against their own commitments to limit emissions of greenhouse gases. Costa Rica has used the proceeds of the sale of carbon offsets to Norway to help finance this forest incentive program, called the Private Forestry Project, which pays thousands of participants to reforest or protect forest on their lands. The Private Forestry Project is accompanied by a monitoring program conducted by Costa Rican forest engineers that seeks to determine net carbon storage accomplished on these lands each year. The Private Forestry Project, which is officially registered as an Activity Implemented Jointly, is a possible model for bundled projects funded by the Clean Development Mechanism (CDM) established by the 1997 Kyoto Protocol to the UN Framework Convention on Climate Change. It also serves as an interesting example for the CDM because it was designed by a developing country host-not by an industrialized country investor. Accordingly, it reflects the particular "sustainable development" objectives of the host country or at least the host planners. Early experience in implementing the Private Forestry Project is evaluated in light of the main objectives of the CDM and its precursor-Activities Implemented Jointly. It is concluded that the project appears to meet the criteria of global cost-effectiveness and financing from non-ODA sources. The sustainable development implications of the project are specific to the region and would not necessarily match the ideals of all investing and developing countries. The project may be seen to achieve additional greenhouse gas abatement when compared against some (although not all) baselines.

  6. Mobile prototyping with Axure 7

    CERN Document Server

    Hacker, Will

    2013-01-01

    This book is a step-by-step tutorial which includes hands-on examples and downloadable Axure files to get you started with mobile prototyping immediately. You will learn how to develop an application from scratch, and will be guided through each and every step.If you are a mobile-centric developer/designer, or someone who would like to take their Axure prototyping skills to the next level and start designing and testing mobile prototypes, this book is ideal for you. You should be familiar with prototyping and Axure specifically, before you read this book.

  7. From prototype to product

    DEFF Research Database (Denmark)

    Andersen, Tariq Osman; Bansler, Jørgen P.; Kensing, Finn

    2017-01-01

    This paper delves into the challenges of engaging patients, clinicians and industry stakeholders in the participatory design of an mHealth platform for patient-clinician collaboration. It follows the process from the development of a research prototype to a commercial software product. In particu......This paper delves into the challenges of engaging patients, clinicians and industry stakeholders in the participatory design of an mHealth platform for patient-clinician collaboration. It follows the process from the development of a research prototype to a commercial software product....... In particular, we draw attention to four major challenges of (a) aligning the different concerns of patients and clinicians, (b) designing according to clinical accountability, (c) ensuring commercial interest, and (d) dealing with regulatory constraints when prototyping safety critical health Information...... Technology. Using four illustrative cases, we discuss what these challenges entail and the implications they pose to Participatory Design. We conclude the paper by presenting lessons learned....

  8. Applications and development of communication models for the touchstone GAMMA and DELTA prototypes

    Science.gov (United States)

    Seidel, Steven R.

    1993-01-01

    The goal of this project was to develop models of the interconnection networks of the Intel iPSC/860 and DELTA multicomputers to guide the design of efficient algorithms for interprocessor communication in problems that commonly occur in CFD codes and other applications. Interprocessor communication costs of codes for message-passing architectures such as the iPSC/860 and DELTA significantly affect the level of performance that can be obtained from those machines. This project addressed several specific problems in the achievement of efficient communication on the Intel iPSC/860 hypercube and DELTA mesh. In particular, an efficient global processor synchronization algorithm was developed for the iPSC/860 and numerous broadcast algorithms were designed for the DELTA.

  9. Development of manufacturing technology and fabrication of prototype for main coolant pump

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Koon Seok; Han, C.K.; Chei, J.M.; Chung, K.S.; Youn, M.H.; Shin, S.A.; Choi, D.J.; Kim, H.C. [HALLA Industrial Co., Ltd., Pusan (Korea)

    1999-03-01

    This study presents the development of the manufacturing technology for the Main Coolant Pump of the SMART. This report contains the followings; (1) Select axial type pump for the MCP (2) MCP is drived by squirrel-cage induction motor that consisted canned motor type. (3) MCP shaft has three horizontal and one vertical support bearings. (4) Design of several part of the MCP (5) Manufacturing of the performance test motor (6) Design and manufacturing of the speed sensor (7) Procedures for three-axial and five-axial M.C.T., Tig welding and Electron Beam Welding were developed. (8) Conceptional design of the MCP test facility for the performance test under operating conditions. (9) Results of standard weld test specimens according to the ASME section IX. (author). 21 refs., 35 figs., 10 tabs.

  10. Prototype development of educational program for production manager leading new perspectives on manufacturing technology

    OpenAIRE

    Ishii, Kazuyoshi; Ikeda, Hiroshi; Tsuchiya, Akinori; Shikida, Asami; Abe, Takehiko

    2006-01-01

    In this paper proposes the basic concept of an educational system and shows the result of educational program developed for manufacturing manager in leadership roles who wish to create new values in manufacturing technology. The basic concept combines an intelligent knowledge-based approach with the kaizen activity program in a framework of new value creation and comparative advantage models based on the ABC-G network (Academia, Business, Consultants, and Governmental officers). The education...

  11. Business Model Prototyping – Using the Morphological Analysis to Develop New Business Models

    OpenAIRE

    Seidenstricker, Sven; Scheuerle, Stefan; Linder, Christian

    2014-01-01

    Practice has shown that new businesses have managed to change the structure of market sectors and to open positions of power by business model innovation. Often, the origin was new technological possibilities, innovative products, changes in the supply chain management, optimized cost structures or unique resources. Regarding strategic marketing and innovation management, it now is interesting how such potentials can be unlocked and implemented in business model innovations. Here, development...

  12. Development of a Prototype for the Assessment of the Malaysian LADM Country Profile

    OpenAIRE

    Zulkifli, N.A.; Abdul Rahman, A.; Jamil, H.; Teng, C.H.; Tan, L.C.; Looi, K.S.; Chan, K.L.; Van Oosterom, P.J.M.

    2014-01-01

    During the last couple of years, the potential of 3D and Land Administration Domain Model (LADM, ISO 2012) based cadastral registration in Malaysiahas been investigated and described in several papers, and presented at various International Federation of Surveyor (FIG) meetings. Based on these preparations, a two day workshop and additional meeting between Research and Development(R&D) staff from Department Survey and Mapping Malaysia (JUPEM) and Universiti Teknologi Malaysia (UTM) has result...

  13. Development of proto-type advanced leaked fuel rod detection system

    International Nuclear Information System (INIS)

    Kang, Kyung Chul; Cho, Seong Won; Jeon, Jae Hyuk; Jeong, Jae Cheon; Kim, Min

    1996-02-01

    The fuel inspection equipment using ultrasonic signal has been developed its design and configuration in order to get inspection results more accurate and easier than the previous ones. In this task, the system functions are advanced by adopting of state of the art technologies in the field of digital servo control and signal processing. By the above endeavors, the total performance are improved and made to handle easily. 61 tabs., 31 figs., 3 ills., 9 refs. (Author)

  14. Developing an industrial centrifugal fan as prototype using an experiment series and finite volume method

    OpenAIRE

    GÜRSEL, Onur; ERKEK, Mehmet

    2012-01-01

    Centrifugal fans are used in most of the manufacturing processes for ventilating and/or air conditioning the manufacturing areas. Because of relatively limited documentation on design of these fans, new designs are developed by experimental method. This method does not only take a lot of time but also increases the costs considerably. Nowadays, most of the companies create 3D models and then conduct analyses by the CFD (computational fluid dynamics) programs and perform some optimizations bef...

  15. Water-cooled, fire boom blanket, test and evaluation for system prototype development

    International Nuclear Information System (INIS)

    Stahovec, J. G.; Urban, R. W.

    1999-01-01

    Initial development of actively cooled fire booms indicated that water-cooled barriers could withstand direct oil fire for several hours with little damage if cooling water were continuously supplied. Despite these early promising developments, it was realized that to build reliable full-scale system for Navy host salvage booms would require several development tests and lengthy evaluations. In this experiment several types of water-cooled fire blankets were tested at the Oil and Hazardous Materials Simulated Test Tank (OHMSETT). After the burn test the blankets were inspected for damage and additional tests were conducted to determine handling characteristics for deployment, recovery, cleaning and maintenance. Test results showed that water-cooled fire boom blankets can be used on conventional offshore oil containment booms to extend their use for controlling large floating-oil marine fires. Results also demonstrated the importance of using thermoset rubber coated fabrics in the host boom to maintain sufficient reserve seam strength at elevated temperatures. The suitability of passively cooled covers should be investigated to protect equipment and boom from indirect fire exposure. 1 ref., 2 tabs., 8 figs

  16. Developing a Philippine Cancer Grid. Part 1: Building a Prototype for a Data Retrieval System for Breast Cancer Research Using Medical Ontologies

    Science.gov (United States)

    Coronel, Andrei D.; Saldana, Rafael P.

    Cancer is a leading cause of morbidity and mortality in the Philippines. Developed within the context of a Philippine Cancer Grid, the present study used web development technologies such as PHP, MySQL, and Apache server to build a prototype data retrieval system for breast cancer research that incorporates medical ontologies from the Unified Medical Language System (UMLS).

  17. Preliminary design of experiment high power density laser beam interaction with plasmas and development of a cold cathode electron beam laser amplifier

    International Nuclear Information System (INIS)

    Mosavi, R.K.; Kohanzadeh, Y.; Taherzadeh, M.; Vaziri, A.

    1976-01-01

    This experiment is designed to produce plasma by carbon dioxide pulsed laser, to measure plasma parameters and to study the interaction of the produced plasma with intense laser beams. The objectives of this experiment are the following: 1. To set up a TEA CO 2 laser oscillator and a cold cathode electron beam laser amplifier together as a system, to produce high energy optical pulses of short duration. 2. To achieve laser intensities of 10 11 watt/cm 2 or more at solid targets of polyethylene (C 2 H 4 )n, lithium hydride (LiH), and lithium deuteride in order to produce high temperature plasmas. 3. To design and develop diagnostic methods for studies of laser-induced plasmas. 4. To develop a high power CO 2 laser amplifier for the purpose of upgrading the optical energy delivered to the targets

  18. From prototype to product. The development of low emission natural gas- and biogas buses

    Energy Technology Data Exchange (ETDEWEB)

    Ekelund, M. [Strateco Development AB, Haninge (Sweden)

    1998-01-01

    The objective of this report is to show the development of natural gas and bio gas buses and trucks since the termination of the `Co-Nordic GasBus Project`, to which KFB was a major contributor and one of the initiators. Sweden have some 325 heavy duty methane vehicles of which almost 100 are bio gas operated. Scania and Volvo have produced, or have orders for, 500 gas buses to 6 different countries since 1990. The Project objectives were obtained and the significantly reduced emission levels aimed for, were shown. The international bus manufacturing industry followed, and have since shown the same low levels of emissions from gas bus engines. Sweden has taken the lead in the use of bio gas, by operating nearly 100 buses and trucks. Bio gas is still an underestimated fuel when it comes to supply, as it can provide fuel for 50% of the domestic use of diesel oil. Future development need to include control systems for more stable emissions, lower weight cylinders, less costly compressors, cleaning equipment and storage cylinders as well as more fuel efficient engines that can reduce mainly the discharge of CO2, NOx and CH4 further. Societal costs, regardless of who pays, for methane operated buses is still somewhat higher compared with best use of diesel + CRT technology. As commercialization develops, it is expected that the price of the vehicle will be reduced and emissions improved. It is therefore expected that the stake holders costs will be lower then that of diesel technology in the future

  19. A database prototype has been developed to help understand costs in photovoltaic systems

    International Nuclear Information System (INIS)

    Moorw, Larry M.

    2000-01-01

    High photovoltaic (PV) system costs hinder market growth. An approach to studying these costs has been developed using a database containing system, component and maintenance information. This data, which is both technical and non-technical in nature, is to be used to identify trends related to costs. A pilot database exists at this time and work is continuing. The results of this work may be used by the data owners to improve their operations with the goal of sharing non-attributable information with the public and industry at large. The published objectives of the DOE PV program are to accelerate the development of PV as a national and global energy option, as well as ensure US technology and global market leadership. The approach to supporting these objectives is to understand what drives costs in PV applications. This paper and poster session describe work-in-progress in the form of a database that will help identify costs in PV systems. In an effort to address DOE's Five-Year PV Milestones, a program was established in the summer of 1999 to study system costs in three PV applications--solar home lighting, water pumping, and grid-tied systems. This work began with a RFQ requesting data from these types of systems. Creating a partnership with industry and other system organizations such as Non-Government Organizations (NGOs) was the approach chosen to maintain a close time to the systems in the field. Nine participants were selected as partners, who provided data on their systems. Two activities are emphasized in this work. For the first, an iterative approach of developing baseline reliability and costs information with the participants was taken. This effort led to identifying typical components in these systems as well as the specific data (metrics) that would be needed in any analysis used to understand total systems costs

  20. Time Synchronization Prototype, Server Upgrade Procedure Support and Remote Software Development

    Science.gov (United States)

    Sanders, Shania R.

    2014-01-01

    Networks are roadways of communication that connect devices. Like all roadways, there are rules and regulations that govern whatever (information in this case) travels along them. One type of rule that is commonly used is called a protocol. More specifically, a protocol is a standard that specifies how data should be transmitted over a network. The project outlined in this document seeks to implement one protocol in particular, Precision Time Protocol, within the Kennedy Ground Control Subsystem network at Kennedy Space Center. This document also summarizes work completed for server upgrades, remote software developer training and how all three assignments demonstrated the importance of accountability and security.

  1. Development of Prototype Micro-Lidar using Narrow Linewidth Semiconductor Lasers for Mars Boundary Layer Wind and Dust Opacity Profiles

    Science.gov (United States)

    Menzies, Robert T.; Cardell, Greg; Chiao, Meng; Esproles, Carlos; Forouhar, Siamak; Hemmati, Hamid; Tratt, David

    1999-01-01

    We have developed a compact Doppler lidar concept which utilizes recent developments in semiconductor diode laser technology in order to be considered suitable for wind and dust opacity profiling in the Mars lower atmosphere from a surface location. The current understanding of the Mars global climate and meteorology is very limited, with only sparse, near-surface data available from the Viking and Mars Pathfinder landers, supplemented by long-range remote sensing of the Martian atmosphere. The in situ measurements from a lander-based Doppler lidar would provide a unique dataset particularly for the boundary layer. The coupling of the radiative properties of the lower atmosphere with the dynamics involves the radiative absorption and scattering effects of the wind-driven dust. Variability in solar irradiance, on diurnal and seasonal time scales, drives vertical mixing and PBL (planetary boundary layer) thickness. The lidar data will also contribute to an understanding of the impact of wind-driven dust on lander and rover operations and lifetime through an improvement in our understanding of Mars climatology. In this paper we discuss the Mars lidar concept, and the development of a laboratory prototype for performance studies, using, local boundary layer and topographic target measurements.

  2. Atrial Model Development and Prototype Simulations: CRADA Final Report on Tasks 3 and 4

    Energy Technology Data Exchange (ETDEWEB)

    O' Hara, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zhang, X. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Villongco, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lightstone, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Richards, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-28

    The goal of this CRADA was to develop essential tools needed to simulate human atrial electrophysiology in 3-dimensions using an anatomical image-based anatomy and physiologically detailed human cellular model. The atria were modeled as anisotropic, representing the preferentially longitudinal electrical coupling between myocytes. Across the entire anatomy, cellular electrophysiology was heterogeneous, with left and right atrial myocytes defined differently. Left and right cell types for the “control” case of sinus rhythm (SR) was compared with remodeled electrophysiology and calcium cycling characteristics of chronic atrial fibrillation (cAF). The effects of Isoproterenol (ISO), a beta-adrenergic agonist that represents the functional consequences of PKA phosphorylation of various ion channels and transporters, was also simulated in SR and cAF to represent atrial activity under physical or emotional stress. Results and findings from Tasks 3 & 4 are described. Tasks 3 and 4 are, respectively: Input parameters prepared for a Cardioid simulation; Report including recommendations for additional scenario development and post-processing analytic strategy.

  3. Prototype Development of an Implantable Compliance Chamber for a Total Artificial Heart.

    Science.gov (United States)

    Schmitz, Stephanie; Unthan, Kristin; Sedlaczek, Marc; Wald, Felix; Finocchiaro, Thomas; Spiliopoulos, Sotirios; Koerfer, Reiner; Steinseifer, Ulrich

    2017-02-01

    At our institute a total artificial heart is being developed. It is directly actuated by a linear drive in between two ventricles, which comprise membranes to separate the drive and blood flow. A compliance chamber (CC) is needed to reduce pressure peaks in the ventricles and to increase the pump capacity. Therefore, the movement of the membrane is supported by applying a negative pressure to the air volume inside the drive unit. This study presents the development of the implantable CC which is connected to the drive unit of the total artificial hearts (TAH). The anatomical fit of the CC is optimized by analyzing CT data and adapting the outer shape to ensure a proper fit. The pressure peaks are reduced by the additional volume and the flexible membrane of the CC. The validation measurements of change in pressure peaks and flow are performed using the complete TAH system connected to a custom mock circulation loop. Using the CC, the pressure peaks could be damped below 5 mm Hg in the operational range. The flow output was increased by up to 14.8% on the systemic side and 18.2% on the pulmonary side. The described implantable device can be used for upcoming chronic animal trials. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  4. Development of a prototype mesoscale computer model incorporating treatment of topography

    International Nuclear Information System (INIS)

    Apsimon, H.; Kitson, K.; Fawcett, M.; Goddard, A.J.H.

    1984-01-01

    Models are available for simulating dispersal of accidental releases, using mass-consistent wind-fields and accounting for site-specific topography. These techniques were examined critically to see if they might be improved, and to assess their limitations. An improved model, windfield adjusted for topography (WAFT), was developed (with advantages over MATHEW used in the Atmospheric Release Advisory Capability - ARAC system). To simulate dispersion in the windfields produced by WAFT and calculate time integrated air concentrations and dry and wet deposition the TOMCATS model was developed. It treats the release as an assembly of pseudo-particles using Monte Carlo techniques to simulate turbulent displacements. It allows for larger eddy effects in the horizontal turbulence spectrum. Wet deposition is calculated using inhomogeneous rainfields evolving in time and space. The models were assessed, applying them to hypothetical releases in complex terrain, using typical data applicable in accident conditions, and undertaking sensitivity studies. One finds considerable uncertainty in results produced by these models. Although useful for post-facto analysis, such limitations cast doubt on their advantages, relative to simpler techniques, during an actual emergency

  5. Development of kinetic models for photoassisted electrochemical process using Ti/RuO2 anode and carbon nanotube-based O2-diffusion cathode

    International Nuclear Information System (INIS)

    Akbarpour, Amaneh; Khataee, Alireza; Fathinia, Mehrangiz; Vahid, Behrouz

    2016-01-01

    Highlights: • Preparation and characterization of carbon nanotube-based O 2 -diffusion cathode. • Photoassisted electrochemical process using Ti/RuO 2 anode and O 2 -diffusion cathode. • Degradation of C.I. Basic Yellow 28 under recirculation mode. • Development of kinetic models for photoassisted electrochemical process. - Abstract: A coupled photoassisted electrochemical system was utilized for degradation of C.I. Basic Yellow 28 (BY28) as a cationic azomethine dye under recirculation mode. Experiments were carried out by utilizing active titanium/ruthenium oxide (Ti/RuO 2 ) anode and O 2 -diffusion cathode with carbon nanotubes (CNTs). Transmission electron microscopy (TEM) image of the CNTs demonstrated that CNTs had approximately an inner and outer diameter of 5 nm and 19 nm, respectively. Then, the dye degradation kinetics was experimentally examined under various operational parameters including BY28 initial concentration (mg/L), current density (mA/cm 2 ), flow rate (L/h) and pH. Based on the generally accepted intrinsic elementary reactions for photoassisted electrochemical process (PEP), a novel kinetic model was proposed and validated for predicting the k app . The developed kinetic model explicitly describes the dependency of the k app on BY28 initial concentration and current density. A good agreement was obtained between the predicted values of k app and experimental results (correlation coefficient (R 2 ) = 0.996, mean squared error (MSE) = 2.10 × 10 −4 and mean absolute error (MAE) = 1.10 × 10 −2 ). Finally, in order to profoundly evaluate and compare the accuracy of the suggested intrinsic kinetic model, an empirical kinetic model was also developed as a function of main operational parameters, and an artificial neural network model (ANN) by 3-layer feed-forward back propagation network with topology of 5:9:1. The performance of the mentioned models was compared based on the error functions and analysis of variance (ANOVA). A

  6. Engineering prototypes for theta-pinch devices

    International Nuclear Information System (INIS)

    Hansborough, L.D.; Hammer, C.F.; Hanks, K.W.; McDonald, T.E.; Nunnally, W.C.

    1975-01-01

    Past, present, and future engineering prototypes for theta-pinch plasma-physics devices at Los Alamos Scientific Laboratory are discussed. Engineering prototypes are designed to test and evaluate all components under system conditions expected on actual plasma-physics experimental devices. The importance of engineering prototype development increases as the size and complexity of the plasma-physics device increases. Past experiences with the Scyllac prototype and the Staged Theta-Pinch prototype are discussed and evaluated. The design of the proposed Staged Scyllac prototype and the Large Staged Scyllac implosion prototype assembly are discussed

  7. Development of high quantum efficiency, flat panel, thick detectors for megavoltage x-ray imaging: An experimental study of a single-pixel prototype

    International Nuclear Information System (INIS)

    Mei, X.; Pang, G.

    2005-01-01

    Our overall goal is to develop a new generation of electronic portal imaging devices (EPIDs) with a quantum efficiency (QE) more than an order of magnitude higher and a spatial resolution equivalent to that of EPIDs currently used for portal imaging. A novel design of such a high QE flat-panel based EPID was introduced recently and its feasibility was investigated theoretically [see Pang and Rowlands, Med. Phys. 31, 3004 (2004)]. In this work, we constructed a prototype single-pixel detector based on the novel design. Some fundamental imaging properties including the QE, spatial resolution, and sensitivity of the prototype detector were measured with a 6 MV beam. It has been shown that the experimental results agree well with theoretical predictions and further development based on the novel design including the construction of a prototype area detector is warranted

  8. Development of the conductive glove for glove box operation. Production of prototypes and their experimental results

    International Nuclear Information System (INIS)

    Kodato, Kazuo; Enuma, Masahito; Kawasaki, Takeshi; Nogami, Yoshitaka; Kaneko, Kazunori; Kimura, Masanori; Yasumori, Tomokazu

    2014-02-01

    The glove used at glove boxes in the nuclear fuel plants is usually made with Chlorosulfonated polyethylene rubber. The rubber is excellent in terms of resistance to radiation because it has no double bond in its main chain of the component, however, it deteriorates rapidly in high dose environment such as direct contact of alpha ray. Plutonium oxide powder is treated in glove boxes at plutonium fuel facilities where the alpha ray from plutonium oxide powder adhered on surface of a glove causes the deterioration of the rubber. Therefore the effective method for prevent of the rapid deterioration is to decrease the amount of adhered powder, and the glove with conductive property which can prevent static electric charge on its surface has been developed and tested. The results showed that the rubber has less adherent property to powder compared with conventional one. (author)

  9. Knowledge base to develop expert system prototype for predicting groundwater pollution from nitrogen fertilizer

    International Nuclear Information System (INIS)

    Ta-oun, M.; Daud, M.; Bardaie, M.Z.; Jusop, S.

    1999-01-01

    An expert system for prediction the impact of nitrogen fertilizer on groundwater pollution potential was established by using CLIPS (NASA's Jonson Space Centre). The knowledge base could be extracted from FAO reports, ministry of agriculture and rural development Malaysia report, established literature and domain expert for preparing an expert system skeleton. An expert system was used to correlate the availability of nitrogen fertilizer with the vulnerability of groundwater to pollution in Peninsula Malaysia and to identify potential groundwater quality problems. An n-fertilizer groundwater pollution potential index produced b using the vulnerability of groundwater to pollution yields a more accurate screening toll for identifying potential pollution problems than by considering vulnerability alone. An expert system can predict the groundwater pollution potential under several conditions of agricultural activities and existing environments. (authors)

  10. DEVELOPMENT AND TESTING OF A PRE-PROTOTYPE MACH 2 RAMGEN ENGINE

    Energy Technology Data Exchange (ETDEWEB)

    Ramgen Power Systems

    2001-09-01

    The research and development effort of a new kind of combustion engine is presented. The engine is designed to convert the thrust from ramjet modules into shaft torque, which in turn can be used for electrical power generation or mechanical drive applications. An aggressive test program was undertaken that included evaluation of the existing engine, as well as incorporation of novel improvements to the thrust modules and supporting systems. Fuel mixing studies with Vortex Generators and bluff body flame holders illuminated the importance of increasing the shear-layer area and spreading angle to augment flame volume. Evaluation of flame-holding configurations (with variable fuel injection methods) concluded that the heat release zone, and therefore combustion efficiency, could be manipulated by judicious selection of bluff body geometry, and is less influenced by fuel injection distribution. Air film cooling studies demonstrated that acceptable combustor life could be achieved with optimized air film distribution patterns and thermal barrier coatings.

  11. Development of a MPPC-based prototype gantry for future MRI-PET scanners

    Science.gov (United States)

    Kurei, Y.; Kataoka, J.; Kato, T.; Fujita, T.; Ohshima, T.; Taya, T.; Yamamoto, S.

    2014-12-01

    We have developed a high spatial resolution, compact Positron Emission Tomography (PET) module designed for small animals and intended for use in magnetic resonance imaging (MRI) systems. This module consists of large-area, 4 × 4 ch MPPC arrays (S11830-3344MF; Hamamatsu Photonics K.K.) optically coupled with Ce-doped (Lu,Y)2(SiO4)O (Ce:LYSO) scintillators fabricated into 16 × 16 matrices of 0.5 × 0.5 mm2 pixels. We set the temperature sensor (LM73CIMK-0; National Semiconductor Corp.) at the rear of the MPPC acceptance surface, and apply optimum voltage to maintain the gain. The eight MPPC-based PET modules and coincidence circuits were assembled into a gantry arranged in a ring 90 mm in diameter to form the MPPC-based PET system. We have developed two types PET gantry: one made of non-magnetic metal and the other made of acrylonitrile butadiene styrene (ABS) resins. The PET gantry was positioned around the RF coil of the 4.7 T MRI system. We took an image of a point }22Na source under fast spin echo (FSE) and gradient echo (GE), in order to measure the interference between the MPPC-based PET and MRI. The spatial resolution of PET imaging in a transaxial plane of about 1 mm (FWHM) was achieved in all cases. Operating with PET made of ABS has no effect on MR images, while operating with PET made of non-magnetic metal has a significant detrimental effect on MR images. This paper describes our quantitative evaluations of PET images and MR images, and presents a more advanced version of the gantry for future MRI/DOI-PET systems.

  12. The development and investigation of a prototype three-dimensional compensator for whole brain radiation therapy

    International Nuclear Information System (INIS)

    Keall, Paul; Arief, Isti; Shamas, Sofia; Weiss, Elisabeth; Castle, Steven

    2008-01-01

    Whole brain radiation therapy (WBRT) is the standard treatment for patients with brain metastases, and is often used in conjunction with stereotactic radiotherapy for patients with a limited number of brain metastases, as well as prophylactic cranial irradiation. The use of open fields (conventionally used for WBRT) leads to higher doses to the brain periphery if dose is prescribed to the brain center at the largest lateral radius. These dose variations potentially compromise treatment efficacy and translate to increased side effects. The goal of this research was to design and construct a 3D 'brain wedge' to compensate dose heterogeneities in WBRT. Radiation transport theory was invoked to calculate the desired shape of a wedge to achieve a uniform dose distribution at the sagittal plane for an ellipsoid irradiated medium. The calculations yielded a smooth 3D wedge design to account for the missing tissue at the peripheral areas of the brain. A wedge was machined based on the calculation results. Three ellipsoid phantoms, spanning the mean and ± two standard deviations from the mean cranial dimensions were constructed, representing 95% of the adult population. Film was placed at the sagittal plane for each of the three phantoms and irradiated with 6 MV photons, with the wedge in place. Sagittal plane isodose plots for the three phantoms demonstrated the feasibility of this wedge to create a homogeneous distribution with similar results observed for the three phantom sizes, indicating that a single wedge may be sufficient to cover 95% of the adult population. The sagittal dose is a reasonable estimate of the off-axis dose for whole brain radiation therapy. Comparing the dose with and without the wedge the average minimum dose was higher (90% versus 86%), the maximum dose was lower (107% versus 113%) and the dose variation was lower (one standard deviation 2.7% versus 4.6%). In summary, a simple and effective 3D wedge for whole brain radiotherapy has been developed

  13. Development of a prototype mesoscale computer model incorporating treatment of topography

    International Nuclear Information System (INIS)

    Apsimon, H.M.; Goddard, A.J.H.; Kitson, K.; Fawcett, M.

    1985-01-01

    More sophisticated models are now available to simulate dispersal of accidental radioactive releases to the atmosphere; these use mass-consistent windfields and attempt allowance for site-specific topographical features. Our aim has been to examine these techniques critically, develop where possible, and assess limitations and accuracy. The resulting windfield model WAFT uses efficient numerical techniques with improved orographic resolution and treatment of meteorological conditions. Time integrated air concentrations, dry and wet deposition are derived from TOMCATS, which applies Monte-Carlo techniques to an assembly of pseudo-particles representing the release, with specific attention to the role of large eddies and evolving inhomogeneous rainfields. These models have been assessed by application to hypothetical releases in complex terrain using data which would have been available in the event of an accident, and undertaking sensitivity studies. It is concluded that there is considerable uncertainty in results produced by such models; although they may be useful in post-facto analysis, such limitations cast doubt on their advantages relative to simpler techniques, with more modest requirements, during an actual emergency. (author)

  14. Development and initial testing of a pulse oximetry prototype for measuring dental pulp vitality

    Science.gov (United States)

    Cerqueira, M.; Ferreira, M.; Caramelo, F.

    2015-05-01

    The guiding principle of endodontic treatment is to preserve teeth while maintaining its aesthetic and functional roles. To accomplish this goal the assessment of teeth pulp vitality is very important since it will determine the procedures that should be adopted and define the therapy strategy. Currently, the most commonly tests for determining dental pulp state are the thermal and the electrical tests, which are based on nerve response and, because of that, have a relatively high rate of false positives and false negatives cases. In this work we present a simple test to be used in the clinical setting for evaluating noninvasively the existence of blood perfusion in dental pulp. This test is based on pulse oximetry principle that was devised to indirectly measure the amount of oxygen in blood. Although pulse oximetry has already demonstrated its usefulness in clinical environment its usage for the determination of dental pulp vitality has been frustrated by several factors, notably the absence of a suitable sensor to the complex shape of the various coronary teeth. We developed a suitable sensor and present the first trials with promising results, regarding the ability for distinguish teeth with and without blood perfusion.

  15. Prototype prosperity-diversity game for the Laboratory Development Division of Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    VanDevender, P.; Berman, M.; Savage, K.

    1996-02-01

    The Prosperity Game conducted for the Laboratory Development Division of National Laboratories on May 24--25, 1995, focused on the individual and organizational autonomy plaguing the Department of Energy (DOE)-Congress-Laboratories` ability to manage the wrenching change of declining budgets. Prosperity Games are an outgrowth and adaptation of move/countermove and seminar War Games. Each Prosperity Game is unique in that both the game format and the player contributions vary from game to game. This particular Prosperity Game was played by volunteers from Sandia National Laboratories, Eastman Kodak, IBM, and AT&T. Since the participants fully control the content of the games, the specific outcomes will be different when the team for each laboratory, Congress, DOE, and the Laboratory Operating Board (now Laboratory Operations Board) is composed of executives from those respective organizations. Nevertheless, the strategies and implementing agreements suggest that the Prosperity Games stimulate cooperative behaviors and may permit the executives of the institutions to safely explore the consequences of a family of DOE concert.

  16. Development of a multichannel vestibular prosthesis prototype by modification of a commercially available cochlear implant.

    Science.gov (United States)

    Valentin, Nicolas S; Hageman, Kristin N; Dai, Chenkai; Della Santina, Charles C; Fridman, Gene Y

    2013-09-01

    No adequate treatment exists for individuals who remain disabled by bilateral loss of vestibular (inner ear inertial) sensation despite rehabilitation. We have restored vestibular reflexes using lab-built multichannel vestibular prostheses (MVPs) in animals, but translation to clinical practice may be best accomplished by modification of a commercially available cochlear implant (CI). In this interim report, we describe preliminary efforts toward that goal. We developed software and circuitry to sense head rotation and drive a CI's implanted stimulator (IS) to deliver up to 1 K pulses/s via nine electrodes implanted near vestibular nerve branches. Studies in two rhesus monkeys using the modified CI revealed in vivo performance similar to our existing dedicated MVPs. A key focus of our study was the head-worn unit (HWU), which magnetically couples across the scalp to the IS. The HWU must remain securely fixed to the skull to faithfully sense head motion and maintain continuous stimulation. We measured normal and shear force thresholds at which HWU-IS decoupling occurred as a function of scalp thickness and calculated pressure exerted on the scalp. The HWU remained attached for human scalp thicknesses from 3-7.8 mm for forces experienced during routine daily activities, while pressure on the scalp remained below capillary perfusion pressure.

  17. VISDTA: A video imaging system for detection, tracking, and assessment: Prototype development and concept demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Pritchard, D.A.

    1987-05-01

    It has been demonstrated that thermal imagers are an effective surveillance and assessment tool for security applications because: (1) they work day or night due to their sensitivity to thermal signatures; (2) penetrability through fog, rain, dust, etc., is better than human eyes; (3) short or long range operation is possible with various optics; and (4) they are strictly passive devices providing visible imagery which is readily interpreted by the operator with little training. Unfortunately, most thermal imagers also require the setup of a tripod, connection of batteries, cables, display, etc. When this is accomplished, the operator must manually move the camera back and forth searching for signs of aggressor activity. VISDTA is designed to provide automatic panning, and in a sense, ''watch'' the imagery in place of the operator. The idea behind the development of VISDTA is to provide a small, portable, rugged system to automatically scan areas and detect targets by computer processing of images. It would use a thermal imager and possibly an intensified day/night TV camera, a pan/ tilt mount, and a computer for system control. If mounted on a dedicated vehicle or on a tower, VISDTA will perform video motion detection functions on incoming video imagery, and automatically scan predefined patterns in search of abnormal conditions which may indicate attempted intrusions into the field-of-regard. In that respect, VISDTA is capable of improving the ability of security forces to maintain security of a given area of interest by augmenting present techniques and reducing operator fatigue.

  18. Development of 66 kV/6.9 kV 2 MV A prototype HTS power transformer

    International Nuclear Information System (INIS)

    Bohno, T.; Tomioka, A.; Imaizumi, M.; Sanuki, Y.; Yamamoto, T.; Yasukawa, Y.; Ono, H.; Yagi, Y.; Iwadate, K.

    2005-01-01

    We have developed the technology of the producing a HTS magnet for the power transformer. Three subjects have been mainly studied, high voltage technologies, large current and low AC loss technologies and sub-cooling system technologies to establish the technology of 66 kV/6.9 kV 10 MV A class HTS power transformer. In order to verify the validity of elemental technologies, such as high voltage technologies, large current and low AC loss technologies and sub-cooling system technologies, single-phase 2 MV A class 66 kV/6.9 kV prototype HTS transformer was manufactured and tested. In the load loss (AC loss) measurement, it was obtained that the measured value of 633 W was almost corresponding to the calculated value of 576 W at the rated operation of 2 MV A. Moreover, the breakdown was not found all voltage withstand test. These test results indicate that elemental technologies were established for the development of 66 kV/6.9 kV 10 MV A class HTS power transformer

  19. Design and Development of a Miniaturized Percutaneously Deployable Wireless Left Ventricular Assist Device: Early Prototypes and Feasibility Testing.

    Science.gov (United States)

    Letzen, Brian; Park, Jiheum; Tuzun, Zeynep; Bonde, Pramod

    The current left ventricular assist devices (LVADs) are limited by a highly invasive implantation procedure in a severely unstable group of advanced heart failure patients. Additionally, the current transcutaneous power drive line acts as a nidus for infection resulting in significant morbidity and mortality. In an effort to decrease this invasiveness and eliminate drive line complications, we have conceived a wireless miniaturized percutaneous LVAD, capable of being delivered endovascularly with a tether-free operation. The system obviates the need for a transcutaneous fluid purge line required in existing temporary devices by utilizing an incorporated magnetically coupled impeller for a complete seal. The objective of this article was to demonstrate early development and proof-of-concept feasibility testing to serve as the groundwork for future formalized device development. Five early prototypes were designed and constructed to iteratively minimize the pump size and improve fluid dynamic performance. Various magnetic coupling configurations were tested. Using SolidWorks and ANSYS software for modeling and simulation, several geometric parameters were varied. HQ curves were constructed from preliminary in vitro testing to characterize the pump performance. Bench top tests showed no-slip magnetic coupling of the impeller to the driveshaft up to the current limit of the motor. The pump power requirements were tested in vitro and were within the appropriate range for powering via a wireless energy transfer system. Our results demonstrate the proof-of-concept feasibility of a novel endovascular cardiac assist device with the potential to eventually offer patients an untethered, minimally invasive support.

  20. Development of a super B-factory monolithic active pixel detector-the Continuous Acquisition Pixel (CAP) prototypes

    International Nuclear Information System (INIS)

    Varner, G.; Barbero, M.; Bozek, A.; Browder, T.; Fang, F.; Hazumi, M.; Igarashi, A.; Iwaida, S.; Kennedy, J.; Kent, N.; Olsen, S.; Palka, H.; Rosen, M.; Ruckman, L.; Stanic, S.; Trabelsi, K.; Tsuboyama, T.; Uchida, K.

    2005-01-01

    Over the last few years great progress has been made in the technological development of Monolithic Active Pixel Sensors (MAPS) such that upgrades to existing vertex detectors using this technology are now actively being considered. Future vertex detection at an upgraded KEK-B factory, already the highest luminosity collider in the world, will require a detector technology capable of withstanding the increased track densities and larger radiation exposures. Near the beam pipe the current silicon strip detectors have projected occupancies in excess of 100%. Deep sub-micron MAPS look very promising to address this problem. In the context of an upgrade to the Belle vertex detector, the major obstacles to realizing such a device have been concerns about radiation hardness and readout speed. Two prototypes implemented in the TSMC 0.35 μm process have been developed to address these issues. Denoted the Continuous Acquisition Pixel, or CAP, the two variants of this architecture are distinguished in that CAP2 includes an 8-deep sampling pipeline within each 22.5 μm 2 pixel. Preliminary test results and remaining R and D issues are presented

  1. The Strategic Fitness Process: A Collaborative Action Research Method for Developing and Understanding Organizational Prototypes and Dynamic Capabilities

    Directory of Open Access Journals (Sweden)

    Michael Beer

    2013-04-01

    Full Text Available Organizations underperform and sometimes fail because their leaders are unable to learn the unvarnished truth from relevant stakeholders about how the design and behavior of the organization is misaligned with its goals and strategy. The Strategic Fitness Process (SFP was designed to enable leaders to overcome organizational silence about the misalignment with the environment and chosen strategy. By enabling an honest, organization-wide and public conversation, senior management teams, working collaboratively with scholar-consultants and organizational members, have access to valid data (the unvarnished truth, can conduct a valid diagnosis, and can develop a valid plan to change the structure, processes, and behavior of an organization while at the same time developing commitment that ensures execution. SFP is also a research method. By applying SFP iteratively to new and challenging situations, scholar-consultants can invent new organizational prototypes as well as learn if a standardized and institutionalized organizational learning process like SFP can enhance dynamic capabilities. The SFP model is illustrated with an application to Hewlett-Packard’s Santa Rosa Systems Division.

  2. Developing a Computational Environment for Coupling MOR Data, Maps, and Models: The Virtual Research Vessel (VRV) Prototype

    Science.gov (United States)

    Wright, D. J.; O'Dea, E.; Cushing, J. B.; Cuny, J. E.; Toomey, D. R.; Hackett, K.; Tikekar, R.

    2001-12-01

    The East Pacific Rise (EPR) from 9-10deg. N is currently our best-studied section of fast-spreading mid-ocean ridge. During several decades of investigation it has been explored by the full spectrum of ridge investigators, including chemists, biologists, geologists and geophysicists. These studies, and those that are ongoing, provide a wealth of observational data, results and data-driven theoretical (often numerical) studies that have not yet been fully utilized either by research scientists or by professional educators. While the situation is improving, a large amount of data, results, and related theoretical models still exist either in an inert, non-interactive form (e.g., journal publications) or as unlinked and currently incompatible computer data or algorithms. Infrastructure is needed not just for ready access to data, but linkage of disparate data sets (data to data) as well as data to models in order quantitatively evaluate hypotheses, refine numerical simulations, and explore new relations between observables. The prototype of a computational environment and toolset, called the Virtual Research Vessel (VRV), is being developed to provide scientists and educators with ready access to data, results and numerical models. While this effort is focused on the EPR 9N region, the resulting software tools and infrastructure should be helpful in establishing similar systems for other sections of the global mid-ocean ridge. Work in progress includes efforts to develop: (1) virtual database to incorporate diverse data types with domain-specific metadata into a global schema that allows web-query across different marine geology data sets, and an analogous declarative (database available) description of tools and models; (2) the ability to move data between GIS and the above DBMS, and tools to encourage data submission to archivesl (3) tools for finding and viewing archives, and translating between formats; (4) support for "computational steering" (tool composition

  3. Dark Skies Africa: a Prototype Project with the IAU Office of Astronomy for Development

    Science.gov (United States)

    Walker, Constance Elaine; Tellez, Daniel; Pompea, Stephen M.

    2015-08-01

    The IAU’s Office of Astronomy for Development (OAD) awarded the National Optical Astronomy Observatory (NOAO) with a grant to deliver a “Dark Skies Outreach to Sub-Saharan Africa” program to institutions in 12 African countries during 2013: Algeria, Nigeria, Rwanda, Tanzania, Ghana, Zambia, South Africa, Ethiopia, Gabon, Kenya, Namibia and Senegal. The program helped students identify wasteful and inefficient lighting and provided ways to reduce consumption and to keep energy costs in check. The goal was to inspire students to be responsible stewards in helping their community safeguard one of Africa’s natural resources - a dark night sky.Thirteen kits made by the NOAO Education and Public Outreach group were sent to coordinators at university, science center and planetarium-type institutions in the 12 countries and to the IAU OAD. The program’s kit included complete instructional guides and supplies for six hands-on activities (e.g., on the importance of shielding lights and using energy efficient bulbs) and a project on energy conservation and responsible lighting (through energy audits). The activities were taught to the coordinators in a series of six Google+ Hangout sessions scheduled from June to mid-November. The coordinators at the institutions in turn trained local teachers in junior and senior high schools. The Google+ Hangout sessions also included instruction on carrying out evaluations. From the end of November until mid-December students from the different African countries shared final class projects (such as posters or powerpoints) on the program’s website.The entire program was designed to help coordinators and educators work with students, parents and the community to identify dark sky resource, lighting and energy issues and to assess their status, efficiency and effectiveness. The audience will take away from the presentation lessons learned on how well the techniques succeeded in using Google+ Hangout sessions to instruct and

  4. Imagining the prototype

    NARCIS (Netherlands)

    Brouwer, C. E.; Bhomer, ten M.; Melkas, H.; Buur, J.

    2013-01-01

    This article reports on the analysis of a design session, employing conversation analysis. In the design session three experts and a designer discuss a prototype of a shirt, which has been developed with the input from these experts. The analysis focuses on the type of involvement of the

  5. The prototype fast reactor

    International Nuclear Information System (INIS)

    Broomfield, A.M.

    1985-01-01

    The paper concerns the Prototype Fast Reactor (PFR), which is a liquid metal cooled fast reactor power station, situated at Dounreay, Scotland. The principal design features of a Fast Reactor and the PFR are given, along with key points of operating history, and health and safety features. The role of the PFR in the development programme for commercial reactors is discussed. (U.K.)

  6. Surrogates-based prototyping

    NARCIS (Netherlands)

    Du Bois, E.; Horvath, I.

    2014-01-01

    The research is situated in the system development phase of interactive software products. In this detailed design phase, we found a need for fast testable prototyping to achieve qualitative change proposals on the system design. In this paper, we discuss a literature study on current software

  7. RF Electron Gun with Driven Plasma Cathode

    CERN Document Server

    Khodak, Igor

    2005-01-01

    It's known that RF guns with plasma cathodes based on solid-state dielectrics are able to generate an intense electron beam. In this paper we describe results of experimental investigation of the single cavity S-band RF gun with driven plasma cathode. The experimental sample of the cathode based on ferroelectric ceramics has been designed. Special design of the cathode permits to separate spatially processes of plasma development and electron acceleration. It has been obtained at RF gun output electron beam with particle energy ~500 keV, pulse current of 4 A and pulse duration of 80 ns. Results of experimental study of beam parameters are referred in. The gun is purposed to be applied as the intense electron beam source for electron linacs.

  8. Developing a Customized Perfusion Bioreactor Prototype with Controlled Positional Variability in Oxygen Partial Pressure for Bone and Cartilage Tissue Engineering.

    Science.gov (United States)

    Lee, Poh Soo; Eckert, Hagen; Hess, Ricarda; Gelinsky, Michael; Rancourt, Derrick; Krawetz, Roman; Cuniberti, Gianaurelio; Scharnweber, Dieter

    2017-05-01

    Skeletal development is a multistep process that involves the complex interplay of multiple cell types at different stages of development. Besides biochemical and physical cues, oxygen tension also plays a pivotal role in influencing cell fate during skeletal development. At physiological conditions, bone cells generally reside in a relatively oxygenated environment whereas chondrocytes reside in a hypoxic environment. However, it is technically challenging to achieve such defined, yet diverse oxygen distribution on traditional in vitro cultivation platforms. Instead, engineered osteochondral constructs are commonly cultivated in a homogeneous, stable environment. In this study, we describe a customized perfusion bioreactor having stable positional variability in oxygen tension at defined regions. Further, engineered collagen constructs were coaxed into adopting the shape and dimensions of defined cultivation platforms that were precasted in 1.5% agarose bedding. After cultivating murine embryonic stem cells that were embedded in collagen constructs for 50 days, mineralized constructs of specific dimensions and a stable structural integrity were achieved. The end-products, specifically constructs cultivated without chondroitin sulfate A (CSA), showed a significant increase in mechanical stiffness compared with their initial gel-like constructs. More importantly, the localization of osteochondral cell types was specific and corresponded to the oxygen tension gradient generated in the bioreactor. In addition, CSA in complementary with low oxygen tension was also found to be a potent inducer of chondrogenesis in this system. In summary, we have demonstrated a customized perfusion bioreactor prototype that is capable of generating a more dynamic, yet specific cultivation environment that could support propagation of multiple osteochondral lineages within a single engineered construct in vitro. Our system opens up new possibilities for in vitro research on human

  9. Development of a prototype clinical decision support tool for osteoporosis disease management: a qualitative study of focus groups

    Directory of Open Access Journals (Sweden)

    Newton David

    2010-07-01

    Full Text Available Abstract Background Osteoporosis affects over 200 million people worldwide, and represents a significant cost burden. Although guidelines are available for best practice in osteoporosis, evidence indicates that patients are not receiving appropriate diagnostic testing or treatment according to guidelines. The use of clinical decision support systems (CDSSs may be one solution because they can facilitate knowledge translation by providing high-quality evidence at the point of care. Findings from a systematic review of osteoporosis interventions and consultation with clinical and human factors engineering experts were used to develop a conceptual model of an osteoporosis tool. We conducted a qualitative study of focus groups to better understand physicians' perceptions of CDSSs and to transform the conceptual osteoporosis tool into a functional prototype that can support clinical decision making in osteoporosis disease management at the point of care. Methods The conceptual design of the osteoporosis tool was tested in 4 progressive focus groups with family physicians and general internists. An iterative strategy was used to qualitatively explore the experiences of physicians with CDSSs; and to find out what features, functions, and evidence should be included in a working prototype. Focus groups were conducted using a semi-structured interview guide using an iterative process where results of the first focus group informed changes to the questions for subsequent focus groups and to the conceptual tool design. Transcripts were transcribed verbatim and analyzed using grounded theory methodology. Results Of the 3 broad categories of themes that were identified, major barriers related to the accuracy and feasibility of extracting bone mineral density test results and medications from the risk assessment questionnaire; using an electronic input device such as a Tablet PC in the waiting room; and the importance of including well-balanced information in

  10. Development and test of a cryocatcher-prototype for the control of the dynamic vacuum in SIS100

    International Nuclear Information System (INIS)

    Bozyk, Lars

    2012-01-01

    In the FAIR project (Facility for Antiproton and Ion Research) at the GSI Helmholtz Centre for Heavy Ion Research GmbH, high intensity heavy ion beams will be provided by the superconducting synchrotron SIS100. Medium charge state ions will be used instead of high charge state ions. The medium charge state ions on the one hand shift the space charge limit towards higher intensities and, on the other hand, avoid intensity losses in stripper stages. The most demanding challenges in the operation with medium charge state heavy ions are beam losses due to charge exchange in collisions with residual gas molecules. Further ionized ions are separated from the circulating beam and get lost on the chamber wall, while releasing a big amount of gas via ion stimulated desorption. The local pressure rise increases the probability for further charge exchange of beam ions, and a self-amplification can evolve. This process may result in a complete beam loss. One way to damp this amplification is given by the installation of ion-catchers or collimators, which ensure perpendicular loss on special low desorbing surfaces at the positions of beam loss. The ion optical lattice of the SIS100 of the FAIR accelerator complex has been optimized for the usage of collimators. Almost 100% of the ionization losses can be caught by the ion-catcher system. In the arcs of the synchrotron, a total of 60 ion-catchers is located between the superconducting quadrupoles in a cryogenic environment. This thesis adresses the development, the construction, and the test of a cryocatcher prototype. In SIS18, an ion-catcher system has been installed successfully. In this work it is compared to the ion-catcher system of SIS100, and different measurements with the existing system are presented. Based on the requirements for the new system, the collimator block and its support structure, as well as the surrounding cryogenic, copper plated vacuum chamber is described. The cold surface of the vacuum chamber acts

  11. An expert system prototype for aiding in the development of software functional requirements for NASA Goddard's command management system: A case study and lessons learned

    Science.gov (United States)

    Liebowitz, Jay

    1986-01-01

    At NASA Goddard, the role of the command management system (CMS) is to transform general requests for spacecraft opeerations into detailed operational plans to be uplinked to the spacecraft. The CMS is part of the NASA Data System which entails the downlink of science and engineering data from NASA near-earth satellites to the user, and the uplink of command and control data to the spacecraft. Presently, it takes one to three years, with meetings once or twice a week, to determine functional requirements for CMS software design. As an alternative approach to the present technique of developing CMS software functional requirements, an expert system prototype was developed to aid in this function. Specifically, the knowledge base was formulated through interactions with domain experts, and was then linked to an existing expert system application generator called 'Knowledge Engineering System (Version 1.3).' Knowledge base development focused on four major steps: (1) develop the problem-oriented attribute hierachy; (2) determine the knowledge management approach; (3) encode the knowledge base; and (4) validate, test, certify, and evaluate the knowledge base and the expert system prototype as a whole. Backcasting was accomplished for validating and testing the expert system prototype. Knowledge refinement, evaluation, and implementation procedures of the expert system prototype were then transacted.

  12. Development of a High Sensitivity Digital Cerenkov Viewing Device. Prototype Digital Cerenkov Viewing Device. Field test in Sweden

    International Nuclear Information System (INIS)

    Chen, J.D.; Gerwing, A.F.; Lewis, P.D.; Larsson, M.; Jansson, K.; Lindberg, B.; Sundkvist, E.; Ohlsson, M.

    2002-05-01

    The Swedish and Canadian Safeguards Support Programs have developed a prototype Digital Cerenkov Viewing Device (DCVD) to verify long-cooled spent fuel. The instrument consists of a camera system and a custom portable computer equipped with a liquid crystal and a wearable heads-up display. The camera was coupled to a hardware user interface (HUI) and was operated with a computer program designed to image spent fuel and store the images. Measurements were taken at the CLAB facility on pressurized-water reactor fuel and non-fuel assemblies, a number of boiling-water reactor fuel assemblies, and long-cooled Aagesta fuel assemblies. The camera head, attached to the HUI, a battery-operated computer carried in a backpack and the heads-up display were field tested for portability. The ergonomics of this system is presented in the report. For the examination of long-cooled spent fuel, the camera head was mounted on a bracket that rested on the railing of a moving bridge. The DCVD instrument is approximately 100 times higher in sensitivity than the Mark IVe CVD. The oldest fuel with the lowest burnup at the CLAB facility was positively verified. The measurement capability of this instrument greatly exceeds the verification criteria of 10,000 MWd/t U and 40 years cooling

  13. Microsurgical robotic system for the deep surgical field: development of a prototype and feasibility studies in animal and cadaveric models.

    Science.gov (United States)

    Morita, Akio; Sora, Shigeo; Mitsuishi, Mamoru; Warisawa, Shinichi; Suruman, Katopo; Asai, Daisuke; Arata, Junpei; Baba, Shoichi; Takahashi, Hidechika; Mochizuki, Ryo; Kirino, Takaaki

    2005-08-01

    To enhance the surgeon's dexterity and maneuverability in the deep surgical field, the authors developed a master-slave microsurgical robotic system. This concept and the results of preliminary experiments are reported in this paper. The system has a master control unit, which conveys motion commands in six degrees of freedom (X, Y, and Z directions; rotation; tip flexion; and grasping) to two arms. The slave manipulator has a hanging base with an additional six degrees of freedom; it holds a motorized operating unit with two manipulators (5 mm in diameter, 18 cm in length). The accuracy of the prototype in both shallow and deep surgical fields was compared with routine freehand microsurgery. Closure of a partial arteriotomy and complete end-to-end anastomosis of the carotid artery (CA) in the deep operative field were performed in 20 Wistar rats. Three routine surgical procedures were also performed in cadavers. The accuracy of pointing with the nondominant hand in the deep surgical field was significantly improved through the use of robotics. The authors successfully closed the partial arteriotomy and completely anastomosed the rat CAs in the deep surgical field. The time needed for stitching was significantly shortened over the course of the first 10 rat experiments. The robotic instruments also moved satisfactorily in cadavers, but the manipulators still need to be smaller to fit into the narrow intracranial space. Computer-controlled surgical manipulation will be an important tool for neurosurgery, and preliminary experiments involving this robotic system demonstrate its promising maneuverability.

  14. DEVELOPMENT OF PROTOTYPE TITANATE ION EXCHANGE LOADED MEMBRANES FOR STRONTIUM, CESIUM AND ACTINIDE DECONTAMINATION FROM AQUEOUS MEDIA

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L; Keisha Martin, K; David Hobbs, D

    2008-05-30

    We have successfully incorporated high surface area particles of titanate ion exchange materials (monosodium titanate and crystalline silicotitanate) with acceptable particle size distribution into porous and inert support membrane fibrils consisting of polytetrafluoroethylene (Teflon{reg_sign}), polyethylene and cellulose materials. The resulting membrane sheets, under laboratory conditions, were used to evaluate the removal of surrogate radioactive materials for cesium-137 and strontium-90 from high caustic nuclear waste simulants. These membrane supports met the nominal requirement for nonchemical interaction with the embedded ion exchange materials and were porous enough to allow sufficient liquid flow. Some of this 47-mm size stamped out prototype titanium impregnated ion exchange membrane discs was found to remove more than 96% of dissolved cesium-133 and strontium-88 from a caustic nuclear waste salt simulants. Since in traditional ion exchange based column technology monosodium titanate (MST) is known to have great affinity for the sorbing of other actinides like plutonium, neptunium and even uranium, we expect that the MST-based membranes developed here, although not directly evaluated for uptake of these three actinides because of costs associated with working with actinides which do not have 'true' experimental surrogates, would also show significant affinity for these actinides in aqueous media. It was also observed that crystalline silicotitanate impregnated polytetrafluoroethylene or polyethylene membranes became less selective and sorbed both cesium and strontium from the caustic aqueous salt simulants.

  15. Performance evaluation of the analogue front-end and ADC prototypes for the Gotthard-II development

    Science.gov (United States)

    Zhang, J.; Andrä, M.; Barten, R.; Bergamaschi, A.; Brückner, M.; Dinapoli, R.; Fröjdh, E.; Greiffenberg, D.; Lopez-Cuenca, C.; Mezza, D.; Mozzanica, A.; Ramilli, M.; Redford, S.; Ruat, M.; Ruder, C.; Schmitt, B.; Shi, X.; Thattil, D.; Tinti, G.; Turcato, M.; Vetter, S.

    2017-12-01

    Gotthard-II is a silicon microstrip detector developed for the European X-ray Free-Electron Laser (XFEL.EU). Its potential scientific applications include X-ray absorption/emission spectroscopy, hard X-ray high resolution single-shot spectrometry (HiREX), energy dispersive experiments at 4.5 MHz frame rate, beam diagnostics, as well as veto signal generation for pixel detectors. Gotthard-II uses a silicon microstrip sensor with a pitch of 50 μm or 25 μm and with 1280 or 2560 channels wire-bonded to readout chips (ROCs). In the ROC, an adaptive gain switching pre-amplifier (PRE), a fully differential Correlated-Double-Sampling (CDS) stage, an Analog-to-Digital Converter (ADC) as well as a Static Random-Access Memory (SRAM) capable of storing all the 2700 images in an XFEL.EU bunch train will be implemented. Several prototypes with different designs of the analogue front-end (PRE and CDS) and ADC test structures have been fabricated in UMC-110 nm CMOS technology and their performance has been evaluated. In this paper, the performance of the analogue front-end and ADC will be summarized.

  16. Development of an air flow calorimeter prototype for the measurement of thermal power released by large radioactive waste packages.

    Science.gov (United States)

    Razouk, R; Beaumont, O; Failleau, G; Hay, B; Plumeri, S

    2018-03-01

    The estimation and control of the thermal power released by the radioactive waste packages are a key parameter in the management of radioactive waste geological repository sites. In the framework of the European project "Metrology for decommissioning nuclear facilities," the French National Agency of Radioactive Waste Management (ANDRA) collaborates with Laboratoire National de Métrologie et D'essais in order to measure the thermal power up to 500 W of typical real size radioactive waste packages (of at least 0.175 m 3 ) with an uncertainty better than 5% by using a measurement method traceable to the international system of units. One of the selected metrological approaches is based on the principles of air flow calorimetry. This paper describes in detail the development of the air flow calorimeter prototype as well as the design of a radioactive waste package simulator used for its calibration. Results obtained from the calibration of the calorimeter and from the determination of thermal powers are presented here with an investigation of the measurement uncertainties.

  17. Development of a prototype apparatus visualizing on a screen the gamma sources superimposed on the image of the vision field

    Energy Technology Data Exchange (ETDEWEB)

    Imbard, G.; Lemaire, J.E. [CEA Centre d`Etudes de la Vallee du Rhone, 30 - Marcoule (France). Dept. d`Exploitation du Retraitement et de Demantelement; Carcreff, H.; Marchand, L.; Thellier, G. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. des Reacteurs Experimentaux

    1994-12-31

    Mapping the gamma activity of irradiating zones is often an important prerequisite in dismantling nuclear facilities. The operation is necessary to define a suitable decommissioning strategy before any work begins; it is also required during the procedure to measure the residual activity wherever dose rates are too high to allow human intervention. This report summarizes the work carried out under CEC contract FIED-0055, covering a prototype imaging system designed to display radioactive sources superimposed in real time over a visible light image on a video monitor. This project was developed from an earlier off-line system. The gamma photons are collimated by a double cone system. The imaging system comprises a transparent scintillator bonded to the fiber-optic window of an ultrasensitive camera. The camera was miniaturized to meet specification requirements: with its radiological shielding, the gamma camera weighs 40 kg and is 120 mm in diameter. The processing system is compatible with a realtime camera, and small enough for use at any nuclear. The point-source angular resolution is 1.4 deg. for {sup 60} Co and 0.8 deg. for {sup 137} Cs. The dose rate sensitivity limit is approximately 0.01 mGy.h{sup -1}. Process reliability was confirmed by tests in a high-level radio-metallurgy cell at actual decommissioning site. (authors). 7 figs.

  18. Development of rapid, continuous calibration techniques and implementation as a prototype system for civil engineering materials evaluation

    International Nuclear Information System (INIS)

    Scott, M. L.; Gagarin, N.; Mekemson, J. R.; Chintakunta, S. R.

    2011-01-01

    Until recently, civil engineering material calibration data could only be obtained from material sample cores or via time consuming, stationary calibration measurements in a limited number of locations. Calibration data are used to determine material propagation velocities of electromagnetic waves in test materials for use in layer thickness measurements and subsurface imaging. Limitations these calibration methods impose have been a significant impediment to broader use of nondestructive evaluation methods such as ground-penetrating radar (GPR). In 2006, a new rapid, continuous calibration approach was designed using simulation software to address these measurement limitations during a Federal Highway Administration (FHWA) research and development effort. This continuous calibration method combines a digitally-synthesized step-frequency (SF)-GPR array and a data collection protocol sequence for the common midpoint (CMP) method. Modeling and laboratory test results for various data collection protocols and materials are presented in this paper. The continuous-CMP concept was finally implemented for FHWA in a prototype demonstration system called the Advanced Pavement Evaluation (APE) system in 2009. Data from the continuous-CMP protocol is processed using a semblance/coherency analysis to determine material propagation velocities. Continuously calibrated pavement thicknesses measured with the APE system in 2009 are presented. This method is efficient, accurate, and cost-effective.

  19. Development of an air flow calorimeter prototype for the measurement of thermal power released by large radioactive waste packages

    Science.gov (United States)

    Razouk, R.; Beaumont, O.; Failleau, G.; Hay, B.; Plumeri, S.

    2018-03-01

    The estimation and control of the thermal power released by the radioactive waste packages are a key parameter in the management of radioactive waste geological repository sites. In the framework of the European project "Metrology for decommissioning nuclear facilities," the French National Agency of Radioactive Waste Management (ANDRA) collaborates with Laboratoire National de Métrologie et D'essais in order to measure the thermal power up to 500 W of typical real size radioactive waste packages (of at least 0.175 m3) with an uncertainty better than 5% by using a measurement method traceable to the international system of units. One of the selected metrological approaches is based on the principles of air flow calorimetry. This paper describes in detail the development of the air flow calorimeter prototype as well as the design of a radioactive waste package simulator used for its calibration. Results obtained from the calibration of the calorimeter and from the determination of thermal powers are presented here with an investigation of the measurement uncertainties.

  20. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    Energy Technology Data Exchange (ETDEWEB)

    Harlan U. Anderson; Fatih Dogan; Vladimir Petrovsky

    2002-03-31

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and testing of Planar Single Cells. This period has continued to address the problem of making dense 1/2 to 5 {micro}m thick dense layers on porous substrates (the cathode LSM). Our current status is that we are making structures of 2-5 cm{sup 2} in area, which consist of either dense YSZ or CGO infiltrated into a 2-5 {micro}m thick 50% porous layer made of either nanoncrystalline CGO or YSZ powder. This composite structure coats a macroporous cathode or anode; which serves as the structural element of the bi-layer structure. These structures are being tested as SOFC elements. A number of structures have been evaluated both as symmetrical and as button cell configuration. Results of this testing indicates that the cathodes contribute the most to cell losses for temperatures below 750 C. In this investigation different cathode materials were studied using impedance spectroscopy of symmetric cells and IV characteristics of anode supported fuel cells. Cathode materials studied included La{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (LSCF), La{sub 0.7}Sr{sub 0.2}MnO{sub 3} (LSM), Pr{sub 0.8}Sr{sub 0.2}Fe{sub 0.8}O{sub 3} (PSCF), Sm{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (SSCF), and Yb{sub .8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (SSCF). A new technique for filtering the Fourier transform of impedance data was used to increase the sensitivity of impedance analysis. By creating a filter specifically for impedance spectroscopy the resolution was increased. The filter was tailored to look for specific circuit elements like R//C, Warburg, or constant phase elements. As many as four peaks can be resolved using the filtering technique on symmetric cells. It may be possible to relate the different peaks to material parameters, like the oxygen exchange coefficient. The cathode grouped in order from lowest to highest ASR is

  1. Arcjet cathode phenomena

    Science.gov (United States)

    Curran, Francis M.; Haag, Thomas W.; Raquet, John F.

    1989-01-01

    Cathode tips made from a number of different materials were tested in a modular arcjet thruster in order to examine cathode phenomena. Periodic disassembly and examination, along with the data collected during testing, indicated that all of the tungsten-based materials behaved similarly despite the fact that in one of these samples the percentage of thorium oxide was doubled and another was 25 percent rhenium. The mass loss rate from a 2 percent thoriated rhenium cathode was found to be an order of magnitude greater than that observed using 2 percent thoriated tungsten. Detailed analysis of one of these cathode tips showed that the molten crater contained pure tungsten to a depth of about 150 microns. Problems with thermal stress cracking were encountered in the testing of a hafnium carbide tip. Post test analysis showed that the active area of the tip had chemically reacted with the propellant. A 100 hour continuous test was run at about 1 kW. Post test analysis revealed no dendrite formation, such as observed in a 30 kW arcjet lifetest, near the cathode crater. The cathodes from both this test and a previously run 1000 hour cycled test displayed nearly identical arc craters. Data and calculations indicate that the mass losses observed in testing can be explained by evaporation.

  2. Supporting Active User Involvment in Prototyping

    DEFF Research Database (Denmark)

    Grønbæk, Kaj

    1990-01-01

    The term prototyping has in recent years become a buzzword in both research and practice of system design due to a number of claimed advantages of prototyping techniques over traditional specification techniques. In particular it is often stated that prototyping facilitates the users' involvement...... in the development process. But prototyping does not automatically imply active user involvement! Thus a cooperative prototyping approach aiming at involving users actively and creatively in system design is proposed in this paper. The key point of the approach is to involve users in activities that closely couple...... development of prototypes to early evaluation of prototypes in envisioned use situations. Having users involved in such activities creates new requirements for tool support. Tools that support direct manipulation of prototypes and simulation of behaviour have shown promise for cooperative prototyping...

  3. Development of a prototype continuity of care record with context-specific links to meet the information needs of case managers for persons living with HIV.

    Science.gov (United States)

    Schnall, Rebecca; Cimino, James J; Bakken, Suzanne

    2012-08-01

    (1) To develop a prototype Continuity of Care Record (CCR) with context-specific links to electronic HIV information resources; and (2) to assess case managers' perceptions regarding the usability of the prototype. We integrated context-specific links to HIV case management information resources into a prototype CCR using the Infobutton Manager and Librarian Infobutton Tailoring Environment (LITE). Case managers (N=9) completed a think-aloud protocol and the Computer System Usability Questionnaire (CSUQ) to evaluate the usability of the prototype. Verbalizations from the think-aloud protocol were summarized using thematic analysis. CSUQ data were analyzed with descriptive statistics. Although participants expressed positive comments regarding the usability of the prototype, the think-aloud protocol also identified the need for improvement in resource labels and for additional resources. On a scale ranging from 1 (strongly agree) to 7 (strongly disagree), the average CSUQ overall satisfaction was 2.25 indicating that users (n=9) were generally satisfied with the system. Mean CSUQ factor scores were: System Usefulness (M=2.13), Information Quality (M=2.46), and Interface Quality (M=2.26). Our novel application of the Infobutton Manager and LITE in the context of case management for persons living with HIV in community-based settings resulted in a prototype CCR with infobuttons that met the majority of case managers' information needs and received relatively positive usability ratings. Findings from this study inform future integration of context-specific links into CCRs and electronic health records and support their use for meeting end-users information needs. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  4. Design and development of a prototype wet oxidation system for the reclamation of water and the disposition of waste residues onboard space vehicles

    Science.gov (United States)

    Jagow, R. B.

    1972-01-01

    Laboratory investigations to define optimum process conditions for oxidation of fecal/urine slurries were conducted in a one-liter batch reactor. The results of these tests formed the basis for the design, fabrication, and testing of an initial prototype system, including a 100-hour design verification test. Areas of further development were identified during this test. Development of a high pressure slurry pump, materials corrosion studies, oxygen supply trade studies, comparison of salt removal water recovery devices, ammonia removal investigation, development of a solids grinder, reactor design studies and bearing life tests, and development of shutoff valves and a back pressure regulator were undertaken. The development work has progressed to the point where a prototype system suitable for manned chamber testing can be fabricated and tested with a high degree of confidence of success.

  5. Cathode Readout with Stripped Resistive Drift Tubes

    International Nuclear Information System (INIS)

    Bychkov, V.N.; Kekelidze, G.D.; Novikov, E.A.; Peshekhonov, V.D.; Shafranov, M.D.; Zhil'tsov, V.E.

    1994-01-01

    A straw tube drift chamber prototype has been constructed and tested. The straw tube material is mylar film covered with carbon layer of resistivity 0.5, 30 and 70 k Ohm/sq. The gas mixture used was Ar/CH 4 . Both the anode wire and cathode signals were detected in order to study the behaviour of the chamber in the presence of X-ray ionization. The construction and the results of the study are presented. 7 refs., 11 figs., 1 tab

  6. Brachial Plexus Blocker Prototype

    OpenAIRE

    Stéphanie Coelho Monteiro

    2017-01-01

    Although the area of surgical simulation has been the subject of study in recent years, it is still necessary to develop artificial experimental models with a perspective to dismiss the use of biological models. Since this makes the simulators more real, transferring the environment of the health professional to a physical or virtual reality, an anesthetic prototype has been developed, where the motor response is replicated when the brachial plexus is subjected to a proximal nervous stimulus....

  7. Design, fabrication and low power RF testing of a prototype beta=1, 1050 MHz cavity developed for electron linac

    International Nuclear Information System (INIS)

    Sarkar, S.; Mondal, J.; Mittal, K.C.

    2013-01-01

    A single cell 1050 MHz β = 1 elliptical cavity has been designed for possible use in High energy electron accelerator. A prototype Aluminium cavity has been fabricated by die punch method and low power testing of the cavity has been carried out by using VNA. The fundamental mode frequency of the prototype cavity is found out to be 1051.38 MHz and Q (loaded) and Q0 values corresponding to 2 modes are 8439 and 10013 respectively. Cell to cell coupling coefficient is 1.82 % from measurement which matches with the designed value (1.84%). The higher order mode frequencies are also measured and electric field of the cavity is confirmed by bead pull method. Low power RF measurements on the prototype cavity indicate that the critical RF parameters (Qo, f, Kc etc) for the cavity are consistent with the designed value. (author)

  8. Iteration and Prototyping in Creating Technical Specifications.

    Science.gov (United States)

    Flynt, John P.

    1994-01-01

    Claims that the development process for computer software can be greatly aided by the writers of specifications if they employ basic iteration and prototyping techniques. Asserts that computer software configuration management practices provide ready models for iteration and prototyping. (HB)

  9. Study on development of virtual reactor core laboratory (1). Development of prototype coupled neutronic, thermal-hydraulic and structural analysis system

    International Nuclear Information System (INIS)

    Uto, Nariaki; Sugaya, Toshio; Tsukimori, Kazuyuki; Negishi, Hitoshi; Enuma, Yasuhiro; Sakai, Takaaki

    1999-09-01

    A study on development of virtual reactor core laboratory, which is to conduct numerical experiments representative of complicated physical phenomena in practical reactor core systems on a computational environment, has progressed at Japan Nuclear Cycle Development Institute (JNC). The study aims at systematic evaluation of these phenomena into which nuclear reactions, thermal-hydraulic characteristics, structural responses and fuel behaviors combine, and effective utilization of the obtained comprehension for core design. This report presents a production of a prototype computational system which is required to construct the virtual reactor core laboratory. This system is to evaluate reactor core performance under the coupled neutronic, thermal-hydraulic and structural phenomena, and is composed of two analysis tools connected by a newly developed interface program; 1) an existing space-dependent coupled neutronic and thermal-hydraulic analysis system arranged at JNC and 2) a core deformation analysis code. It acts on a cluster of several DEC/Alpha workstations. A specific library called MPI1 (Message Passing Interface 1) is incorporated as a tool for communicating among the analysis modules consisting of the system. A series of calculations for simulating a sequence of Unprotected Loss Of Heat Sink (ULOHS) coupled with rapid drop of some neutron absorber devices in a prototype fast reactor is tried to investigate how the system works. The obtained results show the core deformation behavior followed by the reactivity change that can be properly evaluated. The results of this report show that the system is expected to be useful for analyzing sensitivity of reactor core performance with respect to uncertainties of various design parameters and establishing a concept of passive safety reactor system, taking into account space distortion of neutron flux distribution during abnormal events as well as reactivity feedback from core deformation. (author)

  10. Prompt and Precise Prototyping

    Science.gov (United States)

    2003-01-01

    For Sanders Design International, Inc., of Wilton, New Hampshire, every passing second between the concept and realization of a product is essential to succeed in the rapid prototyping industry where amongst heavy competition, faster time-to-market means more business. To separate itself from its rivals, Sanders Design aligned with NASA's Marshall Space Flight Center to develop what it considers to be the most accurate rapid prototyping machine for fabrication of extremely precise tooling prototypes. The company's Rapid ToolMaker System has revolutionized production of high quality, small-to-medium sized prototype patterns and tooling molds with an exactness that surpasses that of computer numerically-controlled (CNC) machining devices. Created with funding and support from Marshall under a Small Business Innovation Research (SBIR) contract, the Rapid ToolMaker is a dual-use technology with applications in both commercial and military aerospace fields. The advanced technology provides cost savings in the design and manufacturing of automotive, electronic, and medical parts, as well as in other areas of consumer interest, such as jewelry and toys. For aerospace applications, the Rapid ToolMaker enables fabrication of high-quality turbine and compressor blades for jet engines on unmanned air vehicles, aircraft, and missiles.

  11. Knife-edge thin film field emission cathodes

    International Nuclear Information System (INIS)

    Lee, B.; Demroff, H.P.; Drew, M.M.; Elliott, T.S.; Mazumdar, T.K.; McIntyre, P.M.; Pang, Y.; Smith, D.D.; Trost, H.J.

    1993-01-01

    Cathodes made of thin-film field emission arrays (FEA) have the advantages of high current density, pulsed emission, and low bias voltage operation. The authors have developed a technology to fabricate knife-edge field emission cathodes on (110) silicon wafers. The emitter geometry is optimized for efficient modulation at high frequency. Cathode fabrication progress and preliminary analysis of their applications in RF power sources are presented

  12. Courthouse Prototype Building

    Energy Technology Data Exchange (ETDEWEB)

    Malhotra, Mini [ORNL; New, Joshua Ryan [ORNL; Im, Piljae [ORNL

    2018-02-01

    As part of DOE's support of ANSI/ASHRAE/IES Standard 90.1 and IECC, researchers at Pacific Northwest National Laboratory (PNNL) apply a suite of prototype buildings covering 80% of the commercial building floor area in the U.S. for new construction. Efforts have started on expanding the prototype building suite to cover 90% of the commercial building floor area in the U.S., by developing prototype models for additional building types including place of worship, public order and safety, public assembly. Courthouse is courthouse is a sub-category under the “Public Order and Safety" building type category; other sub-categories include police station, fire station, and jail, reformatory or penitentiary.ORNL used building design guides, databases, and documented courthouse projects, supplemented by personal communication with courthouse facility planning and design experts, to systematically conduct research on the courthouse building and system characteristics. This report documents the research conducted for the courthouse building type and proposes building and system characteristics for developing a prototype building energy model to be included in the Commercial Building Prototype Model suite. According to the 2012 CBECS, courthouses occupy a total of 436 million sqft of floor space or 0.5% of the total floor space in all commercial buildings in the US, next to fast food (0.35%), grocery store or food market (0.88%), and restaurant or cafeteria (1.2%) building types currently included in the Commercial Prototype Building Model suite. Considering aggregated average, courthouse falls among the larger with a mean floor area of 69,400 sqft smaller fuel consumption intensity building types and an average of 94.7 kBtu/sqft compared to 77.8 kBtu/sqft for office and 80 kBtu/sqft for all commercial buildings.Courthouses range in size from 1000 sqft to over a million square foot building gross square feet and 1 courtroom to over 100 courtrooms. Small courthouses

  13. Development and performance evaluation of a prototype system for prediction of the group error at the maintenance work

    International Nuclear Information System (INIS)

    Yoshino, Kenji; Hirotsu, Yuko

    2000-01-01

    In order to attain zero-izing of much more error rather than it can set to a nuclear power plant, Authors development and its system-izing of the error prediction causal model which predicts group error action at the time of maintenance work were performed. This prototype system has the following feature. (1) When a user inputs the existence and the grade of the existence of the 'feature factor of the maintenance work' as a prediction object, 'an organization and an organization factor', and a 'group PSF (Performance Shaping Factor) factor' into this system. The maintenance group error to target can be predicted through the prediction model which consists of a class of seven stages. (2) This system by utilizing the information on a prediction result database, it can use not only for prediction of a maintenance group error but for various safe activity, such as KYT (dangerous forecast training) and TBM (Tool Box Meeting). (3) This system predicts a cooperation error' at highest rate, and, subsequently predicts the detection error' at a high rate. And to the 'decision-making error', the transfer error' and the 'state cognitive error', it has the characteristic predicted at almost same rate. (4) If it has full knowledge even of the features, such as the enforcement conditions of maintenance work, and organization, even if the user has neither the knowledge about a human factor, nor experience, anyone of this system is slight about the existence, its extent, etc. of generating of a maintenance group error made difficult from the former logically and systematically easily, it can predict in business time for about 15 minutes. (author)

  14. Employing Design and Development Research (DDR): Approaches in the Design and Development of Online Arabic Vocabulary Learning Games Prototype

    Science.gov (United States)

    Sahrir, Muhammad Sabri; Alias, Nor Aziah; Ismail, Zawawi; Osman, Nurulhuda

    2012-01-01

    The design and development research, first proposed by Brown and Collins in the 1990s, is currently among the well-known methods in educational research to test theory and validate its practicality. The method is also known as developmental research, design research, design-based research, formative research and design-cased and possesses…

  15. Tangiplay: prototyping tangible electronic games

    OpenAIRE

    Boileau, Jason

    2010-01-01

    Tangible electronic games currently exist in research laboratories around the world but have yet to transition to the commercial sector. The development process of a tangible electronic game is one of the factors preventing progression, as it requires much time and money. Prototyping tools for tangible hardware and software development are becoming more available but are targeted to programmers and technically trained developers. Paper prototyping board and video games is a proven and rapid m...

  16. Development of Advanced Li Rich xLi2MO3 (1-x)LiMO2 Composite Cathode for High Capacity Li Ion Batteries

    Science.gov (United States)

    2016-12-22

    box, and lithium foils were used as counter electrodes, and polypropylene microporous films were used as separators. The electrolyte consisted of 1...Structured Cathode Materials Based on Structural and Electrochemical Analyses, 2016 International Conference on Green Electrochemical Technologies

  17. Filtered cathodic arc source

    International Nuclear Information System (INIS)

    Falabella, S.; Sanders, D.M.

    1994-01-01

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge is described. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45 degree to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles. 3 figures

  18. Plasma processes inside dispenser hollow cathodes

    International Nuclear Information System (INIS)

    Mikellides, Ioannis G.; Katz, Ira; Goebel, Dan M.; Polk, James E.; Jameson, Kristina K.

    2006-01-01

    A two-dimensional fluid model of the plasma and neutral gas inside dispenser orificed hollow cathodes has been developed to quantify plasma processes that ultimately determine the life of the porous emitters inserted in these devices. The model self-consistently accounts for electron emission from the insert as well as for electron and ion flux losses from the plasma. Two cathodes, which are distinctively different in size and operating conditions, have been simulated numerically. It is found that the larger cathode, with outer tube diameter of 1.5 cm and orifice diameter of 0.3 cm, establishes an effective emission zone that spans approximately the full length of the emitter when operated at a discharge current of 25 A and a flow rate of 5.5 sccm. The net heating of the emitter is caused by ions that are produced by ionization of the neutral gas inside the tube and are then accelerated by the sheath along the emitter. The smaller cathode, with an outer diameter of 0.635 cm and an orifice diameter of 0.1 cm, does not exhibit the same operational characteristics. At a flow rate of 4.25 sccm and discharge current of 12 A, the smaller cathode requires 4.5 times the current density near the orifice and operates with more than 6 times the neutral particle density compared to the large cathode. As a result, the plasma particle density is almost one order of magnitude higher compared to the large cathode. The plasma density in this small cathode is high enough such that the Debye length is sufficiently small to allow 'sheath funneling' into the pores of the emitter. By accessing areas deeper into the insert material, it is postulated that the overall emission of electrons is significantly enhanced. The maximum emission current density is found to be about 1 A/mm 2 in the small cathode, which is about one order of magnitude higher than attained in the large cathode. The effective emission zone in the small cathode extends to about 15% of the emitter length only, and the

  19. Development and Realisation of the Concept House ‘Delft’ Prototype : An Example of a Collaborative Concept Development for Energy Positive Apartments

    NARCIS (Netherlands)

    Eekhout, A.J.C.M.; Van Timmeren, A.

    2016-01-01

    The Delft Prototype is a single apartment from a not yet realized Concept House Urban Villa, which consists of 16 apartments on 4 floors. Both the urban villa and the prototype demonstrate the characteristics of high level industrial production with an extremely low ecological footprint, as well as

  20. Rechargeable Aqueous Zinc-Ion Battery Based on Porous Framework Zinc Pyrovanadate Intercalation Cathode

    KAUST Repository

    Xia, Chuan

    2017-12-11

    In this work, a microwave approach is developed to rapidly synthesize ultralong zinc pyrovanadate (Zn3V2O7(OH)2·2H2O, ZVO) nanowires with a porous crystal framework. It is shown that our synthesis strategy can easily be extended to fabricate other metal pyrovanadate compounds. The zinc pyrovanadate nanowires show significantly improved electrochemical performance when used as intercalation cathode for aqueous zinc–ion battery. Specifically, the ZVO cathode delivers high capacities of 213 and 76 mA h g−1 at current densities of 50 and 3000 mA g−1, respectively. Furthermore, the Zn//ZVO cells show good cycling stability up to 300 cycles. The estimated energy density of this Zn cell is ≈214Wh kg−1, which is much higher than commercial lead–acid batteries. Significant insight into the Zn-storage mechanism in the pyrovanadate cathodes is presented using multiple analytical methods. In addition, it is shown that our prototype device can power a 1.5 V temperature sensor for at least 24 h.

  1. Compact Rare Earth Emitter Hollow Cathode

    Science.gov (United States)

    Watkins, Ronald; Goebel, Dan; Hofer, Richard

    2010-01-01

    A compact, high-current, hollow cathode utilizing a lanthanum hexaboride (LaB6) thermionic electron emitter has been developed for use with high-power Hall thrusters and ion thrusters. LaB6 cathodes are being investigated due to their long life, high current capabilities, and less stringent xenon purity and handling requirements compared to conventional barium oxide (BaO) dispenser cathodes. The new cathode features a much smaller diameter than previously developed versions that permit it to be mounted on axis of a Hall thruster ( internally mounted ), as opposed to the conventional side-mount position external to the outer magnetic circuit ("externally mounted"). The cathode has also been reconfigured to be capable of surviving vibrational loads during launch and is designed to solve the significant heater and materials compatibility problems associated with the use of this emitter material. This has been accomplished in a compact design with the capability of high-emission current (10 to 60 A). The compact, high-current design has a keeper diameter that allows the cathode to be mounted on the centerline of a 6- kW Hall thruster, inside the iron core of the inner electromagnetic coil. Although designed for electric propulsion thrusters in spacecraft station- keeping, orbit transfer, and interplanetary applications, the LaB6 cathodes are applicable to the plasma processing industry in applications such as optical coatings and semiconductor processing where reactive gases are used. Where current electrical propulsion thrusters with BaO emitters have limited life and need extremely clean propellant feed systems at a significant cost, these LaB6 cathodes can run on the crudest-grade xenon propellant available without impact. Moreover, in a laboratory environment, LaB6 cathodes reduce testing costs because they do not require extended conditioning periods under hard vacuum. Alternative rare earth emitters, such as cerium hexaboride (CeB6) can be used in this

  2. Cathode material for lithium batteries

    Science.gov (United States)

    Park, Sang-Ho; Amine, Khalil

    2013-07-23

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  3. 2013 Estorm - Invited Paper - Cathode Materials Review

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Claus [ORNL; Mohanty, Debasish [ORNL; Li, Jianlin [ORNL; Wood III, David L [ORNL

    2014-01-01

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403 431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783 789) demonstrated a high-energy and high-power LiCoO2 cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  4. Smart cathodic protection systems

    NARCIS (Netherlands)

    Polder, R.B.; Leggedoor, J.; Schuten, G.; Sajna, S.; Kranjc, A.

    2010-01-01

    Cathodic protection delivers corrosion protection in concrete structures exposed to aggressive environments, e.g. in de-icing salt and marine climates. Working lives of a large number of CP systems are at least more than 13 years and probably more than 25 years, provided a minimum level of

  5. Development of drift-flux model based on 8 x 8 BWR rod bundle geometry experiments under prototypic temperature and pressure conditions

    International Nuclear Information System (INIS)

    Ozaki, Tetsuhiro; Suzuki, Riichiro; Mashiko, Hiroyuki; Hibiki, Takashi

    2013-01-01

    The drift-flux model is one of the imperative concepts used to consider the effects of phase coupling on two-phase flow dynamics. Several drift-flux models are available that apply to rod bundle geometries and some of these are implemented in several nuclear safety analysis codes. However, these models are not validated by well-designed prototypic full bundle test data, and therefore, the scalability of these models has not necessarily been verified. The Nuclear Power Engineering Corporation (NUPEC) conducted void fraction measurement tests in Japan with prototypic 8 x 8 BWR (boiling water reactor) rod bundles under prototypic temperature and pressure conditions. Based on these NUPEC data, a new drift-flux model applicable to predicting the void fraction in a rod bundle geometry has been developed. The newly developed drift-flux model is compared with the other existing data such as the two-phase flow test facility (TPTF) data taken at the Japan Atomic Energy Research Institute (JAERI) [currently, Japan Atomic Energy Agency (JAEA)] and low pressure adiabatic 8 x 8 bundle test data taken at Purdue University in the United States. The results of these comparisons show good agreement between the test data and the predictions. The effects of power distribution, spacer grids, and the bundle geometry on the newly developed drift-flux model have been discussed using the NUPEC data. (author)

  6. The utilization of cranial models created using rapid prototyping techniques in the development of models for navigation training.

    Science.gov (United States)

    Waran, V; Pancharatnam, Devaraj; Thambinayagam, Hari Chandran; Raman, Rajagopal; Rathinam, Alwin Kumar; Balakrishnan, Yuwaraj Kumar; Tung, Tan Su; Rahman, Z A

    2014-01-01

    Navigation in neurosurgery has expanded rapidly; however, suitable models to train end users to use the myriad software and hardware that come with these systems are lacking. Utilizing three-dimensional (3D) industrial rapid prototyping processes, we have been able to create models using actual computed tomography (CT) data from patients with pathology and use these models to simulate a variety of commonly performed neurosurgical procedures with navigation systems. To assess the possibility of utilizing models created from CT scan dataset obtained from patients with cranial pathology to simulate common neurosurgical procedures using navigation systems. Three patients with pathology were selected (hydrocephalus, right frontal cortical lesion, and midline clival meningioma). CT scan data following an image-guidance surgery protocol in DIACOM format and a Rapid Prototyping Machine were taken to create the necessary printed model with the corresponding pathology embedded. The ability in registration, planning, and navigation of two navigation systems using a variety of software and hardware provided by these platforms was assessed. We were able to register all models accurately using both navigation systems and perform the necessary simulations as planned. Models with pathology utilizing 3D rapid prototyping techniques accurately reflect data of actual patients and can be used in the simulation of neurosurgical operations using navigation systems. Georg Thieme Verlag KG Stuttgart · New York.

  7. Prototype heel effect compensation filter for cone-beam CT

    International Nuclear Information System (INIS)

    Mori, Shinichiro; Endo, Masahiro; Nishizawa, Kanae; Ohno, Mari; Miyazaki, Hiroaki; Tsujita, Kazuhiko; Saito, Yasuo

    2005-01-01

    The prototype cone-beam CT (CBCT) has a larger beam width than the conventional multi-detector row CT (MDCT). This causes a non-uniform angular distribution of the x-ray beam intensity known as the heel effect. Scan conditions for CBCT tube current are adjusted on the anode side to obtain an acceptable clinical image quality. However, as the dose is greater on the cathode side than on the anode side, the signal-to-noise ratio on the cathode side is excessively high, resulting in an unnecessary dose amount. To compensate for the heel effect, we developed a heel effect compensation (HEC) filter. The HEC filter rendered the dose distribution uniform and reduced the dose by an average of 25% for free air and by 20% for CTDI phantoms compared to doses with the conventional filter. In addition, its effect in rendering the effective energy uniform resulted in an improvement in image quality. This new HEC filter may be useful in cone-beam CT studies. (note)

  8. Oxide cathodes produced by plasma deposition

    International Nuclear Information System (INIS)

    Scheitrum, G.; Caryotakis, G.; Pi, T.; Umstattd, R.; Brown, I.; Montiero, O.

    1997-01-01

    These are two distinct applications for high-current-density, long-life thermionic cathodes. The first application is as a substitute for explosive emission cathodes used in high-power microwave (HPM) devices being developed for Air Force programs. The second application is in SLAC's X-band klystrons for the Next Linear Collider (NLC). SLAC, UCD, and LBL are developing a plasma deposition process that eliminates the problems with binders, carbonate reduction, peeling, and porosity. The emission layer is deposited using plasma deposition of metallic barium in vacuum with an oxygen background gas. An applied bias voltage drives the oxide plasma into the nickel surface. Since the oxide is deposited directly, it does not have problems with poisoning from a hydrocarbon binder. The density of the oxide layer is increased from the 40--50% for standard oxide cathodes to nearly 100% for plasma deposition

  9. The Necessity of Machine Learning and Epistemology in the Development of Categorization Theories: A Case Study in Prototype-Exemplar Debate

    Science.gov (United States)

    Gagliardi, Francesco

    In the present paper we discuss some aspects of the development of categorization theories concerning cognitive psychology and machine learning. We consider the thirty-year debate between prototype-theory and exemplar-theory in the studies of cognitive psychology regarding the categorization processes. We propose this debate is ill-posed, because it neglects some theoretical and empirical results of machine learning about the bias-variance theorem and the existence of some instance-based classifiers which can embed models subsuming both prototype and exemplar theories. Moreover this debate lies on a epistemological error of pursuing a, so called, experimentum crucis. Then we present how an interdisciplinary approach, based on synthetic method for cognitive modelling, can be useful to progress both the fields of cognitive psychology and machine learning.

  10. Manganese Dioxide As Rechargeable Magnesium Battery Cathode

    International Nuclear Information System (INIS)

    Ling, Chen; Zhang, Ruigang

    2017-01-01

    Rechargeable magnesium battery (rMB) has received increased attention as a promising alternative to current Li-ion technology. However, the lack of appropriate cathode that provides high-energy density and good sustainability greatly hinders the development of practical rMBs. To date, the successful Mg 2+ -intercalation was only achieved in only a few cathode hosts, one of which is manganese dioxide. This review summarizes the research activity of studying MnO 2 in magnesium cells. In recent years, the cathodic performance of MnO 2 was impressively improved to the capacity of >150–200 mAh g −1 at voltage of 2.6–2.8 V with cyclability to hundreds or more cycles. In addition to reviewing electrochemical performance, we sketch a mechanistic picture to show how the fundamental understanding about MnO 2 cathode has been changed and how it paved the road to the improvement of cathode performance.

  11. Manganese Dioxide As Rechargeable Magnesium Battery Cathode

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Chen, E-mail: chen.ling@toyota.com; Zhang, Ruigang [Toyota Research Institute of North America, Ann Arbor, MI (United States)

    2017-11-03

    Rechargeable magnesium battery (rMB) has received increased attention as a promising alternative to current Li-ion technology. However, the lack of appropriate cathode that provides high-energy density and good sustainability greatly hinders the development of practical rMBs. To date, the successful Mg{sup 2+}-intercalation was only achieved in only a few cathode hosts, one of which is manganese dioxide. This review summarizes the research activity of studying MnO{sub 2} in magnesium cells. In recent years, the cathodic performance of MnO{sub 2} was impressively improved to the capacity of >150–200 mAh g{sup −1} at voltage of 2.6–2.8 V with cyclability to hundreds or more cycles. In addition to reviewing electrochemical performance, we sketch a mechanistic picture to show how the fundamental understanding about MnO{sub 2} cathode has been changed and how it paved the road to the improvement of cathode performance.

  12. Between generative prototyping and work of synthesis in design: Interplay and adding value in the early concept development

    DEFF Research Database (Denmark)

    Cramer-Petersen, Claus Lundgaard

    2013-01-01

    The paper analyzes a case in which generative prototypes are applied as part of a participatory design methodology to elicit insights from practitioners, and how these insights are translated and represented, to inform the following work of synthesis in design. In literature, arguments are made...... iterations. The paper concludes, that the methodology can frame a process of eliciting explicit and implicit knowledge from different sources, but that the designer, as being part of the entire process, comes to hold ‘sticky’ knowledge that difficult to transfer, which implicitly influences the design...

  13. Ferroelectric Cathodes in Transverse Magnetic Fields

    International Nuclear Information System (INIS)

    Alexander Dunaevsky; Yevgeny Raitses; Nathaniel J. Fisch

    2002-01-01

    Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode

  14. Air cathode structure manufacture

    Science.gov (United States)

    Momyer, William R.; Littauer, Ernest L.

    1985-01-01

    An improved air cathode structure for use in primary batteries and the like. The cathode structure includes a matrix active layer, a current collector grid on one face of the matrix active layer, and a porous, nonelectrically conductive separator on the opposite face of the matrix active layer, the collector grid and separator being permanently bonded to the matrix active layer. The separator has a preselected porosity providing low IR losses and high resistance to air flow through the matrix active layer to maintain high bubble pressure during operation of the battery. In the illustrated embodiment, the separator was formed of porous polypropylene. A thin hydrophobic film is provided, in the preferred embodiment, on the current collecting metal grid.

  15. Cathode ray tube screens

    International Nuclear Information System (INIS)

    Cockayne, B.; Robbins, D.J.; Glasper, J.L.

    1982-01-01

    An improved cathode ray tube screen is described which consists of a single- or a poly-crystalline slice of a material such as yttrium aluminium garnet in which dopants such as Tb 3 + , Eu 3 + , Ce 3 + or Tm 3 + are ion implanted to different depths or in different areas of the screen. Annealing the screen removes lattice damage caused by the ion implanting and assists the diffusion of the dopant into the crystal. (U.K.)

  16. Arc cathode spots

    International Nuclear Information System (INIS)

    Schrade, H.O.

    1989-01-01

    Arc spots are usually highly unstable and jump statistically over the cathode surface. In a magnetic field parallel to the surface, preferably they move in the retrograde direction; i.e., opposite to the Lorentzian rule. If the field is inclined with respect to the surface, the spots drift away at a certain angle with respect to the proper retrograde direction (Robson drift motion). These well-known phenomena are explained by one stability theory

  17. Cathode ray tube

    International Nuclear Information System (INIS)

    1979-01-01

    A cathode ray tube comprises two electron lens means in combination to crossover the electron beam at a second crossover between the two electron lens means with one of the two lens means having a variable voltage applied thereto to control the location of the beam crossover in order to focus the beam onto a display screen at any location away from the screen center. (Auth.)

  18. Simple supercapacitor charging scheme of an electric vehicle on small-scale hardware simulator: a prototype development for education purpose

    Directory of Open Access Journals (Sweden)

    Adnan Rafi Al Tahtawi

    2016-12-01

    Full Text Available Supercapacitor is one of electrical energy sources that have faster charging-discharging times when compared to other power sources, such as battery and fuel cell. Therefore, it is often used as an additional power source in an electric vehicle. In this paper, a prototype of small-scale electric vehicle simulator (EVS is built and a simple charging scheme of supercapacitor is used for education purpose. EVS is an electric vehicle prototype which can show the vehicle’s powertrain on small-scale configuration. Main components of this device are two direct current motors (DCMs with a linked axis of rotation. Therefore one of them will be able to act as a generator. The supercapacitor charging scheme is employed by controlling the relays. The hardware experimental result shows that the averages of charging current are proportional to the maximum slope angle of the road profiles. This scheme is simple due to the EVS utility and it is useful for education purpose.

  19. Development and test of the DAQ system for a Micromegas prototype to be installed in the ATLAS experiment

    CERN Document Server

    Zibell, Andre; The ATLAS collaboration; Bianco, Michele; Martoiu, Victor Sorin

    2015-01-01

    A Micromegas (MM) quadruplet prototype with an active area of 0.5 m 2 that adopts the general design foreseen for the upgrade of the innermost forward muon tracking systems (Small Wheels) of the ATLAS detector in 2018-2019, has been built at CERN and is going to be tested in the ATLAS cavern environment during the LHC RUN-II period 2015-2017. The integration of this prototype detector into the ATLAS data acquisition system using custom ATCA equipment is presented. An ATLAS compatible Read Out Driver (ROD) based on the Scalable Readout System (SRS), the Scalable Readout Unit (SRU), will be used in order to transmit the data after generating valid event fragments to the high-level Read Out System (ROS). The SRU will be synchronized with the LHC bunch crossing clock (40.08 MHz) and will receive the Level-1 trigger signals from the Central Trigger Processor (CTP) through the TTCrx receiver ASIC. The configuration of the system will be driven directly from the ATLAS Run Control System. By using the ATLAS TDAQ Soft...

  20. AN INTRODUCTION TO RAPID CASTING: DEVELOPMENT AND INVESTIGATION OF PROCESS CHAINS FOR SAND CASTING OF FUNCTIONAL PROTOTYPES

    Directory of Open Access Journals (Sweden)

    D. Dimitrov

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: This paper discusses the results obtained from studies on different Rapid Tooling process chains in order to improve the design and manufacture of foundry equipment that is used for sand casting of prototypes in final material. These prototypes are intended for functional and pre-production tests of vehicles. The Three Dimensional Printing process is used as core technology. Subsequently, while considering aspects such as time, cost, quality (accuracy and surface roughness, and tool life, a framework is presented for the evaluation and selection of the most suitable process chain in accordance with specific requirements. This research builds on an in-depth characterisation of the accuracy and repeatability of a 3D printing process.

    AFRIKAANSE OPSOMMING: Hierdie artikel bespreek die resultate wat verkry is tydens studies op verskillende Snel-Gereedskapvervaardigingproseskettings wat ondersoek is teneinde die ontwerp en vervaardiging van sandgietgereedskap, om prototipes in finale materiaal te vervaardig, te verbeter. Die prototipes is bestem vir gebruik in funksionele- en voorproduksietoetse van voertuie. Die sogenaamde Driedimensionele Drukproses (3DP is as kerntegnologie aangewend. Gevolglik, na oorweging van aspekte soos tyd, koste, kwaliteit (akkuraatheid en oppervlakafwerking, en gereedskapleeftyd, is ’n raamwerk ontwikkel vir die evaluering en seleksie van die mees geskikte prosesketting met inagname van spesifieke vereistes. Hierdie navorsing bou op ’n diepgaande karakterisering van die akkuraatheids- en herhaalbaarheidsvermoë van ’n 3D drukproses.

  1. The Prototype as Mediator of Embodied Experience in Fashion Design

    DEFF Research Database (Denmark)

    Kristensen, Tore; Ræbild, Ulla

    . It is based on photographic material obtained in design studios during prototype development. The prototype is considered a core fashion design competence. Yet, companies increasingly cut costs by reducing or omitting prototype development. We intend to show, how the garment prototype acts as an important...

  2. Architectural Prototyping in Industrial Practice

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak; Hansen, Klaus Marius

    2008-01-01

    Architectural prototyping is the process of using executable code to investigate stakeholders’ software architecture concerns with respect to a system under development. Previous work has established this as a useful and cost-effective way of exploration and learning of the design space of a system......, in addressing issues regarding quality attributes, in addressing architectural risks, and in addressing the problem of knowledge transfer and conformance. Little work has been reported so far on the actual industrial use of architectural prototyping. In this paper, we report from an ethnographical study...... and focus group involving architects from four companies in which we have focused on architectural prototypes. Our findings conclude that architectural prototypes play an important role in resolving problems experimentally, but less so in exploring alternative solutions. Furthermore, architectural...

  3. Study on the vibrational scraping of uranium product from a solid cathode of electrorefiner

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung Bin; Kang, Young Ho; Hwang, Sung Chan; Lee, Han Soo; Paek, Seung Woo; Ahn, Do Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-12-15

    A high-throughput electrorefiner has been developed for commercialization use by enhancing the uranium recovery from the reduced metal which is produced from the oxide reduction process. It is necessary to scrap and effectively collect uranium dendrites from the surface of the solid cathode for high yield. When a steel electrode is used as the cathode in the electrorefining process, uranium is deposited and regularly stuck to the steel cathode during electrorefining. The sticking coefficient of a steel cathode is very high. In order to decrease the sticking coefficient of the steel cathode effectively, vibration mode was applied to the electrode in this study. Uranium dendrites were scraped and fell apart from the steel cathode by a vibration force. The vibrational scraping of the steel cathode was compared to the self-scraping of the graphite cathode. Effects of the applied current density and the vibration stroke on the scraping of the uranium dendrites were also investigated.

  4. Hollow Cathode Studies for the Next Generation Ion Engines in JAXA

    Science.gov (United States)

    Ohkawa, Yasushi; Hayakawa, Yukio; Yoshida, Hideki; Miyazaki, Katsuhiro; Kitamura, Shoji; Kajiwara, Kenichi

    The current status of experimental studies of hollow cathodes for the next-generation ion engines in the Aerospace Research and Development Directorate, JAXA is described. One of the topics on the hollow cathode studies is a life test of a discharge cathode. The keeper disk, orifice plate, and cathode tube of this discharge cathode are made of "high density graphite," which possesses much higher tolerance to ion impingement compared with conventional metal materials. The life test had started in March 2006 and the cumulative operation time reached 15,600 hours in April 2008. No severe degradation has been found both in the operation voltages and electrodes so far, and the test is favorably in progress. In addition to the life test of the discharge cathode, some experiments for design optimization of neutralizer cathodes have been performed. A life test of the neutralizer cathode is being started in June 2008.

  5. Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell

    KAUST Repository

    Zhang, Fang

    2009-11-01

    An inexpensive activated carbon (AC) air cathode was developed as an alternative to a platinum-catalyzed electrode for oxygen reduction in a microbial fuel cell (MFC). AC was cold-pressed with a polytetrafluoroethylene (PTFE) binder to form the cathode around a Ni mesh current collector. This cathode construction avoided the need for carbon cloth or a metal catalyst, and produced a cathode with high activity for oxygen reduction at typical MFC current densities. Tests with the AC cathode produced a maximum power density of 1220 mW/m2 (normalized to cathode projected surface area; 36 W/m3 based on liquid volume) compared to 1060 mW/m2 obtained by Pt catalyzed carbon cloth cathode. The Coulombic efficiency ranged from 15% to 55%. These findings show that AC is a cost-effective material for achieving useful rates of oxygen reduction in air cathode MFCs. © 2009 Elsevier B.V. All rights reserved.

  6. Ultraviolet Generation by Atmospheric Micro-Hollow Cathode Discharges

    National Research Council Canada - National Science Library

    Cooper, J

    2004-01-01

    Report developed under STTR contract for topic AFO3TOl9. This report documents the program objectives, work performed, results obtained, and future plans for a program to develop micro-hollow cathode discharge (MHCD...

  7. Systematic and Iterative Development of a Smartphone App to Promote Sun-Protection Among Holidaymakers: Design of a Prototype and Results of Usability and Acceptability Testing.

    Science.gov (United States)

    Rodrigues, Angela M; Sniehotta, Falko F; Birch-Machin, Mark A; Olivier, Patrick; Araújo-Soares, Vera

    2017-06-12

    Sunburn and intermittent exposure to ultraviolet rays are risk factors for melanoma. Sunburn is a common experience during holidays, making tourism settings of particular interest for skin cancer prevention. Holidaymakers are a volatile populations found at different locations, which may make them difficult to reach. Given the widespread use of smartphones, evidence suggests that this might be a novel, convenient, scalable, and feasible way of reaching the target population. The main objective of this study was to describe and appraise the process of systematically developing a smartphone intervention (mISkin app) to promote sun-protection during holidays. The iterative development process of the mISkin app was conducted over four sequential stages: (1) identify evidence on the most effective behavior change techniques (BCTs) used (active ingredients) as well as theoretical predictors and theories, (2) evidence-based intervention design, (3) co-design with users of the mISkin app prototype, and (4) refinement of the app. Each stage provided key findings that were subsequently used to inform the design of the mISkin app. The sequential approach to development integrates different strands of evidence to inform the design of an evidence-based intervention. A systematic review on previously tested interventions to promote sun-protection provided cues and constraints for the design of this intervention. The development and design of the mISkin app also incorporated other sources of information, such as other literature reviews and experts' consultations. The developed prototype of the mISkin app was evaluated by engaging potential holidaymakers in the refinement and further development of the mISkin app through usability (ease-of-use) and acceptability testing of the intervention prototype. All 17 participants were satisfied with the mISkin prototype and expressed willingness to use it. Feedback on the app was integrated in the optimization process of the mISkin app

  8. Development and construction of a large TPC prototype for the ILC and study of τ polarisation in τ decays with the ILD detector

    International Nuclear Information System (INIS)

    Schade, Peter

    2009-11-01

    This thesis presents two studies which have been made in the framework of the detector development for the International Large Detector (ILD). In the preparation phase for the ILD, prototype studies are performed to develop and optimise the sub-detector technologies which will come into operation. Complementary to these hardware studies, expected physics scenarios are being investigated in full detector simulations. These simulations demonstrate the physics potential of the detector concept and are a benchmark for the detector and the accelerator design. The first part of this thesis gives an introduction to the physics questions addressed to the ILC. Also, the machine and the ILD detector concept are presented. The second part is dedicated to the development and the construction to a large Time Projection Chamber (TPC) prototype (LP). A TPC is foreseen as one of ILD's sub-detectors and shall measure the trajectories of charged particles with an accuracy unprecedented by TPCs operated before. The new prototype offers an infrastructure for the development of modern TPC readout structures which can fulfil the required criteria. Before construction, the design plans of the LP have been optimised for a low material budget of the structure and a very homogeneous drift field. During the manufacturing of the LP, experience with construction techniques has been gained for the construction of the ILD TPC. The third part deals with a simulation study for a polarisation measurement of τ leptons in the process e + e - → τ 1 τ 1 → χ 1 0 χ 1 0 ττ. Here, the τ 1 is the supersymmetric partner of the τ lepton. This simulation study shows the feasibility of the measurement in the chosen SUSY scenario and estimates the accuracy to be expected. Both studies address in particular the track reconstruction capabilities of the ILD detector. Conclusions of the discussed studies and an outlook are presented in part IV. (orig.)

  9. Ion source with plasma cathode

    International Nuclear Information System (INIS)

    Yabe, E.

    1987-01-01

    A long lifetime ion source with plasma cathode has been developed for use in ion implantation. In this ion source, a plasma of a nonreactive working gas serves as a cathode in place of a thermionic tungsten filament used in the Freeman ion source. In an applied magnetic field, the plasma is convergent, i.e., filamentlike; in zero magnetic field, it turns divergent and spraylike. In the latter case, the plasma exhibits a remarkable ability when the working gas has an ionization potential larger than the feed gas. By any combination of a working gas of either argon or neon and a feed gas of AsF 5 or PF 5 , the lifetime of this ion source was found to be more than 90 h with an extraction voltage of 40 kV and the corresponding ion current density 20 mA/cm 2 . Mass spectrometry results show that this ion source has an ability of generating a considerable amount of As + and P + ions from AsF 5 and PF 5 , and hence will be useful for realizing a fully cryopumped ion implanter system. This ion source is also eminently suitable for use in oxygen ion production

  10. Nightshade Prototype Experiments (Silverleaf)

    Energy Technology Data Exchange (ETDEWEB)

    Danielson, Jeremy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bauer, Amy L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-23

    The Red Sage campaign is a series of subcritical dynamic plutonium experiments designed to measure ejecta. Nightshade, the first experiments in Red Sage scheduled for fiscal year 2019, will measure the amount of ejecta emission into vacuum from a double-­shocked plutonium surface. To address the major technical risks in Nightshade, a Level 2 milestone was developed for fiscal year 2016. Silverleaf, a series of four experiments, was executed at the Los Alamos National Laboratory in July and August 2016 to demonstrate a prototype of the Nightshade package and to satisfy this Level 2 milestone. This report is documentation that Red Sage Level 2 milestone requirements were successfully met.

  11. Cathode refunctionalization as a lithium ion battery recycling alternative

    Science.gov (United States)

    Ganter, Matthew J.; Landi, Brian J.; Babbitt, Callie W.; Anctil, Annick; Gaustad, Gabrielle

    2014-06-01

    An approach to battery end-of-life (EOL) management is developed involving cathode refunctionalization, which enables remanufacturing of the cathode from EOL materials to regain the electrochemical performance. To date, the optimal end-of-life management of cathode materials is based on economic value and environmental impact which can influence the methods and stage of recycling. Traditional recycling methods can recover high value metal elements (e.g. Li, Co, Ni), but still require synthesis of new cathode from a mix of virgin and recovered materials. Lithium iron phosphate (LiFePO4) has been selected for study as a representative cathode material due to recent mass adoption and limited economic recycling drivers due to the low inherent cost of iron. Refunctionalization of EOL LiFePO4 cathode was demonstrated through electrochemical and chemical lithiation methods where the re-lithiated LiFePO4 regained the original capacity of 150-155 mAh g-1. The environmental impact of the new recycling technique was determined by comparing the embodied energy of cathode material originating from virgin, recycled, and refunctionalized materials. The results demonstrate that the LiFePO4 refunctionalization process, through chemical lithiation, decreases the embodied energy by 50% compared to cathode production from virgin materials.

  12. ISACS-1, a limited prototype of an advanced control room

    International Nuclear Information System (INIS)

    Follesoe, K.; Foerdestroemmen, N.; Haugset, K.; Holmstroem, C.

    1994-01-01

    The concept of an Integrated Surveillance And Control System (ISACS) has been developed into a prototype, ISACS-1, which presently is in operation at the simulator-based experimental control room HAMMLAB of the OECD Halden Reactor Project. Characteristics of ISACS is that it covers the whole interface between the process and the operator, and this interface is fully computerized using tools like Cathode Ray Tubes (CRTs) and dynamic keyboards. In addition, a large number of computerized operator support systems (COSSs) are included in ISACS, assisting the operator in functions like disturbance detection and diagnosis, identification of relevant actions, and implementation of procedures. An information coordinator called ''Intelligent Coordinator'' (IC) in ISACS observes the information received from the process and the COSSs, generates new high-level information and structures and prioritizes information to be presented to the operator. The limited ISACS-1 prototype was completed in early 1991. An extensive evaluation programme is in progress. This paper will describe main features of the system and some of the conclusions to be drawn from the evaluation programme. (author). 5 refs, 2 figs

  13. Operation and Applications of the Boron Cathodic Arc Ion Source

    International Nuclear Information System (INIS)

    Williams, J. M.; Freeman, J. H.; Klepper, C. C.; Chivers, D. J.; Hazelton, R. C.

    2008-01-01

    The boron cathodic arc ion source has been developed with a view to several applications, particularly the problem of shallow junction doping in semiconductors. Research has included not only development and operation of the boron cathode, but other cathode materials as well. Applications have included a large deposition directed toward development of a neutron detector and another deposition for an orthopedic coating, as well as the shallow ion implantation function. Operational experience is described and information pertinent to commercial operation, extracted from these experiments, is presented.

  14. Manufacturing, assembly and tests of SPIDER Vacuum Vessel to develop and test a prototype of ITER neutral beam ion source

    Energy Technology Data Exchange (ETDEWEB)

    Zaccaria, Pierluigi, E-mail: pierluigi.zaccaria@igi.cnr.it [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete S.p.A.), Padova (Italy); Valente, Matteo; Rigato, Wladi; Dal Bello, Samuele; Marcuzzi, Diego; Agostini, Fabio Degli; Rossetto, Federico; Tollin, Marco [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete S.p.A.), Padova (Italy); Masiello, Antonio [Fusion for Energy F4E, Barcelona (Spain); Corniani, Giorgio; Badalocchi, Matteo; Bettero, Riccardo; Rizzetto, Dario [Ettore Zanon S.p.A., Schio (VI) (Italy)

    2015-10-15

    Highlights: • The SPIDER experiment aims to qualify and optimize the ion source for ITER injectors. • The large SPIDER Vacuum Vessel was built and it is under testing at the supplier. • The main working and assembly steps for production are presented in the paper. - Abstract: The SPIDER experiment (Source for the Production of Ions of Deuterium Extracted from an RF plasma) aims to qualify and optimize the full size prototype of the negative ion source foreseen for MITICA (full size ITER injector prototype) and the ITER Heating and Current Drive Injectors. Both SPIDER and MITICA experiments are presently under construction at Consorzio RFX in Padova (I), with the financial support from IO (ITER Organization), Fusion for Energy, Italian research institutions and contributions from Japan and India Domestic Agencies. The vacuum vessel hosting the SPIDER in-vessel components (Beam Source and calorimeters) has been manufactured, assembled and tested during the last two years 2013–2014. The cylindrical vessel, about 6 m long and 4 m in diameter, is composed of two cylindrical modules and two torispherical lids at the ends. All the parts are made by AISI 304 L stainless steel. The possibility of opening/closing the vessel for monitoring, maintenance or modifications of internal components is guaranteed by bolted junctions and suitable movable support structures running on rails fixed to the building floor. A large number of ports, about one hundred, are present on the vessel walls for diagnostic and service purposes. The main working steps for construction and specific technological issues encountered and solved for production are presented in the paper. Assembly sequences and tests on site are furthermore described in detail, highlighting all the criteria and requirements for correct positioning and testing of performances.

  15. Manufacturing, assembly and tests of SPIDER Vacuum Vessel to develop and test a prototype of ITER neutral beam ion source

    International Nuclear Information System (INIS)

    Zaccaria, Pierluigi; Valente, Matteo; Rigato, Wladi; Dal Bello, Samuele; Marcuzzi, Diego; Agostini, Fabio Degli; Rossetto, Federico; Tollin, Marco; Masiello, Antonio; Corniani, Giorgio; Badalocchi, Matteo; Bettero, Riccardo; Rizzetto, Dario

    2015-01-01

    Highlights: • The SPIDER experiment aims to qualify and optimize the ion source for ITER injectors. • The large SPIDER Vacuum Vessel was built and it is under testing at the supplier. • The main working and assembly steps for production are presented in the paper. - Abstract: The SPIDER experiment (Source for the Production of Ions of Deuterium Extracted from an RF plasma) aims to qualify and optimize the full size prototype of the negative ion source foreseen for MITICA (full size ITER injector prototype) and the ITER Heating and Current Drive Injectors. Both SPIDER and MITICA experiments are presently under construction at Consorzio RFX in Padova (I), with the financial support from IO (ITER Organization), Fusion for Energy, Italian research institutions and contributions from Japan and India Domestic Agencies. The vacuum vessel hosting the SPIDER in-vessel components (Beam Source and calorimeters) has been manufactured, assembled and tested during the last two years 2013–2014. The cylindrical vessel, about 6 m long and 4 m in diameter, is composed of two cylindrical modules and two torispherical lids at the ends. All the parts are made by AISI 304 L stainless steel. The possibility of opening/closing the vessel for monitoring, maintenance or modifications of internal components is guaranteed by bolted junctions and suitable movable support structures running on rails fixed to the building floor. A large number of ports, about one hundred, are present on the vessel walls for diagnostic and service purposes. The main working steps for construction and specific technological issues encountered and solved for production are presented in the paper. Assembly sequences and tests on site are furthermore described in detail, highlighting all the criteria and requirements for correct positioning and testing of performances.

  16. Live Piloting and Prototyping

    Directory of Open Access Journals (Sweden)

    Francesca Rizzo

    2013-07-01

    Full Text Available This paper presents current trends in service design research concerning large scale projects aimed at generating changes at a local scale. The strategy adopted to achieve this, is to co-design solutions including future users in the development process, prototyping and testing system of products and services before their actual implementation. On the basis of experience achieved in the European Project Life 2.0, this paper discusses which methods and competencies are applied in the development of these projects, eliciting the lessons learnt especially from the piloting phase in which the participatory design (PD approach plays a major role. In the first part, the topic is introduced jointly with the theoretical background where the user center design and participatory design methods are presented; then the Life 2.0 project development is described; finally the experience is discussed from a service design perspective, eliciting guidelines for piloting and prototyping services in a real context of use. The paper concludes reflecting on the designers’ role and competencies needed in this process.

  17. Enhancing experience prototyping by the help of mixed-fidelity prototypes

    OpenAIRE

    Yasar, Ansar-Ul-Haque

    2007-01-01

    In this research review I undertook the problem related to the usage of a new concept known as the Mixed- Fidelity Prototype which is a mixture of its predecessors Low- and High- Fidelity Prototypes in Experience Prototyping. Experience Prototyping is a good way to explore, communicate and interact with the designs we develop like experiencing cycling on the ice, although the mood, snow conditions, bicycle type and many other factors really matter and tend to change with time. Experience Prot...

  18. Depression cathode structure for cathode ray tubes having surface smoothness and method for producing same

    International Nuclear Information System (INIS)

    Rychlewski, T.V.

    1984-01-01

    Depression cathode structures for cathode ray tubes are produced by dispensing liquid cathode material into the depression of a metallic supporting substrate, removing excess cathode material by passing a doctor blade across the substrate surface and over the depression, and drying the cathode layer to a substantially immobile state. The cathode layer may optionally be further shaped prior to substantially complete drying thereof

  19. A prototype for JDEM science data processing

    International Nuclear Information System (INIS)

    Gottschalk, Erik E

    2011-01-01

    Fermilab is developing a prototype science data processing and data quality monitoring system for dark energy science. The purpose of the prototype is to demonstrate distributed data processing capabilities for astrophysics applications, and to evaluate candidate technologies for trade-off studies. We present the architecture and technical aspects of the prototype, including an open source scientific execution and application development framework, distributed data processing, and publish/subscribe message passing for quality control.

  20. Developing an eBook-Integrated High-Fidelity Mobile App Prototype for Promoting Child Motor Skills and Taxonomically Assessing Children's Emotional Responses Using Face and Sound Topology.

    Science.gov (United States)

    Brown, William; Liu, Connie; John, Rita Marie; Ford, Phoebe

    2014-01-01

    Developing gross and fine motor skills and expressing complex emotion is critical for child development. We introduce "StorySense", an eBook-integrated mobile app prototype that can sense face and sound topologies and identify movement and expression to promote children's motor skills and emotional developmental. Currently, most interactive eBooks on mobile devices only leverage "low-motor" interaction (i.e. tapping or swiping). Our app senses a greater breath of motion (e.g. clapping, snapping, and face tracking), and dynamically alters the storyline according to physical responses in ways that encourage the performance of predetermined motor skills ideal for a child's gross and fine motor development. In addition, our app can capture changes in facial topology, which can later be mapped using the Facial Action Coding System (FACS) for later interpretation of emotion. StorySense expands the human computer interaction vocabulary for mobile devices. Potential clinical applications include child development, physical therapy, and autism.

  1. Prototype board development for the validation of the VMM ASICs for the New Small Wheel ATLAS upgrade project

    CERN Document Server

    Gkountoumis, Panagiotis; The ATLAS collaboration

    2018-01-01

    The VMM is a custom Application Specific Integrated Circuit (ASIC) which was designed to be used in the front-end readout electronics of both micromegas (MM) and small Thin Gap Chambers (sTGC) detectors of the New Small Wheel (NSW) Phase-I upgrade project of the ATLAS experiment. A new version of the VMM was recently fabricated and for that reason various prototype boards, the micromegas Front-End (MMFE1) and the General Purpose VMM (GPVMM), have been fabricated and extensively tested in order to validate the functionality of the ASIC. These boards use commercial Field Programmable Gate Arrays (FPGAs) for direct communication with computers which is achieved through 10/100/1000 Mbps Ethernet and UDP/IP protocols. The low noise performance of these boards gave the opportunity to be used in various test beams with micromegas detectors for validating the VMM and for performance studies of the sTGC detectors. A detailed description of the boards along with the results of the test beam and the detector studies wi...

  2. Prototype board development for the validation of the VMM ASICs for the New Small Wheel ATLAS upgrade project

    CERN Document Server

    Gkountoumis, Panagiotis; The ATLAS collaboration

    2018-01-01

    The VMM is a custom Application Specific Integrated Circuit (ASIC) which was designed to be used in the frontend readout electronics of both micromegas (MM) and small Thin Gap Chambers (sTGC) detectors of the New Small Wheel (NSW) Phase-I upgrade project of the ATLAS experiment. A new version of the VMM was recently fabricated and for that reason various prototype boards, the micromegas Front-End (MMFE1) and the General Purpose VMM (GPVMM), have been fabricated and extensively tested in order to validate the functionality of the ASIC. These boards use commercial Field Programmable Gate Arrays (FPGAs) for direct communication with computers which is achieved through 10=100=1000 Mbps Ethernet and UDP/IP protocols. The low noise performance of these boards gave the opportunity to be used in various test beams with micormegas detectors for validating the VMM and for performance studies of the sTGC detectors. A detailed description of the boards along with the results of the test beam and the detector studies will...

  3. User-Centric Feedback for the Development and Review of a Unique Robotic Glove Prototype to Be Used in Therapy

    Directory of Open Access Journals (Sweden)

    Stuart James Biggar

    2017-01-01

    Full Text Available Disability can be a great impediment to daily living in later life and is often the result of illness or trauma. Modern thoughts on treatment are orientated towards the use of robotics; however, these are often designed without consultation with the user. This paper used a 5-point questionnaire to ask former therapy patients what they felt needed further improvements from potential robotics and what features of such a system were the most important. Significant emphasis was placed on helping them to grasp (M = 4.63 as well as having a functional use. They also desired a system with clearly distinguished (M = 4.22 and easy to operate controls (M = 4.44 whilst allowing them some freedom to move around independently (M = 4.44. This provided the rationale for a prototype dual-layered vacuum glove that was sampled by healthcare staff to provide feedback that forms the basis for future improvements.

  4. Prototype Development of Remote Operated Hot Uniaxial Press (ROHUP) to Fabricate Advanced Tc-99 Bearing Ceramic Waste Forms - 13381

    Energy Technology Data Exchange (ETDEWEB)

    Alaniz, Ariana J.; Delgado, Luc R.; Werbick, Brett M. [University of Nevada - Las Vegas, Howard R. Hughes College of Engineering, 4505 S. Maryland Parkway, Box 454009, Las Vegas, NV 89154-4009 (United States); Hartmann, Thomas [University of Nevada - Las Vegas, Harry Reid Canter, 4505 S. Maryland Parkway, Box 454009, Las Vegas, NV 89154-4009 (United States)

    2013-07-01

    The objective of this senior student project is to design and build a prototype construction of a machine that simultaneously provides the proper pressure and temperature parameters to sinter ceramic powders in-situ to create pellets of rather high densities of above 90% (theoretical). This ROHUP (Remote Operated Hot Uniaxial Press) device is designed specifically to fabricate advanced ceramic Tc-99 bearing waste forms and therefore radiological barriers have been included in the system. The HUP features electronic control and feedback systems to set and monitor pressure, load, and temperature parameters. This device operates wirelessly via portable computer using Bluetooth{sup R} technology. The HUP device is designed to fit in a standard atmosphere controlled glove box to further allow sintering under inert conditions (e.g. under Ar, He, N{sub 2}). This will further allow utilizing this HUP for other potential applications, including radioactive samples, novel ceramic waste forms, advanced oxide fuels, air-sensitive samples, metallic systems, advanced powder metallurgy, diffusion experiments and more. (authors)

  5. Development of a prototype chest digital tomosynthesis (CDT) R/F system with fast image reconstruction using graphics processing unit (GPU) programming

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sunghoon, E-mail: choi.sh@yonsei.ac.kr [Department of Radiological Science, College of Health Science, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 220-710 (Korea, Republic of); Lee, Seungwan [Department of Radiological Science, College of Medical Science, Konyang University, 158 Gwanjeodong-ro, Daejeon, 308-812 (Korea, Republic of); Lee, Haenghwa [Department of Radiological Science, College of Health Science, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 220-710 (Korea, Republic of); Lee, Donghoon; Choi, Seungyeon [Department of Radiation Convergence Engineering, College of Health Science, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 220-710 (Korea, Republic of); Shin, Jungwook [LISTEM Corporation, 94 Donghwagongdan-ro, Munmak-eup, Wonju (Korea, Republic of); Seo, Chang-Woo [Department of Radiological Science, College of Health Science, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 220-710 (Korea, Republic of); Kim, Hee-Joung, E-mail: hjk1@yonsei.ac.kr [Department of Radiological Science, College of Health Science, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 220-710 (Korea, Republic of); Department of Radiation Convergence Engineering, College of Health Science, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 220-710 (Korea, Republic of)

    2017-03-11

    Digital tomosynthesis offers the advantage of low radiation doses compared to conventional computed tomography (CT) by utilizing small numbers of projections (~80) acquired over a limited angular range. It produces 3D volumetric data, although there are artifacts due to incomplete sampling. Based upon these characteristics, we developed a prototype digital tomosynthesis R/F system for applications in chest imaging. Our prototype chest digital tomosynthesis (CDT) R/F system contains an X-ray tube with high power R/F pulse generator, flat-panel detector, R/F table, electromechanical radiographic subsystems including a precise motor controller, and a reconstruction server. For image reconstruction, users select between analytic and iterative reconstruction methods. Our reconstructed images of Catphan700 and LUNGMAN phantoms clearly and rapidly described the internal structures of phantoms using graphics processing unit (GPU) programming. Contrast-to-noise ratio (CNR) values of the CTP682 module of Catphan700 were higher in images using a simultaneous algebraic reconstruction technique (SART) than in those using filtered back-projection (FBP) for all materials by factors of 2.60, 3.78, 5.50, 2.30, 3.70, and 2.52 for air, lung foam, low density polyethylene (LDPE), Delrin{sup ®} (acetal homopolymer resin), bone 50% (hydroxyapatite), and Teflon, respectively. Total elapsed times for producing 3D volume were 2.92 s and 86.29 s on average for FBP and SART (20 iterations), respectively. The times required for reconstruction were clinically feasible. Moreover, the total radiation dose from our system (5.68 mGy) was lower than that of conventional chest CT scan. Consequently, our prototype tomosynthesis R/F system represents an important advance in digital tomosynthesis applications.

  6. Development, simulation and test of transition radiation detector prototypes for the compressed baryonic matter experiment at the facility for antiproton and ion research

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, Cyrano S.H.

    2014-07-01

    The focus of this thesis is the development of a Transition Radiation Detector (TRD) for the Compressed Baryonic Matter (CBM) experiment at FAIR. The TRD sub-detector will contribute to the global particle identification and track reconstruction of charged particles. The technical design goal for the TRD is to identify 90% electrons with a maximum pion contamination of 1%. The TRD and Ring Image CHerenkov (RICH) detector should reach a common pion rejection of 10{sup 4}, in order to measure charmonium and low-mass vector mesons. The position resolution should be between 200 and 300 μm in the anode wire direction. The most demanding aspect of the CBM TRD design is the high interaction rate of up to 10{sup 7} Hz resulting in a charged particle rate of up to 100 kHz/cm{sup 2} in the central part of the detector planes at SIS300 conditions. It is crucial to find the optimal radiator detector combination with a minimum material budget to limit scattering and background due to conversions and at the same time reach a sufficient pion rejection and position resolution. In this thesis it is confirmed that a Multi-Wire Proportional Counter (MWPC) with a Xe/CO{sub 2} gas thickness of 12mm provides sufficient absorption probability for TR-photons in combination with self-supporting low density PE foam or micro-structured foil radiators. A continuous investigation aiming at an optimal wire and pad-plane geometry, as well as a minimization of the material budget between active gas and radiator has been presented in hard- and software. A minimum photon absorption cross-section of the entrance window was realized with a thermally stretched aluminized Kapton foil, glued to a G11 support grid support frame. This structure limits the mechanical deformation of the entire window to 1mm/mbar. All MWPC prototypes include two wire planes. A symmetric amplification region of 2 x (3, 3.5 or 4)mm is followed by a short drift region of 6, 5 or 4 mm. The drift region reduces the gain

  7. Development, simulation and test of transition radiation detector prototypes for the compressed baryonic matter experiment at the facility for antiproton and ion research

    International Nuclear Information System (INIS)

    Bergmann, Cyrano S.H.

    2014-01-01

    The focus of this thesis is the development of a Transition Radiation Detector (TRD) for the Compressed Baryonic Matter (CBM) experiment at FAIR. The TRD sub-detector will contribute to the global particle identification and track reconstruction of charged particles. The technical design goal for the TRD is to identify 90% electrons with a maximum pion contamination of 1%. The TRD and Ring Image CHerenkov (RICH) detector should reach a common pion rejection of 10 4 , in order to measure charmonium and low-mass vector mesons. The position resolution should be between 200 and 300 μm in the anode wire direction. The most demanding aspect of the CBM TRD design is the high interaction rate of up to 10 7 Hz resulting in a charged particle rate of up to 100 kHz/cm 2 in the central part of the detector planes at SIS300 conditions. It is crucial to find the optimal radiator detector combination with a minimum material budget to limit scattering and background due to conversions and at the same time reach a sufficient pion rejection and position resolution. In this thesis it is confirmed that a Multi-Wire Proportional Counter (MWPC) with a Xe/CO 2 gas thickness of 12mm provides sufficient absorption probability for TR-photons in combination with self-supporting low density PE foam or micro-structured foil radiators. A continuous investigation aiming at an optimal wire and pad-plane geometry, as well as a minimization of the material budget between active gas and radiator has been presented in hard- and software. A minimum photon absorption cross-section of the entrance window was realized with a thermally stretched aluminized Kapton foil, glued to a G11 support grid support frame. This structure limits the mechanical deformation of the entire window to 1mm/mbar. All MWPC prototypes include two wire planes. A symmetric amplification region of 2 x (3, 3.5 or 4)mm is followed by a short drift region of 6, 5 or 4 mm. The drift region reduces the gain variation due to

  8. DataCollection Prototyping

    CERN Multimedia

    Beck, H.P.

    DataCollection is a subsystem of the Trigger, DAQ & DCS project responsible for the movement of event data from the ROS to the High Level Triggers. This includes data from Regions of Interest (RoIs) for Level 2, building complete events for the Event Filter and finally transferring accepted events to Mass Storage. It also handles passing the LVL1 RoI pointers and the allocation of Level 2 processors and load balancing of Event Building. During the last 18 months DataCollection has developed a common architecture for the hardware and software required. This involved a radical redesign integrating ideas from separate parts of earlier TDAQ work. An important milestone for this work, now achieved, has been to demonstrate this subsystem in the so-called Phase 2A Integrated Prototype. This prototype comprises the various TDAQ hardware and software components (ROSs, LVL2, etc.) under the control of the TDAQ Online software. The basic functionality has been demonstrated on small testbeds (~8-10 processing nodes)...

  9. OMS FDIR: Initial prototyping

    Science.gov (United States)

    Taylor, Eric W.; Hanson, Matthew A.

    1990-01-01

    The Space Station Freedom Program (SSFP) Operations Management System (OMS) will automate major management functions which coordinate the operations of onboard systems, elements and payloads. The objectives of OMS are to improve safety, reliability and productivity while reducing maintenance and operations cost. This will be accomplished by using advanced automation techniques to automate much of the activity currently performed by the flight crew and ground personnel. OMS requirements have been organized into five task groups: (1) Planning, Execution and Replanning; (2) Data Gathering, Preprocessing and Storage; (3) Testing and Training; (4) Resource Management; and (5) Caution and Warning and Fault Management for onboard subsystems. The scope of this prototyping effort falls within the Fault Management requirements group. The prototyping will be performed in two phases. Phase 1 is the development of an onboard communications network fault detection, isolation, and reconfiguration (FDIR) system. Phase 2 will incorporate global FDIR for onboard systems. Research into the applicability of expert systems, object-oriented programming, fuzzy sets, neural networks and other advanced techniques will be conducted. The goals and technical approach for this new SSFP research project are discussed here.

  10. Nanostructured lanthanum manganate composite cathode

    DEFF Research Database (Denmark)

    Wang, Wei Guo; Liu, Yi-Lin; Barfod, Rasmus

    2005-01-01

    that the (La1-xSrx)(y)MnO3 +/-delta (LSM) composite cathodes consist of a network of homogenously distributed LSM, yttria-stabilized zirconia (YSZ), and pores. The individual grain size of LSM or YSZ is approximately 100 nm. The degree of contact between cathode and electrolyte is 39% on average. (c) 2005...

  11. Brachial Plexus Blocker Prototype

    Directory of Open Access Journals (Sweden)

    Stéphanie Coelho Monteiro

    2017-08-01

    Full Text Available Although the area of surgical simulation has been the subject of study in recent years, it is still necessary to develop artificial experimental models with a perspective to dismiss the use of biological models. Since this makes the simulators more real, transferring the environment of the health professional to a physical or virtual reality, an anesthetic prototype has been developed, where the motor response is replicated when the brachial plexus is subjected to a proximal nervous stimulus. Using action-research techniques, with this simulator it was possible to validate that the human nerve response can be replicated, which will aid the training of health professionals, reducing possible risks in a surgical environment.

  12. Zero suppression logic of the ALICE muon forward tracker pixel chip prototype PIXAM and associated readout electronics development

    International Nuclear Information System (INIS)

    Flouzat, C.; Değerli, Y.; Guilloux, F.; Orsini, F.; Venault, P.

    2015-01-01

    In the framework of the ALICE experiment upgrade at HL-LHC, a new forward tracking detector, the Muon Forward Tracker (MFT), is foreseen to overcome the intrinsic limitations of the present Muon Spectrometer and will perform new measurements of general interest for the whole ALICE physics. To fulfill the new detector requirements, CMOS Monolithic Active Pixel Sensors (MAPS) provide an attractive trade-off between readout speed, spatial resolution, radiation hardness, granularity, power consumption and material budget. This technology has been chosen to equip the Muon Forward Tracker and also the vertex detector: the Inner Tracking System (ITS). Since few years, an intensive R and D program has been performed on the design of MAPS in the 0.18 μ m CMOS Image Sensor (CIS) process. In order to avoid pile up effects in the experiment, the classical rolling shutter readout system of MAPS has been improved to overcome the readout speed limitation. A zero suppression algorithm, based on a 3 by 3 cluster finding (position and data), has been chosen for the MFT. This algorithm allows adequate data compression for the sensor. This paper presents the large size prototype PIXAM, which represents 1/3 of the final chip, and will focus specially on the zero suppression block architecture. This chip is designed and under fabrication in the 0.18 μ m CIS process. Finally, the readout electronics principle to send out the compressed data flow is also presented taking into account the cluster occupancy per MFT plane for a single central Pb-Pb collision

  13. Zero suppression logic of the ALICE muon forward tracker pixel chip prototype PIXAM and associated readout electronics development

    Science.gov (United States)

    Flouzat, C.; Değerli, Y.; Guilloux, F.; Orsini, F.; Venault, P.

    2015-05-01

    In the framework of the ALICE experiment upgrade at HL-LHC, a new forward tracking detector, the Muon Forward Tracker (MFT), is foreseen to overcome the intrinsic limitations of the present Muon Spectrometer and will perform new measurements of general interest for the whole ALICE physics. To fulfill the new detector requirements, CMOS Monolithic Active Pixel Sensors (MAPS) provide an attractive trade-off between readout speed, spatial resolution, radiation hardness, granularity, power consumption and material budget. This technology has been chosen to equip the Muon Forward Tracker and also the vertex detector: the Inner Tracking System (ITS). Since few years, an intensive R&D program has been performed on the design of MAPS in the 0.18 μ m CMOS Image Sensor (CIS) process. In order to avoid pile up effects in the experiment, the classical rolling shutter readout system of MAPS has been improved to overcome the readout speed limitation. A zero suppression algorithm, based on a 3 by 3 cluster finding (position and data), has been chosen for the MFT. This algorithm allows adequate data compression for the sensor. This paper presents the large size prototype PIXAM, which represents 1/3 of the final chip, and will focus specially on the zero suppression block architecture. This chip is designed and under fabrication in the 0.18 μ m CIS process. Finally, the readout electronics principle to send out the compressed data flow is also presented taking into account the cluster occupancy per MFT plane for a single central Pb-Pb collision.

  14. The Yucca Mountain Project Prototype Testing Program

    International Nuclear Information System (INIS)

    1989-10-01

    The Yucca Mountain Project is conducting a Prototype Testing Program to ensure that the Exploratory Shaft Facility (ESF) tests can be completed in the time available and to develop instruments, equipment, and procedures so the ESF tests can collect reliable and representative site characterization data. This report summarizes the prototype tests and their status and location and emphasizes prototype ESF and surface tests, which are required in the early stages of the ESF site characterization tests. 14 figs

  15. Test case preparation using a prototype

    OpenAIRE

    Treharne, Helen; Draper, J.; Schneider, Steve A.

    1998-01-01

    This paper reports on the preparation of test cases using a prototype within the context of a formal development. It describes an approach to building a prototype using an example. It discusses how a prototype contributes to the testing activity as part of a lifecycle based on the use of formal methods. The results of applying the approach to an embedded avionics case study are also presented.

  16. Study on the cathode of ion source for neutral beam injector

    International Nuclear Information System (INIS)

    Tanaka, Shigeru

    1983-08-01

    Durability of the cathode is an important problem in developing a high power long pulse ion source for neutral beam injector. The Purpose of this study is to develope a long life cathode and investigate the applicability of it to the source. Directly heated filaments which are commonly used as the cathode of injector source do not live very long in general. In the present work, an indirectly heated hollow cathode made of impregnated porous tungsten tube is proposed as the alternative of the directly heated cathode. At first, we fabricated a small hollow cathode to study the discharge characteristcs in a bell-jar configuration and to apply it to a duoPIGatron hydrogen ion source. The experiment showed that the gas flow rate for sustaining the stable arc discharge in the discharge chamber becomes higher than that when the filament cathode is used. To solve this problem, an experiment for gas reduction was made using a newly fabricated larger hollow cathode and a magnetic multi-pole ion source. The influence of the orifice diameter, the effect of a button and of magnetic field on the gas flow rate were experimentally studied and a method for gas reduction was found. In addition, effect of the magnetic field on the characteristics of the hollow cathode ion source was examined in detail and an optimum field configuration around the cathode was found. Finally, beam extraction from an intensively cooled hollow cathode ion source for up to 10 sec was successfully carried out. (author)

  17. A Prototype Exercise-Empowerment Mobile Video Game for Children With Cancer, and Its Usability Assessment: Developing Digital Empowerment Interventions for Pediatric Diseases.

    Science.gov (United States)

    Bruggers, Carol S; Baranowski, Sabrina; Beseris, Mathew; Leonard, Rachel; Long, Derek; Schulte, Elizabeth; Shorter, Ashton; Stigner, Rowan; Mason, Clinton C; Bedrov, Alisa; Pascual, Ian; Bulaj, Grzegorz

    2018-01-01

    Medical advances continue to improve morbidity and mortality of serious pediatric diseases, including cancer, driving research addressing diminished physical and psychological quality of life in children with these chronic conditions. Empowerment enhances resilience and positively influences health, disease, and therapy understanding. We describe the development and usability assessment of a prototype Empower Stars! mobile video game grounded in behavioral and exercise theories with the purpose of coupling physical exercise with empowerment over disease in children with cancer. Academic faculty, health-care providers, and community video game developers collaborated in this project. The iPadAir was selected as a delivery platform for its accelerometer and gyroscope features facilitating exercise design. Unity multiplatform technology provided animation and audiovisual features for immediate player feedback. Javascript, C#, Photoshop, Flash, and SketchUp were used for coding, creating graphical assets, Sprite sheets, and printing files, respectively. 3D-printed handles and case backing were used to adapt the iPad for physical exercise. Game usability, engagement, and enjoyment were assessed via a multilevel study of children undergoing cancer chemotherapy, their parents, and pediatric cancer health-care providers. Feedback crucial for ongoing game development was analyzed. A prototype Empower Stars! mobile video game was developed for children 7-14 years old with cancer. Active, sedentary, educational, and empowerment-centered elements intermix for 20 min of exercise within a 30 min "one-day treatment" gameplay session involving superheroes, space exploration, metaphorical cancer challenges, life restoration on a barren planet, and innumerable star rewards. No player "dies." Usability assessment data analyses showed widespread enthusiasm for integrating exercise with empowerment over cancer and the game itself. Favorite elements included collecting star

  18. A Prototype Exercise–Empowerment Mobile Video Game for Children With Cancer, and Its Usability Assessment: Developing Digital Empowerment Interventions for Pediatric Diseases

    Directory of Open Access Journals (Sweden)

    Carol S. Bruggers

    2018-04-01

    Full Text Available BackgroundMedical advances continue to improve morbidity and mortality of serious pediatric diseases, including cancer, driving research addressing diminished physical and psychological quality of life in children with these chronic conditions. Empowerment enhances resilience and positively influences health, disease, and therapy understanding. We describe the development and usability assessment of a prototype Empower Stars! mobile video game grounded in behavioral and exercise theories with the purpose of coupling physical exercise with empowerment over disease in children with cancer.MethodsAcademic faculty, health-care providers, and community video game developers collaborated in this project. The iPadAir was selected as a delivery platform for its accelerometer and gyroscope features facilitating exercise design. Unity multiplatform technology provided animation and audiovisual features for immediate player feedback. Javascript, C#, Photoshop, Flash, and SketchUp were used for coding, creating graphical assets, Sprite sheets, and printing files, respectively. 3D-printed handles and case backing were used to adapt the iPad for physical exercise. Game usability, engagement, and enjoyment were assessed via a multilevel study of children undergoing cancer chemotherapy, their parents, and pediatric cancer health-care providers. Feedback crucial for ongoing game development was analyzed.ResultsA prototype Empower Stars! mobile video game was developed for children 7–14 years old with cancer. Active, sedentary, educational, and empowerment-centered elements intermix for 20 min of exercise within a 30 min “one-day treatment” gameplay session involving superheroes, space exploration, metaphorical cancer challenges, life restoration on a barren planet, and innumerable star rewards. No player “dies.” Usability assessment data analyses showed widespread enthusiasm for integrating exercise with empowerment over cancer and the game

  19. Study of the hollow cathode plasma electron-gun

    International Nuclear Information System (INIS)

    Zhang Yonghui; Jiang Jinsheng; Chang Anbi

    2003-01-01

    For developing a novel high-current, long pulse width electron source, the theoretics and mechanism of the hollow cathode plasma electron-gun are analyzed in detail in this paper, the structure and the physical process of hollow cathode plasma electron-gun are also studied. This gun overcomes the limitations of most high-power microwave tubes, which employ either thermionic cathodes that produce low current-density beams because of the limitation of the space charge, or field-emission cathodes that offer high current density but provide only short pulse width because of plasma closure of the accelerating gap. In the theories studying on hollow cathode plasma electron-gun, the characteristic of the hollow-cathode discharge is introduced, the action during the forming of plasma of the stimulating electrode and the modulating anode are discussed, the movement of electrons and ions and the primary parameters are analyzed, and the formulas of the electric field, beam current density and the stabilization conditions of the beam current are also presented in this paper. The numerical simulation is carried out based on Poisson's equation, and the equations of current continuity and movement. And the optimized result is reported. On this basis, we have designed a hollow-cathode-plasma electron-gun, whose output pulse current is 2 kA, and pulse width is 1 microsecond

  20. A Smartphone App for Families With Preschool-Aged Children in a Public Nutrition Program: Prototype Development and Beta-Testing.

    Science.gov (United States)

    Hull, Pamela; Emerson, Janice S; Quirk, Meghan E; Canedo, Juan R; Jones, Jessica L; Vylegzhanina, Violetta; Schmidt, Douglas C; Mulvaney, Shelagh A; Beech, Bettina M; Briley, Chiquita; Harris, Calvin; Husaini, Baqar A

    2017-08-02

    The Special Supplemental Nutrition Program for Women, Infants, and Children (WIC) in the United States provides free supplemental food and nutrition education to low-income mothers and children under age 5 years. Childhood obesity prevalence is higher among preschool children in the WIC program compared to other children, and WIC improves dietary quality among low-income children. The Children Eating Well (CHEW) smartphone app was developed in English and Spanish for WIC-participating families with preschool-aged children as a home-based intervention to reinforce WIC nutrition education and help prevent childhood obesity. This paper describes the development and beta-testing of the CHEW smartphone app. The objective of beta-testing was to test the CHEW app prototype with target users, focusing on usage, usability, and perceived barriers and benefits of the app. The goals of the CHEW app were to make the WIC shopping experience easier, maximize WIC benefit redemption, and improve parent snack feeding practices. The CHEW app prototype consisted of WIC Shopping Tools, including a barcode scanner and calculator tools for the cash value voucher for purchasing fruits and vegetables, and nutrition education focused on healthy snacks and beverages, including a Yummy Snack Gallery and Healthy Snacking Tips. Mothers of 63 black and Hispanic WIC-participating children ages 2 to 4 years tested the CHEW app prototype for 3 months and completed follow-up interviews. Study participants testing the app for 3 months used the app on average once a week for approximately 4 and a half minutes per session, although substantial variation was observed. Usage of specific features averaged at 1 to 2 times per month for shopping-related activities and 2 to 4 times per month for the snack gallery. Mothers classified as users rated the app's WIC Shopping Tools relatively high on usability and benefits, although variation in scores and qualitative feedback highlighted several barriers that