WorldWideScience

Sample records for protoplast cytosolic ph

  1. Organization of cytoskeleton controls the changes in cytosolic calcium of cold-shocked Nicotiana plumbaginifolia protoplasts.

    Science.gov (United States)

    Mazars, C; Thion, L; Thuleau, P; Graziana, A; Knight, M R; Moreau, M; Ranjeva, R

    1997-11-01

    Using Nicotiana plumbaginifolia constitutively expressing the recombinant bioluminescent calcium indicator, aequorin, it has been previously demonstrated that plant cells react to cold-shock by an immediate rise in cytosolic calcium. Such an opportune system has been exploited to address the regulatory pathway involved in the calcium response. For this purpose, we have used protoplasts derived from N. plumbaginifolia leaves that behave as the whole plant but with a better reproducibility. By both immunodetecting cytoskeletal components on membrane ghosts and measuring the relative change in cytosolic calcium, we demonstrate that the organization of the cytoskeleton has profound influences on the calcium response. The disruption of the microtubule meshwork by various active drugs, such as colchicin, oryzalin and vinblastin, leads to an important increase in the cytosolic calcium (up to 400 nM) in cold-shocked protoplasts over control. beta-Lumicolchicin, an inactive analogue of colchicin, is ineffective either on cytoplasmic calcium increase or on microtubule organization. A microfilament disrupting drug, cytochalasin D, exerts a slight stimulatory effect, whereas the simultaneous disruption of microtubule and microfilament meshworks results in a dramatic increase in the calcium response to cold-shock. The results described in the present paper illustrate the role of the intracellular organization and, more specifically, the role of cytoskeleton in controlling the intensity of calcium response to an extracellular stimulus.

  2. Cadmium uptake in Elodea canadensis leaves and its interference with extra- and intra-cellular pH.

    Science.gov (United States)

    Javed, M T; Lindberg, S; Greger, M

    2014-05-01

    This study investigated cadmium (Cd) uptake in Elodea canadensis shoots under different photosynthetic conditions, and its effects on internal (cytosolic) and external pH. The plants were grown under photosynthetic (light) or non-photosynthetic (dark or in the presence of a photosynthetic inhibitor) conditions in the presence or absence of CdCl2 (0.5 μm) in a medium with a starting pH of 5.0. The pH-sensitive dye BCECF-AM was used to monitor cytosolic pH changes in the leaves. Cadmium uptake in protoplasts and leaves was detected with a Cd-specific fluorescent dye, Leadmium Green AM, and with atomic absorption spectrophotometry. During cultivation for 3 days without Cd, shoots of E. canadensis increased the pH of the surrounding water, irrespective of the photosynthetic conditions. This medium alkalisation was higher in the presence of CdCl2 . Moreover, the presence of Cd also increased the cation exchange capacity of the shoots. The total Cd uptake by E. canadensis shoots was independent of photosynthetic conditions. Protoplasts from plants exposed to 0.5 μm CdCl2 for 3 days did not exhibit significant change in cytosolic [Cd(2+)] or pH. However, exposure to CdCl2 for 7 days resulted in increased cytosolic [Cd(2+) ] as well as pH. The results suggest that E. canadensis subjected to a low CdCl2 concentration initially sequesters Cd into the apoplasm, but under prolonged exposure, Cd is transported into the cytosol and subsequently alters cytosolic pH. In contrast, addition of 10-50 μm CdCl2 directly to protoplasts resulted in immediate uptake of Cd into the cytosol. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  3. Differential compartmentation of sucrose and gentianose in the cytosol and vacuoles of storage root protoplasts from Gentiana Lutea L.

    Science.gov (United States)

    Keller, F; Wiemken, A

    1982-12-01

    The storage roots of perennial Gentiana lutea L.plants contain several sugars. The predominant carbohydrate reserve is gentianose (β-D-glucopyranosyl-(1 → 6)-α-D-glucopyranosyl-(1 ↔ 2)-β-D-fructofuranoside). Vacuoles were isolated from root protoplasts and purified through a betaine density gradient. The yield was about 75%. Gentianose and gentiobiose were localized to 100% in the vacuoles, fructose and glucose to about 80%, and sucrose to only about 50%. Taking the volumes of the vacuolar and extravacuolar (cytosolic) compartments into account it is inferred that gentianose is located exclusively in the vacuoles, whilst sucrose is much more concentrated in the cytosol where it may play a role as a cryoprotectant. The concentration of fructose and glucose appeared to be similar on both sides of the tonoplast.

  4. IP3 stimulates CA++ efflux from fusogenic carrot protoplasts

    International Nuclear Information System (INIS)

    Rincon, M.; Boss, W.F.

    1986-01-01

    Polyphosphoinositide breakdown plays an important role in signal transduction in animal cells (Berridge and Irvine, 1984, Nature, 312:315). Upon stimulation, phospholipase C hydrolyzes phosphatidylinositol 4,5-bisphosphate to inositol 1,4,5-trisphosphate (IP 3 ) and diacylglycerol both of which act as cellular second messengers. IP 3 mobilizes Ca ++ from internal stores, hence the cytosolic free Ca ++ concentration increases and those physiological activities regulated by Ca ++ are stimulated. To test if plant cells also responded to IP 3 , Ca ++ efflux studies were done with fusogenic carrot protoplasts released in EGTA. The protoplasts were preloaded with 45 Ca ++ placed in a Ca ++ -free medium, and efflux determined as 45 Ca ++ loss from the protoplasts. IP 3 (10-20μM) caused enhanced 45 Ca ++ efflux and the response was sustained for at least 15 min. In plants, as in animals, the observed IP 3 -enhanced 45 Ca ++ efflux suggested that IP 3 released Ca ++ from internal stores, and the increased free cytosolic Ca ++ activated Ca ++ pumping mechanisms which restored the Ca ++ concentration in the cytosol to the normal level

  5. Protoplast formation and regeneration in Lactobacillus delbrueckii

    OpenAIRE

    Singhvi, Mamta; Joshi, Dipti; Gaikaiwari, Shalaka; Gokhale, Digambar V.

    2010-01-01

    Method for production and regeneration of Lactobacillus delbrueckii protoplasts are described. The protoplasts were obtained by treatment with a mixture of lysozyme and mutanolysin in protoplast buffer at pH 6.5 with different osmotic stabilizers. The protoplasts were regenerated on deMan, Rogosa and Sharpe (MRS) with various osmotic stabilizers. Maximum protoplast formation was obtained in protoplast buffer with sucrose as an osmotic stabilizer using a combination of lysozyme (1 mg/ml) and m...

  6. Bicarbonate utilization by leaf protoplasts from Potamogeton

    International Nuclear Information System (INIS)

    Staal, M.; Elzenga, J.T.M.; Prins, H.B.A.

    1987-01-01

    Leaves from the submerged angiosperm P. lucens are able to assimilate bicarbonate. These leaves behave polarly: during bicarbonate utilization protons (H + ) are excreted by the cells of the lower epidermis, while hydroxyl (OH - ) ions are excreted by the upper epidermal cells. It has been proposed that acidification of the apoplast is a prerequisite for bicarbonate utilization. To test this hypothesis 14 C fixation by protoplasts was determined at different pH values. Also experiments, using the isotopic disequilibrium technique were performed. They showed that at pH values > 8, bicarbonate is a major carbon source for photosynthesis in protoplasts, despite the absence of cell walls and polarity. At pH values around 6, the rate of 14 C-fixation in protoplasts equals that of intact leaves. At pH values > 8, however, intact leaves show a higher rate. From this, and other experiments, the authors conclude that at least 2 processes contribute to bicarbonate utilization in P. lucens leaves: active transport (H + -HCO 3 - symport?) and acidification of the apoplast resulting in the conversion of bicarbonate into CO 2 . Polarity may increase the efficiency of both

  7. Growth of Avena Coleoptiles and pH Drop of Protoplast Suspensions Induced by Chlorinated Indoleacetic Acids

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen; Doll, Hans; Böttger, M.

    1978-01-01

    -auxins. Some of the derivatives were compared for their effect on pH decline in stem protoplast suspensions of Helianthus annuus L. and Pisum sativum L. The change of pH occurs without a lag period or with only a very short one. Derivatives which are very active in the Avena straight growth assay cause......Several indoleacetic acids, substituted in the benzene ring, were compared in the Avena straight growth bioassay. 4-Chloroindoleacetic acid, a naturally occurring plant hormone, is one of the strongest hormones in this bioassay. With an optimum at 10-6 mol l-1, it is more active than indoleacetic...... a larger pH decline than indoleacetic acid, while inactive derivatives cause effectively no pH decline....

  8. Protoplast fusion in Streptomyces: fusions involving ultraviolet-irradiated protoplasts

    International Nuclear Information System (INIS)

    Hopwood, D.A.; Wright, H.M.

    1981-01-01

    Protoplasts of Streptomyces coelicolor showed the same ultraviolet killing kinetics as spores. Irradiated protoplasts gave rise to recombinants when they were fused with unirradiated protoplasts of a strain carrying complementary genetic markers. The decline with u.v. fluence in the capacity of irradiated protoplasts to yield recombinants inheriting individual markers was some six times less steep than the survival of unfused protoplasts; thus, for example, protoplasts reduced to only 0.01% survival still yielded 10% as many recombinants as unirradiated protoplasts. Each of six widely separated markers of the irradiated parent was inherited independently of the others, with a frequency falling exponentially with u.v. fluence. (author)

  9. Influence of rapid changes in cytosolic pH on oxidative phosphorylation in skeletal muscle: theoretical studies.

    Science.gov (United States)

    Korzeniewski, Bernard; Zoladz, Jerzy A

    2002-07-01

    Cytosolic pH in skeletal muscle may vary significantly because of proton production/consumption by creatine kinase and/or proton production by anaerobic glycolysis. A computer model of oxidative phosphorylation in intact skeletal muscle developed previously was used to study the kinetic effect of these variations on the oxidative phosphorylation system. Two kinds of influence were analysed: (i) via the change in pH across the inner mitochondrial membrane and (ii) via the shift in the equilibrium of the creatine kinase-catalysed reaction. Our simulations suggest that cytosolic pH has essentially no impact on the steady-state fluxes and most metabolite concentrations. On the other hand, rapid acidification/alkalization of cytosol causes a transient decrease/increase in the respiration rate. Furthermore, changes in pH seem to affect significantly the kinetic properties of transition between resting state and active state. An increase in pH brought about by proton consumption by creatine kinase at the onset of exercise lengthens the transition time. At intensive exercise levels this pH increase could lead to loss of the stability of the system, if not compensated by glycolytic H+ production. Thus our theoretical results stress the importance of processes/mechanisms that buffer/compensate for changes in cytosolic proton concentration. In particular, we suggest that the second main role of anaerobic glycolysis, apart from additional ATP supply, may be maintaining the stability of the system at intensive exercise.

  10. Isolation and culture of Celosia cristata L cell suspension protoplasts

    Directory of Open Access Journals (Sweden)

    Retno Mastuti

    2003-06-01

    Full Text Available Developmental competence of Celosia cristata L. cell suspension-derived protoplasts was investigated. The protoplasts were isolatedfrom 3- to 9-d old cultures in enzyme solution containing 2% (w/v Cellulase YC and 0.5% (w/v Macerozyme R-10 which was dissolvedin washing solution (0.4 M mannitol and 10 mM CaCl2 at pH 5.6 for 3 hours. The highest number of viable protoplasts was releasedfrom 5-d old culture of a homogenous cell suspension. Subsequently, three kinds of protoplast culture media were simultaneously examinedwith four kinds of concentration of gelling agent. Culturing the protoplasts on KM8p medium solidified with 1.2% agarose significantlyenhanced plating efficiency as well as microcolony formation. Afterwards, the microcalli actively proliferated into friable watery calluswhen they were subcultured on MS medium supplemented with 0.3 mg/l 2,4-D and 1.0 mg/l kinetin. Although the plant regenerationfrom the protoplasts-derived calli has not yet been obtained, the reproducible developmental step from protoplasts to callus in thisstudy may facilitate the establishment of somatic hybridization using C. cristata as one parent.

  11. LeftyA sensitive cytosolic pH regulation and glycolytic flux in Ishikawa human endometrial cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Salker, Madhuri S.; Zhou, Yuetao; Singh, Yogesh [Department of Physiology, University of Tuebingen, 72076 Tuebingen (Germany); Brosens, Jan [Division of Reproductive Health, Warwick Medical School, Clinical Sciences Research Laboratories, University Hospital, Coventry CV2 2DX (United Kingdom); Lang, Florian, E-mail: florian.lang@uni-tuebingen.de [Department of Physiology, University of Tuebingen, 72076 Tuebingen (Germany)

    2015-05-08

    Objective: LeftyA, a powerful regulator of stemness, embryonic differentiation, and reprogramming of cancer cells, counteracts cell proliferation and tumor growth. Key properties of tumor cells include enhanced glycolytic flux, which is highly sensitive to cytosolic pH and thus requires export of H{sup +} and lactate. H{sup +} extrusion is in part accomplished by Na{sup +}/H{sup +} exchangers, such as NHE1. An effect of LeftyA on transport processes has, however, never been reported. The present study thus explored whether LeftyA modifies regulation of cytosolic pH (pHi) in Ishikawa cells, a well differentiated endometrial carcinoma cell model. Methods: NHE1 transcript levels were determined by qRT-PCR, NHE1 protein abundance quantified by Western blotting, pH{sub i} estimated utilizing (2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein [BCECF] fluorescence, Na{sup +}/H{sup +} exchanger activity from Na{sup +} dependent realkalinization after an ammonium pulse, and lactate concentration in the supernatant utilizing an enzymatic assay and subsequent colorimetry. Results: A 2 h treatment with LeftyA (8 ng/ml) significantly decreased NHE1 transcript levels (by 99.6%), NHE1 protein abundance (by 71%), Na{sup +}/H{sup +} exchanger activity (by 55%), pHi (from 7.22 ± 0.02 to 7.05 ± 0.02), and lactate release (by 41%). Conclusions: LeftyA markedly down-regulates NHE1 expression, Na{sup +}/H{sup +} exchanger activity, pHi, and lactate release in Ishikawa cells. Those effects presumably contribute to cellular reprogramming and growth inhibition. - Highlights: • LeftyA, an inhibitor of tumor growth, reduces Na{sup +}/H{sup +}-exchanger activity by 55%. • LeftyA decreases NHE1 transcripts by 99.6% and NHE1 protein by 71%. • LeftyA decreases cytosolic pH from 7.22 ± 0.02 to 7.05 ± 0.02. • Cytosolic acidification by Lefty A decreases glycolysis by 41%. • Cytosolic acidification by Lefty A compromises energy production of tumor cells.

  12. A study on the isolation of protoplasts from mesophyll cells of Dendrobium Queen Pink

    International Nuclear Information System (INIS)

    Aqeel, R.; Zehra, M.; Kazmi, S. K.; Khan, S.

    2016-01-01

    Protoplasts were successfully isolated from one month old In vitro grown plantlets of Dendrobium cultivar Queen pink. The enzyme solution used was composed of 1 percent Cellulase Onozuka R-10, 0.5 percent Macerozyme R-10, 0.1 percent Pectinase, 0.3 M mannitol, 10 mM CaCl/sub 2/.2H/sub 2/O and 10 mM 2 (N-morpholino)-ethanesulfonic acid (MES) at pH 5.8. Protoplast highest yield with 15.7x104 protoplasts per 1.5 gm freshly chopped leaves were obtained when digested in enzyme solution for 4 hrs on a rotary shaker with an agitation speed of 45 rpm in dark conditions. Protoplasts were filtered with 45 micro m nylon sieve and washed with 0.3 M mannitol solution supplemented with 10 mM CaCl/sub 2/.2H/sub 2/O and 10 mM MES, and purified with 0.3 M sucrose solution gradient. Purification of protoplasts on a sucrose mannitol gradient yielded clean protoplasts that were free from debris. (author)

  13. Parathyroid hormone depresses cytosolic pH and DNA synthesis in osteoblast-like cells

    International Nuclear Information System (INIS)

    Reid, I.R.; Civitelli, R.; Avioli, L.V.; Hruska, K.A.

    1988-01-01

    It has recently become apparent that a number of hormones and growth factors modulate cytosolic pH (pH i ) and there is some evidence that this in turn may influence cell growth. The authors have examined the effects of parathyroid hormone (PTH) on both these parameters in an osteoblast-like cell line, UMR 106. Preliminary studies, using the pH-sensitive fluorescent probe 2',7'-bis(2-carboxyethyl)-5,(6)-carboxyfluorescein indicated that these cells regulate pH i by means of an amiloride-inhibitable Na + -H + exchanger. Rat PTH-(1-34) (rPTH) caused a progressive dose-related decrease in pH i with a half-maximal effect at 10 -11 M. The diacylglycerol analogue, phorbol 12-myristate 13-acetate, increased both pH i and [ 3 H]thymidine incorporation, and amiloride reduced both indexes. However, rPTH remained a potent inhibitor of [ 3 H]thymidine incorporation in the presence of amiloride, even though it did not affect pH i in these circumstances. It is concluded that PTH decreases pH i and growth in UMR 106 cells but that these changes can be dissociated. Depression of pH i may have other important effects on bone metabolism, such as reducing cell-cell communication, and may be associated with alkalinization of the bone fluid compartment

  14. Genetic engineering with tobacco protoplasts. [Hybridization by fusion of leaf protoplasts

    Energy Technology Data Exchange (ETDEWEB)

    Smith, H H

    1976-01-01

    Interspecific hybridization by fusion of leaf protoplasts of Nicotiana glauca (GG) and N. langsdorffii (LL) was confirmed and extended. Enzymatic digestion of leaf tissues to obtain protoplats was followed by fusion with the aid of polyethylene glycol. The hybrid calli were selected by their better growth on defined culture media. Mature hybrid plants were identified by their morphology and tumor formation. Cytological examination revealed a range in chromosome numbers from 56 to 64 rather than the amphiploid GGLL number of 42. About 75 percent of the hybrids were fertile. The potential range in combining widely disparate genotypes by somatic cell fusion was demonstrated by fusing tobacco GGLL protoplasts with human HeLa cells. The HeLa nucleus was observed inside the plant protoplasts, thus forming an interkingdom heterokaryon.

  15. Polyamine binding to proteins in oat and Petunia protoplasts

    Science.gov (United States)

    Mizrahi, Y.; Applewhite, P. B.; Galston, A. W.

    1989-01-01

    Previous work (A Apelbaum et al. [1988] Plant Physiol 88: 996-998) has demonstrated binding of labeled spermidine (Spd) to a developmentally regulated 18 kilodalton protein in tobacco tissue cultures derived from thin surface layer explants. To assess the general importance of such Spd-protein complexes, we attempted bulk isolation from protoplasts of Petunia and oat (Avena sativa). In Petunia, as in tobacco, fed radioactive Spd is bound to protein, but in oat, Spd is first converted to 1,3,-diaminopropane (DAP), probably by polyamine oxidase action. In oat, binding of DAP to protein depends on age of donor leaf and conditions of illumination and temperature, and the extraction of the DAP-protein complex depends upon buffer and pH. The yield of the DAP-protein complex was maximized by extraction of frozen-thawed protoplasts with a pH 8.8 carbonate buffer containing SDS. Its molecular size, based on Sephacryl column fractionation of ammonium sulfate precipitated material, exceeded 45 kilodaltons. Bound Spd or DAP can be released from their complexes by the action of Pronase, but not DNAse, RNAse, or strong salt solutions, indicating covalent attachment to protein.

  16. Isolamento e regeneração de protoplastos de Magnaporthe grisea Isolation and regeneration of Magnaporthe grisea protoplasts

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Marchi

    2006-09-01

    Full Text Available Protoplastos são ferramentas biológicas importantes para pesquisas em fungos filamentosos, sendo empregados intensamente em transformação genética. O isolamento de protoplastos de Magnaporthe grisea foi facilitado com Novozym 234, contudo, este complexo enzimático encontra-se indisponível no mercado. Assim, objetivou-se comparar a eficiência de enzimas líticas disponíveis comercialmente na obtenção de protoplastos de M. grisea. Paralelamente, analisaram-se estabilizadores osmóticos, tempos de digestão e freqüência de regeneração. Maior produção de protoplastos foi obtida com o uso simultâneo de Lysing Enzymes e Cellulase Onozuka R-10. O uso de 10 ou 15 mg de cada complexo enzimático, em 3 mL de estabilizador osmótico, resultou em maior liberação de protoplastos. O melhor estabilizador osmótico foi MgSO4 1,2 M / NaH2PO4 0,01 M, pH 5,8, seguido por MgSO4 0,8 M / NaH2PO4 0,01 M, pH 5,8. O isolamento de protoplastos foi monitorado a cada 60 minutos, atingindo o máximo após incubação por 3 a 6 horas. No entanto, maior freqüência de regeneração (19,4% foi registrada para protoplastos obtidos após 3 horas de hidrólise enzimática.Protoplasts are important biological tools in filamentous fungi research. Fungal protoplasts have been extensively used in experiments with genetic transformation. Protoplastization of Magnaporthe grisea was accomplished with Novozym 234, however, this enzymatic complex is no commercially available for purchase. Thus, the efficiency of several other commercial enzymes in M. grisea protoplasts preparation was investigated. At the same time, osmotic buffer, digestion time and regeneration rate were also analyzed. The highest protoplasts production was obtained with Lysing Enzymes plus Cellulase Onozuka R-10. The use of 10 or 15 mg of each enzymatic complex in 3 mL of osmotic buffer was most effective for the protoplasts yields. The best osmotic buffer was MgSO4 1.2 M / NaH2PO4 0.01 M, pH 5

  17. Secretory production of cell wall components by Saccharomyces cerevisiae protoplasts in static liquid culture.

    Science.gov (United States)

    Aoyagi, Hideki; Ishizaka, Mikiko; Tanaka, Hideo

    2012-04-01

    When protoplasts of Saccharomyces cerevisiae T7 and IFO 0309 are cultured in a static liquid culture at 2.5 × 10(6) protoplasts/ml, cell wall regeneration does not occur and cell wall components (CWC) are released into the culture broth. By using a specialized fluorometer, the concentrations of CWC could be measured on the basis of the fluorescence intensity of the CWC after staining with Fluostain I. The inoculum concentration, pH, and osmotic pressure of the medium were important factors for the production of CWC in culture. Under optimal culture conditions, S. cerevisiae T7 protoplasts produced 0.91 mg/ml CWC after 24 h. The CWC induced the tumor necrosis factor-α production about 1.3 times higher than that of the commercially available β-1,3/1,6-glucan from baker's yeast cells.

  18. Protoplasts and plant viruses

    International Nuclear Information System (INIS)

    Murakishi, H.; Lesney, M.S.; Carlson, P.

    1984-01-01

    The use of protoplasts in the study of plant viruses has attracted considerable attention since its inception in the late 1960s. This article is an attempt to assess the current status of protoplasts (primarily) and all cell cultures (in some instances) in studies of virus infection, virus replication, cytopathology, cross-protection, virus resistance, and the use of in vitro methods and genetic engineering to recover virus-resistant plants. These areas of study proved difficult to do entirely with whole plants or plant parts. However, because protoplasts could be synchronously infected with virus, they provided a valuable alternative means of following biochemical and cytological events in relation to the virus growth cycle in a more precise manner than previously possible

  19. Cellular proton dynamics in Elodea canadensis leaves induced by cadmium.

    Science.gov (United States)

    Tariq Javed, M; Lindberg, Sylvia; Greger, Maria

    2014-04-01

    Our earlier investigations showed that Elodea canadensis shoots, grown in the presence of cadmium (Cd), caused basification of the surrounding medium. The present study was aimed to examine the proton dynamics of the apoplastic, cytosolic and vacuolar regions of E. canadensis leaves upon Cd exposure and to establish possible linkage between cellular pH changes and the medium basification. The changes in cytosolic calcium [Ca(2+)]cyt was also investigated as the [Ca(2+)]cyt and [pH]cyt homeostasis are closely linked. The cellular H(+) and Ca(2+) concentrations were monitored by fluorescence microscopy and ion-specific fluorescent dyes. Cadmium concentration of leaf-cell walls was measured after plant cultivation at different fixed levels of starting pH. The protoplasts from E. canadensis leaves were isolated by use of a newly developed enzymatic method. Upon Cd addition, both cytosolic and vacuolar pH of leaf protoplasts increased with a concomitant rise in the cytosolic Ca(2+) concentration. Time course studies revealed that changes in [Ca(2+)]cyt and [pH]cyt followed similar dynamics. Cadmium (0.5 μM) exposure decreased the apoplastic pH by 0.85 units. The maximum cell wall bound Cd-contents were obtained in plants grown at low starting pH. It is concluded that Cd treatment causes apoplastic acidosis in E. canadensis leaves associated with enhanced Cd binding to the cell walls and, consequently, reduced Cd influx into the cytosol. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  20. Radiosensitivity of protoplasts of orange (Citrus sinensis)

    International Nuclear Information System (INIS)

    Goldman, M.H.S.; Ando, A.

    1990-01-01

    Full text: The Radiation Genetics Section of the Centre for Nuclear Energy in Agriculture (CENA), University of Sao Paulo, is utilising both ''in vivo'' and ''in vitro'' methods for mutation induction in Citrus, cv. ''Pera'', aiming at resistance to citrus canker. The experiments carried out so far determined the methodology to isolate protoplasts and their sensitivity to gamma-rays. Regarding the culture of protoplasts from embryogenic callus, the best experimental conditions were: enzymatic digestion for 5 h on a medium containing cellulase (307.6 mg/10 ml), macerozyme (30.3 mg/10 ml), mannitol (328.0 mM) and sucrose (336.2 mM) as osmotic stabilisers. The isolation efficiency of 1.2x10 6 viable protoplasts/g will make it possible to use protoplasts in mutation breeding. To determine radiosensitivity of protoplasts, gamma-irradiation from 60 Co source was conducted 42 h after their isolation. This time interval is recommended because during this period protoplasts will reach the stage prior to or at the first mitotic division. Survivals were determined by metylen-blue dyeing, and the LD 50 was found to be around 37.5 Gy. Any difference compared with other authors might be due to different genotypes used or different methods of calculation of survival. (author)

  1. Interspecific transfer of only part of genome by fusion between non-irradiated protoplasts of Nicotiana glauca and X-ray irradiated protoplasts of N. Langsdorffii

    International Nuclear Information System (INIS)

    Itoh, K.; Futsuhara, Y.

    1983-01-01

    To transfer only part of genome, X-ray irradiated suspension cell protoplasts of N. langsdorffii were fused with suspension cell protoplasts of N. glauca by polyethylene glycol. Somatic hybrid calli were selected by the growth in the hormone-free medium. Some of somatic hybrid calli from fusion with irradiated protoplasts indicated the loss of small subunit polypeptide of fraction 1 protein which was coded by N. langsdorffii nuclear DNA. Cytological analysis provided an information on significant decrease of chromosomes in somatic hybrid calli from fusion with irradiated protoplasts, compared with the somatic hybrid calli from fusion with non-irradiated protoplasts. In addition, isozyme analysis revealed that somatic hybrid calli from fusion with irradiated protoplasts lost particular bands of N. langsdorffli. These results demonstrate the tranfer of only part of genome from N, langsdorffii to N, glauca by fusion with X-ray irradiated protoplasts

  2. Dendrobium protoplast co-culture promotes phytochemical assemblage in vitro.

    Science.gov (United States)

    Thomas, Abitha; Pujari, Ipsita; Shetty, Vasudeep; Joshi, Manjunath B; Rai, Padmalatha S; Satyamoorthy, Kapaettu; Babu, Vidhu Sankar

    2017-07-01

    The present study is intended to analyze the occurrence of potent, low produce, naturally occurring stilbenes in protoplasts of wild species and hybrids of Dendrobium. The wild species selected for the study was Dendrobium ovatum, endemic to Western Ghats of India. Protoplasts were isolated from leaves and tepal tissues of all the species and were cultured purely to generate homofusants and cross-cultured to raise heterofusants. Phytochemical composition of protoplast culture with atypical and pure microcolonies was performed using mass spectrometry. Enzyme cocktail of 4% pectinase together with 2% cellulase displayed the highest competence for protoplast isolations. Maximum protoplast density of 30.11 × 10 4 /ml was obtained from D. ovatum leaves in 2 h. Subcellular features such as the presence of partially formed cell wall, the position of the nucleus, chloroplast density, colony existence, and integrity of the plasma membrane were analyzed. Among the pure and cross-cultured protoplasts, the number of heterofusants and homofusants formed were enumerated. The spectral feature extraction of the mass spectrometry indicated the presence of five phenolic marker compounds, viz., tristin, confusarin, gigantol, moscatilin, and resveratrol, some of them in pure and others in assorted protoplast cultures raised from Dendrobium leaves and tepals. The study demonstrated that protoplast fusion technique enabled phytochemical assemblage in vitro as stilbenes tend to get restricted either in a tissue or species specific manner. This is the first report showing the presence of resveratrol, moscatilin, tristin, gigantol, and confusarin in wild and hybrid species from cultured Dendrobium protoplasts in vitro.

  3. Protoplast isolation from Ulmus americana l. Pollen mother cells, tetrads, and microspores

    Energy Technology Data Exchange (ETDEWEB)

    Redenbaugh, M K; Westfall, R D; Karnosky, D F

    1980-01-01

    Meiotic protoplasts of U. amerciana are potentially valuable for producing interspecific elm hybrids through protoplast fusion. Meiotic cells(pollen mother cells, tetrads, and microspores) were incubated in either a cellulase, hemicellylase and pectinase enzyme solution of a beta-1,3-glucanase (lainarinase) solution. Respective protoplast isolation frequencies for the three meiotic cell types were 100, 50, and 10%. Exclusion staining with 0.2% Evans blue and 0.1% methyl blue suggested protoplast viability. Some of the microspore protoplasts were vacuolated, which is an important condition for cell division. Although attempts of regenerating cell walls and inducing cell division were unsuccessful, these two problems may be superceded by protoplast fusion with more regenerative protoplasts.

  4. Interaction of E. coli DNA with tobacco mesophyll protoplasts

    International Nuclear Information System (INIS)

    Heyn, R.F.

    1975-01-01

    This chapter is part of a dissertation dealing with the interaction of DNA with protoplasts. Having established the length of time during which tobacco mesophyll protoplasts do not synthesize DNA following their isolation, it is important to know the extent of DNA uptake just before the onset of DNA synthesis (and possible integration) and to find optimal conditions for this uptake. Therefore, the association of E. coli DNA with tobacco protoplasts was studied. Care should be taken with the interpretation of ''uptake'' results: adsorption phenomena play a very important role and may do so at the plasmalemma of naked protoplasts. To solve the problems involved, the use of radiation-damaged DNA was attempted. With E. coli DNA possessing a large number of thymine containing pyrimidine dimers, the loss of dimers from DNA recovered from treated protoplasts was tested in order to obtain an indication of ''real'' uptake. The results are reported

  5. Isolation of protoplast from soybean, cowpea, and tobacco and their fusion

    International Nuclear Information System (INIS)

    Irwansyah.

    1988-01-01

    Protoplast were isolated from leaf and callus. Young leaf of 3-4 weeks old plant of soybean T219 and A24, A27, C4, E1, and H6 of cowpeas strains (strains named by Prof. S. Sakamoto, University of Kyoto) were suspended in digestive medium containing cellulase 'Onuzuka' R-10, macerozyme R-10, mannitol, CaCl, and 2 (N-morpholilno) echane sulfonic acid (MES). For soybean leaf, the medium was enriched with driselase and pectolyase Y-23. They were incibated in full darkness at 27 Celcius centigrade by constant shaking at 50 rpm orbitor shaker. Callus wich has been two times resubcultured was suspended in the digestive medium without driselase, CaCl2, and MES and incubated in lowlight intensity by constant shaking at 100 rpm in reciprocal water shaker at 30 celcius centigrade. Leaf protoplast were releasaed in 10-14 h, soybean and tobacco callus protoplast in 3-4 h, and cowpeas callus protoplast in 4-6 h of incubation. Protoplast were collected by centrifugation of 400 g and a thin layer of the suspension was irradiated with ultraviolet light. Fusion was induced with PEG 6000 solution according to Uchimia and fused protoplasts were collected by centrifugation of 200 g. Protoplast were cultured on the medium of Ikeda and Uchimia. On both medium leaf protoplast, irradiated protoplasts and their fused do not regenerate cell wall and all cultured died out within four weeks incubation. Cell wall generation was observed. Regeneration of cell wall observed progessively in mother protoplast from tobacco, cowpea (A27, E1, and H6) and fused protoplast of soybean with tobacco, tobacco with cowpea (C4, E1, and H6), soybean with cowpea (C4) and between cowpea (C4) and cowpea (E1). (author). 25 refs, 4 tabs

  6. Plant regeneration from protoplasts of Gentiana straminea Maxim

    Directory of Open Access Journals (Sweden)

    Shi Guomin

    2016-01-01

    Full Text Available A protocol is described for plant regeneration from protoplasts of Gentiana straminea Maxim. via somatic embryogenesis. Protoplasts were isolated from embryogenic calli in an enzyme solution composed of 2% Cellulase Onozuka R-10, 0.5% Macerozyme R-10, 0.5% Hemicellulase, and 0.5 M sorbitol with a yield of 3.0 × 106 protoplasts per gram of fresh weight. Liquid, solid-liquid double layer (sLD and agar-pool (aPL culture systems were used for protoplast culture. The aPL culture was the only method that produced embryogenic, regenerative calli. With aPL culture, the highest frequencies of protoplast cell division and colony formation were 39.6% and 16.9%, respectively, on MS medium supplemented with 2 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D and 0.5 mg/L N6-benzylaminopurine (BA. Microcalli were transferred to solid MS medium containing a reduced concentration of 2,4-D (0.5 mg/L to promote the formation of embryogenic calli. Somatic embryos developed into plantlets on MS medium supplemented with 2 mg/L BA at a rate of 43.7%.

  7. Negative Effect of Ellagic Acid on Cytosolic pH Regulation and Glycolytic Flux in Human Endometrial Cancer Cells

    OpenAIRE

    Khalid N. M. Abdelazeem; Yogesh Singh; Florian Lang; Madhuri S. Salker

    2017-01-01

    Background/Aims: Key properties of tumor cells include enhanced glycolytic flux with excessive consumption of glucose and formation of lactate. As glycolysis is highly sensitive to cytosolic pH, maintenance of glycolysis requires export of H+ ions, which is in part accomplished by Na+/H+ exchangers, such as NHE1. The carrier is sensitive to oxidative stress. Growth of tumor cells could be suppressed by the polyphenol Ellagic acid, which is found in various fruits and vegetables. An effect of ...

  8. Infection of potato mesophyll protoplasts with five plant viruses.

    Science.gov (United States)

    Barker, H; Harrison, B D

    1982-12-01

    Methods are described for preparing potato mesophyll protoplasts that are suitable for infection with inocula of virus nucleoprotein or RNA. The protoplasts could be infected with four sap-transmissible viruses (tobacco mosaic, tobacco rattle, tobacco ringspot and tomato black ring viruses) and with potato leafroll virus, which is not saptransmissible. No differences were observed in ability to infect protoplasts with potato leafroll virus strains differing either in virulence in intact plants or in aphid transmissibility.

  9. Proteins synthesized in tobacco mosaic virus infected protoplasts

    NARCIS (Netherlands)

    Huber, R.

    1979-01-01

    The study described here concerns the proteins, synthesized as a result of tobacco mosaic virus (TMV) multiplication in tobacco protoplasts and in cowpea protoplasts. The identification of proteins involved in the TMV infection, for instance in the virus RNA replication, helps to elucidate

  10. Magnetic field exposure stiffens regenerating plant protoplast cell walls.

    Science.gov (United States)

    Haneda, Toshihiko; Fujimura, Yuu; Iino, Masaaki

    2006-02-01

    Single suspension-cultured plant cells (Catharanthus roseus) and their protoplasts were anchored to a glass plate and exposed to a magnetic field of 302 +/- 8 mT for several hours. Compression forces required to produce constant cell deformation were measured parallel to the magnetic field by means of a cantilever-type force sensor. Exposure of intact cells to the magnetic field did not result in any changes within experimental error, while exposure of regenerating protoplasts significantly increased the measured forces and stiffened regenerating protoplasts. The diameters of intact cells or regenerating protoplasts were not changed after exposure to the magnetic field. Measured forces for regenerating protoplasts with and without exposure to the magnetic field increased linearly with incubation time, with these forces being divided into components based on the elasticity of synthesized cell walls and cytoplasm. Cell wall synthesis was also measured using a cell wall-specific fluorescent dye, and no changes were noted after exposure to the magnetic field. Analysis suggested that exposure to the magnetic field roughly tripled the Young's modulus of the newly synthesized cell wall without any lag.

  11. Application of optical tweezers and excimer laser to study protoplast fusion

    Science.gov (United States)

    Kantawang, Titirat; Samipak, Sompid; Limtrakul, Jumras; Chattham, Nattaporn

    2015-07-01

    Protoplast fusion is a physical phenomenon that two protoplasts come in contact and fuse together. Doing so, it is possible to combine specific genes from one protoplast to another during fusion such as drought resistance and disease resistance. There are a few possible methods to induce protoplast fusion, for example, electrofusion and chemical fusion. In this study, chemical fusion was performed with laser applied as an external force to enhance rate of fusion and observed under a microscope. Optical tweezers (1064 nm with 100X objective N.A. 1.3) and excimer laser (308 nm LMU-40X-UVB objective) were set with a Nikon Ti-U inverted microscope. Samples were prepared by soaking in hypertonic solution in order to induce cell plasmolysis. Elodea Canadensis and Allium cepa plasmolysed leaves were cut and observed under microscope. Concentration of solution was varied to induce difference turgor pressures on protoplasts pushing at cell wall. Free protoplasts in solution were trapped by optical tweezers to study the effect of Polyethylene glycol (PEG) solution. PEG was diluted by Ca+ solution during the process to induced protoplast cell contact and fusion. Possibility of protoplast fusion by excimer laser was investigated and found possible. Here we report a novel tool for plant cell fusion using excimer laser. Plant growth after cell fusion is currently conducted.

  12. Protoplast preparation from monokaryotic mycelium of Pleurotus sajor-caju using lysing enzyme

    International Nuclear Information System (INIS)

    Hassan Hamdani Mutaat; Mat Rasol Awang

    2004-01-01

    The objective of this study was to determine the optimum parameters of the factors influencing protoplast isolation from monokaryotic mycelium of Pleurotus sajor-caju using lysing enzyme from Trichoderma harzianurm. The study was conducted by manipulating the variables of the factors affecting protoplast isolation, such as age of mycelium culture, period for lysing of mycelium, concentration of lysing enzyme and concentration of osmotic stabilizer. The highest protoplast yield of 8.3 x 104 protoplast/ml was achieved when a 3-day P. sajor-caju mycelium, cultured statically, was incubated for 3 hours in a lytic mixture containing 7.5 mg/ml lysing enzyme and 1.2 M ammonium sulfate as osmotic stabilizer. This protoplast yield, however, is insufficient for regeneration and protoplast fusion works. (Author)

  13. Effect of cytosolic pH on inward currents reveals structural characteristics of the proton transport cycle in the influenza A protein M2 in cell-free membrane patches of Xenopus oocytes.

    Directory of Open Access Journals (Sweden)

    Mattia L DiFrancesco

    Full Text Available Transport activity through the mutant D44A of the M2 proton channel from influenza virus A was measured in excised inside-out macro-patches of Xenopus laevis oocytes at cytosolic pH values of 5.5, 7.5 and 8.2. The current-voltage relationships reveal some peculiarities: 1. "Transinhibition", i.e., instead of an increase of unidirectional outward current with increasing cytosolic H(+ concentration, a decrease of unidirectional inward current was found. 2. Strong inward rectification. 3. Exponential rise of current with negative potentials. In order to interpret these findings in molecular terms, different kinetic models have been tested. The transinhibition basically results from a strong binding of H(+ to a site in the pore, presumably His37. This assumption alone already provides inward rectification and exponential rise of the IV curves. However, it results in poor global fits of the IV curves, i.e., good fits were only obtained for cytosolic pH of 8.2, but not for 7.5. Assuming an additional transport step as e.g. caused by a constriction zone at Val27 resulted in a negligible improvement. In contrast, good global fits for cytosolic pH of 7.5 and 8.2 were immediately obtained with a cyclic model. A "recycling step" implies that the protein undergoes conformational changes (assigned to Trp41 and Val27 during transport which have to be reset before the next proton can be transported. The global fit failed at the low currents at pHcyt = 5.5, as expected from the interference of putative transport of other ions besides H(+. Alternatively, a regulatory effect of acidic cytosolic pH may be assumed which strongly modifies the rate constants of the transport cycle.

  14. Efficient production of Aschersonia placenta protoplasts for transformation using optimization algorithms.

    Science.gov (United States)

    Wei, Xiuyan; Song, Xinyue; Dong, Dong; Keyhani, Nemat O; Yao, Lindan; Zang, Xiangyun; Dong, Lili; Gu, Zijian; Fu, Delai; Liu, Xingzhong; Qiu, Junzhi; Guan, Xiong

    2016-07-01

    The insect pathogenic fungus Aschersonia placenta is a highly effective pathogen of whiteflies and scale insects. However, few genetic tools are currently available for studying this organism. Here we report on the conditions for the production of transformable A. placenta protoplasts using an optimized protocol based on the response surface method (RSM). Critical parameters for protoplast production were modelled by using a Box-Behnken design (BBD) involving 3 levels of 3 variables that was subsequently tested to verify its ability to predict protoplast production (R(2) = 0.9465). The optimized conditions resulted in the highest yield of protoplasts ((4.41 ± 0.02) × 10(7) cells/mL of culture, mean ± SE) when fungal cells were treated with 26.1 mg/mL of lywallzyme for 4 h of digestion, and subsequently allowed to recover for 64.6 h in 0.7 mol/L NaCl-Tris buffer. The latter was used as an osmotic stabilizer. The yield of protoplasts was approximately 10-fold higher than that of the nonoptimized conditions. Generated protoplasts were transformed with vector PbarGPE containing the bar gene as the selection marker. Transformation efficiency was 300 colonies/(μg DNA·10(7) protoplasts), and integration of the vector DNA was confirmed by PCR. The results show that rational design strategies (RSM and BBD methods) are useful to increase the production of fungal protoplasts for a variety of downstream applications.

  15. Isolation and regeneration protoplast of an oil palm pathogen, Ganoderma boninense

    Science.gov (United States)

    Irene, Liza Isaac; Bakar, Farah Diba Abu; Idris, Abu Seman; Murad, Abdul Munir Abdul

    2015-09-01

    Ganoderma boninense is a known cause for basal stem rot (BSR) in oil palm. Thus, to curb the infection towards oil palm, the establishment of protoplast isolation and regeneration protocol is crucial to be studied. This will provide information on the functional genes especially those which leads towards infection and pathogenicity. In this study, a method was outlined to isolated protoplast in G. boninense by manipulating parameters such as mycelium age, concentration of lysing enzyme, and duration of mycelia incubation in lytic solution. The results shows that from 0.1 g of wet weight mycelia, the highest protoplast yield obtained was 5.5 × 108 protoplast/ml using 5th day old culture in a lytic mixture containing 2.0 % of lysing enzyme incubated for 4 hours at 30 °C with agitation of 80-100 rpm. The highest percentage of protoplast regeneration obtained from this study was 0.2 % using CYM medium supplemented with 0.6 M sorbitol. To date, this is the first report of protoplast isolation and regeneration for this phytopathogen.

  16. Intracellular pH (pHin) and cytosolic calcium ([Ca2+]cyt) regulation via ATPases: studies in cell populations, single cells, and subcellular compartments

    Science.gov (United States)

    Rojas, Jose D.; Sanka, Shankar C.; Gyorke, Sandor; Wesson, Donald E.; Minta, Akwasi; Martinez-Zaguilan, Raul

    1999-07-01

    Changes in pHin and (Ca2+)cyt are important in the signal transduction mechanisms leading to many physiological responses including cell growth, motility, secretion/exocytosis, etc. The concentrations of these ions are regulated via primary and secondary ion transporting mechanisms. In diabetes, specific pH and Ca2+ regulatory mechanism might be altered. To study these ions, we employ fluorescence spectroscopy, and cell imagin spectroscopy/confocal microscopy. pH and Ca2+ indicators are loaded in the cytosol with acetoxymethyl ester forms of dyes, and in endosomal/lysosomal (E/L) compartments by overnight incubation of cells with dextran- conjugated ion fluorescent probes. We focus on specific pH and Ca2+ regulatory systems: plasmalemmal vacuolar- type H+-ATPases (pm V-ATPases) and sarcoplasmic/endoplasmic reticulum Ca2+-ATPases (SERCA). As experimental models, we employ vascular smooth muscle (VSM) and microvascular endothelial cells. We have chosen these cells because they are important in blood flow regulation and in angiogenesis. These processes are altered in diabetes. In many cell types, ion transport processes are dependent on metabolism of glucose for maximal activity. Our main findings are: (a) glycolysis coupling the activity of SERCA is required for cytosolic Ca2+ homeostasis in both VSM and microvascular endothelial cells; (b) E/L compartments are important for pH and Ca2+ regulation via H+-ATPases and SERCA, respectively; and (c) pm-V- ATPases are important for pHin regulation in microvascular endothelial cells.

  17. Plant regeneration from leaf protoplasts of Solanum torvum.

    Science.gov (United States)

    Guri, A; Volokita, M; Sink, K C

    1987-07-01

    A protocol to obtain regenerated plants from protoplasts of Solanum torvum Sw a wild species of eggplant resistant to Verticillium wilt is reported. Leaf protoplasts were enzymatically isolated from six-week old seedlings grown in a controlled environment chamber. Protoplasts were plated on modified KM medium (0.4 M glucose)+(mg/l): 1.0 p-chlorophenoxyacetic acid (CPA)+1.0 naphthaleneacetic acid (NAA)+0.5 6-benzylaminopurine (BAP) and 0.02 abscisic acid (ABA). The protoplast density was 5×10(4) per ml with 5 ml placed in each of two quadrants in X-dishes (100×15 mm). The reservoir medium was modified KM+(mg/l): 0.1 NAA+0.5 BAP+0.1 M sucrose+0.1 M mannitol+0.6% washed agar+1% activated charcoal. Dishes were initially placed in the dark at 27°C. Protoplast division was initiated in 1-2 weeks and 4 weeks later p-calli were 1-3 mm. Plating efficiency was 11% when measured at 3 weeks. Six-week old p-calli were transferred individually onto Whatman No. 1 filter paper layered on modified KM (0.15 M sucrose)+mg/l: 2.0 indoleacetic acid (IAA)+2.0 zeatin+0.5% washed agar for 2 weeks. Subsequently, shoots occurred within 4 weeks at 70% efficiency on MS+30 g/l sucrose+2 mg/l zeatin. Shoots were rooted on half strength MS+10 g/l sucrose.

  18. Internalisation of cell-penetrating peptides into tobacco protoplasts.

    Science.gov (United States)

    Mäe, Maarja; Myrberg, Helena; Jiang, Yang; Paves, Heiti; Valkna, Andres; Langel, Ulo

    2005-05-20

    Cells are protected from the surrounding environment by plasma membrane which is impenetrable for most hydrophilic molecules. In the last 10 years cell-penetrating peptides (CPPs) have been discovered and developed. CPPs enter mammalian cells and carry cargo molecules over the plasma membrane with a molecular weight several times their own. Known transformation methods for plant cells have relatively low efficiency and require improvement. The possibility to use CPPs as potential delivery vectors for internalisation in plant cells has been studied in the present work. We analyse and compare the uptake of the fluorescein-labeled CPPs, transportan, TP10, penetratin and pVEC in Bowes human melanoma cells and Nicotiana tabacum cultivar (cv.) SR-1 protoplasts (plant cells without cell wall). We study the internalisation efficiency of CPPs with fluorescence microscopy, spectrofluorometry and fluorescence-activated cell sorter (FACS). All methods indicate, for the first time, that these CPPs can internalise into N. tabacum cv. SR-1 protoplasts. Transportan has the highest uptake efficacy among the studied peptides, both in mammalian cells and plant protoplast. The internalisation of CPPs by plant protoplasts may open up a new effective method for transfection in plants.

  19. Nuclear RNA quantification in protoplast cell-cycle phases.

    Science.gov (United States)

    Bergounioux, C; Perennes, C; Brown, S C; Gadal, P

    1988-01-01

    Using acridine orange staining and flow cytometry the DNA and RNA levels (arbitrary units) of individual cells may be established. Here, this method has been applied to nuclei isolated from plant protoplasts during culture. The specificity of the technique has been validated for such plant material; ribonuclease markedly reduced nuclear staining without modifying the DNA histogram; ribonuclease inhibitor prevented the action of released cell nucleases; and protoplasts cultivated with actinomycin D did not synthesize RNA. First RNA synthesis was evident 18 h after Petunia hybrida protoplasts had been put into culture. An increase of RNA above a critical level was required for cells to be able to initiate DNA replication from G1, termed G1B. G2 nuclei had an RNA:DNA ratio similar to that of G1 nuclei.

  20. Genetic transformation of the white-rot fungus Dichomitus squalens using a new commercial protoplasting cocktail.

    Science.gov (United States)

    Daly, Paul; Slaghek, Gillian G; Casado López, Sara; Wiebenga, Ad; Hilden, Kristiina S; de Vries, Ronald P; Mäkelä, Miia R

    2017-12-01

    D. squalens, a white-rot fungus that efficiently degrades lignocellulose in nature, can be used in various biotechnological applications and has several strains with sequenced and annotated genomes. Here we present a method for the transformation of this basidiomycete fungus, using a recently introduced commercial ascomycete protoplasting enzyme cocktail, Protoplast F. In protoplasting of D. squalens mycelia, Protoplast F outperformed two other cocktails while releasing similar amounts of protoplasts to a third cocktail. The protoplasts released using Protoplast F had a regeneration rate of 12.5% (±6 SE). Using Protoplast F, the D. squalens monokaryon CBS464.89 was conferred with resistance to the antibiotics hygromycin and G418 via polyethylene glycol mediated protoplast transformation with resistance cassettes expressing the hygromycin phosphotransferase (hph) and neomycin phosphotransferase (nptII) genes, respectively. The hph gene was expressed in D. squalens using heterologous promoters from genes encoding β-tubulin or glyceraldehyde 3-phosphate dehydrogenase. A Southern blot confirmed integration of a resistance cassette into the D. squalens genome. An average of six transformants (±2 SE) were obtained when at least several million protoplasts were used (a transformation efficiency of 0.8 (±0.3 SE) transformants per μg DNA). Transformation of D. squalens demonstrates the suitability of the Protoplast F cocktail for basidiomycete transformation and furthermore can facilitate understanding of basidiomycete gene function and development of improved strains for biotechnological applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Microcolony formation from embryogenic callus-derived protoplasts of oil palm

    Directory of Open Access Journals (Sweden)

    Sompong Te-chato

    2005-07-01

    Full Text Available Embryogenic callus of oil palm induced from young leaves of seedlings DxP was used as initial material for protoplast isolation. Various combinations of cellulase Onozuka RS and macerozyme R-10 were tested. Isolated protoplasts were cultured by various methods in MS medium supplemented with different phytohormones. The results revealed that 2% cellulase RS in combination with 2% macerozyme R-10 (adjusted osmoticum to 0.4 M by manitol yielded the highest number of viable protoplasts (1x107 per gram fresh weight. Dicamba at concentration 2 mg/l with 1 mg/l 6-benzyladenin (BA containing in phytagel semisolidified MS medium promoted the highest division of 2.3-4.0%. First division of the protoplasts was observed at 4 days after culture. Microcolony formation (8-10 cells was seen after three weeks of culture. Unfortunately, neither callus formation nor plantlet regeneration were obtained.

  2. Proteins synthesized in tobacco mosaic virus infected protoplasts

    International Nuclear Information System (INIS)

    Huber, R.

    1979-01-01

    The author deals with research on the multiplication of tobacco mosaic virus (TMV) in leaf cell protoplasts. An attempt is made to answer three questions: (1) Which proteins are synthesized in TMV infected protoplasts as a result of TMV multiplication. (2) Which of the synthesized proteins are made under the direction of the TMV genome and, if any, which of the proteins are host specific. (3) In which functions are these proteins involved. (Auth.)

  3. Isolation and culture of protoplast from leaves of Lactuca sativa

    Directory of Open Access Journals (Sweden)

    Witool Chaipakdee

    2007-07-01

    Full Text Available Protoplasts were isolated from leaves of lettuce (Lactuca sativa L. seedlings after in vitro germination for 25, 30, 40 and 50 days. The leaves were stripped and incubated in various combinations of cellulase and pectinase. Protoplasts were cultured on MS medium containing various kinds and concentrations of plant growth regulators in different culture systems including liquid media, hanging, drop culture and solid media. Results revealed that the highest number of viable protoplasts, 14.1x105 cells per gram of fresh weight, was obtained from 30 day-old leaves of lettuce seedlings and isolated by using 2% cellulase in combination with 1% pectinase. Liquid MS medium supplemented with 0.5 mg/l NAA and 0.5 mg/l BA promoted the highest cell division up to 17.67%. First division of protoplasts was observed at 4 days after culture and microcolony formation occurred at the 4th week after culturing. Unfortunately, neither callus formation nor plantlet regeneration were obtained.

  4. Influences of explant type and enzyme incubation on isolated protoplast density and viability in two garlic cultivars

    International Nuclear Information System (INIS)

    Metwally, E.I.

    2014-01-01

    The present study reports on optimizing protoplast isolation and fusion in two garlic cultivars Balady and Seds 40. Protoplast density and viability were investigated in four different explants (etiolated and green parts of the pseudostem and lower and upper parts of the leaves) under enzyme incubation for 1, 2, 3 and 4 h. Among different explants, used for protoplast isolation in Balady cultivar, the upper and lower parts of the leaves produced the highest number of total protoplasts (70 and 66 pps/0.1 ml) at 4 and 3 h enzyme incubation, respectively. However, the etiolated part of pseudostem produced the highest number of viable protoplast in which 52.5 pps/0.1 ml were obtained at 3 h enzyme incubation. For protoplast isolation in Seds 40 cultivar, the highest number of total protoplasts (125 and 107.5 pps/0.1 ml) as well as viable protoplasts (105 and 107.5 pps/0.1 ml) was obtained from the etiolated and the green parts of pseudostem, respectively. The cultivar Seds 40 yielded higher total and viable protoplasts than Balady cultivar. Isolated protoplasts of Seds 40 and Balady were fused successfully at a protoplast density of 1 * 105 using either physical and/or electrical method. Optimization of the source of plant material as well as protoplast isolation conditions for garlic is a crucial step towards a successful protoplast fusion and subsequent colony formation. (author)

  5. Can protoplast production from in vitro cultured shoots of Tanacetum vary during the season?

    Directory of Open Access Journals (Sweden)

    M. KESKITALO

    2008-12-01

    Full Text Available Two different experiments were carried out to study the production of protoplasts and the variation of protoplast yield from in vitro cultured shoot tips of tansy (Tanacetum vulgare L. and pyrethrum (Tanacetum cinerariifolium (Trevir. Schiltz-Bip. In the first experiment, light had more pronouced effect for tansy than for pyrethrum. When the donor tissues of tansy were cultured under high light intensity the leaves contained anthocyanin and became brown during enzyme maceration. In contrast, donor tissues cultured under low light intensity produced leaves without anthocyanin. Depending on the light intensity of donor tissues, on average 5.8 - 6.8 x 106 and 3.4 - 4.3 x 106 protoplasts were isolated from one gram of mesophyll leaves of tansy and pyrethrum, respectively. In the second experiment, the production of protoplasts from tansy and pyrethrum varied seasonally. The most successful season for the production of protoplasts from in vitro cultured shoot tips was between December and April, when also the highest number of protoplasts could be isolated. It was not possible to state whether Tanacetum species have rhythms, which could cause physiological or chemical changes for the in vitro grown shoot tips. However, some external or internal, possible seasonal-dependent stimuli may have caused variation in the number of protoplasts isolated from tansy and pyrethrum and favoured protoplast production during winter and spring.

  6. Genetically encoded pH-indicators reveal activity-dependent cytosolic acidification of Drosophila motor nerve termini in vivo

    Science.gov (United States)

    Rossano, Adam J; Chouhan, Amit K; Macleod, Gregory T

    2013-01-01

    All biochemical processes, including those underlying synaptic function and plasticity, are pH sensitive. Cytosolic pH (pHcyto) shifts are known to accompany nerve activity in situ, but technological limitations have prevented characterization of such shifts in vivo. Genetically encoded pH-indicators (GEpHIs) allow for tissue-specific in vivo measurement of pH. We expressed three different GEpHIs in the cytosol of Drosophila larval motor neurons and observed substantial presynaptic acidification in nerve termini during nerve stimulation in situ. SuperEcliptic pHluorin was the most useful GEpHI for studying pHcyto shifts in this model system. We determined the resting pH of the nerve terminal cytosol to be 7.30 ± 0.02, and observed a decrease of 0.16 ± 0.01 pH units when the axon was stimulated at 40 Hz for 4 s. Realkalinization occurred upon cessation of stimulation with a time course of 20.54 ± 1.05 s (τ). The chemical pH-indicator 2′,7′-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein corroborated these changes in pHcyto. Bicarbonate-derived buffering did not contribute to buffering of acid loads from short (≤4 s) trains of action potentials but did buffer slow (∼60 s) acid loads. The magnitude of cytosolic acid transients correlated with cytosolic Ca2+ increase upon stimulation, and partial inhibition of the plasma membrane Ca2+-ATPase, a Ca2+/H+ exchanger, attenuated pHcyto shifts. Repeated stimulus trains mimicking motor patterns generated greater cytosolic acidification (∼0.30 pH units). Imaging through the cuticle of intact larvae revealed spontaneous pHcyto shifts in presynaptic termini in vivo, similar to those seen in situ during fictive locomotion, indicating that presynaptic pHcyto shifts cannot be dismissed as artifacts of ex vivo preparations. PMID:23401611

  7. Impaired pH homeostasis in Arabidopsis lacking the vacuolar dicarboxylate transporter and analysis of carboxylic acid transport across the tonoplast.

    Science.gov (United States)

    Hurth, Marco Alois; Suh, Su Jeoung; Kretzschmar, Tobias; Geis, Tina; Bregante, Monica; Gambale, Franco; Martinoia, Enrico; Neuhaus, H Ekkehard

    2005-03-01

    Arabidopsis (Arabidopsis thaliana) mutants lacking the tonoplastic malate transporter AttDT (A. thaliana tonoplast dicarboxylate transporter) and wild-type plants showed no phenotypic differences when grown under standard conditions. To identify putative metabolic changes in AttDT knock-out plants, we provoked a metabolic scenario connected to an increased consumption of dicarboxylates. Acidification of leaf discs stimulated dicarboxylate consumption and led to extremely low levels of dicarboxylates in mutants. To investigate whether reduced dicarboxylate concentrations in mutant leaf cells and, hence, reduced capacity to produce OH(-) to overcome acidification might affect metabolism, we measured photosynthetic oxygen evolution under conditions where the cytosol is acidified. AttDT::tDNA protoplasts showed a much stronger inhibition of oxygen evolution at low pH values when compared to wild-type protoplasts. Apparently citrate, which is present in higher amounts in knock-out plants, is not able to replace dicarboxylates to overcome acidification. To raise more information on the cellular level, we performed localization studies of carboxylates. Although the total pool of carboxylates in mutant vacuoles was nearly unaltered, these organelles contained a lower proportion of malate and fumarate and a higher proportion of citrate when compared to wild-type vacuoles. These alterations concur with the observation that radioactively labeled malate and citrate are transported into Arabidopsis vacuoles by different carriers. In addition, wild-type vacuoles and corresponding organelles from AttDT::tDNA mutants exhibited similar malate channel activities. In conclusion, these results show that Arabidopsis vacuoles contain at least two transporters and a channel for dicarboxylates and citrate and that the activity of AttDT is critical for regulation of pH homeostasis.

  8. Efficient Transformation of Oil Palm Protoplasts by PEG-Mediated Transfection and DNA Microinjection

    Science.gov (United States)

    Masani, Mat Yunus Abdul; Noll, Gundula A.; Parveez, Ghulam Kadir Ahmad; Sambanthamurthi, Ravigadevi; Prüfer, Dirk

    2014-01-01

    Background Genetic engineering remains a major challenge in oil palm (Elaeis guineensis) because particle bombardment and Agrobacterium-mediated transformation are laborious and/or inefficient in this species, often producing chimeric plants and escapes. Protoplasts are beneficial as a starting material for genetic engineering because they are totipotent, and chimeras are avoided by regenerating transgenic plants from single cells. Novel approaches for the transformation of oil palm protoplasts could therefore offer a new and efficient strategy for the development of transgenic oil palm plants. Methodology/Principal Findings We recently achieved the regeneration of healthy and fertile oil palms from protoplasts. Therefore, we focused on the development of a reliable PEG-mediated transformation protocol for oil palm protoplasts by establishing and validating optimal heat shock conditions, concentrations of DNA, PEG and magnesium chloride, and the transfection procedure. We also investigated the transformation of oil palm protoplasts by DNA microinjection and successfully regenerated transgenic microcalli expressing green fluorescent protein as a visible marker to determine the efficiency of transformation. Conclusions/Significance We have established the first successful protocols for the transformation of oil palm protoplasts by PEG-mediated transfection and DNA microinjection. These novel protocols allow the rapid and efficient generation of non-chimeric transgenic callus and represent a significant milestone in the use of protoplasts as a starting material for the development of genetically-engineered oil palm plants. PMID:24821306

  9. Analysis of DNA polymerase activity in Petunia protoplasts treated with clastogenic agents

    International Nuclear Information System (INIS)

    Benediktsson, I.; Spampinato, C.P.; Andreo, C.S.; Schieder, O.

    1994-01-01

    Clastogenic agents, i.e. agents that can induce chromosome or DNA breakage, have been shown to enhance the role of direct gene transfer to protoplasts. The effect was analysed at the enzymatic level using protoplast homogenates as well as intact protoplasts. For that purpose existing procedures were modified to enable measurement of DNA polymerase in vivo. In the system used, external DNA was able to enter the cells without the addition of membrane-permeabilizing compounds. When comparing total DNA polymerase activity of protoplasts irradiated with X-rays or UV-light with that of untreated cells we did not observe significant differences. Incubation of protoplasts with high doses of bleomycin affected total DNA polymerase activity negatively. but dideoxythymidine triphosphate-sensitive activity was not influenced. We conclude that the DNA strand-breaks induced by low doses of X-rays. UV-light or bleomycin do not increase the total or the repair-DNA polymerase activity and. therefore. that the increase in the transformation rates after DNA strand-breaking is not preceded by enhanced DNA polymerase activity. (author)

  10. Impaired pH Homeostasis in Arabidopsis Lacking the Vacuolar Dicarboxylate Transporter and Analysis of Carboxylic Acid Transport across the Tonoplast1

    Science.gov (United States)

    Hurth, Marco Alois; Suh, Su Jeoung; Kretzschmar, Tobias; Geis, Tina; Bregante, Monica; Gambale, Franco; Martinoia, Enrico; Neuhaus, H. Ekkehard

    2005-01-01

    Arabidopsis (Arabidopsis thaliana) mutants lacking the tonoplastic malate transporter AttDT (A. thaliana tonoplast dicarboxylate transporter) and wild-type plants showed no phenotypic differences when grown under standard conditions. To identify putative metabolic changes in AttDT knock-out plants, we provoked a metabolic scenario connected to an increased consumption of dicarboxylates. Acidification of leaf discs stimulated dicarboxylate consumption and led to extremely low levels of dicarboxylates in mutants. To investigate whether reduced dicarboxylate concentrations in mutant leaf cells and, hence, reduced capacity to produce OH− to overcome acidification might affect metabolism, we measured photosynthetic oxygen evolution under conditions where the cytosol is acidified. AttDT::tDNA protoplasts showed a much stronger inhibition of oxygen evolution at low pH values when compared to wild-type protoplasts. Apparently citrate, which is present in higher amounts in knock-out plants, is not able to replace dicarboxylates to overcome acidification. To raise more information on the cellular level, we performed localization studies of carboxylates. Although the total pool of carboxylates in mutant vacuoles was nearly unaltered, these organelles contained a lower proportion of malate and fumarate and a higher proportion of citrate when compared to wild-type vacuoles. These alterations concur with the observation that radioactively labeled malate and citrate are transported into Arabidopsis vacuoles by different carriers. In addition, wild-type vacuoles and corresponding organelles from AttDT::tDNA mutants exhibited similar malate channel activities. In conclusion, these results show that Arabidopsis vacuoles contain at least two transporters and a channel for dicarboxylates and citrate and that the activity of AttDT is critical for regulation of pH homeostasis. PMID:15728336

  11. [14C]-Sucrose uptake by guard cell protoplasts of pisum sativum, argenteum mutant

    International Nuclear Information System (INIS)

    Rohrig, K.; Raschke, K.

    1991-01-01

    Guard cells rely on import for their supply with reduced carbon. The authors tested by silicone oil centrifugation the ability of guard cell protoplasts to accumulated [ 14 C]-sucrose. Uptake rates were corrected after measurement of 14 C-sorbitol and 3 H 2 O spaces. Sucrose uptake followed biphasic kinetics, with a high-affinity component below 1 mM external sucrose (apparent K m 0.8 mM at 25C) and a low-affinity nonsaturable component above. Uptake depended on pH (optimum at pH 5.0). Variations in the concentrations of external KCl, CCCP, and valinomycin indicated that about one-half of the sucrose uptake rate could be related to an electrochemical gradient across the plasmalemma. Total uptake rates measured at 5 mM external sucrose seem to be sufficient to replenish emptied plastids with starch within a few hours

  12. Intergenus Protoplast Fusion between Pichia manshurica and Rhodosporidium paludigenum to Increase the Production of Inulinase

    Directory of Open Access Journals (Sweden)

    Wijanarka Wijanarka

    2014-12-01

    Full Text Available The purposes of this study was to identify the optimum concentration of the lytic enzyme Glucanex for protoplast isolation and to conduct fusion for the purpose of increasing inulinase production. The study performs the protoplast fusion technique using Pichia manshurica and Rhodosporidium paludigenum. Protoplast fusion consists of a series of stages: protoplast isolation, protoplast fusion, protoplast regeneration, and analysis of hybrid fusion results. Protoplast isolation and fusion success rate are determined by various factors, including age of the culture, media type, and type of lytic enzymes used. Hybrid results were analyzed using a fungicide as a marker and measuring specific growth rate (μ of the hybrid compared with parental growth rates. Results demonstrated that a concentration of 4 mg/mL of Glucanex produces the greatest number of protoplasts, 7.2 x 1010 (cell/mL for P. manshurica and 8.8 x 1010 (cell/mL for Rh. paludigenum. The results of analysis of hybrid fusions indicate that the study has identified a new fusant, called fusant F4. Fusant F4 is capable of producing the highest inulinase, 0.6892 IU, compared with parentals P. manshurica, 0557 IU, and Rh. paludigenum, 0.3263 IU. Fusant F4 has specific growth rate (μ of 0.3360/h and generation time (g of 2.0629 h.

  13. [Isolation and regeneration of the protoplasts of the streptomycete producers of actinomycins C and X].

    Science.gov (United States)

    Orlova, T I; Masha, G G; Kliueva, N A

    1986-09-01

    Protoplasts of S. michiganensis, S. chrysomallus and Streptomyces sp. 26-115, organisms producing actinomycins C and X form in hypertonic salt solution under the action of 3-4,5 mg/ml of lysozyme on the mycelium suspension. For protoplasting, the streptomycetes were grown on the soybean medium in the presence of 0.2-0.8 per cent of glycine. The mycelium of the streptomycete exponential growth phase was more favourable for protoplast formation. Protoplast regeneration was studied on the medium described by Okanishi et al. The quantitative composition of this medium was not optimal for regeneration of protoplasts of the above streptomycetes. The level of their regeneration depended to various extents on concentration of phosphate, magnesium and calcium ions and sucrose in the regeneration medium.

  14. Optimization of Production Conditions for Protoplasts and Polyethylene Glycol-Mediated Transformation of Gaeumannomyces tritici.

    Science.gov (United States)

    Wang, Mei; Zhang, Jie; Wang, Lanying; Han, Lirong; Zhang, Xing; Feng, Juntao

    2018-05-24

    Take-all, caused by Gaeumannomyces tritici , is one of the most important wheat root diseases worldwide, as it results in serious yield losses. In this study, G. tritici was transformed to express the hygromycin B phosphotransferase using a combined protoplast and polyethylene glycol (PEG)-mediated transformation technique. Based on a series of single-factor experimental results, three major factors-temperature, enzyme lysis time, and concentration of the lysing enzyme-were selected as the independent variables, which were optimized using the response surface methodology. A higher protoplast yield of 9.83 × 10⁷ protoplasts/mL was observed, and the protoplast vitality was also high, reaching 96.27% after optimization. Protoplasts were isolated under the optimal conditions, with the highest transformation frequency (46⁻54 transformants/μg DNA). Polymerase chain reaction and Southern blotting detection indicated that the genes of hygromycin phosphotransferase were successfully inserted into the genome of G. tritici . An optimised PEG-mediated protoplast transformation system for G. tritici was established. The techniques and procedures described will lay the foundation for establishing a good mutation library of G. tritici and could be used to transform other fungi.

  15. The retraction of the protoplast during PCD is an active, and interruptible, calcium-flux driven process.

    Science.gov (United States)

    Kacprzyk, Joanna; Brogan, Niall P; Daly, Cara T; Doyle, Siamsa M; Diamond, Mark; Molony, Elizabeth M; McCabe, Paul F

    2017-07-01

    The protoplast retracts during apoptosis-like programmed cell death (AL-PCD) and, if this retraction is an active component of AL-PCD, it should be used as a defining feature for this type of programmed cell death. We used an array of pharmacological and genetic tools to test if the rates of protoplast retraction in cells undergoing AL-PCD can be modulated. Disturbing calcium flux signalling, ATP synthesis and mitochondrial permeability transition all inhibited protoplast retraction and often also the execution of the death programme. Protoplast retraction can precede loss of plasma membrane integrity and cell death can be interrupted after the protoplast retraction had already occurred. Blocking calcium influx inhibited the protoplast retraction, reduced DNA fragmentation and delayed death induced by AL-PCD associated stresses. At higher levels of stress, where cell death occurs without protoplast retraction, blocking calcium flux had no effect on the death process. The results therefore strongly suggest that retraction of the protoplast is an active biological process dependent on an early Ca 2+ -mediated trigger rather than cellular disintegration due to plasma membrane damage. Therefore this morphologically distinct cell type is a quantifiable feature, and consequently, reporter of AL-PCD. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Formation and regeneration of protoplasts and spheroplasts of gastrointestinal strains of lactobacilli.

    OpenAIRE

    Connell, H; Lemmon, J; Tannock, G W

    1988-01-01

    Methods were developed for the formation of protoplasts and spheroplasts of gastrointestinal strains of Lactobacillus reuteri, Lactobacillus gasseri, and Lactobacillus salivarius. Attempts to regenerate vegetative cells from protoplasts were not successful, but spheroplasts could be regenerated consistently for five of six strains.

  17. Effects of environmental preconditioning, donor tissue and isolation conditions on tomato (Lycopersicon esculentum Mill. protoplast yield

    Directory of Open Access Journals (Sweden)

    Elżbieta Kuźniak

    2013-12-01

    Full Text Available The effects of soil or in vitro grown plants, pretreatment conditions, donor tissue and isolation procedure on protoplast yield from cotyledons and leaves of tomato cv. 'Perkoz' and 'Zorza' were studied. The highest protoplast yield of 1.5 x 107/g FW was obtained from leaves of in vitro grown plants. Low light intensity during donor plants in vitro culture and dark pretreatment were essential for successful protoplast isolation while cold pretreatment was not. Tissue preplasmolysis prior to transfer to enzyme mixture increased 4-fold the number of isolated protoplasts. Glycine and bovine serum albumin in the isolation medium did not significantly influence the protoplast yield.

  18. Citrus asymmetric somatic hybrids produced via fusion of gamma-irradiated and iodoacetamide-treated protoplasts

    Energy Technology Data Exchange (ETDEWEB)

    Bona, Claudine Maria de [Instituto Agronomico do Parana (IAPAR), Curitiba, PR (Brazil)], e-mail: debona@iapar.br; Gould, Jean Howe [Texas A and M University, College Station, TX (United States). Dept. of Ecosystem Science and Management], e-mail: gould@tamu.edu; Miller Junior, J. Creighton [Texas A and M University, College Station, TX (United States). Dept. of Horticultural Sciences], e-mail: jcmillerjr@tamu.edu; Stelly, David [Texas A and M University, College Station, TX (United States). Dept. of Soil and Crop Sciences], e-mail: stelly@tamu.edu; Louzada, Eliezer Silva [Texas A and M University, Kingsville, TX (United States). Citrus Center], e-mail: e-louzada@tamu.edu

    2009-05-15

    The objective of this study was to produce citrus somatic asymmetric hybrids by fusing gamma.irradiated protoplasts with iodoacetamide-treated protoplasts. Protoplasts were isolated from embryogenic suspension cells of grapefruit (Citrus paradisi Macfad.) cultivars Ruby Red and Flame, sweet oranges (C. sinensis Osbeck) 'Itaborai', 'Natal', Valencia', and 'Succari', from 'Satsuma' (C. unshiu Marcow.) and 'Changsha' mandarin (C. reticulata Blanco) and 'Murcott' tangor (C. reticulata x C. sinensis). Donor protoplasts were exposed to gamma rays and receptor protoplasts were treated with 3 mmol L{sup -1} iodoacetamide (IOA), and then they were fused for asymmetric hybridization. Asymmetric embryos were germinated, and the resulting shoots were either grafted onto sour orange, rough lemon or 'Swingle' (C. paradisi x Poncirus trifoliata) x 'Sunki' mandarin rootstock seedlings, or rooted after dipping their bases in indol.butyric acid (IBA) solution. The products were later acclimatized to greenhouse conditions. Ploidy was analyzed by flow cytometry, and hybridity was confirmed by amplified fragment length polymorphism (AFLP) analysis of plantlet DNA samples. The best treatment was the donor-recipient fusion combination of 80 Gy.irradiated 'Ruby Red' protoplasts with 20 min IOA.treated 'Succari' protoplasts. Tetraploid and aneuploid plants were produced. Rooting recalcitrance was solved by dipping shoots' stems in 3,000 mg L{sup -1} IBA solution for 10 min. (author)

  19. Negative Effect of Ellagic Acid on Cytosolic pH Regulation and Glycolytic Flux in Human Endometrial Cancer Cells.

    Science.gov (United States)

    Abdelazeem, Khalid N M; Singh, Yogesh; Lang, Florian; Salker, Madhuri S

    2017-01-01

    Key properties of tumor cells include enhanced glycolytic flux with excessive consumption of glucose and formation of lactate. As glycolysis is highly sensitive to cytosolic pH, maintenance of glycolysis requires export of H+ ions, which is in part accomplished by Na+/H+ exchangers, such as NHE1. The carrier is sensitive to oxidative stress. Growth of tumor cells could be suppressed by the polyphenol Ellagic acid, which is found in various fruits and vegetables. An effect of Ellagic acid on transport processes has, however, never been reported. The present study thus elucidated an effect of Ellagic acid on cytosolic pH (pHi), NHE1 transcript levels, NHE1 protein abundance, Na+/H+ exchanger activity, and lactate release. Experiments were performed in Ishikawa cells without or with prior Ellagic acid (20 µM) treatment. NHE1 transcript levels were determined by qRT-PCR, NHE1 protein abundance by Western blotting, pHi utilizing (2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein [BCECF] fluorescence, Na+/H+ exchanger activity from Na+ dependent realkalinization after an ammonium pulse, cell volume from forward scatter in flow cytometry, reactive oxygen species (ROS) from 2',7'-dichlorodihydrofluorescein fluorescence, glucose uptake utilizing 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose, and lactate concentration in the supernatant utilizing a colorimetric (570 nm)/ fluorometric enzymatic assay. A 48 hour treatment with Ellagic acid (20 µM) significantly decreased NHE1 transcript levels by 75%, NHE1 protein abundance by 95%, pHi from 7.24 ± 0.01 to 7.02 ± 0.01, Na+/H+ exchanger activity by 77%, forward scatter by 10%, ROS by 82%, glucose uptake by 58%, and lactate release by 15%. Ellagic acid (20µM) markedly down-regulates ROS formation and NHE1 expression leading to decreased Na+/H+ exchanger activity, pHi, glucose uptake and lactate release in endometrial cancer cells. Those effects presumably contribute to reprogramming and growth

  20. Negative Effect of Ellagic Acid on Cytosolic pH Regulation and Glycolytic Flux in Human Endometrial Cancer Cells

    Directory of Open Access Journals (Sweden)

    Khalid N. M. Abdelazeem

    2017-04-01

    Full Text Available Background/Aims: Key properties of tumor cells include enhanced glycolytic flux with excessive consumption of glucose and formation of lactate. As glycolysis is highly sensitive to cytosolic pH, maintenance of glycolysis requires export of H+ ions, which is in part accomplished by Na+/H+ exchangers, such as NHE1. The carrier is sensitive to oxidative stress. Growth of tumor cells could be suppressed by the polyphenol Ellagic acid, which is found in various fruits and vegetables. An effect of Ellagic acid on transport processes has, however, never been reported. The present study thus elucidated an effect of Ellagic acid on cytosolic pH (pHi, NHE1 transcript levels, NHE1 protein abundance, Na+/H+ exchanger activity, and lactate release. Methods: Experiments were performed in Ishikawa cells without or with prior Ellagic acid (20 µM treatment. NHE1 transcript levels were determined by qRT-PCR, NHE1 protein abundance by Western blotting, pHi utilizing (2',7'-bis-(2-carboxyethyl-5-(and-6-carboxyfluorescein [BCECF] fluorescence, Na+/H+ exchanger activity from Na+ dependent realkalinization after an ammonium pulse, cell volume from forward scatter in flow cytometry, reactive oxygen species (ROS from 2’,7’-dichlorodihydrofluorescein fluorescence, glucose uptake utilizing 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-ylamino-2-deoxyglucose, and lactate concentration in the supernatant utilizing a colorimetric (570 nm/ fluorometric enzymatic assay. Results: A 48 hour treatment with Ellagic acid (20 µM significantly decreased NHE1 transcript levels by 75%, NHE1 protein abundance by 95%, pHi from 7.24 ± 0.01 to 7.02 ± 0.01, Na+/H+ exchanger activity by 77%, forward scatter by 10%, ROS by 82%, glucose uptake by 58%, and lactate release by 15%. Conclusion: Ellagic acid (20µM markedly down-regulates ROS formation and NHE1 expression leading to decreased Na+/H+ exchanger activity, pHi, glucose uptake and lactate release in endometrial cancer cells. Those

  1. Genetic variability in regenerated Metarhizium flavoviride protoplasts

    Directory of Open Access Journals (Sweden)

    Júlia Kuklinsky-Sobral

    2004-03-01

    Full Text Available Protoplast isolation and regeneration were evaluated in two wild-type and two colour mutant strains of Metarhizium flavoviride. Cultivation in liquid medium, followed by mycelium treatment with Novozym 234 in the presence of KCl 0.7M as osmotic stabilizer, produced 5.05 x 10(6 to 1.15 x 10(7x mL-1 protoplasts. The percentage of regeneration ranged from 6.65 to 27.92%. Following protoplast regeneration, one strain produced spontaneously stable morphological variant colonies. Although colonies with altered morphology have been reported in bacteria following protoplast regeneration, this is the first time that the same is described in a filamentous fungus. The original strain and one derived variant were tested for sensitivity to the fungicides benomyl and captan.A formação e regeneração de protoplastos foram avaliadas em duas linhagens selvagens e duas linhagens mutantes para coloração de conídios em Metarhizium flavoviride. O cultivo em meio líquido seguido do tratamento do micélio com Novozym 234 na presença de KCl 0,7 M como estabilizador osmótico, resultou na produção de 5,05´10(6 a 1,15´10(7 protoplastos´mL-1. A porcentagem de regeneração das diferentes linhagens variou de 6,65 a 27,92%. Após a regeneração, uma das linhagens selvagens produziu espontaneamente variantes estáveis, com morfologia alterada. Embora variantes morfológicos já tenham sido observados após regeneração de protoplastos em bactérias, esta parece ser a primeira vez que tal ocorrência é descrita em fungos filamentosos. Um desses variantes, além da linhagem selvagem da qual ele foi originado, foi testado para sensibilidade aos fungicidas benomil e captano.

  2. Do phosphoinositides regulate membrane water permeability of tobacco protoplasts by enhancing the aquaporin pathway?

    Science.gov (United States)

    Ma, Xiaohong; Shatil-Cohen, Arava; Ben-Dor, Shifra; Wigoda, Noa; Perera, Imara Y; Im, Yang Ju; Diminshtein, Sofia; Yu, Ling; Boss, Wendy F; Moshelion, Menachem; Moran, Nava

    2015-03-01

    Enhancing the membrane content of PtdInsP 2 , the already-recognized protein-regulating lipid, increased the osmotic water permeability of tobacco protoplasts, apparently by increasing the abundance of active aquaporins in their membranes. While phosphoinositides are implicated in cell volume changes and are known to regulate some ion channels, their modulation of aquaporins activity has not yet been reported for any organism. To examine this, we compared the osmotic water permeability (P f) of protoplasts isolated from tobacco (Nicotiana tabacum) cultured cells (NT1) with different (genetically lowered or elevated relative to controls) levels of inositol trisphosphate (InsP3) and phosphatidyl inositol [4,5] bisphosphate (PtdInsP2). To achieve this, the cells were transformed with, respectively, the human InsP3 5-phosphatase ('Ptase cells') or human phosphatidylinositol (4) phosphate 5-kinase ('PIPK cells'). The mean P f of the PIPK cells was several-fold higher relative to that of controls and Ptase cells. Three results favor aquaporins over the membrane matrix as underlying this excessive P f: (1) transient expression of the maize aquaporin ZmPIP2;4 in the PIPK cells increased P f by 12-30 μm s(-1), while in the controls only by 3-4 μm s(-1). (2) Cytosol acidification-known to inhibit aquaporins-lowered the P f in the PIPK cells down to control levels. (3) The transcript of at least one aquaporin was elevated in the PIPK cells. Together, the three results demonstrate the differences between the PIPK cells and their controls, and suggest a hitherto unobserved regulation of aquaporins by phosphoinositides, which could occur through direct interaction or indirect phosphoinositides-dependent cellular effects.

  3. Early Studies on Protoplast Isolation of Ludisia discolor, A Wild Orchid.

    Science.gov (United States)

    Poobathy, Ranjetta; Zakaria, Rahmad; Hamzah, Syed Mohd Edzham Syed; Subramaniam, Sreeramanan

    2016-11-01

    The terrestrial Ludisia discolor , also referred to as the jewel orchid is prized for the quality of its leaves. L. discolor is known as a medicinal herb and is touted for its heat- and pathogen-resisting qualities. L. discolor is valuable in the production of both flavonoids and anthocyanins, antioxidants that are exalted in the health industry. Plant cell cultures have emerged as alternative sources of anthocyanin production. Plant protoplast cultures are used frequently in transient gene expression studies and in the establishment of callus and cell suspension cultures. Benefits of plant protoplast system include similarity to cells found in plant tissues, reproduction under controlled conditions, and prevention of masking of stress responses to previous handling techniques. A study was conducted to assess the amenability of the stem and leaves of L. discolor to protoplast isolation. The stem and leaf segments were weighed, sliced into thin layers, immersed in a digestion medium, washed and then cultured onto a recovery medium. Results indicated that the production of plant protoplasts from L. discolor may be viewed as an alternative in the generation of cell cultures and ultimately in the production of anthocyanins from the cell cultures.

  4. Identification of protoplast-isolation responsive microRNAs in Citrus reticulata Blanco by high-throughput sequencing.

    Science.gov (United States)

    Xu, Xiaoyong; Xu, Xiaoling; Zhou, Yipeng; Zeng, Shaohua; Kong, Weiwen

    2017-01-01

    Protoplast isolation is a stress-inducing process, during which a variety of physiological and molecular alterations take place. Such stress response affects the expression of totipotency of cultured protoplasts. MicroRNAs (miRNAs) play important roles in plant growth, development and stress responses. However, the underlying mechanism of miRNAs involved in the protoplast totipotency remains unclear. In this study, high-throughput sequencing technology was used to sequence two populations of small RNA from calli and callus-derived protoplasts in Citrus reticulata Blanco. A total of 67 known miRNAs from 35 families and 277 novel miRNAs were identified. Among these miRNAs, 18 known miRNAs and 64 novel miRNAs were identified by differentially expressed miRNAs (DEMs) analysis. The expression patterns of the eight DEMs were verified by qRT-PCR. Target prediction showed most targets of the miRNAs were transcription factors. The expression levels of half targets showed a negative correlation to those of the miRNAs. Furthermore, the physiological analysis showed high levels of antioxidant activities in isolated protoplasts. In short, our results indicated that miRNAs may play important roles in protoplast-isolation response.

  5. Improved efficiency of plant regeneration from protoplasts of eggplant Solanum melongena L.

    Science.gov (United States)

    Guri, A; Izhar, S

    1984-12-01

    Eggplant (Solanum melongena L.) mesophyll protoplasts were obtained from in vitro growing plants of line 410 and cv. 'Classic'. Relatively high (15%) plating efficiency was achieved using petri dishes with alternate quadrants containing reservoir medium (R medium + 1% activated charcoal) and culture medium. Shoot regeneration occurred within 6 weeks following initiation of protoplast culture.

  6. Isolation and culture of leaf protoplasts from Tunisian grapes

    Directory of Open Access Journals (Sweden)

    Ahmed Mliki

    2003-09-01

    Full Text Available Experimental conditions for leaf protoplast isolation and culture were optimised for in vitro plants deriving from shoot culture of two Tunisian grape varieties, Sakasly and Muscat d’Alexandrie (Vitis vinifera L.. The best yields were obtained from leaves of 4 to 5 weeks old in vitro plants, digested for 13 hours under 25 rpm agitation with an enzymatic mixture containing 0.25 % cellulase of Aspergillus niger, 0.25 % cellulase of Penicillium funiculosum, 0.5 % cellulysin of Trichoderma viridae, and 0.2 % macerozyme R-10 of Rhizopus sp. More than 50 % of the purified protoplasts had a diameter of 30-40 μm and were rich in chloroplasts. Best aptitude for cell division was found in protoplasts immobilised in sodium alginate layers at a density of 0.5x106 cell/ml, cultivated in CPW-13 medium containing 4 mg/l of NOA and 0.88 mg/l of TDZ. The variety Muscat d’Alexandrie gave better yield whereas Sakasly showed better cell division rates. Formation of micro and macrocallus have been obtained, but the oxidation of the medium has to be solved in order to promote plant regeneration.

  7. Infection of cowpea protoplasts with sonchus yellow net virus and festuca leaf streak virus

    NARCIS (Netherlands)

    Beek, van N.A.M.

    1986-01-01

    The advantages of protoplast systems for plant virus research have been frequently reviewed (Zaitlin & Beachy, 1974; Takebe, 1975; Muhlbach, 1982; Sander & Mertens, 1984). Relatively little attention has been given to the limitations of such a system.

    Protoplasts do not

  8. Subcellular site and nature of intracellular cadmium in plants

    International Nuclear Information System (INIS)

    Wagner, G.J.

    1979-01-01

    The mechanisms underlying heavy metal accumulation, toxicity and tolerance in higher plants are poorly understood. Since subcellular processes are undoubtedly involved in all these phenomena, it is of interest to study the extent of, subcellular site of and nature of intracellularly accumulated cadmium in higher plants. Whole plants supplied 109 CdCl 2 or 112 CdSO 4 accumulated Cd into roots and aerial tissues. Preparation of protoplasts from aerial tissue followed by subcellular fractionation of the protoplasts to obtain intact vacuoles, chloroplasts and cytosol revealed the presence of Cd in the cytosol but not in vacuoles or chloroplasts. Particulate materials containing other cell components were also labeled. Of the 109 Cd supplied to plants, 2 to 10% was recovered in both cytosol preparations and in particulate materials. Cytosol contained proteinaceous--Cd complexes, free metal and low molecular weight Cd complexes. Labeling of protoplasts gave similar results. No evidence was obtained for the production of volatile Cd complexes in tobacco

  9. Site-directed mutagenesis in Petunia × hybrida protoplast system using direct delivery of purified recombinant Cas9 ribonucleoproteins.

    Science.gov (United States)

    Subburaj, Saminathan; Chung, Sung Jin; Lee, Choongil; Ryu, Seuk-Min; Kim, Duk Hyoung; Kim, Jin-Soo; Bae, Sangsu; Lee, Geung-Joo

    2016-07-01

    Site-directed mutagenesis of nitrate reductase genes using direct delivery of purified Cas9 protein preassembled with guide RNA produces mutations efficiently in Petunia × hybrida protoplast system. The clustered, regularly interspaced, short palindromic repeat (CRISPR)-CRISPR associated endonuclease 9 (CRISPR/Cas9) system has been recently announced as a powerful molecular breeding tool for site-directed mutagenesis in higher plants. Here, we report a site-directed mutagenesis method targeting Petunia nitrate reductase (NR) gene locus. This method could create mutations efficiently using direct delivery of purified Cas9 protein and single guide RNA (sgRNA) into protoplast cells. After transient introduction of RNA-guided endonuclease (RGEN) ribonucleoproteins (RNPs) with different sgRNAs targeting NR genes, mutagenesis at the targeted loci was detected by T7E1 assay and confirmed by targeted deep sequencing. T7E1 assay showed that RGEN RNPs induced site-specific mutations at frequencies ranging from 2.4 to 21 % at four different sites (NR1, 2, 4 and 6) in the PhNR gene locus with average mutation efficiency of 14.9 ± 2.2 %. Targeted deep DNA sequencing revealed mutation rates of 5.3-17.8 % with average mutation rate of 11.5 ± 2 % at the same NR gene target sites in DNA fragments of analyzed protoplast transfectants. Further analysis from targeted deep sequencing showed that the average ratio of deletion to insertion produced collectively by the four NR-RGEN target sites (NR1, 2, 4, and 6) was about 63:37. Our results demonstrated that direct delivery of RGEN RNPs into protoplast cells of Petunia can be exploited as an efficient tool for site-directed mutagenesis of genes or genome editing in plant systems.

  10. Molecular characterization of intergeneric hybrid between Aspergillus oryzae and Trichoderma harzianum by protoplast fusion.

    Science.gov (United States)

    Patil, N S; Patil, S M; Govindwar, S P; Jadhav, J P

    2015-02-01

    Protoplast fusion between Aspergillus oryzae and Trichoderma harzianum and application of fusant in degradation of shellfish waste. The filamentous chitinolytic fungal strains A. oryzae NCIM 1272 and T. harzianum NCIM 1185 were selected as parents for protoplast fusion. Viable protoplasts were released from fungal mycelium using enzyme cocktail containing 5 mg ml(-1) lysing enzymes from T. harzianum, 0.06 mg ml(-1) β-glucuronidase from Helix pomatia and 1 mg ml(-1) purified Penicillium ochrochloron chitinase in 0.8 mol l(-1) sorbitol as an osmotic stabilizer. Intergeneric protoplast fusion was carried out using 60% polyethylene glycol as a fusogen. At optimum conditions, the regeneration frequency of the fused protoplasts on colloidal chitin medium and fusion frequency were calculated. Fusant showed higher rate of growth pattern, chitinase activity and protein content than parents. Fusant formation was confirmed by morphological markers, viz. colony morphology and spore size and denaturation gradient gel electrophoresis (DGGE). This study revealed protoplast fusion between A. oryzae and T. harzianum significantly enhanced chitinase activity which ultimately provides potential strain for degradation of shellfish waste. Consistency in the molecular characterization results using DGGE is the major outcome of this study which can be emerged as a fundamental step in fusant identification. Now it is need to provide attention over effective chitin degradation to manage shrimp processing issues. In this aspect, ability of fusant to degrade shellfish waste efficiently in short incubation time revealed discovery of potential strain in the reclamation of seafood processing crustacean bio-waste. © 2014 The Society for Applied Microbiology.

  11. A simple and effective method to encapsulate tobacco mesophyll protoplasts to maintain cell viability

    Directory of Open Access Journals (Sweden)

    Rong Lei

    2015-01-01

    • It is very convenient to change or collect the solution without mechanically disturbing the protoplasts. This simple and effective silica sol–gel/alginate two-step immobilization of protoplasts in Transwell has great potential for applications in genetic transformation, metabolite production, and migration assays.

  12. Ability of Bacillus subtilis protoplasts to repair irradiated bacteriophage deoxyribonucleic acid via acquired and natural enzymatic systems

    International Nuclear Information System (INIS)

    Yasbin, R.E.; Andersen, B.J.; Sutherland, B.M.

    1981-01-01

    A novel form of enzyme therapy was achieved by utilizing protoplasts of Bacillus subtilis. Photoreactivating enzyme of Escherichia coli was successfully inserted into the protoplasts of B. subtilis treated with polyethylene glycol. This enzyme was used to photoreactivate ultraviolet-damaged bacteriophage deoxyribonucleic acid (DNA). Furthermore, in polyethylene glycol-treated protoplasts, ultraviolet-irradiated transfecting bacteriophage DNA was shown to be a functional substrate for the host DNA excision repair system. Previous results (R.E. Yasbin, J.D. Fernwalt, and P.I. Fields, J. Bacteriol.; 137: 391-396) showed that ultraviolet-irradiated bacteriophage DNA could not be repaired via the excision repair system of competent cells. Therefore, the processing of bacteriophage DNA by protoplasts and by competent cells must be different. This sensitive protoplast assay can be used to identify and to isolate various types of DNA repair enzymes

  13. Protoplast isolation, transient transformation of leaf mesophyll protoplasts and improved Agrobacterium-mediated leaf disc infiltration of Phaseolus vulgaris: tools for rapid gene expression analysis.

    Science.gov (United States)

    Nanjareddy, Kalpana; Arthikala, Manoj-Kumar; Blanco, Lourdes; Arellano, Elizabeth S; Lara, Miguel

    2016-06-24

    Phaseolus vulgaris is one of the most extensively studied model legumes in the world. The P. vulgaris genome sequence is available; therefore, the need for an efficient and rapid transformation system is more imperative than ever. The functional characterization of P. vulgaris genes is impeded chiefly due to the non-amenable nature of Phaseolus sp. to stable genetic transformation. Transient transformation systems are convenient and versatile alternatives for rapid gene functional characterization studies. Hence, the present work focuses on standardizing methodologies for protoplast isolation from multiple tissues and transient transformation protocols for rapid gene expression analysis in the recalcitrant grain legume P. vulgaris. Herein, we provide methodologies for the high-throughput isolation of leaf mesophyll-, flower petal-, hypocotyl-, root- and nodule-derived protoplasts from P. vulgaris. The highly efficient polyethylene glycol-mannitol magnesium (PEG-MMG)-mediated transformation of leaf mesophyll protoplasts was optimized using a GUS reporter gene. We used the P. vulgaris SNF1-related protein kinase 1 (PvSnRK1) gene as proof of concept to demonstrate rapid gene functional analysis. An RT-qPCR analysis of protoplasts that had been transformed with PvSnRK1-RNAi and PvSnRK1-OE vectors showed the significant downregulation and ectopic constitutive expression (overexpression), respectively, of the PvSnRK1 transcript. We also demonstrated an improved transient transformation approach, sonication-assisted Agrobacterium-mediated transformation (SAAT), for the leaf disc infiltration of P. vulgaris. Interestingly, this method resulted in a 90 % transformation efficiency and transformed 60-85 % of the cells in a given area of the leaf surface. The constitutive expression of YFP further confirmed the amenability of the system to gene functional characterization studies. We present simple and efficient methodologies for protoplast isolation from multiple P

  14. A comparison of different Gracilariopsis lemaneiformis (Rhodophyta) parts in biochemical characteristics, protoplast formation and regeneration

    Science.gov (United States)

    Wang, Zhongxia; Sui, Zhenghong; Hu, Yiyi; Zhang, Si; Pan, Yulong; Ju, Hongri

    2014-08-01

    Gracilariopsis lemaneiformis is a commercially exploited alga. Its filaceous thallus can be divided into three parts, holdfast, middle segment and tip. The growth and branch forming trend and agar content of these three parts were analyzed, respectively, in this study. The results showed that the tip had the highest growth rate and branched most, although it was the last part with branch forming ability. The holdfast formed branches earliest but slowly. Holdfast had the highest agar content. We also assessed the difference in protoplast formation and regeneration among three parts. The middle segment displayed the shortest enzymolysis time and the highest protoplast yield; whereas the tip had the strongest vitality of protoplasts formation. Juvenile plants were only obtained from the protoplasts generated from the tip. These results suggested that the differentiation and function of G. lemaneiformis was different.

  15. Effects of environmental preconditioning, donor tissue and isolation conditions on tomato (Lycopersicon esculentum Mill.) protoplast yield

    OpenAIRE

    Elżbieta Kuźniak; Marzena Wielanek; Urszula Małolepsza; Henryk Urbaniak

    2013-01-01

    The effects of soil or in vitro grown plants, pretreatment conditions, donor tissue and isolation procedure on protoplast yield from cotyledons and leaves of tomato cv. 'Perkoz' and 'Zorza' were studied. The highest protoplast yield of 1.5 x 107/g FW was obtained from leaves of in vitro grown plants. Low light intensity during donor plants in vitro culture and dark pretreatment were essential for successful protoplast isolation while cold pretreatment was not. Tissue preplasmolysis prior to t...

  16. Use of protoplast, cell, and shoot tip culture in an elm germ plasm improvement program

    Science.gov (United States)

    R. Daniel Lineberger; M.B. Sticklen; P.M. Pijut; Mark A. Kroggel; C.V.M. Fink; S.C. Domir

    1990-01-01

    An elm germplasm improvement program was established using three distinct approaches: (1) development of protoplast regeneration protocols with the goal of attempting somatic hybridization between Ulmus americana and disease resistant hybrids; (2) evaluation of the extent of somaclonal variation in plants regenerated from protoplasts; and (3)...

  17. Liposome-enhanced transformation of Streptococcus lactis and plasmid transfer by intergeneric protoplast fusion of Streptococcus lactis and Bacillus subtilis

    NARCIS (Netherlands)

    Vossen, Jos M.B.M. van der; Kok, Jan; Lelie, Daniel van der; Venema, Gerhardus

    An efficient protoplast transformation system and a procedure of plasmid transfer by means of protoplast fusion is described for Streptococcus lactis. Protoplasts of S. lactis IL1403 and S. lactis MG1363 were transformed by pGK12 [2.9 MDa erythromycin resistance (Emr)] with an efficiency of 3 × 10^5

  18. Poinsettia protoplasts - a simple, robust and efficient system for transient gene expression studies

    Directory of Open Access Journals (Sweden)

    Pitzschke Andrea

    2012-05-01

    Full Text Available Abstract Background Transient gene expression systems are indispensable tools in molecular biology. Yet, their routine application is limited to few plant species often requiring substantial equipment and facilities. High chloroplast and chlorophyll content may further impede downstream applications of transformed cells from green plant tissue. Results Here, we describe a fast and simple technique for the high-yield isolation and efficient transformation (>70% of mesophyll-derived protoplasts from red leaves of the perennial plant Poinsettia (Euphorbia pulccherrima. In this method no particular growth facilities or expensive equipments are needed. Poinsettia protoplasts display an astonishing robustness and can be employed in a variety of commonly-used downstream applications, such as subcellular localisation (multi-colour fluorescence or promoter activity studies. Due to low abundance of chloroplasts or chromoplasts, problems encountered in other mesophyll-derived protoplast systems (particularly autofluorescence are alleviated. Furthermore, the transgene expression is detectable within 90 minutes of transformation and lasts for several days. Conclusions The simplicity of the isolation and transformation procedure renders Poinsettia protoplasts an attractive system for transient gene expression experiments, including multi-colour fluorescence, subcellular localisation and promoter activity studies. In addition, they offer hitherto unknown possibilities for anthocyan research and industrial applications.

  19. Viral protein synthesis in cowpea mosaic virus infected protoplasts

    International Nuclear Information System (INIS)

    Rottier, P.

    1980-01-01

    Some aspects of cowpea mosaic virus (CPMV) multiplication in cowpea mesophyll protoplasts were studied. The detection and characterization of proteins whose synthesis is induced or is stimulated upon virus infection was performed with the aid of radioactive labelling. (Auth.)

  20. Improvement of polysaccharide and triterpenoid production of Ganoderma lucidum through mutagenesis of protoplasts

    Directory of Open Access Journals (Sweden)

    Ren Peng

    2016-03-01

    Full Text Available Ganoderma lucidum is a traditional medicinal macrofungus in China, which has two kinds of key bioactive compounds -- polysaccharides and triterpenoids. To improve the polysaccharide and triterpenoid production from G. lucidum, the preparation and regeneration conditions of protoplasts were optimized. This was done by systematic trials with various parameters, and protoplast mutation was subsequently performed. A mycelium that was cultivated for seven days and treated with 0.33 mL of 1% snailase and 0.66 mL of 0.5% cellulase solution for 2.5 h at 30 °C in the presence of osmotic pressure stabilizer mannitol (0.5 mol/L, had the best conditions, in which the resultant protoplasts were 6.40 × 105/mL and the regeneration rate was 6.25%. The resultant protoplasts were subjected to subsequent mutation by lithium chloride or by the combination of lithium chloride and Triton X-100. The highest yields of intracellular polysaccharide and triterpenoid in two mutant strains were 37.50 and 40.81 mg/g, which were increased with 568.45% and 373.43%, respectively, as compared to the original strain. Furthermore, the yields of intracellular polysaccharides and triterpenoids in the second generation and the third generation of the mutants were comparable to that of the first generation, which showed genetic stability of the mutants for the production of polysaccharides and triterpenoids.

  1. Cell wall regeneration in Bangia atropurpurea (Rhodophyta) protoplasts observed using a mannan-specific carbohydrate-binding module.

    Science.gov (United States)

    Umemoto, Yoshiaki; Araki, Toshiyoshi

    2010-02-01

    The cell wall of the red alga Bangia atropurpurea is composed of three unique polysaccharides (beta-1,4-mannan, beta-1,3-xylan, and porphyran), similar to that in Porphyra. In this study, we visualized beta-mannan in the regenerating cell walls of B. atropurpurea protoplasts by using a fusion protein of a carbohydrate-binding module (CBM) and green fluorescent protein (GFP). A mannan-binding family 27 CBM (CBM27) of beta-1,4-mannanase (Man5C) from Vibrio sp. strain MA-138 was fused to GFP, and the resultant fusion protein (GFP-CBM27) was expressed in Escherichia coli. Native affinity gel electrophoresis revealed that GFP-CBM27 maintained its binding ability to soluble beta-mannans, while normal GFP could not bind to beta-mannans. Protoplasts were isolated from the fronds of B. atropurpurea by using three kinds of bacterial enzymes. The GFP-CBM27 was mixed with protoplasts from different growth stages, and the process of cell wall regeneration was observed by fluorescence microscopy. Some protoplasts began to excrete beta-mannan at certain areas of their cell surface after 12 h of culture. As the protoplast culture progressed, beta-mannans were spread on their entire cell surfaces. The percentages of protoplasts bound to GFP-CBM27 were 3%, 12%, 17%, 29%, and 25% after 12, 24, 36, 48, and 60 h of culture, respectively. Although GFP-CBM27 bound to cells at the initial growth stages, its binding to the mature fronds was not confirmed definitely. This is the first report on the visualization of beta-mannan in regenerating algal cell walls by using a fluorescence-labeled CBM.

  2. Protoplasting impact on polyketide activity and characterization of the interspecific fusants from Streptomyces spp

    International Nuclear Information System (INIS)

    Slama, N.; Lazim, H.; Barkallah, Insaf; Abbassi, M.; Ben Hassen, A.; Limam, F.

    2009-01-01

    Streptomycetes are gram-positive, soil-inhabiting bacteria of the order Actinomycetales. These organisms exhibit an unusual, developmentally complex life cycle and produce many economically important secondary metabolites, such as antibiotics, immunosuppressants, insecticides, and antitumor agents. Streptomyces species have been the subject of genetic investigation for over 50 years, with many studies focusing on the production of bioactives compounds. The protoplast formation and regeneration are important processes, and they are a major step following genetic manipulations such as fusion and DNA-mediated transformation, which can improve antibiotic production. The protoplast fusion, transformation and improved fermentation features can be used to regenerate strains with increased antibiotic activity. Local Streptomyces spp. CN207 produce a broad range of secondary metabolites which is active against bacteria and fungi. This strain was used as a donor and S. coelicolor strain M145 was used as a recipient host for protoplast fusion. The protoplast fusion resulted in increased isolation of variants with higher antibiotic activity. Recombinant Streptomyces coelicolor PF04 was increased 10 times more than the wild strain. The antimicrobial activity from PF04 strain was studied using the disc method agar. TLC analysis confirmed that the Rf of cell extract for PF04 strain is identical to antimicrobial compound of Streptomyces CN207. Our results confirm the possibility of transferring antibiotics cluster genes by fusion. In fact, many of the selective markers such as Ticarcillin, Cefalotin, Oxacillin and Cefotaxim were transferred during the protoplast fusion. PFGE analysis and DNA-hybridization confirmed the presence of homologous fragments between a wild-type Streptomyces CN207 and a recombinant S. coelicolor PF04

  3. Plant regeneration from protoplasts ofVicia narbonensis via somatic embryogenesis and shoot organogenesis.

    Science.gov (United States)

    Tegeder, M; Kohn, H; Nibbe, M; Schieder, O; Pickardt, T

    1996-11-01

    Protoplasts ofVicia narbonensis isolated from epicotyls and shoot tips of etiolated seedlings were embedded in 1.4% sodium-alginate at a final density of 2.5×10(5) protoplasts/ml and cultivated in Kao and Michayluk-medium containing 0.5 mg/I of each of 2,4- dichlorophenoxyacetic acid, naphthylacetic acid and 6 -benzylaminopurine. A division frequency of 36% and a plating efficiency of 0.40-0.5% were obtained. Six weeks after embedding, protoplast-derived calluses were transferred onto gelrite-solidified Murashige and Skoog-media containing various growth regulators. Regeneration of plants was achieved via two morphologically distinguishable pathways. A two step protocol (initially on medium with a high auxin concentration followed by a culture phase with lowered auxin amount) was used to regenerate somatic embryos, whereas cultivation on medium containing thidiazuron and naphthylacetic acid resulted in shoot morphogenesis. Mature plants were recovered from both somatic embryos as well as from thidiazuron-induced shoots.

  4. 14C fixation by leaves and leaf cell protoplasts of the submerged aquatic angiosperm Potamogeton lucens: Carbon dioxide or bicarbonate?

    International Nuclear Information System (INIS)

    Staal, M.; Elzenga, J.T.M.; Prins, H.B.A.

    1989-01-01

    Protoplasts were isolated from leaves of the aquatic angiosperm Potamogeton lucens L. The leaves utilize bicarbonate as a carbon source for photosynthesis, and show polarity; that is acidification of the periplasmic space of the lower, and alkalinization of the space near the upper leaf side. At present there are two models under consideration for this photosynthetic bicarbonate utilization process: conversion of bicarbonate into free carbon dioxide as a result of acidification and, second, a bicarbonate-proton symport across the plasma membrane. Carbon fixation of protoplasts was studied at different pH values and compared with that in leaf strips. Using the isotopic disequilibrium technique, it was established that carbon dioxide and not bicarbonate was the form in which DIC actually crossed the plasma membrane. It is concluded that there is probably no true bicarbonate transport system at the plasma membrane of these cells and that bicarbonate utilization in this species apparently rests on the conversion of bicarbonate into carbon dioxide. Experiments with acetazolamide, an inhibitor of periplasmic carbonic anhydrase, and direct measurements of carbonic anhydrase activity in intact leaves indicate that in this species the role of this enzyme for periplasmic conversion of bicarbonate into carbon dioxide is insignificant

  5. Effect of Radiation Dosage on Efficiency of Chloroplast Transfer by Protoplast Fusion in Nicotiana

    OpenAIRE

    Menczel, László; Galiba, Gábor; Nagy, Ferenc; Maliga, Pál

    1982-01-01

    Chloroplasts of Nicotiana tabacum SR1 were transferred into Nicotiana plumbaginifolia by protoplast fusion. The protoplasts of the organelle donor were irradiated with different lethal doses using a 60Co source, to facilitate the elimination of their nuclei from the fusion products. After fusion induction, clones derived from fusion products and containing streptomycin-resistant N. tabacum SR1 chloroplasts were selected by their ability to green on a selective medium. When N. tabacum protopla...

  6. Formation and cell wall regeneration of protoplasts from Schizophyllum commune

    NARCIS (Netherlands)

    de Vries, Onno Minne Hotze

    1974-01-01

    Osmotically sensitive protoplasts were released from the mycelium of the basidiomycete Schizophyllum commune through the action ofan extracellular enzyme preparation isolated from the culture filtrate of Trichoderma viride (recently renamed T. harzianum) grown on hyphal walls of the former organism.

  7. Conditions de sélection in vitro de cals issus des disques foliaires et des protoplastes de Pelargonium tolérant plus la sécheresse

    Directory of Open Access Journals (Sweden)

    M. MOKHTARI

    2015-01-01

    Full Text Available To induce drought resistance, callus from leaf discs and protoplast of Pelargonium x hortorum (‘Deep Salmon’ and ‘Panaché Sud’ were grown in vitro in osmoticum rich medium. Percent survival of the callus varied with growth medium, variety and concentration of osmoticum. Compared to protoplasts, leaf discs were simple to handle. However, protoplasts growing requires enzymatic additives and delicate procedures. The protoplasts viability was 86% for ‘Deep Salmon’ and 90% for ‘Panaché Sud’. The yield was 5.67 x 106 protoplasts / g FM for ‘Deep Salmon’ and 11.35 x 106 for ‘Panaché Sud’. The callus from leaf discs of the variety Deep Salmon survived a maximum concentration of 0.5 M sucrose and 0.27 M mannitol or sorbitol. A dose of 0.6 M sucrose was the threshold limit for the survival of 12.5% ​​protoplasts with a division ratio of 2% for ‘Deep Salmon’ and 18.7% of protoplasts with a division ratio of 3.2% for ‘Panaché Sud’. For the mannitol, the maximum limit was 0.6 M for a 13.5% viability of protoplasts with a division ratio 3.6% for ‘Deep Salmon’ and 16.1% of protoplasts with a division factor 3 % respectively for ‘Panaché Sud’. The 20% PEG allowed the survival of 21.1% protoplast and a division rate of 0.2% in ‘Deep Salmon’, but it has totally inhibited protoplast division of ‘Panaché Sud’, even at 5%.

  8. Purification and characterization of a novel cytosolic NADP(H)-dependent retinol oxidoreductase from rabbit liver.

    Science.gov (United States)

    Huang, D Y; Ichikawa, Y

    1997-03-07

    Rabbit liver cytosol exhibits very high retinol dehydrogenase activity. At least two retinol dehydrogenases were demonstrated to exist in rabbit liver cytosol, and the major one, a cytosolic NADP(H)-dependent retinol dehydrogenase (systematic name: retinol oxidoreductase) was purified about 1795-fold to electrophoretic and column chromatographic homogeneity by a procedure involving column chromatography on AF-Red Toyopearl twice and then hydroxyapatite. Its molecular mass was estimated to be 34 kDa by SDS-PAGE, and 144 kDa by HPLC gel filtration, suggesting that it is a homo-tetramer. The enzyme uses free retinol and retinal, and their complexes with CRBP as substrates in vitro. The optimum pH values for retinol oxidation of free retinol and CRBP-retinol were 8.8-9.2 and 8.0-9.0, respectively, and those for retinal reduction of free retinal and retinal-CRBP were the same, 7.0-7.6. Km for free retinol and Vmax for retinal formation were 2.8 microM and 2893 nmol/min per mg protein at 37 degrees C (pH 9.0) and the corresponding values with retinol-CRBP as a substrate were 2.5 microM and 2428 nmol/min per mg protein at 37 degrees C (pH 8.6); Km for free retinal and Vmax for retinol formation were 6.5 microM and 4108 nmol/min per mg protein, and the corresponding values with retinal-CRBP as a substrate were 5.1 microM and 3067 nmol/min per mg protein at 37 degrees C, pH 7.4. NAD(H) was not effective as a cofactor. 4-Methylpyrazole was a weak inhibitor (IC50 = 28 mM) of the enzyme, and ethanol was neither a substrate nor an inhibitor of the enzyme. This enzyme exhibits relatively broad aldehyde reductase activity and some ketone reductase activity, the activity for aromatic substitutive aldehydes being especially high and effective. Whereas, except in the case of retinol, oxidative activity toward the corresponding alcohols was not detected. This novel cytosolic enzyme may play an important role in vivo in maintaining the homeostasis of retinal, the substrate of retinoic

  9. Transformation of undomesticated strains of Bacillus subtilis by protoplast electroporation

    NARCIS (Netherlands)

    Romero, Diego; Perez-Garcia, Alejandro; Veening, Jan-Willem; de Vicente, Antonio; Kuipers, Oscar P.; de, Vicente A.

    A rapid method combining the use of protoplasts and electroporation was developed to transform recalcitrant wild strains of Bacillus subtilis. The method described here allows transformation with both replicative and integrative plasmids, as well as with chromosomal DNA, and provides a valuable tool

  10. Response of haploid and diploid protoplasts from Datura innoxia Mill. and Petunia hybrida L. to treatment with X-rays and a chemical mutagen

    International Nuclear Information System (INIS)

    Krumbiegel, G.

    1979-01-01

    Haploid and diploid protoplasts of the two Solanaceous species Datura innoxia Mill. and Petunia Hybridia L., were exposed to two different mutagens, increased doses of X-rays and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). With both species the survival rates of haploid protoplasts decreased exponentially with increased doses of X-rays and increased concentrations of MNNG. Diploid protoplasts showed a higher resistance than haploids only at higher mutagen doses or concentrations. After the MNNG-treatment of haploid protoplasts from Datura innoxia, four mutants with altered pigment patterns were isolated. (author)

  11. Plant regeneration from haploid cell suspension-derived protoplasts of Mediterranean rice (Oryza sativa L. cv. Miara).

    Science.gov (United States)

    Guiderdoni, E; Chaïr, H

    1992-11-01

    More than 750 plants were regenerated from protoplasts isolated from microspore callus-derived cell suspensions of the Mediterranean japonica rice Miara, using a nurse-feeder technique and N6-based culture medium. The mean plating efficiency and the mean regeneration ability of the protocalluses were 0.5% and 49% respectively. Flow cytometric evaluation of the DNA contents of 7 month old-cell and protoplast suspensions showed that they were still haploid. Contrastingly, the DNA contents of leaf cell nuclei of the regenerated protoclones ranged from 1C to 5C including 60% 2C plants. This was consistent with the morphological type and the fertility of the mature plants. These results and the absence of chimeric plants suggest that polyploidization occurred during the early phase of protoplast culture.

  12. Enhanced Reactive Oxygen Species Production, Acidic Cytosolic pH and Upregulated Na+/H+ Exchanger (NHE) in Dicer Deficient CD4+ T Cells.

    Science.gov (United States)

    Singh, Yogesh; Zhou, Yuetao; Zhang, Shaqiu; Abdelazeem, Khalid N M; Elvira, Bernat; Salker, Madhuri S; Lang, Florian

    2017-01-01

    MicroRNAs (miRNAs) negatively regulate gene expression at a post-transcriptional level. Dicer, a cytoplasmic RNase III enzyme, is required for the maturation of miRNAs from precursor miRNAs. Dicer, therefore, is a critical enzyme involved in the biogenesis and processing of miRNAs. Several biological processes are controlled by miRNAs, including the regulation of T cell development and function. T cells generate reactive oxygen species (ROS) with parallel H+ extrusion accomplished by the Na+/H+-exchanger 1 (NHE1). The present study explored whether ROS production, as well as NHE1 expression and function are sensitive to the lack of Dicer (miRNAs deficient) and could be modified by individual miRNAs. CD4+ T cells were isolated from CD4 specific Dicer deficient (DicerΔ/Δ) mice and the respective control mice (Dicerfl/fl). Transcript and protein levels were quantified with RT-PCR and Western blotting, respectively. For determination of intracellular pH (pHi) cells were incubated with the pH sensitive dye bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) and Na+/H+ exchanger (NHE) activity was calculated from re-alkalinization after an ammonium pulse. Changes in cell volume were measured using the forward scatter in flow cytometry, and ROS production utilizing 2',7' -dichlorofluorescin diacetate (DCFDA) fluorescence. Transfection of miRNA-control and mimics in T cells was performed using DharmaFECT3 reagent. ROS production, cytosolic H+ concentration, NHE1 transcript and protein levels, NHE activity, and cell volume were all significantly higher in CD4+ T cells from DicerΔ/Δ mice than in CD4+ T cells from Dicerfl/fl mice. Furthermore, individual miR-200b and miR-15b modify pHi and NHE activity in Dicerfl/fl and DicerΔ/Δ CD4+ T cells, respectively. Lack of Dicer leads to oxidative stress, cytosolic acidification, upregulated NHE1 expression and activity as well as swelling of CD4+ T cells, functions all reversed by miR-15b or miR-200b. © 2017 The Author

  13. The use of flow cytometry to monitor chitin synthesis in regenerating protoplasts of Candida albicans.

    Science.gov (United States)

    Hector, R F; Braun, P C; Hart, J T; Kamarck, M E

    1990-01-01

    Flow cytometry was used to monitor chitin synthesis in regenerating protoplasts of the yeast Candida albicans. Comparisons of cells stained with Calcofluor White, a fluorochrome with known affinity for chitin, and cells incubated in the presence of N-[3H]-acetylglucosamine, the precursor substrate for chitin, showed a linear relationship between fluorescence and incorporation of label over time. Changes in both the fluorescence and light scatter of regenerating protoplasts treated with inhibitors of fungal chitin synthase were also quantitated by flow cytometry.

  14. Transient and stable expression of marker genes in cotransformed Petunia protoplasts in relation to X-ray and UV-irradiation

    International Nuclear Information System (INIS)

    Benediktsson, I.; Köhler, F.; Schieder, O.

    1991-01-01

    Irradiation of protoplasts with X-rays or ultraviolet light does not seem to influence the level of transient expression of foreign DNA in Petunia protoplasts, whereas the number of stably transformed colonies is significantly raised. This may indicate that irradiation influences integration and/or the expression of marker genes and does not result in enhanced uptake rates of plasmids into protoplasts and cell nuclei. Co-transformation with plasmids carrying a gene for kanamycin resistance (neomycin phosphotransferase II) and a gene for hygromycin resistance (hygromycin phosphotransferase) revealed that the cotransformation rates were not stimulated by irradiation when measuring expression

  15. High efficiency protoplast isolation from in vitro cultures and hairy ...

    African Journals Online (AJOL)

    In vitro cultures of the medicinal plant Maesa lanceolata were established to enable the cultivation of plant material for the production of protoplasts. Callus cultures were initiated using leaves collected from shoot cultures and the root tips from hairy root cultures obtained upon Agrobacterium rhizogenes transformation.

  16. Patterns of indole alkaloids synthesis in response to heat shock, 5-azacytidine and Na-butyrate treatment of cultured catharanthus roseus mesophyll protoplasts

    International Nuclear Information System (INIS)

    Saleem, M.; Cutler, A.J.

    1986-01-01

    Alkaloids of C. roseus are in high demand for therapeutic and other reasons. Cultured Catharanthus cells can produce limited quantities of these alkaloids. The authors have found that cultured mesophyll protoplasts in the presence of 14 C-Tryptamine are capable of synthesizing alkaloids. The pattern of alkaloids synthesis changes when protoplasts are subjected to a heat shock at 37 0 C. The heat shocked protoplasts incorporated 33% more 14 C-Tryptamine and produced 3 new types of alkaloids. Treatment of protoplasts with 5-azacytidine, a DNA hypomethylating agent and Na-butyrate which induces hyperacetylation of histones produced qualitative and quantitative changes in the alkaloid pattern. Four new alkaloids following the above treatments were detected by TLC and HPLC of the extracts. It is suggested that the alkaloid pattern of the cultured protoplasts can be altered by treatment with compounds known as regulators of gene expression. Work is in progress to isolate and identify these new alkaloids

  17. Basidiospore and Protoplast Regeneration from Raised Fruiting Bodies of Pathogenic Ganoderma boninense.

    Science.gov (United States)

    Govender, Nisha T; Mahmood, Maziah; Seman, Idris A; Mui-Yun, Wong

    2016-08-26

    Ganoderma boninense, a phytopathogenic white rot fungus had sought minimal genetic characterizations despite huge biotechnological potentials. Thus, efficient collection of fruiting body, basidiospore and protoplast of G. boninense is described. Matured basidiocarp raised under the glasshouse conditions yielded a total of 8.3 × 104 basidiospores/ml using the low speed centrifugation technique. Mycelium aged 3-day-old treated under an incubation period of 3 h in lysing enzyme from Trichoderma harzianum (10 mg/ml) suspended in osmotic stabilizer (0.6 M potassium chloride and 20 mM dipotassium phosphate buffer) yielded the highest number of viable protoplasts (8.9 × 106 single colonies) among all possible combinations tested (regeneration media, age of mycelium, osmotic stabilizer, digestive enzyme and incubation period).

  18. Uniformity of plants regenerated from orange (Citrus sinensis Osb.) protoplasts.

    Science.gov (United States)

    Kobayashi, S

    1987-05-01

    Using 25 plants (protoclones) regenerated from orange (Citrus sinensis Osb.) protoplasts, several characters, including leaf and flower morphology, leaf oil, isozyme patterns and chromosome number, were examined. No significant variations in each character were recorded among the protoclones. Uniformity observed among protoclones was identical to that of nucellar seedlings.

  19. pHlash: a new genetically encoded and ratiometric luminescence sensor of intracellular pH.

    Science.gov (United States)

    Zhang, Yunfei; Xie, Qiguang; Robertson, J Brian; Johnson, Carl Hirschie

    2012-01-01

    We report the development of a genetically encodable and ratiometic pH probe named "pHlash" that utilizes Bioluminescence Resonance Energy Transfer (BRET) rather than fluorescence excitation. The pHlash sensor-composed of a donor luciferase that is genetically fused to a Venus fluorophore-exhibits pH dependence of its spectral emission in vitro. When expressed in either yeast or mammalian cells, pHlash reports basal pH and cytosolic acidification in vivo. Its spectral ratio response is H(+) specific; neither Ca(++), Mg(++), Na(+), nor K(+) changes the spectral form of its luminescence emission. Moreover, it can be used to image pH in single cells. This is the first BRET-based sensor of H(+) ions, and it should allow the approximation of pH in cytosolic and organellar compartments in applications where current pH probes are inadequate.

  20. pHlash: a new genetically encoded and ratiometric luminescence sensor of intracellular pH.

    Directory of Open Access Journals (Sweden)

    Yunfei Zhang

    Full Text Available We report the development of a genetically encodable and ratiometic pH probe named "pHlash" that utilizes Bioluminescence Resonance Energy Transfer (BRET rather than fluorescence excitation. The pHlash sensor-composed of a donor luciferase that is genetically fused to a Venus fluorophore-exhibits pH dependence of its spectral emission in vitro. When expressed in either yeast or mammalian cells, pHlash reports basal pH and cytosolic acidification in vivo. Its spectral ratio response is H(+ specific; neither Ca(++, Mg(++, Na(+, nor K(+ changes the spectral form of its luminescence emission. Moreover, it can be used to image pH in single cells. This is the first BRET-based sensor of H(+ ions, and it should allow the approximation of pH in cytosolic and organellar compartments in applications where current pH probes are inadequate.

  1. Isolation and culture of protoplasts of Côte d'Ivoire's pearl millet ...

    African Journals Online (AJOL)

    SARAH

    2015-08-31

    . Journal of Biology and Chemical Science 8 (5):. 2222-2231. Timbo de Oliveira AL, Davide LC, Pereira Pinto JEB,. Pereira AV, 2010. Protoplast production from. Napier grass and Pearl millet triploid hybrids.Ciens.Agrotec.

  2. Transformation of haploid, microspore-derived cell suspension protoplasts of rice (Oryza sativa L.).

    Science.gov (United States)

    Chaïr, H; Legavre, T; Guiderdoni, E

    1996-06-01

    We compared the transient activity of three cereal gene-derived promoter-gus fusions and the efficiency of selection mediated by three different selectable genes in a polyethylene glycol transformation system with haploid cell suspension protoplasts of rice. The maize ubiquitin promoter was found to be the most active in transformed protoplasts, and selection on ammonium glufosinate mediated by the bar gene was the most efficient for producing resistant calluses. Cotransformation of protoplasts with two separate plasmids carrying the gus and the bar genes, at either a 2∶1 or 1∶1 ratio, led to 0.8 × 10(-5) and 1.6 × 10(-5) resistant callus recovery frequencies and 59.7 and 37.9 cotransformation efficiencies respectively. No escapes were detected in dot blot analyses of 100 resistant calluses with a probe consisting of the bar coding region. Cotransformation efficiency, based on resistance to basta and β-glucuronidase staining of the leaf tissue of 115 regenerated plants, was 47%. Resistance tests and Southern analysis of seed progenies of three diploid transgenic plants demonstrated homozygous integration of multiple copies of the transgene at one locus at least in the first plant, heterozygous integration at one locus in the second plant and heterozygous integration at two loci in the third plant.

  3. Alterations in cytosol free calcium in horseradish roots simultaneously exposed to lanthanum(III) and acid rain.

    Science.gov (United States)

    Zhang, Xuanbo; Wang, Lihong; Zhou, Anhua; Zhou, Qing; Huang, Xiaohua

    2016-04-01

    The extensive use of rare earth elements (REEs) has increased their environmental levels. REE pollution concomitant with acid rain in many agricultural regions can affect crop growth. Cytosol free calcium ions (Ca(2+)) play an important role in almost all cellular activities. However, no data have been reported regarding the role of cytosol free Ca(2+) in plant roots simultaneously exposed to REE and acid rain. In this study, the effects of exposures to lanthanum(III) and acid rain, independently and in combination, on cytosol free Ca(2+) levels, root activity, metal contents, biomass, cytosol pH and La contents in horseradish roots were investigated. The simultaneous exposures to La(III) and acid rain increased or decreased the cytosol free Ca(2+) levels, depending on the concentration of La(III), and these effects were more evident than independent exposure to La(III) or acid rain. In combined exposures, cytosol free Ca(2+) played an important role in the regulation of root activity, metal contents and biomass. These roles were closely related to La(III) dose, acid rain strength and treatment mode (independent exposure or simultaneous exposure). A low concentration of La(III) (20 mg L(-1)) could alleviate the adverse effects on the roots caused by acid rain, and the combined exposures at higher concentrations of La(III) and acid rain had synergic effects on the roots. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Subcellular site and nature of intracellular cadmium in plants

    International Nuclear Information System (INIS)

    Wagner, G.J.

    1979-01-01

    The mechanisms underlying heavy metal accumulation, toxicity, and tolerance in higher plants are poorly understood. Since subcellular processes are undoubtedly involved in all these phenomena, it is of interest to study the extent, subcellular site and nature of intracellularly accumulated cadmium in higher plants. Whole plants supplied 109 CdCl 2 or 112 CdSO 4 accumulated Cd into roots and aerial tissues. Preparation of protoplasts from aerial tissues followed by subcellular fractionation of the protoplasts to obtain intact vacuoles, chloroplasts and cytosol revealed the presence of Cd in the cytosol but not in vacuoles or chloroplasts. No evidence was obtained for the production of volatile Cd complexes in tobacco

  5. Tomato protoplast DNA transformation : physical linkage and recombination of exogenous DNA sequences

    NARCIS (Netherlands)

    Jongsma, Maarten; Koornneef, Maarten; Zabel, Pim; Hille, Jacques

    1987-01-01

    Tomato protoplasts have been transformed with plasmid DNA's, containing a chimeric kanamycin resistance gene and putative tomato origins of replication. A calcium phosphate-DNA mediated transformation procedure was employed in combination with either polyethylene glycol or polyvinyl alcohol. There

  6. Construction and evaluation of an exopolysaccharide-producing engineered bacterial strain by protoplast fusion for microbial enhanced oil recovery.

    Science.gov (United States)

    Sun, Shanshan; Luo, Yijing; Cao, Siyuan; Li, Wenhong; Zhang, Zhongzhi; Jiang, Lingxi; Dong, Hanping; Yu, Li; Wu, Wei-Min

    2013-09-01

    Enterobacter cloacae strain JD, which produces water-insoluble biopolymers at optimal temperature of 30°C, and a thermophilic Geobacillus strain were used to construct an engineered strain for exopolysaccharide production at high temperatures by protoplast fusion. The obtained fusant strain ZR3 produced exopolysaccharides at up to 45°C with optimal growth temperature at 35°C. The fusant produced exopolysaccharides of approximately 7.5 g/L or more at pH between 7.0 and 9.0. The feasibility of the enhancement of crude oil recovery with the fusant was tested in a sand-packed column at 40°C. The results demonstrated that bioaugmentation of the fusant was promising approach for MEOR. Mass growth of the fusant was confirmed in fermentor tests. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Cytosolic calcium homeostasis in fungi: Roles of plasma membrane transport and intracellular sequestration of calcium

    International Nuclear Information System (INIS)

    Miller, A.J.; Vogg, G.; Sanders, D.

    1990-01-01

    Cytosolic free calcium ([Ca 2+ ] c ) has been measured in the mycelial fungus Neurospora crassa with Ca 2+ - selective microelectrodes. The mean value of [Ca 2+ ] c is 92 ± 15 nM and it is insensitive to external pH values between 5.8 and 8.4. Simultaneous measurement of membrane potential enables the electrochemical potential difference for Ca 2+ across the plasma membrane to be estimated as about -60 kJmol -1 - a value that cannot be sustained either by a simple Ca 2+ - ATPase, or, in alkaline conditions, by straightforward H + /Ca 2+ exchange with a stoichiometric ratio of + /Ca 2+ . The authors propose that the most likely alternative mechanism of Ca 2+ efflux is ATP-driven H + /Ca 2+ exchange, with a stoichiometric ratio of at least 2 H + /Ca 2+ . The increase in [Ca 2+ ] c in the presence of CN - at pH 8.4 is compared with 45 Ca 2+ influx under the same conditions. The proportion of entering Ca 2+ remaining free in the cytosol is only 8 x 10 -5 , and since the concentration of available chelation sites on Ca 2+ binding proteins is unlikely to exceed 100 μM, a major role for the fungal vacuole in short-term Ca 2+ homeostasis is indicated. This notion is supported by the observation that cytosolic Ca 2+ homeostasis is disrupted by a protonophore, which rapidly abolishes the driving force for Ca 2+ uptake into fungal vacuoles

  8. Effects of ultraviolet radiation on viability of isolated Beta vulgaris and Hordeum vulgare protoplasts

    International Nuclear Information System (INIS)

    Bornman, J.F.; Bjoern, L.O.; Bornman, C.H.

    1982-01-01

    Estimates of viability as measured by vital straining with fluorescein diacetate were carried out on freshly isolated and partially aged (16-hour-old) Beta vulgaris and Hordeum vulgare mesophyll protoplasts following irradiation with UV-B. Damage to the photosynthetic system by UV-B was determined by delayed light emission (DLE). In the case of freshly isolated Protoplasts Beta was approximately 30% more susceptible than Hordeum following 3h irradiation, with viability decreasing from 90% to 40%. After storage of protoplasts on ice for 16 h UV-B radiation markedly depressed viability in both species, but in the case of Hordeum there was a substantial initial loss of nearly 70% in viability over the first hour of irradiation. The first 10 min of UV-B radiation decreased the intensity of DLE by 40% without appreciably affecting the decay rate. Longer treatment times did not give a proportional effect so that even after 60 min of UV-B the inhibition did not exceed 60%. This suggested that although the enzyme system responsible for FDA hydrolysis may be partially inactivated (viability was 75-80% as compared with 90% in the control), the UV-B did not penetrate the innermost parts of the chloroplasts, but left some thylakoids undamaged. (orig.)

  9. Cytosolic adenylate changes during exercise in prawn muscle

    International Nuclear Information System (INIS)

    Thebault, M.T.; Raffin, J.P.; Pichon, R.

    1994-01-01

    31 P NMR and biochemical analysis were used to assess the effect of heavy exercise on cytosolic adenylate levels in Palaemon serratus abdominal muscle. At rest, the MgATP level corresponded to 85.5% of the total ATP content. The cytosolic adenylate concentrations of the prawn muscle are considerably different from that of vertebrates. The percentage of ADP bound to myofilaments was lower in the prawn muscle. Consequently, the level of free cytosolic AMP was greatly higher (thirty fold higher) than in vertebrate muscle. During vigorous work, the concentration of MgATP dropped and the cytosolic AMP accumulated, while the cytosolic adenine nucleotide pool decreased significantly. The phosphorylation potential value and the ATP/ADP ratio, calculated from the cytosolic adenylate, dropped acutely during the whole period of muscular contractions. On the contrary, the adenylate energy charge calculated from the cytosolic adenylate decreased slightly. Therefore, even in muscle displaying no AMP deamination, the adenylate charge is stabilized during exercise by the dynamic changes between cytosolic and bound adenylate species. (author). 21 refs., 2 tabs

  10. Cytosolic glutamine synthetase in barley

    DEFF Research Database (Denmark)

    Thomsen, Hanne Cecilie

    remobilisation from ageing plant parts. Thus, GS is highly involved in determining crop yield and NUE. The major objective of this PhD project was to investigate the NUE properties of transgenic barley designed to constitutively overexpress a GS1 isogene (HvGS1.1). These transgenic lines exhibited an increased...... for N demand. Of the GS isogenes, only the transcript levels of root HvGS1.1 increased when plants were transferred from high to low N. This change coincided with an increase in total GS activity. Pronounced diurnal variation was observed for root nitrate transporter genes and GS isogenes in both root...... fertilizer requirement. The enzyme glutamine synthetase (GS) has been a major topic in plant nitrogen research for decades due to its central role in plant N metabolism. The cytosolic version of this enzyme (GS1) plays an important role in relation to primary N assimilation as well as in relation to N...

  11. Influence of protoplast fusion between two Trichoderma spp. on extracellular enzymes production and antagonistic activity.

    Science.gov (United States)

    Hassan, Mohamed M

    2014-11-02

    Biological control plays a crucial role in grapevine pathogens disease management. The cell-wall degrading enzymes chitinase, cellulase and β-glucanase have been suggested to be essential for the mycoparasitism activity of Trichoderma species against grapevine fungal pathogens. In order to develop a useful strain as a single source of these vital enzymes, it was intended to incorporate the characteristics of two parental fungicides tolerant mutants of Trichoderma belonging to the high chitinase producing species T. harzianum and the high cellulase producing species T. viride , by fusing their protoplasts. The phylogeny of the parental strains was carried out using a sequence of the 5.8S-ITS region. The BLAST of the obtained sequence identified these isolates as T. harzianum and T. viride . Protoplasts were isolated using lysing enzymes and were fused using polyethylene glycol. The fused protoplasts have been regenerated on protoplast regeneration minimal medium supplemented with two selective fungicides. Among the 40 fast growing fusants, 17 fusants were selected based on their enhanced growth on selective media for further studies. The fusant strains were growing 60%-70% faster than the parents up to third generation. All the 17 selected fusants exhibited morphological variations. Some fusant strains displayed threefold increased chitinase enzyme activity and twofold increase in β-glucanase enzyme activity compared to the parent strains. Most fusants showed powerful antagonistic activity against Macrophomin aphaseolina , Pythium ultimum and Sclerotium rolfsii pathogens. Fusant number 15 showed the highest inhibition percentage (92.8%) against M. phaseolina and P. ultimum, while fusant number 9 showed the highest inhibition percentage (98.2%) against the growth of S. rolfsii. A hyphal intertwining and degradation phenomenon was observed by scanning electron microscope. The Trichoderma antagonistic effect against pathogenic fungal mycelia was due to the

  12. Transposition of a Ds element from a plasmid into the plant genome in Nicotiana plumbaginifolia protoplast-derived cells.

    Science.gov (United States)

    Houba-Hérin, N; Domin, M; Pédron, J

    1994-07-01

    Nicotiana plumbaginifolia haploid protoplasts were co-transformed with two plasmids, one with a NPT-II/Ds element and one with a gene encoding an amino-terminal truncated Ac transposase. It is shown that Ds can efficiently transpose from extrachromosomal DNA to N. plumbaginifolia chromosomes when the Ac transposase gene is present in trans. Ds has been shown to have transposed into the plant genome in a limited number of copies (1.9 copies per genome), for 21/32 transgenic lines tested. The flanking sequences present in the original plasmid are missing in these 21 plants. In only two of 21 plants was part of the transposase construct integrated. By segregation analysis of transgenic progeny, Ds was shown to be present in the heterozygous state in 10 lines even though haploid protoplasts had been originally transformed. This observation could indicate that integration occurred after or during DNA replication that leads to protoplast diploidization.

  13. Evidence for some signal transduction elements involved in UV-light-dependent responses in parsley protoplasts

    International Nuclear Information System (INIS)

    Frohnmeyer, H.; Bowler, C.; Schäfer, E.

    1997-01-01

    The signalling pathways used by UV-light are largely unknown. Using protoplasts from a heterotrophic parsley (Petroselinum crispum L.) cell culture that exclusively respond to UV-B light between 300 and 350 nm with a fast induction of genes encoding flavonoid biosynthetic enzymes, information was obtained about the UV-light signal transduction pathway for chalcone synthase (CHS) and phenylalanine ammonia-lyase (PAL) gene expression. Pharmacological effectors which influence intracellular calcium levels, calmodulin and the activity of serine/threonine kinases also changed the UV-light-dependent expression of these genes. This evaluation indicated the participation of these components on the UV-B-mediated signal transduction cascade to CHS. In contrast, neither membrane-permeable cyclic GMP nor the tyrosine kinase inhibitor genistein affected CHS or PAL expression. Similar results were obtained in protoplasts, which have been transiently transformed with CHS-promoter/GUS (β-glucuronidase) reporter fusion constructs. The involvement of calcium and calmodulin was further indicated in a cell-free light-responsive in vitro transcription system from evacuolated parsley protoplasts. In conclusion, there is evidence now that components of the UV-light-dependent pathway leading to the CHS-promoter are different from the previously characterized cGMP-dependent pathway to CHS utilized by phytochrome in soybean (Glycine max) and tomato seedlings (Lycopersicon esculentum). (author)

  14. AGGREGATION AND FUSION OF PLANT-PROTOPLASTS AFTER SURFACE-LABELING WITH BIOTIN AND AVIDIN

    NARCIS (Netherlands)

    VANKESTEREN, WJP; MOLEMA, E; TEMPELAAR, MJ

    1993-01-01

    In mass electrofusion systems with aggregation of protoplasts by alignment, the yield and composition of fusion products can be predicted by a simple model. Through computer simulation, upper limits were found for the yield of binary and multi fusions. To overcome constraints on binary products,

  15. The Arabidopsis cytosolic proteome

    DEFF Research Database (Denmark)

    Ito, Jun; Parsons, Harriet Tempé; Heazlewood, Joshua L.

    2014-01-01

    compartments. However, a detailed study of enriched cytosolic fractions from Arabidopsis cell culture has been performed only recently, with over 1,000 proteins reproducibly identified by mass spectrometry. The number of proteins allocated to the cytosol nearly doubles to 1,802 if a series of targeted...

  16. Improved inhibitor tolerance in xylose-fermenting yeast Spathaspora passalidarum by mutagenesis and protoplast fusion

    DEFF Research Database (Denmark)

    Hou, Xiaoru; Yao, Shuo

    2012-01-01

    The xylose-fermenting yeast Spathaspora passalidarum showed excellent fermentation performance utilizing glucose and xylose under anaerobic conditions. But this yeast is highly sensitive to the inhibitors such as furfural present in the pretreated lignocellulosic biomass. In order to improve...... from fusion of the protoplasts of S. passalidarum M7 and a robust yeast, Saccharomyces cerevisiae ATCC 96581, were able to grow in 75% WSLQ and produce around 0.4 g ethanol/g consumed xylose. Among the selected hybrid strains, the hybrid FS22 showed the best fermentation capacity in 75% WSLQ...... the inhibitor tolerance of this yeast, a combination of UV mutagenesis and protoplast fusion was used to construct strains with improved performance. Firstly, UVinduced mutants were screened and selected for improved tolerance towards furfural. The most promised mutant, S. passalidarum M7, produced 50% more...

  17. SCFSLF-mediated cytosolic degradation of S-RNase is required for cross-pollen compatibility in S-RNase-based self-incompatibility in Petunia hybrida

    Directory of Open Access Journals (Sweden)

    Yongbiao eXue

    2014-07-01

    Full Text Available Many flowering plants adopt self-incompatibility (SI to maintain their genetic diversity. In species of Solanaceae, Plantaginaceae and Rosaceae, SI is genetically controlled by a single S-locus with multiple haplotypes. The S-locus has been shown to encode S-RNases expressed in pistil and multiple SLF (S-locus F-box proteins in pollen controlling the female and male specificity of SI, respectively. S-RNases appear to function as a cytotoxin to reject self-pollen. In addition, SLFs have been shown to form SCF (SKP1/Cullin1/F-box complexes to serve as putative E3 ubiquitin ligase to interact with S-RNases. Previously, two different mechanisms, the S-RNase degradation and the S-RNase compartmentalization, have been proposed as the restriction mechanisms of S-RNase cytotoxicity allowing compatible pollination. In this study, we have provided several lines of evidence in support of the S-RNase degradation mechanism by a combination of cellular, biochemical and molecular biology approaches. First, both immunogold labeling and subcellular fractionation assays showed that two key pollen SI factors, PhSLF-S3L and PhSSK1 (SLF-interacting SKP1-like1 from Petunia hybrida, a Solanaceous species, are co-localized in cytosols of both pollen grains and tubes. Second, PhS3L-RNases are mainly detected in the cytosols of both self and non-self pollen tubes after pollination. Third, we found that both PhS3-RNases and PhS3L-RNases directly interact with PhSLF-S3L by yeast two-hybrid and co-immunoprecipitation assays. Fourth, S-RNases are specifically degraded in compatible pollen tubes by non-self SLF action. Taken together, our results demonstrate that SCFSLF-mediated non-self S-RNase degradation occurs in the cytosol of pollen tube through the ubiquitin/26S proteasome system serving as the major mechanism to neutralize S-RNase cytotoxicity during compatible pollination in P. hybrida.

  18. Properties of Single K+ and Cl− Channels in Asclepias tuberosa Protoplasts 1

    Science.gov (United States)

    Schauf, Charles L.; Wilson, Kathryn J.

    1987-01-01

    Potassium and chloride channels were characterized in Asclepias tuberosa suspension cell derived protoplasts by patch voltage-clamp. Whole-cell currents and single channels in excised patches had linear instantaneous current-voltage relations, reversing at the Nernst potentials for K+ and Cl−, respectively. Whole cell K+ currents activated exponentially during step depolarizations, while voltage-dependent Cl− channels were activated by hyperpolarizations. Single K+ channel conductance was 40 ± 5 pS with a mean open time of 4.5 milliseconds at 100 millivolts. Potassium channels were blocked by Cs+ and tetraethylammonium, but were insensitive to 4-aminopyridine. Chloride channels had a single-channel conductance of 100 ± 17 picosiemens, mean open time of 8.8 milliseconds, and were blocked by Zn2+ and ethacrynic acid. Whole-cell Cl− currents were inhibited by abscisic acid, and were unaffected by indole-3-acetic acid and 2,4-dichlorophenoxyacetic acid. Since internal and external composition can be controlled, patch-clamped protoplasts are ideal systems for studying the role of ion channels in plant physiology and development. Images Fig. 5 PMID:16665712

  19. Induction and catabolite repression of α-glucosidase synthesis in protoplasts of Saccharomyces carlsbergensis

    NARCIS (Netherlands)

    Wijk, R. van; Ouwehand, J.; Bos, T. van den; Koningsberger, V.V.

    1969-01-01

    1. 1. Kinetic data on the repression, the derepression and the induction of α-glucosidase synthesis in protoplasts of Saccharomyces carlsbergensis suggested that some site other than the stereospecific site for the induction by maltose was involved in the repression by glucose. 2. 2. A study of the

  20. The pH sensor for flavivirus membrane fusion

    OpenAIRE

    Harrison, Stephen C.

    2008-01-01

    Viruses that infect cells by uptake through endosomes have generally evolved to ?sense? the local pH as part of the mechanism by which they penetrate into the cytosol. Even for the very well studied fusion proteins of enveloped viruses, identification of the specific pH sensor has been a challenge, one that has now been met successfully, for flaviviruses, by Fritz et al. (Fritz, R., K. Stiasny, and F.X. Heinz. 2008. J. Cell Biol. 183:353?361) in this issue. Thorough mutational analysis of con...

  1. Analysis of the effects of cerium on calcium ion in the protoplasts of ...

    African Journals Online (AJOL)

    The laser-scanning confocal microscopy has become a routine technique and indispensable tool for cell biological studies. In this study, the probe Fluo-3 AM was used to research the instantaneous changes of calcium ion (Ca2+) in the protoplasts of Arabidopsis thaliana. The laser-scanning mode of confocal microscope is ...

  2. Live imaging of intra- and extracellular pH in plants using pHusion, a novel genetically encoded biosensor

    Science.gov (United States)

    Gjetting, Kisten Sisse Krag; Ytting, Cecilie Karkov; Schulz, Alexander; Fuglsang, Anja Thoe

    2012-01-01

    Changes in pH are now widely accepted as a signalling mechanism in cells. In plants, proton pumps in the plasma membrane and tonoplast play a key role in regulation of intracellular pH homeostasis and maintenance of transmembrane proton gradients. Proton transport in response to external stimuli can be expected to be finely regulated spatially and temporally. With the ambition to follow such changes live, a new genetically encoded sensor, pHusion, has been developed. pHusion is especially designed for apoplastic pH measurements. It was constitutively expressed in Arabidopsis and targeted for expression in either the cytosol or the apoplast including intracellular compartments. pHusion consists of the tandem concatenation of enhanced green fluorescent protein (EGFP) and monomeric red fluorescent protein (mRFP1), and works as a ratiometric pH sensor. Live microscopy at high spatial and temporal resolution is highly dependent on appropriate immobilization of the specimen for microscopy. Medical adhesive often used in such experiments destroys cell viability in roots. Here a novel system for immobilizing Arabidopsis seedling roots for perfusion experiments is presented which does not impair cell viability. With appropriate immobilization, it was possible to follow changes of the apoplastic and cytosolic pH in mesophyll and root tissue. Rapid pH homeostasis upon external pH changes was reflected by negligible cytosolic pH fluctuations, while the apoplastic pH changed drastically. The great potential for analysing pH regulation in a whole-tissue, physiological context is demonstrated by the immediate alkalinization of the subepidermal apoplast upon external indole-3-acetic acid administration. This change is highly significant in the elongation zone compared with the root hair zone and control roots. PMID:22407646

  3. Live imaging of intra- and extracellular pH in plants using pHusion, a novel genetically encoded biosensor.

    Science.gov (United States)

    Gjetting, Kisten Sisse Krag; Ytting, Cecilie Karkov; Schulz, Alexander; Fuglsang, Anja Thoe

    2012-05-01

    Changes in pH are now widely accepted as a signalling mechanism in cells. In plants, proton pumps in the plasma membrane and tonoplast play a key role in regulation of intracellular pH homeostasis and maintenance of transmembrane proton gradients. Proton transport in response to external stimuli can be expected to be finely regulated spatially and temporally. With the ambition to follow such changes live, a new genetically encoded sensor, pHusion, has been developed. pHusion is especially designed for apoplastic pH measurements. It was constitutively expressed in Arabidopsis and targeted for expression in either the cytosol or the apoplast including intracellular compartments. pHusion consists of the tandem concatenation of enhanced green fluorescent protein (EGFP) and monomeric red fluorescent protein (mRFP1), and works as a ratiometric pH sensor. Live microscopy at high spatial and temporal resolution is highly dependent on appropriate immobilization of the specimen for microscopy. Medical adhesive often used in such experiments destroys cell viability in roots. Here a novel system for immobilizing Arabidopsis seedling roots for perfusion experiments is presented which does not impair cell viability. With appropriate immobilization, it was possible to follow changes of the apoplastic and cytosolic pH in mesophyll and root tissue. Rapid pH homeostasis upon external pH changes was reflected by negligible cytosolic pH fluctuations, while the apoplastic pH changed drastically. The great potential for analysing pH regulation in a whole-tissue, physiological context is demonstrated by the immediate alkalinization of the subepidermal apoplast upon external indole-3-acetic acid administration. This change is highly significant in the elongation zone compared with the root hair zone and control roots.

  4. Effect of X-Rays on Growth Rate of Rose Shoot Cultures and the Ability of Isolated Protoplasts to Form Cell Colonies

    International Nuclear Information System (INIS)

    Moustafa, R. A. K.

    2004-01-01

    The popularity of rose as a garden plant, allied with its use in the production of cut flowers and also as a source of aromatic rose oils, make it one of the most important ornamental crops. Roses, however, have suffered from a narrow genetic base to which only few species have contributed significantly. In vitro culture of plants might facilitate the improvement of rose via the exploitation of somaclonal variation to generate new genetic variability and selection within the variation for desirable traits. The application of mutagens for in vitro cultures, in addition to the induced mutations, may lead to increase the somaclonal variation, thus providing additional variation for selection. On the other hand, plant protoplasts offer exciting possibilities to establish in vitro selection programs based on single cells. Induced variation in isolated protoplasts using mutagen agents may be one mean to select useful mutants. Thus the present experiments were conducted to determine the effect of X-rays on shoot cultures and the isolated protoplasts of rose (Rosa sp.). The materials consisted of the three rose varieties Rosa wichuriana, Paricer charm and Heckenzauber.The applied doses were 0, 10, 20, 30, 40, 50 and 60 Gy. Obtained results indicated that the genotypes differed in their sensitivity to X-rays. Rosa wichuriana seemed to be the most sensitive variety to radiation, where a dose of 20 Gy caused approximately 50% reduction in growth rate of shoot cultures, while the same dose decreased the growth rate of Paricer charm only by 25% and did not affect the growth of Heckenzauber. Results also revealed that the ability of irradiated protoplasts to form cell colonies increased when a dose of 10 Gy was performed. Doses higher than that level caused gradual decreasing in the forming of cell colonies, but however, the protoplasts could form colonies even when a dose of 60 Gy was applied. (Author)

  5. La3+ uptake and its effect on the cytoskeleton in root protoplasts of Zea mays L.

    Science.gov (United States)

    Liu, Min; Hasenstein, Karl H

    2005-03-01

    La(3+) ions are known to antagonize Ca(2+) and are used as a Ca(2+) channel blocker but little is known on the direct effects of La(3+). Micromolar La(3+) concentrations promoted root growth while higher concentrations were inhibitory. The uptake of La(3+) in maize root protoplasts revealed a membrane binding component (0.14 and 0.44 pmol min(-1) protoplast(-1) for 100 and 1,000 microM La(3+)) followed by a slower concentration and time-dependent uptake. Uptake was reduced by Ca(2+), but had no substantial effect on other ions. La(3+) shifted microtubule organization from random to parallel but caused aggregation of microfilaments. Our data suggest that La(3+) is taken up into plant cells and affects growth via stabilization of the cytoskeleton.

  6. Unique hepatic cytosolic arginase evolved independently in ureogenic freshwater air-breathing teleost, Heteropneustes fossilis.

    Directory of Open Access Journals (Sweden)

    Shilpee Srivastava

    Full Text Available Hepatic cytosolic arginase (ARG I, an enzyme of the urea cycle operating in the liver of ureotelic animals, is reported to be present in an ammoniotelic freshwater air-breathing teleost, Heteropneustes fossilis which has ureogenic potential. Antibodies available against mammalian ARG I showed no cross reactivity with the H. fossilis ARG I. We purified unique ARG I from H. fossilis liver. Purified ARG I is a homotrimer with molecular mass 75 kDa and subunit molecular mass of 24 kDa. The pI value of the enzyme was 8.5. It showed maximum activity at pH 10.5 and 55°C. The Km of purified enzyme for L-arginine was 2.65±0.39 mM. L-ornithine and N(ω-hydroxy-L-arginine showed inhibition of the ARG I activity, with Ki values 0.52±0.02mM and 0.08±0.006mM, respectively. Antibody raised against the purified fish liver ARG I showed exclusive specificity, and has no cross reactivity against fish liver ARG II and mammalian liver ARG I and ARG II. We found another isoform of arginase bound to the outer membrane of the mitochondria which was released by 150-200 mM KCl in the extraction medium. This isoform was immunologically different from the soluble cytosolic and mitochondrial arginase. The results of present study support that hepatic cytosolic arginase evolved in this ureogenic freshwater teleost, H. fossilis. Phylogenetic analysis confirms an independent evolution event that occurred much after the evolution of the cytosolic arginase of ureotelic vertebrates.

  7. On the sulfation of O-desmethyltramadol by human cytosolic sulfotransferases.

    Science.gov (United States)

    Rasool, Mohammed I; Bairam, Ahsan F; Kurogi, Katsuhisa; Liu, Ming-Cheh

    2017-10-01

    Previous studies have demonstrated that sulfate conjugation is involved in the metabolism of the active metabolite of tramadol, O-desmethyltramadol (O-DMT). The current study aimed to systematically identify the human cytosolic sulfotransferases (SULTs) that are capable of mediating the sulfation of O-DMT. The sulfation of O-DMT under metabolic conditions was demonstrated using HepG2 hepatoma cells and Caco-2 human colon carcinoma cells. O-DMT-sulfating activity of thirteen known human SULTs and four human organ specimens was examined using an established sulfotransferase assay. pH-Dependency and kinetic parameters were also analyzed using, respectively, buffers at different pHs and varying O-DMT concentrations in the assays. Of the thirteen human SULTs tested, only SULT1A3 and SULT1C4 were found to display O-DMT-sulfating activity, with different pH-dependency profiles. Kinetic analysis revealed that SULT1C4 was 60 times more catalytically efficient in mediating the sulfation of O-DMT than SULT1A3 at respective optimal pH. Of the four human organ specimens tested, the cytosol prepared from the small intestine showed much higher O-DMT-sulfating activity than cytosols prepared from liver, lung, and kidney. Both cultured HepG2 and Caco-2 cells were shown to be capable of sulfating O-DMT and releasing sulfated O-DMT into cultured media. SULT1A3 and SULT1C4 were the major SULTs responsible for the sulfation of O-DMT. Collectively, the results obtained provided a molecular basis underlying the sulfation of O-DMT and contributed to a better understanding about the pharmacokinetics and pharmacodynamics of tramadol in humans. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  8. Redox characteristics of the eukaryotic cytosol

    DEFF Research Database (Denmark)

    López-Mirabal, H Reynaldo; Winther, Jakob R

    2007-01-01

    The eukaryotic cytoplasm has long been regarded as a cellular compartment in which the reduced state of protein cysteines is largely favored. Under normal conditions, the cytosolic low-molecular weight redox buffer, comprising primarily of glutathione, is highly reducing and reactive oxygen species...... (ROS) and glutathionylated proteins are maintained at very low levels. In the present review, recent progress in the understanding of the cytosolic thiol-disulfide redox metabolism and novel analytical approaches to studying cytosolic redox properties are discussed. We will focus on the yeast model...... organism, Saccharomyces cerevisiae, where the combination of genetic and biochemical approaches has brought us furthest in understanding the mechanisms underlying cellular redox regulation. It has been shown in yeast that, in addition to the enzyme glutathione reductase, other mechanisms may exist...

  9. Cytosolic delivery of materials with endosome-disrupting colloids

    Science.gov (United States)

    Helms, Brett A.; Bayles, Andrea R.

    2016-03-15

    A facile procedure to deliver nanocrystals to the cytosol of live cells that is both rapid and general. The technique employs a unique cationic core-shell polymer colloid that directs nanocrystals to the cytosol of living cells within a few hours of incubation. The present methods and compositions enable a host of advanced applications arising from efficient cytosolic delivery of nanocrystal imaging probes: from single particle tracking experiments to monitoring protein-protein interactions in live cells for extended periods.

  10. Cytosolic PrP Can Participate in Prion-Mediated Toxicity

    Science.gov (United States)

    Thackray, Alana M.; Zhang, Chang; Arndt, Tina

    2014-01-01

    ABSTRACT Prion diseases are characterized by a conformational change in the normal host protein PrPC. While the majority of mature PrPC is tethered to the plasma membrane by a glycosylphosphatidylinositol anchor, topological variants of this protein can arise during its biosynthesis. Here we have generated Drosophila transgenic for cytosolic ovine PrP in order to investigate its toxic potential in flies in the absence or presence of exogenous ovine prions. While cytosolic ovine PrP expressed in Drosophila was predominantly detergent insoluble and showed resistance to low concentrations of proteinase K, it was not overtly detrimental to the flies. However, Drosophila transgenic for cytosolic PrP expression exposed to classical or atypical scrapie prion inocula showed a faster decrease in locomotor activity than similar flies exposed to scrapie-free material. The susceptibility to classical scrapie inocula could be assessed in Drosophila transgenic for panneuronal expression of cytosolic PrP, whereas susceptibility to atypical scrapie required ubiquitous PrP expression. Significantly, the toxic phenotype induced by ovine scrapie in cytosolic PrP transgenic Drosophila was transmissible to recipient PrP transgenic flies. These data show that while cytosolic PrP expression does not adversely affect Drosophila, this topological PrP variant can participate in the generation of transmissible scrapie-induced toxicity. These observations also show that PrP transgenic Drosophila are susceptible to classical and atypical scrapie prion strains and highlight the utility of this invertebrate host as a model of mammalian prion disease. IMPORTANCE During prion diseases, the host protein PrPC converts into an abnormal conformer, PrPSc, a process coupled to the generation of transmissible prions and neurotoxicity. While PrPC is principally a glycosylphosphatidylinositol-anchored membrane protein, the role of topological variants, such as cytosolic PrP, in prion-mediated toxicity and

  11. Comparative conventional- and quantum dot-labelling strategies for LPS binding site detection in Arabidopsis thaliana mesophyll protoplasts

    Directory of Open Access Journals (Sweden)

    Londiwe Siphephise Mgcina

    2015-05-01

    Full Text Available Lipopolysaccharide (LPS from Gram-negative bacteria is recognized as a microbe-associated molecular pattern (MAMP and not only induces an innate immune response in plants, but also stimulates the development of characteristic defense responses. However, identification and characterization of a cell surface LPS-receptor/binding site, as described in mammals, remains elusive in plants. As an amphiphilic, macromolecular lipoglycan, intact LPS potentially contains three MAMP-active regions, represented by the O-polysaccharide chain, the core and the lipid A. Binding site studies with intact labelled LPS were conducted in Arabidopsis thaliana protoplasts and quantified using flow cytometry fluorescence changes. Qdots, which allow non-covalent, hydrophobic labelling were used as a novel strategy in this study and compared to covalent, hydrophilic labelling with Alexa 488. Affinity for LPS-binding sites was clearly demonstrated by concentration-, temperature- and time-dependent increases in protoplast fluorescence following treatment with the labelled LPS. Moreover, this induced fluorescence increase was convincingly reduced following pre-treatment with excess unlabeled LPS, thereby indicating reversibility of LPS binding. Inhibition of the binding process is also reported using endo- and exocytosis inhibitors. Here, we present evidence for the anticipated presence of LPS-specific binding sites in Arabidopsis protoplasts, and furthermore propose Qdots as a more sensitive LPS-labelling strategy in comparison to the conventional Alexa 488 hydrazide label for binding studies.

  12. Cytosolic iron chaperones: Proteins delivering iron cofactors in the cytosol of mammalian cells.

    Science.gov (United States)

    Philpott, Caroline C; Ryu, Moon-Suhn; Frey, Avery; Patel, Sarju

    2017-08-04

    Eukaryotic cells contain hundreds of metalloproteins that are supported by intracellular systems coordinating the uptake and distribution of metal cofactors. Iron cofactors include heme, iron-sulfur clusters, and simple iron ions. Poly(rC)-binding proteins are multifunctional adaptors that serve as iron ion chaperones in the cytosolic/nuclear compartment, binding iron at import and delivering it to enzymes, for storage (ferritin) and export (ferroportin). Ferritin iron is mobilized by autophagy through the cargo receptor, nuclear co-activator 4. The monothiol glutaredoxin Glrx3 and BolA2 function as a [2Fe-2S] chaperone complex. These proteins form a core system of cytosolic iron cofactor chaperones in mammalian cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Probing plasma membrane microdomains in cowpea protoplasts using lipidated GFP-fusion proteins and multimode FRET microscopy

    NARCIS (Netherlands)

    Vermeer, J.E.M.; van Munster, E.B.; Vischer, N.O.; Gadella, T.

    2004-01-01

    Multimode fluorescence resonance energy transfer (FRET) microscopy was applied to study the plasma membrane organization using different lipidated green fluorescent protein (GFP)-fusion proteins co-expressed in cowpea protoplasts. Cyan fluorescent protein (CFP) was fused to the hyper variable region

  14. Analysis of Microbe-Associated Molecular Pattern-Responsive Synthetic Promoters with the Parsley Protoplast System.

    Science.gov (United States)

    Kanofsky, Konstantin; Lehmeyer, Mona; Schulze, Jutta; Hehl, Reinhard

    2016-01-01

    Plants recognize pathogens by microbe-associated molecular patterns (MAMPs) and subsequently induce an immune response. The regulation of gene expression during the immune response depends largely on cis-sequences conserved in promoters of MAMP-responsive genes. These cis-sequences can be analyzed by constructing synthetic promoters linked to a reporter gene and by testing these constructs in transient expression systems. Here, the use of the parsley (Petroselinum crispum) protoplast system for analyzing MAMP-responsive synthetic promoters is described. The synthetic promoter consists of four copies of a potential MAMP-responsive cis-sequence cloned upstream of a minimal promoter and the uidA reporter gene. The reporter plasmid contains a second reporter gene, which is constitutively expressed and hence eliminates the requirement of a second plasmid used as a transformation control. The reporter plasmid is transformed into parsley protoplasts that are elicited by the MAMP Pep25. The MAMP responsiveness is validated by comparing the reporter gene activity from MAMP-treated and untreated cells and by normalizing reporter gene activity using the constitutively expressed reporter gene.

  15. Voltammetric detection of phytochelatin transported across unmodified and protoplast modified model phospholipid membranes

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Tomáš; Nováková, Kateřina; Josypčuk, Bohdan; Sokolová, Romana; Šestáková, Ivana

    2016-01-01

    Roč. 147, č. 1 (2016), s. 165-171 ISSN 0026-9247 R&D Projects: GA ČR(CZ) GAP208/12/1645 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M200401201 Program:M Institutional support: RVO:61388955 Keywords : Barley protoplasts * electrochemical impendance spectroscopy * mercury electrode Subject RIV: CG - Electrochemistry Impact factor: 1.282, year: 2016

  16. In vivo intracellular pH measurements in tobacco and Arabidopsis reveal an unexpected pH gradient in the endomembrane system.

    Science.gov (United States)

    Martinière, Alexandre; Bassil, Elias; Jublanc, Elodie; Alcon, Carine; Reguera, Maria; Sentenac, Hervé; Blumwald, Eduardo; Paris, Nadine

    2013-10-01

    The pH homeostasis of endomembranes is essential for cellular functions. In order to provide direct pH measurements in the endomembrane system lumen, we targeted genetically encoded ratiometric pH sensors to the cytosol, the endoplasmic reticulum, and the trans-Golgi, or the compartments labeled by the vacuolar sorting receptor (VSR), which includes the trans-Golgi network and prevacuoles. Using noninvasive live-cell imaging to measure pH, we show that a gradual acidification from the endoplasmic reticulum to the lytic vacuole exists, in both tobacco (Nicotiana tabacum) epidermal (ΔpH -1.5) and Arabidopsis thaliana root cells (ΔpH -2.1). The average pH in VSR compartments was intermediate between that of the trans-Golgi and the vacuole. Combining pH measurements with in vivo colocalization experiments, we found that the trans-Golgi network had an acidic pH of 6.1, while the prevacuole and late prevacuole were both more alkaline, with pH of 6.6 and 7.1, respectively. We also showed that endosomal pH, and subsequently vacuolar trafficking of soluble proteins, requires both vacuolar-type H(+) ATPase-dependent acidification as well as proton efflux mediated at least by the activity of endosomal sodium/proton NHX-type antiporters.

  17. Cytosolic cholesterol ester hydrolase in adrenal cortex

    OpenAIRE

    Tocher, Douglas R.

    1983-01-01

    Cholesterol ester hydrolase (CEH) in adrenocortical cytosol was known to be phosphorylated and activated, in response to ACTH in a cAMPdependent protein kinase mediated process. The purification of CEH from bovine adrenocortical cytosol was attempted. The use of detergents to solubilise the enzyme from lipid-rich aggregates was investigated and sodium cholate was found to be effective. A purification procedure using cholate solubilised enzyme was developed. The detergent int...

  18. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, S.M.; Habash, D.Z.

    2009-07-02

    Glutamine synthetase assimilates ammonium into amino acids, thus it is a key enzyme for nitrogen metabolism. The cytosolic isoenzymes of glutamine synthetase assimilate ammonium derived from primary nitrogen uptake and from various internal nitrogen recycling pathways. In this way, cytosolic glutamine synthetase is crucial for the remobilization of protein-derived nitrogen. Cytosolic glutamine synthetase is encoded by a small family of genes that are well conserved across plant species. Members of the cytosolic glutamine synthetase gene family are regulated in response to plant nitrogen status, as well as to environmental cues, such as nitrogen availability and biotic/abiotic stresses. The complex regulation of cytosolic glutamine synthetase at the transcriptional to post-translational levels is key to the establishment of a specific physiological role for each isoenzyme. The diverse physiological roles of cytosolic glutamine synthetase isoenzymes are important in relation to current agricultural and ecological issues.

  19. A Protoplast Transient Expression System to Enable Molecular, Cellular, and Functional Studies in Phalaenopsis orchids

    Directory of Open Access Journals (Sweden)

    Hsiang-Yin Lin

    2018-06-01

    Full Text Available The enigmatic nature of the specialized developmental programs of orchids has fascinated plant biologists for centuries. The recent releases of orchid genomes indicate that orchids possess new gene families and family expansions and contractions to regulate a diverse suite of developmental processes. However, the extremely long orchid life cycle and lack of molecular toolkit have hampered the advancement of orchid biology research. To overcome the technical difficulties and establish a platform for rapid gene regulation studies, in this study, we developed an efficient protoplast isolation and transient expression system for Phalaenopsis aphrodite. This protocol was successfully applied to protein subcellular localization and protein–protein interaction studies. Moreover, it was confirmed to be useful in delineating the PaE2F/PaDP-dependent cell cycle pathway and studying auxin response. In summary, the established orchid protoplast transient expression system provides a means to functionally characterize orchid genes at the molecular level allowing assessment of transcriptome responses to transgene expression and widening the scope of molecular studies in orchids.

  20. Soft material-based microculture system having air permeable cover sheet for the protoplast culture of Nicotiana tabacum.

    Science.gov (United States)

    Ju, Jong Il; Ko, Jung-Moon; Kim, So Hyeon; Baek, Ju Yeoul; Cha, Hyeon-Cheol; Lee, Sang Hoon

    2006-08-01

    In plant cell culture, the delivery of nutrition and gas (mainly oxygen) to the cells is the most important factor for viability. In this paper, we propose a polydimethylsiloxane (PDMS)-based microculture system that is designed to have good aeration. PDMS is known to have excellent air permeability, and through the experimental method, we investigated the relation between the degree of air delivery and the thickness of the PDMS sheet covering the culture chamber. We determined the proper thickness of the cover sheet, and cultured protoplasts of Nicotiana tabacum in a culture chamber covered with a PDMS sheet having thickness of 400 microm. The cells were successfully divided, and lived well inside the culture chamber for 10 days. In addition, protoplasts were cultured inside the culture chambers covered with the cover glass and the PDMS sheet, respectively, and the microcolonies were formed well inside the PDMS covered chamber after 10 days.

  1. Cytosolic antibody delivery by lipid-sensitive endosomolytic peptide

    Science.gov (United States)

    Akishiba, Misao; Takeuchi, Toshihide; Kawaguchi, Yoshimasa; Sakamoto, Kentarou; Yu, Hao-Hsin; Nakase, Ikuhiko; Takatani-Nakase, Tomoka; Madani, Fatemeh; Gräslund, Astrid; Futaki, Shiroh

    2017-08-01

    One of the major obstacles in intracellular targeting using antibodies is their limited release from endosomes into the cytosol. Here we report an approach to deliver proteins, which include antibodies, into cells by using endosomolytic peptides derived from the cationic and membrane-lytic spider venom peptide M-lycotoxin. The delivery peptides were developed by introducing one or two glutamic acid residues into the hydrophobic face. One peptide with the substitution of leucine by glutamic acid (L17E) was shown to enable a marked cytosolic liberation of antibodies (immunoglobulins G (IgGs)) from endosomes. The predominant membrane-perturbation mechanism of this peptide is the preferential disruption of negatively charged membranes (endosomal membranes) over neutral membranes (plasma membranes), and the endosomolytic peptide promotes the uptake by inducing macropinocytosis. The fidelity of this approach was confirmed through the intracellular delivery of a ribosome-inactivation protein (saporin), Cre recombinase and IgG delivery, which resulted in a specific labelling of the cytosolic proteins and subsequent suppression of the glucocorticoid receptor-mediated transcription. We also demonstrate the L17E-mediated cytosolic delivery of exosome-encapsulated proteins.

  2. Multifunctional Cationic Lipid-Based Nanoparticles Facilitate Endosomal Escape and Reduction-Triggered Cytosolic siRNA Release

    Science.gov (United States)

    Gujrati, Maneesh; Malamas, Anthony; Shin, Tesia; Jin, Erlei; Sun, Lulu; Lu, Zheng-Rong

    2015-01-01

    Small interfering RNA (siRNA) has garnered much attention in recent years as a promising avenue for cancer gene therapy due to its ability to silence disease-related genes. Effective gene silencing is contingent upon the delivery of siRNA into the cytosol of target cells and requires the implementation of delivery systems possessing multiple functionalities to overcome delivery barriers. The present work explores the multifunctional properties and biological activity of a recently developed cationic lipid carrier, (1-aminoethyl)iminobis[N-(oleicylcysteinyl-1-amino-ethyl)propionamide]) (ECO). The physicochemical properties and biological activity of ECO/siRNA nanoparticles were assessed over a range of N/P ratios to optimize the formulation. Potent and sustained luciferase silencing in a U87 glioblastoma cell line was observed, even in the presence of serum proteins. ECO/siRNA nanoparticles exhibited pH-dependent membrane disruption at pH levels corresponding to various stages of the intracellular trafficking pathway. It was found that disulfide linkages created during nanoparticle formation enhanced the protection of siRNA from degradation and facilitated site-specific siRNA release in the cytosol by glutathione-mediated reduction. Confocal microscopy confirmed that ECO/siRNA nanoparticles readily escaped from late endosomes prior to cytosolic release of the siRNA cargo. These results demonstrate that the rationally designed multifunctionality of ECO/siRNA nanoparticles is critical for intracellular siRNA delivery and the continuing development of safe and effective delivery systems. PMID:25020033

  3. Monitoring Intracellular pH change with a Genetically Encoded and Ratiometric Luminescence Sensor in Yeast and Mammalian Cells

    OpenAIRE

    Zhang, Yunfei; Robertson, J. Brian; Xie, Qiguang; Johnson, Carl Hirschie

    2016-01-01

    “pHlash” is a novel bioluminescence-based pH sensor for measuring intracellular pH, which is developed based on Bioluminescence Resonance Energy Transfer (BRET). pHlash is a fusion protein between a mutant of Renilla luciferase (RLuc) and a Venus fluorophore. The spectral emission of purified pHlash protein exhibits pH dependence in vitro. When expressed in either yeast or mammalian cells, pHlash reports basal pH and cytosolic acidification. In this chapter, we describe an in vitro characteri...

  4. Cigarette smoke toxicants as substrates and inhibitors for human cytosolic SULTs

    International Nuclear Information System (INIS)

    Yasuda, Shin; Idell, Steven; Fu Jian; Carter, Glendora; Snow, Rhodora; Liu, M.-C.

    2007-01-01

    The current study was designed to examine the role of sulfation in the metabolism of cigarette smoke toxicants and clarify whether these toxicants, by serving as substrates for the cytosolic sulfotransferases (SULTs), may interfere with the sulfation of key endogenous compounds. By metabolic labeling, [ 35 S]sulfated species were found to be generated and released into the media of HepG2 human hepatoma cells and primary human lung endothelial cells labeled with [ 35 S]sulfate in the presence of cigarette smoke extract (CSE). Concomitantly, several [ 35 S]sulfated metabolites observed in the medium in the absence of CSE either decreased or disappeared. Eleven previously prepared human cytosolic SULTs were tested for sulfating activity with CSE and known cigarette smoke toxicants as substrates. Activity data revealed SULT1A1, SULT1A2, SULT1A3, and SULT1C2 as major enzymes responsible for their sulfation. To examine their inhibitory effects on the sulfation of 17β-estradiol by SULT1A1, enzymatic assays were performed in the presence of three representative toxicant compounds, namely N-hydroxy-4-aminobiphenyl (N-OH-4-ABP), 4-aminobiphenyl (4-ABP) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). IC 50 values determined for the sulfation of 17β-estradiol by SULT1A1 were 11.8 μM, 28.2 μM, and 500 μM, respectively, for N-OH-4-ABP, 4-ABP and PhIP. Kinetic analyses indicated that the mechanism underlying the inhibition of 17β-estradiol sulfation by these cigarette smoke toxicants is of a mixed competitive-noncompetitive type. Metabolic labeling experiments clearly showed inhibition of the production of [ 35 S]sulfated 17β-estradiol by N-OH-4-ABP in a concentration-dependent manner in HepG2 cells. Taken together, these results suggest that sulfation plays a significant role in the metabolism of cigarette smoke compounds. By serving as substrates for SULTs, cigarette smoke toxicants may interfere with the metabolism of 17β-estradiol and other endogenous

  5. Characterization of the cytosolic distribution of priority pollutant metals and metalloids in the digestive gland cytosol of marine mussels: seasonal and spatial variability.

    Science.gov (United States)

    Strižak, Zeljka; Ivanković, Dušica; Pröfrock, Daniel; Helmholz, Heike; Cindrić, Ana-Marija; Erk, Marijana; Prange, Andreas

    2014-02-01

    Cytosolic profiles of several priority pollutant metals (Cu, Cd, Zn, Pb) and metalloid As were analyzed in the digestive gland of the mussel (Mytilus galloprovincialis) sampled at locations with different environmental pollution levels along the Croatian coast in the spring and summer season. Size-exclusion chromatography (SEC) connected to inductively coupled plasma mass spectrometry (ICP-MS) was used to determine selected elements bound to cytosolic biomolecules separated based on their molecular size. Copper, cadmium and zinc eluted mostly associated with high molecular weight (HMW) and medium molecular weight (MMW) biomolecules, but with a more prominent elution in the MMW peak at polluted locations which were probably associated with the 20 kDa metallothionein (MT). Elution of all three metals within this peak was also strongly correlated with cytosolic Cd as strong inducer of MT. Lead mostly eluted in HMW biomolecule range, but in elevated cytosolic Pb concentrations, significant amount eluted in low molecular weight (LMW) biomolecules. Arsenic, on the other hand eluted almost completely in LMW range, but we could not distinguish specific molecular weight biomolecules which would be predominant in detoxification mechanism. Seasonal variability in element abundance within specific peaks was present, although not in the same extent, for all elements and locations, especially for As. The results confirm the suitability of the distribution of selected metals/metalloids among different cytosolic ligands as potential indicator for metal exposure. Obtained findings can also serve as guidelines for further separation and characterization of specific cytosolic metal-binding biomolecules. © 2013.

  6. Chromosomal instability drives metastasis through a cytosolic DNA response.

    Science.gov (United States)

    Bakhoum, Samuel F; Ngo, Bryan; Laughney, Ashley M; Cavallo, Julie-Ann; Murphy, Charles J; Ly, Peter; Shah, Pragya; Sriram, Roshan K; Watkins, Thomas B K; Taunk, Neil K; Duran, Mercedes; Pauli, Chantal; Shaw, Christine; Chadalavada, Kalyani; Rajasekhar, Vinagolu K; Genovese, Giulio; Venkatesan, Subramanian; Birkbak, Nicolai J; McGranahan, Nicholas; Lundquist, Mark; LaPlant, Quincey; Healey, John H; Elemento, Olivier; Chung, Christine H; Lee, Nancy Y; Imielenski, Marcin; Nanjangud, Gouri; Pe'er, Dana; Cleveland, Don W; Powell, Simon N; Lammerding, Jan; Swanton, Charles; Cantley, Lewis C

    2018-01-25

    Chromosomal instability is a hallmark of cancer that results from ongoing errors in chromosome segregation during mitosis. Although chromosomal instability is a major driver of tumour evolution, its role in metastasis has not been established. Here we show that chromosomal instability promotes metastasis by sustaining a tumour cell-autonomous response to cytosolic DNA. Errors in chromosome segregation create a preponderance of micronuclei whose rupture spills genomic DNA into the cytosol. This leads to the activation of the cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) cytosolic DNA-sensing pathway and downstream noncanonical NF-κB signalling. Genetic suppression of chromosomal instability markedly delays metastasis even in highly aneuploid tumour models, whereas continuous chromosome segregation errors promote cellular invasion and metastasis in a STING-dependent manner. By subverting lethal epithelial responses to cytosolic DNA, chromosomally unstable tumour cells co-opt chronic activation of innate immune pathways to spread to distant organs.

  7. Antibodies to the CFTR modulate the turgor pressure of guard cell protoplasts via slow anion channels.

    Science.gov (United States)

    Leonhardt, N; Bazin, I; Richaud, P; Marin, E; Vavasseur, A; Forestier, C

    2001-04-06

    The plasma membrane guard cell slow anion channel is a key element at the basis of water loss control in plants allowing prolonged osmolite efflux necessary for stomatal closure. This channel has been extensively studied by electrophysiological approaches but its molecular identification is still lacking. Recently, we described that this channel was sharing some similarities with the mammalian ATP-binding cassette protein, cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel [Leonhardt, N. et al. (1999) Plant Cell 11, 1141-1151]. Here, using the patch-clamp technique and a bioassay, consisting in the observation of the change in guard cell protoplasts volume, we demonstrated that a functional antibody raised against the mammalian CFTR prevented ABA-induced guard cell protoplasts shrinking and partially inhibited the slow anion current. Moreover, this antibody immunoprecipitated a polypeptide from guard cell protein extracts and immunolabeled stomata in Vicia faba leaf sections. These results indicate that the guard cell slow anion channel is, or is closely controlled by a polypeptide, exhibiting one epitope shared with the mammalian CFTR.

  8. Early activation of lipoxygenase in lentil (Lens culinaris) root protoplasts by oxidative stress induces programmed cell death

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Maccarrone, M.; Zadelhoff, G. van; Veldink, G.A.; Finazzi Agrò, A.

    2000-01-01

    Oxidative stress caused by hydrogen peroxide (H2O2) triggers the hypersensitive response of plants to pathogens. Here, short pulses of H2O2 are shown to cause death of lentil (Lens culinaris) root protoplasts. Dead cells showed DNA fragmentation and ladder formation, typical hallmarks of apoptosis

  9. Regulation of plant cytosolic glyceraldehyde 3-phosphate dehydrogenase isoforms by thiol modifications.

    Science.gov (United States)

    Holtgrefe, Simone; Gohlke, Jochen; Starmann, Julia; Druce, Samantha; Klocke, Susanne; Altmann, Bianca; Wojtera, Joanna; Lindermayr, Christian; Scheibe, Renate

    2008-06-01

    Cytosolic NAD-dependent glyceraldehyde 3-P dehydrogenase (GAPDH; GapC; EC 1.2.1.12) catalyzes the oxidation of triose phosphates during glycolysis in all organisms, but additional functions of the protein has been put forward. Because of its reactive cysteine residue in the active site, it is susceptible to protein modification and oxidation. The addition of GSSG, and much more efficiently of S-nitrosoglutathione, was shown to inactivate the enzymes from Arabidopsis thaliana (isoforms GapC1 and 2), spinach, yeast and rabbit muscle. Inactivation was fully or at least partially reversible upon addition of DTT. The incorporation of glutathione upon formation of a mixed disulfide could be shown using biotinylated glutathione ethyl ester. Furthermore, using the biotin-switch assay, nitrosylated thiol groups could be shown to occur after treatment with nitric oxide donors. Using mass spectrometry and mutant proteins with one cysteine lacking, both cysteines (Cys-155 and Cys-159) were found to occur as glutathionylated and as nitrosylated forms. In preliminary experiments, it was shown that both GapC1 and GapC2 can bind to a partial gene sequence of the NADP-dependent malate dehydrogenase (EC 1.2.1.37; At5g58330). Transiently expressed GapC-green fluorescent protein fusion proteins were localized to the nucleus in A. thaliana protoplasts. As nuclear localization and DNA binding of GAPDH had been shown in numerous systems to occur upon stress, we assume that such mechanism might be part of the signaling pathway to induce increased malate-valve capacity and possibly other protective systems upon overreduction and initial formation of reactive oxygen and nitrogen species as well as to decrease and protect metabolism at the same time by modification of essential cysteine residues.

  10. Cloning and characterization of human liver cytosolic beta-glycosidase

    NARCIS (Netherlands)

    De Graaf, M; Van Veen, IC; Van Der Meulen-Muileman, IH; Gerritsen, WR; Pinedo, HM; Haisma, HJ

    2001-01-01

    Cytosolic beta -glucosidase (EC 3.2.1.21) from mammalian liver is a member of the family 1 glycoside hydrolases and is known for its ability to hydrolyse a range of beta -D-glycosides. including beta -D-glucoside acid beta -D-galactoside. We therefore refer to this enzyme as cytosolic beta

  11. Effect of microgravity environment on cell wall regeneration, cell divisions, growth, and differentiation of plants from protoplasts (7-IML-1)

    Science.gov (United States)

    Rasmussen, Ole

    1992-01-01

    The primary goal of this project is to investigate if microgravity has any influence on growth and differentiation of protoplasts. Formation of new cell walls on rapeseed protoplasts takes place within the first 24 hours after isolation. Cell division can be observed after 2-4 days and formation of cell aggregates after 5-7 days. Therefore, it is possible during the 7 day IML-1 Mission to investigate if cell wall formation, cell division, and cell differentiation are influenced by microgravity. Protoplasts of rapeseeds and carrot will be prepared shortly before launch and injected into 0.6 ml polyethylene bags. Eight bags are placed in an aluminum block inside the ESA Type 1 container. The containers are placed at 4 C in PTCU's and transferred to orbiter mid-deck. At 4 C all cell processes are slowed down, including cell wall formation. Latest access to the shuttle will be 12 hours before launch. In orbit the containers will be transferred from the PTC box to the 22 C Biorack incubator. The installation of a 1 g centrifuge in Biorack will make it possible to distinguish between effects of near weightlessness and effects caused by cosmic radiation and other space flight factors including vibrations. Parallel control experiments will be carried out on the ground. Other aspects of the experiment are discussed.

  12. Studies on protein synthesis by protoplasts of Saccharomyces carlsbergensis I. The effect of ribonuclease on protein synthesis

    NARCIS (Netherlands)

    Kloet, S.R. de; Wermeskerken, R.K.A. van; Koningsberger, V.V.

    1961-01-01

    Ribonuclease was found to inhibit the protein synthesis in the naked yeast protoplast for nearly 100%. Even small concentrations (5 μg/ml) were found inhibitory. The cause of this inhibition can be attributed at least in part to a 90% inhibition of the respiration. Amino acid uptake was found to

  13. Mechanistic logic underlying the axonal transport of cytosolic proteins

    Science.gov (United States)

    Scott, David A.; Das, Utpal; Tang, Yong; Roy, Subhojit

    2011-01-01

    Proteins vital to presynaptic function are synthesized in the neuronal perikarya and delivered into synapses via two modes of axonal transport. While membrane-anchoring proteins are conveyed in fast axonal transport via motor-driven vesicles, cytosolic proteins travel in slow axonal transport; via mechanisms that are poorly understood. We found that in cultured axons, populations of cytosolic proteins tagged to photoactivable-GFP (PA-GFP) move with a slow motor-dependent anterograde bias; distinct from vesicular-trafficking or diffusion of untagged PA-GFP. The overall bias is likely generated by an intricate particle-kinetics involving transient assembly and short-range vectorial spurts. In-vivo biochemical studies reveal that cytosolic proteins are organized into higher-order structures within axon-enriched fractions that are largely segregated from vesicles. Data-driven biophysical modeling best predicts a scenario where soluble molecules dynamically assemble into mobile supra-molecular structures. We propose a model where cytosolic proteins are transported by dynamically assembling into multi-protein complexes that are directly/indirectly conveyed by motors. PMID:21555071

  14. Formulation and characterization of poly(propylacrylic acid)/poly(lactic-co-glycolic acid) blend microparticles for pH-dependent membrane disruption and cytosolic delivery.

    Science.gov (United States)

    Fernando, Lawrence P; Lewis, Jamal S; Evans, Brian C; Duvall, Craig L; Keselowsky, Benjamin G

    2018-04-01

    Poly(lactic-co-glycolic acid) (PLGA) is widely used as a vehicle for delivery of pharmaceutically relevant payloads. PLGA is readily fabricated as a nano- or microparticle (MP) matrix to load both hydrophobic and hydrophilic small molecular drugs as well as biomacromolecules such as nucleic acids and proteins. However, targeting such payloads to the cell cytosol is often limited by MP entrapment and degradation within acidic endolysosomes. Poly(propylacrylic acid) (PPAA) is a polyelectrolyte polymer with the membrane disruptive capability triggered at low pH. PPAA has been previously formulated in various carrier configurations to enable cytosolic payload delivery, but requires sophisticated carrier design. Taking advantage of PPAA functionality, we have incorporated PPAA into PLGA MPs as a simple polymer mixture to enhance cytosolic delivery of PLGA-encapsulated payloads. Rhodamine loaded PLGA and PPAA/PLGA blend MPs were prepared by a modified nanoprecipitation method. Incorporation of PPAA into PLGA MPs had little to no effect on the size, shape, or loading efficiency, and evidenced no toxicity in Chinese hamster ovary epithelial cells. Notably, incorporation of PPAA into PLGA MPs enabled pH-dependent membrane disruption in a hemolysis assay, and a three-fold increased endosomal escape and cytosolic delivery in dendritic cells after 2 h of MP uptake. These results demonstrate that a simple PLGA/PPAA polymer blend is readily fabricated into composite MPs, enabling cytosolic delivery of an encapsulated payload. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1022-1033, 2018. © 2017 Wiley Periodicals, Inc.

  15. DMPD: Cytosolic DNA recognition for triggering innate immune responses. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18280611 Cytosolic DNA recognition for triggering innate immune responses. Takaoka ...A, Taniguchi T. Adv Drug Deliv Rev. 2008 Apr 29;60(7):847-57. Epub 2007 Dec 31. (.png) (.svg) (.html) (.csml) Show Cytosol...ic DNA recognition for triggering innate immune responses. PubmedID 18280611 Title Cytosolic D

  16. Roles of pH and the Na+/H+ exchanger NHE1 in cancer

    DEFF Research Database (Denmark)

    Stock, Christian; Pedersen, Stine Helene Falsig

    2017-01-01

    Acidosis is characteristic of the solid tumor microenvironment. Tumor cells, because they are highly proliferative and anabolic, have greatly elevated metabolic acid production. To sustain a normal cytosolic pH homeostasis they therefore need to either extrude excess protons or to neutralize them...... with tumor malignancy. The present review discusses current evidence on how altered pH homeostasis, and in particular NHE1, contributes to tumor cell motility, invasion, proliferation, and growth and facilitates evasion of chemotherapeutic cell death. We summarize data from in vitro studies, 2D-, 3D...

  17. Properties of purified cytosolic isoenzyme I of Cu,Zn-superoxide dismutase from Nicotiana plumbaginifolia leaves.

    Science.gov (United States)

    Ragusa, S; Cambria, M T; Scarpa, M; Di Paolo, M L; Falconi, M; Rigo, A; Cambria, A

    2001-11-01

    The isoenzyme I of cytosolic Cu,Zn-superoxide dismutase (SOD) from Nicotiana plumbaginifolia (tobacco) leaves has been purified to apparent homogeneity. The relative molecular mass of the native isoenzyme, determined by gel filtration chromatography, is about 33.2 kDa. SDS-polyacrylamide gel electrophoresis shows that the enzyme is composed of two equal subunits of 16.6 kDa The isolectric point, assayed by isoelectric focusing, in the pH range of 3.5-6.5, is 4.3. The enzyme stability was tested at different temperatures, pH, and concentration of inhibitors (KCN and H(2)O(2)). The catalytic constant (k(cat)) was 1.17 +/- 0.14 x 10(9) M(-1) s(-1) at pH 9.9 and 0.1 M ionic strength. The activation energy of the thermal denaturation process is 263 kJ mol(-1). The electrostatic surface potential of the modeled tobacco Cu,Zn-SOD I was calculated showing that the functional spatial network of charges on the protein surface has been maintained, independently of the amino acid substitution around the active sites. Copyright 2001 Academic Press.

  18. Putrescine biosynthesis in Lactococcus lactis is transcriptionally activated at acidic pH and counteracts acidification of the cytosol.

    Science.gov (United States)

    Del Rio, Beatriz; Linares, Daniel; Ladero, Victor; Redruello, Begoña; Fernandez, Maria; Martin, Maria Cruz; Alvarez, Miguel A

    2016-11-07

    Lactococcus lactis subsp. cremoris CECT 8666 is a lactic acid bacterium that synthesizes the biogenic amine putrescine from agmatine via the agmatine deiminase (AGDI) pathway. The AGDI genes cluster includes aguR. This encodes a transmembrane protein that functions as a one-component signal transduction system, the job of which is to sense the agmatine concentration of the medium and accordingly regulate the transcription of the catabolic operon aguBDAC. The latter encodes the proteins necessary for agmatine uptake and its conversion into putrescine. This work reports the effect of extracellular pH on putrescine biosynthesis and on the genetic regulation of the AGDI pathway. Increased putrescine biosynthesis was detected at acidic pH (pH5) compared to neutral pH. Acidic pH induced the transcription of the catabolic operon via the activation of the aguBDAC promoter PaguB. However, the external pH had no significant effect on the activity of the aguR promoter PaguR, or on the transcription of the aguR gene. The transcriptional activation of the AGDI pathway was also found to require a lower agmatine concentration at pH5 than at neutral pH. Finally, the following of the AGDI pathway counteracted the acidification of the cytoplasm under acidic external conditions, suggesting it to provide protection against acid stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Monitoring Intracellular pH Change with a Genetically Encoded and Ratiometric Luminescence Sensor in Yeast and Mammalian Cells.

    Science.gov (United States)

    Zhang, Yunfei; Robertson, J Brian; Xie, Qiguang; Johnson, Carl Hirschie

    2016-01-01

    "pHlash" is a novel bioluminescence-based pH sensor for measuring intracellular pH, which is developed based on Bioluminescence Resonance Energy Transfer (BRET). pHlash is a fusion protein between a mutant of Renilla luciferase (RLuc) and a Venus fluorophore. The spectral emission of purified pHlash protein exhibits pH dependence in vitro. When expressed in either yeast or mammalian cells, pHlash reports basal pH and cytosolic acidification. In this chapter, we describe an in vitro characterization of pHlash, and also in vivo assays including in yeast cells and in HeLa cells using pHlash as a cytoplasmic pH indicator.

  20. Genome-Derived Cytosolic DNA Mediates Type I Interferon-Dependent Rejection of B Cell Lymphoma Cells

    Directory of Open Access Journals (Sweden)

    Yu J. Shen

    2015-04-01

    Full Text Available The DNA damage response (DDR induces the expression of type I interferons (IFNs, but the underlying mechanisms are poorly understood. Here, we show the presence of cytosolic DNA in different mouse and human tumor cells. Treatment of cells with genotoxic agents increased the levels of cytosolic DNA in a DDR-dependent manner. Cloning of cytosolic DNA molecules from mouse lymphoma cells suggests that cytosolic DNA is derived from unique genomic loci and has the potential to form non-B DNA structures, including R-loops. Overexpression of Rnaseh1, which resolves R-loops, reduced the levels of cytosolic DNA, type I Ifn transcripts, and type I IFN-dependent rejection of lymphoma cells. Live-cell imaging showed a dynamic contact of cytosolic DNA with mitochondria, an important organelle for innate immune recognition of cytosolic nucleotides. In summary, we found that cytosolic DNA is present in many tumor cells and contributes to the immunogenicity of tumor cells.

  1. Transepithelial SCFA fluxes link intracellular and extracellular pH regulation of mouse colonocytes.

    Science.gov (United States)

    Chu, S; Montrose, M H

    1997-10-01

    We have studied pH regulation in both intracellular and extracellular compartments of mouse colonic crypts, using distal colonic mucosa with intact epithelial architecture. In this work, we question how transepithelial SCFA gradients affect intracellular pH (pHi) and examine interactions between extracellular pH (pHo) and pHi regulation in crypts of distal colonic epithelium from mouse. We studied pH regulation in three adjacent compartments of distal colonic epithelium (crypt lumen, crypt epithelial cell cytosol, and lamina propria) with SNARF-1 (a pH sensitive fluorescent dye), digital imaging microscopy (for pHi), and confocal microscopy (for pHo). Combining results from the three compartments allows us to find how pHi and pHo are regulated and related under the influence of physiological transepithelial SCFA gradients, and develop a better understanding of pH regulation mechanisms in colonic crypts. Results suggest a complex interdependency between SCFA fluxes and pHo values, which can directly affect how strongly SCFAs acidify colonocytes.

  2. ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria

    KAUST Repository

    Houben, Diane; Demangel, Caroline; Van Ingen, Jakko; Perez, Jorge; Baldeó n, Lucy R.; Abdallah, Abdallah; Caleechurn, Laxmee; Bottai, Daria; Van Zon, Maaike; De Punder, Karin; Van Der Laan, Tridia; Kant, Arie; Bossers-De Vries, Ruth; Willemsen, Peter Th J; Bitter, Wilbert M.; Van Soolingen, Dick; Brosch, Roland; Van Der Wel, Nicole N.; Peters, Peter J.

    2012-01-01

    Mycobacterium species, including Mycobacterium tuberculosis and Mycobacterium leprae, are among the most potent human bacterial pathogens. The discovery of cytosolic mycobacteria challenged the paradigm that these pathogens exclusively localize within the phagosome of host cells. As yet the biological relevance of mycobacterial translocation to the cytosol remained unclear. In this current study we used electron microscopy techniques to establish a clear link between translocation and mycobacterial virulence. Pathogenic, patient-derived mycobacteria species were found to translocate to the cytosol, while non-pathogenic species did not. We were further able to link cytosolic translocation with pathogenicity by introducing the ESX-1 (type VII) secretion system into the non-virulent, exclusively phagolysosomal Mycobacterium bovis BCG. Furthermore, we show that translocation is dependent on the C-terminus of the early-secreted antigen ESAT-6. The C-terminal truncation of ESAT-6 was shown to result in attenuation in mice, again linking translocation to virulence. Together, these data demonstrate the molecular mechanism facilitating translocation of mycobacteria. The ability to translocate from the phagolysosome to the cytosol is with this study proven to be biologically significant as it determines mycobacterial virulence. © 2012 Blackwell Publishing Ltd.

  3. ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria

    KAUST Repository

    Houben, Diane

    2012-05-08

    Mycobacterium species, including Mycobacterium tuberculosis and Mycobacterium leprae, are among the most potent human bacterial pathogens. The discovery of cytosolic mycobacteria challenged the paradigm that these pathogens exclusively localize within the phagosome of host cells. As yet the biological relevance of mycobacterial translocation to the cytosol remained unclear. In this current study we used electron microscopy techniques to establish a clear link between translocation and mycobacterial virulence. Pathogenic, patient-derived mycobacteria species were found to translocate to the cytosol, while non-pathogenic species did not. We were further able to link cytosolic translocation with pathogenicity by introducing the ESX-1 (type VII) secretion system into the non-virulent, exclusively phagolysosomal Mycobacterium bovis BCG. Furthermore, we show that translocation is dependent on the C-terminus of the early-secreted antigen ESAT-6. The C-terminal truncation of ESAT-6 was shown to result in attenuation in mice, again linking translocation to virulence. Together, these data demonstrate the molecular mechanism facilitating translocation of mycobacteria. The ability to translocate from the phagolysosome to the cytosol is with this study proven to be biologically significant as it determines mycobacterial virulence. © 2012 Blackwell Publishing Ltd.

  4. A membrane model for cytosolic calcium oscillations. A study using Xenopus oocytes.

    OpenAIRE

    Jafri, M S; Vajda, S; Pasik, P; Gillo, B

    1992-01-01

    Cytosolic calcium oscillations occur in a wide variety of cells and are involved in different cellular functions. We describe these calcium oscillations by a mathematical model based on the putative electrophysiological properties of the endoplasmic reticulum (ER) membrane. The salient features of our membrane model are calcium-dependent calcium channels and calcium pumps in the ER membrane, constant entry of calcium into the cytosol, calcium dependent removal from the cytosol, and buffering ...

  5. Enhancement of yellow pigment production by intraspecific protoplast fusion of Monascus spp. yellow mutant (ade(-)) and white mutant (prototroph).

    Science.gov (United States)

    Klinsupa, Worawan; Phansiri, Salak; Thongpradis, Panida; Yongsmith, Busaba; Pothiratana, Chetsada

    2016-01-10

    To breed industrially useful strains of a slow-growing, yellow pigment producing strain of Monascus sp., protoplasts of Monascus purpureus yellow mutant (ade(-)) and rapid-growing M. purpureus white mutant (prototroph) were fused and fusants were selected on minimal medium (MM). Preliminary conventional protoplast fusion of the two strains was performed and the result showed that only white colonies were detected on MM. It was not able to differentiate the fusants from the white parental prototroph. To solve this problem, the white parental prototroph was thus pretreated with 20mM iodoacetamide (IOA) for cytoplasm inactivation and subsequently taken into protoplast fusion with slow-growing Monascus yellow mutant. Under this development technique, only the fusants, with viable cytoplasm from Monascus yellow mutant (ade(-)), could thus grow on MM, whereas neither IOA pretreated white parental prototroph nor yellow auxotroph (ade(-)) could survive. Fifty-three fusants isolated from yellow colonies obtained through this developed technique were subsequently inoculated on complete medium (MY agar). Fifteen distinguished yellow colonies from their parental yellow mutant were then selected for biochemical, morphological and fermentative properties in cassava starch and soybean flour (SS) broth. Finally, three most stable fusants (F7, F10 and F43) were then selected and compared in rice solid culture. Enhancement of yellow pigment production over the parental yellow auxotroph was found in F7 and F10, while enhanced glucoamylase activity was found in F43. The formation of fusants was further confirmed by monacolin K content, which was intermediate between the two parents (monacolin K-producing yellow auxotroph and non-monacolin K producing white prototroph). Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Fluctuations in Cytosolic Calcium Regulate the Neuronal Malate-Aspartate NADH Shuttle

    DEFF Research Database (Denmark)

    Satrústegui, Jorgina; Bak, Lasse K

    2015-01-01

    that MAS is regulated by fluctuations in cytosolic Ca(2+) levels, and that this regulation is required to maintain a tight coupling between neuronal activity and mitochondrial respiration and oxidative phosphorylation. At cytosolic Ca(2+) fluctuations below the threshold of the mitochondrial calcium...

  7. Early response of plant cell to carbon deprivation: in vivo 31P-NMR spectroscopy shows a quasi-instantaneous disruption on cytosolic sugars, phosphorylated intermediates of energy metabolism, phosphate partitioning, and intracellular pHs.

    Science.gov (United States)

    Gout, Elisabeth; Bligny, Richard; Douce, Roland; Boisson, Anne-Marie; Rivasseau, Corinne

    2011-01-01

    • In plant cells, sugar starvation triggers a cascade of effects at the scale of 1-2 days. However, very early metabolic response has not yet been investigated. • Soluble phosphorus (P) compounds and intracellular pHs were analysed each 2.5 min intervals in heterotrophic sycamore (Acer pseudoplatanus) cells using in vivo phosphorus nuclear magnetic resonance ((31)P-NMR). • Upon external-sugar withdrawal, the glucose 6-P concentration dropped in the cytosol, but not in plastids. The released inorganic phosphate (Pi) accumulated transiently in the cytosol before influx into the vacuole; nucleotide triphosphate concentration doubled, intracellular pH increased and cell respiration decreased. It was deduced that the cytosolic free-sugar concentration was low, corresponding to only 0.5 mM sucrose in sugar-supplied cells. • The release of sugar from the vacuole and from plastids is insufficient to fully sustain the cell metabolism during starvation, particularly in the very short term. Similarly to Pi-starvation, the cell's first response to sugar starvation occurs in the cytosol and is of a metabolic nature. Unlike the cytoplasm, cytosolic homeostasis is not maintained during starvation. The important metabolic changes following cytosolic sugar exhaustion deliver early endogenous signals that may contribute to trigger rescue metabolism. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).

  8. Arabidopsis Regenerating Protoplast: A Powerful Model System for Combining the Proteomics of Cell Wall Proteins and the Visualization of Cell Wall Dynamics

    Science.gov (United States)

    Yokoyama, Ryusuke; Kuki, Hiroaki; Kuroha, Takeshi; Nishitani, Kazuhiko

    2016-01-01

    The development of a range of sub-proteomic approaches to the plant cell wall has identified many of the cell wall proteins. However, it remains difficult to elucidate the precise biological role of each protein and the cell wall dynamics driven by their actions. The plant protoplast provides an excellent means not only for characterizing cell wall proteins, but also for visualizing the dynamics of cell wall regeneration, during which cell wall proteins are secreted. It therefore offers a unique opportunity to investigate the de novo construction process of the cell wall. This review deals with sub-proteomic approaches to the plant cell wall through the use of protoplasts, a methodology that will provide the basis for further exploration of cell wall proteins and cell wall dynamics. PMID:28248244

  9. Factors affecting callus and protoplast production and regeneration of plants from garlic tissue cultures

    International Nuclear Information System (INIS)

    Al-Safadi, B.; Nabulsi, I.

    2001-08-01

    Five cultivars of garlic, two explants, six callusing media, six regeneration media, two kinds of light and several doses of gamma irradiation were used to determine the best conditions for callus induction and plant regeneration from garlic tissue cultures. Also, some experiments were conducted to study the possibility to isolate protoplast and regenerate plants. The experiment showed that medium MS9 was good for regenerating plant directly from basal plate without going through callus phase. ANOVA exhibited significant differences among used cultivars in their ability to form callus. No significant difference was observed between 16 hr light and complete darkness in callus growth. However, appearance of callus was generally better on darkness. Cultivar varied in their ability to regenerate and interaction between cultivars and media was observed. Cultivar kisswany was the best in regeneration (38%) and medium MS47 was the best among used media (35%). Light type played a significant role in regeneration of plants where red light was much better than white light in inducing regeneration (68% vs 36%). ANOVA revealed significant effect of low doses of gamma irradiation on stimulation regeneration of plant whereas high doses prevented regeneration. Many experiments were conducted to isolate protoplast and regenerate plants. The best method for culturing was the droplet and the best conditions for incubation were complete darkness at 25 Degreed centigrade. This lead to formation of cell wall but no cell division was observed (author)

  10. Studies on protein synthesis by protoplasts of Saccharomyces carlsbergensis II. Reversal of the RNase effect of protein synthesis by polymethacrylic acid

    NARCIS (Netherlands)

    Kloet, S.R. de; Wermeskerken, R.K.A. van; Koningsberger, V.V.

    1961-01-01

    The ribonuclease inhibited protein synthesis and respiration of yeast protoplasts can be restored by the addition of several polyanionic compounds, among which polymethacrylic acid proved to be the most effective one. The results of preliminary experiments with the ultracentrifuge indicate a

  11. Perianth bottom-specific blue color development in Tulip cv. Murasakizuisho requires ferric ions.

    Science.gov (United States)

    Shoji, Kazuaki; Miki, Naoko; Nakajima, Noriyuki; Momonoi, Kazumi; Kato, Chiharu; Yoshida, Kumi

    2007-02-01

    The entire flower of Tulipa gesneriana cv. Murasakizuisho is purple, except the bottom, which is blue. To elucidate the mechanism of the different color development in the same petal, we prepared protoplasts from the purple and blue epidermal regions and measured the flavonoid composition by HPLC, the vacuolar pH by a proton-selective microelectrode, and element contents by the inductively coupled plasma (ICP) method. Chemical analyses revealed that the anthocyanin and flavonol compositions in both purple and blue colored protoplasts were the same; delphinidin 3-O-rutinoside (1) and major three flavonol glycosides, manghaslin (2), rutin (3) and mauritianin (4). The vacuolar pH values of the purple and blue protoplasts were 5.5 and 5.6, respectively, without any significant difference. However, the Fe(3+) content in the blue protoplast was approximately 9.5 mM, which was 25 times higher than that in the purple protoplasts. We could reproduce the purple solution by mixing 1 with two equimolar concentrations of flavonol with lambda(vismax) = 539 nm, which was identical to that of the purple protoplasts. Furthermore, addition of Fe(3+) to the mixture of 1-4 gave the blue solution with lambda(vismax) = 615 nm identical to that of the blue protoplasts. We have established that Fe(3+) is essential for blue color development in the tulip.

  12. Effect of diphtheria toxin T-domain on endosomal pH

    Directory of Open Access Journals (Sweden)

    A. J. Labyntsev

    2015-08-01

    Full Text Available A key step in the mode of cytotoxic action of diphtheria toxin (DT is the transfer of its catalytic domain (Cd from endosomes into the cytosol. The main activity in this process is performed by the transport domain (Td, but the molecular mechanism of its action remains unknown. We have previously shown that Td can have some influence on the endosomal transport of DT. The aim of this work was to study the effect of diphtheria toxin on the toxin compartmentalization in the intracellular transporting pathway and endosomal pH. We used recombinant fragments of DT, which differed only by the presence of Td in their structure, fused with fluorescent proteins. It was shown that the toxin fragment with Td moved slower by the pathway early-late endosomes-lysosomes, and had a slightly different pattern of colocalization with endosomal markers than DT fragment without Td. In addition, endosomes containing DT fragments with Td had a constant pH of about 6.5 from the 10th to 50th minute of observation, for the same time endosomes containing DT fragments without Td demons­trated a decrease in pH from 6.3 to 5.5. These results indicate that Td inhibits acidification of endosomal medium. One of possible explanations for this may be the effect of the ion channel formed by the T-domain on the process of the endosomal acidification. This property of Td may not only inhibit maturation of endosomes but also inhibit activation of endosomal pH-dependent proteases, and this promotes successful transport of Cd into the cell cytosol.

  13. Biosynthesis of acid phosphatase of baker's yeast . Characterization of a protoplast-bound fraction containing precursors of the exo-enzyme

    NARCIS (Netherlands)

    Boer, Pieter; Rijn, Herman J.M. van; Reinking, A.; Steyn-Parvé, Elizabeth P.

    1975-01-01

    1. 1.|Yest protoplasts, secreting acid phosphatase (orthophosphoric-monoester phosphohydrolase (acid optimum) EC 3.1.3.2) contain a small amount of firmly bound enzyme, even after lysis (Van Rijn, H.J.M.; Boer, P. and Steyn-Parvé, E.P. (1972) Biochim. Biophys. Acta 268, 431–441). The major part

  14. Amino acid transport across the tonoplast of vacuoles isolated from barley mesophyll protoplasts: Uptake of alanine, leucine, and glutamine

    International Nuclear Information System (INIS)

    Dietz, K.J.; Jaeger, R.; Kaiser, G.; Martinoia, E.

    1990-01-01

    Mesophyll protoplasts from leaves of well-fertilized barley (Hordeum vulgare L.) plants contained amino acids at concentrations as high as 120 millimoles per liter. With the exception of glutamic acid, which is predominantly localized in the cytoplasm, a major part of all other amino acids was contained inside the large central vacuole. Alanine, leucine, and glutamine are the dominant vacuolar amino acids in barley. Their transport into isolated vacuoles was studied using 14 C-labeled amino acids. Uptake was slow in the absence of ATP. A three- to sixfold stimulation of uptake was observed after addition of ATP or adenylyl imidodiphosphate an ATP analogue not being hydrolyzed by ATPases. Other nucleotides were ineffective in increasing the rate of uptake. ATP-Stimulated amino acid transport was not dependent on the transtonoplast pH or membrane potential. p-Chloromercuriphenylsulfonic acid and n-ethyl maleimide increased transport independently of ATP. Neutral amino acids such as valine or leucine effectively decreased the rate of alanine transport. Glutamine and glycine were less effective or not effective as competitive inhibitors of alanine transport. The results indicate the existence of a uniport translocator specific for neutral or basic amino acids that is under control of metabolic effectors

  15. Relationship between intracellular pH, metabolic co-factors and caspase-3 activation in cancer cells during apoptosis.

    Science.gov (United States)

    Sergeeva, Tatiana F; Shirmanova, Marina V; Zlobovskaya, Olga A; Gavrina, Alena I; Dudenkova, Varvara V; Lukina, Maria M; Lukyanov, Konstantin A; Zagaynova, Elena V

    2017-03-01

    A complex cascade of molecular events occurs in apoptotic cells but cell-to-cell variability significantly complicates determination of the order and interconnections between different processes. For better understanding of the mechanisms of programmed cell death, dynamic simultaneous registration of several parameters is required. In this paper we used multiparameter fluorescence microscopy to analyze energy metabolism, intracellular pH and caspase-3 activation in living cancer cells in vitro during staurosporine-induced apoptosis. We performed metabolic imaging of two co-factors, NAD(P)H and FAD, and used the genetically encoded pH-indicator SypHer1 and the FRET-based sensor for caspase-3 activity, mKate2-DEVD-iRFP, to visualize these parameters by confocal fluorescence microscopy and two-photon fluorescence lifetime imaging microscopy. The correlation between energy metabolism, intracellular pH and caspase-3 activation and their dynamic changes were studied in CT26 cancer cells during apoptosis. Induction of apoptosis was accompanied by a switch to oxidative phosphorylation, cytosol acidification and caspase-3 activation. We showed that alterations in cytosolic pH and the activation of oxidative phosphorylation are relatively early events associated with the induction of apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Role of plastidic pyruvate dehydrogenase complex (pl. PDC) in chloroplast metabolism of spinach

    International Nuclear Information System (INIS)

    Schulze-Siebert, D.; Homeyer, U.; Schultz, G.

    1986-01-01

    Labeling experiments of chloroplasts in the light ( 14 CO 2 , 2- 14 C-pyruvate etc.) revealed that pl. PDC is predominantly involved in the synthesis of branched chain amino acids and pl. isoprenoids (carotenes, PQ, α-T). In this context, pl. phosphoglycerate mutase as missing link in the C 3 → C 2 metabolism of chloroplasts was identified by latency experiments. This indicates a direct pathway from Calvin cycle to pl. PDC. Using protoplasts, maximal rates in pl. PDC metabolism were obtained. On the other hand, mitochondrial PDC in protoplasts is mainly involved in fatty acid synthesis by known mechanism. Additionally, cytosolic-ER-isoprenoids were formed (e.g. sterols). When 14 CO 2 was simultaneously applied with unlabeled acetate to protoplasts in the light an isotopic dilution of fatty acids were found but not of pl. isoprenoids. This may indicate an partially channeling of pl. PDC and mevalonate pathway for pl. isoprenoid synthesis. Inhibitory studies with DCMU point in the same direction

  17. Methods for suspension culture, protoplast extraction, and transformation of high-biomass yielding perennial grass Arundo donax.

    Science.gov (United States)

    Pigna, Gaia; Dhillon, Taniya; Dlugosz, Elizabeth M; Yuan, Joshua S; Gorman, Connor; Morandini, Piero; Lenaghan, Scott C; Stewart, C Neal

    2016-12-01

    Arundo donax L. is a promising biofuel feedstock in the Mediterranean region. Despite considerable interest in its genetic improvement, Arundo tissue culture and transformation remains arduous. The authors developed methodologies for cell- and tissue culture and genetic engineering in Arundo. A media screen was conducted, and a suspension culture was established using callus induced from stem axillary bud explants. DBAP medium, containing 9 µM 2,4-D and 4.4 µM BAP, was found to be the most effective medium among those tested for inducing cell suspension cultures, which resulted in a five-fold increase in tissue mass over 14 days. In contrast, CIM medium containing 13 µM 2,4-D, resulted in just a 1.4-fold increase in mass over the same period. Optimized suspension cultures were superior to previously-described solidified medium-based callus culture methods for tissue mass increase. Suspension cultures proved to be very effective for subsequent protoplast isolation. Protoplast electroporation resulted in a 3.3 ± 1.5% transformation efficiency. A dual fluorescent reporter gene vector enabled the direct comparison of the CAMV 35S promoter with the switchgrass ubi2 promoter in single cells of Arundo. The switchgrass ubi2 promoter resulted in noticeably higher reporter gene expression compared with that conferred by the 35S promoter in Arundo. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A new view of the bacterial cytosol environment.

    Directory of Open Access Journals (Sweden)

    Benjamin P Cossins

    2011-06-01

    Full Text Available The cytosol is the major environment in all bacterial cells. The true physical and dynamical nature of the cytosol solution is not fully understood and here a modeling approach is applied. Using recent and detailed data on metabolite concentrations, we have created a molecular mechanical model of the prokaryotic cytosol environment of Escherichia coli, containing proteins, metabolites and monatomic ions. We use 200 ns molecular dynamics simulations to compute diffusion rates, the extent of contact between molecules and dielectric constants. Large metabolites spend ∼80% of their time in contact with other molecules while small metabolites vary with some only spending 20% of time in contact. Large non-covalently interacting metabolite structures mediated by hydrogen-bonds, ionic and π stacking interactions are common and often associate with proteins. Mg(2+ ions were prominent in NIMS and almost absent free in solution. Κ(+ is generally not involved in NIMSs and populates the solvent fairly uniformly, hence its important role as an osmolyte. In simulations containing ubiquitin, to represent a protein component, metabolite diffusion was reduced owing to long lasting protein-metabolite interactions. Hence, it is likely that with larger proteins metabolites would diffuse even more slowly. The dielectric constant of these simulations was found to differ from that of pure water only through a large contribution from ubiquitin as metabolite and monatomic ion effects cancel. These findings suggest regions of influence specific to particular proteins affecting metabolite diffusion and electrostatics. Also some proteins may have a higher propensity for associations with metabolites owing to their larger electrostatic fields. We hope that future studies may be able to accurately predict how binding interactions differ in the cytosol relative to dilute aqueous solution.

  19. Cytosolic calcium rises and related events in ergosterol-treated Nicotiana cells.

    Science.gov (United States)

    Vatsa, Parul; Chiltz, Annick; Luini, Estelle; Vandelle, Elodie; Pugin, Alain; Roblin, Gabriel

    2011-07-01

    The typical fungal membrane component ergosterol was previously shown to trigger defence responses and protect plants against pathogens. Most of the elicitors mobilize the second messenger calcium, to trigger plant defences. We checked the involvement of calcium in response to ergosterol using Nicotiana plumbaginifolia and Nicotiana tabacum cv Xanthi cells expressing apoaequorin in the cytosol. First, it was verified if ergosterol was efficient in these cells inducing modifications of proton fluxes and increased expression of defence-related genes. Then, it was shown that ergosterol induced a rapid and transient biphasic increase of free [Ca²⁺](cyt) which intensity depends on ergosterol concentration in the range 0.002-10 μM. Among sterols, this calcium mobilization was specific for ergosterol and, ergosterol-induced pH and [Ca²⁺](cyt) changes were specifically desensitized after two subsequent applications of ergosterol. Specific modulators allowed elucidating some events in the signalling pathway triggered by ergosterol. The action of BAPTA, LaCl₃, nifedipine, verapamil, neomycin, U73122 and ruthenium red suggested that the first phase was linked to calcium influx from external medium which subsequently triggered the second phase linked to calcium release from internal stores. The calcium influx and the [Ca²⁺](cyt) increase depended on upstream protein phosphorylation. The extracellular alkalinization and ROS production depended on calcium influx but, the ergosterol-induced MAPK activation was calcium-independent. ROS were not involved in cytosolic calcium rise as described in other models, indicating that ROS do not systematically participate in the amplification of calcium signalling. Interestingly, ergosterol-induced ROS production is not linked to cell death and ergosterol does not induce any calcium elevation in the nucleus. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  20. Imaging intracellular pH in live cells with a genetically encoded red fluorescent protein sensor.

    Science.gov (United States)

    Tantama, Mathew; Hung, Yin Pun; Yellen, Gary

    2011-07-06

    Intracellular pH affects protein structure and function, and proton gradients underlie the function of organelles such as lysosomes and mitochondria. We engineered a genetically encoded pH sensor by mutagenesis of the red fluorescent protein mKeima, providing a new tool to image intracellular pH in live cells. This sensor, named pHRed, is the first ratiometric, single-protein red fluorescent sensor of pH. Fluorescence emission of pHRed peaks at 610 nm while exhibiting dual excitation peaks at 440 and 585 nm that can be used for ratiometric imaging. The intensity ratio responds with an apparent pK(a) of 6.6 and a >10-fold dynamic range. Furthermore, pHRed has a pH-responsive fluorescence lifetime that changes by ~0.4 ns over physiological pH values and can be monitored with single-wavelength two-photon excitation. After characterizing the sensor, we tested pHRed's ability to monitor intracellular pH by imaging energy-dependent changes in cytosolic and mitochondrial pH.

  1. Self-Assembled Fluorescent Bovine Serum Albumin Nanoprobes for Ratiometric pH Measurement inside Living Cells.

    Science.gov (United States)

    Yang, Qiaoyu; Ye, Zhongju; Zhong, Meile; Chen, Bo; Chen, Jian; Zeng, Rongjin; Wei, Lin; Li, Hung-wing; Xiao, Lehui

    2016-04-20

    In this work, we demonstrated a new ratiometric method for the quantitative analysis of pH inside living cells. The structure of the nanosensor comprises a biofriendly fluorescent bovine serum albumin (BSA) matrix, acting as a pH probe, and pH-insensitive reference dye Alexa 594 enabling ratiometric quantitative pH measurement. The fluorescent BSA matrix was synthesized by cross-linking of the denatured BSA proteins in ethanol with glutaraldehyde. The size of the as-synthesized BSA nanoparticles can be readily manipulated from 30 to 90 nm, which exhibit decent fluorescence at the peak wavelength of 535 nm with a pH response range of 6-8. The potential of this pH sensor for intracellular pH monitoring was demonstrated inside living HeLa cells, whereby a significant change in fluorescence ratio was observed when the pH of the cell was switched from normal to acidic with anticancer drug treatment. The fast response of the nanosensor makes it a very powerful tool in monitoring the processes occurring within the cytosol.

  2. Naturally Induced Secretions of the Potato Cyst Nematode Co-stimulate the Proliferation of Both Tobacco Leaf Protoplasts and Human Peripheral Blood Mononuclear Cells

    NARCIS (Netherlands)

    Goverse, A.; Rouppe van der Voort, J.N.A.M.; Rouppe van der voort, C.; Kavelaars, A.; Smant, G.; Schots, A.; Bakker, J.; Helder, J.

    1999-01-01

    Naturally induced secretions from infective juveniles of the potato cyst nematode Globodera rostochiensis co-stimulate the proliferation of tobacco leaf protoplasts in the presence of the synthetic phytohormones α-naphthaleneacetic acid (NAA) and 6-benzylaminopurine (BAP). With the use of a

  3. Circadian Rhythm of Hepatic Cytosolic and Nuclear Estrogen and Androgen Receptors

    Science.gov (United States)

    FRANCAVILLA, ANTONIO; EAGON, PATRICIA K.; DiLEO, ALFREDO; VAN THIEL, DAVID H.; PANELLA, CARMINE; POLIMENO, LORENZO; AMORUSO, CINZIA; INGROSSO, MARCELLO; AQUILINO, A. MARIA; STARZL, THOMAS E.

    2010-01-01

    Mammalian liver is a sex steroid-responsive tissue. The effects of these hormones presumably are mediated by hepatic estrogen receptors (ER) and androgen receptors (AR). Serum levels of sex hormones display circadian rhythms. Further, estrogens and androgens are commonly administered; administration of these agents is associated frequently with liver disease. Therefore, we investigated whether the cytosolic and nuclear sex steroid receptors also display a similar circadian rhythm, and whether variations occurred in the distribution of receptors between cytosolic and nuclear compartments. Animals were killed every 4 h from midnight till the following midnight; cytosolic and nuclear levels of both ER and AR were measured. Cytosolic ER reached a maximum level at 4 AM, and a minimum at 8 PM and midnight of both days. Nuclear ER was highest at 8 AM and lowest at 4 PM and 8 PM, a pattern which parallels variations in serum estradiol levels. Cytosolic AR was highest at 8 PM and lowest at midnight and 4 AM. Nuclear AR was highest at 4 AM and lowest at 4 PM and 8 PM. The highest level of nuclear AR does not correspond to the maximum serum testosterone level, which occurred at 4 PM. The total hepatic content of both ER and AR was not constant over the 24-h period, but varied considerably with time of day. These studies suggest that both ER and AR show a distinct circadian rhythm in subcellular compartmentalization, and that total hepatic content of ER and AR varies significantly during a 24-h period. PMID:3710067

  4. Limits to anaerobic energy and cytosolic concentration in the living cell

    Science.gov (United States)

    Paglietti, A.

    2015-11-01

    For many physical systems at any given temperature, the set of all states where the system's free energy reaches its largest value can be determined from the system's constitutive equations of internal energy and entropy, once a state of that set is known. Such an approach is fraught with complications when applied to a living cell, because the cell's cytosol contains thousands of solutes, and thus thousands of state variables, which makes determination of its state impractical. We show here that, when looking for the maximum energy that the cytosol can store and release, detailed information on cytosol composition is redundant. Compatibility with cell's life requires that a single variable that represents the overall concentration of cytosol solutes must fall between defined limits, which can be determined by dehydrating and overhydrating the cell to its maximum capacity. The same limits are shown to determine, in particular, the maximum amount of free energy that a cell can supply in fast anaerobic processes, starting from any given initial state. For a typical skeletal muscle in normal physiological conditions this energy, i.e., the maximum anaerobic capacity to do work, is calculated to be about 960 J per kg of muscular mass. Such energy decreases as the overall concentration of solutes in the cytosol is increased. Similar results apply to any kind of cell. They provide an essential tool to understand and control the macroscopic response of single cells and multicellular cellular tissues alike. The applications include sport physiology, cell aging, disease produced cell damage, drug absorption capacity, to mention the most obvious ones.

  5. Developmental changes in cytosolic coupling between epidermis cells as visualized by photoactivation of fluorescein

    DEFF Research Database (Denmark)

    Liu, Xiangdong; Martens, Helle; Schulz, Alexander

    Developmental changes in cytosolic coupling between epidermis cells as visualized by photoactivation of fluorescein.......Developmental changes in cytosolic coupling between epidermis cells as visualized by photoactivation of fluorescein....

  6. Ammodytoxin, a neurotoxic secreted phospholipase A2, can act in the cytosol of the nerve cell

    International Nuclear Information System (INIS)

    Petrovic, Uros; Sribar, Jernej; Paris, Alenka; Rupnik, Marjan; Krzan, Mojca; Vardjan, Nina; Gubensek, Franc; Zorec, Robert; Krizaj, Igor

    2004-01-01

    Recent identification of intracellular proteins that bind ammodytoxin (calmodulin, 14-3-3 proteins, and R25) suggests that this snake venom presynaptically active phospholipase A 2 acts intracellularly. As these ammodytoxin acceptors are cytosolic and mitochondrial proteins, the toxin should be able to enter the cytosol of a target cell and remain stable there to interact with them. Using laser scanning confocal microscopy we show here that Alexa-labelled ammodytoxin entered the cytoplasm of the rat hippocampal neuron and subsequently also its nucleus. The transport of proteins into the nucleus proceeds via the cytosol of a cell, therefore, ammodytoxin passed the cytosol of the neuron on its way to the nucleus. Although it is not yet clear how ammodytoxin is translocated into the cytosol of the neuron, our results demonstrate that its stability in the cytosol is not in question, providing the evidence that the toxin can act in this cellular compartment

  7. Rationally Engineering Phototherapy Modules of Eosin-Conjugated Responsive Polymeric Nanocarriers via Intracellular Endocytic pH Gradients.

    Science.gov (United States)

    Liu, Guhuan; Hu, Jinming; Zhang, Guoying; Liu, Shiyong

    2015-07-15

    Spatiotemporal switching of respective phototherapy modes at the cellular level with minimum side effects and high therapeutic efficacy is a major challenge for cancer phototherapy. Herein we demonstrate how to address this issue by employing photosensitizer-conjugated pH-responsive block copolymers in combination with intracellular endocytic pH gradients. At neutral pH corresponding to extracellular and cytosol milieu, the copolymers self-assemble into micelles with prominently quenched fluorescence emission and low (1)O2 generation capability, favoring a highly efficient photothermal module. Under mildly acidic pH associated with endolysosomes, protonation-triggered micelle-to-unimer transition results in recovered emission and enhanced photodynamic (1)O2 efficiency, which synergistically actuates release of encapsulated drugs, endosomal escape, and photochemical internalization processes.

  8. Novel thermostable clostridial strains through protoplast fusion for enhanced biobutanol production at higher temperature—preliminary study

    Directory of Open Access Journals (Sweden)

    Muhammad Ferhan

    2016-01-01

    Full Text Available The objective of this study is to improve the thermal stability of clostridium strains for enhanced biobutanol production. Thermostable clostridia species were developed through protoplast fusion between mesophilic clostridial species (i.e., Clostridium beijerinckii and Clostridium acetobutylicum and thermophilic clostridial species (i.e., Clostridium thermocellum. Production of biobutanol was examined in the present preliminary study using the clostridium strains and their protoplast fusants using sugar mixture with composition identical to that of wheat straw acid hydrolysate. Maximum biobutanol production of 9.4 g/L was achieved by a fused strain at 45 °C with total sugar consumption of 66% compared to that at 35 °C (i.e., 8.4 g/L production and 64% total sugar consumption. Glucose and xylose uptake rates were generally higher compared to all other individual sugars in the feedstock. In general, average cell concentrations were in close proximity for all parenting and fused strains at 35 °C; i.e., in the range of 5.12 × 107 to 5.49 × 107 cells/mL. Average cell concentration of fusants between the mesophilic clostridial species and the thermophilic clostridial species slightly increased to ~ 5.62 × 107 cells/mL at a higher temperature of 45 °C. These results, in addition to the ones obtained for the butanol production, demonstrate enhanced thermal stability of both fusants at a higher temperature (45 °C.

  9. Organizers and activators: Cytosolic Nox proteins impacting on vascular function.

    Science.gov (United States)

    Schröder, Katrin; Weissmann, Norbert; Brandes, Ralf P

    2017-08-01

    NADPH oxidases of the Nox family are important enzymatic sources of reactive oxygen species (ROS) in the cardiovascular system. Of the 7 members of the Nox family, at least three depend for their activation on specific cytosolic proteins. These are p47phox and its homologue NoxO1 and p67phox and its homologue NoxA1. Also the Rho-GTPase Rac is important but as this protein has many additional functions, it will not be covered here. The Nox1 enzyme is preferentially activated by the combination of NoxO1 with NoxA1, whereas Nox2 gains highest activity with p47phox together with p67phox. As p47phox, different to NoxO1 contains an auto inhibitory region it has to be phosphorylated prior to complex formation. In the cardio-vascular system, all cytosolic Nox proteins are expressed but the evidence for their contribution to ROS production is not well established. Most data have been collected for p47phox, whereas NoxA1 has basically not yet been studied. In this article the specific aspects of cytosolic Nox proteins in the cardiovascular system with respect to Nox activation, their expression and their importance will be reviewed. Finally, it will be discussed whether cytosolic Nox proteins are suitable pharmacological targets to tamper with vascular ROS production. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Transport and concentration of abscisic acid (ABA) and auxin (IAA) in deciduous and coniferous trees. Transport und Gehalt von Abscisinsaeure (ABA) und Auxin (IAA) in Laub- und Nadelblaettern

    Energy Technology Data Exchange (ETDEWEB)

    Hartung, W.

    1988-09-01

    Abscisic acid and indoleacetic acid were chosen to examine whether intact deciduous and coniferous tissues from spruce, hemlock fir, spinage, barley and sorrel or isolated mesophyll protoplasts from barley and closing cell preparations from Valerianella locusta are affected by sulphur dioxide in terms of changes in the concentration, transportation and distribution of such plant hormones. The distribution of phytohormones like ABA and IAA over the individual cell compartments is determined by the different pH gradients of the latter. Owing to their acidity these hormones are accumulated in alkaline cell inclusion bodies like chloroplasts and cytosol. Potentially acid air pollutants like SO{sub 2} and NO{sub x} lead to acidification of previously alkaline cell compartments, due to which fact the cellular pH gradients are reduced. This, in turn, gives rise to a redistribution of phytohormones to the effect that certain target cells such as closing cells of leaves or meristem cells come under the influence of altered hormone concentrations and compositions. This is bound to affect the processes controlling the development, growth and stress behaviour of plants. (orig.) With 55 refs., 2 tabs., 16 figs.

  11. DMPD: Regulation of arachidonic acid release and cytosolic phospholipase A2activation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10080535 Regulation of arachidonic acid release and cytosolic phospholipase A2activ...on of arachidonic acid release and cytosolic phospholipase A2activation. PubmedID 10080535 Title Regulation ...of arachidonic acid release and cytosolic phospholipase A2activation. Authors Gij

  12. Bioethanol production by a flocculent hybrid, CHFY0321 obtained by protoplast fusion between Saccharomyces cerevisiae and Saccharomyces bayanus

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Gi-Wook; Kang, Hyun-Woo; Kim, Yule [Changhae Institute of Cassava and Ethanol Research, Changhae Ethanol Co., LTD, Palbok-Dong 829, Dukjin-Gu, Jeonju 561-203 (Korea); Um, Hyun-Ju; Kim, Mina; Kim, Yang-Hoon [Department of Microbiology, Chungbuk National University, 410 Sungbong-Ro, Heungduk-Gu, Cheongju 361-763 (Korea)

    2010-08-15

    Fusion hybrid yeast, CHFY0321, was obtained by protoplast fusion between non-flocculent-high ethanol fermentative Saccharomyces cerevisiae CHY1011 and flocculent-low ethanol fermentative Saccharomyces bayanus KCCM12633. The hybrid yeast was used together with the parental strains to examine ethanol production in batch fermentation. Under the conditions tested, the fusion hybrid CHFY0321 flocculated to the highest degree and had the capacity to ferment well at pH 4.5 and 32 C. Simultaneous saccharification and fermentation for ethanol production was carried out using a cassava (Manihot esculenta) powder hydrolysate medium containing 19.5% (w v{sup -1}) total sugar in a 5 l lab scale jar fermenter at 32 C for 65 h with an agitation speed of 2 Hz. Under these conditions, CHFY0321 showed the highest flocculating ability and the best fermentation efficiency for ethanol production compared with those of the wild-type parent strains. CHFY0321 gave a final ethanol concentration of 89.8 {+-} 0.13 g l{sup -1}, a volumetric ethanol productivity of 1.38 {+-} 0.13 g l{sup -1} h{sup -1}, and a theoretical yield of 94.2 {+-} 1.58%. These results suggest that CHFY0321 exhibited the fermentation characteristics of S. cerevisiae CHY1011 and the flocculent ability of S. bayanus KCCM12633. Therefore, the strong highly flocculent ethanol fermentative CHFY0321 has potential for improving biotechnological ethanol fermentation processes. (author)

  13. Bioethanol production by a flocculent hybrid, CHFY0321 obtained by protoplast fusion between Saccharomyces cerevisiae and Saccharomyces bayanus

    International Nuclear Information System (INIS)

    Choi, Gi-Wook; Um, Hyun-Ju; Kang, Hyun-Woo; Kim, Yule; Kim, Mina; Kim, Yang-Hoon

    2010-01-01

    Fusion hybrid yeast, CHFY0321, was obtained by protoplast fusion between non-flocculent-high ethanol fermentative Saccharomyces cerevisiae CHY1011 and flocculent-low ethanol fermentative Saccharomyces bayanus KCCM12633. The hybrid yeast was used together with the parental strains to examine ethanol production in batch fermentation. Under the conditions tested, the fusion hybrid CHFY0321 flocculated to the highest degree and had the capacity to ferment well at pH 4.5 and 32 o C. Simultaneous saccharification and fermentation for ethanol production was carried out using a cassava (Manihot esculenta) powder hydrolysate medium containing 19.5% (w v -1 ) total sugar in a 5 l lab scale jar fermenter at 32 o C for 65 h with an agitation speed of 2 Hz. Under these conditions, CHFY0321 showed the highest flocculating ability and the best fermentation efficiency for ethanol production compared with those of the wild-type parent strains. CHFY0321 gave a final ethanol concentration of 89.8 ± 0.13 g l -1 , a volumetric ethanol productivity of 1.38 ± 0.13 g l -1 h -1 , and a theoretical yield of 94.2 ± 1.58%. These results suggest that CHFY0321 exhibited the fermentation characteristics of S. cerevisiae CHY1011 and the flocculent ability of S. bayanus KCCM12633. Therefore, the strong highly flocculent ethanol fermentative CHFY0321 has potential for improving biotechnological ethanol fermentation processes.

  14. Naturally induced secretions of the potato cyst nematode co-stimulate the proliferation of both tobacco leaf protoplasts and human peripheral blood mononuclear cells.

    Science.gov (United States)

    Goverse, A; Rouppe van der Voort, J; Roppe van der Voort, C; Kavelaars, A; Smant, G; Schots, A; Bakker, J; Helder, J

    1999-10-01

    Naturally induced secretions from infective juveniles of the potato cyst nematode Globodera rostochiensis co-stimulate the proliferation of tobacco leaf protoplasts in the presence of the synthetic phytohormones alpha-naphthaleneacetic acid (NAA) and 6-benzylaminopurine (BAP). With the use of a protoplast-based bioassay, a low-molecular-weight peptide(s) (cyst nematode secretions also co-stimulated mitogenesis in human peripheral blood mononuclear cells (PBMC). The stimulation of plant cells isolated from nontarget tissue--these nematodes normally invade the roots of potato plants--suggests the activation of a general signal transduction mechanism(s) by an oligopeptide(s) secreted by the nematode. Whether a similar oligopeptide-induced mechanism underlies human PBMC activation remains to be investigated. Reactivation of the cell cycle is a crucial event in feeding cell formation by cyst nematodes. The secretion of a mitogenic low-molecular-weight peptide(s) by infective juveniles of the potato cyst nematode could contribute to the redifferentiation of plant cells into such a feeding cell.

  15. Quantitative assessment of cellular uptake and cytosolic access of antibody in living cells by an enhanced split GFP complementation assay

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji-sun; Choi, Dong-Ki; Park, Seong-wook; Shin, Seung-Min; Bae, Jeomil [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of); Kim, Dong-Myung [Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Yoo, Tae Hyeon [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of); Kim, Yong-Sung, E-mail: kimys@ajou.ac.kr [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of)

    2015-11-27

    Considering the number of cytosolic proteins associated with many diseases, development of cytosol-penetrating molecules from outside of living cells is highly in demand. To gain access to the cytosol after cellular uptake, cell-penetrating molecules should be released from intermediate endosomes prior to the lysosomal degradation. However, it is very challenging to distinguish the pool of cytosolic-released molecules from those trapped in the endocytic vesicles. Here we describe a method to directly demonstrate the cytosolic localization and quantification of cytosolic amount of a cytosol-penetrating IgG antibody, TMab4, based on enhanced split GFP complementation system. We generated TMab4 genetically fused with one GFP fragment and separately established HeLa cells expressing the other GFP fragment in the cytosol such that the complemented GFP fluorescence is observed only when extracellular-treated TMab4 reaches the cytosol after cellular internalization. The high affinity interactions between streptavidin-binding peptide 2 and streptavidin was employed as respective fusion partners of GFP fragments to enhance the sensitivity of GFP complementation. With this method, cytosolic concentration of TMab4 was estimated to be about 170 nM after extracellular treatment of HeLa cells with 1 μM TMab4 for 6 h. We also found that after cellular internalization into living cells, nearly 1.3–4.3% of the internalized TMab4 molecules escaped into the cytosol from the endocytic vesicles. Our enhanced split GFP complementation assay provides a useful tool to directly quantify cytosolic amount of cytosol-penetrating agents and allows cell-based high-throughput screening for cytosol-penetrating agents with increased endosomal-escaping activity.

  16. In vivo measurement of cytosolic and mitochondrial pH using a pH-sensitive GFP derivative in Saccharomyces cerevisiae reveals a relation between intracellular pH and growth

    NARCIS (Netherlands)

    Orij, R.; Postmus, J.; ter Beek, A.; Brul, S.; Smits, G.J.

    2009-01-01

    The specific pH values of cellular compartments affect virtually all biochemical processes, including enzyme activity, protein folding and redox state. Accurate, sensitive and compartment-specific measurements of intracellular pH (pHi) dynamics in living cells are therefore crucial to the

  17. Spatial modeling of the membrane-cytosolic interface in protein kinase signal transduction.

    Directory of Open Access Journals (Sweden)

    Wolfgang Giese

    2018-04-01

    Full Text Available The spatial architecture of signaling pathways and the interaction with cell size and morphology are complex, but little understood. With the advances of single cell imaging and single cell biology, it becomes crucial to understand intracellular processes in time and space. Activation of cell surface receptors often triggers a signaling cascade including the activation of membrane-attached and cytosolic signaling components, which eventually transmit the signal to the cell nucleus. Signaling proteins can form steep gradients in the cytosol, which cause strong cell size dependence. We show that the kinetics at the membrane-cytosolic interface and the ratio of cell membrane area to the enclosed cytosolic volume change the behavior of signaling cascades significantly. We suggest an estimate of average concentration for arbitrary cell shapes depending on the cell volume and cell surface area. The normalized variance, known from image analysis, is suggested as an alternative measure to quantify the deviation from the average concentration. A mathematical analysis of signal transduction in time and space is presented, providing analytical solutions for different spatial arrangements of linear signaling cascades. Quantification of signaling time scales reveals that signal propagation is faster at the membrane than at the nucleus, while this time difference decreases with the number of signaling components in the cytosol. Our investigations are complemented by numerical simulations of non-linear cascades with feedback and asymmetric cell shapes. We conclude that intracellular signal propagation is highly dependent on cell geometry and, thereby, conveys information on cell size and shape to the nucleus.

  18. Pressurized liquid extraction-assisted mussel cytosol preparation for the determination of metals bound to metallothionein-like proteins

    International Nuclear Information System (INIS)

    Santiago-Rivas, Sandra; Moreda-Pineiro, Antonio; Bermejo-Barrera, Pilar; Moreda-Pineiro, Jorge; Alonso-Rodriguez, Elia; Muniategui-Lorenzo, Soledad; Lopez-Mahia, Purificacion; Prada-Rodriguez, Dario

    2007-01-01

    The possibilities of pressurized liquid extraction (PLE) have been novelty tested to assist the cytosol preparation from wet mussel soft tissue before the determination of metals bound to metallothionein-like proteins (MLPs). Results obtained after PLE were compared with those obtained after a classical blending procedure for mussel cytosolic preparation. Isoforms MLP-1 (retention time of 4.1 min) and MLP-2 (retention time of 7.4 min) were separated by anion exchange high-performance liquid chromatography (HPLC) and the concentrations of Ba, Cu, Mn, Sr and Zn bound to MLP isoforms were directly measured by inductively coupled plasma-atomic emission spectrometry (ICP-OES) as a multi-element detector. The optimized PLE-assisted mussel cytosol preparation has consisted of one extraction cycle at room temperature and 1500 psi for 2 min. Since separation between the solid mussel residue and the extract (cytosol) is performed by the PLE system, the cytosol preparation method is faster than conventional cytosol preparation methods by cutting/blending using Ultraturrax or Stomacher devices

  19. Laser mutagenesis and producing cellulase condition optimization of Trichoderma virid protoplast

    International Nuclear Information System (INIS)

    Chen Shuli; Zhang Qin; Han Jingjing; Lv Jiangtao; Wang Shilong; Yao Side

    2009-01-01

    The protoplast of Trichoderma virid CICC13038 was mutated using Nd:YAG laser of 266 nm light. And a high-cellulase producing strain JG13 was bred by screening with cellulose microcrystalline. Under the condition of 28 degree C, 180 rpm and 72 h of fermentation time, optimal conditions for the celluase ferment by orthogonal experiment were: 2% bran as the carbon source, 1% (NH 4 ) 2 SO 4 as the nitrogen source, 0.5% Tween-80 as a enzyme-promoting agent,and 25 mL of medium volume in a 250 mL bottle. The cellulase activity of the mutant reached 35.68 U/mL, 25.76% higher than that of the original strain under the same conditions. The mutant JG13 has a great potential in industrial production. And it also can be used as the original strain for further mutagenesis to get the strain of higher cellulase activity. (authors)

  20. ISOLATION OF MESOPHYLL PROTOPLASTS FROM MEDITERRANEAN WOODY PLANTS FOR THE STUDY OF DNA INTEGRITY UNDER ABIOTIC STRESS

    Directory of Open Access Journals (Sweden)

    Elena Kuzminsky

    2016-08-01

    Full Text Available Abiotic stresses have considerable negative impact on Mediterranean plant ecosystems and better comprehension of the genetic control of response and adaptation of trees to global changes is urgently needed. The Single Cell Gel Electrophoresis assay could be considered a good estimator of DNA damage in an individual eukaryotic cell. This method has been mainly employed in animal tissues, because the plant cell wall represents an obstacle for the extraction of nuclei; moreover, in Mediterranean woody species, especially in the sclerophyll plants, this procedure can be quite difficult because of the presence of sclerenchyma and hardened cells. On the other hand, these plants represent an interesting material to be studied because of the ability of these plants to tolerate abiotic stress. For instance, holm oak (Quercus ilex L. has been selected as the model plant to identify critical levels of O3 for Southern European forests. Consequently, a quantitative method for the evaluation of cell injury of leaf tissues of this species is required. Optimal conditions for high-yield nuclei isolation were obtained by using protoplast technology and a detailed description of the method is provided and discussed. White poplar (Populus alba L. was used as an internal control for protoplast isolation. Such a method has not been previously reported in newly fully developed leaves of holm oak. This method combined with Single Cell Gel Electrophoresis assay represents a new tool for testing the DNA integrity of leaf tissues in higher plants under stress conditions.

  1. Insulin Induces an Increase in Cytosolic Glucose Levels in 3T3-L1 Cells with Inhibited Glycogen Synthase Activation

    Directory of Open Access Journals (Sweden)

    Helena H. Chowdhury

    2014-10-01

    Full Text Available Glucose is an important source of energy for mammalian cells and enters the cytosol via glucose transporters. It has been thought for a long time that glucose entering the cytosol is swiftly phosphorylated in most cell types; hence the levels of free glucose are very low, beyond the detection level. However, the introduction of new fluorescence resonance energy transfer-based glucose nanosensors has made it possible to measure intracellular glucose more accurately. Here, we used the fluorescent indicator protein (FLIPglu-600µ to monitor cytosolic glucose dynamics in mouse 3T3-L1 cells in which glucose utilization for glycogen synthesis was inhibited. The results show that cells exhibit a low resting cytosolic glucose concentration. However, in cells with inhibited glycogen synthase activation, insulin induced a robust increase in cytosolic free glucose. The insulin-induced increase in cytosolic glucose in these cells is due to an imbalance between the glucose transported into the cytosol and the use of glucose in the cytosol. In untreated cells with sensitive glycogen synthase activation, insulin stimulation did not result in a change in the cytosolic glucose level. This is the first report of dynamic measurements of cytosolic glucose levels in cells devoid of the glycogen synthesis pathway.

  2. Live cell imaging of cytosolic NADH/NAD+ ratio in hepatocytes and liver slices.

    Science.gov (United States)

    Masia, Ricard; McCarty, William J; Lahmann, Carolina; Luther, Jay; Chung, Raymond T; Yarmush, Martin L; Yellen, Gary

    2018-01-01

    Fatty liver disease (FLD), the most common chronic liver disease in the United States, may be caused by alcohol or the metabolic syndrome. Alcohol is oxidized in the cytosol of hepatocytes by alcohol dehydrogenase (ADH), which generates NADH and increases cytosolic NADH/NAD + ratio. The increased ratio may be important for development of FLD, but our ability to examine this question is hindered by methodological limitations. To address this, we used the genetically encoded fluorescent sensor Peredox to obtain dynamic, real-time measurements of cytosolic NADH/NAD + ratio in living hepatocytes. Peredox was expressed in dissociated rat hepatocytes and HepG2 cells by transfection, and in mouse liver slices by tail-vein injection of adeno-associated virus (AAV)-encoded sensor. Under control conditions, hepatocytes and liver slices exhibit a relatively low (oxidized) cytosolic NADH/NAD + ratio as reported by Peredox. The ratio responds rapidly and reversibly to substrates of lactate dehydrogenase (LDH) and sorbitol dehydrogenase (SDH). Ethanol causes a robust dose-dependent increase in cytosolic NADH/NAD + ratio, and this increase is mitigated by the presence of NAD + -generating substrates of LDH or SDH. In contrast to hepatocytes and slices, HepG2 cells exhibit a relatively high (reduced) ratio and show minimal responses to substrates of ADH and SDH. In slices, we show that comparable results are obtained with epifluorescence imaging and two-photon fluorescence lifetime imaging (2p-FLIM). Live cell imaging with Peredox is a promising new approach to investigate cytosolic NADH/NAD + ratio in hepatocytes. Imaging in liver slices is particularly attractive because it allows preservation of liver microanatomy and metabolic zonation of hepatocytes. NEW & NOTEWORTHY We describe and validate a new approach for measuring free cytosolic NADH/NAD + ratio in hepatocytes and liver slices: live cell imaging with the fluorescent biosensor Peredox. This approach yields dynamic, real

  3. Studies on protein synthesis by protoplasts of saccharomyces carlsbergensis III. Studies on the specificity and the mechanism of the action of ribonuclease on protein synthesis

    NARCIS (Netherlands)

    Kloet, S.R. de; Dam, G.J.W. van; Koningsberger, V.V.

    1962-01-01

    In this paper, the experimental results are presented of a continued study on the specificity and the mechanism of the inhibition by ribonuclease of protein synthesis in protoplasts of Saccharomyces carlsbergensis. By comparing the effects of native pancreatic ribonuclease with those of

  4. Cytosolic Cl- Affects the Anticancer Activity of Paclitaxel in the Gastric Cancer Cell Line, MKN28 Cell

    Directory of Open Access Journals (Sweden)

    Sachie Tanaka

    2017-05-01

    Full Text Available Background/Aims: Our previous study revealed that cytosolic Cl- affected neurite elongation promoted via assembly of microtubule in rat pheochromocytoma PC12D cells and Cl-–induced blockade of intrinsic GTPase enhanced tubulin polymerization in vitro. Paclitaxel (PTX is a microtubule-targeted chemotherapeutic drug and stabilizes microtubules resulting in mainly blockade of mitosis at the metaphase-anaphase transition and induction of apoptosis. In the present study, we tried to clarify whether the cytosolic Cl- affected PTX ability to inhibit cell growth in the gastric cancer cell line, MKN28. Methods: To clarify the cytosolic Cl- action on PTX-induced cell death and metaphase-anaphase transition in the gastric cancer cell line, MKN28 cell, and PTX-induced tubulin polymerization, we performed cell proliferation assay, cytosolic Cl- concentration measurement, immunofluorescence microscopy, and in vitro tubulin polymerization assay. Results: The decline of cytosolic Cl- weakened the cytotoxic effect of PTX on cell proliferation of MKN28 cells, which could pass through the metaphase-anaphase transition. Moreover, in vitro PTX-induced tubulin polymerization was diminished under the low Cl- condition. Conclusions: Our results strongly suggest that the upregulation of cytosolic Cl- concentration would enhance the antitumor effect of PTX, and that the cytosolic Cl- would be one of the key targets for anti-cancer therapy.

  5. TRIM56-mediated monoubiquitination of cGAS for cytosolic DNA sensing.

    Science.gov (United States)

    Seo, Gil Ju; Kim, Charlotte; Shin, Woo-Jin; Sklan, Ella H; Eoh, Hyungjin; Jung, Jae U

    2018-02-09

    Intracellular nucleic acid sensors often undergo sophisticated modifications that are critical for the regulation of antimicrobial responses. Upon recognition of DNA, the cytosolic sensor cyclic GMP-AMP (cGAMP) synthase (cGAS) produces the second messenger cGAMP, which subsequently initiates downstream signaling to induce interferon-αβ (IFNαβ) production. Here we report that TRIM56 E3 ligase-induced monoubiquitination of cGAS is important for cytosolic DNA sensing and IFNαβ production to induce anti-DNA viral immunity. TRIM56 induces the Lys335 monoubiquitination of cGAS, resulting in a marked increase of its dimerization, DNA-binding activity, and cGAMP production. Consequently, TRIM56-deficient cells are defective in cGAS-mediated IFNαβ production upon herpes simplex virus-1 (HSV-1) infection. Furthermore, TRIM56-deficient mice show impaired IFNαβ production and high susceptibility to lethal HSV-1 infection but not to influenza A virus infection. This adds TRIM56 as a crucial component of the cytosolic DNA sensing pathway that induces anti-DNA viral innate immunity.

  6. Glutathionylation regulates cytosolic NADP+-dependent isocitrate dehydrogenase activity.

    Science.gov (United States)

    Shin, Seoung Woo; Oh, Chang Joo; Kil, In Sup; Park, Jeen-Woo

    2009-04-01

    Cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) is susceptible to inactivation by numerous thiol-modifying reagents. This study now reports that Cys269 of IDPc is a target for S-glutathionylation and that this modification is reversed by dithiothreitol as well as enzymatically by cytosolic glutaredoxin in the presence of GSH. Glutathionylated IDPc was significantly less susceptible than native protein to peptide fragmentation by reactive oxygen species and proteolytic digestion. Glutathionylation may play a protective role in the degradation of protein through the structural alterations of IDPc. HEK293 cells treated with diamide displayed decreased IDPc activity and accumulated glutathionylated enzyme. Using immunoprecipitation with an anti-IDPc IgG and immunoblotting with an anti-GSH IgG, we purified and positively identified glutathionylated IDPc from the kidneys of mice subjected to ischemia/reperfusion injury and from the livers of ethanol-administered rats. These results suggest that IDPc activity is modulated through enzymatic glutathionylation and deglutathionylation during oxidative stress.

  7. Induction of Cytosolic Acetyl-Coenzyme A Carboxylase in Pea Leaves by Ultraviolet-B Irradiation

    OpenAIRE

    Tomokazu, Konishi; Takahiro, Kamoi; Ryuichi, Matsuno; Yukiko, Sasaki; Department of Food Science and Technology, Faculty of Agriculture, Kyoto University:(Present)Laboratory of Molecular Genetics, Biotechnology Institute, Akita Prefectural College of Agriculture; Department of Food Science and Technology, Faculty of Agriculture, Kyoto University; Department of Food Science and Technology, Faculty of Agriculture, Kyoto University; Department of Food Science and Technology, Faculty of Agriculture, Kyoto University:(Present)Laboratory of Plant Molecular Biology, School of Agricultural Sciences, Nagoya University

    1996-01-01

    Levels of subunits of two acetyl-coenzyme A carboxylases were high in small leaves of Pisum sativum, decreased with growth, and remained constant in fully expanded leaves. Irradiation of fully expanded leaves induced the cytosolic isozyme only. This result suggests a key role for the cytosolic enzyme in protection against UV-B.

  8. The cytosolic exonuclease TREX1 inhibits the innate immune response to HIV-1

    Science.gov (United States)

    Yan, Nan; Regalado-Magdos, Ashton D.; Stiggelbout, Bart; Lee-Kirsch, Min Ae; Lieberman, Judy

    2010-01-01

    Viral infection triggers innate immune sensors to produce type I interferons (IFN). However, HIV infection of T cells and macrophages does not trip these alarms. How HIV avoids activating nucleic acid sensors is unknown. The cytosolic exonuclease TREX1 suppressed IFN triggered by HIV. In Trex1−/− mouse cells and human CD4+ T cells and macrophages in which TREX1 was inhibited by RNA interference, cytosolic HIV DNA accumulated, and HIV infection induced type I IFN that inhibited HIV replication and spreading. TREX1 bound to cytosolic HIV DNA and digested excess HIV DNA that would otherwise activate IFN expression via a TBK1, STING and IRF3 dependent pathway. HIV-stimulated IFN production in cells deficient in TREX1 did not involve known nucleic acid sensors. PMID:20871604

  9. Effect of low dose radiation on thymocyte cytosol and nuclei protein synthesis in mice

    International Nuclear Information System (INIS)

    Meng Qingyong; Chen Shali; Liu Shuzheng

    2003-01-01

    Objective: To the effect of low dose radiation on thymocyte cytosol and nuclei protein synthesis in mice. Methods: The expression of proteins was analyzed by gel filtration with Sephadex G-100 and HPLC based on separation of proteins on thymocyte cytosol and nuclei after whole-body irradiation with 75 mGy X-rays and sham-irradiation, and their biological activity was examined by mouse splenocyte proliferation and chromosome aberration of human peripheral blood lymphocytes. Results: HPLC analysis showed that there was a marked increase in expression of 61.4 kD protein in the extract of thymocyte cytosol and 30.4 kD protein in the extract of thymocyte nuclei in comparison with the corresponding fractions from the sham-irradiated control mice. These protein fractions from the thymocyte cytosol and nuclei of the irradiated mice showed both stimulating effect on normal T cell proliferation and protective effect on chromosome damage induced by high dose radiation. Conclusion: These findings might have implications in study of mechanism of immunoenhancement and cytogenetic adaptive response induced by low dose radiation

  10. The effect of mitochondrial dysfunction on cytosolic nucleotide metabolism

    DEFF Research Database (Denmark)

    Madsen, Claus Desler; Lykke, Anne; Rasmussen, Lene Juel

    2010-01-01

    Several enzymes of the metabolic pathways responsible for metabolism of cytosolic ribonucleotides and deoxyribonucleotides are located in mitochondria. Studies described in this paper suggest dysfunction of the mitochondria to affect these metabolic pathways and limit the available levels...

  11. Intracellular pH homeostasis and serotonin-induced pH changes in Calliphora salivary glands: the contribution of V-ATPase and carbonic anhydrase.

    Science.gov (United States)

    Schewe, Bettina; Schmälzlin, Elmar; Walz, Bernd

    2008-03-01

    Blowfly salivary gland cells have a vacuolar-type H(+)-ATPase (V-ATPase) in their apical membrane that energizes secretion of a KCl-rich saliva upon stimulation with serotonin (5-hydroxytryptamine, 5-HT). We have used BCECF to study microfluometrically whether V-ATPase and carbonic anhydrase (CA) are involved in intracellular pH (pH(i)) regulation, and we have localized CA activity by histochemistry. We show: (1) mean pH(i) in salivary gland cells is 7.5+/-0.3 pH units (N=96), higher than that expected from passive H(+) distribution; (2) low 5-HT concentrations (0.3-3 nmol l(-1)) induce a dose-dependent acidification of up to 0.2 pH units, with 5-HT concentrations >10 nmol l(-1), causing monophasic or multiphasic pH changes; (3) the acidifying effect of 5-HT is mimicked by bath application of cAMP, forskolin or IBMX; (4) salivary gland cells exhibit CA activity; (5) CA inhibition with acetazolamide and V-ATPase inhibition with concanamycin A lead to a slow acidification of steady-state pH(i); (6) 5-HT stimuli in the presence of acetazolamide induce an alkalinization that can be decreased by simultaneous application of the V-ATPase inhibitor concanamycin A; (7) concanamycin A removes alkali-going components from multiphasic 5-HT-induced pH changes; (8) NHE activity and a Cl(-)-dependent process are involved in generating 5-HT-induced pH changes; (9) the salivary glands probably contain a Na(+)-driven amino acid transporter. We conclude that V-ATPase and CA contribute to steady-state pH(i) regulation and 5-HT-induced outward H(+) pumping does not cause an alkalinization of pH(i) because of cytosolic H(+) accumulation attributable to stimulated cellular respiration and AE activity, masking the alkalizing effect of V-ATPase-mediated acid extrusion.

  12. Comparison of monoclonal antibodies and tritiated ligands for estrogen receptor assays in 241 breast cancer cytosols

    International Nuclear Information System (INIS)

    Goussard, J.; Lechevrel, C.; Martin, P.M.; Roussel, G.

    1986-01-01

    Estrogen receptor determinations have been performed on 241 cytosols from 160 breast cancer tumors using both radioactive ligands ([ 3 H]-estradiol, [3H]R2858) and monoclonal antibodies (Abbott ER-EIA Kit) to compare the two methods and to evaluate the clinical usefulness of the new immunological, simplified assay. Intra- and interassay reproducibility of the enzyme immunoassay (EIA) method was studied during a 6-month period on 35 standard curves with 4 different batches of monoclonal antibodies. Intraassay coefficients of variation studied on duplicates were smaller than 5% in most cases and reproducibility of the curves showed coefficients of variation lower than 10% except for standard 0 and 5 fmol/ml. Pooled cytosols used as control for the dextran coated charcoal method had interassay variation coefficients between 3.8 and 11.4%. Reproducibility has been studied on clinical specimens assayed twice at two different periods with either EIA or dextran coated charcoal methods. Slopes obtained were 1.05 and 0.96, respectively. A good stability of EIA results was obtained with protein concentrations in the range 4-0.15 mg/ml cytosol. No significant effects of dithiothreitol or monothioglycerol (1 mM) on EIA and dextran coated charcoal assay were observed. Eighty breast cancer cytosols were assayed with both EIA and Scatchard analysis. The slope of the regression curve obtained was 1.04 (r = 0.963). Cytosols were assayed by EIA and by a saturating concentration of tritiated ligand (5 nM). With 153 cytosols the EIA/5 nM slope was 1.34 (r = 0.978). This slope can be compared with the slope Scatchard/5 nM obtained with 90 cytosols: 1.29 (r = 0.985). Absence of cross-reactivity of monoclonal ER antibodies with progesterone receptor was observed

  13. Citrus asymmetric somatic hybrids produced via fusion of gamma-irradiated and iodoacetamide-treated protoplasts Híbridos somáticos assimétricos de citros produzidos pela fusão de protoplastos irradiados e tratados com iodoacetamida

    Directory of Open Access Journals (Sweden)

    Claudine Maria de Bona

    2009-05-01

    Full Text Available The objective of this study was to produce citrus somatic asymmetric hybrids by fusing gamma-irradiated protoplasts with iodoacetamide-treated protoplasts. Protoplasts were isolated from embryogenic suspension cells of grapefruit (Citrus paradisi Macfad. cultivars Ruby Red and Flame, sweet oranges (C. sinensis Osbeck 'Itaboraí', 'Natal', Valencia', and 'Succari', from 'Satsuma' (C. unshiu Marcow. and 'Changsha' mandarin (C. reticulata Blanco and 'Murcott' tangor (C. reticulata x C. sinensis. Donor protoplasts were exposed to gamma rays and receptor protoplasts were treated with 3 mmol L-1 iodoacetamide (IOA, and then they were fused for asymmetric hybridization. Asymmetric embryos were germinated, and the resulting shoots were either grafted onto sour orange, rough lemon or 'Swingle' (C. paradisi x Poncirus trifoliata x 'Sunki' mandarin rootstock seedlings, or rooted after dipping their bases in indol-butyric acid (IBA solution. The products were later acclimatized to greenhouse conditions. Ploidy was analyzed by flow cytometry, and hybridity was confirmed by amplified fragment length polymorphism (AFLP analysis of plantlet DNAsamples. The best treatment was the donor-recipient fusion combination of 80 Gy-irradiated 'Ruby Red' protoplasts with 20 min IOA-treated 'Succari' protoplasts. Tetraploid and aneuploid plants were produced. Rooting recalcitrance was solved by dipping shoots' stems in 3,000 mg L-1 IBA solution for 10 min.O objetivo deste trabalho foi produzir híbridos somáticos assimétricos de citros pela fusão de protoplastos irradiados com raios gama e protoplastos tratados com iodoacetamida. Protoplastos foram isolados de suspensões celulares embriogênicas de pomelo (Citrus paradisi Macfad., cultivares Ruby Red e Flame, de laranja doce (C. sinensis Osbeck 'Itaboraí', 'Natal', Valencia' e 'Succari', de tangerinas 'Satsuma' (C. unshiu Marcow. e 'Changsha' (C. reticulata Blanco e de tangor 'Murcott' (C. reticulata x C. sinensis

  14. The effects of irradiation on the cytosol glucocorticoid receptor and concentrations of corticosterone and cyclic nucleotides in the rat liver

    International Nuclear Information System (INIS)

    Teshima, Teruki; Mori, Masaki; Honke, Yoshifumi

    1983-01-01

    The effects of irradiation on both the cytosol glucocorticoid receptor and concentrations of corticosterone and cyclic nucleotides in the rat liver were investigated. The liver concentrations of corticosterone and cyclic nucleotides were measured by radioimmunoassay before and after the irradiation of 1,000 rad/l fraction. The glucocorticoid receptor in the liver cytosol was determined by the measurement of the cytosol binding to 3 H-dexamethasone. The cytosol and nuclear corticosterone levels reached a peak 1 day after the irradiation of the rat liver and declined to the control levels after 2 days. The increase in corticosterone levels may be due to the direct stimulation of the right adrenal gland and/ or the stress induced by the irradiation. The binding capacity of the glucocorticoid receptor in rat liver cytosol decreased to the minimum 1 day after the irradiation, and the recovery occurred at 4 days. The Kd value of the glucocorticoid receptor remained unchanged from 1 hour until 4 days but was high at 4 and 7 days. The distinctly increased levels of cyclic GMP in the rat liver were found from 1 hour through 7 days after the irradiation, while cyclic AMP did not change. The inversed relationship between the cytosol glucocorticoid receptor and corticosterone levels in cytosol and the nuclei indicates that the receptor-bound corticosterone in cytosol can be transferred to a nucleus and remain there in the presence of appropriate amounts of corticosterone in cytosol, after which the receptor is released from the nucleus into cytosol. The high Kd values observed 4 -- 7 days after the irradiation may be either due to the direct effect of irradiation or to the replenishment of the receptor with a low affinity. (author)

  15. Nanocapsule-mediated cytosolic siRNA delivery for anti-inflammatory treatment.

    Science.gov (United States)

    Jiang, Ying; Hardie, Joseph; Liu, Yuanchang; Ray, Moumita; Luo, Xiang; Das, Riddha; Landis, Ryan F; Farkas, Michelle E; Rotello, Vincent M

    2018-06-05

    The use of nanoparticle-stabilized nanocapsules for cytosolic siRNA delivery for immunomodulation in vitro and in vivo is reported. These NPSCs deliver siRNA directly to the cytosol of macrophages in vitro with concomitant knockdown of gene expression. In vivo studies showed directed delivery of NPSCs to the spleen, enabling gene silencing of macrophages, with preliminary studies showing 70% gene knockdown at a siRNA dose of 0.28 mg/kg. Significantly, the delivery of siRNA targeting tumor necrosis factor-α efficiently silenced TNF-α expression in LPS-challenged mice, demonstrating efficacy in modulating immune response in an organ-selective manner. This research highlights the potential of the NPSC platform for targeted immunotherapy and further manipulation of the immune system. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Cytosolic labile zinc: a marker for apoptosis in the developing rat brain.

    Science.gov (United States)

    Lee, Joo-Yong; Hwang, Jung Jin; Park, Mi-Ha; Koh, Jae-Young

    2006-01-01

    Cytosolic zinc accumulation was thought to occur specifically in neuronal death (necrosis) following acute injury. However, a recent study demonstrated that zinc accumulation also occurs in adult rat neurons undergoing apoptosis following target ablation, and in vitro experiments have shown that zinc accumulation may play a causal role in various forms of apoptosis. Here, we examined whether intraneuronal zinc accumulation occurs in central neurons undergoing apoptosis during development. Embryonic and newborn Sprague-Dawley rat brains were double-stained for terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labelling (TUNEL) detection of apoptosis and immunohistochemical detection of stage-specific neuronal markers, such as nestin, proliferating cell nuclear antigen (PCNA), TuJ1 and neuronal nuclear specific protein (NeuN). The results revealed that apoptotic cell death occurred in neurons of diverse stages (neural stem cells, and dividing, young and adult neurons) throughout the brain during the embryonic and early postnatal periods. Further staining of brain sections with acid fuchsin or zinc-specific fluorescent dyes showed that all of the apoptotic neurons were acidophilic and contained labile zinc in their cell bodies. Cytosolic zinc accumulation was also observed in cultured cortical neurons undergoing staurosporine- or sodium nitroprusside (SNP)-induced apoptosis. In contrast, zinc chelation with CaEDTA or N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) reduced SNP-induced apoptosis but not staurosporine-induced apoptosis, indicating that cytosolic zinc accumulation does not play a causal role in all forms of apoptosis. Finally, the specific cytosolic zinc accumulation may have a practical application as a relatively simple marker for neurons undergoing developmental apoptosis.

  17. Cytosolic NADP(+)-dependent isocitrate dehydrogenase regulates cadmium-induced apoptosis.

    Science.gov (United States)

    Shin, Seoung Woo; Kil, In Sup; Park, Jeen-Woo

    2010-04-01

    Cadmium ions have a high affinity for thiol groups. Therefore, they may disturb many cellular functions. We recently reported that cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) functions as an antioxidant enzyme to supply NADPH, a major source of reducing equivalents to the cytosol. Cadmium decreased the activity of IDPc both as a purified enzyme and in cultured cells. In the present study, we demonstrate that the knockdown of IDPc expression in HEK293 cells greatly enhances apoptosis induced by cadmium. Transfection of HEK293 cells with an IDPc small interfering RNA significantly decreased the activity of IDPc and enhanced cellular susceptibility to cadmium-induced apoptosis as indicated by the morphological evidence of apoptosis, DNA fragmentation and condensation, cellular redox status, mitochondria redox status and function, and the modulation of apoptotic marker proteins. Taken together, our results suggest that suppressing the expression of IDPc enhances cadmium-induced apoptosis of HEK293 cells by increasing disruption of the cellular redox status. Copyright 2009 Elsevier Inc. All rights reserved.

  18. Interplay of Mg2+, ADP, and ATP in the cytosol and mitochondria: unravelling the role of Mg2+ in cell respiration.

    Science.gov (United States)

    Gout, Elisabeth; Rébeillé, Fabrice; Douce, Roland; Bligny, Richard

    2014-10-28

    In animal and plant cells, the ATP/ADP ratio and/or energy charge are generally considered key parameters regulating metabolism and respiration. The major alternative issue of whether the cytosolic and mitochondrial concentrations of ADP and ATP directly mediate cell respiration remains unclear, however. In addition, because only free nucleotides are exchanged by the mitochondrial ADP/ATP carrier, whereas MgADP is the substrate of ATP synthase (EC 3.6.3.14), the cytosolic and mitochondrial Mg(2+) concentrations must be considered as well. Here we developed in vivo/in vitro techniques using (31)P-NMR spectroscopy to simultaneously measure these key components in subcellular compartments. We show that heterotrophic sycamore (Acer pseudoplatanus L.) cells incubated in various nutrient media contain low, stable cytosolic ADP and Mg(2+) concentrations, unlike ATP. ADP is mainly free in the cytosol, but complexed by Mg(2+) in the mitochondrial matrix, where [Mg(2+)] is tenfold higher. In contrast, owing to a much higher affinity for Mg(2+), ATP is mostly complexed by Mg(2+) in both compartments. Mg(2+) starvation used to alter cytosolic and mitochondrial [Mg(2+)] reversibly increases free nucleotide concentration in the cytosol and matrix, enhances ADP at the expense of ATP, decreases coupled respiration, and stops cell growth. We conclude that the cytosolic ADP concentration, and not ATP, ATP/ADP ratio, or energy charge, controls the respiration of plant cells. The Mg(2+) concentration, remarkably constant and low in the cytosol and tenfold higher in the matrix, mediates ADP/ATP exchange between the cytosol and matrix, [MgADP]-dependent mitochondrial ATP synthase activity, and cytosolic free ADP homeostasis.

  19. Measurement of binding of adenine nucleotides and phosphate to cytosolic proteins in permeabilized rat-liver cells

    NARCIS (Netherlands)

    Gankema, H. S.; Groen, A. K.; Wanders, R. J.; Tager, J. M.

    1983-01-01

    1. A method is described for measuring the binding of metabolites to cytosolic proteins in situ in isolated rat-liver cells treated with filipin to render the plasma membrane permeable to compounds of low molecular weight. 2. There is no binding of ATP or inorganic phosphate to cytosolic proteins,

  20. Prognostic significance of cytosolic pS2 content in ovarian tumors

    International Nuclear Information System (INIS)

    Raigoso, P.; Allende, T.; Zeidan, N.; Llana, B.; Bernardo, L.; Roiz, C.; Tejuca, S.; Vazquez, J.; Lamelas, M.L.

    2002-01-01

    Aim: pS2 is an estrogen regulated peptide which has been associated with a good prognosis an with a more favorable response to treatment in breast cancer patients. In ovarian tumors, the expression of pS2 was demonstrated at both mRNA and protein levels. In addition, it has been showed significant association of pS2 with mucinous differentiation or well differentiation grade of the tumors. However, it is little know about the prognostic significance of the pS2 content in ovarian carcinomas. The aims of the present work were to analyze the cytosolic pS2 content in benign and malignant ovarian tumors, its relationship with clinico-pathologic parameters, steroid receptor status, and prognostic significance. Material and Methods: We analysed the cytosolic concentrations of pS2 in 91 specimen ovarian tissues by an immunoradiometric assay (ELSA-pS2, CIS, France). The tissues were 8 normal ovaries, 43 benign tumors and 40 malignant ovarian tumors. The same ovarian tissues processed to pS2 were analyzed to Estrogen (ER) and Progesterone (PgR) Receptor status. These steroid receptors were quantified biochemically following commercial ELISA method (ABBOTT Diagnostics, Germany). The relationship between cytosolic content and clinico-pathologic factors was examined by the Mann-Whitney or Kruskall-Wallis test. Correlation between steroid receptors and pS2 content was calculated with the Spearman test. Survival curves were calculated using the Kaplan-Meier method and compared by the log-rank test. Differences were considered significant at 5% probability level. Results: pS2 could be detected in 30 cases (32.9%) with values ranged from 0.04 to 89 ng/mg prt. Only one normal ovary showed detectable levels of pS2 and there were not differences in cytosolic content between benign and malignant ovarian tumors. The pS2 levels were only associated to mucinous differentiation in both benign and malignant ovarian tumors (p=0.029 and p=0.015, respectively). Significantly higher

  1. Mediator-assisted Simultaneous probing of Cytosolic and Mitochondrial Redox activity in living cells

    DEFF Research Database (Denmark)

    Heiskanen, Arto; Spegel, Christer; Kostesha, Natalie

    2009-01-01

    the ferricyanide-menadione double mediator system to study the effect of dicoumarol, an inhibitor of cytosolic and mitochondrial oxidoreductases and an uncoupler of the electron transport chain. Evaluation of the role of NAD(P)H-producing pathways in mediating biological effects is facilitated by introducing...... either fructose or glucose as the carbon source, yielding either NADH or NADPH through the glycolytic or pen-rose phosphate pathway, respectively. Respiratory noncompetent cells show greater inhibition of cytosolic menadione-reducing enzymes when NADH rather than NADPH is produced. Spectrophotometric...

  2. Effects of freezing and cold acclimation on the plasma membrane of isolated protoplasts

    Energy Technology Data Exchange (ETDEWEB)

    Steponkus, P.L.

    1991-01-01

    This project focuses on lesions in the plasma membrane of protoplasts that occur during freezing to temperatures below {minus}5{degrees} which result in changes in the semipermeablity of the plasma membrane. This injury, referred to as loss of osmotic responsiveness, is associated with the formation of large, aparticulate domains in the plasma membrane, aparticulate lamellae subtending the plasma membrane, and lamellar-to-hexagonal{sub II} phase transitions in the plasma membrane and subtending lamellar. The goals of this project are to provide a mechanistic understanding of the mechanism by which freeze-induced dehydration effects the formation of aparticulate domains and lamellar-to-hexagonal{sub II} phase transitions and to determine the mechanisms by which cold acclimation and cryoprotectants preclude or diminish these ultrastructural changes. Our working hypothesis is the formation of aparticulate domains and lamellar-to-hexagon{sub II} phase transitions in the plasma membrane and subtending lamellae are manifestations of hydration-dependent bilayer-bilayer interactions.

  3. Production of Trichoderma strains with pesticide-polyresistance by mutagenesis and protoplast fusion.

    Science.gov (United States)

    Hatvani, Lóránt; Manczinger, László; Kredics, László; Szekeres, András; Antal, Zsuzsanna; Vágvölgyi, Csaba

    2006-01-01

    The sensitivity of two cold-tolerant Trichoderma strains belonging to the species T. harzianum and T. atroviride was determined to a series of pesticides widely used in agriculture. From the 16 pesticides tested, seven fungicides: copper sulfate, carbendazim, mancozeb, tebuconazole, imazalil, captan and thiram inhibited colony growth of the test strains significantly with minimal inhibitory concentrations of 300, 0.4, 50, 100, 100, 100 and 50 microg/ml, respectively. Mutants resistant to carbendazim and tebuconazole were produced from both wild type strains by means of UV-mutagenesis. The cross-resistance capabilities and in vitro antagonistic properties of the mutants were determined. Carbendazim-resistant mutants showed total cross-resistance to benomyl and thiabendazole at a concentration of 20 microg/ml. Intraspecific protoplast fusion was carried out between carbendazim- and tebuconazole-resistant mutants of both parental strains, and putative haploid recombinants with stable resistance to both pesticides were produced in the case of T. atroviride. These pesticide-polyresistant progenies are potential candidates for application in an integrated pest management system.

  4. The chaperone BAG6 captures dislocated glycoproteins in the cytosol.

    Directory of Open Access Journals (Sweden)

    Jasper H L Claessen

    Full Text Available Secretory and membrane (glycoproteins are subject to quality control in the endoplasmic reticulum (ER to ensure that only functional proteins reach their destination. Proteins deemed terminally misfolded and hence functionally defective may be dislocated to the cytosol, where the proteasome degrades them. What we know about this process stems mostly from overexpression of tagged misfolded proteins, or from situations where viruses have hijacked the quality control machinery to their advantage. We know of only very few endogenous substrates of ER quality control, most of which are degraded as part of a signaling pathway, such as Insig-1, but such examples do not necessarily represent terminally misfolded proteins. Here we show that endogenous dislocation clients are captured specifically in association with the cytosolic chaperone BAG6, or retrieved en masse via their glycan handle.

  5. Cytosol-dependent membrane fusion in ER, nuclear envelope and nuclear pore assembly: biological implications.

    Science.gov (United States)

    Rafikova, Elvira R; Melikov, Kamran; Chernomordik, Leonid V

    2010-01-01

    Endoplasmic reticulum and nuclear envelope rearrangements after mitosis are often studied in the reconstitution system based on Xenopus egg extract. In our recent work we partially replaced the membrane vesicles in the reconstitution mix with protein-free liposomes to explore the relative contributions of cytosolic and transmembrane proteins. Here we discuss our finding that cytosolic proteins mediate fusion between membranes lacking functional transmembrane proteins and the role of membrane fusion in endoplasmic reticulum and nuclear envelope reorganization. Cytosol-dependent liposome fusion has allowed us to restore, without adding transmembrane nucleoporins, functionality of nuclear pores, their spatial distribution and chromatin decondensation in nuclei formed at insufficient amounts of membrane material and characterized by only partial decondensation of chromatin and lack of nuclear transport. Both the mechanisms and the biological implications of the discovered coupling between spatial distribution of nuclear pores, chromatin decondensation and nuclear transport are discussed.

  6. Glucose acutely reduces cytosolic and mitochondrial H2O2 in rat pancreatic beta-cells.

    Science.gov (United States)

    Deglasse, Jean-Philippe; Roma, Leticia Prates; Pastor-Flores, Daniel; Gilon, Patrick; Dick, Tobias P; Jonas, Jean-Christophe

    2018-05-14

    Whether H2O2 contributes to the glucose-dependent stimulation of insulin secretion by pancreatic β-cells is highly controversial. We used two H2O2-sensitive probes, roGFP2-Orp1 and HyPer with its pH-control SypHer, to test the acute effects of glucose, monomethylsuccinate, leucine with glutamine, and α-ketoisocaproate, on β-cell cytosolic and mitochondrial H2O2 concentrations. We then tested the effects of low H2O2 and menadione concentrations on insulin secretion. RoGFP2-Orp1 was more sensitive than HyPer to H2O2 (response at 2-5 vs. 10µM) and less pH-sensitive. Under control conditions, stimulation with glucose reduced mitochondrial roGFP2-Orp1 oxidation without affecting cytosolic roGFP2-Orp1 and HyPer fluorescence ratios, except for the pH-dependent effects on HyPer. However, stimulation with glucose decreased the oxidation of both cytosolic probes by 15µM exogenous H2O2. The glucose effects were not affected by overexpression of catalase, mitochondrial catalase or superoxide dismutase 1 and 2. They followed the increase in NAD(P)H autofluorescence, were maximal at 5mM glucose in the cytosol and 10mM glucose in the mitochondria, and were partly mimicked by the other nutrients. Exogenous H2O2 (1-15µM) did not affect insulin secretion. By contrast, menadione (1-5µM) did not increase basal insulin secretion but reduced the stimulation of insulin secretion by 20mM glucose. Subcellular changes in β-cell H2O2 levels are better monitored with roGFP2-Orp1 than HyPer/SypHer. Nutrients acutely lower mitochondrial H2O2 levels in β-cells and promote degradation of exogenously supplied H2O2 in both cytosolic and mitochondrial compartments. The glucose-dependent stimulation of insulin secretion occurs independently of a detectable increase in β-cell cytosolic or mitochondrial H2O2 levels.

  7. RPA and Rad51 constitute a cell intrinsic mechanism to protect the cytosol from self DNA.

    Science.gov (United States)

    Wolf, Christine; Rapp, Alexander; Berndt, Nicole; Staroske, Wolfgang; Schuster, Max; Dobrick-Mattheuer, Manuela; Kretschmer, Stefanie; König, Nadja; Kurth, Thomas; Wieczorek, Dagmar; Kast, Karin; Cardoso, M Cristina; Günther, Claudia; Lee-Kirsch, Min Ae

    2016-05-27

    Immune recognition of cytosolic DNA represents a central antiviral defence mechanism. Within the host, short single-stranded DNA (ssDNA) continuously arises during the repair of DNA damage induced by endogenous and environmental genotoxic stress. Here we show that short ssDNA traverses the nuclear membrane, but is drawn into the nucleus by binding to the DNA replication and repair factors RPA and Rad51. Knockdown of RPA and Rad51 enhances cytosolic leakage of ssDNA resulting in cGAS-dependent type I IFN activation. Mutations in the exonuclease TREX1 cause type I IFN-dependent autoinflammation and autoimmunity. We demonstrate that TREX1 is anchored within the outer nuclear membrane to ensure immediate degradation of ssDNA leaking into the cytosol. In TREX1-deficient fibroblasts, accumulating ssDNA causes exhaustion of RPA and Rad51 resulting in replication stress and activation of p53 and type I IFN. Thus, the ssDNA-binding capacity of RPA and Rad51 constitutes a cell intrinsic mechanism to protect the cytosol from self DNA.

  8. Uncapped mRNA introduced into tobacco protoplasts can be imported into the nucleus and is trapped by leptomycin B.

    Science.gov (United States)

    Stuger, Rogier; Forreiter, Christoph

    2004-08-01

    The mechanism of nuclear export of RNAs in yeast and animal cells is rapidly being uncovered, but RNA export in plants has received little attention. We introduced capped and uncapped fluorescent mRNAs into tobacco (Nicotiana plumbaginifolia) protoplasts and studied their cellular localization. Following insertion, capped transcripts were found in the cytoplasm, while uncapped messengers transiently appeared in the nucleus in about one-quarter to one-third of the cells. These mRNAs were trapped by the nuclear export-inhibiting drug leptomycin B, pointing to an export mechanism in plants similar to Rev-NES-mediated RNP export in other organisms.

  9. Targeting Cytosolic Nucleic Acid-Sensing Pathways for Cancer Immunotherapies.

    Science.gov (United States)

    Iurescia, Sandra; Fioretti, Daniela; Rinaldi, Monica

    2018-01-01

    The innate immune system provides the first line of defense against pathogen infection though also influences pathways involved in cancer immunosurveillance. The innate immune system relies on a limited set of germ line-encoded sensors termed pattern recognition receptors (PRRs), signaling proteins and immune response factors. Cytosolic receptors mediate recognition of danger damage-associated molecular patterns (DAMPs) signals. Once activated, these sensors trigger multiple signaling cascades, converging on the production of type I interferons and proinflammatory cytokines. Recent studies revealed that PRRs respond to nucleic acids (NA) released by dying, damaged, cancer cells, as danger DAMPs signals, and presence of signaling proteins across cancer types suggests that these signaling mechanisms may be involved in cancer biology. DAMPs play important roles in shaping adaptive immune responses through the activation of innate immune cells and immunological response to danger DAMPs signals is crucial for the host response to cancer and tumor rejection. Furthermore, PRRs mediate the response to NA in several vaccination strategies, including DNA immunization. As route of double-strand DNA intracellular entry, DNA immunization leads to expression of key components of cytosolic NA-sensing pathways. The involvement of NA-sensing mechanisms in the antitumor response makes these pathways attractive drug targets. Natural and synthetic agonists of NA-sensing pathways can trigger cell death in malignant cells, recruit immune cells, such as DCs, CD8 + T cells, and NK cells, into the tumor microenvironment and are being explored as promising adjuvants in cancer immunotherapies. In this minireview, we discuss how cGAS-STING and RIG-I-MAVS pathways have been targeted for cancer treatment in preclinical translational researches. In addition, we present a targeted selection of recent clinical trials employing agonists of cytosolic NA-sensing pathways showing how these pathways

  10. BAF is a cytosolic DNA sensor that leads to exogenous DNA avoiding autophagy.

    Science.gov (United States)

    Kobayashi, Shouhei; Koujin, Takako; Kojidani, Tomoko; Osakada, Hiroko; Mori, Chie; Hiraoka, Yasushi; Haraguchi, Tokuko

    2015-06-02

    Knowledge of the mechanisms by which a cell detects exogenous DNA is important for controlling pathogen infection, because most pathogens entail the presence of exogenous DNA in the cytosol, as well as for understanding the cell's response to artificially transfected DNA. The cellular response to pathogen invasion has been well studied. However, spatiotemporal information of the cellular response immediately after exogenous double-stranded DNA (dsDNA) appears in the cytosol is lacking, in part because of difficulties in monitoring when exogenous dsDNA enters the cytosol of the cell. We have recently developed a method to monitor endosome breakdown around exogenous materials using transfection reagent-coated polystyrene beads incorporated into living human cells as the objective for microscopic observations. In the present study, using dsDNA-coated polystyrene beads (DNA-beads) incorporated into living cells, we show that barrier-to-autointegration factor (BAF) bound to exogenous dsDNA immediately after its appearance in the cytosol at endosome breakdown. The BAF(+) DNA-beads then assembled a nuclear envelope (NE)-like membrane and avoided autophagy that targeted the remnants of the endosome membranes. Knockdown of BAF caused a significant decrease in the assembly of NE-like membranes and increased the formation of autophagic membranes around the DNA-beads, suggesting that BAF-mediated assembly of NE-like membranes was required for the DNA-beads to evade autophagy. Importantly, BAF-bound beads without dsDNA also assembled NE-like membranes and avoided autophagy. We propose a new role for BAF: remodeling intracellular membranes upon detection of dsDNA in mammalian cells.

  11. Ph3CCOOSnPh3.Ph3PO AND Ph3CCOOSnPh3.Ph3AsO: SYNTHESIS AND INFRARED STUDY

    Directory of Open Access Journals (Sweden)

    ABDOU MBAYE

    2014-08-01

    Full Text Available The mixture of ethanolic solutions of Ph3CCOOSnPh3 and Ph3PO or Ph3AsO gives Ph3CCOOSnPh3.Ph3PO and Ph3CCOOSnPh3.Ph3AsO adducts which have been characterized by infrared spectroscopy. A discrete structure is suggested for both, the environment around the tin centre being trigonal bipyramidal, the triphenylacetate anion behaving as a mondentate ligand.

  12. Capturing intracellular pH dynamics by coupling its molecular mechanisms within a fully tractable mathematical model.

    Directory of Open Access Journals (Sweden)

    Yann Bouret

    Full Text Available We describe the construction of a fully tractable mathematical model for intracellular pH. This work is based on coupling the kinetic equations depicting the molecular mechanisms for pumps, transporters and chemical reactions, which determine this parameter in eukaryotic cells. Thus, our system also calculates the membrane potential and the cytosolic ionic composition. Such a model required the development of a novel algebraic method that couples differential equations for slow relaxation processes to steady-state equations for fast chemical reactions. Compared to classical heuristic approaches based on fitted curves and ad hoc constants, this yields significant improvements. This model is mathematically self-consistent and allows for the first time to establish analytical solutions for steady-state pH and a reduced differential equation for pH regulation. Because of its modular structure, it can integrate any additional mechanism that will directly or indirectly affect pH. In addition, it provides mathematical clarifications for widely observed biological phenomena such as overshooting in regulatory loops. Finally, instead of including a limited set of experimental results to fit our model, we show examples of numerical calculations that are extremely consistent with the wide body of intracellular pH experimental measurements gathered by different groups in many different cellular systems.

  13. Two-Phase Acto-Cytosolic Fluid Flow in a Moving Keratocyte: A 2D Continuum Model.

    Science.gov (United States)

    Nikmaneshi, M R; Firoozabadi, B; Saidi, M S

    2015-09-01

    The F-actin network and cytosol in the lamellipodia of crawling cells flow in a centripetal pattern and spout-like form, respectively. We have numerically studied this two-phase flow in the realistic geometry of a moving keratocyte. Cytosol has been treated as a low viscosity Newtonian fluid flowing through the high viscosity porous medium of F-actin network. Other involved phenomena including myosin activity, adhesion friction, and interphase interaction are also discussed to provide an overall view of this problem. Adopting a two-phase coupled model by myosin concentration, we have found new accurate perspectives of acto-cytosolic flow and pressure fields, myosin distribution, as well as the distribution of effective forces across the lamellipodia of a keratocyte with stationary shape. The order of magnitude method is also used to determine the contribution of forces in the internal dynamics of lamellipodia.

  14. A Genetic Screen Reveals that Synthesis of 1,4-Dihydroxy-2-Naphthoate (DHNA), but Not Full-Length Menaquinone, Is Required for Listeria monocytogenes Cytosolic Survival.

    Science.gov (United States)

    Chen, Grischa Y; McDougal, Courtney E; D'Antonio, Marc A; Portman, Jonathan L; Sauer, John-Demian

    2017-03-21

    Through unknown mechanisms, the host cytosol restricts bacterial colonization; therefore, only professional cytosolic pathogens are adapted to colonize this host environment. Listeria monocytogenes is a Gram-positive intracellular pathogen that is highly adapted to colonize the cytosol of both phagocytic and nonphagocytic cells. To identify L. monocytogenes determinants of cytosolic survival, we designed and executed a novel screen to isolate L. monocytogenes mutants with cytosolic survival defects. Multiple mutants identified in the screen were defective for synthesis of menaquinone (MK), an essential molecule in the electron transport chain. Analysis of an extensive set of MK biosynthesis and respiratory chain mutants revealed that cellular respiration was not required for cytosolic survival of L. monocytogenes but that, instead, synthesis of 1,4-dihydroxy-2-naphthoate (DHNA), an MK biosynthesis intermediate, was essential. Recent discoveries showed that modulation of the central metabolism of both host and pathogen can influence the outcome of host-pathogen interactions. Our results identify a potentially novel function of the MK biosynthetic intermediate DHNA and specifically highlight how L. monocytogenes metabolic adaptations promote cytosolic survival and evasion of host immunity. IMPORTANCE Cytosolic bacterial pathogens, such as Listeria monocytogenes and Francisella tularensis , are exquisitely evolved to colonize the host cytosol in a variety of cell types. Establishing an intracellular niche shields these pathogens from effectors of humoral immunity, grants access to host nutrients, and is essential for pathogenesis. Through yet-to-be-defined mechanisms, the host cytosol restricts replication of non-cytosol-adapted bacteria, likely through a combination of cell autonomous defenses (CADs) and nutritional immunity. Utilizing a novel genetic screen, we identified determinants of L. monocytogenes cytosolic survival and virulence and identified a role

  15. Arabidopsis Regenerating Protoplast: A Powerful Model System for Combining the Proteomics of Cell Wall Proteins and the Visualization of Cell Wall Dynamics

    OpenAIRE

    Yokoyama, Ryusuke; Kuki, Hiroaki; Kuroha, Takeshi; Nishitani, Kazuhiko

    2016-01-01

    The development of a range of sub-proteomic approaches to the plant cell wall has identified many of the cell wall proteins. However, it remains difficult to elucidate the precise biological role of each protein and the cell wall dynamics driven by their actions. The plant protoplast provides an excellent means not only for characterizing cell wall proteins, but also for visualizing the dynamics of cell wall regeneration, during which cell wall proteins are secreted. It therefore offers a uni...

  16. Low pH, aluminum, and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils.

    Science.gov (United States)

    Liang, Cuiyue; Piñeros, Miguel A; Tian, Jiang; Yao, Zhufang; Sun, Lili; Liu, Jiping; Shaff, Jon; Coluccio, Alison; Kochian, Leon V; Liao, Hong

    2013-03-01

    Low pH, aluminum (Al) toxicity, and low phosphorus (P) often coexist and are heterogeneously distributed in acid soils. To date, the underlying mechanisms of crop adaptation to these multiple factors on acid soils remain poorly understood. In this study, we found that P addition to acid soils could stimulate Al tolerance, especially for the P-efficient genotype HN89. Subsequent hydroponic studies demonstrated that solution pH, Al, and P levels coordinately altered soybean (Glycine max) root growth and malate exudation. Interestingly, HN89 released more malate under conditions mimicking acid soils (low pH, +P, and +Al), suggesting that root malate exudation might be critical for soybean adaptation to both Al toxicity and P deficiency on acid soils. GmALMT1, a soybean malate transporter gene, was cloned from the Al-treated root tips of HN89. Like root malate exudation, GmALMT1 expression was also pH dependent, being suppressed by low pH but enhanced by Al plus P addition in roots of HN89. Quantitative real-time PCR, transient expression of a GmALMT1-yellow fluorescent protein chimera in Arabidopsis protoplasts, and electrophysiological analysis of Xenopus laevis oocytes expressing GmALMT1 demonstrated that GmALMT1 encodes a root cell plasma membrane transporter that mediates malate efflux in an extracellular pH-dependent and Al-independent manner. Overexpression of GmALMT1 in transgenic Arabidopsis, as well as overexpression and knockdown of GmALMT1 in transgenic soybean hairy roots, indicated that GmALMT1-mediated root malate efflux does underlie soybean Al tolerance. Taken together, our results suggest that malate exudation is an important component of soybean adaptation to acid soils and is coordinately regulated by three factors, pH, Al, and P, through the regulation of GmALMT1 expression and GmALMT1 function.

  17. Glutathione redox potential in the mitochondrial intermembrane space is linked to the cytosol and impacts the Mia40 redox state

    Science.gov (United States)

    Kojer, Kerstin; Bien, Melanie; Gangel, Heike; Morgan, Bruce; Dick, Tobias P; Riemer, Jan

    2012-01-01

    Glutathione is an important mediator and regulator of cellular redox processes. Detailed knowledge of local glutathione redox potential (EGSH) dynamics is critical to understand the network of redox processes and their influence on cellular function. Using dynamic oxidant recovery assays together with EGSH-specific fluorescent reporters, we investigate the glutathione pools of the cytosol, mitochondrial matrix and intermembrane space (IMS). We demonstrate that the glutathione pools of IMS and cytosol are dynamically interconnected via porins. In contrast, no appreciable communication was observed between the glutathione pools of the IMS and matrix. By modulating redox pathways in the cytosol and IMS, we find that the cytosolic glutathione reductase system is the major determinant of EGSH in the IMS, thus explaining a steady-state EGSH in the IMS which is similar to the cytosol. Moreover, we show that the local EGSH contributes to the partially reduced redox state of the IMS oxidoreductase Mia40 in vivo. Taken together, we provide a comprehensive mechanistic picture of the IMS redox milieu and define the redox influences on Mia40 in living cells. PMID:22705944

  18. Cytosolic Calcium Coordinates Mitochondrial Energy Metabolism with Presynaptic Activity

    Science.gov (United States)

    Chouhan, Amit K.; Ivannikov, Maxim V.; Lu, Zhongmin; Sugimori, Mutsuyuki; Llinas, Rodolfo R.; Macleod, Gregory T.

    2012-01-01

    Most neurons fire in bursts, imposing episodic energy demands, but how these demands are coordinated with oxidative phosphorylation is still unknown. Here, using fluorescence imaging techniques on presynaptic termini of Drosophila motor neurons (MNs), we show that mitochondrial matrix pH (pHm), inner membrane potential (Δψm), and NAD(P)H levels ([NAD(P)H]m) increase within seconds of nerve stimulation. The elevations of pHm, Δψm, and [NAD(P)H]m indicate an increased capacity for ATP production. Elevations in pHm were blocked by manipulations which blocked mitochondrial Ca2+ uptake, including replacement of extracellular Ca2+ with Sr2+, and application of either tetraphenylphosphonium chloride or KB-R7943, indicating that it is Ca2+ that stimulates presynaptic mitochondrial energy metabolism. To place this phenomenon within the context of endogenous neuronal activity, the firing rates of a number of individually identified MNs were determined during fictive locomotion. Surprisingly, although endogenous firing rates are significantly different, there was little difference in presynaptic cytosolic Ca2+ levels ([Ca2+]c) between MNs when each fires at its endogenous rate. The average [Ca2+]c level (329±11nM) was slightly above the average Ca2+ affinity of the mitochondria (281±13nM). In summary, we show that when MNs fire at endogenous rates [Ca2+]c is driven into a range where mitochondria rapidly acquire Ca2+. As we also show that Ca2+ stimulates presynaptic mitochondrial energy metabolism, we conclude that [Ca2+]c levels play an integral role in coordinating mitochondrial energy metabolism with presynaptic activity in Drosophila MNs. PMID:22279208

  19. Non-invasive in-cell determination of free cytosolic [NAD+]/[NADH] ratios using hyperpolarized glucose show large variations in metabolic phenotypes

    DEFF Research Database (Denmark)

    Christensen, Caspar Elo; Karlsson, Magnus; Winther, Jakob R.

    2014-01-01

    Accumulating evidence suggest that the pyridine nucleotide NAD has far wider biological functions than its classical role in energy metabolism. NAD is used by hundreds of enzymes that catalyse substrate oxidation and as such it plays a key role in various biological processes such as aging, cell...... death and oxidative stress. It has been suggested that changes in the ratio of free cytosolic [NAD+]/[NADH] reflects metabolic alterations leading to, or correlating with, pathological states. We have designed an isotopically labelled metabolic bioprobe of free cytosolic [NAD+]/[NADH] by combining...... a magnetic enhancement technique (hyperpolarization) with cellular glycolytic activity. The bioprobe reports free cytosolic [NAD+]/[NADH] ratios based on dynamically measured in-cell [pyruvate]/ [lactate] ratios. We demonstrate its utility in breast and prostate cancer cells. The free cytosolic [NAD...

  20. A possible role of rabbit heart cytosol tocopherol binding in the transfer of tocopherol into nuclei.

    OpenAIRE

    Guarnieri, C; Flamigni, F; Caldarera, C M

    1980-01-01

    An alpha-tocopherol-binding macromolecule was isolated from the heart cytosol of rabbits fed for 1 month with an alpha-tocopherol-deficient diet. The amount of [3H]-tocopherol bound to nuclear chromatin was increased when the alpha-tocopherol-deficient heart nuclei were incubated in the presence of [3H]tocopherol-cytosol complex. In this condition, large amounts of [3H]tocopherol were associated with a subnuclear fraction that contained non-histone acidic proteins.

  1. The role of a cytosolic superoxide dismutase in barley-pathogen interactions

    KAUST Repository

    Lightfoot, Damien; Mcgrann, Graham R. D.; Able, Amanda J.

    2016-01-01

    susceptible background (cv. Golden Promise), when compared with wild-type plants, suggesting that cytosolic O2-HO2 contributes to the signalling required to induce a defence response to Ptt. There was no effect of HvCSD1 knockdown on infection by the hemi

  2. Aeromonas caviae alters the cytosolic and mitochondrial creatine kinase activities in experimentally infected silver catfish: Impairment on renal bioenergetics.

    Science.gov (United States)

    Baldissera, Matheus D; Souza, Carine F; Júnior, Guerino B; Verdi, Camila Marina; Moreira, Karen L S; da Rocha, Maria Izabel U M; da Veiga, Marcelo L; Santos, Roberto C V; Vizzotto, Bruno S; Baldisserotto, Bernardo

    2017-09-01

    Cytosolic and mitochondrial creatine kinases (CK), through the creatine kinase-phosphocreatine (CK/PCr) system, provide a temporal and spatial energy buffer to maintain cellular energy homeostasis. However, the effects of bacterial infections on the kidney remain poorly understood and are limited only to histopathological analyses. Thus, the aim of this study was to investigate the involvement of cytosolic and mitochondrial CK activities in renal energetic homeostasis in silver catfish experimentally infected with Aeromonas caviae. Cytosolic CK activity decreased in infected animals, while mitochondrial CK activity increased compared to uninfected animals. Moreover, the activity of the sodium-potassium pump (Na + , K + -ATPase) decreased in infected animals compared to uninfected animals. Based on this evidence, it can be concluded that the inhibition of cytosolic CK activity by A. caviae causes an impairment on renal energy homeostasis through the depletion of adenosine triphosphate (ATP) levels. This contributes to the inhibition of Na + , K + -ATPase activity, although the mitochondrial CK activity acted in an attempt to restore the cytosolic ATP levels through a feedback mechanism. In summary, A. caviae infection causes a severe energetic imbalance in infected silver catfish, which may contribute to disease pathogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Changes in cytosolic pH within Arabidopsis root columella cells play a key role in the early signaling pathway for root gravitropism

    Science.gov (United States)

    Scott, A. C.; Allen, N. S.; Davies, E. (Principal Investigator)

    1999-01-01

    Ratiometric wide-field fluorescence microscopy with 1',7'- bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF)-dextran demonstrated that gravistimulation leads to rapid changes in cytoplasmic pH (pHc) in columella cells of Arabidopsis roots. The pHc of unstimulated columella cells in tiers 2 and 3, known sites of graviperception (E.B. Blancaflor, J.B. Fasano, S. Gilroy [1998] Plant Physiol 116: 213-222), was 7.22 +/- 0.02 pH units. Following gravistimulation, the magnitude and direction of pHc changes in these cells depended on their location in the columella. Cells in the lower side of tier 2 became more alkaline by 0.4 unit within 55 s of gravistimulation, whereas alkalinization of the cells on the upper side was slower (100 s). In contrast, all cells in tier 3 acidified by 0.4 pH unit within 480 s after gravistimulation. Disrupting these pHc changes in the columella cells using pHc modifiers at concentrations that do not affect root growth altered the gravitropic response. Acidifying agents, including bafilomycin A1, enhanced curvature, whereas alkalinizing agents disrupted gravitropic bending. These results imply that pHc changes in the gravisensing cells and the resultant pH gradients across the root cap are important at an early stage in the signal cascade leading to the gravitropic response.

  4. Studies of the activity of cytosol on the mixed disulfide bond formed by proteins and radioprotector mercaptoethylguanidine

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, M [National Inst. of Oncology, Budapest (Hungary); Holland, J [Orszagos Onkologiai Intezet, Budapest (Hungary)

    1979-01-01

    The cytoplasm of normal and tumorous rat liver cells contains a heat-resistant compound with reducing ability to break the mixed disulfide bond of albumin-/sup 14/C-mercaptoethylguanidine. The reducing activity of cytosol is destoryed by 1000 krd /sup 60/Co-gamma-ray doses in diluted solution. In vivo supralethal of rats does not affect the activity of cytosol prepared from liver cells.

  5. A Kunitz-type cysteine protease inhibitor from cauliflower and Arabidopsis

    DEFF Research Database (Denmark)

    Halls, C.E.; Rogers, S. W.; Ouffattole, M.

    2006-01-01

    proaleurain maturation protease and of papain when assayed at pH 4.5 but not at pH 6.3. In a pull-down assay, the inhibitor bound tightly to papain, but only weakly to the aspartate protease pepsin. When the cauliflower protease inhibitor was transiently expressed in tobacco suspension culture protoplasts...

  6. Phytochrome-mediated responses of cells and protoplasts of green calli obtained from the leaves of a CAM plant.

    Science.gov (United States)

    Mricha, A; Brulfert, J; Pierre, J N; Queiroz, O

    1990-04-01

    Green callus obtained from leaves of the CAM-inducible plant Kalanchoe blossfeldiana cv. Montezuma has previously been shown to perform C3-type photosynthesis under 16-h days and to shift to crassulacean acid metabolism (CAM) under 9-h days. The utilization of photoperiodic regimes (i.e. night interruptions by 30 min red light) established that CAM induction in the callus was under the control of phytochrome, as shown by measurements of CAM criteria: phosphoenolpyruvate carboxylase activity and malic acid pools. Short-term responsiveness of the callus cells to phytochrome modulations by monochromatic radiations was also established by the rapid changes observed in the diameter of the callus-derived protoplasts. These results provide further evidence that whole plant correlations are not necessary for phytochrome operativity.

  7. The RAB2B-GARIL5 Complex Promotes Cytosolic DNA-Induced Innate Immune Responses.

    Science.gov (United States)

    Takahama, Michihiro; Fukuda, Mitsunori; Ohbayashi, Norihiko; Kozaki, Tatsuya; Misawa, Takuma; Okamoto, Toru; Matsuura, Yoshiharu; Akira, Shizuo; Saitoh, Tatsuya

    2017-09-19

    Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor that induces the IFN antiviral response. However, the regulatory mechanisms that mediate cGAS-triggered signaling have not been fully explored. Here, we show the involvement of a small GTPase, RAB2B, and its effector protein, Golgi-associated RAB2B interactor-like 5 (GARIL5), in the cGAS-mediated IFN response. RAB2B-deficiency affects the IFN response induced by cytosolic DNA. Consistent with this, RAB2B deficiency enhances replication of vaccinia virus, a DNA virus. After DNA stimulation, RAB2B colocalizes with stimulator of interferon genes (STING), the downstream signal mediator of cGAS, on the Golgi apparatus. The GTP-binding activity of RAB2B is required for its localization on the Golgi apparatus and for recruitment of GARIL5. GARIL5 deficiency also affects the IFN response induced by cytosolic DNA and enhances replication of vaccinia virus. These findings indicate that the RAB2B-GARIL5 complex promotes IFN responses against DNA viruses by regulating the cGAS-STING signaling axis. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. The RAB2B-GARIL5 Complex Promotes Cytosolic DNA-Induced Innate Immune Responses

    Directory of Open Access Journals (Sweden)

    Michihiro Takahama

    2017-09-01

    Full Text Available Cyclic GMP-AMP synthase (cGAS is a cytosolic DNA sensor that induces the IFN antiviral response. However, the regulatory mechanisms that mediate cGAS-triggered signaling have not been fully explored. Here, we show the involvement of a small GTPase, RAB2B, and its effector protein, Golgi-associated RAB2B interactor-like 5 (GARIL5, in the cGAS-mediated IFN response. RAB2B-deficiency affects the IFN response induced by cytosolic DNA. Consistent with this, RAB2B deficiency enhances replication of vaccinia virus, a DNA virus. After DNA stimulation, RAB2B colocalizes with stimulator of interferon genes (STING, the downstream signal mediator of cGAS, on the Golgi apparatus. The GTP-binding activity of RAB2B is required for its localization on the Golgi apparatus and for recruitment of GARIL5. GARIL5 deficiency also affects the IFN response induced by cytosolic DNA and enhances replication of vaccinia virus. These findings indicate that the RAB2B-GARIL5 complex promotes IFN responses against DNA viruses by regulating the cGAS-STING signaling axis.

  9. Effect of growth at low pH on the cell surface properties of a typical strain of Lactobacillus casei group.

    Science.gov (United States)

    Hossein Nezhad, M; Stenzel, Dj; Britz, Ml

    2010-09-01

    Although members of the Lactobacillus casei group are known to survive under acidic conditions, the underlying mechanisms of growth at acidic condition and the impact of low pH on the relative level of protein expression at the cell surface remain poorly studied. After confirming the taxonomy of L. casei strain GCRL 12 which was originally isolated from cheese and confirmed by 16S rRNA sequence analysis, the impact of acidic pH on growth rate was determined. Late log-phase cells cultured at pH 4.0 showed obvious changes in Gram staining properties while transmission electron microscopy analysis revealed evidence of structural distortions of the cell surface relative to the controls cultured at pH 6.5. When comparing cytosolic or whole cell preparations on SDS-PAGE, few changes in protein profiles were observed under the two growth conditions. However, analysis of surface protein extracted by 5M LiCl demonstrated changes in the proportions of proteins present in the molecular weight range of 10 to 80 kDa, with some proteins more dominant at pH 6.5 and other at pH 4. These data suggest that surface proteins of this strain are associated with growth and survival at low pH. The function of these proteins is subject to further investigation.

  10. The Hepatitis B Virus X Protein Elevates Cytosolic Calcium Signals by Modulating Mitochondrial Calcium Uptake

    Science.gov (United States)

    Yang, Bei

    2012-01-01

    Chronic hepatitis B virus (HBV) infections are associated with the development of hepatocellular carcinoma (HCC). The HBV X protein (HBx) is thought to play an important role in the development of HBV-associated HCC. One fundamental HBx function is elevation of cytosolic calcium signals; this HBx activity has been linked to HBx stimulation of cell proliferation and transcription pathways, as well as HBV replication. Exactly how HBx elevates cytosolic calcium signals is not clear. The studies described here show that HBx stimulates calcium entry into cells, resulting in an increased plateau level of inositol 1,4,5-triphosphate (IP3)-linked calcium signals. This increased calcium plateau can be inhibited by blocking mitochondrial calcium uptake and store-operated calcium entry (SOCE). Blocking SOCE also reduced HBV replication. Finally, these studies also demonstrate that there is increased mitochondrial calcium uptake in HBx-expressing cells. Cumulatively, these studies suggest that HBx can increase mitochondrial calcium uptake and promote increased SOCE to sustain higher cytosolic calcium and stimulate HBV replication. PMID:22031934

  11. Liver cytosolic 1 antigen-antibody system in type 2 autoimmune hepatitis and hepatitis C virus infection.

    Science.gov (United States)

    Lenzi, M; Manotti, P; Muratori, L; Cataleta, M; Ballardini, G; Cassani, F; Bianchi, F B

    1995-01-01

    Within the multiform liver/kidney microsomal (LKM) family, a subgroup of sera that reacts with a liver cytosolic (LC) protein has been isolated and the new antigen-antibody system is called LC1. Unlike LKM antibody type 1 (anti-LKM1), anti-LC1 is said to be unrelated to hepatitis C virus (HCV) infection and has therefore been proposed as a marker of 'true' autoimmune hepatitis type 2. Altogether 100 LKM1 positive sera were tested by immunodiffusion (ID). Twenty five gave a precipitation line with human liver cytosol; 17 of the 25 also reacted with rat liver cytosol. Thirteen of the 25 sera were anti-HCV positive by second generation ELISA: anti-HCV positive patients were significantly older (p LKM1, and that it is an additional marker of juvenile autoimmune hepatitis type 2. It does not, however, discriminate between patients with and without HCV infection. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:7797126

  12. Protein abundance profiling of the Escherichia coli cytosol

    DEFF Research Database (Denmark)

    Ishihama, Y.; Schmidt, T.; Rappsilber, J.

    2008-01-01

    sample. Using a combination of LC-MS/MS approaches with protein and peptide fractionation steps we identified 1103 proteins from the cytosolic fraction of the Escherichia coli strain MC4100. A measure of abundance is presented for each of the identified proteins, based on the recently developed emPAI...... approach which takes into account the number of sequenced peptides per protein. The values of abundance are within a broad range and accurately reflect independently measured copy numbers per cell. As expected, the most abundant proteins were those involved in protein synthesis, most notably ribosomal...

  13. Low pH, Aluminum, and Phosphorus Coordinately Regulate Malate Exudation through GmALMT1 to Improve Soybean Adaptation to Acid Soils1[W][OA

    Science.gov (United States)

    Liang, Cuiyue; Piñeros, Miguel A.; Tian, Jiang; Yao, Zhufang; Sun, Lili; Liu, Jiping; Shaff, Jon; Coluccio, Alison; Kochian, Leon V.; Liao, Hong

    2013-01-01

    Low pH, aluminum (Al) toxicity, and low phosphorus (P) often coexist and are heterogeneously distributed in acid soils. To date, the underlying mechanisms of crop adaptation to these multiple factors on acid soils remain poorly understood. In this study, we found that P addition to acid soils could stimulate Al tolerance, especially for the P-efficient genotype HN89. Subsequent hydroponic studies demonstrated that solution pH, Al, and P levels coordinately altered soybean (Glycine max) root growth and malate exudation. Interestingly, HN89 released more malate under conditions mimicking acid soils (low pH, +P, and +Al), suggesting that root malate exudation might be critical for soybean adaptation to both Al toxicity and P deficiency on acid soils. GmALMT1, a soybean malate transporter gene, was cloned from the Al-treated root tips of HN89. Like root malate exudation, GmALMT1 expression was also pH dependent, being suppressed by low pH but enhanced by Al plus P addition in roots of HN89. Quantitative real-time PCR, transient expression of a GmALMT1-yellow fluorescent protein chimera in Arabidopsis protoplasts, and electrophysiological analysis of Xenopus laevis oocytes expressing GmALMT1 demonstrated that GmALMT1 encodes a root cell plasma membrane transporter that mediates malate efflux in an extracellular pH-dependent and Al-independent manner. Overexpression of GmALMT1 in transgenic Arabidopsis, as well as overexpression and knockdown of GmALMT1 in transgenic soybean hairy roots, indicated that GmALMT1-mediated root malate efflux does underlie soybean Al tolerance. Taken together, our results suggest that malate exudation is an important component of soybean adaptation to acid soils and is coordinately regulated by three factors, pH, Al, and P, through the regulation of GmALMT1 expression and GmALMT1 function. PMID:23341359

  14. Chloride concentrations in human hepatic cytosol and mitochondria are a function of age.

    Science.gov (United States)

    Jahn, Stephan C; Rowland-Faux, Laura; Stacpoole, Peter W; James, Margaret O

    2015-04-10

    We recently reported that, in a concentration-dependent manner, chloride protects hepatic glutathione transferase zeta 1 from inactivation by dichloroacetate, an investigational drug used in treating various acquired and congenital metabolic diseases. Despite the importance of chloride ions in normal physiology, and decades of study of chloride transport across membranes, the literature lacks information on chloride concentrations in animal tissues other than blood. In this study we measured chloride concentrations in human liver samples from male and female donors aged 1 day to 84 years (n = 97). Because glutathione transferase zeta 1 is present in cytosol and, to a lesser extent, in mitochondria, we measured chloride in these fractions by high-performance liquid chromatography analysis following conversion of the free chloride to pentafluorobenzylchloride. We found that chloride concentration decreased with age in hepatic cytosol but increased in liver mitochondria. In addition, chloride concentrations in cytosol, (105.2 ± 62.4 mM; range: 24.7-365.7 mM) were strikingly higher than those in mitochondria (4.2 ± 3.8 mM; range 0.9-22.2 mM). These results suggest a possible explanation for clinical observations seen in patients treated with dichloroacetate, whereby children metabolize the drug more rapidly than adults following repeated doses, and also provide information that may influence our understanding of normal liver physiology. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. GABA transaminases from Saccharomyces cerevisiae and Arabidopsis thaliana complement function in cytosol and mitochondria.

    Science.gov (United States)

    Cao, Juxiang; Barbosa, Jose M; Singh, Narendra; Locy, Robert D

    2013-07-01

    GABA transaminase (GABA-T) catalyses the conversion of GABA to succinate semialdehyde (SSA) in the GABA shunt pathway. The GABA-T from Saccharomyces cerevisiae (ScGABA-TKG) is an α-ketoglutarate-dependent enzyme encoded by the UGA1 gene, while higher plant GABA-T is a pyruvate/glyoxylate-dependent enzyme encoded by POP2 in Arabidopsis thaliana (AtGABA-T). The GABA-T from A. thaliana is localized in mitochondria and mediated by an 18-amino acid N-terminal mitochondrial targeting peptide predicated by both web-based utilities TargetP 1.1 and PSORT. Yeast UGA1 appears to lack a mitochondrial targeting peptide and is localized in the cytosol. To verify this bioinformatic analysis and examine the significance of ScGABA-TKG and AtGABA-T compartmentation and substrate specificity on physiological function, expression vectors were constructed to modify both ScGABA-TKG and AtGABA-T, so that they express in yeast mitochondria and cytosol. Physiological function was evaluated by complementing yeast ScGABA-TKG deletion mutant Δuga1 with AtGABA-T or ScGABA-TKG targeted to the cytosol or mitochondria for the phenotypes of GABA growth defect, thermosensitivity and heat-induced production of reactive oxygen species (ROS). This study demonstrates that AtGABA-T is functionally interchangeable with ScGABA-TKG for GABA growth, thermotolerance and limiting production of ROS, regardless of location in mitochondria or cytosol of yeast cells, but AtGABA-T is about half as efficient in doing so as ScGABA-TKG. These results are consistent with the hypothesis that pyruvate/glyoxylate-limited production of NADPH mediates the effect of the GABA shunt in moderating heat stress in Saccharomyces. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Detection of Cytosolic Shigella flexneri via a C-Terminal Triple-Arginine Motif of GBP1 Inhibits Actin-Based Motility

    Directory of Open Access Journals (Sweden)

    Anthony S. Piro

    2017-12-01

    Full Text Available Dynamin-like guanylate binding proteins (GBPs are gamma interferon (IFN-γ-inducible host defense proteins that can associate with cytosol-invading bacterial pathogens. Mouse GBPs promote the lytic destruction of targeted bacteria in the host cell cytosol, but the antimicrobial function of human GBPs and the mechanism by which these proteins associate with cytosolic bacteria are poorly understood. Here, we demonstrate that human GBP1 is unique among the seven human GBP paralogs in its ability to associate with at least two cytosolic Gram-negative bacteria, Burkholderia thailandensis and Shigella flexneri. Rough lipopolysaccharide (LPS mutants of S. flexneri colocalize with GBP1 less frequently than wild-type S. flexneri does, suggesting that host recognition of O antigen promotes GBP1 targeting to Gram-negative bacteria. The targeting of GBP1 to cytosolic bacteria, via a unique triple-arginine motif present in its C terminus, promotes the corecruitment of four additional GBP paralogs (GBP2, GBP3, GBP4, and GBP6. GBP1-decorated Shigella organisms replicate but fail to form actin tails, leading to their intracellular aggregation. Consequentially, the wild type but not the triple-arginine GBP1 mutant restricts S. flexneri cell-to-cell spread. Furthermore, human-adapted S. flexneri, through the action of one its secreted effectors, IpaH9.8, is more resistant to GBP1 targeting than the non-human-adapted bacillus B. thailandensis. These studies reveal that human GBP1 uniquely functions as an intracellular “glue trap,” inhibiting the cytosolic movement of normally actin-propelled Gram-negative bacteria. In response to this powerful human defense program, S. flexneri has evolved an effective counterdefense to restrict GBP1 recruitment.

  17. Extending the fungal host range of a partitivirus and a mycoreovirus from Rosellinia necatrix by inoculation of protoplasts with virus particles.

    Science.gov (United States)

    Kanematsu, Satoko; Sasaki, Atsuko; Onoue, Mari; Oikawa, Yuri; Ito, Tsutae

    2010-09-01

    The potential host range of mycoviruses is poorly understood because of the lack of suitable inoculation methods. Recently, successful transfection has been reported for somatically incompatible fungal isolates with purified virus particles of two mycoviruses, the partitivirus RnPV1-W8 (RnPV1) and the mycoreovirus RnMyRV3/W370 (MyRV3), from the white root rot fungus Rosellinia necatrix (class Sordariomycetes, subclass Xylariomycetidae). These studies examined and revealed the effect of the mycoviruses on growth and pathogenicity of R. necatrix. Here, we extended the experimental host range of these two mycoviruses using a transfection approach. Protoplasts of other phytopathogenic Sordariomycetous fungi-Diaporthe sp., Cryphonectria parasitica, Valsa ceratosperma (Sordariomycetidae), and Glomerella cingulata (Hypocreomycetidae)-were inoculated with RnPV1 and MyRV3 viral particles. The presence of double-stranded RNA viral genomes in regenerated mycelia of Diaporthe sp., C. parasitica, and V. ceratosperma confirmed both types of viral infections in these three novel host species. An established RnPV1 infection was confirmed in G. cingulata but MyRV3 did not infect this host. Horizontal transmission of both viruses from newly infected strains to virus-free, wild-type strains through hyphal anastomosis was readily achieved by dual culture; however, vertical transmission through conidia was rarely observed. The virulence of Diaporthe sp., C. parasitica, and V. ceratosperma strains harboring MyRV3 was reduced compared with their virus-free counterpart. In summary, our protoplast inoculation method extended the experimental host range of RnPV1-W8 and MyRV3 within the class Sordariomycetes and revealed that MyRV3 confers hypovirulence to the new hosts, as it does to R. necatrix.

  18. Copper, Zinc Superoxide Dismutase is Primarily a Cytosolic Protein in Human Cells

    Science.gov (United States)

    Crapo, James D.; Oury, Tim; Rabouille, Catherine; Slot, Jan W.; Chang, Ling-Yi

    1992-11-01

    The intracellular localization of human copper, zinc superoxide dismutase (Cu,Zn-SOD; superoxide:superoxide oxidoreductase, EC 1.15.1.1) was evaluated by using EM immunocytochemistry and both isolated human cell lines and human tissues. Eight monoclonal antibodies raised against either native or recombinant human Cu,Zn-SOD and two polyclonal antibodies raised against either native or recombinant human Cu,Zn-SOD were used. Fixation with 2% paraformaldehyde/0.2% glutaraldehyde was found necessary to preserve normal distribution of the protein. Monoclonal antibodies were less effective than polyclonal antibodies in recognizing the antigen after adequate fixation of tissue. Cu,Zn-SOD was found widely distributed in the cell cytosol and in the cell nucleus, consistent with it being a soluble cytosolic protein. Mitochondria and secretory compartments did not label for this protein. In human cells, peroxisomes showed a labeling density slightly less than that of cytoplasm.

  19. The chlamydial periplasmic stress response serine protease cHtrA is secreted into host cell cytosol

    Directory of Open Access Journals (Sweden)

    Flores Rhonda

    2011-04-01

    Full Text Available Abstract Background The periplasmic High Temperature Requirement protein A (HtrA plays important roles in bacterial protein folding and stress responses. However, the role of chlamydial HtrA (cHtrA in chlamydial pathogenesis is not clear. Results The cHtrA was detected both inside and outside the chlamydial inclusions. The detection was specific since both polyclonal and monoclonal anti-cHtrA antibodies revealed similar intracellular labeling patterns that were only removed by absorption with cHtrA but not control fusion proteins. In a Western blot assay, the anti-cHtrA antibodies detected the endogenous cHtrA in Chlamydia-infected cells without cross-reacting with any other chlamydial or host cell antigens. Fractionation of the infected cells revealed cHtrA in the host cell cytosol fraction. The periplasmic cHtrA protein appeared to be actively secreted into host cell cytosol since no other chlamydial periplasmic proteins were detected in the host cell cytoplasm. Most chlamydial species secreted cHtrA into host cell cytosol and the secretion was not inhibitable by a type III secretion inhibitor. Conclusion Since it is hypothesized that chlamydial organisms possess a proteolysis strategy to manipulate host cell signaling pathways, secretion of the serine protease cHtrA into host cell cytosol suggests that the periplasmic cHtrA may also play an important role in chlamydial interactions with host cells.

  20. Detecting Release of Bacterial dsDNA into the Host Cytosol Using Fluorescence Microscopy.

    Science.gov (United States)

    Dreier, Roland Felix; Santos, José Carlos; Broz, Petr

    2018-01-01

    Recognition of pathogens by the innate immune system relies on germline-encoded pattern recognition receptors (PRRs) that recognize unique microbial molecules, so-called pathogen-associated molecular patterns (PAMPs). Nucleic acids and their derivatives are one of the most important groups of PAMPs, and are recognized by a number of surface-associated as well as cytosolic PRRs. Cyclic GMP-AMP synthase (cGAS) recognizes the presence of pathogen- or host-derived dsDNA in the cytosol and initiates type-I-IFN production. Here, we describe a methodology that allows for evaluating the association of cGAS with released bacterial dsDNA during Francisella novicida infection of macrophages, by fluorescence confocal microscopy. This method can be adapted to the study of cGAS-dependent responses elicited by other intracellular bacterial pathogens and in other cell types.

  1. Phylogenetic Analysis of Nucleus-Encoded Acetyl-CoA Carboxylases Targeted at the Cytosol and Plastid of Algae.

    KAUST Repository

    Huerlimann, Roger

    2015-07-01

    The understanding of algal phylogeny is being impeded by an unknown number of events of horizontal gene transfer (HGT), and primary and secondary/tertiary endosymbiosis. Through these events, previously heterotrophic eukaryotes developed photosynthesis and acquired new biochemical pathways. Acetyl-CoA carboxylase (ACCase) is a key enzyme in the fatty acid synthesis and elongation pathways in algae, where ACCase exists in two locations (cytosol and plastid) and in two forms (homomeric and heteromeric). All algae contain nucleus-encoded homomeric ACCase in the cytosol, independent of the origin of the plastid. Nucleus-encoded homomeric ACCase is also found in plastids of algae that arose from a secondary/tertiary endosymbiotic event. In contrast, plastids of algae that arose from a primary endosymbiotic event contain heteromeric ACCase, which consists of three nucleus-encoded and one plastid-encoded subunits. These properties of ACCase provide the potential to inform on the phylogenetic relationships of hosts and their plastids, allowing different hypothesis of endosymbiotic events to be tested. Alveolata (Dinoflagellata and Apicomplexa) and Chromista (Stramenopiles, Haptophyta and Cryptophyta) have traditionally been grouped together as Chromalveolata, forming the red lineage. However, recent genetic evidence groups the Stramenopiles, Alveolata and green plastid containing Rhizaria as SAR, excluding Haptophyta and Cryptophyta. Sequences coding for plastid and cytosol targeted homomeric ACCases were isolated from Isochrysis aff. galbana (TISO), Chromera velia and Nannochloropsis oculata, representing three taxonomic groups for which sequences were lacking. Phylogenetic analyses show that cytosolic ACCase strongly supports the SAR grouping. Conversely, plastidial ACCase groups the SAR with the Haptophyta, Cryptophyta and Prasinophyceae (Chlorophyta). These two ACCase based, phylogenetic relationships suggest that the plastidial homomeric ACCase was acquired by the

  2. Single molecular image of cytosolic free Ca2+ of skeletal muscle cells in rats pre- and post-exercise-induced fatigue

    Science.gov (United States)

    Liu, Yi; Zhang, Heming; Zhao, Yanping; Liu, Zhiming

    2009-08-01

    A growing body of literature indicated the cytosolic free Ca2+ concentration of skeletal muscle cells changes significantly during exercise-induced fatigue. But it is confusing whether cytosolic free Ca2+ concentration increase or decrease. Furthermore, current researches mainly adopt muscle tissue homogenate as experiment material, but the studies based on cellular and subcellular level is seldom. This study is aimed to establish rat skeletal muscle cell model of exercise-induced fatigue, and confirm the change of cytosolic free Ca2+ concentration of skeletal muscle cells in rats preand post- exercise-induced fatigue. In this research, six male Wistar rats were randomly divided into two groups: control group (n=3) and exercise-induced fatigue group (n=3). The former group were allowed to freely move and the latter were forced to loaded swimming to exhaustive. Three days later, all the rats were sacrificed, the muscle tissue from the same site of skeletal muscle were taken out and digested to cells. After primary culture of the two kinds of skeletal muscle cells from tissue, a fluorescent dye-Fluo-3 AM was used to label the cytosolic free Ca2+. The fluorescent of Ca2+ was recorded by confocal laser scanning microscopy. The results indicated that, the Ca2+ fluorescence intensity of cells from the rat of exercise-induced fatigue group was significantly higher than those in control group. In conclusion, cytosolic free Ca2+ concentration of skeletal muscle cells has a close relation with exercise-induced fatigue, and the increase of cytosolic free Ca2+ concentration may be one of the important factors of exercise-induced fatigue.

  3. The role of a cytosolic superoxide dismutase in barley-pathogen interactions

    KAUST Repository

    Lightfoot, Damien

    2016-03-19

    Reactive oxygen species (ROS), including superoxide (O2-HO2) and hydrogen peroxide (H2O2), are differentially produced during resistance responses to biotrophic pathogens and during susceptible responses to necrotrophic and hemi-biotrophic pathogens. Superoxide dismutase (SOD) is responsible for the catalysis of the dismutation of O2-HO2 to H2O2, regulating the redox status of plant cells. Increased SOD activity has been correlated previously with resistance in barley to the hemi-biotrophic pathogen Pyrenophora teres f. teres (Ptt, the causal agent of the net form of net blotch disease), but the role of individual isoforms of SOD has not been studied. A cytosolic CuZnSOD, HvCSD1, was isolated from barley and characterized as being expressed in tissue from different developmental stages. HvCSD1 was up-regulated during the interaction with Ptt and to a greater extent during the resistance response. Net blotch disease symptoms and fungal growth were not as pronounced in transgenic HvCSD1 knockdown lines in a susceptible background (cv. Golden Promise), when compared with wild-type plants, suggesting that cytosolic O2-HO2 contributes to the signalling required to induce a defence response to Ptt. There was no effect of HvCSD1 knockdown on infection by the hemi-biotrophic rice blast pathogen Magnaporthe oryzae or the biotrophic powdery mildew pathogen Blumeria graminis f. sp. hordei, but HvCSD1 also played a role in the regulation of lesion development by methyl viologen. Together, these results suggest that HvCSD1 could be important in the maintenance of the cytosolic redox status and in the differential regulation of responses to pathogens with different lifestyles.

  4. Mechanism of Diphtheria Toxin Catalytic Domain Delivery to the Eukaryotic Cell Cytosol and the Cellular Factors that Directly Participate in the Process

    Science.gov (United States)

    Murphy, John R.

    2011-01-01

    Research on diphtheria and anthrax toxins over the past three decades has culminated in a detailed understanding of their structure function relationships (e.g., catalytic (C), transmembrane (T), and receptor binding (R) domains), as well as the identification of their eukaryotic cell surface receptor, an understanding of the molecular events leading to the receptor-mediated internalization of the toxin into an endosomal compartment, and the pH triggered conformational changes required for pore formation in the vesicle membrane. Recently, a major research effort has been focused on the development of a detailed understanding of the molecular interactions between each of these toxins and eukaryotic cell factors that play an essential role in the efficient translocation of their respective catalytic domains through the trans-endosomal vesicle membrane pore and delivery into the cell cytosol. In this review, I shall focus on recent findings that have led to a more detailed understanding of the mechanism by which the diphtheria toxin catalytic domain is delivered to the eukaryotic cell cytosol. While much work remains, it is becoming increasingly clear that the entry process is facilitated by specific interactions with a number of cellular factors in an ordered sequential fashion. In addition, since diphtheria, anthrax lethal factor and anthrax edema factor all carry multiple coatomer I complex binding motifs and COPI complex has been shown to play an essential role in entry process, it is likely that the initial steps in catalytic domain entry of these divergent toxins follow a common mechanism. PMID:22069710

  5. Effect of acidic pH on flow cytometric detection of bacteria stained with SYBR Green I and their distinction from background

    International Nuclear Information System (INIS)

    Baldock, Daniel; Nocker, Andreas; Nebe-von-Caron, Gerhard; Bongaerts, Roy

    2013-01-01

    Unspecific background caused by biotic or abiotic particles, cellular debris, or autofluorescence is a well-known interfering parameter when applying flow cytometry to the detection of microorganisms in combination with fluorescent dyes. We present here an attempt to suppress the background signal intensity and thus to improve the detection of microorganisms using the nucleic acid stain SYBR ® Green I. It has been observed that the fluorescent signals from SYBR Green I are greatly reduced at acidic pH. When lowering the pH of pre-stained samples directly prior to flow cytometric analysis, we hypothesized that the signals from particles and cells with membrane damage might therefore be reduced. Signals from intact cells, temporarily maintaining a neutral cytosolic pH, should not be affected. We show here that this principle holds true for lowering background interference, whereas the signals of membrane-compromised dead cells are only affected weakly. Signals from intact live cells at low pH were mostly comparable to signals without acidification. Although this study was solely performed with SYBR ® Green I, the principle of low pH flow cytometry (low pH-FCM) might hold promise when analyzing complex matrices with an abundance of non-cellular matter, especially when expanded to non-DNA binding dyes with a stronger pH dependence of fluorescence than SYBR Green I and a higher pK a value. (paper)

  6. Structure and role of neutrophil cytosol factor 1 (NCF1) gene in ...

    African Journals Online (AJOL)

    Yomi

    2010-12-27

    Dec 27, 2010 ... The neutrophil cytosol factor 1 (NCF1) gene consists of 11 exons and is found in two forms; one is wild ... granulomatous disease, multiple sclerosis, arthritis and parasitic infection. ... TCR, T cell receptor; AhR, aryl hydrocarbon receptor; RA, .... During malaria, ROS production can contribute to both.

  7. A Role for Cytosolic Fumarate Hydratase in Urea Cycle Metabolism and Renal Neoplasia

    Directory of Open Access Journals (Sweden)

    Julie Adam

    2013-05-01

    Full Text Available The identification of mutated metabolic enzymes in hereditary cancer syndromes has established a direct link between metabolic dysregulation and cancer. Mutations in the Krebs cycle enzyme, fumarate hydratase (FH, predispose affected individuals to leiomyomas, renal cysts, and cancers, though the respective pathogenic roles of mitochondrial and cytosolic FH isoforms remain undefined. On the basis of comprehensive metabolomic analyses, we demonstrate that FH1-deficient cells and tissues exhibit defects in the urea cycle/arginine metabolism. Remarkably, transgenic re-expression of cytosolic FH ameliorated both renal cyst development and urea cycle defects associated with renal-specific FH1 deletion in mice. Furthermore, acute arginine depletion significantly reduced the viability of FH1-deficient cells in comparison to controls. Our findings highlight the importance of extramitochondrial metabolic pathways in FH-associated oncogenesis and the urea cycle/arginine metabolism as a potential therapeutic target.

  8. Denatured protein-coated docetaxel nanoparticles: Alterable drug state and cytosolic delivery.

    Science.gov (United States)

    Zhang, Li; Xiao, Qingqing; Wang, Yiran; Zhang, Chenshuang; He, Wei; Yin, Lifang

    2017-05-15

    Many lead compounds have a low solubility in water, which substantially hinders their clinical application. Nanosuspensions have been considered a promising strategy for the delivery of water-insoluble drugs. Here, denatured soy protein isolate (SPI)-coated docetaxel nanosuspensions (DTX-NS) were developed using an anti-solvent precipitation-ultrasonication method to improve the water-solubility of DTX, thus improving its intracellular delivery. DTX-NS, with a diameter of 150-250nm and drug-loading up to 18.18%, were successfully prepared by coating drug particles with SPI. Interestingly, the drug state of DTX-NS was alterable. Amorphous drug nanoparticles were obtained at low drug-loading, whereas at a high drug-loading, the DTX-NS drug was mainly present in the crystalline state. Moreover, DTX-NS could be internalized at high levels by cancer cells and enter the cytosol by lysosomal escape, enhancing cell cytotoxicity and apoptosis compared with free DTX. Taken together, denatured SPI has a strong stabilization effect on nanosuspensions, and the drug state in SPI-coated nanosuspensions is alterable by changing the drug-loading. Moreover, DTX-NS could achieve cytosolic delivery, generating enhanced cell cytotoxicity against cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Cytosolic nucleotides block and regulate the Arabidopsis vacuolar anion channel AtALMT9.

    Science.gov (United States)

    Zhang, Jingbo; Martinoia, Enrico; De Angeli, Alexis

    2014-09-12

    The aluminum-activated malate transporters (ALMTs) form a membrane protein family exhibiting different physiological roles in plants, varying from conferring tolerance to environmental Al(3+) to the regulation of stomatal movement. The regulation of the anion channels of the ALMT family is largely unknown. Identifying intracellular modulators of the activity of anion channels is fundamental to understanding their physiological functions. In this study we investigated the role of cytosolic nucleotides in regulating the activity of the vacuolar anion channel AtALMT9. We found that cytosolic nucleotides modulate the transport activity of AtALMT9. This modulation was based on a direct block of the pore of the channel at negative membrane potentials (open channel block) by the nucleotide and not by a phosphorylation mechanism. The block by nucleotides of AtALMT9-mediated currents was voltage dependent. The blocking efficiency of intracellular nucleotides increased with the number of phosphate groups and ATP was the most effective cellular blocker. Interestingly, the ATP block induced a marked modification of the current-voltage characteristic of AtALMT9. In addition, increased concentrations of vacuolar anions were able to shift the ATP block threshold to a more negative membrane potential. The block of AtALMT9-mediated anion currents by ATP at negative membrane potentials acts as a gate of the channel and vacuolar anion tune this gating mechanism. Our results suggest that anion transport across the vacuolar membrane in plant cells is controlled by cytosolic nucleotides and the energetic status of the cell. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Cytosolic Nucleotides Block and Regulate the Arabidopsis Vacuolar Anion Channel AtALMT9*

    Science.gov (United States)

    Zhang, Jingbo; Martinoia, Enrico; De Angeli, Alexis

    2014-01-01

    The aluminum-activated malate transporters (ALMTs) form a membrane protein family exhibiting different physiological roles in plants, varying from conferring tolerance to environmental Al3+ to the regulation of stomatal movement. The regulation of the anion channels of the ALMT family is largely unknown. Identifying intracellular modulators of the activity of anion channels is fundamental to understanding their physiological functions. In this study we investigated the role of cytosolic nucleotides in regulating the activity of the vacuolar anion channel AtALMT9. We found that cytosolic nucleotides modulate the transport activity of AtALMT9. This modulation was based on a direct block of the pore of the channel at negative membrane potentials (open channel block) by the nucleotide and not by a phosphorylation mechanism. The block by nucleotides of AtALMT9-mediated currents was voltage dependent. The blocking efficiency of intracellular nucleotides increased with the number of phosphate groups and ATP was the most effective cellular blocker. Interestingly, the ATP block induced a marked modification of the current-voltage characteristic of AtALMT9. In addition, increased concentrations of vacuolar anions were able to shift the ATP block threshold to a more negative membrane potential. The block of AtALMT9-mediated anion currents by ATP at negative membrane potentials acts as a gate of the channel and vacuolar anion tune this gating mechanism. Our results suggest that anion transport across the vacuolar membrane in plant cells is controlled by cytosolic nucleotides and the energetic status of the cell. PMID:25028514

  11. A cytosolic juxtamembrane interface modulates plexin A3 oligomerization and signal transduction.

    Directory of Open Access Journals (Sweden)

    Rachael Barton

    Full Text Available Plexins (plxns are transmembrane (TM receptors involved in the guidance of vascular, lymphatic vessel, and neuron growth as well as cancer metastasis. Plxn signaling results in cytosolic GTPase-activating protein activity, and previous research implicates dimerization as important for activation of plxn signaling. Purified, soluble plxn extracellular and cytosolic domains exhibit only weak homomeric interactions, suggesting a role for the plxn TM and juxtamembrane regions in homooligomerization. In this study, we consider a heptad repeat in the Danio rerio PlxnA3 cytosolic juxtamembrane domain (JM for its ability to influence PlxnA3 homooligomerization in TM-domain containing constructs. Site-directed mutagenesis in conjunction with the AraTM assay and bioluminescent energy transfer (BRET² suggest an interface involving a JM heptad repeat, in particular residue M1281, regulates PlxnA3 homomeric interactions when examined in constructs containing an ectodomain, TM and JM domain. In the presence of a neuropilin-2a co-receptor and semaphorin 3F ligand, disruption to PlxnA3 homodimerization caused by an M1281F mutation is eliminated, suggesting destabilization of the PlxnA3 homodimer in the JM is not sufficient to disrupt co-receptor complex formation. In contrast, enhanced homodimerization of PlxnA3 caused by mutation M1281L remains even in the presence of ligand semaphorin 3F and co-receptor neuropilin-2a. Consistent with this pattern of PlxnA3 dimerization in the presence of ligand and co-receptor, destabilizing mutations to PlxnA3 homodimerization (M1281F are able to rescue motor patterning defects in sidetracked zebrafish embryos, whereas mutations that enhance PlxnA3 homodimerization (M1281L are not. Collectively, our results indicate the JM heptad repeat, in particular residue M1281, forms a switchable interface that modulates both PlxnA3 homomeric interactions and signal transduction.

  12. Hsp70 facilitates trans-membrane transport of bacterial ADP-ribosylating toxins into the cytosol of mammalian cells.

    Science.gov (United States)

    Ernst, Katharina; Schmid, Johannes; Beck, Matthias; Hägele, Marlen; Hohwieler, Meike; Hauff, Patricia; Ückert, Anna Katharina; Anastasia, Anna; Fauler, Michael; Jank, Thomas; Aktories, Klaus; Popoff, Michel R; Schiene-Fischer, Cordelia; Kleger, Alexander; Müller, Martin; Frick, Manfred; Barth, Holger

    2017-06-02

    Binary enterotoxins Clostridium (C.) botulinum C2 toxin, C. perfringens iota toxin and C. difficile toxin CDT are composed of a transport (B) and a separate non-linked enzyme (A) component. Their B-components mediate endocytic uptake into mammalian cells and subsequently transport of the A-components from acidic endosomes into the cytosol, where the latter ADP-ribosylate G-actin resulting in cell rounding and cell death causing clinical symptoms. Protein folding enzymes, including Hsp90 and peptidyl-prolyl cis/trans isomerases facilitate transport of the A-components across endosomal membranes. Here, we identified Hsp70 as a novel host cell factor specifically interacting with A-components of C2, iota and CDT toxins to facilitate their transport into the cell cytosol. Pharmacological Hsp70-inhibition specifically prevented pH-dependent trans-membrane transport of A-components into the cytosol thereby protecting living cells and stem cell-derived human miniguts from intoxication. Thus, Hsp70-inhibition might lead to development of novel therapeutic strategies to treat diseases associated with bacterial ADP-ribosylating toxins.

  13. Synthesis of viral DNA forms in Nicotiana plumbaginifolia protoplasts inoculated with cassava latent virus (CLV); evidence for the independent replication of one component of the CLV genome.

    OpenAIRE

    Townsend, R; Watts, J; Stanley, J

    1986-01-01

    Totipotent leaf mesophyll protoplasts of Nicotiana plumbaginifolia, Viviani were inoculated with cassava latent virus (CLV) or with full length copies of CLV genomic DNAs 1 and 2 excised from replicative forms of M13 clones. Virus specific DNAs began to appear 48-72h after inoculation with virus or cloned DNAs, coincident with the onset of host cell division. Infected cells accumulated supercoiled forms of DNAs 1 and 2 as well as progeny single-stranded (ss) virion (+) sense DNAs representing...

  14. A NOVEL S-ADENOSYL-L-METHIONINE: ARSENIC (III) METHYLTRANSFERASE FROM RAT LIVER CYTOSOL

    Science.gov (United States)

    A Novel S-Adenosyl-L-methionine: Arsenic(III) Methyltransferase from Rat Liver CytosolShan Lin, Qing Shi, F. Brent Nix, Miroslav Styblo, Melinda A. Beck, Karen M. Herbin-Davis, Larry L. Hall, Josef B. Simeonsson, and David J. Thomas S-adenosyl-L-methionine (AdoMet): ar...

  15. Dynamin-Related Protein 1 Translocates from the Cytosol to Mitochondria during UV-Induced Apoptosis

    Science.gov (United States)

    Zhang, Zhenzhen; Wu, Shengnan; Feng, Jie

    2011-01-01

    Mitochondria are dynamic structures that frequently divide and fuse with one another to form interconnecting network. This network disintegrates into punctiform organelles during apoptosis. However, the mechanisms involved in these processes are still not well characterized. In this study, we investigate the role of dynamin-related protein 1 (Drp1), a large GTPase that mediates outer mitochondrial membrane fission, in mitochondrial dynamics in response to UV irradiation in human lung adenocarcinoma cells (ASTC-α-1) and HeLa cells. Using time-lapse fluorescent imaging, we find that Drp1 primarily distributes in cytosol under physiological conditions. After UV treatment, Drp1 translocates from cytosol to mitochondria, indicating the enhancement of Drp1 mitochondrial accumulation. Our results suggest that Drp1 is involved in the regulation of transition from an interconnecting network to a punctiform mitochondrial phenotype during UV-induced apoptosis.

  16. Intracellular alkalinization induces cytosolic Ca2+ increases by inhibiting sarco/endoplasmic reticulum Ca2+-ATPase (SERCA.

    Directory of Open Access Journals (Sweden)

    Sen Li

    Full Text Available Intracellular pH (pHi and Ca(2+ regulate essentially all aspects of cellular activities. Their inter-relationship has not been mechanistically explored. In this study, we used bases and acetic acid to manipulate the pHi. We found that transient pHi rise induced by both organic and inorganic bases, but not acidification induced by acid, produced elevation of cytosolic Ca(2+. The sources of the Ca(2+ increase are from the endoplasmic reticulum (ER Ca(2+ pools as well as from Ca(2+ influx. The store-mobilization component of the Ca(2+ increase induced by the pHi rise was not sensitive to antagonists for either IP(3-receptors or ryanodine receptors, but was due to inhibition of the sarco/endoplasmic reticulum Ca(2+-ATPase (SERCA, leading to depletion of the ER Ca(2+ store. We further showed that the physiological consequence of depletion of the ER Ca(2+ store by pHi rise is the activation of store-operated channels (SOCs of Orai1 and Stim1, leading to increased Ca(2+ influx. Taken together, our results indicate that intracellular alkalinization inhibits SERCA activity, similar to thapsigargin, thereby resulting in Ca(2+ leak from ER pools followed by Ca(2+ influx via SOCs.

  17. Modulation of Connexin-36 Gap Junction Channels by Intracellular pH and Magnesium Ions.

    Science.gov (United States)

    Rimkute, Lina; Kraujalis, Tadas; Snipas, Mindaugas; Palacios-Prado, Nicolas; Jotautis, Vaidas; Skeberdis, Vytenis A; Bukauskas, Feliksas F

    2018-01-01

    Connexin-36 (Cx36) protein forms gap junction (GJ) channels in pancreatic beta cells and is also the main Cx isoform forming electrical synapses in the adult mammalian brain. Cx36 GJs can be regulated by intracellular pH (pH i ) and cytosolic magnesium ion concentration ([Mg 2+ ] i ), which can vary significantly under various physiological and pathological conditions. However, the combined effect and relationship of these two factors over Cx36-dependent coupling have not been previously studied in detail. Our experimental results in HeLa cells expressing Cx36 show that changes in both pH i and [Mg 2+ ] i affect junctional conductance (g j ) in an interdependent manner; in other words, intracellular acidification cause increase or decay in g j depending on whether [Mg 2+ ] i is high or low, respectively, and intracellular alkalization cause reduction in g j independently of [Mg 2+ ] i . Our experimental and modelling data support the hypothesis that Cx36 GJ channels contain two separate gating mechanisms, and both are differentially sensitive to changes in pH i and [Mg 2+ ] i . Using recombinant Cx36 we found that two glutamate residues in the N-terminus could be partly responsible for the observed interrelated effect of pH i and [Mg 2+ ] i . Mutation of glutamate at position 8 attenuated the stimulatory effect of intracellular acidification at high [Mg 2+ ] i , while mutation at position 12 and double mutation at both positions reversed stimulatory effect to inhibition. Moreover, Cx36 * E8Q lost the initial increase of g j at low [Mg 2+ ] i and double mutation lost the sensitivity to high [Mg 2+ ] i . These results suggest that E8 and E12 are involved in regulation of Cx36 GJ channels by Mg 2+ and H + ions.

  18. Vitamin A effects on UMR 106 osteosarcoma cells are not mediated by specific cytosolic receptors.

    OpenAIRE

    Oreffo, R O; Francis, J A; Triffitt, J T

    1985-01-01

    Retinol and retinoic acid at 20 microM altered cell morphology and inhibited cell proliferation of UMR 106 osteosarcoma cells in culture. No specific cytosolic binding proteins for retinol could be detected.

  19. A cytosolic copper storage protein provides a second level of copper tolerance in Streptomyces lividans.

    Science.gov (United States)

    Straw, Megan L; Chaplin, Amanda K; Hough, Michael A; Paps, Jordi; Bavro, Vassiliy N; Wilson, Michael T; Vijgenboom, Erik; Worrall, Jonathan A R

    2018-01-24

    Streptomyces lividans has a distinct dependence on the bioavailability of copper for its morphological development. A cytosolic copper resistance system is operative in S. lividans that serves to preclude deleterious copper levels. This system comprises of several CopZ-like copper chaperones and P 1 -type ATPases, predominantly under the transcriptional control of a metalloregulator from the copper sensitive operon repressor (CsoR) family. In the present study, we discover a new layer of cytosolic copper resistance in S. lividans that involves a protein belonging to the newly discovered family of copper storage proteins, which we have named Ccsp (cytosolic copper storage protein). From an evolutionary perspective, we find Ccsp homologues to be widespread in Bacteria and extend through into Archaea and Eukaryota. Under copper stress Ccsp is upregulated and consists of a homotetramer assembly capable of binding up to 80 cuprous ions (20 per protomer). X-ray crystallography reveals 18 cysteines, 3 histidines and 1 aspartate are involved in cuprous ion coordination. Loading of cuprous ions to Ccsp is a cooperative process with a Hill coefficient of 1.9 and a CopZ-like copper chaperone can transfer copper to Ccsp. A Δccsp mutant strain indicates that Ccsp is not required under initial copper stress in S. lividans, but as the CsoR/CopZ/ATPase efflux system becomes saturated, Ccsp facilitates a second level of copper tolerance.

  20. Transfer of herpes simplex virus thymidine kinase synthesized in bacteria by a high-expression plasmid to tissue culture cells by protoplast fusion

    International Nuclear Information System (INIS)

    Waldman, A.S.; Milman, G.

    1984-01-01

    The introduction of a protein into living tissue culture cells may permit the in vivo study of functions of the protein. The authors have previously described a high-efficiency-expression plasmid, pHETK2, containing the herpes simplex virus type 1 thymidine kinase (TK) gene which, upon temperature induction, causes TK to be synthesized as greater than 4% of the bacterial protein. In this report it is shown that enzymatically active TK was transferred to mouse Ltk- cells by polyethylene glycol-mediated fusion with protoplasts prepared from bacteria containing induced levels of TK. The presence of TK in the Ltk- cells was detected by the incorporation of [ 3 H]thymidine into cell nuclei as measured by autoradiography

  1. Liver/kidney microsomal antibody type 1 and liver cytosol antibody type 1 concentrations in type 2 autoimmune hepatitis

    OpenAIRE

    Muratori, L; Cataleta, M; Muratori, P; Lenzi, M; Bianchi, F

    1998-01-01

    Background—Liver/kidney microsomal antibody type 1 (LKM1) and liver cytosol antibody type 1 (LC1) are the serological markers of type 2 autoimmune hepatitis (AIH). 
Aims—Since LKM1 and LC1 react against two distinct liver specific autoantigens (cytochrome P450IID6 (CYP2D6) and a 58 kDa cytosolic polypeptide respectively), the aim was to see whether LKM1 and LC1 concentrations correlate with liver disease activity. 
Patients—Twenty one patients with type 2 AIH were studied. 
Methods—A...

  2. Retargeting the Clostridium botulinum C2 toxin to the neuronal cytosol.

    Science.gov (United States)

    Pavlik, Benjamin J; Hruska, Elizabeth J; Van Cott, Kevin E; Blum, Paul H

    2016-03-30

    Many biological toxins are known to attack specific cell types, delivering their enzymatic payloads to the cytosol. This process can be manipulated by molecular engineering of chimeric toxins. Using toxins with naturally unlinked components as a starting point is advantageous because it allows for the development of payloads separately from the binding/translocation components. Here the Clostridium botulinum C2 binding/translocation domain was retargeted to neural cell populations by deleting its non-specific binding domain and replacing it with a C. botulinum neurotoxin binding domain. This fusion protein was used to deliver fluorescently labeled payloads to Neuro-2a cells. Intracellular delivery was quantified by flow cytometry and found to be dependent on artificial enrichment of cells with the polysialoganglioside receptor GT1b. Visualization by confocal microscopy showed a dissociation of payloads from the early endosome indicating translocation of the chimeric toxin. The natural Clostridium botulinum C2 toxin was then delivered to human glioblastoma A172 and synchronized HeLa cells. In the presence of the fusion protein, native cytosolic enzymatic activity of the enzyme was observed and found to be GT1b-dependent. This retargeted toxin may enable delivery of therapeutics to peripheral neurons and be of use in addressing experimental questions about neural physiology.

  3. Faster and stronger manifestation of mitochondrial diseases in skeletal muscle than in heart related to cytosolic inorganic phosphate (Pi) accumulation.

    Science.gov (United States)

    Korzeniewski, Bernard

    2016-08-01

    A model of the cell bioenergetic system was used to compare the effect of oxidative phosphorylation (OXPHOS) deficiencies in a broad range of moderate ATP demand in skeletal muscle and heart. Computer simulations revealed that kinetic properties of the system are similar in both cases despite the much higher mitochondria content and "basic" OXPHOS activity in heart than in skeletal muscle, because of a much higher each-step activation (ESA) of OXPHOS in skeletal muscle than in heart. Large OXPHOS deficiencies lead in both tissues to a significant decrease in oxygen consumption (V̇o2) and phosphocreatine (PCr) and increase in cytosolic ADP, Pi, and H(+) The main difference between skeletal muscle and heart is a much higher cytosolic Pi concentration in healthy tissue and much higher cytosolic Pi accumulation (level) at low OXPHOS activities in the former, caused by a higher PCr level in healthy tissue (and higher total phosphate pool) and smaller Pi redistribution between cytosol and mitochondria at OXPHOS deficiency. This difference does not depend on ATP demand in a broad range. A much greater Pi increase and PCr decrease during rest-to-moderate work transition in skeletal muscle at OXPHOS deficiencies than at normal OXPHOS activity significantly slows down the V̇o2 on-kinetics. Because high cytosolic Pi concentrations cause fatigue in skeletal muscle and can compromise force generation in skeletal muscle and heart, this system property can contribute to the faster and stronger manifestation of mitochondrial diseases in skeletal muscle than in heart. Shortly, skeletal muscle with large OXPHOS deficiencies becomes fatigued already during low/moderate exercise. Copyright © 2016 the American Physiological Society.

  4. Fully-coupled mathematical modeling of actomyosin-cytosolic two-phase flow in a highly deformable moving Keratocyte cell.

    Science.gov (United States)

    Nikmaneshi, M R; Firoozabadi, B; Saidi, M S

    2018-01-23

    Interaction between intracellular dynamics and extracellular matrix (ECM) generally occurred into very thin fragment of moving cell, namely lamellipodia, enables all movable cells to crawl on ECM. In fast-moving cells such as fish Keratocytes, Lamellipodia including most cell area finds a fan-like shape during migration, with a variety of aspect ratio function of fish type. In this work, our purpose is to present a novel and more complete two-dimensional continuum mathematical model of actomyosin-cytosolic two-phase flow of a self-deforming Keratocyte with circular spreaded to steady fan-like shape. In the new approach, in addition to the two-phase flow of the F-actin and cytosol, the G-actin transport was spatiotemporally modeled. We also for the first time modeled the effect of variable volume fraction of the moving F-actin porous network on solute transport in the cytosolic fluid. Our novel fully-coupled mathematical model provides a better understanding of intracellular dynamics of fast-migrating Keratocytes; such as the F-actin centripetal and cytosolic fountain-like flows, free-active myosin distribution, distribution sequence of the G-actin, F-actin, and myosin, and myosin-induced pressure flied of cytoplasm as well as the map of intracellular forces like myosin contraction and adhesion traction. All these results are qualitatively and quantitatively in good agreement with experimental observations. According to a range of value of parameters used in this model, our steady state of moving Keratocyte finds fan-like shape with the same aspect ratio as wide category of fish Keratocytes. This new model can predict shape of Keratocytes in other range of parameter values. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Characterization of the methotrexate transport pathway in murine L1210 leukemia cells: Involvement of a membrane receptor and a cytosolic protein

    International Nuclear Information System (INIS)

    Price, E.M.; Ratnam, M.; Rodeman, K.M.; Freisheim, J.H.

    1988-01-01

    A radioiodinated photoaffinity analogue of methotrexate, N α -(4-amino-4-deoxy-10-methyl-pteroyl)-N ε -(4-azidosalicylyl)-L-lysine (APA-ASA-Lys), was recently used to identify the plasma membrane derived binding protein involved in the transport of this folate antagonist into murine L1210 cells. The labeled protein has an apparent molecular weight of 46K-48K when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but no such labeling occurs in a methotrexate transport-defective cell line (L1210/R81). Labeling of the total cytosolic protein from disrupted cells, followed by electrophoresis and autoradiography, showed, among other proteins, a 21K band, corresponding to dihydrofolate reductase (DHFR), in both the parent and R81 cells and a 38K band only in the parent cells. However, when whole cells were UV irradiated at various times at 37 degree C following addition of radiolabeled APA-ASA-Lys, the 38K protein and DHFR were the only cytosolic proteins labeled in the parent cells, while the intact R81 cells showed no labeled cytosolic protein, since the photoprobe is not transported. Further, when the parent cells were treated with a pulse of radiolabeled photoprobe, followed by UV irradiation at different times at 37 degree C, the probe appeared sequentially on the 48K membrane protein and both the 38K cytosolic protein and dihydrofolate reductase. A 48K protein could be detected in both parent L1210 cells and the R81 cells on Western blots using antisera to a membrane folate binding protein from human placenta. These results suggest a vectorial transport of APA-ASA-Lys or methotrexate and reduced folate coenzymes into murine L1210 cells mediated by a 48K integral membrane protein and a 38K cytosolic or peripheral membrane protein. The 38K protein may help in the trafficking of reduced folate coenzymes, shuttling them to various cytosolic targets

  6. Cytosol cathepsin-D content and proliferative activity of human breast cancer. The Comitato Italiano per il Controllo di Qualita del Laboratorio in Oncologia.

    Science.gov (United States)

    Paradiso, A; Mangia, A; Correale, M; Abbate, I; Ferri, G; Piffanelli, A; Catozzi, L; Amadori, D; Riccobon, A; De Lena, M

    1992-01-01

    Mitogenic properties have been demonstrated in vitro for the lysosomal acidic protease cathepsin-D (cath-D). We investigated possible relationships between cath-D cytosol cell content and tumor proliferative activity in a series of 129 operable breast cancer patients. For total cytosol cath-D evaluation, a solid phase two-site immunoradiometric assay was utilized on tumor cell cytosol obtained for hormone receptor assay (DCC method). The percentage of S-phase cells was analyzed by 3H-thymidine autoradiographic assay. Median 3H-thymidine Labeling Index (3H-Tdr-LI) of the series was 2.7%; median cath-D content resulted 57 pmol/mg of protein cytosol and was significantly higher in node-positive with respect to the node-negative subgroup (p < 0.03). When classified in low, intermediate or high tumor cath-D content and slow or fast proliferative activity (cut-off: median values of the series), no significant agreement was found between the two variables. Statistical analysis, however, showed that a significant inverse correlation existed in node positive tumors between cath-D and 3H-Tdr-LI values which was even more evident in N-positive high estrogen receptor-positive (ER+) cases (coefficient of correlation = 0.6828; p = 0.0001). Cytosol cath-D content cannot be generally proposed as a direct marker of proliferative activity for operable breast cancer.

  7. Phosphocitrate inhibits mitochondrial and cytosolic accumulation of calcium in kidney cells in vivo.

    Science.gov (United States)

    Tew, W P; Malis, C D; Howard, J E; Lehninger, A L

    1981-01-01

    Synthetic 3-phosphocitrate, an extremely potent inhibitor of calcium phosphate crystallization as determined in a nonbiological physical-chemical assay, has many similarities to a mitochondrial factor that inhibits crystallization of nondiffracting amorphous calcium phosphate. In order to determine whether phosphocitrate can prevent uptake and crystallization of calcium phosphate in mitochondria in vivo, it was administered intraperitoneally to animals given large daily doses of calcium gluconate or parathyroid hormone, a regimen that causes massive accumulation and crystallization of calcium phosphate in the mitochondria and cytosol of renal tubule cells in vivo. Administration of phosphocitrate greatly reduced the net uptake of Ca2+ by the kidneys and prevented the appearance of apatite-like crystalline structures within the mitochondrial matrix and cytosol of renal tubule cells. Phosphocitrate, which is a poor chelator of Ca2+, did not reduce the hypercalcemia induced by either agent. These in vivo observations therefore indicate that phosphocitrate acts primarily at the cellular level to prevent the extensive accumulation of calcium phosphate in kidney cells by inhibiting the mitochondrial accumulation or crystallization of calcium phosphate. Images PMID:6946490

  8. Cyclic GMP-AMP Synthase Is the Cytosolic Sensor of Plasmodium falciparum Genomic DNA and Activates Type I IFN in Malaria.

    Science.gov (United States)

    Gallego-Marin, Carolina; Schrum, Jacob E; Andrade, Warrison A; Shaffer, Scott A; Giraldo, Lina F; Lasso, Alvaro M; Kurt-Jones, Evelyn A; Fitzgerald, Katherine A; Golenbock, Douglas T

    2018-01-15

    Innate immune receptors have a key role in the sensing of malaria and initiating immune responses. As a consequence of infection, systemic inflammation emerges and is directly related to signs and symptoms during acute disease. We have previously reported that plasmodial DNA is the primary driver of systemic inflammation in malaria, both within the phagolysosome and in the cytosol of effector cells. In this article, we demonstrate that Plasmodium falciparum genomic DNA delivered to the cytosol of human monocytes binds and activates cyclic GMP-AMP synthase (cGAS). Activated cGAS synthesizes 2'3'-cGAMP, which we subsequently can detect using liquid chromatography-tandem mass spectrometry. 2'3'-cGAMP acts as a second messenger for STING activation and triggers TBK1/IRF3 activation, resulting in type I IFN production in human cells. This induction of type I IFN was independent of IFI16. Access of DNA to the cytosolic compartment is mediated by hemozoin, because incubation of purified malaria pigment with DNase abrogated IFN-β induction. Collectively, these observations implicate cGAS as an important cytosolic sensor of P. falciparum genomic DNA and reveal the role of the cGAS/STING pathway in the induction of type I IFN in response to malaria parasites. Copyright © 2018 by The American Association of Immunologists, Inc.

  9. A PhD is a PhD is a PhD

    OpenAIRE

    Ostrow, Deborah Anne

    2017-01-01

    A PhD is a PhD is a PhD is a practice-based project that interrogates the process of an artist undertaking PhD research under established criteria. It consists of an exegesis, an original screenplay, and a digital film made for online viewing, with images drawn from a range of documentaries and films found on YouTube. They have been dissected, re-assembled and then re-embedded to YouTube. The source material covers topics such as medicalization of madness, the conspicuous appropriation of uni...

  10. AM fungal exudates activate MAP kinases in plant cells in dependence from cytosolic Ca(2+) increase.

    Science.gov (United States)

    Francia, Doriana; Chiltz, Annick; Lo Schiavo, Fiorella; Pugin, Alain; Bonfante, Paola; Cardinale, Francesca

    2011-09-01

    The molecular dialogue occurring prior to direct contact between the fungal and plant partners of arbuscular-mycorrhizal (AM) symbioses begins with the release of fungal elicitors, so far only partially identified chemically, which can activate specific signaling pathways in the host plant. We show here that the activation of MAPK is also induced by exudates of germinating spores of Gigaspora margarita in cultured cells of the non-leguminous species tobacco (Nicotiana tabacum), as well as in those of the model legume Lotus japonicus. MAPK activity peaked about 15 min after the exposure of the host cells to the fungal exudates (FE). FE were also responsible for a rapid and transient increase in free cytosolic Ca(2+) in Nicotiana plumbaginifolia and tobacco cells, and pre-treatment with a Ca(2+)-channel blocker (La(3+)) showed that in these cells, MAPK activation was dependent on the cytosolic Ca(2+) increase. A partial dependence of MAPK activity on the common Sym pathway could be demonstrated for a cell line of L. japonicus defective for LjSym4 and hence unable to establish an AM symbiosis. Our results show that MAPK activation is triggered by an FE-induced cytosolic Ca(2+) transient, and that a Sym genetic determinant acts to modulate the intensity and duration of this activity. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  11. Silencing of cytosolic NADP+-dependent isocitrate dehydrogenase gene enhances ethanol-induced toxicity in HepG2 cells.

    Science.gov (United States)

    Yang, Eun Sun; Lee, Su-Min; Park, Jeen-Woo

    2010-07-01

    It has been shown that acute and chronic alcohol administrations increase the production of reactive oxygen species, lower cellular antioxidant levels and enhance oxidative stress in many tissues. We recently reported that cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) functions as an antioxidant enzyme by supplying NADPH to the cytosol. Upon exposure to ethanol, IDPc was susceptible to the loss of its enzyme activity in HepG2 cells. Transfection of HepG2 cells with an IDPc small interfering RNA noticeably downregulated IDPc and enhanced the cells' vulnerability to ethanol-induced cytotoxicity. Our results suggest that suppressing the expression of IDPc enhances ethanol-induced toxicity in HepG2 cells by further disruption of the cellular redox status.

  12. Nanoparticles for cytosolic delivery of important biomolecular drugs such as DNA, RNA, peptides, and proteins

    Czech Academy of Sciences Publication Activity Database

    Sedlák, M.; Koňák, Čestmír; Dybal, Jiří

    2010-01-01

    Roč. 1, č. 2010 (2010), s. 87-90 ISSN 2210-2892 Institutional research plan: CEZ:AV0Z40500505 Keywords : cytosolic delivery * nanoparticle carriers * poly(ethylacrylic acid) Subject RIV: CD - Macromolecular Chemistry http://benthamopen.com/ABSTRACT/TOPROCJ-1-87

  13. pH and Ion Homeostasis on Plant Endomembrane Dynamics: Insights from structural models and mutants of K+/H+ antiporters.

    Science.gov (United States)

    Sze, Heven; Chanroj, Salil

    2018-04-24

    Plants remodel their cells through the dynamic endomembrane system. Intracellular pH is important for membrane trafficking, but the determinants of pH homeostasis are poorly defined in plants. Electrogenic proton (H+) pumps depend on counter-ion fluxes to establish transmembrane pH gradients at the plasma membrane and endomembranes. Vacuolar-type H+-ATPase-mediated acidification of the trans-Golgi network (TGN) is crucial for secretion and membrane recycling. Pump and counter-ion fluxes are unlikely to fine-tune pH; rather, alkali cation/H+ antiporters, which can alter pH and/or cation homeostasis locally and transiently, are prime candidates. Plants have a large family of predicted cation/H+ exchangers (CHX) of obscure function, in addition to the well-studied K+(Na+)/H+ exchangers (NHX). Here, we review the regulation of cytosolic and vacuolar pH, highlighting the similarities and distinctions of NHX and CHX members. In planta, alkalinization of the TGN or vacuole by NHXs promotes membrane trafficking, endocytosis, cell expansion, and growth. CHXs localize to endomembranes and/or the plasma membrane, contribute to male fertility, pollen tube guidance, pollen wall construction, stomatal opening, and in soybean (Glycine max), tolerance to salt stress. Three-dimensional structural models and mutagenesis of Arabidopsis thaliana genes have allowed us to infer that AtCHX17 and AtNHX1 share a global architecture and a translocation core like bacterial Na+/H+ antiporters. Yet the presence of distinct residues suggests some CHXs differ from NHXs in pH sensing and electrogenicity. How H+ pumps, counter-ion fluxes, and cation/H+ antiporters are linked with signaling and membrane trafficking to remodel membranes and cell walls awaits further investigation. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.

  14. Role of cytosolic NADP+-dependent isocitrate dehydrogenase in ischemia-reperfusion injury in mouse kidney.

    Science.gov (United States)

    Kim, Jinu; Kim, Ki Young; Jang, Hee-Seong; Yoshida, Takumi; Tsuchiya, Ken; Nitta, Kosaku; Park, Jeen-Woo; Bonventre, Joseph V; Park, Kwon Moo

    2009-03-01

    Cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) synthesizes reduced NADP (NADPH), which is an essential cofactor for the generation of reduced glutathione (GSH), the most abundant and important antioxidant in mammalian cells. We investigated the role of IDPc in kidney ischemia-reperfusion (I/R) in mice. The activity and expression of IDPc were highest in the cortex, modest in the outer medulla, and lowest in the inner medulla. NADPH levels were greatest in the cortex. IDPc expression in the S1 and S2 segments of proximal tubules was higher than in the S3 segment, which is much more susceptible to I/R. IDPc protein was also highly expressed in the mitochondrion-rich intercalated cells of the collecting duct. IDPc activity was 10- to 30-fold higher than the activity of glucose-6-phosphate dehydrogenase, another producer of cytosolic NADPH, in various kidney regions. This study identifies that IDPc may be the primary source of NADPH in the kidney. I/R significantly reduced IDPc expression and activity and NADPH production and increased the ratio of oxidized glutathione to total glutathione [GSSG/(GSH+GSSG)], resulting in kidney dysfunction, tubular cell damage, and lipid peroxidation. In LLC-PK(1) cells, upregulation of IDPc by IDPc gene transfer protected the cells against hydrogen peroxide, enhancing NADPH production, inhibiting the increase of GSSG/(GSH+GSSG), and reducing lipid peroxidation. IDPc downregulation by small interference RNA treatment presented results contrasting with the upregulation. In conclusion, these results demonstrate that IDPc is expressed differentially along tubules in patterns that may contribute to differences in susceptibility to injury, is a major enzyme in cytosolic NADPH generation in kidney, and is downregulated with I/R.

  15. Sterol-induced Dislocation of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase from Endoplasmic Reticulum Membranes into the Cytosol through a Subcellular Compartment Resembling Lipid Droplets*

    Science.gov (United States)

    Hartman, Isamu Z.; Liu, Pingsheng; Zehmer, John K.; Luby-Phelps, Katherine; Jo, Youngah; Anderson, Richard G. W.; DeBose-Boyd, Russell A.

    2010-01-01

    Sterol-induced binding to Insigs in the endoplasmic reticulum (ER) allows for ubiquitination of 3-hydroxy-3-methylglutaryl coenzyme A reductase, the rate-limiting enzyme in cholesterol synthesis. This ubiquitination marks reductase for recognition by the ATPase VCP/p97, which mediates extraction and delivery of reductase from ER membranes to cytosolic 26 S proteasomes for degradation. Here, we report that reductase becomes dislocated from ER membranes into the cytosol of sterol-treated cells. This dislocation exhibits an absolute requirement for the actions of Insigs and VCP/p97. Reductase also appears in a buoyant fraction of sterol-treated cells that co-purifies with lipid droplets, cytosolic organelles traditionally regarded as storage depots for neutral lipids such as triglycerides and cholesteryl esters. Genetic, biochemical, and localization studies suggest a model in which reductase is dislodged into the cytosol from an ER subdomain closely associated with lipid droplets. PMID:20406816

  16. [Effects of cytosolic bacteria on cyclic GMP-AMP synthase expression in human gingival tissues and periodontal ligament cells].

    Science.gov (United States)

    Xiaojun, Yang; Yongmei, Tan; Zhihui, Tian; Ting, Zhou; Wanghong, Zhao; Jin, Hou

    2017-04-01

    This work aims to determine the effect of cytosolic bacteria on the expression of cyclic GMP-AMP synthase (cGAS) in human periodontal ligament cells (hPDLCs) and gingival tissues. The ability of Porphyromonas gingivalis (P. gingivalis) to invade hPDLCs was detected using laser scanning confocal microscope assay at a multiplicity of infection of 10. P. gingivalis-infected cells were sorted by fluorescence-activated cell sorting (FACS). Then, quantitative real time reverse transcription polymerase chain reaction (qRT-PCR) and Western blot were used to detect cGAS expression in infected cells. Finally, the location and expression of cGAS in inflammatory and normal gingival tissues were investigated by immunohistochemistry. P. gingivalis actively invaded hPDLCs. Moreover, cGAS expression significantly increased in P. gingivalis-infected cells. Although cGAS was expressed in the epithelial and subepithelial cells of both inflamed and normal gingival tissues, cGAS expression significantly increased in inflamed gingival tissues. Cytosolic bacteria can upregulate cGAS expression in infected cells. These data suggest that cGAS may act as pattern-recognition receptors and participate in recognizing cytosolic nucleic acid pathogen-associated molecular patterns.
.

  17. Automation of metabolic stability studies in microsomes, cytosol and plasma using a 215 Gilson liquid handler.

    Science.gov (United States)

    Linget, J M; du Vignaud, P

    1999-05-01

    A 215 Gilson liquid handler was used to automate enzymatic incubations using microsomes, cytosol and plasma. The design of automated protocols are described. They were based on the use of 96 deep well plates and on HPLC-based methods for assaying the substrate. The assessment of those protocols was made with comparison between manual and automated incubations, reliability and reproducibility of automated incubations in microsomes and cytosol. Examples of the use of those programs in metabolic studies in drug research, i.e. metabolic screening in microsomes and plasma were shown. Even rapid processes (with disappearance half lives as low as 1 min) can be analysed. This work demonstrates how stability studies can be automated to save time, render experiments involving human biological media less hazardous and may be improve inter-laboratory reproducibility.

  18. Apoptotic DNA Degradation into Oligonucleosomal Fragments, but Not Apoptotic Nuclear Morphology, Relies on a Cytosolic Pool of DFF40/CAD Endonuclease*

    Science.gov (United States)

    Iglesias-Guimarais, Victoria; Gil-Guiñon, Estel; Gabernet, Gisela; García-Belinchón, Mercè; Sánchez-Osuna, María; Casanelles, Elisenda; Comella, Joan X.; Yuste, Victor J.

    2012-01-01

    Apoptotic cell death is characterized by nuclear fragmentation and oligonucleosomal DNA degradation, mediated by the caspase-dependent specific activation of DFF40/CAD endonuclease. Here, we describe how, upon apoptotic stimuli, SK-N-AS human neuroblastoma-derived cells show apoptotic nuclear morphology without displaying concomitant internucleosomal DNA fragmentation. Cytotoxicity afforded after staurosporine treatment is comparable with that obtained in SH-SY5Y cells, which exhibit a complete apoptotic phenotype. SK-N-AS cell death is a caspase-dependent process that can be impaired by the pan-caspase inhibitor q-VD-OPh. The endogenous inhibitor of DFF40/CAD, ICAD, is correctly processed, and dff40/cad cDNA sequence does not reveal mutations altering its amino acid composition. Biochemical approaches show that both SH-SY5Y and SK-N-AS resting cells express comparable levels of DFF40/CAD. However, the endonuclease is poorly expressed in the cytosolic fraction of healthy SK-N-AS cells. Despite this differential subcellular distribution of DFF40/CAD, we find no differences in the subcellular localization of both pro-caspase-3 and ICAD between the analyzed cell lines. After staurosporine treatment, the preferential processing of ICAD in the cytosolic fraction allows the translocation of DFF40/CAD from this fraction to a chromatin-enriched one. Therefore, the low levels of cytosolic DFF40/CAD detected in SK-N-AS cells determine the absence of DNA laddering after staurosporine treatment. In these cells DFF40/CAD cytosolic levels can be restored by the overexpression of their own endonuclease, which is sufficient to make them proficient at degrading their chromatin into oligonucleosome-size fragments after staurosporine treatment. Altogether, the cytosolic levels of DFF40/CAD are determinants in achieving a complete apoptotic phenotype, including oligonucleosomal DNA degradation. PMID:22253444

  19. OBTENÇÃO DE PLANTAS DE LIMÃO CRAVO (Citrus limonia Osbeck E TANGERINA CLEÓPATRA (Citrus reshni Hort. A PARTIR DO CULTIVO DE PROTOPLASTOS DE SUSPENSÃO CELULAR PLANT REGENERATION OF 'RANGPUR' LIME (Citrus limonia Osbeck AND 'CLEÓPATRA' MANDARIN (Citrus reshni Hort. THROUGH PROTOPLASTS OF CELL SUSPENSION

    Directory of Open Access Journals (Sweden)

    Rodrigo Rocha Latado

    1999-01-01

    Full Text Available Este trabalho descreve uma metodologia para a regeneração de plantas de tangerina 'Cleópatra' e limão 'Cravo', a partir do cultivo de protoplastos de suspensão celular. Para tal, calos nucelares foram induzidos em meio contendo BAP e cultivados em meio sem reguladores de crescimento. Protoplastos foram isolados de suspensões celulares e cultivados em gotas de agarose, com densidade de 2 X 105 protoplastos.ml-1. O meio MT, contendo ácido giberélico e água de coco, foi eficiente na germinação de embriões somáticos. Os métodos de aclimatação de plantas testados apresentaram baixa eficiência. Como resultado final, 17 plantas adaptadas de tangerina e 8 de limão foram obtidas.The present research describes the regeneration of 'Cleópatra' mandarin and 'Rangpur' lime plants from cell suspension protoplasts. Nucelar calli were induced on a medium containing BAP and maintained on growth regulator free medium. Protoplasts were isolated from embryogenic suspension and plated at a concentration of 2 X 105 protoplasts.ml-1, on agarose droplets. The MT medium with gibberellic acid and coconut water was efficient to stimulate somatic embryo conversion. Rooted plants acclimation had low efficiency. Seventeen mandarin plants and eight lime plants were obtained.

  20. Well-defined polypeptide-based systems as non-viral vectors for cytosolic delivery

    OpenAIRE

    Niño Pariente, Amaya

    2017-01-01

    A convenient cytosolic drug delivery constitutes a very powerful tool for the treatment and/or prevention of several relevant human diseases. Along with recent advances in therapeutic technologies based on biomacromolecules (e.g. oligonucleotides or proteins), we also require the development of technologies which improve the transport of therapeutic molecules to the cell of choice. This has led to the emergence of a variety of promising methods over the last 20 years. Despite significant prog...

  1. Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels

    DEFF Research Database (Denmark)

    Gopal, Sandeep; Søgaard, Pernille; Multhaupt, Hinke A B

    2015-01-01

    show that syndecans regulate transient receptor potential canonical (TRPCs) channels to control cytosolic calcium equilibria and consequent cell behavior. In fibroblasts, ligand interactions with heparan sulfate of syndecan-4 recruit cytoplasmic protein kinase C to target serine714 of TRPC7...... with subsequent control of the cytoskeleton and the myofibroblast phenotype. In epidermal keratinocytes a syndecan-TRPC4 complex controls adhesion, adherens junction composition, and early differentiation in vivo and in vitro. In Caenorhabditis elegans, the TRPC orthologues TRP-1 and -2 genetically complement...

  2. Bacteria modulate the CD8+ T cell epitope repertoire of host cytosol-exposed proteins to manipulate the host immune response.

    Directory of Open Access Journals (Sweden)

    Yaakov Maman

    2011-10-01

    Full Text Available The main adaptive immune response to bacteria is mediated by B cells and CD4+ T-cells. However, some bacterial proteins reach the cytosol of host cells and are exposed to the host CD8+ T-cells response. Both gram-negative and gram-positive bacteria can translocate proteins to the cytosol through type III and IV secretion and ESX-1 systems, respectively. The translocated proteins are often essential for the bacterium survival. Once injected, these proteins can be degraded and presented on MHC-I molecules to CD8+ T-cells. The CD8+ T-cells, in turn, can induce cell death and destroy the bacteria's habitat. In viruses, escape mutations arise to avoid this detection. The accumulation of escape mutations in bacteria has never been systematically studied. We show for the first time that such mutations are systematically present in most bacteria tested. We combine multiple bioinformatic algorithms to compute CD8+ T-cell epitope libraries of bacteria with secretion systems that translocate proteins to the host cytosol. In all bacteria tested, proteins not translocated to the cytosol show no escape mutations in their CD8+ T-cell epitopes. However, proteins translocated to the cytosol show clear escape mutations and have low epitope densities for most tested HLA alleles. The low epitope densities suggest that bacteria, like viruses, are evolutionarily selected to ensure their survival in the presence of CD8+ T-cells. In contrast with most other translocated proteins examined, Pseudomonas aeruginosa's ExoU, which ultimately induces host cell death, was found to have high epitope density. This finding suggests a novel mechanism for the manipulation of CD8+ T-cells by pathogens. The ExoU effector may have evolved to maintain high epitope density enabling it to efficiently induce CD8+ T-cell mediated cell death. These results were tested using multiple epitope prediction algorithms, and were found to be consistent for most proteins tested.

  3. An alpha-glucose-1-phosphate phosphodiesterase is present in rat liver cytosol

    International Nuclear Information System (INIS)

    Srisomsap, C.; Richardson, K.L.; Jay, J.C.; Marchase, R.B.

    1989-01-01

    UDP-glucose:glycoprotein glucose-1-phosphotransferase (Glc-phosphotransferase) catalyzes the transfer of alpha-Glc-1-P from UDP-Glc to mannose residues on acceptor glycoproteins. The predominant acceptor for this transfer in both mammalian cells and Paramecium is a cytoplasmic glycoprotein of 62-63 kDa. When cytoplasmic proteins from rat liver were fractionated by preparative isoelectric focusing following incubation of a liver homogenate with the 35S-labeled phosphorothioate analogue of UDP-Glc ([beta-35S]UDP-Glc), the acceptor was found to have a pI of about 6.0. This fraction, when not labeled prior to the focusing, became very heavily labeled when mixed with [beta-35S]. UDP-Glc and intact liver microsomes, a rich source of the Glc-phosphotransferase. In addition, it was observed that the isoelectric fractions of the cytosol having pI values of 2-3.2 contained a degradative activity, alpha-Glc-1-P phosphodiesterase, that was capable of removing alpha-Glc-1-P, monitored through radioactive labeling both in the sugar and the phosphate, as an intact unit from the 62-kDa acceptor. Identification of the product of this cleavage was substantiated by its partial transformation to UDP-Glc in the presence of UTP and UDP-Glc pyrophosphorylase. The alpha-Glc-1-P phosphodiesterase had a pH optimum of 7.5 and was not effectively inhibited by any of the potential biochemical inhibitors that were tested. Specificity for the Glc-alpha-1-P-6-Man diester was suggested by the diesterase's inability to degrade UDP-Glc or glucosylphosphoryldolichol. This enzyme may be important in the regulation of secretion since the alpha-Glc-1-P present on the 62-kDa phosphoglycoprotein appears to be removed and then rapidly replaced in response to secretagogue

  4. AIM2-Like Receptors Positively and Negatively Regulate the Interferon Response Induced by Cytosolic DNA

    Directory of Open Access Journals (Sweden)

    Yuki Nakaya

    2017-07-01

    Full Text Available Cytosolic DNAs derived from retrotransposons serve as pathogen-associated molecular patterns for pattern recognition receptors (PRRs that stimulate the induction of interferons (IFNs and other cytokines, leading to autoimmune disease. Cyclic GMP-AMP synthase is one PRR that senses retrotransposon DNA, activating type I IFN responses through the stimulator of IFN genes (STING. Absent in melanoma 2 (AIM2-like receptors (ALRs have also been implicated in these pathways. Here we show that the mouse ALR IFI205 senses cytosolic retrotransposon DNA independently of cyclic GMP-AMP production. AIM2 antagonizes IFI205-mediated IFN induction activity by sequestering it from STING. We also found that the complement of genes located in the ALR locus in C57BL/6 and AIM2 knockout mice are different and unique, which has implications for interpretation of the sensing of pathogens in different mouse strains. Our data suggest that members of the ALR family are critical to the host IFN response to endogenous DNA.

  5. Cytosolic calcium transients are a determinant of contraction-induced HSP72 transcription in single skeletal muscle fibers.

    Science.gov (United States)

    Stary, Creed M; Hogan, Michael C

    2016-05-15

    The intrinsic activating factors that induce transcription of heat shock protein 72 (HSP72) in skeletal muscle following exercise remain unclear. We hypothesized that the cytosolic Ca(2+) transient that occurs with depolarization is a determinant. We utilized intact, single skeletal muscle fibers from Xenopus laevis to test the role of the cytosolic Ca(2+) transient and several other exercise-related factors (fatigue, hypoxia, AMP kinase, and cross-bridge cycling) on the activation of HSP72 transcription. HSP72 and HSP60 mRNA levels were assessed with real-time quantitative PCR; cytosolic Ca(2+) concentration ([Ca(2+)]cyt) was assessed with fura-2. Both fatiguing and nonfatiguing contractions resulted in a significant increase in HSP72 mRNA. As expected, peak [Ca(2+)]cyt remained tightly coupled with peak developed tension in contracting fibers. Pretreatment with N-benzyl-p-toluene sulfonamide (BTS) resulted in depressed peak developed tension with stimulation, while peak [Ca(2+)]cyt remained largely unchanged from control values. Despite excitation-contraction uncoupling, BTS-treated fibers displayed a significant increase in HSP72 mRNA. Treatment of fibers with hypoxia (Po2: skeletal muscle depolarization provides a sufficient activating stimulus for HSP72 transcription. Metabolic or mechanical factors associated with fatigue development and cross-bridge cycling likely play a more limited role. Copyright © 2016 the American Physiological Society.

  6. Low glutathione regulates gene expression and the redox potentials of the nucleus and cytosol in Arabidopsis thaliana.

    Science.gov (United States)

    Schnaubelt, Daniel; Queval, Guillaume; Dong, Yingping; Diaz-Vivancos, Pedro; Makgopa, Matome Eugene; Howell, Gareth; De Simone, Ambra; Bai, Juan; Hannah, Matthew A; Foyer, Christine H

    2015-02-01

    Reduced glutathione (GSH) is considered to exert a strong influence on cellular redox homeostasis and to regulate gene expression, but these processes remain poorly characterized. Severe GSH depletion specifically inhibited root meristem development, while low root GSH levels decreased lateral root densities. The redox potential of the nucleus and cytosol of Arabidopsis thaliana roots determined using roGFP probes was between -300 and -320 mV. Growth in the presence of the GSH-synthesis inhibitor buthionine sulfoximine (BSO) increased the nuclear and cytosolic redox potentials to approximately -260 mV. GSH-responsive genes including transcription factors (SPATULA, MYB15, MYB75), proteins involved in cell division, redox regulation (glutaredoxinS17, thioredoxins, ACHT5 and TH8) and auxin signalling (HECATE), were identified in the GSH-deficient root meristemless 1-1 (rml1-1) mutant, and in other GSH-synthesis mutants (rax1-1, cad2-1, pad2-1) as well as in the wild type following the addition of BSO. Inhibition of auxin transport had no effect on organ GSH levels, but exogenous auxin decreased the root GSH pool. We conclude that GSH depletion significantly increases the redox potentials of the nucleus and cytosol, and causes arrest of the cell cycle in roots but not shoots, with accompanying transcript changes linked to altered hormone responses, but not oxidative stress. © 2013 John Wiley & Sons Ltd.

  7. Phosphatidylinositol (4,5)bisphosphate inhibits K+-efflux channel activity in NT1 tobacco cultured cells.

    Science.gov (United States)

    Ma, Xiaohong; Shor, Oded; Diminshtein, Sofia; Yu, Ling; Im, Yang Ju; Perera, Imara; Lomax, Aaron; Boss, Wendy F; Moran, Nava

    2009-02-01

    In the animal world, the regulation of ion channels by phosphoinositides (PIs) has been investigated extensively, demonstrating a wide range of channels controlled by phosphatidylinositol (4,5)bisphosphate (PtdInsP2). To understand PI regulation of plant ion channels, we examined the in planta effect of PtdInsP2 on the K+-efflux channel of tobacco (Nicotiana tabacum), NtORK (outward-rectifying K channel). We applied a patch clamp in the whole-cell configuration (with fixed "cytosolic" Ca2+ concentration and pH) to protoplasts isolated from cultured tobacco cells with genetically manipulated plasma membrane levels of PtdInsP2 and cellular inositol (1,4,5)trisphosphate: "Low PIs" had depressed levels of these PIs, and "High PIs" had elevated levels relative to controls. In all of these cells, K channel activity, reflected in the net, steady-state outward K+ currents (IK), was inversely related to the plasma membrane PtdInsP2 level. Consistent with this, short-term manipulations decreasing PtdInsP2 levels in the High PIs, such as pretreatment with the phytohormone abscisic acid (25 microM) or neutralizing the bath solution from pH 5.6 to pH 7, increased IK (i.e. NtORK activity). Moreover, increasing PtdInsP2 levels in controls or in abscisic acid-treated high-PI cells, using the specific PI-phospholipase C inhibitor U73122 (2.5-4 microM), decreased NtORK activity. In all cases, IK decreases stemmed largely from decreased maximum attainable NtORK channel conductance and partly from shifted voltage dependence of channel gating to more positive potentials, making it more difficult to activate the channels. These results are consistent with NtORK inhibition by the negatively charged PtdInsP2 in the internal plasma membrane leaflet. Such effects are likely to underlie PI signaling in intact plant cells.

  8. Nicotine-evoked cytosolic Ca2+ increase and cell depolarization in capillary endothelial cells of the bovine adrenal medulla

    Directory of Open Access Journals (Sweden)

    RAÚL VINET

    2009-01-01

    Full Text Available Endothelial cells are directly involved in many functions of the cardiovascular system by regulating blood flow and blood pressure through Ca2+ dependent exocitosis of vasoactive compounds. Using the Ca2+ indicator Fluo-3 and the patch-clamp technique, we show that bovine adrenal medulla capillary endothelial cells (B AMCECs respond to acetylcholine (ACh with a cytosolic Ca2+ increase and depolarization of the membrane potential (20.3±0.9 mV; n=23. The increase in cytosolic Ca2+ induced by 10µM ACh was mimicked by the same concentration of nicotine but not by muscarine and was blocked by 100 µM of hexamethonium. On the other hand, the increase in cytosolic Ca2+ could be depressed by nifedipine (0.01 -100 µM or withdrawal of extracellular Ca2+. Taken together, these results give evidence for functional nicotinic receptors (nAChRs in capillary endothelial cells of the adrenal medulla. It suggests that nAChRs in B AMCECs may be involved in the regulation of the adrenal gland's microcirculation by depolarizing the membrane potential, leading to the opening of voltage-activated Ca2+ channels, influx of external Ca2+ and liberation of vasoactive compounds.

  9. The yeast protein kinase Sch9 adjusts V-ATPase assembly/disassembly to control pH homeostasis and longevity in response to glucose availability.

    Directory of Open Access Journals (Sweden)

    Tobias Wilms

    2017-06-01

    Full Text Available The conserved protein kinase Sch9 is a central player in the nutrient-induced signaling network in yeast, although only few of its direct substrates are known. We now provide evidence that Sch9 controls the vacuolar proton pump (V-ATPase to maintain cellular pH homeostasis and ageing. A synthetic sick phenotype arises when deletion of SCH9 is combined with a dysfunctional V-ATPase, and the lack of Sch9 has a significant impact on cytosolic pH (pHc homeostasis. Sch9 physically interacts with, and influences glucose-dependent assembly/disassembly of the V-ATPase, thereby integrating input from TORC1. Moreover, we show that the role of Sch9 in regulating ageing is tightly connected with V-ATPase activity and vacuolar acidity. As both Sch9 and the V-ATPase are highly conserved in higher eukaryotes, it will be interesting to further clarify their cooperative action on the cellular processes that influence growth and ageing.

  10. Phylogenetic Analysis of Nucleus-Encoded Acetyl-CoA Carboxylases Targeted at the Cytosol and Plastid of Algae.

    KAUST Repository

    Huerlimann, Roger; Zenger, Kyall R; Jerry, Dean R; Heimann, Kirsten

    2015-01-01

    as Chromalveolata, forming the red lineage. However, recent genetic evidence groups the Stramenopiles, Alveolata and green plastid containing Rhizaria as SAR, excluding Haptophyta and Cryptophyta. Sequences coding for plastid and cytosol targeted homomeric ACCases

  11. A crosstalk between Na⁺ channels, Na⁺/K⁺ pump and mitochondrial Na⁺ transporters controls glucose-dependent cytosolic and mitochondrial Na⁺ signals.

    Science.gov (United States)

    Nita, Iulia I; Hershfinkel, Michal; Lewis, Eli C; Sekler, Israel

    2015-02-01

    Glucose-dependent cytosolic Na(+) influx in pancreatic islet β cells is mediated by TTX-sensitive Na(+) channels and is propagated into the mitochondria through the mitochondrial Na(+)/Ca(2+) exchanger, NCLX. Mitochondrial Na(+) transients are also controlled by the mitochondrial Na(+)/H(+) exchanger, NHE, while cytosolic Na(+) changes are governed by Na(+)/K(+) ATPase pump. The functional interaction between the Na(+) channels, Na(+)/K(+) ATPase pump and mitochondrial Na(+) transporters, NCLX and NHE, in mediating Na(+) signaling is poorly understood. Here, we combine fluorescent Na(+) imaging, pharmacological inhibition by TTX, ouabain and EIPA, with molecular control of NCLX expression, so as to investigate the crosstalk between Na(+) transporters on both the plasma membrane and the mitochondria. According to our results, glucose-dependent cytosolic Na(+) response was enhanced by ouabain and was followed by a rise in mitochondrial Na(+) signal. Silencing of NCLX expression using siNCLX, did not affect the glucose- or ouabain-dependent cytosolic rise in Na(+). In contrast, the ouabain-dependent rise in mitochondrial Na(+) was strongly suppressed by siNCLX. Furthermore, mitochondrial Na(+) influx rates were accelerated in cells treated with the Na(+)/H(+) exchanger inhibitor, EIPA or by combination of EIPA and ouabain. Similarly, TTX blocked the cytosolic and mitochondrial Na(+) responses, which were enhanced by ouabain or EIPA, respectively. Our results suggest that Na(+)/K(+) ATPase pump controls cytosolic glucose-dependent Na(+) rise, in a manner that is mediated by TTX-sensitive Na(+) channels and subsequent mitochondrial Na(+) uptake via NCLX. Furthermore, these results indicate that mitochondrial Na(+) influx via NCLX is antagonized by Na(+) efflux, which is mediated by the mitochondrial NHE; thus, the duration of mitochondrial Na(+) transients is set by the interplay between these pivotal transporters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Surface-Enhanced Raman Spectroscopy (SERS Tracking of Chelerythrine, a Na+/K+ Pump Inhibitor, into Cytosol and Plasma Membrane Fractions of Human Lens Epithelial Cell Cultures

    Directory of Open Access Journals (Sweden)

    Kevin M. Dorney

    2013-12-01

    Full Text Available Background/Aims: The quaternary benzo-phenanthridine alkaloid (QBA chelerythrine (CET is a pro-apoptotic drug and Na+/K+ pump (NKP inhibitor in human lens epithelial cells (HLECs. In order to obtain further insight into the mechanism of NKP inhibition by CET, its sub-cellular distribution was quantified in cytosolic and membrane fractions of HLEC cultures by surface-enhanced Raman spectroscopy (SERS. Methods: Silver nanoparticles (AgNPs prepared by the Creighton method were concentrated, and size-selected using a one-step tangential flow filtration approach. HLECs cultures were exposed to 50 μM CET in 300 mOsM phosphate-buffered NaCl for 30 min. A variety of cytosolic extracts, crude and purified membranes, prepared in lysing solutions in the presence and absence of a non-ionic detergent, were incubated with AgNPs and subjected to SERS analysis. Determinations of CET were based on a linear calibration plot of the integrated CET SERS intensity at its 659 cm-1 marker band as a function of CET concentration. Results: SERS detected chemically unaltered CET in both cytosol and plasma membrane fractions. Normalized for protein, the CET content was some 100 fold higher in the crude and purified plasma membrane fraction than in the soluble cytosolic extract. The total free CET concentration in the cytosol, free of membranes or containing detergent-solubilized membrane material, approached that of the incubation medium of HLECs. Conclusion: Given a negative membrane potential of HLECs the data suggest, but do not prove, that CET may traverse the plasma membrane as a positively charged monomer (CET+ accumulating near or above passive equilibrium distribution. These findings may contribute to a recently proposed hypothesis that CET binds to and inhibits the NKP through its cytosolic aspect.

  13. Surface-enhanced Raman spectroscopy (SERS) tracking of chelerythrine, a Na(+)/K(+) pump inhibitor, into cytosol and plasma membrane fractions of human lens epithelial cell cultures.

    Science.gov (United States)

    Dorney, Kevin M; Sizemore, Ioana E P; Alqahtani, Tariq; Adragna, Norma C; Lauf, Peter K

    2013-01-01

    The quaternary benzo-phenanthridine alkaloid (QBA) chelerythrine (CET) is a pro-apoptotic drug and Na(+)/K(+) pump (NKP) inhibitor in human lens epithelial cells (HLECs). In order to obtain further insight into the mechanism of NKP inhibition by CET, its sub-cellular distribution was quantified in cytosolic and membrane fractions of HLEC cultures by surface-enhanced Raman spectroscopy (SERS). Silver nanoparticles (AgNPs) prepared by the Creighton method were concentrated, and size-selected using a one-step tangential flow filtration approach. HLECs cultures were exposed to 50 μM CET in 300 mOsM phosphate-buffered NaCl for 30 min. A variety of cytosolic extracts, crude and purified membranes, prepared in lysing solutions in the presence and absence of a non-ionic detergent, were incubated with AgNPs and subjected to SERS analysis. Determinations of CET were based on a linear calibration plot of the integrated CET SERS intensity at its 659 cm(-1) marker band as a function of CET concentration. SERS detected chemically unaltered CET in both cytosol and plasma membrane fractions. Normalized for protein, the CET content was some 100 fold higher in the crude and purified plasma membrane fraction than in the soluble cytosolic extract. The total free CET concentration in the cytosol, free of membranes or containing detergent-solubilized membrane material, approached that of the incubation medium of HLECs. Given a negative membrane potential of HLECs the data suggest, but do not prove, that CET may traverse the plasma membrane as a positively charged monomer (CET(+)) accumulating near or above passive equilibrium distribution. These findings may contribute to a recently proposed hypothesis that CET binds to and inhibits the NKP through its cytosolic aspect. © 2014 S. Karger AG, Basel.

  14. Cloning and Expression of a Cytosolic HSP90 Gene in Chlorella vulgaris

    Directory of Open Access Journals (Sweden)

    Zhengyi Liu

    2014-01-01

    Full Text Available Heat shock protein 90 (HSP90, a highly conserved molecular chaperone, plays essential roles in folding, keeping structural integrity, and regulating the subset of cytosolic proteins. We cloned the cDNA of Chlorella vulgaris HSP90 (named CvHSP90 by combining homology cloning with rapid amplification of cDNA ends (RACE. Sequence analysis indicated that CvHSP90 is a cytosolic member of the HSP90 family. Quantitative RT-PCR was applied to determine the expression level of messenger RNA (mRNA in CvHSP90 under different stress conditions. C. vulgaris was kept in different temperatures (5–45°C for 1 h. The mRNA expression level of CvHSP90 increased with temperature from 5 to 10°C, went further from 35 to 40°C, and reached the maximum at 40°C. On the other hand, for C. vulgaris kept at 35°C for different durations, the mRNA expression level of CvHSP90 increased gradually and reached the peak at 7 h and then declined progressively. In addition, the expression level of CvHSP90 at 40 or 45 in salinity (‰ was almost fourfold of that at 25 in salinity (‰ for 2 h. Therefore, CvHSP90 may be a potential biomarker to monitor environment changes.

  15. Cyclic GMP-AMP Synthase is a Cytosolic DNA Sensor that Activates the Type-I Interferon Pathway

    Science.gov (United States)

    Sun, Lijun; Wu, Jiaxi; Du, Fenghe; Chen, Xiang; Chen, Zhijian J.

    2013-01-01

    The presence of DNA in the cytoplasm of mammalian cells is a danger signal that triggers the host immune responses such as the production of type-I interferons (IFN). Cytosolic DNA induces IFN through the production of cyclic-GMP-AMP (cGAMP), which binds to and activates the adaptor protein STING. Through biochemical fractionation and quantitative mass spectrometry, we identified a cGAMP synthase (cGAS), which belongs to the nucleotidyltransferase family. Overexpression of cGAS activated the transcription factor IRF3 and induced IFNβ in a STING-dependent manner. Knockdown of cGAS inhibited IRF3 activation and IFNβ induction by DNA transfection or DNA virus infection. cGAS bound to DNA in the cytoplasm and catalyzed cGAMP synthesis. These results indicate that cGAS is a cytosolic DNA sensor that induces interferons by producing the second messenger cGAMP. PMID:23258413

  16. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway.

    Science.gov (United States)

    Sun, Lijun; Wu, Jiaxi; Du, Fenghe; Chen, Xiang; Chen, Zhijian J

    2013-02-15

    The presence of DNA in the cytoplasm of mammalian cells is a danger signal that triggers host immune responses such as the production of type I interferons. Cytosolic DNA induces interferons through the production of cyclic guanosine monophosphate-adenosine monophosphate (cyclic GMP-AMP, or cGAMP), which binds to and activates the adaptor protein STING. Through biochemical fractionation and quantitative mass spectrometry, we identified a cGAMP synthase (cGAS), which belongs to the nucleotidyltransferase family. Overexpression of cGAS activated the transcription factor IRF3 and induced interferon-β in a STING-dependent manner. Knockdown of cGAS inhibited IRF3 activation and interferon-β induction by DNA transfection or DNA virus infection. cGAS bound to DNA in the cytoplasm and catalyzed cGAMP synthesis. These results indicate that cGAS is a cytosolic DNA sensor that induces interferons by producing the second messenger cGAMP.

  17. Produção de protoplastos e lise da parede celular de leveduras utilizando β-1,3 glucanase Protoplasts production and yeast cell wall lysis using β-1,3 glucanase

    Directory of Open Access Journals (Sweden)

    Luciana Francisco Fleuri

    2010-06-01

    Full Text Available O presente trabalho visou a aplicação da β-1,3 glucanase lítica, obtida do microrganismo Cellulosimicrobium cellulans 191, na produção de protoplastos e na lise da parede celular de leveduras. A preparação bruta da enzima foi capaz de lisar as leveduras Kluyveromyces lodderi, Saccharomyces cerevisiae (Fleischmann e Itaiquara, S. cerevisiae KL-88, S. diastaticus NCYC 713, S. cerevisiae NCYC 1001, Candida glabrata NCYC 388, Kluyveromyces marxianus NCYC 587 e Hansenula mrakii NCYC 500. A β-1,3 glucanase purificada foi capaz de lisar as leveduras Saccharomyces cerevisiae KL-88, Saccharomyces capensis, Debaromyces vanriji, Pachysolen tannophillus, Kluyveromyces drosophilarum, Candida glabrata, Hansenula mrakii e Pichia membranaefaciens e formar protoplastos de Saccharomyces cerevisiae KL-88.The aim of this work was the application of lytic β-1,3 glucanase obtained from Cellulosimicrobium cellulans strain 191 in the production of protoplasts and lysis of yeast cell walls. The crude extract demonstrated lysis activity against the yeasts Kluyveromyces lodderi, Saccharomyces cerevisiae (Fleischmann and Itaiquara, S. cerevisiae KL-88, S. diastaticus NCYC 713, S. cerevisiae NCYC 1001, Candida glabrata NCYC 388, Kluyveromyces marxianus NCYC 587, and Hansenula mrakii NCYC 500. The purified β-1,3 glucanase demonstrated lysis activity against the yeasts Saccharomyces cerevisiae KL-88, Saccharomyces capensis, Debaromyces vanriji, Pachysolen tannophillus, Kluyveromyces drosophilarum, Candida glabrata, Hansenula mrakii, and Pichia membranaefaciens, and it was able to produce Saccharomyces cerevisiae KL-88 protoplasts.

  18. Replacement of soybean oil by fish oil increases cytosolic lipases activities in liver and adipose tissue from rats fed a high-carbohydrate diets.

    Science.gov (United States)

    Rodrigues, Angélica Heringer; Moreira, Carolina Campos Lima; Neves, Maria José; Botion, Leida Maria; Chaves, Valéria Ernestânia

    2018-06-01

    Several studies have demonstrated that fish oil consumption improves metabolic syndrome and comorbidities, as insulin resistance, nonalcoholic fatty liver disease, dyslipidaemia and hypertension induced by high-fat diet ingestion. Previously, we demonstrated that administration of a fructose-rich diet to rats induces liver lipid accumulation, accompanied by a decrease in liver cytosolic lipases activities. In this study, the effect of replacement of soybean oil by fish oil in a high-fructose diet (FRUC, 60% fructose) for 8 weeks on lipid metabolism in liver and epididymal adipose tissue from rats was investigated. The interaction between fish oil and FRUC diet increased glucose tolerance and decreased serum levels of triacylglycerol (TAG), VLDL-TAG secretion and lipid droplet volume of hepatocytes. In addition, the fish oil supplementation increased the liver cytosolic lipases activities, independently of the type of carbohydrate ingested. Our results firmly establish the physiological regulation of liver cytosolic lipases to maintain lipid homeostasis in hepatocytes. In epididymal adipose tissue, the replacement of soybean oil by fish oil in FRUC diet did not change the tissue weight and lipoprotein lipase activity; however, there was increased basal and insulin-stimulated de novo lipogenesis and glucose uptake. Increased cytosolic lipases activities were observed, despite the decreased basal and isoproterenol-stimulated glycerol release to the incubation medium. These findings suggest that fish oil increases the glycerokinase activity and glycerol phosphorylation from endogenous TAG hydrolysis. Our findings are the first to show that the fish oil ingestion increases cytosolic lipases activities in liver and adipose tissue from rats treated with high-carbohydrate diets. Copyright © 2018. Published by Elsevier Inc.

  19. Antibody to liver cytosol (anti-LC1) in patients with autoimmune chronic active hepatitis type 2.

    Science.gov (United States)

    Martini, E; Abuaf, N; Cavalli, F; Durand, V; Johanet, C; Homberg, J C

    1988-01-01

    A new autoantibody was detected by immunoprecipitation in the serum of 21 patients with chronic active hepatitis. The antibody reacted against a soluble cytosolic antigen in liver. The antibody was organ specific but not species specific and was therefore called anti-liver cytosol antibody Type 1 (anti-LC1). In seven of 21 cases, no other autoantibody was found; the remaining 14 cases had anti-liver/kidney microsome antibody Type 1 (anti-LKM1). With indirect immunofluorescence, a distinctive staining pattern was observed with the seven sera with anti-LC1 and without anti-LKM1. The antibody stained the cytoplasm of hepatocytes from four different animal species and spared the cellular layer around the central veins of mouse and rat liver that we have called juxtavenous hepatocytes. The immunofluorescence pattern disappeared after absorption of sera by a liver cytosol fraction. The 14 sera with both antibodies displayed anti-LC1 immunofluorescent pattern after absorption of anti-LKM1 by the liver microsomal fraction. The anti-LC1 was found in the serum only in patients with chronic active hepatitis of unknown cause. Anti-LC1 antibody was not found in sera from 100 patients with chronic active hepatitis associated with anti-actin antibody classic chronic active hepatitis Type 1, 100 patients with primary biliary cirrhosis, 157 patients with drug-induced hepatitis and a large number of patients with liver and nonliver diseases. This new antibody was considered a second marker of chronic active hepatitis associated with anti-LKM1 (anti-LKM1 chronic active hepatitis) or autoimmune chronic active hepatitis Type 2.

  20. Reversed electrogenic sodium bicarbonate cotransporter 1 is the major acid loader during recovery from cytosolic alkalosis in mouse cortical astrocytes.

    Science.gov (United States)

    Theparambil, Shefeeq M; Naoshin, Zinnia; Thyssen, Anne; Deitmer, Joachim W

    2015-08-15

    The regulation of H(+) i from cytosolic alkalosis has generally been attributed to the activity of Cl(-) -coupled acid loaders/base extruders in most cell types, including brain cells. The present study demonstrates that outwardly-directed sodium bicarbonate cotransport via electrogenic sodium bicarbonate cotransporter 1 (NBCe1) mediates the major fraction of H(+) i regulation from cytosolic alkalosis in mouse cortical astrocytes. Cl(-) -coupled acid-loading transporters play only a minor role in the regulation of H(+) i from alkalosis in mouse cortical astrocytes. NBCe1-mediated H(+) i regulation from alkalosis was dominant, with the support of intracellular carbonic anhydrase II, even when the intra- and extracellular [HCO3 (-) ] was very low (sodium bicarbonate cotransporter 1 (NBCe1) and for carbonic anhydrase (CA) isoform II. An acute cytosolic alkalosis was induced by the removal of either CO2 /HCO3 (-) or butyric acid, and the subsequent acid loading was analysed by monitoring changes in cytosolic H(+) or Na(+) using ion-sensitive fluorescent dyes. We have identified that NBCe1 reverses during alkalosis and contributes more than 70% to the rate of recovery from alkalosis by extruding Na(+) and HCO3 (-) . After CA inhibition or in CAII-knockout (KO) cells, the rate of recovery was reduced by 40%, and even by 70% in the nominal absence of CO2 /HCO3 (-) . Increasing the extracellular K(+) concentration modulated the rate of acid loading in wild-type cells, but not in NBCe1-KO cells. Removing chloride had only a minor effect on the recovery from alkalosis. Reversal of NBCe1 by reducing pH/[HCO3 (-) ] was demonstrated in astrocytes and in Xenopus oocytes, in which human NBCe1 was heterologously expressed. The results obtained suggest that reversed NBCe1, supported by CAII activity, plays a major role in acid-loading cortical astrocytes to support recovery from cytosolic alkalosis. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  1. Endosomolytic Nano-Polyplex Platform Technology for Cytosolic Peptide Delivery To Inhibit Pathological Vasoconstriction.

    Science.gov (United States)

    Evans, Brian C; Hocking, Kyle M; Kilchrist, Kameron V; Wise, Eric S; Brophy, Colleen M; Duvall, Craig L

    2015-06-23

    A platform technology has been developed and tested for delivery of intracellular-acting peptides through electrostatically complexed nanoparticles, or nano-polyplexes, formulated from an anionic endosomolytic polymer and cationic therapeutic peptides. This delivery platform has been initially tested and optimized for delivery of two unique vasoactive peptides, a phosphomimetic of heat shock protein 20 and an inhibitor of MAPKAP kinase II, to prevent pathological vasoconstriction (i.e., vasospasm) in human vascular tissue. These peptides inhibit vasoconstriction and promote vasorelaxation by modulating actin dynamics in vascular smooth muscle cells. Formulating these peptides into nano-polyplexes significantly enhances peptide uptake and retention, facilitates cytosolic delivery through a pH-dependent endosomal escape mechanism, and enhances peptide bioactivity in vitro as measured by inhibition of F-actin stress fiber formation. In comparison to treatment with the free peptides, which were endowed with cell-penetrating sequences, the nano-polyplexes significantly increased vasorelaxation, inhibited vasoconstriction, and decreased F-actin formation in the human saphenous vein ex vivo. These results suggest that these formulations have significant potential for treatment of conditions such as cerebral vasospasm following subarachnoid hemorrhage. Furthermore, because many therapeutic peptides include cationic cell-penetrating segments, this simple and modular platform technology may have broad applicability as a cost-effective approach for enhancing the efficacy of cytosolically active peptides.

  2. Exchange of cytosolic content between T cells and tumor cells activates CD4 T cells and impedes cancer growth.

    Directory of Open Access Journals (Sweden)

    Matthias Hardtke-Wolenski

    Full Text Available BACKGROUND: T cells are known to participate in the response to tumor cells and react with cytotoxicity and cytokine release. At the same time tumors established versatile mechanisms for silencing the immune responses. The interplay is far from being completely understood. In this study we show contacts between tumor cells and lymphocytes revealing novel characteristics in the interaction of T cells and cancer cells in a way not previously described. METHODS/ FINDINGS: Experiments are based on the usage of a hydrophilic fluorescent dye that occurs free in the cytosol and thus transfer of fluorescent cytosol from one cell to the other can be observed using flow cytometry. Tumor cells from cell lines of different origin or primary hepatocellular carcinoma (HCC cells were incubated with lymphocytes from human and mice. This exposure provoked a contact dependent uptake of tumor derived cytosol by lymphocytes--even in CD4⁺ T cells and murine B cells--which could not be detected after incubation of lymphocytes with healthy cells. The interaction was a direct one, not requiring the presence of accessory cells, but independent of cytotoxicity and TCR engagement. Electron microscopy disclosed 100-200 nm large gaps in the cell membranes of connected cells which separated viable and revealed astonishing outcome. While the lymphocytes were induced to proliferate in a long term fashion, the tumor cells underwent a temporary break in cell division. The in vitro results were confirmed in vivo using a murine acute lymphoblastic leukemia (ALL model. The arrest of tumor proliferation resulted in a significant prolonged survival of challenged mice. CONCLUSIONS: The reported cell-cell contacts reveal new characteristics i.e. the enabling of cytosol flow between the cells including biological active proteins that influence the cell cycle and biological behaviour of the recipient cells. This adds a completely new aspect in tumor induced immunology.

  3. Dynamic movement of cytochrome c from mitochondria into cytosol and peripheral circulation in massive hepatic cell injury.

    Science.gov (United States)

    Kobayashi, Yoshinori; Mori, Masaaki; Naruto, Takuya; Kobayashi, Naoki; Sugai, Toshiyuki; Imagawa, Tomoyuki; Yokota, Shumpei

    2004-12-01

    In the process of apoptosis, it is known that the transition of cytochrome c from mitochondria into the cytosol occurs, and tumor necrosis factor (TNF)-alpha is one of the molecules responsible for this event. But in the state of hypercytokine induced by D-galactosamine (D-GaIN)/Lipopolysaccharide (LPS), the localization of cytochrome c is little known. Rats were administrated with D-GaIN(700 mg/kg)/LPS(200 microg/kg). Blood and tissue samples were collected and examined for levels of pro-inflammatory cytokines, the apoptosis of liver cells, and the localization of cytochrome c. Before administration of D-GaIN/LPS, cytochrome c was definitely localized in the mitochondria. At 2 h after simultaneous administration of D-GaIN/LPS, cytochrome c had accumulated in the cytosol following abrupt increases of plasma TNF-alpha. Massive cell destruction due to apoptosis proved by Terminal deoxynucleo-tidyl transferase-mediated dUTP nick end labeling staining was observed in liver tissue 4 h later and markedly increased levels of cytochrome c were detected in the plasma 12 h after D-GaIN/LPS administration. Liver injury induced by simultaneous administration of D-GaIN/LPS was closely associated with the production of TNF-alpha, and also with the dynamic movement of cytochrome c from the mitochondria into the cytosol, and then into the systemic circulation. The detection of plasma cytochrome c levels may be a useful clinical tool for the detection of apoptosis in vivo.

  4. Polysaccharide fraction from higher plants which strongly interacts with the cytosolic phosphorylase isozyme. I. Isolation and characterization

    International Nuclear Information System (INIS)

    Yang, Yi; Steup, M.

    1990-01-01

    From leaves of Spinacia oleracea L. or from Pisum sativum L. and from cotyledons of germinating pea seeds a high molecular weight polysaccharide fraction was isolated. The apparent size of the fraction, as determined by gel filtration, was similar to that of dextran blue. Following acid hydrolysis the monomer content of the polysaccharide preparation was studied using high pressure liquid and thin layer chromatography. Glucose, galactose, arabinose, and ribose were the main monosaccharide compounds. The native polysaccharide preparation interacted strongly with the cytosolic isozyme of phosphorylase (EC 2.4.1.1). Interaction with the plastidic phosphorylase isozyme(s) was by far weaker. Interaction with the cytosolic isozyme was demonstrated by affinity electrophoresis, kinetic measurements, and by 14 C-labeling experiments in which the glucosyl transfer from [ 14 C]glucose 1-phosphate to the polysaccharide preparation was monitored

  5. Gymnocypris przewalskii decreases cytosolic carbonic anhydrase expression to compensate for respiratory alkalosis and osmoregulation in the saline-alkaline lake Qinghai.

    Science.gov (United States)

    Yao, Zongli; Guo, Wenfei; Lai, Qifang; Shi, Jianquan; Zhou, Kai; Qi, Hongfang; Lin, Tingting; Li, Ziniu; Wang, Hui

    2016-01-01

    Naked carp (Gymnocypris przewalskii), endemic to the saline-alkaline Lake Qinghai, have the capacity to tolerate combined high salinity and alkalinity, but migrate to spawn in freshwater rivers each year. In this study, the full-length cDNA of the cytosolic carbonic anhydrase c isoform of G. przewalskii (GpCAc) was amplified and sequenced; mRNA levels and enzyme activity of GpCAc and blood chemistry were evaluated to understand the compensatory responses as the naked carp returned to the saline-alkaline lake after spawning. We found that GpCAc had a total length of 1400 bp and encodes a peptide of 260 amino acids. Comparison of the deduced amino acid sequences and phylogenetic analysis showed that GpCAc was a member of the cytosolic carbonic anhydrase II-like c family. Cytosolic-carbonic-anhydrase-c-specific primers were used to analyze the tissue distribution of GpCAc mRNA expression. Expression of GpCAc mRNA was found in brain, gill, liver, kidney, gut, and muscle tissues, but primarily in the gill and posterior kidney; however, none was evident in red blood cells. Transferring fish from river water to lake water resulted in a respiratory alkalosis, osmolality, and ion rise in the blood, as well as significant decreases in the expression and enzyme activity of GpCAc in both the gill and kidney within 96 h. These results indicate that GpCAc may play an important role in the acclimation to both high salinity and carbonate alkalinity. Specifically, G. przewalskii decreases cytosolic carbonic anhydrase c expression to compensate for a respiratory alkalosis and to aid in osmoregulation during the transition from river to saline-alkaline lake.

  6. Cellular processing of gold nanoparticles: CE-ICP-MS evidence for the speciation changes in human cytosol.

    Science.gov (United States)

    Legat, Joanna; Matczuk, Magdalena; Timerbaev, Andrei R; Jarosz, Maciej

    2018-01-01

    The cellular uptake of gold nanoparticles (AuNPs) may (or may not) affect their speciation, but information on the chemical forms in which the particles exist in the cell remains obscure. An analytical method based on the use of capillary electrophoresis hyphenated with inductively coupled plasma mass spectrometry (ICP-MS) has been proposed to shed light on the intracellular processing of AuNPs. It was observed that when being introduced into normal cytosol, the conjugates of 10-50 nm AuNPs with albumin evolved in human serum stayed intact. On the contrary, under simulated cancer cytosol conditions, the nanoconjugates underwent decomposition, the rate of which and the resulting metal speciation patterns were strongly influenced by particle size. The new peaks that appeared in ICP-MS electropherograms could be ascribed to nanosized species, as upon ultracentrifugation, they quantitatively precipitated whereas the supernatant showed only trace Au signals. Our present study is the first step to unravel a mystery of the cellular chemistry for metal-based nanomedicines.

  7. Cytosolic Pellino-1-Mediated K63-Linked Ubiquitination of IRF5 in M1 Macrophages Regulates Glucose Intolerance in Obesity

    Directory of Open Access Journals (Sweden)

    Donghyun Kim

    2017-07-01

    Full Text Available IRF5 is a signature transcription factor that induces M1 macrophage polarization. However, little is known regarding cytosolic proteins that induce IRF5 activation for M1 polarization. Here, we report the interaction between ubiquitin E3 ligase Pellino-1 and IRF5 in the cytoplasm, which increased nuclear translocation of IRF5 by K63-linked ubiquitination in human and mouse M1 macrophages. LPS and/or IFN-γ increased Pellino-1 expression, and M1 polarization was attenuated in Pellino-1-deficient macrophages in vitro and in vivo. Defective M1 polarization in Pellino-1-deficient macrophages improved glucose intolerance in mice fed a high-fat diet. Furthermore, macrophages in adipose tissues from obese humans exhibited increased Pellino-1 expression and IRF5 nuclear translocation compared with nonobese subjects, and these changes are associated with insulin resistance index. This study demonstrates that cytosolic Pellino-1-mediated K63-linked ubiquitination of IRF5 in M1 macrophages regulates glucose intolerance in obesity, suggesting a cytosolic mediator function of Pellino-1 in TLR4/IFN-γ receptor-IRF5 axis during M1 polarization.

  8. Malate-aspartate shuttle and exogenous NADH/cytochrome c electron transport pathway as two independent cytosolic reducing equivalent transfer systems.

    Science.gov (United States)

    Abbrescia, Daniela Isabel; La Piana, Gianluigi; Lofrumento, Nicola Elio

    2012-02-15

    In mammalian cells aerobic oxidation of glucose requires reducing equivalents produced in glycolytic phase to be channelled into the phosphorylating respiratory chain for the reduction of molecular oxygen. Data never presented before show that the oxidation rate of exogenous NADH supported by the malate-aspartate shuttle system (reconstituted in vitro with isolated liver mitochondria) is comparable to the rate obtained on activation of the cytosolic NADH/cytochrome c electron transport pathway. The activities of these two reducing equivalent transport systems are independent of each other and additive. NADH oxidation induced by the malate-aspartate shuttle is inhibited by aminooxyacetate and by rotenone and/or antimycin A, two inhibitors of the respiratory chain, while the NADH/cytochrome c system remains insensitive to all of them. The two systems may simultaneously or mutually operate in the transfer of reducing equivalents from the cytosol to inside the mitochondria. In previous reports we suggested that the NADH/cytochrome c system is expected to be functioning in apoptotic cells characterized by the presence of cytochrome c in the cytosol. As additional new finding the activity of reconstituted shuttle system is linked to the amount of α-ketoglutarate generated inside the mitochondria by glutamate dehydrogenase rather than by aspartate aminotransferase. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Efficient callus formation and plant regeneration of goosegrass [Eleusine indica (L.) Gaertn.].

    Science.gov (United States)

    Yemets, A I; Klimkina, L A; Tarassenko, L V; Blume, Y B

    2003-02-01

    Efficient methods in totipotent callus formation, cell suspension culture establishment and whole-plant regeneration have been developed for the goosegrass [ Eleusine indica (L.) Gaertn.] and its dinitroaniline-resistant biotypes. The optimum medium for inducing morphogenic calli consisted of N6 basal salts and B5 vitamins supplemented with 1-2 mg l(-1) 2,4-dichlorophenoxyacetic acid (2,4-D), 2 mg l(-1) glycine, 100 mg l(-1) asparagine, 100 mg l(-1) casein hydrolysate, 30 g l(-1) sucrose and 0.6% agar, pH 5.7. The presence of organogenic and embryogenic structures in these calli was histologically documented. Cell suspension cultures derived from young calli were established in a liquid medium with the same composition. Morphogenic structures of direct shoots and somatic embryos were grown into rooted plantlets on medium containing MS basal salts, B5 vitamins, 1 mg l(-1) kinetin (Kn) and 0.1 mg l(-1) indole-3-acetic acid (IAA), 3% sucrose, 0.6% agar, pH 5.7. Calli derived from the R-biotype of E. indica possessed a high resistance to trifluralin (dinitroaniline herbicide) and cross-resistance to a structurally non-related herbicide, amiprophosmethyl (phosphorothioamidate herbicide), as did the original resistant plants. Embryogenic cell suspension culture was a better source of E. indica protoplasts than callus or mesophyll tissue. The enzyme solution containing 1.5% cellulase Onozuka R-10, 0.5% driselase, 1% pectolyase Y-23, 0.5% hemicellulase and N(6) mineral salts with an additional 0.2 M KCl and 0.1 M CaCl(2) (pH 5.4-5.5) was used for protoplast isolation. The purified protoplasts were cultivated in KM8p liquid medium supplemented with 2 mg l(-1) 2,4-D and 0.2 mg l(-1) Kn.

  10. pH-dependent toxicity of sulphur mustard in vitro

    International Nuclear Information System (INIS)

    Sawyer, Thomas W.; Vair, Cory; Nelson, Peggy; Shei Yimin; Bjarnason, Stephen; Tenn, Catherine; McWilliams, Michael; Villanueva, Mercy; Burczyk, Andrew

    2007-01-01

    The dependence of sulphur mustard (HD) toxicity on intracellular (pH i ) and extracellular pH was examined in CHO-K1 cells. HD produced an immediate and significant concentration-dependent decline in cytosolic pH, and also inhibited the mechanisms responsible for restoring pH i to physiological values. The concentration-response of HD-induced cytosolic acidification, closely paralleled the acidification of the extracellular buffer through HD hydrolysis. A viability study was carried out in order to assess the importance of HD-induced cytosolic acidification. Cultures were exposed to HD for 1 h in media that were adjusted through a pH range (pH 5.0-10), and the 24 h LC 50 values were assessed using the viability indicator dye alamarBlue TM . The toxicity of HD was found to be dependent on extracellular pH, with a greater than eight-fold increase in LD 50 obtained in cultures treated with HD at pH 9.5, compared to those treated at pH 5.0. Assays of apoptotic cell death, including morphology, soluble DNA, caspase-3 activity and TUNEL also showed that as pH was increased, much greater HD concentrations were required to cause cell death. The modest decline in HD half-life measured in buffers of increasing pH, did not account for the protective effects of basic pH. The early event(s) that HD initiates to eventually culminate in cell death are not known. However, based on the data obtained in this study, we propose that HD causes an extracellular acidification through chemical hydrolysis and that this, in both a concentration and temporally related fashion, results in cytosolic acidification. Furthermore, HD also acts to poison the antiporter systems responsible for maintaining physiological pH i , so that the cells are unable to recover from this insult. It is this irreversible decline in pH i that initiates the cascade of events that results in HD-induced cell death

  11. Specific binding of [alpha-32P]GTP to cytosolic and membrane-bound proteins of human platelets correlates with the activation of phospholipase C

    International Nuclear Information System (INIS)

    Lapetina, E.G.; Reep, B.R.

    1987-01-01

    We have assessed the binding of [alpha- 32 P]GTP to platelet proteins from cytosolic and membrane fractions. Proteins were separated by NaDodSO 4 /PAGE and electrophoretically transferred to nitrocellulose. Incubation of the nitrocellulose blots with [alpha- 32 P]GTP indicated the presence of specific and distinct GTP-binding proteins in cytosol and membranes. Binding was prevented by 10-100 nM GTP and by 100 nM guanosine 5'-[gamma-thio]triphosphate (GTP[gamma S]) or GDP; binding was unaffected by 1 nM-1 microM ATP. One main GTP-binding protein (29.5 kDa) was detected in the membrane fraction, while three others (29, 27, and 21 kDa) were detected in the soluble fraction. Two cytosolic GTP-binding proteins (29 and 27 kDa) were degraded by trypsin; another cytosolic protein (21 kDa) and the membrane-bound protein (29.5 kDa) were resistant to the action of trypsin. Treatment of intact platelets with trypsin or thrombin, followed by lysis and fractionation, did not affect the binding of [alpha- 32 P]GTP to the membrane-bound protein. GTP[gamma S] still stimulated phospholipase C in permeabilized platelets already preincubated with trypsin. This suggests that trypsin-resistant GTP-binding proteins might regulate phospholipase C stimulated by GTP[gamma S

  12. Enhanced fluorescence imaging of live cells by effective cytosolic delivery of probes.

    Directory of Open Access Journals (Sweden)

    Marzia Massignani

    Full Text Available BACKGROUND: Microscopic techniques enable real-space imaging of complex biological events and processes. They have become an essential tool to confirm and complement hypotheses made by biomedical scientists and also allow the re-examination of existing models, hence influencing future investigations. Particularly imaging live cells is crucial for an improved understanding of dynamic biological processes, however hitherto live cell imaging has been limited by the necessity to introduce probes within a cell without altering its physiological and structural integrity. We demonstrate herein that this hurdle can be overcome by effective cytosolic delivery. PRINCIPAL FINDINGS: We show the delivery within several types of mammalian cells using nanometre-sized biomimetic polymer vesicles (a.k.a. polymersomes that offer both highly efficient cellular uptake and endolysomal escape capability without any effect on the cellular metabolic activity. Such biocompatible polymersomes can encapsulate various types of probes including cell membrane probes and nucleic acid probes as well as labelled nucleic acids, antibodies and quantum dots. SIGNIFICANCE: We show the delivery of sufficient quantities of probes to the cytosol, allowing sustained functional imaging of live cells over time periods of days to weeks. Finally the combination of such effective staining with three-dimensional imaging by confocal laser scanning microscopy allows cell imaging in complex three-dimensional environments under both mono-culture and co-culture conditions. Thus cell migration and proliferation can be studied in models that are much closer to the in vivo situation.

  13. Fatty acid translocase promoted hepatitis B virus replication by upregulating the levels of hepatic cytosolic calcium.

    Science.gov (United States)

    Huang, Jian; Zhao, Lei; Yang, Ping; Chen, Zhen; Ruan, Xiong Z; Huang, Ailong; Tang, Ni; Chen, Yaxi

    2017-09-15

    Hepatitis B virus (HBV) is designated a "metabolovirus" due to the intimate connection between the virus and host metabolism. The nutrition state of the host plays a relevant role in the severity of HBV infection. Metabolic syndrome (MS) is prone to increasing HBV DNA loads and accelerating the progression of liver disease in patients with chronic hepatitis B (CHB). Cluster of differentiation 36 (CD36), also named fatty acid translocase, is known to facilitate long-chain fatty acid uptake and contribute to the development of MS. We recently found that CD36 overexpression enhanced HBV replication. In this study, we further explored the mechanism by which CD36 overexpression promotes HBV replication. Our data showed that CD36 overexpression increased HBV replication, and CD36 knockdown inhibited HBV replication. RNA sequencing found some of the differentially expressed genes were involved in calcium ion homeostasis. CD36 overexpression elevated the cytosolic calcium level, and CD36 knockdown decreased the cytosolic calcium level. Calcium chelator BAPTA-AM could override the HBV replication increased by CD36 overexpression, and the calcium activator thapsigargin could improve the HBV replication reduced by CD36 knockdown. We further found that CD36 overexpression activated Src kinase, which plays an important role in the regulation of the store-operated Ca 2+ channel. An inhibitor of Src kinase (SU6656) significantly reduced the CD36-induced HBV replication. We identified a novel link between CD36 and HBV replication, which is associated with cytosolic calcium and the Src kinase pathway. CD36 may represent a potential therapeutic target for the treatment of CHB patients with MS. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Structural characterization of coatomer in its cytosolic state

    Directory of Open Access Journals (Sweden)

    Shengliu Wang

    2016-07-01

    Full Text Available Abstract Studies on coat protein I (COPI have contributed to a basic understanding of how coat proteins generate vesicles to initiate intracellular transport. The core component of the COPI complex is coatomer, which is a multimeric complex that needs to be recruited from the cytosol to membrane in order to function in membrane bending and cargo sorting. Previous structural studies on the clathrin adaptors have found that membrane recruitment induces a large conformational change in promoting their role in cargo sorting. Here, pursuing negative-stain electron microscopy coupled with single-particle analyses, and also performing CXMS (chemical cross-linking coupled with mass spectrometry for validation, we have reconstructed the structure of coatomer in its soluble form. When compared to the previously elucidated structure of coatomer in its membrane-bound form we do not observe a large conformational change. Thus, the result uncovers a key difference between how COPI versus clathrin coats are regulated by membrane recruitment.

  15. Involvement of C4 protein of beet severe curly top virus (family Geminiviridae in virus movement.

    Directory of Open Access Journals (Sweden)

    Kunling Teng

    Full Text Available BACKGROUND: Beet severe curly top virus (BSCTV is a leafhopper transmitted geminivirus with a monopartite genome. C4 proteins encoded by geminivirus play an important role in virus/plant interaction. METHODS AND FINDINGS: To understand the function of C4 encoded by BSCTV, two BSCTV mutants were constructed by introducing termination codons in ORF C4 without affecting the amino acids encoded by overlapping ORF Rep. BSCTV mutants containing disrupted ORF C4 retained the ability to replicate in Arabidopsis protoplasts and in the agro-inoculated leaf discs of N. benthamiana, suggesting C4 is not required for virus DNA replication. However, both mutants did not accumulate viral DNA in newly emerged leaves of inoculated N. benthamiana and Arabidopsis, and the inoculated plants were asymptomatic. We also showed that C4 expression in plant could help C4 deficient BSCTV mutants to move systemically. C4 was localized in the cytosol and the nucleus in both Arabidopsis protoplasts and N. benthamiana leaves and the protein appeared to bind viral DNA and ds/ssDNA nonspecifically, displaying novel DNA binding properties. CONCLUSIONS: Our results suggest that C4 protein in BSCTV is involved in symptom production and may facilitate virus movement instead of virus replication.

  16. Inhibitor-induced oxidation of the nucleus and cytosol in Arabidopsis thaliana: implications for organelle to nucleus retrograde signalling.

    Science.gov (United States)

    Karpinska, Barbara; Alomrani, Sarah Owdah; Foyer, Christine H

    2017-09-26

    Concepts of organelle-to-nucleus signalling pathways are largely based on genetic screens involving inhibitors of chloroplast and mitochondrial functions such as norflurazon, lincomycin (LINC), antimycin A (ANT) and salicylhydroxamic acid. These inhibitors favour enhanced cellular oxidation, but their precise effects on the cellular redox state are unknown. Using the in vivo reduction-oxidation (redox) reporter, roGFP2, inhibitor-induced changes in the glutathione redox potentials of the nuclei and cytosol were measured in Arabidopsis thaliana root, epidermal and stomatal guard cells, together with the expression of nuclear-encoded chloroplast and mitochondrial marker genes. All the chloroplast and mitochondrial inhibitors increased the degree of oxidation in the nuclei and cytosol. However, inhibitor-induced oxidation was less marked in stomatal guard cells than in epidermal or root cells. Moreover, LINC and ANT caused a greater oxidation of guard cell nuclei than the cytosol. Chloroplast and mitochondrial inhibitors significantly decreased the abundance of LHCA1 and LHCB1 transcripts. The levels of WHY1 , WHY3 and LEA5 transcripts were increased in the presence of inhibitors. Chloroplast inhibitors decreased AOXA1 mRNA levels, while mitochondrial inhibitors had the opposite effect. Inhibitors that are used to characterize retrograde signalling pathways therefore have similar general effects on cellular redox state and gene expression.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Authors.

  17. Large-scale protein-protein interaction analysis in Arabidopsis mesophyll protoplasts by split firefly luciferase complementation.

    Science.gov (United States)

    Li, Jian-Feng; Bush, Jenifer; Xiong, Yan; Li, Lei; McCormack, Matthew

    2011-01-01

    Protein-protein interactions (PPIs) constitute the regulatory network that coordinates diverse cellular functions. There are growing needs in plant research for creating protein interaction maps behind complex cellular processes and at a systems biology level. However, only a few approaches have been successfully used for large-scale surveys of PPIs in plants, each having advantages and disadvantages. Here we present split firefly luciferase complementation (SFLC) as a highly sensitive and noninvasive technique for in planta PPI investigation. In this assay, the separate halves of a firefly luciferase can come into close proximity and transiently restore its catalytic activity only when their fusion partners, namely the two proteins of interest, interact with each other. This assay was conferred with quantitativeness and high throughput potential when the Arabidopsis mesophyll protoplast system and a microplate luminometer were employed for protein expression and luciferase measurement, respectively. Using the SFLC assay, we could monitor the dynamics of rapamycin-induced and ascomycin-disrupted interaction between Arabidopsis FRB and human FKBP proteins in a near real-time manner. As a proof of concept for large-scale PPI survey, we further applied the SFLC assay to testing 132 binary PPIs among 8 auxin response factors (ARFs) and 12 Aux/IAA proteins from Arabidopsis. Our results demonstrated that the SFLC assay is ideal for in vivo quantitative PPI analysis in plant cells and is particularly powerful for large-scale binary PPI screens.

  18. Large-scale protein-protein interaction analysis in Arabidopsis mesophyll protoplasts by split firefly luciferase complementation.

    Directory of Open Access Journals (Sweden)

    Jian-Feng Li

    Full Text Available Protein-protein interactions (PPIs constitute the regulatory network that coordinates diverse cellular functions. There are growing needs in plant research for creating protein interaction maps behind complex cellular processes and at a systems biology level. However, only a few approaches have been successfully used for large-scale surveys of PPIs in plants, each having advantages and disadvantages. Here we present split firefly luciferase complementation (SFLC as a highly sensitive and noninvasive technique for in planta PPI investigation. In this assay, the separate halves of a firefly luciferase can come into close proximity and transiently restore its catalytic activity only when their fusion partners, namely the two proteins of interest, interact with each other. This assay was conferred with quantitativeness and high throughput potential when the Arabidopsis mesophyll protoplast system and a microplate luminometer were employed for protein expression and luciferase measurement, respectively. Using the SFLC assay, we could monitor the dynamics of rapamycin-induced and ascomycin-disrupted interaction between Arabidopsis FRB and human FKBP proteins in a near real-time manner. As a proof of concept for large-scale PPI survey, we further applied the SFLC assay to testing 132 binary PPIs among 8 auxin response factors (ARFs and 12 Aux/IAA proteins from Arabidopsis. Our results demonstrated that the SFLC assay is ideal for in vivo quantitative PPI analysis in plant cells and is particularly powerful for large-scale binary PPI screens.

  19. The Type II Hsp40 Sis1 cooperates with Hsp70 and the E3 ligase Ubr1 to promote degradation of terminally misfolded cytosolic protein.

    Directory of Open Access Journals (Sweden)

    Daniel W Summers

    Full Text Available Mechanisms for cooperation between the cytosolic Hsp70 system and the ubiquitin proteasome system during protein triage are not clear. Herein, we identify new mechanisms for selection of misfolded cytosolic proteins for degradation via defining functional interactions between specific cytosolic Hsp70/Hsp40 pairs and quality control ubiquitin ligases. These studies revolved around the use of S. cerevisiae to elucidate the degradation pathway of a terminally misfolded reporter protein, short-lived GFP (slGFP. The Type I Hsp40 Ydj1 acts with Hsp70 to suppress slGFP aggregation. In contrast, the Type II Hsp40 Sis1 is required for proteasomal degradation of slGFP. Sis1 and Hsp70 operate sequentially with the quality control E3 ubiquitin ligase Ubr1 to target slGFP for degradation. Compromise of Sis1 or Ubr1 function leads slGFP to accumulate in a Triton X-100-soluble state with slGFP degradation intermediates being concentrated into perinuclear and peripheral puncta. Interestingly, when Sis1 activity is low the slGFP that is concentrated into puncta can be liberated from puncta and subsequently degraded. Conversely, in the absence of Ubr1, slGFP and the puncta that contain slGFP are relatively stable. Ubr1 mediates proteasomal degradation of slGFP that is released from cytosolic protein handling centers. Pathways for proteasomal degradation of misfolded cytosolic proteins involve functional interplay between Type II Hsp40/Hsp70 chaperone pairs, PQC E3 ligases, and storage depots for misfolded proteins.

  20. Differential effects of buffer pH on Ca2+-induced ROS emission with inhibited mitochondrial complex I and III

    Directory of Open Access Journals (Sweden)

    Daniel P Lindsay

    2015-03-01

    Full Text Available Excessive mitochondrial reactive oxygen species (ROS emission is a critical component in the etiolo-gy of ischemic injury. Complex I and complex III of the electron transport chain are considered the primary sources of ROS emission during cardiac ischemia and reperfusion (IR injury. Several factors modulate ischemic ROS emission, such as an increase in extra-matrix Ca2+, a decrease in extra-matrix pH, and a change in substrate utilization. Here we examined the combined effects of these factors on ROS emission from respiratory complex I and III under conditions of simulated IR injury. Guinea pig heart mitochondria were suspended in experimental buffer at a given pH and incubated with or without CaCl2. Mitochondria were then treated with either pyruvate, a complex I substrate, followed by rote-none, a complex I inhibitor, or succinate, a complex II substrate, followed by antimycin A, a complex III inhibitor. H2O2 release rate and matrix volume were compared with and without adding CaCl2 and at pH 7.15, 6.9, or 6.5 with pyruvate + rotenone or succinate + antimycin A to simulate conditions that may occur during in vivo cardiac IR injury. We found a large increase in H2O2 release with high [CaCl2] and pyruvate + rotenone at pH 6.9, but not at pHs 7.15 or 6.5. Large increases in H2O2 release rate also occurred at each pH with high [CaCl2] and succinate + antimycin A, with the highest levels observed at pH 7.15. The increases in H2O2 release were associated with significant mitochondrial swelling, and both H2O2 release and swelling were abolished by cyclosporine A, a desensitizer of the mitochondrial permeability transition pore. These results indicate that ROS production by complex I and by III is differently affected by buffer pH and Ca2+ loading with mPTP opening. The study sug-gests that changes in the levels of cytosolic Ca2+ and pH during IR alter the relative amounts of ROS produced at mitochondrial respiratory complex I and complex III.

  1. Aspartic cathepsin D degrades the cytosolic cysteine cathepsin inhibitor stefin B in the cells.

    Science.gov (United States)

    Železnik, Tajana Zajc; Kadin, Andrey; Turk, Vito; Dolenc, Iztok

    2015-09-18

    Stefin B is the major general cytosolic protein inhibitor of cysteine cathepsins. Its main function is to protect the organism against the activity of endogenous potentially hazardous proteases accidentally released from lysosomes. In this study, we investigated the possible effect of endosomal/lysosomal aspartic cathepsins D and E on stefin B after membrane permeabilization. Loss of membrane integrity of lysosomes and endosomes was induced by a lysosomotropic agent L-Leucyl-L-leucine methyl ester (Leu-Leu-OMe). The rat thyroid cell line FRTL-5 was selected as a model cell line owing to its high levels of proteases, including cathepsin D and E. Permeabilization of acid vesicles from FRTL-5 cells induced degradation of stefin B. The process was inhibited by pepstatin A, a potent inhibitor of aspartic proteases. However, degradation of stefin B was prevented by siRNA-mediated silencing of cathepsin D expression. In contrast, cathepsin E silencing had no effect on stefin B degradation. These results showed that cathepsin D and not cathepsin E degrades stefin B. It can be concluded that the presence of cathepsin D in the cytosol affects the inhibitory potency of stefin B, thus preventing the regulation of cysteine cathepsin activities in various biological processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Dynamic regulation of gastric surface pH by luminal pH

    OpenAIRE

    Chu, Shaoyou; Tanaka, Shin; Kaunitz, Jonathan D.; Montrose, Marshall H.

    1999-01-01

    In vivo confocal imaging of the mucosal surface of rat stomach was used to measure pH noninvasively under the mucus gel layer while simultaneously imaging mucus gel thickness and tissue architecture. When tissue was superfused at pH 3, the 25 μm adjacent to the epithelial surface was relatively alkaline (pH 4.1 ± 0.1), and surface alkalinity was enhanced by topical dimethyl prostaglandin E2 (pH 4.8 ± 0.2). Luminal pH was changed from pH 3 to pH 5 to mimic the fasted-to-fed transition in intra...

  3. Upregulation of cytosolic NADP+-dependent isocitrate dehydrogenase by hyperglycemia protects renal cells against oxidative stress.

    Science.gov (United States)

    Lee, Soh-Hyun; Ha, Sun-Ok; Koh, Ho-Jin; Kim, KilSoo; Jeon, Seon-Min; Choi, Myung-Sook; Kwon, Oh-Shin; Huh, Tae-Lin

    2010-02-28

    Hyperglycemia-induced oxidative stress is widely recognized as a key mediator in the pathogenesis of diabetic nephropathy, a complication of diabetes. We found that both expression and enzymatic activity of cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) were upregulated in the renal cortexes of diabetic rats and mice. Similarly, IDPc was induced in murine renal proximal tubular OK cells by high hyperglycemia, while it was abrogated by co-treatment with the antioxidant N-Acetyl-Cysteine (NAC). In OK cells, increased expression of IDPc by stable transfection prevented hyperglycemia-mediated reactive oxygen species (ROS) production, subsequent cellular oxidative stress and extracellular matrix accumulation, whereas these processes were all stimulated by decreased IDPc expression. In addition, production of NADPH and GSH in the cytosol was positively correlated with the expression level of IDPc in OK cells. These results together indicate that upregulation of IDPc in response to hyperglycemia might play an essential role in preventing the progression of diabetic nephropathy, which is accompanied by ROS-induced cellular damage and fibrosis, by providing NADPH, the reducing equivalent needed for recycling reduced glutathione and low molecular weight antioxidant thiol proteins.

  4. A Plant Phytosulfokine Peptide Initiates Auxin-Dependent Immunity through Cytosolic Ca2+ Signaling in Tomato.

    Science.gov (United States)

    Zhang, Huan; Hu, Zhangjian; Lei, Cui; Zheng, Chenfei; Wang, Jiao; Shao, Shujun; Li, Xin; Xia, Xiaojian; Cai, Xinzhong; Zhou, Jie; Zhou, Yanhong; Yu, Jingquan; Foyer, Christine H; Shi, Kai

    2018-03-01

    Phytosulfokine (PSK) is a disulfated pentapeptide that is an important signaling molecule. Although it has recently been implicated in plant defenses to pathogen infection, the mechanisms involved remain poorly understood. Using surface plasmon resonance and gene silencing approaches, we showed that the tomato ( Solanum lycopersicum ) PSK receptor PSKR1, rather than PSKR2, functioned as the major PSK receptor in immune responses. Silencing of PSK signaling genes rendered tomato more susceptible to infection by the economically important necrotrophic pathogen Botrytis cinerea Analysis of tomato mutants defective in either defense hormone biosynthesis or signaling demonstrated that PSK-induced immunity required auxin biosynthesis and associated defense pathways. Here, using aequorin-expressing tomato plants, we provide evidence that PSK perception by tomato PSKR1 elevated cytosolic [Ca 2+ ], leading to auxin-dependent immune responses via enhanced binding activity between calmodulins and the auxin biosynthetic YUCs. Thus, our data demonstrate that PSK acts as a damage-associated molecular pattern and is perceived mainly by PSKR1, which increases cytosolic [Ca 2+ ] and activates auxin-mediated pathways that enhance immunity of tomato plants to B. cinerea . © 2018 American Society of Plant Biologists. All rights reserved.

  5. Cation selectivity of the plasma membrane of tobacco protoplasts in the electroporated state.

    Science.gov (United States)

    Wegner, Lars H

    2013-08-01

    Cation selectivity of the cellular membrane of tobacco culture cells (cell line 'bright yellow-2') exposed to pulsed electric fields in the millisecond range was investigated. The whole cell configuration of the patch clamp technique was established on protoplasts prepared from these cells. Ion selectivity of the electroporated membrane was investigated by measuring the reversal potential of currents passing through field-induced pores. To this end the membrane was hyper- or depolarized for 10ms (prepulse); subsequently the voltage was driven to opposite polarity at a constant rate (+40 or -40mV/ms, respectively). The experiment was started by polarizing the membrane to moderately negative or positive voltages (prepulse potential ±150mV) that would not induce pore formation. Subsequently, an extended voltage range was scanned in the porated state of the membrane (prepulse potential ±600mV). IV curves in the porated and the non-porated state (obtained at the same prepulse polarity) were superimposed to determine the voltage at which both curves intersected ('Intersection potential'). Using a modified version of the Goldmann-Hodgkin-Katz equation relative permeabilities to Ca(2+) and various monovalent alkali and organic cations were calculated. Pores were found to be fairly cation selective, with a selectivity sequence determined to be Ca(2+)>Li(+)>Rb(+)≈K(+)≈Na(+)>TEA(+)≈TBA(+)>Cl(-). Relative permeability to monovalent cations was inversely related to the ionic diameter. By fitting a formalism suggested by Dwyer at al. (J. Gen. Physiol. 75 (1980), 469-492) the effective average diameter of field induced pores was estimated to be about 1.8nm. Implications of these results for biotechnology and electroporation theory are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Tc-cAPX, a cytosolic ascorbate peroxidase of Theobroma cacao L. engaged in the interaction with Moniliophthora perniciosa, the causing agent of witches' broom disease.

    Science.gov (United States)

    Camillo, Luciana Rodrigues; Filadelfo, Ciro Ribeiro; Monzani, Paulo Sérgio; Corrêa, Ronan Xavier; Gramacho, Karina Peres; Micheli, Fabienne; Pirovani, Carlos Priminho

    2013-12-01

    The level of hydrogen peroxide (H2O2) in plants signalizes the induction of several genes, including that of ascorbate peroxidase (APX-EC 1.11.1.11). APX isoenzymes play a central role in the elimination of intracellular H2O2 and contribute to plant responses to diverse stresses. During the infection process in Theobroma cacao by Moniliophthora perniciosa oxidative stress is generated and the APX action recruited from the plant. The present work aimed to characterize the T. cacao APX involved in the molecular interaction of T. cacao-M. perniciosa. The peroxidase activity was analyzed in protein extracts from cocoa plants infected by M. perniciosa and showed the induction of peroxidases like APX in resistant cocoa plants. The cytosolic protein of T. cacao (GenBank: ABR68691.2) was phylogenetically analyzed in relation to other peroxidases from the cocoa genome and eight genes encoding APX proteins with conserved domains were also analyzed. The cDNA from cytosolic APX was cloned in pET28a and the recombinant protein expressed and purified (rTc-cAPX). The secondary structure of the protein was analyzed by Circular Dichroism (CD) displaying high proportion of α-helices when folded. The enzymatic assay shows stable activity using ascorbate and guaiacol as an electron donor for H2O2 reduction. The pH 7.5 is the optimum for enzyme activity. Chromatographic analysis suggests that rTc-cAPX is a homodimer in solution. Results indicate that the rTc-cAPX is correctly folded, stable and biochemically active. The purified rTc-cAPX presented biotechnological potential and is adequate for future structural and functional studies. Copyright © 2013 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  7. Caveolin targeting to late endosome/lysosomal membranes is induced by perturbations of lysosomal pH and cholesterol content

    Science.gov (United States)

    Mundy, Dorothy I.; Li, Wei Ping; Luby-Phelps, Katherine; Anderson, Richard G. W.

    2012-01-01

    Caveolin-1 is an integral membrane protein of plasma membrane caveolae. Here we report that caveolin-1 collects at the cytosolic surface of lysosomal membranes when cells are serum starved. This is due to an elevation of the intralysosomal pH, since ionophores and proton pump inhibitors that dissipate the lysosomal pH gradient also trapped caveolin-1 on late endosome/lysosomes. Accumulation is both saturable and reversible. At least a portion of the caveolin-1 goes to the plasma membrane upon reversal. Several studies suggest that caveolin-1 is involved in cholesterol transport within the cell. Strikingly, we find that blocking cholesterol export from lysosomes with progesterone or U18666A or treating cells with low concentrations of cyclodextrin also caused caveolin-1 to accumulate on late endosome/lysosomal membranes. Under these conditions, however, live-cell imaging shows cavicles actively docking with lysosomes, suggesting that these structures might be involved in delivering caveolin-1. Targeting of caveolin-1 to late endosome/lysosomes is not observed normally, and the degradation rate of caveolin-1 is not altered by any of these conditions, indicating that caveolin-1 accumulation is not a consequence of blocked degradation. We conclude that caveolin-1 normally traffics to and from the cytoplasmic surface of lysosomes during intracellular cholesterol trafficking. PMID:22238363

  8. Correlation of Cytosolic Concentration of ER, PS2, Cath-D, TPS, TK and cAMP in Primary Breast Carcinomas

    Czech Academy of Sciences Publication Activity Database

    Kaušitz, J.; Kulliffay, P.; Pecen, Ladislav; Eben, Kryštof; Puterová, B.

    1994-01-01

    Roč. 41, č. 6 (1994), s. 331-336 ISSN 0028-2685 R&D Projects: GA AV ČR IAA230106 Keywords : brast cancer * cytosol * tumor markers * prognosis * mathematical analysis Impact factor: 0.354, year: 1994

  9. Effects of freezing and cold acclimation on the plasma membrane of isolated protoplasts. Summary progress report, May 16, 1987--June 1, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Steponkus, P.L.

    1991-12-31

    This project focuses on lesions in the plasma membrane of protoplasts that occur during freezing to temperatures below {minus}5{degrees} which result in changes in the semipermeablity of the plasma membrane. This injury, referred to as loss of osmotic responsiveness, is associated with the formation of large, aparticulate domains in the plasma membrane, aparticulate lamellae subtending the plasma membrane, and lamellar-to-hexagonal{sub II} phase transitions in the plasma membrane and subtending lamellar. The goals of this project are to provide a mechanistic understanding of the mechanism by which freeze-induced dehydration effects the formation of aparticulate domains and lamellar-to-hexagonal{sub II} phase transitions and to determine the mechanisms by which cold acclimation and cryoprotectants preclude or diminish these ultrastructural changes. Our working hypothesis is the formation of aparticulate domains and lamellar-to-hexagon{sub II} phase transitions in the plasma membrane and subtending lamellae are manifestations of hydration-dependent bilayer-bilayer interactions.

  10. Liver/kidney microsomal antibody type 1 and liver cytosol antibody type 1 concentrations in type 2 autoimmune hepatitis.

    Science.gov (United States)

    Muratori, L; Cataleta, M; Muratori, P; Lenzi, M; Bianchi, F B

    1998-05-01

    Liver/kidney microsomal antibody type 1 (LKM1) and liver cytosol antibody type 1 (LC1) are the serological markers of type 2 autoimmune hepatitis (AIH). Since LKM1 and LC1 react against two distinct liver specific autoantigens (cytochrome P450IID6 (CYP2D6) and a 58 kDa cytosolic polypeptide respectively), the aim was to see whether LKM1 and LC1 concentrations correlate with liver disease activity. Twenty one patients with type 2 AIH were studied. All sera were tested by indirect immunofluorescence, counterimmunoelectrophoresis, and immunoblotting visualised by enhanced chemiluminescence. To evaluate LKM1 and LC1 levels, the 50 kDa microsomal reactivity (corresponding to CYP2D6) and the 58 kDa cytosolic reactivity were quantified by densitometric analysis. Seven patients were positive for LKM1, nine for LC1, and five for both. Serial serum samples at onset and during immunosuppressive treatment were analysed in 13 patients (four positive for LKM1, six positive for LC1 and three positive for both). During remission, LKM1 concentration remained essentially unchanged in six of seven patients, and decreased in only one. Conversely, in two of nine patients, LC1 was completely lost, and, in the remaining seven, LC1 concentration was reduced by more than 50%. After immunosuppression tapering or withdrawal, flare ups of liver necrosis ensued with increasing LC1 concentration, but not LKM1. LC1 concentration, at variance with that of LKM1, parallels liver disease activity, and its participation in the pathogenic mechanisms of liver injury can be hypothesised.

  11. Cytosolic fatty acid-binding proteins: subjects and tools in metabolic research

    Energy Technology Data Exchange (ETDEWEB)

    Binas, B. [Max Delbrueck Center for Molecular Medicine, Berlin-Buch (Germany)

    1998-12-31

    Fatty acid-binding proteins (FABPs) are major targets for specific binding of fatty acids in vivo. They constitute a widely expressed family of genetically related, small cytosolic proteins which very likely mediate intracellular transport of free long chain fatty acids. Genetic inhibition of FABP expression in vivo should therefore provide a useful tool to investigate and engineer fatty acid metabolism. (orig.) [Deutsch] Fettsaeurebindungsproteine (FABPs) sind wichtige Bindungsstellen fuer Fettsaeuren in vivo; sie bilden eine breit exprimierte Familie genetisch verwandter kleiner Zytosoleiweisse, die sehr wahrscheinlich den intrazellulaeren Transport unveresterter langkettiger Fettsaeuren vermitteln. Die genetische Hemmung der FABP-Expanssion in vivo bietet sich deshalb als Werkzeug zur Erforschung und gezielten Veraenderung des Fettsaeurestoffwechsels an. (orig.)

  12. The tobacco carcinogen NNK is stereoselectively reduced by human pancreatic microsomes and cytosols.

    Science.gov (United States)

    Trushin, Neil; Leder, Gerhard; El-Bayoumy, Karam; Hoffmann, Dietrich; Beger, Hans G; Henne-Bruns, Doris; Ramadani, Marco; Prokopczyk, Bogdan

    2008-07-01

    Cigarette smoking increases the risk of cancer of the pancreas. The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is the only known environmental compound that induces pancreatic cancer in laboratory animals. Concentrations of NNK are significantly higher in the pancreatic juice of smokers than in that of nonsmokers. The chiral NNK metabolite, (R,S)-4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) is itself a potent pancreatic carcinogen in rats. The carcinogenicity of NNAL is related to its stereochemistry; (S)-NNAL is a more potent lung tumorigen in the A/J mouse than is (R)-NNAL. In this study, we determined the potential of the human pancreas to convert NNK into NNAL. Human pancreatic microsomes and cytosols were incubated with [5-(3)H]NNK, and the metabolic products were determined by high-performance liquid chromatography (HPLC). (S)-NNAL was the predominant isomer formed in all cytosolic incubations. In ten microsomal samples, NNAL was formed at an average rate of 3.8 +/- 1.6 pmol/mg/min; (R)-NNAL was the predominant isomer in this group. The average rate of NNAL formation in 18 other microsomal samples was significantly lower, 0.13 +/- 0.12 pmol/mg/min (p < 0.001); (S)-NNAL was the predominant isomer formed in this group. In human pancreatic tissues, there is intraindividual variability regarding the capacity for, and stereoselectivity of, carbonyl reduction of NNK.

  13. Role of cytosolic NADP+-dependent isocitrate dehydrogenase in ischemia-reperfusion injury in mouse kidney

    OpenAIRE

    Kim, Jinu; Kim, Ki Young; Jang, Hee-Seong; Yoshida, Takumi; Tsuchiya, Ken; Nitta, Kosaku; Park, Jeen-Woo; Bonventre, Joseph V.; Park, Kwon Moo

    2008-01-01

    Cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) synthesizes reduced NADP (NADPH), which is an essential cofactor for the generation of reduced glutathione (GSH), the most abundant and important antioxidant in mammalian cells. We investigated the role of IDPc in kidney ischemia-reperfusion (I/R) in mice. The activity and expression of IDPc were highest in the cortex, modest in the outer medulla, and lowest in the inner medulla. NADPH levels were greatest in the cortex. IDPc expressio...

  14. The Arabidopsis thalianaK+-uptake permease 7 (AtKUP7) contains a functional cytosolic adenylate cyclase catalytic centre

    KAUST Repository

    Al-Younis, Inas; Wong, Aloysius Tze; Gehring, Christoph A

    2015-01-01

    KUP7) as one of several candidate ACs. Firstly, we show that a recombinant N-terminal, cytosolic domain of AtKUP71-100 is able to complement the AC-deficient mutant cyaA in Escherichia coli and thus restoring the fermentation of lactose, and secondly

  15. THE CYTOSOLIC AND GLYCOSOMAL GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE FROM TRYPANOSOMA-BRUCEI - KINETIC-PROPERTIES AND COMPARISON WITH HOMOLOGOUS ENZYMES

    NARCIS (Netherlands)

    LAMBEIR, AM; LOISEAU, AM; KUNTZ, DA; VELLIEUX, FM; MICHELS, PAM; OPPERDOES, FR

    1991-01-01

    The protozoan haemoflagellate Trypanosoma brucei has two NAD-dependent glyceraldehyde-3-phosphate dehydrogenase isoenzymes, each with a different localization within the cell. One isoenzyme is found in the cytosol, as in other eukaryotes, while the other is found in the glycosome, a microbody-like

  16. Cutting edge: HLA-B27 acquires many N-terminal dibasic peptides: coupling cytosolic peptide stability to antigen presentation

    NARCIS (Netherlands)

    Herberts, Carla A.; Neijssen, Joost J.; de Haan, Jolanda; Janssen, Lennert; Drijfhout, Jan Wouter; Reits, Eric A.; Neefjes, Jacques J.

    2006-01-01

    Ag presentation by MHC class I is a highly inefficient process because cytosolic peptidases destroy most peptides after proteasomal generation. Various mechanisms shape the MHC class I peptidome. We define a new one: intracellular peptide stability. Peptides with two N-terminal basic amino acids are

  17. Optimization of urinary dipstick pH: Are multiple dipstick pH readings reliably comparable to commercial 24-hour urinary pH?

    Science.gov (United States)

    Abbott, Joel E; Miller, Daniel L; Shi, William; Wenzler, David; Elkhoury, Fuad F; Patel, Nishant D; Sur, Roger L

    2017-09-01

    Accurate measurement of pH is necessary to guide medical management of nephrolithiasis. Urinary dipsticks offer a convenient method to measure pH, but prior studies have only assessed the accuracy of a single, spot dipstick. Given the known diurnal variation in pH, a single dipstick pH is unlikely to reflect the average daily urinary pH. Our goal was to determine whether multiple dipstick pH readings would be reliably comparable to pH from a 24-hour urine analysis. Kidney stone patients undergoing a 24-hour urine collection were enrolled and took images of dipsticks from their first 3 voids concurrently with the 24-hour collection. Images were sent to and read by a study investigator. The individual and mean pH from the dipsticks were compared to the 24-hour urine pH and considered to be accurate if the dipstick readings were within 0.5 of the 24-hour urine pH. The Bland-Altman test of agreement was used to further compare dipstick pH relative to 24-hour urine pH. Fifty-nine percent of patients had mean urinary pH values within 0.5 pH units of their 24-hour urine pH. Bland-Altman analysis showed a mean difference between dipstick pH and 24-hour urine pH of -0.22, with an upper limit of agreement of 1.02 (95% confidence interval [CI], 0.45-1.59) and a lower limit of agreement of -1.47 (95% CI, -2.04 to -0.90). We concluded that urinary dipstick based pH measurement lacks the precision required to guide medical management of nephrolithiasis and physicians should use 24-hour urine analysis to base their metabolic therapy.

  18. Equivalent molecular mass of cytosolic and nuclear forms of Ah receptor from Hepa-1 cells determined by photoaffinity labeling with 2,3,7,8-[3H]tetrachlorodibenzo-p-dioxin

    International Nuclear Information System (INIS)

    Prokipcak, R.D.; Okey, A.B.

    1990-01-01

    The structure of the Ah receptor previously has been extensively characterized by reversible binding of the high affinity ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin. We report the use of [ 3 H]2,3,7,8-tetrachlorodibenzo-p-dioxin as a photoaffinity ligand for Ah receptor from the mouse hepatoma cell line Hepa-1c1c9. Both cytosolic and nuclear forms of Ah receptor could be specifically photoaffinity-labeled, which allowed determination of molecular mass for the two forms under denaturing conditions. After analysis by fluorography of polyacrylamide gels run in the presence of sodium dodecyl sulfate, molecular mass for the cytosolic form of Ah receptor was estimated at 92,000 +/- 4,300 and that for the nuclear form was estimated at 93,500 +/- 3,400. Receptor in mixture of cytosol and nuclear extract (each labeled separately with [ 3 H]2,3,7,8-tetrachlorodibenzo-p-dioxin) migrated as a single band. These results are consistent with the presence of a common ligand-binding subunit of identical molecular mass in both cytosolic and nuclear complexes

  19. Cytosolic malate dehydrogenase regulates RANKL-mediated osteoclastogenesis via AMPK/c-Fos/NFATc1 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Se Jeong [Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Gu, Dong Ryun [Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Jin, Su Hyun [Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Park, Keun Ha [Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Lee, Seoung Hoon, E-mail: leesh2@wku.ac.kr [Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of); Wonkwang Institute of Biomaterials and Implant, Wonkwang University, Iksan, Jeonbuk 54538 (Korea, Republic of)

    2016-06-17

    Cytosolic malate dehydrogenase (malate dehydrogenase 1, MDH1) plays pivotal roles in the malate/aspartate shuttle that might modulate metabolism between the cytosol and mitochondria. In this study, we investigated the role of MDH1 in osteoclast differentiation and formation. MDH1 expression was induced by receptor activator of nuclear factor kappa-B ligand (RANKL) treatment. Knockdown of MDH1 by infection with retrovirus containing MDH1-specific shRNA (shMDH1) reduced mature osteoclast formation and bone resorption activity. Moreover, the expression of marker genes associated with osteoclast differentiation was downregulated by shMDH1 treatment, suggesting a role of MDH1 in osteoclast differentiation. In addition, intracellular ATP production was reduced following the activation of adenosine 5′ monophosphate-activated protein kinase (AMPK), a cellular energy sensor and negative regulator of RANKL-induced osteoclast differentiation, in shMDH1-infected osteoclasts compared to control cells. In addition, the expression of c-Fos and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), a critical transcription factor of osteoclastogenesis, was decreased with MDH1 knockdown during RANKL-mediated osteoclast differentiation. These findings provide strong evidence that MDH1 plays a critical role in osteoclast differentiation and function via modulation of the intracellular energy status, which might affect AMPK activity and NFATc1 expression.

  20. Cytosolic malate dehydrogenase regulates RANKL-mediated osteoclastogenesis via AMPK/c-Fos/NFATc1 signaling

    International Nuclear Information System (INIS)

    Oh, Se Jeong; Gu, Dong Ryun; Jin, Su Hyun; Park, Keun Ha; Lee, Seoung Hoon

    2016-01-01

    Cytosolic malate dehydrogenase (malate dehydrogenase 1, MDH1) plays pivotal roles in the malate/aspartate shuttle that might modulate metabolism between the cytosol and mitochondria. In this study, we investigated the role of MDH1 in osteoclast differentiation and formation. MDH1 expression was induced by receptor activator of nuclear factor kappa-B ligand (RANKL) treatment. Knockdown of MDH1 by infection with retrovirus containing MDH1-specific shRNA (shMDH1) reduced mature osteoclast formation and bone resorption activity. Moreover, the expression of marker genes associated with osteoclast differentiation was downregulated by shMDH1 treatment, suggesting a role of MDH1 in osteoclast differentiation. In addition, intracellular ATP production was reduced following the activation of adenosine 5′ monophosphate-activated protein kinase (AMPK), a cellular energy sensor and negative regulator of RANKL-induced osteoclast differentiation, in shMDH1-infected osteoclasts compared to control cells. In addition, the expression of c-Fos and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), a critical transcription factor of osteoclastogenesis, was decreased with MDH1 knockdown during RANKL-mediated osteoclast differentiation. These findings provide strong evidence that MDH1 plays a critical role in osteoclast differentiation and function via modulation of the intracellular energy status, which might affect AMPK activity and NFATc1 expression.

  1. Accumulation of free oligosaccharides and tissue damage in cytosolic α-mannosidase (Man2c1)-deficient mice.

    Science.gov (United States)

    Paciotti, Silvia; Persichetti, Emanuele; Klein, Katharina; Tasegian, Anna; Duvet, Sandrine; Hartmann, Dieter; Gieselmann, Volkmar; Beccari, Tommaso

    2014-04-04

    Free Man(7-9)GlcNAc2 is released during the biosynthesis pathway of N-linked glycans or from misfolded glycoproteins during the endoplasmic reticulum-associated degradation process and are reduced to Man5GlcNAc in the cytosol. In this form, free oligosaccharides can be transferred into the lysosomes to be degraded completely. α-Mannosidase (MAN2C1) is the enzyme responsible for the partial demannosylation occurring in the cytosol. It has been demonstrated that the inhibition of MAN2C1 expression induces accumulation of Man(8-9)GlcNAc oligosaccharides and apoptosis in vitro. We investigated the consequences caused by the lack of cytosolic α-mannosidase activity in vivo by the generation of Man2c1-deficient mice. Increased amounts of Man(8-9)GlcNAc oligosaccharides were recognized in all analyzed KO tissues. Histological analysis of the CNS revealed neuronal and glial degeneration with formation of multiple vacuoles in deep neocortical layers and major telencephalic white matter tracts. Enterocytes of the small intestine accumulate mannose-containing saccharides and glycogen particles in their apical cytoplasm as well as large clear vacuoles in retronuclear position. Liver tissue is characterized by groups of hepatocytes with increased content of mannosyl compounds and glycogen, some of them undergoing degeneration by hydropic swelling. In addition, lectin screening showed the presence of mannose-containing saccharides in the epithelium of proximal kidney tubules, whereas scattered glomeruli appeared collapsed or featured signs of fibrosis along Bowman's capsule. Except for a moderate enrichment of mannosyl compounds and glycogen, heterozygous mice were normal, arguing against possible toxic effects of truncated Man2c1. These findings confirm the key role played by Man2c1 in the catabolism of free oligosaccharides.

  2. Human cytosolic thymidine kinase: purification and physical characterization of the enzyme from HeLa cells

    International Nuclear Information System (INIS)

    Sherley, J.L.; Kelly, T.J.

    1988-01-01

    The mammalian cytosolic thymidine kinase is one of a number of enzymes involved in DNA replication whose activities increase dramatically during S phase of the cell cycle. As a first step in defining the mechanisms that control the S phase induction of thymidine kinase activity, the authors have purified the human enzyme from HeLa cells and raised a specific immune serum against the purified protein. The enzyme was isolated from cells arrested in S phase by treatment with methotrexate and purified to near homogeneity by ion-exchange and affinity chromatography. Stabilization of the purified enzyme was achieved by the addition of digitonin. An electrophoretic R/sub m/ of 0.2 in nondenaturing gels characterizes the purified enzyme activity as cytosolic thymidine kinase. The enzyme has a Stoke's radius of 40 A determined by gel filtration and a sedimentation coefficient of 5.5 S determined by glycerol gradient sedimentation. Based on these hydrodynamic values, a native molecular weight of 96,000 was calculated for the purified enzyme. When electrophoresed in denaturing sodium dodecyl sulfate-polyacrylamide gels under reducing conditions, the most purified enzyme fraction was found to contain one predominant polypeptide of M/sub r/ = 24,000. Several lines of evidence indicate that this polypeptide is responsible for thymidine kinase enzymatic activity

  3. Nitrate Activation of Cytosolic Protein Kinases Diverts Photosynthetic Carbon from Sucrose to Amino Acid Biosynthesis

    Science.gov (United States)

    Champigny, Marie-Louise; Foyer, Christine

    1992-01-01

    The regulation of carbon partitioning between carbohydrates (principally sucrose) and amino acids has been only poorly characterized in higher plants. The hypothesis that the pathway of sucrose and amino acid biosynthesis compete for carbon skeletons and energy is widely accepted. In this review, we suggest a mechanism involving the regulation of cytosolic protein kinases whereby the flow of carbon is regulated at the level of partitioning between the pathways of carbohydrate and nitrogen metabolism via the covalent modulation of component enzymes. The addition of nitrate to wheat seedlings (Triticum aestivum) grown in the absence of exogenous nitrogen has a dramatic, if transient, impact on sucrose formation and on the activities of sucrose phosphate synthase (which is inactivated) and phosphoenolpyruvate carboxylase (which is activated). The activities of these two enzymes are modulated by protein phosphorylation in response to the addition of nitrate, but they respond in an inverse fashion. Sucrose phosphate synthase in inactivated and phosphoenolpyruvate carboxylase is activated. Nitrate functions as a signal metabolite activating the cytosolic protein kinase, thereby modulating the activities of at least two of the key enzymes in assimilate partitioning and redirecting the flow of carbon away from sucrose biosynthesis toward amino acid synthesis. PMID:16653003

  4. STING-Dependent Cytosolic DNA Sensing Promotes Radiation-Induced Type I Interferon-Dependent Antitumor Immunity in Immunogenic Tumors.

    Science.gov (United States)

    Deng, Liufu; Liang, Hua; Xu, Meng; Yang, Xuanming; Burnette, Byron; Arina, Ainhoa; Li, Xiao-Dong; Mauceri, Helena; Beckett, Michael; Darga, Thomas; Huang, Xiaona; Gajewski, Thomas F; Chen, Zhijian J; Fu, Yang-Xin; Weichselbaum, Ralph R

    2014-11-20

    Ionizing radiation-mediated tumor regression depends on type I interferon (IFN) and the adaptive immune response, but several pathways control I IFN induction. Here, we demonstrate that adaptor protein STING, but not MyD88, is required for type I IFN-dependent antitumor effects of radiation. In dendritic cells (DCs), STING was required for IFN-? induction in response to irradiated-tumor cells. The cytosolic DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS) mediated sensing of irradiated-tumor cells in DCs. Moreover, STING was essential for radiation-induced adaptive immune responses, which relied on type I IFN signaling on DCs. Exogenous IFN-? treatment rescued the cross-priming by cGAS or STING-deficient DCs. Accordingly, activation of STING by a second messenger cGAMP administration enhanced antitumor immunity induced by radiation. Thus radiation-mediated antitumor immunity in immunogenic tumors requires a functional cytosolic DNA-sensing pathway and suggests that cGAMP treatment might provide a new strategy to improve radiotherapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Developmental and environmental regulation of the Nicotiana plumbaginifolia cytosolic Cu/Zn-superoxide dismutase promoter in transgenic tobacco.

    Science.gov (United States)

    Hérouart, D; Van Montagu, M; Inzé, D

    1994-03-01

    Superoxide dismutases (SODs) play a key role in the cellular defense against reactive oxygen species. To study the transcriptional regulation at the cellular level, the promoter of the Nicotiana plumbaginifolia cytosolic gene encoding Cu/ZnSOD (SODCc) was fused to the beta-glucuronidase (GUS) reporter gene (gusA) and analyzed in transgenic tobacco plants. The promoter was highly active in vascular bundles of leaves and stems, where it is confined to phloem cells. In flowers, GUS activity was detected in ovules and pollen grains, in pigmented tissues of petals, and in vascular tissue of ovaries and anthers. In response to treatment with the superoxide-generating herbicide paraquat, very strong GUS staining was observed in photosynthetically active cells of leaves and in some epidermal root cells of seedlings. The expression of the SODCc-gusA was also induced in seedlings after heat shock and chilling and after treatment with sulfhydryl antioxidants such as reduced glutathione and cysteine. It is postulated that SODCc expression is directly linked to a cell-specific production of excess superoxide radicals in the cytosol.

  6. Development of Hybrid pH sensor for long-term seawater pH monitoring.

    Science.gov (United States)

    Nakano, Y.; Egashira, T.; Miwa, T.; Kimoto, H.

    2016-02-01

    We have been developing the in situ pH sensor (Hybrid pH sensor: HpHS) for the long-term seawater pH monitoring. We are planning to provide the HpHS for researchers and environmental consultants for observation of the CCS (Carbon dioxide Capture and Storage) monitoring system, the coastal environment monitoring system (e.g. Blue Carbon) and ocean acidification. The HpHS has two types of pH sensors (i.e. potentiometric pH sensor and spectrophotometric pH sensor). The spectrophotometric pH sensor can measure pH correctly and stably, however it needs large power consumption and a lot of reagents in a long period of observation. The pH sensor used m-cresol purple (mCP) as an indicator of pH (Clayton and Byrne, 1993 and Liu et al., 2011). We can choose both coefficients before deployment. On the other hand, although the potentiometric pH sensor is low power consumption and high-speed response (within 10 seconds), drifts in the pH of the potentiometric measurements may possibly occur for a long-term observation. The HpHS can measure in situ pH correctly and stably combining advantage of both pH sensors. The HpHS consists of an aluminum pressure housing with optical cell (main unit) and an aluminum silicon-oil filled, pressure-compensated vessel containing pumps and valves (diaphragm pump and valve unit) and pressure-compensated reagents bags (pH indicator, pure water and Tris buffer or certified reference material: CRM) with an ability to resist water pressure to 3000m depth. The main unit holds system control boards, pump drivers, data storage (micro SD card), LED right source, photodiode, optical cell and pressure proof windows. The HpHS also has an aluminum pressure housing that holds a rechargeable lithium-ion battery or a lithium battery for the power supply (DC 24 V). The HpHS is correcting the value of the potentiometric pH sensor (measuring frequently) by the value of the spectrophotometric pH sensor (measuring less frequently). It is possible to calibrate in

  7. A Cytosolic Arabidopsis d-Xylulose Kinase Catalyzes the Phosphorylation of 1-Deoxy-d-Xylulose into a Precursor of the Plastidial Isoprenoid Pathway1

    Science.gov (United States)

    Hemmerlin, Andréa; Tritsch, Denis; Hartmann, Michael; Pacaud, Karine; Hoeffler, Jean-François; van Dorsselaer, Alain; Rohmer, Michel; Bach, Thomas J.

    2006-01-01

    Plants are able to integrate exogenous 1-deoxy-d-xylulose (DX) into the 2C-methyl-d-erythritol 4-phosphate pathway, implicated in the biosynthesis of plastidial isoprenoids. Thus, the carbohydrate needs to be phosphorylated into 1-deoxy-d-xylulose 5-phosphate and translocated into plastids, or vice versa. An enzyme capable of phosphorylating DX was partially purified from a cell-free Arabidopsis (Arabidopsis thaliana) protein extract. It was identified by mass spectrometry as a cytosolic protein bearing d-xylulose kinase (XK) signatures, already suggesting that DX is phosphorylated within the cytosol prior to translocation into the plastids. The corresponding cDNA was isolated and enzymatic properties of a recombinant protein were determined. In Arabidopsis, xylulose kinases are encoded by a small gene family, in which only two genes are putatively annotated. The additional gene is coding for a protein targeted to plastids, as was proved by colocalization experiments using green fluorescent protein fusion constructs. Functional complementation assays in an Escherichia coli strain deleted in xk revealed that the cytosolic enzyme could exclusively phosphorylate xylulose in vivo, not the enzyme that is targeted to plastids. xk activities could not be detected in chloroplast protein extracts or in proteins isolated from its ancestral relative Synechocystis sp. PCC 6803. The gene encoding the plastidic protein annotated as “xylulose kinase” might in fact yield an enzyme having different phosphorylation specificities. The biochemical characterization and complementation experiments with DX of specific Arabidopsis knockout mutants seedlings treated with oxo-clomazone, an inhibitor of 1-deoxy-d-xylulose 5-phosphate synthase, further confirmed that the cytosolic protein is responsible for the phosphorylation of DX in planta. PMID:16920870

  8. Initiation of proteolysis of yeast fructose-1,6-bisphosphatase by pH-control of adenylate cyclase

    International Nuclear Information System (INIS)

    Holzer, H.; Purwin, C.; Pohlig, G.; Scheffers, W.A.; Nicolay, K.

    1986-01-01

    Addition of fermentable sugars or uncouplers such as CCCP to resting yeast cells grown on glucose initiates phosphorylation of fructose-1,6-bisphosphatase (FBPase). There is good evidence that phosphorylation marks FBPase for proteolytic degradation. 31 P-NMR measurements of the cytosolic pH of yeast cells demonstrated a decrease of the cytosolic pH from 7.0 to 6.5 after addition of glucose or CCCP to starved yeast. Activity of adenylate cyclase in permeabilized yeast cells increases 2-3-fold when the pH is lowered from 7.0 to 6.5. It is concluded that pH controlled activation of adenylate cyclase causes the previously described increase in cyclic AMP which leads to phosphorylation of FBPase and finally to proteolysis of FBPase

  9. [Alpha but not beta-adrenergic stimulation has a positive inotropic effect associated with alkalinization of intracellular pH].

    Science.gov (United States)

    Gambassi, G; Lakatta, E G; Capogrossi, M C

    1991-01-01

    There is increasing evidence that alpha-adrenoceptors also exist in the myocardium and that an increase in force of contraction may be produced by stimulation of these sites. This positive inotropism seems to be dependent either on an increased amount of Ca++ released into the cytosol with each action potential or on increased myofilament responsiveness. In contrast, beta-adrenergic stimulation reduces the sensitivity of the contractile proteins and the positive inotropic effect is due to the activation of L-type calcium channels on the sarcolemma. We used single, isolated, enzymatically dissociated, adult rat ventricular myocytes. Cells were loaded either with the ester derivative of the Ca++ probe Indo-1 or with the intracellular pH probe Snarf-1 and at the same time we measured the contractile parameters and monitored the fluorescence as an index of intracellular calcium concentration or pH value. The single cells (bicarbonate buffer continuously gassed with O2 95%, CO2 5%, Ca++ 1.5 mM, field stimulation 0.5 Hz) were exposed to phenylephrine (50 microM) and nadolol (1 microM). Alpha-adrenergic stimulation increased twitch amplitude (delta ES = 1.93 +/- 0.77, n = 8; p less than 0.05) and showed only a slight increase in Ca++ transient. On the other end, the positive inotropic effect (delta ES = 2.84 +/- 0.86, n = 4; p less than 0.02) obtained with beta-adrenergic stimulation (isoproterenol 50 nM, bicarbonate buffer, Ca++ 0.5 mM, field stimulation 0.2 Hz) was always associated with a large increase in intracellular Ca++ concentration. Isoproterenol did not change intracellular pH (delta pH = 0.006 +/- 0.006, n = 4; NS) while phenylephrine increased it significantly (delta pH = 0.055 +/- 0.011, n = 8; p less than 0.002). Moreover, there was a statistically significant correlation between delta ES and delta pH (R2 = 0.532; p less than 0.05) when phenylephrine was present. This alkalinization as well as the increased contractility was antagonized by treatment with

  10. Identification and characterization of two novel cytosolic sulfotransferases, SULT1 ST7 and SULT1 ST8, from zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Liu, T.-A. [Department of Pharmacology, College of Pharmacy, University of Toledo, Toledo, OH 43606 (United States); Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan (China); Bhuiyan, Shakhawat [Division of Arts and Sciences, Jarvis Christian College, Hawkins, TX 75765 (United States); Snow, Rhodora [School of Mathematics and Science, J. Sargeant Reynolds Community College, Richmond, VA 23285 (United States); Yasuda, Shin; Yasuda, Tomoko [Department of Pharmacology, College of Pharmacy, University of Toledo, Toledo, OH 43606 (United States); Yang, Y.-S. [Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan (China); Williams, Frederick E.; Liu, M.-Y.; Suiko, Masahito [Department of Pharmacology, College of Pharmacy, University of Toledo, Toledo, OH 43606 (United States); Carter, Glendora [School of Mathematics and Science, J. Sargeant Reynolds Community College, Richmond, VA 23285 (United States); Liu, M.-C. [Department of Pharmacology, College of Pharmacy, University of Toledo, Toledo, OH 43606 (United States)], E-mail: ming.liu@utoledo.edu

    2008-08-29

    Cytosolic sulfotransferases (SULTs) constitute a family of Phase II detoxification enzymes that are involved in the protection against potentially harmful xenobiotics as well as the regulation and homeostasis of endogenous compounds. Compared with humans and rodents, the zebrafish serves as an excellent model for studying the role of SULTs in the detoxification of environmental pollutants including environmental estrogens. By searching the expressed sequence tag database, two zebrafish cDNAs encoding putative SULTs were identified. Sequence analysis indicated that these two putative zebrafish SULTs belong to the SULT1 gene family. The recombinant form of these two novel zebrafish SULTs, designated SULT1 ST7 and SULT1 ST8, were expressed using the pGEX-2TK glutathione S-transferase (GST) gene fusion system and purified from transformed BL21 (DE3) cells. Purified GST-fusion protein form of SULT1 ST7 and SULT1 ST8 exhibited strong sulfating activities toward environmental estrogens, particularly hydroxylated polychlorinated biphenyls (PCBs), among various endogenous and xenobiotic compounds tested as substrates. pH-dependence experiments showed that SULT1 ST7 and SULT1 ST8 displayed pH optima at 6.5 and 8.0, respectively. Kinetic parameters of the two enzymes in catalyzing the sulfation of catechin and chlorogenic acid as well as 3-chloro-4-biphenylol were determined. Developmental expression experiments revealed distinct patterns of expression of SULT1 ST7 and SULT1 ST8 during embryonic development and throughout the larval stage onto maturity.

  11. Ach1 is involved in shuttling mitochondrial acetyl units for cytosolic C2 provision in Saccharomyces cerevisiae lacking pyruvate decarboxylase

    DEFF Research Database (Denmark)

    Chen, Yun; Zhang, Yiming; Siewers, Verena

    2015-01-01

    Saccharomyces cerevisiae, acetyl-CoA is compartmentalized in the cytosol, mitochondrion, peroxisome and nucleus, and cannot be directly transported between these compartments. With the acetyl-carnitine or glyoxylate shuttle, acetyl-CoA produced in peroxisomes or the cytoplasm can be transported...

  12. Cytosolic triglycerides and oxidative stress in central obesity : the missing link between excessive atherosclerosis, endothelial dysfunction, and beta-cell failure?

    NARCIS (Netherlands)

    Bakker, SJL; IJzerman, RG; Teerlink, T; Westerhoff, HV; Gans, ROB; Heine, RJ

    Central obesity is increasingly recognized as a risk factor for atherosclerosis and type 2 diabetes mellitus. Here we present a hypothesis that may explain the excess atherosclerosis, endothelial dysfunction and progressive beta-cell failure. Central obesity is associated with increased cytosolic

  13. Radiation-induced apoptosis of stem/progenitor cells in human umbilical cord blood is associated with alterations in reactive oxygen and intracellular pH

    International Nuclear Information System (INIS)

    Hayashi, Tomonori; Hayashi, Ikue; Shinohara, Tomoko; Morishita, Yukari; Nagamura, Hiroko; Kusunoki, Yoichiro; Kyoizumi, Seishi; Seyama, Toshio; Nakachi, Kei

    2004-01-01

    To investigate the sensitivity of human hematopoietic stem cell populations to radiation and its relevance to intracellular events, specifically alteration in cellular energy production systems, we examined the frequency of apoptotic cells, generation of superoxide anions (O2-), and changes in cytosol pH in umbilical cord blood (UCB) CD34 + /CD38 - , CD34 + /CD38 + and CD34 - /CD38 + cells before and after 5Gy of X-irradiation. Human UCB mononucleated cells were used in this study. After X-irradiation and staining subgroups of the cells with fluorescence (FITC, PE, or CY)-labeled anti-CD34 and anti-CD38 antibodies, analyses were performed by FACScan using as stains 7-amino-actinomycin D (7-AAD) for the detection of apoptosis, and hydroethidine (HE) for the measurement of O2- generation in the cells. For intracellular pH, image analysis was conducted using confocal laser microscopy after irradiation and staining with carboxy-SNAFR-1. The frequency of apoptotic cells, as determined by cell staining with 7-AAD, was highest in the irradiated CD34 + /CD38 - cell population, where the level of O2- detected by the oxidation of HE was also most highly elevated. Intracellular pH measured with carboxy-SNARF-1-AM by image cytometer appeared to be lowest in the same irradiated CD34 + /CD38 - cell population, and this intracellular pH decreased as early as 4h post-irradiation, virtually simultaneous with the significant elevation of O2- generation. These results suggest that the CD34 + /CD38 - stem cell population is sensitive to radiation-induced apoptosis as well as production of intracellular O2-, compare to more differentiated CD34 + /CD38 + and CD34 - /CD38 + cells and that its intracellular pH declines at an early phase in the apoptosis process

  14. Profiling of cytosolic and mitochondrial H2O2 production using the H2O2-sensitive protein HyPer in LPS-induced microglia cells.

    Science.gov (United States)

    Park, Junghyung; Lee, Seunghoon; Lee, Hyun-Shik; Lee, Sang-Rae; Lee, Dong-Seok

    2017-07-27

    Dysregulation of the production of pro-inflammatory mediators in microglia exacerbates the pathologic process of neurodegenerative disease. ROS actively affect microglia activation by regulating transcription factors that control the expression of pro-inflammatory genes. However, accurate information regarding the function of ROS in different subcellular organelles has not yet been established. Here, we analyzed the pattern of cytosolic and mitochondrial H 2 O 2 formation in LPS-activated BV-2 microglia using the H 2 O 2- sensitive protein HyPer targeted to specific subcellular compartments. Our results show that from an early time, cytosolic H 2 O 2 started increasing constantly, whereas mitochondrial H 2 O 2 rapidly increased later. In addition, we found that MAPK affected cytosolic H 2 O 2 , but not mitochondrial H 2 O 2 . Consequently, our study provides the basic information about subcellular H 2 O 2 generation in activated microglia, and a useful tool for investigating molecular targets that can modulate neuroinflammatory responses. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Construction of Potent Recombinant Strain Through Intergeneric Protoplast Fusion in Endophytic Fungi for Anticancerous Enzymes Production Using Rice Straw.

    Science.gov (United States)

    El-Gendy, Mervat Morsy Abbas Ahmed; Al-Zahrani, Salha Hassan Mastour; El-Bondkly, Ahmed Mohamed Ahmed

    2017-09-01

    Among all fungal endophytes isolates derived from different ethno-medical plants, the hyper-yield L-asparaginase and L-glutaminase wild strains Trichoderma sp. Gen 9 and Cladosporium sp. Gen 20 using rice straw under solid-state fermentation (SSF) were selected. The selected strains were used as parents for the intergeneric protoplast fusion program to construct recombinant strain for prompt improvement production of these enzymes in one recombinant strain. Among 21 fusants obtained, the recombinant strain AYA 20-1, with 2.11-fold and 2.58-fold increase in L-asparaginase and L-glutaminase activities more than the parental isolates Trichoderma sp. Gen 9 and Cladosporium sp. Gen 20, respectively, was achieved using rice straw under SSF. Both therapeutic enzymes L-asparaginase and L-glutaminase were purified and characterized from the culture supernatant of the recombinant AYA 20-1 strain with molecular weights of 50.6 and 83.2 kDa, respectively. Both enzymes were not metalloenzymes. Whereas thiol group blocking reagents such as p-chloromercurybenzoate and iodoacetamide totally inhibited L-asparaginase activity, which refer to sulfhydryl groups and cysteine residues involved in its catalytic activity, they have no effect toward L-glutaminase activity. Interestingly, potent anticancer, antioxidant, and antimicrobial activities were detected for both enzymes.

  16. Protein Delivery System Containing a Nickel-Immobilized Polymer for Multimerization of Affinity-Purified His-Tagged Proteins Enhances Cytosolic Transfer.

    Science.gov (United States)

    Postupalenko, Viktoriia; Desplancq, Dominique; Orlov, Igor; Arntz, Youri; Spehner, Danièle; Mely, Yves; Klaholz, Bruno P; Schultz, Patrick; Weiss, Etienne; Zuber, Guy

    2015-09-01

    Recombinant proteins with cytosolic or nuclear activities are emerging as tools for interfering with cellular functions. Because such tools rely on vehicles for crossing the plasma membrane we developed a protein delivery system consisting in the assembly of pyridylthiourea-grafted polyethylenimine (πPEI) with affinity-purified His-tagged proteins pre-organized onto a nickel-immobilized polymeric guide. The guide was prepared by functionalization of an ornithine polymer with nitrilotriacetic acid groups and shown to bind several His-tagged proteins. Superstructures were visualized by electron and atomic force microscopy using 2 nm His-tagged gold nanoparticles as probes. The whole system efficiently carried the green fluorescent protein, single-chain antibodies or caspase 3, into the cytosol of living cells. Transduction of the protease caspase 3 induced apoptosis in two cancer cell lines, demonstrating that this new protein delivery method could be used to interfere with cellular functions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Cytosolically expressed PrP GPI-signal peptide interacts with mitochondria.

    Science.gov (United States)

    Guizzunti, Gianni; Zurzolo, Chiara

    2015-01-01

    We previously reported that PrP GPI-anchor signal peptide (GPI-SP) is specifically degraded by the proteasome. Additionally, we showed that the point mutation P238S, responsible for a genetic form of prion diseases, while not affecting the GPI-anchoring process, results in the accumulation of PrP GPI-SP, suggesting the possibility that PrP GPI-anchor signal peptide could play a role in neurodegenerative prion diseases. We now show that PrP GPI-SP, when expressed as a cytosolic peptide, is able to localize to the mitochondria and to induce mitochondrial fragmentation and vacuolarization, followed by loss in mitochondrial membrane potential, ultimately resulting in apoptosis. Our results identify the GPI-SP of PrP as a novel candidate responsible for the impairment in mitochondrial function involved in the synaptic pathology observed in prion diseases, establishing a link between PrP GPI-SP accumulation and neuronal death.

  18. From Proteomics to Structural Studies of Cytosolic/Mitochondrial-Type Thioredoxin Systems in Barley Seeds

    DEFF Research Database (Denmark)

    Shahpiri, Azar; Svensson, Birte; Finnie, Christine

    2009-01-01

    Thioredoxins (Trx) are ubiquitous proteins that participate in thiol disulfide reactions via two active site cysteine residues, allowing Trx to reduce disulfide bonds in target proteins. Recent progress in proteome analysis has resulted in identification of a wide range of potential target proteins...... for Trx, indicating that Trx plays a key role in several aspects of cell metabolism. In contrast to other organisms, plants contain multiple forms of Trx that are classified based on their primary structures and sub-cellular localization. The reduction of cytosolic and mitochondrial types of Trx...

  19. Effect of C-terminal of human cytosolic thymidine kinase (TK1) on in vitro stability and enzymatic properties

    DEFF Research Database (Denmark)

    Munch-Petersen, Birgitte; Munch-Petersen, Sune; Berenstein, Dvora

    2006-01-01

    Thymidine kinase (TK1) is a key enzyme in the salvage pathway of nucleotide metabolism and catalyzes the first rate-limiting step in the synthesis of dTTP, transfer of a gamma-phosphate group from a nucleoside triphosphate to the 5′-hydroxyl group of thymidine, thus forming dTMP. TK1 is cytosolic...

  20. PH sensor

    OpenAIRE

    Artero, C.; Nogueras Cervera, Marc; Manuel Lázaro, Antonio

    2012-01-01

    This paper presents a design of a marine instrument for the measurement of pH in seawater. The measurement system consists of a pH electrode connected to the underwater observatory OBSEA. The extracted data are useful for scientists researching ocean acidification. Peer Reviewed

  1. Radiosensitivity of Nicotiana protoplasts. Action on cell; cycle effects of low dose and fractionated irradiations; biological repair

    International Nuclear Information System (INIS)

    Magnien, E.

    1981-10-01

    Leaf protoplasts of Nicotiana plumbaginifolia and Nicotiana sylvestris demonstrate five main qualities: they can be maintained as haploid lines; they constitute starting populations with a remarkable cytological homogeneity; they show a transient initial lag-phase; they yield very high plating efficiencies and retain permanently a complete differentiation capacity; being derived of a cell wall, they appear well adapted for fusion experiments or enzymatic dosages. The resumption of mitotic activity was followed by cytophotometric measurements, labelling experiments, nuclear sizing and enzymatic assays. The action of 5 Gy gamma-ray irradiations delayed entrance in the S-phase, provoked an otherwise not verified dependency between transcription, translation and protein synthesis, increased nuclear volumes in the G2-phase, and slightly stimulated the activity of a repair enzyme. The plating efficiency was a sensitive end-point which allowed the evaluation of the biological effectiveness of low to medium radiation-doses after gamma-ray and fast neutron irradiations. The neutron dose-RBE relationship increased from 3 to 25 when the dose decreased from 5 Gy to 5 mGy. When fractionated into low single doses only, a neutron dose of 300 mGy markedly increased its biological effectiveness: this phenomenon could not be explained by cell progression, and necessitated additional hypotheses involving other mechanisms in the specific action of low radiation doses. Radiation-induced UDS was measured in presence of aphidicolin. A beta-like DNA-polymerase was shown to be definitely involved in nuclear repair synthesis [fr

  2. Effect of starvation, diabetes and insulin on the casein kinase 2 from rat liver cytosol.

    OpenAIRE

    Martos, C; Plana, M; Guasch, M D; Itarte, E

    1985-01-01

    Starvation, diabetes and insulin did not alter the concentration of casein kinases in rat liver cytosol. However, the Km for casein of casein kinase 2 from diabetic rats was about 2-fold lower than that from control animals. Administration of insulin to control rats did not alter this parameter, but increased the Km for casein of casein kinase 2 in diabetic rats. Starvation did not affect the kinetic constants of casein kinases. The effect of diabetes on casein kinase 2 persisted after partia...

  3. Stereoselective sulfate conjugation of racemic 4-hydroxypropranolol by human and rat liver cytosol

    Energy Technology Data Exchange (ETDEWEB)

    Walle, T.; Walle, U.K. (Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston (USA))

    1991-03-01

    The objective of this study was to determine the stereochemistry of sulfoconjugation of a chiral phenolic amine drug, 4-hydroxypropranolol (HOP), by the human liver. The reaction was catalyzed by the 100,000 g cytosol as the phenolsulfotransferase (PST) enzyme source with PAP35S as the co-substrate. The enantiomers of the intact sulfate conjugate formed, (+)-HOP35S and (-)-HOP35S, were separated by HPLC and measured by liquid scintillation spectrometry. Complex velocity vs. substrate concentration curves were obtained with two peaks of activity, one at 3 microM (high affinity) and one at 500 microM (low affinity). The high-affinity reaction demonstrated a high degree of stereoselectivity. Whereas the affinity of the enantiomers for this reaction was identical, with a very low apparent KM value of 0.59 microM, the apparent Vmax value for (+)-HOPS formation was 4.6-fold higher than for (-)-HOPS. In sharp contrast, the low-affinity reaction, with an apparent KM of 65 microM, was not stereoselective. Inhibition of the high-affinity reaction by elevated temperature, but not by dichloronitrophenol, indicated that this activity was due to a monoamine form of PST. Inhibition of the low-affinity reaction by dichloronitrophenol, but not by elevated temperature, indicated that this activity was due to a phenol form of PST. As a comparison, experiments with the rat liver cytosol demonstrated only one activity, with apparent KM values of 50 microM for both enantiomers and opposite stereoselectivity in maximum velocity compared to humans, {plus minus}-HOPS ratio 0.72. The results of this study demonstrate stereoselectivity in human hepatic sulfation of a chiral phenolic amine, with clear differences between PST isoenzymes.

  4. Ca2+-mobilizing agonists increase mitochondrial ATP production to accelerate cytosolic Ca2+ removal: aberrations in human complex I deficiency.

    NARCIS (Netherlands)

    Visch, H.J.; Koopman, W.J.H.; Zeegers, D.; Emst-de Vries, S.E. van; Kuppeveld, F.J.M. van; Heuvel, L.W. van den; Smeitink, J.A.M.; Willems, P.H.G.M.

    2006-01-01

    Previously, we reported that both the bradykinin (Bk)-induced increase in mitochondrial ATP concentration ([ATP]M) and the rate of cytosolic Ca2+ removal are significantly decreased in skin fibroblasts from a patient with an isolated complex I deficiency. Here we demonstrate that the mitochondrial

  5. Role of calbindin-D9k in buffering cytosolic free Ca2+ ions in pig duodenal enterocytes.

    Science.gov (United States)

    Schröder, B; Schlumbohm, C; Kaune, R; Breves, G

    1996-05-01

    1. The aim of the present study was to test whether the vitamin D-dependent Ca(2+)-binding protein calbindin-D9k could function as an important cytosolic Ca2+ buffer in duodenal enterocytes while facilitating transepithelial active transport of Ca2+ ions. For the investigations we used dual-wavelength, fluorescence ratio imaging, with fura-2 as the Ca(2+)-sensitive dye, to measure changes in cytosolic concentrations of free Ca2+ ions ([Ca2+]i) in isolated pig duodenal enterocytes affected by different cytosolic calbindin-D9k concentrations. 2. Epithelial cells were obtained from weaned piglets with normal calbindin-D9k concentrations (con-piglets), from piglets with low calbindin-D9k levels due to inherited calcitriol deficiency caused by defective renal 25-hydroxycholecalciferol D3-1 alpha-hydroxylase activity (def-piglets), and from piglets with reconstituted calbindin-D9k concentrations, i.e. def-animals treated with high doses of vitamin D3 which elevated plasma calcitriol levels by extrarenal production (def-D3-piglets). Basal levels of [Ca2+]i ranged between 170 and 205 nM and did not differ significantly between the groups. 3. After addition of 5 mM theophylline, the [Ca2+]i in enterocytes from con-piglets doubled during the 10 min incubation. This effect, however, was three times higher in enterocytes from def-piglets compared with those from con-piglets. Similar results were obtained after 4 min incubation of enterocytes from con- and def-piglets in the presence of 1 microM ionomycin. In preparations from def-D3-piglets, ionomycin-induced increases in [Ca2+]i were significantly lower compared with enterocytes from def-piglets and were not different from the control values. 4. From the results, substantial support is given for the hypothesis that one of the major functions of mucosal calbindin-D9k is the effective buffering of Ca2+ ions.

  6. Cerebral blood flow modulation by Basal forebrain or whisker stimulation can occur independently of large cytosolic Ca2+ signaling in astrocytes.

    Science.gov (United States)

    Takata, Norio; Nagai, Terumi; Ozawa, Katsuya; Oe, Yuki; Mikoshiba, Katsuhiko; Hirase, Hajime

    2013-01-01

    We report that a brief electrical stimulation of the nucleus basalis of Meynert (NBM), the primary source of cholinergic projection to the cerebral cortex, induces a biphasic cerebral cortical blood flow (CBF) response in the somatosensory cortex of C57BL/6J mice. This CBF response, measured by laser Doppler flowmetry, was attenuated by the muscarinic type acetylcholine receptor antagonist atropine, suggesting a possible involvement of astrocytes in this type of CBF modulation. However, we find that IP3R2 knockout mice, which lack cytosolic Ca2+ surges in astrocytes, show similar CBF changes. Moreover, whisker stimulation resulted in similar degrees of CBF increase in IP3R2 knockout mice and the background strain C57BL/6J. Our results show that neural activity-driven CBF modulation could occur without large cytosolic increases of Ca2+ in astrocytes.

  7. PhD on Track – designing learning for PhD students

    Directory of Open Access Journals (Sweden)

    Gunhild Austrheim

    2013-12-01

    Full Text Available Three years ago we started the project "Information Management for Knowledge Creation". The project was initiated to create online information literacy modules for PhD students. The result of our endeavours, PhD on Track, will be launched in May 2013. The initial stage of the project was mapping out the information behaviour of PhD students, as well as what services they require from the library through a literature review and a focus group study. The findings of these inquiries formed the knowledge base from which we developed our information literacy modules. Our paper will focus on the interaction between content production and user testing when creating PhD on Track. Methods: User testing has been employed throughout the production stage. We have tested navigation and organisation of the web site, content and usability. The project team have conducted expert testing. Analysis: The results from our user testing have played an important part in decisions concerning content production. Our working hypothesis was that the PhD students would want an encyclopaedic website, a place to quickly find answers. However, the user tests revealed that PhD students understood and expected the website to be learning modules. Conclusions: The PhD students in the tests agreed that a site such as this would be useful, especially to new PhD students. They also liked the design, but had some qualms with the level of information. They preferred shorter text, but with more depth. The students would likewise have preferred more practical examples, more illustrations and more discipline specific information. The current content of PhD on Track reflects the feedback from the user testing. We have retained initial ideas such as one section for reviewing and discovering research literature and one section for publishing PhD research work. In addition, we have included more practical examples to indicate efficient workflows or relevant actions in context. Illustrations

  8. SAXS analysis of a soluble cytosolic NgBR construct including extracellular and transmembrane domains.

    Directory of Open Access Journals (Sweden)

    Joshua Holcomb

    Full Text Available The Nogo-B receptor (NgBR is involved in oncogenic Ras signaling through directly binding to farnesylated Ras. It recruits farnesylated Ras to the non-lipid-raft membrane for interaction with downstream effectors. However, the cytosolic domain of NgBR itself is only partially folded. The lack of several conserved secondary structural elements makes this domain unlikely to form a complete farnesyl binding pocket. We find that inclusion of the extracellular and transmembrane domains that contain additional conserved residues to the cytosolic region results in a well folded protein with a similar size and shape to the E.coli cis-isoprenyl transferase (UPPs. Small Angle X-ray Scattering (SAXS analysis reveals the radius of gyration (Rg of our NgBR construct to be 18.2 Å with a maximum particle dimension (Dmax of 61.0 Å. Ab initio shape modeling returns a globular molecular envelope with an estimated molecular weight of 23.0 kD closely correlated with the calculated molecular weight. Both Kratky plot and pair distribution function of NgBR scattering reveal a bell shaped peak which is characteristic of a single globularly folded protein. In addition, circular dichroism (CD analysis reveals that our construct has the secondary structure contents similar to the UPPs. However, this result does not agree with the currently accepted topological orientation of NgBR which might partition this construct into three separate domains. This discrepancy suggests another possible NgBR topology and lends insight into a potential molecular basis of how NgBR facilitates farnesylated Ras recruitment.

  9. Dynamic changes in cytosolic ATP levels in cultured glutamatergic neurons during NMDA-induced synaptic activity supported by glucose or lactate

    DEFF Research Database (Denmark)

    Lange, Sofie Cecilie; Winkler, Ulrike; Andresen, Lars

    2015-01-01

    is supported equally well by both glucose and lactate, and that a pulse of NMDA causes accumulation of Ca(2+) in the mitochondrial matrix. In summary, we have shown that ATP homeostasis during neurotransmission activity in cultured neurons is supported by both glucose and lactate. However, ATP homeostasis...... biosensor Ateam1.03YEMK. While inducing synaptic activity by subjecting cultured neurons to two 30 s pulses of NMDA (30 µM) with a 4 min interval, changes in relative ATP levels were measured in the presence of lactate (1 mM), glucose (2.5 mM) or the combination of the two. ATP levels reversibly declined...... in the presence of glucose following the 2nd pulse of NMDA (approx. 10 vs. 20 %). Further, cytosolic Ca(2+) homeostasis during NMDA-induced synaptic transmission is partially inhibited by verapamil indicating that voltage-gated Ca(2+) channels are activated. Lastly, we showed that cytosolic Ca(2+) homeostasis...

  10. Cytosolic monoterpene biosynthesis is supported by plastid-generated geranyl diphosphate substrate in transgenic tomato fruits.

    Science.gov (United States)

    Gutensohn, Michael; Orlova, Irina; Nguyen, Thuong T H; Davidovich-Rikanati, Rachel; Ferruzzi, Mario G; Sitrit, Yaron; Lewinsohn, Efraim; Pichersky, Eran; Dudareva, Natalia

    2013-08-01

    Geranyl diphosphate (GPP), the precursor of most monoterpenes, is synthesized in plastids from dimethylallyl diphosphate and isopentenyl diphosphate by GPP synthases (GPPSs). In heterodimeric GPPSs, a non-catalytic small subunit (GPPS-SSU) interacts with a catalytic large subunit, such as geranylgeranyl diphosphate synthase, and determines its product specificity. Here, snapdragon (Antirrhinum majus) GPPS-SSU was over-expressed in tomato fruits under the control of the fruit ripening-specific polygalacturonase promoter to divert the metabolic flux from carotenoid formation towards GPP and monoterpene biosynthesis. Transgenic tomato fruits produced monoterpenes, including geraniol, geranial, neral, citronellol and citronellal, while exhibiting reduced carotenoid content. Co-expression of the Ocimum basilicum geraniol synthase (GES) gene with snapdragon GPPS-SSU led to a more than threefold increase in monoterpene formation in tomato fruits relative to the parental GES line, indicating that the produced GPP can be used by plastidic monoterpene synthases. Co-expression of snapdragon GPPS-SSU with the O. basilicum α-zingiberene synthase (ZIS) gene encoding a cytosolic terpene synthase that has been shown to possess both sesqui- and monoterpene synthase activities resulted in increased levels of ZIS-derived monoterpene products compared to fruits expressing ZIS alone. These results suggest that re-direction of the metabolic flux towards GPP in plastids also increases the cytosolic pool of GPP available for monoterpene synthesis in this compartment via GPP export from plastids. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  11. Subcellular Distribution of NAD+ between Cytosol and Mitochondria Determines the Metabolic Profile of Human Cells*

    Science.gov (United States)

    VanLinden, Magali R.; Dölle, Christian; Pettersen, Ina K. N.; Kulikova, Veronika A.; Niere, Marc; Agrimi, Gennaro; Dyrstad, Sissel E.; Palmieri, Ferdinando; Nikiforov, Andrey A.; Tronstad, Karl Johan; Ziegler, Mathias

    2015-01-01

    The mitochondrial NAD pool is particularly important for the maintenance of vital cellular functions. Although at least in some fungi and plants, mitochondrial NAD is imported from the cytosol by carrier proteins, in mammals, the mechanism of how this organellar pool is generated has remained obscure. A transporter mediating NAD import into mammalian mitochondria has not been identified. In contrast, human recombinant NMNAT3 localizes to the mitochondrial matrix and is able to catalyze NAD+ biosynthesis in vitro. However, whether the endogenous NMNAT3 protein is functionally effective at generating NAD+ in mitochondria of intact human cells still remains to be demonstrated. To modulate mitochondrial NAD+ content, we have expressed plant and yeast mitochondrial NAD+ carriers in human cells and observed a profound increase in mitochondrial NAD+. None of the closest human homologs of these carriers had any detectable effect on mitochondrial NAD+ content. Surprisingly, constitutive redistribution of NAD+ from the cytosol to the mitochondria by stable expression of the Arabidopsis thaliana mitochondrial NAD+ transporter NDT2 in HEK293 cells resulted in dramatic growth retardation and a metabolic shift from oxidative phosphorylation to glycolysis, despite the elevated mitochondrial NAD+ levels. These results suggest that a mitochondrial NAD+ transporter, similar to the known one from A. thaliana, is likely absent and could even be harmful in human cells. We provide further support for the alternative possibility, namely intramitochondrial NAD+ synthesis, by demonstrating the presence of endogenous NMNAT3 in the mitochondria of human cells. PMID:26432643

  12. A cytosolic protein factor from the naked mole-rat activates proteasomes of other species and protects these from inhibition

    Science.gov (United States)

    Rodriguez, Karl A.; Osmulski, Pawel A.; Pierce, Anson; Weintraub, Susan T.; Gaczynska, Maria; Buffenstein, Rochelle

    2015-01-01

    The naked mole-rat maintains robust proteostasis and high levels of proteasome-mediated proteolysis for most of its exceptional (~31y) life span. Here, we report that the highly active proteasome from the naked mole-rat liver resists attenuation by a diverse suite of proteasome-specific small molecule inhibitors. Moreover, mouse, human, and yeast proteasomes exposed to the proteasome-depleted, naked mole-rat cytosolic fractions, recapitulate the observed inhibition resistance, and mammalian proteasomes also show increased activity. Gel filtration coupled with mass spectrometry and atomic force microscopy indicates that these traits are supported by a protein factor that resides in the cytosol. This factor interacts with the proteasome and modulates its activity. Although HSP72 and HSP40 (Hdj1) are among the constituents of this factor, the observed phenomenon, such as increasing peptidase activity and protecting against inhibition cannot be reconciled with any known chaperone functions. This novel function may contribute to the exceptional protein homeostasis in the naked mole-rat and allow it to successfully defy aging. PMID:25018089

  13. Alkaline pH sensor molecules.

    Science.gov (United States)

    Murayama, Takashi; Maruyama, Ichiro N

    2015-11-01

    Animals can survive only within a narrow pH range. This requires continual monitoring of environmental and body-fluid pH. Although a variety of acidic pH sensor molecules have been reported, alkaline pH sensor function is not well understood. This Review describes neuronal alkaline pH sensors, grouped according to whether they monitor extracellular or intracellular alkaline pH. Extracellular sensors include the receptor-type guanylyl cyclase, the insulin receptor-related receptor, ligand-gated Cl- channels, connexin hemichannels, two-pore-domain K+ channels, and transient receptor potential (TRP) channels. Intracellular sensors include TRP channels and gap junction channels. Identification of molecular mechanisms underlying alkaline pH sensing is crucial for understanding how animals respond to environmental alkaline pH and how body-fluid pH is maintained within a narrow range. © 2015 Wiley Periodicals, Inc.

  14. Localization of age-related macular degeneration-associated ARMS2 in cytosol, not mitochondria

    Science.gov (United States)

    Wang, Gaofeng; Spencer, Kylee L.; Court, Brenda L.; Olson, Lana M.; Scott, William K.; Haines, Jonathan L.; Pericak-Vance, Margaret A.

    2010-01-01

    PURPOSE To analyze the relationship between ARMS2 and HTRA1 in the association with age-related macular degeneration (AMD) in an independent case-control dataset, and to investigate the subcellular localization of the ARMS2 protein in an in vitro system. METHOD Two SNPs in ARMS2 and HTRA1 were genotyped in 685 cases and 269 controls by Taqman Assay. Allelic association was tested by a χ2 test. A likelihood ratio test (LRT) of full vs. reduced models was utilized to analyze the interaction between ARMS2 and smoking and HTRA1 and smoking, after adjusting for CFH and age. Immunofluorescence and immunoblot were applied to localize ARMS2 in retinal epithelial ARPE-19 cells and COS7 cell transfected by ARMS2 constructs. RESULT Both significantly associated SNP rs10490924 and rs11200638 (P<0.0001) are in strong linkage disequilibrium (LD) (D′=0.97, r2=0.93) that generates virtually identical association test and odds ratios. In separate logistic regression models the interaction effect for both smoking with ARMS2 and with HTRA1 was not statistically significant. Immunofluorescence and immunoblot show that both endogenous and exogenous ARMS2 are mainly distributed in the cytosol, not the mitochondria. Comparing to wild type, ARMS2 A69S is more likely to be associated with cytoskeleton in COS7 cells. CONCLUSIONS The significant associations in ARMS2 and HTRA1 are with polymorphisms in strong LD that confer virtually identical risks, preventing differentiation at the statistical level. We found that ARMS2 was mainly distributed in the cytosol, not in mitochondrial outer membrane as previously reported, suggesting that ARMS2 may not confer risk to AMD through the mitochondrial pathway. PMID:19255159

  15. The cytosolic domain of T-cell receptor ζ associates with membranes in a dynamic equilibrium and deeply penetrates the bilayer.

    Science.gov (United States)

    Zimmermann, Kerstin; Eells, Rebecca; Heinrich, Frank; Rintoul, Stefanie; Josey, Brian; Shekhar, Prabhanshu; Lösche, Mathias; Stern, Lawrence J

    2017-10-27

    Interactions between lipid bilayers and the membrane-proximal regions of membrane-associated proteins play important roles in regulating membrane protein structure and function. The T-cell antigen receptor is an assembly of eight single-pass membrane-spanning subunits on the surface of T lymphocytes that initiates cytosolic signaling cascades upon binding antigens presented by MHC-family proteins on antigen-presenting cells. Its ζ-subunit contains multiple cytosolic immunoreceptor tyrosine-based activation motifs involved in signal transduction, and this subunit by itself is sufficient to couple extracellular stimuli to intracellular signaling events. Interactions of the cytosolic domain of ζ (ζ cyt ) with acidic lipids have been implicated in the initiation and regulation of transmembrane signaling. ζ cyt is unstructured in solution. Interaction with acidic phospholipids induces structure, but its disposition when bound to lipid bilayers is controversial. Here, using surface plasmon resonance and neutron reflection, we characterized the interaction of ζ cyt with planar lipid bilayers containing mixtures of acidic and neutral lipids. We observed two binding modes of ζ cyt to the bilayers in dynamic equilibrium: one in which ζ cyt is peripherally associated with lipid headgroups and one in which it penetrates deeply into the bilayer. Such an equilibrium between the peripherally bound and embedded forms of ζ cyt apparently controls accessibility of the immunoreceptor tyrosine-based activation signal transduction pathway. Our results reconcile conflicting findings of the ζ structure reported in previous studies and provide a framework for understanding how lipid interactions regulate motifs to tyrosine kinases and may regulate the T-cell antigen receptor biological activities for this cell-surface receptor system.

  16. Decoding the Divergent Subcellular Location of Two Highly Similar Paralogous LEA Proteins

    Directory of Open Access Journals (Sweden)

    Marie-Hélène Avelange-Macherel

    2018-05-01

    Full Text Available Many mitochondrial proteins are synthesized as precursors in the cytosol with an N-terminal mitochondrial targeting sequence (MTS which is cleaved off upon import. Although much is known about import mechanisms and MTS structural features, the variability of MTS still hampers robust sub-cellular software predictions. Here, we took advantage of two paralogous late embryogenesis abundant proteins (LEA from Arabidopsis with different subcellular locations to investigate structural determinants of mitochondrial import and gain insight into the evolution of the LEA genes. LEA38 and LEA2 are short proteins of the LEA_3 family, which are very similar along their whole sequence, but LEA38 is targeted to mitochondria while LEA2 is cytosolic. Differences in the N-terminal protein sequences were used to generate a series of mutated LEA2 which were expressed as GFP-fusion proteins in leaf protoplasts. By combining three types of mutation (substitution, charge inversion, and segment replacement, we were able to redirect the mutated LEA2 to mitochondria. Analysis of the effect of the mutations and determination of the LEA38 MTS cleavage site highlighted important structural features within and beyond the MTS. Overall, these results provide an explanation for the likely loss of mitochondrial location after duplication of the ancestral gene.

  17. Activity of cAMP-dependent protein kinases and cAMP-binding proteins of rat kidney cytosol during dehydration

    International Nuclear Information System (INIS)

    Zelenina, M.N.; Solenov, E.I.; Ivanova, L.N.

    1985-01-01

    The activity of cAMP-dependent protein kinases, the binding of cAMP, and the spectrum of cAMP-binding proteins in the cytosol of the renal papilla was studied in intact rats and in rats after 24 h on a water-deprived diet. It was found that the activation of protein kinases by 10 -6 M cAMP is significantly higher in the experimental animals than in the intact animals. In chromatography on DEAE-cellulose, the positions of the peaks of specific reception of cAMP corresponded to the peaks of the regulatory subunits of cAMP-dependent protein kinases of types I and II. In this case, in intact animals more than 80% of the binding activity was detected in peaks II, whereas in rats subjected to water deprivation, more than 60% of the binding was observed in peak I. The general regulatory activity of the cytosol was unchanged in the experimental animals in comparison with intact animals. It is suggested that during dehydration there is an induction of the synthesis of the regulatory subunit of type I cAMP-dependent protein kinase in the renal papilla

  18. RNA interference targeting cytosolic NADP(+)-dependent isocitrate dehydrogenase exerts anti-obesity effect in vitro and in vivo.

    Science.gov (United States)

    Nam, Woo Suk; Park, Kwon Moo; Park, Jeen-Woo

    2012-08-01

    A metabolic abnormality in lipid biosynthesis is frequently associated with obesity and hyperlipidemia. Nicotinamide adenine dinucleotide phosphate-oxidase (NADPH) is an essential reducing equivalent for numerous enzymes required in fat and cholesterol biosynthesis. Cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) has been proposed as a key enzyme for supplying cytosolic NADPH. We report here that knockdown of IDPc expression by Ribonucleic acid (RNA) interference (RNAi) inhibited adipocyte differentiation and lipogenesis in 3T3-L1 preadipocytes and mice. Attenuated IDPc expression by IDPc small interfering RNA (siRNA) resulted in a reduction of differentiation and triglyceride level and adipogenic protein expression as well as suppression of glucose uptake in cultured adipocytes. In addition, the attenuation of Nox activity and Reactive oxygen species (ROS) generation accompanied with knockdown of IDPc was associated with inhibition of adipogenesis and lipogenesis. The loss of body weight and the reduction of triglyceride level were also observed in diet-induced obese mice transduced with IDPc short-hairpin (shRNA). Taken together, the inhibiting effect of RNAi targeting IDPc on adipogenesis and lipid biosynthesis is considered to be of therapeutic value in the treatment and prevention of obesity and obesity-associated metabolic syndrome. © 2012 Elsevier B.V. All rights reserved.

  19. An in-cell NMR study of monitoring stress-induced increase of cytosolic Ca{sup 2+} concentration in HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Hembram, Dambarudhar Shiba Sankar; Haremaki, Takahiro; Hamatsu, Jumpei; Inoue, Jin; Kamoshida, Hajime; Ikeya, Teppei; Mishima, Masaki [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0373 (Japan); Mikawa, Tsutomu [Cellular and Molecular Biology Unit, RIKEN Advanced Science Institute, Wako-shi, Saitama 351-0198 (Japan); Hayashi, Nobuhiro [Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 B-1, Nagatsuda-chou, Midori-ku, Yokohama, Kanagawa 226-8501 (Japan); Shirakawa, Masahiro [Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Ito, Yutaka, E-mail: ito-yutaka@tmu.ac.jp [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0373 (Japan)

    2013-09-06

    Highlights: •We performed time-resolved NMR observations of calbindin D{sub 9k} in HeLa cells. •Stress-induced increase of cytosolic Ca{sup 2+} concentration was observed by in-cell NMR. •Calbindin D{sub 9k} showed the state-transition from Mg{sup 2+}- to Ca{sup 2+}-bound state in cells. •We provide a useful tool for in situ monitoring of the healthiness of the cells. -- Abstract: Recent developments in in-cell NMR techniques have allowed us to study proteins in detail inside living eukaryotic cells. The lifetime of in-cell NMR samples is however much shorter than that in culture media, presumably because of various stresses as well as the nutrient depletion in the anaerobic environment within the NMR tube. It is well known that Ca{sup 2+}-bursts occur in HeLa cells under various stresses, hence the cytosolic Ca{sup 2+} concentration can be regarded as a good indicator of the healthiness of cells in NMR tubes. In this study, aiming at monitoring the states of proteins resulting from the change of cytosolic Ca{sup 2+} concentration during experiments, human calbindin D{sub 9k} (P47M + C80) was used as the model protein and cultured HeLa cells as host cells. Time-resolved measurements of 2D {sup 1}H–{sup 15}N SOFAST–HMQC experiments of calbindin D{sub 9k} (P47M + C80) in HeLa cells showed time-dependent changes in the cross-peak patterns in the spectra. Comparison with in vitro assignments revealed that calbindin D{sub 9k} (P47M + C80) is initially in the Mg{sup 2+}-bound state, and then gradually converted to the Ca{sup 2+}-bound state. This conversion process initiates after NMR sample preparation. These results showed, for the first time, that cells inside the NMR tube were stressed, presumably because of cell precipitation, the lack of oxygen and nutrients, etc., thereby releasing Ca{sup 2+} into cytosol during the measurements. The results demonstrated that in-cell NMR can monitor the state transitions of stimulated cells through the observation of

  20. Regulation of the glutamine transporter SN1 by extracellular pH and intracellular sodium ions

    International Nuclear Information System (INIS)

    Broeer, A.; Broeer, S.; Setiawan, I.; Lang, F.

    2001-01-01

    Full text: SN1 has recently been identified as one of the major glutamine transporters in hepatocytes and brain astrocytes. It appears to be the molecular correlate of the system N amino acid transporter. Two different transport mechanisms have been proposed for this transporter. Either an electroneutral mechanism, in which glutamine uptake is coupled to an exchange of 1Na + and 1H + , or an electrogenic mechanism coupled to the exchange of 2Na + against 1H + . This study was performed to solve the discrepancies and to investigate the reversibility of the transporter. When expressed in Xenopus laevis oocytes glutamine uptake activity increased strongly with increasing pH. In agreement with the pH-dependence we found that uptake of glutamine was accompanied by an alkalization of the cytosol, indicating that SN1 mediates Glutamine/H + -Antiport. Uptake of glutamine into oocytes was Na + -dependent. Analysis of the Na + -dependence of glutamine transport and Flux studies using 22 Na + indicated that two or more sodium ions were cotransported together with glutamine. However, at the same time intracellular Na + was exchanged against extracellular Na + . Taken together with the results of the pH-dependence it is proposed that SN1 mediates a Na + /Na + -exchange and a Na + /H + -exchange, both being coupled to the transport of glutamine. In agreement with this mechanism we found that acidic pH caused a reversal of the transporter. To investigate the source of the glutamine-induced inward currents, we compared inward currents generated by the 1Na + /glutamine cotransporter ATA1 with those generated by SN1. Currents induced by glutamine uptake in SN1 expressing oocytes were only a fraction of the currents induced by glutamine in ATA1 expressing oocytes, indicating that they were not generated by a stoichiometric uptake of ions. It is concluded that SN1 is tightly regulated by pH and intracellular Na + -ions and is capable of mediating glutamine uptake and release

  1. A histidine-rich linker region in peptidylglycine α-amidating monooxygenase has the properties of a pH sensor.

    Science.gov (United States)

    Vishwanatha, Kurutihalli; Bäck, Nils; Mains, Richard E; Eipper, Betty A

    2014-05-02

    Decreasing luminal pH is thought to play a role in the entry of newly synthesized and endocytosed membrane proteins into secretory granules. The two catalytic domains of peptidylglycine α-amidating monooxygenase (PAM), a type I integral membrane protein, catalyze the sequential reactions that convert peptidyl-Gly substrates into amidated products. We explored the hypothesis that a conserved His-rich cluster (His-Gly-His-His) in the linker region connecting its two catalytic domains senses pH and affects PAM trafficking by mutating these His residues to Ala (Ala-Gly-Ala-Ala; H3A). Purified recombinant wild-type and H3A linker peptides were examined using circular dichroism and tryptophan fluorescence; mutation of the His cluster largely eliminated its pH sensitivity. An enzymatically active PAM protein with the same mutations (PAM-1/H3A) was expressed in HEK293 cells and AtT-20 corticotrope tumor cells. Metabolic labeling followed by immunoprecipitation revealed more rapid loss of newly synthesized PAM-1/H3A than PAM-1; although release of newly synthesized monofunctional PHM/H3A was increased, release of soluble bifunctional PAM/H3A, a product of the endocytic pathway, was decreased. Surface biotinylation revealed rapid loss of PAM-1/H3A, with no detectable return of the mutant protein to secretory granules. Consistent with its altered endocytic trafficking, little PAM-1/H3A was subjected to regulated intramembrane proteolysis followed by release of a small nuclear-targeted cytosolic fragment. AtT-20 cells expressing PAM-1/H3A adopted the morphology of wild-type AtT-20 cells; secretory products no longer accumulated in the trans-Golgi network and secretory granule exocytosis was more responsive to secretagogue.

  2. Effects of yeast stress and pH on 3-monochloropropanediol (3-MCPD)-producing reactions in model dough systems.

    Science.gov (United States)

    Hamlet, C G; Sadd, P A

    2005-07-01

    A major precursor of 3-monochloropropanediol (3-MCPD) in leavened cereal products is glycerol, which is formed as a natural by-product of yeast fermentation. However, yeast metabolism is affected by stresses such as low osmotic pressure from, for example, the incorporation of sugar or salt in the dough recipe. Tests with model doughs have shown that glycerol production was proportional to yeast mass and limited by available sugars, but that high levels of yeast inhibited 3-MCPD formation. The yeast fraction responsible for the inhibition of 3-MCPD in model dough was shown to be the soluble cytosol proteins, and the inhibition mechanism could be explained by the known reactions of 3-MCPD and/or its precursors with ammonia/amino acids (from yeast proteins). Added glucose did not increase the production of glycerol by yeast but it did promote the generation of 3-MCPD in cooked doughs. The latter effect was attributed to the removal of 3-MCPD inhibitors such as ammonia and amino acids by their reactions with added glucose (e.g. Maillard). The thermal generation of organic acids from added glucose also reduced the pH of cooked doughs, so the effect of pH and short-chain organic acids on 3-MCPD generation in dough was measured. There was a good correlation between initial dough pH and the level of 3-MCPD generated. The effect was weaker than that predicted by simple kinetic modelling, suggesting that the involvement of H+ and/or the organic acid was catalytic. The results showed that modifications to dough recipes involving the addition of reducing sugars and/or organic acids can have a significant impact on 3-MPCD generation in bakery products.

  3. Cytosolic Access of Intracellular Bacterial Pathogens: The Shigella Paradigm.

    Science.gov (United States)

    Mellouk, Nora; Enninga, Jost

    2016-01-01

    Shigella is a Gram-negative bacterial pathogen, which causes bacillary dysentery in humans. A crucial step of Shigella infection is its invasion of epithelial cells. Using a type III secretion system, Shigella injects several bacterial effectors ultimately leading to bacterial internalization within a vacuole. Then, Shigella escapes rapidly from the vacuole, it replicates within the cytosol and spreads from cell-to-cell. The molecular mechanism of vacuolar rupture used by Shigella has been studied in some detail during the recent years and new paradigms are emerging about the underlying molecular events. For decades, bacterial effector proteins were portrayed as main actors inducing vacuolar rupture. This includes the effector/translocators IpaB and IpaC. More recently, this has been challenged and an implication of the host cell in the process of vacuolar rupture has been put forward. This includes the bacterial subversion of host trafficking regulators, such as the Rab GTPase Rab11. The involvement of the host in determining bacterial vacuolar integrity has also been found for other bacterial pathogens, particularly for Salmonella. Here, we will discuss our current view of host factor and pathogen effector implications during Shigella vacuolar rupture and the steps leading to it.

  4. Recombinant Nox4 cytosolic domain produced by a cell or cell-free base systems exhibits constitutive diaphorase activity

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Minh Vu Chuong, E-mail: mvchuong@yahoo.fr [GREPI AGIM FRE 3405 CNRS-UJF, Universite Joseph Fourier, Grenoble (France); Zhang, Leilei [GREPI AGIM FRE 3405 CNRS-UJF, Universite Joseph Fourier, Grenoble (France); Lhomme, Stanislas; Mouz, Nicolas [PX' Therapeutics, MINATEC/Batiment de Haute Technologie, Grenoble (France); Lenormand, Jean-Luc [HumProTher Laboratory, TheReX/TIMC-IMAG UMR 5525 CNRS UJF, Universite Joseph Fourier, UFR de Medecine, Domaine de la Merci, 38706 La Tronche (France); Lardy, Bernard; Morel, Francoise [GREPI AGIM FRE 3405 CNRS-UJF, Universite Joseph Fourier, Grenoble (France)

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer A comparison of two bacterial cell and cell-free protein expression systems is presented. Black-Right-Pointing-Pointer Soluble and active truncated Nox4 proteins are produced. Black-Right-Pointing-Pointer Nox4 has a constitutive diaphorase activity which is independent of cytosolic factors. Black-Right-Pointing-Pointer Isoform Nox4B is unable to initiate the first electronic transfer step. Black-Right-Pointing-Pointer Findings contribute to the understanding of the mechanism of Nox4 oxidase activity. -- Abstract: The membrane protein NADPH (nicotinamide adenine dinucleotide phosphate) oxidase Nox4 constitutively generates reactive oxygen species differing from other NADPH oxidases activity, particularly in Nox2 which needs a stimulus to be active. Although the precise mechanism of production of reactive oxygen species by Nox2 is well characterized, the electronic transfer throughout Nox4 remains unclear. Our study aims to investigate the initial electronic transfer step (diaphorase activity) of the cytosolic tail of Nox4. For this purpose, we developed two different approaches to produce soluble and active truncated Nox4 proteins. We synthesized soluble recombinant proteins either by in vitro translation or by bacteria induction. While proteins obtained by bacteria induction demonstrate an activity of 4.4 {+-} 1.7 nmol/min/nmol when measured against iodonitro tetrazolium chloride and 20.5 {+-} 2.8 nmol/min/nmol with cytochrome c, the soluble proteins produced by cell-free expression system exhibit a diaphorase activity with a turn-over of 26 {+-} 2.6 nmol/min/nmol when measured against iodonitro tetrazolium chloride and 48 {+-} 20.2 nmol/min/nmol with cytochrome c. Furthermore, the activity of the soluble proteins is constitutive and does not need any stimulus. We also show that the cytosolic tail of the isoform Nox4B lacking the first NADPH binding site is unable to demonstrate any diaphorase activity pointing out the

  5. Nickel decreases cellular iron level and converts cytosolic aconitase to iron-regulatory protein 1 in A549 cells

    International Nuclear Information System (INIS)

    Chen Haobin; Davidson, Todd; Singleton, Steven; Garrick, Michael D.; Costa, Max

    2005-01-01

    Nickel (Ni) compounds are well-established carcinogens and are known to initiate a hypoxic response in cells via the stabilization and transactivation of hypoxia-inducible factor-1 alpha (HIF-1α). This change may be the consequence of nickel's interference with the function of several Fe(II)-dependent enzymes. In this study, the effects of soluble nickel exposure on cellular iron homeostasis were investigated. Nickel treatment decreased both mitochondrial and cytosolic aconitase (c-aconitase) activity in A549 cells. Cytosolic aconitase was converted to iron-regulatory protein 1, a form critical for the regulation of cellular iron homeostasis. The increased activity of iron-regulatory protein 1 after nickel exposure stabilized and increased transferrin receptor (Tfr) mRNA and antagonized the iron-induced ferritin light chain protein synthesis. The decrease of aconitase activity after nickel treatment reflected neither direct interference with aconitase function nor obstruction of [4Fe-4S] cluster reconstitution by nickel. Exposure of A549 cells to soluble nickel decreased total cellular iron by about 40%, a decrease that likely caused the observed decrease in aconitase activity and the increase of iron-regulatory protein 1 activity. Iron treatment reversed the effect of nickel on cytosolic aconitase and iron-regulatory protein 1. To assess the mechanism for the observed effects, human embryonic kidney (HEK) cells over expressing divalent metal transporter-1 (DMT1) were compared to A549 cells expressing only endogenous transporters for inhibition of iron uptake by nickel. The inhibition data suggest that nickel can enter via DMT1 and compete with iron for entry into the cell. This disturbance of cellular iron homeostasis by nickel may have a great impact on the ability of the cell to regulate a variety of cell functions, as well as create a state of hypoxia in cells under normal oxygen tension. These effects may be very important in how nickel exerts phenotypic

  6. Multiparametric analysis of cisplatin-induced changes in cancer cells using FLIM

    Science.gov (United States)

    Shirmanova, Marina V.; Sergeeva, Tatiana F.; Gavrina, Alena I.; Dudenkova, Varvara V.; Lukyanov, Konstantin A.; Zagaynova, Elena V.

    2018-02-01

    Cisplatin is an effective anticancer drug commonly used in the treatment of solid tumors. Although DNA is considered as the primary target, the cisplatin action at the cellular level remains unknown. Advanced fluorescence microscopy techniques allow probing various physiological and physicochemical parameters in living cells and tissues with unsurpassed sensitivity in real time. This study was focused on the investigation of cellular bioenergetics and cytosolic pH in colorectal cancer cells during chemotherapy with cisplatin. Special attention was given to the changes in cisplatininduced apoptosis that was identified using genetically encoded FLIM/FRET sensor of caspase-3 activity. Metabolic measurements using FLIM of the metabolic cofactor NAD(P)H showed decreased contribution from free NAD(P)H (a1, %) in all treated cells with more pronounced alterations in the cells undergoing apoptosis. Analysis of cytosolic pH using genetically encoded fluorescent sensor SypHer1 revealed a rapid increase of the pH value upon cisplatin exposure irrespective of the induction of apoptosis. To the best of our knowledge, a simultaneous assessment of metabolic state, cytosolic pH and caspase-3 activity after treatment with cisplatin was performed for the first time. These findings improve our understanding of the cell response to chemotherapy and mechanisms of cisplatin action.

  7. Functional characterization of PhGR and PhGRL1 during flower senescence in the petunia.

    Science.gov (United States)

    Yang, Weiyuan; Liu, Juanxu; Tan, Yinyan; Zhong, Shan; Tang, Na; Chen, Guoju; Yu, Yixun

    2015-09-01

    Petunia PhGRL1 suppression accelerated flower senescence and increased the expression of the genes downstream of ethylene signaling, whereas PhGR suppression did not. Ethylene plays an important role in flowers senescence. Homologous proteins Green-Ripe and Reversion to Ethylene sensitivity1 are positive regulators of ethylene responses in tomato and Arabidopsis, respectively. The petunia flower has served as a model for the study of ethylene response during senescence. In this study, petunia PhGR and PhGRL1 expression was analyzed in different organs, throughout floral senescence, and after exogenous ethylene treatment; and the roles of PhGR and PhGRL1 during petunia flower senescence were investigated. PhGRL1 suppression mediated by virus-induced gene silencing accelerated flower senescence and increased ethylene production; however, the suppression of PhGR did not. Taken together, these data suggest that PhGRL1 is involved in negative regulation of flower senescence, possibly via ethylene production inhibition and consequently reduced ethylene signaling activation.

  8. Cytosolic lipolysis and lipophagy: two sides of the same coin.

    Science.gov (United States)

    Zechner, Rudolf; Madeo, Frank; Kratky, Dagmar

    2017-11-01

    Fatty acids are the most efficient substrates for energy production in vertebrates and are essential components of the lipids that form biological membranes. Synthesis of triacylglycerols from non-esterified free fatty acids (FFAs) combined with triacylglycerol storage represents a highly efficient strategy to stockpile FFAs in cells and prevent FFA-induced lipotoxicity. Although essentially all vertebrate cells have some capacity to store and utilize triacylglycerols, white adipose tissue is by far the largest triacylglycerol depot and is uniquely able to supply FFAs to other tissues. The release of FFAs from triacylglycerols requires their enzymatic hydrolysis by a process called lipolysis. Recent discoveries thoroughly altered and extended our understanding of lipolysis. This Review discusses how cytosolic 'neutral' lipolysis and lipophagy, which utilizes 'acid' lipolysis in lysosomes, degrade cellular triacylglycerols as well as how these pathways communicate, how they affect lipid metabolism and energy homeostasis and how their dysfunction affects the pathogenesis of metabolic diseases. Answers to these questions will likely uncover novel strategies for the treatment of prevalent metabolic diseases.

  9. Subcellular Distribution of NAD+ between Cytosol and Mitochondria Determines the Metabolic Profile of Human Cells.

    Science.gov (United States)

    VanLinden, Magali R; Dölle, Christian; Pettersen, Ina K N; Kulikova, Veronika A; Niere, Marc; Agrimi, Gennaro; Dyrstad, Sissel E; Palmieri, Ferdinando; Nikiforov, Andrey A; Tronstad, Karl Johan; Ziegler, Mathias

    2015-11-13

    The mitochondrial NAD pool is particularly important for the maintenance of vital cellular functions. Although at least in some fungi and plants, mitochondrial NAD is imported from the cytosol by carrier proteins, in mammals, the mechanism of how this organellar pool is generated has remained obscure. A transporter mediating NAD import into mammalian mitochondria has not been identified. In contrast, human recombinant NMNAT3 localizes to the mitochondrial matrix and is able to catalyze NAD(+) biosynthesis in vitro. However, whether the endogenous NMNAT3 protein is functionally effective at generating NAD(+) in mitochondria of intact human cells still remains to be demonstrated. To modulate mitochondrial NAD(+) content, we have expressed plant and yeast mitochondrial NAD(+) carriers in human cells and observed a profound increase in mitochondrial NAD(+). None of the closest human homologs of these carriers had any detectable effect on mitochondrial NAD(+) content. Surprisingly, constitutive redistribution of NAD(+) from the cytosol to the mitochondria by stable expression of the Arabidopsis thaliana mitochondrial NAD(+) transporter NDT2 in HEK293 cells resulted in dramatic growth retardation and a metabolic shift from oxidative phosphorylation to glycolysis, despite the elevated mitochondrial NAD(+) levels. These results suggest that a mitochondrial NAD(+) transporter, similar to the known one from A. thaliana, is likely absent and could even be harmful in human cells. We provide further support for the alternative possibility, namely intramitochondrial NAD(+) synthesis, by demonstrating the presence of endogenous NMNAT3 in the mitochondria of human cells. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Detection of anti-liver cytosol antibody type 1 (anti-LC1) by immunodiffusion, counterimmunoelectrophoresis and immunoblotting: comparison of different techniques.

    Science.gov (United States)

    Muratori, L; Cataleta, M; Muratori, P; Manotti, P; Lenzi, M; Cassani, F; Bianchi, F B

    1995-12-01

    Liver cytosol specific antibody type 1 (anti-LC1) was first described in a proportion of patients with liver/kidney microsomal antibody type 1 (anti-LKM1)-positive autoimmune hepatitis (AIH) and is routinely evaluated by immunodiffusion (ID). Using human liver cytosol as the source of antigen, we have used ID, counterimmunoelectrophoresis (CIE) and immunoblotting (IB), to test sera from 167 patients with documented chronic liver diseases of different etiology. 15 patients had antinuclear antibody (ANA) and/or smooth muscle antibody (SMA)-positive AIH, 13 had anti-LKM1-positive AIH, four had ANA/SMA/anti-LKM1-negative AIH, 76 had anti-LKM1-positive hepatitis C (recently renamed unclassified chronic hepatitis-UCH), 40 had chronic hepatitis C, 15 had chronic hepatitis B, and 4 had chronic hepatitis D. A precipitin line of identity with an anti-LC1 reference serum was detected both by ID and CIE in 16 patients: six with anti-LKM1-positive 'definite' AIH, four with ANA/SMA/anti-LKM1-negative 'definite' AIH, and six with anti-LKM1-positive UCH. By IB, 14 out of the 16 anti-LC1-positive sera (87.5%) reacted with a 58 kDa human liver cytosolic polypeptide, whereas three out of 16 (19%) recognised an additional 60 kDa band. Compared to ID, CIE is more economical in terms of both time and reagents and provides more clear-cut results. The 58 kDa reactivity by IB was detectable in nearly all CIE/ID anti-LC1-positive patients, was not found among CIE/ID anti-LC1-negative patients. In conclusion, CIE is the ideal screening test for the detection of anti-LC1, an autoantibody that can be regarded as an additional serological marker of AIH and is especially useful in ANA/SMA/anti-LKM1 negative cases.

  11. Coral calcifying fluid pH is modulated by seawater carbonate chemistry not solely seawater pH.

    Science.gov (United States)

    Comeau, S; Tambutté, E; Carpenter, R C; Edmunds, P J; Evensen, N R; Allemand, D; Ferrier-Pagès, C; Tambutté, S; Venn, A A

    2017-01-25

    Reef coral calcification depends on regulation of pH in the internal calcifying fluid (CF) in which the coral skeleton forms. However, little is known about calcifying fluid pH (pH CF ) regulation, despite its importance in determining the response of corals to ocean acidification. Here, we investigate pH CF in the coral Stylophora pistillata in seawater maintained at constant pH with manipulated carbonate chemistry to alter dissolved inorganic carbon (DIC) concentration, and therefore total alkalinity (A T ). We also investigate the intracellular pH of calcifying cells, photosynthesis, respiration and calcification rates under the same conditions. Our results show that despite constant pH in the surrounding seawater, pH CF is sensitive to shifts in carbonate chemistry associated with changes in [DIC] and [A T ], revealing that seawater pH is not the sole driver of pH CF Notably, when we synthesize our results with published data, we identify linear relationships of pH CF with the seawater [DIC]/[H + ] ratio, [A T ]/ [H + ] ratio and [[Formula: see text

  12. Aquaporins Contribute to ABA-Triggered Stomatal Closure through OST1-Mediated Phosphorylation

    Science.gov (United States)

    Grondin, Alexandre; Rodrigues, Olivier; Verdoucq, Lionel; Merlot, Sylvain; Leonhardt, Nathalie; Maurel, Christophe

    2015-01-01

    Stomatal movements in response to environmental stimuli critically control the plant water status. Although these movements are governed by osmotically driven changes in guard cell volume, the role of membrane water channels (aquaporins) has remained hypothetical. Assays in epidermal peels showed that knockout Arabidopsis thaliana plants lacking the Plasma membrane Intrinsic Protein 2;1 (PIP2;1) aquaporin have a defect in stomatal closure, specifically in response to abscisic acid (ABA). ABA induced a 2-fold increase in osmotic water permeability (Pf) of guard cell protoplasts and an accumulation of reactive oxygen species in guard cells, which were both abrogated in pip2;1 plants. Open stomata 1 (OST1)/Snf1-related protein kinase 2.6 (SnRK2.6), a protein kinase involved in guard cell ABA signaling, was able to phosphorylate a cytosolic PIP2;1 peptide at Ser-121. OST1 enhanced PIP2;1 water transport activity when coexpressed in Xenopus laevis oocytes. Upon expression in pip2;1 plants, a phosphomimetic form (Ser121Asp) but not a phosphodeficient form (Ser121Ala) of PIP2;1 constitutively enhanced the Pf of guard cell protoplasts while suppressing its ABA-dependent activation and was able to restore ABA-dependent stomatal closure in pip2;1. This work supports a model whereby ABA-triggered stomatal closure requires an increase in guard cell permeability to water and possibly hydrogen peroxide, through OST1-dependent phosphorylation of PIP2;1 at Ser-121. PMID:26163575

  13. Radiation-induced apoptosis of stem/progenitor cells in human umbilical cord blood is associated with alterations in reactive oxygen and intracellular pH

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Tomonori [Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hijyama Park, Minami Ward, Hiroshima (Japan)]. E-mail: tomo@rerf.or.jp; Hayashi, Ikue [Central Research Laboratory, Hiroshima University Faculty of Dentistry, Hiroshima (Japan); Shinohara, Tomoko [Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hijyama Park, Minami Ward, Hiroshima (Japan); Morishita, Yukari [Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hijyama Park, Minami Ward, Hiroshima (Japan); Nagamura, Hiroko [Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hijyama Park, Minami Ward, Hiroshima (Japan); Kusunoki, Yoichiro [Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hijyama Park, Minami Ward, Hiroshima (Japan); Kyoizumi, Seishi [Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hijyama Park, Minami Ward, Hiroshima (Japan); Seyama, Toshio [Yasuda Women' s University, Hiroshima (Japan); Nakachi, Kei [Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hijyama Park, Minami Ward, Hiroshima (Japan)

    2004-11-22

    To investigate the sensitivity of human hematopoietic stem cell populations to radiation and its relevance to intracellular events, specifically alteration in cellular energy production systems, we examined the frequency of apoptotic cells, generation of superoxide anions (O2-), and changes in cytosol pH in umbilical cord blood (UCB) CD34{sup +}/CD38{sup -}, CD34{sup +}/CD38{sup +} and CD34{sup -}/CD38{sup +} cells before and after 5Gy of X-irradiation. Human UCB mononucleated cells were used in this study. After X-irradiation and staining subgroups of the cells with fluorescence (FITC, PE, or CY)-labeled anti-CD34 and anti-CD38 antibodies, analyses were performed by FACScan using as stains 7-amino-actinomycin D (7-AAD) for the detection of apoptosis, and hydroethidine (HE) for the measurement of O2- generation in the cells. For intracellular pH, image analysis was conducted using confocal laser microscopy after irradiation and staining with carboxy-SNAFR-1. The frequency of apoptotic cells, as determined by cell staining with 7-AAD, was highest in the irradiated CD34{sup +}/CD38{sup -} cell population, where the level of O2- detected by the oxidation of HE was also most highly elevated. Intracellular pH measured with carboxy-SNARF-1-AM by image cytometer appeared to be lowest in the same irradiated CD34{sup +}/CD38{sup -} cell population, and this intracellular pH decreased as early as 4h post-irradiation, virtually simultaneous with the significant elevation of O2- generation. These results suggest that the CD34{sup +}/CD38{sup -} stem cell population is sensitive to radiation-induced apoptosis as well as production of intracellular O2-, compare to more differentiated CD34{sup +}/CD38{sup +} and CD34{sup -}/CD38{sup +} cells and that its intracellular pH declines at an early phase in the apoptosis process.

  14. Defective i6A37 modification of mitochondrial and cytosolic tRNAs results from pathogenic mutations in TRIT1 and its substrate tRNA.

    Directory of Open Access Journals (Sweden)

    John W Yarham

    2014-06-01

    Full Text Available Identifying the genetic basis for mitochondrial diseases is technically challenging given the size of the mitochondrial proteome and the heterogeneity of disease presentations. Using next-generation exome sequencing, we identified in a patient with severe combined mitochondrial respiratory chain defects and corresponding perturbation in mitochondrial protein synthesis, a homozygous p.Arg323Gln mutation in TRIT1. This gene encodes human tRNA isopentenyltransferase, which is responsible for i6A37 modification of the anticodon loops of a small subset of cytosolic and mitochondrial tRNAs. Deficiency of i6A37 was previously shown in yeast to decrease translational efficiency and fidelity in a codon-specific manner. Modelling of the p.Arg323Gln mutation on the co-crystal structure of the homologous yeast isopentenyltransferase bound to a substrate tRNA, indicates that it is one of a series of adjacent basic side chains that interact with the tRNA backbone of the anticodon stem, somewhat removed from the catalytic center. We show that patient cells bearing the p.Arg323Gln TRIT1 mutation are severely deficient in i6A37 in both cytosolic and mitochondrial tRNAs. Complete complementation of the i6A37 deficiency of both cytosolic and mitochondrial tRNAs was achieved by transduction of patient fibroblasts with wild-type TRIT1. Moreover, we show that a previously-reported pathogenic m.7480A>G mt-tRNASer(UCN mutation in the anticodon loop sequence A36A37A38 recognised by TRIT1 causes a loss of i6A37 modification. These data demonstrate that deficiencies of i6A37 tRNA modification should be considered a potential mechanism of human disease caused by both nuclear gene and mitochondrial DNA mutations while providing insight into the structure and function of TRIT1 in the modification of cytosolic and mitochondrial tRNAs.

  15. Total and cytosolic concentrations of twenty metals/metalloids in the liver of brown trout Salmo trutta (Linnaeus, 1758) from the karstic Croatian river Krka.

    Science.gov (United States)

    Dragun, Zrinka; Filipović Marijić, Vlatka; Krasnići, Nesrete; Ivanković, Dušica; Valić, Damir; Žunić, Jakov; Kapetanović, Damir; Smrzlić, Irena Vardić; Redžović, Zuzana; Grgić, Ivana; Erk, Marijana

    2018-01-01

    Total and cytosolic concentrations of twenty metals/metalloids in the liver of brown trout Salmo trutta (Linnaeus, 1758) were studied in the period from April 2015 to May 2016 at two sampling sites on Croatian river Krka, to establish if river water contamination with metals/metalloids downstream of Knin town has influenced metal bioaccumulation in S. trutta liver. Differences were observed between two sites, with higher concentrations of several elements (Ag, As, Ca, Co, Na, Se, Sr, V) found downstream of Knin town, whereas few others (Cd, Cs, Mo, Tl) were, unexpectedly, increased at the Krka River spring. However, total metal/metalloid concentrations in the liver of S. trutta from both sites of the Krka River were still mainly below previously reported levels for pristine freshwaters worldwide. The analysis of seasonal changes of metal/metalloid concentrations in S. trutta liver and their association with fish sex and size mostly indicated their independence of fish physiology, making them good indicators of water contamination and exposure level. Metal/metalloid concentrations in the metabolically available hepatic cytosolic fractions reported in this study are the first data of that kind for S. trutta liver, and the majority of analyzed elements were present in the cytosol in the quantity higher than 50% of their total concentrations, thus indicating their possible availability for toxic effects. However, the special attention should be directed to As, Cd, Cs, and Tl, which under the conditions of increased exposure tended to accumulate more within the cytosol. Although metal/metalloid concentrations in S. trutta liver were still rather low, monitoring of the Krka River water quality and of the health status of its biota is essential due to a trend of higher metal/metalloid bioaccumulation downstream of Knin town, especially taking into consideration the proximity of National Park Krka and the need for its conservation. Copyright © 2017 Elsevier Inc. All

  16. Enzymatic sulfation of tocopherols and tocopherol metabolites by human cytosolic sulfotransferases.

    Science.gov (United States)

    Hashiguchi, Takuyu; Kurogi, Katsuhisa; Sakakibara, Yoichi; Yamasaki, Masao; Nishiyama, Kazuo; Yasuda, Shin; Liu, Ming-Cheh; Suiko, Masahito

    2011-01-01

    Tocopherols are essential micronutrients for mammals widely known as potent lipid-soluble antioxidants that are present in cell membranes. Recent studies have demonstrated that most of the carboxychromanol (CEHC), a tocopherol metabolite, in the plasma exists primarily in sulfate- and glucuronide-conjugated forms. To gain insight into the enzymatic sulfation of tocopherols and their metabolites, a systematic investigation was performed using all 14 known human cytosolic sulfotransferases (SULTs). The results showed that the members of the SULT1 family displayed stronger sulfating activities toward tocopherols and their metabolites. These enzymes showed a substrate preference for γ-tocopherol over α-tocopherol and for γ-CEHC over other CEHCs. Using A549 human lung epithelial cells in a metabolic labeling study, a similar trend in the sulfation of tocopherols and CEHCs was observed. Collectively, the results obtained indicate that SULT-mediated enzymatic sulfation of tocopherols and their metabolites is a significant pathway for regulation of the homeostasis and physiological functions of these important compounds.

  17. PhEDEx Data Service

    International Nuclear Information System (INIS)

    Egeland, Ricky; Wildish, Tony; Huang, Chih-Hao

    2010-01-01

    The PhEDEx Data Service provides access to information from the central PhEDEx database, as well as certificate-authenticated managerial operations such as requesting the transfer or deletion of data. The Data Service is integrated with the 'SiteDB' service for fine-grained access control, providing a safe and secure environment for operations. A plug-in architecture allows server-side modules to be developed rapidly and easily by anyone familiar with the schema, and can automatically return the data in a variety of formats for use by different client technologies. Using HTTP access via the Data Service instead of direct database connections makes it possible to build monitoring web-pages with complex drill-down operations, suitable for debugging or presentation from many aspects. This will form the basis of the new PhEDEx website in the near future, as well as providing access to PhEDEx information and certificate-authenticated services for other CMS dataflow and workflow management tools such as CRAB, WMCore, DBS and the dashboard. A PhEDEx command-line client tool provides one-stop access to all the functions of the PhEDEx Data Service interactively, for use in simple scripts that do not access the service directly. The client tool provides certificate-authenticated access to managerial functions, so all the functions of the PhEDEx Data Service are available to it. The tool can be expanded by plug-ins which can combine or extend the client-side manipulation of data from the Data Service, providing a powerful environment for manipulating data within PhEDEx.

  18. Dose enhancement effects to the nucleus and mitochondria from gold nanoparticles in the cytosol

    Science.gov (United States)

    McNamara, AL; Kam, WW-Y; Scales, N; McMahon, SJ; Bennett, JW; Byrne, HL; Schuemann, J; Paganetti, H; Banati, R; Kuncic, Z

    2016-01-01

    Gold nanoparticles (GNPs) have shown potential as dose enhancers for radiation therapy. Since damage to the genome affects the viability of a cell, it is generally assumed that GNPs have to localise within the cell nucleus. In practice, however, GNPs tend to localise in the cytoplasm yet still appear to have a dose enhancing effect on the cell. Whether this effect can be attributed to stress-induced biological mechanisms or to physical damage to extra-nuclear cellular targets is still unclear. There is however growing evidence to suggest that the cellular response to radiation can also be influenced by indirect processes induced when the nucleus is not directly targeted by radiation. The mitochondrion in particular may be an effective extra-nuclear radiation target given its many important functional roles in the cell. To more accurately predict the physical effect of radiation within different cell organelles, we measured the full chemical composition of a whole human lymphocytic JURKAT cell as well as two separate organelles; the cell nucleus and the mitochondrion. The experimental measurements found that all three biological materials had similar ionisation energies ~ 70 eV, substantially lower than that of liquid water ~ 78 eV. Monte Carlo simulations for 10 – 50 keV incident photons showed higher energy deposition and ionisation numbers in the cell and organelle materials compared to liquid water. Adding a 1% mass fraction of gold to each material increased the energy deposition by a factor of ~ 1.8 when averaged over all incident photon energies. Simulations of a realistic compartmentalised cell show that the presence of gold in the cytosol increases the energy deposition in the mitochondrial volume more than within the nuclear volume. We find this is due to sub-micron delocalisation of energy by photoelectrons, making the mitochondria a potentially viable indirect radiation target for GNPs that localise to the cytosol. PMID:27435339

  19. Objective determination of pH thresholds in the analysis of 24 h ambulatory oesophageal pH monitoring

    NARCIS (Netherlands)

    Weusten, B. L.; Roelofs, J. M.; Akkermans, L. M.; vanBerge-Henegouwen, G. P.; Smout, A. J.

    1996-01-01

    In 24 h oesophageal pH monitoring, pH 4 is widely but arbitrarily used as the threshold between reflux and non-reflux pH values. The aim of the study was to define pH thresholds objectively, based on Gaussian curve fitting of pH frequency distributions. Single-channel 24 h oesophageal pH monitoring

  20. Cytosolic access of intracellular bacterial pathogens: the Shigella paradigm

    Directory of Open Access Journals (Sweden)

    Nora eMellouk

    2016-04-01

    Full Text Available Shigella is a Gram-negative bacterial pathogen, which causes bacillary dysentery in humans. A crucial step of Shigella infection is its invasion of epithelial cells. Using a type III secretion system, Shigella injects several bacterial effectors ultimately leading to bacterial internalization within a vacuole. Then, Shigella escapes rapidly from the vacuole, it replicates within the cytosol and spreads from cell-to-cell. The molecular mechanism of vacuolar rupture used by Shigella has been studied in some detail during the recent years and new paradigms are emerging about the underlying molecular events. For decades, bacterial effector proteins were portrayed as main actors inducing vacuolar rupture. This includes the effector/translocators IpaB and IpaC. More recently, this has been challenged and an implication of the host cell in the process of vacuolar rupture has been put forward. This includes the bacterial subversion of host trafficking regulators, such as the Rab GTPase Rab11. The involvement of the host in determining bacterial vacuolar integrity has also been found for other bacterial pathogens, particularly for Salmonella. Here, we will discuss our current view of host factor and pathogen effector implications during Shigella vacuolar rupture and the steps leading to it.

  1. In vitro synthesis and purification of PhIP-deoxyguanosine and PhIP-DNA oligomer covalent complexes

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, J.

    1994-12-01

    2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a heterocyclic amine compound formed when meats are cooked at high temperatures. PhIP damages DNA by forming covalent complexes with DNA carcinogen. In an effort to understand how the binding of PhIP to DNA may cause cancer, it is important to characterize the structures of PhIP-damaged DNA molecules. Our HPLC data support fluorescence and {sup 32}P Post-labeling studies which indicate the formation of several species of 2{prime}deoxyguanosine-(dG) or oligodeoxynucleotide-PhIP adducts. The reaction of PhIP with dG resulted in a reddish precipitate that was likely the major adduct, N-(deoxyguanosin-8-yl)-PhIP (dG-C8-PhIP) adduct, with a more polar adduct fraction remaining in the supernatant. Reversed-phase HPLC analysis of the adducts in the supernatant revealed the existence of species of much shorter retention times than the dG-C8-PhIP adduct, confirming that these species are more polar than dG-C8-PhIP. At least four adducts were formed in the reaction of PhIP with DNA oligomer. HPLC analysis of the PhIP-DNA oligomer supernatant after butanol extractions revealed four unresolved peaks which spectra had maximum wavelengths between 340 and 360 nm. Though adduct peaks were not completely resolved, there was {approximately}3 minutes interval between the DNA oligomer peak and the adduct peaks. Furthermore, fluorescence emission data of the DNA oligomer-PhIP adduct solution show heterogeneous binding. The more polar PhIP adducts were fraction-collected and their structures will be solved by nuclear magnetic resonance or x-ray crystallography.

  2. The PhD by Publication

    Directory of Open Access Journals (Sweden)

    Susi Peacock

    2017-07-01

    Full Text Available Aim/Purpose: The purpose of this work is to develop more nuanced understandings of the PhD by publication, particularly raising awareness of the retrospective PhD by publication. The article aims to contribute to contemporary debates about the differing pathways to the attainment of doctoral study completion and the artifacts submitted for that purpose. It also seeks to support prospective graduate students and supervisors who are embarking upon alternative routes to doctoral accreditation. Background: The PhD is considered the pinnacle of academic study – highly cherished, and replete with deeply held beliefs. In response to changes in job markets, developments in the disciplines, and more varied student cohorts, diverse pathways to completion of this award have emerged, such as the PhD by publication (PhDP. A PhDP may either be prospective or retrospective. For the former, publications are planned and created with their contributions to the PhDP in mind. The retrospective PhD is assembled after some, or most, of the publications have been completed. The artifact submitted for examination in this case consists of a series of peer-reviewed academic papers, books, chapters, or equivalents that have been published or accepted for publication, accompanied by an over-arching narrative. The retrospective route is particularly attractive for professionals who are research-active but lack formal academic accreditation at the highest level. Methodology: This article calls upon a literature review pertaining to the award of PhDP combined with the work of authors who offer their personal experiences of the award. The author also refers to her candidature as a Scottish doctoral student whilst studying for the award of PhD by publication. Contribution: This work raises awareness of the PhDP as a credible and comparable pathway for graduate students. The article focuses upon the retrospective PhDP which, as with all routes to doctoral accreditation, has

  3. Cytosolic 5'-nucleotidase II interacts with the leucin rich repeat of NLR family member Ipaf.

    Directory of Open Access Journals (Sweden)

    Federico Cividini

    Full Text Available IMP/GMP preferring cytosolic 5'-nucleotidase II (cN-II is a bifunctional enzyme whose activities and expression play crucial roles in nucleotide pool maintenance, nucleotide-dependent pathways and programmed cell death. Alignment of primary amino acid sequences of cN-II from human and other organisms show a strong conservation throughout the entire vertebrata taxon suggesting a fundamental role in eukaryotic cells. With the aim to investigate the potential role of this homology in protein-protein interactions, a two hybrid system screening of cN-II interactors was performed in S. cerevisiae. Among the X positive hits, the Leucin Rich Repeat (LRR domain of Ipaf was found to interact with cN-II. Recombinant Ipaf isoform B (lacking the Nucleotide Binding Domain was used in an in vitro affinity chromatography assay confirming the interaction obtained in the screening. Moreover, co-immunoprecipitation with proteins from wild type Human Embryonic Kidney 293 T cells demonstrated that endogenous cN-II co-immunoprecipitated both with wild type Ipaf and its LRR domain after transfection with corresponding expression vectors, but not with Ipaf lacking the LRR domain. These results suggest that the interaction takes place through the LRR domain of Ipaf. In addition, a proximity ligation assay was performed in A549 lung carcinoma cells and in MDA-MB-231 breast cancer cells and showed a positive cytosolic signal, confirming that this interaction occurs in human cells. This is the first report of a protein-protein interaction involving cN-II, suggesting either novel functions or an additional level of regulation of this complex enzyme.

  4. Co-delivery of doxorubicin and arsenite with reduction and pH dual-sensitive vesicle for synergistic cancer therapy

    Science.gov (United States)

    Zhang, Lu; Xiao, Hong; Li, Jingguo; Cheng, Du; Shuai, Xintao

    2016-06-01

    Drug resistance is the underlying cause for therapeutic failure in clinical cancer chemotherapy. A prodrug copolymer mPEG-PAsp(DIP-co-BZA-co-DOX) (PDBD) was synthesized and assembled into a nanoscale vesicle comprising a PEG corona, a reduction and pH dual-sensitive hydrophobic membrane and an aqueous lumen encapsulating doxorubicin hydrochloride (DOX.HCl) and arsenite (As). The dual stimulation-sensitive design of the vesicle gave rise to rapid release of the physically entrapped DOX.HCl and arsenite inside acidic lysosomes, and chemically conjugated DOX inside the cytosol with high glutathione (GSH) concentration. In the optimized concentration range, arsenite previously recognized as a promising anticancer agent from traditional Chinese medicine can down-regulate the expressions of anti-apoptotic and multidrug resistance proteins to sensitize cancer cells to chemotherapy. Consequently, the DOX-As-co-loaded vesicle demonstrated potent anticancer activity. Compared to the only DOX-loaded vesicle, the DOX-As-co-loaded one induced more than twice the apoptotic ratio of MCF-7/ADR breast cancer cells at a low As concentration (0.5 μM), due to the synergistic effects of DOX and As. The drug loading strategy integrating chemical conjugation and physical encapsulation in stimulation-sensitive carriers enabled efficient drug loading in the formulation.Drug resistance is the underlying cause for therapeutic failure in clinical cancer chemotherapy. A prodrug copolymer mPEG-PAsp(DIP-co-BZA-co-DOX) (PDBD) was synthesized and assembled into a nanoscale vesicle comprising a PEG corona, a reduction and pH dual-sensitive hydrophobic membrane and an aqueous lumen encapsulating doxorubicin hydrochloride (DOX.HCl) and arsenite (As). The dual stimulation-sensitive design of the vesicle gave rise to rapid release of the physically entrapped DOX.HCl and arsenite inside acidic lysosomes, and chemically conjugated DOX inside the cytosol with high glutathione (GSH) concentration. In the

  5. Continuous pH monitoring in a perfused bioreactor system using an optical pH sensor

    Science.gov (United States)

    Jeevarajan, Antony S.; Vani, Sundeep; Taylor, Thomas D.; Anderson, Melody M.

    2002-01-01

    Monitoring and regulating the pH of the solution in a bioprocess is one of the key steps in the success of bioreactor operation. An in-line optical pH sensor, based on the optical absorption properties of phenol red present in the medium, was developed and tested in this work for use in NASA space bioreactors based on a rotating wall-perfused vessel system supporting a baby hamster kidney (BHK-21) cell culture. The sensor was tested over three 30-day and one 124-day cell runs. The pH sensor initially was calibrated and then used during the entire cell culture interval. The pH reported by the sensor was compared to that measured by a fiber optically coupled Shimadzu spectrophotometer and a blood gas analyzer. The maximum standard error of prediction for all the four cell runs for development pH sensor against BGA was +/-0.06 pH unit and for the fiber optically coupled Shimadzu spectrophotometer against the blood gas analyzer was +/-0.05 pH unit. The pH sensor system performed well without need of recalibration for 124 days. Copyright 2002 Wiley Periodicals, Inc.

  6. The translocon protein Sec61 mediates antigen transport from endosomes in the cytosol for cross-presentation to CD8(+) T cells.

    Science.gov (United States)

    Zehner, Matthias; Marschall, Andrea L; Bos, Erik; Schloetel, Jan-Gero; Kreer, Christoph; Fehrenschild, Dagmar; Limmer, Andreas; Ossendorp, Ferry; Lang, Thorsten; Koster, Abraham J; Dübel, Stefan; Burgdorf, Sven

    2015-05-19

    The molecular mechanisms regulating antigen translocation into the cytosol for cross-presentation are under controversial debate, mainly because direct data is lacking. Here, we have provided direct evidence that the activity of the endoplasmic reticulum (ER) translocon protein Sec61 is essential for endosome-to-cytosol translocation. We generated a Sec61-specific intrabody, a crucial tool that trapped Sec61 in the ER and prevented its recruitment into endosomes without influencing Sec61 activity and antigen presentation in the ER. Expression of this ER intrabody inhibited antigen translocation and cross-presentation, demonstrating that endosomal Sec61 indeed mediates antigen transport across endosomal membranes. Moreover, we showed that the recruitment of Sec61 toward endosomes, and hence antigen translocation and cross-presentation, is dependent on dendritic cell activation by Toll-like receptor (TLR) ligands. These data shed light on a long-lasting question regarding antigen cross-presentation and point out a role of the ER-associated degradation machinery in compartments distinct from the ER. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Targeting of a Nicotiana plumbaginifolia H+ -ATPase to the plasma membrane is not by default and requires cytosolic structural determinants.

    Science.gov (United States)

    Lefebvre, Benoit; Batoko, Henri; Duby, Geoffrey; Boutry, Marc

    2004-07-01

    The structural determinants involved in the targeting of multitransmembrane-span proteins to the plasma membrane (PM) remain poorly understood. The plasma membrane H+ -ATPase (PMA) from Nicotiana plumbaginifolia, a well-characterized 10 transmembrane-span enzyme, was used as a model to identify structural elements essential for targeting to the PM. When PMA2 and PMA4, representatives of the two main PMA subfamilies, were fused to green fluorescent protein (GFP), the chimeras were shown to be still functional and to be correctly and rapidly targeted to the PM in transgenic tobacco. By contrast, chimeric proteins containing various combinations of PMA transmembrane spanning domains accumulated in the Golgi apparatus and not in the PM and displayed slow traffic properties through the secretory pathway. Individual deletion of three of the four cytosolic domains did not prevent PM targeting, but deletion of the large loop or of its nucleotide binding domain resulted in GFP fluorescence accumulating exclusively in the endoplasmic reticulum. The results show that, at least for this polytopic protein, the PM is not the default pathway and that, in contrast with single-pass membrane proteins, cytosolic structural determinants are required for correct targeting.

  8. pH sensor calibration procedure

    OpenAIRE

    Artero Delgado, Carola; Nogueras Cervera, Marc; Manuel Lázaro, Antonio; Prat Tasias, Jordi; Prat Farran, Joana d'Arc

    2013-01-01

    This paper describes the calibration of pH sensor located at the OBSEA marine Observatory. This instrument is based on an industrial pH electrode that is connected to a CTD instrument (Conductivity, Temperature, and Depth ). The calibration of the pH sensor has been done using a high precision spectrophotometer pH meter from Institute of Marine Sciences (ICM), and in this way it has been obtained a numerical function for the p H sensor propor...

  9. Plasma membrane Ca2+-ATPase isoforms composition regulates cellular pH homeostasis in differentiating PC12 cells in a manner dependent on cytosolic Ca2+ elevations

    DEFF Research Database (Denmark)

    Boczek, Tomasz; Lisek, Malwina; Ferenc, Bozena

    2014-01-01

    isoforms (PMCA1-4) but only PMCA2 and PMCA3, due to their unique localization and features, perform more specialized function. Using differentiated PC12 cells we assessed the role of PMCA2 and PMCA3 in the regulation of intracellular pH in steady-state conditions and during Ca2+ overload evoked by 59 m....... In steady-state conditions, higher TMRE uptake in PMCA2-knockdown line was driven by plasma membrane potential (Ψp). Nonetheless, mitochondrial membrane potential (Ψm) in this line was dissipated during Ca2+ overload. Cyclosporin and bongkrekic acid prevented Ψm loss suggesting the involvement of Ca2......+-driven opening of mitochondrial permeability transition pore as putative underlying mechanism. The findings presented here demonstrate a crucial role of PMCA2 and PMCA3 in regulation of cellular pH and indicate PMCA membrane composition important for preservation of electrochemical gradient...

  10. "Cyt/Nuc," a Customizable and Documenting ImageJ Macro for Evaluation of Protein Distributions Between Cytosol and Nucleus.

    Science.gov (United States)

    Grune, Tilman; Kehm, Richard; Höhn, Annika; Jung, Tobias

    2018-05-01

    Large amounts of data from multi-channel, high resolution, fluorescence microscopic images require tools that provide easy, customizable, and reproducible high-throughput analysis. The freeware "ImageJ" has become one of the standard tools for scientific image analysis. Since ImageJ offers recording of "macros," even a complex multi-step process can be easily applied fully automated to large numbers of images, saving both time and reducing human subjective evaluation. In this work, we present "Cyt/Nuc," an ImageJ macro, able to recognize and to compare the nuclear and cytosolic areas of tissue samples, in order to investigate distributions of immunostained proteins between both compartments, while it documents in detail the whole process of evaluation and pattern recognition. As practical example, the redistribution of the 20S proteasome, the main intracellular protease in mammalian cells, is investigated in NZO-mouse liver after feeding the animals different diets. A significant shift in proteasomal distribution between cytosol and nucleus in response to metabolic stress was revealed using "Cyt/Nuc" via automatized quantification of thousands of nuclei within minutes. "Cyt/Nuc" is easy to use and highly customizable, matches the precision of careful manual evaluation and bears the potential for quick detection of any shift in intracellular protein distribution. © 2018 The Authors. Biotechnology Journal Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  11. Platelet cytosolic 44-kDa protein is a substrate of cholera toxin-induced ADP-ribosylation and is not recognized by antisera against the α subunit of the stimulatory guanine nucleotide-binding regulatory protein

    International Nuclear Information System (INIS)

    Molina Y Vedia, L.M.; Reep, B.R.; Lapetina, E.G.

    1988-01-01

    ADP-ribosylation induced by cholera toxin and pertussis toxin was studied in particulate and cytosolic fractions of human platelets. Platelets were disrupted by a cycle of freezing and thawing in the presence of a hyposmotic buffer containing protease inhibitors. In both fractions, the A subunit of cholera toxin ADP-ribosylates two proteins with molecular masses of 42 and 44 kDa, whereas pertussis toxin ADP-ribosylates a 41-kDa polypeptide. Two antisera against the α subunit of the stimulatory guanine nucleotide-binding regulatory protein recognize only the 42-kDa polypeptide. Cholera toxin-induced ADP-ribosylation of the 42- and 44-kDa proteins is reduced by pretreatment of platelets with iloprost, a prostacyclin analog. The 44-kDa protein, which is substrate of cholera toxin, could be extracted completely from the membrane and recovered in the cytosolic fraction when the cells were disrupted by Dounce homogenization and the pellet was extensively washed. A 44-kDa protein can also be labeled with 8-azidoguanosine 5'-[α- 32 P]triphosphate in the cytosol and membranes. These finding indicate that cholera and pertussis toxins produced covalent modifications of proteins present in particulate and cytosolic platelet fractions. Moreover, the 44-kDa protein might be an α subunit of a guanine nucleotide-binding regulatory protein that is not recognized by available antisera

  12. Enhancement of UVB radiation-mediated apoptosis by knockdown of cytosolic NADP+-dependent isocitrate dehydrogenase in HaCaT cells

    OpenAIRE

    Lee, Su Jeong; Park, Jeen-Woo

    2014-01-01

    Ultraviolet B (UVB) radiation induces the production of reactive oxygen species (ROS) that promote apoptotic cell death. We showed that cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) plays an essential role in the control of cellular redox balance and defense against oxidative damage, by supplying NADPH for antioxidant systems. In this study, we demonstrated that knockdown of IDPc expression by RNA interference enhances UVB-induced apoptosis of immortalized human HaCaT keratinocyte...

  13. Esophageal pH monitoring

    Science.gov (United States)

    pH monitoring - esophageal; Esophageal acidity test ... Esophageal pH monitoring is used to check how much stomach acid is entering the esophagus. It also checks how well the acid is cleared downward into the ...

  14. Spectroscopic determination of pH

    International Nuclear Information System (INIS)

    Faanu, A.; Glover, E.T.; Bailey, E.; Rochelle, C.

    2009-01-01

    A technique of measuring pH at temperature range of 20 - 70 0 C and high pressure conditions of 1 - 200 atmospheres has been developed by relating the ratio of absorbance peaks of indicator solutions (basic and acidic) as a function of pH, using ultraviolet-visible spectrophotometer. The pH values of the buffer solutions measured at 20 0 C and 70 0 C indicated slight temperature dependence, while the pressure had no effect. The pH of the buffer solutions increased with temperature with relative standard deviations in the range 0.4 - 0.5 % at 95 % confidence interval. The possible causes of the temperature dependence were attributed to changes in pH values as the temperature changed. (au)

  15. Cytosolic sensing of immuno-stimulatory DNA, the enemy within.

    Science.gov (United States)

    Dhanwani, Rekha; Takahashi, Mariko; Sharma, Sonia

    2018-02-01

    In the cytoplasm, DNA is sensed as a universal danger signal by the innate immune system. Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor/enzyme that catalyzes formation of 2'-5'-cGAMP, an atypical cyclic di-nucleotide second messenger that binds and activates the Stimulator of Interferon Genes (STING), resulting in recruitment of Tank Binding Kinase 1 (TBK1), activation of the transcription factor Interferon Regulatory Factor 3 (IRF3), and trans-activation of innate immune response genes, including type I Interferon cytokines (IFN-I). Activation of the pro-inflammatory cGAS-STING-IRF3 response is triggered by direct recognition of the DNA genomes of bacteria and viruses, but also during RNA virus infection, neoplastic transformation, tumor immunotherapy and systemic auto-inflammatory diseases. In these circumstances, the source of immuno-stimulatory DNA has often represented a fundamental yet poorly understood aspect of the response. This review focuses on recent findings related to cGAS activation by an array of self-derived DNA substrates, including endogenous retroviral elements, mitochondrial DNA (mtDNA) and micronuclei generated as a result of genotoxic stress and DNA damage. These findings emphasize the role of the cGAS axis as a cell-intrinsic innate immune response to a wide variety of genomic insults. Copyright © 2017. Published by Elsevier Ltd.

  16. Industrial PhD report: Sustainable Innovation

    DEFF Research Database (Denmark)

    Olesen, Gitte Gylling Hammershøj

    2011-01-01

    Erhvervs PhD rapport udarbejdet i tilknytning til Erhvervs PhD kurset der er obligatorisk for Erhvervs PhD studerende. Rapporten omhandler relationer melllem den akademiske verden og industrien i sammenhæng med PhD projektet, betragtet og analyseret gennem teori om bæredygtig innovation....

  17. Identification and characterization of novel ERC-55 interacting proteins: evidence for the existence of several ERC-55 splicing variants; including the cytosolic ERC-55-C.

    Science.gov (United States)

    Ludvigsen, Maja; Jacobsen, Christian; Maunsbach, Arvid B; Honoré, Bent

    2009-12-01

    ERC-55, encoded from RCN2, is localized in the ER and belongs to the CREC protein family. ERC-55 is involved in various diseases and abnormal cell behavior, however, the function is not well defined and it has controversially been reported to interact with a cytosolic protein, the vitamin D receptor. We have used a number of proteomic techniques to further our functional understanding of ERC-55. By affinity purification, we observed interaction with a large variety of proteins, including those secreted and localized outside of the secretory pathway, in the cytosol and also in various organelles. We confirm the existence of several ERC-55 splicing variants including ERC-55-C localized in the cytosol in association with the cytoskeleton. Localization was verified by immunoelectron microscopy and sub-cellular fractionation. Interaction of lactoferrin, S100P, calcyclin (S100A6), peroxiredoxin-6, kininogen and lysozyme with ERC-55 was further studied in vitro by SPR experiments. Interaction of S100P requires [Ca(2+)] of approximately 10(-7) M or greater, while calcyclin interaction requires [Ca(2+)] of >10(-5) M. Interaction with peroxiredoxin-6 is independent of Ca(2+). Co-localization of lactoferrin, S100P and calcyclin with ERC-55 in the perinuclear area was analyzed by fluorescence confocal microscopy. The functional variety of the interacting proteins indicates a broad spectrum of ERC-55 activities such as immunity, redox homeostasis, cell cycle regulation and coagulation.

  18. On Calibration of pH Meters

    Directory of Open Access Journals (Sweden)

    Da-Ming Zhu

    2005-04-01

    Full Text Available The calibration of pH meters including the pH glass electrode, ISE electrodes,buffers, and the general background for calibration are reviewed. Understanding of basicconcepts of pH, pOH, and electrode mechanism is emphasized. New concepts of pH, pOH,as well as critical examination of activity, and activity coefficients are given. Theemergence of new solid state pH electrodes and replacement of the salt bridge with aconducting wire have opened up a new horizon for pH measurements. A pH buffer solutionwith a conducting wire may be used as a stable reference electrode. The misleadingunlimited linear Nernstian slope should be discarded. Calibration curves with 3 nonlinearportions for the entire 0—14 pH range due to the isoelectric point change effect areexplained. The potential measurement with stirring or unstirring and effects by double layer(DL and triple layer (TL will be discussed.

  19. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing.

    Science.gov (United States)

    Chen, Qi; Sun, Lijun; Chen, Zhijian J

    2016-09-20

    The recognition of microbial nucleic acids is a major mechanism by which the immune system detects pathogens. Cyclic GMP-AMP (cGAMP) synthase (cGAS) is a cytosolic DNA sensor that activates innate immune responses through production of the second messenger cGAMP, which activates the adaptor STING. The cGAS-STING pathway not only mediates protective immune defense against infection by a large variety of DNA-containing pathogens but also detects tumor-derived DNA and generates intrinsic antitumor immunity. However, aberrant activation of the cGAS pathway by self DNA can also lead to autoimmune and inflammatory disease. Thus, the cGAS pathway must be properly regulated. Here we review the recent advances in understanding of the cGAS-STING pathway, focusing on the regulatory mechanisms and roles of this pathway in heath and disease.

  20. Regulation of singlet oxygen-induced apoptosis by cytosolic NADP+-dependent isocitrate dehydrogenase.

    Science.gov (United States)

    Kim, Sun Yee; Lee, Su Min; Tak, Jean Kyoung; Choi, Kyeong Sook; Kwon, Taeg Kyu; Park, Jeen-Woo

    2007-08-01

    Singlet oxygen is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules and it also promotes deleterious processes such as cell death. Recently, we demonstrated that the control of redox balance and the cellular defense against oxidative damage are the primary functions of cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) through supplying NADPH for antioxidant systems. In this report, we demonstrate that modulation of IDPc activity in HL-60 cells regulates singlet oxygen-induced apoptosis. When we examined the protective role of IDPc against singlet oxygen-induced apoptosis with HL-60 cells transfected with the cDNA for mouse IDPc in sense and antisense orientations, a clear inverse relationship was observed between the amount of IDPc expressed in target cells and their susceptibility to apoptosis. The results suggest that IDPc plays an important protective role in apoptosis of HL-60 cells induced by singlet oxygen.

  1. The role of pH on the thermodynamics and kinetics of muscle biochemistry: an in vivo study by (31)P-MRS in patients with myo-phosphorylase deficiency.

    Science.gov (United States)

    Malucelli, E; Iotti, S; Manners, D N; Testa, C; Martinuzzi, A; Barbiroli, B; Lodi, R

    2011-09-01

    In this study we assessed ΔG'(ATP) hydrolysis, cytosolic [ADP], and the rate of phosphocreatine recovery using Phosphorus Magnetic Resonance Spectroscopy in the calf muscle of a group of patients affected by glycogen myo-phosphorylase deficiency (McArdle disease). The goal was to ascertain whether and to what extent the deficit of the glycogenolytic pathway would affect the muscle energy balance. A typical feature of this pathology is the lack of intracellular acidosis. Therefore we posed the question of whether, in the absence of pH decrease, the rate of phosphocreatine recovery depends on the amount of phosphocreatine consumed during exercise. Results showed that at the end of exercise both [ADP] and ΔG'(ATP) of patients were significantly higher than those of matched control groups reaching comparable levels of phosphocreatine concentration. Furthermore, in these patients we found that the rate of phosphocreatine recovery is not influenced by the amount of phosphocreatine consumed during exercise. These outcomes provide experimental evidence that: i) the intracellular acidification occurring in exercising skeletal muscle is a protective factor for the energy consumption; and ii) the influence of pH on the phosphocreatine recovery rate is at least in part related to the kinetic mechanisms of mitochondrial creatine kinase enzyme. 2011 Elsevier B.V. All rights reserved.

  2. AIM2-Like Receptors Positively and Negatively Regulate the Interferon Response Induced by Cytosolic DNA.

    Science.gov (United States)

    Nakaya, Yuki; Lilue, Jingtao; Stavrou, Spyridon; Moran, Eileen A; Ross, Susan R

    2017-07-05

    Cytosolic DNAs derived from retrotransposons serve as pathogen-associated molecular patterns for pattern recognition receptors (PRRs) that stimulate the induction of interferons (IFNs) and other cytokines, leading to autoimmune disease. Cyclic GMP-AMP synthase is one PRR that senses retrotransposon DNA, activating type I IFN responses through the stimulator of IFN genes (STING). Absent in melanoma 2 (AIM2)-like receptors (ALRs) have also been implicated in these pathways. Here we show that the mouse ALR IFI205 senses cytosolic retrotransposon DNA independently of cyclic GMP-AMP production. AIM2 antagonizes IFI205-mediated IFN induction activity by sequestering it from STING. We also found that the complement of genes located in the ALR locus in C57BL/6 and AIM2 knockout mice are different and unique, which has implications for interpretation of the sensing of pathogens in different mouse strains. Our data suggest that members of the ALR family are critical to the host IFN response to endogenous DNA. IMPORTANCE Autoimmune diseases like Aicardi-Goutières syndrome and lupus erythematosus arise when cells of the immune system become activated and attack host cells and tissues. We found that DNA generated by endogenous retroviruses and retroelements in inbred mice and mouse cells is recognized by several host proteins found in macrophages that are members of the ALR family and that these proteins both suppress and activate the pathways leading to the generation of cytokines and IFNs. We also show that there is great genetic diversity between different inbred mouse strains in the ALR genes, which might contribute to differential susceptibility to autoimmunity. Understanding how immune cells become activated is important to the control of disease. Copyright © 2017 Nakaya et al.

  3. Expression of cytosolic NADP(+)-dependent isocitrate dehydrogenase in melanocytes and its role as an antioxidant.

    Science.gov (United States)

    Kim, Ji Young; Shin, Jae Yong; Kim, Miri; Hann, Seung-Kyung; Oh, Sang Ho

    2012-02-01

    Cytosolic NADP(+)-dependent ICDH (IDPc) has an antioxidant effect as a supplier of NADPH to the cytosol, which is needed for the production of glutathione. To evaluate the expression of IDPc in melanocytes and to elucidate its role as an antioxidant. The knock-down of IDPc expression in immortalized mouse melanocyte cell lines (melan-a) was performed using the short interfering RNA (siRNA)-targeted gene silencing method. After confirming the silencing of IDPc expression with mRNA and protein levels, viability, apoptosis and necrosis, as well as ROS production in IDPc-silenced melanocytes were monitored under conditions of oxidative stress and non-stress. Also, the ratio of oxidized glutathione to total glutathione was examined, and whether the addition of glutathione recovered cell viability, decreased by oxidant stress, was checked. The expression of IDPc in both primary human melanocytes and melan-a cells was confirmed by Western blot and RT-PCR. The silencing of IDPc expression by transfecting IDPc siRNA in melan-a cells was observed by Western blotting and real-time RT-PCR. IDPc knock-down cells showed significantly decreased cell viability and an increased number of cells under apoptosis and necrosis. IDPc siRNA-treated melanocytes demonstrated a higher intensity of DCFDA after the addition of H(2)O(2) compared with scrambled siRNA-treated melanocytes, and a lower ratio of reduced glutathione to oxidized glutathione were observed in IDPc siRNA transfected melanocytes. In addition, the addition of glutathione recovered cell viability, which was previously decreased after incubation with H(2)O(2). This study suggests that decreased IDPc expression renders melanocytes more vulnerable to oxidative stress, and IDPc plays an important antioxidant function in melanocytes. Copyright © 2011 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Biosynthesis of sesquiterpenes in grape berry exocarp of Vitis vinifera L.: evidence for a transport of farnesyl diphosphate precursors from plastids to the cytosol.

    Science.gov (United States)

    May, Bianca; Lange, B Markus; Wüst, Matthias

    2013-11-01

    The participation of the mevalonic acid (MVA) and 1-deoxy-d-xylulose 5-phosphate/2-C-methyl-d-erythritol-4-phosphate (DOXP/MEP) pathways in sesquiterpene biosynthesis of grape berries was investigated. There is an increasing interest in this class of terpenoids, since the oxygenated sesquiterpene rotundone was identified as the peppery aroma impact compound in Australian Shiraz wines. To investigate precursor supply pathway utilization, in vivo feeding experiments were performed with the deuterium labeled, pathway specific, precursors [5,5-(2)H2]-1-deoxy-d-xylulose and [5,5-(2)H2]-mevalonic acid lactone. Head Space-Solid Phase Micro Extraction-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS) analysis of the generated volatile metabolites demonstrated that de novo sesquiterpene biosynthesis is mainly located in the grape berry exocarp (skin), with no detectable activity in the mesocarp (flesh) of the Lemberger variety. Interestingly, precursors from both the (primarily) cytosolic MVA and plastidial DOXP/MEP pathways were incorporated into grape sesquiterpenes in the varieties Lemberger, Gewürztraminer and Syrah. Our labeling data provide evidence for a homogenous, cytosolic pool of precursors for sesquiterpene biosynthesis, indicating that a transport of precursors occurs mostly from plastids to the cytosol. The labeling patterns of the sesquiterpene germacrene D were in agreement with a cyclization mechanism analogous to that of a previously cloned enantioselective (R)-germacrene D synthase from Solidago canadensis. This observation was subsequently confirmed by enantioselective GC-MS analysis demonstrating the exclusive presence of (R)-germacrene D, and not the (S)-enantiomer, in grape berries. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Comparative characterization of thyroid hormone receptors and binding proteins in rat liver nucleus, plasma membrane, and cytosol by photoaffinity labeling with L-thyroxine

    International Nuclear Information System (INIS)

    Dozin, B.; Cahnmann, H.J.; Nikodem, V.M.

    1985-01-01

    Photoaffinity labeling with underivatized thyroxine (T4) was used to identify and compare the T4 binding proteins in rat liver cytosol, nuclear extract, and purified plasma membrane. When these subcellular fractions were incubated with a tracer concentration of [125I]T4, irradiated with light above 300 nm, and individually analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the radioactivity profiles revealed the presence of T4 binding proteins of molecular masses of 70, 52, 43, 37, 30, and 26 kilodaltons (kDa) in cytosol, of 96, 56, 45, and 35 kDa in nuclear extract, and of 70, 44, and 30 kDa in plasma membrane. Competition experiments performed in the presence of a 1000-fold excess of unlabeled T4 demonstrated that these binding proteins display different hormone binding activities. The similar electrophoretic mobilities of some binding proteins present in the different subcellular fractions, i.e., the 70-, 43-45-, and 30-kDa proteins, suggested that these proteins might be identical. However, double-labeling experiments in which plasma membrane, nuclear extract, and cytosol were photolabeled with either [125I] or [131I]T4 and mixed, two at a time, in all possible combinations showed that from one cellular fraction to another, the radioactivity peaks corresponding to the approximately 70-, 43-45-, and 30-kDa proteins were not superimposed. Their relative positions on the gel differed by one or two slices, which indicated differences in molecular mass of 1.9-3.6 kDa. Moreover, enzymatic digestion with Staphylococcus aureus V8 protease of these three proteins, prepared from each subcellular fraction, yielded dissimilar peptide patterns

  6. Monitoring change in refractive index of cytosol of animal cells on affinity surface under osmotic stimulus for label-free measurement of viability.

    Science.gov (United States)

    Park, Jina; Jin, Sung Il; Kim, Hyung Min; Ahn, Junhyoung; Kim, Yeon-Gu; Lee, Eun Gyo; Kim, Min-Gon; Shin, Yong-Beom

    2015-02-15

    We demonstrated that a metal-clad waveguide (MCW)-based biosensor can be applied to label-free measurements of viability of adherent animal cells with osmotic stimulation in real time. After Chinese hamster ovary (CHO) and human embryonic kidney cell 293 (HEK293) cells were attached to a Concanavalin A (Con A)-modified sensor surface, the magnitudes of cell responses to non-isotonic stimulation were compared between live and dead cells. The live cells exhibited a change in the refractive index (RI) of the cytosol caused by a redistribution of water through the cell membrane, which was induced by the osmotic stimulus, but the dead cells did not. Moreover, the normalized change in the RI measured via the MCW sensor was linearly proportional to the viability of attached cells and the resolution in monitoring cell viability was about 0.079%. Therefore, the viability of attached animal cells can be measured without labels by observing the relative differences in the RI of cytosol in isotonic and non-isotonic buffers. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Cytosolic phosphoenolpyruvate carboxykinase is a response gene involved in porcine adipocyte adaptation to heat stress.

    Science.gov (United States)

    Qu, Huan; Ajuwon, Kolapo M

    2018-05-04

    Heat stress (HS) leads to increased lipid storage and expression of cytosolic phosphoenolpyruvate carboxykinase (PCK1) in pig adipocytes. However, the importance of PCK1 activation and lipid storage in the adaptive response to HS is unknown. Therefore, in vitro experiments were conducted to investigate the effect of PCK1 inhibition with 3-mercaptopicolinic acid (3MPA) on lipid storage and adipocyte response during HS. In vitro culture of adipocytes under HS (41.0 °C) increased (P cultured adipocytes were less able to induce adaptive responses such as upregulation of HSP70 and triglycerides, and this exacerbated ER stress during HS. Thus, PCK1 may function to alleviate ER stress that occurs during HS.

  8. An actinomycete isolate from solitary wasp mud nest having strong antibacterial activity and kills the Candida cells due the shrinkage and the cytosolic loss

    Directory of Open Access Journals (Sweden)

    Vijay eKumar

    2014-08-01

    Full Text Available An actinomycetes strain designated as MN 2(6 was isolated from the solitary wasp mud nest. The isolate was identified using polyphasic taxonomy. It produced the extensive branched brown substrate and white aerial hyphae that changed into grayish black. The aerial mycelia produced the spiral spore chains with rugose spore surface. The growth was observed between temperature range of 27-37°C, pH 8-10 and below salt concentration of 6% (w/v. The comparative analysis of 16S rRNA gene sequence and phylogenetic relationship showed that strain MN 2(6 lies in clade with Streptomyces hygroscopicus subsp. hygroscopicus NRRL 2387T, Streptomyces sporocinereus NBRC 100766T and Streptomyces demainii NRRL B-1478T with which it shares a 16S rRNA gene sequence similarity of 99.3%. The strain MN 2(6 can be differentiated from type strains based on phenotypic characteristics. The strain MN 2(6 showed most promising activity against Gram-positive, Gram-negative bacteria, acid-fast bacilli and Candida species suggesting broad-spectrum characteristics of the active metabolite. Evaluation of anti-candidal activity of the metabolite of strain MN 2(6 by scanning electron microscopy (SEM revealed changed external morphology of yeast. It kills the Candida cells due to the shrinkage and the cytosolic loss. However, further studies are required to elucidate the structure of the active metabolite produced by the isolate MN 2(6

  9. Intracellular pH and 42.00 C heat response of CHO cells cultured at pH 6.6

    International Nuclear Information System (INIS)

    Cook, J.A.; Fox, M.H.

    1987-01-01

    The authors previously reported that cells under chronic low pH (6.6) conditions have altered thermotolerance. They further characterized both the doubling time (t/sub d/) and the internal pH (pH/sub 1/) of CHO cells continuously cultured at pH 6.6 for times greater than one year. The following differences were noted: 1) A t/sub d/ of 16 hr compared to a t/sub d/ of 12 hr for cells at normal pH (7.3) and a t/sub d/ of 25 hr for the acute low pH cells (pH = 6.6; incubation time = 4 hr). 2) A pH/sub i/ 0.1-0.15 pH units > normal cells and 0.3 pH units > acute low pH cells. 3) Survival at 42.0 0 C which differed from both normal and acute low pH cells. The chronic culture was still quite sensitive to 42.0 0 C treatments during the first 5 hr, but developed tolerance at a higher level than cells under acute low pH conditions. The pH/sub i/ of the chronic culture responded to 42.0 0 C heating in a manner similar to that for acute low pH cells. Whether this culture represents a normal response to long term low pH exposure, or was the response of a mutant population is at the present unknown

  10. Effect of propylthiouracil on 125I-L-triiodothyronine binding to the nuclei and on malic enzyme activity in rat liver cytosol

    International Nuclear Information System (INIS)

    Knopp, J.

    1980-01-01

    The effects of propylthiouracil (PTU), triiodothyronine (T 3 ) and thyroxine (T 4 ) on the malic enzyme activity of rat liver cytosol and on the binding of 125 I-L-triiodothyronine to the nuclear fraction were examined. A significant decrease in in vitro binding of 125 I-T 3 to the liver nuclei was found in rats fed PTU for 12 h, 24 h and 120 h. The hepatic malic enzyme activity was unchanged after 12 h, but markedly decreased after 24 h and 120 h of PTU treatment. In 120 h PTU fed animals the effect of T 3 on the malic enzyme activity was five times higher in comparison with an equimolar dose of T 4 . Finally, the effect of T 4 on the malic enzyme activity was observed which might result from the intrinsic activity of T 4 under the conditions of a decreased T 4 to T 3 conversion due to the PTU feeding. The obtained results show that there is a certain correlation between the nuclear T 3 binding and the cytosol malic enzyme activity which is presumably induced directly through the m-RNA synthesis stimulated by thyroid hormones. (author)

  11. Constant pH Accelerated Molecular Dynamics Investigation of the pH Regulation Mechanism of Dinoflagellate Luciferase.

    Science.gov (United States)

    Donnan, Patrick H; Ngo, Phong D; Mansoorabadi, Steven O

    2018-01-23

    The bioluminescence reaction in dinoflagellates involves the oxidation of an open-chain tetrapyrrole by the enzyme dinoflagellate luciferase (LCF). The activity of LCF is tightly regulated by pH, where the enzyme is essentially inactive at pH ∼8 and optimally active at pH ∼6. Little is known about the mechanism of LCF or the structure of the active form of the enzyme, although it has been proposed that several intramolecularly conserved histidine residues in the N-terminal region are important for the pH regulation mechanism. Here, constant pH accelerated molecular dynamics was employed to gain insight into the conformational activation of LCF induced by acidification.

  12. PH og modernismen

    DEFF Research Database (Denmark)

    Ahnfeldt-Mollerup, Merete

    2012-01-01

    Artiklen kaster et kritisk blik på Poul Henningsens samfundsanalyse og dennes sammenhæng med hans design. PH ses i en bredere national og international sammenhæng. Diskussion af designmetoder, æstetik og Bauhaus.......Artiklen kaster et kritisk blik på Poul Henningsens samfundsanalyse og dennes sammenhæng med hans design. PH ses i en bredere national og international sammenhæng. Diskussion af designmetoder, æstetik og Bauhaus....

  13. Laser-mediated perforation of plant cells

    Science.gov (United States)

    Wehner, Martin; Jacobs, Philipp; Esser, Dominik; Schinkel, Helga; Schillberg, Stefan

    2007-07-01

    The functional analysis of plant cells at the cellular and subcellular levels requires novel technologies for the directed manipulation of individual cells. Lasers are increasingly exploited for the manipulation of plant cells, enabling the study of biological processes on a subcellular scale including transformation to generate genetically modified plants. In our setup either a picosecond laser operating at 1064 nm wavelength or a continuous wave laser diode emitting at 405 nm are coupled into an inverse microscope. The beams are focused to a spot size of about 1.5 μm and the tobacco cell protoplasts are irradiated. Optoporation is achieved when targeting the laser focal spot at the outermost edge of the plasma membrane. In case of the picosecond laser a single pulse with energy of about 0.4 μJ was sufficient to perforate the plasma membrane enabling the uptake of dye or DNA from the surrounding medium into the cytosol. When the ultraviolet laser diode at a power level of 17 mW is employed an irradiation time of 200 - 500 milliseconds is necessary to enable the uptake of macromolecules. In the presence of an EYFP encoding plasmid with a C-terminal peroxisomal signal sequence in the surrounding medium transient transformation of tobacco protoplasts could be achieved in up to 2% of the optoporated cells. Single cell perforation using this novel optoporation method shows that isolated plant cells can be permeabilized without direct manipulation. This is a valuable procedure for cell-specific applications, particularly where the import of specific molecules into plant cells is required for functional analysis.

  14. In vitro mutation breeding for salinity tolerance in Citrus

    International Nuclear Information System (INIS)

    Deng Zhanao; Zhang Wencai; Wan Shuyan

    1989-01-01

    Full text: Mutation breeding began in the 1970's, concentrating on early ripening and high quality spontaneous mutants, subsequently on the induction of seedless mutants by gamma radiation and other mutagens. Extremely early cultivars 'Guoqing 1 to 5' have been obtained from bud mutations in satsuma mandarin and are grown commercially. Other desirable mutants have been found in progenies from gamma ray treated budwood. Recently we introduced plant tissue and cell culture techniques hoping to avoid chimerism and diplontic selection and to obtain solid mutants in a shorter time, resistant to salt, herbicides, low temperature and diseases. I. Methods for cell and protoplast culture. Ovules from fruitlets 1-6 weeks after flowering, cultured in MT supplemented with IAA 0.1 mg/I and KT 1.0 mg/l, gradually produce callus from nucelli. After several passages, habituated callus lines are obtained, which grow very well in MT medium without any growth substances. These callus lines, regardless of the species and cultivars are white, friable, composed of cell clumps of various size and highly embryogenic. When transferred to MT medium containing 2% glycerol and caseinhydrolysat 400 mg/l, they become green and form numerous green globular embryoids within one month. Most of the embryoids derive from single cells. The embryoids could develop roots and shoots forming large numbers of plantlets in a fresh medium. Habituated callus lines have been established in 5 cultivars. Their high embryogenic capacity of single cell origin provides good material for mutation induction. For obtaining protoplasts, the habituated calluses were transferred into liquid MT medium and cultured for two passages on a shaker, then they were macerated with enzyme solution containing 0.3%-0.5% pectinase, 0.3%-0.5% cellulase, MT macroelements and 0.7 M mannitol, at 5.7 pH. After incubation at 25 deg. C for 12-16 hrs., a large number of viable protoplasts could be collected. They were resuspended to a

  15. Micro Electrochemical pH Sensor Applicable for Real-Time Ratiometric Monitoring of pH Values in Rat Brains.

    Science.gov (United States)

    Zhou, Jie; Zhang, Limin; Tian, Yang

    2016-02-16

    To develop in vivo monitoring meter for pH measurements is still the bottleneck for understanding the role of pH plays in the brain diseases. In this work, a selective and sensitive electrochemical pH meter was developed for real-time ratiometric monitoring of pH in different regions of rat brains upon ischemia. First, 1,2-naphthoquinone (1,2-NQ) was employed and optimized as a selective pH recognition element to establish a 2H(+)/2e(-) approach over a wide range of pH from 5.8 to 8.0. The pH meter demonstrated remarkable selectivity toward pH detection against metal ions, amino acids, reactive oxygen species, and other biological species in the brain. Meanwhile, an inner reference, 6-(ferrocenyl)hexanethiol (FcHT), was selected as a built-in correction to avoid the environmental effect through coimmobilization with 1,2-NQ. In addition, three-dimensional gold nanoleaves were electrodeposited onto the electrode surface to amplify the signal by ∼4.0-fold and the measurement was achieved down to 0.07 pH. Finally, combined with the microelectrode technique, the microelectrochemical pH meter was directly implanted into brain regions including the striatum, hippocampus, and cortex and successfully applied in real-time monitoring of pH values in these regions of brain followed by global cerebral ischemia. The results demonstrated that pH values were estimated to 7.21 ± 0.05, 7.13 ± 0.09, and 7.27 ± 0.06 in the striatum, hippocampus, and cortex in the rat brains, respectively, in normal conditions. However, pH decreased to 6.75 ± 0.07 and 6.52 ± 0.03 in the striatum and hippocampus, upon global cerebral ischemia, while a negligible pH change was obtained in the cortex.

  16. Spatiotemporal magnetic fields enhance cytosolic Ca.sup.2+./sup. levels and induce actin polymerization via activation of voltage-gated sodium channels in skeletal muscle cells

    Czech Academy of Sciences Publication Activity Database

    Rubio Ayala, M.; Syrovets, T.; Hafner, S.; Zablotskyy, Vitaliy A.; Dejneka, Alexandr; Simmet, T.

    2018-01-01

    Roč. 163, May (2018), s. 174-184 ISSN 0142-9612 Institutional support: RVO:68378271 Keywords : alternating magnetic field * skeletal muscle * cytosolic calcium * modeling * eddy current * voltage-gated sodium channels Subject RIV: BO - Biophysics OBOR OECD: Biophysics Impact factor: 8.402, year: 2016

  17. Optimum pH and pH Stability of Crude Polyphenol Oxidase (PPO ...

    African Journals Online (AJOL)

    The effect of pH on the activity and stability of crude polyphenol oxidase (PPO) extracted from garden egg (Solanum aethiopicum), pawpaw (Carica papaya), pumpkin ... Optimum pH values were found to be 6.0,6.5,6.0, 4.5 and 4.0/or 8.0 for the enzyme extracted from Solanum aethiopicum, Carica papaya, Cucurbita pepo, ...

  18. Lysosomal ceramide generated by acid sphingomyelinase triggers cytosolic cathepsin B-mediated degradation of X-linked inhibitor of apoptosis protein in natural killer/T lymphoma cell apoptosis.

    Science.gov (United States)

    Taniguchi, M; Ogiso, H; Takeuchi, T; Kitatani, K; Umehara, H; Okazaki, T

    2015-04-09

    We previously reported that IL-2 deprivation induced acid sphingomyelinase-mediated (ASM-mediated) ceramide elevation and apoptosis in an NK/T lymphoma cell line KHYG-1. However, the molecular mechanism of ASM-ceramide-mediated apoptosis during IL-2 deprivation is poorly understood. Here, we showed that IL-2 deprivation induces caspase-dependent apoptosis characterized by phosphatidylserine externalization, caspase-8, -9, and -3 cleavage, and degradation of X-linked inhibitor of apoptosis protein (XIAP). IL-2 re-supplementation rescued apoptosis via inhibition of XIAP degradation without affecting caspase cleavage. However, IL-2 deprivation induced ceramide elevation via ASM in lysosomes and activated lysosomal cathepsin B (CTSB) but not cathepsin D. A CTSB inhibitor CA-074 Me and knockdown of CTSB inhibited ceramide-mediated XIAP degradation and apoptosis. Inhibition of ceramide accumulation in lysosomes using an ASM inhibitor, desipramine, decreased cytosolic activation of CTSB by inhibiting its transfer into cytosol from the lysosome. Knockdown of ASM also inhibited XIAP degradation and apoptosis. Furthermore, cell permeable N-acetyl sphingosine (C2-ceramide), which increases mainly endogenous d18:1/16:0 and d18:1/24:1 ceramide-like IL-2 deprivation, induced caspase-dependent apoptosis with XIAP degradation through CTSB. These findings suggest that lysosomal ceramide produced by ASM mediates XIAP degradation by activation of cytosolic CTSB and caspase-dependent apoptosis. The ASM-ceramide-CTSB signaling axis is a novel pathway of ceramide-mediated apoptosis in IL-2-deprived NK/T lymphoma cells.

  19. Label-Free Carbon-Dots-Based Ratiometric Fluorescence pH Nanoprobes for Intracellular pH Sensing.

    Science.gov (United States)

    Shangguan, Jingfang; He, Dinggeng; He, Xiaoxiao; Wang, Kemin; Xu, Fengzhou; Liu, Jinquan; Tang, Jinlu; Yang, Xue; Huang, Jin

    2016-08-02

    Measuring pH in living cells is of great importance for better understanding cellular functions as well as providing pivotal assistance for early diagnosis of diseases. In this work, we report the first use of a novel kind of label-free carbon dots for intracellular ratiometric fluorescence pH sensing. By simple one-pot hydrothermal treatment of citric acid and basic fuchsin, the carbon dots showing dual emission bands at 475 and 545 nm under single-wavelength excitation were synthesized. It is demonstrated that the fluorescence intensities of the as-synthesized carbon dots at the two emissions are pH-sensitive simultaneously. The intensity ratio (I475 nm/I545 nm) is linear against pH values from 5.2 to 8.8 in buffer solution, affording the capability as ratiometric probes for intracellular pH sensing. It also displays that the carbon dots show excellent reversibility and photostability in pH measurements. With this nanoprobe, quantitative fluorescence imaging using the ratio of two emissions (I475 nm/I545 nm) for the detection of intracellular pH were successfully applied in HeLa cells. In contrast to most of the reported nanomaterials-based ratiometric pH sensors which rely on the attachment of additional dyes, these carbon-dots-based ratiometric probes are low in toxicity, easy to synthesize, and free from labels.

  20. Analysis of the combined effects of lanthanum and acid rain, and their mechanisms, on nitrate reductase transcription in plants.

    Science.gov (United States)

    Xia, Binxin; Sun, Zhaoguo; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2017-04-01

    Rare earth element (REE) pollution and acid rain are major global environmental concerns, and their spatial distributions overlap. Thus, both forms of pollution combine to act on plants. Nitrogen is important for plant growth, and nitrate reductase (NR) is a key plant enzyme that catalyzes nitrogen assimilation. Studying the combined effects of REEs and acid rain on plant nitrogen-based nutrients has important environmental significance. Here, soybean (Glycine max) plants, commonly used for toxicological studies, were exposed to lanthanum (La), a REE, and acid rain to study the NR activities and NR transcriptional levels in the roots. To explain how the pollution affected the NR transcriptional level, we simultaneously observed the contents of intracellular La and nutrient elements, protoplast morphology, membrane lipid peroxidation and intracellular pH. A combined treatment of 0.08mmol/L La and pH 4.5 acid rain increased the NR activity, decreased the NR transcriptional level, increased the intracellular nutrient elements' contents and caused deformations in membrane structures. Other combined treatments significantly decreased the aforementioned parameters and caused serious damage to the membrane structures. The variation in the amplitudes of combined treatments was greater than those of individual treatments. Compared with the control and individual treatments, combined treatments increased membrane permeability, the malondialdehyde content, and intracellular H + and La contents, and with an increasing La concentration or acid strength, the change in amplitude increased. Thus, the combined effects on NR gene transcription in soybean seedling roots were related to the intracellular nutrient elements' contents, protoplast morphology, membranous lipid peroxidation, intracellular pH and La content. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Proceedings of the First PhD Symposium on Sustainable Ultrascale Computing Systems (NESUS PhD 2016)

    OpenAIRE

    Carretero Pérez, Jesús; García Blas, Javier; Petcu, Dana

    2016-01-01

    Proceedings of the First PhD Symposium on Sustainable Ultrascale Computing Systems (NESUS PhD 2016) Timisoara, Romania. February 8-11, 2016. The PhD Symposium was a very good opportunity for the young researchers to share information and knowledge, to present their current research, and to discuss topics with other students in order to look for synergies and common research topics. The idea was very successful and the assessment made by the PhD Student was very good. It also helped t...

  2. Interferon-inducible p200-family protein IFI16, an innate immune sensor for cytosolic and nuclear double-stranded DNA: regulation of subcellular localization.

    Science.gov (United States)

    Veeranki, Sudhakar; Choubey, Divaker

    2012-01-01

    The interferon (IFN)-inducible p200-protein family includes structurally related murine (for example, p202a, p202b, p204, and Aim2) and human (for example, AIM2 and IFI16) proteins. All proteins in the family share a partially conserved repeat of 200-amino acid residues (also called HIN-200 domain) in the C-terminus. Additionally, most proteins (except the p202a and p202b proteins) also share a protein-protein interaction pyrin domain (PYD) in the N-terminus. The HIN-200 domain contains two consecutive oligosaccharide/oligonucleotide binding folds (OB-folds) to bind double stranded DNA (dsDNA). The PYD domain in proteins allows interactions with the family members and an adaptor protein ASC. Upon sensing cytosolic dsDNA, Aim2, p204, and AIM2 proteins recruit ASC protein to form an inflammasome, resulting in increased production of proinflammatory cytokines. However, IFI16 protein can sense cytosolic as well as nuclear dsDNA. Interestingly, the IFI16 protein contains a nuclear localization signal (NLS). Accordingly, the initial studies had indicated that the endogenous IFI16 protein is detected in the nucleus and within the nucleus in the nucleolus. However, several recent reports suggest that subcellular localization of IFI16 protein in nuclear versus cytoplasmic (or both) compartment depends on cell type. Given that the IFI16 protein can sense cytosolic as well as nuclear dsDNA and can initiate different innate immune responses (production of IFN-β versus proinflammatory cytokines), here we evaluate the experimental evidence for the regulation of subcellular localization of IFI16 protein in various cell types. We conclude that further studies are needed to understand the molecular mechanisms that regulate the subcellular localization of IFI16 protein. Published by Elsevier Ltd.

  3. Biochemical and Molecular Characterization of RcSUS1, a Cytosolic Sucrose Synthase Phosphorylated in Vivo at Serine 11 in Developing Castor Oil Seeds*

    Science.gov (United States)

    Fedosejevs, Eric T.; Ying, Sheng; Park, Joonho; Anderson, Erin M.; Mullen, Robert T.; She, Yi-Min; Plaxton, William C.

    2014-01-01

    Sucrose synthase (SUS) catalyzes the UDP-dependent cleavage of sucrose into UDP-glucose and fructose and has become an important target for improving seed crops via metabolic engineering. A UDP-specific SUS homotetramer composed of 93-kDa subunits was purified to homogeneity from the triacylglyceride-rich endosperm of developing castor oil seeds (COS) and identified as RcSUS1 by mass spectrometry. RcSUS1 transcripts peaked during early development, whereas levels of SUS activity and immunoreactive 93-kDa SUS polypeptides maximized during mid-development, becoming undetectable in fully mature COS. The cytosolic location of the enzyme was established following transient expression of RcSUS1-enhanced YFP in tobacco suspension cells and fluorescence microscopy. Immunological studies using anti-phosphosite-specific antibodies revealed dynamic and high stoichiometric in vivo phosphorylation of RcSUS1 at its conserved Ser-11 residue during COS development. Incorporation of 32Pi from [γ-32P]ATP into a RcSUS1 peptide substrate, alongside a phosphosite-specific ELISA assay, established the presence of calcium-dependent RcSUS1 (Ser-11) kinase activity. Approximately 10% of RcSUS1 was associated with COS microsomal membranes and was hypophosphorylated relative to the remainder of RcSUS1 that partitioned into the soluble, cytosolic fraction. Elimination of sucrose supply caused by excision of intact pods of developing COS abolished RcSUS1 transcription while triggering the progressive dephosphorylation of RcSUS1 in planta. This did not influence the proportion of RcSUS1 associated with microsomal membranes but instead correlated with a subsequent marked decline in SUS activity and immunoreactive RcSUS1 polypeptides. Phosphorylation at Ser-11 appears to protect RcSUS1 from proteolysis, rather than influence its kinetic properties or partitioning between the soluble cytosol and microsomal membranes. PMID:25313400

  4. Correlation of transmissive fractures in holes OL-PH1, ONK-PH2 .. ONK-PH7 and ONKALO tunnel fractures

    International Nuclear Information System (INIS)

    Palmen, J; Nummela, J.; Ahokas, H.

    2011-02-01

    In a preceding study Posiva flow logging (PFL) with a 0.5 m test interval and 10 cm steps has been used together with optical drillhole images and core logging fracture data for the exact determination of the depth of hydraulically conductive fractures in pilot holes. The fracture traces has been mapped from the ONKALO tunnel walls as a part of the systematic mapping. The mapping results has been digitized to a 3D tunnel layout in Surpac Vision programme. The data integrity and fracture trace uniqueness has been verified by Datactica Oy and further collected to a database (Rakokanta D atactica P osiva20091119.mdb). Water leakage of the mapped fractures exists as an attribute field for each fracture, but the value of the attribute has not been assessed conclusively. Those fractures mapped with leakage attribute have been defined as flowing, dripping, wet, or damp where the attribute is recorded. The fractures with no leakage attribute value appear to be dry (not leaking) or the information is not available (assessment was not performed). The water leaking surfaces on ONKALO tunnel wall have been mapped sequentially and conclusively (twice a year) as a part of the Olkiluoto monitoring program (OMO) using an equal five step measure as used with fracture traces in systematic mapping. The PFL results correlated with core logging fracture data from pilot holes OL-PH1 and ONK-PH2 .. ONK-PH7 were in this work further correlated with the fractures mapped from the ONKALO tunnel walls. Each hydraulically conductive fracture of OL-PH1 and ONK-PH2 - ONK-PH7 was investigated and linked to ONKALO fracture of a coherent orientation and matching location, where such fracture trace was available. The main objective of the work was to identify the ONKALO fractures which correspond to the flow from fracture(s) identified with the PFL method in pilot holes and to collect basic information about the occurrence, frequency and orientation of water bearing fractures along ONKALO tunnel

  5. The pH Game.

    Science.gov (United States)

    Chemecology, 1996

    1996-01-01

    Describes a game that can be used to teach students about the acidity of liquids and substances around their school and enable them to understand what pH levels tell us about the environment. Students collect samples and measure the pH of water, soil, plants, and other natural material. (DDR)

  6. pH distribution in human tumors

    International Nuclear Information System (INIS)

    Thistlethwaite, A.J.; Leeper, D.B.; Moylan, D.J.; Nerlinger, R.E.

    1984-01-01

    pH distribution in human tumors is being determined to evaluate this parameter as a prognostic indicator of hyperthermia response. pH is measured by a modified glass pH electrode (21g, model MI 408, Microelectrodes, Inc., Londonderry, NH) inserted through an 18g open-ended Angiocath. Eight tumors have been evaluated to date; and of those, 3 were also assayed after the first heat treatment coincident with determination of blood flow. Tumors were between 2-5 cm, of various histologies, and of primary, recurrent, or metastatic origin. 2-4 measurements were made per tumor. Pretreatment readings were between 6.4 and 7.2 pH units. As tumor blood flow increased after 1 hr heating (41.5 - 43 0 ) pH rose 0.1 - 0.3 units. Normal rat muscle yields pH readings of 7.35 - 7.45. Although there was considerable heterogeneity of pH within tumors, accuracy and drift were not a problem. 5-15 min were required for pH stabilization after catheter insertion and <5 min after electrode insertion. A saline wheal was used for anesthesia to preclude modification of pH by anesthetics. Patient tolerance has not been a problems. This study suggests that human tumor tissue has a preponderance of areas more acidic than normal tissue. This may serve to sensitize tumor cells to hyperthermia and provide a prognostic indicator of tumor response

  7. A field survey of metal binding to metallothionein and other cytosolic ligands in liver of eels using an on-line isotope dilution method in combination with size exclusion (SE) high pressure liquid chromatography (HPLC) coupled to Inductively Coupled Plasma time-of-flight Mass Spectrometry (ICP-TOFMS).

    Science.gov (United States)

    Van Campenhout, Karen; Goenaga Infante, Heidi; Goemans, Geert; Belpaire, Claude; Adams, Freddy; Blust, Ronny; Bervoets, Lieven

    2008-05-15

    The effect of metal exposure on the accumulation and cytosolic speciation of metals in livers of wild populations of European eel with special emphasis on metallothioneins (MT) was studied. Four sampling sites in Flanders showing different degrees of heavy metal contamination were selected for this purpose. An on-line isotope dilution method in combination with size exclusion (SE) high pressure liquid chromatography (HPLC) coupled to Inductively Coupled Plasma time-of-flight Mass Spectrometry (ICP-TOFMS) was used to study the cytosolic speciation of the metals. The distribution of the metals Cd, Cu, Ni, Pb and Zn among cytosolic fractions displayed strong differences. The cytosolic concentration of Cd, Ni and Pb increased proportionally with the total liver levels. However, the cytosolic concentrations of Cu and Zn only increased above a certain liver tissue threshold level. Cd, Cu and Zn, but not Pb and Ni, were largely associated with the MT pool in correspondence with the environmental exposure and liver tissue concentrations. Most of the Pb and Ni and a considerable fraction of Cu and Zn, but not Cd, were associated to High Molecular Weight (HMW) fractions. The relative importance of the Cu and Zn in the HMW fraction decreased with increasing contamination levels while the MT pool became progressively more important. The close relationship between the cytosolic metal load and the total MT levels or the metals bound on the MT pool indicates that the metals, rather than other stress factors, are the major factor determining MT induction.

  8. Effects of actonomycin D and ultraviolet irradiation on multiplication of brome mosaic virus in host and non-host cells

    International Nuclear Information System (INIS)

    Maekawa, K.; Furusawa, I.; Okuno, T.

    1981-01-01

    The modes of multiplication of brome mosaic virus (BMV) were compared in protoplasts isolated from host and non-host plants. BMV actively multiplied in the leaves and isolated mesophyll protoplasts of barley, a host of BMV. BMV multiplication in barley protoplasts was inhibited by addition of actinomycin D immediately after inoculation or by u.v. irradiation of the protoplasts before inoculation. In contrast, although BMV could not multiply in leaves of radish and turnip (non-hosts for BMV) it multiplied at a low level in protoplasts isolated from these two plant species. Moreover, u.v. irradiation, or the addition of actinomycin D, enhanced multiplication of BMV in radish and turnip protoplasts. These results suggest that (i) in the host cells replication of BMV is dependent on cellular metabolism of nucleic acid and protein, and (ii) in the non-host cells a substance(s) inhibitory to replication of BMV is synthesized. (author)

  9. Forum for Almen Medicinske ph.d.-studerende

    DEFF Research Database (Denmark)

    Vedsted, Peter; Waldorff, Frans Boch; Eriksson, Tina

    Rapport fra første fællesmøde mellem nuværende og kommende almenmedicinske ph.d.-studerende. Rapporten anbefaler dannelse af et egentligt almenmedicinsk ph.d.-forum, der søges optaget i DSAM som en interessegruppe. Ph.d.-forum betragter sig som en ressource ved forskellige initiativer og ønsker...... blandt andet at arbejde for en værdig ansættelse af yngre forskere. Blandt de konkrete forslag, Ph.d.-forum har stillet, er almenmedicinske ph.d.-kurser og ph.d.-stipendium med henblik på udarbejdelse af protokol....

  10. Survey on the Labour Market Position of PhD Graduates: Competence comparison and relation between PhD and current employment

    Energy Technology Data Exchange (ETDEWEB)

    Heuritsch, J.; Waaijer, C.J.F.; Van der Weijden, I.C.M.

    2016-07-01

    We compared the skills PhD graduates acquired during their PhDs to the ones they need in their current job. We also studied the relation between PhD topic and content of the current job of recent PhD graduates. Data was collected in a survey of 1,133 respondents with a PhD from five Dutch universities between early 2008 and mid-2012. We show that scientific skills and independence are developed sufficiently during the PhD education, whereas PhDs are lacking in management and communication skills. These competence discrepancies were compared to the educational level required for the PhD holder’s current job and the relatedness of the current job to the PhD topic. (Author)

  11. PhD supervisor-student relationship

    Directory of Open Access Journals (Sweden)

    FILIPE PRAZERES

    2017-10-01

    Full Text Available The relationship between the PhD supervisor and the PhD student is a complex one. When this relationship is neither effective nor efficient, it may yield negative consequences, such as academic failure (1. The intricacy of the supervisor-student relationship may be in part comparable to the one between the physician and his/her patient [see, for example (2]. Both interactions develop over several years and the players involved in each relationship – PhD supervisor-student on the one side and physician-patient on the other side – may at some point of the journey develop different expectations of one another [see, for example (3, 4] and experience emotional distress (5. In both relationships, the perceived satisfaction with the interaction will contribute to the success or failure of the treatment in one case, and in the other, the writing of a thesis. To improve the mentioned satisfaction, not only there is a need to invest time (6, as does the physician to his/ her patients, but also both the supervisor and the PhD student must be willing to negotiate a research path to follow that would be practical and achievable. The communication between the physician and patient is of paramount importance for the provision of health care (7, and so is the communication between the supervisor and PhD student which encourages the progression of both the research and the doctoral study (8. As to a smooth transition to the postgraduate life, supervisors should start thinking about providing the same kind of positive reinforcement that every student is used to experience in the undergraduate course. The recognition for a job well done will mean a lot for a PhD student, as it does for a patient. One good example is the increase in medication compliance by patients with high blood pressure who receive positive reinforcement from their physicians (9. Supervisors can organize regular meetings for (and with PhD students in order to not only discuss their projects

  12. 11 µ-Hydroxylation of cortexolone using immobilized ...

    African Journals Online (AJOL)

    Transformation of cortexolone to cortisol and prednisolone by the filamentous fungus Cunninghamella elegans protoplasts as a research tool was studied. The immobilized protoplasts of the fungus hydroxylated cortexolone at 11β -position had significantly higher activity than the free protoplasts. Sucrose as an osmotic ...

  13. Amino acid starvation has opposite effects on mitochondrial and cytosolic protein synthesis.

    Directory of Open Access Journals (Sweden)

    Mark A Johnson

    Full Text Available Amino acids are essential for cell growth and proliferation for they can serve as precursors of protein synthesis, be remodelled for nucleotide and fat biosynthesis, or be burnt as fuel. Mitochondria are energy producing organelles that additionally play a central role in amino acid homeostasis. One might expect mitochondrial metabolism to be geared towards the production and preservation of amino acids when cells are deprived of an exogenous supply. On the contrary, we find that human cells respond to amino acid starvation by upregulating the amino acid-consuming processes of respiration, protein synthesis, and amino acid catabolism in the mitochondria. The increased utilization of these nutrients in the organelle is not driven primarily by energy demand, as it occurs when glucose is plentiful. Instead it is proposed that the changes in the mitochondrial metabolism complement the repression of cytosolic protein synthesis to restrict cell growth and proliferation when amino acids are limiting. Therefore, stimulating mitochondrial function might offer a means of inhibiting nutrient-demanding anabolism that drives cellular proliferation.

  14. Multifunctional polymersomes for cytosolic delivery of gemcitabine and doxorubicin to cancer cells.

    Science.gov (United States)

    Nahire, Rahul; Haldar, Manas K; Paul, Shirshendu; Ambre, Avinash H; Meghnani, Varsha; Layek, Buddhadev; Katti, Kalpana S; Gange, Kara N; Singh, Jagdish; Sarkar, Kausik; Mallik, Sanku

    2014-08-01

    Although liposomes are widely used as carriers of drugs and imaging agents, they suffer from a lack of stability and the slow release of the encapsulated contents at the targeted site. Polymersomes (vesicles of amphiphilic polymers) are considerably more stable compared to liposomes; however, they also demonstrate a slow release for the encapsulated contents, limiting their efficacy as a drug-delivery tool. As a solution, we prepared and characterized echogenic polymersomes, which are programmed to release the encapsulated drugs rapidly when incubated with cytosolic concentrations of glutathione. These vesicles encapsulated air bubbles inside and efficiently reflected diagnostic-frequency ultrasound. Folate-targeted polymersomes showed an enhanced uptake by breast and pancreatic-cancer cells in a monolayer as well as in three-dimensional spheroid cultures. Polymersomes encapsulated with the anticancer drugs gemcitabine and doxorubicin showed significant cytotoxicity to these cells. With further improvements, these vesicles hold the promise to serve as multifunctional nanocarriers, offering a triggered release as well as diagnostic ultrasound imaging. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Biomedical PhD education - an international perspective

    DEFF Research Database (Denmark)

    Mulvany, Michael J.

    2013-01-01

    The PhD, otherwise known as the doctor of philosophy or Dr. Phil., is an internationally recognized degree, indicating that the PhD graduate has received training in research under supervision. Traditionally, the PhD was the route to an academic career, with most successful PhD graduates receiving...... tenured university positions. However, over the past 20–30 years, and particularly the past 10 years, the situation has changed dramatically. Governments in many countries have invested massively in PhD education, believing that trained researchers will contribute to the ‘knowledge society’, and thus...... increase the competitiveness of their countries in the future economies of the world. Thus, only a small fraction of PhD graduates now end up in academic research. Yet, the PhD remains a research degree, and indeed, institutions have become heavily dependent on PhD students for their research output...

  16. Salivary pH: A diagnostic biomarker.

    Science.gov (United States)

    Baliga, Sharmila; Muglikar, Sangeeta; Kale, Rahul

    2013-07-01

    Saliva contains a variety of host defense factors. It influences calculus formation and periodontal disease. Different studies have been done to find exact correlation of salivary biomarkers with periodontal disease. With a multitude of biomarkers and complexities in their determination, the salivary pH may be tried to be used as a quick chairside test. The aim of this study was to analyze the pH of saliva and determine its relevance to the severity of periodontal disease. The study population consisted of 300 patients. They were divided into three groups of 100 patients each: Group A had clinically healthy gingiva, Group B who had generalized chronic gingivitis and Group C who had generalized chronic periodontitis. The randomized unstimulated saliva from each patient was collected and pH was tested. Data was analyzed statistically using analysis of variance technique. The salivary pH was more alkaline for patients with generalized chronic gingivitis as compared with the control group (P = 0.001) whereas patients with generalized chronic periodontitis had more acidic pH as compared with the control group (P = 0.001). These results indicate a significant change in the pH depending on the severity of the periodontal condition. The salivary pH shows significant changes and thus relevance to the severity of periodontal disease. Salivary pH may thus be used as a quick chairside diagnostic biomarker.

  17. Solid phase synthesis and biological evaluation of enantiomerically pure wasp toxin analogues PhTX-343 and PhTX-12

    DEFF Research Database (Denmark)

    Strømgaard, K; Bjørnsdottir, I; Andersen, K

    2000-01-01

    ) of the enantiomers of PhTX-343 and PhTX-12. The methods were optimised with respect to chiral selector, buffer pH, and temperature around the capillary. Thus, rac-PhTX-343 was resolved using a separation buffer containing 30 mM heptakis-(2, 6-di-O-methyl)-beta-cyclodextrin in 50 mM 6-aminocarproic acid (pH 4. 0......) at 15 degrees C. rac-PhTX-12 was not resolvable in this system, but could be resolved using a separation buffer containing 10% w/v of dextrin 10, a linear maltodextrin, in 50 mM 6-aminocaproic acid (pH 4.0) at 15 degrees C. Using these methods, the optical purity of the synthetic enantiomers...

  18. Autoimmune hepatitis-specific antibodies against soluble liver antigen and liver cytosol type 1 in patients with chronic viral hepatitis

    OpenAIRE

    Rigopoulou, Eirini I; Mytilinaiou, Maria; Romanidou, Ourania; Liaskos, Christos; Dalekos, George N

    2007-01-01

    Background Non-organ specific autoantibodies are highly prevalent in patients with chronic hepatitis C (HCV). Among them, anti-liver kidney microsomal type 1 (LKM1) antibody – the serological marker of type 2 autoimmune hepatitis (AIH-2)- is detected in up to 11% of the HCV-infected subjects. On the other hand, anti-liver cytosol type 1 antibodies (anti-LC1) – either in association with anti-LKM1, or in isolation- and anti-soluble liver antigen antibodies (anti-SLA) have been considered as us...

  19. Decrease in the cytosolic NADP+-dependent isocitrate dehydrogenase activity through porcine sperm capacitation.

    Science.gov (United States)

    Katoh, Yuki; Tamba, Michiko; Matsuda, Manabu; Kikuchi, Kazuhiro; Okamura, Naomichi

    2018-02-26

    In order to understand the molecular mechanisms involved in the sperm capacitation, we have identified the proteins tyrosine-phosphorylated during the capacitation especially in conjunction with the regulation of the levels of reactive oxygen species (ROS) in sperm. In the present study, the effects of the tyrosine phosphorylation of cytosolic NADP + -dependent isocitrate dehydrogenase (IDPc) on its catalytic activity and on the levels of ROS in sperm have been studied. The tyrosine phosphorylated IDPc showed a significantly lowered enzymatic activity. The immunocytochemical analyses using the highly specific antisera against IDPc revealed that IDPc was mainly localized to the principal piece of the porcine sperm flagellum. As IDPc is one of the major NADPH regenerating enzymes in porcine sperm, it is strongly suggested that the decrease in IDPc activity is involved in the increased levels of ROS, which results in the induction of hyperactivated flagellar movement and capacitation. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Cytosolic distributions of highly toxic metals Cd and Tl and several essential elements in the liver of brown trout (Salmo trutta L.) analyzed by size exclusion chromatography and inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Dragun, Zrinka; Krasnići, Nesrete; Kolar, Nicol; Filipović Marijić, Vlatka; Ivanković, Dušica; Erk, Marijana

    2018-05-15

    Cytosolic distributions of nonessential metals Cd and Tl and seven essential elements among compounds of different molecular masses were studied in the liver of brown trout (Salmo trutta) from the karstic Krka River in Croatia. Analyses were done by size exclusion high performance liquid chromatography and high resolution inductively coupled plasma mass spectrometry. Common feature of Cd and Tl, as highly toxic elements, was their distribution within only two narrow peaks. The increase of cytosolic Cd concentrations was reflected in marked increase of Cd elution within low molecular mass peak (maximum at ∼15 kDa), presumably containing metallothioneins (MTs), which indicated successful Cd detoxification in brown trout liver under studied exposure conditions. Contrary, the increase of cytosolic Tl concentrations was reflected in marked increase of Tl elution within high molecular mass peak (maximum at 140 kDa), which probably indicated incomplete Tl detoxification. Common feature of the majority of studied essential elements was their distribution within more peaks, often broad and not well resolved, which is consistent with their numerous physiological functions. Among observed associations of essential metals/nonmetal to proteins, the following could be singled out: Cu and Zn association to MTs, Fe association to storage protein ferritin, and Se association to compounds of very low molecular masses (<5 kDa). The obtained results present the first step towards identification of metal-binding compounds in hepatic cytosol of brown trout, and thus a significant contribution to better understanding of metal fate in the liver of that important bioindicator species. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. The complex effects of ocean acidification on the prominent N2-fixing cyanobacterium Trichodesmium.

    Science.gov (United States)

    Hong, Haizheng; Shen, Rong; Zhang, Futing; Wen, Zuozhu; Chang, Siwei; Lin, Wenfang; Kranz, Sven A; Luo, Ya-Wei; Kao, Shuh-Ji; Morel, François M M; Shi, Dalin

    2017-05-05

    Acidification of seawater caused by anthropogenic carbon dioxide (CO 2 ) is anticipated to influence the growth of dinitrogen (N 2 )-fixing phytoplankton, which contribute a large fraction of primary production in the tropical and subtropical ocean. We found that growth and N 2 -fixation of the ubiquitous cyanobacterium Trichodesmium decreased under acidified conditions, notwithstanding a beneficial effect of high CO 2 Acidification resulted in low cytosolic pH and reduced N 2 -fixation rates despite elevated nitrogenase concentrations. Low cytosolic pH required increased proton pumping across the thylakoid membrane and elevated adenosine triphosphate production. These requirements were not satisfied under field or experimental iron-limiting conditions, which greatly amplified the negative effect of acidification. Copyright © 2017, American Association for the Advancement of Science.

  2. Endoscopic sensing of alveolar pH.

    Science.gov (United States)

    Choudhury, D; Tanner, M G; McAughtrie, S; Yu, F; Mills, B; Choudhary, T R; Seth, S; Craven, T H; Stone, J M; Mati, I K; Campbell, C J; Bradley, M; Williams, C K I; Dhaliwal, K; Birks, T A; Thomson, R R

    2017-01-01

    Previously unobtainable measurements of alveolar pH were obtained using an endoscope-deployable optrode. The pH sensing was achieved using functionalized gold nanoshell sensors and surface enhanced Raman spectroscopy (SERS). The optrode consisted of an asymmetric dual-core optical fiber designed for spatially separating the optical pump delivery and signal collection, in order to circumvent the unwanted Raman signal generated within the fiber. Using this approach, we demonstrate a ~100-fold increase in SERS signal-to-fiber background ratio, and demonstrate multiple site pH sensing with a measurement accuracy of ± 0.07 pH units in the respiratory acini of an ex vivo ovine lung model. We also demonstrate that alveolar pH changes in response to ventilation.

  3. Characterisation and deployment of an immobilised pH sensor spot towards surface ocean pH measurements.

    Science.gov (United States)

    Clarke, Jennifer S; Achterberg, Eric P; Rérolle, Victoire M C; Abi Kaed Bey, Samer; Floquet, Cedric F A; Mowlem, Matthew C

    2015-10-15

    The oceans are a major sink for anthropogenic atmospheric carbon dioxide, and the uptake causes changes to the marine carbonate system and has wide ranging effects on flora and fauna. It is crucial to develop analytical systems that allow us to follow the increase in oceanic pCO2 and corresponding reduction in pH. Miniaturised sensor systems using immobilised fluorescence indicator spots are attractive for this purpose because of their simple design and low power requirements. The technology is increasingly used for oceanic dissolved oxygen measurements. We present a detailed method on the use of immobilised fluorescence indicator spots to determine pH in ocean waters across the pH range 7.6-8.2. We characterised temperature (-0.046 pH/°C from 5 to 25 °C) and salinity dependences (-0.01 pH/psu over 5-35), and performed a preliminary investigation into the influence of chlorophyll on the pH measurement. The apparent pKa of the sensor spots was 6.93 at 20 °C. A drift of 0.00014 R (ca. 0.0004 pH, at 25 °C, salinity 35) was observed over a 3 day period in a laboratory based drift experiment. We achieved a precision of 0.0074 pH units, and observed a drift of 0.06 pH units during a test deployment of 5 week duration in the Southern Ocean as an underway surface ocean sensor, which was corrected for using certified reference materials. The temperature and salinity dependences were accounted for with the algorithm, R=0.00034-0.17·pH+0.15·S(2)+0.0067·T-0.0084·S·1.075. This study provides a first step towards a pH optode system suitable for autonomous deployment. The use of a short duration low power illumination (LED current 0.2 mA, 5 μs illumination time) improved the lifetime and precision of the spot. Further improvements to the pH indicator spot operations include regular application of certified reference materials for drift correction and cross-calibration against a spectrophotometric pH system. Desirable future developments should involve novel

  4. A Busy period analysis of the level dependent PH/PH/1/K queue

    NARCIS (Netherlands)

    Al Hanbali, Ahmad

    2011-01-01

    In this paper, we study the transient behavior of a level dependent single server queuing system with a waiting room of finite size during the busy period. The focus is on the level dependent PH/PH/1/K queue. We derive in closed form the joint transform of the length of the busy period, the number

  5. Molecular evolution and the role of oxidative stress in the expansion and functional diversification of cytosolic glutathione transferases

    Directory of Open Access Journals (Sweden)

    Vasconcelos Vítor

    2010-09-01

    Full Text Available Abstract Background Cytosolic glutathione transferases (cGST are a large group of ubiquitous enzymes involved in detoxification and are well known for their undesired side effects during chemotherapy. In this work we have performed thorough phylogenetic analyses to understand the various aspects of the evolution and functional diversification of cGSTs. Furthermore, we assessed plausible correlations between gene duplication and substrate specificity of gene paralogs in humans and selected species, notably in mammalian enzymes and their natural substrates. Results We present a molecular phylogeny of cytosolic GSTs that shows that several classes of cGSTs are more ubiquitous and thus have an older ancestry than previously thought. Furthermore, we found that positive selection is implicated in the diversification of cGSTs. The number of duplicate genes per class is generally higher for groups of enzymes that metabolize products of oxidative damage. Conclusions 1 Protection against oxidative stress seems to be the major driver of positive selection in mammalian cGSTs, explaining the overall expansion pattern of this subfamily; 2 Given the functional redundancy of GSTs that metabolize xenobiotic chemicals, we would expect the loss of gene duplicates, but by contrast we observed a gene expansion of this family, which likely has been favored by: i the diversification of endogenous substrates; ii differential tissue expression; and iii increased specificity for a particular molecule; 3 The increased availability of sequence data from diversified taxa is likely to continue to improve our understanding of the early origin of the different cGST classes.

  6. Surveillance for Intracellular Antibody by Cytosolic Fc Receptor TRIM21

    Directory of Open Access Journals (Sweden)

    William A. McEwan

    2016-11-01

    Full Text Available TRIM21 has emerged as an atypical Fc receptor that is broadly conserved and widely expressed in the cytoplasm of mammalian cells. Viruses that traffic surface-bound antibodies into the cell during infection recruit TRIM21 via a high affinity interaction between Fc and TRIM21 PRYSPRY domain. Following binding of intracellular antibody, TRIM21 acts as both antiviral effector and sensor for innate immune signalling. These activities serve to reduce viral replication by orders of magnitude in vitro and contribute to host survival during in vivo infection. Neutralization occurs rapidly after detection and requires the activity of the ubiquitin-proteasome system. The microbial targets of this arm of intracellular immunity are still being identified: TRIM21 activity has been reported following infection by several non-enveloped viruses and intracellular bacteria. These findings extend the sphere of influence of antibodies to the intracellular domain and have broad implications for immunity. TRIM21 has been implicated in the chronic auto-immune condition systemic lupus erythematosus and is itself an auto-antigen in Sjögren’s syndrome. This review summarises our current understanding of TRIM21’s role as a cytosolic Fc receptor and briefly discusses pathological circumstances where intracellular antibodies have been described, or are hypothesized to occur, and may benefit from further investigations of the role of TRIM21.

  7. Comparative study of two modes of gastroesophageal reflux measuring: conventional esophageal pH monitoring and wireless pH monitoring

    Directory of Open Access Journals (Sweden)

    Rimon Sobhi Azzam

    2012-06-01

    Full Text Available CONTEXT: Esophageal pH monitoring is considered to be the gold standard for the diagnosis of gastroesophageal acid reflux. However, this method is very troublesome and considerably limits the patient's routine activities. Wireless pH monitoring was developed to avoid these restrictions. OBJECTIVE: To compare the first 24 hours of the conventional and wireless pH monitoring, positioned 3 cm above the lower esophageal sphincter, in relation to: the occurrence of relevant technical failures, the ability to detect reflux and the ability to correlate the clinical symptoms to reflux. METHODS: Twenty-five patients referred for esophageal pH monitoring and with typical symptoms of gastroesophageal reflux disease were studied prospectively, underwent clinical interview, endoscopy, esophageal manometry and were submitted, with a simultaneous initial period, to 24-hour catheter pH monitoring and 48-hour wireless pH monitoring. RESULTS: Early capsule detachment occurred in one (4% case and there were no technical failures with the catheter pH monitoring (P = 0.463. Percentages of reflux time (total, upright and supine were higher with the wireless pH monitoring (P < 0.05. Pathological gastroesophageal reflux occurred in 16 (64% patients submitted to catheter and in 19 (76% to the capsule (P = 0.355. The symptom index was positive in 12 (48% patients with catheter pH monitoring and in 13 (52% with wireless pH monitoring (P = 0.777. CONCLUSIONS: 1 No significant differences were reported between the two methods of pH monitoring (capsule vs catheter, in regard to relevant technical failures; 2 Wireless pH monitoring detected higher percentages of reflux time than the conventional pH-metry; 3 The two methods of pH monitoring were comparable in diagnosis of pathological gastroesophageal reflux and comparable in correlating the clinical symptoms with the gastroesophageal reflux.

  8. pH Mapping on Tooth Surfaces for Quantitative Caries Diagnosis Using Micro Ir/IrOx pH Sensor.

    Science.gov (United States)

    Ratanaporncharoen, Chindanai; Tabata, Miyuki; Kitasako, Yuichi; Ikeda, Masaomi; Goda, Tatsuro; Matsumoto, Akira; Tagami, Junji; Miyahara, Yuji

    2018-04-03

    A quantitative diagnostic method for dental caries would improve oral health, which directly affects the quality of life. Here we describe the preparation and application of Ir/IrOx pH sensors, which are used to measure the surface pH of dental caries. The pH level is used as an indicator to distinguish between active and arrested caries. After a dentist visually inspected and defined 18 extracted dentinal caries at various positions as active or arrested caries, the surface pH values of sound and caries areas were directly measured with an Ir/IrOx pH sensor with a diameter of 300 μm as a dental explorer. The average pH values of the sound root, the arrested caries, and active caries were 6.85, 6.07, and 5.30, respectively. The pH obtained with an Ir/IrOx sensor was highly correlated with the inspection results by the dentist, indicating that the types of caries were successfully categorized. This caries testing technique using a micro Ir/IrOx pH sensor provides an accurate quantitative caries evaluation and has potential in clinical diagnosis.

  9. Detection of metalloproteins in human liver cytosol by synchrotron radiation X-ray fluorescence after sodium dodecyl sulphate polyacrylamide gel electrophoresis

    International Nuclear Information System (INIS)

    Gao Yuxi; Chen Chunying; Zhang Peiqun; Chai Zhifang; He Wei; Huang Yuying

    2003-01-01

    An improved method of analysis of metals in protein bands with synchrotron radiation X-ray fluorescence (SRXRF) after sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) separation is introduced and applied to human liver cytosol. Through a step of drying the gel before SRXRF determination, the continuous background resulting mainly from the Compton-scattering of X-rays by the gel matrix was substantially reduced, and the detection of biological trace elements, such as Cu, Fe, and Zn in protein bands was thereby made possible. With the new procedure, six Zn-containing proteins with molecular weights (MWs) of 17.5, 20.5, 27, 35, 55, and 63 kDa, respectively were found in human liver cytosol, among which the 63 kDa Zn-containing band was shown to be the dominant form of zinc. In addition, at least four Fe containing proteins with MWs of 20, 23, 43, and 83.5 kDa, respectively, were present in the samples. The metal contents in some metalloproteins, such as the 63 kDa Zn-containing protein, the 23 and 83.5 kDa Fe-containing proteins, and a 22 kDa Cu-containing protein were more closely related to the metal level in the sample. It is demonstrated that the procedure could be widely used to further investigate metal-binding proteins in biological samples

  10. Salivary pH: A diagnostic biomarker

    Directory of Open Access Journals (Sweden)

    Sharmila Baliga

    2013-01-01

    Full Text Available Objectives: Saliva contains a variety of host defense factors. It influences calculus formation and periodontal disease. Different studies have been done to find exact correlation of salivary biomarkers with periodontal disease. With a multitude of biomarkers and complexities in their determination, the salivary pH may be tried to be used as a quick chairside test. The aim of this study was to analyze the pH of saliva and determine its relevance to the severity of periodontal disease. Study Design: The study population consisted of 300 patients. They were divided into three groups of 100 patients each: Group A had clinically healthy gingiva, Group B who had generalized chronic gingivitis and Group C who had generalized chronic periodontitis. The randomized unstimulated saliva from each patient was collected and pH was tested. Data was analyzed statistically using analysis of variance technique. Results: The salivary pH was more alkaline for patients with generalized chronic gingivitis as compared with the control group (P = 0.001 whereas patients with generalized chronic periodontitis had more acidic pH as compared with the control group (P = 0.001. Conclusion: These results indicate a significant change in the pH depending on the severity of the periodontal condition. The salivary pH shows significant changes and thus relevance to the severity of periodontal disease. Salivary pH may thus be used as a quick chairside diagnostic biomarker.

  11. Cytosolic protein quality control of the orphan protein Fas2, a novel physiological substrate of the E3 ligase Ubr1

    OpenAIRE

    Scazzari, Mario

    2013-01-01

    Cellular protein quality control (PQC) monitors the proper folding of polypeptides, assembly of protein subunits into protein complexes as well as the delivery of terminally misfolded proteins to degradation. The components of PQC known best at the moment are molecular chaperones and the ubiquitin proteasome system. In contrast to the well-described protein quality control system of the endoplasmic reticulum (ERAD), less is known about how misfolded proteins in the cytosol are recognized and ...

  12. Acid loading test (pH)

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003615.htm Acid loading test (pH) To use the sharing features on this page, please enable JavaScript. The acid loading test (pH) measures the ability of the ...

  13. PhD students and integrative research

    NARCIS (Netherlands)

    Fry, G.; Tress, B.; Tress, G.

    2006-01-01

    The training of PhD students is currently very dynamic and varies widely from place to place. We present some examples of this variation and comment on how it may affect the way PhD students cope with integrative studies. Our focus is on the training needs of PhD students studying integrative

  14. Cytosolic phospholipase A2-α expression in breast cancer is associated with EGFR expression and correlates with an adverse prognosis in luminal tumours.

    LENUS (Irish Health Repository)

    Caiazza, F

    2011-01-18

    The eicosanoid signalling pathway promotes the progression of malignancies through the production of proliferative prostaglandins (PGs). Cytosolic phospholipase A(2)α (cPLA(2)α) activity provides the substrate for cyclooxygenase-dependent PG release, and we have previously found that cPLA(2)α expression correlated with EGFR\\/HER2 over-expression in a small number of breast cancer cell lines.

  15. Cytosolic superoxide dismutase can provide protection against Fasciola gigantica.

    Science.gov (United States)

    Jaikua, Wipaphorn; Kueakhai, Pornanan; Chaithirayanon, Kulathida; Tanomrat, Rataya; Wongwairot, Sirima; Riengrojpitak, Suda; Sobhon, Prasert; Changklungmoa, Narin

    2016-10-01

    Superoxide dismutases (SOD), antioxidant metallo-enzymes, are a part of the first line of defense in the trematode parasites which act as the chief scavengers for reactive oxygen species (ROS). A recombinant Fasciola gigantica cytosolic SOD (FgSOD) was expressed in Escherichia coli BL21 (DE3) and used for immunizing rabbits to obtain polyclonal antibodies (anti-rFgSOD). This rabbit anti-rFgSOD reacted with the native FgSOD at a molecular weight of 17.5kDa. The FgSOD protein was expressed at high level in parenchyma, caecal epithelium and egg of the parasite. The rFgSOD reacted with antisera from rabbits infected with F. gigantica metacercariae collected at 2, 5, and 7 weeks after infection, and reacted with sera of infected mice. Anti-rFgSOD exhibited cross reactivity with the other parasites' antigens, including Eurytrema pancreaticum, Cotylophoron cotylophorum, Fischoederius cobboldi, Gastrothylax crumenifer, Paramphistomum cervi, and Setaria labiato papillosa. A vaccination was performed in imprinting control region (ICR) mice by subcutaneous injection with 50μg of rFgSOD combined with Freund's adjuvant. At 2 weeks after the second boost, mice were infected with 15 metacercariae by oral route. IgG1 and IgG2a in the immune sera were determined to indicate Th2 and Th1 immune responses. It was found that the parasite burden was reduced by 45%, and both IgG1 and IgG2a levels showed correlation with the numbers of worm recoveries. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Purification and properties of a 3 alpha-hydroxysteroid dehydrogenase of rat liver cytosol and its inhibition by anti-inflammatory drugs.

    OpenAIRE

    Penning, T M; Mukharji, I; Barrows, S; Talalay, P

    1984-01-01

    An NAD(P)-dependent 3 alpha-hydroxysteroid dehydrogenase (EC 1.1.1.50) was purified to homogeneity from rat liver cytosol, where it is responsible for most if not all of the capacity for the oxidation of androsterone, 1-acenaphthenol and benzenedihydrodiol (trans-1,2-dihydroxycyclohexa-3,5-diene). The dehydrogenase has many properties (substrate specificity, pI, Mr, amino acid composition) in common with the dihydrodiol dehydrogenase (EC 1.3.1.20) purified from the same source [Vogel, Bentley...

  17. Fetal scalp pH testing

    Science.gov (United States)

    Fetal scalp blood; Scalp pH testing; Fetal blood testing - scalp; Fetal distress - fetal scalp testing; Labor - fetal scalp testing ... a baby. In these cases, testing the scalp pH can help the doctor decide whether the fetus ...

  18. Pb and Cd binding to natural freshwater biofilms developed at different pH: the important role of culture pH.

    Science.gov (United States)

    Hua, Xiuyi; Dong, Deming; Ding, Xiaoou; Yang, Fan; Jiang, Xu; Guo, Zhiyong

    2013-01-01

    The effects of solution pH on adsorption of trace metals to different types of natural aquatic solid materials have been studied extensively, but few studies have been carried out to investigate the effect of pH at which the solid materials were formed on the adsorption. The purpose of present study is to examine this effect of culture pH on metal adsorption to natural freshwater biofilms. The adsorption of Pb and Cd to biofilms which were developed at different culture pH values (ranging from 6.5 to 9.0) was measured at the same adsorption pH value (6.5). The culture pH had considerable effects on both composition and metal adsorption ability of the biofilms. Higher culture pH usually promoted the accumulation of organic material and Fe oxides in the biofilms. The culture pH also affected the quantity and species of algae in the biofilms. The adsorption of Pb and Cd to the biofilms generally increased with the increase of culture pH. This increase was minor at lower pH range and significant at higher pH range and was more remarkable for Cd adsorption than for Pb adsorption. The notable contribution of organic material to the adsorption at higher culture pH values was also observed. The profound impacts of culture pH on adsorption behavior of biofilms mainly resulted from the variation of total contents of the biofilm components and were also affected by the alteration of composition and properties of the components.

  19. CONTINUOUS MEASUREMENT OF THE CYTOPLASMIC PH IN LACTOCOCCUS-LACTIS WITH A FLUORESCENT PH INDICATOR

    NARCIS (Netherlands)

    MOLENAAR, D; ABEE, T; KONINGS, WN

    1991-01-01

    The cytoplasmic pH of Lactococcus lactis was studied with the fluorescent pH indicator 2',7'-bis-(2-carboxyethyl)-5 (and-6)-carboxyfluorescein (BCECF). A novel method was applied for loading bacterial cells with BCECF, which consists of briefly treating a dense cell suspension with acid in the

  20. Iridium Oxide pH Sensor Based on Stainless Steel Wire for pH Mapping on Metal Surface

    Science.gov (United States)

    Shahrestani, S.; Ismail, M. C.; Kakooei, S.; Beheshti, M.; Zabihiazadboni, M.; Zavareh, M. A.

    2018-03-01

    A simple technique to fabricate the iridium oxide pH sensor is useful in several applications such as medical, food processing and engineering material where it is able to detect the changes of pH. Generally, the fabrication technique can be classified into three types: electro-deposition iridium oxide film (EIrOF), activated iridium oxide film (AIROF) and sputtering iridium oxide film (SIROF). This study focuses on fabricating electrode, calibration and test. Electro-deposition iridium oxide film is a simple and effective method of fabricating this kind of sensor via cyclic voltammetry process. The iridium oxide thick film was successfully electrodeposited on the surface of stainless steel wire with 500 cycles of sweep potential. A further analysis under FESEM shows detailed image of iridium oxide film which has cauliflower-liked microstructure. EDX analysis shows the highest element present are iridium and oxygen which concluded that the process is successful. The iridium oxide based pH sensor has shown a good performance in comparison to conventional glass pH sensor when it is being calibrated in buffer solutions with 2, 4, 7 and 9 pH values. The iridium oxide pH sensor is specifically designed to measure the pH on the surface of metal plate.