WorldWideScience

Sample records for proton-nucleus scattering observables

  1. Spin observables in inelastic proton-nucleus scattering at intermediate energy

    International Nuclear Information System (INIS)

    Smith, R.D.

    1984-01-01

    This dissertation is a study of spin observables in inelastic proton-nucleus reactions for incident proton energies near 1 GeV. At this energy, the dominant reaction mechanisms are (1) quasi-free knockout of one or more nucleons, and (2) pion production through the Δ resonance. The cross section due to quasi-free knockout can be reasonably well understood theoretically in a multiple scattering picture, which uses measured NN amplitudes as input. Calculations of this sort were carried out in reference [10] using scalar NN amplitudes parameterized as Gaussians. The author has extended this picture to include spin dependent NN amplitudes. This allows calculation of all the spin observables, Ay, DLL, DSS, DNN, DLS, and DSL, as well as the cross section dsigma/dOmegadp due to quasi-free knockout of one or more particles. The cross section and polarization Ay have been measured at the LAMPF High Resolution Spectrometer at T/sub L/ = 800 MeV on 12 C. The theoretical results agree well with the data in the quasi-free region. The results for the remaining spin observables provide predictions for experiments which can be performed at LAMPF. By comparing the calculations with the data, it may be possible to separate the contribution due to a quasi-free knockout, and see a signature of quasi-free Δ production in the spin observables

  2. Medium energy inelastic proton-nucleus scattering with spin dependent NN interaction

    International Nuclear Information System (INIS)

    Ahmad, I.; Auger, J.P.

    1981-12-01

    The previously proposed effective profile expansion method for the Glauber multiple scattering model calculation has been extended to the case of proton-nucleus inelastic scattering with spin dependent NN interaction. Using the method which turns out to be computationally simple and of relatively wider applicability, a study of sensitivity of proton-nucleus inelastic scattering calculation to the sometimes neglected momentum transfer dependence of the NN scattering amplitude has been made. We find that the calculated polarization is particularly sensitive in this respect. (author)

  3. Elastic scattering of protons on 8Li nucleus in inverse kinematics

    International Nuclear Information System (INIS)

    Zhusupov, M.A.; Ibraeva, E.T.; Sanfirova, A.B.; Imambekov, O.

    2002-01-01

    In the present paper the proton elastic scattering on 8 Li in inverse kinematics is studies. The inverse kinematics means that a beam of radioactive nuclei is scattered on a stable hydrogen target. Proton as a target has an advantage during the interaction since it is stable and mechanism of proton-nucleus scattering is quite simple. 8 Li nucleus is considered in the three-body αtn-model with realistic potential of inter-cluster interactions. The wave function of this nucleus is calculated in the work where it was shown that such model well describes the main spectroscopic characteristics of the nucleus, root-mean square radius, binding energy, location of low laying energy levels, magnetic momentum and also total cross section and 7 Li(n, γ) 8 Li reaction rate at a wide energy region. Within Glauber-Sitenko multiply scattering theory, the differential cross section of elastic p 8 Li-scattering has been calculated. The first and the second multiplicities of scattering on nucleons and clusters of the nucleus were taken into account in Ω multiply scattering operator. There were considered several cases when as the initial parameters both amplitudes of nucleon-nucleon and nucleon-cluster scattering were taken. Sensitivity of the differential cross section both to the different wave functions of the target-nucleus and to the parameters of the elementary amplitudes and sensitivity to the scattering multiplicities at several beam energies has been investigated. Comparison with differential cross sections of elastic p 6 Li- and p 7 Li scattering has been carried out

  4. Inclusive proton spectra and total reaction cross sections for proton-nucleus scattering at 800 MeV

    International Nuclear Information System (INIS)

    McGill, J.A.

    1981-08-01

    Current applications of multiple scattering theory to describe the elastic scattering of medium energy protons from nuclei have been shown to be quite successful in reproducing the experimental cross sections. These calculations use the impulse approximation, wherein the scattering from individual nucleons in the nucleus is described by the scattering amplitude for a free nucleon. Such an approximation restricts the inelastic channels to those initiated by nucleon-nucleon scattering. As a first step in determining the nature of p + nucleus scattering at 800 MeV, both total reaction cross sections and (p,p') inclusive cross sections were measured and compared to the free p + p cross sections for hydrogen, deuterium, calcium 40, carbon 12, and lead 208. It is concluded that as much as 85% of all reactions in a nucleus proceed from interactions with a single nucleon in the nucleus, and that the impulse approximation is a good starting point for a microscopic description of p + nucleus interactions at 800 MeV

  5. Momentum loss in proton-nucleus and nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Khan, F.; Townsend, L.W.

    1993-12-01

    An optical model description, based on multiple scattering theory, of longitudinal momentum loss in proton-nucleus and nucleus-nucleus collisions is presented. The crucial role of the imaginary component of the nucleon-nucleon transition matrix in accounting for longitudinal momentum transfer is demonstrated. Results obtained with this model are compared with Intranuclear Cascade (INC) calculations, as well as with predictions from Vlasov-Uehling-Uhlenbeck (VUU) and quantum molecular dynamics (QMD) simulations. Comparisons are also made with experimental data where available. These indicate that the present model is adequate to account for longitudinal momentum transfer in both proton-nucleus and nucleus-nucleus collisions over a wide range of energies

  6. Photoproduction of lepton pairs in proton-nucleus and nucleus-nucleus collisions at RHIC and LHC energies

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, B. D.; Goncalves, V. P.; De Santana Amaral, J. T. [Universidade Federal de Pelotas, Instituto de Fisica e Matematica (Brazil)

    2013-03-25

    In this contribution we study coherent interactions as a probe of the nonlinear effects in the Quantum Electrodynamics (QED). In particular, we study the multiphoton effects in the production of leptons pairs for proton-nucleus and nucleus-nucleus collisions for heavy nuclei. In the proton-nucleus we assume the ultrarelativistic proton as a source of photons and estimate the photoproduction of lepton pairs on nuclei at RHIC and LHC energies considering the multiphoton effects associated to multiple rescattering of the projectile photon on the proton of the nucleus. In nucleus - nucleus colllisions we consider the two nuclei as a source of photons. As each scattering contributes with a factor {alpha}Z to the cross section, this contribution must be taken into account for heavy nuclei. We consider the Coulomb corrections to calculate themultiple scatterings and estimate the total cross section for muon and tau pair production in proton-nucleus and nucleus-nucleus collisions at RHIC and LHC energies.

  7. Particle correlations in proton-nucleus and nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Nagamiya, Sh.

    1981-01-01

    Particle correlations in proton-nucleus and nucleus-nucleus collisions at energies of 1-2 GeV/nucleon are investigated. The problems of measurement of the mean free path lambda of protons inside the nucleus and the interaction radius of nucleus-nucleus collisions is considered. The value of lambda has been determined in two-proton coincidence experiment in proton-nucleus interaction at 800 MeV. The observed value of lambda is slightly longer than the expected from free nucleon-nucleon collisions. Some preliminary results on proton emission beyond free nucleon-nucleon kinemaics are given

  8. Observation of correlation between two fast protons in proton-nucleus interactions at 640 MeV

    International Nuclear Information System (INIS)

    Komarov, V.I.; Kosarev, G.E.

    1978-01-01

    The measurements have been performed to observe correlations between backward emitted protons (BEP) and forward outgoing protons from quasi-free scattering of the incident proton of 640 MeV on a nucleons pair [pN] within Be, C, Al, Cu and Pb nucleus at the angles 12 deg and 122 deg: p 0 + pN → p 1 + N + p 3 . Here p 1 is a proton detected in coincidence with BEP p 3 and N is a nucleon unobserved under the conditions of this experiment. The differential cross sections for the BEP of energies from 50 to 145 MeV have been measured in coincidence with forward outgoing protons (255 to 330 MeV) by scintillation counter method. The inclusive BEP spectra have been explained by the quasi-elastic backscattering on clusters which do not break up during the interaction. The calculated distribution are remarkably narrower than the experimental anes. The measurements point out that the discussed production of two fast protons is observable with all the targets and the cross section per target nucleon decreases with increasing the target mass number

  9. The investigation of quasi-free scattering reactions with the two-proton-halo nucleus {sup 17}Ne

    Energy Technology Data Exchange (ETDEWEB)

    Lehr, Christopher; Aumann, Thomas; Marganiec, Justyna [TU Darmstadt (Germany); Wamers, Felix [GSI Helmholtzzentrum (Germany)

    2016-07-01

    {sup 17}Ne is a Borromean two-proton-halo nucleus located at the proton-dripline and therefore an interesting candidate for nuclear-structure studies. Reactions of the nucleus {sup 17}Ne have been measured in complete kinematics at the R3B/LAND setup at GSI in Darmstadt. It was studied in exclusive measurements of one-proton-removal reactions. Polyethylene (CH{sub 2}) and carbon (C) were used as targets. Thus it is possible to reconstruct the pure H contribution of the CH{sub 2} data by subtracting the carbon background. The resulting events are clean (p,2p) reactions showing the typical angular correlations known from p-p scattering. Thereby quasi-free (p,2p) and carbon-induced one-proton removal reactions are studied separately. Quasi-free scattering reactions are compared with carbon-induced one-proton removal reactions and shown to be a clean tool for nuclear-structure studies.

  10. High energy proton-nucleus scattering

    International Nuclear Information System (INIS)

    Beurtey, R.M.

    1977-01-01

    This paper is restricted to an overall global criticism of what has been produced, experimentally and theoretically, during the past ten years, concerning elastic proton scattering at intermediate energy: theoretical models and approximations, phenomenological analysis, criticisms and suggestions on experimental methods

  11. Proton-Nucleus Elastic Cross Sections Using Two-Body In-Medium Scattering Amplitudes

    Science.gov (United States)

    Tripathi, R. K.; Wilson, John W.; Cucinotta, Francis A.

    2001-01-01

    Recently, a method was developed of extracting nucleon-nucleon (NN) cross sections in the medium directly from experiment. The in-medium NN cross sections form the basic ingredients of several heavy-ion scattering approaches including the coupled-channel approach developed at the Langley Research Center. The ratio of the real to the imaginary part of the two-body scattering amplitude in the medium was investigated. These ratios are used in combination with the in-medium NN cross sections to calculate elastic proton-nucleus cross sections. The agreement is excellent with the available experimental data. These cross sections are needed for the radiation risk assessment of space missions.

  12. Isobaric intermediate states in proton-nucleus elastic scattering

    International Nuclear Information System (INIS)

    Auger, J.P.; Lazard, C.; Lombard, R.J.

    1981-05-01

    The effects of the propagation of isobaric nucleon states in the intermediate steps of the multiple scattering have been studied with application on the proton- 4 He elastic scattering at 1 GeV. The calculations are performed in the Glauber model and results are given for the differential cross section, the polarization and the spin rotation parameter. In our conclusions we stress the large cancellations observed between terms of various orders and the great sensitivity of the effects to the nucleon-nucleon amplitudes

  13. Theoretical study of parity violating asymmetry in proton-proton (pp) scattering

    International Nuclear Information System (INIS)

    Singh, S.K.; Sajjad Athar, M.; Waris, Atiya

    2000-01-01

    Measurements of parity violating asymmetries in the pp scattering and proton-nucleus scattering with polarised protons provide a very useful tool to study the interplay of weak and strong interactions between the nucleons and within the nucleus. In order to understand these processes in terms of the conventional nucleon-nucleon interaction models, new experiments at the intermediate energies of 221 and 450 MeV and in the higher energy of multi GeV range are to be carried out

  14. A new version of PIRK (elastic pion-nucleus scattering) to handle differing proton and neutron radii

    International Nuclear Information System (INIS)

    Funsten, H.O.

    1979-01-01

    This program is a modification of the Eisenstein-Miller program (1974) for calculating elastic pion-nucleus differential cross sections using free π-N scattering amplitudes. This revision permits the use of separate proton and neutron radii for the nuclear density function rho(r). (Auth.)

  15. Sensitivity of relativistic impulse approximation proton-nucleus elastic scattering calculations on relativistic mean-field parameterizations

    International Nuclear Information System (INIS)

    Hojsik, M.; Gmuca, S.

    1998-01-01

    Relativistic microscopic calculations are presented for proton elastic scattering from 40 Ca at 500 MeV. The underlying target densities are calculated within the framework of the relativistic mean-field theory with several parameter sets commonly in use. The self consistency of the scalar and vector densities (and thus to relativistic mean-field parameters) is investigated. Recently, the relativistic impulse approximation (RIA) has been widely and repeatedly used for the calculations of proton-nucleus scattering at intermediate energies. These calculations have exhibited significant improvements over the nonrelativistic approaches. The relativistic impulse approximation calculations. in particular, provide a dramatically better description of the spin observables, namely the analyzing power, A y , and the spin-rotation function, Q, at least for energies higher than 400 MeV. In the relativistic impulse approximation, the Dirac optical potential is obtained by folding of the local Lorentz-invariant amplitudes with the corresponding nuclear densities. For the spin zero targets the scalar and vector terms give the dominant contributions. Thus the scalar and vector nuclear densities (both, proton and neutron ones) play the dominant role in the relativistic impulse approximation. While the proton vector densities can be obtained by unfolding from the empirically known charge densities, all other densities used rely to a great extent on theoretical models. The various recipes are used to construct the neutron vector densities and the scalar densities for both, neutrons and protons. In this paper we will study the sensitivity of the relativistic impulse approximation results on the various sets of relativistic mean-field parameters currently in use

  16. The nucleon-nucleus scattering at intermediate energies

    International Nuclear Information System (INIS)

    Auger, J.-P.

    1976-01-01

    The Glauber model has the merit to connect directly the nucleon-nucleus elastic differential cross section with the nucleon-nucleon amplitude and nuclear densities. The general agreement between the 1 GeV proton elastic scattering differential cross sections calculated without adjustable parameter and the experimental data (from He 4 to Pb 208 ) is rather satisfactory up to 2. - 2.5 fm -1 momentum transfer. Although the 1 GeV proton elastic scattering experiments constitute at present one of the best method in determining neutron densities, it seems that self-consistent calculations bring the best knowledge of these densities. The model independent analysis performed with electron and proton scattering experiments show that the difference between neutron and proton r.m.s. radius cannot be determined better than 25-30% for Pb 208 [fr

  17. Importance of channel coupling for very large angle proton-nucleus scattering and the failure of the optical model

    International Nuclear Information System (INIS)

    Amado, R.D.; Sparrow, D.A.

    1984-01-01

    The importance of inelastic channels in proton-nucleus scattering grows with momentum transfer, q, so that for large q coupled channels are required. This happens when the elastic and inelastic cross sections become comparable. We incorporate these ideas in a simple analytic framework to explain the large angle p- 208 Pb elastic scattering data at 800 MeV for which standard optical model calculations have failed completely

  18. Proton nucleus elastic scattering at 800 MeV: the role of intermediate isobars

    International Nuclear Information System (INIS)

    Auger, J.P.; Maillet, J.P.; Lazard, C.; Lombard, R.J.

    1984-10-01

    Proton nucleus elastic scattering at 800 MeV has been calculated in the Glauber model for 16 O, 40 Ca, 48 Ca and 208 Pb. Nuclear densities are taken from Hartree-Fock-BCS calculations. For the nucleon-nucleon amplitudes, use is made of two recent phase shift analysis. The effects of intermediate isobars are included by means of a simple model. The results show that the experimental data are qualitatively understood. The polarization turns out to be quite sensitive to the intermediate isobar effects, which consequently need to be calculated more carefully

  19. A new version of DWPI (inelastic pion-nucleus scattering) to incorporate microscopic form factors and differing proton and neutron radii

    International Nuclear Information System (INIS)

    Funsten, H.O.

    1979-01-01

    This is a modification of the Eisenstein-Miller program for calculation of collective inelastic pion-nucleus differential cross sections using free π-N scattering amplitudes. This revision permits the additional use of microscopic (shell model) proton and neutron form factors. It also incorporates separate proton and neutron radii for the nuclear density rho(r) generating the distorted wave optical potential. (Auth.)

  20. Medium modified two-body scattering amplitude from proton-nucleus total cross-sections

    Science.gov (United States)

    Tripathi, R. K.; Wilson, J. W.; Cucinotta, F. A.

    2001-01-01

    Recently (R.K. Tripathi, J.W. Wilson, F.A. Cucinotta, Nucl. Instr. and Meth. B 145 (1998) 277; R.K. Tripathi, F.A. Cucinotta, J.W. Wilson, NASA-TP-1998-208438), we have extracted nucleon-nucleon (N-N) cross-sections in the medium directly from experiment. The in-medium N-N cross-sections form the basic ingredients of several heavy-ion scattering approaches including the coupled-channel approach developed at the NASA Langley Research Center. Here, we investigate the ratio of real to imaginary part of the two-body scattering amplitude in the medium. These ratios are used in combination with the in-medium N-N cross-sections to calculate total proton-nucleus cross-sections. The agreement is excellent with the available experimental data. These cross-sections are needed for the radiation risk assessment of space missions. c2001 Elsevier Science B.V. All rights reserved.

  1. Structure and spectroscopy of the oxygen-24 drip-line nucleus from elastic and inelastic proton scattering using MUST2 detectors at Riken

    International Nuclear Information System (INIS)

    Boissinot, S.

    2013-01-01

    The studies of structure and spectroscopy performed on radioactive nuclei during the last three decades have shown that the nuclear shell structure changes towards the drip-line and local magic numbers may appear. Doubly-magic nuclei are very rare but represent stringent tests for theories and their modelling of the nuclear interaction. In this context, we have investigated the structure and spectroscopy of the drip-line doubly-magic nucleus 24 O via proton elastic and inelastic scattering (p,p'). The experiment was performed at Riken in the BigRIPS line, using the 24 O beam produced at 263 MeV/n with RIBF with a high intensity (1780/s), and the state-of-the-art MUST2 charged particle detector. The analysis of the data gives the reconstruction of: the 24 O excitation energy spectrum up to 35 MeV with the scattered proton kinematics using the missing mass method, and the angular distribution of exclusive (p,p) elastic cross section between 4 and 30 degrees c.m. via a triple coincidence nucleus-proton-nucleus. Below the two-neutron separation threshold (S2n) the statistics is too low to obtain the two excited states measured by previous experiments done at lower incident energies. Above the S 2n structures are observed for the first time due to the large excitation energy range of the excitation spectra. The measurement of the excited states located at these energies would allow to test theoretical studies of low-energy dipole excitation in light neutron-rich nuclei. The statistics obtained for proton elastic scattering is sufficient to extract the exclusive (p,p) angular distributions of the 24 , 23 , 22 , 21 O isotopes. These results constitute a new benchmark to explore proton-nucleus interaction potential features around 260 MeV/n. The comparison of elastic data set to the reaction calculations done with the microscopic reaction approach based on the G-matrix density-dependent potential indicates that this potential is suitable. However, it remains to include

  2. Theoretical interpretation of medium energy nucleon nucleus inelastic scattering

    International Nuclear Information System (INIS)

    Lagrange, Christian

    1970-06-01

    A theoretical study is made of the medium energy nucleon-nucleus inelastic scattering (direct interaction), by applying the distorted wave Born approximation such as can be deduced from the paired equation method. It is applied to the interpretation of the inelastic scattering of 12 MeV protons by 63 Cu; this leads us to make use of different sets of wave functions to describe the various states of the target nucleus. We analyze the nature of these states and the shape of the nucleon-nucleus interaction potential, and we compare the results with those obtained from other theoretical and experimental work. (author) [fr

  3. Observation of Top Quark Production in Proton-Nucleus Collisions.

    Science.gov (United States)

    Sirunyan, A M; Tumasyan, A; Adam, W; Ambrogi, F; Asilar, E; Bergauer, T; Brandstetter, J; Brondolin, E; Dragicevic, M; Erö, J; Escalante Del Valle, A; Flechl, M; Friedl, M; Frühwirth, R; Ghete, V M; Grossmann, J; Hrubec, J; Jeitler, M; König, A; Krammer, N; Krätschmer, I; Liko, D; Madlener, T; Mikulec, I; Pree, E; Rad, N; Rohringer, H; Schieck, J; Schöfbeck, R; Spanring, M; Spitzbart, D; Waltenberger, W; Wittmann, J; Wulz, C-E; Zarucki, M; Chekhovsky, V; Mossolov, V; Suarez Gonzalez, J; De Wolf, E A; Di Croce, D; Janssen, X; Lauwers, J; Van De Klundert, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Abu Zeid, S; Blekman, F; D'Hondt, J; De Bruyn, I; De Clercq, J; Deroover, K; Flouris, G; Lontkovskyi, D; Lowette, S; Marchesini, I; Moortgat, S; Moreels, L; Python, Q; Skovpen, K; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Parijs, I; Beghin, D; Bilin, B; Brun, H; Clerbaux, B; De Lentdecker, G; Delannoy, H; Dorney, B; Fasanella, G; Favart, L; Goldouzian, R; Grebenyuk, A; Kalsi, A K; Lenzi, T; Luetic, J; Maerschalk, T; Marinov, A; Seva, T; Starling, E; Vander Velde, C; Vanlaer, P; Vannerom, D; Yonamine, R; Zenoni, F; Cornelis, T; Dobur, D; Fagot, A; Gul, M; Khvastunov, I; Poyraz, D; Roskas, C; Salva, S; Tytgat, M; Verbeke, W; Zaganidis, N; Bakhshiansohi, H; Bondu, O; Brochet, S; Bruno, G; Caputo, C; Caudron, A; David, P; De Visscher, S; Delaere, C; Delcourt, M; Francois, B; Giammanco, A; Komm, M; Krintiras, G; Lemaitre, V; Magitteri, A; Mertens, A; Musich, M; Piotrzkowski, K; Quertenmont, L; Saggio, A; Vidal Marono, M; Wertz, S; Zobec, J; Aldá Júnior, W L; Alves, F L; Alves, G A; Brito, L; Correa Martins Junior, M; Hensel, C; Moraes, A; Pol, M E; Rebello Teles, P; Belchior Batista Das Chagas, E; Carvalho, W; Chinellato, J; Coelho, E; Da Costa, E M; Da Silveira, G G; De Jesus Damiao, D; Fonseca De Souza, S; Huertas Guativa, L M; Malbouisson, H; Melo De Almeida, M; Mora Herrera, C; Mundim, L; Nogima, H; Sanchez Rosas, L J; Santoro, A; Sznajder, A; Thiel, M; Tonelli Manganote, E J; Torres Da Silva De Araujo, F; Vilela Pereira, A; Ahuja, S; Bernardes, C A; Tomei, T R Fernandez Perez; Gregores, E M; Mercadante, P G; Novaes, S F; Padula, Sandra S; Romero Abad, D; Ruiz Vargas, J C; Aleksandrov, A; Hadjiiska, R; Iaydjiev, P; Misheva, M; Rodozov, M; Shopova, M; Sultanov, G; Dimitrov, A; Litov, L; Pavlov, B; Petkov, P; Fang, W; Gao, X; Yuan, L; Ahmad, M; Bian, J G; Chen, G M; Chen, H S; Chen, M; Chen, Y; Jiang, C H; Leggat, D; Liao, H; Liu, Z; Romeo, F; Shaheen, S M; Spiezia, A; Tao, J; Wang, C; Wang, Z; Yazgan, E; Zhang, H; Zhang, S; Zhao, J; Ban, Y; Chen, G; Li, J; Li, Q; Liu, S; Mao, Y; Qian, S J; Wang, D; Xu, Z; Zhang, F; Wang, Y; Avila, C; Cabrera, A; Chaparro Sierra, L F; Florez, C; González Hernández, C F; Ruiz Alvarez, J D; Segura Delgado, M A; Courbon, B; Godinovic, N; Lelas, D; Puljak, I; Ribeiro Cipriano, P M; Sculac, T; Antunovic, Z; Kovac, M; Brigljevic, V; Ferencek, D; Kadija, K; Mesic, B; Starodumov, A; Susa, T; Ather, M W; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Rykaczewski, H; Finger, M; Finger, M; Carrera Jarrin, E; Assran, Y; Elgammal, S; Mahrous, A; Dewanjee, R K; Kadastik, M; Perrini, L; Raidal, M; Tiko, A; Veelken, C; Eerola, P; Kirschenmann, H; Pekkanen, J; Voutilainen, M; Havukainen, J; Heikkilä, J K; Järvinen, T; Karimäki, V; Kinnunen, R; Lampén, T; Lassila-Perini, K; Laurila, S; Lehti, S; Lindén, T; Luukka, P; Siikonen, H; Tuominen, E; Tuominiemi, J; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Faure, J L; Ferri, F; Ganjour, S; Ghosh, S; Gras, P; Hamel de Monchenault, G; Jarry, P; Kucher, I; Leloup, C; Locci, E; Machet, M; Malcles, J; Negro, G; Rander, J; Rosowsky, A; Sahin, M Ö; Titov, M; Abdulsalam, A; Amendola, C; Antropov, I; Baffioni, S; Beaudette, F; Busson, P; Cadamuro, L; Charlot, C; Granier de Cassagnac, R; Jo, M; Lisniak, S; Lobanov, A; Martin Blanco, J; Nguyen, M; Ochando, C; Ortona, G; Paganini, P; Pigard, P; Salerno, R; Sauvan, J B; Sirois, Y; Stahl Leiton, A G; Strebler, T; Yilmaz, Y; Zabi, A; Zghiche, A; Agram, J-L; Andrea, J; Bloch, D; Brom, J-M; Buttignol, M; Chabert, E C; Chanon, N; Collard, C; Conte, E; Coubez, X; Fontaine, J-C; Gelé, D; Goerlach, U; Jansová, M; Le Bihan, A-C; Tonon, N; Van Hove, P; Gadrat, S; Beauceron, S; Bernet, C; Boudoul, G; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fay, J; Finco, L; Gascon, S; Gouzevitch, M; Grenier, G; Ille, B; Lagarde, F; Laktineh, I B; Lethuillier, M; Mirabito, L; Pequegnot, A L; Perries, S; Popov, A; Sordini, V; Vander Donckt, M; Viret, S; Toriashvili, T; Bagaturia, I; Autermann, C; Feld, L; Kiesel, M K; Klein, K; Lipinski, M; Preuten, M; Schomakers, C; Schulz, J; Teroerde, M; Zhukov, V; Albert, A; Dietz-Laursonn, E; Duchardt, D; Endres, M; Erdmann, M; Erdweg, S; Esch, T; Fischer, R; Güth, A; Hamer, M; Hebbeker, T; Heidemann, C; Hoepfner, K; Knutzen, S; Merschmeyer, M; Meyer, A; Millet, P; Mukherjee, S; Pook, T; Radziej, M; Reithler, H; Rieger, M; Scheuch, F; Teyssier, D; Thüer, S; Flügge, G; Kargoll, B; Kress, T; Künsken, A; Müller, T; Nehrkorn, A; Nowack, A; Pistone, C; Pooth, O; Stahl, A; Aldaya Martin, M; Arndt, T; Asawatangtrakuldee, C; Beernaert, K; Behnke, O; Behrens, U; Bermúdez Martínez, A; Bin Anuar, A A; Borras, K; Botta, V; Campbell, A; Connor, P; Contreras-Campana, C; Costanza, F; Diez Pardos, C; Eckerlin, G; Eckstein, D; Eichhorn, T; Eren, E; Gallo, E; Garay Garcia, J; Geiser, A; Grados Luyando, J M; Grohsjean, A; Gunnellini, P; Guthoff, M; Harb, A; Hauk, J; Hempel, M; Jung, H; Kasemann, M; Keaveney, J; Kleinwort, C; Korol, I; Krücker, D; Lange, W; Lelek, A; Lenz, T; Leonard, J; Lipka, K; Lohmann, W; Mankel, R; Melzer-Pellmann, I-A; Meyer, A B; Mittag, G; Mnich, J; Mussgiller, A; Ntomari, E; Pitzl, D; Raspereza, A; Savitskyi, M; Saxena, P; Shevchenko, R; Stefaniuk, N; Van Onsem, G P; Walsh, R; Wen, Y; Wichmann, K; Wissing, C; Zenaiev, O; Aggleton, R; Bein, S; Blobel, V; Centis Vignali, M; Dreyer, T; Garutti, E; Gonzalez, D; Haller, J; Hinzmann, A; Hoffmann, M; Karavdina, A; Klanner, R; Kogler, R; Kovalchuk, N; Kurz, S; Lapsien, T; Marconi, D; Meyer, M; Niedziela, M; Nowatschin, D; Pantaleo, F; Peiffer, T; Perieanu, A; Scharf, C; Schleper, P; Schmidt, A; Schumann, S; Schwandt, J; Sonneveld, J; Stadie, H; Steinbrück, G; Stober, F M; Stöver, M; Tholen, H; Troendle, D; Usai, E; Vanhoefer, A; Vormwald, B; Akbiyik, M; Barth, C; Baselga, M; Baur, S; Butz, E; Caspart, R; Chwalek, T; Colombo, F; De Boer, W; Dierlamm, A; Faltermann, N; Freund, B; Friese, R; Giffels, M; Harrendorf, M A; Hartmann, F; Heindl, S M; Husemann, U; Kassel, F; Kudella, S; Mildner, H; Mozer, M U; Müller, Th; Plagge, M; Quast, G; Rabbertz, K; Schröder, M; Shvetsov, I; Sieber, G; Simonis, H J; Ulrich, R; Wayand, S; Weber, M; Weiler, T; Williamson, S; Wöhrmann, C; Wolf, R; Anagnostou, G; Daskalakis, G; Geralis, T; Kyriakis, A; Loukas, D; Topsis-Giotis, I; Karathanasis, G; Kesisoglou, S; Panagiotou, A; Saoulidou, N; Kousouris, K; Evangelou, I; Foudas, C; Gianneios, P; Katsoulis, P; Kokkas, P; Mallios, S; Manthos, N; Papadopoulos, I; Paradas, E; Strologas, J; Triantis, F A; Tsitsonis, D; Csanad, M; Filipovic, N; Pasztor, G; Surányi, O; Veres, G I; Bencze, G; Hajdu, C; Horvath, D; Hunyadi, Á; Sikler, F; Veszpremi, V; Beni, N; Czellar, S; Karancsi, J; Makovec, A; Molnar, J; Szillasi, Z; Bartók, M; Raics, P; Trocsanyi, Z L; Ujvari, B; Choudhury, S; Komaragiri, J R; Bahinipati, S; Bhowmik, S; Mal, P; Mandal, K; Nayak, A; Sahoo, D K; Sahoo, N; Swain, S K; Bansal, S; Beri, S B; Bhatnagar, V; Chawla, R; Dhingra, N; Kaur, A; Kaur, M; Kaur, S; Kumar, R; Kumari, P; Mehta, A; Singh, J B; Walia, G; Kumar, Ashok; Shah, Aashaq; Bhardwaj, A; Chauhan, S; Choudhary, B C; Garg, R B; Keshri, S; Kumar, A; Malhotra, S; Naimuddin, M; Ranjan, K; Sharma, R; Bhardwaj, R; Bhattacharya, R; Bhattacharya, S; Bhawandeep, U; Dey, S; Dutt, S; Dutta, S; Ghosh, S; Majumdar, N; Modak, A; Mondal, K; Mukhopadhyay, S; Nandan, S; Purohit, A; Roy, A; Roy Chowdhury, S; Sarkar, S; Sharan, M; Thakur, S; Behera, P K; Chudasama, R; Dutta, D; Jha, V; Kumar, V; Mohanty, A K; Netrakanti, P K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Dugad, S; Mahakud, B; Mitra, S; Mohanty, G B; Sur, N; Sutar, B; Banerjee, S; Bhattacharya, S; Chatterjee, S; Das, P; Guchait, M; Jain, Sa; Kumar, S; Maity, M; Majumder, G; Mazumdar, K; Sarkar, T; Wickramage, N; Chauhan, S; Dube, S; Hegde, V; Kapoor, A; Kothekar, K; Pandey, S; Rane, A; Sharma, S; Chenarani, S; Eskandari Tadavani, E; Etesami, S M; Khakzad, M; Mohammadi Najafabadi, M; Naseri, M; Paktinat Mehdiabadi, S; Rezaei Hosseinabadi, F; Safarzadeh, B; Zeinali, M; Felcini, M; Grunewald, M; Abbrescia, M; Calabria, C; Colaleo, A; Creanza, D; Cristella, L; De Filippis, N; De Palma, M; Errico, F; Fiore, L; Iaselli, G; Lezki, S; Maggi, G; Maggi, M; Miniello, G; My, S; Nuzzo, S; Pompili, A; Pugliese, G; Radogna, R; Ranieri, A; Selvaggi, G; Sharma, A; Silvestris, L; Venditti, R; Verwilligen, P; Abbiendi, G; Battilana, C; Bonacorsi, D; Borgonovi, L; Braibant-Giacomelli, S; Campanini, R; Capiluppi, P; Castro, A; Cavallo, F R; Chhibra, S S; Codispoti, G; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G P; Tosi, N; Albergo, S; Costa, S; Di Mattia, A; Giordano, F; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Chatterjee, K; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Lenzi, P; Meschini, M; Paoletti, S; Russo, L; Sguazzoni, G; Strom, D; Viliani, L; Benussi, L; Bianco, S; Fabbri, F; Piccolo, D; Primavera, F; Calvelli, V; Ferro, F; Ravera, F; Robutti, E; Tosi, S; Benaglia, A; Beschi, A; Brianza, L; Brivio, F; Ciriolo, V; Dinardo, M E; Fiorendi, S; Gennai, S; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Manzoni, R A; Menasce, D; Moroni, L; Paganoni, M; Pauwels, K; Pedrini, D; Pigazzini, S; Ragazzi, S; Tabarelli de Fatis, T; Buontempo, S; Cavallo, N; Di Guida, S; Fabozzi, F; Fienga, F; Iorio, A O M; Khan, W A; Lista, L; Meola, S; Paolucci, P; Sciacca, C; Thyssen, F; Azzi, P; Bacchetta, N; Benato, L; Bisello, D; Boletti, A; Carlin, R; Carvalho Antunes De Oliveira, A; Checchia, P; De Castro Manzano, P; Dorigo, T; Dosselli, U; Gasparini, F; Gasparini, U; Gozzelino, A; Lacaprara, S; Margoni, M; Meneguzzo, A T; Pozzobon, N; Ronchese, P; Rossin, R; Simonetto, F; Torassa, E; Zanetti, M; Zotto, P; Zumerle, G; Braghieri, A; Magnani, A; Montagna, P; Ratti, S P; Re, V; Ressegotti, M; Riccardi, C; Salvini, P; Vai, I; Vitulo, P; Alunni Solestizi, L; Biasini, M; Bilei, G M; Cecchi, C; Ciangottini, D; Fanò, L; Leonardi, R; Manoni, E; Mantovani, G; Mariani, V; Menichelli, M; Rossi, A; Santocchia, A; Spiga, D; Androsov, K; Azzurri, P; Bagliesi, G; Boccali, T; Borrello, L; Castaldi, R; Ciocci, M A; Dell'Orso, R; Fedi, G; Giannini, L; Giassi, A; Grippo, M T; Ligabue, F; Lomtadze, T; Manca, E; Mandorli, G; Messineo, A; Palla, F; Rizzi, A; Savoy-Navarro, A; Spagnolo, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; Cipriani, M; Daci, N; Del Re, D; Di Marco, E; Diemoz, M; Gelli, S; Longo, E; Margaroli, F; Marzocchi, B; Meridiani, P; Organtini, G; Paramatti, R; Preiato, F; Rahatlou, S; Rovelli, C; Santanastasio, F; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Bartosik, N; Bellan, R; Biino, C; Cartiglia, N; Cenna, F; Costa, M; Covarelli, R; Degano, A; Demaria, N; Kiani, B; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Monteil, E; Monteno, M; Obertino, M M; Pacher, L; Pastrone, N; Pelliccioni, M; Pinna Angioni, G L; Romero, A; Ruspa, M; Sacchi, R; Shchelina, K; Sola, V; Solano, A; Staiano, A; Traczyk, P; Belforte, S; Casarsa, M; Cossutti, F; Della Ricca, G; Zanetti, A; Kim, D H; Kim, G N; Kim, M S; Lee, J; Lee, S; Lee, S W; Moon, C S; Oh, Y D; Sekmen, S; Son, D C; Yang, Y C; Lee, A; Kim, H; Moon, D H; Oh, G; Brochero Cifuentes, J A; Goh, J; Kim, T J; Cho, S; Choi, S; Go, Y; Gyun, D; Ha, S; Hong, B; Jo, Y; Kim, Y; Lee, K; Lee, K S; Lee, S; Lim, J; Park, S K; Roh, Y; Almond, J; Kim, J; Kim, J S; Lee, H; Lee, K; Nam, K; Oh, S B; Radburn-Smith, B C; Seo, S H; Yang, U K; Yoo, H D; Yu, G B; Kim, H; Kim, J H; Lee, J S H; Park, I C; Choi, Y; Hwang, C; Lee, J; Yu, I; Dudenas, V; Juodagalvis, A; Vaitkus, J; Ahmed, I; Ibrahim, Z A; Md Ali, M A B; Mohamad Idris, F; Wan Abdullah, W A T; Yusli, M N; Zolkapli, Z; Reyes-Almanza, R; Ramirez-Sanchez, G; Duran-Osuna, M C; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-De La Cruz, I; Rabadan-Trejo, R I; Lopez-Fernandez, R; Mejia Guisao, J; Sanchez-Hernandez, A; Carrillo Moreno, S; Oropeza Barrera, C; Vazquez Valencia, F; Eysermans, J; Pedraza, I; Salazar Ibarguen, H A; Uribe Estrada, C; Morelos Pineda, A; Krofcheck, D; Butler, P H; Ahmad, A; Ahmad, M; Hassan, Q; Hoorani, H R; Saddique, A; Shah, M A; Shoaib, M; Waqas, M; Bialkowska, H; Bluj, M; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Zalewski, P; Bunkowski, K; Byszuk, A; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Olszewski, M; Pyskir, A; Walczak, M; Bargassa, P; Beirão Da Cruz E Silva, C; Di Francesco, A; Faccioli, P; Galinhas, B; Gallinaro, M; Hollar, J; Leonardo, N; Lloret Iglesias, L; Nemallapudi, M V; Seixas, J; Strong, G; Toldaiev, O; Vadruccio, D; Varela, J; Afanasiev, S; Bunin, P; Gavrilenko, M; Golutvin, I; Gorbunov, I; Kamenev, A; Karjavin, V; Lanev, A; Malakhov, A; Matveev, V; Palichik, V; Perelygin, V; Shmatov, S; Shulha, S; Skatchkov, N; Smirnov, V; Voytishin, N; Zarubin, A; Ivanov, Y; Kim, V; Kuznetsova, E; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sosnov, D; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Karneyeu, A; Kirsanov, M; Krasnikov, N; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Gavrilov, V; Lychkovskaya, N; Popov, V; Pozdnyakov, I; Safronov, G; Spiridonov, A; Stepennov, A; Toms, M; Vlasov, E; Zhokin, A; Aushev, T; Bylinkin, A; Chistov, R; Danilov, M; Parygin, P; Philippov, D; Polikarpov, S; Tarkovskii, E; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Terkulov, A; Baskakov, A; Belyaev, A; Boos, E; Dudko, L; Ershov, A; Gribushin, A; Kodolova, O; Korotkikh, V; Lokhtin, I; Miagkov, I; Obraztsov, S; Petrushanko, S; Savrin, V; Snigirev, A; Vardanyan, I; Blinov, V; Skovpen, Y; Shtol, D; Azhgirey, I; Bayshev, I; Bitioukov, S; Elumakhov, D; Godizov, A; Kachanov, V; Kalinin, A; Konstantinov, D; Mandrik, P; Petrov, V; Ryutin, R; Sobol, A; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Cirkovic, P; Devetak, D; Dordevic, M; Milosevic, J; Rekovic, V; Alcaraz Maestre, J; Bachiller, I; Barrio Luna, M; Cerrada, M; Colino, N; De La Cruz, B; Delgado Peris, A; Fernandez Bedoya, C; Fernández Ramos, J P; Flix, J; Fouz, M C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Moran, D; Pérez-Calero Yzquierdo, A; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Soares, M S; Álvarez Fernández, A; Albajar, C; de Trocóniz, J F; Missiroli, M; Cuevas, J; Erice, C; Fernandez Menendez, J; Gonzalez Caballero, I; González Fernández, J R; Palencia Cortezon, E; Sanchez Cruz, S; Vischia, P; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chazin Quero, B; Curras, E; Duarte Campderros, J; Fernandez, M; Garcia-Ferrero, J; Gomez, G; Lopez Virto, A; Marco, J; Martinez Rivero, C; Martinez Ruiz Del Arbol, P; Matorras, F; Piedra Gomez, J; Rodrigo, T; Ruiz-Jimeno, A; Scodellaro, L; Trevisani, N; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Akgun, B; Auffray, E; Baillon, P; Ball, A H; Barney, D; Bendavid, J; Bianco, M; Bloch, P; Bocci, A; Botta, C; Camporesi, T; Castello, R; Cepeda, M; Cerminara, G; Chapon, E; Chen, Y; d'Enterria, D; Dabrowski, A; Daponte, V; David, A; De Gruttola, M; De Roeck, A; Deelen, N; Dobson, M; du Pree, T; Dünser, M; Dupont, N; Elliott-Peisert, A; Everaerts, P; Fallavollita, F; Franzoni, G; Fulcher, J; Funk, W; Gigi, D; Gilbert, A; Gill, K; Glege, F; Gulhan, D; Harris, P; Hegeman, J; Innocente, V; Jafari, A; Janot, P; Karacheban, O; Kieseler, J; Knünz, V; Kornmayer, A; Kortelainen, M J; Krammer, M; Lange, C; Lecoq, P; Lourenço, C; Lucchini, M T; Malgeri, L; Mannelli, M; Martelli, A; Meijers, F; Merlin, J A; Mersi, S; Meschi, E; Milenovic, P; Moortgat, F; Mulders, M; Neugebauer, H; Ngadiuba, J; Orfanelli, S; Orsini, L; Pape, L; Perez, E; Peruzzi, M; Petrilli, A; Petrucciani, G; Pfeiffer, A; Pierini, M; Rabady, D; Racz, A; Reis, T; Rolandi, G; Rovere, M; Sakulin, H; Schäfer, C; Schwick, C; Seidel, M; Selvaggi, M; Sharma, A; Silva, P; Sphicas, P; Stakia, A; Steggemann, J; Stoye, M; Tosi, M; Treille, D; Triossi, A; Tsirou, A; Veckalns, V; Verweij, M; Zeuner, W D; Bertl, W; Caminada, L; Deiters, K; Erdmann, W; Horisberger, R; Ingram, Q; Kaestli, H C; Kotlinski, D; Langenegger, U; Rohe, T; Wiederkehr, S A; Backhaus, M; Bäni, L; Berger, P; Bianchini, L; Casal, B; Dissertori, G; Dittmar, M; Donegà, M; Dorfer, C; Grab, C; Heidegger, C; Hits, D; Hoss, J; Kasieczka, G; Klijnsma, T; Lustermann, W; Mangano, B; Marionneau, M; Meinhard, M T; Meister, D; Micheli, F; Musella, P; Nessi-Tedaldi, F; Pandolfi, F; Pata, J; Pauss, F; Perrin, G; Perrozzi, L; Quittnat, M; Reichmann, M; Sanz Becerra, D A; Schönenberger, M; Shchutska, L; Tavolaro, V R; Theofilatos, K; Vesterbacka Olsson, M L; Wallny, R; Zhu, D H; Aarrestad, T K; Amsler, C; Canelli, M F; De Cosa, A; Del Burgo, R; Donato, S; Galloni, C; Hreus, T; Kilminster, B; Pinna, D; Rauco, G; Robmann, P; Salerno, D; Schweiger, K; Seitz, C; Takahashi, Y; Zucchetta, A; Candelise, V; Chang, Y H; Cheng, K Y; Doan, T H; Jain, Sh; Khurana, R; Kuo, C M; Lin, W; Pozdnyakov, A; Yu, S S; Kumar, Arun; Chang, P; Chao, Y; Chen, K F; Chen, P H; Fiori, F; Hou, W-S; Hsiung, Y; Liu, Y F; Lu, R-S; Paganis, E; Psallidas, A; Steen, A; Tsai, J F; Asavapibhop, B; Kovitanggoon, K; Singh, G; Srimanobhas, N; Bat, A; Boran, F; Cerci, S; Damarseckin, S; Demiroglu, Z S; Dozen, C; Dumanoglu, I; Girgis, S; Gokbulut, G; Guler, Y; Hos, I; Kangal, E E; Kara, O; Kayis Topaksu, A; Kiminsu, U; Oglakci, M; Onengut, G; Ozdemir, K; Sunar Cerci, D; Tali, B; Tok, U G; Turkcapar, S; Zorbakir, I S; Zorbilmez, C; Karapinar, G; Ocalan, K; Yalvac, M; Zeyrek, M; Gülmez, E; Kaya, M; Kaya, O; Tekten, S; Yetkin, E A; Agaras, M N; Atay, S; Cakir, A; Cankocak, K; Köseoglu, I; Grynyov, B; Levchuk, L; Ball, F; Beck, L; Brooke, J J; Burns, D; Clement, E; Cussans, D; Davignon, O; Flacher, H; Goldstein, J; Heath, G P; Heath, H F; Kreczko, L; Newbold, D M; Paramesvaran, S; Sakuma, T; Seif El Nasr-Storey, S; Smith, D; Smith, V J; Belyaev, A; Brew, C; Brown, R M; Calligaris, L; Cieri, D; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Linacre, J; Olaiya, E; Petyt, D; Shepherd-Themistocleous, C H; Thea, A; Tomalin, I R; Williams, T; Auzinger, G; Bainbridge, R; Borg, J; Breeze, S; Buchmuller, O; Bundock, A; Casasso, S; Citron, M; Colling, D; Corpe, L; Dauncey, P; Davies, G; De Wit, A; Della Negra, M; Di Maria, R; Elwood, A; Haddad, Y; Hall, G; Iles, G; James, T; Lane, R; Laner, C; Lyons, L; Magnan, A-M; Malik, S; Mastrolorenzo, L; Matsushita, T; Nash, J; Nikitenko, A; Palladino, V; Pesaresi, M; Raymond, D M; Richards, A; Rose, A; Scott, E; Seez, C; Shtipliyski, A; Summers, S; Tapper, A; Uchida, K; Vazquez Acosta, M; Virdee, T; Wardle, N; Winterbottom, D; Wright, J; Zenz, S C; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Reid, I D; Teodorescu, L; Zahid, S; Borzou, A; Call, K; Dittmann, J; Hatakeyama, K; Liu, H; Pastika, N; Smith, C; Bartek, R; Dominguez, A; Buccilli, A; Cooper, S I; Henderson, C; Rumerio, P; West, C; Arcaro, D; Avetisyan, A; Bose, T; Gastler, D; Rankin, D; Richardson, C; Rohlf, J; Sulak, L; Zou, D; Benelli, G; Cutts, D; Garabedian, A; Hadley, M; Hakala, J; Heintz, U; Hogan, J M; Kwok, K H M; Laird, E; Landsberg, G; Lee, J; Mao, Z; Narain, M; Pazzini, J; Piperov, S; Sagir, S; Syarif, R; Yu, D; Band, R; Brainerd, C; Burns, D; Calderon De La Barca Sanchez, M; Chertok, M; Conway, J; Conway, R; Cox, P T; Erbacher, R; Flores, C; Funk, G; Ko, W; Lander, R; Mclean, C; Mulhearn, M; Pellett, D; Pilot, J; Shalhout, S; Shi, M; Smith, J; Stolp, D; Tos, K; Tripathi, M; Wang, Z; Bachtis, M; Bravo, C; Cousins, R; Dasgupta, A; Florent, A; Hauser, J; Ignatenko, M; Mccoll, N; Regnard, S; Saltzberg, D; Schnaible, C; Valuev, V; Bouvier, E; Burt, K; Clare, R; Ellison, J; Gary, J W; Ghiasi Shirazi, S M A; Hanson, G; Heilman, J; Karapostoli, G; Kennedy, E; Lacroix, F; Long, O R; Olmedo Negrete, M; Paneva, M I; Si, W; Wang, L; Wei, H; Wimpenny, S; Yates, B R; Branson, J G; Cittolin, S; Derdzinski, M; Gerosa, R; Gilbert, D; Hashemi, B; Holzner, A; Klein, D; Kole, G; Krutelyov, V; Letts, J; Masciovecchio, M; Olivito, D; Padhi, S; Pieri, M; Sani, M; Sharma, V; Tadel, M; Vartak, A; Wasserbaech, S; Wood, J; Würthwein, F; Yagil, A; Zevi Della Porta, G; Amin, N; Bhandari, R; Bradmiller-Feld, J; Campagnari, C; Dishaw, A; Dutta, V; Franco Sevilla, M; Gouskos, L; Heller, R; Incandela, J; Ovcharova, A; Qu, H; Richman, J; Stuart, D; Suarez, I; Yoo, J; Anderson, D; Bornheim, A; Lawhorn, J M; Newman, H B; Nguyen, T Q; Pena, C; Spiropulu, M; Vlimant, J R; Xie, S; Zhang, Z; Zhu, R Y; Andrews, M B; Ferguson, T; Mudholkar, T; Paulini, M; Russ, J; Sun, M; Vogel, H; Vorobiev, I; Weinberg, M; Cumalat, J P; Ford, W T; Jensen, F; Johnson, A; Krohn, M; Leontsinis, S; Mulholland, T; Stenson, K; Wagner, S R; Alexander, J; Chaves, J; Chu, J; Dittmer, S; Mcdermott, K; Mirman, N; Patterson, J R; Quach, D; Rinkevicius, A; Ryd, A; Skinnari, L; Soffi, L; Tan, S M; Tao, Z; Thom, J; Tucker, J; Wittich, P; Zientek, M; Abdullin, S; Albrow, M; Alyari, M; Apollinari, G; Apresyan, A; Apyan, A; Banerjee, S; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bolla, G; Burkett, K; Butler, J N; Canepa, A; Cerati, G B; Cheung, H W K; Chlebana, F; Cremonesi, M; Duarte, J; Elvira, V D; Freeman, J; Gecse, Z; Gottschalk, E; Gray, L; Green, D; Grünendahl, S; Gutsche, O; Harris, R M; Hasegawa, S; Hirschauer, J; Hu, Z; Jayatilaka, B; Jindariani, S; Johnson, M; Joshi, U; Klima, B; Kreis, B; Lammel, S; Lincoln, D; Lipton, R; Liu, M; Liu, T; Lopes De Sá, R; Lykken, J; Maeshima, K; Magini, N; Marraffino, J M; Mason, D; McBride, P; Merkel, P; Mrenna, S; Nahn, S; O'Dell, V; Pedro, K; Prokofyev, O; Rakness, G; Ristori, L; Schneider, B; Sexton-Kennedy, E; Soha, A; Spalding, W J; Spiegel, L; Stoynev, S; Strait, J; Strobbe, N; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vernieri, C; Verzocchi, M; Vidal, R; Wang, M; Weber, H A; Whitbeck, A; Acosta, D; Avery, P; Bortignon, P; Bourilkov, D; Brinkerhoff, A; Carnes, A; Carver, M; Curry, D; Field, R D; Furic, I K; Gleyzer, S V; Joshi, B M; Konigsberg, J; Korytov, A; Kotov, K; Ma, P; Matchev, K; Mei, H; Mitselmakher, G; Shi, K; Sperka, D; Terentyev, N; Thomas, L; Wang, J; Wang, S; Yelton, J; Joshi, Y R; Linn, S; Markowitz, P; Rodriguez, J L; Ackert, A; Adams, T; Askew, A; Hagopian, S; Hagopian, V; Johnson, K F; Kolberg, T; Martinez, G; Perry, T; Prosper, H; Saha, A; Santra, A; Sharma, V; Yohay, R; Baarmand, M M; Bhopatkar, V; Colafranceschi, S; Hohlmann, M; Noonan, D; Roy, T; Yumiceva, F; Adams, M R; Apanasevich, L; Berry, D; Betts, R R; Cavanaugh, R; Chen, X; Evdokimov, O; Gerber, C E; Hangal, D A; Hofman, D J; Jung, K; Kamin, J; Sandoval Gonzalez, I D; Tonjes, M B; Trauger, H; Varelas, N; Wang, H; Wu, Z; Zhang, J; Bilki, B; Clarida, W; Dilsiz, K; Durgut, S; Gandrajula, R P; Haytmyradov, M; Khristenko, V; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Ogul, H; Onel, Y; Ozok, F; Penzo, A; Snyder, C; Tiras, E; Wetzel, J; Yi, K; Blumenfeld, B; Cocoros, A; Eminizer, N; Fehling, D; Feng, L; Gritsan, A V; Maksimovic, P; Roskes, J; Sarica, U; Swartz, M; Xiao, M; You, C; Al-Bataineh, A; Baringer, P; Bean, A; Boren, S; Bowen, J; Castle, J; Khalil, S; Kropivnitskaya, A; Majumder, D; Mcbrayer, W; Murray, M; Rogan, C; Royon, C; Sanders, S; Schmitz, E; Tapia Takaki, J D; Wang, Q; Ivanov, A; Kaadze, K; Maravin, Y; Mohammadi, A; Saini, L K; Skhirtladze, N; Rebassoo, F; Wright, D; Baden, A; Baron, O; Belloni, A; Eno, S C; Feng, Y; Ferraioli, C; Hadley, N J; Jabeen, S; Jeng, G Y; Kellogg, R G; Kunkle, J; Mignerey, A C; Ricci-Tam, F; Shin, Y H; Skuja, A; Tonwar, S C; Abercrombie, D; Allen, B; Azzolini, V; Barbieri, R; Baty, A; Bi, R; Brandt, S; Busza, W; Cali, I A; D'Alfonso, M; Demiragli, Z; Gomez Ceballos, G; Goncharov, M; Hsu, D; Hu, M; Iiyama, Y; Innocenti, G M; Klute, M; Kovalskyi, D; Lee, Y-J; Levin, A; Luckey, P D; Maier, B; Marini, A C; Mcginn, C; Mironov, C; Narayanan, S; Niu, X; Paus, C; Roland, C; Roland, G; Salfeld-Nebgen, J; Stephans, G S F; Tatar, K; Velicanu, D; Wang, J; Wang, T W; Wyslouch, B; Benvenuti, A C; Chatterjee, R M; Evans, A; Hansen, P; Hiltbrand, J; Kalafut, S; Kubota, Y; Lesko, Z; Mans, J; Nourbakhsh, S; Ruckstuhl, N; Rusack, R; Turkewitz, J; Wadud, M A; Acosta, J G; Oliveros, S; Avdeeva, E; Bloom, K; Claes, D R; Fangmeier, C; Golf, F; Gonzalez Suarez, R; Kamalieddin, R; Kravchenko, I; Monroy, J; Siado, J E; Snow, G R; Stieger, B; Dolen, J; Godshalk, A; Harrington, C; Iashvili, I; Nguyen, D; Parker, A; Rappoccio, S; Roozbahani, B; Alverson, G; Barberis, E; Freer, C; Hortiangtham, A; Massironi, A; Morse, D M; Orimoto, T; Teixeira De Lima, R; Trocino, D; Wamorkar, T; Wang, B; Wisecarver, A; Wood, D; Bhattacharya, S; Charaf, O; Hahn, K A; Mucia, N; Odell, N; Schmitt, M H; Sung, K; Trovato, M; Velasco, M; Bucci, R; Dev, N; Hildreth, M; Hurtado Anampa, K; Jessop, C; Karmgard, D J; Kellams, N; Lannon, K; Li, W; Loukas, N; Marinelli, N; Meng, F; Mueller, C; Musienko, Y; Planer, M; Reinsvold, A; Ruchti, R; Siddireddy, P; Smith, G; Taroni, S; Wayne, M; Wightman, A; Wolf, M; Woodard, A; Alimena, J; Antonelli, L; Bylsma, B; Durkin, L S; Flowers, S; Francis, B; Hart, A; Hill, C; Ji, W; Liu, B; Luo, W; Winer, B L; Wulsin, H W; Cooperstein, S; Driga, O; Elmer, P; Hardenbrook, J; Hebda, P; Higginbotham, S; Kalogeropoulos, A; Lange, D; Luo, J; Marlow, D; Mei, K; Ojalvo, I; Olsen, J; Palmer, C; Piroué, P; Stickland, D; Tully, C; Malik, S; Norberg, S; Barker, A; Barnes, V E; Das, S; Folgueras, S; Gutay, L; Jones, M; Jung, A W; Khatiwada, A; Miller, D H; Neumeister, N; Peng, C C; Qiu, H; Schulte, J F; Sun, J; Wang, F; Xiao, R; Xie, W; Cheng, T; Parashar, N; Stupak, J; Chen, Z; Ecklund, K M; Freed, S; Geurts, F J M; Guilbaud, M; Kilpatrick, M; Li, W; Michlin, B; Padley, B P; Roberts, J; Rorie, J; Shi, W; Tu, Z; Zabel, J; Zhang, A; Bodek, A; de Barbaro, P; Demina, R; Duh, Y T; Ferbel, T; Galanti, M; Garcia-Bellido, A; Han, J; Hindrichs, O; Khukhunaishvili, A; Lo, K H; Tan, P; Verzetti, M; Ciesielski, R; Goulianos, K; Mesropian, C; Agapitos, A; Chou, J P; Gershtein, Y; Gómez Espinosa, T A; Halkiadakis, E; Heindl, M; Hughes, E; Kaplan, S; Kunnawalkam Elayavalli, R; Kyriacou, S; Lath, A; Montalvo, R; Nash, K; Osherson, M; Saka, H; Salur, S; Schnetzer, S; Sheffield, D; Somalwar, S; Stone, R; Thomas, S; Thomassen, P; Walker, M; Delannoy, A G; Heideman, J; Riley, G; Rose, K; Spanier, S; Thapa, K; Bouhali, O; Castaneda Hernandez, A; Celik, A; Dalchenko, M; De Mattia, M; Delgado, A; Dildick, S; Eusebi, R; Gilmore, J; Huang, T; Kamon, T; Mueller, R; Pakhotin, Y; Patel, R; Perloff, A; Perniè, L; Rathjens, D; Safonov, A; Tatarinov, A; Ulmer, K A; Akchurin, N; Damgov, J; De Guio, F; Dudero, P R; Faulkner, J; Gurpinar, E; Kunori, S; Lamichhane, K; Lee, S W; Libeiro, T; Mengke, T; Muthumuni, S; Peltola, T; Undleeb, S; Volobouev, I; Wang, Z; Greene, S; Gurrola, A; Janjam, R; Johns, W; Maguire, C; Melo, A; Ni, H; Padeken, K; Sheldon, P; Tuo, S; Velkovska, J; Xu, Q; Arenton, M W; Barria, P; Cox, B; Hirosky, R; Joyce, M; Ledovskoy, A; Li, H; Neu, C; Sinthuprasith, T; Wang, Y; Wolfe, E; Xia, F; Harr, R; Karchin, P E; Poudyal, N; Sturdy, J; Thapa, P; Zaleski, S; Brodski, M; Buchanan, J; Caillol, C; Dasu, S; Dodd, L; Duric, S; Gomber, B; Grothe, M; Herndon, M; Hervé, A; Hussain, U; Klabbers, P; Lanaro, A; Levine, A; Long, K; Loveless, R; Ruggles, T; Savin, A; Smith, N; Smith, W H; Taylor, D; Woods, N

    2017-12-15

    The first observation of top quark production in proton-nucleus collisions is reported using proton-lead data collected by the CMS experiment at the CERN LHC at a nucleon-nucleon center-of-mass energy of sqrt[s_{NN}]=8.16  TeV. The measurement is performed using events with exactly one isolated electron or muon candidate and at least four jets. The data sample corresponds to an integrated luminosity of 174  nb^{-1}. The significance of the tt[over ¯] signal against the background-only hypothesis is above 5 standard deviations. The measured cross section is σ_{tt[over ¯]}=45±8  nb, consistent with predictions from perturbative quantum chromodynamics.

  4. Observation of Top Quark Production in Proton-Nucleus Collisions

    Science.gov (United States)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Escalante Del Valle, A.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Grossmann, J.; Hrubec, J.; Jeitler, M.; König, A.; Krammer, N.; Krätschmer, I.; Liko, D.; Madlener, T.; Mikulec, I.; Pree, E.; Rad, N.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Spanring, M.; Spitzbart, D.; Waltenberger, W.; Wittmann, J.; Wulz, C.-E.; Zarucki, M.; Chekhovsky, V.; Mossolov, V.; Suarez Gonzalez, J.; De Wolf, E. A.; Di Croce, D.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; De Bruyn, I.; De Clercq, J.; Deroover, K.; Flouris, G.; Lontkovskyi, D.; Lowette, S.; Marchesini, I.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Beghin, D.; Bilin, B.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Dorney, B.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Kalsi, A. K.; Lenzi, T.; Luetic, J.; Maerschalk, T.; Marinov, A.; Seva, T.; Starling, E.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Roskas, C.; Salva, S.; Tytgat, M.; Verbeke, W.; Zaganidis, N.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caputo, C.; Caudron, A.; David, P.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Saggio, A.; Vidal Marono, M.; Wertz, S.; Zobec, J.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Coelho, E.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Melo De Almeida, M.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Sanchez Rosas, L. J.; Santoro, A.; Sznajder, A.; Thiel, M.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Misheva, M.; Rodozov, M.; Shopova, M.; Sultanov, G.; Dimitrov, A.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Gao, X.; Yuan, L.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Jiang, C. H.; Leggat, D.; Liao, H.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Yazgan, E.; Zhang, H.; Zhang, S.; Zhao, J.; Ban, Y.; Chen, G.; Li, J.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zhang, F.; Wang, Y.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Segura Delgado, M. A.; Courbon, B.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Starodumov, A.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Assran, Y.; Elgammal, S.; Mahrous, A.; Dewanjee, R. K.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Faure, J. L.; Ferri, F.; Ganjour, S.; Ghosh, S.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Leloup, C.; Locci, E.; Machet, M.; Malcles, J.; Negro, G.; Rander, J.; Rosowsky, A.; Sahin, M. Ö.; Titov, M.; Abdulsalam, A.; Amendola, C.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Charlot, C.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Lobanov, A.; Martin Blanco, J.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Stahl Leiton, A. G.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Jansová, M.; Le Bihan, A.-C.; Tonon, N.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Finco, L.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Vander Donckt, M.; Viret, S.; Toriashvili, T.; Bagaturia, I.; Autermann, C.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Teroerde, M.; Zhukov, V.; Albert, A.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Teyssier, D.; Thüer, S.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bermúdez Martínez, A.; Bin Anuar, A. A.; Borras, K.; Botta, V.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Guthoff, M.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Lipka, K.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Raspereza, A.; Savitskyi, M.; Saxena, P.; Shevchenko, R.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wen, Y.; Wichmann, K.; Wissing, C.; Zenaiev, O.; Aggleton, R.; Bein, S.; Blobel, V.; Centis Vignali, M.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hinzmann, A.; Hoffmann, M.; Karavdina, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Kurz, S.; Lapsien, T.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sonneveld, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baselga, M.; Baur, S.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Faltermann, N.; Freund, B.; Friese, R.; Giffels, M.; Harrendorf, M. A.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Karathanasis, G.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Kousouris, K.; Evangelou, I.; Foudas, C.; Gianneios, P.; Katsoulis, P.; Kokkas, P.; Mallios, S.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Triantis, F. A.; Tsitsonis, D.; Csanad, M.; Filipovic, N.; Pasztor, G.; Surányi, O.; Veres, G. I.; Bencze, G.; Hajdu, C.; Horvath, D.; Hunyadi, Á.; Sikler, F.; Veszpremi, V.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Komaragiri, J. R.; Bahinipati, S.; Bhowmik, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Dhingra, N.; Kaur, A.; Kaur, M.; Kaur, S.; Kumar, R.; Kumari, P.; Mehta, A.; Singh, J. B.; Walia, G.; Kumar, Ashok; Shah, Aashaq; Bhardwaj, A.; Chauhan, S.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Bhardwaj, R.; Bhattacharya, R.; Bhattacharya, S.; Bhawandeep, U.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhattacharya, S.; Chatterjee, S.; Das, P.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Errico, F.; Fiore, L.; Iaselli, G.; Lezki, S.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Borgonovi, L.; Braibant-Giacomelli, S.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Chatterjee, K.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Ravera, F.; Robutti, E.; Tosi, S.; Benaglia, A.; Beschi, A.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pauwels, K.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Khan, W. A.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pozzobon, N.; Ronchese, P.; Rossin, R.; Simonetto, F.; Torassa, E.; Zanetti, M.; Zotto, P.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Ressegotti, M.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Ciangottini, D.; Fanò, L.; Leonardi, R.; Manoni, E.; Mantovani, G.; Mariani, V.; Menichelli, M.; Rossi, A.; Santocchia, A.; Spiga, D.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Borrello, L.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giannini, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Manca, E.; Mandorli, G.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Daci, N.; Del Re, D.; Di Marco, E.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, J.; Lee, S.; Lee, S. W.; Moon, C. S.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Moon, D. H.; Oh, G.; Brochero Cifuentes, J. A.; Goh, J.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Kim, J. S.; Lee, H.; Lee, K.; Nam, K.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Choi, Y.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Reyes-Almanza, R.; Ramirez-Sanchez, G.; Duran-Osuna, M. C.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Rabadan-Trejo, R. I.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Eysermans, J.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pyskir, A.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Galinhas, B.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Seixas, J.; Strong, G.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sosnov, D.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Stepennov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Chistov, R.; Danilov, M.; Parygin, P.; Philippov, D.; Polikarpov, S.; Tarkovskii, E.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Dudko, L.; Ershov, A.; Gribushin, A.; Kodolova, O.; Korotkikh, V.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Vardanyan, I.; Blinov, V.; Skovpen, Y.; Shtol, D.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Godizov, A.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Mandrik, P.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Bachiller, I.; Barrio Luna, M.; Cerrada, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Moran, D.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Álvarez Fernández, A.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Cuevas, J.; Erice, C.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Vischia, P.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Chazin Quero, B.; Curras, E.; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Akgun, B.; Auffray, E.; Baillon, P.; Ball, A. H.; Barney, D.; Bendavid, J.; Bianco, M.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chapon, E.; Chen, Y.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Deelen, N.; Dobson, M.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fallavollita, F.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gilbert, A.; Gill, K.; Glege, F.; Gulhan, D.; Harris, P.; Hegeman, J.; Innocente, V.; Jafari, A.; Janot, P.; Karacheban, O.; Kieseler, J.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Mulders, M.; Neugebauer, H.; Ngadiuba, J.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Rabady, D.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Selvaggi, M.; Sharma, A.; Silva, P.; Sphicas, P.; Stakia, A.; Steggemann, J.; Stoye, M.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Verweij, M.; Zeuner, W. D.; Bertl, W.; Caminada, L.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Backhaus, M.; Bäni, L.; Berger, P.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dorfer, C.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Klijnsma, T.; Lustermann, W.; Mangano, B.; Marionneau, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Reichmann, M.; Sanz Becerra, D. A.; Schönenberger, M.; Shchutska, L.; Tavolaro, V. R.; Theofilatos, K.; Vesterbacka Olsson, M. L.; Wallny, R.; Zhu, D. H.; Aarrestad, T. K.; Amsler, C.; Canelli, M. F.; De Cosa, A.; Del Burgo, R.; Donato, S.; Galloni, C.; Hreus, T.; Kilminster, B.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Schweiger, K.; Seitz, C.; Takahashi, Y.; Zucchetta, A.; Candelise, V.; Chang, Y. H.; Cheng, K. y.; Doan, T. H.; Jain, Sh.; Khurana, R.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Paganis, E.; Psallidas, A.; Steen, A.; Tsai, J. f.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Bat, A.; Boran, F.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Sunar Cerci, D.; Tali, B.; Tok, U. G.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Karapinar, G.; Ocalan, K.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Tekten, S.; Yetkin, E. A.; Agaras, M. N.; Atay, S.; Cakir, A.; Cankocak, K.; Köseoglu, I.; Grynyov, B.; Levchuk, L.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Davignon, O.; Flacher, H.; Goldstein, J.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Newbold, D. M.; Paramesvaran, S.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Linacre, J.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Auzinger, G.; Bainbridge, R.; Borg, J.; Breeze, S.; Buchmuller, O.; Bundock, A.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Elwood, A.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Matsushita, T.; Nash, J.; Nikitenko, A.; Palladino, V.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Shtipliyski, A.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wardle, N.; Winterbottom, D.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Teodorescu, L.; Zahid, S.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Smith, C.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hadley, M.; Hakala, J.; Heintz, U.; Hogan, J. M.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Lee, J.; Mao, Z.; Narain, M.; Pazzini, J.; Piperov, S.; Sagir, S.; Syarif, R.; Yu, D.; Band, R.; Brainerd, C.; Burns, D.; Calderon De La Barca Sanchez, M.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Stolp, D.; Tos, K.; Tripathi, M.; Wang, Z.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Regnard, S.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Karapostoli, G.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Si, W.; Wang, L.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Gilbert, D.; Hashemi, B.; Holzner, A.; Klein, D.; Kole, G.; Krutelyov, V.; Letts, J.; Masciovecchio, M.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; Gouskos, L.; Heller, R.; Incandela, J.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bornheim, A.; Lawhorn, J. M.; Newman, H. B.; Nguyen, T. Q.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhang, Z.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Mudholkar, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Patterson, J. R.; Quach, D.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Abdullin, S.; Albrow, M.; Alyari, M.; Apollinari, G.; Apresyan, A.; Apyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Canepa, A.; Cerati, G. B.; Cheung, H. W. K.; Chlebana, F.; Cremonesi, M.; Duarte, J.; Elvira, V. D.; Freeman, J.; Gecse, Z.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Schneider, B.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Field, R. D.; Furic, I. K.; Gleyzer, S. V.; Joshi, B. M.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Shi, K.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Joshi, Y. R.; Linn, S.; Markowitz, P.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Martinez, G.; Perry, T.; Prosper, H.; Saha, A.; Santra, A.; Sharma, V.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Cavanaugh, R.; Chen, X.; Evdokimov, O.; Gerber, C. E.; Hangal, D. A.; Hofman, D. J.; Jung, K.; Kamin, J.; Sandoval Gonzalez, I. D.; Tonjes, M. B.; Trauger, H.; Varelas, N.; Wang, H.; Wu, Z.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Rogan, C.; Royon, C.; Sanders, S.; Schmitz, E.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Rebassoo, F.; Wright, D.; Baden, A.; Baron, O.; Belloni, A.; Eno, S. C.; Feng, Y.; Ferraioli, C.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Hu, M.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Hiltbrand, J.; Kalafut, S.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Turkewitz, J.; Wadud, M. A.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Golf, F.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Freer, C.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wamorkar, T.; Wang, B.; Wisecarver, A.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Mucia, N.; Odell, N.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Bucci, R.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Li, W.; Loukas, N.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Siddireddy, P.; Smith, G.; Taroni, S.; Wayne, M.; Wightman, A.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Ji, W.; Liu, B.; Luo, W.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Higginbotham, S.; Kalogeropoulos, A.; Lange, D.; Luo, J.; Marlow, D.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Malik, S.; Norberg, S.; Barker, A.; Barnes, V. E.; Das, S.; Folgueras, S.; Gutay, L.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Peng, C. C.; Qiu, H.; Schulte, J. F.; Sun, J.; Wang, F.; Xiao, R.; Xie, W.; Cheng, T.; Parashar, N.; Stupak, J.; Chen, Z.; Ecklund, K. M.; Freed, S.; Geurts, F. J. M.; Guilbaud, M.; Kilpatrick, M.; Li, W.; Michlin, B.; Padley, B. P.; Roberts, J.; Rorie, J.; Shi, W.; Tu, Z.; Zabel, J.; Zhang, A.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Ciesielski, R.; Goulianos, K.; Mesropian, C.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Montalvo, R.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Mengke, T.; Muthumuni, S.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Padeken, K.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Hirosky, R.; Joyce, M.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Wang, Y.; Wolfe, E.; Xia, F.; Harr, R.; Karchin, P. E.; Poudyal, N.; Sturdy, J.; Thapa, P.; Zaleski, S.; Brodski, M.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Hussain, U.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.; CMS Collaboration

    2017-12-01

    The first observation of top quark production in proton-nucleus collisions is reported using proton-lead data collected by the CMS experiment at the CERN LHC at a nucleon-nucleon center-of-mass energy of √{sN N }=8.16 TeV . The measurement is performed using events with exactly one isolated electron or muon candidate and at least four jets. The data sample corresponds to an integrated luminosity of 174 nb-1 . The significance of the t t ¯ signal against the background-only hypothesis is above 5 standard deviations. The measured cross section is σt t ¯=45 ±8 nb , consistent with predictions from perturbative quantum chromodynamics.

  5. Formation of proton-fragments in hadron-nucleus and nucleus-nucleus collisions at high energies

    International Nuclear Information System (INIS)

    Bazarov, E.Kh.; Olimov, K.; Petrov, V.I.; Lutpullaev, S.L.

    2006-01-01

    the massive intranuclear systems, where the nucleons are located very close to each other (≤ 1 fm), may cause the appearance of the so-called 'cumulative' nucleons, i.e. the nucleons with the momenta forbidden by kinematics of scattering of the particles on free nucleon. The reactions of absorption of produced slow pions or resonances by few-nucleon systems can be one of the possible mechanisms causing the formation of the relatively energetic nucleon-fragments. As a result of these reactions, the 'cumulative' protons can be produced provided that the energy of the absorbed pion or resonance is high enough. The study of production of proton-fragments was carried out in π -12 C interactions at 4.5 and 40 GeV/s, n 12 C interactions at 7 GeV/s, π - Ne interactions at 25 and 50 GeV/s, p 20 Ne interactions at 300 GeV/s, 16 Op interactions at 3.25 A GeV/s. The limiting behavior of some characteristics of proton-fragments was found out in these classes of interactions for the first time. The independence of the mean multiplicity of protons with momenta 0.2 - 1.2 GeV/s and of the distributions on multiplicity from the energy of an impinging particle was established pointing out the dominating role of the processes of high energy cascade of the initial and secondary particles. The weak (or may be none) dependence of characteristics of proton-fragments from the type of the impinging particle was found out. The dependence of the mean multiplicity from the mass number has the power-like form A n with n close to 2/3, which is characteristic for the geometrical approach. In pNe interactions at 300 GeV/s and π -12 C interactions at 4.5 and 40 GeV/s, the presence of the structure - the deviation of the differential cross section of protons flying back in laboratory frame from the monotonous dependence in region P p ≅ 0.3-0.5 GeV/s in the momentum spectrum - was found out. It was shown that the observed singularity is due to the reactions of absorption of pions or meson

  6. Study of the unbound proton-rich nucleus $^{21}$Al with resonance elastic and inelastic scattering using an active target

    CERN Multimedia

    We intend to measure the structure of the unbound nucleus $^{21}$Al via resonance elastic and inelastic scattering with an active target. There are many goals: \\\\ a) to locate the 1/2$^{+}$ level in $^{21}$Al that brings information on the Thomas-Ehrman shift, \\\\ b) to measure the energy spectrum of $^{21}$Al which is a N=8 isotone with the resonance elastic scattering reaction, \\\\ c) to investigate via inelastic scattering the strength of core excitations in the existence of narrow unbound resonances beyond the proton drip-line.

  7. Design and construction of a spectrometer facility and experiment for intermediate energy proton scattering on helium

    International Nuclear Information System (INIS)

    Rolfe, R.M.

    1976-12-01

    The goal of the research was to investigate proton scattering on nuclei at intermediate energies and in particular to investigate proton scattering on helium. A theoretical investigation of the helium nucleus and the nature of the intermediate energy interaction, design and optimization of an energy-loss spectrometer facility for proton-nucleus scattering, and the unique superfluid helium target and experimental design are discussed

  8. Exact multiple scattering theory of two-nucleus collisions including the Pauli principle

    International Nuclear Information System (INIS)

    Gurvitz, S.A.

    1981-01-01

    Exact equations for two-nucleus scattering are derived in which the effects of the Pauli principle are fully included. Our method exploits a modified equation for the scattering of two identical nucleons, which is obtained at the beginning. Considering proton-nucleus scattering we found that the resulting amplitude has two components, one resembling a multiple scattering series for distinguishable particles, and the other a distorted (A-1) nucleon cluster exchange. For elastic pA scattering the multiple scattering amplitude is found in the form of an optical potential expansion. We show that the Kerman-McManus-Thaler theory of the optical potential could be easily modified to include the effects of antisymmetrization of the projectile with the target nucleons. Nucleus-nucleus scattering is studied first for distinguishable target and beam nucleus. Afterwards the Pauli principle is included, where only the case of deuteron-nucleus scattering is discussed in detail. The resulting amplitude has four components. Two of them correspond to modified multiple scattering expansions and the others are distorted (A-1)- and (A-2)- nucleon cluster exchange. The result for d-A scattering is extended to the general case of nucleus-nucleus scattering. The equations are simple to use and as such constitute an improvement over existing schemes

  9. Spin observables in nucleon-nucleus scattering

    International Nuclear Information System (INIS)

    Moss, J.M.

    1982-01-01

    The curse of inelastic nucleon scattering and charge exchange has always been the enormous complexity of the nucleon-nucleon (N-N) interaction. This complexity, however, can also be viewed as the ultimate promise of nucleons as probes of nuclear structure. Given an adequate theoretical basis, inelastic nucleon scattering is capable of providing information not obtainable with other probes. Recently a revolution of experimental technique has taken place that makes it desirable to re-examine the question of what physics is ultimately obtainable from inelastic nucleon scattering. It is now feasible to perform complete polarization transfer (PT) experiments for inelastic proton scattering with high efficiency and excellent energy resolution. Programs to measure PT obsevables are underway at several laboratories, and results are beginning to appear. Objectives of this presentation are to examine how such experiments are done, and what physics is presently obtained and may ultimately be learned from them

  10. The reactive content of the proton-nucleus impulse - approximation Dirac optical potential

    International Nuclear Information System (INIS)

    Carlson, B.V.; Isidro Filho, M.P.; Hussein, M.S.

    1984-01-01

    The total reaction cross sections for intermediate energy proton scattering on 40 Ca and 208 Pb are calculated within the Dirac-Eikonal formalism. Comparison with data indicate that the recently proposed impulse-approximation Dirac optical potential for nucleon-nucleus scattering, is not absorptive enough. (Author) [pt

  11. Inclusive spectra of hadrons in proton-nucleus collisions

    International Nuclear Information System (INIS)

    Gevorkyan, S.R.; Gulkanyan, G.R.; Kotzinyan, A.M.; Zhamkochyan, V.M.

    1985-01-01

    A model is proposed, which allows one to describe all exprimental data on inclusive spectra of different hadrons produced on nuclei. The model is based on the following assumptions. After the first inelastic collision with nucleon in the nucleus the proton transforms into some excited system H, which collides with the other nucleons during its passage through the nucleus. Since in inelastic collisions the slow sea partons play the dominant role, the valence quarks of this system H coincide with those of proton. Fragmentation of H into hadrons (as well as into proton) is dilated in the lab system by the Lorentz factor E/m >> 1 and so it takes place out of the nucleus. Using the methods of multiple scattering theory one can receive the connection between inclusive spectra on nuclei and those on nucleons. The calculations of inclusive spectra of different hadrons (p, p, πsup(-+), ksup(+-)) were done, and a satisfactory description of the experimental data was obtained. It should be noted that this description was done without introduction of any free parameters. Analogous models are discussed, and their diffference from the method proposed is outlined

  12. High-energy elastic and quasi-elastic deuteron-nucleus scattering

    International Nuclear Information System (INIS)

    Tekou, Amouzou

    1974-01-01

    A study is made of deuteron-nucleus elastic and quasi-elastic scattering and the connection between the opaque nucleus model and the Glauber model is pointed out. The contributions to different cross-sections of the collisions in which the nucleus, excited by one of the nucleons of the deuteron, is brought back to the ground state by the other nucleon is analysed. Coherent deuteron disintegration is found to be highly improbable when the target nucleus is heavy and incoherent disintegration accounts for nearly all the deuteron disintegration. Thus a correct comparison between theoretical and experimental data on proton stripping must take the incoherent deuteron disintegration into consideration

  13. Spin observables in proton-neutron scattering at intermediate energy

    International Nuclear Information System (INIS)

    Spinka, H.

    1986-05-01

    A summary of np elastic scattering spin measurements at intermediate energy is given. Preliminary results from a LAMPF experiment to measure free neutron-proton elastic scattering spin-spin correlation parameters are presented. A longitudinally polarized proton target was used. These measurements are part of a program to determine the neutron-proton amplitudes in a model independent fashion at 500, 650, and 800 MeV. Some new proton-proton total cross sections in pure helicity states (Δσ/sub L/(pp)) near 3 GeV/c are also given. 37 refs., 2 figs

  14. High energy nucleus-nucleus scattering and matter radius of unstable nucleus

    International Nuclear Information System (INIS)

    Sato, H.; Okuhara, Y.

    1985-07-01

    The interaction cross sections of high energy nucleus-nucleus scattering have been studied with the Glauber Model and Hartree-Fock like variational calculation for the nuclear structure. It is found that the experimental interaction cross sections of the light unstable nucleus-stable nucleus scatterings measured by INS-LBL collaboration are well reproduceable. (author)

  15. Detector development and background estimation for the observation of Coherent Neutrino Nucleus Scattering (CNNS)

    Energy Technology Data Exchange (ETDEWEB)

    Guetlein, Achim; Ciemniak, Christian; Feilitzsch, Franz von; Lanfranchi, Jean-Come; Oberauer, Lothar; Potzel, Walter; Roth, Sabine; Schoenert, Stefan; Sivers, Moritz von; Strauss, Raimund; Wawoczny, Stefan; Willers, Michael; Zoeller, Andreas [Technische Universitaet Muenchen, Physik-Department, E15 (Germany)

    2012-07-01

    The Coherent Neutrino Nucleus Scattering (CNNS) is a neutral current process of the weak interaction and is thus flavor independent. A low-energetic neutrino scatters off a target nucleus. For low transferred momenta the wavelength of the transferred Z{sup 0} boson is comparable to the diameter of the target nucleus. Thus, the neutrino interacts with all nucleons coherently and the cross section for the CNNS is enhanced. To observe CNNS for the first time we are developing cryogenic detectors with a target mass of about 10 g each and an energy threshold of less than 0.5 keV. The current status of this development is presented as well as the estimated background for an experiment in the vicinity of a nuclear power reactor as a strong neutrino source.

  16. Elastic proton scattering on tritium below the n-3He threshold

    Directory of Open Access Journals (Sweden)

    Lazauskas R.

    2010-04-01

    Full Text Available Microscopic calculations using Faddeev-Yakubovski equations in configuration space are performed for low energy elastic proton scattering on 3H nucleus. Realistic nuclear Hamiltonians are used. Coulomb repulsion between the protons as well as isospin breaking effects are rigorously treated.

  17. Dynamics of hadron-nucleus interactions

    International Nuclear Information System (INIS)

    Wallace, S.J.

    1981-07-01

    Recent progress in diffraction theory shows that proton-nucleus scattering at nonforward angles is dominated by the interference of waves from two or more bright spots. Analytic formulas based on asymptotic theories of diffraction yield valuable new insights into the scattering and these formulas can be readily extended to illuminate the role of dynamical ingredients, i.e., the nucleon-nucleon amplitudes. The governing parameters of the diffraction and some direct connections between the observed cross sections and the input dynamics are reviewed. New information regarding the nucleon-nucleon parameters based on recent phase shift analyses show some systematic differences from the effective NN amplitudes which produce fits to proton-nucleus diffraction data. Recent progress in understanding the role of Δ-isobars in proton-nucleus dynamics is reviewed. 126 references

  18. Quarkonium production in high energy proton-proton and proton-nucleus collisions

    International Nuclear Information System (INIS)

    Conesa del Valle, Z.; Corcella, G.; Fleuret, F.; Ferreiro, E.G.; Kartvelishvili, V.; Kopeliovich, B.; Lansberg, J.P.; Lourenco, C.; Martinez, G.; Papadimitriou, V.; Satz, H.; Scomparin, E.; Ullrich, T.; Teryaev, O.; Vogt, R.; Wang, J.X.

    2011-01-01

    We present a brief overview of the most relevant current issues related to quarkonium production in high energy proton-proton and proton-nucleus collisions along with some perspectives. After reviewing recent experimental and theoretical results on quarkonium production in pp and pA collisions, we discuss the emerging field of polarisation studies. Afterwards, we report on issues related to heavy-quark production, both in pp and pA collisions, complemented by AA collisions. To put the work in broader perpectives, we emphasize the need for new observables to investigate the quarkonium production mechanisms and reiterate the qualities that make quarkonia a unique tool for many investigations in particle and nuclear physics.

  19. Coulomb excitation of the proton-dripline nucleus Na20

    Science.gov (United States)

    Schumaker, M. A.; Cline, D.; Hackman, G.; Pearson, C. J.; Svensson, C. E.; Wu, C. Y.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Becker, J. A.; Boston, A. J.; Boston, H. C.; Buchmann, L.; Churchman, R.; Cifarelli, F.; Cooper, R. J.; Cross, D. S.; Dashdorj, D.; Demand, G. A.; Dimmock, M. R.; Drake, T. E.; Finlay, P.; Gallant, A. T.; Garrett, P. E.; Green, K. L.; Grint, A. N.; Grinyer, G. F.; Harkness, L. J.; Hayes, A. B.; Kanungo, R.; Lisetskiy, A. F.; Leach, K. G.; Lee, G.; Maharaj, R.; Martin, J.-P.; Moisan, F.; Morton, A. C.; Mythili, S.; Nelson, L.; Newman, O.; Nolan, P. J.; Orce, J. N.; Padilla-Rodal, E.; Phillips, A. A.; Porter-Peden, M.; Ressler, J. J.; Roy, R.; Ruiz, C.; Sarazin, F.; Scraggs, D. P.; Waddington, J. C.; Wan, J. M.; Whitbeck, A.; Williams, S. J.; Wong, J.

    2009-10-01

    The low-energy structure of the proton dripline nucleus Na20 has been studied using Coulomb excitation at the TRIUMF-ISAC radioactive ion beam facility. A 1.7-MeV/nucleon Na20 beam of ~5×106 ions/s was Coulomb excited by a 0.5-mg/cm2natTi target. Scattered beam and target particles were detected by the BAMBINO segmented Si detector while γ rays were detected by two TIGRESS HPGe clover detectors set perpendicular to the beam axis. Coulomb excitation from the 2+ ground state to the first excited 3+ and 4+ states was observed, and B(λL) values were determined using the 2+→0+ de-excitation in Ti48 as a reference. The resulting B(λL)↓ values are B(E2;3+→2+)=55±6e2fm4 (17.0±1.9 W.u.), B(E2;4+→2+)=35.7±5.7e2fm4 (11.1±1.8 W.u.), and B(M1;4+→3+)=0.154±0.030μN2 (0.086±0.017 W.u.). These measurements provide the first experimental determination of B(λL) values for this proton dripline nucleus of astrophysical interest.

  20. Unified semimicroscopic approach scattering of low energy protons and alpha-particles by nuclei

    International Nuclear Information System (INIS)

    Dao Tien Khoa; Kukhtina, I.N.; Knyaz'kov, O.M.; Feofilov, G.A.

    1988-01-01

    The unified approach has been developed to the description of the interaction of low energy nucleons and α-particles with nuclei. The analysis of elastic and inelastic scattering of 25.05 MeV protons and 104 MeV α-particles from 90 Zr is made. The differences in deformations of neutron and proton density distributions for 90 Zr nucleus are extracted. The energy dependence of the obtained α-particle - nucleus semimicroscopic potential is investigated, including the energy dependence for the geometry of the potential. The feaures of angular distributions of elastic α-particle scattering and the role of nucleon-nucleon correlations are analysed as a function of α-particle energy

  1. Results from EDDA at COSY: Spin Observables in Proton-Proton Elastic Scattering

    International Nuclear Information System (INIS)

    Rohdjess, Heiko

    2003-01-01

    Elastic proton-proton scattering as one of the fundamental hadronic reactions has been studied with the internal target experiment EDDA at the Cooler-Synchrotron COSY/Juelich. A precise measurement of differential cross section, analyzing power and three spin-correlation parameters over a large angular (θc.m. ≅ 35 deg. - 90 deg.) and energy (Tp ≅ 0.5 - 2.5 GeV) range has been carried out in the past years. By taking scattering data during the acceleration of the COSY beam, excitation functions were measured in small energy steps and consistent normalization with respect to luminosity and polarization. The experiment uses internal fiber targets and a polarized hydrogen atomic-beam target in conjunction with a double-layered, cylindrical scintillator hodoscope for particle detection. The results on differential cross sections and analyzing powers have been published and helped to improve phase shift solutions. Recently data taking with polarized beam and target has been completed. Preliminary results for the spin-correlation parameters A NN, ASS, and ASL are presented. The observable ASS has been measured the first time above 800 MeV and our results are in sharp contrast to phase-shift predictions at higher energies. Our analysis shows that some of the ambiguities in the direct reconstruction of scattering amplitudes which also show up as differences between available phase-shift solutions, will be reduced by these new measurements

  2. Neutron scattering from polarised proton domains

    CERN Document Server

    Van den Brandt, B; Kohbrecher, J; Konter, J A; Mango, S; Glattli, H; Leymarie, E; Grillo, I; May, R P; Jouve, H; Stuhrmann, H B; Stuhrmann, H B; Zimmer, O

    2002-01-01

    Time-dependent small-angle polarised neutron scattering from domains of polarised protons has been observed at the onset of dynamic nuclear polarisation in a frozen solution of 98% deuterated glycerol-water at 1 K containing a small concentration of paramagnetic centres (EHBA-Cr sup V). Simultaneous NMR measurements show that the observed scattering arises from protons around the Cr sup V -ions which are polarised to approx 10% in a few seconds, much faster than the protons in the bulk. (authors)

  3. Medium energy hadron-nucleus scattering in the 1/N expansion formalism

    International Nuclear Information System (INIS)

    Kuyucak, S.; Morrison, I.

    1992-01-01

    The algebraic-eikonal approach to the medium energy hadron-nucleus scattering is generalized to arbitrary interactions and boson types using the 1/N expansion technique for the interacting boson model. The results are used in a comparative study of proton scattering from deformed nuclei in the sd and sdg boson models. The two models give almost identical results for a pure quadrupole interaction but widely differ when a hexadecapole interaction is included. 25 refs., 3 tabs., 7 figs

  4. Model for nucleus-nucleus, hadron-nucleus and hadron-proton multiplicity distributions

    International Nuclear Information System (INIS)

    Singh, C.P.; Shyam, M.; Tuli, S.K.

    1986-07-01

    A model relating hadron-proton, hadron-nucleus and nucleus-nucleus multiplicity distributions is proposed and some interesting consequences are derived. The values of the parameters are the same for all the processes and are given by the QCD hypothesis of ''universal'' hadronic multiplicities which are found to be asymptotically independent of target and beam in hadronic and current induced reactions in particle physics. (author)

  5. Elastic scattering of protons at the nucleus 6He in the Glauber multiple scattering theory

    International Nuclear Information System (INIS)

    Prmantayeva, B.A.; Temerbayev, A.A.; Tleulessova, I.K.; Ibrayeva, E.T.

    2011-01-01

    Calculation is submitted for the differential cross sections of elastic p 6 He-scattering at energies of 70 and 700 MeV/nucleon within the framework of the Glauber theory of multiple diffraction scattering. We used the three-particle wave functions: α-n-n with realistic intercluster potentials. The sensitivity of elastic scattering to the proton-nuclear interaction and the structure of nuclei had been investigated. It is shown that the contribution of small components of the wave function as well as the multiplicity of the scattering operator Ω should be considered to describe a cross-section in broad angular range . A comparison with available experimental data was made. (author)

  6. A new potential of π-nucleus scattering and its application to nuclear structure study using elastic scattering and charge exchange reactions

    International Nuclear Information System (INIS)

    Durand, Gerard.

    1974-01-01

    First the different theories used for studying pion-nucleus scattering and especially Glauber microscopic model and Kisslinger optical model are summarized. From the comparison of these two theories it was concluded that Kisslinger's was better for studying pion-nucleus scattering near the (3/2-3/2) resonance. The potential was developed, with a local corrective term, proposed by this author. This new term arises from taking into account correctly the Lorentz transformation from the pion-nucleon center of mass to the pion nucleus center of mass system. A coupled-channel formalism was developed allowing the study of pion-nucleus elastic scattering and also the study of single and double charge exchange reactions on nucleus with N>Z. The influence of the new term and the shape of nucleon densities on π- 12 C scattering was studied near 200MeV. It was found that at the nucleus surface the neutron density was larger than the proton density. On the other hand, a maximum of sensibility to the different nuclear parameters was found near 180MeV and for elastic scattering angles greater than 100 deg. The calculations of the total cross section for simple and double charge exchange for 13 C and 63 Cu yielded results simular to those of previous theories and showed the same discrepancy between theory and experiment in the resonance region [fr

  7. A plausible picture of high-energy proton-nucleus collisions

    International Nuclear Information System (INIS)

    Kim, C.O.

    1976-01-01

    Results experimentally obtained from jets of E(p)=10-10 3 GeV in nuclear emulsion show that the target nucleus in proton-nucleus collisions seems to present ''limiting fragmentation''. In the same energy range, proton-nucleus collisions resemble closely proton-proton collisions and asymmetric shape of rapidities is only caused by the break-up products of heavy targets [fr

  8. Quarkonium production in high energyproton-proton and proton-nucleus collisions

    Energy Technology Data Exchange (ETDEWEB)

    del Valle, Z C; Corcella, G; Fleuret, F; Ferreiro, E G; Kartvelishvili, V; Kopeliovich, B; Lansberg, J P; Lourenco, C; Martinez, G; Papadimitriou, V; Satz, H; Scomparin, E; Ullrich, T; Teryaev, O; Vogt, R; Wang, J X

    2011-03-14

    We present a brief overview of the most relevant current issues related to quarkonium production in high energy proton-proton and proton-nucleus collisions along with some perspectives. After reviewing recent experimental and theoretical results on quarkonium production in pp and pA collisions, we discuss the emerging field of polarization studies. Afterwards, we report on issues related to heavy-quark production, both in pp and pA collisions, complemented by AA collisions. To put the work in broader perpectives, we emphasize the need for new observables to investigate the quarkonium production mechanisms and reiterate the qualities that make quarkonia a unique tool for many investigations in particle and nuclear physics.

  9. Classifiers for centrality determination in proton-nucleus and nucleus-nucleus collisions

    Directory of Open Access Journals (Sweden)

    Altsybeev Igor

    2017-01-01

    Full Text Available Centrality, as a geometrical property of the collision, is crucial for the physical interpretation of nucleus-nucleus and proton-nucleus experimental data. However, it cannot be directly accessed in event-by-event data analysis. Common methods for centrality estimation in A-A and p-A collisions usually rely on a single detector (either on the signal in zero-degree calorimeters or on the multiplicity in some semi-central rapidity range. In the present work, we made an attempt to develop an approach for centrality determination that is based on machine-learning techniques and utilizes information from several detector subsystems simultaneously. Different event classifiers are suggested and evaluated for their selectivity power in terms of the number of nucleons-participants and the impact parameter of the collision. Finer centrality resolution may allow to reduce impact from so-called volume fluctuations on physical observables being studied in heavy-ion experiments like ALICE at the LHC and fixed target experiment NA61/SHINE on SPS.

  10. Resonance proton scattering use for the beam parameters control of the electrostatic accelerator

    Directory of Open Access Journals (Sweden)

    V. I. Soroka

    2013-12-01

    Full Text Available The paper discusses peculiarities of the resonance proton scattering use for the beam parameters control of the electrostatic accelerators. The expediency of the use has been confirmed by experiment. Peculiarities are caused because elastic resonance scattering through the stage of compound nucleus is always accompanied by potential and Coulomb scattering. These three components interfere and for that reason the resonance form de-pends on a scattering angle and total angular moment of a compound nucleus level. However, possessing neces-sary information in the given field of nuclear spectroscopy enables the selection of resonance with the character-istics suitable for the calibration purpose. Considerable increase of the scattering cross section in the resonance region saves the time and simplifies the experiment technical maintenance. The experiments were performed at the 10 MeV tandem accelerator of the Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, after its modernization. Silicon and oxygen were used as the targets. Silicon targets were of two types of thickness: 1 the target of complete absorption, 2 the target with the thickness in which the loss of protons ener-gy exceeded the width of the selected resonance. The elastic and non elastic scattering from silicon were used in region of the 3,100 MeV proton energy resonance. Oxygen target, as component of the surface oxidizing layer on beryllium had the thickness which in terms of the loss of proton energy was less than the width of the selected elastic narrow resonance at 3,470 MeV proton energy. As result of the measurement the corrections concerning the energy scale of the accelerator and protons energy spread in the beam were proposed.

  11. Proton-proton elastic scattering measurements at COSY

    Energy Technology Data Exchange (ETDEWEB)

    Bagdasarian, Zara [Forschungszentrum Juelich, Juelich (Germany); Tbilisi State University, Tbilisi (Georgia); Collaboration: ANKE-Collaboration

    2014-07-01

    To construct the reliable phase shift analysis (PSA) that can successfully describe the nucleon-nucleon (NN) interaction it is necessary to measure variety of experimental observables for both proton-proton (pp) and neutron-proton (np) elastic scattering. The polarized beams and targets at COSY-ANKE facility allow a substantial contribution to the existing database. The experiment was carried out in April 2013 at ANKE using a transversely polarized proton beam incident on an unpolarized hydrogen cluster target. Six beam energies of T{sub p}=0.8,1.6,1.8,2.0,2.2,2.4 GeV were used. The aim of this talk is to present the preliminary results for the analyzing power (A{sub y}) for the pp elastic scattering in the so-far unexplored 5 <θ{sub cm}<30 angular range. Our measurements are also compared to the world data and current partial wave solutions.

  12. Quasi-elastic shadowing in nucleus-nucleus elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Dymarz, R; Malecki, A [Institute of Nuclear Physics, Krakow (Poland); Gluski, K [Institute of Nuclear Research, Warsaw (Poland); Picchi, P [Turin Univ. (Italy). Ist. di Fisica; Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica)

    1979-01-06

    The complete evaluation of the Glauber multiple-scattering series for nucleus-nucleus collisions is a very difficult task and that is why various approximate formulae were proposed. In this work some of these approximations are discussed.

  13. Proton rapidity distribution in nucleus-nucleus collisions at high energy

    International Nuclear Information System (INIS)

    Liu, F.H.

    2002-01-01

    The proton rapidity distributions in nucleus-nucleus collisions at the Alternating Gradient Synchrotron (AGS) and the Super Proton Synchrotron (SPS) energies are analysed by the revised thermalized cylinder model. The calculated results are compared and found to he in agreement with the experimental data of Si-AI and Si-Pb collisions at 14.6 A GeV/c, Pb-Pb collisions at 158 A GeV/c, and S-S collisions at 200 A GeV/c. (Author)

  14. Halo-induced large enhancement of soft dipole excitation of 11Li observed via proton inelastic scattering

    Directory of Open Access Journals (Sweden)

    J. Tanaka

    2017-11-01

    Full Text Available Proton inelastic scattering off a neutron halo nucleus, 11Li, has been studied in inverse kinematics at the IRIS facility at TRIUMF. The aim was to establish a soft dipole resonance and to obtain its dipole strength. Using a high quality 66 MeV 11Li beam, a strongly populated excited state in 11Li was observed at Ex=0.80±0.02 MeV with a width of Γ=1.15±0.06 MeV. A DWBA (distorted-wave Born approximation analysis of the measured differential cross section with isoscalar macroscopic form factors leads us to conclude that this observed state is excited in an electric dipole (E1 transition. Under the assumption of isoscalar E1 transitions, the strength is evaluated to be extremely large amounting to 30∼296 Weisskopf units, exhausting 2.2%∼21% of the isoscalar E1 energy-weighted sum rule (EWSR value. The large observed strength originates from the halo and is consistent with the simple di-neutron model of 11Li halo.

  15. Description of nuclear structure and cross sections for nucleon-nucleus scattering on the basis of effective Skyrme forces

    International Nuclear Information System (INIS)

    Kuprikov, V. I.; Pilipenko, V. V.; Soznik, A. P.; Tarasov, V. N.; Shlyakhov, N. A.

    2009-01-01

    The possibility of constructing such new versions of effective nucleon-nucleon forces that would make it possible to describe simultaneously the cross sections for nucleon-nucleus scattering and quantities characterizing nuclear matter and the structure of finite even-even nuclei is investigated on the basis of a microscopic nucleon-nucleus optical potential that is calculated by using effective Skyrme interaction. A procedure for optimizing the parameters of Skyrme forces by employing fits to specific angular distributions for neutron-nucleus scattering and by simultaneously testing the features of nuclear matter, the binding energy of the target nucleus, and its proton root-mean-square radius is proposed. A number of versions of modified Skyrme forces that ensure a reasonable description of both nucleon-nucleus scattering and the properties of nuclear structure are found on the basis of this procedure.

  16. High density QCD and nucleus-nucleus scattering deeply in the saturation region

    International Nuclear Information System (INIS)

    Kormilitzin, Andrey; Levin, Eugene; Miller, Jeremy S.

    2011-01-01

    In this paper we solve the equations that describe nucleus-nucleus scattering, in high density QCD, in the framework of the BFKL Pomeron Calculus. We found that (i) the contribution of short distances to the opacity for nucleus-nucleus scattering dies at high energies, (ii) the opacity tends to unity at high energy, and (iii) the main contribution that survives comes from soft (long distance) processes for large values of the impact parameter. The corrections to the opacity Ω(Y,b)=1 were calculated and it turns out that they have a completely different form, namely (1-Ω→exp(-Const√(Y))) than the opacity that stems from the Balitsky-Kovchegov equation, which is (1-Ω→exp(-ConstY 2 )). We reproduce the formula for the nucleus-nucleus cross section that is commonly used in the description of nucleus-nucleus scattering, and there is no reason why it should be correct in the Glauber-Gribov approach.

  17. Three-hadron angular correlations in high-energy proton-proton and nucleus-nucleus collisions from perturbative QCD

    International Nuclear Information System (INIS)

    Ayala, Alejandro; Ortiz, Antonio; Paic, Guy; Jalilian-Marian, Jamal; Magnin, J.; Tejeda-Yeomans, Maria Elena

    2011-01-01

    We study three-hadron azimuthal angular correlations in high-energy proton-proton and central nucleus-nucleus collisions at the BNL Relativistic Heavy Ion Collider (RHIC) and the CERN Large Hadron Collider at midrapidity. We use the leading-order parton matrix elements for 2→3 processes and include the effect of parton energy loss in the quark-gluon plasma using the modified fragmentation function approach. For the case when the produced hadrons have either the same or not too different momenta, we observe two away-side peaks at 2π/3 and 4π/3. We consider the dependence of the angular correlations on energy loss parameters that have been used in studies of single inclusive hadron production at RHIC. Our results on the angular dependence of the cross section agree well with preliminary data by the PHENIX Collaboration. We comment on the possible contribution of 2→3 processes to dihadron angular correlations and how a comparison of the two processes may help characterize the plasma further.

  18. WIMP-nucleus scattering in chiral effective theory

    Science.gov (United States)

    Cirigliano, Vincenzo; Graesser, Michael L.; Ovanesyan, Grigory

    2012-10-01

    We discuss long-distance QCD corrections to the WIMP-nucleon(s) interactions in the framework of chiral effective theory. For scalar-mediated WIMP-quark interactions, we calculate all the next-to-leading-order corrections to the WIMP-nucleus elastic cross-section, including two-nucleon amplitudes and recoil-energy dependent shifts to the single-nucleon scalar form factors. As a consequence, the scalar-mediated WIMP-nucleus cross-section cannot be parameterized in terms of just two quantities, namely the neutron and proton scalar form factors at zero momentum transfer, but additional parameters appear, depending on the short-distance WIMP-quark interaction. Moreover, multiplicative factorization of the cross-section into particle, nuclear and astro-particle parts is violated. In practice, while the new effects are of the natural size expected by chiral power counting, they become very important in those regions of parameter space where the leading order WIMP-nucleus amplitude is suppressed, including the so-called "isospin-violating dark matter" regime. In these regions of parameter space we find order-of-magnitude corrections to the total scattering rates and qualitative changes to the shape of recoil spectra.

  19. Halo structure of 8B determined from intermediate energy proton elastic scattering in inverse kinematics

    Science.gov (United States)

    Korolev, G. A.; Dobrovolsky, A. V.; Inglessi, A. G.; Alkhazov, G. D.; Egelhof, P.; Estradé, A.; Dillmann, I.; Farinon, F.; Geissel, H.; Ilieva, S.; Ke, Y.; Khanzadeev, A. V.; Kiselev, O. A.; Kurcewicz, J.; Le, X. C.; Litvinov, Yu. A.; Petrov, G. E.; Prochazka, A.; Scheidenberger, C.; Sergeev, L. O.; Simon, H.; Takechi, M.; Tang, S.; Volkov, V.; Vorobyov, A. A.; Weick, H.; Yatsoura, V. I.

    2018-05-01

    The absolute differential cross section for small-angle proton elastic scattering on the proton-rich 8B nucleus has been measured in inverse kinematics for the first time. The experiment was performed using a secondary radioactive beam with an energy of 0.7 GeV/u at GSI, Darmstadt. The active target, namely hydrogen-filled time projection ionization chamber IKAR, was used to measure the energy, angle and vertex point of the recoil protons. The scattering angle of the projectiles was simultaneously determined by the tracking detectors. The measured differential cross section is analyzed on the basis of the Glauber multiple scattering theory using phenomenological nuclear-density distributions with two free parameters. The radial density distribution deduced for 8B exhibits a halo structure with the root-mean-square (rms) matter radius Rm = 2.58 (6) fm and the rms halo radius Rh = 4.24 (25) fm. The results on 8B are compared to those on the mirror nucleus 8Li investigated earlier by the same method. A comparison is also made with previous experimental results and theoretical predictions for both nuclei.

  20. Isolated photon production in proton-nucleus collisions at forward rapidity

    Science.gov (United States)

    Ducloué, B.; Lappi, T.; Mäntysaari, H.

    2018-03-01

    We calculate isolated photon production at forward rapidities in proton-nucleus collisions in the color glass condensate framework. Our calculation uses dipole cross sections solved from the running coupling Balitsky-Kovchegov equation with an initial condition fit to deep inelastic scattering data. For comparison, we also update the results for the nuclear modification factor for pion production in the same kinematics. We present predictions for future forward RHIC and LHC measurements at √{sN N}=200 GeV and √{sN N}=8 TeV .

  1. Depolarization in the elastic scattering of 17 MeV polarized protons from 9Be

    International Nuclear Information System (INIS)

    Baker, M.P.

    1975-01-01

    The Wolfenstein depolarization parameter D(theta) was measured for the elastic scattering of 17-MeV protons from 9 Be at laboratory scattering angles between 70 0 and 120 0 in 10 0 steps with uncertainties ranging from 0.05 to 0.07. The reaction was initiated by polarized protons and the polarization of those protons elastically scattered by the 9 Be analyzed using a high-resolution, silicon polarimeter. Several of the measured values of D(theta) differed significantly from unity, indicating non-zero probability for proton spin-flip in the elastic scattering process. Theoretical estimates of the depolarization-parameter angular distribution have been made using a multipole expansion of the elastic-scattering amplitude in terms of the amount of angular momentum transferred to the target nucleus during the scattering process. Here the J = 0, 1 and 2 contributions to the scattering amplitude have been explicitly treated for the scattering from 9 Be(I = 3 / 2 ). The J = 0 terms are calculated using the standard, spherical optical-model. The J = 1 and 2 terms can be calculated using DWBA. Both spherical and tensor forms are considered for the J = 1 interaction. The spin-flip probabilities predicted assuming reasonable strengths for the J = 1 potentials are much smaller than those observed experimentally. The J = 2 contribution to the spin-flip probability is calculated assuming a rotational model for 9 Be. Predictions of the J = 2, elastic spin-flip probability are substantially larger than the predictions for the J = 1 contribution and are in rough agreement with the present data. The results of recent coupled-channels calculations also support the conclusion that large elastic spin-flip probabilities can be produced by the J = 2 term in the elastic scattering amplitude

  2. Field theoretical approach to proton-nucleus reactions. I - One step inelastic scattering

    International Nuclear Information System (INIS)

    Eiras, A.; Kodama, T.; Nemes, M.C.

    1988-01-01

    In this work we obtain a closed form expression to the double differential cross section for one step proton-nucleus reaction within a field theoretical framework. Energy and momentum conservation as well as nuclear structure effects are consistently taken into account within the field theoretical eikonal approximation. In our formulation the kinematics of such reaction is not dominated by the free nucleon-nucleon cross section but a new factor which we call relativistic differential cross section in a Born Approximation. (author) [pt

  3. Some applications of the multiple scattering theory to the study of the hadron-nucleus interactions at intermediate energies

    International Nuclear Information System (INIS)

    Dedonder, J.-P.

    1979-01-01

    This work is devoted to the study of elastic hadron nucleus scattering. At first, an asymptotic evaluation leads to a closed, analytic expression of the eikonal amplitude. This approximate expression displays the role and the influence of the nuclear paremeters in, e.g., p-nucleus scattering around 1 GeV. Pion-nucleus scattering around the 3-3 resonance is then studied. A 3 body model calculation (pion, bound nucleon and residual nucleus represented by a potential) allows to study the importance of binding effects in this problem dominated by the strong energy dependence of the elementary amplitude. The last part is devoted to the construction in momentum space of a realistic optical potential and its comparison with experimental data. The scalling of π + and π - on neighbouring isotopes should allow the measure of the differences between the proton and neutron distributions in nuclei [fr

  4. Proton multiplicity distributions in pion-xenon nucleus collisions at 3.5 GeV/c

    International Nuclear Information System (INIS)

    Strugalski, Z.; Pawlak, T.; Peryt, W.; Pluta, J.

    1980-01-01

    Experimental results from the proton emission investigation in 3.5 GeV/c pion minus-xenon nucleus collisions detected in the 180 xenon bubble chamber are presented and analyzed. The emitted protons are of kinetic energies from 20 to 400 MeV. Multiplicity distributions of protons both accompanied and not accompanied by secondary charged and neutral pions are given. Large proton multiplicities are observed in the events without multiparticle production, the proton multiplicity distribution in this class of events being of an irregular character. The experimental results are well described in the model based on the following hypothesis: a high energy hadron traversing the target causes the monotonous emission of the fast protons in numbers nsub(p) being equal to the number of protons encountered in the neighbourhood of its path inside the nucleus target. In this case the multiple production goes through some intermediate states which decay after having left the target nucleus

  5. Scattering of intermediate energy protons

    International Nuclear Information System (INIS)

    Chaumeaux, Alain.

    1980-06-01

    The scattering of 1 GeV protons appears to be a powerful means of investigating nuclear matter. We worked with SPESI and the formalism of Kerman-Mc Manus and Thaler. The amplitude of nucleon-nucleon scattering was studied as were the aspects of 1 GeV proton scattering (multiple scattering, absorption, spin-orbit coupling, N-N amplitude, KMT-Glauber comparison, second order effects). The results of proton scattering on 16 O, the isotopes of calcium, 58 Ni, 90 Zr and 208 Pb are given [fr

  6. Antiproton-proton and proton-proton elastic scattering at 100 and 200 GeV/c

    International Nuclear Information System (INIS)

    Kaplan, D.H.; Karchin, P.; Orear, J.; Kalbach, R.M.; Krueger, K.W.; Pifer, A.E.; Baker, W.F.; Eartly, D.P.; Klinger, J.S.; Lennox, A.J.; Rubinstein, R.; McHugh, S.F.

    1982-01-01

    Antiproton-proton elastic scattering has been measured at 100 GeV/c for 0.5 2 and at 200 GeV/c for 0.9 2 . The data show that the -tapprox. =1.4 (GeV/c) 2 dip recently observed at 50 GeV/c persists to higher incident momenta. Proton-proton measurements made at the same beam momenta show similar structure

  7. Dynamics of Anti-Proton -- Protons and Anti-Proton -- Nucleus Reactions

    CERN Document Server

    Galoyan, A; Uzhinsky, V

    2016-01-01

    A short review of simulation results of anti-proton-proton and anti-proton-nucleus interactions within the framework of Geant4 FTF (Fritiof) model is presented. The model uses the main assumptions of the Quark-Gluon-String Model or Dual Parton Model. The model assumes production and fragmentation of quark-anti-quark and diquark-anti-diquark strings in the mentioned interactions. Key ingredients of the model are cross sections of string creation processes and an usage of the LUND string fragmentation algorithm. They allow one to satisfactory describe a large set of experimental data, especially, a strange particle production, Lambda hyperons and K mesons.

  8. Antinucleon-nucleus elastic and inelastic scattering

    International Nuclear Information System (INIS)

    Dover, C.B.; Millener, D.J.

    1985-01-01

    A general overview of the utility of antinucleon (anti N)-nucleus inelastic scattering studies is presented, emphasizing both the sensitivity of the cross sections to various components of the N anti N transition amplitudes and the prospects for the exploration of some novel aspects of nuclear structure. We start with an examination of the relation between NN and N anti N potentials, focusing on the coherences predicted for the central, spin-orbit and tensor components, and how these may be revealed by measurements of two-body spin observables. We next discuss the role of the nucleus as a spin and isospin filter, and show how, by a judicious choice of final state quantum numbers (natural or unnatural parity states, isospin transfer ΔT = 0 or 1) and momentum transfer q, one can isolate different components of the N anti N transition amplitude. Various models for the N anti N interaction which give reasonable fits to the available two-body data are shown to lead to strikingly different predictions for certain spin-flip nuclear transitions. We suggest several possible directions for future anti N-nucleus inelastic scattering experiments, for instance the study of spin observables which would be accessible with polarized anti N beams, charge exchange reactions, and higher resolution studies of the (anti p, anti p') reaction. We compare the antinucleon and the nucleon as a probe of nuclear modes of excitation. 40 refs., 13 figs

  9. Model of homogeneous nucleus. Total and inelastic cross sections of nucleon-nucleus scattering

    International Nuclear Information System (INIS)

    Ponomarev, L.A.; Smorodinskaya, N.Ya.

    1985-01-01

    It is shown that the nucleon-nuckleus scattering amplitude at high energy can be easily calculated by generalization of the nucleon-nucleon scattering amplitude and satisfies a simple factorization relation. As distinct from the Glauber model, the suggested approach makes no use of the nucleonic structure of the nucleus and the hadron-nucleus scattering amplitude is not expressed in terms of hadron-nucleon scattering amplitudes. The energy dependence of total and inelastic cross sections is successfully described for a number of nuclei

  10. The influence of the Coulomb-distortion effect on proton-proton observables

    International Nuclear Information System (INIS)

    Plessas, W.; Mathelitsch, L.

    1980-01-01

    The effect of the Coulomb distortion of the strong interaction is studied on the basis of nucleon-nucleon observables. In particular, cross sections, polarizations, spin-correlation parameters, and spin-transfer coefficients are considered for proton-proton as well as neutron-neutron scattering at laboratory kinetic energies Esub(Lab) = 10, 20, and 50 MeV. The calculations are performed for the meson-theoretical PARIS potential, the nonlocal separable GRAZ potential and also using the Arndt-Hackman-Roper parametrization of proton-proton scattering phase shifts. Important conclusions are drawn with respect to phenomenological phase-shift analyses. (Auth.)

  11. J/$\\psi$ production in proton-nucleus and nucleus-nucleus interactions at the CERN SPS

    CERN Document Server

    Abreu, M C; Alexa, C; Arnaldi, R; Ataian, M R; Baglin, C; Baldit, A; Bedjidian, Marc; Beolè, S; Boldea, V; Bordalo, P; Borges, G; Bussière, A; Capelli, L; Castanier, C; Castor, J I; Chaurand, B; Chevrot, I; Cheynis, B; Chiavassa, E; Cicalò, C; Claudino, T; Comets, M P; Constans, N; Constantinescu, S; Cortese, P; De Falco, A; De Marco, N; Dellacasa, G; Devaux, A; Dita, S; Drapier, O; Ducroux, L; Espagnon, B; Fargeix, J; Force, P; Gallio, M; Gavrilov, Yu K; Gerschel, C; Giubellino, P; Golubeva, M B; Gonin, M; Grigorian, A A; Grossiord, J Y; Guber, F F; Guichard, A; Gulkanian, H R; Hakobyan, R S; Haroutunian, R; Idzik, M; Jouan, D; Karavitcheva, T L; Kluberg, L; Kurepin, A B; Le Bornec, Y; Lourenço, C; Macciotta, P; MacCormick, M; Marzari-Chiesa, A; Masera, M; Masoni, A; Monteno, M; Musso, A; Petiau, P; Piccotti, A; Pizzi, J R; Prado da Silva, W L; Prino, F; Puddu, G; Quintans, C; Ramello, L; Ramos, S; Rato-Mendes, P; Riccati, L; Romana, A; Santos, H; Saturnini, P; Scalas, E; Scomparin, E; Serci, S; Shahoyan, R; Sigaudo, F; Silva, S; Sitta, M; Sonderegger, P; Tarrago, X; Topilskaya, N S; Usai, G L; Vercellin, Ermanno; Villatte, L; Willis, N

    2002-01-01

    The NA38 and NA50 experiments at the CERN SPS have measured charmonium production in different colliding systems with the aim of observing a phase transition from ordinary hadronic matter towards a state in which quarks and gluons are deconfined (quark-gluon plasma, QGP). This experimental research is based on the prediction that the J/ psi yield should be suppressed in deconfined matter. The analysis of the data collected by the NA50 experiment with Pb-Pb collisions at 158 GeV/c per nucleon shows that the J/ psi is anomalously suppressed with respect to the pattern observed in proton-nucleus and light ion reactions. (9 refs).

  12. Analyzing power for proton elastic scattering from the neutron-rich 6He nucleus

    International Nuclear Information System (INIS)

    Uesaka, T.; Sakaguchi, S.; Kawabata, T.; Sasamoto, Y.; Iseri, Y.; Amos, K.; Aoi, N.; Hiyama, E.; Sekiguchi, K.; Yamaguchi, M.; Hashimoto, Y.; Satou, Y.; Shinohara, M.; Ichikawa, M.; Itoh, M.; Matsuo, R.; Wakui, T.; Ichikawa, Y.; Iwasaki, H.; Kuboki, H.

    2010-01-01

    Vector analyzing power for the proton- 6 He elastic scattering at 71 MeV/nucleon has been measured for the first time, with a newly developed polarized proton solid target, which works at a low magnetic field of 0.09 T. The results are found to be incompatible with a t-matrix folding model prediction. Comparisons of the data with g-matrix folding analyses clearly show that the vector analyzing power is sensitive to the nuclear structure model used in the reaction analysis. The α-core distribution in 6 He is suggested to be a possible key for understanding the nuclear structure sensitivity.

  13. Study of proton-nucleus collisions at high energies based on the hydrodynamical model

    International Nuclear Information System (INIS)

    Masuda, N.; Weiner, R.M.

    1978-01-01

    We study proton-nucleus collisions at high energies using the one-dimensional hydrodynamical model of Landau with special emphasis on the effect of the size of the target nucleus and of the magnitude of velocity of sound of excited hadronic matter. We convert a collision problem of a proton and a nucleus with a spherical shape into that of a proton and a one-dimensional nuclear tunnel whose length is determined from the average impact parameter. By extending the methods developed by Milekhin and Emelyanov, we obtain the solutions of the hydrodynamical equations of proton-nucleus collisions for arbitrary target tunnel length and arbitrary velocity of sound. The connection between these solutions and observable physical quantities is established as in the work of Cooper, Frye, and Schonberg. Extensive numerical analyses are made at E/sub lab/ = 200 GeV and for the velocity of sound u = 1/√3 of a relativistic ideal Bose gas and u = 1/(7.5)/sup 1/2/ of an interacting Bose gas. In order to compare proton-nucleus collisions with proton-proton collisions, all the analyses are made in the equal-velocity frame. We find the following results. (1) In comparing the number of secondary particles produced in p-A collisions N/sub p/A with those in p-p collisions N/sub p/p, while most of the excess of N/sub p/A over N/sub p/p is concentrated in the backward rapidity region, there exists also an increase of N/sub p/A with A in the forward rapidity region. This result is at variance with the predictions of the energy-flux-cascade model and of the coherent-production model. (2) The excess energies are contained exclusively in the backward region. We also find evidence for new phenomena in proton-nucleus collisions. (3) The existence of an asymmetry of average energies of secondary particles between forward and backward regions, in particular, >> for larger nuclear targets. Thus, energetic particles are predominantly produced in the backward region

  14. The Kemmer-Duffin-Petiau formalism and intermediate-energy deuteron-nucleus scattering

    International Nuclear Information System (INIS)

    Kozack, R.E.; Clark, B.C.; Hama, S.; Mishra, V.K.; Kaelbermann, G.; Mercer, R.L.; Ray, L.

    1988-01-01

    The spin-1 Kemmer-Duffin-Petiau (KDP) equations are described and applied to deuteron-nucleus scattering. Comparison with d + 58 Ni elastic scattering data at 400 MeV shows that the KDP model; reproduces experimental spin observables very well. 11 refs., 1 fig

  15. Elastic and inelastic proton-nucleus scattering at 156MeV: experimental study and analysis in impulse approximation

    International Nuclear Information System (INIS)

    Comparat, Vincent.

    1975-01-01

    In this work a high spatial resolution hodoscope is described. Scattered particles are detected in the image plane of a magnetic spectrometer by a proportional chamber with 96 wires of 1mm spacing. This hodoscope has been used for elastic and inelastic scattering experiments, of 156MeV protons, on 11 targets ranging from 12 C to 209 Bi. A phenomenological optical model calculation has been carried out to analyse the experimental elastic cross sections data. The dependance of the parameters as a function of the number of mass or the incident energy has been studied. The inelastic scattering results have been interpreted within the framework of the D.W.I.A. As the final results are dependant of the nucleon model, the optical potential parameters as well as the finite range approximation, several trials have been performed. Nevertheless, the DWIA seems to give about twice the experimental values for collective excitations in light or medium nuclei. The first order optical potential derived from the impulse approximation was calculated and the results compared to the experimental elastic cross sections. Several approximations were tested as non locality, off energy shell effects and the motion of the target nucleon. The usual approximation on these quantities are justified if the momentum transfer is less than 3fm -1 . The nucleon-nucleus transition matrix is obtained by solving the Lippmann-Schwinger equation, using the moment method. The first order optical potential derived from these calculations is not realistic. The intensity of the nucleon-nucleon transition is too important, and that explained the disagreement at low momentum transfers. This study shows that the multiple scattering expansion of the Lippmann-Schwinger equation, is not a good method to obtain the exact solution. It is better to do some approximations (i.e. of shell approximation) directly on the integral equation [fr

  16. Neutron-proton scattering

    International Nuclear Information System (INIS)

    Doll, P.

    1990-02-01

    Neutron-proton scattering as fundamental interaction process below and above hundred MeV is discussed. Quark model inspired interactions and phenomenological potential models are described. The seminar also indicates the experimental improvements for achieving new precise scattering data. Concluding remarks indicate the relevance of nucleon-nucleon scattering results to finite nuclei. (orig.) [de

  17. η production in proton-nucleus reactions

    International Nuclear Information System (INIS)

    Cassing, W.; Batko, G.; Vetter, T.; Wolf, G.

    1991-01-01

    The production of η-mesons in proton-nucleus reactions is analysed with respect to primary nucleon-nucleon (NN→NN η ) and secondary pion-nucleon (πN→ηN) production processes on the basis of Hartree-Fock groundstate momentum distributions and free on-shell production processes. The folding model adopted compares well for meson production with more involved simulations based on VUU transport equations. Similar to K + production in proton-nucleus reactions the η-mesons are primarily produced by the πN→ηN channel. However, η-mesons are absorbed in nuclei via excitation of the N * (1535) resonance which leads to strong distortions of the primordial spectra. On the other hand, the experimental mass dependence of the differential cross sections might yield information about the in-medium properties of this resonance. (orig.)

  18. Angular distribution of elastic scattering of 17F and 18Ne on proton

    International Nuclear Information System (INIS)

    Lu Zhaohui; Wu Heyu; Hu Rongjiang; Zhu Yongtai; Zhang Baoguo; Li Zuyu; Wei Zhiyong; Duan Liming; Wang Hongwei; Xiao Zhigang; Wang Sufang; Jin Genming; Guo Zhongyan; Xiao Guoqing; Zhu Haidong; Liu Yongying; Chen Keliang; Chen Tao; Li Xiangqing; Li Zhihuan

    2002-01-01

    Under reverse kinematics, elastic scattering of 17 F and 18 Ne on proton is studied. The experimental differential cross sections were measured. A kind of global optical potential with the CH89 parameters is used to describe the radioactive nucleus as an initial optical potential parameters. The experimental differential cross section data are analyzed by using the theoretical calculation code DWUCK4 with the distorted-wave Born approximation and parameter search subroutine ABOD which automatically searches the suitable parameters. Then the optical potential parameters of scattering 17 F and 18 Ne on proton are obtained. From the analyses of the optimized parameters, the real central potential mean-square radii of 17 F and 18 Ne, 3.239 fm and 3.317 fm are deduced, respectively

  19. Inclusive production of large-p/sub T/ protons and quark-quark elastic scattering

    International Nuclear Information System (INIS)

    Chen, C.K.

    1978-01-01

    A proton-formation process in combination with hard quark-quark scattering is capable of explaining the observed large-p/sub T/ single-proton inclusive production data. This model implies that the inclusive production of two large-p/sub T/ protons at opposite directions is dominated by large-angle elastic scattering of two up quarks, and becomes an ideal place to study elastic quark-quark scattering. This two-proton inclusive production process is also ideal for the study of the spin structure of quark-quark elastic scattering, so the assumptions of pure vector-type quark-quark interaction and of colored quarks can be checked empirically. The consistency of applying the quark-elastic-scattering idea to large-angle elastic proton-proton scattering and to the inclusive production of large-p/sub T/ protons is also demonstrated

  20. Anti p-nucleus interaction

    International Nuclear Information System (INIS)

    Peng, J.C.

    1986-05-01

    Status and future prospects of antiproton-nucleus scattering experiments are presented. These scattering experiments were conducted at antiproton beam momentums of 300 and 600 MeV/c on target nuclei of 6 Li, 12 C, 16 O, 18 O, 40 Ca, 48 Ca, and 208 Pb. Antiproton-proton reactions investigated antiproton-nucleus bound or resonant states in antiproton reactions with d, 6 Li, 12 C, 63 Cu, and 209 Bi. Inelastic scattering experiments investigated the spin-isospin dependence of the NN interactions. 19 refs., 1 fig., 1 tab

  1. MUSE: Measuring the proton radius with muon-proton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bernauer, Jan Christopher [Massachusetts Institute of Technology, Cambridge (United States)

    2014-07-01

    The proton radius has been measured so far using electron-proton scattering, electronic Hydrogen spectroscopy and muonic Hydrogen spectroscopy, the latter producing a much more accurate, but seven sigma different, result, leading to the now famous proton radius puzzle. The MUSE collaboration aims to complete the set of measurements by using muon scattering to determine the proton radius and to shed light on possible explanations of the discrepancy. The talk gives an overview of the experiment motivation and design and a status report on the progress.

  2. Microscopic model analyses of proton elastic scattering from diverse targets in the energy range 65 to 400 MeV

    International Nuclear Information System (INIS)

    Dortmans, P.J.; Amos, K.

    1997-01-01

    Two nucleon (NN) effective interactions based upon two-nucleon g matrices have been used in fully microscopic calculations of nonlocal proton-nucleus optical potentials for protons with energies between 65 and 400 MeV. Excellent predictions of the differential cross sections, analysing powers and spin rotations for scattering angles to 60 deg result. (authors)

  3. Two-photon exchange corrections in elastic lepton-proton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Tomalak, Oleksandr; Vanderhaeghen, Marc [Johannes Gutenberg Universitaet Mainz (Germany)

    2015-07-01

    The measured value of the proton charge radius from the Lamb shift of energy levels in muonic hydrogen is in strong contradiction, by 7-8 standard deviations, with the value obtained from electronic hydrogen spectroscopy and the value extracted from unpolarized electron-proton scattering data. The dominant unaccounted higher order contribution in scattering experiments corresponds to the two photon exchange (TPE) diagram. The elastic contribution to the TPE correction was studied with the fixed momentum transfer dispersion relations and compared to the hadronic model with off-shell photon-nucleon vertices. A dispersion relation formalism with one subtraction was proposed. Theoretical predictions of the TPE elastic contribution to the unpolarized elastic electron-proton scattering and polarization transfer observables in the low momentum transfer region were made. The TPE formalism was generalized to the case of massive leptons and the elastic contribution was evaluated for the kinematics of upcoming muon-proton scattering experiment (MUSE).

  4. Inclusive jet production in ultrarelativistic proton-nucleus collisions

    CERN Document Server

    Perepelitsa, Dennis

    High-$p_\\mathrm{T}$ processes in proton- and deuteron-nucleus collisions at TeV energies are the best presently available way to study the partonic structure of the nucleus in a high-density regime. Jet production over a wide range of phase space can significantly constrain the current knowledge of nuclear parton distribution functions (nPDFs), which are substantially less well understood than the corresponding PDFs in protons and which have only recently begun to be treated in a spatially-dependent way. An accurate knowledge of nPDFs is crucial for a definitive control of perturbative processes in a cold nuclear environment, since high-$p_\\mathrm{T}$ probes are used to quantitatively investigate the hot QCD matter created in ultrarelativistic nucleus-nucleus collisions. Furthermore, jets from low Bjorken-$x$ partons can probe the transition from the dilute to saturated nuclear regimes. Jet production is investigated in $d$+Au collisions at $\\sqrt{s} = 200$ GeV with the PHENIX detector at the Relativistic Hea...

  5. What can an antiproton and a nucleus learn from each other

    International Nuclear Information System (INIS)

    Garreta, D.

    1984-01-01

    This chapter attempts to show that the - p-nucleus interaction may provide very useful information, both about the elementary - NN interaction and about nuclear structure. Topics covered include simple features which make a low-energy antiproton an interesting probe of the nucleus; simple features which make a nucleus an interesting target for an antiproton; antiproton-nucleus elastic scattering; antiproton-nucleus inelastic scattering; proton knock-out reactions on nuclei; and annihilation of the antiprotons in nuclei. The aim of experiment PS184 at the Low-Energy Antiproton Ring (LEAR) is to provide accurate data with regard to the - p-nucleus interaction in the following areas: the angular distribution of antiprotons elastically scattered from 12 C, 40 Ca, and 208 Pb; the excitation energy spectra and some angular distributions of antiprotons inelastically scattered from 12 C, 40 Ca, and 208 Pb; and the excitation energy spectra for proton knock-out reaction on 6 Li, 45 Sc, 123 Sb, and 209 B; at forward angles

  6. Search for anti p-nucleus states using the (anti p,p) knock-out reaction at 600 MeV/c

    International Nuclear Information System (INIS)

    Aslanides, E.; Drake, D.M.; Peng, J.C.; Garreta, D.; Birien, P.; Bruge, G.; Catz, H.; Chaumeaux, A.; Janouin, S.; Legrand, D.; Lemaire, M.C.; Mayer, B.; Pain, J.; Perrot, F.

    1987-01-01

    The knock-out reaction A(anti p,p)X has been used to search for narrow anti p-nucleus states. The experiment was performed using the 600 MeV/c antiproton beam at LEAR and the high-resolution and large-acceptance magnetic spectrometer SPES II. The A-dependence of the annihilation-induced proton spectra has been studied on 2 H, 6 Li, 12 C, 63 Cu, 208 Pb and 209 Bi. The quasi-free elastic anti pp scattering observed in the lighter targets, and the comparison with the free anti pp scattering, also observed in this experiment, determine an effective proton number N eff for 1s- and 1p-shell protons. No evidence for narrow bound or resonant anti p-nucleus states could be found. Upper limits for their production are one order of magnitude lower than certain theoretical predictions, but consistent with the properties of the anti p-nucleus interaction, as established from recent elastic and inelastic scattering as well as from studies of antiprotonic atoms. (orig.)

  7. Microscopic model analyses of the elastic scattering of 25, 30, and 40 MeV protons from targets of diverse mass

    International Nuclear Information System (INIS)

    Deb, P.K.; Amos, K.; Karataglidis, S.

    2000-01-01

    An extensive survey and analysis of cross section and analysing power data from proton elastic scattering at energies 25 to 40 MeV is presented. The data are compared with predictions obtained from a full folding specification of the proton-nucleus optical potentials. Isotope and energy variation of the data is explained

  8. Investigation of the nuclear matter density distributions of the exotic 12Be,14Be and 8B nuclei by elastic proton scattering in inverse kinematics

    International Nuclear Information System (INIS)

    Ilieva, Stoyanka

    2008-01-01

    In the current experiment, the differential cross sections for proton elastic scattering on the isotopes 7,9,10,11,12,14 Be and 8 B were measured. As results from the experiment, the absolute differential cross sections dσ/dt as a function of the four momentum transfer t were obtained. In this work the differential cross sections for elastic p- 12 Be, p- 14 Be and p- 8 B scattering at low t (t≤0.05(GeV/c) 2 ) are presented. The measured cross sections were analyzed within the Glauber multiple-scattering theory using different density parameterizations, and the nuclear matter density distributions and radii of the investigated isotopes were determined. The determined rms matter radius is 3.11±0.04±0.13 fm. In the case of the 12 Be nucleus the results showed an extended matter distribution as well. For this nucleus a matter radius of 2.82±0.03±0.12 fm was determined. An interesting result is that the free 12 Be nucleus behaves differently from the core of 14 Be and is much more extended than it. Preliminary experimental results for the isotope 8 B are also presented. An extended matter distribution was obtained (though much more compact as compared to the neutron halos). A proton halo structure was observed for the first time with the proton elastic scattering method. The deduced matter radius is 2.60±0.02±0.26 fm. Results from the feasibility studies of the EXL detector setup, performed at the present ESR storage ring, are presented. (orig.)

  9. Neutron-Proton Scattering Experiments at ANKE-COSY

    Science.gov (United States)

    Kacharava, A.; Chiladze, D.; Chiladze, B.; Keshelashvili, I.; Lomidze, N.; Macharashvili, G.; McHedlishvili, D.; Nioradze, M.; Rathmann, F.; Ströher, H.; Wilkin, C.

    2010-04-01

    The nucleon-nucleon interaction (NN) is fundamental for the whole of nuclear physics and hence to the composition of matter as we know it. It has been demonstrated that stored, polarised beams and polarised internal targets are experimental tools of choice to probe spin effects in NN-scattering experiments. While the EDDA experiment has dramatically improved the proton-proton date base, information on spin observables in neutron-proton scattering is very incomplete above 800 MeV, resulting in large uncertainties in isoscalar n p phase shifts. Experiments at COSY, using a polarised deuteron beam or target, can lead to significant improvements in the situation through the study of quasi-free reactions on the neutron in the deuteron. Such a measurements has already been started at ANKE by using polarised deuterons on an unpolarised target to study the dp → ppn deuteron charge-exchange reaction and the full program with a polarised storage cell target just has been conducted. At low excitation energies of the final pp system, the spin observables are directly related to the spin- dependent parts of the neutron-proton charge-exchange amplitudes. Our measurement of the deuteron-proton spin correlations will allow us to determine the relative phases of these amplitudes in addition to their overall magnitudes.

  10. Proton-Nucleus Collisions at the LHC: Scientific Opportunities and Requirements

    CERN Document Server

    Salgado, C A; Arleo, F; Armesto, N; Botje, M; Cacciari, M; Campbell, J; Carli, C; Cole, B; D'Enterria, D; Gelis, F; Guzey, V; Hencken, K; Jacobs, P; Jowett, J M; Klein, S R; Maltoni, F; Morsch, A; Piotrzkowski, K; Qiu, J W; Satogata, T; Sikler, F; Strikman, M; Takai, H; Vogt, R; Wessels, J P; White, S N; Wiedemann, U A; Wyslouch, B; Zhalov, M

    2012-01-01

    Proton-nucleus (p+A) collisions have long been recognized as a crucial component of the physics programme with nuclear beams at high energies, in particular for their reference role to interpret and understand nucleus-nucleus data as well as for their potential to elucidate the partonic structure of matter at low parton fractional momenta (small-x). Here, we summarize the main motivations that make a proton-nucleus run a decisive ingredient for a successful heavy-ion programme at the Large Hadron Collider (LHC) and we present unique scientific opportunities arising from these collisions. We also review the status of ongoing discussions about operation plans for the p+A mode at the LHC.

  11. Thermalization in high energy proton-nucleus collisions

    International Nuclear Information System (INIS)

    Wedemann, R.S.

    1988-03-01

    A relativistic proton-nucleus collision using the intranuclear cascade model is studied. The purpose is to verify the equilibration hypothesis at fragmentation time made by many nuclear fragmentation models. (author)

  12. Elastic proton-proton scattering at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Yip, K.

    2011-09-03

    Here we describe elastic proton+proton (p+p) scattering measurements at RHIC in p+p collisions with a special optics run of {beta}* {approx} 21 m at STAR, at the center-of-mass energy {radical}s = 200 GeV during the last week of the RHIC 2009 run. We present preliminary results of single and double spin asymmetries.

  13. Protons scattering on Li isotopes at intermediate energies

    International Nuclear Information System (INIS)

    Zhusupov, M.A.; Imambekov, O.; Sanfirova, A.V.; Ibraeva, E.T.

    2003-01-01

    The protons scattering differential cross section on the 6,7,8 Li nuclei are calculated within the framework the Glauber-Sitenko multiple scattering theory at intermediate energies (from 100 to 1000 MeV). In the calculations the multi-cluster wave functions (αt for 7 Li, αnp for 6 Li, and αtn for 8 Li) considering within potential cluster model have been used. Differential cross sections for 6 Li, 7 Li, 8 Li and 9 Li nuclei are similar: absolute cross sections are almost the same, diffraction minimum for large A shifting to the field of the least scattering angles that reflecting increase of the material radius. For the 11 Li the differential cross section absolute value is smaller about in two time than for the rest isotopes. At present it is reliably established, that the 11 Li nucleus has an exotic structure - the nine-nucleon core ( 9 Li) around which the two-neutron halo is rotating. The principal characteristics of the Li nuclei are presented in tabular form

  14. Analysing power for quasi-elastic pp scattering in carbon and for elastic pp scattering on free protons

    International Nuclear Information System (INIS)

    Bystricky, J.; Deregel, J.; Lehar, F.

    1984-01-01

    The ratio of the analysing powers for quasi-elastic pp scattering in carbon and for elastic scattering on free protons was measured from T = 0.52 to 2.8 GeV by scattering of the SATURNE II polarized proton beam on carbon and CH 2 . It was found to have a maximum at about 0.8 GeV. The energy dependence for quasi-elastic scattering on carbon had not been measured before above 1 GeV. The observed effect was not expected from simple models

  15. Measurement of small-angle antiproton-proton and proton-proton elastic scattering at the CERN intersecting storage rings

    NARCIS (Netherlands)

    Amos, N.; Block, M.M.; Bobbink, G.J.; Botje, M.A.J.; Favart, D.; Leroy, C.; Linde, F.; Lipnik, P.; Matheys, J-P.; Miller, D.

    1985-01-01

    Antiproton-proton and proton-proton small-angle elastic scattering was measured for centre-of-mass energies at the CERN Intersectung Storage Rings. In addition, proton-proton elastic scattering was measured at . Using the optical theorem, total cross sections are obtained with an accuracy of about

  16. High energy hadron-nucleus scattering

    International Nuclear Information System (INIS)

    Koplik, J.; Mueller, A.H.

    1975-01-01

    Theoretical expectations for hadron-nucleus scattering at high energy if the basic hadron-hadron interaction is due to Regge poles and cuts arising in multiperipheral or soft field theory models are described. Experiments at Fermilab may provide a critical test of such models

  17. Proton decay in a nucleus: Nonrelativistic treatment of nuclear effects

    International Nuclear Information System (INIS)

    Fernandez, L.A.; Alvarez-Estrada, R.F.; Sanchez-Gomez, J.L.

    1983-01-01

    In this paper, proton decay in a large nucleus is studied in the framework of SU(5) grand unification theory (GUT). By using a method based upon the Green's-function technique of many-body physics, nuclear effects on spectator and pole terms are computed. The decay width in the nucleus is found to be practically the same as in free space. However, nuclear effects are of considerable importance concerning the positron spectrum. A density-correlation expansion is introduced which is useful for carrying out a systematic study of nuclear effects in proton decay in a large nucleus. The method presented here can be easily extended to other GUT's or supersymmetric GUT's

  18. Development of global medium-energy nucleon-nucleus optical model potentials

    International Nuclear Information System (INIS)

    Madland, D.G.; Sierk, A.J.

    1997-01-01

    The authors report on the development of new global optical model potentials for nucleon-nucleus scattering at medium energies. Using both Schroedinger and Dirac scattering formalisms, the goal is to construct a physically realistic optical potential describing nucleon-nucleus elastic scattering observables for a projectile energy range of (perhaps) 20 meV to (perhaps) 2 GeV and a target mass range of 16 to 209, excluding regions of strong nuclear deformation. They use a phenomenological approach guided by conclusions from recent microscopic studies. The experimental database consists largely of proton-nucleus elastic differential cross sections, analyzing powers, spin-rotation functions, and total reaction cross sections, and neutron-nucleus total cross sections. They will use this database in a nonlinear least-squares adjustment of optical model parameters in both relativistic equivalent Schroedinger (including relativistic kinematics) and Dirac (second-order reduction) formalisms. Isospin will be introduced through the standard Lane model and a relativistic generalization of that model

  19. One- and two-phonon mixed-symmetry states in 94Mo in high-resolution electron and proton scattering

    International Nuclear Information System (INIS)

    Fujita, H.; Botha, N.T.; Burda, O.; Carter, J.; Fearick, R.W.; Foertsch, S.V.; Fransen, C.; Kuhar, M.; Lenhardt, A.; Neumann-Cosel, P. von; Neveling, R.; Pietralla, N.; Ponomarev, V.Yu.; Richter, A.; Scholten, O.; Sideras-Haddad, E.; Smit, F.D.; Wambach, J.

    2007-01-01

    High-resolution inelastic electron scattering experiments at the S-DALINAC and proton scattering experiments at iThemba LABS permit a thorough test of the nature of proposed one- and two-phonon symmetric and mixed-symmetric 2 + states of the nucleus 94 Mo. The combined analysis reveals the one-phonon content of the mixed-symmetry state and its isovector character suggested by microscopic calculations. The purity of two-phonon 2 + states is extracted

  20. Current-current interaction picture for proton-proton scattering

    International Nuclear Information System (INIS)

    Clarke, D.J.; Lo, S.Y.

    1979-01-01

    The authors propose that color current - color current interaction is reponsible for small angle elastic proton proton scattering at asymptotic energy. Excellent fits are obtained for all data above 12 GeV/c which covers twelve orders of magnitude

  1. Modifications of nucleons in nuclei in quasi-elastic electron-nucleus scattering

    International Nuclear Information System (INIS)

    Mulders, P.J.

    1988-01-01

    In inelastic electron scattering two scaling regions are observed in which the scattering is dominated by quasi-elastic scattering. For large momentum transfers, √Q 2 > 2 GeV/c, the scattering process is dominated by quasi-elastic scattering off quarks, whereas for √Q 2 ≅ 0.5 GeV/c the dominant contribution is quasi-elastic scattering off nucleons. This corresponds nicely to our first order picture of the nucleus consisting of nucleons, which in turn are composed of quarks. In the nucleon-scaling region, possible modifications of nucleon properties show up through a study of the Q 2 dependence and the relative strength of the transverse and longitudinal cross sections. Results of both inclusive (e,e') and exclusive (e,e'p) experiments in the quasi-elastic scattering region indeed show a behavior that could indicate modifications of intrinsic properties of individual nucleons in the nucleus, although the question remains if one has correctly disentangled the effects of the (long range) interactions between nucleons and those connected to the internal structure of nucleons. Even so, a simple (one-parameter) size rescaling for nucleons appears to be inconsistent with the data and also with some known conventional nuclear physics observables. Therefore the inclusion of two-nucleon correlations appears necessary in order to be able to understand the data. Such correlations can for instance be due to the effect of the Pauli principle on the quark level. (orig.)

  2. Suppression of soft nuclear bremsstrahlung in proton-nucleus collisions

    International Nuclear Information System (INIS)

    Goethem, M.J. van; Bacelar, J.C.S.; Hoefman, M.; Huisman, H.; Kalantar-Nayestanaki, N.; Loehner, H.; Messchendorp, J.G.; Ostendorf, R.W.; Schadmand, S.; Siemssen, R.H.; Turrisi, R.; Volkerts, M.; Wilschut, H.W.; Aphecetche, L.; Delagrange, H.; D'Enterria, D.; Martinez, G.; Schutz, Y.; Diaz, J.; Holzmann, R.

    2002-01-01

    Photon energy spectra up to the kinematic limit have been measured in 190 MeV proton reactions with light and heavy nuclei to investigate the influence of the multiple-scattering process on the photon production. Relative to the predictions of models based on a quasifree production mechanism, a strong suppression of bremsstrahlung is observed in the low-energy region of the photon spectrum. We attribute this effect to the interference of photon amplitudes due to multiple scattering of nucleons in the nuclear medium

  3. Observation of elastic neutrino-proton scattering

    International Nuclear Information System (INIS)

    Cline, D.; Entenberg, A.; Kozanecki, W.; Mann, A.K.; Reeder, D.D.; Rubbia, C.; Strait, J.; Sulak, L.; Williams, H.H.

    1976-01-01

    We have observed thirty events of the process νp→νp with a background expectations of seven events. The neutral-current to charged-current ratio sigma (νp→νp)/sigma (νn→μ - p) is measured to be 0.17 +- 0.05 for 0.3 2 2 where -q 2 is the square of the four-momentum transfer to the proton

  4. Investigation of the nuclear matter density distributions of the exotic {sup 12}Be,{sup 14}Be and {sup 8}B nuclei by elastic proton scattering in inverse kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Ilieva, Stoyanka

    2008-07-01

    In the current experiment, the differential cross sections for proton elastic scattering on the isotopes {sup 7,9,10,11,12,14}Be and {sup 8}B were measured. As results from the experiment, the absolute differential cross sections d{sigma}/dt as a function of the four momentum transfer t were obtained. In this work the differential cross sections for elastic p-{sup 12}Be, p-{sup 14}Be and p-{sup 8}B scattering at low t (t{<=}0.05(GeV/c){sup 2}) are presented. The measured cross sections were analyzed within the Glauber multiple-scattering theory using different density parameterizations, and the nuclear matter density distributions and radii of the investigated isotopes were determined. The determined rms matter radius is 3.11{+-}0.04{+-}0.13 fm. In the case of the {sup 12}Be nucleus the results showed an extended matter distribution as well. For this nucleus a matter radius of 2.82{+-}0.03{+-}0.12 fm was determined. An interesting result is that the free {sup 12}Be nucleus behaves differently from the core of {sup 14}Be and is much more extended than it. Preliminary experimental results for the isotope {sup 8}B are also presented. An extended matter distribution was obtained (though much more compact as compared to the neutron halos). A proton halo structure was observed for the first time with the proton elastic scattering method. The deduced matter radius is 2.60{+-}0.02{+-}0.26 fm. Results from the feasibility studies of the EXL detector setup, performed at the present ESR storage ring, are presented. (orig.)

  5. Pion-nucleus scatter and the Pauli principle

    International Nuclear Information System (INIS)

    Dover, C.B.; Lemmer, R.H.

    1976-01-01

    A density expansion of the pion self-energy for pions in nuclear matter is reexamined. It is shown that a single hole-line expansion of the self-energy (i) is equivalent to using a strongly quenched πN scattering amplitude in the medium, and (ii) results in an inconsistent treatment of the virtual pions necessarily present in a field-theoretic description of the problem. Exchange of intermediate pions gives rise to nucleon-nucleon, as well as pion-nucleon scattering diagrams that both contribute to the pion self-energy in an essential way. The nucleon-nucleon scattering proceeds, for instance, via a one-pion-exchange potential that is, however, highly nonstatic for energy transfers between nucleons close to the incident energy. Such interactions are singled out automatically for special treatment in a field-theory approach to the problem, and should not be introduced in an ad hoc manner as part of an empirical NN interaction in nuclear matter. We evaluate the coherent and charge exchange contributions to the pion-nucleus optical potential, proportional to the total density and the neutron-proton density difference, respectively. The Pauli principle is found to provide a small correction to the coherent part, both in the hole-line and density expansion formalisms. However, the charge exchange part of the potential is almost completely damped at low energies in the hole-line expansion, while the inclusion of backward-going graphs (random-phase-approximation-type correlations) restores it to its value based on free space πN charge exchange amplitudes (i.e., no net Pauli effect)

  6. Neutrino proton scattering and the isosinglet term

    International Nuclear Information System (INIS)

    White, D.H.

    1990-01-01

    Elastic neutrino proton scattering is sensitive to the SU(3) axial isosinglet term which is in turn dependent on the strangeness content of the proton. The uncertainties in the analysis of a neutrino proton elastic scattering experiment are discussed, and an experiment which is insensitive to many of the difficulties of the previous experiment is described

  7. Energy loss, range and fluence distributions, total reaction and projectile fragment production cross sections for proton-nucleus and nucleus-nucleus interactions

    International Nuclear Information System (INIS)

    Sihver, L.; Kanai, T.

    1992-07-01

    We have developed a computer code for calculations of energy loss (dE/dx) and range distributions for heavy ions in any media. The results from our calculations are in very good agreement with previous calculations. We have developed semiempirical total reaction cross section formulae for proton-nucleus (with Z p ≤26) and nucleus-nucleus (with Z p and Z t ≤26) reactions. These formulae apply for incident energies above 15 MeV and 100 MeV/nucleon respectively. From the total reaction cross sections, we can calculate the mean free paths and the fluence distributions of protons and heavy ions in any media. We have compared all the calculated reaction cross sections and the mean free paths with experimental data, and the agreement is good. We have also constructed a procedure for calculating projectile fragment production cross sections, by scaling semiempirical proton-nucleus partial cross section systematics. The scaling is performed using a scaling parameter deduced from our reaction cross sections formulae, and additional enhancements factors. All products with atomic number ranging from that of the projectile (Z p ) down to Z=2 can be calculated. The agreement between the calculated cross sections and the experimental data is better than earlier published results. (author)

  8. New description of high energy antiproton (proton)-proton elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Barshay, S; Goldberg, J

    1987-10-15

    We develop a generalization of the geometric picture for high-energy antiproton (proton)-proton elastic scattering. The eikonal at each impact parameter is considered to have fluctuations about an average value, and is thus characterized by a distribution. A connection to parton branching is made through the specific form of the distribution function for the eikonal. A unified physical theory with significant fluctuations accurately describes the anti p(p)-p data at both ..sqrt..s = 546 GeV and 53 GeV. The fluctuation parameter is remarkably well given by that directly observed in multiparticle production.

  9. Exclusive measurements of quasi-free proton scattering reactions in inverse and complete kinematics

    Directory of Open Access Journals (Sweden)

    V. Panin

    2016-02-01

    Full Text Available Quasi-free scattering reactions of the type (p,2p were measured for the first time exclusively in complete and inverse kinematics, using a 12C beam at an energy of ∼400 MeV/u as a benchmark. This new technique has been developed to study the single-particle structure of exotic nuclei in experiments with radioactive-ion beams. The outgoing pair of protons and the fragments were measured simultaneously, enabling an unambiguous identification of the reaction channels and a redundant measurement of the kinematic observables. Both valence and deeply-bound nucleon orbits are probed, including those leading to unbound states of the daughter nucleus. Exclusive (p,2p cross sections of 15.8(18 mb, 1.9(2 mb and 1.5(2 mb to the low-lying 0p-hole states overlapping with the ground state (3/2− and with the bound excited states of 11B at 2.125 MeV (1/2− and 5.02 MeV (3/2−, respectively, were determined via γ-ray spectroscopy. Particle-unstable deep-hole states, corresponding to proton removal from the 0s-orbital, were studied via the invariant-mass technique. Cross sections and momentum distributions were extracted and compared to theoretical calculations employing the eikonal formalism. The obtained results are in a good agreement with this theory and with direct-kinematics experiments. The dependence of the proton–proton scattering kinematics on the internal momentum of the struck proton and on its separation energy was investigated for the first time in inverse kinematics employing a large-acceptance measurement.

  10. Nucleus-Nucleus Scattering in the High-Energy Approximation and the Optical Folding Potential

    CERN Document Server

    Lukyanov, V K; Lukyanov, K V

    2004-01-01

    For the nucleus-nucleus scattering, the complex potential is obtained which corresponds to the eikonal phase of an optical limit of the Glauber-Sitenko high-energy approximation. The potential does not include free parameters, its real and imaginary parts depend on energy and are determined by the reported data on the nuclear density distributions and nucleon-nucleon scattering amplitude. Alternatively, for the real part, the folding potential can be utilized which includes the effective NN-forces and the exchange term, as well. As a result, the microscopic optical potential is constructed where contributions of the calculated real and imaginary parts are formed by fitting the two respective factors. An efficient of the approach is confirmed by agreements of calculations with the experimental data on elastic scattering cross-sections.

  11. Neutron–Proton Scattering Experiments at ANKE–COSY

    Directory of Open Access Journals (Sweden)

    Rathmann F.

    2010-04-01

    Full Text Available The nucleon–nucleon interaction (NN is fundamental for the whole of nuclear physics and hence to the composition of matter as we know it. It has been demonstrated that stored, polarised beams and polarised internal targets are experimental tools of choice to probe spin effects in NN–scattering experiments. While the EDDA experiment has dramatically improved the proton–proton date base, information on spin observables in neutron–proton scattering is very incomplete above 800 MeV, resulting in large uncertainties in isoscalar n p phase shifts. Experiments at COSY, using a polarised deuteron beam or target, can lead to significant improvements in the situation through the study of quasi–free reactions on the neutron in the deuteron. Such a measurements has already been started at ANKE by using polarised deuterons on an unpolarised target to study the dp → {pp}n deuteron charge–exchange reaction and the full program with a polarised storage cell target just has been conducted. At low excitation energies of the final pp system, the spin observables are directly related to the spin– dependent parts of the neutron–proton charge–exchange amplitudes. Our measurement of the deuteron–proton spin correlations will allow us to determine the relative phases of these amplitudes in addition to their overall magnitudes.

  12. The effect of the new nucleon-nucleus elastic scattering data in LAHET trademark Version 2.8 on neutron displacement cross section calculations

    International Nuclear Information System (INIS)

    Pitcher, E.J.; Ferguson, P.D.; Russell, G.J.; Prael, R.E.; Madland, D.G.; Court, J.D.; Daemen, L.L.; Wechsler, M.S.

    1997-01-01

    The latest release of the medium-energy Monte Carlo transport code LAHET includes a new nucleon-nucleus elastic scattering treatment based on a global medium-energy phenomenological optical-model potential. Implementation of this new model in LAHET allows nuclear elastic scattering for neutrons with energies greater than 15 MeV and for protons with energies greater than 50 MeV. Previous investigations on the impact of the new elastic scattering data revealed that the addition of the proton elastic scattering channel can lead to a significant increase in the calculated damage energy under certain conditions. The authors report here results on the impact of the new elastic scattering data on calculated displacement cross sections in various elements for neutrons with energies in the range 16 to 3,160 MeV. Calculated displacement cross sections at 20 MeV in low-mass materials are in better agreement with SPECTER-calculated cross sections

  13. Reaction Mechanism and Structure Interplay for Proton Elastic Scattering from Halo Nuclei

    International Nuclear Information System (INIS)

    Crespo, R.; Johnson, R.C.

    1999-01-01

    The aim of this work is to clarify what properties of the projectile w.f. are relevant to describe elastic scattering of halo nuclei from stable nuclei. In particular, we examine how far elastic scattering observables probe correlation effects among projectile nucleons. Our treatment is based on a multiple scattering expansion of the proton-projectile transition amplitude in a form which is well adapted to the weakly bound cluster picture of halo nuclei. In the specific case of 11 Li scattering from protons at 800 MeV/u we show that because core recoil effects are significant, scattering cross sections can not, in general, be deduced from knowledge of the total matter density alone. We advocate that the optical potential concept for the scattering of halo nuclei on protons should be avoided and that the multiple scattering series for the full transition amplitude should be used instead

  14. Reaction mechanism and structure interplay for proton elastic scattering from halo nuclei

    International Nuclear Information System (INIS)

    Crespo, R.; Johnson, R. C.

    1999-01-01

    The aim of this work is to clarify what properties of the projectile w.f. are relevant to describe elastic scattering of halo nuclei from stable nuclei. In particular, we examine how far elastic scattering observables probe correlation effects among projectile nucleons. Our treatment is based on a multiple scattering expansion of the proton-projectile transition amplitude in a form which is well adapted to the weakly bound cluster picture of halo nuclei. In the specific case of 11 Li scattering from protons at 800 MeV/u we show that because core recoil effects are significant, scattering crosssections cannot, in general, be deduced from knowledge of the total matter density alone. We advocate that the optical potential concept for the scattering of halo nuclei on protons should be avoided and that the multiple scattering series for the full transition amplitude should be used instead

  15. On the deep inelastic lepton-nucleus scattering

    International Nuclear Information System (INIS)

    Darbaidze, Ya.Z.; Garsevanishvili, V.R.; Menteshashvili, Z.R.

    1979-01-01

    Deep inelastic scattering of charged leptons on nuclei is considered in the lowest order in electromagnetic interaction. Expressions for the corresponding differential cross sections are obtained provided the scattered lepton and the fragment of the initial nucleus are detected in coincidence. Structure functions are analyzed by means of the automodelity principle. These functions are considered in the framework of the ''light front'' formalism for many-body systems. A hypothesis is put forward on the scale invariance of structure functions with respect to the xi-variable, which is some complicated dimensionless combination of kinematic invariants. A simple relation of this variable to the momenta of the nucleons inside the initial nucleus is pointed out

  16. The estimation of production rates of $\\pi^+K^-, \\pi^-K^+$ and $\\pi^+\\pi^-$ atoms in proton-nucleus interactions at 450 GeV/c

    CERN Document Server

    Gorchakov, O

    2015-01-01

    Short-lived (τ ∼ 3 × 10 − 15 s) π+ K− , K+ π− and π+ π− atoms as well as long- lived (τ ≥ 1 × 10 − 11 s) π+ π− atoms produced in proton-nucleus interactions at 24 GeV/c are observed and studied in the DIRAC experiment at the CERN PS. The purpose of this paper is to show that the yields of the short-lived π+ K−, K+ π− and π+ π− atoms in proton-nucleus interactions at 450 GeV/c and θ lab = 4◦ are estimated to be, respectively, 17, 38 and 16 times higher per time unit. This may allow significantly improving the precision of their lifetime measurement and ππ and πK scattering length combinations |a0 − a2| and |a 1/2 − a3/2| . The yields of the long-lived π+ K− , K+ π− and π+ π− atoms at 450 GeV/c are estimated to be 370, 1600 and 750 times higher than at 24 GeV/c. This may allow the resonance method to be used for measuring the Lamb shift in the ππ atom and a new ππ scattering length combination 2 a0 + a2 to be obtained.

  17. High-energy proton scattering on nuclei

    CERN Document Server

    Klovning, A; Schlüpmann, K

    1973-01-01

    High-energy proton scattering on Be, C, Cu and Pb targets is studied using a single-arm spectrometer. The projectile momenta were 19 and 24 GeV/c, the square of the four-momentum transfer varied from t=0.1 to t =4.4 GeV/sup 2/. Momentum distributions of scattered protons are recorded in the high-momentum range. An application of multiple- scattering theory yielded agreement of calculation and experimental results to within a +or-30% uncertainty of the former. (15 refs).

  18. Exclusive compton scattering on the proton

    International Nuclear Information System (INIS)

    Chen, J.P.; Chudakov, E.; DeJager, C.; Degtyarenko, P.; Ent, R.; Gomez, J.; Hansen, O.; Keppel, C.; Klein, F.; Kuss, M.

    1999-01-01

    An experiment is proposed to measure the cross sections for Real Compton Scattering from the proton in the energy range 3-6 GeV and over a wide angular range, and to measure the longitudinal and transverse components of the polarization transfer to the recoil proton at a single kinematic point. Together, these measurements will test models of the reaction mechanism and determine new structure functions of the proton that are related to the same non-forward parton densities that determine the elastic electron scattering form factors and the parton densities. The experiment utilizes an untagged Bremsstrahlung photon beam and the standard Hall A cryogenic targets. The scattered photon is detected in a photon spectrometer, currently under construction. The coincident recoil proton is detected in one of the Hall A magnetic spectrometers and its polarization components are measured in the existing Focal Plane Polarimeter. This proposal extends and supersedes E97 - 108 which was approved by PAC13. (author)

  19. Exclusive compton scattering on the proton

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.P.; Chudakov, E.; DeJager, C.; Degtyarenko, P.; Ent, R.; Gomez, J.; Hansen, O.; Keppel, C.; Klein, F.; Kuss, M. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)] [and others

    1999-07-01

    An experiment is proposed to measure the cross sections for Real Compton Scattering from the proton in the energy range 3-6 GeV and over a wide angular range, and to measure the longitudinal and transverse components of the polarization transfer to the recoil proton at a single kinematic point. Together, these measurements will test models of the reaction mechanism and determine new structure functions of the proton that are related to the same non-forward parton densities that determine the elastic electron scattering form factors and the parton densities. The experiment utilizes an untagged Bremsstrahlung photon beam and the standard Hall A cryogenic targets. The scattered photon is detected in a photon spectrometer, currently under construction. The coincident recoil proton is detected in one of the Hall A magnetic spectrometers and its polarization components are measured in the existing Focal Plane Polarimeter. This proposal extends and supersedes E97 - 108 which was approved by PAC13. (author)

  20. Exclusive Compton Scattering on the Proton

    International Nuclear Information System (INIS)

    Chen, J. P.; Chudakov, E.; DeJager, C.; Degtyarenko, P.; Ent, R.; Gomez, J.; Hansen, O.; Keppel, C.; Klein, F.; Kuss, M.; LeRose, J.; Liang, M.; Michaels, R.; Mitchell, J.; Liyanage, N.; Rutt, P.; Saha, A.; Wojtsekhowski, B.; Bouwhuis, M.; Chang, T.H.; Holt, R. J.; Nathan, A. M.; Roedelbronn, M.; Wijesooriya, K.; Williamson, S. E.; Dodge, G.; Hyde-Wright, C.; Radyushkin, A.; Sabatie, F.; Weinstein, L. B.; Ulmer, P.; Bosted, P.; Finn, J. M.; Jones, M.; Churchwell, S.; Howell, C.; Gilman, R.; Glashausser, C.; Jiang, X.; Ransome, R.; Strauch, S.; Berthot, J.; Bertin, P.; Fonvielle, H.; Roblin, Y.; Bertozzi, W.; Gilad, S.; Rowntree, D.; Zu, Z.; Brown, D.; Chang, G.; Afanasev, A.; Egiyan, K.; Hoohauneysan, E.; Ketikyan, A.; Mailyan, S.; Petrosyan, A.; Shahinyan, A.; Voskanyan, H.; Boeglin, W.; Markowitz, P.; Hines, J.; Strobel, G.; Templon, J.; Feldman, G.; Morris, C. L.; Gladyshev, V.; Lindgren, R. A.; Calarco, J.; Hersman, W.; Leuschner, M.; Gasparian, A.

    1999-01-01

    An experiment is proposed to measure the cross sections for Real Compton Scattering from the proton in the energy range 3-6 GeV and over a wide angular range; and to measure the longitudinal and transverse components of the polarization transfer to the recoil proton at a single kinematic point. Together; these measurements will test models of the reaction mechanism and determine new structure functions of the proton that are related to the same nonforward parton densities that determine the elastic electron scattering form factors and the parton densities. The experiment utilizes an untagged bremsstrahlung photon beam and the standard Hall A cryogenic targets. The scattered photon is detected in a photon spectrometer; currently under construction. The coincident recoil proton is detected in one of the Hall A magnetic spectrometers and its polarization components are measured in the existing Focal Plane Polarimeter. This proposal extends and supercedes E97-108 which was approved by PAC13

  1. Elastic scattering of polarized protons from 3He at intermediate energies

    International Nuclear Information System (INIS)

    Hasell, D.K.; Bracco, A.; Gubler, H.P.

    1982-09-01

    Using the polarized proton beam facility of the TRIUMF cyclotron, differential cross sections and analyzing powers have been measured in the angular range 20 0 - 150 0 c.m. for proton elastic scattering from 3 He at incident proton energies of 200, 300, 415 and 515 MeV. The differential cross sections exhibit a minimum at t = -0.33 (GeV/c) 2 which becomes more pronounced with increasing energy. There is evidence for the onset of a second minimum corresponding to the interference between double and triple scattering amplitudes. Large analyzing powers are observed at the lower energies. The data from the present analysis, together with data obtained from the literature in the energy range 100-1000 MeV, have been analyzed within the framework of the Glauber multiple scattering formalism. Nucleon-nucleon scattering parameters were taken from a global phase shift analysis of nucleon-nucleon elastic scattering data. Reasonable agreement with the data is obtained

  2. Energetic proton analysis at large angle by 200 MeV proton scattering on nuclei: inclusive spectra; proton-gamma coincidence spectra

    International Nuclear Information System (INIS)

    Al-Zoubidi, M.

    1984-01-01

    With a large acceptance magnet, both in momentum (300-700 MeV/c) and angle (10 0 ), backward energetic proton inclusive cross sections were measured for 200 MeV protons hitting 6 Li, 27 Al, 28 Si, 58 Ni and 197 Au targets. The data are analysed using the ''Quasi Two Body Scaling'' (QTBS) picture and also compared with the predictions at a standard cascade code. This QTBS approch assumes the dominance of the single scattering mechanism. It is shown that a scaling regime is reached for several data taken at incident energies at about 200 MeV/A. These data are remarkably well reproduced using a universal one nucleon momentum density distribution for A > approximately 20. A (p-γ) coincidence experiment was performed on 28 Si target, at 80 0 . Preliminary results indicates also single nucleon-nucleon collision, but the other low energy nucleon interacts with the residuel nucleus. Excitation energy transferred to the system is about 50 MeV [fr

  3. Ambiguities of the phase analysis of the proton-proton scattering amplitude

    International Nuclear Information System (INIS)

    Grebenyuk, O.G.; Shklyarevskij, G.M.

    1980-01-01

    Ambiguities of the phase analysis of the proton-proton scattering amplitude are analysed. It is shown that for five measurements of polarization parameters sets there are ambiguities similar to the Gersten ambiguities in the phase analysis of πN scattering. A problem on additional experiments needed to eliminate these ambiguities is investigated. It is shown that for this purpose it suffices to measure three total cross sections with polarized and nonpolarized protons, thus determining the imaginary parts of amplitudes at THETA=0 and polarization parameters

  4. A new description of high energy antiproton (proton)-proton elastic scattering

    International Nuclear Information System (INIS)

    Barshay, S.; Technion-Israel Inst. of Tech., Haifa. Dept. of Physics); Goldberg, J.

    1987-01-01

    We develop a generalization of the geometric picture for high-energy antiproton (proton)-proton elastic scattering. The eikonal at each impact parameter is considered to have fluctuations about an average value, and is thus characterized by a distribution. A connection to parton branching is made through the specific form of the distribution function for the eikonal. A unified physical theory with significant fluctuations accurately describes the anti p(p)-p data at both √s = 546 GeV and 53 GeV. The fluctuation parameter is remarkably well given by that directly observed in multiparticle production. (orig.)

  5. Beta-decay study of T{sub z}=-2 proton-rich nucleus {sup 24}Si

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Y.; Iwasaki, H.; Nakao, T.; Ong, H.J.; Onishi, T.K.; Suzuki, D.; Suzuki, H.; Suzuki, M.K. [University of Tokyo, Department of Physics, Tokyo (Japan); Kubo, T.; Aoi, N.; Fukuda, N.; Motobayashi, T.; Yamada, K.N.; Sakurai, H. [RIKEN, RIKEN Nishina Center, Saitama (Japan); Banerjee, V.; Chakrabarti, A. [Variable Energy Cyclotron Centre, Kolkata (India); Kubono, S.; Yamaguchi, H. [University of Tokyo, Center for Nuclear Study, Tokyo (Japan); Nakabayashi, T.; Nakamura, T.; Okumura, T. [Tokyo Institute of Technology, Department of Physics, Tokyo (Japan); Teranishi, T. [Kyushu University, Department of Physics, Fukuoka (Japan)

    2009-12-15

    {beta} -decay spectroscopy on a T{sub z}=-2 proton-rich nucleus {sup 24}Si was performed. The decay scheme of {sup 24}Si was reconstructed by the {beta} -delayed {gamma} -ray and proton measurements. Two {beta} branches to the bound 1{sub 1}{sup +} and 1{sub 2}{sup +} states in {sup 24}Al were observed for the first time. The observation of the allowed transition firmly established the spin-parity assignment for the 1{sub 2}{sup +} states. The branching ratios to the 1{sub 1}{sup +} and 1{sub 2}{sup +} states were determined to be 31(4)% and 23.9(15)%, respectively. The branching ratios to three unbound states in {sup 24}Al including a new level at 6.735MeV were also determined for the first time. The level structure of {sup 24}Al was compared with its mirror nucleus {sup 24}Na. The Thomas-Ehrman shift on the 1{sub 2}{sup +} state indicates s -wave dominance in the state as well as a characteristic behavior of the weakly bound s-wave proton in {sup 24}Al. (orig.)

  6. Probability of spin flipping of proton with energy 6.9 MeV at inelastic scattering with sup(54,56)Fe nuclei

    International Nuclear Information System (INIS)

    Prokopenko, V.S.; Sklyarenko, V.; Chernievskij, V.K.; Shustov, A.V.

    1980-01-01

    Spin-orbital effects of inelastic scattering of protons by nuclei with mean atomic weight are investigated along with the mechanisms of the reaction course by measuring proton spin flip. The experiment consists in measuring proton-gamma coincidences in mutually perpendicular planes by the technique of quick-slow coincidences. The excitation function of the 56 Fe(P,P 1 ) reaction is measured in the 3.5-6.2 MeV energy range. Angular dependences of probability of proton spin flip (a level of 2 + , 0.847 MeV) are measured at energies of incident protons of 4.96; 5.58 and 5.88 MeV. Measurements of probabilities of proton spin flipping at inelastic scattering by sup(54,56)Fe nuclei are performed in the process of studying spin-orbital effects and mechanisms of the reaction course. A conclusion is made that the inelastic scattering process in the energy range under investigation is mainly realized by two equivalent mechanisms: direct interaction and formation of a compound nucleus. Angular dependences for 54 Fe and 56 Fe noticeably differ in the values of probability of spin flip in the angular range of 50-150 deg

  7. Proton-proton elastic scattering at ultrahigh energies

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, M.; Shaukat, M.A.; Fazal-e-Aleem (University of the Punjab, Lahore (Pakistan). Dept. of Physics)

    1981-05-30

    Recent experimental results on proton-proton elastic scattering at high energies are discussed in the context of the comments by Chou and Yang. There does not appear to be any tendency that the experimental results would agree with the predictions of the geometrical model even at ultrahigh energies. The angular distribution structure as described by using the dipole pomeron is consistent with the experimental data at presently available high energies and predicts results quite different from the geometrical model.

  8. Multiquark states in the deep inelastic muon-nucleus scattering

    International Nuclear Information System (INIS)

    Titov, A.I.

    1983-01-01

    The deep-inelastic muon-nucleus scattering in the region forbidden by the kinematics for the scattering on free nucleons, is analysed theoretically. The calculations have been performed under the assumption that the main contribution to the cross section in the considered region of the Bjorken scaling variable, 1 -4 -10 -5 for the nuclear structure function at x approximately equal to 1.4. As it is shown, one has to take into account the six-= ' quark states in extracting the scaling parameter of QCD from the muon-nucleus data at approximately 1

  9. Nuclear proton-proton elastic scattering via the Trojan Horse method

    International Nuclear Information System (INIS)

    Tumino, A.; Spitaleri, C.; Mukhamedzhanov, A.

    2009-01-01

    The Trojan Horse Method (THM) is a powerful indirect technique to study charged particle two-body reactions at sub-Coulomb energies [1,2]. As known, it makes it possible to extract their cross sections down to the relevant energies without experiencing Coulomb suppression. For this reason, since a couple of decades it is successfully applied to rearrangement reactions of astrophysical interest. Recently, we have investigate the suppression of the Coulomb amplitude when the THM is applied to scattering processes. This was done by considering the p - p scattering at low energy, the simplest case where the Coulomb suppression can be observed. Proton-proton cross section was extensively studied in the past. Its energy trend appears to be very similar to that of n-n or p-n systems (1/E behaviour) except at lower proton relative energies, where a deep minimum shows up (E pp = 191.2 keV, θ cm = 90 o ). This minimum is interpreted as being the signature of the interference between nuclear and Coulomb scattering amplitudes. Therefore, if one considers that a non sizable Coulomb amplitude would make the minimum in the p-p cross section to disappear, the strong interference pattern offers an unique possibility to validate the THM suppression of Coulomb amplitude for scattering. This has been realized by measuring the p - p elastic scattering within the region of the minimum through the 2 H (p, pp)n reaction at 4.8 and 5 MeV in the quasi-free (QF) kinematics regime [3,4]. The THM p-p cross-section was extracted in the framework of the Plane Wave Impulse Approximation [5] down to E lab = 80 keV, and compared with the direct p-p behaviour. No minimum shows up in the THM data, whose trend appears to be smooth, much similar to that of the n-n or n-p cross-section. A detailed formalism was developed to build-up the expression of the theoretical half-off-shell p-p cross section, whose behaviour agrees with the THM data, given the fact that in its expression the Coulomb amplitude is

  10. Coulomb excitation of the two proton-hole nucleus $^{206}$Hg

    CERN Multimedia

    We propose to use Coulomb excitation of the single magic two-proton-hole nucleus $^{206}$Hg. In a single-step excitation both the first 2$^{+}$ and the highly collective octupole 3$^{-}$ states will be populated. Thus, information on both quadrupole and octupole collectivity will be gained in this neutron-rich nucleus. Due to the high beam intensity, we will be able to observe multi-step Coulomb excitation as well, providing further test on theoretical calculations. The results will be used to improve the predictive power of the shell model for more exotic nuclei as we move to lighter N=126 nuclei. The experiment will use the new HIE-ISOLDE facility and the MINIBALL array, and will take advantage of the recently developed $^{206}$Hg beam from the molten lead target.

  11. Progress On Neutrino-Proton Neutral-Current Scattering In MicroBooNE

    Energy Technology Data Exchange (ETDEWEB)

    Pate, Stephen [New Mexico State U.

    2017-01-16

    The MicroBooNE Experiment at the Fermi National Accelerator Laboratory, an 89-ton active mass liquid argon time projection chamber, affords a unique opportunity to observe low-$Q^2$ neutral-current neutrino-proton scattering events. Neutral-current neutrino-proton scattering at $Q^2 < 1$ GeV$^2$ is dominated by the proton's axial form factor, which can be written as a combination of contributions from the up, down, and strange quarks: $G_A(Q^2) = \\frac{1}{2}[-G_A^u(Q^2)+G_A^d(Q^2)+G_A^s(Q^2)]$. The contribution from up and down quarks has been established in past charged-current measurements. The contribution from strange quarks at low $Q^2$ remains unmeasured; this is of great interest since the strange quark contribution to the proton spin can be determined from the low-$Q^2$ behavior: $\\Delta S = G_A^s(Q^2=0)$. MicroBooNE began operating in the Booster Neutrino Beam in October 2015. I will present the status in observing isolated proton tracks in the MicroBooNE detector as a signature for neutral-current neutrino-proton events. The sensitivity of the MicroBooNE experiment for measuring the strange quark contribution to the proton spin will be discussed.

  12. Proton-proton elastic scattering at ultrahigh energies

    International Nuclear Information System (INIS)

    Saleem, M.; Shaukat, M.A.; Fazal-e-Aleem

    1981-01-01

    Recent experimental results on proton-proton elastic scattering at high energies are discussed in the context of the comments by Chou and Yang. There does not appear to be any tendency that the experimental results would agree with the predictions of the geometrical model even at ultrahigh energies. The angular distribution structure as described by using the dipole pomeron is consistent with the experimental data at presently available high energies and predicts results quite different from the geometrical model. (author)

  13. Triple parton scatterings in high-energy proton-proton collisions arXiv

    CERN Document Server

    d'Enterria, David

    2017-01-01

    A generic expression to compute triple parton scattering cross sections in high-energy proton-proton (pp) collisions is presented as a function of the corresponding single parton cross sections and the transverse parton profile of the proton encoded in an effective parameter σeff,TPS. The value of σeff,TPS is closely related to the similar effective cross section that characterizes double parton scatterings, and amounts to σeff,TPS=12.5±4.5  mb. Estimates for triple charm (cc¯) and bottom (bb¯) production in pp collisions at LHC and FCC energies are presented based on next-to-next-to-leading-order perturbative calculations for single cc¯, bb¯ cross sections. At s≈100  TeV, about 15% of the pp collisions produce three cc¯ pairs from three different parton-parton scatterings.

  14. Deep inelastic lepton-nucleus scattering from the light-cone quantum field theory

    International Nuclear Information System (INIS)

    Boqiang Ma; Ji Sun

    1990-01-01

    We show that for deep inelastic lepton-nucleus scattering, the conditions which validate the impulse approximation are hardly satisfied when using ordinary instant form dynamics in the rest frame of the nucleus, whereas they are well satisfied when using instant form dynamics in the infinite-momentum frame, or using light-front form dynamics in an ordinary frame. Therefore a reliable theoretical treatment of deep inelastic lepton-nucleus scattering should be performed in the time-ordered perturbation theory in the infinite-momentum frame, or its equivalent, the light-cone perturbation theory in an ordinary frame. To this end, we extend the light-cone quantum field theory to the baryon-meson field to establish a relativistic composite model of nuclei. We then apply the impulse approximation to deep inelastic lepton-nucleus scattering in this model.(author)

  15. Extended emission sources observed via two-proton correlations

    International Nuclear Information System (INIS)

    Awes, T.C.; Ferguson, R.L.; Obenshain, F.E.

    1988-01-01

    Two-proton correlations were measured as a function of the total energy and relative momentum of the proton. The correlation is analyzed for different orientations of the relative momentum, which allows information on the size and lifetime of the emission source to be extracted. The most energetic particles are emitted from a short- lived source of compound nucleus dimensions while the lower energy protons appear to be emitted from a source considerably larger than the compound nucleus. 9 refs., 3 figs

  16. Measuring the Weak Charge of the Proton via Elastic Electron-Proton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Donald C. [Univ. of Virginia, Charlottesville, VA (United States)

    2015-10-01

    The Qweak experiment which ran in Hall C at Jefferson Lab in Newport News, VA, and completed data taking in May 2012, measured the weak charge of the proton QpW via elastic electron-proton scattering. Longitudinally polarized electrons were scattered from an unpolarized liquid hydrogen target. The helicity of the electron beam was flipped at approximately 1 kHz between left and right spin states. The Standard Model predicts a small parity-violating asymmetry of scattering rates between right and left helicity states due to the weak interaction. An initial result using 4% of the data was published in October 2013 [1] with a measured parity-violating asymmetry of -279 ± 35(stat) ± 31 (syst) ppb. This asymmetry, along with other data from parity-violating electron scattering experiments, provided the world's first determination of the weak charge of the proton. The weak charge of the proton was found to be pW = 0.064 ± 0.012, in good agreement with the Standard Model prediction of pW(SM) = 0.0708 ± 0.0003[2].

  17. Invariant potential for elastic pion--nucleus scattering

    International Nuclear Information System (INIS)

    Cammarata, J.B.; Banerjee, M.K.

    1976-01-01

    From the Wick-Dyson expansion of the exact propagator of a pion in the presence of a nucleus, an invariant potential for crossing symmetric elastic pion-nucleus scattering is obtained in terms of a series of pion-nucleon diagrams. The Chew-Low theory is used to develop a model in which the most important class of diagrams is effectively summed. Included in this model is the exclusion principle restriction on the pion-bound nucleon interaction, the effects of the binding of nucleons, a kinematic transformation of energy from the lab to the πN center of mass frame, and the Fermi motion and recoil of the target nucleons. From a numerical study of the effects of these processes on the π- 12 C total cross section, the relative importance of each is determined. Other processes contributing to the elastic scattering of pions not included in the present model are also discussed

  18. Intermediate energy proton and light-ion scattering

    International Nuclear Information System (INIS)

    Moss, J.M.

    1981-01-01

    A review is presented of recent (1979-81) developments in the field of intermediate-energy proton and light-ion scattering from nuclei. New theoretical and calculational techniques of particular interest to experimentalists are discussed. Emphasis is placed on topics in nuclear structure physics - giant resonances, pion-condensation precursor phenomena, and polarization transfer (spin-flip) experiments - where intermediate energy proton and light-ion scattering has made new and unique contributions

  19. What can an antiproton and a nucleus learn from each other

    International Nuclear Information System (INIS)

    Garreta, D.

    1982-05-01

    Simple features which make a low-energy antiproton an interesting probe of the nucleus, and a nucleus an interesting target for an antiproton are presented. Then antiproton-nucleus inelastic and elastic scattering, proton knock-out reactions on nuclei, annihilation of the antiproton in nuclei are reviewed. The aims of the experiment PS184 at LEAR are given

  20. Virtual Compton scattering off protons at moderately large momentum transfer

    International Nuclear Information System (INIS)

    Kroll, P.

    1996-01-01

    The amplitudes for virtual Compton scattering off protons are calculated within the framework of the diquark model in which protons are viewed as being built up by quarks and diquarks. The latter objects are treated as quasi-elementary constituents of the proton. Virtual Compton scattering, electroproduction off protons and the Bethe-Heitler contamination are photon discussed for various kinematical situations. We particularly emphasize the role of the electron asymmetry for measuring the relative phases between the virtual Compton and the Bethe-Heitler amplitudes. It is also shown that the model is able to describe very well the experimental data for real Compton scattering off protons. (orig.)

  1. Proton compton scattering in the resonance region

    International Nuclear Information System (INIS)

    Ishii, Takanobu.

    1979-12-01

    Differential cross sections of the proton Compton scattering have been measured in the energy range between 400 and 1150 MeV at CMS angles of 130 0 , 100 0 and 70 0 . The recoil proton was detected with a magnetic spectrometer using multi-wire proportional chambers and wire spark chambers. In coincidence with the proton, the scattered photon was detected with a lead glass Cerenkov counter of the total absorption type with a lead plate converter, and horizontal and vertical scintillation counter hodoscopes. The background due to the neutral pion photoproduction, was subtracted by using the kinematic relations between the scattered photon and the recoil proton. Theoretical calculations based on an isobar model with two components, that is, the resonance plus background, were done, and the photon couplings of the second resonance region were determined firstly from the proton Compton data. The results are that the helicity 1/2 photon couplings of P 11 (1470) and S 11 (1535), and the helicity 3/2 photon coupling of D 13 (1520) are consistent with those determined from the single pion photoproduction data, but the helicity 1/2 photon coupling of D 13 (1520) has a somewhat larger value than that from the single pion photoproduction data. (author)

  2. Charged particle production in proton-, deuteron-, oxygen- and sulphur-nucleus collisions at 200 GeV per nucleon

    CERN Document Server

    Alber, T.; Bachler, J.; Bartke, J.; Bialkowska, H.; Bloomer, M.A.; Bock, R.; Braithwaite, W.J.; Brinkmann, D.; Brockmann, R.; Buncic, P.; Chan, P.; Cramer, J.G.; Cramer, P.B.; Derado, I.; Eckardt, V.; Eschke, J.; Favuzzi, C.; Ferenc, D.; Fleischmann, B.; Foka, P.; Freund, P.; Fuchs, M.; Gazdzicki, M.; Gladysz, E.; Grebieszkow, J.; Gunther, J.; Harris, J.W.; Hoffmann, M.; Jacobs, P.; Kabana, S.; Kadija, K.; Keidel, R.; Kowalski, M.; Kuhmichel, A.; Lee, J.Y.; Ljubicic, A, Jr.; Margetis, S.; Mitchell, J.T.; Morse, R.; Nappi, E.; Odyniec, G.; Paic, G.; Panagiotou, A.D.; Petridis, A.; Piper, A.; Posa, F.; Poskanzer, Arthur M.; Puhlhofer, F.; Rauch, W.; Renfordt, R.; Retyk, W.; Rohrich, D.; Roland, G.; Rothard, H.; Runge, K.; Sandoval, A.; Schmitz, N.; Schmoetten, E.; Sendelbach, R.; Seyboth, P.; Seyerlein, J.; Skrzypczak, E.; Spinelli, P.; Stock, R.; Strobele, H.; Teitelbaum, L.; Tonse, S.; Trainor, T.A.; Vasileiadis, G.; Vassiliou, M.; Vesztergombi, G.; Vranic, D.; Wenig, S.; Wosiek, B.; Zhu, X.

    1998-01-01

    The transverse momentum and rapidity distributions of net protons and negatively charged hadrons have been measured for minimum bias proton-nucleus and deuteron-gold interactions, as well as central oxygen-gold and sulphur-nucleus collisions at 200 GeV per nucleon. The rapidity density of net protons at midrapidity in central nucleus-nucleus collisions increases both with target mass for sulphur projectiles and with the projectile mass for a gold target. The shape of the rapidity distributions of net protons forward of midrapidity for d+Au and central S+Au collisions is similar. The average rapidity loss is larger than 2 units of rapidity for reactions with the gold target. The transverse momentum spectra of net protons for all reactions can be described by a thermal distribution with `temperatures' between 145 +- 11 MeV (p+S interactions) and 244 +- 43 MeV (central S+Au collisions). The multiplicity of negatively charged hadrons increases with the mass of the colliding system. The shape of the transverse mom...

  3. The estimation of production rates of $π^+ K^−, π^− K^+$ and $π^+π^−$ atoms in proton-nucleus interactions at 24 and 450 GeV/c

    CERN Document Server

    Gorchakov, O

    2016-01-01

    Short-lived ( τ ∼ 3 × 10 − 15 s ) π + K − , K + π − and π + π − atoms as well as long-lived ( τ ≥ 1 × 10 − 11 s) π + π − atoms produced in proton-nucleus interactions at 24 GeV/c are observed and studied in the DIRAC experiment at the CERN P S. The purpose of this paper is to show that the yields of the short-lived π + K − , K + π − and π + π − atoms in proton-nucleus interactions at 450 GeV/c and θ lab = 4 ◦ are estimated to be, respectively, 17, 38 and 16 times higher. This may allow sign ificantly improving the precision of their lifetime measurement and ππ and πK scattering length combinations | a 0 − a 2 | and | a 1 / 2 − a 3 / 2 | . The yields of the long-lived π + K − , K + π − and π + π − atoms at 450 GeV/c are estimated to be 180,800 and 370 times higher p er time unit than at 24 GeV/c. This may allow the resonance method to be used for measuring the Lamb shift in the ππ atom and a new ππ scattering length combination 2a0 + a2 to be obtaine...

  4. Parity Non-Conservation in Proton-Proton Elastic Scattering

    International Nuclear Information System (INIS)

    Brown, V.R.; B.F. Gibson; J.A. Carlson; R. Schiavilla

    2002-01-01

    The parity non-conserving longitudinal asymmetry in proton-proton (pp) elastic scattering is calculated in the lab-energy range 0-350 MeV using contemporary, realistic strong-interaction potentials combined with a weak-interaction potential comprised of rho- and omega-meson exchanges as exemplified by the DDH model. Values for the rho- and omega-meson coupling constants, h rho rho rho and h rho rho omega , are determined from comparison with the measured asymmetries at 13.6 MeV, 45 MeV, and 221 MeV

  5. Proton-nucleus dynamics at ultra-relativistic energies

    International Nuclear Information System (INIS)

    McCubbin, N.A.

    1988-01-01

    Some of the basic properties of proton-nucleus (pA) collisions at ultrarelativistic energies are reviewed. These include total and 'partonic' cross-sections, and the differential cross-sections as functions of rapidity, transverse energy, and particle p T , with particular emphasis in all cases on the A dependence. The aim is to introduce a nuclear physics audience to the main trends and ideas; experts in the field will find nothing very new here. (orig.)

  6. Nuclear re-interaction effects in quasi-elastic neutrino nucleus scattering

    Energy Technology Data Exchange (ETDEWEB)

    Co, G.; Bleve, C.; De Mitri, I.; Martello, D

    2002-11-01

    The quasi-elastic {nu}-nucleus cross section has been calculated by using a Fermi gas model corrected to consider the re-scattering between the emitted nucleon and the rest nucleus. As an example of the relevance of this effect we show results for the muon production cross section on {sup 16}O target.

  7. Evidence of Coherent K+ Meson Production in Neutrino-Nucleus Scattering

    Science.gov (United States)

    Wang, Z.; Marshall, C. M.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Endress, E.; Felix, J.; Fields, L.; Fine, R.; Galindo, R.; Gallagher, H.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Hurtado, K.; Kiveni, M.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman; Paolone, V.; Park, J.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ransome, R. D.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Schmitz, D. W.; Simon, C.; Solano Salinas, C. J.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.; Minerva Collaboration

    2016-08-01

    Neutrino-induced charged-current coherent kaon production νμA →μ-K+A is a rare, inelastic electroweak process that brings a K+ on shell and leaves the target nucleus intact in its ground state. This process is significantly lower in rate than the neutrino-induced charged-current coherent pion production because of Cabibbo suppression and a kinematic suppression due to the larger kaon mass. We search for such events in the scintillator tracker of MINERvA by observing the final state K+, μ-, and no other detector activity, and by using the kinematics of the final state particles to reconstruct the small momentum transfer to the nucleus, which is a model-independent characteristic of coherent scattering. We find the first experimental evidence for the process at 3 σ significance.

  8. A new impact picture for low and high energy proton-proton elastic scattering

    International Nuclear Information System (INIS)

    Bourrely, C.; Soffer, J.; Wu, Tai Tsun

    1978-05-01

    The impact picture that was used several years ago to predict the increase of total and integrated differential cross sections at high energies was improved significantly. The major improvements consist of the following: (1) the dependence of the Pomeron term on the momentum transfer is taken from a modified version of the relation between matter distribution and charge distribution; (2) Regge backgrounds are properly taken into account; and (3) a simple non-trivial form is used for the hadronic matter current in the proton. For proton-proton elastic scattering, the phenomenological differential cross section is in good agreement with the experimental data in the laboratory momentum range of 14 GeV/c to 2000 GeV/c, and is predicted for ISABELLE energy. Because of the third improvement, predictions are obtained for both polarization and R parameters for proton-proton elastic scattering

  9. Quasi-free knockout reactions with the proton-dripline nucleus {sup 17}Ne

    Energy Technology Data Exchange (ETDEWEB)

    Wamers, Felix; Aumann, Thomas [Institut fuer Kernphysik, TU, Darmstadt (Germany); Heil, Michael [Kernreaktionen und Nukleare Astrophysik, GSI, Darmstadt (Germany); Marganiec, Justyna [ExtreMe Matter Institute EMMI, GSI, Darmstadt (Germany); Plag, Ralf [Kernreaktionen und Nukleare Astrophysik, GSI, Darmstadt (Germany); Goethe Universitaet, Frankfurt a.M. (Germany); Collaboration: R3B-Collaboration

    2011-07-01

    {sup 17}Ne is a proton-dripline nucleus that has raised special interest in nuclear-structure physics in recent years. As a ({sup 15}O+2p) Borromean 3-body system, it is often considered to be a 2-proton-halo nucleus, yet lacking concluding experimental evidence about its structure. We have studied breakup reactions of 500 AMeV {sup 17}Ne secondary beams using the R{sup 3}B-LAND setup at GSI. One focus was on the quasi-free one-proton knockout in a proton-rich paraffin (CH{sub 2}) target in inverse kinematics, i.e., {sup 17}Ne(p,2p){sup 16}F{yields}{sup 15}O+p, in comparison to the one-proton knockout with a carbon target. Recoil protons have been detected with Si-Strip detectors and the surrounding 4{pi} NaI spectrometer ''Crystal Ball'', thus providing a clean signature for quasi-free knockout. First results on two-proton removal cross sections with CH{sub 2} and C targets will be presented, as well as transverse momentum distributions of the {sup 15}O core in {sup 17}Ne. Projectile-like forward protons after one-proton knockout from {sup 17}Ne have been measured in coincidence with the {sup 15}O residual core, leading to the relative-energy spectrum of the unbound {sup 16}F. Possible interpretations and implications regarding the structure of {sup 17}Ne are discussed.

  10. Virtual compton scattering off protons at moderately large momentum transfer

    International Nuclear Information System (INIS)

    Kroll, P.; Schuermann, M.; Guichon, P.A.M.

    1995-01-01

    The amplitudes for virtual Compton scattering off protons are calculated within the framework of the diquark model in which protons are viewed as being built up by quarks and diquarks. The latter objects are treated as quasi-elementary constituents of the proton. Virtual Compton scattering, electroproduction of photons and the Bethe-Heitler contamination are discussed for various kinematical situations. We particularly emphasize the role of the electron asymmetry for measuring the relative phases between the virtual Compton and the Bethe-Heitler amplitudes. It is also shown that the model is able to describe very well the experimental data for real Compton scattering off protons. (authors). 35 refs., 8 figs., 1 tab

  11. Virtual compton scattering off protons at moderately large momentum transfer

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, P; Schuermann, M [Wuppertal Univ. (Gesamthochschule) (Germany); Guichon, P A.M. [CEA Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d` Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l` Instrumentation Associee

    1995-06-28

    The amplitudes for virtual Compton scattering off protons are calculated within the framework of the diquark model in which protons are viewed as being built up by quarks and diquarks. The latter objects are treated as quasi-elementary constituents of the proton. Virtual Compton scattering, electroproduction of photons and the Bethe-Heitler contamination are discussed for various kinematical situations. We particularly emphasize the role of the electron asymmetry for measuring the relative phases between the virtual Compton and the Bethe-Heitler amplitudes. It is also shown that the model is able to describe very well the experimental data for real Compton scattering off protons. (authors). 35 refs., 8 figs., 1 tab.

  12. Optical model calculation of neutron-nucleus scattering cross sections

    International Nuclear Information System (INIS)

    Smith, M.E.; Camarda, H.S.

    1980-01-01

    A program to calculate the total, elastic, reaction, and differential cross section of a neutron interacting with a nucleus is described. The interaction between the neutron and the nucleus is represented by a spherically symmetric complex potential that includes spin-orbit coupling. This optical model problem is solved numerically, and is treated with the partial-wave formalism of scattering theory. The necessary scattering theory required to solve this problem is briefly stated. Then, the numerical methods used to integrate the Schroedinger equation, calculate derivatives, etc., are described, and the results of various programming tests performed are presented. Finally, the program is discussed from a user's point of view, and it is pointed out how and where the program (OPTICAL) can be changed to satisfy particular needs

  13. The First Asymmetry Measurements in High-Energy Polarized Proton-Nucleus Collision at PHENIX-RHIC

    Directory of Open Access Journals (Sweden)

    Nakagawa Itaru

    2017-01-01

    Full Text Available The single spin asymmetries in very forward neutron production had been first observed about a decade ago at RHIC in transversely polarized proton + proton collision at √s = 200 GeV. Although neutron production near zero degrees is well described by the one-pion exchange (OPE framework, the OPE appeared to be not satisfactory to describe the observed analyzing power AN. The absorptive correction to the OPE generates the asymmetry as a consequence of a phase shift between the spin flip and non-spin flip amplitudes. However the amplitude predicted by the OPE is too small to explain the large observed asymmetries. Only the model which introduces interference between major pion and small a1-Reggeon exchange amplitudes has been successful in reproducing the experimental data. During RHIC Run-15, RHIC delivered polarized proton collisions with Au and Al for the first time, enabling the exploration of the mechanism of transverse single-spin asymmetries with nuclear collisions. A very striking A-dependence was discovered in very forward neutron production at PHENIX in transversely polarized proton + nucleus collision at √s = 200 GeV. Such a dependence has not been predicted from the existing framework which has been succesful in proton + proton collision. In this report, experimental and theoretical efforts are discussed to disentangle the mysterious A-dependence in the very forward neutron asymmetry.

  14. First observation of neutral current proton electron scattering at √s = 300 GeV

    International Nuclear Information System (INIS)

    Hasegawa, Takuya

    1993-02-01

    Neutral current proton electron scattering at center of mass energy 295 GeV was observed for the first time, using the newly built proton electron collider HERA (Hadron Elektron Ring Anlage) and the general purpose detector ZEUS. The distributions of Q 2 , Bjorken-x(x) and Bjorken-y(y) were compared with the expectation based on the standard electroweak theory and QCD. Regarding the investigation of high-Q 2 region, an event of Q 2 ∼ 1000 GeV 2 was observed for the first time. From the x-distribution of the events, a limit on the mass and the coupling of an exotic s-channel resonance of a quark-lepton system (leptoquark) was obtained. The mass limit is 72 GeV(97 GeV) at 95% confidence level for a scalar type leptoquark with a left-handed (right-handed) electromagnetic coupling to ordinary leptons. The leptoquark is assumed to be weak-isoscalar. To realize this experiment a uranium scintillator sandwich type calorimeter was developed. Equal response to electrons and hadrons (e/h = 1), which is essential for the good energy resolution for hadrons, has been achieved. One of the main characteristics of this calorimeter is a possibility of calibration utilizing of its own uranium radioactivity. The grain variation of each channel can be detected with an accuracy of ± 1 %. (J.P.N.) 65 refs

  15. The EDDA experiment: proton-proton elastic scattering excitation functions at intermediate energies

    International Nuclear Information System (INIS)

    Hinterberher, F.

    1996-01-01

    The EDDA experiment is designed to provide a high precision measurement of proton-proton elastic scattering excitation functions ranging from 0.5 to 2.5 GeV of (lab) incident kinetic energy. It is an internal target experiment utilizing the proton beam of the cooler synchrotron COSY operated by KFA Juelich. The excitation functions are measured during the acceleration ramp of COSY. (author)

  16. Elastic scattering of protons at the TOTEM experiment at the LHC

    CERN Document Server

    AUTHOR|(CDS)2080719; Csanád, Máté; Niewiadomski, Hubert

    The TOTEM experiment at the LHC at CERN is optimized to measure elastic and diffractive scattering at the LHC and measures the total proton-proton cross-section with\tthe luminosity-independent method. The TOTEM experiment uses the special technique of movable beam pipe insertions -- called Roman Pots -- to detect very forward protons. The reconstruction of the forward proton kinematics requires the precise understanding of the LHC beam optics. A new method of LHC optics determination is reported, which exploits kinematical distributions of elastically scattered proton-proton data measured by the Roman Pots of the TOTEM experiment. The method has been successfully applied to data samples recorded since 2010. The interpretation of the proton-proton elastic differential cross-section is a challenging task. The geometrical model of proton-proton elastic scattering of Bialas and Bzdak is fitted to ISR data and to data measured by the TOTEM experiment at LHC energy of $\\sqrt{s}=7$~TeV. The Bialas-Bzdak model is g...

  17. A CGC/saturation approach for angular correlations in proton-proton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gotsman, E. [Tel Aviv University, Department of Particle Physics, School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Science, Tel Aviv (Israel); Levin, E. [Tel Aviv University, Department of Particle Physics, School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Science, Tel Aviv (Israel); Universidad Tecnica Federico Santa Maria, Departamento de Fisica, Valparaiso (Chile); Centro Cientifico-Tecnologico de Valparaiso, Valparaiso (Chile); Potashnikova, I. [Universidad Tecnica Federico Santa Maria, Departamento de Fisica, Valparaiso (Chile); Centro Cientifico-Tecnologico de Valparaiso, Valparaiso (Chile)

    2017-09-15

    We generalized our model for the description of hard processes, and calculate the value of the azimuthal angular correlations (Fourier harmonics v{sub n}), for proton-proton scattering. The energy and multiplicity independence, as well as the value of v{sub n}, turns out to be in accord with the experimental data, or slightly larger. Therefore, before making extreme assumptions on proton-proton collisions, such as the production of a quark-gluon plasma in large multiplicity events, we need to understand how these affect the Bose-Einstein correlations, which have to be taken into account since the Bose-Einstein correlations are able to describe the angular correlations in proton-proton collisions, without including final state interactions. (orig.)

  18. Proton nuclear scattering radiography

    International Nuclear Information System (INIS)

    Saudinos, J.

    1982-04-01

    Nuclear scattering of protons allows to radiograph objects with specific properties: 3-dimensional radiography, different information as compared to X-ray technique, hydrogen radiography. Furthermore the nuclear scattering radiography (NSR) is a well adapted method to gating techniques allowing the radiography of fast periodic moving objects. Results obtained on phantoms, formalin fixed head and moving object are shown and discussed. The dose delivery is compatible with clinical use, but at the moment, the irradiation time is too long between 1 and 4 hours. Perspectives to make the radiograph faster and to get a practical method are discussed

  19. Resonant proton scattering of $^{22}$Mg and $^{21}$Na

    CERN Multimedia

    Di julio, D D; Jansson, K; Rudolph, D; Fynbo, H O U; Nilsson, T; Perea martinez, A

    In our letter-of-intent, INTC-I-051, we discussed the physics case for scattering and transfer reactions involving light nuclei in the break-out region of the rp-process. The Committee found the physics case compelling and supported the letter-of-intent under the premise that beams of proper quality were developed and that an adequate detector set-up was presented. As these two requirements have been met recently we now propose to study resonant proton scattering of $^{22}$Mg to identify the states at 1.733 MeV and 2.575 MeV in $^{23}$Al that have been reported from the $^{24}$Mg($^{7}$Li,$^{8}$He)$\\,^{23}\\!$Al reaction but that remained unobserved in the only resonant proton scattering experiment performed with $^{22}$Mg so far. In particular we should be able to investigate the character of the proton emission of the 2.575 MeV state which may also have a significant inelastic branch. We also propose to perform resonant proton scattering on $^{21}$Na above $\\alpha$-particle threshold with $^{18}$Ne to study ...

  20. Self-consistent theory of hadron-nucleus scattering. Application to pion physics

    International Nuclear Information System (INIS)

    Johnson, M.B.

    1980-01-01

    The requirement of using self-consistent amplitudes to evaluate microscopically the scattering of strongly interacting particles from nuclei is developed. Application of the idea to a simple model of pion-nucleus scattering is made. Numerical results indicate that the expansion of the optical potential converges when evaluated in terms of fully self-consistent quantities. A comparison of the results to a recent determination of the spreading interaction in the phenomenological isobar-hole model shows that the theory accounts for the sign and magnitude of the real and imaginary part of the spreading interaction with no adjusted parameters. The self-consistnt theory has a strong density dependence, and the consequences of this for pion-nucleus scattering are discussed. 18 figures, 1 table

  1. Predicting the optical observables for nucleon scattering on even-even actinides

    Science.gov (United States)

    Martyanov, D. S.; Soukhovitskiĩ, E. Sh.; Capote, R.; Quesada, J. M.; Chiba, S.

    2017-09-01

    The previously derived Lane consistent dispersive coupled-channel optical model for nucleon scattering on 232Th and 238U nuclei is extended to describe scattering on even-even actinides with Z = 90-98. A soft-rotator-model (SRM) description of the low-lying nuclear structure is used, where the SRM Hamiltonian parameters are adjusted to the observed collective levels of the target nucleus. SRM nuclear wave functions (mixed in K quantum number) have been used to calculate the coupling matrix elements of the generalized optical model. The “effective” deformations that define inter-band couplings are derived from the SRM Hamiltonian parameters. Conservation of nuclear volume is enforced by introducing a dynamic monopolar term to the deformed potential, leading to additional couplings between rotational bands. The fitted static deformation parameters are in very good agreement with those derived by Wang and collaborators using the Weizsäcker-Skyrme global mass model (WS4), allowing use of the latter to predict cross sections for nuclei without experimental data. A good description of the scarce “optical” experimental database is achieved. SRM couplings and volume conservation allow a precise calculation of the compound-nucleus formation cross sections, which is significantly different from that calculated with rigid-rotor potentials coupling the ground-state rotational band. The derived parameters can be used to describe both neutron- and proton-induced reactions. Supported by International Atomic Energy Agency, through the IAEA Research Contract 19263, by the Spanish Ministry of Economy and Competitivity under Contracts FPA2014-53290-C2-2-P and FPA2016-77689-C2-1-R.

  2. Measurement of elastic proton-proton scattering at $\\sqrt{s} = 7$ TeV with the ALFA sub-detector of ATLAS at the LHC

    CERN Document Server

    Kreutzfeldt, Kristof; Stenzel, Hasko

    The ATLAS experiment with the ALFA sub-detector, provides a unique opportunity to measure elastic proton--proton scattering at the LHC at a centre-of-mass energy of $\\sqrt{s} = 7$ TeV, that has never been reached before. The ALFA detector is a tracking detector housed in Roman Pots, which makes it possible to measure elastically scattered protons down to very small scattering angles. From the proton tracks, measured during a LHC fill with special $\\beta^{*} = 90$ m beam optics, the differential elastic cross-section as a function of the four-momentum transfer squared $t$ is determined, and the total hadronic cross-section $\\sigma_\\text{tot}$, the nuclear slope parameter $B$ and further derived quantities are extracted by utilizing the optical theorem. The total hadronic cross-section is a fundamental parameter of strong interaction depending on the centre-of-mass energy. It has been measured for more than 50 years at different energies and accelerators, where a rise with energy was observed. A newly developed...

  3. Geant4 simulations of soft proton scattering in X-ray optics. A tentative validation using laboratory measurements

    Science.gov (United States)

    Fioretti, Valentina; Mineo, Teresa; Bulgarelli, Andrea; Dondero, Paolo; Ivanchenko, Vladimir; Lei, Fan; Lotti, Simone; Macculi, Claudio; Mantero, Alfonso

    2017-12-01

    Low energy protons (process responsible for the grazing angle scattering processes is mandatory to evaluate the impact of such events on the performance (e.g. observation time, sensitivity) of future X-ray telescopes as the ESA ATHENA mission. The Remizovich model describes particles reflected by solids at glancing angles in terms of the Boltzmann transport equation using the diffuse approximation and the model of continuous slowing down in energy. For the first time this solution, in the approximation of no energy losses, is implemented, verified, and qualitatively validated on top of the Geant4 release 10.2, with the possibility to add a constant energy loss to each interaction. This implementation is verified by comparing the simulated proton distribution to both the theoretical probability distribution and with independent ray-tracing simulations. Both the new scattering physics and the Coulomb scattering already built in the official Geant4 distribution are used to reproduce the latest experimental results on grazing angle proton scattering. At 250 keV multiple scattering delivers large proton angles and it is not consistent with the observation. Among the tested models, the single scattering seems to better reproduce the scattering efficiency at the three energies but energy loss obtained at small scattering angles is significantly lower than the experimental values. In general, the energy losses obtained in the experiment are higher than what obtained by the simulation. The experimental data are not completely representative of the soft proton scattering experienced by current X-ray telescopes because of the lack of measurements at low energies (distribution at the exit of X-ray optics.

  4. Aspects of strangeness production with 15 -- 30 GeV proton beams

    International Nuclear Information System (INIS)

    Dover, C.B.

    1992-04-01

    We discuss the spectrum of physics questions related to strangeness which could be addressed with a 15--30 GeV proton storage ring. We focus on various aspects of strangeness production, including hyperon production in pp collisions, studies of hyperon-nucleon scattering, production of hyper-fragments in p-nucleus collisions, and hyperon spin observables in inclusive production

  5. Recent developments in the understanding of pion-nucleus scattering

    International Nuclear Information System (INIS)

    Johnson, M.B.

    1983-01-01

    A development of the theory of pion-nucleus scattering is given in a field theoretical framework. The theory is designed to describe pion elastic scattering and single- and double-charge exchange to isobaric analog states. An analysis of recent data at low and resonance energies is made. Strong modifications to the simple picture of the scattering as a succession of free pion-nucleon interactions are required in order to understand the data. The extent to which the experiment is understood in terms of microscopic theory is indicated. 71 references

  6. Proton dynamics in oxides: insight into the mechanics of proton conduction from quasielastic neutron scattering.

    Science.gov (United States)

    Karlsson, Maths

    2015-01-07

    This article is concerned with the use of quasielastic neutron scattering as a technique for investigation of the dynamical properties of proton conducting oxides. Currently, the main interest in these materials comes from their promise as electrolytes in future electrochemical devices and particularly through their use as electrolytes in next-generation, intermediate-temperature, fuel cells. However, the realization of such devices depends critically on the development of new, more highly proton conducting oxides. Such a development depends on increasing the current understanding of proton conduction in oxides and for this purpose quasielastic neutron scattering is an important mean. The aim of this article is to introduce the non-specialist reader to the basic principles of quasielastic neutron scattering, its advantages and disadvantages, to summarize the work that has been done on proton conducting oxides using this technique, as well as to discuss future opportunities within this field of research.

  7. On the geometric nature of high energy nucleus-nucleus reaction cross sections

    International Nuclear Information System (INIS)

    Townsend, L.W.; Wilson, J.W.; Bidasaria, H.B.

    1982-01-01

    Within the context of a high energy double-folding optical potential approximation to the exact nucleus-nucleus multiple-scattering series, eikonal scattering theory is used to investigate the validity of geometric reaction cross sections in relativistic heavy ion collisions. The potential used includes a finite range interaction and nuclear single-particle densities extracted from nuclear charge distributions by unfolding the proton charge distribution. Pauli correlation effects are also included in an approximate way. The sensitivity of the predictions to be assumed interaction, Pauli correlation approximation, and nuclear density distributions is investigated. These results are in agreement with early predictions concerning the geometric nature of relativistic heavy ion collisions and in disagreement with a recent analysis, utilizing the zero range approximation, which suggested otherwise. Reasons for the lack of agreement between the analyses are also presented. Finally, approximate applicability for geometric reaction cross sections are determined

  8. Comparison of multiplicity distributions to the negative binomial distribution in muon-proton scattering

    International Nuclear Information System (INIS)

    Arneodo, M.; Ferrero, M.I.; Peroni, C.; Bee, C.P.; Bird, I.; Coughlan, J.; Sloan, T.; Braun, H.; Brueck, H.; Drees, J.; Edwards, A.; Krueger, J.; Montgomery, H.E.; Peschel, H.; Pietrzyk, U.; Poetsch, M.; Schneider, A.; Dreyer, T.; Ernst, T.; Haas, J.; Kabuss, E.M.; Landgraf, U.; Mohr, W.; Rith, K.; Schlagboehmer, A.; Schroeder, T.; Stier, H.E.; Wallucks, W.

    1987-01-01

    The multiplicity distributions of charged hadrons produced in the deep inelastic muon-proton scattering at 280 GeV are analysed in various rapidity intervals, as a function of the total hadronic centre of mass energy W ranging from 4-20 GeV. Multiplicity distributions for the backward and forward hemispheres are also analysed separately. The data can be well parameterized by binomial distributions, extending their range of applicability to the case of lepton-proton scattering. The energy and the rapidity dependence of the parameters is presented and a smooth transition from the binomial distribution via Poissonian to the ordinary binomial is observed. (orig.)

  9. Proton nucleus collisions in the Landau hydrodynamical model

    International Nuclear Information System (INIS)

    Andersson, B.

    1976-01-01

    The dependence upon energy and the atomic number A for the multiplicities and the angular distributions of the relativistic secondaries is computed according to the hydrodynamic model for proton-nucleus collisions. Some different ways of converting the dependence upon tunnellength in nuclear matter into A dependence are discussed and a phenomenological model employed to exhibit the correlations to the fragmentation of the nucleus. The treatment is valid for arbitrary values of the velocity of sound c 0 in nuclear matter inside the range 0.2 0 0 around c 0 approximately 0.5 is preferred in a comparison to the presently available experimental data. This is the same range of values of the parameter for which the best agreement between theory and experiment occurs in the ISR range. (Auth.)

  10. Medium effects on spin observables of proton knockout reactions

    International Nuclear Information System (INIS)

    Krein, G.; Maris, T.A.J.; Rodrigues, B.B.; Veit, E.A.

    1994-07-01

    Medium modifications of the properties of bound nucleons and mesons are investigated by means of medium energy quasi free proton knockout reactions with polarized incident protons. The sensitivity of the spin observables of these reactions to modifications of the nucleon and meson properties is studied using the Bonn one-boson exchange model of the nucleon-nucleon interaction. A method proposed to extract the pp analysing power in medium from the (p, 2 p) asymmetries indicates a reduction of this quantity compared to its free space value. This reduction is linked to modifications of masses and coupling constants of the nucleons and mesons in the nucleus. The implications of these modifications for another spin observable to be measured in the future are discussed. (author). 39 refs, 9 figs

  11. Medium effects on spin observables of proton knockout reactions

    Energy Technology Data Exchange (ETDEWEB)

    Krein, G [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil); Maris, T A.J.; Rodrigues, B B; Veit, E A [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica

    1994-07-01

    Medium modifications of the properties of bound nucleons and mesons are investigated by means of medium energy quasi free proton knockout reactions with polarized incident protons. The sensitivity of the spin observables of these reactions to modifications of the nucleon and meson properties is studied using the Bonn one-boson exchange model of the nucleon-nucleon interaction. A method proposed to extract the pp analysing power in medium from the (p, 2 p) asymmetries indicates a reduction of this quantity compared to its free space value. This reduction is linked to modifications of masses and coupling constants of the nucleons and mesons in the nucleus. The implications of these modifications for another spin observable to be measured in the future are discussed. (author). 39 refs, 9 figs.

  12. Strangeness production with protons and pions

    International Nuclear Information System (INIS)

    Dover, C.B.

    1993-01-01

    We discuss the spectrum of physics questions related to strangeness which could be addressed with intense beams of protons and pions in the few GeV region. We focus on various aspects of strangeness production, including hyperon production in pp collisions, studies of hyperon-nucleon scattering, production of hypernuclei in proton and pion-nucleus collisions, and spin phenomena in hypernuclei

  13. Antiproton-Proton Glory Scattering

    CERN Multimedia

    2002-01-01

    This experiment measures @*p and K|-p backwards scattering between 8 and 16 GeV/c in the Omega spectrometer using the S1 beam, with sensitivities of several events per nanobarn. The mechanism responsible for backward scattering in channels not mediated by particle exchange is not understood, and could be almost energy-independent glory scattering, especially since relatively high cross sections of 190~(@*p) and 120~(K|-p)nb have been measured earlier at 5~GeV/c. @p|-p backwards scattering is measured for monitoring purposes. The trigger requires a forward particle of momentum close to the beam momentum. Absence of light in the two forward Cerenkov counters indicates that the particle is a proton. Combinations of an incident @p|- and an outgoing K|+, or an incident K|- or @* and an outgoing @p|+, cover the following byproducts: @*p~@A~@p|+@p|- which is an (allowed) baryon exchange reaction, and the exotic exchange reactions @p|-p~@A~K|+Y K|-p~@A~@p|+Y|-, where Y|- may be the @S|- or the Y*|-(1385).

  14. Proton dose calculation on scatter-corrected CBCT image: Feasibility study for adaptive proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yang-Kyun, E-mail: ykpark@mgh.harvard.edu; Sharp, Gregory C.; Phillips, Justin; Winey, Brian A. [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States)

    2015-08-15

    Purpose: To demonstrate the feasibility of proton dose calculation on scatter-corrected cone-beam computed tomographic (CBCT) images for the purpose of adaptive proton therapy. Methods: CBCT projection images were acquired from anthropomorphic phantoms and a prostate patient using an on-board imaging system of an Elekta infinity linear accelerator. Two previously introduced techniques were used to correct the scattered x-rays in the raw projection images: uniform scatter correction (CBCT{sub us}) and a priori CT-based scatter correction (CBCT{sub ap}). CBCT images were reconstructed using a standard FDK algorithm and GPU-based reconstruction toolkit. Soft tissue ROI-based HU shifting was used to improve HU accuracy of the uncorrected CBCT images and CBCT{sub us}, while no HU change was applied to the CBCT{sub ap}. The degree of equivalence of the corrected CBCT images with respect to the reference CT image (CT{sub ref}) was evaluated by using angular profiles of water equivalent path length (WEPL) and passively scattered proton treatment plans. The CBCT{sub ap} was further evaluated in more realistic scenarios such as rectal filling and weight loss to assess the effect of mismatched prior information on the corrected images. Results: The uncorrected CBCT and CBCT{sub us} images demonstrated substantial WEPL discrepancies (7.3 ± 5.3 mm and 11.1 ± 6.6 mm, respectively) with respect to the CT{sub ref}, while the CBCT{sub ap} images showed substantially reduced WEPL errors (2.4 ± 2.0 mm). Similarly, the CBCT{sub ap}-based treatment plans demonstrated a high pass rate (96.0% ± 2.5% in 2 mm/2% criteria) in a 3D gamma analysis. Conclusions: A priori CT-based scatter correction technique was shown to be promising for adaptive proton therapy, as it achieved equivalent proton dose distributions and water equivalent path lengths compared to those of a reference CT in a selection of anthropomorphic phantoms.

  15. Percolation picture of disintegration of nuclei in the proton-nucleus interaction

    International Nuclear Information System (INIS)

    Botvina, A.S.; Lanin, L.V.

    1992-01-01

    Breakup of nuclei into fragments in the proton-nucleus interaction is studied. It is assumed that breakup occurs in two stages. During the first stage the incident particle interacts with individual nucleons of the nucleus, and high-energy reaction products are emitted from the nucleus. This stage is described by means of the intranuclear-cascade model. During the second stage some of the nuclei, whose excitation energy is high, or whose density is very inhomogeneous, break up. This breakup is described by means of a percolation model which takes into account the spatial distribution of nucleons in the nucleus and which generalizes the percolation description of the 'liquid-gas' phase transition for finite nuclei. Features of this breakup mechanism are studied. The analysis of the experimental data indicates that it is not sufficient to consider percolation only in the coordinate space, and that the momentum distribution of the nucleons in the nucleus must be taken into account

  16. Elastic proton-deuteron backward scattering: relativistic effects and polarization observables

    International Nuclear Information System (INIS)

    Kaptari, L.P.; Semikh, S.S.

    1997-10-01

    The elastic proton-deuteron backward reaction is analyzed within a covariant approach based on the Bethe-Salpeter equation with 000. Lorentz boost and other relativistic effects in the cross section and spin correlation observables, like tensor analyzing power and polarization transfer etc., are investigated in explicit form. Results of numerical calculations for a complete set of polarization observables are presented. (orig.)

  17. Baryon, charged hadron, Drell-Yan and J/ψ production in high energy proton-nucleus collisions

    International Nuclear Information System (INIS)

    Gale, Charles; Jeon, Sangyong; Kapusta, Joseph

    1999-01-01

    We show that the distributions of outgoing protons and charged hadrons in high energy proton-nucleus collisions are described rather well by a linear extrapolation from proton-proton collisions. The only adjustable parameter required is the shift in rapidity of a produced charged meson when it encounters a target nucleon. Its fitted value is 0.16. Next, we apply this linear extrapolation to precisely measured Drell-Yan cross sections for 800 GeV protons incident on a variety of nuclear targets which exhibit a deviation from linear scaling in the atomic number A. We show that this deviation can be accounted for by energy degradation of the proton as it passes through the nucleus if account is taken of the time delay of particle production due to quantum coherence. We infer an average proper coherence time of 0.4±0.1 fm/c, corresponding to a coherence path length of 8±2 fm in the rest frame of the nucleus. Finally, we apply the linear extrapolation to measured J/ψ production cross sections for 200 and 450 GeV/c protons incident on a variety of nuclear targets. Our analysis takes into account energy loss of the beam proton, the time delay of particle production due to quantum coherence, and absorption of the J/ψ on nucleons. The best representation is obtained for a coherence time of 0.5 fm/c, which is consistent with Drell-Yan production, and an absorption cross section of 3.6 mb, which is consistent with the value deduced from photoproduction of the J/ψ on nuclear targets

  18. DEEPLY INELASTIC SCATTERING OFF NUCLEI AT RHIC

    International Nuclear Information System (INIS)

    VENUGOPALAN, R.

    2001-01-01

    In this talk, we discussed the physics case for an eA collider. We emphasized the novel physics that might be studied at small x. The interesting physics at intermediate x's has been discussed elsewhere [3]. Plans for an electron-ion collider include, as a major part of the program, the possibility of doing polarized electron-polarized proton/light ion scattering. A discussion of the combined case for high energy electron nucleus and polarized electron-polarized proton scattering will be published separately [66

  19. Proton-proton correlations at small relative momentum in neon-nucleus collisions at E/A=400 and 800 MeV

    International Nuclear Information System (INIS)

    Dupieux, P.; Alard, J.P.; Augerat, J.; Bastid, N.; Charmensat, P.; Fraysse, L.; Marroncle, J.; Montarou, G.; Parizet, M.J.; Qassoud, D.; Rahmani, A.; Fodor, Z.

    1988-01-01

    Proton-proton small angle correlations have been measured in neon-nucleus collisions, using the 4π detector Diogene, at 400 and 800 MeV per nucleon incident energies. Values of the size of the emitting region are obtained by comparison with the Koonin formula, taking into account the biases of the apparatus. The dependence of the density of target mass and incident energy is also analysed. (orig.)

  20. The studies of radiation distorations in CdS single crystals by using a proton back-scattering method

    International Nuclear Information System (INIS)

    Grigor'ev, A.N.; Dikij, N.P.; Matyash, P.P.; Nikolajchuk, L.I.; Pivovar, L.I.

    1974-01-01

    The radiation defects in semiconducting CdS single crystals induced during doping with 140 keV Na ions (10 15 -2.10 16 ion/cm 2 ) were studied by the orientation dependence of 700 keV proton backscattering. The absence of discrete peaks in the scattered proton eneryg spectra indicates a small contribution of direct scattering at large angles. The defects formed during doping increase the fractionof dechanneled particles, which are then scattered at large anlges. No amorphization of CdS was observed at high Na ion dose 2x10 16 ion/cm 2

  1. Neutron and proton optical potentials

    International Nuclear Information System (INIS)

    Hansen, L.F.

    1985-11-01

    The neutron and proton optical model potentials (OMP) are discussed in terms of microscopic (MOMP) and phenomenological (POMP) models. For the MOMP, two approaches are discussed, the nucleus matter approach [Jeukenne-Lejeune-Mahaux (JLM) and Brieva-Rook-von Geramb (BRVG), potentials] and the finite nuclei approach (Osterfeld and Madsen). For the POMP, the Lane charge-exchange potential and its validity over a wide mass range is reviewed. In addition to the Lane symmetry term, the Coulomb correction to both the real and imaginary parts of the OMP is discussed for the above models. The use of the OMP to calculate collective inelastic scattering and observed differences between the neutron- and proton-deformation parameters is also illustrated. 25 refs., 3 figs

  2. Study of Hadron Production in Hadron-Nucleus and Nucleus-Nucleus Collisions at the CERN SPS

    CERN Multimedia

    Klochkov, V; Herve, A E; Kowalski, S; Kaptur, E A; Kowalik, K L; Dominik, W M; Matulewicz, T N; Krasnoperov, A; Feofilov, G; Vinogradov, L; Kovalenko, V; Johnson, S R; Planeta, R J; Rubbia, A; Marton, K; Messerly, B A; Puzovic, J; Bogomilov, M V; Bravar, A; Renfordt, R A E; Deveaux, M; Engel, R R; Grzeszczuk, A; Davis, N; Kuich, M; Lyubushkin, V; Kondratev, V; Kadija, K; Diakonos, F; Slodkowski, M A; Rauch, W H; Pistillo, C; Laszlo, A; Nakadaira, T; Hasegawa, T; Sadovskiy, A; Morozov, S; Petukhov, O; Mathes, H; Roehrich, D; Marcinek, A J; Marino, A D; Grebieszkow, K; Di luise, S; Wlodarczyk, Z; Rybczynski, M A; Wojtaszek-szwarc, A; Nirkko, M C; Sakashita, K; Golubeva, M; Kurepin, A; Manic, D; Kolev, D I; Kisiel, J E; Koziel, M E; Rondio, E; Larsen, D T; Czopowicz, T R; Seyboth, P; Turko, L; Guber, F; Marin, V; Busygina, O; Strikhanov, M; Taranenko, A; Cirkovic, M; Roth, M A; Pulawski, S M; Aduszkiewicz, A M; Bunyatov, S; Vechernin, V; Nagai, Y; Anticic, T; Dynowski, K M; Mackowiak-pawlowska, M K; Stefanek, G; Pavin, M; Fodor, Z P; Nishikawa, K; Tada, M; Blondel, A P P; Stroebele, H W; Posiadala, M Z; Kolesnikov, V; Andronov, E; Zimmerman, E D; Antoniou, N; Majka, Z; Dumarchez, J; Naskret, M; Ivashkin, A; Tsenov, R V; Koziel, M G; Schmidt, K J; Melkumov, G; Popov, B; Panagiotou, A; Richter-was, E M; Morgala, S J; Paolone, V; Damyanova, A; Gazdzicki, M; Unger, M T; Wilczek, A G; Stepaniak, J M; Seryakov, A; Susa, T; Staszel, P P; Brzychczyk, J; Maksiak, B; Tefelski, D B

    2007-01-01

    The NA61/SHINE (SHINE = SPS Heavy Ion and Neutrino Experiment) experiment is a large acceptance hadron spectrometer at the CERN SPS for the study of the hadronic final states produced in interactions of various beam particles (pions, protons, C, S and In) with a variety of fixed targets at the SPS energies. The main components of the current detector were constructed and used by the NA49 experiment. The physics program of NA61/SHINE consists of three main subjects. In the first stage of data taking (2007-2009) measurements of hadron production in hadron-nucleus interactions needed for neutrino (T2K) and cosmic-ray (Pierre Auger and KASCADE) experiments will be performed. In the second stage (2009-2011) hadron production in proton-proton and proton-nucleus interactions needed as reference data for a better understanding of nucleus-nucleus reactions will be studied. In the third stage (2009-2013) energy dependence of hadron production properties will be measured in nucleus-nucleus collisions as well as in p+p a...

  3. Nucleon-nucleus scattering: a microscopic nonrelativistic approach

    International Nuclear Information System (INIS)

    Amos, K.; Dortmans, H.V.; Raynal, J.

    1998-01-01

    The authors are reviewing the nucleon based microscopic theory of nucleon-nucleus (NA) scattering and its applications taking in consideration the developments that have occurred within the last decade. The review comprises 12 Chapters. The first is a brief outline of some formal aspects of the nuclear optical potential and the scattering theory by which it is related to NN scattering amplitudes, t matrices and g matrices. Then follows a presentation of the momentum space NA optical potential formed by the folding of NN t- and g matrices with nuclear densities. Applications are discussed with the examples taken from the works of Elster et al. and of Arellano et al. A folding model defining the optical potential in coordinate space is then considered. That model presupposes an effective NN interaction to be comprised of density and energy dependent central, tensor, and two-body spin-orbit terms. Such effective interactions are basic for the computer codes DWBA91 and DWBA98 that are the current technology to calculate and use microscopic non-local coordinate space optical potentials. Thus in Chapter 4, we present the helicity formalism, the multipole expansions of the effective interactions, and the particle-hole matrix elements that underlay calculations made with those programs. A key feature of both the momentum and coordinate space formulations of the NA optical potentials are the NN t- and g matrices. Details of those are given in Chapter 5 and 6 respectively. Therein the on- and off-shell properties of the t- and g matrices from realistic bosom exchange potentials, as well as from potentials determined by inversion of phase shift data, are discussed. To form the coordinate space NA optical potentials requites the effective interaction in coordinate space. Thus a parametrisation scheme is needed to specify such front t- and g matrices. A scheme that has proven useful is then discussed. In fact, the effective interactions that result, when folded with nuclear

  4. Proton-proton elastic scattering at the LHC energy of $\\sqrt{s}$ = 7 TeV

    OpenAIRE

    Antchev, G.; Aspell, P.; Atanassov, I.; Avati, V.; Baechler, J.; Berardi, V.; Berretti, M.; Bozzo, M.; Brucken, E.; Buzzo, A.; Cafagna, F.S.; Calicchio, M.; Catanesi, M.G.; Covault, C.; Csanad, M.

    2011-01-01

    Proton-proton elastic scattering has been measured by the TOTEM experiment at the CERN Large Hadron Collider at √ s = 7 TeV in dedicated runs with the Roman Pot detectors placed as close as seven times the transverse beam size (σbeam) from the outgoing beams. After careful study of the accelerator optics and the detector alignment, |t| , the square of four-momentum transferred in the elastic scattering process, has been determined with an uncertainty of δ t = 0.1 GeV √ |t|. In this letter the...

  5. Parity Violation in Elastic Electron-Proton Scattering and the Proton's Strange Magnetic Form Factor

    International Nuclear Information System (INIS)

    Spayde, D. T.; Averett, T.; Barkhuff, D.; Beck, D. H.; Beise, E. J.; Benson, C.; Breuer, H.; Carr, R.; Covrig, S.; DelCorso, J.

    2000-01-01

    We report a new measurement of the parity-violating asymmetry in elastic electron scattering from the proton at backward scattering angles. This asymmetry is sensitive to the strange magnetic form factor of the proton as well as electroweak axial radiative corrections. The new measurement of A=-4.92±0.61±0.73 ppm provides a significant constraint on these quantities. The implications for the strange magnetic form factor are discussed in the context of theoretical estimates for the axial corrections. (c) 2000 The American Physical Society

  6. Core polarisation and configuration mixing in 58Ni studied by high resolution electron scattering

    International Nuclear Information System (INIS)

    Blok, H.

    1986-01-01

    The nucleus 58 Ni is studied by inelastic electron-scattering. This nucleus has two valence neutrons outside a closed 58 Ni core which implies that no valence protons contribute to the transitions and thus, besides configuration mixing of the valence neutrons, proton-core polarization can be studied in detail. From inelastic electron-scattering data one obtains the charge- and current-transition densities by determining the Fourier-Bessel transform of the cross sections measured over a wide range of linear momenta transferred to the nucleus. The results of an analysis of the excitation of two 0 ++ states at low-momentum transfer are presented. These transitions are particularly interesting for studying core-polarization contributions. (Auth.)

  7. Observation of events with a large rapidity gap in deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.

    1993-07-01

    In deep inelastic, neutral current scattering of electrons and protons at √s=296 GeV, we observe in the ZEUS detector events with a large rapidity gap in the hadronic final state. They occur in the region of small Bjorken x and are observed up to Q 2 of 100 GeV 2 . They account for about 5% of the events with Q 2 ≥10 GeV 2 . Their general properties are inconsistent with the dominant mechanism of deep inelastic scattering, where color is transferred between the scattered quark and the proton remnant, and suggest that the underlying production mechanism is the diffractive dissociation of the virtual photon. (orig.)

  8. Phenomenology of the proton and the nucleus through hard processes in quantum chromodynamics

    International Nuclear Information System (INIS)

    Gousset, T.

    2005-01-01

    My scientific domain is the phenomenology of the non-perturbative quantum chromodynamics (QCD). In the introduction I quickly present the history of QCD since its establishing in the seventies. The first chapter is dedicated to the achievements of the last decade concerning first the hard electroproduction at low impulse transfer in electron-proton reactions and secondly the search for the quark-gluon plasma in ultra-relativistic heavy ion reactions with the help of hard probes. In the second chapter I detail the hard electroproduction reactions with the aim of explaining their factorization in a sub-process including partons and whose amplitude can be computed in the theory of perturbations. Generalized parton distributions, that describe the transition from hadrons to partons could be useful to get more information on hadronic wave functions. Experimental implications are reviewed. The third chapter is dedicated to the J/ψ production in proton-nucleus collisions. J/ψ and the quarkonium family offer, thanks to their easy identification a useful tool to shed light on different sides of QCD such as the production of heavy quarks or the existence of the quark-gluon plasma. In the last chapter I present my last works that concern first the nuclear effects that appear in proton-nucleus collisions when we want to describe the relationship between the production cross-section of a particle and the value of the transverse momentum of the particle, and secondly the observation through radio-detection of big showers due to the interaction with the atmosphere of an ultra-high energy cosmic ray [fr

  9. Measurement of the analysing power of elastic proton-proton scattering at 582 MeV

    International Nuclear Information System (INIS)

    Berdoz, A.; Favier, B.; Foroughi, F.; Weddigen, C.

    1984-01-01

    The authors have measured the analysing power of elastic proton-proton scattering at 582 MeV for 14 angles from 20 to 80 0 CM. The angular range was limited to >20 0 by the energy loss of the recoil protons. The experiment was performed at the PM1 beam line at SIN. A beam intensity of about 10 8 particles s -1 was used. (Auth.)

  10. DEEPLY INELASTIC SCATTERING OFF NUCLEI AT RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    VENUGOPALAN, R.

    2001-09-14

    In this talk, we discussed the physics case for an eA collider. We emphasized the novel physics that might be studied at small x. The interesting physics at intermediate x's has been discussed elsewhere [3]. Plans for an electron-ion collider include, as a major part of the program, the possibility of doing polarized electron-polarized proton/light ion scattering. A discussion of the combined case for high energy electron nucleus and polarized electron-polarized proton scattering will be published separately [66].

  11. A glimpse of gluons through deeply virtual compton scattering on the proton.

    Science.gov (United States)

    Defurne, M; Jiménez-Argüello, A Martí; Ahmed, Z; Albataineh, H; Allada, K; Aniol, K A; Bellini, V; Benali, M; Boeglin, W; Bertin, P; Brossard, M; Camsonne, A; Canan, M; Chandavar, S; Chen, C; Chen, J-P; de Jager, C W; de Leo, R; Desnault, C; Deur, A; El Fassi, L; Ent, R; Flay, D; Friend, M; Fuchey, E; Frullani, S; Garibaldi, F; Gaskell, D; Giusa, A; Glamazdin, O; Golge, S; Gomez, J; Hansen, O; Higinbotham, D; Holmstrom, T; Horn, T; Huang, J; Huang, M; Hyde, C E; Iqbal, S; Itard, F; Kang, H; Kelleher, A; Keppel, C; Koirala, S; Korover, I; LeRose, J J; Lindgren, R; Long, E; Magne, M; Mammei, J; Margaziotis, D J; Markowitz, P; Mazouz, M; Meddi, F; Meekins, D; Michaels, R; Mihovilovic, M; Camacho, C Muñoz; Nadel-Turonski, P; Nuruzzaman, N; Paremuzyan, R; Puckett, A; Punjabi, V; Qiang, Y; Rakhman, A; Rashad, M N H; Riordan, S; Roche, J; Russo, G; Sabatié, F; Saenboonruang, K; Saha, A; Sawatzky, B; Selvy, L; Shahinyan, A; Sirca, S; Solvignon, P; Sperduto, M L; Subedi, R; Sulkosky, V; Sutera, C; Tobias, W A; Urciuoli, G M; Wang, D; Wojtsekhowski, B; Yao, H; Ye, Z; Zhan, X; Zhang, J; Zhao, B; Zhao, Z; Zheng, X; Zhu, P

    2017-11-10

    The internal structure of nucleons (protons and neutrons) remains one of the greatest outstanding problems in modern nuclear physics. By scattering high-energy electrons off a proton we are able to resolve its fundamental constituents and probe their momenta and positions. Here we investigate the dynamics of quarks and gluons inside nucleons using deeply virtual Compton scattering (DVCS)-a highly virtual photon scatters off the proton, which subsequently radiates a photon. DVCS interferes with the Bethe-Heitler (BH) process, where the photon is emitted by the electron rather than the proton. We report herein the full determination of the BH-DVCS interference by exploiting the distinct energy dependences of the DVCS and BH amplitudes. In the regime where the scattering is expected to occur off a single quark, measurements show an intriguing sensitivity to gluons, the carriers of the strong interaction.

  12. Studying the proton 'radius' puzzle with μp elastic scattering

    International Nuclear Information System (INIS)

    Gilman, R.

    2013-01-01

    The disagreement between the proton radius determined from muonic hydrogen and from electronic measurements is called the proton radius puzzle. The resolution of the puzzle remains unclear and appears to require new experimental results. An experiment to measure muon-proton elastic scattering is presented here

  13. Nuclear surface diffuseness revealed in nucleon-nucleus diffraction

    Science.gov (United States)

    Hatakeyama, S.; Horiuchi, W.; Kohama, A.

    2018-05-01

    The nuclear surface provides useful information on nuclear radius, nuclear structure, as well as properties of nuclear matter. We discuss the relationship between the nuclear surface diffuseness and elastic scattering differential cross section at the first diffraction peak of high-energy nucleon-nucleus scattering as an efficient tool in order to extract the nuclear surface information from limited experimental data involving short-lived unstable nuclei. The high-energy reaction is described by a reliable microscopic reaction theory, the Glauber model. Extending the idea of the black sphere model, we find one-to-one correspondence between the nuclear bulk structure information and proton-nucleus elastic scattering diffraction peak. This implies that we can extract both the nuclear radius and diffuseness simultaneously, using the position of the first diffraction peak and its magnitude of the elastic scattering differential cross section. We confirm the reliability of this approach by using realistic density distributions obtained by a mean-field model.

  14. ELECTRON SCATTERING EXPERIMENTS ON THE NEUTRON AND PROTON

    Energy Technology Data Exchange (ETDEWEB)

    Berkelman, Karl

    1963-06-15

    The electric and magnetic helicity form factors of the proton are measured at 4-momentum transfers (squared) of 25 to 45 f/sup -2/, by means of electron scattering by protons at high energies. The results are combined with other e/sup -/--p and e/sup -/--d experimental findings in order to show the proton form fuctors from 0 to 45 f/sup -2/ and the neutron form factors from 0 to 25 f/sup -2/. (T.F.H.)

  15. Proton scattering on unstable nuclei: study of 40S(p,p') and 43Ar(p,p') reactions, development of detection system MUST

    International Nuclear Information System (INIS)

    Marechal, F.

    1998-01-01

    We measured for the first time the elastic and inelastic proton scattering on the 40 S unstable nucleus. The experiment was performed in inverse kinematics at the NSCL AT Michigan State University with a 40 S secondary beam bombarding a CH 2 target at 30 MeV/A. We obtained the elastic scattering angular distribution and two points of the inelastic distribution to the first 2 + excited state found to be located at 860±90 KeV. With a coupled channel analysis, the β 2 quadrupolar deformation parameter is found to be equal to 0.35±0.05. This value can be compared to 0.28±0.02 obtained by coulomb excitation. A macroscopic analysis allowed us to extract the neutron and proton transition matrix element ratio M n /M p which is equal to 1.88±0.38. This value, greater than N/Z, could indicate an isovector effect in the first 2 + state excitation which could be due to a difference between the neutron and proton vibrations. The microscopic analysis gives the possibility to test the densities and the transition densities to the first 2 + state. The calculated densities for the 40 S nucleus show a neutron skin. However the microscopic analysis yields a M n /M p ratio of 1.40±0.20. A similar elastic and inelastic proton scattering experiment allowed us to get a deformation parameter of 0.25±0.03 for the 43 Ar nucleus. To develop the study of direct reactions induced by radioactive beams at GANIL, we have developed and built, in collaboration with the CEA-Saclay and the CEA-Bruyeres, the new detector MUST.It is based on the silicon strip technology, and is dedicated to the measurement of recoiling light particles emitted in these reactions. The results obtained with a 40 Ar beam at 77 Me V/A, have shown the good performances of the detector for the particle identification as well as for the resolutions, and allow us to consider now a large experimental programme concerning these direct reactions induced by radioactive beams. These tests allowed us to establish a reference

  16. Stopping power measurements with 17-GeV/c protons at the AGS or inclusive proton spectra from proton-nucleus interactions at 17 GeV/c

    International Nuclear Information System (INIS)

    Remsberg, L.P.; Barton, D.S.; Bunce, G.

    1984-01-01

    The problem of nuclear stopping power and its importance to the study of nucleus-nucleus collisions at very high energies was brought to general attention one year ago at Quark Matter 83 by Busza and Goldhaber. In this context, nuclear stopping power can be thought of as the rate of energy (or rapidity) loss of a proton traversing nuclear matter. It does not directly address the important question of energy deposition. Busza and Goldhaber showed that knowledge of nuclear stopping power is needed to estimate the minimum center-of-mass energy required in nucleus-nucleus collisions to ensure the production of very high temperatures at low baryon density. At cm energies of about 1 to 10 GeV/A, the stopping power is important in the estimation of the maximum baryon densities attainable in nucleus-nucleus collisions. The data presented are more relevant to this latter point

  17. Theoretically unprejudiced fits to proton scattering

    International Nuclear Information System (INIS)

    Kobos, A.M.; Mackintosh, R.S.

    1979-01-01

    By using a spline interpolation method applied to all components of the proton optical potential we have fitted elastic scattering from 40 Ca and from 16 O at a range of energies. The potentials are highly oscillatory and we have shown that similar oscillations are found when the spline fitting procedure is applied to pseudo-data generated from potentials of known l-dependence. Moreover, we show how to find an l-independent potential equivalent to one that is l-dependent and we find that it is oscillatory and that various characteristic features of empirical spline fit potentials can be explained. Thus, by fitting the data with model indenpendt l-independent potentials we have found support for the contention that the nucleon optical potential should be viewed as being l-dependent. This work may be regarded as an example of the kind of physical information that can be gained by pursuing exact fits to proton elastic scattering data

  18. Intermediate energy proton scattering from 10B

    International Nuclear Information System (INIS)

    Lewis, P.R.; Shute, G.G.; Spicer, R.S.; Henderson, R.S.

    1990-01-01

    Differential cross sections have been measured for 200 MeV proton scattering from 10 B. Data for six low lying natural parity levels below 6 MeV excitation energy are presented. Distorted wave analysis using a density dependent nucleon-nucleon interaction has assessed model spectroscopies of these excited states. The significance of the contribution from quadrupole scattering to the elastic cross section is discussed. 49 refs., 5 tabs., 21 figs

  19. A Study of High Transverse Energy Events in Proton Proton and Proton - Nucleus Collisions at $\\sqrt{s}$ = 27.4-GeV.

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, Richard Scott [Maryland U.

    1985-01-01

    Experiments intended to provide information on the constituents of particles such as protons achieve their probes of very small distances by studying events in which a large momentum transfer takes place. Because partons (quarks and gluons) seem to be confined inside composite particles, it is not possible to observe directly the outcome of a hard parton-parton scatter. Instead, one expects the reaction products to materialize as ordinary particles travelling approximately in the original parton direction, with large momentum components in the plane transverse to the direction of the incoming projectile....

  20. Highlights of electron-proton deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Feltesse, J.

    1996-02-01

    Salient results on deep inelastic scattering from the H1 and ZEUS collaborations are reviewed. These include preliminary measurements of the proton structure function F 2 extending to new regimes at both high Q 2 and low Q 2 and x, studies of the hadronic final states and discussion on QCD interpretations of low x data. New determination of α s from jet rates in deep inelastic scattering based on 1994 data are presented. A consistent picture of the gluon density in the proton at low x from a variety of processes is obtained. (author)

  1. Why the Real Part of the Proton-Proton Forward Scattering Amplitude Should be Measured at the LHC

    CERN Document Server

    Bourrely, C.; Martin, Andre; Soffer, Jacques; Wu, Tai Tsun

    2006-01-01

    For the energy of 14 TeV, to be reached at the Large Hadron Collider (LHC), we have had for some time accurate predictions for both the real and imaginary parts of the forward proton-proton elastic scattering amplitude. LHC is now scheduled to start operating in two years, and it is timely to discuss some of the important consequences of the measurements of both the total cross-section and the ratio of the real to the imaginary part. We stress the importance of measuring the real part of the proton-proton forward scattering amplitude at LHC, because a deviation from existing theoretical predictions could be a strong sign for new physics.

  2. Proton resonance elastic scattering of $^{30}$Mg for single particle structure of $^{31}$Mg

    CERN Multimedia

    The single particle structure of $^{31}$Mg, which is located in the so-called “island of inversion”, will be studied through measuring Isobaric Analog Resonances (IARs) of bound states of $^{31}$Mg. They are located in the high excitation energy of $^{31}$Al. We are going to determine the spectroscopic factors and angular momenta of the parent states by measuring the excitation function of the proton resonance elastic scattering around 0 degrees in the laboratory frame with around 3 MeV/nucleon $^{30}$Mg beam. The present study will reveal the shell evolution around $^{32}$Mg. In addition, the spectroscopic factor of the (7/2)$^{−}$ state which was not yet determined experimentally, may allow one to study the shape coexistence in this nucleus.

  3. Measurement of the diffractive structure function of the proton in deep inelastic ep scattering with the ZEUS detector

    International Nuclear Information System (INIS)

    Doeker, T.

    1995-10-01

    The analysis of deep inelastic scattering events at the ep collider HERA at DESY has shown that in about 7% of the recorded events a large rapidity gap of at least 3 units is observed between the proton direction and the observed hadronic system. The observation can be understood in terms of soft photon-hadron reactions, where the hadronic final state is interpreted as arising from the dissociation of a virtual photon in the field of a diffractively scattered proton. The cross section of this process can be expressed in terms of the diffractive structure function of the proton. Here a measurement with the ZEUS detector is presented of the diffractive structure function of the proton as a function of x IP , the momentum fraction lost by the proton, of β, the momentum fraction of the struck constituent with respect to x IP , and of Q 2 , the virtuality of the exchanged photon. The kinematic range of this measurement is 6.3.10 -4 IP -2 , 0.1 2 2 2 . The x IP dependence is consistent with the form (1/x IP ) a where a=1.30±0.08(stat) -0.14 +0.08 (sys) in all bins of β and Q 2 . The diffractive structure function scales with Q 2 at fixed β. The results are compared with theoretical predictions of diffractive dissociation in deep inelastic scattering. (orig.)

  4. Proton-nucleus interactions at 640 MeV accompanied by backward emission of energetic protons

    International Nuclear Information System (INIS)

    Komarov, V.I.; Kosarev, E.G.; Mueller, H.; Netzband, D.; Toneev, V.D.; Stiehler, T.; Tesch, S.; Gudima, K.K.; Mashnik, S.G.

    1979-03-01

    Spectra of protons of energies between 50 and 145 MeV emitted from carbon have been measured at angles from 105 0 to 160 0 with respect to the 640 MeV proton beam. The measurements have been carried out both inclusively and in coincidence with protons emitted at forward angles up to +- 40 0 with energies from 255 to 330 MeV. This energy interval has been chosen in accordance with the kinematics of quasifree scattering on two-nucleon groups. Inclusive differential cross sections at 140 0 and coincidence cross sections at the angle pair (-12 0 , 122 0 ) have also been measured with Be, Al, Cu and Pb targets. The data have been compared with the predictions of several models. (author)

  5. Elastic and inelastic scattering of 2 to 10 MeV protons by lithium isotopes

    International Nuclear Information System (INIS)

    Laurat, M.

    1969-01-01

    A description is given of the experimental set-up which has been devised for carrying out spectrometric and absolute cross-section measurements on the reactions induced by protons accelerated in a 12 MeV Van de Graaff Tandem. The particles are detected by silicon junctions; the weight of the targets (about ten μg/cm 2 ) is determined by the quartz method. The experimental equipment has been controlled by a study of proton scattering by lithium-6, and has made it possible to evaluate the elastic and inelastic scattering (1. level excitation) by lithium 7 of 2 to 9 MeV protons. The most probable spin and parity values for the six levels of 8 Be between 19 and 25 MeV excitation energy have been determined from a knowledge of the observed structure. (author) [fr

  6. Excitations of one-valence-proton, one-valence-neutron nucleus {sup 210}Bi from cold-neutron capture

    Energy Technology Data Exchange (ETDEWEB)

    Cieplicka-Oryńczak, N. [INFN sezione di Milano, Via Celoria 16, 20133 Milano (Italy); Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków (Poland); Fornal, B.; Szpak, B. [Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków (Poland); Leoni, S.; Bottoni, S. [INFN sezione di Milano, Via Celoria 16, 20133 Milano (Italy); Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); Bazzacco, D. [Dipartimento di Fisica e Astronomia dell’Università, I-35131 Padova (Italy); INFN Sezione di Padova, I-35131 Padova (Italy); Blanc, A.; Jentschel, M.; Köster, U.; Mutti, P.; Soldner, T. [Institute Laue-Langevin, 6, rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Bocchi, G. [Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); France, G. de [GANIL, Bd. Becquerel, BP 55027, 14076 CAEN Cedex 05 (France); Simpson, G. [LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, F-38026 Grenoble Cedex (France); Ur, C. [INFN Sezione di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); Urban, W. [Faculty of Physics, University of Warsaw, ul. Hoża 69, 02-681, Warszawa (Poland)

    2015-10-15

    The low-spin structure of one-proton, one-neutron {sup 210}Bi nucleus was investigated in cold-neutron capture reaction on {sup 209}Bi. The γ-coincidence measurements were performed with use of EXILL array consisted of 16 HPGe detectors. The experimental results were compared to shell-model calculations involving valence particles excitations. The {sup 210}Bi nucleus offers the potential to test the effective proton-neutron interactions because most of the states should arise from the proton-neutron excitations. Additionally, it was discovered that a few states should come from the couplings of valence particles to the 3{sup −} octupole vibration in {sup 208}Pb which provides also the possibility of testing the calculations involving the core excitations.

  7. Two-proton energy spectra of 12O nucleus

    International Nuclear Information System (INIS)

    Teruya, N.

    2010-01-01

    Full text: The two-proton radioactivity has attracted stimulating discussion concerning the competing mechanisms for the decay process. Some nuclei (like 45 Fe, 41 Ni and 54 Zn are considered as genuine ground-state two-proton emitter because the only possibility is the simultaneous channel, but others nuclei (as 12 O) can also have the sequential decay, in this case, the energy levels of the intermediary one-proton emitter nuclei plays an important role to the competition with the simultaneous decay mode. In this work we have calculated the energy spectra of 12 O, including ground state and excited states up to 5 MeV of energy, and the two-proton energy difference spectrum for the ground state decay. Our preliminary results estimates the energy peak and width of resonant excited states and contributions of simultaneous and sequential channels for ground state decay. The calculation method is based on the statistical analysis for two-proton decaying modes presented in previous work. For events generated by sequential channels, the energy levels of intermediary 11 N nucleus can dominate the first proton emission, depending on the proximity between the ground states of both nuclei, 11 N and 12 O , in particular, if the ground state of 11 N is broad and its energy is far away from that of 12 O, the sequential decay occurs via the tail of the ground state of 11 O. The decay of 12 O resonant ground state and higher energy excited resonances are investigated through the analysis of the experimental data for the two-proton emission process. The two proton decay spectra have been considered in a statistical calculation framework, by using the decay energy distribution and taken into account the intermediate states of 11 N resonant structures for the sequential channels. For simultaneous decay channel we construct a symmetric distribution similarly to Goldansky's proposition in Nucl. Phys. A19, 482 (1960). (author)

  8. Measurement of recoil photon polarisation in the electron-proton elastic scattering

    International Nuclear Information System (INIS)

    Buon, Jean

    1965-02-01

    This research thesis reports and discusses an experiment which aimed at checking the validity of the Born approximation at the first order in the elastic scattering of high energy electrons on protons. In this experiment, the recoil proton polarisation is measured in an elastic scattering of electrons with energy of 950 MeV and scattering at about 90 degrees in the mass centre system. The author describes the experimental installation, its operation and data collection, reports the analysis of photos and polarisation calculations and errors [fr

  9. Antiproton-nucleus inelastic scattering and the spin-isospin dependence of the N anti N interaction

    International Nuclear Information System (INIS)

    Dover, C.B.

    1985-01-01

    A general overview of the utility of antinucleon (anti N)-nucleus inelastic scattering studies is presented, emphasizing both the sensitivity of the cross sections to various components of the N anti N transition amplitudes and the prospects for the exploration of some novel aspects of nuclear structure. We start with an examination of the relation between NN and N anti N potentials, focusing on the coherences predicted for the central, spin-orbit and tensor components, and how these may be revealed by measurements of two-body spin observables. We next discuss the role of the nucleus as a spin and isospin filter, and show how, by a judicious choice of final state quantum numbers (natural or unnatural parity states, isospin transfer ΔT=0 or 1) and momentum transfer q, one can isolate different components of the N anti N transition amplitude. Various models for the N anti N interaction which give reasonable fits to the available two-body data are shown to lead to strikingly different predictions for certain spin-flip nuclear transitions. We suggest several possible directions for future anti N-nucleus inelastic scattering experiments at LEAR, for instance the study of spin observables which would be accessible with polarized anti N beams, charge exchange reactions, and higher resolution studies of the (anti p, anti p') reaction. We compare the antinucleon and the nucleon as a probe of nuclear modes of excitation. 34 refs

  10. Spin-isospin excitation of 3He with three-proton final state

    Science.gov (United States)

    Ishikawa, Souichi

    2018-01-01

    Spin-isospin excitation of the {}^3He nucleus by a proton-induced charge exchange reaction, {}^3He(p,n)ppp, at forward neutron scattering angle is studied in a plane wave impulse approximation (PWIA). In PWIA, cross sections of the reaction are written in terms of proton-neutron scattering amplitudes and response functions of the transition from {}3He to the three-proton state by spin-isospin transition operators. The response functions are calculated with realistic nucleon-nucleon potential models using a Faddeev three-body method. Calculated cross sections agree with available experimental data in substance. Possible effects arising from the uncertainty of proton-neutron amplitudes and three-nucleon interactions in the three-proton system are examined.

  11. Description of two-proton radioactivity by the methods of the quantum theory of ternary fission

    International Nuclear Information System (INIS)

    Kadmenskij, S.G.

    2005-01-01

    Two-proton decay of spherical nuclei has been investigated on the base of the formalism of quantum mechanical theory of ternary fission. The suggested method of construction of partial two-proton-decay-width amplitudes and of asymptotics of the decaying nucleus wave functions allows to solve a problem of two-proton radioactivity description without the traditionally used in R-matrix approaches laborious sewing procedure for internal and external parent nucleus wave functions in three-body scheme. In the frame of diagonal approximation, the wave-function structure for Cooper pair of two emitted protons in parent nucleus was analyzed as well as the behavior of the wave function describing potential scattering of two-proton-decay products with taking into account decay channel coupling and properties of interaction potentials between these products [ru

  12. A study of the internal spin structure of the proton through polarized deep inelastic muon-proton scattering

    International Nuclear Information System (INIS)

    Piegaia, R.N.

    1988-01-01

    This thesis presents a study of the internal spin structure of the proton through the measurement performed by the European Muon Collaboration, EMC, at the European Center for Nuclear Research, CERN, of the spin asymmetry in the deep-inelastic scattering of longitudinally polarized muons by longitudinally polarized protons. The data obtained considerably extend the kinematic range covered by a previous lower-energy polarized electron-proton scattering experiment. Although the results were found to be in agreement in the region of overlap, the study of the low x range (0.01 1 p was computed and found to be in disagreement with the Ellis-Jaffe sum rule. The result seems to indicate that only a small fraction of the proton spin originates from the spins of the quarks

  13. Observation of top quark production in proton-nucleus collisions

    CERN Document Server

    INSPIRE-00507411

    2017-01-01

    The multi-TeV energies available at LHC have opened up the possibility to measure, for the first time, various large-mass elementary particles in nuclear collisions. The current study presents the first observation of top quark--the heaviest elementary particle in the standard model--using proton-lead collisions. The measurement is based on a data set whose integrated luminosity amounts to 174~nb$^{-1}$, as recorded by CMS at a center-of-mass energy per nucleon pair of 8.16 TeV. The pair production process is measured using events with exactly one isolated lepton, electron or muon, and at least four jets, leading to a cross section of $45\\pm8\\ \\rm{nb}$. This is well compatible with theoretical predictions from perturbative quantum chromodynamics at next-to-next-to-leading order with soft gluon resummation at next-to-next-to-leading logarithmic accuracy. The statistical significance of the signal against the background-only hypothesis is above five standard deviations.

  14. Experimental evidence for dual diffractive resonances in nucleon-nucleus scattering

    International Nuclear Information System (INIS)

    Ion, D.B.; Ion-Mihai, R.

    1981-09-01

    Experimental data on nucleon-nucleus scattering for laboratory momenta between 0.9:10 GeV/c are analysed in terms of the dual diffractive resonance (DDR) mechanism. The experimental data for all the nuclei are found to agree well with the predictions of the collective DDR states dominance. (authors)

  15. Inelastic magnetic electron scattering form factors of the 26 Mg nucleus

    Indian Academy of Sciences (India)

    Magnetic electron scattering (3) form factors with core polarization effects, ... to 3+ states of the 26Mg nucleus have been studied using shell model calculations. ... The wave functions of the radial single-particle matrix elements have been ...

  16. The Proton Coulomb Form Factor from Polarized Inclusive e-p Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Christopher Matthew [Univ. of Virginia, Charlottesville, VA (United States)

    2001-05-01

    The proton form factors provide information on the fundamental properties of the proton and provide a test for models based on QCD. In 1998 at Jefferson Lab (JLAB) in Newport News, VA, experiment E93026 measured the inclusive e-p scattering cross section from a polarized ammonia (15NH3) target at a four momentum transfer squared of Q2 = 0.5 (GeV/c)2. Longitudinally polarized electrons were scattered from the polarized target and the scattered electron was detected. Data has been analyzed to obtain the asymmetry from elastically scattered electrons from hydrogen in 15NH3. The asymmetry, Ap, has been used to determine the proton elastic form factor GEp. The result is consistent with the dipole model and data from previous experiments. However, due to the choice of kinematics, the uncertainty in the measurement is large.

  17. Diffractive Deep-Inelastic Scattering with a Leading Proton at HERA

    OpenAIRE

    Aktas, A.; Andreev, V.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Baumgartner, S.

    2006-01-01

    The cross section for the diffractive deep-inelastic scattering process $ep \\to e X p$ is measured, with the leading final state proton detected in the H1 Forward Proton Spectrometer. The data analysed cover the range \\xpom

  18. Experimental studies of nucleon-nucleon and pion-nucleus interactions at intermediate energies

    International Nuclear Information System (INIS)

    1990-01-01

    This report summarizes the work on experimental research in intermediate energy nuclear and particle physics carried out by New Mexico State University in 1988--91. Most of these studies have involved investigations of neutron-proton and pion-nucleus interactions. The neutron-proton research is part of a program of studies of interactions between polarized nucleons that we have been involved with for more than ten years. Its purpose has been to help complete the determination of the full set of ten complex nucleon-nucleon amplitudes at energies up to 800 MeV, as well as to continue investigating the possibility of the existence of dibaryon resonances. The give complex isospin-one amplitudes have been fairly well determined, partly as a result of this work. Our work in this period has involved measurements and analysis of data on elastic scattering and total cross sections for polarized neutrons on polarized protons. The pion-nucleus research continues our studies of this interaction in regions where it has not been well explored. One set of experiments includes studies of pion elastic and double-charge-exchange scattering at energies between 300 and 550 MeV, where our data is unique. Another involves elastic and single-charge-exchange scattering of pions from polarized nuclear targets, a new field of research which will give the first extensive set of information on spin-dependent pion-nucleus amplitudes. Still another involves the first set of detailed studies of the kinematic correlations among particles emitted following pion absorption in nuclei

  19. Proton nuclear scattering radiography

    International Nuclear Information System (INIS)

    Duchazeaubeneix, J.C.; Faivre, J.C.; Garreta, D.

    1982-10-01

    Nuclear scattering of protons allows to radiograph objects with specific properties: direct 3- dimensional radiography, different information as compared to X-ray technique, hydrogen radiography. Furthermore, it is a well adapted method to gating techniques allowing the radiography of fast periodic moving systems. Results obtained on different objects (light and heavy materials) are shown and discussed. The dose delivery is compatible with clinical use, but at the moment, the irradiation time is too long between 1 and 4 hours. Perspectives to make the radiography faster and to get a practical method are discussed

  20. Observation of events with an energetic forward neutron in deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.

    1996-05-01

    In deep inelastic neutral current scattering of positrons and protons at the center of mass energy of 300 GeV, we observe, with the ZEUS detector, events with a high energy neutron produced at very small scattering angles with respect to the proton direction. The events constitute a fixed fraction of the deep inelastic, neutral current event sample independent of Bjorken x and Q 2 in the range 3.10 -4 BJ -3 and 10 2 2 . (orig.)

  1. Experimental search for compression phenomena in fast nucleus--nucleus collisions

    International Nuclear Information System (INIS)

    Schopper, E.; Baumgardt, H.G.; Obst, E.

    1977-01-01

    The occurrence of compression phenomena and shock waves, connected with the increase of the density of the nuclear matter during the interpenetration of two fast nuclei, are discussed. Current experiments dealing with this problem are reviewed. Before considering the mechanism of the interpenetration of two fast nuclei it may be useful to look at more simple situations, i.e., proton-proton interactions, then to envelop them with nuclear matter, considering proton-nucleus interactions. Only very general features are described, which may give suggestions for the understanding of the nucleus-nucleus impact

  2. Folding model analysis of the nucleus–nucleus scattering based on ...

    Indian Academy of Sciences (India)

    ... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Pramana – Journal of Physics; Volume 87; Issue 6. Folding model analysis of the nucleus–nucleus scattering based on Jacobi coordinates. F PAKDEL A A RAJABI L NICKHAH. Regular Volume 87 Issue 6 December 2016 Article ID 90 ...

  3. Vector analyzing power in elastic electron-proton scattering

    International Nuclear Information System (INIS)

    Diaconescu, L.; Ramsey-Musolf, M.J.

    2004-01-01

    We compute the vector analyzing power (VAP) for the elastic scattering of transversely polarized electrons from protons at low energies using an effective theory of electrons, protons, and photons. We study all contributions through second order in E/M, where E and M are the electron energy and nucleon mass, respectively. The leading-order VAP arises from the imaginary part of the interference of one- and two-photon exchange amplitudes. Subleading contributions are generated by the nucleon magnetic moment and charge radius as well as recoil corrections to the leading-order amplitude. Working to O(E/M) 2 , we obtain a prediction for A n that is free of unknown parameters and that agrees with the recent measurement of the VAP in backward angle ep scattering

  4. Constraints on the double-parton scattering cross section from same-sign W boson pair production in proton-proton collisions at √{s}=8 TeV

    Science.gov (United States)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Grossmann, J.; Hrubec, J.; Jeitler, M.; König, A.; Krammer, N.; Krätschmer, I.; Liko, D.; Madlener, T.; Mikulec, I.; Pree, E.; Rabady, D.; Rad, N.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Spanring, M.; Spitzbart, D.; Waltenberger, W.; Wittmann, J.; Wulz, C.-E.; Zarucki, M.; Chekhovsky, V.; Mossolov, V.; Suarez Gonzalez, J.; De Wolf, E. A.; Di Croce, D.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; De Bruyn, I.; De Clercq, J.; Deroover, K.; Flouris, G.; Lontkovskyi, D.; Lowette, S.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Beghin, D.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Dorney, B.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Roskas, C.; Salva, S.; Tytgat, M.; Verbeke, W.; Zaganidis, N.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caputo, C.; Caudron, A.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Jafari, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Coelho, E.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Melo De Almeida, M.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Misheva, M.; Rodozov, M.; Shopova, M.; Sultanov, G.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Gao, X.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Jiang, C. H.; Leggat, D.; Liao, H.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Yazgan, E.; Zhang, H.; Zhang, S.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Courbon, B.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Starodumov, A.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Assran, Y.; Mahmoud, M. A.; Mahrous, A.; Dewanjee, R. K.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominen, E.; Tuominiemi, J.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Faure, J. L.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Negro, G.; Rander, J.; Rosowsky, A.; Sahin, M. Ö.; Titov, M.; Abdulsalam, A.; Amendola, C.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Charlot, C.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Lobanov, A.; Martin Blanco, J.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Stahl Leiton, A. G.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Jansová, M.; Le Bihan, A.-C.; Tonon, N.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Finco, L.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Vander Donckt, M.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Verlage, T.; Zhukov, V.; Albert, A.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Teyssier, D.; Thüer, S.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bermúdez Martínez, A.; Bin Anuar, A. A.; Borras, K.; Botta, V.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Guthoff, M.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Lipka, K.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Raspereza, A.; Roland, B.; Savitskyi, M.; Saxena, P.; Shevchenko, R.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wen, Y.; Wichmann, K.; Wissing, C.; Zenaiev, O.; Bein, S.; Blobel, V.; Centis Vignali, M.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hinzmann, A.; Hoffmann, M.; Karavdina, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Kurz, S.; Lapsien, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sonneveld, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baur, S.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Freund, B.; Friese, R.; Giffels, M.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Karathanasis, G.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Kousouris, K.; Evangelou, I.; Foudas, C.; Kokkas, P.; Mallios, S.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Triantis, F. A.; Csanad, M.; Filipovic, N.; Pasztor, G.; Veres, G. I.; Bencze, G.; Hajdu, C.; Horvath, D.; Hunyadi, Á.; Sikler, F.; Veszpremi, V.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Komaragiri, J. R.; Bahinipati, S.; Bhowmik, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Dhingra, N.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Kumari, P.; Mehta, A.; Singh, J. B.; Walia, G.; Kumar, Ashok; Shah, Aashaq; Bhardwaj, A.; Chauhan, S.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Bhardwaj, R.; Bhattacharya, R.; Bhattacharya, S.; Bhawandeep, U.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhattacharya, S.; Chatterjee, S.; Das, P.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Errico, F.; Fiore, L.; Iaselli, G.; Lezki, S.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Chatterjee, K.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Robutti, E.; Tosi, S.; Benaglia, A.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pauwels, K.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Khan, W. A.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Benettoni, M.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Lujan, P.; Margoni, M.; Pozzobon, N.; Ronchese, P.; Rossin, R.; Simonetto, F.; Torassa, E.; Ventura, S.; Zanetti, M.; Zotto, P.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Ressegotti, M.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Manoni, E.; Mantovani, G.; Mariani, V.; Menichelli, M.; Rossi, A.; Santocchia, A.; Spiga, D.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Borrello, L.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giannini, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Manca, E.; Mandorli, G.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Daci, N.; Del Re, D.; Di Marco, E.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, J.; Lee, S.; Lee, S. W.; Moon, C. S.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Moon, D. H.; Oh, G.; Brochero Cifuentes, J. A.; Goh, J.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Kim, J. S.; Lee, H.; Lee, K.; Nam, K.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Choi, Y.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Reyes-Almanza, R.; Ramirez-Sanchez, G.; Duran-Osuna, M. C.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Rabadan-Trejo, R. I.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pyskir, A.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Galinhas, B.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Seixas, J.; Strong, G.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Baginyan, A.; Golunov, A.; Golutvin, I.; Karjavin, V.; Korenkov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Matveev, V.; Mitsyn, V. V.; Palichik, V.; Perelygin, V.; Shmatov, S.; Smirnov, V.; Voytishin, N.; Yuldashev, B. S.; Zarubin, A.; Zhiltsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Stepennov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Chadeeva, M.; Parygin, P.; Philippov, D.; Polikarpov, S.; Popova, E.; Rusinov, V.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Ershov, A.; Gribushin, A.; Khein, L.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Lukina, O.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Blinov, V.; Shtol, D.; Skovpen, Y.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Barrio Luna, M.; Cerrada, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Moran, D.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Álvarez Fernández, A.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Cuevas, J.; Erice, C.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Vischia, P.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Chazin Quero, B.; Curras, E.; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Baillon, P.; Ball, A. H.; Barney, D.; Bianco, M.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chapon, E.; Chen, Y.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Dobson, M.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fallavollita, F.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gilbert, A.; Gill, K.; Glege, F.; Gulhan, D.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Karacheban, O.; Kieseler, J.; Kirschenmann, H.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Mulders, M.; Neugebauer, H.; Ngadiuba, J.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Selvaggi, M.; Sharma, A.; Silva, P.; Sphicas, P.; Stakia, A.; Steggemann, J.; Stoye, M.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Verweij, M.; Zeuner, W. D.; Bertl, W.; Caminada, L.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Bäni, L.; Berger, P.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Klijnsma, T.; Lustermann, W.; Mangano, B.; Marionneau, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Reichmann, M.; Schönenberger, M.; Shchutska, L.; Tavolaro, V. R.; Theofilatos, K.; Vesterbacka Olsson, M. L.; Wallny, R.; Zhu, D. H.; Aarrestad, T. K.; Amsler, C.; Canelli, M. F.; De Cosa, A.; Del Burgo, R.; Donato, S.; Galloni, C.; Hreus, T.; Kilminster, B.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Seitz, C.; Takahashi, Y.; Zucchetta, A.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Paganis, E.; Psallidas, A.; Steen, A.; Tsai, J. f.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Bakirci, M. N.; Boran, F.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Polatoz, A.; Topakli, H.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Karapinar, G.; Ocalan, K.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Tekten, S.; Yetkin, E. A.; Agaras, M. N.; Atay, S.; Cakir, A.; Cankocak, K.; Grynyov, B.; Levchuk, L.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Davignon, O.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Auzinger, G.; Bainbridge, R.; Borg, J.; Breeze, S.; Buchmuller, O.; Bundock, A.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Elwood, A.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Matsushita, T.; Nash, J.; Nikitenko, A.; Palladino, V.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Shtipliyski, A.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wardle, N.; Winterbottom, D.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Smith, C.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Pazzini, J.; Piperov, S.; Sagir, S.; Syarif, R.; Yu, D.; Band, R.; Brainerd, C.; Breedon, R.; Burns, D.; Calderon De La Barca Sanchez, M.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Stolp, D.; Tos, K.; Tripathi, M.; Wang, Z.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Regnard, S.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Si, W.; Wang, L.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Hashemi, B.; Holzner, A.; Klein, D.; Kole, G.; Krutelyov, V.; Letts, J.; Macneill, I.; Masciovecchio, M.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mullin, S. D.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bendavid, J.; Bornheim, A.; Lawhorn, J. M.; Newman, H. B.; Nguyen, T.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhang, Z.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Mudholkar, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Abdullin, S.; Albrow, M.; Alyari, M.; Apollinari, G.; Apresyan, A.; Apyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Canepa, A.; Cerati, G. B.; Cheung, H. W. K.; Chlebana, F.; Cremonesi, M.; Duarte, J.; Elvira, V. D.; Freeman, J.; Gecse, Z.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Schneider, B.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Rank, D.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Joshi, Y. R.; Linn, S.; Markowitz, P.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Martinez, G.; Perry, T.; Prosper, H.; Saha, A.; Santra, A.; Sharma, V.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Cavanaugh, R.; Chen, X.; Evdokimov, O.; Gerber, C. E.; Hangal, D. A.; Hofman, D. J.; Jung, K.; Kamin, J.; Sandoval Gonzalez, I. D.; Tonjes, M. B.; Trauger, H.; Varelas, N.; Wang, H.; Wu, Z.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Royon, C.; Sanders, S.; Schmitz, E.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Kalafut, S.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Loukas, N.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Higginbotham, S.; Lange, D.; Luo, J.; Marlow, D.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Malik, S.; Norberg, S.; Barker, A.; Barnes, V. E.; Das, S.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Peng, C. C.; Schulte, J. F.; Sun, J.; Wang, F.; Xie, W.; Cheng, T.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Ciesielski, R.; Goulianos, K.; Mesropian, C.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Montalvo, R.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Padeken, K.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Hirosky, R.; Joyce, M.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Wang, Y.; Wolfe, E.; Xia, F.; Harr, R.; Karchin, P. E.; Sturdy, J.; Zaleski, S.; Brodski, M.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Hussain, U.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.

    2018-02-01

    A first search for same-sign WW production via double-parton scattering is performed based on proton-proton collision data at a center-of-mass energy of 8 TeV using dimuon and electron-muon final states. The search is based on the analysis of data corresponding to an integrated luminosity of 19.7 fb-1. No significant excess of events is observed above the expected single-parton scattering yields. A 95% confidence level upper limit of 0.32 pb is set on the inclusive cross section for same-sign WW production via the double-parton scattering process. This upper limit is used to place a 95% confidence level lower limit of 12.2 mb on the effective double-parton cross section parameter, closely related to the transverse distribution of partons in the proton. This limit on the effective cross section is consistent with previous measurements as well as with Monte Carlo event generator predictions.

  5. arXiv Soft photon and two hard jets forward production in proton-nucleus collisions

    CERN Document Server

    Altinoluk, Tolga; Kovner, Alex; Lublinsky, Michael; Petreska, Elena

    2018-04-11

    We calculate the cross section for production of a soft photon and two hard jets in the forward rapidity region in proton-nucleus collisions at high energies. The calculation is performed within the hybrid formalism. The hardness of the final particles is defined with respect to the saturation scale of the nucleus. We consider both the correlation limit of small momentum imbalance and the dilute target limit where the momentum imbalance is of the order of the hardness of the jets. The results depend on the first two transversemomentum-dependent (TMD) gluon distributions of the nucleus.

  6. Possibility of measuring Adler angles in charged current single pion neutrino-nucleus interactions

    Science.gov (United States)

    Sánchez, F.

    2016-05-01

    Uncertainties in modeling neutrino-nucleus interactions are a major contribution to systematic errors in long-baseline neutrino oscillation experiments. Accurate modeling of neutrino interactions requires additional experimental observables such as the Adler angles which carry information about the polarization of the Δ resonance and the interference with nonresonant single pion production. The Adler angles were measured with limited statistics in bubble chamber neutrino experiments as well as in electron-proton scattering experiments. We discuss the viability of measuring these angles in neutrino interactions with nuclei.

  7. Comparison of inclusive particle production in 14.6 GeV/c proton-nucleus collisions with simulation

    International Nuclear Information System (INIS)

    Jaffe, D.E.; Lo, K.H.; Comfort, J.R.; Sivertz, M.

    2006-01-01

    Inclusive charged pion, kaon, proton and deuteron production in 14.6 GeV/c proton-nucleus collisions measured by BNL experiment E802 is compared with results from the GEANT3, GEANT4 and FLUKA simulation packages. The FLUKA package is found to have the best overall agreement

  8. The forward rainbow scattering of low energy protons by a graphene sheet

    Science.gov (United States)

    Ćosić, M.; Petrović, S.; Nešković, N.

    2018-05-01

    This article studies the rainbow scattering of 5-keV protons by the single sheet of free-standing graphene and its possible use as a tool for investigation of the ion-graphene interaction. The proton-graphene interaction potential was constructed by using the Doyle-Turner, ZBL, and Molière proton-carbon interaction potentials. The thermal motion of carbon atoms was included by averaging the potentials according to the Debye model. Proton trajectories were obtained by numerical solution of the corresponding Newton equations of motion. They were used to obtain the mapping of the proton initial positions to their scattering angles. Morphological properties of the introduced mapping including its multiplicity and the rainbow singularities were used to explain important features of the obtained angular distributions of transmitted protons.

  9. Proton-4He elastic scattering at intermediate energies

    International Nuclear Information System (INIS)

    Auger, J.P.; Gillespie, J.; Lombard, R.J.

    1975-12-01

    Differential elastic cross sections and polarizations are calculated in a multiple scattering formalism for proton- 4 He scattering for energies in the range 0.6-24GeV and for momentum transfers up to 4.0fmsup(-1). The calculations include Coulomb and spin effects. Corrections due to target-nucleon overlap and charge exchange are estimated. The results are compared with experimental data [fr

  10. Fine structure in deformed proton emitting nuclei

    International Nuclear Information System (INIS)

    Sonzogni, A. A.; Davids, C. N.; Woods, P. J.; Seweryniak, D.; Carpenter, M. P.; Ressler, J. J.; Schwartz, J.; Uusitalo, J.; Walters, W. B.

    1999-01-01

    In a recent experiment to study the proton radioactivity of the highly deformed 131 Eu nucleus, two proton lines were detected. The higher energy one was assigned to the ground-state to ground-state decay, while the lower energy, to the ground-state to the 2 + state decay. This constitutes the first observation of fine structure in proton radioactivity. With these four measured quantities, proton energies, half-life and branching ratio, it is possible to determine the Nilsson configuration of the ground state of the proton emitting nucleus as well as the 2 + energy and nuclear deformation of the daughter nucleus. These results will be presented and discussed

  11. 1-3 Nuclear In-medium Effects of Strange Particles in Proton-nucleus Collisions

    Institute of Scientific and Technical Information of China (English)

    Feng; Zhaoqing[1

    2014-01-01

    Extraction of the in-medium properties of strange particles from heavy-ion collisions is very complicated, since he nuclear density varies in the evolution of nucleus-nucleus collisions. To avoid the uncertainties of the baryon ensities during the stage of strange particle production, one can investigate proton-nucleus collisions where the uclear density is definite around the saturation density. Dynamics of strange particles produced in the protoninduced uclear the reactions near the threshold energies has been investigated within the Lanzhou quantum olecular dynamics (LQMD) transport model. The in-medium modifications on particle production in densenuclear matter are considered through the corrections to the elementary cross sections via the effective mass and he mean-field potentials[1].

  12. Study of proton radioactivities

    Energy Technology Data Exchange (ETDEWEB)

    Davids, C.N.; Back, B.B.; Henderson, D.J. [and others

    1995-08-01

    About a dozen nuclei are currently known to accomplish their radioactive decay by emitting a proton. These nuclei are situated far from the valley of stability, and mark the very limits of existence for proton-rich nuclei: the proton drip line. A new 39-ms proton radioactivity was observed following the bombardment of a {sup 96}Ru target by a beam of 420-MeV {sup 78}Kr. Using the double-sided Si strip detector implantation system at the FMA, a proton group having an energy of 1.05 MeV was observed, correlated with the implantation of ions having mass 167. The subsequent daughter decay was identified as {sup 166}Os by its characteristic alpha decay, and therefore the proton emitter is assigned to the {sup 167}Ir nucleus. Further analysis showed that a second weak proton group from the same nucleus is present, indicating an isomeric state. Two other proton emitters were discovered recently at the FMA: {sup 171}Au and {sup 185}Bi, which is the heaviest known proton radioactivity. The measured decay energies and half-lives will enable the angular momentum of the emitted protons to be determined, thus providing spectroscopic information on nuclei that are beyond the proton drip line. In addition, the decay energy yields the mass of the nucleus, providing a sensitive test of mass models in this extremely proton-rich region of the chart of the nuclides. Additional searches for proton emitters will be conducted in the future, in order to extend our knowledge of the location of the proton drip line.

  13. Parity nonconservation in proton scattering at higher energies

    International Nuclear Information System (INIS)

    Mischke, R.E.

    1993-01-01

    A parity-nonconservation experiment in the scattering of longitudinally-polarized protons at an incident proton momentum of 6 GeV/c is examined. This experiment indicates a sharp rise with energy of the total cross section correlated with proton helicity that was unexpected. This energy dependence is due to the strong part of the interaction and may indicate the role of a diquark component in the nucleon. New experiments at higher energies are needed to confirm such a model. Future experiment can benefit from an analysis of sources of systematic error that have been encountered in the experiment discussed here

  14. Space-time aspects of hadronic cascading in lepton nucleus scattering

    International Nuclear Information System (INIS)

    Gyulassy, M.; Pluemer, M.

    1989-05-01

    A Monte Carlo model of hadronic cascading in inelastic lepton nucleus scattering is constructed to investigate space-time scenarios consistent with the momentum space description of string models of multiparticle production. The prospects for resolving the ambiguity inherent in the definition of a formation length for composite hadrons are emphasized. 15 refs., 13 figs

  15. Nucleus-nucleus potential with repulsive core and elastic scattering. Part 1. Nucleus-nucleus interaction potential

    International Nuclear Information System (INIS)

    Davidovs'ka, O.Yi.; Denisov, V.Yu.; Nesterov, V.O.

    2010-01-01

    Various approaches for nucleus-nucleus interaction potential evaluation are discussed in details. It is shown that the antisymmetrization of nucleons belonging to different nuclei and the Pauli principle give the essential contribution into the nucleus-nucleus potential at distances, when nuclei are strongly overlapping, and lead to appearance of the repulsive core of nucleus nucleus interaction at small distances between nuclei.

  16. Producing a compound Nucleus via Inelastic Scattering: The 90Zr(alpha,alpha')90Zr* Case

    Energy Technology Data Exchange (ETDEWEB)

    Escher, J E; Dietrich, F S

    2008-05-23

    In a Surrogate reaction a compound nucleus is produced via a direct reaction (pickup, stripping, or inelastic scattering). For a proper application of the Surrogate approach it is necessary to predict the resulting angular momentum and parity distribution in the compound nucleus. A model for determining these distributions is developed for the case of inelastic alpha scattering off a spherical nucleus. The focus is on obtaining a first, simple description of the direct-reaction process that produces the compound nucleus and on providing the basis for a more complete treatment of the problem. The approximations employed in the present description are discussed and the extensions required for a more rigorous treatment of the problem are outlined. To illustrate the formalism, an application to {sup 90}Zr({alpha},{alpha}{prime}){sup 90}Zr* is presented.

  17. The momentum distribution inside nucleus

    International Nuclear Information System (INIS)

    Fujita, T.

    1985-01-01

    Discussions are made on several reactions which can determine the momentum distribution inside nucleus. The first reaction discussed is the high energy heavy ion collision. This reaction involves many nucleons which interact strongly. Therefore, one must be careful for any possible final state interactions. The expression for the single particle momentum distribution is given. And it can be said that the expression is consistent with the description of the energetic neutrons from muon capture by heavy nucleus. The best way to determine the momentum distribution would be the lepton-nucleus scattering since it does not involve the strong interaction in the initial channel. Another reaction discussed is the backward proton production, which is governed by quite complicated reaction processes. Therefore, the determination of the momentum distribution is only indirect. Noverthless, it is found that this reaction presents a very interesting and important information on the momentum distribution. (Aoki, K.)

  18. Magnetic moment of extremely proton-rich nucleus 23Al

    International Nuclear Information System (INIS)

    Nagatomo, T; Matsuta, K; Ozawa, A; Nakashima, Y; Matsumiya, R; Mihara, M; Yasuno, T; Chiba, A; Yamada, K; Momota; Ohtsubo, T; Ohta, M; Shinojima, D; Izumikawa, T; Tanaka, H; Yamaguchi, T; Nakajima, S; Maemura, H; Muranaka, K; Kumashiro, S; Fujiwara, H; Yoshida, K; Sumikama, T; Tanaka, K; Ogura, M; Minamisono, K; Fukuda, M; Minamisono, T; Nojiri, Y; Suzuki, T; Tanihata, I; Alonso, J R; Krebs, G F; Symons, T J M

    2005-01-01

    The g-factor of the extremely proton-rich nucleus 23 Al (T 1/2 = 0.47 s) has been measured by means of the β-NMR method for the first time. The g-factor were determined as |g| = 1.557(88) from the obtained NMR spectra. From the comparison between the experimental value and the shell model calculation, the spin parity of the ground state of 23 Al was determined as I π = 5/2 + . Thus, the magnetic moment of 23 Al was determined as vertical bar μvertical bar = 3.89(22)μ N

  19. Inelastic proton scattering at medium energy

    International Nuclear Information System (INIS)

    Love, W.G.

    1980-01-01

    Some of the most essential characteristics of the nucleon-nucleon interaction for probing nuclear structure at bombarding energies between 100 and 800 MeV are considered. With a local representation of the on-shell N-N t-matrix, data for a variety of specific transitions at IUCF and LAMPF energies are discussed with an emphasis on the nuclear structure information sampled by proton scattering. The importance of incorporating constraints on nuclear structure imposed by electron scattering is stressed. Some rather unique aspects of the (p,n) reaction at intermediate energies are discussed in terms of its energy dependence and nuclear structure sum rules. 11 figures

  20. Multi-quark effects in high energy nucleon-nucleon and nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Besliu, C.; Caraciuc, I.; Jipa, A.; Olariu, A.; Topor-Pop, R.; Cotorobai, F.; Pantea, D.; Popa, L.; Popa, V.; Topor-Pop, V.

    1988-02-01

    Recent data obtained in two experiments performed in the framework of the Bucharest-Dubna collaboration are presented, i.e.: the observation of narrow dibaryonic resonances is neutron-proton interactions in 1mHBC at different momenta of incident neutrons in the range 1-5 GeV/c, and the cumulative production of negative pions in nucleus-nucleus interactions in SKM-200 streamer chamber at 4.5 GeV/c. (authors)

  1. Nuclear structure of weakly bound radioactive nuclei through elastic and and inelastic scattering on proton. Impacts of the couplings induced by these exotic nuclei on direct reactions

    International Nuclear Information System (INIS)

    Lapoux, V.

    2005-09-01

    Information on the structure, spectroscopy and target interaction potentials of exotic nuclei can be inferred by interpreting measured data from direct reactions on proton such as elastic or inelastic scattering of proton (p,p') or one-nucleon transfer reaction (p,d). A series of experimental results has been obtained at the GANIL facilities on the setting composed of the MUST telescope array used for the detection of light charged-particles and of CATS beam detectors. This setting aims at measuring reactions on light proton or deuteron targets through reverse kinematics. Particularly, results on C 10 , C 11 and on direct reactions with the He 8 beam of Spiral are presented. The first chapter is dedicated to the description of the most important theories concerning the nucleus. The experimental tools used to probe the nucleus are reported in the second chapter. The third and fourth chapters present the framework that has allowed us to analyse results from (p,p') and (p,d) reactions on weakly bound exotic nuclei. The last chapter is dedicated to the description of future experimental programs. (A.C.)

  2. Measurement of the spin-spin correlation parameter C/sub LL/(THETA) in proton-proton scattering

    International Nuclear Information System (INIS)

    Stuart, S.J.

    1982-08-01

    The experimental procedures and methods of data analysis used to measure the spin-spin correlation parameter C/sub LL/(THETA) in proton-proton scattering at thirteen different energies in the range 300 to 800 MeV are presented. The results compare favorably with previous data. Good agreement is found with phase shift predictions at energies below 500 MeV

  3. Structure functions and final-state properties in deeply inelastic electron-proton scattering

    International Nuclear Information System (INIS)

    Kharraziha, H.

    1997-01-01

    In this thesis, we give a description of the detailed structure of the proton and a description of the final-state properties in electron-proton scattering. Qualitative results, in a purely gluonic scenario with the leading log approximation, and quantitative results, where quarks are included and some sub-leading corrections have been made, are presented. The quantitative results are in fair agreement with available experimental data and a Monte Carlo event generator for electron-proton scattering is presented. Further, a computer program for calculating QCD colour factors is presented

  4. Deep inelastic scattering with leading protons or large rapidity gaps at HERA

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2008-12-01

    The dissociation of virtual photons, γ * p→ Xp, in events with a large rapidity gap between X and the outgoing proton, as well as in events in which the leading proton was directly measured, has been studied with the ZEUS detector at HERA. The data cover photon virtualities Q 2 > 2 GeV 2 and γ * p centre-of-mass energies 40 X > 2 GeV, where M X is the mass of the hadronic final state, X. Leading protons were detected in the ZEUS leading proton spectrometer. The cross section is presented as a function of t, the squared four-momentum transfer at the proton vertex and Φ, the azimuthal angle between the positron scattering plane and the proton scattering plane. It is also shown as a function of Q 2 and x P , the fraction of the proton's momentum carried by the diffractive exchange, as well as β, the Bjorken variable defined with respect to the diffractive exchange. (orig.)

  5. Comprehensive study of observables in Compton scattering on the nucleon

    Science.gov (United States)

    Grießhammer, Harald W.; McGovern, Judith A.; Phillips, Daniel R.

    2018-03-01

    We present an analysis of 13 observables in Compton scattering on the proton. Cross sections, asymmetries with polarised beam and/or targets, and polarisation-transfer observables are investigated for energies up to the Δ(1232) resonance to determine their sensitivity to the proton's dipole scalar and spin polarisabilities. The Chiral Effective Field Theory Compton amplitude we use is complete at N4LO, O(e2δ4), for photon energies ω˜ m_{π}, and so has an accuracy of a few per cent there. At photon energies in the resonance region, it is complete at NLO, O(e2δ0), and so its accuracy there is about 20%. We find that for energies from pion-production threshold to about 250 MeV, multiple asymmetries have significant sensitivity to presently ill-determined combinations of proton spin polarisabilities. We also argue that the broad outcomes of this analysis will be replicated in complementary theoretical approaches, e.g., dispersion relations. Finally, we show that below the pion-production threshold, 6 observables suffice to reconstruct the Compton amplitude, and above it 11 are required. Although not necessary for polarisability extractions, this opens the possibility to perform "complete" Compton-scattering experiments. An interactive Mathematica notebook, including results for the neutron, is available from judith.mcgovern@manchester.ac.uk.

  6. Charmonia and Drell-Yan production in proton-nucleus collisions at the CERN SPS

    CERN Document Server

    Alessandro, B; Arnaldi, R; Atayan, M; Baglin, C; Beolè, S; Boldea, V; Bordalo, P; Borenstein, S R; Borges, G; Bussière, A; Capelli, L; Castanier, C; Castor, J I; Chaurand, B; Cheynis, B; Chiavassa, E; Cicalò, C; Claudino, T; Comets, M P; Constans, N; Constantinescu, S; Cortese, P; Cruz, J; De Falco, A; De Marco, N; Dellacasa, G; Devaux, A; Dita, S; Drapier, O; Ducroux, L; Espagnon, B; Fargeix, J; Force, P; Gallio, M; Gavrilov, Yu K; Gerschel, C; Giubellino, P; Golubeva, M B; Gonin, M; Grigorian, A A; Grigorian, S; Grossiord, J Y; Guber, F F; Guichard, A; Gulkanian, H R; Hakobyan, R S; Idzik, M; Jouan, D; Karavitcheva, T L; Kluberg, L; Kurepin, A B; Le Bornec, Y; Lourenço, C; Macciotta, P; MacCormick, M; Marzari-Chiesa, A; Masera, M; Masoni, A; Monteno, M; Musso, A; Petiau, P; Piccotti, A; Pizzi, J R; Prado da Silva, W L; Prino, F; Puddu, G; Quintans, C; Ramello, L; Ramos, S; Rato-Mendes, P; Riccati, L; Romana, A; Santos, H; Saturnini, P; Scalas, E; Scomparin, E; Serci, S; Shahoyan, R; Sigaudo, F; Sitta, M; Sonderegger, P; Tarrago, X; Topilskaya, N S; Usai, G L; Vercellin, Ermanno; Villatte, L; Willis, N; CERN. Geneva

    2003-01-01

    Charmonium production in p-A collisions is a unique tool for the study of the interaction of bound ccbar in nuclear matter. It can provide details on the basic features of the resonance formation mechanism and, in particular, on its non-perturbative aspects. In this Letter, we present an experimental study of Charmonia and Drell-Yan production in proton-nucleus collisions at 450GeV/c. The results are analyzed in the framework of the Glauber model and lead to the values of the nuclear absorption cross-section sigma^abs_pA for j/psi and psi'. Then, we compare the J/psi absorption in proton-nucleus and sulphur-uranium interactions, using NA38 data. We obtain that, for the J/psi, omega^abs_pA and omega^abs_SU are compatible, showing that no sizeable additional suppression mechanism in present S-U collisions, and confirming that the anomalous J/psi suppression only sets in for Pb-Pb interactions.

  7. Detection of forward-scattered protons in photon-induced reactions on the nucleon

    International Nuclear Information System (INIS)

    Koop, Karsten

    2015-01-01

    The study of excitation spectra of hadrons can contribute to a better understanding of the strong interaction. A method is the photoproduction of mesons on the nucleon. Because of the width of the excited states a consideration of polarization observables is helpful in order to be abble to separate overlapping states. In this thesis an experiment for the study of the polarization of the recoil proton is presented. The setup presented here is part of the BGO-OD experiment at the ELSA electron accelerator of the Bonn university. BGO-OD consists of an electromagnetic calorimeter, which surrounds the target, several track detectors in forward direction, and a dipole magnet for the momentum measurement of charged particles. The presented detector is located immediately behind the liquid hydrogen target. In order to be able to determine the polarization of the recoil proton these are scattered on an analyzer, whereby the distribution of the scattering angles is polarization dependent. In this thesis a detector was developed in order to determine the track of the charged particles before and behind the target and by this the scattering angle. Furthermore simulations were performed, which show the realizability of the experiment.

  8. Backward emission mechanism of energetic protons studied from two-particle correlations in 800 MeV proton-nucleus collisions

    International Nuclear Information System (INIS)

    Miake, Yasuo

    1982-07-01

    The production mechanism of backward energetic protons was studied in 800 MeV proton-nucleus collision from the measurement of two-particle correlation over a wide range of kinematic regions. The backward energetic protons at 118 deg were measured in coincidence with the particles emitted in the angular range from 15 deg to 100 deg. Both in-plane and out-of-plane coincidences were measured. The backward energetic protons were detected with a delta E-E counter in a momentum region from 350 to 750 MeV/c, whereas the coincident particles were detected with a magnetic spectrometer in the momentum region from 450 to 2000 MeV/c. The reaction process of the backward protons were decomposed into six categories by the measurement of the associated particles, p or d. The momentum spectra, angular distribution and the target mass dependence of these components were studied. The component of p-p QES was well reproduced by the PW1A model, but the backward energetic protons were not from this process. The momenta of two nucleons inside the quasi-deuteron are highly correlated. The components of p-p non-QES and p-p out-of-plane are the main components of the backward energetic proton production. (Kako, I.)

  9. Proton polarizing system with Ar-ion laser for p-vector-RI scattering experiments

    International Nuclear Information System (INIS)

    Wakui, T.; Hatano, M.; Sakai, H.; Uesaka, T.; Tamii, A.

    2005-01-01

    A proton polarizing system for use in scattering experiments with radioactive isotope beams is described. Protons in a naphthalene crystal doped with pentacene are polarized in a magnetic field of 0.3T at 100K by transferring a large population difference among the photo-excited triplet states of pentacene to the hydrogen nuclei. An Ar-ion laser, which demands minimal maintenance during scattering experiments, is employed to excite the pentacene molecules. A proton polarization of 37% is obtained

  10. Spherical proton emitters

    International Nuclear Information System (INIS)

    Berg, S.; Semmes, P.B.; Nazarewicz, W.

    1997-01-01

    Various theoretical approaches to proton emission from spherical nuclei are investigated, and it is found that all the methods employed give very similar results. The calculated decay widths are found to be qualitatively insensitive to the parameters of the proton-nucleus potential, i.e., changing the potential parameters over a fairly large range typically changes the decay width by no more than a factor of ∼3. Proton half-lives of observed heavy proton emitters are, in general, well reproduced by spherical calculations with the spectroscopic factors calculated in the independent quasiparticle approximation. The quantitative agreement with experimental data obtained in our study requires that the parameters of the proton-nucleus potential be chosen carefully. It also suggests that deformed proton emitters will provide invaluable spectroscopic information on the angular momentum decomposition of single-proton orbitals in deformed nuclei. copyright 1997 The American Physical Society

  11. A model of quasi-free scattering with polarized protons

    International Nuclear Information System (INIS)

    Teodoro, M.R.

    1976-01-01

    A quantitative evaluation, based on a simple model for spin-free coplanar and asymmetric reaction in 16 O, for 215 MeV incoming polarized protons confirms the use of the strong effective polarization of the knocked-out proton by the spin-orbit coupling and of the strong dependence of free, medium energy, proton-proton cross section on the relative orientation of the proton spins. Effective polarizations, momentum distributions and correlation cross sections have been calculated for the 1p sub(1/2), 1 p sub(3/2) and 1s sub(1/2) states in 16 O, using protons totally polarized orthogonal to the scattering plane. Harmonic oscillator and square wells have been used to generate the bound state wave functions, whereas the optical potentials have been taken spin-independent and purely imaginary [pt

  12. Nucleus-Nucleus Collision as Superposition of Nucleon-Nucleus Collisions

    International Nuclear Information System (INIS)

    Orlova, G.I.; Adamovich, M.I.; Aggarwal, M.M.; Alexandrov, Y.A.; Andreeva, N.P.; Badyal, S.K.; Basova, E.S.; Bhalla, K.B.; Bhasin, A.; Bhatia, V.S.; Bradnova, V.; Bubnov, V.I.; Cai, X.; Chasnikov, I.Y.; Chen, G.M.; Chernova, L.P.; Chernyavsky, M.M.; Dhamija, S.; Chenawi, K.El; Felea, D.; Feng, S.Q.; Gaitinov, A.S.; Ganssauge, E.R.; Garpman, S.; Gerassimov, S.G.; Gheata, A.; Gheata, M.; Grote, J.; Gulamov, K.G.; Gupta, S.K.; Gupta, V.K.; Henjes, U.; Jakobsson, B.; Kanygina, E.K.; Karabova, M.; Kharlamov, S.P.; Kovalenko, A.D.; Krasnov, S.A.; Kumar, V.; Larionova, V.G.; Li, Y.X.; Liu, L.S.; Lokanathan, S.; Lord, J.J.; Lukicheva, N.S.; Lu, Y.; Luo, S.B.; Mangotra, L.K.; Manhas, I.; Mittra, I.S.; Musaeva, A.K.; Nasyrov, S.Z.; Navotny, V.S.; Nystrand, J.; Otterlund, I.; Peresadko, N.G.; Qian, W.Y.; Qin, Y.M.; Raniwala, R.; Rao, N.K.; Roeper, M.; Rusakova, V.V.; Saidkhanov, N.; Salmanova, N.A.; Seitimbetov, A.M.; Sethi, R.; Singh, B.; Skelding, D.; Soderstrem, K.; Stenlund, E.; Svechnikova, L.N.; Svensson, T.; Tawfik, A.M.; Tothova, M.; Tretyakova, M.I.; Trofimova, T.P.; Tuleeva, U.I.; Vashisht, Vani; Vokal, S.; Vrlakova, J.; Wang, H.Q.; Wang, X.R.; Weng, Z.Q.; Wilkes, R.J.; Yang, C.B.; Yin, Z.B.; Yu, L.Z.; Zhang, D.H.; Zheng, P.Y.; Zhokhova, S.I.; Zhou, D.C.

    1999-01-01

    Angular distributions of charged particles produced in 16 O and 32 S collisions with nuclear track emulsion were studied at momenta 4.5 and 200 A GeV/c. Comparison with the angular distributions of charged particles produced in proton-nucleus collisions at the same momentum allows to draw the conclusion, that the angular distributions in nucleus-nucleus collisions can be seen as superposition of the angular distributions in nucleon-nucleus collisions taken at the same impact parameter b NA , that is mean impact parameter between the participating projectile nucleons and the center of the target nucleus

  13. Nucleus-Nucleus Collision as Superposition of Nucleon-Nucleus Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Orlova, G I; Adamovich, M I; Aggarwal, M M; Alexandrov, Y A; Andreeva, N P; Badyal, S K; Basova, E S; Bhalla, K B; Bhasin, A; Bhatia, V S; Bradnova, V; Bubnov, V I; Cai, X; Chasnikov, I Y; Chen, G M; Chernova, L P; Chernyavsky, M M; Dhamija, S; Chenawi, K El; Felea, D; Feng, S Q; Gaitinov, A S; Ganssauge, E R; Garpman, S; Gerassimov, S G; Gheata, A; Gheata, M; Grote, J; Gulamov, K G; Gupta, S K; Gupta, V K; Henjes, U; Jakobsson, B; Kanygina, E K; Karabova, M; Kharlamov, S P; Kovalenko, A D; Krasnov, S A; Kumar, V; Larionova, V G; Li, Y X; Liu, L S; Lokanathan, S; Lord, J J; Lukicheva, N S; Lu, Y; Luo, S B; Mangotra, L K; Manhas, I; Mittra, I S; Musaeva, A K; Nasyrov, S Z; Navotny, V S; Nystrand, J; Otterlund, I; Peresadko, N G; Qian, W Y; Qin, Y M; Raniwala, R; Rao, N K; Roeper, M; Rusakova, V V; Saidkhanov, N; Salmanova, N A; Seitimbetov, A M; Sethi, R; Singh, B; Skelding, D; Soderstrem, K; Stenlund, E; Svechnikova, L N; Svensson, T; Tawfik, A M; Tothova, M; Tretyakova, M I; Trofimova, T P; Tuleeva, U I; Vashisht, Vani; Vokal, S; Vrlakova, J; Wang, H Q; Wang, X R; Weng, Z Q; Wilkes, R J; Yang, C B; Yin, Z B; Yu, L Z; Zhang, D H; Zheng, P Y; Zhokhova, S I; Zhou, D C

    1999-03-01

    Angular distributions of charged particles produced in {sup 16}O and {sup 32}S collisions with nuclear track emulsion were studied at momenta 4.5 and 200 A GeV/c. Comparison with the angular distributions of charged particles produced in proton-nucleus collisions at the same momentum allows to draw the conclusion, that the angular distributions in nucleus-nucleus collisions can be seen as superposition of the angular distributions in nucleon-nucleus collisions taken at the same impact parameter b{sub NA}, that is mean impact parameter between the participating projectile nucleons and the center of the target nucleus.

  14. Nucleus-nucleus collision as superposition of nucleon-nucleus collisions

    International Nuclear Information System (INIS)

    Orlova, G.I.; Adamovich, M.I.; Aggarwal, M.M.

    1999-01-01

    Angular distributions of charged particles produced in 16 O and 32 S collisions with nuclear track emulsion were studied at momenta 4.5 and 200 A GeV/c. Comparison with the angular distributions of charged particles produced in proton-nucleus collisions at the same momentum allows to draw the conclusion, that the angular distributions in nucleus-nucleus collisions can be seen as superposition of the angular distributions in nucleon-nucleus collisions taken at the same impact parameter b NA , that is mean impact parameter between the participating projectile nucleons and the center of the target nucleus. (orig.)

  15. Parity nonconservation in proton scattering at higher energies

    International Nuclear Information System (INIS)

    Mischke, R.E.

    1987-01-01

    Parity-nonconservation experiments in the scattering of longitudinally-polarized protons at incident proton momenta of 1.5 GeV/c and 6 GeV/c are examined. These experiments indicate a change with energy of the total cross section correlated with proton helicity that was unexpected. This energy dependence is due to the strong part of the interaction and may indicate the role of a diquark component in the nucleon. New experiments at higher energies are needed to confirm such a model. Future experiments can benefit from an analysis of sources of systematic error that have been encountered in the experiments discussed here. 43 refs., 3 figs

  16. Intercomparison of lepton-nucleus scattering models in the quasielastic region

    Science.gov (United States)

    Sobczyk, Joanna E.

    2017-10-01

    I present a discussion of the models of nuclear effects used to describe the inclusive electron-nucleus scattering in the quasielastic (QE) peak region, aiming to compare them and to draw conclusions about their reliability when applied in neutrino-nucleus interactions. A basic motivation is to reduce the systematic errors in the neutrino oscillation experiments. I concentrate on the neutrino energy profile of the T2K experiment, which provides me with a region of the greatest importance in terms of the highest contribution to the charge-current quasielastic (CCQE) cross section. Only electron-nucleus data that overlap with this region is chosen. In order to clarify the analysis, I split the data sets into three groups and draw conclusions separately from each one of them. Six models are selected for this comparison: Benhar's spectral function with and without the final-state interactions (Benhar's SF + FSI); the Valencia spectral function (Valencia SF), for higher energy transfers only with the hole spectral function; the Giessen Boltzmann-Uehling-Uhlenbeck (GiBUU) model; and the local and global Fermi gas models. The latter two are included as a benchmark to quantify the roles of various nuclear effects. All six models are often used in neutrino scattering studies. A short theoretical description of each model is given. Although in the selected data sets the QE mechanism dominates, I also discuss the possible impact of the 2p2h and the Δ contributions.

  17. Experimental studies of pion-nucleus interactions at intermediate energies

    International Nuclear Information System (INIS)

    1992-01-01

    This report summarizes investigations of various pion-nucleus interactions and nucleon-nucleus charge-exchange reactions. The work was carried out with the LAMPF accelerator at the Los Alamos National Laboratory and the cyclotrons at the Paul Scherrer Institute (PSI) near Zurich, Switzerland, and at Indiana University (IUCF), as a collaborative effort among several laboratories and universities. The experimental activity at LAMPF involved measurements of new data on pion double-charge-exchange scattering, some initial work on a new Neutral Meson Spectrometer system, a search for deeply-bound pionic atoms, measurements of elastic scattering, and studies of the (n,p) reaction on various nuclei. At PSI measurements of pion quasielastic scattering were carried out, with detection of the recoil proton. Work on the analysis of data from a previous experiment at PSI on pion absorption in nuclei was continued. This experiment involved using a detector system that covered nearly the full solid angle

  18. Collimator scatter and 2D dosimetry in small proton beams

    NARCIS (Netherlands)

    van Luijk, P.; van 't Veld, A.A.; Zelle, H.D.; Schippers, J.M.

    Monte Carlo simulations have been performed to determine the influence of collimator-scattered protons from a 150 MeV proton beam on the dose distribution behind a collimator. Slit-shaped collimators with apertures between 2 and 20 mm have been simulated. The Monte Carlo code GEANT 3.21 has been

  19. Production of neutrinos and neutrino-like particles in proton-nucleus interactions

    International Nuclear Information System (INIS)

    Dishaw, J.P.

    1979-03-01

    An experimental search was performed to look for the direct production of neutrinos or neutrino-like particles, i.e., neutral particles which interact weakly with hadrons, in proton-nucleus interactions at 400 GeV incident proton energy. Possible sources of such particles include the semi-leptonic decay of new heavy particles such as charm, and the direct production of a light neutral Higgs particle such as the axion. The production of these particles has been inferred in this experiment by energy nonconservation in the collision of a proton with an iron nucleus. The total visible energy of the interaction was measured using a sampling ionization calorimeter. After correcting for beam intensity effects and cutting the data to eliminate systematic effects in the measurement, the final resolution of the calorimeter was 3.51% and increased with decreasing incident beam energy with a square root dependence on the beam energy. Energy nonconservation in the data is manifest as a non-Gaussian distribution on the low side of the calorimeter measured energy. Model calculations yield the fraction of events expected in this non-Gaussian behavior for the various sources of neutrinos or neutrino-like particles. A maximum likelihood fit to the data with the theoretical fraction of events expected yields the 95% confidence level production cross section upper limit values. The upper limits for general production of neutrino-like particles for various parameterizations of the production cross section are presented. The following specific upper limits have been established: charm particle production -3 times the π 0 production cross section. 144 references

  20. Model independent dispersion approach to proton Compton scattering

    International Nuclear Information System (INIS)

    Caprini, I.; Radescu, E.E.

    1980-12-01

    The proton Compton scattering at low and intermediate energies is studied by means of a dispersion framework which exploits in an optimal way the (fixed momentum transfer) analyticity properties of the amplitudes in conjunction with the consequences of the (s-channel) unitarity. The mathematical background of the work consists of methods specific to boundary value problems for analytic vector-valued functions and interpolation theory. In comparison with previous related work, the external problems to be solved now are much more difficult because of the inclusion of the photoproduction input and also lead to additional computational complications. The lower bounds on the differential cross-section, obtained without any reference to subtractions and annihilation channel contributions, appear sufficiently restrictive to evidentiate rigorously some inconsistencies between results of single pion photoproduction multipole extractions and proton Compton scattering data. (author)

  1. 200 MeV proton scattering on nuclei. Energetic proton analysis at large angle

    International Nuclear Information System (INIS)

    Chaigne, G.

    1983-01-01

    By means of a magnetic spectrometer for which has been realized an acceptance's programme, cross-sections for backward emission have been measured (100 MeV till the cinematic limit) (102 0 to 106 0 ) in the interaction proton-nucleus at 200 MeV from light, medium and heavy target. Our experimental set-up used from a polyethylene target (CH2) allowed to obtain, for the elastic cross-section (p,p), values in agreement with those ones determined by an analyse in phase-shift at 200 MeV. A comparison of our experimental spectra with the theory based on the Q.T.B.S. model (Quasi Two Body Scaling) and on a more conventional one of intranuclear cascades showed that the knock out mechanisms inside the nucleus are always unknown [fr

  2. Proton-hole and core-excited states in the semi-magic nucleus {sup 131}In{sub 82}

    Energy Technology Data Exchange (ETDEWEB)

    Taprogge, J. [Instituto de Estructura de la Materia, CSIC, Madrid (Spain); Universidad Autonoma de Madrid, Departamento de Fisica Teorica, Madrid (Spain); RIKEN Nishina Center, RIKEN, Saitama (Japan); Jungclaus, A. [Instituto de Estructura de la Materia, CSIC, Madrid (Spain); Grawe, H. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Borzov, I.N. [Kurchatov Institute, Moscow (Russian Federation); Joint Institute for Nuclear Research, Dubna (Russian Federation); Nishimura, S.; Doornenbal, P.; Soederstroem, P.A.; Baba, H.; Fukuda, N.; Inabe, N.; Isobe, T.; Kameda, D.; Kubo, T.; Shimizu, Y.; Suzuki, H.; Takeda, H.; Watanabe, H. [RIKEN Nishina Center, RIKEN, Saitama (Japan); Lorusso, G. [RIKEN Nishina Center, RIKEN, Saitama (Japan); National Physical Laboratory, NPL, Teddington, Middlesex (United Kingdom); University of Surrey, Department of Physics, Guildford (United Kingdom); Simpson, G.S.; Drouet, F. [LPSC, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, Grenoble Cedex (France); Sumikama, T. [Tohoku University, Department of Physics, Sendai, Miyagi (Japan); Xu, Z.Y.; Niikura, M. [University of Tokyo, Department of Physics, Tokyo (Japan); Browne, F. [RIKEN Nishina Center, RIKEN, Saitama (Japan); University of Brighton, School of Computing, Engineering and Mathematics, Brighton (United Kingdom); Gernhaeuser, R.; Steiger, K.; Muecher, D. [Technische Universitaet Muenchen, Physik Department E12, Garching (Germany); Gey, G. [RIKEN Nishina Center, RIKEN, Saitama (Japan); LPSC, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, Grenoble Cedex (France); Institut Laue-Langevin, B.P. 156, Grenoble Cedex 9 (France); Jung, H.S. [Chung-Ang University, Department of Physics, Seoul (Korea, Republic of); Kim, G.D.; Kwon, Y.K. [Institute for Basic Science, Rare Isotope Science Project, Daejeon (Korea, Republic of); Kim, Y.K. [Institute for Basic Science, Rare Isotope Science Project, Daejeon (Korea, Republic of); Hanyang University, Department of Nuclear Engineering, Seoul (Korea, Republic of); Kojouharov, I.; Kurz, N.; Schaffner, H. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Li, Z. [Peking University, School of Physics and State key Laboratory of Nuclear Physics and Technology, Beijing (China); Sakurai, H. [RIKEN Nishina Center, RIKEN, Saitama (Japan); University of Tokyo, Department of Physics, Tokyo (Japan); Vajta, Zs. [RIKEN Nishina Center, RIKEN, Saitama (Japan); MTA Atomki, P.O. Box 51, Debrecen (Hungary); Wu, J. [RIKEN Nishina Center, RIKEN, Saitama (Japan); Peking University, School of Physics and State key Laboratory of Nuclear Physics and Technology, Beijing (China); Yagi, A.; Nishibata, H.; Odahara, A. [Osaka University, Department of Physics, Toyonaka (Japan); Yoshinaga, K. [Tokyo University of Science, Department of Physics, Faculty of Science and Technology, Noda, Chiba (Japan); Benzoni, G. [INFN, Sezione di Milano, Milano (Italy); Boenig, S.; Ilieva, S.; Kroell, T. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); Chae, K.Y. [Sungkyunkwan University, Department of Physics, Suwon (Korea, Republic of); Coraggio, L.; Gargano, A. [Complesso Universitario di Monte S. Angelo, Istituto Nazionale di Fisica Nucleare, Napoli (Italy); Daugas, J.M. [CEA, DAM, DIF, Arpajon cedex (France); Gadea, A.; Montaner-Piza, A. [CSIC-Univ. of Valencia, Instituto de Fisica Corpuscular, Paterna (Spain); Itaco, N. [Seconda Universita di Napoli, Dipartimento di Matematica e Fisica, Caserta (Italy); Kondev, F.G. [Argonne National Laboratory, Nuclear Engineering Division, Argonne, IL (United States); Lane, G.J. [Australian National University, Department of Nuclear Physics, Research School of Physical Sciences and Engineering, Canberra (Australia); Moschner, K.; Wendt, A. [University of Cologne, IKP, Cologne (Germany); Naqvi, F. [Yale University, Wright Nuclear Structure Laboratory, New Haven, CT (United States); Orlandi, R. [K.U. Leuven, Instituut voor Kern- en StralingsFysica, Heverlee (Belgium); Japan Atomic Energy Agency, Advanced Science Research Center, Tokai, Ibaraki (Japan); Patel, Z.; Podolyak, Zs. [University of Surrey, Department of Physics, Guildford (United Kingdom)

    2016-11-15

    The β decay of the N = 83 nucleus {sup 131}Cd has been studied at the RIBF facility at the RIKEN Nishina Center. The main purpose of the study was to identify the position of the 1p{sub 3/2} and 0f{sub 5/2} proton-hole states and the energies of core-excited configurations in the semi-magic nucleus {sup 131}In. From the radiation emitted following the β decay, a level scheme of {sup 131}In was established and the β feeding to each excited state determined. Similarities between the single-particle transitions observed in the β decays of the N = 83 isotones {sup 132}In and {sup 131}Cd are discussed. Finally the excitation energies of several core-excited configurations in {sup 131}In are compared to QRPA and shell-model calculations. (orig.)

  3. Measurement of transparency ratios for protons from short-range correlated pairs

    Science.gov (United States)

    Hen, O.; Hakobyan, H.; Shneor, R.; Piasetzky, E.; Weinstein, L. B.; Brooks, W. K.; May-Tal Beck, S.; Gilad, S.; Korover, I.; Beck, A.; Adhikari, K. P.; Aghasyan, M.; Amaryan, M. J.; Anefalos Pereira, S.; Arrington, J. R.; Baghdasaryan, H.; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fleming, J. A.; Gabrielyan, M. Y.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guo, L.; Hafidi, K.; Harrison, N.; Heddle, D.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, A.; Klein, F. J.; Koirala, S.; Kubarovsky, A.; Kubarovsky, V.; Kuhn, S. E.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Martinez, D.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mokeev, V.; Montgomery, R. A.; Moutarde, H.; Munevar, E.; Munoz Camacho, C.; Mustapha, B.; Nadel-Turonski, P.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Phelps, E.; Phillips, J. J.; Pisano, S.; Pivnyuk, N.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Schott, D.; Schumacher, R. A.; Seraydaryan, H.; Sharabian, Y. G.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Strauch, S.; Taiuti, M.; Tang, W.; Taylor, C. E.; Tian, Ye; Tkachenko, S.; Ungaro, M.; Vernarsky, B.; Vlassov, A.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zheng, X.; Zonta, I.

    2013-05-01

    Nuclear transparency, Tp (A), is a measure of the average probability for a struck proton to escape the nucleus without significant re-interaction. Previously, nuclear transparencies were extracted for quasi-elastic A (e ,e‧ p) knockout of protons with momentum below the Fermi momentum, where the spectral functions are well known. In this Letter we extract a novel observable, the transparency ratio, Tp (A) /Tp(12 C), for knockout of high-missing-momentum protons from the breakup of short-range correlated pairs (2N-SRC) in Al, Fe and Pb nuclei relative to C. The ratios were measured at momentum transfer Q2 ⩾ 1.5(GeV /c) 2 and xB ⩾ 1.2 where the reaction is expected to be dominated by electron scattering from 2N-SRC. The transparency ratios of the knocked-out protons coming from 2N-SRC breakup are 20-30% lower than those of previous results for low missing momentum. They agree with Glauber calculations and agree with renormalization of the previously published transparencies as proposed by recent theoretical investigations. The new transparencies scale as A - 1 / 3, which is consistent with dominance of scattering from nucleons at the nuclear surface.

  4. Results in pion proton scattering near the higher resonances (1961)

    International Nuclear Information System (INIS)

    Falk-Vairant, P.; Valladas, G.

    1961-01-01

    We present briefly the available Information on the total cross sections for pion proton scattering in the energy region from 400 MeV to 1.5 GeV. We also have collected all results on total cross sections for particular channels like elastic scattering, inelastic scattering and charge exchange. Using new results on the total cross section for neutral events, we have plotted separately the cross section for elastic and for inelastic scattering in the T = 1/2 state. (authors) [fr

  5. Ab Initio Many-Body Calculations Of Nucleon-Nucleus Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Quaglioni, S; Navratil, P

    2008-12-17

    We develop a new ab initio many-body approach capable of describing simultaneously both bound and scattering states in light nuclei, by combining the resonating-group method with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters. This approach preserves translational symmetry and Pauli principle. We outline technical details and present phase shift results for neutron scattering on {sup 3}H, {sup 4}He and {sup 10}Be and proton scattering on {sup 3,4}He, using realistic nucleon-nucleon (NN) potentials. Our A = 4 scattering results are compared to earlier ab initio calculations. We find that the CD-Bonn NN potential in particular provides an excellent description of nucleon-{sup 4}He S-wave phase shifts. We demonstrate that a proper treatment of the coupling to the n-{sup 10}Be continuum is successful in explaining the parity-inverted ground state in {sup 11}Be.

  6. Deep inelastic scattering with leading protons or large rapidity gaps at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Lab., Argonne, IL (US)] (and others)

    2008-12-15

    The dissociation of virtual photons, {gamma}{sup *}p{yields} Xp, in events with a large rapidity gap between X and the outgoing proton, as well as in events in which the leading proton was directly measured, has been studied with the ZEUS detector at HERA. The data cover photon virtualities Q{sup 2}> 2 GeV{sup 2} and {gamma}{sup *}p centre-of-mass energies 40 2 GeV, where M{sub X} is the mass of the hadronic final state, X. Leading protons were detected in the ZEUS leading proton spectrometer. The cross section is presented as a function of t, the squared four-momentum transfer at the proton vertex and {phi}, the azimuthal angle between the positron scattering plane and the proton scattering plane. It is also shown as a function of Q{sup 2} and x{sub P}, the fraction of the proton's momentum carried by the diffractive exchange, as well as {beta}, the Bjorken variable defined with respect to the diffractive exchange. (orig.)

  7. Study of elastic scattering of polarized proton with 6He by folding model

    International Nuclear Information System (INIS)

    Iseri, Y.; Tanifuji, M.; Ishikawa, S.; Hiyama, E.; Yamamoto, Y.

    2005-01-01

    Experimental data of the elastic scattering of 6 He with polarized proton target has been analyzed using a simple folding model. As we regard 6 He as three bodies consisting of 4 He+n+n, the potential between the proton and 6 He is obtained by folding the two potentials, one between a proton and 4 He and another between a proton and a neutron, with the density distribution of 6 He. Calculated results of both the differential cross section and the vector analyzing power reproduce the experimental data satisfactorily. It is shown that the vector analyzing power of the p- 6 He scattering is mainly due to the spin orbit interaction between the proton and 4 He. (S. Funahashi)

  8. Neutron-proton elastic scattering at high energies

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, M.; Fazal-e-Aleem (Punjab Univ., Lahore (Pakistan). Dept. of Physics)

    1980-09-06

    The most recent measurements of the differential and total cross sections of neutron-proton elastic scattering from 70 to 400 GeV/c have been explained by using rho as a simple pole and pomeron as a dipole. The predictions are also made regarding the energy dependence of dip and bump structure in angular distribution.

  9. Hadron-proton elastic scattering at 50, 100, and 200 GeV/c momentum

    International Nuclear Information System (INIS)

    Akerlof, C.W.; Kotthaus, R.; Loveless, R.L.; Meyer, D.I.; Ambats, I.; Meyer, W.T.; Ward, C.E.W.; Eartly, D.P.; Lundy, R.A.; Pruss, S.M.; Yovanovitch, D.D.; Rust, D.R.

    1976-01-01

    Elastic scattering of hadrons on protons has been measured at momenta of 50, 100, and 200 GeV/c. The meson-proton scattering is found to be independent of momentum and meson type for -t > 0.8 (GeV/c) 2 . The momentum dependence of the pp dip at -t = 1.4 (GeV/c) 2 was investigated. Slope parameters are given

  10. The recoil proton polarization in πp elastic scattering

    International Nuclear Information System (INIS)

    Seftor, C.J.

    1988-09-01

    The polarization of the recoil proton for π + p and π - p elastic scattering has been measured for various angles at 547 MeV/c and 625 MeV/c by a collaboration involving The George Washington University; the University of California, Los Angeles; and Abilene Christian University. The experiment was performed at the P 3 East experimental area of the Los Alamos Meson Physics Facility. Beam intensities varied from 0.4 to 1.0 x 10 7 π - 's/sec and from 3.0 to 10.0 x 10 7 π + 's/sec. The beam spot size at the target was 1 cm in the horizontal direction by 2.5 cm in the vertical direction. A liquid-hydrogen target was used in a flask 5.7 cm in diameter and 10 cm high. The scattered pion and recoil proton were detected in coincidence using the Large Acceptance Spectrometer (LAS) to detect and momentum analyze the pions and the JANUS recoil proton polarimeter to detect and measure the polarization of the protons. Results from this experiment are compared with previous measurements of the polarization, with analyzing power data previously taken by this group, and to partial-wave analysis predictions. 12 refs., 53 figs., 18 tabs

  11. Measurements of Compton Scattering on the Proton at 2 - 6 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Danagoulian, Areg [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2006-01-01

    Similar to elastic electron scattering, Compton Scattering on the proton at high momentum transfers(and high p⊥) can be an effective method to study its short-distance structure. An experiment has been carried out to measure the cross sections for Real Compton Scattering (RCS) on the proton for 2.3-5.7 GeV electron beam energies and a wide distribution of large scattering angles. The 25 kinematic settings sampled a domain of s = 5-11(GeV/c)2,-t = -7(GeV/c)2 and -u = 0.5-6.5(GeV/c)2. In addition, a measurement of longitudinal and transverse polarization transfer asymmetries was made at a 3.48 GeV beam energy and a scattering angle of θcm = 120°. These measurements were performed to test the existing theoretical mechanisms for this process as well as to determine RCS form factors. At the heart of the scientific motivation is the desire to understand the manner in which a nucleon interacts with external excitations at the above listed energies, by comparing and contrasting the two existing models – Leading Twist Mechanism and Soft Overlap “Handbag” Mechanism – and identify the dominant mechanism. Furthermore, the Handbag Mechanism allows one to calculate reaction observables in the framework of Generalized Parton Distributions (GPD), which have the function of bridging the wide gap between the exclusive(form factors) and inclusive(parton distribution functions) description of the proton. The experiment was conducted in Hall A of Thomas Jefferson National Accelerator Facility(Jefferson Lab). It used a polarized and unpolarized electron beam, a 6% copper radiator with the thickness of 6.1% radiation lengths (to produce a bremsstrahlung photon beam), the Hall A liquid hydrogen target, a high resolution spectrometer with a focal plane polarimeter, and a photon hodoscope calorimeter. Results of the differential cross sections are presented, and discussed in the general context of the scientific motivation.

  12. Observation of jet production in deep inelastic scattering with a large rapidity gap at HERA

    International Nuclear Information System (INIS)

    Doeker, T.

    1994-01-01

    Events with a large rapidity gap in deep inelastic scattering with Q 2 ≥ 10 GeV 2 have been studied in the ZEUS detector. The properties of these events with W > 140 GeV are consistent with a leading twist diffractive production mechanism. In the laboratory frame, with E jet t ≥ 4 GeV, 159% of the events are of the 1-jet type with negligible 2-jet production. The single jet is back-to-back in azimuth with the scattered electron. No energy now is observed between the jet and the proton direction. With a lower jet transverse energy cut 2-jet production is observed both in the laboratory and the γ * P centre-of-mass systems, demonstrating the presence of hard scattering in the virtual photon proton interactions that give rise to large rapidity gap events

  13. Elastic scattering of polarized protons on helium three at 800 MeV

    International Nuclear Information System (INIS)

    Azizi, A.

    1985-07-01

    A set of spin dependent parameters and cross sections has been measured for polarized p- 3 He elastic scattering over the range of q .7 to 4.2 fm -1 . The experiment was done at the Los Alamos Meson Physics Facility (LAMPF) using the High Resolution Spectrometer (HRS) with a polarized proton beam at .8 GeV. The focal plane polarimeter of the HRS was used to determine the spin direction of the scattered proton. Since 3 He is one of the simplest nuclei, polarized p- 3 He scattering provides a very sensitive test of multiple scattering theories. The theoretical analysis was done by using two different wave functions for 3 He as input to the multiple scattering theory. The theoretical calculations and experimental data together will give us useful information about nucleon-nucleon amplitudes and also help us to obtain a better understanding of the scattering process. 68 refs., 55 figs., 9 tabs

  14. Elastic scattering of polarized protons on helium three at 800 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Azizi, A.

    1985-07-01

    A set of spin dependent parameters and cross sections has been measured for polarized p-/sup 3/He elastic scattering over the range of q .7 to 4.2 fm/sup -1/. The experiment was done at the Los Alamos Meson Physics Facility (LAMPF) using the High Resolution Spectrometer (HRS) with a polarized proton beam at .8 GeV. The focal plane polarimeter of the HRS was used to determine the spin direction of the scattered proton. Since /sup 3/He is one of the simplest nuclei, polarized p-/sup 3/He scattering provides a very sensitive test of multiple scattering theories. The theoretical analysis was done by using two different wave functions for /sup 3/He as input to the multiple scattering theory. The theoretical calculations and experimental data together will give us useful information about nucleon-nucleon amplitudes and also help us to obtain a better understanding of the scattering process. 68 refs., 55 figs., 9 tabs.

  15. Methods of contrast variation by nuclear polarisation in small-angle neutron scattering: Observation of domains of nuclear polarisation by neutron scattering

    International Nuclear Information System (INIS)

    Leymarie, E.

    2002-11-01

    In this thesis we study the theoretical and experimental aspects of Contrast Variation by Nuclear Polarization (CVNP) applied to small-angle neutron scattering. The basics of neutron scattering theory is developed by highlighting the origin of the CVNP method: the strong spin dependence of thermal neutron scattering, especially on protons. We also present the principles of NMR with a special attention on the method of dynamic nuclear polarization by the solid effect which makes it possible to control the proton polarization and therefore the contrast for neutron scattering. We present a theoretical study of the CVNP method called static which supposes that the nuclear polarization is homogeneous in the sample and constant during the experiment. We show that it allows one to obtain partial structure functions of systems with multiple components, by carrying out several acquisitions with different polarizations on a single sample. For this purpose, we tested a simple device to stabilize the nuclear polarization. We describe finally a new application of the CVNP method called dynamic. In a solution of deuterated glycerol-water containing a small concentration of paramagnetic centres, we showed the existence of domains of polarized protons at the onset of dynamic polarization. This reinforces considerably the coherent scattering of paramagnetic centres. We describe the theoretical reasons explaining the appearance of these domains of polarization, as well as the various techniques used to observe them by neutron scattering. (author)

  16. Hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1981-01-01

    Qualitative picture of high energy hadron-nucleus collision process, emerging from the analysis of experimental data, is presented. Appropriate description procedure giving a possibility of reproducing various characteristics of this process in terms of the data on elementary hadron-nucleon interaction is proposed. Formula reproducing hadron-nucleus collision cross sections is derived. Inelastic collision cross sections for pion-nucleus and proton-nucleus reactions at wide energy interval are calculated for Pb, Ag, and Al targets. A-dependence of cross sections for pion-nucleus and proton-nucleus collisions at nearly 50 GeV/c momentum were calculated and compared with existing experimental data. Energy dependence of cross sections for hadron-nucleus collisions is determined simply by energy dependence of corresponding cross sections for hadron-nucleon collisions; A-dependence is determined simply by nuclear sizes and nucleon density distributions in nuclei

  17. Nucleus-nucleus total reaction cross sections

    International Nuclear Information System (INIS)

    DeVries, R.M.; Peng, J.C.

    1980-01-01

    We compare sigma/sub R/(E) for nucleus-nucleus systems (obtained from existing direct measurements and derived from elastic scattering data) with nucleon-nucleon and nucleon-nucleus data. The energy dependence of sigma/sub R/(E) for nucleus-nucleus systems is found to be quite rapid; there appears to be no evidence for an energy independent, geometric sigma/sub R/. Simple parameter free microscopic calculations are able to quantitatively reproduce the data and thus, emphasize the dominance of nucleon-nucleon interactions in medium energy nucleus-nucleus collisions

  18. Scaling phenomenon in relativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Wong, C.Y.; Blankenbecler, R.

    1980-01-01

    New scaling variables for proton and pion production in relativistic nucleus-nucleus collisions are introduced which are the generalizations of the Feynmann scaling variable. They allow a simple description of the cross sections at forward and backward angles. 2 figures

  19. Polarization observables in Virtual Compton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Doria, Luca

    2007-10-15

    Virtual Compton Scattering (VCS) is an important reaction for understanding nucleon structure at low energies. By studying this process, the generalized polarizabilities of the nucleon can be measured. These observables are a generalization of the already known polarizabilities and will permit theoretical models to be challenged on a new level. More specifically, there exist six generalized polarizabilities and in order to disentangle them all, a double polarization experiment must be performed. Within this work, the VCS reaction p(e,e'p){gamma} was measured at MAMI using the A1 Collaboration three spectrometer setup with Q{sup 2}=0.33 (GeV/c){sup 2}. Using the highly polarized MAMI beam and a recoil proton polarimeter, it was possible to measure both the VCS cross section and the double polarization observables. Already in 2000, the unpolarized VCS cross section was measured at MAMI. In this new experiment, we could confirm the old data and furthermore the double polarization observables were measured for the first time. The data were taken in five periods between 2005 and 2006. In this work, the data were analyzed to extract the cross section and the proton polarization. For the analysis, a maximum likelihood algorithm was developed together with the full simulation of all the analysis steps. The experiment is limited by the low statistics due mainly to the focal plane proton polarimeter efficiency. To overcome this problem, a new determination and parameterization of the carbon analyzing power was performed. The main result of the experiment is the extraction of a new combination of the generalized polarizabilities using the double polarization observables. (orig.)

  20. Polarization observables in Virtual Compton Scattering

    International Nuclear Information System (INIS)

    Doria, Luca

    2007-10-01

    Virtual Compton Scattering (VCS) is an important reaction for understanding nucleon structure at low energies. By studying this process, the generalized polarizabilities of the nucleon can be measured. These observables are a generalization of the already known polarizabilities and will permit theoretical models to be challenged on a new level. More specifically, there exist six generalized polarizabilities and in order to disentangle them all, a double polarization experiment must be performed. Within this work, the VCS reaction p(e,e'p)γ was measured at MAMI using the A1 Collaboration three spectrometer setup with Q 2 =0.33 (GeV/c) 2 . Using the highly polarized MAMI beam and a recoil proton polarimeter, it was possible to measure both the VCS cross section and the double polarization observables. Already in 2000, the unpolarized VCS cross section was measured at MAMI. In this new experiment, we could confirm the old data and furthermore the double polarization observables were measured for the first time. The data were taken in five periods between 2005 and 2006. In this work, the data were analyzed to extract the cross section and the proton polarization. For the analysis, a maximum likelihood algorithm was developed together with the full simulation of all the analysis steps. The experiment is limited by the low statistics due mainly to the focal plane proton polarimeter efficiency. To overcome this problem, a new determination and parameterization of the carbon analyzing power was performed. The main result of the experiment is the extraction of a new combination of the generalized polarizabilities using the double polarization observables. (orig.)

  1. Galileo-invariant theory of low energy pion-nucleus scattering

    International Nuclear Information System (INIS)

    Mach, R.

    1980-01-01

    Two classes of Galileo-invariant optical models are constructed for pion elastic scattering by nuclei. The first, the two-body model, has been obtained assuming that the pion-bound nucleon dynamics is determined by the pion-nucleon kinetic energy. In deriving the second model, the (A+1)-body dynamics has been taken into account. The technique of effective nucleon momenta maintains the nonlocal propagation of the pion-target nucleon subsystem through the nucleus in contrast with the standard static approximation

  2. Nucleon-nucleus inelastic scattering using a relativistic impulse approximation with exchange

    International Nuclear Information System (INIS)

    Rost, E.; Shepard, J.R.

    1987-01-01

    We formulate a microscopic relativistic treatment of nucleon-nucleus inelastic scattering in a distorted wave impulse approximation. The interaction is taken from a Lorentz invariant formulation with explicit direct and exchange terms constrained by fitting to experimental NN amplitudes. This procedure allows us to apply the theory in the lower range of intermediate energies (100--400 MeV) where exchange effects are likely to be important. Application to inelastic scattering uses this interaction for both the distorting potentials and the transition interaction. Effects of explicit exchange are studied and a preliminary analysis of /sup 12/C(p,p') data is presented

  3. Invariant potential for elastic pion--nucleus scattering. Technical report No. 75-075

    International Nuclear Information System (INIS)

    Cammarata, J.B.; Banerjee, M.K.

    1975-04-01

    From the Wick-Dyson expansion of the exact propagator of a pion in the presence of a nucleus an invariant potential for crossing symmetric, elastic pion-nucleus scattering is obtained in terms of a series of pion-nucleon diagrams. The Chew-Low theory is used to develop a model in which the most important class of diagrams is effectively summed. Included in this model is the Exclusion Principle restriction on the pion-bound nucleon interaction, the effects of the binding of nucleons, a kinematic transformation of energy from the lab to the πN center of mass frames, and the Fermi motion and recoil of the target nucleons. From a numerical study of the effects of these processes on the π- 12 C total cross section, the relative importance of each is determined. Other processes contributing to the elastic scattering of pions not included in the present model are also discussed. (9 figures) (U.S.)

  4. Charge and transverse momentum correlations in deep inelastic muon-proton scattering

    International Nuclear Information System (INIS)

    Arneodo, M.; Ferrero, M.I.; Maselli, S.; Peroni, C.; Bee, C.; Chima, J.S.; Clifft, R.; Edwards, M.; Norton, P.R.; Oakham, F.G.; Thompson, J.C.; Braun, H.; Brueck, H.; Drees, J.; Edwards, A.; Krueger, J.; Poetsch, M.; Dreyer, T.; Ernst, T.; Haas, J.; Kabuss, E.M.; Landgraf, U.; Mohr, W.; Rith, K.; Schlagboehmer, A.; Schroeder, T.; Stier, H.E.; Wallucks, W.; Geddes, N.; Johnson, A.S.; Loken, J.; Long, K.; Renton, P.; Taylor, G.N.; Williams, W.S.C.; Grard, F.; Windmolders, R.

    1986-01-01

    Correlations between charged hadrons are investigated in a 280 GeV muon-proton scattering experiment. Although most of the observed particles are decay products it is shown that the correlations found originate in the fragmentation process and are not due simply to resonance production. Correlations are demonstrated between hadrons close in rapidity with respect to their charges and to the directions of their momentum components perpendicular to the virtual photon axis. Such short range correlations are predicted by the standard hadronization models. (orig.)

  5. A Glimpse of Gluons through Deeply Virtual Compton Scattering on the Proton

    OpenAIRE

    Defurne, M.; Jiménez-Argüello, A. Martì; Ahmed, Z.; Albataineh, H.; Allada, K.; Aniol, K. A.; Bellini, V.; Benali, M.; Boeglin, W.; Bertin, P.; Brossard, M.; Camsonne, A.; Canan, M.; Chandavar, S.; Chen, C.

    2017-01-01

    The proton is composed of quarks and gluons, bound by the most elusive mechanism of strong interaction called confinement. In this work, the dynamics of quarks and gluons are investigated using deeply virtual Compton scattering (DVCS): produced by a multi-GeV electron, a highly virtual photon scatters off the proton which subsequently radiates a high energy photon. Similarly to holography, measuring not only the magnitude but also the phase of the DVCS amplitude allows to perform 3D images of...

  6. Pion inelastic scattering and the pion-nucleus effective interaction

    International Nuclear Information System (INIS)

    Carr, J.A.

    1983-01-01

    This work examines pion inelastic scattering with the primary purpose of gaining a better understanding of the properties of the pion-nucleus interaction. The main conclusion of the work is that an effective interaction which incorporates the most obvious theoretical corrections to the impulse approximation does a good job of explaining pion elastic and inelastic scattering from zero to 200 MeV without significant adjustments to the strength parameters of the force. Watson's multiple scattering theory is used to develop a theoretical interaction starting from the free pion-nucleon interaction. Elastic scattering was used to calibrate the isoscalar central interaction. It was found that the impulse approximation did poorly at low energy, while the multiple scattering corrections gave good agreement with all of the data after a few minor adjustments in the force. The distorted wave approximation for the inelastic transition matrix elements are evaluated for both natural and unnatural parity excitations. The isoscalar natural parity transitions are used to test the reaction theory, and it is found that the effective interaction calibrated by elastic scattering produces good agreement with the inelastic data. Calculations are also shown for other inelastic and charge exchange reactions. It appears that the isovector central interaction is reasonable, but the importance of medium corrections cannot be determined. The unnatural parity transitions are also reasonably described by the theoretical estimate of the spin-orbit interaction, but not enough systematic data exists to reach a firm conclusion

  7. Quasiparticle-phonon coupling in inelastic proton scattering

    International Nuclear Information System (INIS)

    Weissbach, B.

    1980-01-01

    Multistep-processes in inelastic proton scattering from 89 Y are analyzed by using CCBA and DWBA on a quasiparticle phonon nuclear structure model. Indirect excitations caused by quasiparticle phonon coupling effects are found to be very important for the transition strengths and the shape of angular distributions. Core excitations are dominant for the higher order steps of the reaction. (author)

  8. Comparison of surface doses from spot scanning and passively scattered proton therapy beams

    International Nuclear Information System (INIS)

    Arjomandy, Bijan; Sahoo, Narayan; Gillin, Michael; Cox, James; Lee, Andrew

    2009-01-01

    Proton therapy for the treatment of cancer is delivered using either passively scattered or scanning beams. Each technique delivers a different amount of dose to the skin, because of the specific feature of their delivery system. The amount of dose delivered to the skin can play an important role in choosing the delivery technique for a specific site. To assess the differences in skin doses, we measured the surface doses associated with these two techniques. For the purpose of this investigation, the surface doses in a phantom were measured for ten prostate treatment fields planned with passively scattered proton beams and ten patients planned with spot scanning proton beams. The measured doses were compared to evaluate the differences in the amount of skin dose delivered by using these techniques. The results indicate that, on average, the patients treated with spot scanning proton beams received lower skin doses by an amount of 11.8% ± 0.3% than did the patients treated with passively scattered proton beams. That difference could amount to 4 CGE per field for a prescribed dose of 76 CGE in 38 fractions treated with two equally weighted parallel opposed fields. (note)

  9. Golden Jubilee Photos: Peering inside protons

    CERN Multimedia

    2004-01-01

    http://www.cern.ch/cern50/ The 50 m long BCDMS apparatus, with particle detectors sandwiched between slabs of magnetized iron, tracked the paths of muons after they scattered off atoms' nuclei. At first many doubted the results from CERN's BCDMS experiment, which ran from 1978 to 1985 and was a crucial early test of quantum chromodynamics, or QCD. This theory, which was still in its infancy at that time, describes the strong force that governs protons and neutrons. BCDMS slammed muons, heavier cousins of electrons, into the simplest atoms: hydrogen, with a lone proton in its nucleus, and deuterium, with a proton and neutron. When the muons showed a type of collision called deep inelastic scattering, they revealed the inner workings of protons and neutrons: the quarks and gluons. However, the measurements from BCDMS at lower energies didn't fit with those from other CERN experiments, the EMC muon experiment and the CDHS neutrino experiment. These were some of the pre-eminent experiments of the time on deep ...

  10. Feasibility study for a first observation of coherent neutrino nucleus scattering using low-temperature detectors

    International Nuclear Information System (INIS)

    Guetlein, Achim

    2013-01-01

    Coherent Neutrino Nucleus Scattering (CNNS) is a neutral current process of the weak interaction. For low transferred momenta the neutrino scatters coherently off all nucleons leading to an enhanced cross section. However, because of the small resulting recoil energies (O(keV)) CNNS has not been observed experimentally so far. For the first observation of CNNS a strong neutrino source is needed. Thus, the expected count rates for solar neutrinos, supernova neutrinos, neutrinos generated by the decay of stopped π + particles at accelerators, and reactor neutrinos were calculated. Although an observation of CNNS could also be possible with other sources, the most promising neutrino sources are nuclear reactors with thermal powers between 2 and 4 GW. For an assumed energy threshold of 0.5 keV the target material with the largest count rate (∝10 kg -1 day -1 ) is sapphire. Thus, a low-temperature detector based on a 32 g sapphire crystal was designed and built to measure the background spectrum for energies below ∝10 keV. Although the energy threshold (∝1 keV) of this detector is too large for an observation of CNNS, the measured background spectrum can still be used for an investigation of the main background sources and the suppression of their events. For this investigation the simulated spectra of cosmic muons, ambient neutrons, and external gamma-rays are compared to the measured background spectrum. As a result, cosmic muons are the main contribution to the measured background spectrum. For a future experiment aiming at the observation of CNNS an array of 125 low-temperature detectors based on 32 g sapphire crystals is assumed. Background simulations of cosmic muons, ambient neutrons, and intrinsic radioactivity show that especially an efficient muon-veto system is crucial for a sufficient background suppression. To study the observation potential of this future experiment a distance of ∝ 40 m to a reactor core with a thermal power of ∝4 GW (neutrino

  11. Imaging the proton via hard exclusive production in diffractive pp scattering

    International Nuclear Information System (INIS)

    Charles Hyde; Leonid Frankfurt; Mark Strikman; Christian Weiss

    2007-01-01

    We discuss the prospects for probing Generalized Parton Distributions (GPDs) via exclusive production of a high-mass system (H = heavy quarkonium, di-photon, di-jet, Higgs boson) in diffractive pp scattering, pp -> p + H + p. In such processes the interplay of hard and soft interactions gives rise to a diffraction pattern in the final-state proton transverse momenta, which is sensitive to the transverse spatial distribution of partons in the colliding protons. We comment on the plans for diffractive pp measurements at RHIC and LHC. Such studies could complement future measurements of GPDs in hard exclusive ep scattering (JLab, COMPASS, EIC)

  12. Quark matter formation in high energy nucleus-nucleus collisions - predictions and observations

    International Nuclear Information System (INIS)

    Otterlund, I.

    1983-01-01

    In this talk I give a short summary of the recent discussion around predictions and possible observations of quark-gluon plasma and fireballs in ultrarelativistic nucleus-nucleus collisions. In particular this talk is focused on heavy ion reactions at 200 A GeV. (orig./HSI)

  13. A study of the internal spin structure of the proton through inclusive and semi-inclusive polarized deep-inelastic muon-proton scattering

    International Nuclear Information System (INIS)

    Papavassiliou, V.

    1988-01-01

    The internal spin structure of the proton was studied in a deep-inelastic scattering experiment a CERN, the European Laboratory for Nuclear Research, by the European Muon Collaboration, using a longitudinally polarized muon beam and a longitudinally polarized target at irradiated ammonia. The spin asymmetry was studied as a function of the Bjorken scaling variable x and the results were in agreement over the region of overlap with previous experiments that used lower-energy polarized electron beams. The higher energies of the experiment allowed to study with precision the previously unexplored region of x below 0.1 and to compute the integral of the spin-dependent structure function g 1 of the proton. This integral was found to be in disagreement with the Ellis-Jaffe sum rule which could imply either a breakdown of the SU(3) symmetry in the decays of the members of the baryon octet or a significant polarization of the strange-quark sea of the proton opposite to the proton spin. In either case and assuming the validity of the Bjorken sum rule that relates the integrals of the spin-dependent structure functions of the proton and the neutron, the total helicity of all the quarks is found to account for only a small fraction of the proton helicity. In addition, spin asymmetries in the semi-inclusive reactions where a hadron of definite sign is observed in the final state were studied. The results are consistent with the down quarks being polarized opposite to the proton spin, as expected by symmetry arguments. Implication of the results on different areas in particle physics are presented. Some future prospects for spin physics are discussed and predictions are given for deep-inelastic-scattering experiments on polarized deuterium targets and the spin structure of the neutron

  14. Field theoretical approach to proton-nucleus reactions: II-Multiple-step excitation process

    International Nuclear Information System (INIS)

    Eiras, A.; Kodama, T.; Nemes, M.

    1989-01-01

    A field theoretical formulation to multiple step excitation process in proton-nucleus collision within the context of a relativistic eikonal approach is presented. A closed form expression for the double differential cross section can be obtained whose structure is very simple and makes the physics transparent. Glauber's formulation of the same process is obtained as a limit of ours and the necessary approximations are studied and discussed. (author) [pt

  15. Spot Scanning and Passive Scattering Proton Therapy: Relative Biological Effectiveness and Oxygen Enhancement Ratio in Cultured Cells.

    Science.gov (United States)

    Iwata, Hiromitsu; Ogino, Hiroyuki; Hashimoto, Shingo; Yamada, Maho; Shibata, Hiroki; Yasui, Keisuke; Toshito, Toshiyuki; Omachi, Chihiro; Tatekawa, Kotoha; Manabe, Yoshihiko; Mizoe, Jun-etsu; Shibamoto, Yuta

    2016-05-01

    To determine the relative biological effectiveness (RBE), oxygen enhancement ratio (OER), and contribution of the indirect effect of spot scanning proton beams, passive scattering proton beams, or both in cultured cells in comparison with clinically used photons. The RBE of passive scattering proton beams at the center of the spread-out Bragg peak (SOBP) was determined from dose-survival curves in 4 cell lines using 6-MV X rays as controls. Survival of 2 cell lines after spot scanning and passive scattering proton irradiation was then compared. Biological effects at the distal end region of the SOBP were also investigated. The OER of passive scattering proton beams and 6 MX X rays were investigated in 2 cell lines. The RBE and OER values were estimated at a 10% cell survival level. The maximum degree of protection of radiation effects by dimethyl sulfoxide was determined to estimate the contribution of the indirect effect against DNA damage. All experiments comparing protons and X rays were made under the same biological conditions. The RBE values of passive scattering proton beams in the 4 cell lines examined were 1.01 to 1.22 (average, 1.14) and were almost identical to those of spot scanning beams. Biological effects increased at the distal end of the SOBP. In the 2 cell lines examined, the OER was 2.74 (95% confidence interval, 2.56-2.80) and 3.08 (2.84-3.11), respectively, for X rays, and 2.39 (2.38-2.43) and 2.72 (2.69-2.75), respectively, for protons (Pcells between X rays and protons). The maximum degree of protection was significantly higher for X rays than for proton beams (P<.05). The RBE values of spot scanning and passive scattering proton beams were almost identical. The OER was lower for protons than for X rays. The lower contribution of the indirect effect may partly account for the lower OER of protons. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Enhancement of the incoherent scattering plasma lines due to precipitating protons and secondary electrons

    International Nuclear Information System (INIS)

    Bjoernaa, N.; Havnes, O.; Jensen, J.O.; Trulsen, J.

    1982-01-01

    Precipitating protons in the energy range 1-100 keV are regularly present in the auroral ionosphere. These protons will produce enhancements in the intensity of the upshifted plasma line of the incoherently scattered spectrum. Similarly, secondary electrons produced by the precipitating protons give rise to enhanced plasma line intensities. For a quantitative discussion of these effects an experimentally measured proton flux is adapted and the corresponding secondary electron flux calculated. These particle fluxes are then applied in connection with the EISCAT radar facility. Both fluxes give rise to enhancements of the order of 20. It is possible to separate between proton and electron contributions to the enhanced plasma lines for scattering heights above the source region of secondary electrons. (Auth.)

  17. On the proton exchange contribution to electron-hydrogen atom elastic scattering

    International Nuclear Information System (INIS)

    Mignaco, J.A.; Tort, A.C.

    1979-05-01

    It is shown that the exchange contribution to the electron-proton potential Born term in elastic electron-hydrogen atom scattering arises as the non relativistic limit from the exchange of a proton between the two participant electrons - calculated from quantum electrodynamics including properly bound states (as solution of Bethe - Salpeter equation). (Author) [pt

  18. High energy nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Bhalla, K.B.

    1980-01-01

    An attempt is made to explain nucleus-nucleus collisions based on nuclear emulsion experiments. Peripheral and central collisions are described in detail. Assuming the fireball model, the concepts of geometry, kinematics and thermodynamics in this model are discussed. Projectile and target fragmentations are studied. The advantages of using nuclear emulsions as detectors, are mentioned. Proton-nucleus collisions and nucleus-nucleus collisions are compared. Interactions, of projectiles such as Ca, B and C on targets such as Pb, Ag, Br etc. at very high energies (approximately 300 to 1700 Gev) are listed. A comparison of the near multiplicities in these interactions is given. A generalized explanation is given on the processes involved in these interactions. (A.K.)

  19. Implementing the correlated fermi gas nuclear model for quasielastic neutrino-nucleus scattering

    Science.gov (United States)

    Tockstein, Jameson

    2017-09-01

    When studying neutrino oscillations an understanding of charged current quasielastic (CCQE) neutrino-nucleus scattering is imperative. This interaction depends on a nuclear model as well as knowledge of form factors. Neutrino experiments, such as MiniBooNE, often use the Relativistic Fermi Gas (RFG) nuclear model. Recently, the Correlated Fermi Gas (CFG) nuclear model was suggested in, based on inclusive and exclusive scattering experiments at JLab. We implement the CFG model for CCQE scattering. In particular, we provide analytic expressions for this implementation that can be used to analyze current and future neutrino CCQE data. This project was supported through the Wayne State University REU program under NSF Grant PHY-1460853 and by the DOE Grant DE-SC0007983.

  20. Charged-Current Neutrino-Nucleus Scattering off the Even Molybdenum Isotopes

    Directory of Open Access Journals (Sweden)

    E. Ydrefors

    2012-01-01

    Full Text Available Neutrinos from supernovae constitute important probes of both the currently unknown supernova mechanisms and of neutrino properties. Reliable information about the nuclear responses to supernova neutrinos is therefore crucial. In this work, we compute the cross sections for the charged-current neutrino-nucleus scattering off the even-even molybdenum isotopes. The nuclear responses to supernova neutrinos are subsequently calculated by folding the cross sections with a Fermi-Dirac distribution.

  1. SU-E-T-494: Influence of Proton Track-Cell Nucleus Incidence Angle On Relative Biological Effectiveness

    Energy Technology Data Exchange (ETDEWEB)

    Pater, P; Backstrom, G; Enger, S; Seuntjens, J; El Naqa, I [McGill University, Montreal, Quebec (Canada); Villegas, F; Ahnesjo, A [Uppsala University, Uppsala (Sweden)

    2015-06-15

    Purpose: To explain a Monte Carlo (MC) simulation artifact whereby differences in relative biological effectiveness (RBE) in the induction of initial double strand breaks are observed as a function of the proton track incidence angles in a geometric cell nucleus model. Secondly, to offer an alternative isotropic irradiation procedure to mitigate this effect. Methods: MC tracks of 1 MeV protons were generated in an event-by-event mode. They were overlaid on a cylindrical model of a cell nucleus containing 6×109 nucleotide base pairs. The tracks incidence angle θ with respect to the cell nucleus’s axis was varied in 10 degrees intervals, each time generating one hundred fractions of ∼2 Gy. Strand breaks were scored in the modeled DNA sugar-phosphate groups and further sub-classified into single or double strand breaks (ssbs or dsbs). For each angle, an RBE for the induction of initial dsbs with reference to Co-60 was calculated. Results: Our results show significant angular dependencies of RBE, with maximum values for incidence angles parallel to the nucleus central axis. Further examination shows that the higher cross-sections for the creation of dsbs is due to the preferential alignment of tracks with geometrical sub-parts of the cell nucleus model, especially the nucleosomes containing the sugar-phosphate groups. To alleviate the impact of this simulation artifact, an average RBE was calculated with a procedure based on a weighted sampling of the angular data. Conclusion: This work demonstrates a possible numerical artifact in estimated RBE if the influence of the particle incidence angle is not correctly taken into account. A correction procedure is presented to better conform the simulations to real-life experimental conditions. We would like to acknowledge support from the Fonds de recherche du Quebec Sante (FRQS), from the CREATE Medical Physics Research Training Network grant (number 432290) of NSERC, support from NSERC under grants RGPIN 397711-11 and

  2. Proton-proton Scattering Above 3 GeV/c

    Energy Technology Data Exchange (ETDEWEB)

    A. Sibirtsev, J. Haidenbauer, H.-W. Hammer S. Krewald ,Ulf-G. Meissner

    2010-01-01

    A large set of data on proton-proton differential cross sections, analyzing powers and the double-polarization parameter A{sub NN} is analyzed employing the Regge formalism. We find that the data available at proton beam momenta from 3 GeV/c to 50 GeV/c exhibit features that are very well in line with the general characteristics of Regge phenomenology and can be described with a model that includes the {rho}, {omega}, f{sub 2}, and a{sub 2} trajectories and single-Pomeron exchange. Additional data, specifically for spin-dependent observables at forward angles, would be very helpful for testing and refining our Regge model.

  3. Measurement of nuclear transparencies from exclusive ρ0 meson production in muon-nucleus scattering

    International Nuclear Information System (INIS)

    Fang, G.Y.

    1995-01-01

    Preliminary results on the measurement of nuclear transparencies from exclusive incoherent ρ 0 meson production off deuterium, carbon, calcium, and lead, normalized to hydrogen, and coherent ρ 0 meson production off calcium and lead, normalized to carbon, in deep-inelastic muon-nucleus scattering are reported. The data were collected with the E665 spectrometer using the Fermilab Tevatron muon beam with a mean beam energy of 470 GeV. Increases in the transparencies are observed in both coherent and incoherent production as the virtuality of the photon increases, as expected of color transparency. copyright 1995 American Institute of Physics

  4. Signature for g bosons from medium energy proton scattering experiments

    International Nuclear Information System (INIS)

    Kuyucak, S.

    1993-01-01

    We apply the recently developed algebraic (1/N expansion) scattering formalism to medium energy proton scattering from 154 Sm and 176 Yb. The nuclear structure effects in this formalism are described by the interacting boson model generalized to arbitrary interactions and types of bosons i.e. s,d,g, etc. We find that, in the sd boson model, a consistent description of cross sections is possible only for the 0 + and 2 + states. The failure of the model with regard to the 4 + states indicates that the effective hexadecapole operator used in the sd model is inadequate. In contrast, the data for scattering to the 0 + , 2 + and 4 + states could be consistently described in the sdg boson model. The spectroscopic data for the low-lying levels usually can not distinguish between the sd and sdg models due to renormalization of parameters, and one has to look at high spin or energy data for evidence of g bosons. The inelastic proton scattering experiments, on the other hand, directly probe the wave functions, and hence could provide a signature for g bosons even in the ground band states

  5. Measurement of $\\Lambda_{\\rm c}$ Baryon production in the decay channel $\\Lambda_{\\rm c} \\rightarrow p \\rm K^{0}_{\\rm S}~$ in proton-proton and proton-lead collisions with ALICE detector at LHC

    CERN Document Server

    Meninno, Elisa

    This thesis describes the study of the production of the charmed baryon $\\Lambda_{\\rm c}^{+}$ in proton-proton and proton-lead collisions with the ALICE experiment, operating at the Large Hadron Collider (LHC) at CERN. ALICE was built to study hadronic collisions (pp and A-A) and, in particular, aims to investigate the $Quark-Gluon Plasma$ (QGP), state of the matter during the first instants of life of the universe. When two ultra-relativistic heavy nuclei collide, the extreme conditions of temperature and pressure, necessary for the QGP formation, can be created. In particular, heavy quarks (charm and beauty) are produced in hard scattering processes during the first stages of the hadronic collision. The measurement of hadrons with heavy quarks in pp collisions at the LHC energies is a powerful test for perturbative quantum cromodynamics (pQCD) in this energy domain. Moreover, these studies are the necessary reference for studying the production of heavy quarks in nucleus-nucleus collisions. Results from pp ...

  6. Exclusive vector meson production in muon-nucleus scattering

    International Nuclear Information System (INIS)

    Fang, G.Y.

    1994-02-01

    Preliminary results on the cross section ratios of exclusive incoherent ρ 0 and φ meson production off deuterium, carbon, calcium, and lead to that off hydrogen and coherent ρ 0 and φ meson production off calcium and lead to that off carbon in deep-inelastic muon-nucleon and muon-nucleus scattering are reported. The data were taken with the E665 spectrometer using the Fermilab Tevatron muon beam. The mean beam energy was 470 GeV. Increases in the cross section ratios are seen in both the elastic and quasi-elastic production as the four-momentum squared of the virtual photon increases. The results support the idea of color transparency

  7. Calculated inclusive neutron production from 400 GeV proton-nucleus collisions

    International Nuclear Information System (INIS)

    Alsmiller, R.G. Jr.; Alsmiller, F.S.; Hermann, O.W.

    1989-08-01

    Calculated inclusive neutron production from 400 GeV proton-nucleus collisions is presented and compared with experimental data. Target nuclei H, Be, Cu, and Pb are considered and the comparisons cover the laboratory energy range of 20 to 400 GeV, and angular range 0.7 to 10 mr. Moderately good agreement between the calculated and experimental data is found, but the agreement in the case of Be, Cu and Pb is significantly better than in the case of H. 8 refs., 4 figs

  8. Nuclear structure at the proton dripline

    International Nuclear Information System (INIS)

    Maglione, Enrico; Ferreira, Lidia S.; Costa Lopes, Miguel

    2007-01-01

    Recent studies with exotic nuclei far from the stability region, lead to the discovery of one and two proton radioactivity, from ground state of spherical, as well as deformed nuclei. Isomeric decay and fine structure were also measured, and in some cases, a prompt proton and alpha particle emission was observed. It was established that, the majority of prompt particle decays proceeds from superdeformed initial states, into spherical daughter states, revealing a change of deformation during the decay. Proton radioactivity has been the unique way to probe nuclear structure mechanisms in this region of stability. Since proton emitters lie beyond the proton drip-line, they also give the possibility of observing Nilsson resonances. In fact, the experimental data on proton radioactivity in regionswhere theoretical models predict a certain deformation for the nucleus is consistent with the idea that the proton was in a single particle resonance state, in the field of the daughter nucleus. An important aspect of such calculations is the inclusion of the nuclear structure properties of the core,like the rotational spectrum of the daughter nucleus, and the pairing residual interaction. We will address various questions concerning what we have learned from the data and how far our theoretical models have taken us in the region of neutron deficient nuclei at the borders of stability. (Author)

  9. Antiproton-proton elastic scattering at 1.8 TeV

    International Nuclear Information System (INIS)

    Fazal-e-Aleem; Saleem, M.; Yodh, G.B.

    1990-01-01

    The predictions, based on the generalized Chou-Yang model, are made for the most recent measurements of antiproton-proton elastic scattering at √s = 1.8 TeV. These results have been compared with the recent theoretical predictions of various models. (author)

  10. Antiproton-proton elastic scattering at 1. 8 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Fazal-e-Aleem; Saleem, M. (Punjab Univ., Lahore (Pakistan). Centre for High Energy Physics); Yodh, G.B. (California Univ., Irvine, CA (USA). Dept. of Physics)

    1990-11-01

    The predictions, based on the generalized Chou-Yang model, are made for the most recent measurements of antiproton-proton elastic scattering at {radical}s = 1.8 TeV. These results have been compared with the recent theoretical predictions of various models. (author).

  11. Measurement of nuclear transparencies from exclusive ρ0 meson production in muon-nucleus scattering at 470 GeV

    International Nuclear Information System (INIS)

    Adams, M.R.; Aied, S.; Anthony, P.L.; Averill, D.A.; Baker, M.D.; Baller, B.R.; Banerjee, A.; Bhatti, A.A.; Bratzler, U.; Braun, H.M.; Breidung, H.; Busza, W.; Carroll, T.J.; Clark, H.L.; Conrad, J.M.; Davisson, R.; Derado, I.; Dhawan, S.K.; Dietrich, F.S.; Dougherty, W.; Dreyer, T.; Eckardt, V.; Ecker, U.; Erdmann, M.; Faller, F.; Fang, G.Y.; Figiel, J.; Finlay, R.W.; Gebauer, H.J.; Geesaman, D.F.; Griffioen, K.A.; Guo, R.S.; Haas, J.; Halliwell, C.; Hantke, D.; Hicks, K.H.; Hughes, V.W.; Jackson, H.E.; Jancso, G.; Jansen, D.M.; Jin, Z.; Kaufman, S.; Kennedy, R.D.; Kinney, E.R.; Kirk, T.; Kobrak, H.G.E.; Kotwal, A.V.; Kunori, S.; Lancaster, S.; Lord, J.J.; Lubatti, H.J.; McLeod, D.; Madden, P.; Magill, S.; Manz, A.; Melanson, H.; Michael, D.G.; Montgomery, H.E.; Morfin, J.G.; Nickerson, R.B.; O'Day, S.; Olkiewicz, K.; Osborne, L.; Otten, R.; Papavassiliou, V.; Pawlik, B.; Pipkin, F.M.; Potterveld, D.H.; Ramberg, E.J.; Roeser, A.; Ryan, J.J.; Salgado, C.W.; Salvarani, A.; Schellman, H.; Schmitt, M.; Schmitz, N.; Schueler, K.P.; Siegert, G.; Skuja, A.; Snow, G.A.; Soeldner-Rembold, S.; Spentzouris, P.; Stier, H.E.; Stopa, P.; Swanson, R.A.; Venkataramania, H.; Wilhelm, M.; Wilson, R.; Wittek, W.; Wolbers, S.A.; Zghiche, A.; Zhao, T.

    1995-01-01

    Nuclear transparencies measured in exclusive incoherent ρ 0 meson production from hydrogen, deuterium, carbon, calcium, and lead in muon-nucleus scattering are reported. The data were obtained with the E665 spectrometer using the Fermilab Tevatron muon beam with a mean beam energy of 470 GeV. Increases in the nuclear transparencies are observed as the virtuality of the photon increases, in qualitative agreement with the expectations of color transparency

  12. Why the real part of the proton-proton forward scattering amplitude should be measured at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Bourrely, C.; Soffer, J. [Centre de Physique Theorique, UMR 6207 b, CNRS-Luminy, 13 - Marseille (France); Khuri, N.N. [Rockfeller Univ., (2) Physics Dept., New York, N.Y. (United States); Martin, A.; Tai Tsun Wu, J. [Conseil Europeen pour la recherche nucleaire, Theory Div., Geneve (Switzerland); Tai Tsun Wu, J. [Harvard Univ., Gordon Mc Kay Lab., Cambridge, MA (United States)

    2005-07-01

    For the energy of 14 TeV, to be reached at the Large Hadron Collider (LHC), we have had for some time accurate predictions for both the real and imaginary parts of the forward proton-proton elastic scattering amplitude. LHC is now scheduled to start operating in 2 years, and it is timely to discuss some of the important consequences of the measurements of both the total cross-section and the ratio of the real to the imaginary part ({rho}). An accurate prediction is given by the BSW model: {rho} = 0.122 with {sigma}(total) = 103.6 mb (at the LHC energy {radical}(s) = 14 TeV. If the experiment gives numbers compatible with those above, it will mean that the scale of violation is very much above the LHC energy or that the corresponding minimal size is much smaller. On the contrary a disagreement would give indication for new physics and we stress the importance of measuring the real part of the proton-proton forward scattering amplitude at LHC, because a deviation from existing theoretical predictions could be a strong sign for new physics.

  13. Galileo-invariant theory of low energy pion-nucleus scattering. II

    International Nuclear Information System (INIS)

    Mach, R.

    1983-01-01

    Two classes of Galileo-invariant optical models are constructed for pion elastic scattering by nuclei. The former, the two-body model, was obtained assuming that the pion-bound nucleon dynamics is determined by the pion-nucleon kinetic energy. In deriving the latter model, the (A+1)-body dynamics was taken into account. The technique of effective nucleon momenta maintains the nonlocal propagation of the pion-target nucleon subsystem through the nucleus in contrast with the standard static approximation. (author)

  14. Detection of supernova neutrinos by neutrino-proton elastic scattering

    International Nuclear Information System (INIS)

    Beacom, John F.; Farr, Will M.; Vogel, Petr

    2002-01-01

    We propose that neutrino-proton elastic scattering, ν+p→ν+p, can be used for the detection of supernova neutrinos in scintillator detectors. Though the proton recoil kinetic energy spectrum is soft, with T p ≅2E ν 2 /M p , and the scintillation light output from slow, heavily ionizing protons is quenched, the yield above a realistic threshold is nearly as large as that from ν(bar sign) e +p→e + +n. In addition, the measured proton spectrum is related to the incident neutrino spectrum, which solves a long-standing problem of how to separately measure the total energy and temperature of ν μ , ν τ , ν(bar sign) μ , and ν(bar sign) τ . The ability to detect this signal would give detectors like KamLAND and Borexino a crucial and unique role in the quest to detect supernova neutrinos

  15. Mechanism of energy release from nucleus-target in hadron-nucleus collision

    International Nuclear Information System (INIS)

    Strugalski, Z.; Strugalska-Gola, E.

    2000-01-01

    The collisions of hadrons (protons, mesons) with 131 Xe nucleus and arising light nuclear fragments as nuclear refraction products have been observed in bubble chamber. Mechanism of energy release during these collisions has been discussed. The quantitative calculations has proved that this phenomena can be treated as potential energy source with use of many different target materials

  16. Compton Scattering Cross Section on the Proton at High Momentum Transfer

    International Nuclear Information System (INIS)

    A. Danagoulian; V.H. Mamyan; M. Roedelbronn; K.A. Aniol; J.R.M. Annand; P.Y. Bertin; L. Bimbot; P. Bosted; J.R. Calarco; A. Camsonne; C.C. Chang; T.-H. Chang; J.-P. Chen; Seonho Choi; E. Chudakov; P. Degtyarenko; C.W. de Jager; A. Deur; D. Dutta; K. Egiyan; H. Gao; F. Garibaldi; O. Gayou; R. Gilman; A. Glamazdin; C. Glashausser; J. Gomez; D.J. Hamilton; J.-O. Hansen; D. Hayes; D.W. Higinbotham; W. Hinton; T. Horn; C. Howell; T. Hunyady; C.E. Hyde-Wright; X. Jiang; M.K. Jones; M. Khandaker; A. Ketikyan; V. Koubarovski; K. Kramer; G. Kumbartzki; G. Laveissiere; J. LeRose; R.A. Lindgren; D.J. Margaziotis; P. Markowitz; K. McCormick; Z.-E. Meziani; R. Michaels; P. Moussiegt; S. Nanda; A.M. Nathan; D.M. Nikolenko; V. Nelyubin; B.E. Norum; K. Paschke; L. Pentchev; C.F. Perdrisat; E. Piasetzky; R. Pomatsalyuk; V.A. Punjabi; I. Rachek; A. Radyushkin; B. Reitz; R. Roche; G. Ron; F. Sabatie; A. Saha; N. Savvinov; A. Shahinyan; Y. Shestakov; S. Sirca; K. Slifer; P. Solvignon; P. Stoler; S. Tajima; V. Sulkosky; L. Todor; B. Vlahovic; L.B. Weinstein; K. Wang; B. Wojtsekhowski; H. Voskanyan; H. Xiang; X. Zheng; L. Zhu

    2007-01-01

    Cross-section values for Compton scattering on the proton were measured at 25 kinematic settings over the range s = 5-11 and -t = 2-7 GeV2 with statistical accuracy of a few percent. The scaling power for the s-dependence of the cross section at fixed center of mass angle was found to be 8.0 +/- 0.2, strongly inconsistent with the prediction of perturbative QCD. The observed cross section values are in fair agreement with the calculations using the handbag mechanism, in which the external photons couple to a single quark

  17. Excitation function for the population of the 4.51 MeV state of 27Al inelastic proton scattering. Evidence for 6- strength?

    International Nuclear Information System (INIS)

    Spicer, B.M.; Koutsoliotas, S.

    1995-01-01

    The excitation function for emission of 2.30 MeV gamma rays from the 4.51 MeV state of 27 Al formed in inelastic proton scattering has been measured for proton energies from 5.6 to 7.3 MeV. A resonance previously seen in both inelastic electron and proton scattering from 28 Si at 17.35 MeV has been observed as a resonance in the excitation function, as well as seven other resonances, all of which are narrow (i.e., less than 100 keV wide). It is suggested that these may represent fragments of 6 - strength in 28 Si. 6 refs., 1 tab., 2 figs

  18. Scattering of low-energetic pions on the sulfur isotopes 32S and 34S

    International Nuclear Information System (INIS)

    Krell, S.

    1990-01-01

    At the Paul-Scherrer Institute PSI in Villingen/Switzerland the scattering of positive and negative pions of 50 MeV kinetic energy on the sulfur isotopes 32 S, 34 S was measured with the new installed low-energy pion spectrometer LEPS. Elastic cross sections were measured for scattering angles of 5deg-123deg for both pion polarities and for both isotopes. Because of the good resolution of 500 keV it was also possible to measure the inelastic scattering to single excited nuclear states of 45deg-123deg. Aim of the analyses was the testing of the basing reaction model, the test of the effective pion-nucleon interaction in the nucleus, as well as the extraction of neutron density distributions and neutron transition densities in 34 S. At the N=Z nucleus 32 S, the nuclear structure of which is known from the electron scattering, by means of the elastic scattering the effective πN interaction was fixed. The validity of the impulse approximation at 50 MeV was proved by the quantitative reproduction of the 2 1 + scattering data on 32 S by parameter-free DWIA calculations. For the 4 1 + and the 3 1 + excitations in 32 S the expected isoscalar character was confirmed. For the nucleus 34 S the analysis of the eleastic scattering yields a neutron skin of Δr np =0.03(1)fm. The scattering to the 2 1 + yields a neutron moment of M n =16.6(10)efm 2 respectively a ratio of proton to neutron moment of M n /M p =1.19(9), which corresponds to a collective isoscalar excitation. Against this for the 2 2 + excitation a ratio for the moments of M n /M p =-0.4(2) is determined, what means that to this not collective, proton-dominated excitation neutron and proton wave functions contribute antiphasically, as it is typical for isovectorial excitations. (orig./HSI) [de

  19. Eikonal Scattering in the sdg Interacting Boson Model:. Analytical Results in the SUsdg(3) Limit and Their Generalizations

    Science.gov (United States)

    Kota, V. K. B.

    General expression for the representation matrix elements in the SUsdg(3) limit of the sdg interacting boson model (sdgIBM) is derived that determine the scattering amplitude in the eikonal approximation for medium energy proton-nucleus scattering when the target nucleus is deformed and it is described by the SUsdg(3) limit. The SUsdg(3) result is generalized to two important situations: (i) when the target nucleus ground band states are described as states arising out of angular momentum projection from a general single Kπ = 0+ intrinsic state in sdg space; (ii) for rotational bands built on one-phonon excitations in sdgIBM.

  20. Study on proton spin flip in scattering by Ti and Fe nuclei

    International Nuclear Information System (INIS)

    Korbetskij, E.V.; Prokopenko, V.S.; Sklyarenko, V.D.; Chernievskij, V.K.; Shustov, A.V.

    1981-01-01

    Spin-orbital effects and mechanisms of inelastic scattering of protons with energy of 6.9 MeV by sup(14, 48)Ti and sup(54, 56, 58)Fe are studied by the analysis of experimental results within the framework of the method of coupled channels. Simultaneously angular dependences of cross sections of elastic and inelastic (two first 2 + levels) scatterings and a probability of spin flip of proton at inelastic scattering are analysed. Experimental data were used for analysis, obtained in the given work, as well as the data published earlier. Targets are used in experiment which are in the form of self-sustaining fine (1-2 mg cm -2 ) films, enriched with corresponding isotope. Cross section determination error is 8% in the average. Obtained angular dependences of spin flip probability for sup(54, 56)Fe at Esub(p)=6.9 MeV are very similar in form and close in value to analogous at Esub(p)= 6 MeV, and differ greatly for 56 Fe at Esub(p)=5.88 MeV. Angular distributions of spin flip probabilities of protons from sup(54, 56)Fe (ppsub(1)) reaction at energies of 10, 11 and 12 MeV show the sufficient energy dependence of their shape and value. Experimental data are described satisfactorily witohin the framework of the cupled channel method namely - differential cross sections of elastic and inelastic scattering and angular dependences of the probability of spin flip at the interaction of protons with 6.9 MeV energy with sup(46, 48)Ti and sup(54, 56, 58)Fe nuclei. Difficulties, appearing in the description of cross sections of elastic scattering in case of sup(46, 48)Ti and of inelastic one for 56 Fe show that indirect processes are of importance in the present energy range and they should be taken into consideration [ru

  1. Target fragmentation in proton-nucleus and /sup 16/O-nucleus reactions at 60 and 200 GeVnucleon

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, H R; Albrecht, R; Awes, T C; Baktash, C; Beckmann, P; Claesson, G; Berger, F; Bock, R; Dragon, L; Ferguson, R L; Franz, A; Garpman, S; Glasow, R; Gustafsson, H A; Gutbrod, H H; Kampert, K H; Kolb, B W; Kristiansson, P; Lee, I Y; Loehner, H; Lund, I; Obenshain, F E; Oskarsson, A; Otterlund, I; Peitzmann, T; Persson, S; Plasil, F; Poskanzer, A M; Purschke, M; Ritter, H G; Santo, R; Siemiarczuk, T; Sorensen, S P; Stenlund, E; Young, G R

    1987-01-01

    Target remnants with Z<3 from proton-nucleus and /sup 16/O-nulceus reactions at 60 and 200 GeVnucleon were measured in the angular range from 30)degree) to 160)degree) (-1.7<)eta)1.3) employing the Plastic Ball detector. The excitation energy of the target spectator matter in central oxygen-induced collisions is found to be high enough to allow for complete disintegration of the target nucelus into fragments with Z<3. The average longtitudinal momentum transfer per proton to the target in central collisions is considerably higher in the case of /sup 16/O-induced reactions (approx.300 MeVc) than in proton-induced reactions (approx.130 MeVc). The baryon rapidity distributions are roughly in agreement with one-fluid hydrodynamical calcualtions at 60 GeVnucleon /sup 16/O)plus)Au but are in disagreement at 200 GeVnucleon, indicating the higher degree of transparency at the higher bombarding energy. Both, the transverse moments of target spectators and the entropy produced in the target gfragmentation region are compared to those attained in head-on collisions of two heavy nuclei at Bevalac energies. They are found to be comparable or do even exceed the values for the participant matter at beam energies of about 1-2 GeVnucleon. 18 refs., 112 figs

  2. Transverse Imaging of the Proton in Exclusive Diffractive pp Scattering

    International Nuclear Information System (INIS)

    Christian Weiss; Leonid Frankfurt; Charles Hyde-Wright; Mark Strikman

    2006-01-01

    In a forthcoming paper we describe a new approach to rapidity gap survival (RGS) in the production of high-mass systems (H = dijet, Higgs, etc.) in exclusive double-gap diffractive pp scattering, pp -> p + H + p. It is based on the idea that hard and soft interactions are approximately independent (QCD factorization), and allows us to calculate the RGS probability in a model-independent way in terms of the gluon generalized parton distributions (GPDs) in the colliding protons and the pp elastic scattering amplitude. Here we focus on the transverse momentum dependence of the cross section. By measuring the ''diffraction pattern'', one can perform detailed tests of the interplay of hard and soft interactions, and even extract information about the gluon GPD in the proton from the data

  3. Direct observation of two proton radioactivity using digital photography

    International Nuclear Information System (INIS)

    Rykaczewski, Krzysztof Piotr; Pfutzner, M.; Dominik, Wojciech; Janas, Z.; Miernik, K.; Bingham, C.R.; Czyrkowski, HenryK.; Cwiok, Mikolaj; Darby, Iain; Dabrowski, Ryszard; Ginter, T. N.; Grzywacz, Robert Kazimierz; Karny, M.; Korgul, A.; Kusmierz, Waldemar; Liddick, Sean; Rajabali, Mustafa; Stolz, A.

    2007-01-01

    Recently the observation of a new type of spontaneous radioactive decay has been claimed in which two protons are simultaneously ejected by an atomic nucleus from the ground state1,2,3. Experimental data obtained for the extremely neutron-deficient nuclei 45Fe and 54Zn, were interpreted as the first evidence of such a decay mode which has been sought since 1960.4 However, the technique applied in those studies allowed only measurements of the decay time and the total energy released. Particles emitted in the decay were not identified and the conclusions had to be supported by theoretical arguments. Here we show for the first time, directly and unambiguously, that 45Fe indeed disintegrates by two-proton decay. Furthermore, we demonstrate that the decay branch of this isotope leads to various particle emission channels including two-proton and three-proton emission. To achieve this result we have developed a new type of detector V the Optical Time Projection Chamber (OTPC) in which digital photography is applied to nuclear physics for the first time. The detector records images of tracks from charged particles, allowing for their unambiguous identification and the reconstruction of decay events in three dimensions. This new and simple technique provides a powerful method to identify exotic decay channels involving emission of charged particles. It is expected that further studies with the OTPC device will yield important information on nuclei located at and beyond the proton drip-line, thus providing new material for testing and improving models of very unstable atomic nuclei

  4. Jet probes of the nuclear and proton wavefunctions in proton--lead collisions with the ATLAS detector

    CERN Document Server

    Perepelitsa, Dennis; The ATLAS collaboration

    2014-01-01

    Measurements of high pT processes in ultrarelativistic proton-nucleus collisions are sensitive to changes in the partonic densities arising from the presence of the high-density nuclear environment. Such measurements are thought to serve as a benchmark of the so called "cold nuclear matter" effects, providing the context within which to understand the strong suppression of high pT processes observed in nucleus-nucleus collisions. However, measurements of the centrality dependence of jet production at forward (proton-going) rapidities may additionally shed light on the behavior of the proton wavefunction at large Bjorken-x. The latest ATLAS results for inclusive jets and charged particles in 31/nb of 5.02 TeV proton-lead collisions at the LHC are presented. The centrality in these collisions is characterized through the sum of the transverse energy in the lead-going forward calorimeter. The nuclear modification factors RpPb and RCP are presented for jets and high-pT charged particles as a function of transvers...

  5. Antiproton-proton elastic scattering at 3.0 and 4.0 GeV/C

    International Nuclear Information System (INIS)

    Unamuno, S.

    1965-01-01

    This paper presents the results-obtained in studying the two-prong interactions observed in the Saclay 81 cm hydrogen bubble chamber exposed to the 3.0 and 4.0 GeV/c antiproton beams from CERN Proton-Synchroton. Total elastic cross-sections corresponding to both energies are given. The results are given. The results are compared with those of p-p scaterring at different energies and with those of p-p scattering. Several optical-models, from the simples one (the black disk model) to a rather elaborated, four-parameters model have been applied. These models can explain some of the experimental results but fail in predicting the angular distribution of large angle scattering. (Author)

  6. Nuclear breakup of 17Ne and its two-proton halo structure

    Energy Technology Data Exchange (ETDEWEB)

    Wamers, Felix; Aumann, Thomas [Institut fuer Kernphysik, TU Darmstadt (Germany); Bertulani, Carlos [Texas A and M University-Commerce, Commerce (United States); Chulkov, Leonid; Heil, Michael; Simon, Haik [Kernreaktionen und Nukleare Astrophysik, GSI, Darmstadt (Germany); Marganiec, Justyna [Extreme Matter Institute, GSI, Darmstadt (Germany); JINA, Notre Dame (United States); Plag, Ralf [Kernreaktionen und Nukleare Astrophysik, GSI, Darmstadt (Germany); Goethe Universitaet, Frankfurt am Main (Germany); Collaboration: R3B-Collaboration

    2012-07-01

    {sup 17}Ne is a proton-dripline nucleus that has raised interest in nuclear-structure physics in recent years. As a ({sup 15}O+2p) Borromean 3-body system, it is often considered to be a 2-proton-halo nucleus, yet lacking concluding experimental quantification of structure. We have studied breakup reactions of 500 AMeV {sup 17}Ne secondary beams in inverse kinematics using the R3B-LAND setup at GSI. The foci were on (p,2p) quasi-free scattering on a CH{sub 2} target, and on one-proton-knockout reactions on a carbon target. Recoil protons have been detected with Si-Strip detectors and a surrounding 4{pi} NaI spectrometer. Furthermore, projectile-like forward protons after one-proton knockout from {sup 17}Ne have been measured in coincidence with the {sup 15}O residual core. The resulting relative-energy spectrum of the unbound {sup 16}F, as well as proton-removal cross sections with CH{sub 2} and C targets, and the transverse-momentum distributions of the residual fragments are presented. Conclusions on the ground-state structure of {sup 17}Ne are discussed.

  7. Dependence of two-proton radioactivity on nuclear pairing models

    Science.gov (United States)

    Oishi, Tomohiro; Kortelainen, Markus; Pastore, Alessandro

    2017-10-01

    Sensitivity of two-proton emitting decay to nuclear pairing correlation is discussed within a time-dependent three-body model. We focus on the 6Be nucleus assuming α +p +p configuration, and its decay process is described as a time evolution of the three-body resonance state. For a proton-proton subsystem, a schematic density-dependent contact (SDDC) pairing model is employed. From the time-dependent calculation, we observed the exponential decay rule of a two-proton emission. It is shown that the density dependence does not play a major role in determining the decay width, which can be controlled only by the asymptotic strength of the pairing interaction. This asymptotic pairing sensitivity can be understood in terms of the dynamics of the wave function driven by the three-body Hamiltonian, by monitoring the time-dependent density distribution. With this simple SDDC pairing model, there remains an impossible trinity problem: it cannot simultaneously reproduce the empirical Q value, decay width, and the nucleon-nucleon scattering length. This problem suggests that a further sophistication of the theoretical pairing model is necessary, utilizing the two-proton radioactivity data as the reference quantities.

  8. Study of the proton-proton elastic scattering at high energies through eikonal models

    International Nuclear Information System (INIS)

    Martini, Alvaro Favinha

    1995-01-01

    The proton-proton elastic scattering in the center of mass energy region 23 to 63 GeV is investigated through a multiple diffraction model. As an introduction to the subject, a detailed review of the fundamental basis of the Multiple Diffraction Formalism and a survey of the multiple diffraction models (geometrical) currently used are presented. The goal of this investigation is to reformulate one of these models, which makes use of an elementary (parton-parton) amplitude purely imaginary and is not able to predict the ρ-parameter (the ratio of the forward real and imaginary parts of the hadronic amplitude). Introducing a real part for the elementary amplitude proportional to the imaginary part, improvements in the formalism are obtained. It is shown that this new approach is able to reproduce all experimental data on differential and integrated cross sections (total, elastic and inelastic), but not the ρ-parameter as function of the energy. Then, starting from fitting of this parameter an overall reproduction of the physical observables is obtained, with the exception of the dip region (diffractive minimum in the differential cross section) overall description are also not firmly reached in all these models. Finally, alternatives to improve the results in a future research are suggested and discussed. (author)

  9. First Search for the EMC Effect and Nuclear Shadowing in Neutrino Nucleus Deep Inelastic Scattering at MINERvA

    Energy Technology Data Exchange (ETDEWEB)

    Mousseau, Joel A. [Univ. of Florida, Gainesville, FL (United States)

    2015-01-01

    Decades of research in electron-nucleus deep inelastic scattering (DIS) have provided a clear picture of nuclear physics at high momentum transfer. While these effects have been clearly demonstrated by experiment, the theoretical explanation of their origin in some kinematic regions has been lacking. Particularly, the effects in the intermediate regions of Bjorken-x, anti-shadowing and the EMC effect have no universally accepted quantum mechanical explanation. In addition, these effects have not been measured systematically with neutrino-nucleus deep inelastic scattering, due to experiments lacking multiple heavy targets.

  10. Spectroscopy of {sup 18}Na: Bridging the two-proton radioactivity of {sup 19}Mg

    Energy Technology Data Exchange (ETDEWEB)

    Assie, M. [GANIL, CEA/DSM-CNRS/IN2P3, Caen (France); Institut de Physique Nucleaire, Universite Paris-Sud-11-CNRS/IN2P3, 91406 Orsay (France); Oliveira Santos, F. de, E-mail: oliveira@ganil.fr [GANIL, CEA/DSM-CNRS/IN2P3, Caen (France); Davinson, T. [SUPA School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Grancey, F. de [GANIL, CEA/DSM-CNRS/IN2P3, Caen (France); Achouri, L. [LPC/ENSICAEN, Blvd du Marechal Juin, 14050 Caen Cedex (France); Alcantara-Nunez, J. [Departamento de Fisica de Particulas, Universidade de Santiago de Compostela, E15782 (Spain); Al Kalanee, T.; Angelique, J.-C. [LPC/ENSICAEN, Blvd du Marechal Juin, 14050 Caen Cedex (France); Borcea, C.; Borcea, R. [Horia Hulubei National Institute for Physics and Nuclear Engineering, P.O. Box MG-6, 76900 Bucharest (Romania); Caceres, L. [GANIL, CEA/DSM-CNRS/IN2P3, Caen (France); Celikovic, I. [VINCA Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Chudoba, V. [Flerov Laboratory of Nuclear Reactions, JINR RU-141980 Dubna (Russian Federation); Institute of Physics, Silesian University in Opava, Bezrucovo nam. 13, 746 01 Opava (Czech Republic); Pang, D.Y. [GANIL, CEA/DSM-CNRS/IN2P3, Caen (France); Ducoin, C. [INFN - Sezione di Catania, Via S. Sofia 64, Catania 95123 (Italy); Fallot, M. [Subatech 4 rue Alfred Kastler, BP 20722, F-44307 Nantes Cedex 3 (France); Kamalou, O. [GANIL, CEA/DSM-CNRS/IN2P3, Caen (France); Kiener, J. [CSNSM, Universite Paris-Sud-11, CNRS/IN2P3, 91405 Orsay-Campus (France); Lam, Y. [CENBG CNRS/IN2P3 - Universite Bordeaux 1, Le Haut Vigneau, 33175 Gradignan cedex (France); and others

    2012-06-06

    The unbound nucleus {sup 18}Na, the intermediate nucleus in the two-proton radioactivity of {sup 19}Mg, was studied by the measurement of the resonant elastic scattering reaction H({sup 17}Ne,p){sup 17}Ne performed at 4 A.MeV using a radioactive beam from the SPIRAL Facility. Spectroscopic properties of the low-lying states were obtained in an R-matrix analysis of the excitation function.

  11. Parity Violation in Forward Angle Elastic Electron-Proton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Miller, IV, Grady Wilson [Princeton Univ., NJ (United States)

    2001-01-01

    We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from the proton at Jefferson Laboratory. The kinematic point (θlab = 12.3 deg. and (Q2) = 0.48 (GeV/c)2) is chosen to provide sensitivity to the strange electric form factor GsE. A 3.36 GeV beam of longitudinally polarized electrons was scattered from protons in a liquid hydrogen target. The scattered flux was detected by a pair of spectrometers which focussed the elastically-scattered electrons onto total-absorption detectors. The detector signals were integrated and digitized by a custom data acquisition system. A feedback system reduced systematic errors by controlling helicity-correlated beam intensity differences at the sub-ppm (part per million) level. The experimental result, A = 14.5 +/- 2.0 (stat) ± 1.1 (syst) ppm, is consistent with the electroweak Standard Model with no additional contributions from strange quarks. In particular, the measurement implies GSE + 0.39 GsM = 0.023 ± 0.040 ± 0.026 (ζGnE), where the last uncertainty is due to the estimated uncertainty in the neutron electric form factor GnE . This result represents the first experimental constraint of the strange electric form factor.

  12. Large-angle theory for pion-nucleus scattering at high energies

    International Nuclear Information System (INIS)

    Hoock, D.W. Jr.

    1978-01-01

    An approximate solution for high-energy, projectile-nucleus, multiple scattering is developed from the exact Watson series and applied to pion scattering for 12 C and 4 He. Agreement with measured differential cross sections available from the literature for the range 150 to 260 MeV pion laboratory energies is surprisingly good. The approximation method expands the propagators of the Watson series about the transverse component of the momentum transfer. Contributions of each of the first two terms to double scattering from a Gaussian potential are compared to the exact solution. The purely plane-wave propagation produces a scattering amplitude that agrees to order (k 0 a) -1 with the exact solution at the forward and backward directions at high energies. The second (off-axis) propagation term produces an amplitude that is one order smaller at forward angles and two orders smaller at 180 0 than the exact amplitude. At intermediate angles it is of the same order. The general multiple-scattering series is approximated with selection of plane-wave propagation as the fundamental process at large and small angles. This model suggests that a single nucleon accepts most of the momentum transfer for backward scattering. The resulting multiple-scattering formula agrees with the well-known high-energy eikonal theory at small angles and the backward-angle scattering formula of Chen at exactly 180 0 . A lowest-order formula that includes off-axis propagation is also derived. Predicted differential cross sections are found to be sensitive to nucleon motion and binding. For 4 He the effect of the nuclear potential on the pion kinetic energy is also examined and found to produce significant changes in the predicted cross sections

  13. Towards an automated tool to evaluate the impact of the nuclear modification of the gluon density on quarkonium, D and B meson production in proton-nucleus collisions

    CERN Document Server

    Lansberg, Jean-Philippe

    2016-12-27

    We propose a simple and model-independent procedure to account for the impact of the nuclear modification of the gluon density as encoded in nuclear collinear PDF sets on two-to-two partonic hard processes in proton-nucleus collisions. This applies to a good approximation to quarkonium, D and B meson production, generically referred to H. Our procedure consists in parametrising the square of the parton scattering amplitude, A_{gg -> H X} and constraining it from the proton-proton data. Doing so, we have been able to compute the corresponding nuclear modification factors for J/psi, Upsilon and D^0 as a function of y and P_T at sqrt(s_NN)=5 and 8 TeV in the kinematics of the various LHC experiments in a model independent way. It is of course justified since the most important ingredient in such evaluations is the probability of each kinematical configuration. Our computations for D mesons can also be extended to B meson production. To further illustrate the potentiality of the tool, we provide --for the first t...

  14. Thermal Bremsstrahlung probing nuclear multifragmentation in nucleus-nucleus collisions around the Fermi energy

    International Nuclear Information System (INIS)

    D'Enterria, D.G.

    2000-05-01

    The thermodynamical properties of nuclear matter at moderate temperatures and densities, in the vicinity of the predicted nuclear liquid-gas phase transition, are studied using as experimental probe the hard-photons (E γ > 30 MeV) emitted in nucleus-nucleus collisions. Photon and charged-particle production in four different heavy-ion reactions (Ar 36 + Au 197 , Ag 107 , Ni 58 , C 12 at 60 A*MeV) is measured exclusively and inclusively coupling the TAPS photon spectrometer with two charged-particle and intermediate-mass-fragment detectors covering nearly 4π. We confirm that Bremsstrahlung emission in first-chance (off-equilibrium) proton-neutron collisions (pnγ) is the dominant origin of hard photons. We also firmly establish the existence of a thermal radiation component emitted in second-chance proton-neutron collisions. This thermal Bremsstrahlung emission takes place in semi-central and central nucleus-nucleus reactions involving heavy targets. We exploit this observation i) to demonstrate that thermal equilibrium is reached during the reaction, ii) to establish a new thermometer of nuclear matter based on Bremsstrahlung photons, iii) to derive the thermodynamical properties of the excited nuclear sources and, in particular, to establish a 'caloric curve' (temperature versus excitation energy), and iv) to assess the time-scales of the nuclear break-up process. (author)

  15. Phase variation of nucleon-nucleon amplitude for proton-12C elastic scattering

    International Nuclear Information System (INIS)

    Deng Yibing; Wang Shilai; Yin Gaofang

    2006-01-01

    Franco and Yin studied for α- 4 He, 3 He, 2 He, 1 He elastic-scattering by using the phase of the nucleon-nucleon elastic-scattering amplitude varies with momentum transfer in the framework of Glauber multiple scattering theory at intermediate energy. The phase variation leads to large changes in the differential cross sections, and brings the Glauber theory into agreement with experimental data. Later Lombard and Maillet is based on the suggestion by Franco and Yin studied for the p- 4 He elastic-scattering in the framework of Glauber theory, and found this phase to be actually important for the description of spin observables. Recently Wang Shilai and Deng Yibing et al studied for the p- 4 He elastic-scattering in the framework of KMT multiple scattering theory at intermediate energy, and found this phase lead to differential cross sections and polarization, which are in better agreement with experimental data. This paper is based on the suggestion by Franco and Yin that the phase of the nucleon-nucleon scattering amplitude should vary with momentum transfer. The proton elastic scattering on 12 C is studied in the KMT multiple scattering theory with microscopic momentum space first term optical potential. The Coulomb interactions are taken into account in our calculation. The theoretical calculation results show that the phase leads to differential cross section and polarization are in better agreement with experimental data. In conclusion this phase is actually important in the framework of KMT theory. (authors)

  16. Experimental study of inclusive deep inelastic neutrino--proton scattering

    International Nuclear Information System (INIS)

    Berge, J.P.; Bogert, D.; DiBianca, F.A.; Cundy, D.C.; Dunaitsev, A.; Efremenko, V.; Ermolov, P.; Fowler, W.; Hanft, R.; Harigel, G.; Huson, F.R.; Kolganov, V.; Mukhin, A.; Nezrick, F.A.; Rjabov, Y.; Scott, W.G.; Smart, W.; Coffin, C.T.; Diamond, R.N.; French, H.; Louis, W.; Roe, B.P.; Seidl, A.A.; Velde, J.C.V.

    1976-01-01

    A neutrino--proton scattering experiment has been performed at Fermilab by using a wide-band horn-focused neutrino beam and the 15-ft bubble chamber filled with hydrogen. For the inclusive reaction ν/sub μ/ + p → μ - + hadrons, the mean value of Q 2 is found to increase linearly with energy, as is expected from Bjorken scaling, and a fit to the data gives 2 > = (0.18 +- 0.01) E. The distribution in the Bjorken scaling variable x shows evidence for deviations from predictions based on electron-scattering data and the quark-parton model

  17. Experimental study of the pion-xenon nucleus collisions with-out particle production at 3.5 GeV/c momentum: physical meaning of the proton multiplicity distribution

    International Nuclear Information System (INIS)

    Strugal'ski, Z.; Pawlak, T.; Pluta, J.

    1985-01-01

    Distribution of multiplicities of protons emitted in pion-xenon nucleus collisions at 3.5 GeV/c was studied in such events in which incident pion is totally absorbed within the target nucleus without produced particles. The distribution is symmetrical relatively to the proton multiplicity nsub(p)=7.4+-0.3. It is exactly described by binoamial formula, without any fitting, on the basis of an information about the size of the target nucleus and nucleon density distribution in it

  18. Physical meaning of the yields from hadron-nucleon, hadron-nucleus, and nucleus-nucleus collisions observed in experiments

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1995-01-01

    A physical meaning of the outcomes from hadronic and nuclear collision processes at high energies is presented, as prompted experimentally. The fast and slow stages in hadron-nucleus collisions are distinguished. Hadrons are produced via intermediate objects observed in hadron-nucleus collisions. The intermediate objects may be treated as the groups of quarks or the quark bags. 37 refs

  19. Large Logarithms in the Beam Normal Spin Asymmetry of Elastic Electron--Proton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Andrei Afanasev; Mykola Merenkov

    2004-06-01

    We study a parity-conserving single-spin beam asymmetry of elastic electron-proton scattering induced by an absorptive part of the two-photon exchange amplitude. It is demonstrated that excitation of inelastic hadronic intermediate states by the consecutive exchange of two photons leads to logarithmic and double-logarithmic enhancement due to contributions of hard collinear quasi-real photons. The asymmetry at small electron scattering angles is expressed in terms of the total photoproduction cross section on the proton, and is predicted to reach the magnitude of 20-30 parts per million. At these conditions and fixed 4-momentum transfers, the asymmetry is rising logarithmically with increasing electron beam energy, following the high-energy diffractive behavior of total photoproduction cross section on the proton.

  20. Pion- and proton-nucleus interactions at intermediate energy

    International Nuclear Information System (INIS)

    Dehnhard, D.

    1992-12-01

    We report on scattering and reaction experiments on light nuclei using the π-meson and proton beams from the Los Alamos Meson Physics Facility (LAMPF) and the Indiana University Cyclotron Facility (IUCF). Differential cross sections, cross section asymmetries, and angular correlation functions have been measured in order to test models of the reaction mechanism and of nuclear structure. At LAMPF we have measured asymmetries for pion scattering from polarized 13 C which are uniquely sensitive to the isoscalar spin density. In order to determine details of the reaction mechanism, we have obtained approval for a scattering experiment on polarized 3 He for which the nuclear structure is very well known. We have completed data taking for two studies of elastic scattering of π + from 6 Li and l3 C. The detailed differential cross sections from these experiments will be used to constrain theoretical analyses of previous polarization experiments done at the Pierre-Scherrer-Institute (PSI) and at LAMPF. We have analyzed π-triton coincidence events from the 4 He(π,π' t)p reaction and have found evidence for direct triton knockout from 4 He. We have extended these angular correlation measurements to higher energies and to 2 H and 3 He targets. At IUCF we have performed the first 4 He(p,n) experiment at intermediate energies, T p = 100, 147, and 200 MeV, in a search for previously reported narrow states in 4 Li of widths of ∼ 1 MeV. Within the statistics of the data we have found no evidence for such narrow structures

  1. Probing the phase of the elastic pp scattering amplitude with vortex proton beams

    International Nuclear Information System (INIS)

    Ivanov, I. P.

    2013-01-01

    We show that colliding vortex proton beams instead of (approximate) plane waves can lead to a direct measurement of how the overall phase of the scattering amplitude changes with the scattering angle. In elastic pp scattering, this will open a novel way to measure the parameter ρ(t) and probe the real part of the Pomeron.

  2. Probing the phase of the elastic pp scattering amplitude with vortex proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, I. P. [IFPA, Universite de Liege, Allee du 6 Aout 17, batiment B5a, 4000 Liege, Belgium Sobolev Institute of Mathematics, Koptyug avenue 4, 630090, Novosibirsk (Russian Federation)

    2013-04-15

    We show that colliding vortex proton beams instead of (approximate) plane waves can lead to a direct measurement of how the overall phase of the scattering amplitude changes with the scattering angle. In elastic pp scattering, this will open a novel way to measure the parameter {rho}(t) and probe the real part of the Pomeron.

  3. Link between EMIC waves in a plasmaspheric plume and a detached sub-auroral proton arc with observations of Cluster and IMAGE satellites

    Science.gov (United States)

    Yuan, Zhigang; Deng, Xiaohua; Lin, Xi; Pang, Ye; Zhou, Meng; Décréau, P. M. E.; Trotignon, J. G.; Lucek, E.; Frey, H. U.; Wang, Jingfang

    2010-04-01

    In this paper, we report observations from a Cluster satellite showing that ULF wave occurred in the outer boundary of a plasmaspheric plume on September 4, 2005. The band of observed ULF waves is between the He+ ion gyrofrequency and O+ ion gyrofrequency at the equatorial plane, implying that those ULF waves can be identified as EMIC waves generated by ring current ions in the equatorial plane and strongly affected by rich cold He+ ions in plasmaspheric plumes. During the interval of observed EMIC waves, the footprint of Cluster SC3 lies in a subauroral proton arc observed by the IMAGE FUV instrument, demonstrating that the subauroral proton arc was caused by energetic ring current protons scattered into the loss cone under the Ring Current (RC)-EMIC interaction in the plasmaspheric plume. Therefore, the paper provides a direct proof that EMIC waves can be generated in the plasmaspheric plume and scatter RC ions to cause subauroral proton arcs.

  4. Proton scattering at intermediate energies

    International Nuclear Information System (INIS)

    Chaumeaux, A.; Layly, V.; Schaeffer, R.

    1977-01-01

    This article is devoted to the analysis of the most recent Saclay data of elastic and inelastic proton scattering on nuclei at incident energies around 1GeV ( 16 O, the Ca isotopes, the Ni isotopes, 90 Zr and 208 Pb). Various theories (Impulse or Glauber approximation) are comapred. It is shown that the reaction mechanism is very well understood at 1GeV and that, at these energies, absorption and distortion is small enough, so one can extract nuclear densities from the experiment. In particular, the shape of the neutron densities is given, and compared to the Hartree-Fock predictions. The uncertainties, especially in the determination of the neutron radii are discussed [fr

  5. Neutron-proton elastic scattering between 200 and 500 MeV

    International Nuclear Information System (INIS)

    Clough, A.S.; Gibson, D.R.; Axen, D.

    1979-01-01

    Measurements over an extensive angular range of the Dsub(t) and P parameters in free neutron-proton elastic scattering at laboratory energies of 220, 325, 425 and 495 MeV are reported. Experimental and analytical details are given. (author)

  6. Inelastic scattering of polarized protons and nuclear deformation in 16O, 18O

    International Nuclear Information System (INIS)

    de Swiniarski, R.; Pham, D.L.

    1984-01-01

    Many data concerning inelastic scattering of polarized protons at intermediate energy are now available. We have analyzed some of these data coming from LAMPF at 800 MeV for 16 O (6) and 18 O (7) in order to further study nuclear deformations for these light nuclei. Analyzing powers (A(theta)) and cross-sections ((σ/theta)) for elastic and inelastic scattering of 800 MeV polarized protons from 16 O and 18 O have been analyzed in the coupled-channels (CC) collective model using the code ECIS from Raynal

  7. Proton diffraction

    International Nuclear Information System (INIS)

    Den Besten, J.L.; Jamieson, D.N.; Allen, L.J.

    1998-01-01

    The Lindhard theory on ion channeling in crystals has been widely accepted throughout ion beam analysis for use in simulating such experiments. The simulations use a Monte Carlo method developed by Barret, which utilises the classical 'billiard ball' theory of ions 'bouncing' between planes or tubes of atoms in the crystal. This theory is not valid for 'thin' crystals where the planes or strings of atoms can no longer be assumed to be of infinite proportions. We propose that a theory similar to that used for high energy electron diffraction can be applied to MeV ions, especially protons, in thin crystals to simulate the intensities of transmission channeling and of RBS spectra. The diffraction theory is based on a Bloch wave solution of the Schroedinger equation for an ion passing through the periodic crystal potential. The widely used universal potential for proton-nucleus scattering is used to construct the crystal potential. Absorption due to thermal diffuse scattering is included. Experimental parameters such as convergence angle, beam tilt and scanning directions are considered in our calculations. Comparison between theory and experiment is encouraging and suggests that further work is justified. (authors)

  8. Properties of a new magnetic dipole mode discovered in low energy electron scattering

    International Nuclear Information System (INIS)

    Bohle, D.; Guhr, T.; Hartmann, U.; Hummel, K.D.; Kilgus, G.; Milkau, U.; Richter, A.

    1986-01-01

    In a large range of nuclei low lying J π =1 + states have been found that are excited predominantly by a new M1 mode. Four properties of the new mode will be discussed in detail. Firstly, from the excitation energy systematics observed the strength of the Majorana force of the interacting boson model (IBA) is deduced. Secondly, through the comparison of electron scattering and proton scattering experiments it is shown that the new mode is largely due to the orbital motion of protons with respect to neutrons. Thirdly, taking the nucleus 164 Dy as an example, g-factors and effective boson charges of the M1-, E2- and M3 IBA transition operators, respectively, are studied. The F-scalar magnetic octupol g-factor Ω S is derived for the first time. Finally, the distribution of M1 strength in 156 Gd will be discussed in the light of recent theoretical calculations. (orig.)

  9. Target fragmentation in proton-nucleus and16O-nucleus reactions at 60 and 200 GeV/nucleon

    Science.gov (United States)

    Albrecht, R.; Awes, T. C.; Baktash, C.; Beckmann, P.; Claesson, G.; Berger, F.; Bock, R.; Dragon, L.; Ferguson, R. L.; Franz, A.; Garpman, S.; Glasow, R.; Gustafsson, H. Å.; Gutbrod, H. H.; Kampert, K. H.; Kolb, B. W.; Kristiansson, P.; Lee, I. Y.; Löhner, H.; Lund, I.; Obenshain, F. E.; Oskarsson, A.; Otterlund, I.; Peitzmann, T.; Persson, S.; Plasil, F.; Poskanzer, A. M.; Purschke, M.; Ritter, H. G.; Santo, R.; Schmidt, H. R.; Siemiarczuk, T.; Sorensen, S. P.; Stenlund, E.; Young, G. R.

    1988-03-01

    Target remnants with ZPlastic Ball detector. The excitation energy of the target spectator matter in central oxygen-induced collisions is found to be high enough to allow for complete disintegration of the target nucleus into fragments with Z<3. The average longitudinal momentum transfer per proton to the target in central collisions is considerably higher in the case of16O-induced reactions (≈300 MeV/c) than in proton-induced reactions (≈130 MeV/c). The baryon rapidity distributions are roughly in agreement with one-fluid hydrodynamical calculations at 60 GeV/nucleon16O+Au but are in disagreement at 200 GeV/nucleon, indicating the higher degree of transparency at the higher bombarding energy. Both, the transverse momenta of target spectators and the entropy produced in the target fragmentation region are compared to those attained in head-on collisions of two heavy nuclei at Bevalac energies. They are found to be comparable or do even exceed the values for the participant matter at beam energies of about 1 2 GeV/nucleon.

  10. Fine structure of the isoscalar giant quadrupole resonance from high-resolution inelastic proton scattering experiments

    International Nuclear Information System (INIS)

    Shevchenko, A.

    2005-02-01

    In the present work the phenomenon of fine structure in the region of the isoscalar giant quadrupole resonance in a number of heavy and medium-heavy nuclei is systematically investigated for the first time. High energy-resolution inelastic proton scattering experiments were carried out in September-October 2001 and in October 2003 at the iThemba LABS cyclotron facility in South Africa with an incident proton energy of 200 MeV. The obtained data with the energy resolution of triangle E 58 Ni, 89 Y, 90 Zr, 120 Sn, 142 Nd, 166 Er, 208 Pb), thereby establishing the global character of this phenomenon. Fine structure can be described using characteristic energy scales, appearing as a result of the decay of collective modes towards the compound nucleus through a hierarchy of couplings to complex degrees of freedom. For the extraction of the characteristic energy scales from the spectra an entropy index method and a novel technique based on the wavelet analysis are utilized. The global analysis of available data shows the presence of three groups of scales, according to their values. To the first group belong the scales with the values around and below 100 keV, which were detected in all the nuclei studied. The second group contains intermediate scales in the range of 100 keV to 1 MeV. These scales show large variations depending on the nuclear structure of the nucleus. The largest scales above 1 MeV are classified to the third group, describing the global structure of the resonance (the width). The interpretation of the observed scales is realized via the comparison with microscopic model calculations including the coupling of the initial one-particle-one-hole excitations to more complex configurations. A qualitative agreement of the experimentally observed scales with those obtained from the theoretical predictions supports the suggestion of the origin of fine structure from the coupling to the two-particle-two-hole states. However, quantitatively, large deviations are

  11. Anomalous transition strength in the proton-unbound nucleus {sup 109}{sub 53}I{sub 56}

    Energy Technology Data Exchange (ETDEWEB)

    Procter, M.G., E-mail: mark.procter@postgrad.manchester.ac.uk [School of Physics and Astronomy, Schuster Laboratory, The University of Manchester, Manchester M13 9PL (United Kingdom); Cullen, D.M. [School of Physics and Astronomy, Schuster Laboratory, The University of Manchester, Manchester M13 9PL (United Kingdom); Department of Physics, University of Jyvaeskylae, FIN-40014 Jyvaeskylae (Finland); Scholey, C.; Ruotsalainen, P. [Department of Physics, University of Jyvaeskylae, FIN-40014 Jyvaeskylae (Finland); Angus, L. [University of The West of Scotland, High Street, Paisley PA1 2BE (United Kingdom); Baeck, T.; Cederwall, B. [Department of Physics, Royal Institute of Technology, SE-10691 Stockholm (Sweden); Dewald, A.; Fransen, C. [Institut fuer Kernphysik, Universitaet zu Koeln, D-50937, Koeln (Germany); Grahn, T. [Department of Physics, University of Jyvaeskylae, FIN-40014 Jyvaeskylae (Finland); Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Greenlees, P.T. [Department of Physics, University of Jyvaeskylae, FIN-40014 Jyvaeskylae (Finland); Hackstein, M. [Institut fuer Kernphysik, Universitaet zu Koeln, D-50937, Koeln (Germany); Jakobsson, U.; Jones, P.M.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M. [Department of Physics, University of Jyvaeskylae, FIN-40014 Jyvaeskylae (Finland); Liotta, R. [Department of Physics, Royal Institute of Technology, SE-10691 Stockholm (Sweden); Lumley, N.M. [School of Physics and Astronomy, Schuster Laboratory, The University of Manchester, Manchester M13 9PL (United Kingdom)

    2011-10-13

    A lifetime measurement has been made for the first excited 11/2{sup +} state in the proton-unbound nucleus {sup 109}{sub 53}I{sub 56} using the recoil-distance Doppler-shift method in conjunction with recoil-proton tagging. The experimental reduced transition probability is considerably smaller than the prediction of theoretical shell-model calculations using the CD-Bonn nucleon-nucleon potential. The discrepancy between the theoretical and experimental reduced transition strengths in this work most likely arises from the inability of the current shell-model calculations to accurately account for the behavior of the unbound nuclear states.

  12. Measure of back angle cross sections of antiproton-nucleus elastic scattering at 48 and 180 MeV

    International Nuclear Information System (INIS)

    Berrada, M.

    1986-04-01

    Antiproton-nucleus elastic scattering was studied in the LEAR ring at CERN. The scattering cross section at back angles (θ LAB = 142 to 164 deg inclusive) was measured using plastic scintillation detectors. Analysis of experimental data at 47 MeV for a CH target and at 182 MeV for CH, C12, 016, and 018 targets produces differential cross sections for back angles less than or equal to a few dozen microbarns. These results agree with theoretical microscopic predictions. The analysis improves understanding of antiproton-nucleus interaction and introduces a constraint on the construction of optical potentials. The antiproton-nucleus potential is shown to be highly absorbing, thereby excluding S type potentials, and removing the ambiguity arising from the analysis of antiprotonic atoms. The results also show that there is no attractive pocket in the real potential likely to lead to an increase of the back angle cross sections [fr

  13. Recoil-proton polarization in πp elastic scattering at 547 and 625 MeV/c

    International Nuclear Information System (INIS)

    Seftor, C.J.; Adrian, S.D.; Briscoe, W.J.; Mokhtari, A.; Taragin, M.F.; Sadler, M.E.; Barlow, D.B.; Nefkens, B.M.K.; Pillai, C.

    1989-01-01

    The polarization of the recoil proton in π + p and π - p elastic scattering using a liquid-hydrogen target has been measured for backward angles at 547 and 625 MeV/c. The scattered pion and recoil proton were detected in coincidence using the large-acceptance spectrometer to detect and analyze the momentum of the pions and the JANUS polarimeter to identify and measure the polarization of the protons. Results from this experiment agree with other measurements of the recoil polarization, with analyzing-power data previously taken by this group, and with predictions of partial-wave analyses

  14. Nuclear reactions excited by recoil protons on a nuclear reactor

    International Nuclear Information System (INIS)

    Mukhammedov, S.; Khaydarov, A.; Barsukova, E.G.

    2006-01-01

    The nuclear reactions excited by recoil protons and of the detection possibility of the various chemical elements with the use of these secondary nucleus reactions were investigated. The recoil protons are produced on a nuclear reactor in the result of (n, p) inelastic and elastic scattering interaction of fast neutrons with nuclei of hydrogen. It is well known that the share of fast neutrons in energetic spectrum of reactor's neutrons in comparison with the share of thermal neutrons is small. . Consequently, the share of recoil protons produced in the result of fast neutron interaction with nuclei of light elements, capable to cause the nuclear reactions, is also small, des, due to Coulomb barrier of nuclei the recoil protons can cause the nuclear reactions only on nuclei of light and some middle elements. Our studies show that observable yields have radio nuclides excited in the result of nuclear reactions on Li, B, O, V and Cu. Our experimental results have demonstrated that the proton activation analysis based on the application of secondary nuclear reactions is useful technique to determine large contents of various light and medium chemical elements. Detection limits for studied chemical elements are estimated better than 10 ppm

  15. Inelastic scattering of Ni and Zn isotopes off a proton target

    Energy Technology Data Exchange (ETDEWEB)

    Cortes Sua, Martha Liliana

    2016-07-18

    Inelastic proton scattering of {sup 70,72,74}Ni and {sup 76,78,80}Zn was performed at the RIBF facility of the RIKEN Nishina Center, Japan, as part of the first SEASTAR campaign. Radioactive isotopes were produced by the in-flight fission of a beam of {sup 238}U ions incident on a 3 mm thick Beryllium target. After production, neutron-rich radioactive isotopes were selected and identified on an event-by-event basis using the BigRIPS separator. Selected isotopes of interest were focused onto the liquid hydrogen target of the MINOS device and γ-rays from inelastic (p,p{sup '}) reactions were detected with the DALI2 array, consisting of 186 NaI crystals. Outgoing beam-like particles were identified using the ZeroDegree spectrometer. γ-rays produced in the reaction were Doppler corrected and the first 2{sup +} and 4{sup +} states in all the isotopes were identified. Detailed data analysis was performed including the implementation of algorithms that discriminate events where more than one particle was present. Using detailed Geant4 simulations, exclusive cross-sections for inelastic proton scattering were obtained. Deformation lengths were deduced from the experimental cross-sections using the coupled-channel calculation code ECIS-97. The deformations lengths of {sup 72,74}Ni and {sup 76,80}Zn were found to be fairly constant at a value of 0.8(2) fm, suggesting similar vibrational amplitudes, while the isomeric presence in the secondary beams of {sup 70}Ni and {sup 78}Zn allowed only lower limits for those two isotopes. By combining the deformation lengths with the known B(E2;0{sup +}{sub gs}→2{sup +}{sub 1}) values, the neutron-to-proton matrix element ratios, M{sub n}/M{sub p}, were obtained. A clear indication of the closed proton shell in the {sup 72,74}Ni could be observed, as M{sub n}/M{sub p}>N/Z, indicating an increased contribution of the neutrons to the vibrational amplitude. For the case of {sup 76,80}Zn, M{sub n}/M{sub p}

  16. Exclusive experiment on nuclei with backward emitted particles by electron-nucleus collision in ∼ 10 GeV energy range

    International Nuclear Information System (INIS)

    Saito, T.; Takagi, F.

    1994-01-01

    Since the evidence of strong cross section in proton-nucleus backward scattering was presented in the early of 1970 years, this phenomena have been interested from the point of view to be related to information on the short range correlation between nucleons or on high momentum components of the wave function of the nucleus. In the analysis of the first experiment on protons from the carbon target under bombardment by 1.5-5.7 GeV protons, indications are found of an effect analogous to scaling in high-energy interactions of elementary particles with protons. Moreover it is found that the function f(p 2 )/σ tot , which describes the spectra of the protons and deuterons emitted backward from nuclei in the laboratory system, does not depend on the energy and the type of the incident particle or on the atomic number of the target nucleus. In the following experiments the spectra of the protons emitted from the nuclei C, Al, Ti, Cu, Cd and Pb were measured in the inclusive reactions with incident particles of negative pions (1.55-6.2 GeV/c) and protons (6.2-9.0 GeV/C). The cross section f is described by f = E/p 2 d 2 σ/dpdΩ = C exp (-Bp 2 ), where p is the momentum of hadron. The function f depends linearly on the atomic weight A of the target nuclei. The slope parameter B is independent of the target nucleus and of the sort and energy of the bombarding particles. The invariant cross section ρ = f/σ tot is also described by exponential A 0 exp (-A 1p 2 ), where p becomes independent of energy at initial particle energies ≥ 1.5 GeV for C nucleus and ≥ 5 GeV for the heaviest of the investigated Pb nuclei

  17. Parity Nonconservation in Proton-Proton and Proton-Water Scattering at 1.5 GeV/c

    Science.gov (United States)

    Mischke, R. E.; Bowman, J. D.; Carlini, R.; MacArthur, D.; Nagle, D. E.; Frauenfelder, H.; Harper, R. W.; Yuan, V.; McDonald, A. B.; Talaga, R. L.

    1984-07-01

    Experiments searching for parity nonconservation in the scattering of 1.5 GeV/c (800 MeV) polarized protons from an unpolarized water target and a liquid hydrogen target are described. The intensity of the incident proton beam was measured upstream and downstream of the target by a pair of ionization detectors. The beam helicity was reversed at a 30-Hz rate. Auxiliary detectors monitored beam properties that could give rise to false effects. The result for the longitudinal asymmetry from the water is A{sub L} = (1.7 +- 3.3 +- 1.4) x 10{sup -7}, where the first error is statistical and the second is an estimate of systematic effects. The hydrogen data yield a preliminary result of A{sub L} = (1.0 +- 1.6) x 10{sup -7}. The systematic errors for p-p are expected to be < 1 x 10{sup -7}.

  18. Measurement of dijet production in diffractive deep-inelastic scattering with a leading proton at HERA

    International Nuclear Information System (INIS)

    Aaron, F.D.; Alexa, C.; Rotaru, M.; Stoicea, G.; Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Malinovski, E.; Rusakov, S.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y.; Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N.; Baghdasaryan, A.; Baghdasaryan, S.; Zohrabyan, H.; Barrelet, E.; Bartel, W.; Belov, P.; Brandt, G.; Brinkmann, M.; Britzger, D.; Campbell, A.J.; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Gouzevitch, M.; Grebenyuk, A.; Grell, B.R.; Habib, S.; Haidt, D.; Helebrant, C.; Kleinwort, C.; Kogler, R.; Kraemer, M.; Levonian, S.; Lipka, K.; List, B.; List, J.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Nowak, K.; Olsson, J.E.; Pahl, P.; Panagoulias, I.; Papadopoulou, T.; Petrukhin, A.; Piec, S.; Pitzl, D.; Schmitt, S.; Sefkow, F.; Shushkevich, S.; South, D.; Steder, M.; Wuensch, E.; Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B.; Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F.; Boudry, V.; Moreau, F.; Specka, A.; Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I.; Bracinik, J.; Kenyon, I.R.; Newman, P.R.; Thompson, P.D.; Bruncko, D.; Cerny, V.; Ferencei, J.; Bunyatyan, A.; Buschhorn, G.; Chekelian, V.; Dossanov, A.; Grindhammer, G.; Kiesling, C.; Bystritskaya, L.; Fedotov, A.; Lubimov, V.; Ozerov, D.; Rostovtsev, A.; Zhokin, A.; Cantun Avila, K.B.; Contreras, J.G.; Ruiz Tabasco, J.E.; Ceccopieri, F.; Delvax, J.; Wolf, E.A. de; Favart, L.; Hreus, T.; Janssen, X.; Marage, P.; Roosen, R.; Staykova, Z.; Mechelen, P. van; Cerny, K.; Pokorny, B.; Polifka, R.; Salek, D.; Valkarova, A.; Zacek, J.; Coughlan, J.A.; Morris, J.V.; Sankey, D.P.C.; Cvach, J.; Reimer, P.; Zalesak, J.; Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D.; Daum, K.; Meyer, H.; Diaconu, C.; Hoffmann, D.; Sauvan, E.; Vallee, C.; Dobre, M.; Placakyte, R.; Dodonov, V.; Povh, B.; Egli, S.; Hildebrandt, M.; Horisberger, R.; Feltesse, J.; Perez, E.; Schoeffel, L.; Goerlich, L.; Mikocki, S.; Milcewicz-Mika, I.; Nowak, G.; Sopicki, P.; Turnau, J.; Grab, C.; Henderson, R.C.W.; Sloan, T.; Hennekemper, E.; Herbst, M.; Krueger, K.; Lendermann, V.; Schultz-Coulon, H.C.; Henschel, H.; Hiller, K.H.; Kostka, P.; Lange, W.; Naumann, T.; Herrera, G.; Lopez-Fernandez, R.; Huber, F.; Pirumov, H.; Radescu, V.; Sauter, M.; Schoening, A.; Joensson, L.; Jung, H.; Kapichine, M.; Makankine, A.; Morozov, A.; Nikitin, D.; Palichik, V.; Spaskov, V.; Landon, M.P.J.; Rizvi, E.; Traynor, D.; Martyn, H.U.; Mueller, K.; Robmann, P.; Straumann, U.; Truoel, P.; Stella, B.; Sykora, T.; Tsakov, I.; Wegener, D.

    2012-01-01

    The cross section of diffractive deep-inelastic scattering ep→eXp is measured, where the system X contains at least two jets and the leading final state proton is detected in the H1 Forward Proton Spectrometer. The measurement is performed for fractional proton longitudinal momentum loss x P 2 in squared four-momentum transfer at the proton vertex and 4 2 2 in photon virtuality. The differential cross sections extrapolated to vertical stroke t vertical stroke 2 are in agreement with next-to-leading order QCD predictions based on diffractive parton distribution functions extracted from measurements of inclusive and dijet cross sections in diffractive deep-inelastic scattering. The data are also compared with leading order Monte Carlo models. (orig.)

  19. Parity Nonconservation in Proton-water Scattering at 800 MeV

    Science.gov (United States)

    Nagle, D. E.; Bowman, J. D.; Carlini, R.; Mischke, R. E.; Frauenfelder, H.; Harper, R. W.; Yuan, V.; McDonald, A. B.; Talaga, R.

    1982-01-01

    A search has been made for parity nonconservation in the scattering of 800 MeV polarized protons from an unpolarized water target. The result is for the longitudinal asymmetry, A{sub L} = +(6.6 +- 3.2) x 10{sup -7}. Control runs with Pb, using a thickness which gave equivalent beam broadening from Coulomb multiple scattering, but a factor of ten less nuclear interactions than the water target, gave A{sub L} = -(0.5 +- 6.0) x 10{sup -7}.

  20. A 3% Measurement of the Beam Normal Single Spin Asymmetry in Forward Angle Elastic Electron-Proton Scattering using the Qweak Setup

    Energy Technology Data Exchange (ETDEWEB)

    Waidyawansa, Dinayadura Buddhini [Ohio Univ., Athens, OH (United States)

    2013-08-01

    The beam normal single spin asymmetry generated in the scattering of transversely polarized electrons from unpolarized nucleons is an observable of the imaginary part of the two-photon exchange process. Moreover, it is a potential source of false asymmetry in parity violating electron scattering experiments. The Q{sub weak} experiment uses parity violating electron scattering to make a direct measurement of the weak charge of the proton. The targeted 4% measurement of the weak charge of the proton probes for parity violating new physics beyond the Standard Model. The beam normal single spin asymmetry at Q{sub weak} kinematics is at least three orders of magnitude larger than 5 ppb precision of the parity violating asymmetry. To better understand this parity conserving background, the Q{sub weak} Collaboration has performed elastic scattering measurements with fully transversely polarized electron beam on the proton and aluminum. This dissertation presents the analysis of the 3% measurement (1.3% statistical and 2.6% systematic) of beam normal single spin asymmetry in electronproton scattering at a Q2 of 0.025 (GeV/c)2. It is the most precise existing measurement of beam normal single spin asymmetry available at the time. A measurement of this precision helps to improve the theoretical models on beam normal single spin asymmetry and thereby our understanding of the doubly virtual Compton scattering process.

  1. Observation of hard scattering in photoproduction at HERA

    Science.gov (United States)

    Derrick, M.; Krakauer, D.; Magill, S.; Musgrave, B.; Repond, J.; Sugano, K.; Stanek, R.; Talaga, R. L.; Thron, J.; Arzarello, F.; Ayed, R.; Barbagli, G.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, G.; Bruni, P.; Cara Romeo, G.; Castellini, G.; Chiarini, M.; Cifarelli, L.; Cindolo, F.; Ciralli, F.; Contin, A.; D'Auria, S.; Del Papa, C.; Frasconi, F.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Lin, Q.; Lisowski, B.; Maccarrone, G.; Margotti, A.; Massam, T.; Nania, R.; Nemoz, C.; Palmonari, F.; Sartorelli, G.; Timellini, R.; Zamora Garcia, Y.; Zichichi, A.; Bargende, A.; Barreiro, F.; Crittenden, J.; Dabbous, H.; Desch, K.; Diekmann, B.; Geerts, M.; Geitz, G.; Gutjahr, B.; Hartmann, H.; Hartmann, J.; Haun, D.; Heinloth, K.; Hilger, E.; Jakob, H.-P.; Kramarczyk, S.; Kückes, M.; Mass, A.; Mengel, S.; Mollen, J.; Müsch, H.; Paul, E.; Schattevoy, R.; Schneider, B.; Schneider, J.-L.; Wedemeyer, R.; Cassidy, A.; Cussans, D. G.; Dyce, N.; Fawcett, H. F.; Foster, B.; Gilmore, R.; Heath, G. P.; Lancaster, M.; Llewellyn, T. J.; Malos, J.; Morgado, C. J. S.; Tapper, R. J.; Wilson, S. S.; Rau, R. R.; Bernstein, A.; Caldwell, A.; Gialas, I.; Parsons, J. A.; Ritz, S.; Sciulli, F.; Straub, P. B.; Wai, L.; Yang, S.; Barillari, T.; Schioppa, M.; Susinno, G.; Burkot, W.; Chwastowski, J.; Dwuraźny, A.; Eskreys, A.; Nizioł, B.; Jakubowski, Z.; Piotrzkowski, K.; Zachara, M.; Zawiejski, L.; Borzemski, P.; Eskreys, K.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Kulka, J.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Zajaç, J.; Kȩdzierski, T.; Kotański, A.; Przybycień, M.; Bauerdick, L. A. T.; Behrens, U.; Bienlein, J. K.; Coldewey, C.; Dannemann, A.; Dierks, K.; Dorth, W.; Drews, G.; Erhard, P.; Flasiński, M.; Fleck, I.; Fürtjes, A.; Gläser, R.; Göttlicher, P.; Haas, T.; Hagge, L.; Hain, W.; Hasell, D.; Hultschig, H.; Jahnen, G.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Kötz, U.; Kowalski, H.; Labs, J.; Ladage, A.; Löhr, B.; Löwe, M.; Lüke, D.; Mainusch, J.; Manczak, O.; Momayezi, M.; Nickel, S.; Notz, D.; Park, I.; Pösnecker, K.-U.; Rohde, M.; Ros, E.; Schneekloth, U.; Schroeder, J.; Schulz, W.; Selonke, F.; Tscheslog, E.; Tsurugai, T.; Turkot, F.; Vogel, W.; Woeniger, T.; Wolf, G.; Youngman, C.; Grabosch, H. J.; Leich, A.; Meyer, A.; Rethfeldt, C.; Schlenstedt, S.; Casalbuoni, R.; De Curtis, S.; Dominici, D.; Francescato, A.; Nuti, M.; Pelfer, P.; Anzivino, G.; Casaccia, R.; Laakso, I.; De Pasquale, S.; Qian, S.; Votano, L.; Bamberger, A.; Freidhof, A.; Poser, T.; Söldner-Rembold, S.; Theisen, G.; Trefzger, T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Forbes, J. R.; Jamieson, V. A.; Raine, C.; Saxon, D. H.; Gloth, G.; Holm, U.; Kammerlocher, H.; Krebs, B.; Neumann, T.; Wick, K.; Hofmann, A.; Kröger, W.; Krüger, J.; Lohrmann, E.; Milewski, J.; Nakahata, M.; Pavel, N.; Poelz, G.; Salomon, R.; Seidman, A.; Schott, W.; Wiik, B. H.; Zetsche, F.; Bacon, T. C.; Butterworth, I.; Markou, C.; McQuillan, D.; Miller, D. B.; Mobayyen, M. M.; Prinias, A.; Vorvolakos, A.; Bienz, T.; Kreutzmann, H.; Mallik, U.; McCliment, E.; Roco, M.; Wang, M. Z.; Cloth, P.; Filges, D.; Chen, L.; Imlay, R.; Kartik, S.; Kim, H.-J.; McNeil, R. R.; Metcalf, W.; Cases, G.; Hervás, L.; Labarga, L.; del Peso, J.; Roldán, J.; Terrón, J.; de Trocóniz, J. F.; Ikraiam, F.; Mayer, J. K.; Smith, G. R.; Corriveau, F.; Gilkinson, D. J.; Hanna, D. S.; Hung, L. W.; Mitchell, J. W.; Patel, P. M.; Sinclair, L. E.; Stairs, D. G.; Ullmann, R.; Bashindzhagyan, G. L.; Ermolov, P. F.; Golubkov, Y. A.; Kuzmin, V. A.; Kuznetsov, E. N.; Savin, A. A.; Voronin, A. G.; Zotov, N. P.; Bentvelsen, S.; Dake, A.; Engelen, J.; de Jong, P.; de Jong, S.; de Kamps, M.; Kooijman, P.; Kruse, A.; van der Lugt, H.; O'Dell, V.; Straver, J.; Tenner, A.; Tiecke, H.; Uijterwaal, H.; Vermeulen, J.; Wiggers, L.; de Wolf, E.; van Woudenberg, R.; Yoshida, R.; Bylsma, B.; Durkin, L. S.; Li, C.; Ling, T. Y.; McLean, K. W.; Murray, W. N.; Park, S. K.; Romanowski, T. A.; Seidlein, R.; Blair, G. A.; Butterworth, J. M.; Byrne, A.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Gingrich, D. M.; Hallam-Baker, P. M.; Harnew, N.; Khatri, T.; Long, K. R.; Luffman, P.; McArthur, I.; Morawitz, P.; Nash, J.; Smith, S. J. P.; Roocroft, N. C.; Wilson, F. F.; Abbiendi, G.; Brugnera, R.; Carlin, R.; Dal Corso, F.; De Giorgi, M.; Dosselli, U.; Fanin, C.; Gasparini, F.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Lim, J. N.; Oh, B. Y.; Whitmore, J.; Bonori, M.; Contino, U.; D'Agostini, G.; Guida, M.; Iori, M.; Mari, S.; Marini, G.; Mattioli, M.; Monaldi, D.; Nigro, A.; Hart, J. C.; McCubbin, N. A.; Shah, T. P.; Short, T. L.; Barberis, E.; Cartiglia, N.; Heusch, C.; Hubbard, B.; Leslie, J.; Ng, J. S. T.; O'Shaughnessy, K.; Sadrozinski, H. F.; Seiden, A.; Badura, E.; Biltzinger, J.; Chaves, H.; Rost, M.; Seifert, R. J.; Walenta, A. H.; Weihs, W.; Zech, G.; Dagan, S.; Heifetz, R.; Levy, A.; Zer-Zion, D.; Hasegawa, T.; Hazumi, M.; Ishii, T.; Kasai, S.; Kuze, M.; Nagasawa, Y.; Nakao, M.; Okuno, H.; Tokushuku, K.; Watanabe, T.; Yamada, S.; Chiba, M.; Hamatsu, R.; Hirose, T.; Kitamura, S.; Nagayama, S.; Nakamitsu, Y.; Arneodo, M.; Costa, M.; Ferrero, M. I.; Lamberti, L.; Maselli, S.; Peroni, C.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Bandyopadhyay, D.; Benard, F.; Bhadra, S.; Brkic, M.; Burow, B. D.; Chlebana, F. S.; Crombie, M. B.; Hartner, G. F.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Prentice, J. D.; Sampson, C. R.; Stairs, G. G.; Teuscher, R. J.; Yoon, T.-S.; Bullock, F. W.; Catterall, C. D.; Giddings, J. C.; Jones, T. W.; Khan, A. M.; Lane, J. B.; Makkar, P. L.; Shaw, D.; Shulman, J.; Blankenship, K.; Kochocki, J.; Lu, B.; Mo, L. W.; Charchuła, K.; Ciborowski, J.; Gajewski, J.; Grzelak, G.; Kasprzak, M.; Krzyżanowski, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Stojda, K.; Stopczyński, A.; Szwed, R.; Tymieniecka, T.; Walczak, R.; Wróblewski, A. K.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Abramowicz, H.; Eisenberg, Y.; Glasman, C.; Karshon, U.; Montag, A.; Revel, D.; Shapira, A.; Ali, I.; Behrens, B.; Camerini, U.; Dasu, S.; Fordham, C.; Foudas, C.; Goussiou, A.; Lomperski, M.; Loveless, R. J.; Nylander, P.; Ptacek, M.; Reeder, D. D.; Smith, W. H.; Silverstein, S.; Frisken, W. R.; Furutani, K. M.; Iga, Y.; ZEUS Collaboration

    1992-12-01

    We report a study of electron proton collisions at very low Q2, corresponding to virtual photoproduction at centre of mass energies in the range 100-295 GeV. The distribution in transverse energy of the observed hadrons is much harder than can be explained by soft processes. Some of the events show back-to-back two-jet production at the rate and with the characteristics expected from hard two-body scattering. A subset of the two-jet events have energy in the electron direction consistent with that expected from the photon remnant in resolved photon processes.

  2. Observing shape resonances in ultraslow H^++H elastic scattering

    Science.gov (United States)

    Macek, J. H.; Schultz, D. R.; Ovchinnikov, S. Yu.; Krstic, P. S.

    2004-05-01

    We have calculated highly accurate elastic and charge transfer cross sections for proton-hydrogen scattering at energies 0.0001-10 eV, using fully quantal approach (P.S. Krstic and D.R. Schultz, J. Phys. B 32, 3485 (1999)). A number of resonances are observed. We calculate the positions and widths of the shape resonances in the effective potentials for various orbital angular momenta (J. H. Macek and S. Yu. Ovchinnikov, Phys. Rev. A 50, 468 (1994)). These correlate well with the observed resonances. We acknowledge support from the US DOE through ORNL, managed by UT-Battelle, LLC under contract DE-AC05-00OR22725.

  3. Is there an Ay problem in low-energy neutron-proton scattering?

    International Nuclear Information System (INIS)

    Gross, Franz; Stadler, Alfred

    2008-01-01

    We calculate Ay in neutron-proton scattering for the interactions models WJC-1 and WJC-2 in the Covariant Spectator Theory. We find that the recent 12 MeV measurements performed at TUNL are in better agreement with our results than with the Nijmegen Phase Shift Analysis of 1993, and after reviewing the low energy data, conclude that there is no Ay problem in low-energy np scattering.

  4. Proton scattering on unstable nuclei: study of {sup 40}S(p,p`) and {sup 43}Ar(p,p`) reactions, development of detection system MUST; Diffusion de protons par des noyaux instables: Etudes des reactions {sup 40}S(p,p`) et {sup 43}Ar(p,p`), developpement du systeme de detection MUST

    Energy Technology Data Exchange (ETDEWEB)

    Marechal, F

    1998-02-06

    We measured for the first time the elastic and inelastic proton scattering on the {sup 40}S unstable nucleus. The experiment was performed in inverse kinematics at the NSCL AT Michigan State University with a {sup 40}S secondary beam bombarding a CH{sub 2} target at 30 MeV/A. We obtained the elastic scattering angular distribution and two points of the inelastic distribution to the first 2{sup +} excited state found to be located at 860{+-}90 KeV. With a coupled channel analysis, the {beta}{sub 2} quadrupolar deformation parameter is found to be equal to 0.35{+-}0.05. This value can be compared to 0.28{+-}0.02 obtained by coulomb excitation. A macroscopic analysis allowed us to extract the neutron and proton transition matrix element ratio M{sub n}/M{sub p} which is equal to 1.88{+-}0.38. This value, greater than N/Z, could indicate an isovector effect in the first 2{sup +} state excitation which could be due to a difference between the neutron and proton vibrations. The microscopic analysis gives the possibility to test the densities and the transition densities to the first 2{sup +} state. The calculated densities for the {sup 40}S nucleus show a neutron skin. However the microscopic analysis yields a M{sub n}/M{sub p} ratio of 1.40{+-}0.20. A similar elastic and inelastic proton scattering experiment allowed us to get a deformation parameter of 0.25{+-}0.03 for the {sup 43}Ar nucleus. To develop the study of direct reactions induced by radioactive beams at GANIL, we have developed and built, in collaboration with the CEA-Saclay and the CEA-Bruyeres, the new detector MUST.It is based on the silicon strip technology, and is dedicated to the measurement of recoiling light particles emitted in these reactions. The results obtained with a {sup 40}Ar beam at 77 Me V/A, have shown the good performances of the detector for the particle identification as well as for the resolutions, and allow us to consider now a large experimental programme concerning these direct

  5. Towards a Resolution of the Proton Form Factor Problem: New Electron and Positron Scattering Data

    Science.gov (United States)

    Adikaram, D.; Rimal, D.; Weinstein, L. B.; Raue, B.; Khetarpal, P.; Bennett, R. P.; Arrington, J.; Brooks, W. K.; Adhikari, K. P.; Afanasev, A. V.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Burkert, V. D.; Carman, D. S.; Careccia, S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dodge, G. E.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Filippi, A.; Fleming, J. A.; Fradi, A.; Garillon, B.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joo, K.; Joosten, S.; Kalantarians, N.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuhn, S. E.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mattione, P.; Mayer, M.; McKinnon, B.; Mestayer, M. D.; Meyer, C. A.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moody, C. I.; Moutarde, H.; Movsisyan, A.; Camacho, C. Munoz; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Peña, C.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Simonyan, A.; Skorodumina, I.; Smith, E. S.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tian, Ye; Trivedi, A.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration

    2015-02-01

    There is a significant discrepancy between the values of the proton electric form factor, GEp, extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of GEp from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector. This novel technique allowed us to cover a wide range in virtual photon polarization (ɛ ) and momentum transfer (Q2) simultaneously, as well as to cancel luminosity-related systematic errors. The cross section ratio increases with decreasing ɛ at Q2=1.45 GeV2 . This measurement is consistent with the size of the form factor discrepancy at Q2≈1.75 GeV2 and with hadronic calculations including nucleon and Δ intermediate states, which have been shown to resolve the discrepancy up to 2 - 3 GeV2 .

  6. Magnetic dipole moment of the doubly closed-shell plus one proton nucleus $^{49}$Sc

    CERN Multimedia

    Gaulard, C V; Walters, W; Nishimura, K; Muto, S; Bingham, C R

    It is proposed to measure the magnetic moment of $^{49}$Sc by the Nuclear Magnetic Resonance on Oriented Nuclei (NMR-ON) method using the NICOLE on-line nuclear orientation facility. $^{49}$Sc is the neutron rich, doubly closed-shell, nucleus $^{48}$Ca plus one proton. Results will be used to deduce the effective g-factors in the $^{48}$Ca region with reference to nuclear structure and meson exchange current effects.

  7. On the necessity of taking into account the contribution of multiphoton exchanges into electron-proton deep inelastic scattering

    International Nuclear Information System (INIS)

    Savrin, V.I.

    1979-01-01

    The hypothesis that the multiphoton exchanges give a substantial contribution to the electron-proton inclusive scattering is formulated. The hypothesis explains the observed violation of the Bjorken scaling law. As it is shown, the mechanism of such intensification of multiple exchanges may by connected with the properties of the processes of hadron multiproduction in the deep inelastic field. This results in the necessity to calculate the inclusive cross section in all electromagnetic coupling constant orders. This has been done in the framework of the density matrix method. As a result the deep inelastic scattering cross section calculated without application of the perturbation theory reveals a new property of the scaling invariance and leads to the natural relationship of structural functions with electromagnetic proton form-factors on the exclusive threshold

  8. Proton optical potential and scattering matrix for tin nuclei at sub-coulomb energies

    International Nuclear Information System (INIS)

    Guzhovskij, B.Ya.; Dzyuba, B.M.

    1981-01-01

    A unified set of parameters of the proton optical potential (OP) for the n nuclei is searched for in the below-Coulomb-barrier energy range. The set must describe well the experimental data on the pn-reaction total cross sections and on the angular distributions of elastically scattered protons at E [ru

  9. Experimental determination of the complete spin structure for anti-proton + proton -> anti-\\Lambda + \\Lambda at anti-proton beam momentum of 1.637 GeV/c

    CERN Document Server

    Paschke, K.D.; Berdoz, A.; Franklin, G.B.; Khaustov, P.; Meyer, C.A.; Bradtke, C.; Gehring, R.; Goertz, S.; Harmsen, J.; Meier, A.; Meyer, W.; Radtke, E.; Reicherz, G.; Dutz, H.; Pluckthun, M.; Schoch, B.; Dennert, H.; Eyrich, W.; Hauffe, J.; Metzger, A.; Moosburger, M.; Stinzing, F.; Wirth, St.; Fischer, H.; Franz, J.; Heinsius, F.H.; Kriegler, E.; Schmitt, H.; Bunker, B.; Hertzog, D.; Jones, T.; Tayloe, R.; Broders, R.; Geyer, R.; Kilian, K.; Oelert, W.; Rohrich, K.; Sachs, K.; Sefzick, T.; Bassalleck, B.; Eilerts, S.; Fields, D.E.; Kingsberry, P.; Lowe, J.; Stotzer, R.; Johansson, T.; Pomp, S.; Wirth, St.

    2006-01-01

    The reaction anti-proton + proton -> anti-\\Lambda + \\Lambda -> anti-proton + \\pi^+ + proton + \\pi^- has been measured with high statistics at anti-proton beam momentum of 1.637 GeV/c. The use of a transversely-polarized frozen-spin target combined with the self-analyzing property of \\Lambda/anti-\\Lambda decay allows access to unprecedented information on the spin structure of the interaction. The most general spin-scattering matrix can be written in terms of eleven real parameters for each bin of scattering angle, each of these parameters is determined with reasonable precision. From these results all conceivable spin-correlations are determined with inherent self-consistency. Good agreement is found with the few previously existing measurements of spin observables in anti-proton + proton -> anti-\\Lambda + \\Lambda near this energy. Existing theoretical models do not give good predictions for those spin-observables that had not been previously measured.

  10. Microscopic analysis of proton elastic scattering in the range 80-200 MeV

    International Nuclear Information System (INIS)

    Dietrich, F.S.; Petrovich, F.

    1983-01-01

    A systematic comparison is made of differential cross-section and analyzing-power data on 12 C, 28 Si, 40 Ca, 90 Zr, and 208 Pb at 80-200 MeV with calculations based on the single-step folding-model approach to the optical potential. In these calculations, proton densities have been inferred from electron scattering results, with neutron densities either the same as for protons ( 12 C, 28 Si, 40 Ca) or with a small neutron skin consistent with 800-MeV proton scattering results ( 80 Zr, 208 Pb). The effective two-body interactions that have been used are the Love-Franey t-matrix, a density-dependent interaction based on the Paris potential (calculated by von Geramb), and finally the Brieva-Rook density-dependent central interaction used with the spin-orbit part of the Love-Franey interaction

  11. Proton-proton elastic scattering excitation functions at intermediate energies: Cross sections and analyzing powers

    CERN Document Server

    Hinterberger, F; Altmeier, M; Bauer, F; Bisplinghoff, J; Büsser, K; Busch, M; Colberg, T; Diehl, O; Dohrmann, F; Engelhardt, H P; Eversheim, P D; Felden, O; Gebel, R; Glende, M; Greiff, J; Gross-Hardt, R; Hinterberger, F; Jahn, R; Jonas, E; Krause, H; Langkau, R; Lindemann, T; Lindlein, J; Maier, R; Maschuw, R; Mayer-Kuckuk, T; Meinerzhagen, A; Naehle, O; Prasuhn, D; Rohdjess, H; Rosendaal, D; Von Rossen, P; Schirm, N; Schulz-Rojahn, M; Schwarz, V; Scobel, W; Trelle, H J; Weise, E; Wellinghausen, A; Woller, K; Ziegler, R

    2000-01-01

    The EDDA experiment at the cooler synchrotron COSY measures proton-proton elastic scattering excitation functions in the momentum range 0.8 - 3.4 GeV/c. In phase 1 of the experiment, spin-averaged differential cross sections were measured continuously during acceleration with an internal polypropylene (CH sub 2) fiber target, taking particular care to monitor luminosity as a function of beam momentum. In phase 2, excitation functions of the analyzing power A sub N and the polarization correlation parameters A sub N sub N , A sub S sub S and A sub S sub L are measured using a polarized proton beam and a polarized atomic hydrogen beam target. The paper presents recent d sigma/d OMEGA and A sub N data. The results provide excitation functions and angular distributions of high precision and internal consistency. No evidence for narrow structures was found. The data are compared to recent phase shift solutions.

  12. Measurement of Dijet Production in Diffractive Deep-Inelastic Scattering with a Leading Proton at HERA

    CERN Document Server

    Aaron, F.D.

    2012-04-18

    The cross section of diffractive deep-inelastic scattering ep \\rightarrow eXp is measured, where the system X contains at least two jets and the leading final state proton is detected in the H1 Forward Proton Spectrometer. The measurement is performed for fractional proton longitudinal momentum loss xIP < 0.1 and covers the range 0.1 < |t| < 0.7 GeV2 in squared four-momentum transfer at the proton vertex and 4 < Q2 < 110 GeV2 in photon virtuality. The differential cross sections extrapolated to |t| < 1 GeV2 are in agreement with next-toleading order QCD predictions based on diffractive parton distribution functions extracted from measurements of inclusive and dijet cross sections in diffractive deep-inelastic scattering. The data are also compared with leading order Monte Carlo models.

  13. Measurement of the dependence of transverse energy production at large pseudorapidity on the hard-scattering kinematics of proton--proton collisions at $\\sqrt{s} = 2.76$ TeV with ATLAS

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdinov, Ovsat; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansil, Hardeep Singh; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans~Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bieniek, Stephen Paul; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bruscino, Nello; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Cardillo, Fabio; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Colasurdo, Luca; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Fletcher, Rob Roy MacGregor; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; French, Sky; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghazlane, Hamid; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henkelmann, Steffen; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohlfeld, Marc; Hohn, David; Holmes, Tova Ray; Homann, Michael; Hong, Tae Min; Hooft van Huysduynen, Loek; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mantoani, Matteo; Mapelli, Livio; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Mori, Daniel; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morton, Alexander; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Pan, Yibin; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Huan; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Saddique, Asif; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitt, Stefan; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidebo, Per Edvin; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosa, David; Sosebee, Mark; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Spearman, William Robert; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; Spreitzer, Teresa; St Denis, Richard Dante; Stabile, Alberto; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloce, Laurelle Maria; Veloso, Filipe; Velz, Thomas; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Qi; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz

    2016-05-10

    The relationship between jet production in the central region and the underlying-event activity in a pseudorapidity-separated region is studied in $4.0$ pb$^{-1}$ of $\\sqrt{s} = 2.76$ TeV $pp$ collision data recorded with the ATLAS detector at the LHC. The underlying event is characterised through measurements of the average value of the sum of the transverse energy at large pseudorapidity downstream of one of the protons, which are reported here as a function of hard-scattering kinematic variables. The hard scattering is characterised by the average transverse momentum and pseudorapidity of the two highest transverse momentum jets in the event. The dijet kinematics are used to estimate, on an event-by-event basis, the scaled longitudinal momenta of the hard-scattered partons in the target and projectile beam-protons moving toward and away from the region measuring transverse energy, respectively. Transverse energy production at large pseudorapidity is observed to decrease with a linear dependence on the long...

  14. Origin of 30 approximately 100 keV protons observed in the upstream region of the earth's bow shock

    International Nuclear Information System (INIS)

    Terasawa, T.

    1979-01-01

    A Fermi-type acceleration model is constructed to explain the origin of energetic protons (30 approximately 100 keV) which have been observed upstream of the bow shock. It is shown that the suprathermal protons (with energy of several keV) can be accelerated up to several tens of keV through the Fermi-type process in which the reflection at the shock front and the scattering in the upstream region are coupled. The efficiency of the scattering process is estimated by using the results of Barnes' quasilinear treatment of the wave excitation. The resultant energy spectrum and flux intensity (10 3 approximately 10 4 protons/(cm 2 s ster keV) in 32 approximately 45.3 keV) are consistent with the observation, and the softening of the energy spectrum observed in the dawn region can be explained by the decrease in the efficiency of the acceleration process in the dawn region due to the curvature of the bow shock and the reduction of shock strength. The spatial distribution of the flux predicted by the model is also consistent with the observation. In view of these consistencies of the Fermi-type acceleration process is suggested as a possible candidate mechanism to explain the upstream protons although it is not intended to exclude other possibilities. (author)

  15. Measurement of the angular distribution of neutron-proton scattering at 10 MeV

    International Nuclear Information System (INIS)

    Haight, R.C.; Bateman, F.B.; Grimes, S.M.; Brient, C.E.; Massey, T.N.; Wasson, O.A.; Carlson, A.D.; Zhou, H.

    1995-01-01

    The relative angular distribution of neutrons scattered from protons was measured at an incident neutron energy of 10 MeV at the Ohio University Accelerator Laboratory. An array of 11 detector telescopes at laboratory angles of 0 to 60 degrees was used to detect recoil protons from neutron interactions with a CH 2 (polypropylene) target. Data for 7 of these telescopes were obtained with one set of electronics and are presented here. These data, from 108 to 180 degrees for the center-of-mass scattering angles, have a small slope which agrees better with angular distributions predicted by the Arndt phase shifts than with the ENDF/B-VI angular distribution

  16. J/psi production in proton-nucleus collisions at ALICE: cold nuclear matter really matters

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Heavy quarkonia are expected to be sensitive to the properties of strongly interacting matter, at both low and high temperatures. In nucleus-nucleus collisions, a phase transition to a deconfined state of quarks and gluons (Quark-Gluon Plasma) is thought to take place once the temperature of the system exceeds a critical temperature of the order of 150-200 MeV. The deconfined state can induce a suppression of charmonium (due to color screening, dominant at SPS and RHIC energies), which can be overturned at LHC energy by the (re)combination of the large number of free c and cbar quarks, taking place when the system cools down below the critical temperature. Cold nuclear matter also has an influence on heavy quarkonia. Such effects can be studied in proton-nucleus collisions, where no deconfined state is expected to be created. At LHC energy, they mainly include nuclear shadowing, gluon saturation, break-up of the quarkonium states, and parton energy loss in the initial and final state. The study of these eff...

  17. Characterization of solar cell materials by Proton Back Scattering Spectroscopy

    International Nuclear Information System (INIS)

    Joynal Abedin, M.; Fazlul Hoque, A.K.M.; Firoz Hasan, S.M.

    2001-01-01

    The need for accurate chemical characterization of samples specially related to electronic and solar cell materials has assumed increasing importance in recent years. The importance of the study of the surfaces of materials of different origin also increased in recent years to a great extent. This need has created a worldwide spurt to develop rapid, accurate and sensitive tools for the characterization of materials. In recent years the proton backscattering spectrometry (PBS) method has been recognized as one of the useful analytical tool in several applications of material analysis and technology. The lack of information of the relevant scattering cross sections as a function of proton energy and the problems arising in conventional data analysis have so far rendered proton backscattering analysis of multielemental samples difficult at low energies. On the other hand advances in the computer evaluation of experimental data have, however, made it possible to utilize low-MeV protons as a sensitive probe for light elements in the μm range. The benefits of the method in comparison to alpha particle backscattering include the relatively higher non-Rutherford scattering cross sections of the light elements and to the lower proton stopping in the target material. These lead to higher sensitivity in detecting and profiling light elements in heavy targets and to significantly larger accessible depths and smaller straggling than with alpha particles. Research works on the development of methodologies of Proton Backscattering Spectrometry (PBS) for the analysis of thin films and surfaces has been in progress in the 3 MeV Van de Graaff Accelerator facilities of Atomic Energy Centre, Dhaka for some years. The PBS system comprises a target chamber with appropriate sample holders and a Surface Barrier Detector (SBD) with the associated electronics for data acquisition and reduction. For the evaluation of the PBS data RBS Universal Master Package, RUMP has been installed in the

  18. Scattering-angle dependence of doubly differential cross sections for fragmentation of H2 by proton impact

    International Nuclear Information System (INIS)

    Egodapitiya, K. N.; Sharma, S.; Laforge, A. C.; Schulz, M.

    2011-01-01

    We have measured double differential cross sections (DDCS) for proton fragment formation for fixed projectile energy losses as a function of projectile scattering angle in 75 keV p + H 2 collisions. An oscillating pattern was observed in the angular dependence of the DDCS with a frequency about twice as large as what we found earlier for nondissociative ionization. Possible origins for this frequency doubling are discussed.

  19. Nuclear structure of weakly bound radioactive nuclei through elastic and and inelastic scattering on proton. Impacts of the couplings induced by these exotic nuclei on direct reactions; Structure de noyaux radioactifs faiblement lies par diffusions elastiques et inelastiques sur proton. Effets des couplages induits par ces noyaux exotiques sur les reactions directes

    Energy Technology Data Exchange (ETDEWEB)

    Lapoux, V

    2005-09-15

    Information on the structure, spectroscopy and target interaction potentials of exotic nuclei can be inferred by interpreting measured data from direct reactions on proton such as elastic or inelastic scattering of proton (p,p') or one-nucleon transfer reaction (p,d). A series of experimental results has been obtained at the GANIL facilities on the setting composed of the MUST telescope array used for the detection of light charged-particles and of CATS beam detectors. This setting aims at measuring reactions on light proton or deuteron targets through reverse kinematics. Particularly, results on C{sup 10}, C{sup 11} and on direct reactions with the He{sup 8} beam of Spiral are presented. The first chapter is dedicated to the description of the most important theories concerning the nucleus. The experimental tools used to probe the nucleus are reported in the second chapter. The third and fourth chapters present the framework that has allowed us to analyse results from (p,p') and (p,d) reactions on weakly bound exotic nuclei. The last chapter is dedicated to the description of future experimental programs. (A.C.)

  20. Precocious scaling in antiproton-proton scattering at low energies

    International Nuclear Information System (INIS)

    Ion, D.B.; Petrascu, C.; Topor Pop, V.; Popa, V.

    1993-08-01

    The scaling of the diffraction peak in antiproton-proton scattering has been investigated from nera threshold up to 3 GeV/c laboratory momenta. It was shown that the scaling of the differential cross sections are evidentiated with a surprising accuracy not only at high energies, but also at very low ones (e.g. p LAB = 0.1 - 0.5 GeV/c), beyond the resonance and exotic resonance regions. This precocious scaling strongly suggests that the s-channel helicity conservation (SCHC) can be a peculiar property that should be tested in antiproton-proton interaction not only at high energies but also at low energy even below p LAB = 1 GeV/c. (author). 36 refs, 9 figs

  1. Measurement of antiproton-proton elastic scattering and total cross section at a centre-of-mass energy of 546 GeV

    International Nuclear Information System (INIS)

    Swol, R.W. van.

    1985-01-01

    The transformation of the CERN Super Proton Synchrotron (SPS) from a fixed target machine into a colliding beam facility allowed the study of antiproton-proton scattering at a centre-of-mass (CM) energy of 546 GeV. This thesis describes the measurement of antiproton-proton elastic scattering and the antiproton-proton total cross section, sigmasub(tot)(anti pp), at the CERN anti pp Collider. The aim of the experiment is to establish the considerable rise with energy of the total cross section, which was predicted after the discovery of rising proton-proton total cross sections at the CERN Intersecting Storage Rings (ISR), covering an energy range of 20-60 GeV. The experimental method used for measuring sigmasub(tot)(anti pp) with an accuracy of 1-2% consists of the simultaneous measurement of both the elastic scattering event rate at small scattering angles and the inelastic interaction rate. Using the optical theorem, the total and the elastic cross sections can then be obtained without a determination of the machine luminosity. (Auth.)

  2. Probing Supersymmetry with Neutral Current Scattering Experiments

    Science.gov (United States)

    Kurylov, A.; Ramsey-Musolf, M. J.; Su, S.

    2004-02-01

    We compute the supersymmetric contributions to the weak charges of the electron (QWe) and proton (QWp) in the framework of Minimal Supersymmetric Standard Model. We also consider the ratio of neutral current to charged current cross sections, R v and Rv¯ at v (v¯)-nucleus deep inelastic scattering, and compare the supersymmetric corrections with the deviations of these quantities from the Standard Model predictions implied by the recent NuTeV measurement.

  3. Proton-proton elastic scattering at the LHC energy of $\\sqrt{s}$ = 7 TeV

    CERN Document Server

    INSPIRE-00062364; Aspell, P.; Atanassov, I.; Avati, V.; Baechler, J.; Berardi, V.; Berretti, M.; Bozzo, M.; Brucken, E.; Buzzo, A.; Cafagna, F.S.; Calicchio, M.; Catanesi, M.G.; Covault, C.; Csanad, M.; Csorgo, T.; Deile, M.; Dimovasili, E.; Doubek, M.; Eggert, K.; Eremin, V.; Ferro, F.; Fiergolski, A.; Garcia, F.; Giani, S.; Greco, V.; Grzanka, L.; Heino, J.; Hilden, T.; Janda, M.; Kaspar, J.; Kopal, J.; Kundrat, V.; Kurvinen, K.; Lami, S.; Latino, G.; Lauhakangas, R.; Leszko, T.; Lippmaa, E.; Lokajicek, M.; Lo Vetere, M.; Lucas Rodriguez, F.; Macri, M.; Magaletti, L.; Magazzu, G.; Mercadante, A.; Minutoli, S.; Nemes, F.; Niewiadomski, H.; Noschis, E.; Novak, T.; Oliveri, E.; Oljemark, F.; Orava, R.; Oriunno, M.; Osterberg, K.; Perrot, A.L.; Palazzi, P.; Pedreschi, E.; Petajajarvi, J.; Prochazka, J.; Quinto, M.; Radermacher, E.; Radicioni, E.; Ravotti, F.; Robutti, E.; Ropelewski, L.; Ruggiero, G.; Saarikko, H.; Santroni, A.; Scribano, A.; Sette, G.; Snoeys, W.; Spinella, F.; Sziklai, J.; Taylor, C.; Turini, N.; Vacek, V.; Vitek, M.; Welti, J.; Whitmore, J.

    2011-01-01

    Proton-proton elastic scattering has been measured by the TOTEM experiment at the CERN Large Hadron Collider at √ s = 7 TeV in dedicated runs with the Roman Pot detectors placed as close as seven times the transverse beam size (σbeam) from the outgoing beams. After careful study of the accelerator optics and the detector alignment, |t| , the square of four-momentum transferred in the elastic scattering process, has been determined with an uncertainty of δ t = 0.1 GeV √ |t|. In this letter the first results of the differential cross section are presented covering a |t|-range from 0.36 to 2.5 GeV**2. The differential cross-section in the range 0.36 < |t| < 0.47 GeV**2 is described by an exponential with a slope parameter B = (23.6±0.5stat ±0.4syst)GeV**−2, followed by a significant diffractive minimum at |t| = (0.53±0.01stat±0.01syst)GeV**2. For |t|-values larger than ∼ 1:5GeV**2, the cross-section exhibits a power law behaviour with an exponent of -7.8 ± 0.3stat ±0.1syst. When compared to...

  4. Contribution to the study of proton elastic and inelastic scattering on {sup 12}C; Contribution a l'etude des diffusions elastiques et inelastiques des protons sur le carbone 12

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, A

    1966-07-01

    The results of absolute measurements of cross sections for the scattering of protons by {sup 12}C to the two first excited levels are given. The measurements were made from 4.6 to 11.4 MeV at 17 angles for (p,p) and at 15 angles for (p,p') (1. excited level) as well as 8 angles for (p,p'') (2. excited level). A gaseous target with differential pumping was used. The elastic scattering was analyzed using the R-matrix theory with the optical model. Then a new analysis of both (p,p) and (p,p') was achieved using the coupled-wave formalism. The information on the levels of the compound nucleus was completed and was confirmed. (author) [French] Cette these rapporte le resultat de mesures absolues des sections efficaces de diffusion p,p et pp' (conduisant aux deux premiers niveaux excites) de protons par '1'2C. Ces mesures ont ete faites de 4,6 a 11,4 MeV, a 17 angles pour (p,p), a 15 angles pour pp' (1er niveau excite) et a 8 angles pour pp'' (2eme niveau excite). Une chambre a cible gazeuse avec pompage differentiel a ete utilisee. La diffusion elastique a ete analysee au moyen de la theorie de la matrice R avec modele optique pour (p,p). Cette analyse a ete reprise en meme temps que celle de la diffusion inelastique par l'emploi d'equations couplees. Les resultats anterieurs sur les niveaux du noyau compose ont ete confirmes et completes. (auteur)

  5. Deep inelastic muon scattering from nuclei at Fermilab

    International Nuclear Information System (INIS)

    Kaufman, S.B.

    1992-01-01

    Electron scattering experiments by Friedman, Kendall, and Taylor at SLAC first showed in 1968 that the proton was composed of point-like constituents (quarks). More recently the European Muon Collaboration (EMC) found in muon scattering experiments that the structure functions of a free nucleon are different from a heavy nucleus (open-quotes EMC effectclose quotes). Fermilab experiment E665 is now studying deep inelastic scattering of 490 GeV muons from targets ranging from hydrogen to lead, including measurements of the final state hadrons in order to learn more about these effects. The author describes this experiment and presents some initial results on the effects of the nuclear environment on the quark structure of nucleons

  6. Two particle–hole excitations in charged current quasielastic antineutrino-nucleus scattering

    International Nuclear Information System (INIS)

    Nieves, J.; Ruiz Simo, I.; Vicente Vacas, M.J.

    2013-01-01

    We evaluate the quasielastic and multinucleon contributions to the antineutrino-nucleus scattering cross section and compare our results with the recent MiniBooNE data. We use a local Fermi gas model that includes RPA correlations and gets the multinucleon part from a systematic many body expansion of the W boson selfenergy in the nuclear medium. The same model had been quite successful for the neutrino cross section and contains no new parameters. We have also analyzed the relevance of 2p2h events for the antineutrino energy reconstruction

  7. New high resolution measurements of open and hidden charm production in proton-nucleus collisions at √{ s} = 110GeV with LHCb

    Science.gov (United States)

    Maurice, Émilie; LHCb Collaboration

    2017-11-01

    Open and hidden charm production in nucleus-nucleus collisions is considered as a key probe of Quark Gluon Plasma (QGP) formation. In the search of specific QGP effects, proton-nucleus collisions are used as the reference as they account for the corresponding Cold Nuclear Matter (CNM) effects. The LHCb experiment, thanks to its System for Measuring Overlap with Gas (SMOG) can be operated in a fixed target mode with the LHC beams, at an intermediate center-of-mass energy between nominal SPS and RHIC energies. In 2015, for the first time, reactions of incident LHC proton beams on noble gas targets have been recorded by the LHCb experiment at a center-of-mass energy of 110 GeV and within the center-of-mass rapidity range - 2.77

  8. Measurement of dijet production in diffractive deep-inelastic scattering with a leading proton at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D. [National Inst. for Physics and Nuclear Engineering, Bucharest (Romania); Bucharest Univ. (Romania). Faculty of Physics; Alexa, C. [National Inst. for Physics and Nuclear Engineering, Bucharest (Romania); Andreev, V. [Lebedev Physical Inst., Moscow (RU)] (and others)

    2011-09-15

    The cross section of diffractive deep-inelastic scattering ep{yields}eXp is measured, where the system X contains at least two jets and the leading final state proton is detected in the H1 Forward Proton Spectrometer. The measurement is performed for fractional proton longitudinal momentum loss x{sub P}<0.1 and covers the range 0.1< vertical stroke t vertical stroke <0.7 GeV{sup 2} in squared four-momentum transfer at the proton vertex and 4scattering. The data are also compared with leading order Monte Carlo models. (orig.)

  9. Measurement of dijet production in diffractive deep-inelastic scattering with a leading proton at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D.; Alexa, C.; Rotaru, M.; Stoicea, G. [National Inst. for Physics and Nuclear Engineering, Bucharest (Romania); Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Malinovski, E.; Rusakov, S.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y. [Lebedev Physical Inst., Moscow (Russian Federation); Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N. [Univ. of Montenegro, Faculty of Science, Podgorica (ME); Baghdasaryan, A.; Baghdasaryan, S.; Zohrabyan, H. [Yerevan Physics Inst., Yerevan (Armenia); Barrelet, E. [CNRS/IN2P3, LPNHE, Univ. Pierre et Marie Curie Paris 6, Univ. Denis Diderot Paris 7, Paris (France); Bartel, W.; Belov, P.; Brandt, G.; Brinkmann, M.; Britzger, D.; Campbell, A.J.; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Gouzevitch, M.; Grebenyuk, A.; Grell, B.R.; Habib, S.; Haidt, D.; Helebrant, C.; Kleinwort, C.; Kogler, R.; Kraemer, M.; Levonian, S.; Lipka, K.; List, B.; List, J.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Nowak, K.; Olsson, J.E.; Pahl, P.; Panagoulias, I.; Papadopoulou, T.; Petrukhin, A.; Piec, S.; Pitzl, D.; Schmitt, S.; Sefkow, F.; Shushkevich, S.; South, D.; Steder, M.; Wuensch, E. [DESY, Hamburg (Germany); Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B. [Inst. of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar (Mongolia); Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F. [CNRS/IN2P3, LAL, Univ. Paris-Sud, Orsay (France); Boudry, V.; Moreau, F.; Specka, A. [CNRS/IN2P3, LLR, Ecole Polytechnique, Palaiseau (France); Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I. [Univ. of Belgrade, Vinca Inst. of Nuclear Sciences, Belgrade (RS); Bracinik, J.; Kenyon, I.R.; Newman, P.R.; Thompson, P.D. [Univ. of Birmingham (United Kingdom); Bruncko, D.; Cerny, V.; Ferencei, J. [Slovak Academy of Sciences, Kosice (Slovakia)] [and others

    2012-04-15

    The cross section of diffractive deep-inelastic scattering ep{yields}eXp is measured, where the system X contains at least two jets and the leading final state proton is detected in the H1 Forward Proton Spectrometer. The measurement is performed for fractional proton longitudinal momentum loss x{sub P}<0.1 and covers the range 0.1< vertical stroke t vertical stroke <0.7 GeV{sup 2} in squared four-momentum transfer at the proton vertex and 4scattering. The data are also compared with leading order Monte Carlo models. (orig.)

  10. Measurement of proton inelastic scattering cross sections on fluorine

    Energy Technology Data Exchange (ETDEWEB)

    Chiari, M., E-mail: chiari@fi.infn.it [Department of Physics and Astronomy, University of Florence and INFN Florence, Sesto Fiorentino (Italy); Caciolli, A. [Department of Physics and Astronomy, University of Padua and INFN Padua, Padova (Italy); Calzolai, G. [Department of Physics and Astronomy, University of Florence and INFN Florence, Sesto Fiorentino (Italy); Climent-Font, A. [CMAM, Universidad Autonoma de Madrid, Madrid (Spain); Lucarelli, F.; Nava, S. [Department of Physics and Astronomy, University of Florence and INFN Florence, Sesto Fiorentino (Italy)

    2016-10-01

    Differential cross-sections for proton inelastic scattering on fluorine, {sup 19}F(p,p’){sup 19}F, from the first five excited levels of {sup 19}F at 110, 197, 1346, 1459 and 1554 keV were measured for beam energies from 3 to 7 MeV at a scattering angle of 150° using a LiF thin target (50 μg/cm{sup 2}) evaporated on a self-supporting C thin film (30 μg/cm{sup 2}). Absolute differential cross-sections were calculated with a method not dependent on the absolute values of collected beam charge and detector solid angle. The validity of the measured inelastic scattering cross sections was then tested by successfully reproducing EBS spectra collected from a thick Teflon (CF{sub 2}) target. As a practical application of these measured inelastic scattering cross sections in elastic backscattering spectroscopy (EBS), the feasibility of quantitative light element (C, N and O) analysis in aerosol particulate matter samples collected on Teflon by EBS measurements and spectra simulation is demonstrated.

  11. Recent results in the development of a global medium-energy nucleon-nucleus optical-model potential

    International Nuclear Information System (INIS)

    Madland, D.G.

    1988-02-01

    Initial results are presented for the determination of a global medium-energy nucleon-nucleus phenomenological optical-model potential using a relativistic Schroedinger representation. The starting point for this work is the global phenomenological optical-model potential of Schwandt /ital et al./, which is based on measured elastic scattering cross sections and analyzing power for polarized protons ranging from 80 to 180 MeV. This potential is optimally modified to reproduce experimental proton reaction cross sections as a function of energy, while allowing only minimal deterioration in the fits to the elastic cross sections and analyzing powers. Further modifications in the absorptive potential were found necessary to extrapolate the modified potential to higher energies. The final potential is converted to a neutron-nucleus potential by use of standard Lane model assumptions and by accounting approximately for the Coulomb correction. Comparisons of measured and calculated proton reaction and neutron total cross sections are presented for 27 Al, 56 Fe, and 208 Pb. Medium-energy optical-model potentials for complex projectiles are briefly discussed in an appendix. 7 refs., 20 figs

  12. The proton as seen by TOTEM

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    TOTEM, one of the smaller experiments at the LHC, has recently recorded the first candidates of proton-proton elastic scattering at a collision energy of 7 TeV. Studying the elastic scattering between two protons is a powerful way of exploring the inner structure of the proton, one of the most common, yet still poorly understood, particles we observe in Nature.   One of the first elastic event candidates recorded by the TOTEM experiment. The proton tracks are reconstructed in the Roman Pots detectors 220m away from the intersection point IP5 (not to scale). The elastic scattering between two colliding particles is a process in which the kinetic energy of the particles is the same before and after the interaction; only their direction of propagation is modified by the scattering. In more scientific terms, this means that particles transfer part of their momentum in the interaction but not their energy. By studying these kinds of processes, physicists can infer the inner structure of the interacti...

  13. Effective nucleus-nucleus potentials derived from the generator coordinate method

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, H; Canto, L F [Oxford Univ. (UK). Dept. of Theoretical Physics

    1977-11-07

    The equivalence of the generator coordinate method (GCM) and the resonating group method (RGM) and the formal equivalence of the RGM and the orthogonality condition model (OCM) lead to a relation connecting the effective nucleus-nucleus potentials of the OCM with matrix elements of the GCM. This relation may be used to derive effective nucleus-nucleus potentials directly from GCM matrix elements without explicit reference to the potentials of the RGM. In a first application local and l-independent effective potentials are derived from diagonal GCM matrix elements which represent the energy surfaces of a two-centre shell model. Using these potentials the OCM can reproduce the results of a full RGM calculation very well for the elastic scattering of two ..cap alpha..-particles and fairly well for elastic /sup 16/O-/sup 16/O scattering.

  14. Parity violation in proton-proton scattering at 221 MeV

    International Nuclear Information System (INIS)

    Berdoz, A.R.; Birchall, J.; Bland, J.B.; Campbell, J.R.; Green, A.A.; Hamian, A.A.; Lee, L.; Page, S.A.; Ramsay, W.D.; Reitzner, S.D.; Sekulovich, A.M.; Sum, V.; Oers, W.T.H. van; Woo, R.J.; Bowman, J.D.; Mischke, R.E.; Coombes, G.H.; Helmer, R.; Kadantsev, S.; Levy, C.D.P.

    2003-01-01

    TRIUMF experiment 497 has measured the parity-violating longitudinal analyzing power A z in p(vector sign)p elastic scattering at 221.3 MeV incident proton energy. This comprehensive paper includes details of the corrections, some of magnitude comparable to A z itself, required to arrive at the final result. The largest correction was for the effects of first moments of transverse polarization. The addition of the result, A z =[0.84±0.29 (stat.)±0.17 (syst.)]x10 -7 , to the p(vector sign)p parity-violation experimental data base greatly improves the experimental constraints on the weak meson-nucleon coupling constants h ρ pp and h ω pp , and also has implications for the interpretation of electron parity-violation experiments

  15. Exclusive experiment on nuclei with backward emitted particles by electron-nucleus collision in {approximately} 10 GeV energy range

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T.; Takagi, F. [Tohoku Univ., Sendai (Japan)

    1994-04-01

    Since the evidence of strong cross section in proton-nucleus backward scattering was presented in the early of 1970 years, this phenomena have been interested from the point of view to be related to information on the short range correlation between nucleons or on high momentum components of the wave function of the nucleus. In the analysis of the first experiment on protons from the carbon target under bombardment by 1.5-5.7 GeV protons, indications are found of an effect analogous to scaling in high-energy interactions of elementary particles with protons. Moreover it is found that the function f(p{sup 2})/{sigma}{sub tot}, which describes the spectra of the protons and deuterons emitted backward from nuclei in the laboratory system, does not depend on the energy and the type of the incident particle or on the atomic number of the target nucleus. In the following experiments the spectra of the protons emitted from the nuclei C, Al, Ti, Cu, Cd and Pb were measured in the inclusive reactions with incident particles of negative pions (1.55-6.2 GeV/c) and protons (6.2-9.0 GeV/C). The cross section f is described by f = E/p{sup 2} d{sup 2}{sigma}/dpd{Omega} = C exp ({minus}Bp{sup 2}), where p is the momentum of hadron. The function f depends linearly on the atomic weight A of the target nuclei. The slope parameter B is independent of the target nucleus and of the sort and energy of the bombarding particles. The invariant cross section {rho} = f/{sigma}{sub tot} is also described by exponential A{sub 0} exp ({minus}A{sub 1p}{sup 2}), where p becomes independent of energy at initial particle energies {ge} 1.5 GeV for C nucleus and {ge} 5 GeV for the heaviest of the investigated Pb nuclei.

  16. A systematics of optical model compound nucleus formation cross sections for neutrons, proton, deuteron, 3He and alpha particle incidents

    International Nuclear Information System (INIS)

    Murata, Toru

    2000-01-01

    Simple formulae to reproduce the optical model compound nucleus formation cross sections for neutron, proton, deuteron, triton, 3 He and alpha particles are presented for target nuclei of light to medium weight mass region. (author)

  17. Reduction of the secondary neutron dose in passively scattered proton radiotherapy, using an optimized pre-collimator/collimator

    International Nuclear Information System (INIS)

    Brenner, David J; Elliston, Carl D; Hall, Eric J; Paganetti, Harald

    2009-01-01

    Proton radiotherapy represents a potential major advance in cancer therapy. Most current proton beams are spread out to cover the tumor using passive scattering and collimation, resulting in an extra whole-body high-energy neutron dose, primarily from proton interactions with the final collimator. There is considerable uncertainty as to the carcinogenic potential of low doses of high-energy neutrons, and thus we investigate whether this neutron dose can be significantly reduced without major modifications to passively scattered proton beam lines. Our goal is to optimize the design features of a patient-specific collimator or pre-collimator/collimator assembly. There are a number of often contradictory design features, in terms of geometry and material, involved in an optimal design. For example, plastic or hybrid plastic/metal collimators have a number of advantages. We quantify these design issues, and investigate the practical balances that can be achieved to significantly reduce the neutron dose without major alterations to the beamline design or function. Given that the majority of proton therapy treatments, at least for the next few years, will use passive scattering techniques, reducing the associated neutron-related risks by simple modifications of the collimator assembly design is a desirable goal.

  18. An application of the Dipole Pomeron model to the pion-proton elastic scattering

    International Nuclear Information System (INIS)

    Covolan, R.J.M.; Leite, E.E.; Montanha, J.; Soares, M.S.

    1994-01-01

    The Pomeron model is applied to the pion-proton elastic scattering aiming to describe the total and differential cross sections and the ρ ratio between the scattering amplitude real and imaginary parts. It is also discussed how far the present available experimental results lead to the necessity of adopting a (α 0 > 1) supercritical trajectory. (author). 3 refs., 4 figs

  19. On the determination of the proton RMS-radius from electron scattering data

    International Nuclear Information System (INIS)

    Borkowski, F.; Simon, G.G.; Walther, V.H.; Wendling, R.D.

    1975-01-01

    It is shown that the proton rms radius should be determined from fiting a polynomial of second order to the low-q 2 form factors. The commonly used polynomial of first yields radius values which are too small. The proton rms radius has been redetermined from an analysis of the electron scattering data measured at three laboratories. The best fit value is [r 2 sub(E)]sup(1/2) = 0.87 +- 0.02 fm. (orig.) [de

  20. Polarized deuteron elastic scattering from a polarized proton target

    International Nuclear Information System (INIS)

    Schmelzer, R.; Kuiper, H.; Schoeberl, M.; Berber, S.; Hilmert, H.; Koeppel, R.; Pferdmenges, R.; Zankel, H.

    1983-01-01

    Measurements are reported of the spin correlation parameter Cy,y for the elastic scattering of 10.0 MeV vector polarized deuterons from a polarized proton target at five CM angles (76 0 ,85 0 ,98 0 ,115 0 ,132 0 ). The experimental results are compared with different predictions. A Faddeev type calculation on the basis of local potentials also including approximate Coulomb distortion is favoured by our experimental results. (orig.)

  1. Polarisation parameter measurement in the proton-proton elastic scattering from 0.5 to 1.2 GeV

    International Nuclear Information System (INIS)

    Ducros, Yves

    1970-01-01

    The angular distribution of the polarisation parameter was measured in the proton-proton elastic - scattering at seven energies between 0.5 and 1.2 GeV. A polarized proton target was used. The results show a maximum of the polarisation parameter of 0.6, at 0.73 GeV. This maximum is due to the important increase of the total cross section between 0.6 and 0.73 GeV. At 1.2 GeV the angular distribution of the polarisation shows a minimum for a momentum transfer value of -1 (GeV/c) 2 . A phase shift analysis was done at 0.66 GeV, using all available experimental data at this energy. There is no evidence of a di-baryonic resonance in the 1 D 2 phase. (author) [fr

  2. Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions

    CERN Document Server

    AUTHOR|(CDS)2070213; Arnaldi, R.; Beraudo, A.; Bruna, E.; Caffarri, D.; del Valle, Z.Conesa; Contreras, J.G.; Dahms, T.; Dainese, A.; Djordjevic, M.; Ferreiro, E.G.; Fujii, H.; Gossiaux, P.B.; de Cassagnac, R.Granier; Hadjidakis, C.; He, M.; van Hees, H.; Horowitz, W.A.; Kolevatov, R.; Kopeliovich, B.Z.; Lansberg, J.P.; Lombardo, M.P.; Lourenço, C.; Martinez-Garcia, G.; Massacrier, L.; Mironov, C.; Mischke, A.; Nahrgang, M.; Nguyen, M.; Nystrand, J.; Peigné, S.; Porteboeuf-Houssais, S.; Potashnikova, I.K.; Rakotozafindrabe, A.; Rapp, R.; Robbe, P.; Rosati, M.; Rosnet, P.; Satz, H.; Schicker, R.; Schienbein, I.; Schmidt, I.; Scomparin, E.; Sharma, R.; Stachel, J.; Stocco, D.; Strickland, M.; Tieulent, R.; Trzeciak, B.A.; Uphoff, J.; Vitev, I.; Vogt, R.; Watanabe, K.; Woehri, H.; Zhuang, P.

    2016-01-01

    This report reviews the study of open heavy-flavour and quarkonium production in high-energy hadronic collisions, as tools to investigate fundamental aspects of Quantum Chromodynamics, from the proton and nucleus structure at high energy to deconfinement and the properties of the Quark-Gluon Plasma. Emphasis is given to the lessons learnt from LHC Run 1 results, which are reviewed in a global picture with the results from SPS and RHIC at lower energies, as well as to the questions to be addressed in the future. The report covers heavy flavour and quarkonium production in proton-proton, proton-nucleus and nucleus-nucleus collisions. This includes discussion of the effects of hot and cold strongly interacting matter, quarkonium photo-production in nucleus-nucleus collisions and perspectives on the study of heavy flavour and quarkonium with upgrades of existing experiments and new experiments. The report results from the activity of the SaporeGravis network of the I3 Hadron Physics programme of the European Unio...

  3. Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Andronic, A. [GSI Helmholzzentrum fuer Schwerionenforschung, Research Division, ExtreMe Matter Institute (EMMI), Darmstadt (Germany); Arleo, F. [Ecole Polytechnique, CNRS/IN2P3, Universite Paris-Saclay, Laboratoire Leprince-Ringuet, Palaiseau (France); Universite de Savoie, CNRS, Laboratoire d' Annecy-le-Vieux de Physique Theorique (LAPTh), Annecy-le-Vieux (France); Arnaldi, R.; Beraudo, A.; Bruna, E.; Scomparin, E. [INFN, Sezione di Torino, Turin (Italy); Caffarri, D.; Lourenco, C.; Woehri, H. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Del Valle, Z.C.; Hadjidakis, C.; Lansberg, J.P. [CNRS/IN2P3, Universite Paris-Saclay, IPNO, Univ. Paris-Sud, Orsay Cedex (France); Contreras, J.G.; Trzeciak, B.A. [Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Prague (Czech Republic); Dahms, T. [Technische Universitaet Muenchen, Excellence Cluster Universe, Munich (Germany); Dainese, A. [INFN, Sezione di Padova, Padua (Italy); Djordjevic, M. [University of Belgrade, Institute of Physics Belgrade (Serbia); Ferreiro, E.G. [Universidad de Santiago de Compostela, Departamento de Fisica de Particulas, IGFAE, Santiago de Compostela (Spain); Fujii, H. [University of Tokyo, Institute of Physics, Tokyo (Japan); Gossiaux, P.B.; Martinez-Garcia, G.; Peigne, S.; Stocco, D. [Ecole des Mines de Nantes, Universite de Nantes, CNRS-IN2P3, SUBATECH, Nantes (France); Cassagnac, R.G. de; Mironov, C.; Nguyen, M. [Ecole Polytechnique, CNRS/IN2P3, Universite Paris-Saclay, Laboratoire Leprince-Ringuet, Palaiseau (France); He, M. [Nanjing University of Science and Technology, Department of Applied Physics, Nanjing (China); Hees, H. van [FIAS, Institute for Theoretical Physics, Frankfurt (Germany); Horowitz, W.A. [University of Cape Town, Department of Physics, Cape Town (South Africa); Kolevatov, R. [Ecole des Mines de Nantes, Universite de Nantes, CNRS-IN2P3, SUBATECH, Nantes (France); Saint-Petersburg State University, Department of High Energy Physics, Saint Petersburg (Russian Federation); Kopeliovich, B.Z.; Potashnikova, I.K.; Schmidt, I. [Centro Cientifico-Tecnologico de Valparaiso, Universidad Tecnica Federico Santa Maria, Departamento de Fisica, Valparaiso (Chile); Lombardo, M.P. [INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Massacrier, L. [CNRS/IN2P3, Universite Paris-Saclay, IPNO, Univ. Paris-Sud, Orsay Cedex (France); Ecole des Mines de Nantes, Universite de Nantes, CNRS-IN2P3, SUBATECH, Nantes (France); Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, LAL, Orsay (France); Mischke, A. [Utrecht University, Faculty of Science, Institute for Subatomic Physics, Utrecht (Netherlands); National Institute for Subatomic Physics, Amsterdam (Netherlands); Nahrgang, M. [Duke University, Department of Physics, Durham (United States); Nystrand, J. [University of Bergen, Department of Physics and Technology, Bergen (Norway); Porteboeuf-Houssais, S.; Rosnet, P. [Universite Clermont Auvergne, Universite Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire (LPC), Clermont-Ferrand (France); Rakotozafindrabe, A. [IRFU/SPhN, CEA Saclay, Gif-sur-Yvette Cedex (France); Rapp, R. [Texas A and M University, Department of Physics and Astronomy, Cyclotron Institute, College Station (United States); Robbe, P. [Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, LAL, Orsay (France); Rosati, M. [Iowa State University, Ames (United States); Satz, H. [Universitaet Bielefeld, Fakultaet fuer Physik, Bielefeld (Germany); Schicker, R.; Stachel, J. [Ruprecht-Karls-Universitaet Heidelberg, Physikalisches Institut, Heidelberg (Germany); Schienbein, I. [Universite Grenoble-Alpes, CNRS/IN2P3, Laboratoire de Physique Subatomique et de Cosmologie, Grenoble (France); Sharma, R. [Tata Institute of Fundamental Research, Department of Theoretical Physics, Mumbai (India); Strickland, M. [Kent State University, Department of Physics, Kent (United States); Tieulent, R. [IPN-Lyon, Universite de Lyon, Universite Lyon 1, CNRS/IN2P3, Villeurbanne (France); Uphoff, J. [Johann Wolfgang Goethe-Universitaet, Institut fuer Theoretische Physik, Frankfurt am Main (Germany); Vitev, I. [Los Alamos National Laboratory, Theoretical Division, Los Alamos (United States); Vogt, R. [Lawrence Livermore National Laboratory, Physics Division, Livermore (United States); University of California, Physics Department, Davis (United States); Watanabe, K. [University of Tokyo, Institute of Physics, Tokyo (Japan); Central China Normal University, Key Laboratory of Quark and Lepton Physics (MOE), Institute of Particle Physics, Wuhan (China); Zhuang, P. [Collaborative Innovation Center of Quantum Matter, Tsinghua University, Physics Department, Beijing (China)

    2016-03-15

    This report reviews the study of open heavy-flavour and quarkonium production in high-energy hadronic collisions, as tools to investigate fundamental aspects of Quantum Chromodynamics, from the proton and nucleus structure at high energy to deconfinement and the properties of the Quark-Gluon Plasma. Emphasis is given to the lessons learnt from LHC Run 1 results, which are reviewed in a global picture with the results from SPS and RHIC at lower energies, as well as to the questions to be addressed in the future. The report covers heavy flavour and quarkonium production in proton-proton, proton-nucleus and nucleus-nucleus collisions. This includes discussion of the effects of hot and cold strongly interacting matter, quarkonium photoproduction in nucleus-nucleus collisions and perspectives on the study of heavy flavour and quarkonium with upgrades of existing experiments and new experiments. The report results from the activity of the SaporeGravis network of the I3 Hadron Physics programme of the European Union 7th Framework Programme. (orig.)

  4. Observation of hard scattering in photoproduction events with a large rapidity gap at HERA

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.

    1994-11-01

    Events with a large rapidity gap and total transverse energy greater than 5 GeV have been observed in quasi-real photoproduction at HERA with the ZEUS detector. The distribution of these events as a function of the γp centre of mass energy is consistent with diffractive scattering. For total transverse energies above 12 GeV, the hadronic final states show predominantly a two-jet structure with each jet having a transverse energy greater than 4 GeV. For the two-jet events, little energy flow is found outside the jets. This observation is consistent with the hard scattering of a quasi-real photon with a colourless object in the proton. (orig.)

  5. The estimation of production rates of $\\pi^+K^-, \\pi^-K^+$ and $\\pi^+\\pi^-$ atoms in proton-Ni interactions at proton momentum of 450 GeV/c

    CERN Document Server

    Gorchakov, O

    2015-01-01

    In the DIRAC experiment at CERN the π+ K− , K+ π− and π+ π− atoms generated in proton-nucleus interaction at proton momentum Pp = 24 GeV/c were investigated. This work shows that the yields of π+ K− , K+ π− and π+ π− atoms in the p-nucleus interactions at Pp = 450 GeV/c and θ lab = 4◦ are 17, 38 and 16 times more than the one in the DIRAC experiment. The increased yields of the short-lived ππ ( πK ) atoms with minimum lifetime τ th = 2.9 . 10 − 15 s ( τ th = 3.5 . 10 − 15 s ) allows to improve the precisions of their lifetime measurement and ππ ( πK ) scattering length combinations | a 0 − a 2 | ( | a 1 / 2 − a 3/2 | ). In the DIRAC experiment the long-lived ππ atoms( τ th ≥ 1.2 . 10 − 11 s) were observed also. It was detected n A = 436 ± 61 π + π − pairs(atomic pairs) originating in the breakup of long-lived ππ atoms in the Pt foil with probability more than 90%. After the change of experiment scheme the number of produced long-lived π+ π− , π+ K− a...

  6. Deuteron D-wave and the non-eikonal effects in tensor asymmetries in elastic proton-deuteron scattering

    International Nuclear Information System (INIS)

    Alberi, G.; Bleszynski, M.; California Univ., Los Angeles; Santos, S.; Jaroszewicz, T.

    1980-01-01

    It is shown that the tensor asymmetries in the elastic proton-deuteron scattering at medium energies are very sensitive to the non-eikonal corrections to the Glauber model. This sensitivity originates from the fact that, in double scattering, the non-eikonal corrections affect in a different way the contributions coming from the S- and D-wave parts of the deuteron wave function. This leads to considerable change of the tensor asymmetries not only in the region of the interference between single and double scatterings, but also in the region of dominance of the double scattering. It is suggested that these effects should be taken into account in any careful analysis of the proton-deuteron polarization data, which has as a goal the extraction of the NN amplitudes. (author)

  7. Diffractive Deep-Inelastic Scattering with a Leading Proton at HERA

    CERN Document Server

    Aktas, A.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Baumgartner, S.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J.C.; Boenig, M.-O.; Boudry, V.; Bracinik, J.; Brandt, G.; Brisson, V.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J.G.; Coughlan, J.A.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; de Boer, Y.; Delcourt, B.; Del Degan, M.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Flucke, G.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Gerlich, C.; Ghazaryan, Samvel; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B.R.; Grindhammer, G.; Gwilliam, C.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Henderson, R.C.W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lueders, H.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Marage, P.; Marshall, R.; Marti, L.; Martisikova, M.; Martyn, H.-U.; Maxfield, S.J.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Papadopoulou, T.; Pascaud, C.; Patel, G.D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Portheault, B.; Povh, B.; Prideaux, P.; Rahmat, A.J.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schilling, F.-P.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Steder, M.; Stella, B.; Stiewe, J.; Stoilov, A.; Straumann, U.; Sunar, D.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Urban, Marcel; Usik, A.; Utkin, D.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wessling, B.; Wissing, Ch.; Wolf, R.; Wunsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2006-01-01

    The cross section for the diffractive deep-inelastic scattering process $ep \\to e X p$ is measured, with the leading final state proton detected in the H1 Forward Proton Spectrometer. The data analysed cover the range \\xpom <0.1 in fractional proton longitudinal momentum loss, 0.08 < |t| < 0.5 GeV^{-2} in squared four-momentum transfer at the proton vertex, 2 < Q^2 < 50 GeV^2 in photon virtuality and 0.004 < \\beta = x / \\xpom < 1, where x is the Bjorken scaling variable. For $\\xpom \\lapprox 10^{-2}$, the differential cross section has a dependence of approximately ${\\rm d} \\sigma / {\\rm d} t \\propto e^{6 t}$, independently of \\xpom, \\beta and Q^2 within uncertainties. The cross section is also measured triple differentially in \\xpom, \\beta and Q^2. The \\xpom dependence is interpreted in terms of an effective pomeron trajectory with intercept $\\alpha_{\\pom}(0)=1.114 \\pm 0.018 ({\\rm stat.}) \\pm 0.012 ({\\rm syst.}) ^{+0.040}_{-0.020} ({\\rm model})$ and a sub-leading exchange. The data are in...

  8. Dimuon production in proton-nucleus interactions

    International Nuclear Information System (INIS)

    Peng, J.C.

    1994-01-01

    Results from the Fermilab experiments E772 and E789 on the Drell-Yan cross sections, quarkonia production, and open-charm production are presented. These data provide information on the parton distributions in the nucleons and nuclei. They also shed light on the origin of the J/Ψ suppression observed in heavy ion collisions. The physics motivation and the proposed measurements for a new experiment to probe the sea quark distributions in the proton are also discussed

  9. Angular distributions of nucleons emitted in high energy hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1983-01-01

    Angular distributions of ''fast'' protons, of kinetic energy from about 20 to about 400 MeV, emitted in pion-xenon nucleus collisions at 3.5 GeV/c momentum were studied in two groups of events - when particles are produced and when particle production does not occur. The distributions are practically the same in both the groups of events and in subgroups of events with various multiplicities of emitted protons. Comparison of angular distributions of protons emitted in pion-xenon nucleus collisions at 3.5 GeV/c momentum with corresponding angular distributions of protons emitted in proton-emulsion collisions at 300-400 GeV/c momentum is performed. Results obtained allow to conclude that average value of the nucleon emission angle and the nucleon angular distributions do not depend practically on the nuclear matter layer thickness the incident hadron collided with. Fast nucleons emitted from the target nucleus seem did not interact inside the parent nucleus. Fast nucleon angular distributions do not depend on the energy of incident hadron, they are the same for pion-nucleus and for proton-nucleus collisions as well

  10. High energy nucleus-nucleus collisions at CERN: Signatures, physical observables and experimental results

    International Nuclear Information System (INIS)

    Harris, J.W.

    1988-02-01

    Experimental results on high energy nucleus-nucleus collisions have become available with the recent experiments at CERN utilizing 200 GeV/n oxygen and sulfur beams. Physics motivations for these experiments are presented: a description of predicted signatures for possible formation of a quark-gluon plasma and physical observables that are expected to provide important information for understanding the dynamics of these collisions. A presentation will be made of some of the first experimental results to emerge from this new field. 28 refs., 9 figs

  11. Spin flip in inelastic scattering of protons on 28Si nuclei

    International Nuclear Information System (INIS)

    Wang Syn Chan; Komsan, M.N.Kh.; Osetinskij, G.M.; Golubev, S.L.; Kurepin, A.B.; Likhosherstov, V.N.

    1975-01-01

    We measured the energy and angular dependences of the spin-flip probability and of the differential cross section for inelastic scattering of protons in the resonance region of the reaction 28 Si(p,p') 23 Si* (2 + , 1.78 MeV) at E sub(p) = 3.095 and 3.34 MeV. The energy dependence of the spin-flip probability was found to have a resonance character. The angular distribution of the inelastic scattering and of the spin-flip probability is asymmetrical with respect to 90 deg in the c.m.s

  12. Probing gluon saturation with next-to-leading order photon production at central rapidities in proton-nucleus collisions

    Energy Technology Data Exchange (ETDEWEB)

    Benić, Sanjin [Physics Department, Faculty of Science, University of Zagreb,Zagreb 10000 (Croatia); Department of Physics, The University of Tokyo,7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Fukushima, Kenji [Department of Physics, The University of Tokyo,7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Garcia-Montero, Oscar [Institut für Theoretische Physik, Universität Heidelberg,Philosophenweg 16, 69120 Heidelberg (Germany); Venugopalan, Raju [Physics Department, Brookhaven National Laboratory,Bldg. 510A, Upton, NY 11973 (United States)

    2017-01-26

    We compute the cross section for photons emitted from sea quarks in proton-nucleus collisions at collider energies. The computation is performed within the dilute-dense kinematics of the Color Glass Condensate (CGC) effective field theory. Albeit the result obtained is formally at next-to-leading order in the CGC power counting, it provides the dominant contribution for central rapidities. We observe that the inclusive photon cross section is proportional to all-twist Wilson line correlators in the nucleus. These correlators also appear in quark-pair production; unlike the latter, photon production is insensitive to hadronization uncertainties and therefore more sensitive to multi-parton correlations in the gluon saturation regime of QCD. We demonstrate that k{sub ⊥} and collinear factorized expressions for inclusive photon production are obtained as leading twist approximations to our result. In particular, the collinearly factorized expression is directly sensitive to the nuclear gluon distribution at small x. Other results of interest include the realization of the Low-Burnett-Kroll soft photon theorem in the CGC framework and a comparative study of how the photon amplitude is obtained in Lorenz and light-cone gauges.

  13. K+ nucleus total cross sections

    International Nuclear Information System (INIS)

    Sawafta, R.

    1990-01-01

    The scattering of K + mesons from nuclei has attracted considerable interest in the last few years. The K + holds a very special position as the weakest of all strongly interaction probes. The average cross section is not larger than about 10 mb at lab momenta below 800 MeV/c, corresponding to a mean free path in the nucleus larger than 5 fm. Thus the K + is capable of probing the entire volume of the nucleus. Single scattering of the K + with a nucleon in the nucleus dominates the nuclear scattering, and only small and calculable higher order corrections are needed. The nucleon is a dynamical entity and its internal structure can, in principle, be altered by its surrounding nuclear environment. This work reports an experiment in which the K + is used to compare the nucleon in the nucleus with a free nucleon

  14. Spin structure of the proton from polarized inclusive deep-inelastic muon-proton scattering

    CERN Document Server

    Adams, D.; Arik, E.; Arvidson, A.; Badelek, B.; Ballintijn, M.K.; Bardin, G.; Baum, Guenter; Berglund, P.; Betev, L.; Bird, I.G.; Birsa, R.; Bjorkholm, P.; Bonner, B.E.; de Botton, N.; Boutemeur, M.; Bradamante, F.; Bravar, A.; Bressan, A.; Bueltmann, Stephen L.; Burtin, E.; Cavata, C.; Crabb, D.; Cranshaw, J.; Cuhadar, T.; Dalla Torre, S.; van Dantzig, R.; Derro, B.; Deshpande, A.; Dhawan, S.; Dulya, C.; Dyring, A.; Eichblatt, S.; Faivre, J.C.; Fasching, D.; Feinstein, F.; Fernandez, C.; Frois, B.; Gallas, A.; Garzon, J.A.; Gaussiran, T.; Giorgi, M.; von Goeler, E.; Gracia, G.; de Groot, N.; Grosse Perdekamp, M.; Gulmez, Erhan; von Harrach, D.; Hasegawa, T.; Hautle, P.; Hayashi, N.; Heusch, C.A.; Horikawa, N.; Hughes, V.W.; Igo, G.; Ishimoto, S.; Iwata, T.; Kabuss, E.M.; Karev, A.; Kessler, H.J.; Ketel, T.J.; Kishi, A.; Kiselev, Yu.; Klostermann, L.; Kramer, D.; Krivokhijine, V.; Kroger, W.; Kurek, K.; Kyynarainen, J.; Lamanna, M.; Landgraf, U.; Layda, T.; Le Goff, J.M.; Lehar, F.; de Lesquen, A.; Lichtenstadt, J.; Lindqvist, T.; Litmaath, M.; Lowe, M.; Magnon, A.; Mallot, G.K.; Marie, F.; Martin, A.; Martino, J.; Matsuda, T.; Mayes, B.; McCarthy, J.S.; Medved, K.; van Middelkoop, G.; Miller, D.; Mori, K.; Moromisato, J.; Nagaitsev, A.; Nassalski, J.; Naumann, L.; Niinikoski, T.O.; Oberski, J.E.J.; Ogawa, A.; Ozben, C.; Parks, D.P.; Penzo, A.; Kunne, F.; Peshekhonov, D.; Piegaia, R.; Pinsky, Lawrence S.; Platchkov, S.; Plo, M.; Pose, D.; Postma, H.; Pretz, J.; Pussieux, T.; Pyrlik, J.; Reyhancan, I.; Rijllart, A.; Roberts, J.B.; Rock, S.; Rodriguez, M.; Rondio, E.; Rosado, A.; Sabo, I.; Saborido, J.; Sandacz, A.; Savin, Igor A.; Schiavon, P.; Schuler, K.P.; Segel, R.; Seitz, R.; Semertzidis, Y.; Sever, F.; Shanahan, P.; Sichtermann, E.P.; Simeoni, F.; Smirnov, G.I.; Staude, A.; Steinmetz, A.; Stiegler, U.; Stuhrmann, H.; Szleper, M.; Teichert, K.M.; Tessarotto, F.; Tlaczala, W.; Trentalange, S.; Unel, G.; Velasco, M.; Vogt, J.; Voss, R.; Weinstein, R.; Whitten, C.; Windmolders, R.; Willumeit, R.; Wislicki, W.; Witzmann, A.; Zanetti, A.M.; Zaremba, K.; Zhao, J.

    1997-01-01

    We have measured the spin-dependent structure function $g_1^{\\rm p}$ in inclusive deep-inelastic scattering of polarized muons off polarized protons, in the kinematic range $0.003 < x < 0.7$ and $1\\gevtwo < Q^2 < 60\\gevtwo$. A next-to-leading order QCD analysis is used to evolve the measured $\\gpone(x,Q^2)$ to a fixed $Q^2_0$. The first moment of $\\gpone$ at $Q^2_0 = 10\\gevtwo$ is $\\gammap = 0.136\\pm 0.013 \\,(\\mbox{stat.}) \\pm 0.009\\,(\\mbox{syst.})\\pm 0.005\\ (\\mbox{evol.})$. This result is below the prediction of the Ellis--Jaffe sum rule by more than two standard deviations. The singlet axial charge $\\dsigt$ is found to be $0.28 \\pm 0.16$. In the Adler--Bardeen factorization scheme, $\\Delta g \\simeq 2$ is required to bring $\\Delta \\Sigma$ in agreement with the Quark-Parton Model. A combined analysis of all available proton and deuteron data confirms the Bjorken sum rule.

  15. Polarized deuteron elastic scattering from a polarized proton target

    Energy Technology Data Exchange (ETDEWEB)

    Schmelzer, R.; Kuiper, H.; Schoeberl, M.; Berber, S.; Hilmert, H.; Koeppel, R.; Pferdmenges, R. (Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.). Physikalisches Inst.); Zankel, H. (Graz Univ. (Austria). Inst. fuer Theoretische Physik)

    1983-01-13

    Measurements are reported of the spin correlation parameter Cy,y for the elastic scattering of 10.0 MeV vector polarized deuterons from a polarized proton target at five CM angles (76/sup 0/,85/sup 0/,98/sup 0/,115/sup 0/,132/sup 0/). The experimental results are compared with different predictions. A Faddeev type calculation on the basis of local potentials also including approximate Coulomb distortion is favoured by our experimental results.

  16. Self-consistent theory of hadron-nucleus scattering. Application to pion physics

    International Nuclear Information System (INIS)

    Johnson, M.B.

    1981-01-01

    The first part of this set of two seminars will consist of a review of several of the important accomplishments made in the last few years in the field of pion-nucleus physics. Next I discuss some questions raised by these accomplishments and show that for some very natural reasons the commonly employed theoretical methods cannot be applied to answer these questions. This situation leads to the idea of self-consistency, which is first explained in a general context. The remainder of the seminars are devoted to illustrating the idea within a simple multiple-scattering model for the case of pion scattering. An evaluation of the effectiveness of the self-consistent requirment to produce a solution to the model is made, and a few of the questions raised by recent accomplishments in the field of pion physics are addressed in the model. Finally, the results of the model calculation are compared to experimental data and implications of the results discussed. (orig./HSI)

  17. Structure of the semi-decoupled π 1/2[411] band in odd proton nucleus 169Ta

    International Nuclear Information System (INIS)

    Song Hai; Deng Fuguo; Shao Liqin; Zhou Hongyu; Sun Huibin; Lu Jingbin; Zhao Guangyi; Yin Lichang; Liu Yunzuo

    2003-01-01

    High spin states of the odd proton-nucleus 169 Ta have been populated in the reaction 155 Gd( 19 F, 5 n) with beam energies of 97 MeV. Rotational band based on d 3/2 proton 1/2[411] Nilsson state has been pushed up to 39/2 + in the α=1/2 decay sequence. Its signature partner, the α=-1/2 decay sequence with four link transitions has been established and 1/2[411] band in 169 Ta was reassigned to be a semi-decoupled band. The systematics of the signature splitting in the K=1/2 bands in the rear-earth region and the accidental degeneracy conclusion given by the angular projection shell model were discussed

  18. Collective effects in even-mass samarium isotopes by polarized-proton scattering

    NARCIS (Netherlands)

    Petit, R.M.A.L.; Hall, van P.J.; Klein, S.S.; Moonen, W.H.L.; Nijgh, G.J.; Overveld, van C.W.A.M.; Poppema, O.J.

    1993-01-01

    The even-mass samarium isotopes 148,...,152Sm have been investigated by polarized proton scattering at 20.4 MeV beam energy. The data have been analysed with an 'extended' optical model, where the intensities of the first maxima of the main inelastic channels are fitted in a coupled-channels

  19. Novel QCD Phenomena at Electron-Proton Colliders

    International Nuclear Information System (INIS)

    Brodsky, S

    2008-01-01

    I discuss several novel phenomenological features of QCD which are observable in deep inelastic lepton-nucleon and lepton-nucleus scattering. Initial- and final-state interactions from gluon exchange, normally neglected in the parton model, have a profound effect on QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, the diffractive contribution to deep inelastic scattering, and the breakdown of the pQCD Lam-Tung relation in Drell-Yan reactions. Leading-twist diffractive processes in turn lead to nuclear shadowing and non-universal antishadowing--physics not incorporated in the light-front wavefunctions of the nucleus computed in isolation

  20. Separating form factor and nuclear model effects in quasielastic neutrino-nucleus scattering

    Science.gov (United States)

    Wieske, Joseph

    2017-09-01

    When studying neutrino oscillations an understanding of charged current quasielastic (CCQE) neutrino-nucleus scattering is imperative. This interaction depends on a nuclear model as well as knowledge of form factors. In the past, CCQE data from the MiniBooNE experiment was analyzed assuming the Relativistic Fermi Gas (RFG) nuclear model, an axial dipole form factor in, and using the the z-expansion for the axial form factor in. We present the first analysis that combines a non-RFG nuclear model, in particular the Correlated Fermi Gas nuclear model (CFG) of, and the z expansion for the axial form factor. This will allow us to separate form factor and nuclear model effects in CCQE scattering. This project was supported through the Wayne State University REU program under NSF Grant PHY-1460853 and by the DOE Grant DE-SC0007983.

  1. Near-nucleus optical observations of P/Halley

    International Nuclear Information System (INIS)

    Larson, S.M.

    1987-01-01

    The Near-Nucleus Studies Net of the International Halley Watch has obtained an extensive series of high resolution optical images of P/Halley during its most active phases in 1985-86 which may be useful in interpreting radio observations of Comet Halley. They often show coma structure resulting from anisotropic emission of dust and gas from the inhomogeneous nucleus. Images were obtained in broadband spectral regions to study dust coma morphology, and in medium to narrow spectral bands to isolate the principal emissions of CN, C 3 , C 2 , CO + and H 2 O + . The goals and methods of near-nucleus studies are discussed and recent studies of 1910 images are briefly reviewed. The role of dust jets and cometary activity in P/Halley is discussed and several examples of anisotropic emission of dust during the current apparition are shown. 12 references

  2. Selectron production in quasi-elastic electron-proton scattering

    International Nuclear Information System (INIS)

    Bartels, J.; Hollik, W.

    1985-08-01

    We calculate the cross section for the production of selectrons in quasi-elastic electron proton scattering at HERA energies. In the region of very small momentum transfer the cross section turns out to be large: e.g. sigma=36 pb for a selectron mass of 60 GeV, tsub(min) 2 ), and photino mass small compared to the selectron mass. Together with the clean experimental signature, this large cross section makes the reaction e+P->e+γ tilde+P one of the most promising HERA-processes in connection with the search for supersymmetric particles. (orig.)

  3. A unified treatment of high energy interactions

    International Nuclear Information System (INIS)

    Drescher, H.J.; Werner, K.; Ostapchenko, S.; Centre National de la Recherche Scientifique, 44 - Nantes

    1999-01-01

    It is well known that high energy interactions as different as electron-positron annihilation, deep inelastic lepton-nucleon scattering, proton-proton interactions, and nucleus-nucleus collisions have many features in common. Based upon this observation, a model for all these interactions is constructed which relies on the fundamental hypothesis that the behavior of high energy interactions is universal. (author)

  4. The SAMPLE experiment: Parity-violating electron scattering from the proton and deuteron

    International Nuclear Information System (INIS)

    Pitt, M.; Arrington, J.; Beck, D.; Beise, E.; Candell, E.; Cardman, L.; Carr, R.; Dodson, G.; Dow, K.; Duncan, F.; Farkhondeh, M.; Filippone, B.; Forest, T.; Gao, H.; Korsch, W.; Kowalski, S.; Lung, A.; McKeown, R.; Mohring, R.; Mueller, B.; Napolitano, J.; Simicevic, N.; Terburg, B.; Witkowski, M.

    1995-01-01

    Recent experimental evidence on nucleon structure has provided indications that some strange quark matrix elements can be comparable to those involving up and down quarks. The SAMPLE experiment will determine the strange magnetic form factor G s M at Q 2 =0.1 (GeV/c) 2 from a measurement of the asymmetry in the scattering of polarized electrons from the proton. The error on the extraction of G s M is ultimately limited by a theoretical uncertainty---the uncertain electroweak hadronic radiative correction to the axial form factor, R T=1 A . To address this issue, the collaboration is also approved to measure the asymmetry in parity-violating quasielastic electron scattering from the deuteron. The combination of the proton and deuteron measurements will yield a value of G s M that is almost completely free of the uncertainty in R T=1 A

  5. Parity non-conserving effects in neutron-nucleus scattering

    International Nuclear Information System (INIS)

    Desplanques, B.

    1990-01-01

    The present lecture reviews the motivations which led to study the contribution of the neutron-nucleus component to parity-non-conserving effects observed in medium-heavy nuclei and considers its present status. It is shown that it cannot account for those experimental data. The order interpretation of these effects, which cannot lead to precise statements, is schematically described

  6. TWO-PHOTON PHYSICS IN NUCLEUS-NUCLEUS COLLISIONS AT RHIC

    International Nuclear Information System (INIS)

    Nystrand, J.; Klein, S.

    1998-01-01

    Ultra-relativistic heavy-ions carry strong electromagnetic and nuclear fields. Interactions between these fields in peripheral nucleus-nucleus collisions can probe many interesting physics topics. This presentation will focus on coherent two-photon and photonuclear processes at RHIC. The rates for these interactions will be high. The coherent coupling of all the protons in the nucleus enhances the equivalent photon flux by a factor Z 2 up to an energy of ∼ 3 GeV. The plans for studying coherent interactions with the STAR experiment will be discussed. Experimental techniques for separating signal from background will be presented

  7. Two-photon physics in nucleus-nucleus collisions at RHIC

    International Nuclear Information System (INIS)

    Nystrand, J.; Klein, S.

    1998-01-01

    Ultra-relativistic heavy-ions carry strong electromagnetic and nuclear fields. Interactions between these fields in peripheral nucleus-nucleus collisions can probe many interesting physics topics. This presentation will focus on coherent two-photon and photonuclear processes at RHIC. The rates for these interactions will be high. The coherent coupling of all the protons in the nucleus enhances the equivalent photon flux by a factor Z 2 up to an energy of ∼ 3 GeV. The plans for studying coherent interactions with the STAR experiment will be discussed. Experimental techniques for separating signal from background will be presented

  8. Observation of jet production in deep inelastic scattering with a large rapidity gap a HERA

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.

    1994-04-01

    Events with a large rapidity gap in deep inelastic scattering with Q 2 ≥10 GeV 2 have been studied in the ZEUS detector. The properties of these events with W>140 GeV are consistent with a leading twist diffractive mechanism. In the laboratory frame, with E T jet ≥4 GeV, 15% of the events are of the 1-jet type with negligible 2-jet production. The single jet is back-to-back in azimuth with the scattered electron. No energy flow is observed between the jet and the proton direction. With a lower jet transverse energy cut 2-jet production is observed both in the laboratory and the γ * p centre-of-mass systems demonstrating the presence of hard scattering in the virtual photon interactions that give rise to large rapidity gap events. (orig.)

  9. Review of inelastic proton-proton reactions

    CERN Document Server

    Morrison, Douglas Robert Ogston

    1973-01-01

    The most important new results on inelastic proton-proton scattering obtained with the new machines, I.S.R. and N.A.L., are: (1) The inelastic cross-section increases monotonically with energy from threshold to 1500 GeV/c. Above 6 GeV/c the energy variation has a s /sup +0.04/ behaviour. (2) Scaling is observed at I.S.R. energies in pion production. Confirmation is obtained of the hypothesis of limiting fragmentation. (3) The results are in general, consistent with the two-component model-one class of events being produced by diffraction dissociation and the other by a short-range-order process (e.g. the multiperipheral model). (4) There are indications that the protons have a granular structure; this from observation of secondaries of large transverse momenta. (33 refs).

  10. Analysing power for neutron-proton scattering at 14.1 MeV

    International Nuclear Information System (INIS)

    Brock, J.E.; Chisholm, A.; Duder, J.C.; Garrett, R.; Poletti, J.L.

    1981-01-01

    The analysing power Asub(y)(theta) for neutron-proton scattering has been measured at 14.1 MeV for c.m. angles between 50 0 and 157 0 . A polarized neutron beam was produced by the reaction 3 H(d,n) 4 He at 110 keV, using polarized deuterons from an atomic beam polarized ion source. Liquid and plastic scintillators were used for proton targets and the scattered particles were detected in an array of platic scintillators. Use of the associated alpha technique, multi-parameter recording of events and off-line computer treatment led to very low backgrounds. The results differ significantly from the predictions of the phase-shift analyses of Yale IV, Livermore X and Arndt et al. We find, however, excellent agreement with the predictions of the Paris potential of Lacombe et al. Existing n-p analysing power results up to 30 MeV are surveyed and found to be consistent. An attempt was made to look for an isospin splitting of the triplet P-wave phase shifts. (orig.)

  11. Nuclear spin response studies in inelastic polarized proton scattering

    International Nuclear Information System (INIS)

    Jones, K.W.

    1988-01-01

    Spin-flip probabilities S/sub nn/ have been measured for inelastic proton scattering at incident proton energies around 300 MeV from a number of nuclei. At low excitation energies S/sub nn/ is below the free value. For excitation energies above about 30 MeV for momentum transfers between about 0.35 fm/sup /minus/1/ and 0.65 fm/sup / minus/1/ S/sub nn/ exceeds free values significantly. These results suggest that the relative ΔS = 1(ΔS = 0 + ΔS = 1) nuclear spin response approaches about 90% in the region of the enhancement. Comparison of the data with slab response calculations are presented. Decomposition of the measured cross sections into σ(ΔS = 0) and σ(ΔS = 1) permit extraction of nonspin-flip and spin-flip dipole and quadrupole strengths. 29 refs., 11 figs

  12. Antiproton-proton elastic scattering at 3.0 and 4.0 GeV/C; Difusion elastica antiproton-proton a 3,0 y 4,0 GeV/C

    Energy Technology Data Exchange (ETDEWEB)

    Unamuno, S

    1965-07-01

    This paper presents the results-obtained in studying the two-prong interactions observed in the Saclay 81 cm hydrogen bubble chamber exposed to the 3.0 and 4.0 GeV/c antiproton beams from CERN Proton-Synchroton. Total elastic cross-sections corresponding to both energies are given. The results are given. The results are compared with those of p-p scaterring at different energies and with those of p-p scattering. Several optical-models, from the simples one (the black disk model) to a rather elaborated, four-parameters model have been applied. These models can explain some of the experimental results but fail in predicting the angular distribution of large angle scattering. (Author)

  13. Proton and neutron densities from elastic electron scattering

    International Nuclear Information System (INIS)

    Frois, B.

    1979-01-01

    Elastic electron scattering has now determined extremely fine details of the shape of the nuclear groound state. The combination of (e,e) and muonic X-rays data are giving informations that are among the most precise on nuclear structure. This enables to see all the limitations of existing theories. However, we begin to have a very coherent description of nuclei with the self consistent field theories to a few percent. A very significant progress has been achieved with the calculations of RPA correlations in the round state in a self consistent way. Only recent experiments (on medium and heavy nuclei) of some significance for the understanding of the structure of the nucleus are reviewed

  14. Topological cross sections in hadron-nucleus collisions and multiple scattering theory

    International Nuclear Information System (INIS)

    Zoller, V.R.

    1987-01-01

    The multiple scattering theory supplemented with cutting rules of Abramovsky, V.A., Gribov, V.N., Kancheli, O.V. is applied to calculation of the hadron-nucleus interaction cross sections. In contrast to standard Glauber approach neither smalness of the interaction radius compared to the nuclear radii nor Gaussian form of the hN-interaction profile function are assumed. The theory of the supercritical pomeron are used. However all the results are more general and do not depend on the parametrization of the pomeron pole amplitude. The region of validity of the widely used approximate formulae for topological and total hA-interaction cross sections are discussed

  15. Active target with plastic scintillating fibers for hyperon-proton scattering experiments

    Czech Academy of Sciences Publication Activity Database

    Ahn, J. K.; Akikawa, H.; Arvieux, H.; Bassalleck, B.; Chung, M. S.; En'yo, H.; Fukuda, T.; Funahashi, H.; Golovkin, SV.; Gorin, AM.; Goto, Y.; Hanabata, M.; Hayakawa, T.; Ichikawa, A.; Ieiri, M.; Imai, K.; Ishino, M.; Kanda, H.; Kim, Y. D.; Kondo, Y.; Kozarenko, E. N.; Kreslo, I. E.; Lee, J. M.; Masaike, A.; Mihara, S.; Nakai, K.; Nakazawa, K.; Ozawa, K.; Sato, A.; Sato, H. D.; Sim, K. S.; Tabaru, T.; Takeutchi, F.; Tlustý, Pavel; Torii, H.; Yamamoto, K.; Yokkaichi, S.; Yoshida, M.

    2002-01-01

    Roč. 49, č. 2 (2002), s. 592-596 ISSN 0018-9499 R&D Projects: GA AV ČR IAA1048304; GA AV ČR KSK1048102 Institutional research plan: CEZ:AV0Z1048901 Keywords : active target * hyperon-proton scattering * scintillating fibers Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.431, year: 2002

  16. Gross and Fine Structure of Pion Production Excitation Functions in {bold {ital p}}-Nucleus and Nucleus-Nucleus Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Jakobsson, B.; Berg, M.; Carlen, L.; Elmer, R.; Fokin, A.; Ghetti, R.; Martensson, J.; Noren, B.; Oskarsson, A.; Whitlow, H.J. [Department of Physics, University of Lund, Lund (Sweden); Ekstroem, C.; Ericsson, G.; Romanski, J.; van Veldhuizen, E.J.; Westerberg, L. [The Svedberg Laboratory and Department of Neutron Physics, University of Uppsala, Uppsala (Sweden); Julien, J. [Centre d`Etudes Nucleaires, Saclay (France); Skeppstedt, O. [Department of Physics, Chalmers Institute of Technology, Gothenburg (Sweden); Nyboe, K.; Thorsteinsen, T.F.; Amirelmi, S. [Department of Physics, University of Bergen, Bergen (Norway); Guttormsen, M.; Lo/vho/iden, G. [Department of Physics, University of Oslo, Oslo (Norway); Bellini, V.; Palazzolo, F.; Sperduto, M.L. [Istituto Nazionale di Fisica Nucleare/Laboratorio Nazionale del Sud, University of Catania, Catania (Italy); Bondorf, J.P.; Mishustin, I. [Niels Bohr Institute, Copenhagen (Denmark); Avdeichikov, V. [Joint Institute for Nuclear Research, Dubna (Russia); Lozhkin, O.V.; Murin, Y. [V.G. Khlopin Radium Institute, St.Petersburg (Russia)

    1997-05-01

    Slow ramping of the CELSIUS storage ring has been utilized to measure the yield of charged pions in proton and heavy ion induced collisions with continuously varying beam energy. Boltzmann-Uehling-Uhlenbeck predictions, including Fermi momenta of nucleons in nuclei, follow the general shape of the p-nucleus excitation functions quite well except for a general overestimation of the backward emission. For heavy ion reactions the calculated yield also falls off faster with decreasing beam energy than the data. No statistically significant narrow resonances are observed. {copyright} {ital 1997} {ital The American Physical Society}

  17. Radiative proton capture to the first excited state of sup 29 P nucleus at subbarrier energies

    Energy Technology Data Exchange (ETDEWEB)

    Matulewicz, T; Dabrowska, M; Decowski, P; Kicinska-Habior, M; Sikora, B [Warsaw Univ. (Poland). Inst. Fizyki Doswiadczalnej; Toke, J [Rochester Univ., NY (USA). Nuclear Structure Research Lab.; Somorjai, E [Magyar Tudomanyos Akademia, Debrecen (Hungary). Atommag Kutato Intezete

    1985-08-01

    Differential cross sections at 0 deg and 90 deg measured for {sup 28}Si(p,{gamma}{sub 1}){sup 29}P reaction at proton energy range 2.3-2.9 MeV have been analyzed in terms of the direct-semidirect capture model extended by the effective potential approach. Spectroscopic factor of the first excited states of {sup 29}P nucleus was found to be 0.10+-0.05. 9 refs., 1 fig. (author).

  18. Study of the proton-proton elastic scattering at high energies through eikonal models; Estudo do espalhamento elastico proton-proton a altas energias atraves de modelos eiconais

    Energy Technology Data Exchange (ETDEWEB)

    Martini, Alvaro Favinha

    1995-12-31

    The proton-proton elastic scattering in the center of mass energy region 23 to 63 GeV is investigated through a multiple diffraction model. As an introduction to the subject, a detailed review of the fundamental basis of the Multiple Diffraction Formalism and a survey of the multiple diffraction models (geometrical) currently used are presented. The goal of this investigation is to reformulate one of these models, which makes use of an elementary (parton-parton) amplitude purely imaginary and is not able to predict the {rho}-parameter (the ratio of the forward real and imaginary parts of the hadronic amplitude). Introducing a real part for the elementary amplitude proportional to the imaginary part, improvements in the formalism are obtained. It is shown that this new approach is able to reproduce all experimental data on differential and integrated cross sections (total, elastic and inelastic), but not the {rho}-parameter as function of the energy. Then, starting from fitting of this parameter an overall reproduction of the physical observables is obtained, with the exception of the dip region (diffractive minimum in the differential cross section) overall description are also not firmly reached in all these models. Finally, alternatives to improve the results in a future research are suggested and discussed. (author) 69 refs., 69 figs., 20 tabs.

  19. Proton-proton elastic scattering at the LHC energy of \\chem{\\sqrt{s} = 7\\,TeV}

    Science.gov (United States)

    TOTEM Collaboration; Antchev, G.; Aspell, P.; Atanassov, I.; Avati, V.; Baechler, J.; Berardi, V.; Berretti, M.; Bozzo, M.; Brücken, E.; Buzzo, A.; Cafagna, F. S.; Calicchio, M.; Catanesi, M. G.; Covault, C.; Csanád, M.; Csörgö, T.; Deile, M.; Dimovasili, E.; Doubek, M.; Eggert, K.; Eremin, V.; Ferro, F.; Fiergolski, A.; Garcia, F.; Giani, S.; Greco, V.; Grzanka, L.; Heino, J.; Hilden, T.; Janda, M.; Kašpar, J.; Kopal, J.; Kundrát, V.; Kurvinen, K.; Lami, S.; Latino, G.; Lauhakangas, R.; Leszko, T.; Lippmaa, E.; Lokajíček, M.; Lo Vetere, M.; Rodríguez, F. Lucas; Macrí, M.; Magaletti, L.; Magazzù, G.; Mercadante, A.; Minutoli, S.; Nemes, F.; Niewiadomski, H.; Noschis, E.; Novák, T.; Oliveri, E.; Oljemark, F.; Orava, R.; Oriunno, M.; Österberg, K.; Perrot, A.-L.; Palazzi, P.; Pedreschi, E.; Petäjäjärvi, J.; Procházka, J.; Quinto, M.; Radermacher, E.; Radicioni, E.; Ravotti, F.; Robutti, E.; Ropelewski, L.; Ruggiero, G.; Saarikko, H.; Santroni, A.; Scribano, A.; Sette, G.; Snoeys, W.; Spinella, F.; Sziklai, J.; Taylor, C.; Turini, N.; Vacek, V.; Vitek, M.; Welti, J.; Whitmore, J.

    2011-08-01

    Proton-proton elastic scattering has been measured by the TOTEM experiment at the CERN Large Hadron Collider at \\sqrt{s} = 7\\,TeV in dedicated runs with the Roman Pot detectors placed as close as seven times the transverse beam size (σbeam) from the outgoing beams. After careful study of the accelerator optics and the detector alignment, |t|, the square of four-momentum transferred in the elastic scattering process, has been determined with an uncertainty of \\delta t = 0.1\\,\\rm{GeV} \\sqrt{\\vert t\\vert } . In this letter, first results of the differential cross-section are presented covering a |t|-range from 0.36 to 2.5 GeV2. The differential cross-section in the range 0.36 < |t| < 0.47 GeV2 is described by an exponential with a slope parameter B = (23.6 ± 0.5stat ± 0.4syst) GeV-2, followed by a significant diffractive minimum at |t| = (0.53 ± 0.01stat ± 0.01syst) GeV2. For |t|-values larger than ~1.5 GeV2, the cross-section exhibits a power law behaviour with an exponent of -7.8 ± 0.3stat ± 0.1syst. When compared to predictions based on the different available models, the data show a strong discriminative power despite the small t-range covered.

  20. Quantal inversion of cross-section for the elastic scattering of 200 MeV protons from 12C

    International Nuclear Information System (INIS)

    Allen, L.J.; Amos, K.; Dortmans, P.J.

    1994-01-01

    Fixed energy quantal inverse scattering theory has been used to analyse the differential cross-section from the elastic scattering of 200 MeV protons from 12 C. Ambiguities in obtaining the scattering function from the differential cross-section are discussed and by means of example it is illustrated that not all scattering functions lead to physically reasonable potentials. 8 refs., 2 tabs., 4 figs

  1. Microscopic study of proton emission from heavy nuclei

    International Nuclear Information System (INIS)

    Sahu, B.B.; Patra, S.K.; Agarwalla, S.K.

    2011-01-01

    In recent years many theoretical calculations have been employed to explain the observed lifetimes of proton radioactivity and alpha decay processes in the region of proton rich nuclei. These data are very promising for the analysis of possible irregularities in the structure of these proton-rich nuclei. They are also of great interest in rapid proton capture processes. Some new results for proton radioactivity in this region of proton-rich nuclei have indicated that the proton emission mode is rather competitive with the alpha decay one. In the energy domain of radioactivity, proton can be considered as a point charge having highest probability of being present in the parent nucleus

  2. Proton scattering from Li isotopes in the context of the Glauber theory. nuclear structure and interaction mechanisms

    International Nuclear Information System (INIS)

    Ibrayeva, E.T.; Prmantayeva, B. A.; Kuterbekov, K. A.; Temerbayev, A. A.; Tleulessova, I. K.; Zhigalova, A.

    2012-01-01

    The purpose of the present work is studying the structure of various isotopes of lithium 6 , 7 , 8 , 9 Li and the mechanism of their interaction with protons in the processes of elastic scattering. Differential cross sections and analyzing powers for elastic proton scattering from nuclei of Li are calculated in the context of the Glauber diffraction theory. Comparison of the result of calculations with the experimental data has allowed to draw conclusions on the structure of the given nuclei and their interaction mechanisms. (Authors)

  3. Target fragmentation in proton-nucleus and 16O-nucleus reactions at 60 and 200 GeV/nucleon

    International Nuclear Information System (INIS)

    Schmidt, H.R.; Albrecht, R.; Claesson, G.; Bock, R.; Gutbrod, H.H.; Kolb, B.W.; Lund, I.; Siemiarczuk, T.; Awes, T.C.; Baktash, C.; Ferguson, R.L.; Lee, I.Y.; Obenshain, F.E.; Plasil, F.; Sorensen, S.P.; Young, G.R.; Beckmann, P.; Berger, F.; Dragon, L.; Glasow, R.; Kampert, K.H.; Loehner, H.; Peitzmann, T.; Purschke, M.; Santo, R.; Franz, A.; Kristiansson, P.; Poskanzer, A.M.; Ritter, H.G.; Garpman, S.; Gustafsson, H.A.; Oskarsson, A.; Otterlund, I.; Persson, S.; Stenlund, E.

    1988-01-01

    Target remnants with Z 16 O-nucleus reactions at 60 and 200 GeV/nucleon were measured in the angular range from 30 0 to 160 0 (-1.7 16 O-induced reactions (≅ 300 MeV/c) than in proton-induced reactions (≅ 130 MeV/c). The baryon rapidity distributions are roughly in agreement with one-fluid hydrodynamical calculations at 60 GeV/nucleon 16 O+Au but are in disagreement at 200 GeV/nucleon, indicating the higher degree of transparency at the higher bombarding energy. Both, the transverse momenta of target spectators and the entropy produced in the target fragmentation region are compared to those attained in head-on collisions of two heavy nuclei at Bevalac energies. They are found to be comparable or do even exceed the values for the participant matter at beam energies of about 1-2 GeV/nucleon. (orig.)

  4. Target fragmentation in proton-nucleus and 16O-nucleus reactions at 60 and 200 GeV/nucleon

    International Nuclear Information System (INIS)

    Schmidt, H.R.; Albrecht, R.; Claesson, G.; Bock, R.; Gutbrod, H.H.; Kolb, B.W.; Lund, I.; Siemiarczuk, T.; Awes, T.C.; Baktash, C.; Ferguson, R.L.; Lee, I.Y.; Obenshain, F.E.; Plasil, F.; Sorensen, S.P.; Young, G.R.; Beckmann, P.; Berger, F.; Dragon, L.; Glasow, R.; Kampert, K.H.; Loehner, H.; Peitzmann, T.; Purschke, M.; Santo, R.; Franz, A.; Kristiansson, P.; Poskanzer, A.M.; Ritter, H.G.; Garpman, S.; Gustafsson, H.A.; Oskarsson, A.; Otterlund, I.; Persson, S.; Stenlund, E.

    1988-01-01

    Target remnants with Z 16 O-nucleus reactions at 60 and 200 GeV/nucleon were measured in the angular range from 30 0 to 160 0 (-1.7 16 O-induced reactions (= 300 MeV/c) than in proton-induced reactions (= 130 MeV/c). The baryon rapidity distributions are roughly in agreement with one-fluid hydrodynamical calculations at 60 GeV/nucleon 16 O+Au but are in disagreement at 200 GeV/nucleon, indicating the higher degree of transparency at the higher bombarding energy. Both, the transverse momenta of target spectators and the entropy produced in the target fragmentation region are compared to those attained in head-on collisions of two heavy nuclei at Bevalac energies. They are found to be comparable or do even exceed the values for the participant matter at beam energies of about 1-2 GeV/nucleon. (orig.)

  5. Analyzing powers and proton spin transfer coefficients in the elastic scattering of 800 MeV polarized protons from an L-type polarized deuteron target at small momentum transfers

    International Nuclear Information System (INIS)

    Adams, D.L.

    1986-10-01

    Analyzing powers and spin transfer coefficients which describe the elastic scattering of polarized protons from a polarized deuteron target have been measured. The energy of the proton beam was 800 MeV and data were taken at laboratory scattering angles of 7, 11, 14, and 16.5 degrees. One analyzing power was also measured at 180 degrees. Three linearly independent orientations of the beam polarization were used and the target was polarized parallel and antiparallel to the direction of the beam momentum. The data were taken with the high resolution spectrometer at the Los Alamos Meson Physics Facility (experiment 685). The results are compared with multiple scattering predictions based on Dirac representations of the nucleon-nucleon scattering matrices. 27 refs., 28 figs., 4 tabs

  6. Experimental studies of nucleon-nucleon and pion-nucleus interactions at intermediate energies: Final report

    International Nuclear Information System (INIS)

    Burleson, G.R.

    1987-01-01

    We are applying for a three-year grant from the US Department of Energy to New Mexico State University to continue its support of our work on experimental studies of nucleon-nucleon and pion-nucleus interactions at intermediate energies, which has been carried out in collaboration with groups from various laboratories and universities. The nucleon-nucleon work is aimed at making measurements that will contribute to a determination of the isospin-zero amplitudes, as well as continuing our investigations of evidence for dibaryon resonances. It is based at the LAMPF accelerator in Los Alamos, New Mexico. Current and planned experiments include measurements of total cross-section differences in pure spin states and of spin parameters in neutron-proton scattering. The pion-nucleus work is aimed at improving our understanding both of the nature of the pion-nucleus interaction and of nuclear structure. It consists of two programs, one based at LAMPF and one based principally at the SIN laboratory in Switzerland. The LAMPF-based work involves studies of large-angle scattering, double-charge-exchange scattering, including measurements at a new energy range above 300 MeV, and a new program of experiments with polarized nuclear targets. The SIN-based work involves studies of quasielastic scattering and absorption, including experiments with a new large-acceptance detector system planned for construction there. We are requesting support to continue the LAMPF-based work at its current level and to expand the SIN-based work to allow for increased involvement in experiments with the new detector system. 57 refs

  7. Role of delta excitations in pion-, photon- and nucleon-nucleus reactions studied with microscopic models

    International Nuclear Information System (INIS)

    Engel, A.

    1995-01-01

    Delta excitation plays a prominent role in intermediate heavy reactions. In this paper, comment is made on the calculations done for pion-, photon- and nucleon-nucleus reactions using the Boltzmann-Uehling-Uhlenbeck (BUU) model and the antisymmetrized molecular dynamics (AMD) model. First, it is recalled how to include delta degrees in microscopic models in general. Then, the comparison of the microscopic calculation performed by the author with the experimental data is presented. Deltas in microscopic models are discussed. Pion-nucleus reactions have been studied since pion beams became available, especially for exploring the delta resonance in a nuclear medium. The dependence of pion absorption cross section on incident pion energy is shown. The photon-induced pion production in the resonance energy region was studied with the BUU model. The calculated results of neutral pion photo-production are shown. In both inelastic proton scattering and (p,n) charge exchange reaction, the excitation of delta resonance can be observed clearly in the experimental data. The results of the AMD calculation for 12 C(p,p') reaction are shown. (K.I.)

  8. Determination of the negatively charged pion-proton scattering length from pionic hydrogen

    CERN Document Server

    Ericson, Torleif Eric Oskar; Wycech, S

    2003-01-01

    We derive a closed, model independent, expression for the electromagnetic correction factor to the hadronic scattering length extracted from a hydrogenic atom with an extended charge and in the limit of a short ranged hadronic interaction to terms of order ((alpha)**2)(log(alpha)) in the limit of a non-relativistic approach. A hadronic negatively charged pion-proton scattering length of 0.0870(5), in units of inverse charged pion-mass, is deduced, leading to a pion-nucleon coupling constant from the GMO relation equals to 14.00(19).

  9. Anomalous neutron Compton scattering cross section in zirconium hydride

    International Nuclear Information System (INIS)

    Abdul-Redah, T.; Krzystyniak, M.; Mayers, J.; Chatzidimitriou-Dreismann, C.A.

    2005-01-01

    In the last few years we observed a shortfall of intensity of neutrons scattered from protons in various materials including metal hydrogen systems using neutron Compton scattering (NCS) on the VESUVIO instrument (ISIS, UK). This anomaly has been attributed to the existence of short-lived quantum entangled states of protons in these materials. Here we report on results of very recent NCS measurements on ZrH 2 at room temperature. Also here an anomalous shortfall of scattering intensity due to protons is observed. In contrast to previous experiments on NbH 0.8 , the anomalies found in ZrH 2 are independent of the scattering angle (or momentum transfer). These different results are discussed in the light of recent criticisms and experimental tests related to the data analysis procedure on VESUVIO

  10. Diffractive deep-inelastic scattering with a leading proton at HERA

    Science.gov (United States)

    Aktas, A.; Andreev, V.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Baumgartner, S.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J. C.; Boenig, M.-O.; Boudry, V.; Bracinik, J.; Brandt, G.; Brisson, V.; Bruncko, D.; Büsser, F. W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A. J.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J. G.; Coughlan, J. A.; Coppens, Y. R.; Cox, B. E.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Dau, W. D.; Daum, K.; de Boer, Y.; Delcourt, B.; Del Degan, M.; de Roeck, A.; de Wolf, E. A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkewicz, A.; Faulkner, P. J. W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Flucke, G.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Gerlich, C.; Ghazaryan, S.; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B. R.; Grindhammer, G.; Gwilliam, C.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K. H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janssen, X.; Jemanov, V.; Jönsson, L.; Johnson, C. L.; Johnson, D. P.; Jung, A. W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I. R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Krüger, K.; Landon, M. P. J.; Lange, W.; Laštovička-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lueders, H.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Marage, P.; Marshall, R.; Marti, L.; Martisikova, M.; Martyn, H.-U.; Maxfield, S. J.; Mehta, A.; Meier, K.; Meyer, A. B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J. V.; Mozer, M. U.; Müller, K.; Murín, P.; Nankov, K.; Naroska, B.; Naumann, T.; Newman, P. R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J. E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Papadopoulou, T.; Pascaud, C.; Patel, G. D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Plačakytė, R.; Portheault, B.; Povh, B.; Prideaux, P.; Rahmat, A. J.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Schilling, F.-P.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schöning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R. N.; Sheviakov, I.; Shtarkov, L. N.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Steder, M.; Stella, B.; Stiewe, J.; Stoilov, A.; Straumann, U.; Sunar, D.; Tchoulakov, V.; Thompson, G.; Thompson, P. D.; Toll, T.; Tomasz, F.; Traynor, D.; Trinh, T. N.; Truöl, P.; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Urban, M.; Usik, A.; Utkin, D.; Valkárová, A.; Vallée, C.; van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wessling, B.; Wissing, C.; Wolf, R.; Wünsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y. C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2006-12-01

    The cross section for the diffractive deep-inelastic scattering process ep→eXp is measured, with the leading final state proton detected in the H1 Forward Proton Spectrometer. The data analysed cover the range xIP<0.1 in fractional proton longitudinal momentum loss, 0.08<|t|<0.5 GeV-2 in squared four-momentum transfer at the proton vertex, 2proton dissociation contributions in the latter. Within uncertainties, the dependence of the cross section on x and Q2 can thus be factorised from the dependences on all studied variables which characterise the proton vertex, for both the pomeron and the sub-leading exchange.

  11. Measurement of the dependence of transverse energy production at large pseudorapidity on the hard-scattering kinematics of proton–proton collisions at s=2.76 TeV with ATLAS

    Directory of Open Access Journals (Sweden)

    G. Aad

    2016-05-01

    Full Text Available The relationship between jet production in the central region and the underlying-event activity in a pseudorapidity-separated region is studied in 4.0 pb−1 of s=2.76 TeV pp collision data recorded with the ATLAS detector at the LHC. The underlying event is characterised through measurements of the average value of the sum of the transverse energy at large pseudorapidity downstream of one of the protons, which are reported here as a function of hard-scattering kinematic variables. The hard scattering is characterised by the average transverse momentum and pseudorapidity of the two highest transverse momentum jets in the event. The dijet kinematics are used to estimate, on an event-by-event basis, the scaled longitudinal momenta of the hard-scattered partons in the target and projectile beam-protons moving toward and away from the region measuring transverse energy, respectively. Transverse energy production at large pseudorapidity is observed to decrease with a linear dependence on the longitudinal momentum fraction in the target proton and to depend only weakly on that in the projectile proton. The results are compared to the predictions of various Monte Carlo event generators, which qualitatively reproduce the trends observed in data but generally underpredict the overall level of transverse energy at forward pseudorapidity.

  12. Additive quark model and double scattering of pions and protons in deuterium

    International Nuclear Information System (INIS)

    Bialas, A.; Czyz, W.; Kisielewska, D.

    1981-01-01

    It is shown that the additive quark model is compatible with the data on double scattering of pions and protons in deuterium. The cross-section for interaction of the hadrons created in the first collision with the second nucleon of the target is determined to be 20-25 mb. (author)

  13. Microscopic analysis of Be,1110 elastic scattering on protons and nuclei, and breakup processes of 11Be within the 10Be +n cluster model

    Science.gov (United States)

    Lukyanov, V. K.; Kadrev, D. N.; Zemlyanaya, E. V.; Spasova, K.; Lukyanov, K. V.; Antonov, A. N.; Gaidarov, M. K.

    2015-03-01

    The density distributions of 10Be and 11Be nuclei obtained within the quantum Monte Carlo model and the generator coordinate method are used to calculate the microscopic optical potentials (OPs) and cross sections of elastic scattering of these nuclei on protons and 12C at energies E energy approximation. In this hybrid model of OP the free parameters are the depths of the real and imaginary parts obtained by fitting the experimental data. The well-known energy dependence of the volume integrals is used as a physical constraint to resolve the ambiguities of the parameter values. The role of the spin-orbit potential and the surface contribution to the OP is studied for an adequate description of available experimental elastic scattering cross-section data. Also, the cluster model, in which 11Be consists of a n -halo and the 10Be core, is adopted. Within the latter, the breakup cross sections of 11Be nucleus on 9Be,93Nb,181Ta , and 238U targets and momentum distributions of 10Be fragments are calculated and compared with the existing experimental data.

  14. ψ (2 S ) versus J /ψ suppression in proton-nucleus collisions from factorization violating soft color exchanges

    Science.gov (United States)

    Ma, Yan-Qing; Venugopalan, Raju; Watanabe, Kazuhiro; Zhang, Hong-Fei

    2018-01-01

    We argue that the large suppression of the ψ (2 S ) inclusive cross section relative to the J /ψ inclusive cross section in proton-nucleus (p+A) collisions can be attributed to factorization breaking effects in the formation of quarkonium. These factorization breaking effects arise from soft color exchanges between charm-anticharm pairs undergoing hadronization and comoving partons that are long lived on time scales of quarkonium formation. We compute the short distance pair production of heavy quarks in the color glass condensate (CGC) effective field theory and employ an improved color evaporation model (ICEM) to describe their hadronization into quarkonium at large distances. The combined CGC+ICEM model provides a quantitative description of J /ψ and ψ (2 S ) data in proton-proton (p+p) collisions from both RHIC and the LHC. Factorization breaking effects in hadronization, due to additional parton comovers in the nucleus, are introduced heuristically by imposing a cutoff Λ , representing the average momentum kick from soft color exchanges, in the ICEM. Such soft exchanges have no perceptible effect on J /ψ suppression in p+A collisions. In contrast, the interplay of the physics of these soft exchanges at large distances, with the physics of semihard rescattering at short distances, causes a significant additional suppression of ψ (2 S ) yields relative to that of the J /ψ . A good fit of all RHIC and LHC J /ψ and ψ (2 S ) data, for transverse momenta P⊥≤5 GeV in p+p and p+A collisions, is obtained for Λ ˜10 MeV.

  15. Proton decay: spectroscopic probe beyond the proton drip line

    International Nuclear Information System (INIS)

    Seweryniak, D; Davids, C N; Robinson, A; Woods, P J; Blank, B; Carpenter, M P; Davinson, T; Freeman, S J; Hammond, N; Hoteling, N; Janssens, R V F; Khoo, T L; Liu, Z; Mukherjee, G; Shergur, J; Sinha, S; Sonzogni, A A; Walters, W B; Woehr, A

    2005-01-01

    Proton decay has been transformed in recent years from an exotic phenomenon into a powerful spectroscopic tool. The frontiers of experimental and theoretical proton-decay studies will be reviewed. Different aspects of proton decay will be illustrated with recent results on the deformed proton emitter 135 Tb, the odd-odd deformed proton emitter 130 Eu, the complex fine structure in the odd-odd 146 Tm nucleus and on excited states in the transitional proton emitter 145 Tm

  16. Monte Carlo modeling of the net effects of coma scattering and thermal reradiation on the energy input to cometary nucleus

    International Nuclear Information System (INIS)

    Salo, H.

    1988-01-01

    A Monte Carlo simulation method is presented that can, to an accuracy of a few percent, calculate the effects of a dusty coma on the total energy input to the cometary nucleus. This method treats nonconservative nonisotropic scattering, as well as the reflection from the nucleus surface. Results are presented as a function of the optical thickness of the dust column in the sun-comet axis. The total energy input to the nucleus appears to be only weakly dependent on the opacity of the coma, the radial distribution of the dust, or the details of the extinction processes. 18 references

  17. Measurement of the diffractive deep-inelastic scattering cross section with a leading proton at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Bucharest Univ. (Romania). Faculty of Physics; Alexa, C. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Andreev, V. [Lebedev Physical Institute, Moscow (RU)] (and others)

    2010-06-15

    The cross section for the diffractive deep-inelastic scattering process ep{yields}eXp is measured, with the leading final state proton detected in the H1 Forward Proton Spectrometer. The data sample covers the range x{sub P} < 0.1 in fractional proton longitudinal momentum loss, 0.1< vertical stroke t vertical stroke <0.7 GeV{sup 2} in squared four-momentum transfer at the proton vertex and 4scattering. The ratio of the diffractive to the inclusive ep cross section is studied as a function of Q{sup 2}, {beta} and x{sub P}. (orig.)

  18. Problems of the π meson-nucleus interaction theory

    International Nuclear Information System (INIS)

    Kopaleishvili, T.I.

    1984-01-01

    The theory of multiple scattering as applied to PI-meson scattering on nuclei is outlined on the base of optical potential method: first in neglecting the real absorption of a pion by a nucleus and then for the case when this effect is taken into account. The pion interaction with a deuteron is considered both neglecting the pion absorption channel (the relativisitic problem of three bodies) and with account of the absorption channels and pion emission (in this case the problem is solved within the frames of the channel coupling theory for the pion-two nucleus system and the system of two nucleons). Approximate or model solutions to the problem of elastic pion-nuclear scattering primarily in the range of (3.3)-resonance are presented. The formulated theory permits to uniquely describe the observed processes caused by the strong pion interaction with a two-nucleon system

  19. K sup + nucleus total cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Sawafta, R.

    1990-01-01

    The scattering of K{sup +} mesons from nuclei has attracted considerable interest in the last few years. The K{sup +} holds a very special position as the weakest of all strongly interaction probes. The average cross section is not larger than about 10 mb at lab momenta below 800 MeV/c, corresponding to a mean free path in the nucleus larger than 5 fm. Thus the K{sup +} is capable of probing the entire volume of the nucleus. Single scattering of the K{sup +} with a nucleon in the nucleus dominates the nuclear scattering, and only small and calculable higher order corrections are needed. The nucleon is a dynamical entity and its internal structure can, in principle, be altered by its surrounding nuclear environment. This work reports an experiment in which the K{sup +} is used to compare the nucleon in the nucleus with a free nucleon.

  20. On the hadron formation time in pion-nucleus interaction

    International Nuclear Information System (INIS)

    Bravina, L.V.; Korotkikh, V.L.; Sarycheva, L.I.; Sivoklokov, S.Yu.

    1992-01-01

    Differences in the observable characteristics of pion-nucleus interactions at high energy are investigated for two definitions of the hadron formation time. The Monte Carlo simulation of hadron-nucleus interactions and quark-gluon string model for hadron-hadron collisions are used. It is shown that the momentum spectrum of the protons in the target fragmentation region is most sensitive to the definition of the formation time. The inclusive meson and meson resonance spectra are similar in the both versions. 20 refs.; 4 figs.; 1 tab

  1. Energetic Proton Spectra Measured by the Van Allen Probes

    Science.gov (United States)

    Summers, Danny; Shi, Run; Engebretson, Mark J.; Oksavik, Kjellmar; Manweiler, Jerry W.; Mitchell, Donald G.

    2017-10-01

    We test the hypothesis that pitch angle scattering by electromagnetic ion cyclotron (EMIC) waves can limit ring current proton fluxes. For two chosen magnetic storms, during 17-20 March 2013 and 17-20 March 2015, we measure proton energy spectra in the region 3 ≤ L ≤ 6 using the RBSPICE-B instrument on the Van Allen Probes. The most intense proton spectra are observed to occur during the recovery periods of the respective storms. Using proton precipitation data from the POES (NOAA and MetOp) spacecraft, we deduce that EMIC wave action was prevalent at the times and L-shell locations of the most intense proton spectra. We calculate limiting ring current proton energy spectra from recently developed theory. Comparisons between the observed proton energy spectra and the theoretical limiting spectra show reasonable agreement. We conclude that the measurements of the most intense proton spectra are consistent with self-limiting by EMIC wave scattering.

  2. Determination of low-energy parameters of neutron-proton scattering in the the shape-parameter approximation from present-day experimental data

    International Nuclear Information System (INIS)

    Babenko, V. A.; Petrov, N. M.

    2010-01-01

    On the basis of the total cross sections for neutron-proton scattering in the region of laboratory energies below 150 keV, the value of σ 0 = 20.4288(146) b was obtained for the total cross sections for neutron-proton scattering at zero energy. This value is in very good agreement with the experimental cross sections obtained by Houke and Hurst, but it is at odds with Dilg's experimental cross section. By using the value that we found for σ 0 and the experimental values of the neutron-proton coherent scattering length f, the deuteron binding energy ε t , the deuteron effective radius ρ t (-ε t , -ε t ), and the total cross section in the region of energies below 5 MeV, the following values were found in the shape-parameter approximation for the low-energy parameters of neutron-proton scattering in the spin-triplet and spin-singlet states: a t = 5.4114(27) fm, r 0t = 1.7606(35) fm, v 2t = 0.157 fm 3 , a s = -23.7154(80) fm, r 0s = 2.706(67) fm, and v 2s = 0.491 fm 3 .

  3. Equipment and software for the experiment on polarized proton scattering on hydrogen and nuclei

    International Nuclear Information System (INIS)

    Buklej, A.E.; Govorun, N.N.; Zhurkin, V.V.

    1980-01-01

    Installation for the conduction of polarization measurements upon the beam of polarized protons with the 2.1 GeV/c momentum using ITEP synchrotron is described. The installation is designed for polarization measurement in elastic pp-scattering and asymmetry in summary (elastic and inelastic without meson production) scattering of polarized protons upon nuclei in the angle range up to 180 mrad, as well as polarization in elastic pn-scattering. The installation consists of 18 two-coordinate magnetostriction wire spark chambers (s.c.), emitting counters, the system of veto-counters surrounding the target, liquid hydrogen or (deuterium) target and magnet to conduct pulse analysis of scattered particles in the background measurements. Primary processing of the material is conducted on the basis of modernized programs using the M-220 and BESM-6 computers. With a help of the experimental installation described asymmetry measurement on hydrogen, Li, C, Al, Ca have been conducted. The prospect of use of the method described to separate elastic reactions in the range of very small momentum transmitted, where the background of inelastic interactions can be decreased to the negligibly low level, for precise measurement of elastic reactions cross sections and the study of polarization phenomena in the range of coulomb interference is underlined [ru

  4. Effective channel approach to nuclear scattering at high energies

    International Nuclear Information System (INIS)

    Rule, D.W.

    1975-01-01

    The description of high energy nuclear reactions is considered within the framework of the effective channel approach. A variational procedure is used to obtain an expression for the Green's function in the effective channel, which includes the average fluctuation potential, average energy, and an additional term arising from the non-commutability of the kinetic energy operator and the effective target wave function. The resulting expression for the effective channel, containing one variational parameter, is used to obtain the coupling potential. The resulting formulation is applied to the elastic scattering of 1 GeV protons by 4 He nuclei. A simple Gaussian form is used for the spin--isospin averaged proton--nucleon interaction. The variational parameter in the effective channel wave function is fixed a posteriori via the total p-- 4 He cross section. The effect of the coupling to the effective channel is demonstrated, as well as the effect of each term in the coupled equation for this channel. The calculated elastic cross sections were compared to both the recent data from Saclay and the earlier Brookhaven data for the 1-GeV p-- 4 He elastic scattering cross section. Using proton--nucleus elastic scattering experiments to study the proton--nucleon elastic scattering amplitude is discussed. The main purpose of our study is to investigate the effects on the cross section of varying, within its estimated range of uncertainty, each parameter which enters into the coupled equations. The magnitude of these effects was found to be large enough to conclude that any effects due to dynamical correlations would be obscured by the uncertainties in the input parameters

  5. An effective potential for electron-nucleus scattering in neutrino-pair bremsstrahlung in neutron star crust

    International Nuclear Information System (INIS)

    Ofengeim, D D; Kaminker, A D; Yakovlev, D G

    2015-01-01

    We derive an analytic approximation for the emissivity of neutrino-pair bremsstrahlung (NPB) due to scattering of electrons by atomic nuclei in a neutron star (NS) crust of any realistic composition. The emissivity is expressed through generalized Coulomb logarithm by introducing an effective potential of electron-nucleus scattering. In addition, we study the conditions at which NPB in the crust is affected by strong magnetic fields and outline the main effects of the fields on neutrino emission in NSs. The results can be used for modelling of many phenomena in NSs, such as cooling of young isolated NSs, thermal relaxation of accreting NSs with overheated crust in soft X-ray transients and evolution of magnetars. (paper)

  6. Meson-nucleus potentials and the search for meson-nucleus bound states

    Science.gov (United States)

    Metag, V.; Nanova, M.; Paryev, E. Ya.

    2017-11-01

    Recent experiments studying the meson-nucleus interaction to extract meson-nucleus potentials are reviewed. The real part of the potentials quantifies whether the interaction is attractive or repulsive while the imaginary part describes the meson absorption in nuclei. The review is focused on mesons which are sufficiently long-lived to potentially form meson-nucleus quasi-bound states. The presentation is confined to meson production off nuclei in photon-, pion-, proton-, and light-ion induced reactions and heavy-ion collisions at energies near the production threshold. Tools to extract the potential parameters are presented. In most cases, the real part of the potential is determined by comparing measured meson momentum distributions or excitation functions with collision model or transport model calculations. The imaginary part is extracted from transparency ratio measurements. Results on K+ ,K0 ,K- , η ,η‧ , ω, and ϕ mesons are presented and compared with theoretical predictions. The interaction of K+ and K0 mesons with nuclei is found to be weakly repulsive, while the K- , η ,η‧ , ω and ϕ meson-nucleus potentials are attractive, however, with widely different strengths. Because of meson absorption in the nuclear medium the imaginary parts of the meson-nucleus potentials are all negative, again with a large spread. An outlook on planned experiments in the charm sector is given. In view of the determined potential parameters, the criteria and chances for experimentally observing meson-nucleus quasi-bound states are discussed. The most promising candidates appear to be the η and η‧ mesons.

  7. Optical observations of the nucleus of NGC 4151

    Energy Technology Data Exchange (ETDEWEB)

    Romano, G; Minello, S [Padua Univ. (Italy). Istituto di Astronomia

    1977-08-01

    Photographic observations of the nucleus of the Seyfert galaxy NGC 4151, carried out during the last seven years, are reported. The object shows irregular variations between photographic magnitudes 11.2 and 13.0.

  8. Nuclear-plus-interference-scattering effect on the energy deposition of multi-MeV protons in a dense Be plasma.

    Science.gov (United States)

    Wang, Zhigang; Fu, Zhenguo; He, Bin; Hu, Zehua; Zhang, Ping

    2016-09-01

    The nuclear plus interference scattering (NIS) effect on the stopping power of hot dense beryllium (Be) plasma for multi-MeV protons is theoretically investigated by using the generalized Brown-Preston-Singleton (BPS) model, in which a NIS term is taken into account. The analytical formula of the NIS term is detailedly derived. By using this formula, the density and temperature dependence of the NIS effect is numerically studied, and the results show that the NIS effect becomes more and more important with increasing the plasma temperature or density. Different from the cases of protons traveling through the deuterium-tritium plasmas, for a Be plasma, a prominent oscillation valley structure is observed in the NIS term when the proton's energy is close to E_{p}=7MeV. Furthermore, the penetration distance is remarkably reduced when the NIS term is considered.

  9. rvec p + 13 rvec C elastic scattering at 500 MeV

    International Nuclear Information System (INIS)

    Tanaka, N.

    1990-01-01

    For the first time, an elastic scattering experiment was performed at LAMPF using polarized protons and a polarized target nucleus (rvec p + 13 rvec C). The analyzing powers [A ooon (Θ)] and [A oonn (Θ)] were measured using an incident beam energy of 500 MeV over the laboratory angular range of 10 degree--30 degree. Motivation for the experiment and some preliminary results and conclusions are presented. 12 refs., 7 figs

  10. Production cross-sections of pions and kaons in proton-nucleus collisions around 1 GeV - Measurement of the production cross-sections of light charged particles in collisions between 62.9 GeV protons and "2"0"8Pb nuclei

    International Nuclear Information System (INIS)

    Guertin, A.

    2001-01-01

    A charged kaon includes a strange anti-quark that cannot be re-absorbed by matter which make kaons an interesting probe of nuclear matter. The first part of this work is dedicated to the production cross-sections of pions and kaons in proton-nucleus collision around 1 GeV. The molecular quantum dynamic model used for simulating proton-nucleus is presented and the total cross-sections of the reactions implemented in the model are described. Then, the impact of the neutron's spectral function on pion and kaon production is assessed in double differential cross-sections. The consequences of the correlations observed between nucleons are discussed. The simple phenomenological approach we have developed to take into account 2 nucleon correlations gives good results for the doubly differential production cross-section of pions and kaons whatever the target nucleus. The second part of this work is dedicated to the measurement of the production of light charged particles (p, d, t, "3He, α) and neutron production in collisions between 62,9 MeV protons with "2"0"8Pb nuclei. The experimental setting is installed on the S2 line of the CYCLONE cyclotron (Belgium), the detection system is composed of 7 triple telescopes (Si, Si and CsI(Tl)). The separation and identification of particles is made through 2 methods: the E-ΔE method based on the energy losses in the different detectors and the discrimination method based on the different shapes of the quick and slow signals of the CsI crystal. The extraction of the cross-section values is detailed. We have compared the values obtained with 3 theoretical models: the exciton model (GNASH code), the F.K.K. (Feshbach-Kerman-Koonin) theory (MINGUS code) and a more phenomenological model able to simulate hadron reactions on nuclei for a very broad range of energy (FLUKA code)

  11. Microscopic local optical potentials and the nucleon–nucleus scattering at 65 MeV

    International Nuclear Information System (INIS)

    Haider, W.; Sharma, Manjari

    2010-01-01

    Microscopic local optical potentials from two sources were calculated by folding the numerical g-matrices over point proton and neutron RMF densities of target nuclei. The hard-core Hamada–Johnston and the soft-core Urbana v-14 local inter-nucleon potentials have been used to generate numerical g-matrices by solving Bethe–Goldstone integral equation. The calculated potentials have been used to analyze successfully both the proton and neutron differential elastic scattering and polarization data at 65 MeV over a wide mass region of targets: 12 C– 208 Pb. Comparison of the present results with a phenomenological optical model analyzes is also presented. Mass number dependence of the mean square radii of the two microscopic potentials are in close agreement with each other as well as with empirical results. (author)

  12. Production of neutrinos and neutrino-like particles in proton-nucleus interactions. [400 GeV, cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Dishaw, J.P.

    1979-03-01

    An experimental search was performed to look for the direct production of neutrinos or neutrino-like particles, i.e., neutral particles which interact weakly with hadrons, in proton-nucleus interactions at 400 GeV incident proton energy. Possible sources of such particles include the semi-leptonic decay of new heavy particles such as charm, and the direct production of a light neutral Higgs particle such as the axion. The production of these particles has been inferred in this experiment by energy nonconservation in the collision of a proton with an iron nucleus. The total visible energy of the interaction was measured using a sampling ionization calorimeter. After correcting for beam intensity effects and cutting the data to eliminate systematic effects in the measurement, the final resolution of the calorimeter was 3.51% and increased with decreasing incident beam energy with a square root dependence on the beam energy. Energy nonconservation in the data is manifest as a non-Gaussian distribution on the low side of the calorimeter measured energy. Model calculations yield the fraction of events expected in this non-Gaussian behavior for the various sources of neutrinos or neutrino-like particles. A maximum likelihood fit to the data with the theoretical fraction of events expected yields the 95% confidence level production cross section upper limit values. The upper limits for general production of neutrino-like particles for various parameterizations of the production cross section are presented. The following specific upper limits have been established: charm particle production < 670 ..mu..barns, supersymmetric particle production carrying an additional quantum number R < 33 ..mu..barns (mass of 1 GeV), 8 ..mu..barns (mass of 3 GeV); axion production < 10/sup -3/ times the ..pi../sup 0/ production cross section. 144 references.

  13. Manifestation of 12-quark bag state of 4He nucleus in elastic d4He scattering

    International Nuclear Information System (INIS)

    Mosallem, A.M.; Uzhinskij, V.V.

    2002-01-01

    The 4 He d elastic scattering at the momentum of 19.8 GeV/c is analyzed in the framework of the Glauber theory. The scattering amplitude was evaluated using different sets of values of the nucleon-nucleon amplitude parameters and the 4 He density function as a superposition of the Gaussian functions. It is shown that it is impossible to describe simultaneously the p 4 He and d 4 He elastic scattering cross sections using the same set of the NN-amplitude parameters. Inclusion of the twelve-quark bag admixture to the ground state of the 4 He nucleus in the calculations allows one to reproduce the experimental data quite well. It is shown that the admixture manifests itself in the d 4 He elastic scattering in the whole region of the momentum transfer. At small t the effect can be at the level of ∼ 10%. At large t it can be ∼30%

  14. New results for antiproton-proton elastic scattering and various theoretical models

    International Nuclear Information System (INIS)

    Fazal-e-Aleem; Saleem, M.; Yodh, G.B.

    1991-01-01

    The most recent measurements of the ratio ρ of the real and imaginary parts of the forward-scattering amplitudes at 0.546 TeV, the total and elastic differential cross sections at 0.546 and 1.8 TeV for proton-antiproton scattering, are compared to the predictions of the generalized Chou-Yang and other theoretical models. For 1.8 TeV, the presence or absence of the break near -t∼0.15 (GeV/c) 2 and of the dip in the vicinity of 0.6 (GeV/c) 2 are also discussed in the light of various predictions. The possibility of a further rise of the ratio ρ at 1.8 TeV is also probed

  15. Transverse Beam Spin Asymmetries in Forward-Angle Elastic Electron-Proton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    David Armstrong; Francois Arvieux; Razmik Asaturyan; Todd Averett; Stephanie Bailey; Guillaume Batigne; Douglas Beck; Elizabeth Beise; Jay Benesch; Louis Bimbot; James Birchall; Angela Biselli; Peter Bosted; Elodie Boukobza; Herbert Breuer; Roger Carlini; Robert Carr; Nicholas Chant; Yu-Chiu Chao; Swapan Chattopadhyay; Russell Clark; Silviu Covrig; Anthony Cowley; Daniel Dale; Charles Davis; Willie Falk; John Finn; Tony Forest; Gregg Franklin; Christophe Furget; David Gaskell; Joseph Grames; Keith Griffioen; Klaus Grimm; Benoit Guillon; Hayko Guler; Lars Hannelius; Richard HASTY; Alice Hawthorne Allen; Tanja Horn; Kathleen Johnston; Mark Jones; Peter Kammel; Reza Kazimi; Paul King; Ameya Kolarkar; Elie Korkmaz; Wolfgang Korsch; Serge Kox; Joachim Kuhn; Jeff Lachniet; Lawrence Lee; Jason Lenoble; Eric Liatard; Jianglai Liu; Berenice Loupias; Allison Lung; Dominique Marchand; Jeffery Martin; Kenneth McFarlane; David McKee; Robert McKeown; Fernand Merchez; Hamlet Mkrtchyan; Bryan Moffit; M. Morlet; Itaru Nakagawa; Kazutaka Nakahara; Retief Neveling; Silvia Niccolai; S. Ong; Shelley Page; Vassilios Papavassiliou; Stephen Pate; Sarah Phillips; Mark Pitt; Benard Poelker; Tracy Porcelli; Gilles Quemener; Brian Quinn; William Ramsay; Aamer Rauf; Jean-Sebastien Real; Julie Roche; Philip Roos; Gary Rutledge; Jeffery Secrest; Neven Simicevic; Gregory Smith; Damon Spayde; Samuel Stepanyan; Marcy Stutzman; Vince Sulkosky; Vincent Sulkosky; Vince Sulkosky; Vincent Sulkosky; Vardan Tadevosyan; Raphael Tieulent; Jacques Van de Wiele; Willem van Oers; Eric Voutier; William Vulcan; Glen Warren; Steven Wells; Steven Williamson; Stephen Wood; Chen Yan; Junho Yun; Valdis Zeps

    2007-08-01

    We have measured the beam-normal single-spin asymmetry in elastic scattering of transversely-polarized 3 GeV electrons from unpolarized protons at Q^2 values of 0.15 and 0.25 (GeV/c)^2 with results of A_n = -4.06 +- 0.99(stat) +- 0.63(syst) and A_n = -4.82 +- 1.87(stat) +- 0.98(syst) ppm. These results are inconsistent with calculations solely using the elastic nucleon intermediate state, and generally agree with calculations with significant inelastic hadronic intermediate state contributions. A_n provides a direct probe of the imaginary component of the two-photon exchange amplitude, the complete description of which is important in the interpretation of data from precision electron-scattering experiments.

  16. Measuring azimuthal asymmetries in semi-inclusive deep-inelastic scattering off transversely polarized protons

    CERN Document Server

    Wollny, Heiner

    2010-01-01

    The COMPASS experiment at the international research center CERN (European Organization for Nuclear Research) is dedicated to study the longitudinal and transverse spin structure of the nucleon. It is a fixed target experiment at the end of the M2 beam line of the SPS accelerator, which provides a 160 GeV/c longitudinally polarized muon beam. In the years 2002, 2003, 2004 and 2006 COMPASS took data scattering off polarized deuterons and in the year 2007 scattering off polarized protons. The analysis of the data taken in 2007 with transversely polarized protons is the topic of this thesis. In leading order and integrating over quark transverse momenta three parton distribution functions are needed for a complete description of the nucleon. Two of them, the quark number density and the helicity distribution are well known. However, the third one, the transversity distribution is up to now almost unknown. In this thesis single spin asymmetries in the cross-section of one hadron and two hadron production are anal...

  17. Separation of the transverse and longitudinal structure functions for the (e,e'p) coincidence reaction on the 40Ca nucleus

    International Nuclear Information System (INIS)

    Reffay-Pikeroen, Dominique

    1987-01-01

    The bound-nucleon current has been investigated in the region of the quasi-elastic peak, with (e,e'p) coincidence measurements where by the one-nucleon knock-out process is selected. This study is refined by the measurement of the separate transverse and longitudinal structure functions. The (e,e'p) reaction has been performed on the 40 Ca nucleus in a momentum transfer range from 330 to 825 MeV/c. We have chosen a range of proton momenta in the nucleus from 40 to 140 MeV and a missing energy range from 8 to 60 MeV which corresponds to the shells 1d3/2, 1d5/2, 2s1/2, 1s1/2, 1p3/2, 1p1/2 of 39 K as predicted by the shell model. The first aim of these measurements was to verify, on an exclusive process, the results of the inclusive measurements on this nucleus with transverse/longitudinal separation, since the inclusive results are presently difficult to interpret. More generally, the aim of this kind of measurements is to test the validity of the traditional theoretical approach to the quasi-elastic scattering: Schroedinger equation, impulse approximation, choice of a prescription for the off shell effect on the nucleonic current keeping the free nucleon electromagnetic form factors. The answer to the first question is the observation of a quenching of the longitudinal/transverse ratio, consistent with the effect observed in the inclusive experiments. Regarding the most general aspect of the study of the electromagnetic structure of the bound nucleus, this experiment has brought some entirely new results about the momentum transfer dependence of its electric and magnetic form factors. These results do not suggest any important deformation of the nucleon in the nucleus. We were able to derive an upper limit of 4 pc for a possible increase of the magnetic radius of the bound proton. Regarding the electric radius, the data still remain too inaccurate to draw final conclusions. (author) [fr

  18. Hadron production in high energy muon scattering

    International Nuclear Information System (INIS)

    Hicks, R.G.

    1978-01-01

    An experiment was performed to study muon-proton scattering at an incident energy of 225 GeV and a total effective flux of 4.3 x 10 10 muons. This experiment is able to detect charged particles in coincidence with the scattered muon in the forward hemisphere, and results are reported for the neutral strange particles K/sub s/ 0 and Λ 0 decaying into two charged particles. Within experimental limits the masses and lifetimes of these particles are consistent with previous measurements. The distribution of hadrons produced in muon scattering was determined, measuring momentum components parallel and transverse to the virtual photon direction, and these distributions are compared to other high energy experiments involving the scattering of pions, protons, and neutrinos from protons. Structure functions for hadron production and particle ratios are calculated. No azimuthal dependence is observed, and lambda production does not appear to be polarized. The physical significance of the results is discussed within the frame-work of the quark-proton model

  19. Neutron-proton bremsstrahlung experiments

    Energy Technology Data Exchange (ETDEWEB)

    Koster, J.E. (Los Alamos National Lab., NM (United States)); Nelson, R.O. (Los Alamos National Lab., NM (United States)); Schillaci, M.E. (Los Alamos National Lab., NM (United States)); Wender, S.A. (Los Alamos National Lab., NM (United States)); Mayo, D. (Univ. of California at Davis, CA (United States)); Brady, F.P. (Univ. of California at Davis, CA (United States)); Romero, J. (Univ. of California at Davis, CA (United States)); Krofcheck, D. (Lawrence Livermore National Lab., CA (United States)); Blann, M. (Lawrence Livermore National Lab., CA (United States)); Anthony, P. (Lawrence Livermore National Lab., CA (United States)); Brown, V.R. (Lawrence Livermore National Lab., CA (United States)); Hansen, L. (Lawrence Livermore National Lab., CA (United States)); Pohl, B. (Lawrence Livermore National Lab., CA (United States)); Sangster, T.C. (Lawrence Livermore National Lab., CA (United States)); Nifenecker, H. (Inst. des Sciences Nucleaires, Grenoble (France)); Pinston,

    1993-06-01

    It is well known that charged particles emit bremsstrahlung radiation when they are accelerated. Classical electron bremsstrahlung occurs when a proton is emitted by an electron accelerated in the field of a nucleus. The bremsstrahlung process also occurs in the scattering of nucleons, for which it is the lowest energy inelastic process that can occur. Like electron bremsstrahlung, nucleon-nucleon bremsstrahlung also requires the exchange of a virtual particle to conserve energy and momentum. In electron bremsstrahlung a virtual photon is exchanged but with two nucleons a meson can be exchanged. Unlike electron bremsstrahlung, in nucleon-nucleon bremsstrahlung the photon can originate from the exchanged meson. This exchange contribution has been shown in calculations to be a significant fraction of bremsstrahlung events. Thus bremsstrahlung serves as a probe of exchange currents in the nucleon-nucleon interaction. Because of a lack of a free neutron target or an intense neutron beam, few measurements of neutron-proton bremsstrahlung exist, each having poor statistical accuracy and poor energy resolution. The white neutron source at the Weapons Neutron Research (WNR) target area at the Los Alamos Meson Physics Facility (LAMPF) produces neutrons with energies from below 50 to above 400 MeV. Using time-of-flight techniques and a liquid hydrogen target, we are measuring the outgoing photons of energies up to 250 MeV at gamma ray angles of around 90 relative to the incident beam. Protons scattered at very forward angles are also detected in coincidence with the gamma rays. (orig.)

  20. Some preliminary considerations on antiproton-nucleus experiments

    International Nuclear Information System (INIS)

    Yavin, A.I.

    1981-05-01

    The antiproton as a probe of the atomic nucleus is discussed in the expectation that fairly intense beams of high quality will be available in 1983 at the Low Energy Antiproton Ring (LEAR) facility at CERN and possibly also in some other laboratories at a later date. Several antiproton-nucleus experiments are proposed, and the possibility of observing antiprotonic nuclei as well as antineutronic nuclei is discussed. It is demonstrated that even for the study of the elementary nucleon-antinucleon systems it could be advantageous to use nuclei rather than protons as target. The possibility of investigating several antiprotonic atomic systems is also briefly discussed [fr

  1. Measurement of proton-proton inelastic scattering cross-section at $\\sqrt{s}$= 7 TeV

    CERN Document Server

    Antchev, G; Atanassov, I.; Avati, V.; Baechler, J.; Berardi, V.; Berretti, M.; Bossini, E.; Bozzo, M.; Brogi, P.; Brücken, E.; Buzzo, A.; Cafagna, F.S.; Calicchio, M.; Catanesi, M.G.; Covault, C.; Csanad, M.; Csörgö, T.; Deile, M.; Doubek, M.; Eggert, K.; Eremin, V.; Ferretti, R.; Ferro, F.; Fiergolski, A.; Garcia, F.; Giani, S.; Greco, V.; Grzanka, L.; Heino, J.; Hilden, T.; Intonti, R.A.; Kaspar, J.; Kopal, J.; Kundrat, V.; Kurvinen, K.; Lami, S.; Latino, G.; Lauhakangas, R.; Leszko, T.; Lippmaa, E.; Lokajicek, M.; Lo Vetere, M.; Lucas Rodriguez, F.; Macri, M.; Mäki, T.; Mercadante, A.; Minafra, N.; Minutoli, S.; Nemes, F.; Niewiadomski, H.; Oliveri, E.; Oljemark, F.; Orava, R.; Oriunno, M.; Österberg, K.; Palazzi, P.; Prochazka, J.; Quinto, M.; Radermacher, E.; Radicioni, E.; Ravotti, F.; Robutti, E.; Ropelewski, L.; Ruggiero, G.; Saarikko, H.; Santroni, A.; Scribano, A.; Smajek, J.; Snoeys, W.; Sziklai, J.; Taylor, C.; Turini, N.; Vacek, V.; Vitek, M.; Welti, J.; Whitmore, J.; Wyszkowski, P.

    2013-01-01

    The TOTEM experiment at the LHC has measured the inelastic proton-proton cross-section at $\\sqrt{s}$ = 7 TeV in a β* = 90 m run with low inelastic pile-up. The measurement was based on events with at least one charged particle in the T2 telescope acceptance of 5.3 < |η| < 6.5 in pseudorapidity. Combined with data from the T1 telescope, covering 3.1 < |η| < 4.7, the cross-section for inelastic events with at least one |η| < 6.5 final state particle was determined to be 70.5 2.9 mb. Based on models for low mass diffraction, the total inelastic cross-section was deduced to be 73.7 3.4 mb. An upper limit of 6.31 mb at 95 % confidence level on the cross-section for events with diffractive masses below 3.4 GeV was obtained from the difference between the overall inelastic cross-section obtained by TOTEM using elastic scattering and the cross-section for inelastic events with at least one |η| < 6.5 final state particle.

  2. Spin flip at unelastic scattering of protons with energy near 6 NeV o 50Cr and 52Cr nuclei

    International Nuclear Information System (INIS)

    Andronov, Yu.F.; Chubinskij, O.V.; Vinogradov, L.I.; Ehl'-Ashri, F.I.; Gustova, L.V.

    1978-01-01

    Angular S(Q) and energy S(E) dependences spin flip probability S were studied in inelastic scattering of protons with excitation of the 2 1 + states of 50 Cr (Q=-0.782 MeV) and 52 Cr (Q=-1.434 MeV) energy range from 5.6 to 5.95 MeV. In particular, it is elucidated how strongly the behaviour of the spin flip probability depends upon the energy and angle of scattering at Esub(p) approximately 6 MeV for 50 Cr and 52 Cr. Thereby some additional information on specific features of the mechanism of inelastic sccattering by th nuclei is obtained. Measurements were carried out simultaneously in two proton detection channels at scattering angles differing by 30 deg. For targets use was made of self-sustaining enriched foils (87% 50 Cr and 99% 52 Cr). The angular and energy dependences of the spin flip probabilities for 50 Cr and 52 Cr are shown to be rather different: for 52 Cr has a relatively slight energy dependence in the range of a resonance observed in the excitation function; for 50 Cr the behaviour of S(E) undergoes sharp changes. The experimetnal values of S(Q) for sup(50, 52)Cr differ rather strongly from the calculations made on the statistical model and depend considerably upon the scattering angle

  3. Measurement of the depolarization in the elastic proton scattering on 1H, 27Al, and 89Y in the low energy range

    International Nuclear Information System (INIS)

    Schmitt, R.

    1986-01-01

    With the Erlangen QDQ magnetic spectrometer angular distributions of the depolarization in the elastic scattering of protons on 27 Al, 89 Y at 11 MeV and 1 H at 12 MeV were measured. The evaluation was performed for yttrium and aluminium by adding of additional terms in the optical model which regard the spin-spin interaction. The optical-model parameter without spin-spin potentials were stated by measurements of the cross section and the analyzing power in the 4π scattering chamber in Erlangen at several energies. The calculation of the depolarization which emerges because of the spin-spin interaction was performed by means of DWBA. The depolarization of the proton-proton scattering was evaluated by scattering-phase analysis. The fits were thereby performed on analyzing-power data. The electrical P-wave scattering phases resulted to δ 10 = 4.442±0.121, δ 11 = -2.515±0.026, and δ 12 = 0.937±0.038 (all in degrees). (orig./HSI) [de

  4. Determination of the total cross section in proton-proton collisions at the LHC at √(s) = 8 TeV from elastic scattering using the ALFA sub-detector of ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Heinz, Christian; Dueren, Michael; Kreutzfeldt, Kristof; Stenzel, Hasko [JLU Giessen (Germany)

    2015-07-01

    The ALFA (Absolute Luminosity for ATLAS) Roman Pot detector system is part of the forward instrumentation of ATLAS located about 240 m away from the interaction point in the LHC tunnel. ALFA consists of a scintillating fibre tracker housed in vertical Roman Pots which enables the measurement of elastic proton-proton scattering at small scattering angles. In 2012 data were recorded at a centre-of-mass energy of √(s) = 8 TeV during a fill with special beam optics of the LHC with β* = 90 m and parallel-to-point focusing. The four-momentum transfer t is measured for elastically scattered protons and the differential elastic cross section is measured. In this talk a preliminary determination of the total cross section and of the slope of the elastic cross section at small vertical stroke t vertical stroke obtained from a fit to the differential cross section using the optical theorem is reported.

  5. An analytic distorted wave approximation for intermediate energy proton scattering

    International Nuclear Information System (INIS)

    Di Marzio, F.; Amos, K.

    1982-01-01

    An analytic Distorted Wave approximation has been developed for use in analyses of intermediate energy proton inelastic scattering from nuclei. Applications are made to analyse 402 and 800 MeV data from the isoscalar and isovector 1 + and 2 + states in 12 C and to the 800 MeV data from the excitation of the 2 - (8.88MeV) state in 16 O. Comparisons of predictions made using different model two-nucleon t-matrices and different models of nuclear structure are given

  6. Experiments on exclusive proton and pion scattering for nuclear filtering and color transparency study

    International Nuclear Information System (INIS)

    Wu, J.

    1992-01-01

    The color transparency of pions in various nuclei has been measured and compared with the proton transparency. The measurement results are consistent with semi-classical predictions that the pion transparency is larger than the proton transparency at the same incident momentum and their ratio becomes larger as the nucleus becomes heavier. The energy dependence of the transparency has been studied based on the semi-classical theory and the result shows that the transparency can be written into two factors. The physics interpretations of the two factors have been discussed. A new experimental apparatus, the Exclusive Variable Apparatus (EVA) at Brookhaven National Laboratory, along with unique electronic techniques chosen for enabling the EVA trigger system to fulfill physics requirements of the experiment, have been described

  7. Nuclear structure of 41Ca from inelastic proton scattering

    International Nuclear Information System (INIS)

    Vold, P.B.; Cline, D.; Voigt, M.J.A. de

    1977-01-01

    Angular distributions have been measured for inelastic and elastic scattering of 19 MeV protons on 40 41 Ca. A total of 89 levels were identified below 6.4 MeV in 41 Ca with an energy resolution of 12 keV. Inelastic transition strengths have been extracted using DWBA theory with a vibrational model form factor. These transition strengths correlate well with inelastic α-scattering and electromagnetic values. The quadrupole strengths are interpreted in terms of the coexistence model and imply that the excited-core admixture in the ground states of both 40 Ca and 41 Ca are approximately 5%. The octupole strengths in 41 Ca exhibits features characteristic of the weak coupling of an fsub(7/2) neutron to the lowest 3 - state in 40 Ca. The l = 5 strength exhibits a similar weak-coupling behavior. In both cases the microscopic structure appreciably reduces the transition strength for the highest spin member of the weak-coupling multiplets. (Auth.)

  8. arXiv Observation of proton-tagged, central (semi)exclusive production of high-mass lepton pairs in pp collisions at 13 TeV with the CMS-TOTEM precision proton spectrometer

    CERN Document Server

    Sirunyan, Albert M; CMS and TOTEM Collaborations; Adam, Wolfgang; Ambrogi, Federico; Asilar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Escalante Del Valle, Alberto; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Grossmann, Johannes; Hrubec, Josef; Jeitler, Manfred; König, Axel; Krammer, Natascha; Krätschmer, Ilse; Liko, Dietrich; Madlener, Thomas; Mikulec, Ivan; Pree, Elias; Rad, Navid; Rohringer, Herbert; Schieck, Jochen; Schöfbeck, Robert; Spanring, Markus; Spitzbart, Daniel; Taurok, Anton; Waltenberger, Wolfgang; Wittmann, Johannes; Wulz, Claudia-Elisabeth; Zarucki, Mateusz; Chekhovsky, Vladimir; Mossolov, Vladimir; Suarez Gonzalez, Juan; De Wolf, Eddi A; Di Croce, Davide; Janssen, Xavier; Lauwers, Jasper; Pieters, Maxim; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; De Bruyn, Isabelle; De Clercq, Jarne; Deroover, Kevin; Flouris, Giannis; Lontkovskyi, Denys; Lowette, Steven; Marchesini, Ivan; Moortgat, Seth; Moreels, Lieselotte; Python, Quentin; Skovpen, Kirill; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Parijs, Isis; Beghin, Diego; Bilin, Bugra; Brun, Hugues; Clerbaux, Barbara; De Lentdecker, Gilles; Delannoy, Hugo; Dorney, Brian; Fasanella, Giuseppe; Favart, Laurent; Goldouzian, Reza; Grebenyuk, Anastasia; Kalsi, Amandeep Kaur; Lenzi, Thomas; Luetic, Jelena; Seva, Tomislav; Starling, Elizabeth; Vander Velde, Catherine; Vanlaer, Pascal; Vannerom, David; Yonamine, Ryo; Cornelis, Tom; Dobur, Didar; Fagot, Alexis; Gul, Muhammad; Khvastunov, Illia; Poyraz, Deniz; Roskas, Christos; Trocino, Daniele; Tytgat, Michael; Verbeke, Willem; Vermassen, Basile; Vit, Martina; Zaganidis, Nicolas; Bakhshiansohi, Hamed; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caputo, Claudio; Caudron, Adrien; David, Pieter; De Visscher, Simon; Delaere, Christophe; Delcourt, Martin; Francois, Brieuc; Giammanco, Andrea; Krintiras, Georgios; Lemaitre, Vincent; Magitteri, Alessio; Mertens, Alexandre; Musich, Marco; Piotrzkowski, Krzysztof; Quertenmont, Loic; Saggio, Alessia; Vidal Marono, Miguel; Wertz, Sébastien; Zobec, Joze; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Correia Silva, Gilson; Hensel, Carsten; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Coelho, Eduardo; Melo Da Costa, Eliza; Da Silveira, Gustavo Gil; De Jesus Damiao, Dilson; Fonseca De Souza, Sandro; Malbouisson, Helena; Medina Jaime, Miguel; Melo De Almeida, Miqueias; Mora Herrera, Clemencia; Mundim, Luiz; Nogima, Helio; Sanchez Rosas, Luis Junior; Santoro, Alberto; Sznajder, Andre; Thiel, Mauricio; Tonelli Manganote, Edmilson José; Torres Da Silva De Araujo, Felipe; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; Calligaris, Luigi; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Marinov, Andrey; Misheva, Milena; Rodozov, Mircho; Shopova, Mariana; Sultanov, Georgi; Dimitrov, Anton; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Fang, Wenxing; Gao, Xuyang; Yuan, Li; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Chen, Ye; Jiang, Chun-Hua; Leggat, Duncan; Liao, Hongbo; Liu, Zhenan; Romeo, Francesco; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Yazgan, Efe; Zhang, Huaqiao; Zhao, Jingzhou; Ban, Yong; Chen, Geng; Li, Jing; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Wang, Yi; Avila, Carlos; Cabrera, Andrés; Carrillo Montoya, Camilo Andres; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; González Hernández, Carlos Felipe; Segura Delgado, Manuel Alejandro; Courbon, Benoit; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Sculac, Toni; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Ferencek, Dinko; Kadija, Kreso; Mesic, Benjamin; Starodumov, Andrei; Susa, Tatjana; Ather, Mohsan Waseem; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Finger, Miroslav; Finger Jr, Michael; Carrera Jarrin, Edgar; Ellithi Kamel, Ali; Mohamed, Amr; Salama, Elsayed; Bhowmik, Sandeep; Dewanjee, Ram Krishna; Kadastik, Mario; Perrini, Lucia; Raidal, Martti; Veelken, Christian; Eerola, Paula; Kirschenmann, Henning; Pekkanen, Juska; Voutilainen, Mikko; Havukainen, Joona; Heikkilä, Jaana Kristiina; Jarvinen, Terhi; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Laurila, Santeri; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Siikonen, Hannu; Tuominen, Eija; Tuominiemi, Jorma; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Ghosh, Saranya; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Leloup, Clément; Locci, Elizabeth; Machet, Martina; Malcles, Julie; Negro, Giulia; Rander, John; Rosowsky, André; Sahin, Mehmet Özgür; Titov, Maksym; Abdulsalam, Abdulla; Amendola, Chiara; Antropov, Iurii; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Cadamuro, Luca; Charlot, Claude; Granier de Cassagnac, Raphael; Jo, Mihee; Kucher, Inna; Lisniak, Stanislav; Lobanov, Artur; Martin Blanco, Javier; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Pigard, Philipp; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Stahl Leiton, Andre Govinda; Yilmaz, Yetkin; Zabi, Alexandre; Zghiche, Amina; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Coubez, Xavier; Drouhin, Frédéric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Jansová, Markéta; Juillot, Pierre; Le Bihan, Anne-Catherine; Tonon, Nicolas; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Chanon, Nicolas; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Finco, Linda; Gascon, Susan; Gouzevitch, Maxime; Grenier, Gérald; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lattaud, Hugues; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Popov, Andrey; Sordini, Viola; Vander Donckt, Muriel; Viret, Sébastien; Zhang, Sijing; Toriashvili, Tengizi; Tsamalaidze, Zviad; Autermann, Christian; Feld, Lutz; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Preuten, Marius; Rauch, Max Philip; Schomakers, Christian; Schulz, Johannes; Teroerde, Marius; Wittmer, Bruno; Zhukov, Valery; Albert, Andreas; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Knutzen, Simon; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Mukherjee, Swagata; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Teyssier, Daniel; Thüer, Sebastian; Flügge, Günter; Kargoll, Bastian; Kress, Thomas; Künsken, Andreas; Müller, Thomas; Nehrkorn, Alexander; Nowack, Andreas; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Arndt, Till; Asawatangtrakuldee, Chayanit; Beernaert, Kelly; Behnke, Olaf; Behrens, Ulf; Bermúdez Martínez, Armando; Bin Anuar, Afiq Aizuddin; Borras, Kerstin; Botta, Valeria; Campbell, Alan; Connor, Patrick; Contreras-Campana, Christian; Costanza, Francesco; Danilov, Vladyslav; De Wit, Adinda; Diez Pardos, Carmen; Domínguez Damiani, Daniela; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Eren, Engin; Gallo, Elisabetta; Garay Garcia, Jasone; Geiser, Achim; Grados Luyando, Juan Manuel; Grohsjean, Alexander; Gunnellini, Paolo; Guthoff, Moritz; Harb, Ali; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kasemann, Matthias; Keaveney, James; Kleinwort, Claus; Knolle, Joscha; Korol, Ievgen; Krücker, Dirk; Lange, Wolfgang; Lelek, Aleksandra; Lenz, Teresa; Lipka, Katerina; Lohmann, Wolfgang; Mankel, Rainer; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Meyer, Mareike; Missiroli, Marino; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Pitzl, Daniel; Raspereza, Alexei; Savitskyi, Mykola; Saxena, Pooja; Shevchenko, Rostyslav; Stefaniuk, Nazar; Tholen, Heiner; Van Onsem, Gerrit Patrick; Walsh, Roberval; Wen, Yiwen; Wichmann, Katarzyna; Wissing, Christoph; Zenaiev, Oleksandr; Aggleton, Robin; Bein, Samuel; Blobel, Volker; Centis Vignali, Matteo; Dreyer, Torben; Garutti, Erika; Gonzalez, Daniel; Haller, Johannes; Hinzmann, Andreas; Hoffmann, Malte; Karavdina, Anastasia; Kasieczka, Gregor; Klanner, Robert; Kogler, Roman; Kovalchuk, Nataliia; Kurz, Simon; Marconi, Daniele; Multhaup, Jens; Niedziela, Marek; Nowatschin, Dominik; Peiffer, Thomas; Perieanu, Adrian; Reimers, Arne; Scharf, Christian; Schleper, Peter; Schmidt, Alexander; Schumann, Svenja; Schwandt, Joern; Sonneveld, Jory; Stadie, Hartmut; Steinbrück, Georg; Stober, Fred-Markus Helmut; Stöver, Marc; Troendle, Daniel; Usai, Emanuele; Vanhoefer, Annika; Vormwald, Benedikt; Akbiyik, Melike; Barth, Christian; Baselga, Marta; Baur, Sebastian; Butz, Erik; Caspart, René; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Dierlamm, Alexander; Faltermann, Nils; Freund, Benedikt; Friese, Raphael; Giffels, Manuel; Harrendorf, Marco Alexander; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Kassel, Florian; Kudella, Simon; Mildner, Hannes; Mozer, Matthias Ulrich; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Schröder, Matthias; Shvetsov, Ivan; Sieber, Georg; Simonis, Hans-Jürgen; Ulrich, Ralf; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Williamson, Shawn; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Kyriakis, Aristotelis; Loukas, Demetrios; Topsis-Giotis, Iasonas; Karathanasis, George; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Tziaferi, Eirini; Kousouris, Konstantinos; Papakrivopoulos, Ioannis; Evangelou, Ioannis; Foudas, Costas; Gianneios, Paraskevas; Katsoulis, Panagiotis; Kokkas, Panagiotis; Mallios, Stavros; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Strologas, John; Triantis, Frixos A; Tsitsonis, Dimitrios; Csanad, Mate; Filipovic, Nicolas; Pasztor, Gabriella; Surányi, Olivér; Veres, Gabor Istvan; Bencze, Gyorgy; Hajdu, Csaba; Horvath, Dezso; Hunyadi, Ádám; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Vámi, Tamás Álmos; Beni, Noemi; Czellar, Sandor; Karancsi, János; Makovec, Alajos; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Choudhury, Somnath; Komaragiri, Jyothsna Rani; Bahinipati, Seema; Mal, Prolay; Mandal, Koushik; Nayak, Aruna; Sahoo, Deepak Kumar; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chauhan, Sushil; Chawla, Ridhi; Dhingra, Nitish; Gupta, Rajat; Kaur, Anterpreet; Kaur, Manjit; Kaur, Sandeep; Kumar, Ramandeep; Kumari, Priyanka; Lohan, Manisha; Mehta, Ankita; Sharma, Sandeep; Singh, Jasbir; Walia, Genius; Kumar, Ashok; Shah, Aashaq; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Garg, Rocky Bala; Keshri, Sumit; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Ramkrishna; Bhardwaj, Rishika; Bhattacharya, Rajarshi; Bhattacharya, Satyaki; Bhawandeep, Bhawandeep; Bhowmik, Debabrata; Dey, Sourav; Dutt, Suneel; Dutta, Suchandra; Ghosh, Shamik; Majumdar, Nayana; Mondal, Kuntal; Mukhopadhyay, Supratik; Nandan, Saswati; Purohit, Arnab; Rout, Prasant Kumar; Roy, Ashim; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Singh, Bipen; Thakur, Shalini; Behera, Prafulla Kumar; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Mohanty, Ajit Kumar; Netrakanti, Pawan Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Dugad, Shashikant; Mahakud, Bibhuprasad; Mitra, Soureek; Mohanty, Gagan Bihari; Sur, Nairit; Sutar, Bajrang; Banerjee, Sudeshna; Bhattacharya, Soham; Chatterjee, Suman; Das, Pallabi; Guchait, Monoranjan; Jain, Sandhya; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Sahoo, Niladribihari; Sarkar, Tanmay; Wickramage, Nadeesha; Chauhan, Shubhanshu; Dube, Sourabh; Hegde, Vinay; Kapoor, Anshul; Kothekar, Kunal; Pandey, Shubham; Rane, Aditee; Sharma, Seema; Chenarani, Shirin; Eskandari Tadavani, Esmaeel; Etesami, Seyed Mohsen; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Di Florio, Adriano; Errico, Filippo; Fiore, Luigi; Gelmi, Andrea; Iaselli, Giuseppe; Lezki, Samet; Maggi, Giorgio; Maggi, Marcello; Marangelli, Bartolomeo; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Sharma, Archana; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Zito, Giuseppe; Abbiendi, Giovanni; Battilana, Carlo; Bonacorsi, Daniele; Borgonovi, Lisa; Braibant-Giacomelli, Sylvie; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Iemmi, Fabio; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Albergo, Sebastiano; Costa, Salvatore; Di Mattia, Alessandro; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Chatterjee, Kalyanmoy; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Latino, Giuseppe; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Russo, Lorenzo; Sguazzoni, Giacomo; Strom, Derek; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Primavera, Federica; Calvelli, Valerio; Ferro, Fabrizio; Ravera, Fabio; Robutti, Enrico; Tosi, Silvano; Benaglia, Andrea; Beschi, Andrea; Brianza, Luca; Brivio, Francesco; Ciriolo, Vincenzo; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Govoni, Pietro; Malberti, Martina; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pauwels, Kristof; Pedrini, Daniele; Pigazzini, Simone; Ragazzi, Stefano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Fienga, Francesco; Galati, Giuliana; Iorio, Alberto Orso Maria; Khan, Wajid Ali; Lista, Luca; Meola, Sabino; Paolucci, Pierluigi; Sciacca, Crisostomo; Thyssen, Filip; Voevodina, Elena; Azzi, Patrizia; Bacchetta, Nicola; Benato, Lisa; Bisello, Dario; Boletti, Alessio; Carlin, Roberto; Carvalho Antunes De Oliveira, Alexandra; Checchia, Paolo; De Castro Manzano, Pablo; Dorigo, Tommaso; Dosselli, Umberto; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Pozzobon, Nicola; Ronchese, Paolo; Rossin, Roberto; Simonetto, Franco; Tiko, Andres; Torassa, Ezio; Zanetti, Marco; Zotto, Pierluigi; Zumerle, Gianni; Braghieri, Alessandro; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Ressegotti, Martina; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Biasini, Maurizio; Bilei, Gian Mario; Cecchi, Claudia; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Leonardi, Roberto; Manoni, Elisa; Mantovani, Giancarlo; Mariani, Valentina; Menichelli, Mauro; Rossi, Alessandro; Santocchia, Attilio; Spiga, Daniele; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bianchini, Lorenzo; Boccali, Tommaso; Borrello, Laura; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Fedi, Giacomo; Giannini, Leonardo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Manca, Elisabetta; Mandorli, Giulio; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Cipriani, Marco; Daci, Nadir; Del Re, Daniele; Di Marco, Emanuele; Diemoz, Marcella; Gelli, Simone; Longo, Egidio; Marzocchi, Badder; Meridiani, Paolo; Organtini, Giovanni; Pandolfi, Francesco; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bartosik, Nazar; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Castello, Roberto; Cenna, Francesca; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Monteno, Marco; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Shchelina, Ksenia; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Belforte, Stefano; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Zanetti, Anna; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Lee, Jeongeun; Lee, Sangeun; Lee, Seh Wook; Moon, Chang-Seong; Oh, Young Do; Sekmen, Sezen; Son, Dong-Chul; Yang, Yu Chul; Kim, Hyunchul; Moon, Dong Ho; Oh, Geonhee; Brochero Cifuentes, Javier Andres; Goh, Junghwan; Kim, Tae Jeong; Cho, Sungwoong; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Ha, Seungkyu; Hong, Byung-Sik; Jo, Youngkwon; Kim, Yongsun; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Lim, Jaehoon; Park, Sung Keun; Roh, Youn; Almond, John; Kim, Junho; Kim, Jae Sung; Lee, Haneol; Lee, Kyeongpil; Nam, Kyungwook; Oh, Sung Bin; Radburn-Smith, Benjamin Charles; Seo, Seon-hee; Yang, Unki; Yoo, Hwi Dong; Yu, Geum Bong; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Choi, Young-Il; Hwang, Chanwook; Lee, Jongseok; Yu, Intae; Dudenas, Vytautas; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Zolkapli, Zukhaimira; Reyes-Almanza, Rogelio; Ramirez-Sanchez, Gabriel; Duran-Osuna, Cecilia; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-De La Cruz, Ivan; Rabadán-Trejo, Raúl Iraq; Lopez-Fernandez, Ricardo; Mejia Guisao, Jhovanny; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Oropeza Barrera, Cristina; Vazquez Valencia, Fabiola; Eysermans, Jan; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Uribe Estrada, Cecilia; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Saddique, Asif; Shah, Mehar Ali; Shoaib, Muhammad; Waqas, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bozena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Szleper, Michal; Traczyk, Piotr; Zalewski, Piotr; Bunkowski, Karol; Byszuk, Adrian; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Pyskir, Andrzej; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Di Francesco, Agostino; Faccioli, Pietro; Galinhas, Bruno; Gallinaro, Michele; Hollar, Jonathan; Leonardo, Nuno; Lloret Iglesias, Lara; Nemallapudi, Mythra Varun; Seixas, Joao; Strong, Giles; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Voytishin, Nikolay; Zarubin, Anatoli; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sosnov, Dmitry; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Stepennov, Anton; Stolin, Viatcheslav; Toms, Maria; Vlasov, Evgueni; Zhokin, Alexander; Aushev, Tagir; Bylinkin, Alexander; Chadeeva, Marina; Chistov, Ruslan; Parygin, Pavel; Philippov, Dmitry; Polikarpov, Sergey; Tarkovskii, Evgenii; Zhemchugov, Evgenii; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Rusakov, Sergey V; Terkulov, Adel; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Miagkov, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Blinov, Vladimir; Shtol, Dmitry; Skovpen, Yuri; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Elumakhov, Dmitry; Godizov, Anton; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Mandrik, Petr; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Babaev, Anton; Adzic, Petar; Cirkovic, Predrag; Devetak, Damir; Dordevic, Milos; Milosevic, Jovan; Alcaraz Maestre, Juan; Bachiller, Irene; Barrio Luna, Mar; Cerrada, Marcos; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Moran, Dermot; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Triossi, Andrea; Álvarez Fernández, Adrian; Albajar, Carmen; de Trocóniz, Jorge F; Cuevas, Javier; Erice, Carlos; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; González Fernández, Juan Rodrigo; Palencia Cortezon, Enrique; Sanchez Cruz, Sergio; Vischia, Pietro; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Chazin Quero, Barbara; Duarte Campderros, Jordi; Fernandez, Marcos; Fernández Manteca, Pedro José; Garcia-Ferrero, Juan; García Alonso, Andrea; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Martinez Rivero, Celso; Martinez Ruiz del Arbol, Pablo; Matorras, Francisco; Piedra Gomez, Jonatan; Prieels, Cédric; Rodrigo, Teresa; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Trevisani, Nicolò; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Akgun, Bora; Auffray, Etiennette; Baillon, Paul; Ball, Austin; Barney, David; Bendavid, Joshua; Bianco, Michele; Bocci, Andrea; Botta, Cristina; Camporesi, Tiziano; Cepeda, Maria; Cerminara, Gianluca; Chapon, Emilien; Chen, Yi; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Gruttola, Michele; De Roeck, Albert; Deelen, Nikkie; Dobson, Marc; Du Pree, Tristan; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Everaerts, Pieter; Fallavollita, Francesco; Franzoni, Giovanni; Fulcher, Jonathan; Funk, Wolfgang; Gigi, Dominique; Gilbert, Andrew; Gill, Karl; Glege, Frank; Gulhan, Doga; Hegeman, Jeroen; Innocente, Vincenzo; Jafari, Abideh; Janot, Patrick; Karacheban, Olena; Kieseler, Jan; Knünz, Valentin; Kornmayer, Andreas; Krammer, Manfred; Lange, Clemens; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Malgeri, Luca; Mannelli, Marcello; Martelli, Arabella; Meijers, Frans; Merlin, Jeremie Alexandre; Mersi, Stefano; Meschi, Emilio; Milenovic, Predrag; Moortgat, Filip; Mulders, Martijn; Neugebauer, Hannes; Ngadiuba, Jennifer; Orfanelli, Styliani; Orsini, Luciano; Pantaleo, Felice; Pape, Luc; Perez, Emmanuel; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Pitters, Florian Michael; Rabady, Dinyar; Racz, Attila; Reis, Thomas; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Seidel, Markus; Selvaggi, Michele; Sharma, Archana; Silva, Pedro; Sphicas, Paraskevas; Stakia, Anna; Steggemann, Jan; Stoye, Markus; Tosi, Mia; Treille, Daniel; Tsirou, Andromachi; Veckalns, Viesturs; Verweij, Marta; Zeuner, Wolfram Dietrich; Bertl, Willi; Caminada, Lea; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Rohe, Tilman; Wiederkehr, Stephan Albert; Backhaus, Malte; Bäni, Lukas; Berger, Pirmin; Casal, Bruno; Chernyavskaya, Nadezda; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dorfer, Christian; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Klijnsma, Thomas; Lustermann, Werner; Marionneau, Matthieu; Meinhard, Maren Tabea; Meister, Daniel; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pata, Joosep; Pauss, Felicitas; Perrin, Gaël; Perrozzi, Luca; Quittnat, Milena; Reichmann, Michael; Ruini, Daniele; Sanz Becerra, Diego Alejandro; Schönenberger, Myriam; Shchutska, Lesya; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Vesterbacka Olsson, Minna Leonora; Wallny, Rainer; Zhu, De Hua; Aarrestad, Thea Klaeboe; Amsler, Claude; Brzhechko, Danyyl; Canelli, Maria Florencia; De Cosa, Annapaola; Del Burgo, Riccardo; Donato, Silvio; Galloni, Camilla; Hreus, Tomas; Kilminster, Benjamin; Neutelings, Izaak; Pinna, Deborah; Rauco, Giorgia; Robmann, Peter; Salerno, Daniel; Schweiger, Korbinian; Seitz, Claudia; Takahashi, Yuta; Zucchetta, Alberto; Candelise, Vieri; Chang, Yu-Hsiang; Cheng, Kai-yu; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Kuo, Chia-Ming; Lin, Willis; Pozdnyakov, Andrey; Yu, Shin-Shan; Kumar, Arun; Chang, Paoti; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Fiori, Francesco; Hou, George Wei-Shu; Hsiung, Yee; Liu, Yueh-Feng; Lu, Rong-Shyang; Paganis, Efstathios; Psallidas, Andreas; Steen, Arnaud; Tsai, Jui-fa; Asavapibhop, Burin; Kovitanggoon, Kittikul; Singh, Gurpreet; Srimanobhas, Norraphat; Bat, Ayse; Boran, Fatma; Cerci, Salim; Damarseckin, Serdal; Demiroglu, Zuhal Seyma; Dozen, Candan; Dumanoglu, Isa; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Hos, Ilknur; Kangal, Evrim Ersin; Kara, Ozgun; Kayis Topaksu, Aysel; Kiminsu, Ugur; Oglakci, Mehmet; Onengut, Gulsen; Ozdemir, Kadri; Sunar Cerci, Deniz; Tali, Bayram; Tok, Ufuk Guney; Turkcapar, Semra; Zorbakir, Ibrahim Soner; Zorbilmez, Caglar; Karapinar, Guler; Ocalan, Kadir; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Tekten, Sevgi; Yetkin, Elif Asli; Agaras, Merve Nazlim; Atay, Serhat; Cakir, Altan; Cankocak, Kerem; Komurcu, Yildiray; Grynyov, Boris; Levchuk, Leonid; Ball, Fionn; Beck, Lana; Brooke, James John; Burns, Douglas; Clement, Emyr; Cussans, David; Davignon, Olivier; Flacher, Henning; Goldstein, Joel; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Newbold, Dave M; Paramesvaran, Sudarshan; Sakuma, Tai; Seif El Nasr-storey, Sarah; Smith, Dominic; Smith, Vincent J; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Linacre, Jacob; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Womersley, William John; Auzinger, Georg; Bainbridge, Robert; Bloch, Philippe; Borg, Johan; Breeze, Shane; Buchmuller, Oliver; Bundock, Aaron; Casasso, Stefano; Colling, David; Corpe, Louie; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Di Maria, Riccardo; Elwood, Adam; Haddad, Yacine; Hall, Geoffrey; Iles, Gregory; James, Thomas; Komm, Matthias; Lane, Rebecca; Laner, Christian; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mastrolorenzo, Luca; Matsushita, Takashi; Nash, Jordan; Nikitenko, Alexander; Palladino, Vito; Pesaresi, Mark; Richards, Alexander; Rose, Andrew; Scott, Edward; Seez, Christopher; Shtipliyski, Antoni; Strebler, Thomas; Summers, Sioni; Tapper, Alexander; Uchida, Kirika; Vazquez Acosta, Monica; Virdee, Tejinder; Wardle, Nicholas; Winterbottom, Daniel; Wright, Jack; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Morton, Alexander; Reid, Ivan; Teodorescu, Liliana; Zahid, Sema; Borzou, Ahmad; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Liu, Hongxuan; Pastika, Nathaniel; Smith, Caleb; Bartek, Rachel; Dominguez, Aaron; Buccilli, Andrew; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; West, Christopher; Arcaro, Daniel; Avetisyan, Aram; Bose, Tulika; Gastler, Daniel; Rankin, Dylan; Richardson, Clint; Rohlf, James; Sulak, Lawrence; Zou, David; Benelli, Gabriele; Cutts, David; Hadley, Mary; Hakala, John; Heintz, Ulrich; Hogan, Julie Managan; Kwok, Ka Hei Martin; Laird, Edward; Landsberg, Greg; Lee, Jangbae; Mao, Zaixing; Narain, Meenakshi; Pazzini, Jacopo; Piperov, Stefan; Sagir, Sinan; Syarif, Rizki; Yu, David; Band, Reyer; Brainerd, Christopher; Breedon, Richard; Burns, Dustin; Calderon De La Barca Sanchez, Manuel; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Flores, Chad; Funk, Garrett; Ko, Winston; Lander, Richard; Mclean, Christine; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Shalhout, Shalhout; Shi, Mengyao; Smith, John; Stolp, Dustin; Taylor, Devin; Tos, Kyle; Tripathi, Mani; Wang, Zhangqier; Zhang, Fengwangdong; Bachtis, Michail; Bravo, Cameron; Cousins, Robert; Dasgupta, Abhigyan; Florent, Alice; Hauser, Jay; Ignatenko, Mikhail; Mccoll, Nickolas; Regnard, Simon; Saltzberg, David; Schnaible, Christian; Valuev, Vyacheslav; Bouvier, Elvire; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Ghiasi Shirazi, Seyyed Mohammad Amin; Hanson, Gail; Karapostoli, Georgia; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Olmedo Negrete, Manuel; Paneva, Mirena Ivova; Si, Weinan; Wang, Long; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cittolin, Sergio; Derdzinski, Mark; Gerosa, Raffaele; Gilbert, Dylan; Hashemi, Bobak; Holzner, André; Klein, Daniel; Kole, Gouranga; Krutelyov, Vyacheslav; Letts, James; Masciovecchio, Mario; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Wood, John; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Amin, Nick; Bhandari, Rohan; Bradmiller-Feld, John; Campagnari, Claudio; Citron, Matthew; Dishaw, Adam; Dutta, Valentina; Franco Sevilla, Manuel; Gouskos, Loukas; Heller, Ryan; Incandela, Joe; Ovcharova, Ana; Qu, Huilin; Richman, Jeffrey; Stuart, David; Suarez, Indara; Yoo, Jaehyeok; Anderson, Dustin; Bornheim, Adolf; Bunn, Julian; Lawhorn, Jay Mathew; Newman, Harvey B; Nguyen, Thong; Pena, Cristian; Spiropulu, Maria; Vlimant, Jean-Roch; Wilkinson, Richard; Xie, Si; Zhang, Zhicai; Zhu, Ren-Yuan; Andrews, Michael Benjamin; Ferguson, Thomas; Mudholkar, Tanmay; Paulini, Manfred; Russ, James; Sun, Menglei; Vogel, Helmut; Vorobiev, Igor; Weinberg, Marc; Cumalat, John Perry; Ford, William T; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Leontsinis, Stefanos; MacDonald, Emily; Mulholland, Troy; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chaves, Jorge; Cheng, Yangyang; Chu, Jennifer; Datta, Abhisek; Mcdermott, Kevin; Mirman, Nathan; Patterson, Juliet Ritchie; Quach, Dan; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Tan, Shao Min; Tao, Zhengcheng; Thom, Julia; Tucker, Jordan; Wittich, Peter; Zientek, Margaret; Abdullin, Salavat; Albrow, Michael; Alyari, Maral; Apollinari, Giorgio; Apresyan, Artur; Apyan, Aram; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Canepa, Anadi; Cerati, Giuseppe Benedetto; Cheung, Harry; Chlebana, Frank; Cremonesi, Matteo; Duarte, Javier; Elvira, Victor Daniel; Freeman, Jim; Gecse, Zoltan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Harris, Robert M; Hasegawa, Satoshi; Hirschauer, James; Hu, Zhen; Jayatilaka, Bodhitha; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kortelainen, Matti J; Kreis, Benjamin; Lammel, Stephan; Lincoln, Don; Lipton, Ron; Liu, Miaoyuan; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Magini, Nicolo; Marraffino, John Michael; Mason, David; McBride, Patricia; Merkel, Petra; Mrenna, Stephen; Nahn, Steve; O'Dell, Vivian; Pedro, Kevin; Prokofyev, Oleg; Rakness, Gregory; Ristori, Luciano; Savoy-Navarro, Aurore; Schneider, Basil; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Stoynev, Stoyan; Strait, James; Strobbe, Nadja; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Wang, Michael; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Wu, Weimin; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Brinkerhoff, Andrew; Carnes, Andrew; Carver, Matthew; Curry, David; Field, Richard D; Furic, Ivan-Kresimir; Gleyzer, Sergei V; Joshi, Bhargav Madhusudan; Konigsberg, Jacobo; Korytov, Andrey; Kotov, Khristian; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Mitselmakher, Guenakh; Shi, Kun; Sperka, David; Terentyev, Nikolay; Thomas, Laurent; Wang, Jian; Wang, Sean-Jiun; Yelton, John; Joshi, Yagya Raj; Linn, Stephan; Markowitz, Pete; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Todd; Askew, Andrew; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Kolberg, Ted; Martinez, German; Perry, Thomas; Prosper, Harrison; Saha, Anirban; Santra, Arka; Sharma, Varun; Yohay, Rachel; Baarmand, Marc M; Bhopatkar, Vallary; Colafranceschi, Stefano; Hohlmann, Marcus; Noonan, Daniel; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Cavanaugh, Richard; Chen, Xuan; Dittmer, Susan; Evdokimov, Olga; Gerber, Cecilia Elena; Hangal, Dhanush Anil; Hofman, David Jonathan; Jung, Kurt; Kamin, Jason; Sandoval Gonzalez, Irving Daniel; Tonjes, Marguerite; Varelas, Nikos; Wang, Hui; Wu, Zhenbin; Zhang, Jingyu; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tiras, Emrah; Wetzel, James; Yi, Kai; Blumenfeld, Barry; Cocoros, Alice; Eminizer, Nicholas; Fehling, David; Feng, Lei; Gritsan, Andrei; Hung, Wai Ting; Maksimovic, Petar; Roskes, Jeffrey; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; You, Can; Al-bataineh, Ayman; Baringer, Philip; Bean, Alice; Boren, Samuel; Bowen, James; Castle, James; Forthomme, Laurent; Khalil, Sadia; Kropivnitskaya, Anna; Majumder, Devdatta; Mcbrayer, William; Murray, Michael; Rogan, Christopher; Royon, Christophe; Sanders, Stephen; Schmitz, Erich; Tapia Takaki, Daniel; Wang, Quan; Ivanov, Andrew; Kaadze, Ketino; Maravin, Yurii; Modak, Atanu; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Baron, Owen; Belloni, Alberto; Eno, Sarah Catherine; Feng, Yongbin; Ferraioli, Charles; Hadley, Nicholas John; Jabeen, Shabnam; Jeng, Geng-Yuan; Kellogg, Richard G; Kunkle, Joshua; Mignerey, Alice; Ricci-Tam, Francesca; Shin, Young Ho; Skuja, Andris; Tonwar, Suresh C; Abercrombie, Daniel; Allen, Brandon; Azzolini, Virginia; Barbieri, Richard; Baty, Austin; Bauer, Gerry; Bi, Ran; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; D'Alfonso, Mariarosaria; Demiragli, Zeynep; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Harris, Philip; Hsu, Dylan; Hu, Miao; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Maier, Benedikt; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Narayanan, Siddharth; Niu, Xinmei; Paus, Christoph; Roland, Christof; Roland, Gunther; Stephans, George; Sumorok, Konstanty; Tatar, Kaya; Velicanu, Dragos; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Zhaozhong, Shi; Benvenuti, Alberto; Chatterjee, Rajdeep Mohan; Evans, Andrew; Hansen, Peter; Kalafut, Sean; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Turkewitz, Jared; Wadud, Mohammad Abrar; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Claes, Daniel R; Fangmeier, Caleb; Golf, Frank; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Kravchenko, Ilya; Monroy, Jose; Siado, Joaquin Emilo; Snow, Gregory R; Stieger, Benjamin; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Nguyen, Duong; Parker, Ashley; Rappoccio, Salvatore; Roozbahani, Bahareh; Alverson, George; Barberis, Emanuela; Freer, Chad; Hortiangtham, Apichart; Massironi, Andrea; Morse, David Michael; Orimoto, Toyoko; Teixeira De Lima, Rafael; Wamorkar, Tanvi; Wang, Bingran; Wisecarver, Andrew; Wood, Darien; Bhattacharya, Saptaparna; Charaf, Otman; Hahn, Kristan Allan; Mucia, Nicholas; Odell, Nathaniel; Schmitt, Michael Henry; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Bucci, Rachael; Dev, Nabarun; Hildreth, Michael; Hurtado Anampa, Kenyi; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Li, Wenzhao; Loukas, Nikitas; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Siddireddy, Prasanna; Smith, Geoffrey; Taroni, Silvia; Wayne, Mitchell; Wightman, Andrew; Wolf, Matthias; Woodard, Anna; Alimena, Juliette; Antonelli, Louis; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Francis, Brian; Hart, Andrew; Hill, Christopher; Ji, Weifeng; Ling, Ta-Yung; Luo, Wuming; Winer, Brian L; Wulsin, Howard Wells; Cooperstein, Stephane; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Higginbotham, Samuel; Kalogeropoulos, Alexis; Lange, David; Luo, Jingyu; Marlow, Daniel; Mei, Kelvin; Ojalvo, Isabel; Olsen, James; Palmer, Christopher; Piroué, Pierre; Salfeld-Nebgen, Jakob; Stickland, David; Tully, Christopher; Malik, Sudhir; Norberg, Scarlet; Barker, Anthony; Barnes, Virgil E; Das, Souvik; Gutay, Laszlo; Jones, Matthew; Jung, Andreas Werner; Khatiwada, Ajeeta; Miller, David Harry; Neumeister, Norbert; Peng, Cheng-Chieh; Qiu, Hao; Schulte, Jan-Frederik; Sun, Jian; Wang, Fuqiang; Xiao, Rui; Xie, Wei; Cheng, Tongguang; Dolen, James; Parashar, Neeti; Chen, Zhenyu; Ecklund, Karl Matthew; Freed, Sarah; Geurts, Frank JM; Guilbaud, Maxime; Kilpatrick, Matthew; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Roberts, Jay; Rorie, Jamal; Shi, Wei; Tu, Zhoudunming; Zabel, James; Zhang, Aobo; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Duh, Yi-ting; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Han, Jiyeon; Hindrichs, Otto; Khukhunaishvili, Aleko; Lo, Kin Ho; Tan, Ping; Verzetti, Mauro; Ciesielski, Robert; Goulianos, Konstantin; Mesropian, Christina; Agapitos, Antonis; Chou, John Paul; Gershtein, Yuri; Gómez Espinosa, Tirso Alejandro; Halkiadakis, Eva; Heindl, Maximilian; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Kyriacou, Savvas; Lath, Amitabh; Montalvo, Roy; Nash, Kevin; Osherson, Marc; Saka, Halil; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Delannoy, Andrés G; Heideman, Joseph; Riley, Grant; Rose, Keith; Spanier, Stefan; Thapa, Krishna; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Celik, Ali; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Gilmore, Jason; Huang, Tao; Kamon, Teruki; Mueller, Ryan; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Perniè, Luca; Rathjens, Denis; Safonov, Alexei; Tatarinov, Aysen; Akchurin, Nural; Damgov, Jordan; De Guio, Federico; Dudero, Phillip Russell; Faulkner, James; Gurpinar, Emine; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Mengke, Tielige; Muthumuni, Samila; Peltola, Timo; Undleeb, Sonaina; Volobouev, Igor; Wang, Zhixing; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Melo, Andrew; Ni, Hong; Padeken, Klaas; Ruiz Alvarez, José David; Sheldon, Paul; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Barria, Patrizia; Cox, Bradley; Hirosky, Robert; Joyce, Matthew; Ledovskoy, Alexander; Li, Hengne; Neu, Christopher; Sinthuprasith, Tutanon; Wang, Yanchu; Wolfe, Evan; Xia, Fan; Harr, Robert; Karchin, Paul Edmund; Poudyal, Nabin; Sturdy, Jared; Thapa, Prakash; Zaleski, Shawn; Brodski, Michael; Buchanan, James; Caillol, Cécile; Carlsmith, Duncan; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Gomber, Bhawna; Grothe, Monika; Herndon, Matthew; Hervé, Alain; Hussain, Usama; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Rekovic, Vladimir; Ruggles, Tyler; Savin, Alexander; Smith, Nicholas; Smith, Wesley H; Woods, Nathaniel; Antchev, G.; Aspell, P.; Atanassov, I.; Avati, V.; Baechler, J.; Baldenegro Barrera, C.; Berardi, V.; Berretti, M.; Bossini, E.; Bottigli, U.; Bozzo, M.; Cafagna, F.S.; Catanesi, M.G.; Csanád, M.; Csörgő, T.; Deile, M.; De Leonardis, F.; D'Orazio, A.; Doubek, M.; Druzhkin, D.; Eggert, K.; Eremin, V.; Fiergolski, A.; Garcia, F.; Georgiev, V.; Giani, S.; Grzanka, L.; Hammerbauer, J.; Heino, J.; Isidori, T.; Ivanchenko, V.; Janda, M.; Karev, A.; Kašpar, J.; Kopal, J.; Kundrát, V.; Lami, S.; Latino, G.; Lauhakangas, R.; Linhart, R.; Lindsey, C.; Lokajíček, M.V.; Losurdo, L.; Lo Vetere, M.; Lucas Rodríguez, F.; Macrí, M.; Malawski, M.; Minafra, N.; Minutoli, S.; Naaranoja, T.; Nemes, F.; Niewiadomski, H.; Novák, T.; Oliveri, E.; Oljemark, F.; Oriunno, M.; Österberg, K.; Palazzi, P.; Passaro, V.; Peroutka, Z.; Procházka, J.; Quinto, M.; Radermacher, E.; Radicioni, E.; Ravotti, F.; Ruggiero, G.; Saarikko, H.; Scribano, A.; Siroky, J.; Smajek, J.; Snoeys, W.; Stefanovitch, R.; Sziklai, J.; Taylor, C.; Tcherniaev, E.; Turini, N.; Vacek, V.; Welti, J.; Williams, J.; Wyszkowski, P.; Zich, J.; Zielinski, K.

    2018-01-01

    The process pp$\\to\\ell^+\\ell^-$p$^{(*)}$, with $\\ell^+\\ell^-$ a muon or an electron pair produced at midrapidity with mass larger than 110 GeV, has been observed for the first time at the LHC in pp collisions at $\\sqrt{s} =$ 13 TeV. One of the two scattered protons is measured in the CMS-TOTEM precision proton spectrometer (CT-PPS), which operated for the first time in 2016. The second proton either remains intact or is excited and then dissociates into a low-mass state p$^{*}$, which is undetected. The measurement is based on an integrated luminosity of 9.4 fb$^{-1}$ collected during standard, high-luminosity LHC operation. A total of 12 $\\mu^+\\mu^-$ and 8 e$^+$e$^-$ pairs with $m(\\ell^{+}\\ell^{-}) >$ 110 GeV, and matching forward proton kinematics, are observed, with expected backgrounds of 1.49 $\\pm$ 0.07 (stat) $\\pm$ 0.53 (syst) and 2.36 $\\pm$ 0.09 (stat) $\\pm$ 0.47 (syst), respectively. This corresponds to an excess of more than five standard deviations over the expected background. The present result co...

  9. Results in pion proton scattering near the higher resonances (1961); Resultats pour la diffusion des mesons pi par les protons dans le domaine des hautes resonances (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Falk-Vairant, P; Valladas, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    We present briefly the available Information on the total cross sections for pion proton scattering in the energy region from 400 MeV to 1.5 GeV. We also have collected all results on total cross sections for particular channels like elastic scattering, inelastic scattering and charge exchange. Using new results on the total cross section for neutral events, we have plotted separately the cross section for elastic and for inelastic scattering in the T = 1/2 state. (authors) [French] On presente brievement les donnees connues concernant la section efficace totale pour la diffusion des mesons pi par les protons dans le domaine d'energie de 400 MeV a 1,5 GeV. On a egalement rassemble tous les resultats concernant les sections efficaces totales pour des canaux particuliers: diffusion elastique, diffusion inelastique et echange de charge. En partant des nouveaux resultats sur la section efficace pour la diffusion elastique et inelastique dans l'etat T = 1/2. (auteurs)

  10. Measurement of the cross section for diffractive deep-inelastic scattering with a leading proton at HERA

    International Nuclear Information System (INIS)

    Aaron, F.D.; Alexa, C.; Rotaru, M.; Stoicea, G.; Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Loktionova, N.; Malinovski, E.; Rusakov, S.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y.; Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N.; Baghdasaryan, A.; Zohrabyan, H.; Barrelet, E.; Bartel, W.; Brandt, G.; Brinkmann, M.; Britzger, D.; Campbell, A.J.; Cholewa, A.; Deak, M.; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Gouzevitch, M.; Grebenyuk, A.; Grell, B.R.; Habib, S.; Haidt, D.; Helebrant, C.; Katzy, J.; Kleinwort, C.; Knutsson, A.; Kraemer, M.; Kutak, K.; Levonian, S.; Lipka, K.; List, J.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Nikiforov, A.; Nowak, K.; Olsson, J.E.; Pahl, P.; Panagoulias, I.; Papadopoulou, T.; Petrukhin, A.; Piec, S.; Pitzl, D.; Placakyte, R.; Schmitt, S.; Sefkow, F.; Staykova, Z.; Steder, M.; Toll, T.; Vargas Trevino, A.; Driesch, M. von den; Wuensch, E.; Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B.; Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F.; Boudry, V.; Moreau, F.; Specka, A.; Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I.; Bracinik, J.; Kenyon, I.R.; Newman, P.R.; Thompson, P.D.; Bruncko, D.; Cerny, V.; Ferencei, J.; Bunyatyan, A.; Buschhorn, G.; Chekelian, V.; Dossanov, A.; Grindhammer, G.; Kiesling, C.; Kogler, R.; Shushkevich, S.; Bystritskaya, L.; Efremenko, V.; Fedotov, A.; Kropivnitskaya, A.; Lubimov, V.; Ozerov, D.; Rostovtsev, A.; Zhokin, A.; Cantun Avila, K.B.; Contreras, J.G.; Ruiz Tabasco, J.E.; Ceccopieri, F.; Delvax, J.; Wolf, E.A. de; Favart, L.; Hreus, T.; Janssen, X.; Marage, P.; Mozer, M.U.; Roosen, R.; Sunar, D.; Sykora, T.; Mechelen, P. van; Cerny, K.; Pokorny, B.; Polifka, R.; Salek, D.; Valkarova, A.; Zacek, J.; Coughlan, J.A.; Morris, J.V.; Sankey, D.P.C.; Cvach, J.; Reimer, P.; Zalesak, J.; Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D.; Daum, K.; Meyer, H.; Diaconu, C.; Hoffmann, D.; Sauvan, E.; Vallee, C.; Dobre, M.; List, B.; Dodonov, V.; Povh, B.; Egli, S.; Hildebrandt, M.; Horisberger, R.; Feltesse, J.; Perez, E.; Schoeffel, L.; Goerlich, L.; Mikocki, S.; Milcewicz-Mika, I.; Nowak, G.; Sopicki, P.; Turnau, J.; Grab, C.; Henderson, R.C.W.; Sloan, T.; Hennekemper, E.; Herbst, M.; Jung, A.W.; Krueger, K.; Lendermann, V.; Schultz-Coulon, H.C.; Urban, K.; Henschel, H.; Hiller, K.H.; Kostka, P.; Lange, W.; Naumann, T.; Herrera, G.; Lopez-Fernandez, R.; Huber, F.; Pirumov, H.; Radescu, V.; Sauter, M.; Schoening, A.; Joensson, L.; Osman, S.; Jung, H.; Kapichine, M.; Makankine, A.; Morozov, A.; Nikitin, D.; Palichik, V.; Spaskov, V.; Landon, M.P.J.; Rizvi, E.; Thompson, G.; Traynor, D.; Martyn, H.U.; Mueller, K.; Robmann, P.; Straumann, U.; Truoel, P.; South, D.; Wegener, D.; Stella, B.; Tsakov, I.

    2011-01-01

    The cross section for the diffractive deep-inelastic scattering process ep→eXp is measured, with the leading final state proton detected in the H1 Forward Proton Spectrometer. The data sample covers the range x P 2 in squared four-momentum transfer at the proton vertex and 4 2 2 in photon virtuality. The cross section is measured four-fold differentially in t,x P ,Q 2 and β=x/x P , where x is the Bjorken scaling variable. The t and x P dependences are interpreted in terms of an effective pomeron trajectory and a sub-leading exchange. The data are compared with perturbative QCD predictions at next-to-leading order based on diffractive parton distribution functions previously extracted from complementary measurements of inclusive diffractive deep-inelastic scattering. The ratio of the diffractive to the inclusive ep cross section is studied as a function of Q 2 ,β and x P . (orig.)

  11. Measurement of the cross section for diffractive deep-inelastic scattering with a leading proton at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D.; Alexa, C.; Rotaru, M.; Stoicea, G. [National Inst. for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Loktionova, N.; Malinovski, E.; Rusakov, S.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y. [Lebedev Physical Inst., Moscow (Russian Federation); Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N. [Univ. of Montenegro, Faculty of Science, Podgorica (ME); Baghdasaryan, A.; Zohrabyan, H. [Yerevan Physics Inst., Yerevan (Armenia); Barrelet, E. [Univ. Pierre et Marie Curie Paris 6, Univ. Denis Diderot Paris 7, CNRS/IN2P3, LPNHE, Paris (France); Bartel, W.; Brandt, G.; Brinkmann, M.; Britzger, D.; Campbell, A.J.; Cholewa, A.; Deak, M.; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Gouzevitch, M.; Grebenyuk, A.; Grell, B.R.; Habib, S.; Haidt, D.; Helebrant, C.; Katzy, J.; Kleinwort, C.; Knutsson, A.; Kraemer, M.; Kutak, K.; Levonian, S.; Lipka, K.; List, J.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Nikiforov, A.; Nowak, K.; Olsson, J.E.; Pahl, P.; Panagoulias, I.; Papadopoulou, T.; Petrukhin, A.; Piec, S.; Pitzl, D.; Placakyte, R.; Schmitt, S.; Sefkow, F.; Staykova, Z.; Steder, M.; Toll, T.; Vargas Trevino, A.; Driesch, M. von den; Wuensch, E. [DESY, Hamburg (Germany); Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B. [Inst. of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar (Mongolia); Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F. [Universite Paris-Sud, CNRS/IN2P3, LAL, Orsay (France); Boudry, V.; Moreau, F.; Specka, A. [Ecole Polytechnique, CNRS/IN2P3, LLR, Palaiseau (France); Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I. [Vinca Inst. of Nuclear Sciences, Belgrade (RS); Bracinik, J.; Kenyon, I.R.; Newman, P.R.; Thompson, P.D. [Univ. of Birmingham, Birmingham (United Kingdom)

    2011-03-15

    The cross section for the diffractive deep-inelastic scattering process ep{yields}eXp is measured, with the leading final state proton detected in the H1 Forward Proton Spectrometer. The data sample covers the range x{sub P}<0.1 in fractional proton longitudinal momentum loss, 0.1< vertical stroke t vertical stroke <0.7 GeV{sup 2} in squared four-momentum transfer at the proton vertex and 4scattering. The ratio of the diffractive to the inclusive ep cross section is studied as a function of Q{sup 2},{beta} and x{sub P}. (orig.)

  12. Pion production and fragmentation of nuclei in high energy nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Oskarsson, A.

    1983-01-01

    In collisions between nuclei at high energies one can study the behaviour of nuclear matter under extreme conditions, regarding nuclear density and temperature. The Bevalac and the CERN SC beams have been used and nuclear emulsion and scintillation telescopes have measured the reaction products. Collisions at 50A-200A MeV and at 2A GeV have been investigated. Proton spectra from 12 C induced reactions at 85A MeV have been recorded for different targets. Energetic protons at large angles can be assumed to be emitted from a source moving with half the beam velocity and a temperature between 13 and 17 MeV, depending on the target. In collisions between nuclei, pions can be produced below 290A MeV due to the internal Fermi motion of the nucleons. Subthreshold pion production has been studied for 12 C induced reactions at 85A and 75A Mev. The cross-sections are consistent with a quasi-free nucleon-nucleon scattering picture, involving Fermi motion, Pauli blocking and pion reabsorption. 16 C induced reactions in emulsion have been studied at 75A, 175A and 2000A MeV. It is shown that the excitation of the parts of the nuclei which are not overlapping (the spectators) increases with the beam energy. The 16 O projectile frequently breaks up into multiple He fragments. These events are associated with large impact parameters. Central collisions with Ag, Br target at 50A-110A MeV have been analysed separately. It is shown that the momentum transfer to the target nucleus is limited to a value considerably lower than the full momentum transfer in a fusion reactions. Events are observed where there are numerous fragments with 3< Z<8. These multifragmentation events cannot be understood in a thermal approach. (author)

  13. Measurement of Polarization Observables in the Electro-Excitation of the Proton to its First Excited State

    Energy Technology Data Exchange (ETDEWEB)

    Roche, Rikki [Florida State Univ., Tallahassee, FL (United States)

    2003-08-01

    This thesis reports results from the Thomas Jefferson National Accelerator Facility (Jefferson Lab) Hall A experiment E91-011, which measured double-polarization observables in the pion electroproduction reaction from the proton. Specifically, the experiment measured the recoil proton polarization, polarized response functions, and cross section for the p($\\vec{e}$, e' $\\vec{p}$) π° reaction at a center-of-mass energy centered at W = 1232 MeV--the peak of the Δ(1232) resonance--and at a four-momentum transfer squared of Q2 = 1.0 GeV2/c2. Both the recoil proton polarization and polarized response function results will be presented in this thesis. Data were collected at Jefferson Lab, located in Newport News, Virginia during the summer of 2000. A 4.53 GeV polarized electron beam was scattered off of a cryogenic hydrogen target. The recoil proton polarization was measured in the Focal Plane Polarimeter (FPP), located in one of the two High Resolution Spectrometers (HRS) in Hall A. A maximum likelihood method was used to determine the polarized response functions directly from the measured polarizations and cross sections. A simultaneous fit of the cross sections, the recoil proton polarizations, and angular distributions of the polarized response functions will provide a determination of individual multipole amplitudes. Some of these multipole amplitudes are related to the concept of proton deformation. Both the recoil proton polarizations and polarized response functions were compared to two phenomenological models: MAID and SAID, which have all free parameters fixed, based on fits to previous world data. The measured helicity dependent observables, which are dominated by imaginary parts of Δ(1232)-resonance excitation multipole amplitudes, agree very well with the two models. The measured helicity independent observables, which are dominated by real parts of background multipole amplitudes, do not agree completely with

  14. Strange Quark Contributions to Parity-Violating Asymmetries in the Forward G0 Electron-Proton Scattering Experiment

    Energy Technology Data Exchange (ETDEWEB)

    David Armstrong; Francois Arvieux; Razmik Asaturyan; Todd Averett; Stephanie Bailey; Guillaume Batigne; Douglas Beck; Elizabeth Beise; Jay Benesch; Louis Bimbot; James Birchall; Angela Biselli; Peter Bosted; Elodie Boukobza; Herbert Breuer; Roger Carlini; R. Carr; Nicholas Chant; Yu-Chiu Chao; Swapan Chattopadhyay; Russell Clark; Silviu Covrig; Anthony Cowley; Daniel Dale; C. Davis; Willie Falk; John Finn; Tony Forest; Gregg Franklin; Christophe Furget; David Gaskell; Joseph Grames; Keith Griffioen; Klaus Grimm; Benoit Guillon; Hayko Guler; Lars Hannelius; R. Hasty; A. Hawthorne Allen; Tanja Horn; Kathleen Johnston; Mark Jones; Peter Kammel; Reza Kazimi; Paul King; Ameya Kolarkar; Elie Korkmaz; Wolfgang Korsch; Serge Kox; Joachim Kuhn; Jeff Lachniet; Lawrence Lee; Jason Lenoble; Eric Liatard; J. Liu; Berenice Loupias; A. Lung; Glen MacLachlan; Dominique Marchand; J.W. Martin; Kenneth McFarlane; Daniella Mckee; Robert McKeown; Fernand Merchez; Hamlet Mkrtchyan; Bryan Moffit; M. Morlet; Itaru Nakagawa; Kazutaka Nakahara; Melissa Nakos; Retief Neveling; Silvia Niccolai; S. Ong; Shelley Page; Vassilios Papavassiliou; Stephen Pate; Sarah Phillips; Mark Pitt; Benard Poelker; Tracy Porcelli; Gilles Quemener; Brian Quinn; William Ramsay; Aamer Rauf; Jean-Sebastien Real; Julie Roche; Philip Roos; Gary Rutledge; Jeffery Secrest; Neven Simicevic; G.R. Smith; Damon Spayde; Samuel Stepanyan; Marcy Stutzman; Vincent Sulkosky; Vardan Tadevosyan; Raphael Tieulent; Jacques Van de Wiele; Willem van Oers; Eric Voutier; William Vulcan; G. Warren; S.P. Wells; Steven Williamson; S.A. Wood; Chen Yan; Junho Yun; Valdis Zeps

    2005-06-01

    We have measured parity-violating asymmetries in elastic electron-proton scattering over the range of momentum transfers 0.12 < Q{sup 2} < 1.0 GeV{sup 2}. These asymmetries, arising from interference of the electromagnetic and neutral weak interactions, are sensitive to strange quark contributions to the currents of the proton. The measurements were made at JLab using a toroidal spectrometer to detect the recoiling protons from a liquid hydrogen target. The results indicate non-zero, Q{sup 2} dependent, strange quark contributions and provide new information beyond that obtained in previous experiments.

  15. Measurements of sin2 θ/sub w/ from studies of the elastic scattering of neutrinos by protons and electrons

    International Nuclear Information System (INIS)

    Mann, A.K.

    1986-01-01

    This talk is intended as a brief report on studies of the elastic scattering of neutrinos by protons and electrons. Measurements of the ratios of muon antineutrino and muon neutrino elastic scattering on protons, and the corresponding ratio for elastic scattering on electrons minimize systematic experimental errors, and lead directly to values of the fundamental parameter of the electroweak interaction, the Weinberg Angle, with minimal ambiguity. Accordingly, the principal motivation in carrying out these studies was the desire to obtain and compare precise values of the Weinberg Angle from both the semileptonic and leptonic reactions as still another test of the basic validity of the standard electroweak theory. 10 refs., 11 figs

  16. Scattering of a proton with the Li{sub 4} cluster: Non-adiabatic molecular dynamics description based on time-dependent density-functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Castro, A., E-mail: acastro@bifi.es [Institute for Biocomputation and Physics of Complex Systems (BIFI) and Zaragoza Scientific Center for Advanced Modelling (ZCAM), University of Zaragoza, 50018 Zaragoza (Spain); Isla, M. [Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, 47005 Valladolid (Spain); Martinez, Jose I. [Departamento de Fisica Teorica de la Materia Condensada, Universidad Autonoma de Madrid, ES-28049 Madrid (Spain); Alonso, J.A. [Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, 47005 Valladolid (Spain)

    2012-05-03

    Graphical abstract: Two trajectories for the collision of a proton with the Lithium tetramer. On the left, the proton is scattered away, and a Li{sub 2} molecule plus two isolated Lithium atoms result. On the right, the proton is captured and a LiH molecule is created. Highlights: Black-Right-Pointing-Pointer Scattering of a proton with Lithium clusters described from first principles. Black-Right-Pointing-Pointer Description based on non-adiabatic molecular dynamics. Black-Right-Pointing-Pointer The electronic structure is described with time-dependent density-functional theory. Black-Right-Pointing-Pointer The method allows to discern reaction channels depending on initial parameters. - Abstract: We have employed non-adiabatic molecular dynamics based on time-dependent density-functional theory to characterize the scattering behavior of a proton with the Li{sub 4} cluster. This technique assumes a classical approximation for the nuclei, effectively coupled to the quantum electronic system. This time-dependent theoretical framework accounts, by construction, for possible charge transfer and ionization processes, as well as electronic excitations, which may play a role in the non-adiabatic regime. We have varied the incidence angles in order to analyze the possible reaction patterns. The initial proton kinetic energy of 10 eV is sufficiently high to induce non-adiabatic effects. For all the incidence angles considered the proton is scattered away, except in one interesting case in which one of the Lithium atoms captures it, forming a LiH molecule. This theoretical formalism proves to be a powerful, effective and predictive tool for the analysis of non-adiabatic processes at the nanoscale.

  17. Scattering of polarized protons by yttrium, iron and nickel nuclei

    International Nuclear Information System (INIS)

    Melssen, J.P.M.G.

    1978-01-01

    Results are presented of scattering experiments performed on yttrium and some iron and nickel isotopes with polarized proton beams at energies around 20 MeV. The angular distributions of the differential cross sections and analyzing powers have been measured and comparison of these with predictions from theoretical models has led to information about excited nuclear states like spin, parity and details of the wavefunctions. The DWBA has been mostly used to describe the reaction at the bombarding energies and for the target nuclei investigated. (C.F.)

  18. Measurement of the Neutron Radius of 208Pb Through Parity Violation in Electron Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Saenboonruang, Kiadtisak [Univ. of Virginia, Charlottesville, VA (United States)

    2013-05-01

    In contrast to the nuclear charge densities, which have been accurately measured with electron scattering, the knowledge of neutron densities still lack precision. Previous model-dependent hadron experiments suggest the difference between the neutron radius, Rn, of a heavy nucleus and the proton radius, Rp, to be in the order of several percent. To accurately obtain the difference, Rn-Rp, which is essentially a neutron skin, the Jefferson Lab Lead (208Pb) Radius Experiment (PREX) measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from 208Pb at an energy of 1.06 GeV and a scattering angle of 5° . Since Z0 boson couples mainly to neutrons, this asymmetry provides a clean measurement of Rn with respect to Rp. PREX was conducted at the Jefferson lab experimental Hall A, from March to June 2010. The experiment collected a final data sample of 2x 107 helicity-window quadruplets. The measured parity-violating electroweak asymmetry APV = 0.656 ± 0.060 (stat) ± 0.014 (syst) ppm corresponds to a difference between the radii of the neutron and proton distributions, Rn-Rp = 0.33+0.16-0.18 fm and provides the first electroweak observation of the neutron skin as expected in a heavy, neutron-rich nucleus. The value of the neutron radius of 208Pb has important implications for models of nuclear structure and their application in atomic physics and astrophysics such as atomic parity non-conservation (PNC) and neutron stars.

  19. Elastic and inelastic scattering of 2 to 10 MeV protons by lithium isotopes; Diffusion elastique et inelastique des protons de 2 a 10 MeV par les isotopes du lithium

    Energy Technology Data Exchange (ETDEWEB)

    Laurat, M [Commissariat a l' Energie Atomique, Bruyeres-le-Chatel (France). Centre d' Etudes

    1969-07-01

    A description is given of the experimental set-up which has been devised for carrying out spectrometric and absolute cross-section measurements on the reactions induced by protons accelerated in a 12 MeV Van de Graaff Tandem. The particles are detected by silicon junctions; the weight of the targets (about ten {mu}g/cm{sup 2}) is determined by the quartz method. The experimental equipment has been controlled by a study of proton scattering by lithium-6, and has made it possible to evaluate the elastic and inelastic scattering (1. level excitation) by lithium 7 of 2 to 9 MeV protons. The most probable spin and parity values for the six levels of {sup 8}Be between 19 and 25 MeV excitation energy have been determined from a knowledge of the observed structure. (author) [French] Nous decrivons le dispositif experimental mis au point pour effectuer les mesures de spectrometrie et de section efficace absolue pour les reactions induites par des protons acceleres par un Van de Graaff Tandem 12 MeV. Les particules sont detectees par des jonctions au silicium, le poids des cibles (de l'ordre d'une dizaine de {mu}g/cm{sup 2}), mesure par la methode du quartz. L'ensemble de l'appareillage a ete controle par l'etude de la diffusion des protons par le lithium 6, et nous a permis de preciser les diffusions elastiques et inelastiques (excitation du 1er niveau) des protons de 2 a 9 MeV par le lithium 7. La structure observee a permis de determiner les spin et parite les plus probables de six niveaux du {sup 8}Be entre 19 et 25 MeV d'energie d'excitation. (auteur)

  20. Elastic and inelastic scattering of 2 to 10 MeV protons by lithium isotopes; Diffusion elastique et inelastique des protons de 2 a 10 MeV par les isotopes du lithium

    Energy Technology Data Exchange (ETDEWEB)

    Laurat, M. [Commissariat a l' Energie Atomique, Bruyeres-le-Chatel (France). Centre d' Etudes

    1969-07-01

    A description is given of the experimental set-up which has been devised for carrying out spectrometric and absolute cross-section measurements on the reactions induced by protons accelerated in a 12 MeV Van de Graaff Tandem. The particles are detected by silicon junctions; the weight of the targets (about ten {mu}g/cm{sup 2}) is determined by the quartz method. The experimental equipment has been controlled by a study of proton scattering by lithium-6, and has made it possible to evaluate the elastic and inelastic scattering (1. level excitation) by lithium 7 of 2 to 9 MeV protons. The most probable spin and parity values for the six levels of {sup 8}Be between 19 and 25 MeV excitation energy have been determined from a knowledge of the observed structure. (author) [French] Nous decrivons le dispositif experimental mis au point pour effectuer les mesures de spectrometrie et de section efficace absolue pour les reactions induites par des protons acceleres par un Van de Graaff Tandem 12 MeV. Les particules sont detectees par des jonctions au silicium, le poids des cibles (de l'ordre d'une dizaine de {mu}g/cm{sup 2}), mesure par la methode du quartz. L'ensemble de l'appareillage a ete controle par l'etude de la diffusion des protons par le lithium 6, et nous a permis de preciser les diffusions elastiques et inelastiques (excitation du 1er niveau) des protons de 2 a 9 MeV par le lithium 7. La structure observee a permis de determiner les spin et parite les plus probables de six niveaux du {sup 8}Be entre 19 et 25 MeV d'energie d'excitation. (auteur)