WorldWideScience

Sample records for proton west secondary

  1. Upgrade of the Proton West secondary beamline

    International Nuclear Information System (INIS)

    Spiegel, L.

    1989-01-01

    As originally designed and operated, protons entering PW6 were steered by a series of EPB dipoles into a single interaction length beryllium target, some 43 feet from the enclosure wall. Ensuing secondary beams, either p + /π + or p - /π - , were collected by a string of quadrupoles following the target, steered westward, away from the Proton Center line, through PW6 and PW7, and ultimately focussed on experiment production targets located within the large PW8 hall. Around the Spring of 1988 it was decided to upgrade the existing Proton West secondary beamline to allow for transport of a primary proton beam, anticipated to be either 800 or 900 GeV/c, through PW8. This upgrade project, which is now nearing completion, was largely motivated by the then recent approval of E-771, a hadronic beauty production experiment located in PW8. E-771 represents the third in a series of experiments for the large-acceptance dimuon spectrometer presently located at the end of the Proton West beamline. This Technical Memo is a summary of the upgrade --- an explanation of the underlying strategy and a documentation of the final locations of the secondary beamline elements. 6 refs., 2 figs., 2 tabs

  2. P-West High Intensity Secondary Beam Area Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Cox, A.; Currier, R.; Eartly, D.; Guthke, A.; Johnson, G.; Lee, D.; Dram, R.; Villegas, E.; Rest, J.; Tilles, E.; Vander Arend, P.

    1977-03-01

    This report gives the initial design parameters of a 1000 GeV High Intensity Superconducting Secondary Beam Laboratory to be situated in the Proton Area downstream of the existing Proton West experimental station. The area will provide Fermilab with a major capability for experimentation with pion and antiproton beams of intensities and of energies available at no other laboratory and with an electron beam with excellent spot size, intensity, and purity at energies far above that available at electron machines. Detailed beam design, area layouts, and cost estimates are presented, along with the design considerations.

  3. The optics of secondary polarized proton beams

    International Nuclear Information System (INIS)

    Carey, D.C.

    1990-05-01

    Polarized protons can be produced by the parity-violating decay of either lambda or sigma hyperons. A secondary bema of polarized protons can then be produced without the difficult procedure of accelerating polarized protons. The preservation of the polarization while the protons are being transmitted to a final focus places stringent limitations on the optics of the beam line. The equations of motion of a polarized particle in a magnetic field have been solved to first order for quadrupole and dipole magnets. The lowest order terms indicate that the polarization vector will be restored to its original direction upon passage through a magnetic system if the momentum vector is unaltered. Higher-order terms may be derived by an expansion in commutators of the rotation matrix and its longitudinal derivative. The higher-order polarization rotation terms then arise from the non-commutivity of the rotation matrices by large angles in three-dimensional space. 5 refs., 3 figs

  4. Estimation dose of secondary neutrons in proton therapy

    International Nuclear Information System (INIS)

    Urban, T.

    2014-01-01

    Most of proton therapy centers for cancer treatment are still based on the passive scattering, in some of them there is system of the active scanning installed as well. The aim of this study is to compare secondary neutron doses in and around target volumes in proton therapy for both treatment techniques and for different energies and profile of incident proton beam. The proton induced neutrons have been simulated in the very simple geometry of tissue equivalent phantom (imitate the patient) and scattering and scanning nozzle, respectively. In simulations of the scattering nozzle, different types of scattering filters and brass collimators have been used as well. 3D map of neutron doses in and around the chosen/potential target volume in the phantom/patient have been evaluated and compared in the context of the dose deposited in the target volume. Finally, the simulation results have been compared with published data. (author)

  5. Secondary-electron-bremsstrahlung imaging for proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Mitsutaka; Nagao, Yuto [Takasaki Advanced Radiation Research Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki-Machi, Takasaki, Gunma (Japan); Ando, Koki; Yamamoto, Seiichi [Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-Ku, Nagoya, Aichi (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, 1-1-1 Hirate-cho, Kita-Ku, Nagoya, Aichi (Japan); Kataoka, Jun [Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo (Japan); Kawachi, Naoki [Takasaki Advanced Radiation Research Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki-Machi, Takasaki, Gunma (Japan)

    2016-10-11

    A feasibility study on an imaging technique of a therapeutic proton-beam trajectory using a gamma camera by measuring secondary electron bremsstrahlung (SEB) was performed by means of Monte Carlo simulations and a beam-irradiation experiment. From the simulation and experimental results, it was found that a significant amount of SEB yield exists between the beam-injection surface and the range position along the beam axis and the beam trajectory is clearly imaged by the SEB yield. It is concluded that the SEB imaging is a promising technique for monitoring of therapeutic proton-beam trajectories.

  6. Secondary electron emission from 0.5--2.5-MeV protons and deuterons

    International Nuclear Information System (INIS)

    Thornton, T.A.; Anno, J.N.

    1977-01-01

    Measurement of the secondary electron currents leaving Al, V, Fe, 316 stainless steel, Nb, and Mo foils undergoing 0.5--2.5-MeV proton and deuteron bombardment were made to determine the secondary electron emission ratios for these ions. The measured secondary electron yields were of the order of 1.0, with the deuterons producing generally higher yields than the protons

  7. Secondary proton production at small atmospheric depths as a function of the geomagnetic cut-off

    Energy Technology Data Exchange (ETDEWEB)

    Papini, P. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Grimani, C. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); Stephens, S.A. [Tata Institute of Fundamental Research, Bombay (International Commission on Radiation Units and Measurements)

    1995-09-01

    A detailed calculation of the energy spectrum of secondary protons in the atmosphere is being carried out in the energy range 20 MeV - 40 GeV. In this calculation, it is taken into account all processes leading to the production of secondary protons as a function of the atmospheric depth has been calculated using all relevant energy loss processes. In this paper, it is examine the effect of the geomagnetic cut-off on the spectral shape of secondary protons specially at energies below the geomagnetic cut-off for small atmospheric depths.

  8. Secondary proton production at small atmospheric depths as a function of the geomagnetic cut-off

    International Nuclear Information System (INIS)

    Papini, P.; Grimani, C.; Stephens, S.A.

    1995-01-01

    A detailed calculation of the energy spectrum of secondary protons in the atmosphere is being carried out in the energy range 20 MeV - 40 GeV. In this calculation, it is taken into account all processes leading to the production of secondary protons as a function of the atmospheric depth has been calculated using all relevant energy loss processes. In this paper, it is examine the effect of the geomagnetic cut-off on the spectral shape of secondary protons specially at energies below the geomagnetic cut-off for small atmospheric depths

  9. Off-axis dose equivalent due to secondary neutrons from uniform scanning proton beams during proton radiotherapy

    Science.gov (United States)

    Islam, M. R.; Collums, T. L.; Zheng, Y.; Monson, J.; Benton, E. R.

    2013-11-01

    The production of secondary neutrons is an undesirable byproduct of proton therapy and it is important to quantify the contribution from secondary neutrons to patient dose received outside the treatment volume. The purpose of this study is to investigate the off-axis dose equivalent from secondary neutrons experimentally using CR-39 plastic nuclear track detectors (PNTD) at ProCure Proton Therapy Center, Oklahoma City, OK. In this experiment, we placed several layers of CR-39 PNTD laterally outside the treatment volume inside a phantom and in air at various depths and angles with respect to the primary beam axis. Three different proton beams with max energies of 78, 162 and 226 MeV and 4 cm modulation width, a 5 cm diameter brass aperture, and a small snout located 38 cm from isocenter were used for the entire experiment. Monte Carlo simulations were also performed based on the experimental setup using a simplified snout configuration and the FLUKA Monte Carlo radiation transport code. The measured ratio of secondary neutron dose equivalent to therapeutic primary proton dose (H/D) ranged from 0.3 ± 0.08 mSv Gy-1 for 78 MeV proton beam to 37.4 ± 2.42 mSv Gy-1 for 226 MeV proton beam. Both experiment and simulation showed a similar decreasing trend in dose equivalent with distance to the central axis and the magnitude varied by a factor of about 2 in most locations. H/D was found to increase as the energy of the primary proton beam increased and higher H/D was observed at 135° compared to 45° and 90°. The overall higher H/D in air indicates the predominance of external neutrons produced in the nozzle rather than inside the body.

  10. Off-axis dose equivalent due to secondary neutrons from uniform scanning proton beams during proton radiotherapy

    International Nuclear Information System (INIS)

    Islam, M R; Collums, T L; Monson, J; Benton, E R; Zheng, Y

    2013-01-01

    The production of secondary neutrons is an undesirable byproduct of proton therapy and it is important to quantify the contribution from secondary neutrons to patient dose received outside the treatment volume. The purpose of this study is to investigate the off-axis dose equivalent from secondary neutrons experimentally using CR-39 plastic nuclear track detectors (PNTD) at ProCure Proton Therapy Center, Oklahoma City, OK. In this experiment, we placed several layers of CR-39 PNTD laterally outside the treatment volume inside a phantom and in air at various depths and angles with respect to the primary beam axis. Three different proton beams with max energies of 78, 162 and 226 MeV and 4 cm modulation width, a 5 cm diameter brass aperture, and a small snout located 38 cm from isocenter were used for the entire experiment. Monte Carlo simulations were also performed based on the experimental setup using a simplified snout configuration and the FLUKA Monte Carlo radiation transport code. The measured ratio of secondary neutron dose equivalent to therapeutic primary proton dose (H/D) ranged from 0.3 ± 0.08 mSv Gy −1  for 78 MeV proton beam to 37.4 ± 2.42 mSv Gy −1  for 226 MeV proton beam. Both experiment and simulation showed a similar decreasing trend in dose equivalent with distance to the central axis and the magnitude varied by a factor of about 2 in most locations. H/D was found to increase as the energy of the primary proton beam increased and higher H/D was observed at 135° compared to 45° and 90°. The overall higher H/D in air indicates the predominance of external neutrons produced in the nozzle rather than inside the body. (paper)

  11. Enhancement of the incoherent scattering plasma lines due to precipitating protons and secondary electrons

    International Nuclear Information System (INIS)

    Bjoernaa, N.; Havnes, O.; Jensen, J.O.; Trulsen, J.

    1982-01-01

    Precipitating protons in the energy range 1-100 keV are regularly present in the auroral ionosphere. These protons will produce enhancements in the intensity of the upshifted plasma line of the incoherently scattered spectrum. Similarly, secondary electrons produced by the precipitating protons give rise to enhanced plasma line intensities. For a quantitative discussion of these effects an experimentally measured proton flux is adapted and the corresponding secondary electron flux calculated. These particle fluxes are then applied in connection with the EISCAT radar facility. Both fluxes give rise to enhancements of the order of 20. It is possible to separate between proton and electron contributions to the enhanced plasma lines for scattering heights above the source region of secondary electrons. (Auth.)

  12. Assessment of doses due to secondary neutrons received by patient treated by proton therapy

    International Nuclear Information System (INIS)

    Sayah, R.; Martinetti, F.; Donadille, L.; Clairand, I.; Delacroix, S.; De Oliveira, A.; Herault, J.

    2010-01-01

    Proton therapy is a specific technique of radiotherapy which aims at destroying cancerous cells by irradiating them with a proton beam. Nuclear reactions in the device and in the patient himself induce secondary radiations involving mainly neutrons which contribute to an additional dose for the patient. The author reports a study aimed at the assessment of these doses due to secondary neutrons in the case of ophthalmological and intra-cranial treatments. He presents a Monte Carlo simulation of the room and of the apparatus, reports the experimental validation of the model (dose deposited by protons in a water phantom, ambient dose equivalent due to neutrons in the treatment room, absorbed dose due to secondary particles in an anthropomorphic phantom), and the assessment with a mathematical phantom of doses dues to secondary neutrons received by organs during an ophthalmological treatment. He finally evokes current works of calculation of doses due to secondary neutrons in the case of intra-cranial treatments

  13. Monte Carlo simulation of secondary neutron dose for scanning proton therapy using FLUKA.

    Directory of Open Access Journals (Sweden)

    Chaeyeong Lee

    Full Text Available Proton therapy is a rapidly progressing field for cancer treatment. Globally, many proton therapy facilities are being commissioned or under construction. Secondary neutrons are an important issue during the commissioning process of a proton therapy facility. The purpose of this study is to model and validate scanning nozzles of proton therapy at Samsung Medical Center (SMC by Monte Carlo simulation for beam commissioning. After the commissioning, a secondary neutron ambient dose from proton scanning nozzle (Gantry 1 was simulated and measured. This simulation was performed to evaluate beam properties such as percent depth dose curve, Bragg peak, and distal fall-off, so that they could be verified with measured data. Using the validated beam nozzle, the secondary neutron ambient dose was simulated and then compared with the measured ambient dose from Gantry 1. We calculated secondary neutron dose at several different points. We demonstrated the validity modeling a proton scanning nozzle system to evaluate various parameters using FLUKA. The measured secondary neutron ambient dose showed a similar tendency with the simulation result. This work will increase the knowledge necessary for the development of radiation safety technology in medical particle accelerators.

  14. Constraints of Implementing Free Secondary Education in Mandera West Sub-County, Mandera County, Kenya

    Science.gov (United States)

    Adan, Mohammed Abdi; Orodho, John Aluko

    2015-01-01

    This study sought to find out the constraints of implementing free secondary education (FSE) in secondary schools in Mandera West Sub-County, Mandera County, Kenya. The study is based on the theory of constraints as the researcher examines the factors constraining the achievement of FSE objectives. The study used the survey design. The main…

  15. Predicted Rates of Secondary Malignancies From Proton Versus Photon Radiation Therapy for Stage I Seminoma

    Energy Technology Data Exchange (ETDEWEB)

    Simone, Charles B., E-mail: csimone@alumni.upenn.edu [Department of Radiation Oncology, Hospital of University of Pennsylvania, Philadelphia, Pennsylvania (United States); Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States); Kramer, Kevin [Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, Maryland (United States); O' Meara, William P. [Division of Radiation Oncology, National Naval Medical Center, Bethesda, Maryland (United States); Bekelman, Justin E. [Department of Radiation Oncology, Hospital of University of Pennsylvania, Philadelphia, Pennsylvania (United States); Belard, Arnaud [Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, Maryland (United States); McDonough, James [Department of Radiation Oncology, Hospital of University of Pennsylvania, Philadelphia, Pennsylvania (United States); O' Connell, John [Radiation Oncology Service, Walter Reed Army Medical Center, Washington, DC (United States)

    2012-01-01

    Purpose: Photon radiotherapy has been the standard adjuvant treatment for stage I seminoma. Single-dose carboplatin therapy and observation have emerged as alternative options due to concerns for acute toxicities and secondary malignancies from radiation. In this institutional review board-approved study, we compared photon and proton radiotherapy for stage I seminoma and the predicted rates of excess secondary malignancies for both treatment modalities. Methods and Material: Computed tomography images from 10 consecutive patients with stage I seminoma were used to quantify dosimetric differences between photon and proton therapies. Structures reported to be at increased risk for secondary malignancies and in-field critical structures were contoured. Reported models of organ-specific radiation-induced cancer incidence rates based on organ equivalent dose were used to determine the excess absolute risk of secondary malignancies. Calculated values were compared with tumor registry reports of excess secondary malignancies among testicular cancer survivors. Results: Photon and proton plans provided comparable target volume coverage. Proton plans delivered significantly lower mean doses to all examined normal tissues, except for the kidneys. The greatest absolute reduction in mean dose was observed for the stomach (119 cGy for proton plans vs. 768 cGy for photon plans; p < 0.0001). Significantly more excess secondary cancers per 10,000 patients/year were predicted for photon radiation than for proton radiation to the stomach (4.11; 95% confidence interval [CI], 3.22-5.01), large bowel (0.81; 95% CI, 0.39-1.01), and bladder (0.03; 95% CI, 0.01-0.58), while no difference was demonstrated for radiation to the pancreas (0.02; 95% CI, -0.01-0.06). Conclusions: For patients with stage I seminoma, proton radiation therapy reduced the predicted secondary cancer risk compared with photon therapy. We predict a reduction of one additional secondary cancer for every 50 patients

  16. Calculation of primary and secondary dose in proton therapy of brain tumors using Monte Carlo method

    International Nuclear Information System (INIS)

    Moghbel Esfahani, F.; Alamatsaz, M.; Karimian, A.

    2012-01-01

    High-energy beams of protons offer significant advantages for the treatment of deep-seated local tumors. Their physical depth-dose distribution in tissue is characterized by a small entrance dose and a distinct maximum - Bragg peak - near the end of range with a sharp falloff at the distal edge. Therefore, research must be done to investigate the possible negative and positive effects of using proton therapy as a treatment modality. In proton therapy, protons do account for the vast majority of dose. However, when protons travel through matter, secondary particles are created by the interactions of protons and matter en route to and within the patient. It is believed that secondary dose can lead to secondary cancer, especially in pediatric cases. Therefore, the focus of this work is determining both primary and secondary dose. Dose calculations were performed by MCNPX in tumoral and healthy parts of brain. The brain tumor has a 10 mm diameter and is located 16 cm under the skin surface. The brain was simulated by a cylindrical water phantom with the dimensions of 19 x 19cm 2 (length x diameter), with 0.5 cm thickness of plexiglass (C 4 H 6 O 2 ). Then beam characteristics were investigated to ensure the accuracy of the model. Simulations were initially validated with against packages such as SRIM/TRIM. Dose calculations were performed using different configurations to evaluate depth-dose profiles and dose 2D distributions.The results of the simulation show that the best proton energy interval, to cover completely the brain tumor, is from 152 to 154 MeV. (authors)

  17. Secondary neutron doses received by patients of different ages during intracranial proton therapy treatments

    International Nuclear Information System (INIS)

    Sayah, R.

    2012-01-01

    Proton therapy is an advanced radiation therapy technique that allows delivering high doses to the tumor while saving the healthy surrounding tissues due to the protons' ballistic properties. However, secondary particles, especially neutrons, are created during protons' nuclear reactions in the beam-line and the treatment room components, as well as inside the patient. Those secondary neutrons lead to unwanted dose deposition to the healthy tissues located at distance from the target, which may increase the secondary cancer risks to the patients, especially the pediatric ones. The aim of this work was to calculate the neutron secondary doses received by patients of different ages treated at the Institut Curie-centre de Protontherapie d'Orsay (ICPO) for intracranial tumors, using a 178 MeV proton beam. The treatments are undertaken at the new ICPO room equipped with an IBA gantry. The treatment room and the beam-line components, as well as the proton source were modeled using the Monte Carlo code MCNPX. The obtained model was then validated by a series of comparisons between model calculations and experimental measurements. The comparisons concerned: a) depth and lateral proton dose distributions in a water phantom, b) neutron spectrometry at one position in the treatment room, c) ambient dose equivalents at different positions in the treatment room and d) secondary absorbed doses inside a physical anthropomorphic phantom. A general good agreement was found between calculations and measurements, thus our model was considered as validated. The University of Florida hybrid voxelized phantoms of different ages were introduced into the MCNPX validated model, and secondary neutron doses were calculated to many of these phantoms' organs. The calculated doses were found to decrease as the organ's distance to the treatment field increases and as the patient's age increases. The secondary doses received by a one year-old patient may be two times higher than the doses

  18. Class ranking of secondary schools in the North West province of ...

    African Journals Online (AJOL)

    The model also provides for the construction of a step-by-step improvement plan for underperforming schools. The suggested framework was applied to 54 secondary schools in one of the four major municipal districts in the North West province of South Africa. Results are contrasted with the application of an ordinary DEA ...

  19. Comparison of the secondary electrons produced by proton and electron beams in water

    Energy Technology Data Exchange (ETDEWEB)

    Kia, Mohammad Reza, E-mail: m-r-kia@aut.ac.ir; Noshad, Houshyar [Department of Energy Engineering and Physics, Amirkabir University of Technology (Tehran Polytechnic), P.O. Box 15875-4413, Hafez Avenue, Tehran (Iran, Islamic Republic of)

    2016-05-15

    The secondary electrons produced in water by electron and proton beams are compared with each other. The total ionization cross section (TICS) for an electron impact in water is obtained by using the binary-encounter-Bethe model. Hence, an empirical equation based on two adjustable fitting parameters is presented to determine the TICS for proton impact in media. In order to calculate the projectile trajectory, a set of stochastic differential equations based on the inelastic collision, elastic scattering, and bremsstrahlung emission are used. In accordance with the projectile trajectory, the depth dose deposition, electron energy loss distribution in a certain depth, and secondary electrons produced in water are calculated. The obtained results for the depth dose deposition and energy loss distribution in certain depth for electron and proton beams with various incident energies in media are in excellent agreement with the reported experimental data. The difference between the profiles for the depth dose deposition and production of secondary electrons for a proton beam can be ignored approximately. But, these profiles for an electron beam are completely different due to the effect of elastic scattering on electron trajectory.

  20. A prospective study of proton reirradiation for recurrent and secondary soft tissue sarcoma.

    Science.gov (United States)

    Guttmann, David M; Frick, Melissa A; Carmona, Ruben; Deville, Curtiland; Levin, William P; Berman, Abigail T; Chinniah, Chidambaram; Hahn, Stephen M; Plastaras, John P; Simone, Charles B

    2017-08-01

    Proton reirradiation for sarcoma has not been previously described. We hypothesized that this strategy would provide favorable toxicity and survival outcomes. Patients with soft tissue sarcoma in a previously-irradiated field were enrolled on a prospective trial of proton reirradiation. The primary endpoint was provider-reported acute toxicity. Secondary endpoints included late toxicities, local control, and overall survival. 23 patients underwent proton reirradiation. Median time between radiation courses was 40.7months (range 10-272). No grade 4-5 toxicities were observed. One patient (4%) experienced acute grade 3 dysphagia. Common grade 2 acute toxicities were fatigue (26%), anorexia (17%), and urinary incontinence (13%). There were two grade 3 late wound infections (10%) and one grade 3 late wound complication (5%). Grade 2 late complications included lymphedema (10%), fracture (5%), and fibrosis (5%). At a median follow-up of 36months, the 3-year cumulative incidence of local failure was 41% (95% CI [20-63%]). Median overall survival and progression-free survival were 44 and 29months, respectively. In extremity patients, amputation was spared in 7/10 (70%). Proton reirradiation of recurrent/secondary soft tissue sarcomas is well tolerated. While longer follow-up is needed, early survival outcomes in this high-risk population are encouraging. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. SU-E-J-149: Secondary Emission Detection for Improved Proton Relative Stopping Power Identification

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, J; Musall, B; Erickson, A [Georgia Institute of Technology, Atlanta, GA (Georgia)

    2015-06-15

    Purpose: This research investigates application of secondary prompt gamma (PG) emission spectra, resulting from nuclear reactions induced by protons, to characterize tissue composition along the particle path. The objective of utilizing the intensity of discrete high-energy peaks of PG is to improve the accuracy of relative stopping power (RSP) values available for proton therapy treatment planning on a patient specific basis and to reduce uncertainty in dose depth calculations. Methods: In this research, MCNP6 was used to simulate PG emission spectra generated from proton induced nuclear reactions in medium of varying composition of carbon, oxygen, calcium and nitrogen, the predominant elements found in human tissue. The relative peak intensities at discrete energies predicted by MCNP6 were compared to the corresponding atomic composition of the medium. Results: The results have shown a good general agreement with experimentally measured values reported by other investigators. Unexpected divergence from experimental spectra was noted in the peak intensities for some cases depending on the source of the cross-section data when using compiled proton table libraries vs. physics models built into MCNP6. While the use of proton cross-section libraries is generally recommended when available, these libraries lack data for several less abundant isotopes. This limits the range of their applicability and forces the simulations to rely on physics models for reactions with natural atomic compositions. Conclusion: Current end-of-range proton imaging provides an average RSP for the total estimated track length. The accurate identification of tissue composition along the incident particle path using PG detection and characterization allows for improved determination of the tissue RSP on the local level. While this would allow for more accurate depth calculations resulting in tighter treatment margins, precise understanding of proton beam behavior in tissue of various

  2. Monte Carlo study of radial energy deposition from primary and secondary particles for narrow and large proton beamlet source models

    International Nuclear Information System (INIS)

    Peeler, Christopher R; Titt, Uwe

    2012-01-01

    In spot-scanning intensity-modulated proton therapy, numerous unmodulated proton beam spots are delivered over a target volume to produce a prescribed dose distribution. To accurately model field size-dependent output factors for beam spots, the energy deposition at positions radial to the central axis of the beam must be characterized. In this study, we determined the difference in the central axis dose for spot-scanned fields that results from secondary particle doses by investigating energy deposition radial to the proton beam central axis resulting from primary protons and secondary particles for mathematical point source and distributed source models. The largest difference in the central axis dose from secondary particles resulting from the use of a mathematical point source and a distributed source model was approximately 0.43%. Thus, we conclude that the central axis dose for a spot-scanned field is effectively independent of the source model used to calculate the secondary particle dose. (paper)

  3. The calculation of proton and secondary electron stopping powers in liquid water

    International Nuclear Information System (INIS)

    Marouane, Abdelhak; Inchaouh, Jamal; Ouaskit, Said; Fathi, Ahmed

    2012-01-01

    The stopping power of energetic protons in liquid water has been calculated using a new model based on different theoretical and semi-empirical approaches. In this model, we consider the relativistic corrections along with the electronic and nuclear stopping power. The present work accounts for the different interactions made with electrons and nuclei inside the target. Interactions of the incident particle with the target's electrons dominate in the high energy regime; in the low energy regime, the interactions of the projectile with the target nuclei contribute importantly and are included in the calculation. We also compute the stopping cross sections and the stopping power of secondary electrons ejected from proton and hydrogen ionization impact, and generated by hydrogen electron loss processes. The consideration of secondary electrons' stopping power can contribute to the study of nano-dosimetry. Our results are in good agreement with existing experimental data. This calculation model can be useful for different applications in medical physics and space radiation health, such as hadron therapy for cancer treatment or radiation protection for astronauts. - Highlights: ► We discussed the stopping cross sections at the Bragg peak region of primary and secondary processes. ► We considered the corrections of incident particle energy focusing on the Rudds semi-empirical model. ► We calculated the electronic and nuclear stopping power, and we deduced the total stopping power. ► We calculated the stopping power of the secondary electrons.

  4. Estimate of neutron secondary doses received by patients in proton therapy: cases of ophthalmologic treatments

    International Nuclear Information System (INIS)

    Martinetti, F.

    2009-12-01

    This research thesis aims at assessing doses due to secondary neutrons and received by the organs of a patient which are located outside of the treatment field. The study focused on ophthalmological treatments performed at the Orsay proton therapy centre. A 75 eV beam line model has first been developed with the MCNPX Monte Carlo code. Several experimental validations of this model have been performed: proton dose distribution in a water phantom, ambient equivalent dose due to secondary neutrons and neutron spectra in the treatment room, and doses deposited by secondary neutrons in an anthropomorphous phantom. Simulations and measurements are in correct agreement. Then, a numeric assessment of secondary doses received by the patient's organs has been performed by using a MIRD-type mathematical phantom. These doses have been computed for several organs: the non-treated eye, the brain, the thyroid, and other parts of the body situated either in the front part of the body (the one directly exposed to neutrons generated in the treatment line) or deeper and further from the treatment field

  5. Hydrogen determination using secondary processes of recoil proton interaction with sample material

    International Nuclear Information System (INIS)

    Muminov, V.A.; Khajdarov, R.A.; Navalikhin, L.V.; Pardaev, Eh.

    1980-01-01

    Possibilities of hydrogen content determination in different materials according to secondary processes of interaction of recoil protons(irradiation in the field of fast neutrons) with sample material resulting in the appearance of characteristic X-ray irradiation are studied. Excitated irradiation is recorded with a detector placed in the protective screen and located at a certain distance from the object analyzed and neutron source. The method is tested taking as an example analysis of bromine-containing samples (30% Br, 0.5% H) and tungsten dioxide. The determination limit of hydrogen content constitutes 0.05% at confidence coefficient of 0.9. Neutron flux constituted 10 3 neutrons/cm 2 xs, the time of measurement being 15-20 minutes, the distance from the sample to the detector being 12-15 cm [ru

  6. The rapid secondary electron imaging system of the proton beam writer at CIBA

    International Nuclear Information System (INIS)

    Udalagama, C.N.B.; Bettiol, A.A.; Kan, J.A. van; Teo, E.J.; Watt, F.

    2007-01-01

    The recent years have witnessed a proliferation of research involving proton beam (p-beam) writing. This has prompted investigations into means of optimizing the process of p-beam writing so as to make it less time consuming and more efficient. One such avenue is the improvement of the pre-writing preparatory procedures that involves beam focusing and sample alignment which is centred on acquiring images of a resolution standard or sample. The conventional mode of imaging used up to now has utilized conventional nuclear microprobe signals that are of a pulsed nature and are inherently slow. In this work, we report the new imaging system that has been introduced, which uses proton induced secondary electrons. This in conjunction with software developed in-house that uses a National Instruments DAQ card with hardware triggering, facilitates large data transfer rates enabling rapid imaging. Frame rates as much as 10 frames/s have been achieved at an imaging resolution of 512 x 512 pixels

  7. Secondary markets for transmission rights in the North West European Market. Position Paper of the North West European Market Parties Platform

    International Nuclear Information System (INIS)

    Van Haaster, G.

    2006-06-01

    The most important way to acquire cross border transmission rights in the North West European electricity market is through explicit auctions. Although market driven flexibility and therefore efficiency can be further enhanced. One way to this is to introduce a secondary market for transmission rights. In this paper the North West European Market Parties Platform (NWE MPP) proposes a model that is developed and preferred by the market parties. The paper will provide a converging contribution to the congestion management discussions in the North Western European region

  8. The role of charged secondaries from nonelastic nuclear interactions by therapy proton beams in a PERSPEX target

    International Nuclear Information System (INIS)

    Mesa, Joel; Gomes, Viviam da Silva; Evseev, Ivan

    2007-01-01

    The dose distribution delivered in charged particle therapy is due to both primary and secondary particles. The inclusion of the proton induced non-elastic nuclear reactions in the absorbed dose calculations carried out in proton-therapy, can modify the absorbed dose in two ways: by changing the energy spectrum as consequence of the primary proton fluence decreasing, and by giving rise to secondary products (i.e. p, n, α, d, t, 3 He) which contribute to the absorbed energy, thus affecting the irradiated target, as well as critical organs outside the target volume, besides enhancing the biological dose due to the high LET values. In this preliminary work, the dose distributions from primary and secondary charged particles for a pencil beam of protons with energies between 100 and 200 MeV in a PERSPEX (PMMA, Polymethyl Methacrylate, Lucite or Plexiglass) target was studied theoretically in the continuous-slowing-down-approximation (CSDA) considering secondary particles energy spectra. In this sense, we have used a quite sophisticate multicollisional Monte Carlo code (MCMC) for pre-equilibrium emission, plus de-excitation of residual nucleus by fragmentation process. (author)

  9. Dose distribution of secondary radiation in a water phantom for a proton pencil beam-EURADOS WG9 intercomparison exercise

    Czech Academy of Sciences Publication Activity Database

    Stolarczyk, L.; Trinkl, S.; Romero-Exposito, M.; Mojzeszek, N.; Ambrožová, Iva; Domingo, C.; Davídková, Marie; Farah, J.; Klodowska, M.; Kneževic, Z.; Liszka, M.; Majer, M.; Miljanic, S.; Ploc, Ondřej; Schwarz, M.; Harrison, R. M.; Olko, P.

    2018-01-01

    Roč. 63, č. 8 (2018), č. článku 085017. ISSN 0031-9155 Institutional support: RVO:61389005 Keywords : passive detectors * neutron dosimetry * gamma radiation dosimetry * water phantom measurements * secondary radiation measurements * pencil beam scanning proton radiotherapy Subject RIV: FP - Other Medical Disciplines OBOR OECD: Radiology, nuclear medicine and medical imaging Impact factor: 2.742, year: 2016

  10. Analytical linear energy transfer model including secondary particles: calculations along the central axis of the proton pencil beam

    International Nuclear Information System (INIS)

    Marsolat, F; De Marzi, L; Mazal, A; Pouzoulet, F

    2016-01-01

    In proton therapy, the relative biological effectiveness (RBE) depends on various types of parameters such as linear energy transfer (LET). An analytical model for LET calculation exists (Wilkens’ model), but secondary particles are not included in this model. In the present study, we propose a correction factor, L sec , for Wilkens’ model in order to take into account the LET contributions of certain secondary particles. This study includes secondary protons and deuterons, since the effects of these two types of particles can be described by the same RBE-LET relationship. L sec was evaluated by Monte Carlo (MC) simulations using the GATE/GEANT4 platform and was defined by the ratio of the LET d distributions of all protons and deuterons and only primary protons. This method was applied to the innovative Pencil Beam Scanning (PBS) delivery systems and L sec was evaluated along the beam axis. This correction factor indicates the high contribution of secondary particles in the entrance region, with L sec values higher than 1.6 for a 220 MeV clinical pencil beam. MC simulations showed the impact of pencil beam parameters, such as mean initial energy, spot size, and depth in water, on L sec . The variation of L sec with these different parameters was integrated in a polynomial function of the L sec factor in order to obtain a model universally applicable to all PBS delivery systems. The validity of this correction factor applied to Wilkens’ model was verified along the beam axis of various pencil beams in comparison with MC simulations. A good agreement was obtained between the corrected analytical model and the MC calculations, with mean-LET deviations along the beam axis less than 0.05 keV μm −1 . These results demonstrate the efficacy of our new correction of the existing LET model in order to take into account secondary protons and deuterons along the pencil beam axis. (paper)

  11. Effect of Film Dressing on Acute Radiation Dermatitis Secondary to Proton Beam Therapy

    International Nuclear Information System (INIS)

    Arimura, Takeshi; Ogino, Takashi; Yoshiura, Takashi; Toi, Yuya; Kawabata, Michiko; Chuman, Ikuko; Wada, Kiyotaka; Kondo, Naoaki; Nagayama, Shinichi; Hishikawa, Yoshio

    2016-01-01

    Purpose: Acute radiation dermatitis (ARD) is one of the most common adverse events of proton beam therapy (PBT), and there is currently no effective method to manage ARD. The purpose of this study was to examine the prophylactic effect of a film dressing using Airwall on PBT-induced ARD compared with standard skin managements. Methods and Materials: A total of 271 patients with prostate cancer who were scheduled for PBT at our center were divided into 2 groups based on their own requests: 145 patients (53%) chose Airwall (group A) and 126 patients (47%) received standard treatments (group B). We evaluated irradiated skin every other day during PBT and followed up once a week for a month after completion of PBT. Results: Grade 0, 1, 2, and 3 dermatitis were seen in 2, 122, 21, and 0 and 0, 65, 57, and 4 patients in groups A and B, respectively (P<.001). Numbers of days to grades 1 and 2 ARD development were 34.9 ± 14.3 and 54.7 ± 10.3 and 31.8 ± 11.3 and 54.4 ± 11.6 in groups A and B, respectively. There were no significant differences between the 2 groups. Eighteen patients (12%) in group A who experienced problems in the region covered with Airwall switched to standard skin care after peeling the film off. Conclusions: Film dressing using Airwall reduced the severity of ARD without delaying the response time of the skin to proton beam irradiation compared with standard skin management. Hence, film dressing is considered a promising measure for preventing ARD secondary to PBT.

  12. Effect of Film Dressing on Acute Radiation Dermatitis Secondary to Proton Beam Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Arimura, Takeshi, E-mail: arimura-takeshi@medipolis.org [Medipolis Proton Therapy and Research Center, Ibusuki (Japan); Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Ogino, Takashi [Medipolis Proton Therapy and Research Center, Ibusuki (Japan); Yoshiura, Takashi [Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Toi, Yuya; Kawabata, Michiko; Chuman, Ikuko; Wada, Kiyotaka; Kondo, Naoaki; Nagayama, Shinichi; Hishikawa, Yoshio [Medipolis Proton Therapy and Research Center, Ibusuki (Japan)

    2016-05-01

    Purpose: Acute radiation dermatitis (ARD) is one of the most common adverse events of proton beam therapy (PBT), and there is currently no effective method to manage ARD. The purpose of this study was to examine the prophylactic effect of a film dressing using Airwall on PBT-induced ARD compared with standard skin managements. Methods and Materials: A total of 271 patients with prostate cancer who were scheduled for PBT at our center were divided into 2 groups based on their own requests: 145 patients (53%) chose Airwall (group A) and 126 patients (47%) received standard treatments (group B). We evaluated irradiated skin every other day during PBT and followed up once a week for a month after completion of PBT. Results: Grade 0, 1, 2, and 3 dermatitis were seen in 2, 122, 21, and 0 and 0, 65, 57, and 4 patients in groups A and B, respectively (P<.001). Numbers of days to grades 1 and 2 ARD development were 34.9 ± 14.3 and 54.7 ± 10.3 and 31.8 ± 11.3 and 54.4 ± 11.6 in groups A and B, respectively. There were no significant differences between the 2 groups. Eighteen patients (12%) in group A who experienced problems in the region covered with Airwall switched to standard skin care after peeling the film off. Conclusions: Film dressing using Airwall reduced the severity of ARD without delaying the response time of the skin to proton beam irradiation compared with standard skin management. Hence, film dressing is considered a promising measure for preventing ARD secondary to PBT.

  13. Multigroup and coupled forward-adjoint Monte Carlo calculation efficiencies for secondary neutron doses from proton beams

    International Nuclear Information System (INIS)

    Kelsey IV, Charles T.; Prinja, Anil K.

    2011-01-01

    We evaluate the Monte Carlo calculation efficiency for multigroup transport relative to continuous energy transport using the MCNPX code system to evaluate secondary neutron doses from a proton beam. We consider both fully forward simulation and application of a midway forward adjoint coupling method to the problem. Previously we developed tools for building coupled multigroup proton/neutron cross section libraries and showed consistent results for continuous energy and multigroup proton/neutron transport calculations. We observed that forward multigroup transport could be more efficient than continuous energy. Here we quantify solution efficiency differences for a secondary radiation dose problem characteristic of proton beam therapy problems. We begin by comparing figures of merit for forward multigroup and continuous energy MCNPX transport and find that multigroup is 30 times more efficient. Next we evaluate efficiency gains for coupling out-of-beam adjoint solutions with forward in-beam solutions. We use a variation of a midway forward-adjoint coupling method developed by others for neutral particle transport. Our implementation makes use of the surface source feature in MCNPX and we use spherical harmonic expansions for coupling in angle rather than solid angle binning. The adjoint out-of-beam transport for organs of concern in a phantom or patient can be coupled with numerous forward, continuous energy or multigroup, in-beam perturbations of a therapy beam line configuration. Out-of-beam dose solutions are provided without repeating out-of-beam transport. (author)

  14. An assessment of the secondary neutron dose in the passive scattering proton beam facility of the national cancer center

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sang Eun [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Cho, Gyuseong [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Lee, Se Byeong [Proton Therapy Center, National Cancer Center, Goyang (Korea, Republic of)

    2017-06-15

    The purpose of this study is to assess the additional neutron effective dose during passive scattering proton therapy. Monte Carlo code (Monte Carlo N-Particle 6) simulation was conducted based on a precise modeling of the National Cancer Center's proton therapy facility. A three-dimensional neutron effective dose profile of the interior of the treatment room was acquired via a computer simulation of the 217.8-MeV proton beam. Measurements were taken with a 3He neutron detector to support the simulation results, which were lower than the simulation results by 16% on average. The secondary photon dose was about 0.8% of the neutron dose. The dominant neutron source was deduced based on flux calculation. The secondary neutron effective dose per proton absorbed dose ranged from 4.942 ± 0.031 mSv/Gy at the end of the field to 0.324 ± 0.006 mSv/Gy at 150 cm in axial distance.

  15. New estimation of secondary particle multiplicity of nuclear interactions in proton therapy using multicollisional plus evaporation Monte Carlo calculations

    International Nuclear Information System (INIS)

    Mesa, J.; Rodrigues, T. E.; Garcia-Trapaga, C. E.; Arruda-Neto, J. D. T.; Shtejer, K. . Email. jmesa@ibb.unesp.br

    2007-01-01

    Secondary particles contribute to dose deposition in critical organs outside the irradiated target volume. However, the literature regarding specifically to neutron dose and other secondary particles from proton therapy is limited. This issue is of special relevance for young patients, particularly when life expectancy is long, fundamentally if we consider that the art of cancer treatment is finding the right balance between tumor control and injury to normal tissues. In this work we have obtained spectra and multiplicities for neutrons and other secondary particles emitted in the reactions of protons: p+ 12 C, p+ 16 O, p+ 40 Ca and p+ 14 N, for proton energies from 100 to 200 MeV. In this sense, we have used a quite sophisticate multicollisional Monte Carlo code (MCMC) for pre-equilibrium emission, plus de-excitation of residual nucleus by two ways: evaporation of particles (mainly nucleons, but also composites) and possibly fission in the case of heavy residues. The code was developed in our group, with very recently improvements that take into account Pauli-blocking effects in a novel and more precise way, as well as a more rigorous energy balance, an energy stopping time criterion for pre-equilibrium emission, and the inclusion of deuteron, triton and 3 He emissions in the evaporation step

  16. Improving learning infrastructure and environment for sustainable quality assurance practice in secondary schools in Ondo State, South-West, Nigeria

    OpenAIRE

    Ayeni, Adeolu Joshua; Adelabu, Modupe A.

    2012-01-01

    The current study examines the state of learning environment and infrastructure, together with their effects on teaching and learning activities and the extent to which they are being maintained. The study uses a descriptive survey design paradigm. Respondents consist of 60 principals and 540 teachers that were randomly selected using the multi-stage sampling technique from a pool of 599 public secondary schools in the Ondo State, South-West, Nigeria. Data were collected using the Learning En...

  17. SU-E-T-521: Investigation of the Uncertainties Involved in Secondary Neutron/gamma Production in Geant4/MCNP6 Monte Carlo Codes for Proton Therapy Application

    International Nuclear Information System (INIS)

    Mirzakhanian, L; Enger, S; Giusti, V

    2015-01-01

    Purpose: A major concern in proton therapy is the production of secondary neutrons causing secondary cancers, especially in young adults and children. Most utilized Monte Carlo codes in proton therapy are Geant4 and MCNP. However, the default versions of Geant4 and MCNP6 do not have suitable cross sections or physical models to properly handle secondary particle production in proton energy ranges used for therapy. In this study, default versions of Geant4 and MCNP6 were modified to better handle production of secondaries by adding the TENDL-2012 cross-section library. Methods: In-water proton depth-dose was measured at the “The Svedberg Laboratory” in Uppsala (Sweden). The proton beam was mono-energetic with mean energy of 178.25±0.2 MeV. The measurement set-up was simulated by Geant4 version 10.00 (default and modified version) and MCNP6. Proton depth-dose, primary and secondary particle fluence and neutron equivalent dose were calculated. In case of Geant4, the secondary particle fluence was filtered by all the physics processes to identify the main process responsible for the difference between the default and modified version. Results: The proton depth-dose curves and primary proton fluence show a good agreement between both Geant4 versions and MCNP6. With respect to the modified version, default Geant4 underestimates the production of secondary neutrons while overestimates that of gammas. The “ProtonInElastic” process was identified as the main responsible process for the difference between the two versions. MCNP6 shows higher neutron production and lower gamma production than both Geant4 versions. Conclusion: Despite the good agreement on the proton depth dose curve and primary proton fluence, there is a significant discrepancy on secondary neutron production between MCNP6 and both versions of Geant4. Further studies are thus in order to find the possible cause of this discrepancy or more accurate cross-sections/models to handle the nuclear

  18. Job Satisfaction and Work Performance of Public Secondary School Teachers In Akoko North West Local Government Area Of Ondo State

    Directory of Open Access Journals (Sweden)

    Aroge Stephen Talabi

    2016-08-01

    Full Text Available The study examined the relationship between job satisfaction and work performance of secondary school teachers in Akoko North West Local Government Area of Ondo-State, Nigeria. The study population consisted of all secondary school teachers, while two hundred of them were randomly selected for the study. Regular payment of salary, opportunities for promotion, rapport with school authority, in-service training, job security, career prospect and retirement benefits were the variables considered. The questionnaire titled “Workers Opinion Survey Inventory (WOSI” and the Productivity Rating Scale (PRS which was in line with Annual Performance Evaluation Report (APPER was used to obtain information for the study. The data was analyzed using Pearson Product Correlation Moment.  One of the recommendations made include the onward review of policies, remuneration and work conditions of teachers in the public secondary schools in Nigeria for optimum productivity.

  19. Ambient dose equivalent measurements in secondary radiation fields at proton therapy facility CCB IFJ PAN in Krakow using recombination chambers

    Directory of Open Access Journals (Sweden)

    Jakubowska Edyta A.

    2016-03-01

    Full Text Available This work presents recombination methods used for secondary radiation measurements at the Facility for Proton Radiotherapy of Eye Cancer at the Institute for Nuclear Physics, IFJ, in Krakow (Poland. The measurements of H*(10 were performed, with REM-2 tissue equivalent chamber in two halls of cyclotrons AIC-144 and Proteus C-235 and in the corridors close to treatment rooms. The measurements were completed by determination of gamma radiation component, using a hydrogen-free recombination chamber. The results were compared with the measurements using rem meter types FHT 762 (WENDI-II and NM2 FHT 192 gamma probe and with stationary dosimetric system.

  20. Analysis of Science Process Skills in West African Senior Secondary School Certificate Physics Practical Examinations in Nigeria

    Directory of Open Access Journals (Sweden)

    A.O. Akinbobola

    2010-06-01

    Full Text Available This study analyzes the science process skills in West African senior secondary school certificate physics practical examinations in Nigeria for a period of 10 years (1998-2007. Ex-post facto design was adopted for the study. The 5 prominent science process skills identified out of the 15 used in the study are: manipulating (17%, calculating (14%, recording (14%, observing (12% and communicating (11%. The results also show high percentage rate of basic (lower order science process skills (63% as compared to the integrated (higher order science process skills (37%. The results also indicate that the number of basic process skills is significantly higher than the integrated process skills in the West African senior secondary school certificate physics practical examinations in Nigeria. It is recommended that the examination bodies in Nigeria should include more integrated science process skills into the senior secondary school physics practical examinations so as to enable the students to be prone to creativity, problem solving, reflective thinking, originality and invention which are vital ingredients for science and technological development of any nation.

  1. Relative biological efficiency of 592 MeV protons. Analysis of the biological effect of secondary radiation

    International Nuclear Information System (INIS)

    Legeay, G.; Baarli, J.

    1968-01-01

    The relative biological efficiency (RBE) of high energy protons is of importance because of their effects in the field of radioprotection around large accelerators and during space-flights. The nature of the interactions between 592 MeV protons and biological tissues makes it necessary to take into consideration the contribution of secondary radiation to the biological effect. Since it is not possible to obtain from a synchrotron a beam having a sufficiently large cross-section to irradiate large animals, one has to resort to certain devices concerning the mode of exposure when small laboratory animals are used. By irradiating rats individually and in groups, and by using the lethal test as a function of time, the authors show that the value of the RBE is different for animals of the same species having the same biological parameters. Thus there appears an increase in the biological effect due to secondary radiation produced in nuclear cascades which develop in a large volume, for example that of a human being. (author) [fr

  2. Preliminary test of the MONDO project secondary fast and ultrafast neutrons tracker response using protons and MIP particles

    Science.gov (United States)

    Traini, G.; Battistoni, G.; Giacometti, V.; Gioscio, E.; Marafini, M.; Mirabelli, R.; Pinci, D.; Sarti, A.; Sciubba, A.; Patera, V.

    2018-04-01

    The risk of developing a second malignant cancer as a late time consequence of undergoing a treatment, is one of the main concerns in particle therapy (PT). Since neutrons can release a significant dose far away from the tumour region, a precise characterisation of their production point, kinetic energy and abundance is eagerly needed. The treatment planning system (TPS) software that predicts the normal tissue toxicity in the target region and the risk of late complications in the whole body is currently based on the poorly known production cross-sections and will greatly benefit from improved precision double differential measurements. The MONDO (MOnitor for Neutron Dose in hadrOntherapy) project aims to build an ultrafast neutron tracker that could be used to characterise the production of secondary neutrons with energies in the 20–400 MeV range. The neutron tracking will proceed via the detection of recoil protons produced in two consecutive (n, p) elastic scattering interactions. The MONDO detector consists of a 10 × 10 × 20 cm3 matrix of thin scintillating fibres, arranged in orthogonally oriented layers. A compact read-out sensor with single photon detection capabilities employing the CMOS SPAD technology has been developed in collaboration with Fondazione Bruno Kessler (FBK). The detector will be completed by the end of 2018. A 4 × 4 × 4.8 cm3 prototype has been built using 250 μ m thick scintillating fibres of squared section and was tested using a proton beam and minimum ionising particles. In this contribution we present the experimental results related to the prototype test performed with a proton beam at the Proton Therapy Centre of the Trento Hospital (PTC) in May 2017. The results are compared with the results of a Monte Carlo simulation performed with the FLUKA software.

  3. SU-E-T-479: Development and Validation of Analytical Models Predicting Secondary Neutron Radiation in Proton Therapy Applications

    International Nuclear Information System (INIS)

    Farah, J; Bonfrate, A; Donadille, L; Martinetti, F; Trompier, F; Clairand, I; De Olivera, A; Delacroix, S; Herault, J; Piau, S; Vabre, I

    2014-01-01

    : Analytical models predicting secondary neutrons in proton therapy represent a promising solution that substitute for time-consuming MC calculations

  4. Materials for heavy current accelerators and their alteration under scattered protons resulted from acceleration and secondary radiations

    International Nuclear Information System (INIS)

    L'vov, A.N.; Sidorenko, I.S.; Khizhnyak, N.A.; Shilyaev, B.A.; Yamnitskij, V.A.

    1983-01-01

    Changes of macroscopic properties of materials for new generation accelerators during irradiation by spill protons and secondary radiations have been analyzed. It is shown, that the change in properties is a result of many interrelated processes: nuclear ones, in which initially knocked out atoms (IKA) and products of nuclear reactions (especially helium and hydrogen) are formed, atomic ones consisting in the development of cascade collisions induced by IKA and resulting in the formation of initial regions of point defects accumulation; structural ones, resulting in the formation ssociations of defects, pores, dislocations and in the processes of creep, swelling, embrittlement etc. Each process is deccribed by a model and is realized by a computer code. The full program complex is written in the FORTRAN and ALGOL (GDR) for the BEhSM-6 and EC-1040 computers. Total number of standard code library exceeds 20 thousand operators, the memory size of base data is about 10 megabyte

  5. N2 Dissociation In The Mesosphere Due To Secondary Electrons During A Solar Proton Event: The Effect On Atomic Nitrogen and Nitric Oxide

    Science.gov (United States)

    Verronen, P. T.; Shematovich, V. I.; Bisikalo, D. V.; Turunen, E.; Ulich, Th.

    Solar proton events have an effect on the middle atmospheric odd nitrogen chem- istry. During a solar proton event high energy protons enter Earth's middle atmosphere where they ionize ambient gas. Ionization leads to production of atomic nitrogen, and further to production of nitric oxide, through ion chemistry. In addition, ionization processes produce secondary electrons that, if possessing 9.76 eV or more energy, dissociate N2 providing an additional source of atomic nitrogen. We have calculated mesospheric N2 dissociation rate due to secondary electrons dur- ing a solar proton event. Further, we have studied the effect on atomic nitrogen and nitric oxide at altitudes between 50 and 90 km. It was found that N2 is efficiently dis- sociated in the lower mesosphere by secondary electrons, with rates up to 103 cm-3 s-1 at 50 km. Thus, secondary electrons significantly add to odd nitrogen produc- tion. As a result of N2 dissociation, atomic nitrogen is greatly enhanced in both N(4S) and N(2D) states by 259% and 1220% maximum increases at 50 km, respectively. This further leads to a maximum increase of 16.5% in NO concentration at 61 km via chemical reactions. In our study a Monte Carlo model was used to calculate the total ionization rate and secondary electrons flux due to precipitating protons. These where then used as input to a detailed ion and neutral chemistry model and a steady-state solution was calcu- lated for two cases: With and without N2 dissociation due to secondary electrons.

  6. In vivo and ex vivo proton MR spectroscopy of primary and secondary melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Bourne, Roger M.; Stanwell, Peter; Stretch, Jonathan R.; Scolyer, Richard A.; Thompson, John F.; Mountford, Carolyn E.; Lean, Cynthia L

    2005-03-01

    In vivo magnetic resonance (MR) spectroscopy at 1.5T was performed on a large polypoid cutaneous melanoma, and two enlarged lymph nodes containing metastatic melanoma, from three patients. Spectra were acquired in vivo from voxels wholly within the primary tumour or secondary lymph node and were thus uncontaminated by signals from adjacent tissue. Tissue biopsies taken after resection of primary tumours and secondary lymph nodes were examined by 8.5T magnetic resonance spectroscopy (MRS) and the results compared with the in vivo spectra, and with spectra from normal skin and a benign skin lesion. There was good agreement between the dominant features of 1.5T spectra acquired in vivo and 8.5T spectra acquired from resected tissue. However, less intense resonances observed at 8.5T in malignant biopsy tissue were not consistently observed at 1.5T in vivo. In vivo spectra from primary and metastatic melanoma showed high levels of choline metabolites. An intense lactate resonance was also present in the in vivo spectrum of primary melanoma. All 8.5T spectra of biopsies from primary and secondary melanoma showed high levels of choline metabolites and lactate, and additional resonances consistent with elevated levels of taurine, alanine, lysine, and glutamate/glutamine relative to normal and benign tissue. Elevated levels of choline, lactate, taurine, and amino acids appear to be clinically useful markers for identifying the pathology of primary and metastatic melanoma.

  7. Level of literacy and dementia: A secondary post-hoc analysis from North-West India

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Raina

    2014-01-01

    Full Text Available Introduction: A relation between literacy and dementia has been studied in past and an association has been documented. This is in spite of some studies pointing to the contrary. The current study was aimed at investigating the influence of level of literacy on dementia in a sample stratified by geography (Migrant, Urban, Rural and Tribal areas of sub-Himalayan state of Himachal Pradesh, India. Materials and Methods: The study was based on post-hoc analysis of data obtained from a study conducted on elderly population (60 years and above from selected geographical areas (Migrant, Urban, Rural and Tribal of Himachal Pradesh state in North-west India. Results: Analysis of variance revealed an effect of education on cognitive scores [F = 2.823, P =0.01], however, post-hoc Tukey′s HSD test did not reveal any significant pairwise comparisons. Discussion: The possibility that education effects dementia needs further evaluation, more so in Indian context.

  8. Cholera outbreak secondary to contaminated pipe water in an urban area, West Bengal, India, 2006.

    Science.gov (United States)

    Bhunia, Rama; Ramakrishnan, Ramachandran; Hutin, Yvan; Gupte, Mohan D

    2009-01-01

    Outbreaks of cholera are common in West Bengal. In April 2006, Garulia municipality reported a cluster of diarrhea cases. We investigated this cluster to identify the etiological agent, source of transmission and propose control measures. We defined a case of diarrhea as occurrence of > or =3 loose/watery stools a day among the residents of Garulia since April 2006. We searched for cases of diarrhea in health care facilities and health camp. We conducted a gender- and age-matched case-control study to identify risk factors. We inspected the sanitation and water supply system. We collected rectal swabs from diarrhea patients and water specimens from the affected areas for laboratory investigation. Two hundred and ninety-eight cases of diarrhea were reported to various health care facilities (attack rate: 3.5/1000, no deaths). The attack rate was highest among children (6.4/1000). Vibrio cholerae El Tor O1 Inaba was isolated from two of 7 rectal swabs. The outbreak started on 10 April 2006, peaked on 26 April and lasted till 6 May. Cases clustered in an area distal to leaking water pipelines. Drinking municipal water exclusively was significantly associated with the illness (OR 13, 95% CI=6.5-27). Eight of the 12 water specimens from the affected area had fecal contamination and poor chlorine content. This outbreak was due to a contaminated municipal piped water supply and V. cholera 01 Inaba was possibly the causative organism.

  9. Why Rural Community Day Secondary Schools Students' Performance in Physical Science Examinations Is Poor in Lilongwe Rural West Education District in Malawi

    Science.gov (United States)

    Mlangeni, Angstone Noel J. Thembachako; Chiotha, Sosten Staphael

    2015-01-01

    A study was conducted to investigate factors that affect students' poor performance in physical science examinations at Malawi School Certificate of Education and Junior Certificate of Education levels in Community day secondary schools (CDSS) in Lilongwe Rural West Education District in Malawi. Students' performance was collected from schools'…

  10. Analysis of Parental Involvement and Self-Esteem on Secondary School Students in Kieni West Sub-County, Nyeri County, Kenya

    Science.gov (United States)

    Wairimu, Mburu Josephine; Macharia, Susan M.; Muiru, Ann

    2016-01-01

    This study investigated the relationship between parental involvement and the self-esteem among adolescents in secondary school students in Kieni West District in Nyeri County. It was guided by Self Determination Theory (SDT) by James William and Baumrind Theory of Parenting Styles by Diana Blumberg Baumrind. Some of the gaps identified in the…

  11. Radiobiological risk estimates of adverse events and secondary cancer for proton and photon radiation therapy of pediatric medulloblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Brodin, N. Patrik (Radiation Medicine Research Center, Dept. of Radiation Oncology, Rigshospitalet, Univ. of Copenhagen (Denmark); Niels Bohr Inst., Faculty of Sciences, Univ. of Copenhagen (Denmark)), e-mail: brodin.patrik@gmail.com; Munck af Rosenschoeld, Per; Aznar, Marianne C.; Vogelius, Ivan R. (Radiation Medicine Research Center, Dept. of Radiation Oncology, Rigshospitalet, Univ. of Copenhagen (Denmark)); Kiil-Berthelsen, Anne (Radiation Medicine Research Center, Dept. of Radiation Oncology, Rigshospitalet, Univ. of Copenhagen (Denmark); Dept. of Clinical Physiology and Nuclear Medicine, Centre of Diagnostic Investigations, Rigshospitalet, Univ. of Copenhagen (Denmark)); Nilsson, Per; Bjoerk-Eriksson, Thomas (Dept. of Oncology, Skaane Univ. Hospital and Lund Univ., Lund (Sweden)); Lannering, Birgitta (Dept. of Paediatric Oncology, The Queen Silvia Children' s Hospital, Gothenburg (Sweden))

    2011-08-15

    Introduction. The aim of this model study was to estimate and compare the risk of radiation-induced adverse late effects in pediatric patients with medulloblastoma (MB) treated with either three-dimensional conformal radiotherapy (3D CRT), inversely-optimized arc therapy (RapidArc (RA)) or spot-scanned intensity-modulated proton therapy (IMPT). The aim was also to find dose-volume toxicity parameters relevant to children undergoing RT to be used in the inverse planning of RA and IMPT, and to use in the risk estimations. Material and methods. Treatment plans were created for all three techniques on 10 pediatric patients that have been treated with craniospinal irradiation (CSI) at our institution in 2007-2009. Plans were generated for two prescription CSI doses, 23.4 Gy and 36 Gy. Risk estimates were based on childhood cancer survivor data when available and secondary cancer (SC) risks were estimated as a function of age at exposure and attained age according to the organ-equivalent dose (OED) concept. Results. Estimates of SC risk was higher for the RA plans and differentiable from the estimates for 3D CRT at attained ages above 40 years. The risk of developing heart failure, hearing loss, hypothyroidism and xerostomia was highest for the 3D CRT plans. The risks of all adverse effects were estimated as lowest for the IMPT plans, even when including secondary neutron (SN) irradiation with high values of the neutron radiation weighting factors (WR{sub neutron}). Conclusions. When comparing RA and 3D CRT treatment for pediatric MB it is a matter of comparing higher SC risk against higher risks of non-cancer adverse events. Considering time until onset of the different complications is necessary to fully assess patient benefit in such a comparison. The IMPT plans, including SN dose contribution, compared favorably to the photon techniques in terms of all radiobiological risk estimates

  12. Radiobiological risk estimates of adverse events and secondary cancer for proton and photon radiation therapy of pediatric medulloblastoma

    International Nuclear Information System (INIS)

    Brodin, N. Patrik; Munck af Rosenschoeld, Per; Aznar, Marianne C.; Vogelius, Ivan R.; Kiil-Berthelsen, Anne; Nilsson, Per; Bjoerk-Eriksson, Thomas; Lannering, Birgitta

    2011-01-01

    Introduction. The aim of this model study was to estimate and compare the risk of radiation-induced adverse late effects in pediatric patients with medulloblastoma (MB) treated with either three-dimensional conformal radiotherapy (3D CRT), inversely-optimized arc therapy (RapidArc (RA)) or spot-scanned intensity-modulated proton therapy (IMPT). The aim was also to find dose-volume toxicity parameters relevant to children undergoing RT to be used in the inverse planning of RA and IMPT, and to use in the risk estimations. Material and methods. Treatment plans were created for all three techniques on 10 pediatric patients that have been treated with craniospinal irradiation (CSI) at our institution in 2007-2009. Plans were generated for two prescription CSI doses, 23.4 Gy and 36 Gy. Risk estimates were based on childhood cancer survivor data when available and secondary cancer (SC) risks were estimated as a function of age at exposure and attained age according to the organ-equivalent dose (OED) concept. Results. Estimates of SC risk was higher for the RA plans and differentiable from the estimates for 3D CRT at attained ages above 40 years. The risk of developing heart failure, hearing loss, hypothyroidism and xerostomia was highest for the 3D CRT plans. The risks of all adverse effects were estimated as lowest for the IMPT plans, even when including secondary neutron (SN) irradiation with high values of the neutron radiation weighting factors (WR neutron ). Conclusions. When comparing RA and 3D CRT treatment for pediatric MB it is a matter of comparing higher SC risk against higher risks of non-cancer adverse events. Considering time until onset of the different complications is necessary to fully assess patient benefit in such a comparison. The IMPT plans, including SN dose contribution, compared favorably to the photon techniques in terms of all radiobiological risk estimates

  13. Secondary ion emission from metal surfaces bombarded by 0.5-10 keV protons and hydrogens

    International Nuclear Information System (INIS)

    Kitamura, Akira; Yano, Syukuro

    1978-01-01

    Secondary ion emission coefficients by bombardment of 0.5 - 10 keV protons K 11 and atomic hydrogens K 01 on copper, stainless steel, molybdenum and evaporated gold surfaces have been measured in a moderate vacuum. Results are summarized as follows; 1) There is no significant difference between K 11 and K 01 . 2) Differences in K 11 and K 11 between different samples of the same material and between the sample before baking-out and the same sample after baking-out are of the order of several tens of percent. 3) The incident particle energy E sub(max) at which K 11 and K 01 have the maximum value lies in the keV region, and increases with the target mass. According to the fact that E sub(max) differs substantially from the energy at which the elastic stopping power has the maximum value, a characteristic length l is introduced and calculated to be of the order of hundreds of A; the factor exp (-x/l) represents the degree of contribution of collision at depth x to K 11 or K 01 . (author)

  14. Deprotonation/protonation of coordinated secondary thioamide units of pincer ruthenium complexes: modulation of voltammetric and spectroscopic characterization of the pincer complexes.

    Science.gov (United States)

    Teratani, Takuya; Koizumi, Take-aki; Yamamoto, Takakazu; Tanaka, Koji; Kanbara, Takaki

    2011-09-21

    New pincer ruthenium complexes, [Ru(SCS)(tpy)]PF(6) (1) (SCS = 2,6-bis(benzylaminothiocarbonyl)phenyl), tpy = 2,2':6',2''-terpyridyl) and [Ru(SNS)(tpy)]PF(6) (2) (SNS = 2,5-bis(benzylaminothiocarbonyl)pyrrolyl), having κ(3)SCS and κ(3)SNS pincer ligands with two secondary thioamide units were synthesized by the reactions of [RuCl(3)(tpy)] with N,N'-dibenzyl-1,3-benzenedicarbothioamide (L1) and N,N'-dibenzyl-2,5-1H-pyrroledicarbothioamide (L2), respectively, and their chemical and electrochemical properties were elucidated. The structure of 1 was determined by X-ray crystallography. The complexes 1 and 2 showed a two-step deprotonation reaction by treatment with 1,8-diazabicyclo[5,4,0]undec-7-ene (DBU), and the addition of DBU led to a shift of the metal-centered redox couples to a lower potential by 720 and 550 mV, respectively. The di-deprotonated complexes were also studied by (1)H-NMR and UV-vis spectroscopy. The addition of methanesulfonic acid (MSA) to the di-deprotonated complexes enabled the recovery of 1 and 2, indicating that the thioamide moiety underwent a reversible deprotonation-protonation process, which resulted in regulating the redox potentials of the metal center. The Pourbaix diagram of 1 revealed that 1 underwent a one-proton/one-electron transfer process in the pH range of 5.83-10.35, and a two-proton/one-electron process at a pH of over 10.35, indicating that the deprotonation/protonation process of the complexes is related to proton-coupled electron transfer (PCET). This journal is © The Royal Society of Chemistry 2011

  15. Reduction of the secondary neutron dose in passively scattered proton radiotherapy, using an optimized pre-collimator/collimator

    International Nuclear Information System (INIS)

    Brenner, David J; Elliston, Carl D; Hall, Eric J; Paganetti, Harald

    2009-01-01

    Proton radiotherapy represents a potential major advance in cancer therapy. Most current proton beams are spread out to cover the tumor using passive scattering and collimation, resulting in an extra whole-body high-energy neutron dose, primarily from proton interactions with the final collimator. There is considerable uncertainty as to the carcinogenic potential of low doses of high-energy neutrons, and thus we investigate whether this neutron dose can be significantly reduced without major modifications to passively scattered proton beam lines. Our goal is to optimize the design features of a patient-specific collimator or pre-collimator/collimator assembly. There are a number of often contradictory design features, in terms of geometry and material, involved in an optimal design. For example, plastic or hybrid plastic/metal collimators have a number of advantages. We quantify these design issues, and investigate the practical balances that can be achieved to significantly reduce the neutron dose without major alterations to the beamline design or function. Given that the majority of proton therapy treatments, at least for the next few years, will use passive scattering techniques, reducing the associated neutron-related risks by simple modifications of the collimator assembly design is a desirable goal.

  16. Shielding experiments by the JASMIN collaboration at Fermilab (II) - Radioactivity measurement induced by secondary particles from the anti-proton production target

    Energy Technology Data Exchange (ETDEWEB)

    Yashima, Hiroshi; /Kyoto U., KURRI; Matsuda, Norihiro; Kasugai, Yoshimi; /JAEA, Ibaraki; Matsumura, Hiroshi; Iwase, Hiroshi; /KEK, Tsukuba; Kinoshita, Norikazu; /KEK, Tsukuba /Tsukuba U.; Boehnlein, David; Lauten, Gary; Leveling, Anthony; Mokhov, Nikolai; Vaziri, Kamran; /Fermilab /Shimizu, Tokyo /JAEA, Ibaraki

    2011-01-01

    The JASMIN Collaboration has performed an experiment to conduct measurements of nuclear reaction rates around the anti-proton production (Pbar) target at the Fermi National Accelerator Laboratory (FNAL). At the Pbar target station, the target, consisting an Inconel 600 cylinder, was irradiated by a 120 GeV/c proton beam from the FNAL Main Injector. The beam intensity was 3.6 x 10{sub 12} protons per second. Samples of Al, Nb, Cu, and Au were placed near the target to investigate the spatial and energy distribution of secondary particles emitted from it. After irradiation, the induced activities of the samples were measured by studying their gamma ray spectra using HPGe detectors. The production rates of 30 nuclides induced in Al, Nb, Cu, Au samples were obtained. These rates increase for samples placed in a forward (small angle) position relative to the target. The angular dependence of these reaction rates becomes larger for increasing threshold energy. These experimental results are compared with Monte Carlo calculations. The calculated results generally agree with the experimental results to within a factor of 2 to 3.

  17. Predicted risks of second malignant neoplasm incidence and mortality due to secondary neutrons in a girl and boy receiving proton craniospinal irradiation

    International Nuclear Information System (INIS)

    Taddei, Phillip J; Mirkovic, Dragan; Zhang Rui; Giebeler, Annelise; Harvey, Mark; Newhauser, Wayne D; Mahajan, Anita; Kornguth, David; Woo, Shiao

    2010-01-01

    The purpose of this study was to compare the predicted risks of second malignant neoplasm (SMN) incidence and mortality from secondary neutrons for a 9-year-old girl and a 10-year-old boy who received proton craniospinal irradiation (CSI). SMN incidence and mortality from neutrons were predicted from equivalent doses to radiosensitive organs for cranial, spinal and intracranial boost fields. Therapeutic proton absorbed dose and equivalent dose from neutrons were calculated using Monte Carlo simulations. Risks of SMN incidence and mortality in most organs and tissues were predicted by applying risks models from the National Research Council of the National Academies to the equivalent dose from neutrons; for non-melanoma skin cancer, risk models from the International Commission on Radiological Protection were applied. The lifetime absolute risks of SMN incidence due to neutrons were 14.8% and 8.5%, for the girl and boy, respectively. The risks of a fatal SMN were 5.3% and 3.4% for the girl and boy, respectively. The girl had a greater risk for any SMN except colon and liver cancers, indicating that the girl's higher risks were not attributable solely to greater susceptibility to breast cancer. Lung cancer predominated the risk of SMN mortality for both patients. This study suggests that the risks of SMN incidence and mortality from neutrons may be greater for girls than for boys treated with proton CSI.

  18. Estimate of the uncertainties in the relative risk of secondary malignant neoplasms following proton therapy and intensity-modulated photon therapy

    International Nuclear Information System (INIS)

    Fontenot, Jonas D; Bloch, Charles; Followill, David; Titt, Uwe; Newhauser, Wayne D

    2010-01-01

    Theoretical calculations have shown that proton therapy can reduce the incidence of radiation-induced secondary malignant neoplasms (SMN) compared with photon therapy for patients with prostate cancer. However, the uncertainties associated with calculations of SMN risk had not been assessed. The objective of this study was to quantify the uncertainties in projected risks of secondary cancer following contemporary proton and photon radiotherapies for prostate cancer. We performed a rigorous propagation of errors and several sensitivity tests to estimate the uncertainty in the ratio of relative risk (RRR) due to the largest contributors to the uncertainty: the radiation weighting factor for neutrons, the dose-response model for radiation carcinogenesis and interpatient variations in absorbed dose. The interval of values for the radiation weighting factor for neutrons and the dose-response model were derived from the literature, while interpatient variations in absorbed dose were taken from actual patient data. The influence of each parameter on a baseline RRR value was quantified. Our analysis revealed that the calculated RRR was insensitive to the largest contributors to the uncertainty. Uncertainties in the radiation weighting factor for neutrons, the shape of the dose-risk model and interpatient variations in therapeutic and stray doses introduced a total uncertainty of 33% to the baseline RRR calculation.

  19. Assessment of organ dose reduction and secondary cancer risk associated with the use of proton beam therapy and intensity modulated radiation therapy in treatment of neuroblastomas

    International Nuclear Information System (INIS)

    Fuji, Hiroshi; Harada, Hideyuki; Asakura, Hirofumi; Nishimura, Tetsuo; Schneider, Uwe; Ishida, Yuji; Konno, Masahiro; Yamashita, Haruo; Kase, Yuki; Murayama, Shigeyuki; Onoe, Tsuyoshi; Ogawa, Hirofumi

    2013-01-01

    To compare proton beam therapy (PBT) and intensity-modulated radiation therapy (IMRT) with conformal radiation therapy (CRT) in terms of their organ doses and ability to cause secondary cancer in normal organs. Five patients (median age, 4 years; range, 2–11 years) who underwent PBT for retroperitoneal neuroblastoma were selected for treatment planning simulation. Four patients had stage 4 tumors and one had stage 2A tumor, according to the International Neuroblastoma Staging System. Two patients received 36 Gy, two received 21.6 Gy, and one received 41.4 Gy of radiation. The volume structures of these patients were used for simulations of CRT and IMRT treatment. Dose–volume analyses of liver, stomach, colon, small intestine, pancreas, and bone were performed for the simulations. Secondary cancer risks in these organs were calculated using the organ equivalent dose (OED) model, which took into account the rates of cell killing, repopulation, and the neutron dose from the treatment machine. In all evaluated organs, the mean dose in PBT was 20–80% of that in CRT. IMRT also showed lower mean doses than CRT for two organs (20% and 65%), but higher mean doses for the other four organs (110–120%). The risk of secondary cancer in PBT was 24–83% of that in CRT for five organs, but 121% of that in CRT for pancreas. The risk of secondary cancer in IMRT was equal to or higher than CRT for four organs (range 100–124%). Low radiation doses in normal organs are more frequently observed in PBT than in IMRT. Assessments of secondary cancer risk showed that PBT reduces the risk of secondary cancer in most organs, whereas IMRT is associated with a higher risk than CRT

  20. Mapping and characterizing mangrove rice growing environments in West-Africa using remote sensing and secondary data

    NARCIS (Netherlands)

    Adefurin, O.; Hamdy, M; Zwart, S.J.

    2016-01-01

    Rice is one of the major staple foods consumed in Africa and its demand continues to increase as a result of population growth, urbanization and changing diets. Mangrove rice cultivation is of importance along the West-African Atlantic coast from Senegal and Gambia down to Guinea-Bissau,

  1. Proton pump inhibition and cancer therapeutics: A specific tumor targeting or it is a phenomenon secondary to a systemic buffering?

    Science.gov (United States)

    Spugnini, Enrico; Fais, Stefano

    2017-04-01

    One of the unsolved mysteries in oncology includes the strategies that cancer cells adopt to cope with an adverse microenvironment. However, we knew, from the Warburg's discovery that through their metabolism based on sugar fermentation, cancer cells acidify their microenvironment and this progressive acidification induces a selective pressure, leading to the development of very malignant cells entirely armed to survive in the hostile microenvironment generated by their own metabolism. In the last decades a primordial role for proton exchangers has been supported as a key tumor advantage in facing off the acidic milieu. Proton exchangers do not allow intracellular acidification through a continuous elimination of H+ either outside the cells or within the internal vacuoles. This article wants to comment a translational process through that led to the preclinical demonstration that a class of proton pump inhibitors (PPI) exploited worldwide for peptic ulcer treatment and gastroprotection are indeed powerful chemosensitizers as well. In this process we achieved the clinical proof of concept that PPI may well be included in new anti-cancer strategies with a solid background and rationale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Secondary production and zooplankton abundance in the coastal waters from Vengurla to Malpe, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Goswami, S.C.

    Secondary production and zooplankton abundance in surface and vertical hauls at different stations along 7 transects from Vengurla to Malpe, Maharashtra, India were studied. Zooplankton production varied with the depth of sampling station and type...

  3. Dose distribution of secondary radiation in a water phantom for a proton pencil beam—EURADOS WG9 intercomparison exercise

    Science.gov (United States)

    Stolarczyk, L.; Trinkl, S.; Romero-Expósito, M.; Mojżeszek, N.; Ambrozova, I.; Domingo, C.; Davídková, M.; Farah, J.; Kłodowska, M.; Knežević, Ž.; Liszka, M.; Majer, M.; Miljanić, S.; Ploc, O.; Schwarz, M.; Harrison, R. M.; Olko, P.

    2018-04-01

    Systematic 3D mapping of out-of-field doses induced by a therapeutic proton pencil scanning beam in a 300  ×  300  ×  600 mm3 water phantom was performed using a set of thermoluminescence detectors (TLDs): MTS-7 (7LiF:Mg,Ti), MTS-6 (6LiF:Mg,Ti), MTS-N (natLiF:Mg,Ti) and TLD-700 (7LiF:Mg,Ti), radiophotoluminescent (RPL) detectors GD-352M and GD-302M, and polyallyldiglycol carbonate (PADC)-based (C12H18O7) track-etched detectors. Neutron and gamma-ray doses, as well as linear energy transfer distributions, were experimentally determined at 200 points within the phantom. In parallel, the Geant4 Monte Carlo code was applied to calculate neutron and gamma radiation spectra at the position of each detector. For the cubic proton target volume of 100  ×  100  ×  100 mm3 (spread out Bragg peak with a modulation of 100 mm) the scattered photon doses along the main axis of the phantom perpendicular to the primary beam were approximately 0.5 mGy Gy‑1 at a distance of 100 mm and 0.02 mGy Gy‑1 at 300 mm from the center of the target. For the neutrons, the corresponding values of dose equivalent were found to be ~0.7 and ~0.06 mSv Gy‑1, respectively. The measured neutron doses were comparable with the out-of-field neutron doses from a similar experiment with 20 MV x-rays, whereas photon doses for the scanning proton beam were up to three orders of magnitude lower.

  4. Two-dimensional NMR studies of squash family inhibitors. Sequence-specific proton assignments and secondary structure of reactive-site hydrolyzed Cucurbita maxima trypsin inhibitor III

    Energy Technology Data Exchange (ETDEWEB)

    Krisnamoorthi, R.; Yuxi Gong; Chanlan Sun Lin (Kansas State Univ., Manhattan (United States)); VanderVelde, D. (Univ. of Kansas, Lawrence (United States))

    1992-01-28

    The solution structure of reactive-site hydrolyzed Cucurbita maxima trypsin inhibitor III (CMTI-III*) was investigated by two-dimensional proton nuclear magnetic resonance (2D NMR) spectroscopy. CMTI-III*, prepared by reacting CMTI-III with trypsin which cleaved the Arg5-Ile6 peptide bond, had the two fragments held together by a disulfide linkage. Sequence-specific {sup 1}H NMR resonance assignments were made for all the 29 amino acid residues of the protein. The secondary structure of CMTI-III*, as deduced from NOESY cross peaks and identification of slowly exchanging hydrogens, contains two turns, a 3{sub 10}-helix, and a triple-stranded {beta}-sheet. Sequential proton assignments were also made for the virgin inhibitor, CMTI-III, at pH 4.71, 30C. Comparison of backbone hydrogen chemical shifts of CMTI-III and CMTI-III* revealed significant changes for residues located far away from the reactive-site region as well as for those located near it, indicating tertiary structural changes that are transmitted through most of the 29 residues of the inhibitor protein. These chemical shift changes were relatively small compared to changes that occurred upon hydrolysis of the reactive-site peptide bond between Arg 5 and Ile6 in CMTI-III.

  5. Two-dimensional NMR studies of squash family inhibitors. Sequence-specific proton assignments and secondary structure of reactive-site hydrolyzed Cucurbita maxima trypsin inhibitor III.

    Science.gov (United States)

    Krishnamoorthi, R; Gong, Y X; Lin, C L; VanderVelde, D

    1992-01-28

    The solution structure of reactive-site hydrolyzed Cucurbita maxima trypsin inhibitor III (CMTI-III*) was investigated by two-dimensional proton nuclear magnetic resonance (2D NMR) spectroscopy. CMTI-III*, prepared by reacting CMTI-III with trypsin which cleaved the Arg5-Ile6 peptide bond, had the two fragments held together by a disulfide linkage. Sequence-specific 1H NMR resonance assignments were made for all the 29 amino acid residues of the protein. The secondary structure of CMTI-III*, as deduced from NOESY cross peaks and identification of slowly exchanging hydrogens, contains two turns (residues 8-12 and 24-27), a 3(10)-helix (residues 13-16), and a triple-stranded beta-sheet (residues 8-10, 29-27, and 21-25). This secondary structure is similar to that of CMTI-I [Holak, T. A., Gondol, D., Otlewski, J., & Wilusz, T. (1989) J. Mol. Biol. 210, 635-648], which has a Glu instead of a Lys at position 9. Sequential proton assignments were also made for the virgin inhibitor, CMTI-III, at pH 4.71, 30 degrees C. Comparison of backbone hydrogen chemical shifts of CMTI-III and CMTI-III* revealed significant changes for residues located far away from the reactive-site region as well as for those located near it, indicating tertiary structural changes that are transmitted through most of the 29 residues of the inhibitor protein. Many of these residues are functionally important in that they make contact with atoms of the enzyme in the trypsin-inhibitor complex, as revealed by X-ray crystallography [Bode, W., Greyling, H. J., Huber, R., Otlewski, J., & Wilusz, T. (1989) FEBS Lett. 242, 285-292].(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Global species delimitation and phylogeography of the circumtropical ‘sexy shrimp’ Thor amboinensis reveals a cryptic species complex and secondary contact in the Indo-West Pacific

    KAUST Repository

    Titus, Benjamin M.

    2018-04-27

    Aim The “sexy shrimp” Thor amboinensis is currently considered a single circumtropical species. However, the tropical oceans are partitioned by hard and soft barriers to dispersal, providing ample opportunity for allopatric speciation. Herein, we test the null hypothesis that T. amboinensis is a single global species, reconstruct its global biogeographical history, and comment on population‐level patterns throughout the Tropical Western Atlantic. Location Coral reefs in all tropical oceans. Methods Specimens of Thor amboinensis were obtained through field collection and museum holdings. We used one mitochondrial (COI) and two nuclear (NaK, enolase) gene fragments for global species delimitation and phylogenetic analyses (n = 83 individuals, 30 sample localities), while phylogeographical reconstruction in the TWA was based on COI only (n = 303 individuals, 10 sample localities). Results We found evidence for at least five cryptic lineages (9%–22% COI pairwise sequence divergence): four in the Indo‐West Pacific and one in the Tropical Western Atlantic. Phylogenetic reconstruction revealed that endemic lineages from Japan and the South Central Pacific are more closely related to the Tropical Western Atlantic lineage than to a co‐occurring lineage that is widespread throughout the Indo‐West Pacific. Concatenated and species tree phylogenetic analyses differ in the placement of an endemic Red Sea lineage and suggest alternate dispersal pathways into the Atlantic. Phylogeographical reconstruction throughout the Tropical Western Atlantic reveals little genetic structure over more than 3,000 km. Main conclusions Thor amboinensis is a species complex that has undergone a series of allopatric speciation events and whose members are in secondary contact in the Indo‐West Pacific. Nuclear‐ and mitochondrial‐ gene phylogenies show evidence of introgression between lineages inferred to have been separated more than 20 Ma. Phylogenetic discordance between

  7. Rural Junior Secondary School Students' Perceptions of Classroom Learning Environments and Their Attitude and Achievement in Mathematics in West China

    Science.gov (United States)

    Yang, Xinrong

    2015-01-01

    This paper reports findings from a survey of how rural junior secondary school students in the western part of China perceive their mathematics classroom learning environments and associations of learning environment with their attitudes toward mathematics and mathematics achievement. Using adaptations of the widely-used What Is Happening In this…

  8. Spectra of the linear energy transfer measured with a track etch spectrometer in the beam of 1 GeV protons and the contribution of secondary charged particles to the dose

    International Nuclear Information System (INIS)

    Spurny, F.; Vlcek, B.; Bamblevskij, V.P.; Timoshenko, G.N.

    1999-01-01

    A spectrometer of the linear energy transfer (LET) on the base of CR-39 detector was used to establish the spectra of LET in the beam of protons with the primary energy of 1 GeV. It was found out that the LET spectra of secondary charged particles between 100 and 7000 MeV cm 2 g -1 do not depend on the radiator. The average quality factors for the LET region mentioned were obtained about 11.6 with ICRP 26 quality factors and about 14.0 with ICRP 60 quality factors. The spectra obtained permitted to calculate the contributions of these secondary charged particles to the dosimetric quantities. It was observed that these contributions were about 7.0% for the total absorbed dose of protons and close 90% in the case of the equivalent doses. It is more than it was found out for few hundred MeV protons

  9. Views of adolescents on addressing violence in semi-rural secondary schools in Mafikeng, North West province

    Directory of Open Access Journals (Sweden)

    Connie Mosome

    2011-11-01

    Purpose: The purpose of this study was to explore and describe adolescents’ views on addressing violence in semi-rural secondary schools in Mafikeng. Research design and method: A qualitative, explorative, descriptive and contextual research design was utilised. Purposive sampling was used to select adolescents from semi-rural secondary schools in Mafikeng who fell between the ages of 13 and 20 years and who were involved in community youth groups or associations. In-depth focus group discussion using audiotape, reflexive notes and naïve sketches were used for data collection. The central question which was asked was ‘What are the adolescents’ views on addressing violence in semi-rural secondary schools?’ Data were analysed by means of open coding. Results: The results showed that adolescents understood the complexities associated with violence in this country, and they suggested multiple approaches and interventions. The adolescents were of the opinion that responsible communication patterns in the school environment could build healthy relationships between learners and educators and lead to a decrease in violence in the school setting. They also felt that enforcement of a secure teaching environment through encouragement of behavioural and attitudinal change guided by school codes of conduct and provision of firm security will help reduce violence in schools.

  10. Views of adolescents on addressing violence in semi-rural secondary schools in Mafikeng, North West province

    Directory of Open Access Journals (Sweden)

    Connie Mosome

    2011-09-01

    Full Text Available Background: Violence is a public health problem and often an issue of criminal justice.Violence in schools is a worldwide phenomenon and exposes adolescents to premature death.Purpose: The purpose of this study was to explore and describe adolescents’ views on addressing violence in semi-rural secondary schools in Mafikeng.Research design and method: A qualitative, explorative, descriptive and contextual research design was utilised. Purposive sampling was used to select adolescents from semi-rural secondary schools in Mafikeng who fell between the ages of 13 and 20 years and who were involved in community youth groups or associations. In-depth focus group discussion using audiotape, reflexive notes and naïve sketches were used for data collection. The central question which was asked was ‘What are the adolescents’ views on addressing violence in semi-rural secondary schools?’ Data were analysed by means of open coding.Results: The results showed that adolescents understood the complexities associated with violence in this country, and they suggested multiple approaches and interventions. The adolescents were of the opinion that responsible communication patterns in the school environment could build healthy relationships between learners and educators and lead to a decrease in violence in the school setting. They also felt that enforcement of a secure teaching environment through encouragement of behavioural and attitudinal change guided by school codes of conduct and provision of firm security will help reduce violence in schools.

  11. Views of adolescents on addressing violence in semi-rural secondary schools in Mafikeng, North West province.

    Science.gov (United States)

    Mosome, Connie; Poggenpoel, Marie; Myburgh, Chris

    2011-11-17

    Violence is a public health problem and often an issue of criminal justice.Violence in schools is a worldwide phenomenon and exposes adolescents to premature death. The purpose of this study was to explore and describe adolescents' views on addressing violence in semi-rural secondary schools in Mafikeng. A qualitative, explorative, descriptive and contextual research design was utilised. Purposive sampling was used to select adolescents from semi-rural secondary schools in Mafikeng who fell between the ages of 13 and 20 years and who were involved in community youth groups or associations. In-depth focus group discussion using audiotape, reflexive notes and naïve sketches were used for data collection. The central question which was asked was 'What are the adolescents' views on addressing violence in semi-rural secondary schools?' Data were analysed by means of open coding. The results showed that adolescents understood the complexities associated with violence in this country, and they suggested multiple approaches and interventions. The adolescents were of the opinion that responsible communication patterns in the school environment could build healthy relationships between learners and educators and lead to a decrease in violence in the school setting. They also felt that enforcement of a secure teaching environment through encouragement of behavioural and attitudinal change guided by school codes of conduct and provision of firm security will help reduce violence in schools.

  12. Importance of Forest Ecosystem Services to Secondary School Students: a Case from the North-West Slovenia

    Directory of Open Access Journals (Sweden)

    Gregor Torkar

    2014-06-01

    Full Text Available Background and Purpose: Forest managers are facing challenges in balancing the demands for forest social services raised by the general public and forest productive services. Knowing local people’s attitudes, taking into account their needs and respecting their opinions, introducing social aspects should become a management priority to ensure success of conservational activities and sustainable use of natural resources. This study investigates the attitudes of one category from the general public which is secondary school students related to forest ecosystem services in order to determine and present a useful basis for further research of people’s attitudes towards forests and forest management. Materials and Methods: In 2013 and 2014 410 Slovenian students from secondary schools in the Vipava valley and Goriška area in northwestern Slovenia completed a questionnaire testing for the influence of gender and frequency of forest experiences on attitudes to forest ecosystem services. Students’ attitudes to forest ecosystem services were investigated via 15 statements about provisioning, regulating, cultural and supporting services. The gathered data was analysed by the Statistical Package for the Social Sciences (SPSS, using ANOVA, Tukey post-hoc test, Spearman’s product moment correlation and the nonparametric Mann–Whitney (U test. Results and Conclusions: Students acknowledged the high benefits of ecosystem services provided by forests, though not all forest ecosystem services hold the same importance to secondary school students. Students placed the highest importance on supporting services; especially on the value of forests as habitats for animal and plant species. Also the importance of forests for clean air production was emphasized. Students with more frequent experiences in the forest environment placed more importance on cultural services as well as regulating services, especially for clean water and air production. Gender

  13. Proton-proton bremsstrahlung

    International Nuclear Information System (INIS)

    Fearing, H.W.

    1990-01-01

    We summarize some of the information about the nucleon-nucleon force which has been obtained by comparing recent calculations of proton-proton bremsstrahlung with cross section and analyzing power data from the new TRIUMF bremsstrahlung experiment. Some comments are made as to how these results can be extended to neutron-proton bremsstrahlung. (Author) 17 refs., 6 figs

  14. Occipital lobe epilepsy secondary to posterior reversible encephalopathy syndrome (PRES) during a post-partum eclampsia in Mali (West Africa).

    Science.gov (United States)

    Youssoufa, Maïga; Callixte, Kuate Tegueu; Christian, Napon

    2013-08-13

    Eclampsia is known to cause posterior reversible encephalopathy syndrome (PRES) that is often associated with an extensive neurovascular damage affecting preferably posterior regions, often leading to reversible cortical blindness. In spite the magnitude of these lesions, post eclamptic symptomatic epilepsy is rare. We therefore report a case of symptomatic occipital lobe epilepsy secondary to PRES. A 39-year-old female right handed teacher who presented with headache of progressive onset, phosphenes, rapid decline of visual acuity to blindness, vomiting, repeated generalized tonic-clonic seizures followed by altered consciousness and very high blood pressure (HBP) of 240/120 mmHg, all of which started about 12 hours following a normal delivery. Nine months later, the patient presented with paroxysmal visual symptoms predominating in the right visual field followed by partial tonic clonic seizures with secondary generalization and recurrence of partial occipital lobe seizures. The pathophysiologic mechanism of irreversible tissue damage during PRES syndrome could result from a combination of events including the delay for early treatment, inadequate antihypertensive drugs that could worsen the brain damage by hypo perfusion, inadequate or delayed treatment for seizures or status epilepticus. Despite its high incidence in the third world, eclampsia is not a usual cause of epilepsy. Our case is the first description of post eclamptic occipital lobe epilepsy in Africa. With this report, we draw practitioners' attention on this rare complication.

  15. Knowledge, attitudes and practices regarding HIV/AIDS among senior secondary school students in Fako Division, South West Region, Cameroon.

    Science.gov (United States)

    Nubed, Colins Kingoum; Akoachere, Jane-Francis Tatah Kihla

    2016-08-22

    Knowledge, attitudes and practices (KAPs) regarding HIV/AIDS is one of the corner stones in the fight against the disease. Youths are most vulnerable to infection because they engage in risky practices due to a lack of adequate information. Thus, evaluating their KAPs will help in designing appropriate prevention strategies. This study was aimed at assessing the KAPs of senior secondary school students in Fako Division, Cameroon, on HIV/AIDS. This was a cross-sectional study carried out on 464 students aged 13-25 years, selected by systematic quota random sampling from some secondary schools in Fako, from April to June 2014, to evaluate their KAPs regarding HIV/AIDS. Participants were drawn from one secondary school in each of the four health districts in Fako. Pre-tested questionnaires were administered to the students to obtain information about their KAPs on HIV/AIDS. Data were analyzed using SPSS version 20.0. All respondents were aware of HIV/AIDS. Sources of information varied, the most common being sex education in school. The majority of participants demonstrated an adequate understanding of HIV transmission and prevention. However, misconceptions about routes of transmission were observed in 3.4 to 23.3 % of respondents. Risky behaviors were found among participants as about 60 % practice safe sex and 40 % reported not to. Up to 196 (42.2 %) respondents had a history of sexual intercourse of which 108 (56.25 %) had used a condom during their last three sexual encounters. About half of the respondents had negative views about HIV infected people. Students with medium (34.3 %) and high (62.1 %) levels of knowledge were more likely to display positive attitudes Although statistically not significant, we found that as knowledge increased the ability of respondents to report safer sex decreased (95 % CI, P = 0.922). Students had a satisfactory level of knowledge on HIV/AIDS prevention. Those with adequate knowledge were more likely to display

  16. Knowledge, attitudes and practices regarding HIV/AIDS among senior secondary school students in Fako Division, South West Region, Cameroon

    Directory of Open Access Journals (Sweden)

    Colins Kingoum Nubed

    2016-08-01

    Full Text Available Abstract Background Knowledge, attitudes and practices (KAPs regarding HIV/AIDS is one of the corner stones in the fight against the disease. Youths are most vulnerable to infection because they engage in risky practices due to a lack of adequate information. Thus, evaluating their KAPs will help in designing appropriate prevention strategies. This study was aimed at assessing the KAPs of senior secondary school students in Fako Division, Cameroon, on HIV/AIDS. Methods This was a cross-sectional study carried out on 464 students aged 13–25 years, selected by systematic quota random sampling from some secondary schools in Fako, from April to June 2014, to evaluate their KAPs regarding HIV/AIDS. Participants were drawn from one secondary school in each of the four health districts in Fako. Pre-tested questionnaires were administered to the students to obtain information about their KAPs on HIV/AIDS. Data were analyzed using SPSS version 20.0. Results All respondents were aware of HIV/AIDS. Sources of information varied, the most common being sex education in school. The majority of participants demonstrated an adequate understanding of HIV transmission and prevention. However, misconceptions about routes of transmission were observed in 3.4 to 23.3 % of respondents. Risky behaviors were found among participants as about 60 % practice safe sex and 40 % reported not to. Up to 196 (42.2 % respondents had a history of sexual intercourse of which 108 (56.25 % had used a condom during their last three sexual encounters. About half of the respondents had negative views about HIV infected people. Students with medium (34.3 % and high (62.1 % levels of knowledge were more likely to display positive attitudes Although statistically not significant, we found that as knowledge increased the ability of respondents to report safer sex decreased (95 % CI, P = 0.922. Conclusions Students had a satisfactory level of knowledge on HIV/AIDS prevention

  17. Plant proton pumps

    DEFF Research Database (Denmark)

    Gaxiola, Roberto A.; Palmgren, Michael Gjedde; Schumacher, Karin

    2007-01-01

    Chemiosmotic circuits of plant cells are driven by proton (H+) gradients that mediate secondary active transport of compounds across plasma and endosomal membranes. Furthermore, regulation of endosomal acidification is critical for endocytic and secretory pathways. For plants to react...

  18. Characterization of the secondary neutron field produced during treatment of an anthropomorphic phantom with x-rays, protons and carbon ions

    Science.gov (United States)

    La Tessa, C.; Berger, T.; Kaderka, R.; Schardt, D.; Burmeister, S.; Labrenz, J.; Reitz, G.; Durante, M.

    2014-04-01

    Short- and long-term side effects following the treatment of cancer with radiation are strongly related to the amount of dose deposited to the healthy tissue surrounding the tumor. The characterization of the radiation field outside the planned target volume is the first step for estimating health risks, such as developing a secondary radioinduced malignancy. In ion and high-energy photon treatments, the major contribution to the dose deposited in the far-out-of-field region is given by neutrons, which are produced by nuclear interaction of the primary radiation with the beam line components and the patient’s body. Measurements of the secondary neutron field and its contribution to the absorbed dose and equivalent dose for different radiotherapy technologies are presented in this work. An anthropomorphic RANDO phantom was irradiated with a treatment plan designed for a simulated 5 × 2 × 5 cm3 cancer volume located in the center of the head. The experiment was repeated with 25 MV IMRT (intensity modulated radiation therapy) photons and charged particles (protons and carbon ions) delivered with both passive modulation and spot scanning in different facilities. The measurements were performed with active (silicon-scintillation) and passive (bubble, thermoluminescence 6LiF:Mg, Ti (TLD-600) and 7LiF:Mg, Ti (TLD-700)) detectors to investigate the production of neutral particles both inside and outside the phantom. These techniques provided the whole energy spectrum (E ⩽ 20 MeV) and corresponding absorbed dose and dose equivalent of photo neutrons produced by x-rays, the fluence of thermal neutrons for all irradiation types and the absorbed dose deposited by neutrons with 0.8 energy x-rays, the contribution of secondary neutrons to the dose equivalent is of the same order of magnitude as the primary radiation. In carbon therapy delivered with raster scanning, the absorbed dose deposited by neutrons in the energy region between 0.8 and 10 MeV is almost two orders of

  19. Estimating the number of secondary Ebola cases resulting from an unsafe burial and risk factors for transmission during the West Africa Ebola epidemic.

    Directory of Open Access Journals (Sweden)

    Amanda Tiffany

    2017-06-01

    Full Text Available Safely burying Ebola infected individuals is acknowledged to be important for controlling Ebola epidemics and was a major component of the 2013-2016 West Africa Ebola response. Yet, in order to understand the impact of safe burial programs it is necessary to elucidate the role of unsafe burials in sustaining chains of Ebola transmission and how the risk posed by activities surrounding unsafe burials, including care provided at home prior to death, vary with human behavior and geography.Interviews with next of kin and community members were carried out for unsafe burials in Sierra Leone, Liberia and Guinea, in six districts where the Red Cross was responsible for safe and dignified burials (SDB. Districts were randomly selected from a district-specific sampling frame comprised of villages and neighborhoods that had experienced cases of Ebola. An average of 2.58 secondary cases were potentially generated per unsafe burial and varied by district (range: 0-20. Contact before and after death was reported for 142 (46% contacts. Caregivers of a primary case were 2.63 to 5.92 times more likely to become EVD infected compared to those with post-mortem contact only. Using these estimates, the Red Cross SDB program potentially averted between 1,411 and 10,452 secondary EVD cases, reducing the epidemic by 4.9% to 36.5%.SDB is a fundamental control measure that limits community transmission of Ebola; however, for those individuals having contact before and after death, it was impossible to ascertain the exposure that caused their infection. The number of infections prevented through SDB is significant, yet greater impact would be achieved by early hospitalization of the primary case during acute illness.

  20. Characterizing source fingerprints and ageing processes in laboratory-generated secondary organic aerosols using proton-nuclear magnetic resonance (1H-NMR) analysis and HPLC HULIS determination

    Science.gov (United States)

    Zanca, Nicola; Lambe, Andrew T.; Massoli, Paola; Paglione, Marco; Croasdale, David R.; Parmar, Yatish; Tagliavini, Emilio; Gilardoni, Stefania; Decesari, Stefano

    2017-09-01

    The study of secondary organic aerosol (SOA) in laboratory settings has greatly increased our knowledge of the diverse chemical processes and environmental conditions responsible for the formation of particulate matter starting from biogenic and anthropogenic volatile compounds. However, characteristics of the different experimental setups and the way they impact the composition and the timescale of formation of SOA are still subject to debate. In this study, SOA samples were generated using a potential aerosol mass (PAM) oxidation flow reactor using α-pinene, naphthalene and isoprene as precursors. The PAM reactor facilitated exploration of SOA composition over atmospherically relevant photochemical ageing timescales that are unattainable in environmental chambers. The SOA samples were analyzed using two state-of-the-art analytical techniques for SOA characterization - proton nuclear magnetic resonance (1H-NMR) spectroscopy and HPLC determination of humic-like substances (HULIS). Results were compared with previous Aerodyne aerosol mass spectrometer (AMS) measurements. The combined 1H-NMR, HPLC, and AMS datasets show that the composition of the studied SOA systems tend to converge to highly oxidized organic compounds upon prolonged OH exposures. Further, our 1H-NMR findings show that only α-pinene SOA acquires spectroscopic features comparable to those of ambient OA when exposed to at least 1 × 1012 molec OH cm-3 × s OH exposure, or multiple days of equivalent atmospheric OH oxidation. Over multiple days of equivalent OH exposure, the formation of HULIS is observed in both α-pinene SOA and in naphthalene SOA (maximum yields: 16 and 30 %, respectively, of total analyzed water-soluble organic carbon, WSOC), providing evidence of the formation of humic-like polycarboxylic acids in unseeded SOA.

  1. Characterizing source fingerprints and ageing processes in laboratory-generated secondary organic aerosols using proton-nuclear magnetic resonance (1H-NMR analysis and HPLC HULIS determination

    Directory of Open Access Journals (Sweden)

    N. Zanca

    2017-09-01

    Full Text Available The study of secondary organic aerosol (SOA in laboratory settings has greatly increased our knowledge of the diverse chemical processes and environmental conditions responsible for the formation of particulate matter starting from biogenic and anthropogenic volatile compounds. However, characteristics of the different experimental setups and the way they impact the composition and the timescale of formation of SOA are still subject to debate. In this study, SOA samples were generated using a potential aerosol mass (PAM oxidation flow reactor using α-pinene, naphthalene and isoprene as precursors. The PAM reactor facilitated exploration of SOA composition over atmospherically relevant photochemical ageing timescales that are unattainable in environmental chambers. The SOA samples were analyzed using two state-of-the-art analytical techniques for SOA characterization – proton nuclear magnetic resonance (1H-NMR spectroscopy and HPLC determination of humic-like substances (HULIS. Results were compared with previous Aerodyne aerosol mass spectrometer (AMS measurements. The combined 1H-NMR, HPLC, and AMS datasets show that the composition of the studied SOA systems tend to converge to highly oxidized organic compounds upon prolonged OH exposures. Further, our 1H-NMR findings show that only α-pinene SOA acquires spectroscopic features comparable to those of ambient OA when exposed to at least 1  ×  1012 molec OH cm−3  ×  s OH exposure, or multiple days of equivalent atmospheric OH oxidation. Over multiple days of equivalent OH exposure, the formation of HULIS is observed in both α-pinene SOA and in naphthalene SOA (maximum yields: 16 and 30 %, respectively, of total analyzed water-soluble organic carbon, WSOC, providing evidence of the formation of humic-like polycarboxylic acids in unseeded SOA.

  2. Time-resolved Imaging of Secondary Gamma Ray Emissions for in vivo Monitoring of Proton Therapy : Methodological and Experimental Feasibility Studies

    NARCIS (Netherlands)

    Cambraia Lopes Ferreira da Silva, P.

    2017-01-01

    Particle therapy (PT), including proton therapy, has important advantages compared to external beam photon therapy (section 1.1). This is because most of the therapeutic effect of a proton beam is localized at the endpoint, where most of its energy is imparted to the medium (Bragg peak), with nearly

  3. Measurements and Monte Carlo calculations of forward-angle secondary-neutron-production cross-sections for 137 and 200 MeV proton-induced reactions in carbon

    Science.gov (United States)

    Iwamoto, Yosuke; Hagiwara, Masayuki; Matsumoto, Tetsuro; Masuda, Akihiko; Iwase, Hiroshi; Yashima, Hiroshi; Shima, Tatsushi; Tamii, Atsushi; Nakamura, Takashi

    2012-10-01

    Secondary neutron-production double-differential cross-sections (DDXs) have been measured from interactions of 137 MeV and 200 MeV protons in a natural carbon target. The data were measured between 0° and 25° in the laboratory. DDXs were obtained with high energy resolution in the energy region from 3 MeV up to the maximum energy. The experimental data of 137 MeV protons at 10° and 25° were in good agreement with that of 113 MeV protons at 7.5° and 30° at LANSCE/WNR in the energy region below 80 MeV. Benchmark calculations were carried out with the PHITS code using the evaluated nuclear data files of JENDL/HE-2007 and ENDF/B-VII, and the theoretical models of Bertini-GEM and ISOBAR-GEM. For the 137 MeV proton incidence, calculations using JENDL/HE-2007 generally reproduced the shape and the intensity of experimental spectra well including the ground state of the 12N state produced by the 12C(p,n)12N reaction. For the 200 MeV proton incidence, all calculated results underestimated the experimental data by the factor of two except for the calculated result using ISOBAR model. ISOBAR predicts the nucleon emission to the forward angles qualitatively better than the Bertini model. These experimental data will be useful to evaluate the carbon data and as benchmark data for investigating the validity of the Monte Carlo simulation for the shielding design of accelerator facilities.

  4. Secondary radiation yield from a surface of heavy targets, irradiated by protons of average energies (E sub p approx 1 GeV)

    CERN Document Server

    Krupnyj, G I; Yanovich, A A

    2001-01-01

    Experimental data on the nuclear reaction rates of threshold rhodium, indium, phosphorus, sulfur, aluminium, carbon, niobium and bismuth activated detectors are presented. The detectors were set up on the cylindrical surface of full absorption targets: tungsten, uranium and chloride with the molar ratios of the 70 % NaCl and 30 % PbCl sub 2 salts. The targets were irradiated by protons with the energies from 0.8 to 1.21 GeV. Growth of the reaction rate with increasing reaction of primary protons and raising atomic number of the targets, presence of the target profile, where the maximum reaction rate is observed, are noted

  5. Treatment of gastro-oesophageal reflux disease with rabeprazole in primary and secondary care : does Helicobacter pylori infection affect proton pump inhibitor effectiveness?

    NARCIS (Netherlands)

    de Wit, NJ; de Boer, WA; Geldof, H; Hazelhoff, B; Bergmans, P; Tytgat, GNJ; Smout, AJPM

    2004-01-01

    Background: The presence of the gastric pathogen, Helicobacter pylori influences acid suppression by proton pump inhibitors and treatment outcome in patients with gastro-oesophageal reflux disease. Aim: To determine the influence of H. pylori infection on effectiveness of rabeprazole in primary and

  6. Treatment of gastro-oesophageal reflux disease with rabeprazole in primary and secondary care: does Helicobacter pylori infection affect proton pump inhibitor effectiveness?

    NARCIS (Netherlands)

    Wit, N. J.; Boer, W. A.; Geldof, H.; Hazelhoff, B.; Bergmans, P.; Tytgat, G. N. J.; Smout, A. J. P. M.

    2004-01-01

    BACKGROUND: The presence of the gastric pathogen, Helicobacter pylori influences acid suppression by proton pump inhibitors and treatment outcome in patients with gastro-oesophageal reflux disease. AIM: To determine the influence of H. pylori infection on effectiveness of rabeprazole in primary and

  7. Energy and angular distributions of secondary electrons from 5--100-keV-proton collisions with hydrogen and nitrogen molecules

    International Nuclear Information System (INIS)

    Rudd, M.E.

    1979-01-01

    Cross sections for the ejection of electrons from hydrogen and nitrogen by protons have been measured as a function of the energy and angle of ejection of the electrons at incident proton energies of 5--70 keV and 100 keV for hydrogen. The range of angles measured was 10--160 0 and the electron energy range was 1.5--300 eV. The doubly differential cross sections were also integrated over angle, over electron energy, or over both to obtain singly differential and total cross sections for electron production. Average electron energies were also calculated from the data. The angular distributions of electrons are peaked in the forward direction but become more isotropic as the proton energy decreases. Nitrogen yields a more isotropic distribution than hydrogen. In this range of proton energies the cross sections integrated over angle are found to fall off approximately exponentially with electron energy, and a simple empirical equation has been found that describes the singly differential and total cross sections within a factor of 2 for several targets. A theoretical interpretation of this result in terms of the molecular promotion model is given in which Meyerhof's method of calculating cross sections for K-shell excitation is applied for the first time to the ionization of outer shells of atoms

  8. Effect of secondary radiation from 70 GeV protons and γ-quanta on Chinese hamster chromosomes depending on the cell cycle stage

    International Nuclear Information System (INIS)

    Antipov, A.V.; Aptikaeva, G.F.; Akhmadieva, A.Kh.; Ganassi, E.Eh.; Zaichkina, S.I.; Livanova, I.A.; Smirnova, E.N.

    1987-01-01

    In cultured Chinese hamster cells, no decrease in the number of chromosome aberrations was noted after exposure thereof to 70 GeV protons at the late S-phase as opposed to early one. It is suggested that high biological effectiveness of this type of raiation is associated with its inhibiting effect of cytogenetic damages repair

  9. Acute necrotizing encephalopathy secondary to diphtheria, tetanus toxoid and whole-cell pertussis vaccination: diffusion-weighted imaging and proton MR spectroscopy findings

    International Nuclear Information System (INIS)

    Aydin, Hale; Ozgul, Esra; Agildere, Ahmet Muhtesem

    2010-01-01

    We present a previously healthy 6-month-old boy who was admitted to our hospital with lethargy, hypotonia and focal clonic seizures 6 days following diptheria, tetanus toxoid and whole-cell pertussis vaccination. A diagnosis of acute necrotising encephalopathy was made with the aid of MRI, including diffusion-weighted imaging and proton MR spectroscopy. (orig.)

  10. Acute necrotizing encephalopathy secondary to diphtheria, tetanus toxoid and whole-cell pertussis vaccination: diffusion-weighted imaging and proton MR spectroscopy findings

    Energy Technology Data Exchange (ETDEWEB)

    Aydin, Hale; Ozgul, Esra; Agildere, Ahmet Muhtesem [Baskent University Hospital, Department of Radiology, Ankara (Turkey)

    2010-07-15

    We present a previously healthy 6-month-old boy who was admitted to our hospital with lethargy, hypotonia and focal clonic seizures 6 days following diptheria, tetanus toxoid and whole-cell pertussis vaccination. A diagnosis of acute necrotising encephalopathy was made with the aid of MRI, including diffusion-weighted imaging and proton MR spectroscopy. (orig.)

  11. Review of inelastic proton-proton reactions

    CERN Document Server

    Morrison, Douglas Robert Ogston

    1973-01-01

    The most important new results on inelastic proton-proton scattering obtained with the new machines, I.S.R. and N.A.L., are: (1) The inelastic cross-section increases monotonically with energy from threshold to 1500 GeV/c. Above 6 GeV/c the energy variation has a s /sup +0.04/ behaviour. (2) Scaling is observed at I.S.R. energies in pion production. Confirmation is obtained of the hypothesis of limiting fragmentation. (3) The results are in general, consistent with the two-component model-one class of events being produced by diffraction dissociation and the other by a short-range-order process (e.g. the multiperipheral model). (4) There are indications that the protons have a granular structure; this from observation of secondaries of large transverse momenta. (33 refs).

  12. Collision physics going west

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The centroid of proton-antiproton physics is moving west across the Atlantic concluded Luigi Di Leila of CERN in his summary talk at the Topical Workshop on Proton-Antiproton Collider Physics, held at Fermilab in June. Previous meetings in this series had been dominated by results from CERN's big proton-antiproton collider, dating back to 1981. However last year saw the first physics run at Fermilab's collider, and although the number of collisions in the big CDF detector was only about one thirtieth of the score so far at CERN, the increased collision energy at Fermilab of 1.8 TeV (1800 GeV, compared to the routine 630 GeV at CERN) is already paying dividends

  13. Proton therapy

    International Nuclear Information System (INIS)

    Smith, Alfred R

    2006-01-01

    Proton therapy has become a subject of considerable interest in the radiation oncology community and it is expected that there will be a substantial growth in proton treatment facilities during the next decade. I was asked to write a historical review of proton therapy based on my personal experiences, which have all occurred in the United States, so therefore I have a somewhat parochial point of view. Space requirements did not permit me to mention all of the existing proton therapy facilities or the names of all of those who have contributed to proton therapy. (review)

  14. Proton movies

    CERN Multimedia

    2009-01-01

    A humorous short film made by three secondary school students received an award at a Geneva film festival. Even without millions of dollars or Hollywood stars at your disposal, it is still possible to make a good science fiction film about CERN. That is what three students from the Collège Madame de Staël in Carouge, near Geneva, demonstrated. For their amateur short film on the LHC, they were commended by the jury of the video and multimedia festival for schools organised by the "Media in education" service of the Canton of Geneva’s Public Education Department. The film is a spoof of a television news report on the LHC start-up. In sequences full of humour and imagination, the reporter conducts interviews with a very serious "Professor Sairne", some protons preparing for their voyage and even the neutrons that were rejected by the LHC. "We got the idea of making a film about CERN at the end of the summer," explains Lucinda Päsche, one of the three students. "We did o...

  15. Upgrading of the West Area

    CERN Multimedia

    1983-01-01

    The rejigged main hall (EHW1) in the West Area: on background, below the crane, is the brown yoke of the Omega magnet which had been resited. The upgrading was completed by the time in July when 400 GeV protons arrived. See Annual Report 1983 p. 107.

  16. The Organic Secondary Building Unit: Strong Intermolecular π Interactions Define Topology in MIT-25, a Mesoporous MOF with Proton-Replete Channels.

    Science.gov (United States)

    Park, Sarah S; Hendon, Christopher H; Fielding, Alistair J; Walsh, Aron; O'Keeffe, Michael; Dincă, Mircea

    2017-03-15

    The structure-directing role of the inorganic secondary building unit (SBU) is key for determining the topology of metal-organic frameworks (MOFs). Here we show that organic building units relying on strong π interactions that are energetically competitive with the formation of common inorganic SBUs can also play a role in defining the topology. We demonstrate the importance of the organic SBU in the formation of Mg 2 H 6 (H 3 O)(TTFTB) 3 (MIT-25), a mesoporous MOF with the new ssp topology. A delocalized electronic hole is critical in the stabilization of the TTF triad organic SBUs and exemplifies a design principle for future MOF synthesis.

  17. Metabolomics by Proton High-Resolution Magic-Angle-Spinning Nuclear Magnetic Resonance of Tomato Plants Treated with Two Secondary Metabolites Isolated from Trichoderma.

    Science.gov (United States)

    Mazzei, Pierluigi; Vinale, Francesco; Woo, Sheridan Lois; Pascale, Alberto; Lorito, Matteo; Piccolo, Alessandro

    2016-05-11

    Trichoderma fungi release 6-pentyl-2H-pyran-2-one (1) and harzianic acid (2) secondary metabolites to improve plant growth and health protection. We isolated metabolites 1 and 2 from Trichoderma strains, whose different concentrations were used to treat seeds of Solanum lycopersicum. The metabolic profile in the resulting 15 day old tomato leaves was studied by high-resolution magic-angle-spinning nuclear magnetic resonance (HRMAS NMR) spectroscopy directly on the whole samples without any preliminary extraction. Principal component analysis (PCA) of HRMAS NMR showed significantly enhanced acetylcholine and γ-aminobutyric acid (GABA) content accompanied by variable amount of amino acids in samples treated with both Trichoderma secondary metabolites. Seed germination rates, seedling fresh weight, and the metabolome of tomato leaves were also dependent upon doses of metabolites 1 and 2 treatments. HRMAS NMR spectroscopy was proven to represent a rapid and reliable technique for evaluating specific changes in the metabolome of plant leaves and calibrating the best concentration of bioactive compounds required to stimulate plant growth.

  18. Configuration and validation of an analytical model predicting secondary neutron radiation in proton therapy using Monte Carlo simulations and experimental measurements.

    Science.gov (United States)

    Farah, J; Bonfrate, A; De Marzi, L; De Oliveira, A; Delacroix, S; Martinetti, F; Trompier, F; Clairand, I

    2015-05-01

    This study focuses on the configuration and validation of an analytical model predicting leakage neutron doses in proton therapy. Using Monte Carlo (MC) calculations, a facility-specific analytical model was built to reproduce out-of-field neutron doses while separately accounting for the contribution of intra-nuclear cascade, evaporation, epithermal and thermal neutrons. This model was first trained to reproduce in-water neutron absorbed doses and in-air neutron ambient dose equivalents, H*(10), calculated using MCNPX. Its capacity in predicting out-of-field doses at any position not involved in the training phase was also checked. The model was next expanded to enable a full 3D mapping of H*(10) inside the treatment room, tested in a clinically relevant configuration and finally consolidated with experimental measurements. Following the literature approach, the work first proved that it is possible to build a facility-specific analytical model that efficiently reproduces in-water neutron doses and in-air H*(10) values with a maximum difference less than 25%. In addition, the analytical model succeeded in predicting out-of-field neutron doses in the lateral and vertical direction. Testing the analytical model in clinical configurations proved the need to separate the contribution of internal and external neutrons. The impact of modulation width on stray neutrons was found to be easily adjustable while beam collimation remains a challenging issue. Finally, the model performance agreed with experimental measurements with satisfactory results considering measurement and simulation uncertainties. Analytical models represent a promising solution that substitutes for time-consuming MC calculations when assessing doses to healthy organs. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. Effect of health education on knowledge, attitude and practices of personal hygiene among secondary school students in rural Sokoto, North West, Nigeria.

    Science.gov (United States)

    Abiola, A O; Nwogu, E E; Ibrahim, M T O; Hassan, R

    2012-01-01

    Personal hygiene related diseases are serious public health problems in developing countries. To assess the effect of health education on knowledge, attitude, and practices of personal hygiene among rural secondary school students in Sokoto state, north western Nigeria. A quasi-experimental controlled study with pretest and post-test design was carried out. A total 120 subjects per group were selected by multistage sampling technique. Two pre-tested instruments, structured interviewer-administered questionnaire and observer's checklist for personal hygiene practices were used for data collection. Health education intervention was carried out one week after baseline data collection and repeated after four weeks for the intervention group only. Postintervention data collection was carried out in both intervention and control groups three months after the 2nd intervention. However, for ethical consideration, the control group was also provided with the health education intervention similar to that provided to the intervention group. A total of 120 and 116 subjects in the intervention and control groups respectively participated in all phases of the study. The mean knowledge score (%) of the study subjects was high and similar (73.18 +/- 25.82; 77.06 +/- 21.79; p = 0.21) in both the intervention and control groups at baseline, but differed very significantly (91.16 +/- 11.03; 81.74 +/- 21.78; p Personal hygiene health education is therefore recommended to be taught in secondary schools.

  20. Assessment of adolescents' communication on sexual and reproductive health matters with parents and associated factors among secondary and preparatory schools' students in Debremarkos town, North West Ethiopia.

    Science.gov (United States)

    Shiferaw, Kasiye; Getahun, Frehiwot; Asres, Getahun

    2014-01-08

    Sexuality and reproductive health are among the most fundamental aspects of life. Poor parental involvement in preparing young people for safe sexual life and good reproductive health was part of the blame for the lack of skills on sexual decision making. Despite the growing needs, there is no adequate health service or counseling specifically suitable for this specific age group and research on the role of parents in this process has yielded inconsistent results. The objective of the study is to assess adolescents' communication on sexual and reproductive health issues with parents and associated factors among secondary and preparatory schools students in Debremarkos town. School based study was conducted among secondary and preparatory schools students in Debremarkos town, from April 8 to 21, 2012. Multistage sampling and self administered questionnaires were employed. The proportion of the students who had discussion on sexual & reproductive health issues with their parent was found to be 254 (36.9%). Mother who able to read and write (AOR = 2; 95% CI 1.3 to 3.1), adolescents accepting discussion of sexual & reproductive health issues (AOR = 2.5 95% CI 1.3 to 4.5), adolescents who ever got SRH information (AOR = 2; 95% CI 1.4 to 2.9), adolescents who ever had sexual intercourse (AOR = 1.7; 95% CI 1.1 to 2.6) were found to have significant positive associations, and being grade 12 students (AOR = 0.4; 95% CI 0.2 to 0.7) and having less than three family size (AOR = 0.5; 95% CI 0.2 to 0.9) showed significant negative associations. Study unveils that parent -adolescent communications on sexual and reproductive health issues is low, only about one third of the students were communicating on SRH issues. Therefore; there is a need to equip and educate parents on different sexual & reproductive health issues. Comprehensive family life education should also be initiated for the students and parents.

  1. High intensity proton accelerator and its application (Proton Engineering Center)

    International Nuclear Information System (INIS)

    Tanaka, Shun-ichi

    1995-01-01

    A plan called PROTON ENGINEERING CENTER has been proposed in JAERI. The center is a complex composed of research facilities and a beam shape and storage ring based on a proton linac with an energy of 1.5 GeV and an average current of 10 mA. The research facilities planned are OMEGA·Nuclear Energy Development Facility, Neutron Facility for Material Irradiation, Nuclear Data Experiment Facility, Neutron Factory, Meson Factory, Spallation Radioisotope Beam Facility, and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutrons, π-mesons, muons, and unstable isotopes originated from the protons are available for promoting the innovative research of nuclear energy and basic science and technology. (author)

  2. West Africa

    International Development Research Centre (IDRC) Digital Library (Canada)

    freelance

    considered by many as a successful model of river basin organization. NBA, after years of ... a Regional Water Protocol for West Africa, following the model of the SADC ...... protection of water against pollution of all kinds (urban, industrial,.

  3. Proton decay theory

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1983-01-01

    Topics include minimal SU(5) predictions, gauge boson mediated proton decay, uncertainties in tau/sub p/, Higgs scalar effects, proton decay via Higgs scalars, supersymmetric SU(5), dimension 5 operators and proton decay, and Higgs scalars and proton decay

  4. Proton therapy

    International Nuclear Information System (INIS)

    Jongen, Y.

    1995-01-01

    Ideal radiotherapy deposits a large amount of energy in the tumour volume, and none in the surrounding healthy tissues. Proton therapy comes closer to this goal because of a greater concentration of dose, well defined proton ranges and points of energy release which are precisely known - the Bragg peak1. In the past, the development of clinical proton therapy has been hampered by complexity, size, and cost. To be clinically effective, energies of several hundred MeV are required; these were previously unavailable for hospital installations, and pioneering institutions had to work with complex, inadequate equipment originally intended for nuclear physics research. Recently a number of specialist organizations and commercial companies have been working on dedicated systems for proton therapy. One, IBA of Belgium, has equipment for inhouse hospital operation which encompasses a complete therapy centre, delivered as a turnkey package and incorporating a compact, automated, higher energy cyclotron with isocentric gantries. Their system will be installed at Massachusetts General Hospital, Boston. The proton therapy system comprises: - a 235 MeV isochronous cyclotron to deliver beams of up to 1.5 microamps, but with a hardware limitation to restrict the maximum possible dose; - variable energy beam (235 to 70 MeV ) with energy spread and emittance verification; - a beam transport and switching system to connect the exit of the energy selection system to the entrances of a number of gantries and fixed beamlines. Along the beam transport system, the beam characteristics are monitored with non-interceptive multiwire ionization chambers for automatic tuning; - gantries fitted with nozzles and beamline elements for beam control; both beam scattering and beam wobbling techniques are available for shaping the beam;

  5. Electron Cloud Simulations of a Proton Storage Ring Using Cold Proton Bunches

    International Nuclear Information System (INIS)

    Sato, Y.; Holmes, Jeffrey A.; Lee, S.Y.; Macek, R.

    2008-01-01

    Using the ORBIT code we study the sensitivity of electron cloud properties with respect to different proton beam profiles, the secondary electron yield (SEY) parameter, and the proton loss rate. Our model uses a cold proton bunch to generate primary electrons and electromagnetic field for electron cloud dynamics. We study the dependence of the prompt and swept electron signals vs the bunch charge and the recovery of electron clouds after sweeping on the beam loss rate and the SEY. The simulation results are compared with the experimental data measured at the proton storage ring at the Los Alamos National Laboratory. Our simulations indicate that the fractional proton loss rate in the field-free straight section may be an exponential function of proton beam charge and may also be lower than the averaged fractional proton loss rate over the whole ring.

  6. Parametric Model for Astrophysical Proton-Proton Interactions and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Niklas [KTH Royal Institute of Technology, Stockholm (Sweden)

    2007-01-01

    Observations of gamma-rays have been made from celestial sources such as active galaxies, gamma-ray bursts and supernova remnants as well as the Galactic ridge. The study of gamma rays can provide information about production mechanisms and cosmic-ray acceleration. In the high-energy regime, one of the dominant mechanisms for gamma-ray production is the decay of neutral pions produced in interactions of ultra-relativistic cosmic-ray nuclei and interstellar matter. Presented here is a parametric model for calculations of inclusive cross sections and transverse momentum distributions for secondary particles--gamma rays, e±, ve, $\\bar{v}$e, vμ and $\\bar{μ}$e--produced in proton-proton interactions. This parametric model is derived on the proton-proton interaction model proposed by Kamae et al.; it includes the diffraction dissociation process, Feynman-scaling violation and the logarithmically rising inelastic proton-proton cross section. To improve fidelity to experimental data for lower energies, two baryon resonance excitation processes were added; one representing the Δ(1232) and the other multiple resonances with masses around 1600 MeV/c2. The model predicts the power-law spectral index for all secondary particle to be about 0.05 lower in absolute value than that of the incident proton and their inclusive cross sections to be larger than those predicted by previous models based on the Feynman-scaling hypothesis. The applications of the presented model in astrophysics are plentiful. It has been implemented into the Galprop code to calculate the contribution due to pion decays in the Galactic plane. The model has also been used to estimate the cosmic-ray flux in the Large Magellanic Cloud based on HI, CO and gamma-ray observations. The transverse momentum distributions enable calculations when the proton distribution is anisotropic. It is shown that the gamma-ray spectrum and flux due to a

  7. Proton radiography to improve proton therapy treatment

    NARCIS (Netherlands)

    Takatsu, J.; van der Graaf, E. R.; van Goethem, Marc-Jan; van Beuzekom, M.; Klaver, T.; Visser, Jan; Brandenburg, S.; Biegun, A. K.

    The quality of cancer treatment with protons critically depends on an accurate prediction of the proton stopping powers for the tissues traversed by the protons. Today, treatment planning in proton radiotherapy is based on stopping power calculations from densities of X-ray Computed Tomography (CT)

  8. Proton-proton reaction rates at extreme energies

    International Nuclear Information System (INIS)

    Nagano, Motohiko

    1993-01-01

    Results on proton-antiproton reaction rates (total cross-section) at collision energies of 1.8 TeV from experiments at Fermilab have suggested a lower rate of increase with energy compared to the extrapolation based on results previously obtained at CERN's proton-antiproton collider (CERN Courier, October 1991). Now an independent estimate of the values for the proton-proton total cross-section for collision energies from 5 to 30 TeV has been provided by the analysis of cosmic ray shower data collected over ten years at the Akeno Observatory operated by the Institute for Cosmic Ray Research of University of Tokyo. These results are based on the inelastic cross-section for collisions of cosmic ray protons with air nuclei at energies in the range10 16-18 eV. A new extensive air shower experiment was started at Akeno, 150 km west of Tokyo, in 1979 with a large array of detectors, both on the ground and under a 1-metre concrete absorber. This measured the total numbers of electrons and muons of energies above 1GeV for individual showers with much better accuracy than before. Data collection was almost continuous for ten years without any change in the triggering criteria for showers above10 16 eV. The mean free path for proton-air nuclei collisions has been determined from the zenith angle of the observed frequency of air showers which have the same effective path length for development in the atmosphere and the same primary energy

  9. Influence of substitution on the proton donor and proton acceptor abilities of molecules. III. Study of chlorine and ftorine substitution alcohol

    International Nuclear Information System (INIS)

    Nurulloev, M.; Narziev, B.N.; Islomov, Z.; Fayzieva, M.

    2006-01-01

    This work gives the study of influence of chlorine and ftorine atoms as substitutions to proton donor and proton acceptor ability of primary, secondary and tertiary alifatic alcohol. In accordance to developed method the proton donor ability of studied substances are determined. It is shown that the quantity of proton donor ability of reactionary center of the molecules depend on substitution nature and its proton acceptor quantity. Proposed that substitution influence of these molecule mainly transferred by inductive effect

  10. Proton diffraction

    International Nuclear Information System (INIS)

    Den Besten, J.L.; Jamieson, D.N.; Allen, L.J.

    1998-01-01

    The Lindhard theory on ion channeling in crystals has been widely accepted throughout ion beam analysis for use in simulating such experiments. The simulations use a Monte Carlo method developed by Barret, which utilises the classical 'billiard ball' theory of ions 'bouncing' between planes or tubes of atoms in the crystal. This theory is not valid for 'thin' crystals where the planes or strings of atoms can no longer be assumed to be of infinite proportions. We propose that a theory similar to that used for high energy electron diffraction can be applied to MeV ions, especially protons, in thin crystals to simulate the intensities of transmission channeling and of RBS spectra. The diffraction theory is based on a Bloch wave solution of the Schroedinger equation for an ion passing through the periodic crystal potential. The widely used universal potential for proton-nucleus scattering is used to construct the crystal potential. Absorption due to thermal diffuse scattering is included. Experimental parameters such as convergence angle, beam tilt and scanning directions are considered in our calculations. Comparison between theory and experiment is encouraging and suggests that further work is justified. (authors)

  11. Evaluation of the Induced Activity in Air by the External Proton Beam in the Target Room of the Proton Accelerator Facility of Proton Engineering Frontier Project

    International Nuclear Information System (INIS)

    Lee, Cheol Woo; Lee, Young Ouk; Cho, Young Sik; Ahn, So Hyun

    2007-01-01

    One of the radiological concerns is the worker's exposure level and the concentration of the radionuclides in the air after shutdown, for the safety analysis on the proton accelerator facility. Although, the primary radiation source is the protons accelerated up to design value, all of the radio-nuclide is produced from the secondary neutron and photon induced reaction in air. Because, the protons don't penetrate the acceleration equipment like the DTL tank wall or BTL wall, secondary neutrons or photons are only in the air in the accelerator tunnel building because of the short range of the proton in the materials. But, for the case of the target rooms, external proton beams are occasionally used in the various experiments. When these external proton beams travel through air from the end of the beam transport line to the target, they interact directly with air and produce activation products from the proton induced reaction. The external proton beam will be used in the target rooms in the accelerator facility of the Proton Accelerator Frontier Project (PEFP). In this study, interaction characteristics of the external proton beam with air and induced activity in air from the direct interaction of the proton beam were evaluated

  12. Secondary Hypertension

    Science.gov (United States)

    Secondary hypertension Overview Secondary hypertension (secondary high blood pressure) is high blood pressure that's caused by another medical condition. Secondary hypertension can be caused by conditions that affect your kidneys, ...

  13. Proton imaging apparatus for proton therapy application

    International Nuclear Information System (INIS)

    Sipala, V.; Lo Presti, D.; Brianzi, M.; Civinini, C.; Bruzzi, M.; Scaringella, M.; Talamonti, C.; Bucciolini, M.; Cirrone, G.A.P.; Cuttone, G.; Randazzo, N.; Stancampiano, C.; Tesi, M.

    2011-01-01

    Radiotherapy with protons, due to the physical properties of these particles, offers several advantages for cancer therapy as compared to the traditional radiotherapy and photons. In the clinical use of proton beams, a p CT (Proton Computer Tomography) apparatus can contribute to improve the accuracy of the patient positioning and dose distribution calculation. In this paper a p CT apparatus built by the Prima (Proton Imaging) Italian Collaboration will be presented and the preliminary results will be discussed.

  14. Proton radioactivity from proton-rich nuclei

    International Nuclear Information System (INIS)

    Guzman, F.; Goncalves, M.; Tavares, O.A.P.; Duarte, S.B.; Garcia, F.; Rodriguez, O.

    1999-03-01

    Half-lives for proton emission from proton-rich nuclei have been calculated by using the effective liquid drop model of heavy-particle decay of nuclei. It is shown that this model is able to offer results or spontaneous proton-emission half-life-values in excellent agreement with the existing experimental data. Predictions of half-life-values for other possible proton-emission cases are present for null orbital angular momentum. (author)

  15. Proton-air and proton-proton cross sections

    Directory of Open Access Journals (Sweden)

    Ulrich Ralf

    2013-06-01

    Full Text Available Different attempts to measure hadronic cross sections with cosmic ray data are reviewed. The major results are compared to each other and the differences in the corresponding analyses are discussed. Besides some important differences, it is crucial to see that all analyses are based on the same fundamental relation of longitudinal air shower development to the observed fluctuation of experimental observables. Furthermore, the relation of the measured proton-air to the more fundamental proton-proton cross section is discussed. The current global picture combines hadronic proton-proton cross section data from accelerator and cosmic ray measurements and indicates a good consistency with predictions of models up to the highest energies.

  16. SPS beam to the West Hall

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    One of the two target stations feeding the West Hall (see Annual Report 1976). After the proton beam was split into three branches, the outer two were directed on to targets in the cast iron shielding box, the centre one passing through the box to another target station downstream. Five different targets could be put in each beam, controlled by the mechanism seen on top.

  17. Statistical analysis of solar proton events

    Directory of Open Access Journals (Sweden)

    V. Kurt

    2004-06-01

    Full Text Available A new catalogue of 253 solar proton events (SPEs with energy >10MeV and peak intensity >10 protons/cm2.s.sr (pfu at the Earth's orbit for three complete 11-year solar cycles (1970-2002 is given. A statistical analysis of this data set of SPEs and their associated flares that occurred during this time period is presented. It is outlined that 231 of these proton events are flare related and only 22 of them are not associated with Ha flares. It is also noteworthy that 42 of these events are registered as Ground Level Enhancements (GLEs in neutron monitors. The longitudinal distribution of the associated flares shows that a great number of these events are connected with west flares. This analysis enables one to understand the long-term dependence of the SPEs and the related flare characteristics on the solar cycle which are useful for space weather prediction.

  18. Proton therapy device

    International Nuclear Information System (INIS)

    Tronc, D.

    1994-01-01

    The invention concerns a proton therapy device using a proton linear accelerator which produces a proton beam with high energies and intensities. The invention lies in actual fact that the proton beam which is produced by the linear accelerator is deflected from 270 deg in its plan by a deflecting magnetic device towards a patient support including a bed the longitudinal axis of which is parallel to the proton beam leaving the linear accelerator. The patient support and the deflecting device turn together around the proton beam axis while the bed stays in an horizontal position. The invention applies to radiotherapy. 6 refs., 5 figs

  19. Radiation protection around high energy proton accelerators

    International Nuclear Information System (INIS)

    Bourgois, L.

    1996-01-01

    Proton accelerators are intense radiation sources because of the particle beam itself, secondary radiation and structure activation. So radiation protection is required around these equipment during running time but even during downtime. This article presents some estimated values about structure and air activation and applies the Moyer model to get dose rate behind shielding. (A.C.)

  20. Elastic proton-proton scattering at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Yip, K.

    2011-09-03

    Here we describe elastic proton+proton (p+p) scattering measurements at RHIC in p+p collisions with a special optics run of {beta}* {approx} 21 m at STAR, at the center-of-mass energy {radical}s = 200 GeV during the last week of the RHIC 2009 run. We present preliminary results of single and double spin asymmetries.

  1. Baryon production in proton-proton collisions

    International Nuclear Information System (INIS)

    Liu, F.M.; Werner, K.

    2002-01-01

    Motivated by the recent rapidity spectra of baryons and antibaryons in pp collisions at 158 GeV and the Ω-bar/Ω ratio discussion, we reviewed string formation mechanism and some string models. This investigation told us how color strings are formed in ultrarelativistic proton-proton collisions

  2. Proton: the particle.

    Science.gov (United States)

    Suit, Herman

    2013-11-01

    The purpose of this article is to review briefly the nature of protons: creation at the Big Bang, abundance, physical characteristics, internal components, and life span. Several particle discoveries by proton as the experimental tool are considered. Protons play important roles in science, medicine, and industry. This article was prompted by my experience in the curative treatment of cancer patients by protons and my interest in the nature of protons as particles. The latter has been stimulated by many discussions with particle physicists and reading related books and journals. Protons in our universe number ≈10(80). Protons were created at 10(-6) -1 second after the Big Bang at ≈1.37 × 10(10) years beforethe present. Proton life span has been experimentally determined to be ≥10(34) years; that is, the age of the universe is 10(-24)th of the minimum life span of a proton. The abundance of the elements is hydrogen, ≈74%; helium, ≈24%; and heavier atoms, ≈2%. Accordingly, protons are the dominant baryonic subatomic particle in the universe because ≈87% are protons. They are in each atom in our universe and thus involved in virtually every activity of matter in the visible universe, including life on our planet. Protons were discovered in 1919. In 1968, they were determined to be composed of even smaller particles, principally quarks and gluons. Protons have been the experimental tool in the discoveries of quarks (charm, bottom, and top), bosons (W(+), W(-), Z(0), and Higgs), antiprotons, and antineutrons. Industrial applications of protons are numerous and important. Additionally, protons are well appreciated in medicine for their role in radiation oncology and in magnetic resonance imaging. Protons are the dominant baryonic subatomic particle in the visible universe, comprising ≈87% of the particle mass. They are present in each atom of our universe and thus a participant in every activity involving matter. Copyright © 2013 Elsevier Inc. All

  3. Proton: The Particle

    Energy Technology Data Exchange (ETDEWEB)

    Suit, Herman

    2013-11-01

    The purpose of this article is to review briefly the nature of protons: creation at the Big Bang, abundance, physical characteristics, internal components, and life span. Several particle discoveries by proton as the experimental tool are considered. Protons play important roles in science, medicine, and industry. This article was prompted by my experience in the curative treatment of cancer patients by protons and my interest in the nature of protons as particles. The latter has been stimulated by many discussions with particle physicists and reading related books and journals. Protons in our universe number ≈10{sup 80}. Protons were created at 10{sup −6} –1 second after the Big Bang at ≈1.37 × 10{sup 10} years beforethe present. Proton life span has been experimentally determined to be ≥10{sup 34} years; that is, the age of the universe is 10{sup −24}th of the minimum life span of a proton. The abundance of the elements is hydrogen, ≈74%; helium, ≈24%; and heavier atoms, ≈2%. Accordingly, protons are the dominant baryonic subatomic particle in the universe because ≈87% are protons. They are in each atom in our universe and thus involved in virtually every activity of matter in the visible universe, including life on our planet. Protons were discovered in 1919. In 1968, they were determined to be composed of even smaller particles, principally quarks and gluons. Protons have been the experimental tool in the discoveries of quarks (charm, bottom, and top), bosons (W{sup +}, W{sup −}, Z{sup 0}, and Higgs), antiprotons, and antineutrons. Industrial applications of protons are numerous and important. Additionally, protons are well appreciated in medicine for their role in radiation oncology and in magnetic resonance imaging. Protons are the dominant baryonic subatomic particle in the visible universe, comprising ≈87% of the particle mass. They are present in each atom of our universe and thus a participant in every activity involving matter.

  4. Verification of Differential Item Functioning (DIF) Status of West ...

    African Journals Online (AJOL)

    This study investigated test item bias and Differential Item Functioning (DIF) of West African ... items in chemistry function differentially with respect to gender and location. In Aba education zone of Abia, 50 secondary schools were purposively ...

  5. The School-HE Interface in West Germany.

    Science.gov (United States)

    Schmithals, F.

    1986-01-01

    Discusses the concerns and problems associated with the secondary school-higher education interface in West Germany. Reviews reform efforts and attempts at problem resolution with specific emphasis on physics instruction. (ML)

  6. The CERN 400 GeV proton synchrotron (CERN SPS)

    International Nuclear Information System (INIS)

    Adams, J.B.

    1977-01-01

    The main characteristics of the CERN 400 GeV proton synchrotron (SPS) has described. Beam intensity averages about 5x10 12 protons per pulse. The CERN 28 GeV proton synchrotron serves as an injector for the SPS. There are 108 magnet periods in the machine with a phase shift per period of π/2. The magnet system consists of 800 dipoles with 1.8 T magnetic field and 216 quadrupoles with a field gradient of 20.7 T (per meter). The frequency chosen for the RF system of the SPS is 200 MHz. Two beam extraction systems are installed in the SPS, one to feed protons to the West Experimental Area, and the other to feed protons to the North Experimental Area. The planned development of the machine in the next few years has described. The cost per GeV of the SPS works out 3 to 4 times less than that of the CPS

  7. Proton minibeam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Girst, Stefanie

    2016-03-08

    in the skin tissue, but with significantly increased doses (up to 5000 Gy) compared to the average dose of 2 Gy, which was applied homogeneously in further skin samples for comparison. Gaussian-shaped minibeams of even larger sizes (σ=260 μm and 520 μm, inter-beam distance 1.8 mm) were analyzed in further experiments to evaluate the effect of increasing beam sizes as in deeper-lying tissues. Acute side effects were quantified via the MTT tissue viability test and the release of inflammatory proteins into the culture medium and showed improved results for minibeam compared to homogeneous irradiation. Genetic damage, an indicator for secondary tumor induction, was analyzed via the micronucleus test in the epidermal keratinocytes and was less than half for minibeams up to 180 μm size compared to homogeneous fields. Increasing minibeam sizes, i.e. increasing fractions of irradiated skin (receiving a dose higher than the average dose of 2 Gy) increased the number of micronuclei per divided cell, but never exceeded the genetic damage induced by a homogeneous dose distribution. A more authentic and representative in-vivo skin model, accounting for higher complexity with blood vessels, further cell types, follicles, glands and especially a working immune system, was used in the next step to further examine the side effects of minibeam radiotherapy compared to homogeneous irradiation. The central part of the ear of adult BALB/c mice was irradiated with 20 MeV protons, using an average dose of 60 Gy in a field of 7.2 x 7.2 mm{sup 2}. The 4 x 4 minibeams of nominal 6000 Gy had a size of 180 x 180 μm{sup 2} and inter-beam distances of 1.8 mm, as in previous in-vitro skin experiments. Minibeam irradiation induced no ear swelling or other visible skin reaction at any time, while significant ear swelling (up to 4-fold), skin reddening (erythema) and desquamation developed in homogeneously irradiated ears 3-4 weeks after irradiation. Loss of hair and sebaceous glands only

  8. Roundwood markets and utilization in West Virginia and Ohio

    Science.gov (United States)

    Shawn T. Grushecky; Jan Wiedenbeck; Ben. Spong

    2011-01-01

    West Virginia and Ohio have similar forest resources and extensive forest-based economies. Roundwood is harvested throughout this central Appalachian region and supports a diverse primary and secondary forest products sector. The objective of this research was to investigate the utilization of the forest resource harvested in West Virginia and Ohio. Utilization and...

  9. Spherical proton emitters

    International Nuclear Information System (INIS)

    Berg, S.; Semmes, P.B.; Nazarewicz, W.

    1997-01-01

    Various theoretical approaches to proton emission from spherical nuclei are investigated, and it is found that all the methods employed give very similar results. The calculated decay widths are found to be qualitatively insensitive to the parameters of the proton-nucleus potential, i.e., changing the potential parameters over a fairly large range typically changes the decay width by no more than a factor of ∼3. Proton half-lives of observed heavy proton emitters are, in general, well reproduced by spherical calculations with the spectroscopic factors calculated in the independent quasiparticle approximation. The quantitative agreement with experimental data obtained in our study requires that the parameters of the proton-nucleus potential be chosen carefully. It also suggests that deformed proton emitters will provide invaluable spectroscopic information on the angular momentum decomposition of single-proton orbitals in deformed nuclei. copyright 1997 The American Physical Society

  10. Proton therapy physics

    CERN Document Server

    2012-01-01

    Proton Therapy Physics goes beyond current books on proton therapy to provide an in-depth overview of the physics aspects of this radiation therapy modality, eliminating the need to dig through information scattered in the medical physics literature. After tracing the history of proton therapy, the book summarizes the atomic and nuclear physics background necessary for understanding proton interactions with tissue. It describes the physics of proton accelerators, the parameters of clinical proton beams, and the mechanisms to generate a conformal dose distribution in a patient. The text then covers detector systems and measuring techniques for reference dosimetry, outlines basic quality assurance and commissioning guidelines, and gives examples of Monte Carlo simulations in proton therapy. The book moves on to discussions of treatment planning for single- and multiple-field uniform doses, dose calculation concepts and algorithms, and precision and uncertainties for nonmoving and moving targets. It also exami...

  11. Proton solvation and proton transfer in chemical and electrochemical processes

    International Nuclear Information System (INIS)

    Lengyel, S.; Conway, B.E.

    1983-01-01

    This chapter examines the proton solvation and characterization of the H 3 O + ion, proton transfer in chemical ionization processes in solution, continuous proton transfer in conductance processes, and proton transfer in electrode processes. Topics considered include the condition of the proton in solution, the molecular structure of the H 3 O + ion, thermodynamics of proton solvation, overall hydration energy of the proton, hydration of H 3 O + , deuteron solvation, partial molal entropy and volume and the entropy of proton hydration, proton solvation in alcoholic solutions, analogies to electrons in semiconductors, continuous proton transfer in conductance, definition and phenomenology of the unusual mobility of the proton in solution, solvent structure changes in relation to anomalous proton mobility, the kinetics of the proton-transfer event, theories of abnormal proton conductance, and the general theory of the contribution of transfer reactions to overall transport processes

  12. Study of proton radioactivities

    Energy Technology Data Exchange (ETDEWEB)

    Davids, C.N.; Back, B.B.; Henderson, D.J. [and others

    1995-08-01

    About a dozen nuclei are currently known to accomplish their radioactive decay by emitting a proton. These nuclei are situated far from the valley of stability, and mark the very limits of existence for proton-rich nuclei: the proton drip line. A new 39-ms proton radioactivity was observed following the bombardment of a {sup 96}Ru target by a beam of 420-MeV {sup 78}Kr. Using the double-sided Si strip detector implantation system at the FMA, a proton group having an energy of 1.05 MeV was observed, correlated with the implantation of ions having mass 167. The subsequent daughter decay was identified as {sup 166}Os by its characteristic alpha decay, and therefore the proton emitter is assigned to the {sup 167}Ir nucleus. Further analysis showed that a second weak proton group from the same nucleus is present, indicating an isomeric state. Two other proton emitters were discovered recently at the FMA: {sup 171}Au and {sup 185}Bi, which is the heaviest known proton radioactivity. The measured decay energies and half-lives will enable the angular momentum of the emitted protons to be determined, thus providing spectroscopic information on nuclei that are beyond the proton drip line. In addition, the decay energy yields the mass of the nucleus, providing a sensitive test of mass models in this extremely proton-rich region of the chart of the nuclides. Additional searches for proton emitters will be conducted in the future, in order to extend our knowledge of the location of the proton drip line.

  13. Quantitative PIXE at low proton energy

    International Nuclear Information System (INIS)

    Oliver, Alicia

    1994-01-01

    The energy of the proton beam plays an important role in the type of analysis that is intended. The need to take into account energy loss of the particles beam inside the specimen, the energy variation of the ionisation cross section for K and L lines, secondary fluorescence, and the surface topography draws the line between thin and thick target analysis. We present here the difficulties, calibrations and calculations for the ionisation cross sections needed to quantify at proton energies below one MeV. As conclusion we show with an example the necessity of reliable standards. (author)

  14. What's West Nile Virus?

    Science.gov (United States)

    ... for Educators Search English Español What's West Nile Virus? KidsHealth / For Kids / What's West Nile Virus? Print en español ¿Qué es el Virus del Nilo Occidental? What exactly is the West ...

  15. Proton-Proton and Proton-Antiproton Colliders

    CERN Document Server

    Scandale, Walter

    2014-01-01

    In the last five decades, proton–proton and proton–antiproton colliders have been the most powerful tools for high energy physics investigations. They have also deeply catalyzed innovation in accelerator physics and technology. Among the large number of proposed colliders, only four have really succeeded in becoming operational: the ISR, the SppbarS, the Tevatron and the LHC. Another hadron collider, RHIC, originally conceived for ion–ion collisions, has also been operated part-time with polarized protons. Although a vast literature documenting them is available, this paper is intended to provide a quick synthesis of their main features and key performance.

  16. [Secondary hypertension].

    Science.gov (United States)

    Yoshida, Yuichi; Shibata, Hirotaka

    2015-11-01

    Hypertension is a common disease and a crucial predisposing factor of cardiovascular diseases. Approximately 10% of hypertensive patients are secondary hypertension, a pathogenetic factor of which can be identified. Secondary hypertension consists of endocrine, renal, and other diseases. Primary aldosteronism, Cushing's syndrome, pheochromocytoma, hyperthyroidism, and hypothyroidism result in endocrine hypertension. Renal parenchymal hypertension and renovascular hypertension result in renal hypertension. Other diseases such as obstructive sleep apnea syndrome are also very prevalent in secondary hypertension. It is very crucial to find and treat secondary hypertension at earlier stages since most secondary hypertension is curable or can be dramatically improved by specific treatment. One should keep in mind that screening of secondary hypertension should be done at least once in a daily clinical practice.

  17. Proton Fast Ignition

    International Nuclear Information System (INIS)

    Key, M H; Freeman, R R; Hatchett, S P; MacKinnon, A J; Patel, P K; Snavely, R A; Stephens, R B

    2006-04-01

    Fast ignition (FI) by a laser generated ballistically focused proton beam is a more recently proposed alternative to the original concept of FI by a laser generated beam of relativistic electrons. It has potential advantages in less complex energy transport into dense plasma. Recent successful target heating experiments motivate further investigation of the feasibility of proton fast ignition. The concept, the physics and characteristics of the proton beams, the recent experimental work on focusing of the beams and heating of solid targets and the overall prospects for proton FI are discussed

  18. Proton decay: spectroscopic probe beyond the proton drip line

    International Nuclear Information System (INIS)

    Seweryniak, D; Davids, C N; Robinson, A; Woods, P J; Blank, B; Carpenter, M P; Davinson, T; Freeman, S J; Hammond, N; Hoteling, N; Janssens, R V F; Khoo, T L; Liu, Z; Mukherjee, G; Shergur, J; Sinha, S; Sonzogni, A A; Walters, W B; Woehr, A

    2005-01-01

    Proton decay has been transformed in recent years from an exotic phenomenon into a powerful spectroscopic tool. The frontiers of experimental and theoretical proton-decay studies will be reviewed. Different aspects of proton decay will be illustrated with recent results on the deformed proton emitter 135 Tb, the odd-odd deformed proton emitter 130 Eu, the complex fine structure in the odd-odd 146 Tm nucleus and on excited states in the transitional proton emitter 145 Tm

  19. Secondary Evaluations.

    Science.gov (United States)

    Cook, Thomas D.

    Secondary evaluations, in which an investigator takes a body of evaluation data collected by a primary evaluation researcher and examines the data to see if the original conclusions about the program correspond with his own, are discussed. The different kinds of secondary evaluations and the advantages and disadvantages of each are pointed out,…

  20. Protons and how they are transported by proton pumps

    DEFF Research Database (Denmark)

    Buch-Pedersen, Morten Jeppe; Pedersen, Bjørn Panyella; Nissen, Poul

    2008-01-01

    molecular components that allow the plasma membrane proton H(+)-ATPase to carry out proton transport against large membrane potentials. When divergent proton pumps such as the plasma membrane H(+)-ATPase, bacteriorhodopsin, and F(O)F(1) ATP synthase are compared, unifying mechanistic premises for biological...... proton pumps emerge. Most notably, the minimal pumping apparatus of all pumps consists of a central proton acceptor/donor, a positively charged residue to control pK (a) changes of the proton acceptor/donor, and bound water molecules to facilitate rapid proton transport along proton wires....

  1. Giving Protons a Boost

    CERN Multimedia

    2004-01-01

    The first of LHC's superconducting radio-frequency cavity modules has passed its final test at full power in the test area of building SM18. These modules carry an oscillating electric field that will accelerate protons around the LHC ring and help maintain the stability of the proton beams.

  2. On the proton decay

    International Nuclear Information System (INIS)

    Fonda, L.; Ghirardi, G.C.; Weber, T.

    1983-07-01

    The problem of the proton decay is considered taking into account that in actual experiments there is an interaction of the proton with its environment which could imply an increase of its theoretical lifetime. It is seen that, by application of the time-energy uncertainty relation, no prolongation of the lifetime is obtained in this case. (author)

  3. PS proton source

    CERN Multimedia

    1959-01-01

    The first proton source used at CERN's Proton Synchrotron (PS) which started operation in 1959. This is CERN's oldest accelerator still functioning today (2018). It is part of the accelerator chain that supplies proton beams to the Large Hadron Collider. The source is a Thonemann type. In order to extract and accelerate the protons at high energy, a high frequency electrical field is used (140Mhz). The field is transmitted by a coil around a discharge tube in order to maintain the gas hydrogen in an ionised state. An electrical field pulse, in the order of 15kV, is then applied via an impulse transformer between anode and cathode of the discharge tube. The electrons and protons of the plasma formed in the ionised gas in the tube, are then separated. Currents in the order of 200mA during 100 microseconds have benn obtained with this type of source.

  4. West and East

    Directory of Open Access Journals (Sweden)

    Alexander Rappaport

    2017-12-01

    Full Text Available The topic “West-East” has a clear cultural and historical meaning. Orthodox temples face East. The way from West to East and from East to West is tens of thousands of kilometers long and has a special meaning. It differs from the way from North to South: the horizontal axes connect regions, while the vertical axis (Earth-Sky connects the worlds. The expansion of Eurasian tribes occurred along the East-West axis – the world horizontal way. Today the cultural memory of people in the East and West finds itself in the theatre of new dramas of existence and new forces. With the advances in electronic technologies, the world movements seem to have sunk in the depth of the chthonian past to come up anew to the surface of fantastic speeds and momentary connections. A new type of planetary landscape-space relation appears, giving no place for West and East.

  5. Proton-proton colliding beam facility ISABELLE

    International Nuclear Information System (INIS)

    Hahn, H.

    1980-01-01

    This paper attempts to present the status of the ISABELLE construction project, which has the objective of building a 400 + 400 GeV proton colliding beam facility. The major technical features of the superconducting accelerators with their projected performance are described. Progress made so far, difficulties encountered, and the program until completion in 1986 is briefly reviewed

  6. Comparison of Out-Of-Field Neutron Equivalent Doses in Scanning Carbon and Proton Therapies for Cranial Fields

    DEFF Research Database (Denmark)

    Athar, B.; Henker, K.; Jäkel, O.

    2010-01-01

    Purpose: The purpose of this analysis is to compare the secondary neutron lateral doses from scanning carbon and proton beam therapies. Method and Materials: We simulated secondary neutron doses for out-of-field organs in an 11-year old male patient. Scanned carbon and proton beams were simulated...

  7. Secondary Headaches

    Science.gov (United States)

    ... in the medical history or examination to suggest secondary headache. Headache can be caused by general medical conditions such as severe hypertension, or by conditions that affect the brain and ...

  8. Proton storage rings

    International Nuclear Information System (INIS)

    Rau, R.R.

    1978-04-01

    A discussion is given of proton storage ring beam dynamic characteristics. Topics considered include: (1) beam energy; (2) beam luminosity; (3) limits on beam current; (4) beam site; (5) crossing angle; (6) beam--beam interaction; (7) longitudinal instability; (8) effects of scattering processes; (9) beam production; and (10) high magnetic fields. Much of the discussion is related to the design parameters of ISABELLE, a 400 x 400 GeV proton---proton intersecting storage accelerator to be built at Brookhaven National Laboratory

  9. ATLAS Forward Proton Detector

    CERN Document Server

    Grieco, Chiara; The ATLAS collaboration

    2018-01-01

    The aim of the ATLAS Forward Proton (AFP) detector system is the measurement of protons scattered diffractively or electromagnetically at very small angles. The full two-arm setup was installed during the 2016/2017 EYETS. This allows measurements of processes with two forward protons: central diffraction, exclusive production, and two-photon processes. In 2017, AFP participated in the ATLAS high-luminosity data taking on the day-by-day basis. In addition, several special runs with reduced luminosity were taken. The poster will present the AFP detectors and the lessons learned from the last year operation and some performance from 2016 and 2017.

  10. Proton computed tomography

    International Nuclear Information System (INIS)

    Hanson, K.M.

    1978-01-01

    The use of protons or other heavy charged particles instead of x rays in computed tomography (CT) is explored. The results of an experimental implementation of proton CT are presented. High quality CT reconstructions are obtained at an average dose reduction factor compared with an EMI 5005 x-ray scanner of 10:1 for a 30-cm-diameter phantom and 3.5:1 for a 20-cm diameter. The spatial resolution is limited by multiple Coulomb scattering to about 3.7 mm FWHM. Further studies are planned in which proton and x-ray images of fresh human specimens will be compared. Design considerations indicate that a clinically useful proton CT scanner is eminently feasible

  11. Electron - proton colliders

    International Nuclear Information System (INIS)

    Wiik, B.H.

    1985-01-01

    Electron-proton storage rings allow us to study the interaction between the two basic constituents of matter, electrons and quarks at very short distances. Such machines were first discussed in connection with the ISR but the idea was abandoned because of the anticipated low counting rate. The interest in electron-proton storage rings was rekindeled by the discovery of large pointlike cross sections in lepton-hardon interactions and several/sup 2-15/ projects have been discussed during the past decade. However, despite a glorious past, which includes the discovery of quarks and neutral currents, and a multitude of proposals no electron-proton storage ring has ever been built. What we might learn by studying electron-proton collisions at high energies is discussed. After some brief comments on present proposals the proposed DESY ep project HERA is described as an example of how to realize such a machine

  12. Apparatus for proton radiography

    International Nuclear Information System (INIS)

    Martin, R.L.

    1976-01-01

    An apparatus for effecting diagnostic proton radiography of patients in hospitals comprises a source of negative hydrogen ions, a synchrotron for accelerating the negative hydrogen ions to a predetermined energy, a plurality of stations for stripping extraction of a radiography beam of protons, means for sweeping the extracted beam to cover a target, and means for measuring the residual range, residual energy, or percentage transmission of protons that pass through the target. The combination of information identifying the position of the beam with information about particles traversing the subject and the back absorber is performed with the aid of a computer to provide a proton radiograph of the subject. In an alternate embodiment of the invention, a back absorber comprises a plurality of scintillators which are coupled to detectors. 10 claims, 7 drawing figures

  13. Inauguration of Proton Synchrotron

    CERN Multimedia

    1960-01-01

    On 5 February 1960, the Proton Synchrotron (PS) was formally inaugurated. The great Danish physicist, Niels Bohr, releases a bottle of champagne against a shielding block to launch the PS on its voyage in physics.

  14. Proton beam therapy facility

    International Nuclear Information System (INIS)

    1984-01-01

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs

  15. Proton beam therapy facility

    Energy Technology Data Exchange (ETDEWEB)

    1984-10-09

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs.

  16. PROTON MICROSCOPY AT FAIR

    International Nuclear Information System (INIS)

    Merrill, F. E.; Mariam, F. G.; Golubev, A. A.; Turtikov, V. I.; Varentsov, D.

    2009-01-01

    Proton radiography was invented in the 1990's at Los Alamos National Laboratory (LANL) as a diagnostic to study dynamic material properties under extreme pressures, strain and strain rate. Since this time hundreds of dynamic proton radiography experiments have been performed at LANL and a facility has been commissioned at the Institute for Theoretical and Experimental Physics (ITEP) in Russia for similar applications in dynamic material studies. Recently an international effort has investigated a new proton radiography capability for the study of dynamic material properties at the Facility for Anti-proton and Ion Research (FAIR) located in Darmstadt, Germany. This new Proton microscope for FAIR(PRIOR) will provide radiographic imaging of dynamic systems with unprecedented spatial, temporal and density resolution, resulting in a window for understanding dynamic material properties at new length scales. It is also proposed to install the PRIOR system at the GSI Helmholtzzentrum fuer Schwerionenforschung before installation at FAIR for dynamic experiments with different drivers including high explosives, pulsed power and lasers. The design of the proton microscope and expected radiographic performance is presented.

  17. Multicavity proton cyclotron accelerator

    Directory of Open Access Journals (Sweden)

    J. L. Hirshfield

    2002-08-01

    Full Text Available A mechanism for acceleration of protons is described, in which energy gain occurs near cyclotron resonance as protons drift through a sequence of rotating-mode TE_{111} cylindrical cavities in a strong nearly uniform axial magnetic field. Cavity resonance frequencies decrease in sequence from one another with a fixed frequency interval Δf between cavities, so that synchronism can be maintained between the rf fields and proton bunches injected at intervals of 1/Δf. An example is presented in which a 122 mA, 1 MeV proton beam is accelerated to 961 MeV using a cascade of eight cavities in an 8.1 T magnetic field, with the first cavity resonant at 120 MHz and with Δf=8 MHz. Average acceleration gradient exceeds 40 MV/m, average effective shunt impedance is 223 MΩ/m, but maximum surface field in the cavities does not exceed 7.2 MV/m. These features occur because protons make many orbital turns in each cavity and thus experience acceleration from each cavity field many times. Longitudinal and transverse stability appear to be intrinsic properties of the acceleration mechanism, and an example to illustrate this is presented. This acceleration concept could be developed into a proton accelerator for a high-power neutron spallation source, such as that required for transmutation of nuclear waste or driving a subcritical fission burner, provided a number of significant practical issues can be addressed.

  18. Proton Radiography to Improve Proton Radiotherapy : Simulation Study at Different Proton Beam Energies

    NARCIS (Netherlands)

    Biegun, Aleksandra; Takatsu, Jun; van Goethem, Marc-Jan; van der Graaf, Emiel; van Beuzekom, Martin; Visser, Jan; Brandenburg, Sijtze

    To improve the quality of cancer treatment with protons, a translation of X-ray Computed Tomography (CT) images into a map of the proton stopping powers needs to be more accurate. Proton stopping powers determined from CT images have systematic uncertainties in the calculated proton range in a

  19. Microdosimetry of proton and carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Liamsuwan, Thiansin [Thailand Institute of Nuclear Technology, Ongkharak, Nakhon Nayok 26120 (Thailand); Hultqvist, Martha [Medical Radiation Physics, Department of Physics, Stockholm University, SE-10691 (Sweden); Lindborg, Lennart; Nikjoo, Hooshang, E-mail: hooshang.nikjoo@ki.se [Radiation Biophysics Group, Department of Oncology-Pathology, Karolinska Institutet, Box 260 SE-17176, Stockholm (Sweden); Uehara, Shuzo [School of Health Sciences, Kyushu University, Fukuoka 812-8581 (Japan)

    2014-08-15

    Purpose: To investigate microdosimetry properties of 160 MeV/u protons and 290 MeV/u{sup 12}C ion beams in small volumes of diameters 10–100 nm. Methods: Energy distributions of primary particles and nuclear fragments in the beams were calculated from simulations with the general purpose code SHIELD-HIT, while energy depositions by monoenergetic ions in nanometer volumes were obtained from the event-by-event Monte Carlo track structure ion code PITS99 coupled with the electron track structure code KURBUC. Results: The results are presented for frequencies of energy depositions in cylindrical targets of diameters 10–100 nm, dose distributionsyd(y) in lineal energy y, and dose-mean lineal energies y{sup ¯}{sub D}. For monoenergetic ions, the y{sup ¯}{sub D} was found to increase with an increasing target size for high-linear energy transfer (LET) ions, but decrease with an increasing target size for low-LET ions. Compared to the depth dose profile of the ion beams, the maximum of the y{sup ¯}{sub D} depth profile for the 160 MeV proton beam was located at ∼0.5 cm behind the Bragg peak maximum, while the y{sup ¯}{sub D} peak of the 290 MeV/u {sup 12}C beam coincided well with the peak of the absorbed dose profile. Differences between the y{sup ¯}{sub D} and dose-averaged linear energy transfer (LET{sub D}) were large in the proton beam for both target volumes studied, and in the {sup 12}C beam for the 10 nm diameter cylindrical volumes. The y{sup ¯}{sub D} determined for 100 nm diameter cylindrical volumes in the {sup 12}C beam was approximately equal to the LET{sub D}. The contributions from secondary particles to the y{sup ¯}{sub D} of the beams are presented, including the contributions from secondary protons in the proton beam and from fragments with atomic number Z = 1–6 in the {sup 12}C beam. Conclusions: The present investigation provides an insight into differences in energy depositions in subcellular-size volumes when irradiated by proton and

  20. Activation of 45-MeV proton irradiation and proton-induced neutron irradiation in polymers

    International Nuclear Information System (INIS)

    Ra, Se-Jin; Kim, Kye-Ryung; Jung, Myung-Hwan; Yang, Tae-Keon

    2010-01-01

    During beam irradiation experiments with more than a few MeV energetic protons, the sample activation problem can be very severe because it causes many kinds of additional problems for the post-processing of the samples, such as time loss, inconvenience of sample handling, personal radiation safety, etc. The most serious problem is that immediate treatment of the sample is impossible in some experiments, such as nano-particle synthesizing. To solve these problems, we studied why the samples are activated and how the level of the activation can be reduced. It is known that the main reasons of activation are nuclear reactions with elements of the target material by primary protons and secondary produced neutrons. Even though the irradiation conditions are same, the level of the activation can be different depending on the target materials. For the nanoparticle synthesizing experiments, the target materials can be defined as the container and the sample itself. The reduction of the activation from the container is easier than the reduction from the sample. Therefore, we tried to reduce the activation level by changing the container materials. In this paper, the results are displayed for some candidate container materials, such as polymethyl methacrylate, polystyrene, Glass, etc., with 45-MeV and 10-nA proton beams. As a result, PS is the most suitable material for the container because of its relatively low level of the activation by protons. Also the contribution of secondary produced neutrons to the activation is negligible.

  1. West Greenlandic Eskimo

    DEFF Research Database (Denmark)

    Trondhjem, Naja Blytmann; Fortescue, Michael David

    West Greenlandic Eskimo. The current situation of the West Greenlandic language as principal means of communication among the majority Greenlandic population will be presented with special emphasis on the northwest hunting district of Upernavik, where traditional marine mammal hunting is still...... the principal economic activity. Research projects and language initiatives currently in progress within Greenland will be touched upon, as will the possibilities of communication with North American Inuit. West Greenlandic is unique among the native languages of the North American Arctic and Sub...

  2. Proton gradients and proton-dependent transport processes in the chloroplast

    Directory of Open Access Journals (Sweden)

    Ricarda eHöhner

    2016-02-01

    Full Text Available Proton gradients are fundamental to chloroplast function. Across thylakoid membranes, the light induced proton gradient is essential for ATP synthesis. As a result of proton pumping into the thylakoid lumen, an alkaline stromal pH develops, which is required for full activation of pH-dependent Calvin Benson cycle enzymes. This implies that a pH gradient between the cytosol (pH 7 and the stroma (pH 8 is established upon illumination. To maintain this pH gradient chloroplasts actively extrude protons. More than 30 years ago it was already established that these proton fluxes are electrically counterbalanced by Mg2+, K+ or Cl- fluxes, but only recently the first transport systems that regulate the pH gradient were identified. Notably several (Na+,K+/H+ antiporter systems where identified, that play a role in pH gradient regulation, ion homeostasis, osmoregulation, or coupling of secondary active transport. The established pH gradients are important to drive uptake of essential ions and solutes, but not many transporters involved have been identified to date. In this mini review we summarize the current status in the field and the open questions that need to be addressed in order to understand how pH gradients are maintained, how this is interconnected with other transport processes and what this means for chloroplast function.

  3. SU-F-J-56: The Connection Between Cherenkov Light Emission and Radiation Absorbed Dose in Proton Irradiated Phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Darafsheh, A; Kassaee, A; Finlay, J [University of Pennsylvania, Philadelphia, PA (United States); Taleei, R [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: Range verification in proton therapy is of great importance. Cherenkov light follows the photon and electron energy deposition in water phantom. The purpose of this study is to investigate the connection between Cherenkov light generation and radiation absorbed dose in a water phantom irradiated with proton beams. Methods: Monte Carlo simulation was performed by employing FLUKA Monte Carlo code to stochastically simulate radiation transport, ionizing radiation dose deposition, and Cherenkov radiation in water phantoms. The simulations were performed for proton beams with energies in the range 50–600 MeV to cover a wide range of proton energies. Results: The mechanism of Cherenkov light production depends on the initial energy of protons. For proton energy with 50–400 MeV energy that is below the threshold (∼483 MeV in water) for Cherenkov light production directly from incident protons, Cherenkov light is produced mainly from the secondary electrons liberated as a result of columbic interactions with the incident protons. For proton beams with energy above 500 MeV, in the initial depth that incident protons have higher energy than the Cherenkov light production threshold, the light has higher intensity. As the slowing down process results in lower energy protons in larger depths in the water phantom, there is a knee point in the Cherenkov light curve vs. depth due to switching the Cherenkov light production mechanism from primary protons to secondary electrons. At the end of the depth dose curve the Cherenkov light intensity does not follow the dose peak because of the lack of high energy protons to produce Cherenkov light either directly or through secondary electrons. Conclusion: In contrast to photon and electron beams, Cherenkov light generation induced by proton beams does not follow the proton energy deposition specially close to the end of the proton range near the Bragg peak.

  4. Proton therapy in Australia

    International Nuclear Information System (INIS)

    Jackson, M.

    2000-01-01

    Full text: Proton therapy has been in use since 1954 and over 25,000 patients have been treated worldwide. Until recently most patients were treated at physics research facilities but with the development of more compact and reliable accelerators it is now possible to realistically plan for proton therapy in an Australian hospital. The Australian National Proton Project has been formed to look at the feasibility of a facility which would be primarily for patient treatment but would also be suitable for research and commercial applications. A detailed report will be produced by the end of the year. The initial clinical experience was mainly with small tumours and other lesions close to critical organs. Large numbers of eye tumours have also been treated. Protons have a well-defined role in these situations and are now being used in the treatment of more common cancers. With the development of hospital-based facilities, over 2,500 patients with prostate cancer have been treated using a simple technique which gives results at least as good as radical surgery, external beam radiotherapy or brachytherapy. Importantly, the incidence of severe complications is very low. There are encouraging results in many disease sites including lung, liver, soft tissue sarcomas and oesophagus. As proton therapy becomes more widely available, randomised trials comparing it with conventional radiotherapy or Intensity Modulated Radiation Therapy (IMRT) will be possible. In most situations the use of protons will enable a higher dose to be given safely but in situations where local control rates are already satisfactory, protons are expected to produce less complications than conventional treatment. The initial costs of a proton facility are high but the recurrent costs are similar to other forms of high technology radiotherapy. . Simple treatment techniques with only a few fields are usually possible and proton therapy avoids the high integral doses associated with IMRT. This reduction in

  5. US west coast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Aerial surveys are conducted along the US west coast to determine distribution and abundance of endangered leatherback turtles (Dermochelys coriacea), loggerhead...

  6. Implication of the displacement of the T1 primary target in the west area at the CERN SPS

    CERN Document Server

    Gatignon, L

    1999-01-01

    As soon as the transfer line T12 for proton injection into the LHC must be installed, the T1 primary target has to be at least partly dismantled, as its shielding would block the passage of the beam. Even though the installation of T12 is only foreseen for later, in view of sharing of workload related to the SLI project, it is preferred to move the primary production target T1 for the West Area to its new position already in the shutdown 1999/2000. The new position of the target requires major modifications of support structures in TCC6, of the transfer line towards T1 and of a more than 500 metres long section of the H3 secondary beam in the West Area, all to be completed in the 1999/2000 shutdown. To allow the work to be finished in time, part of it (including some civil engineering in TT4) is already done in the 1998/99 shutdown. In this memo the necessary modifications are described, cost estimates are given and a planning is provided.

  7. Proton dynamics in cancer.

    Science.gov (United States)

    Huber, Veronica; De Milito, Angelo; Harguindey, Salvador; Reshkin, Stephan J; Wahl, Miriam L; Rauch, Cyril; Chiesi, Antonio; Pouysségur, Jacques; Gatenby, Robert A; Rivoltini, Licia; Fais, Stefano

    2010-06-15

    Cancer remains a leading cause of death in the world today. Despite decades of research to identify novel therapeutic approaches, durable regressions of metastatic disease are still scanty and survival benefits often negligible. While the current strategy is mostly converging on target-therapies aimed at selectively affecting altered molecular pathways in tumor cells, evidences are in parallel pointing to cell metabolism as a potential Achilles' heel of cancer, to be disrupted for achieving therapeutic benefit. Critical differences in the metabolism of tumor versus normal cells, which include abnormal glycolysis, high lactic acid production, protons accumulation and reversed intra-extracellular pH gradients, make tumor site a hostile microenvironment where only cancer cells can proliferate and survive. Inhibiting these pathways by blocking proton pumps and transporters may deprive cancer cells of a key mechanism of detoxification and thus represent a novel strategy for a pleiotropic and multifaceted suppression of cancer cell growth.Research groups scattered all over the world have recently started to investigate various aspects of proton dynamics in cancer cells with quite encouraging preliminary results. The intent of unifying investigators involved in this research line led to the formation of the "International Society for Proton Dynamics in Cancer" (ISPDC) in January 2010. This is the manifesto of the newly formed society where both basic and clinical investigators are called to foster translational research and stimulate interdisciplinary collaboration for the development of more specific and less toxic therapeutic strategies based on proton dynamics in tumor cell biology.

  8. Proton dynamics in cancer

    Directory of Open Access Journals (Sweden)

    Pouysségur Jacques

    2010-06-01

    Full Text Available Abstract Cancer remains a leading cause of death in the world today. Despite decades of research to identify novel therapeutic approaches, durable regressions of metastatic disease are still scanty and survival benefits often negligible. While the current strategy is mostly converging on target-therapies aimed at selectively affecting altered molecular pathways in tumor cells, evidences are in parallel pointing to cell metabolism as a potential Achilles' heel of cancer, to be disrupted for achieving therapeutic benefit. Critical differences in the metabolism of tumor versus normal cells, which include abnormal glycolysis, high lactic acid production, protons accumulation and reversed intra-extracellular pH gradients, make tumor site a hostile microenvironment where only cancer cells can proliferate and survive. Inhibiting these pathways by blocking proton pumps and transporters may deprive cancer cells of a key mechanism of detoxification and thus represent a novel strategy for a pleiotropic and multifaceted suppression of cancer cell growth. Research groups scattered all over the world have recently started to investigate various aspects of proton dynamics in cancer cells with quite encouraging preliminary results. The intent of unifying investigators involved in this research line led to the formation of the "International Society for Proton Dynamics in Cancer" (ISPDC in January 2010. This is the manifesto of the newly formed society where both basic and clinical investigators are called to foster translational research and stimulate interdisciplinary collaboration for the development of more specific and less toxic therapeutic strategies based on proton dynamics in tumor cell biology.

  9. Polarized proton beams

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    The acceleration of polarized proton beams in circular accelerators is complicated by the presence of numerous depolarizing spin resonances. Careful and tedious minimization of polarization loss at each of these resonances allowed acceleration of polarized proton beams up to 22 GeV. It has been the hope that Siberian Snakes, which are local spin rotators inserted into ring accelerators, would eliminate these resonances and allow acceleration of polarized beams with the same ease and efficiency that is now routine for unpolarized beams. First tests at IUCF with a full Siberian Snake showed that the spin dynamics with a Snake can be understood in detail. The author now has results of the first tests of a partial Siberian Snake at the AGS, accelerating polarized protons to an energy of about 25 GeV. These successful tests of storage and acceleration of polarized proton beams open up new possibilities such as stored polarized beams for internal target experiments and high energy polarized proton colliders

  10. Journal of Proton Therapy

    Directory of Open Access Journals (Sweden)

    Editorial Office

    2015-01-01

    Full Text Available Journal of Proton Therapy (JPT is an international open access, peer-reviewed journal, which publishes original research, technical reports, reviews, case reports, editorials, and other materials on proton therapy with focus on radiation oncology, medical physics, medical dosimetry, and radiation therapy.No article processing/submission feeNo publication feePeer-review completion within 3-6 weeksImmediate publication after the completion of final author proofreadDOI assignment for each published articleFree access to published articles for all readers without any access barriers or subscriptionThe views and opinions expressed in articles are those of the author/s and do not necessarily reflect the policies of the Journal of Proton Therapy.Authors are encouraged to submit articles for publication in the inaugural issue of the Journal of Proton Therapy by online or email to editor@protonjournal.comOfficial Website of Journal of Proton Therapy: http://www.protonjournal.org/

  11. Medical Proton Accelerator Project

    International Nuclear Information System (INIS)

    Comsan, M.N.H.

    2008-01-01

    A project for a medical proton accelerator for cancer treatment is outlined. The project is motivated by the need for a precise modality for cancer curing especially in children. Proton therapy is known by its superior radiation and biological effectiveness as compared to photon or electron therapy. With 26 proton and 3 heavy-ion therapy complexes operating worldwide only one (p) exists in South Africa, and none in south Asia and the Middle East. The accelerator of choice should provide protons with energy 75 MeV for eye treatment and 250 MeV for body treatment. Four treatment rooms are suggested: two with isocentric gantries, one with fixed beams and one for development. Passive scanning is recommended. The project can serve Middle East and North Africa with ∼ 400 million populations. The annual capacity of the project is estimated as 1,100 to be compared with expected radiation cases eligible for proton cancer treatment of not less than 200,000

  12. Proton relativistic model; Modelo relativistico do proton

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Wilson Roberto Barbosa de

    1996-12-31

    In this dissertation, we present a model for the nucleon, which is composed by three relativistic quarks interacting through a contract force. The nucleon wave-function was obtained from the Faddeev equation in the null-plane. The covariance of the model under kinematical null-plane boots is discussed. The electric proton form-factor, calculated from the Faddeev wave-function, was in agreement with the data for low-momentum transfers and described qualitatively the asymptotic region for momentum transfers around 2 GeV. (author) 42 refs., 22 figs., 1 tab.

  13. η production in proton-nucleus reactions

    International Nuclear Information System (INIS)

    Cassing, W.; Batko, G.; Vetter, T.; Wolf, G.

    1991-01-01

    The production of η-mesons in proton-nucleus reactions is analysed with respect to primary nucleon-nucleon (NN→NN η ) and secondary pion-nucleon (πN→ηN) production processes on the basis of Hartree-Fock groundstate momentum distributions and free on-shell production processes. The folding model adopted compares well for meson production with more involved simulations based on VUU transport equations. Similar to K + production in proton-nucleus reactions the η-mesons are primarily produced by the πN→ηN channel. However, η-mesons are absorbed in nuclei via excitation of the N * (1535) resonance which leads to strong distortions of the primordial spectra. On the other hand, the experimental mass dependence of the differential cross sections might yield information about the in-medium properties of this resonance. (orig.)

  14. Synchrotron radiation from protons

    International Nuclear Information System (INIS)

    Dutt, S.K.

    1992-12-01

    Synchrotron radiation from protons, though described by the same equations as the radiation from electrons, exhibits a number of interesting features on account of the parameters reached in praxis. In this presentation, we shall point out some of the features relating to (i) normal synchrotron radiation from dipoles in proton machines such as the High Energy Booster and the Superconducting Super Collider; (ii) synchrotron radiation from short dipoles, and its application to light monitors for proton machines, and (iii) synchrotron radiation from undulators in the limit when, the deflection parameter is much smaller than unity. The material for this presentation is taken largely from the work of Hofmann, Coisson, Bossart, and their collaborators, and from a paper by Kim. We shall emphasize the qualitative aspects of synchrotron radiation in the cases mentioned above, making, when possible, simple arguments for estimating the spectral and angular properties of the radiation. Detailed analyses can be found in the literature

  15. Polarized proton colliders

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    High energy polarized beam collisions will open up the unique physics opportunities of studying spin effects in hard processes. This will allow the study of the spin structure of the proton and also the verification of the many well documented expectations of spin effects in perturbative QCD and parity violation in W and Z production. Proposals for polarized proton acceleration for several high energy colliders have been developed. A partial Siberian Snake in the AGS has recently been successfully tested and full Siberian Snakes, spin rotators, and polarimeters for RHIC are being developed to make the acceleration of polarized beams to 250 GeV possible. This allows for the unique possibility of colliding two 250 GeV polarized proton beams at luminosities of up to 2 x 10 32 cm -2 s -1

  16. Crystal structure of the plasma membrane proton pump

    DEFF Research Database (Denmark)

    Pedersen, Bjørn P.; Buch-Pedersen, Morten Jeppe; Morth, J. Preben

    2007-01-01

    A prerequisite for life is the ability to maintain electrochemical imbalances across biomembranes. In all eukaryotes the plasma membrane potential and secondary transport systems are energized by the activity of P-type ATPase membrane proteins: H1-ATPase (the proton pump) in plants and fungi1......-3, and Na1,K1-ATPase (the sodium-potassium pump) in animals4. The name P-type derives from the fact that these proteins exploit a phosphorylated reaction cycle intermediate of ATP hydrolysis5.The plasma membrane proton pumps belong to the type III P-type ATPase subfamily, whereas Na1,K1-ATPase and Ca21......- ATPase are type II6. Electron microscopy has revealed the overall shape of proton pumps7, however, an atomic structure has been lacking. Here we present the first structure of a P-type proton pump determined by X-ray crystallography. Ten transmembrane helices and three cytoplasmic domains define...

  17. An outline of research facilities of high intensity proton accelerator

    International Nuclear Information System (INIS)

    Tanaka, Shun-ichi

    1995-01-01

    A plan called PROTON ENGINEERING CENTER has been proposed in JAERI. The center is a complex composed of research facilities and a beam shape and storage ring based on a proton linac with an energy of 1.5 GeV and an average current of 10 mA. The research facilities planned are OMEGA·Nuclear Energy Development Facility, Neutron Facility for Material Irradiation, Nuclear Data Experiment Facility, Neutron Factory, Meson Factory, spallation Radioisotope Beam Facility, and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutrons, π-mesons, muons, and unstable isotopes originated from the protons are available for promoting the innovative research of nuclear energy and basic science and technology. (author)

  18. Proton pump inhibitors: potential cost reductions by applying prescribing guidelines.

    LENUS (Irish Health Repository)

    Cahir, Caitriona

    2012-01-01

    There are concerns that proton pump inhibitors (PPI) are being over prescribed in both primary and secondary care. This study aims to establish potential cost savings in a community drug scheme for a one year period according to published clinical and cost-effective guidelines for PPI prescribing.

  19. Current-current interaction picture for proton-proton scattering

    International Nuclear Information System (INIS)

    Clarke, D.J.; Lo, S.Y.

    1979-01-01

    The authors propose that color current - color current interaction is reponsible for small angle elastic proton proton scattering at asymptotic energy. Excellent fits are obtained for all data above 12 GeV/c which covers twelve orders of magnitude

  20. Protons and how they are transported by proton pumps

    DEFF Research Database (Denmark)

    Buch-Pedersen, Morten Jeppe; Pedersen, Bjørn Panyella; Veierskov, Bjarke

    2008-01-01

    The very high mobility of protons in aqueous solutions demands special features of membrane proton transporters to sustain efficient yet regulated proton transport across biological membranes. By the use of the chemical energy of ATP, plasma-membrane-embedded ATPases extrude protons from cells...... of plants and fungi to generate electrochemical proton gradients. The recently published crystal structure of a plasma membrane H(+)-ATPase contributes to our knowledge about the mechanism of these essential enzymes. Taking the biochemical and structural data together, we are now able to describe the basic...... molecular components that allow the plasma membrane proton H(+)-ATPase to carry out proton transport against large membrane potentials. When divergent proton pumps such as the plasma membrane H(+)-ATPase, bacteriorhodopsin, and F(O)F(1) ATP synthase are compared, unifying mechanistic premises for biological...

  1. Proton tunneling in solids

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, J.

    1998-10-01

    The tunneling rate of the proton and its isotopes between interstitial sites in solids is studied theoretically. The phonons and/or the electrons in the solid have two effects on the tunneling phenomenon. First, they suppress the transfer integral between two neighbouring states. Second, they give rise to a finite lifetime of the proton state. Usually the second effect is large and the tunneling probability per unit time (tunneling rate) can be defined. In some cases, however, a coherent tunneling is expected and actually observed. (author)

  2. Proton irradiation and endometriosis

    International Nuclear Information System (INIS)

    Wood, D.H.; Yochmowitz, M.G.; Salmon, Y.L.; Eason, R.L.; Boster, R.A.

    1983-01-01

    It was found that female rhesus monkeys given single total-body exposures of protons of varying energies developed endometriosis at a frequency significantly higher than that of nonirradiated animals of the same age. The minimum latency period was determined to be 7 years after the proton exposure. The doses and energies of the radiation received by the experimental animals were within the range that could be received by an aircrew member in near-earth orbit during a random solar flare event. It is concluded that endometriosis should be a consideration in assessing the risk of delayed radiation effects in female crew members. 15 references

  3. Diagnosis by proton bombardment

    International Nuclear Information System (INIS)

    Steward, V.W.; Koehler, A.M.

    1976-01-01

    Beams of monoenergetic protons or other charged ions are passed through the living human body to detect abnormalities and obstructions in body tissue, which abnormalities and obstructions are visualized as density variations in the particle image emerging from the body part under investigation. The particles used are preferably protons having an energy of 100 to 300 MeV, more especially 200 to 300 MeV. The method is of use in detecting inter alia tumors, blood clots, infarcts, soft tissue lesions and multiple sclerosis in patients without exposure to high radiation dosages. 6 claims, 2 drawing figures

  4. Do protons decay

    International Nuclear Information System (INIS)

    Litchfield, P.J.

    1984-09-01

    The experimental status of proton decay is reviewed after the Leipzig International conference, July 1984. A brief comparative description of the currently active experiments is given. From the overall samples of contained events it can be concluded that the experiments are working well and broadly agree with each other. The candidates for proton decay from each experiment are examined. Although several experiments report candidates at a higher rate than expected from background calculations, the validity of these calculations is still open to doubt. (author)

  5. Proton tunneling in solids

    International Nuclear Information System (INIS)

    Kondo, J.

    1998-01-01

    The tunneling rate of the proton and its isotopes between interstitial sites in solids is studied theoretically. The phonons and/or the electrons in the solid have two effects on the tunneling phenomenon. First, they suppress the transfer integral between two neighbouring states. Second, they give rise to a finite lifetime of the proton state. Usually the second effect is large and the tunneling probability per unit time (tunneling rate) can be defined. In some cases, however, a coherent tunneling is expected and actually observed. (author)

  6. Proton Beam Writing

    International Nuclear Information System (INIS)

    Rajta, I.; Szilasi, S.Z.; Csige, I.; Baradacs, E.

    2005-01-01

    Complete text of publication follows. Refractive index depth profile in PMMA due to proton irradiation Proton Beam Writing has been successfully used to create buried channel waveguides in PMMA, which suggested that proton irradiation increases the refractive index. To investigate this effect, PMMA samples were irradiated by 1.7-2.1 MeV proton beam. Spectroscopic Ellipsometry has been used to investigate the depth profile of the refractive index. An increase of the refractive index was observed in the order of 0.01, which is approximately one order of magnitude higher than the detection limit. The highest increase of the refractive index occurs at the end of range, i.e. we found a good correlation with the Bragg curve of the energy loss. Hardness changes in PMMA due to proton beam micromachining As protons penetrate a target material and lose their energy according to the Bragg curve, the energy loss is different at different depths. This causes depth-dependent changes of some physical properties in the target material (e.g. refractive index, hardness). In order to characterize the changes of hardness and other mechanical properties as a function of beam penetration depth, systematic investigations have been performed on PMMA, the most common resist material used in proton beam micromachining. Silicon check valve made by proton beam micromachining The possible application of Proton Beam Micromachining (PBM) has been demonstrated by a few authors for creating 3D Si microstructures. In this work we present alternative methods for the formation of a simple a non-return valve for microfluidic applications. Two different approaches have been applied, in both cases we exploited characteristic features of the PBM technique and the selective formation and dissolution of porous Si over the implantation damaged areas. In the first case we implanted 10 μm thick cantilever-type membrane of the valve normally to the crystal surface and at 30-60 degrees to the sidewalls of the

  7. Original Paper Floristic and structural changes in secondary forests ...

    African Journals Online (AJOL)

    Data from the first inventory in secondary and old-growth forests were ... Structural changes in secondary forests are less known in West Africa, and ... temporal succession from one time spatial ..... s = number of species sampled per hectare; S = species richness of the whole forest; NF = the number of taxonomic families,.

  8. Proton-proton bremsstrahlung in a relativistic covariant model

    NARCIS (Netherlands)

    Martinus, Gerard Henk

    1998-01-01

    Proton-proton bremsstrahlung is one of the simplest processes involving the half off-shell NN interaction. Since protons are equally-charged particles with the same mass, electric-dipole radiation is suppressed and higher-order effects play an important role. Thus it is possible to get information

  9. Predictions of diffractive cross sections in proton-proton collisions

    Energy Technology Data Exchange (ETDEWEB)

    Goulianos, Konstantin [Rockefeller University, 1230 York Avenue, New York, NY 10065 (United States)

    2013-04-15

    We review our pre-LHC predictions of the total, elastic, total-inelastic, and diffractive components of proton-proton cross sections at high energies, expressed in the form of unitarized expressions based on a special parton-model approach to diffraction employing inclusive proton parton distribution functions and QCD color factors and compare with recent LHC results.

  10. Progresses in proton radioactivity studies

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, L. S., E-mail: flidia@ist.utl.pt [Center of Physics and Engineering of Advanced Materials, CeFEMA and Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, P1049-001 Lisbon (Portugal); Maglione, E. [Dipartimento di Fisica e Astronomia “G. Galilei”, Via Marzolo 8, I-35131 Padova, Italy and Istituto Nazionale di Fisica Nucleare, Padova (Italy)

    2016-07-07

    In the present talk, we will discuss recent progresses in the theoretical study of proton radioactivity and their impact on the present understanding of nuclear structure at the extremes of proton stability.

  11. Proton Radiography (pRad)

    Data.gov (United States)

    Federal Laboratory Consortium — The proton radiography project has used 800 MeV protons provided by the LANSCE accelerator facility at LANL, to diagnose more than 300 dynamic experiments in support...

  12. Radiation-Induced Cancers From Modern Radiotherapy Techniques: Intensity-Modulated Radiotherapy Versus Proton Therapy

    International Nuclear Information System (INIS)

    Yoon, Myonggeun; Ahn, Sung Hwan; Kim, Jinsung; Shin, Dong Ho; Park, Sung Yong; Lee, Se Byeong; Shin, Kyung Hwan; Cho, Kwan Ho

    2010-01-01

    Purpose: To assess and compare secondary cancer risk resulting from intensity-modulated radiotherapy (IMRT) and proton therapy in patients with prostate and head-and-neck cancer. Methods and Materials: Intensity-modulated radiotherapy and proton therapy in the scattering mode were planned for 5 prostate caner patients and 5 head-and-neck cancer patients. The secondary doses during irradiation were measured using ion chamber and CR-39 detectors for IMRT and proton therapy, respectively. Organ-specific radiation-induced cancer risk was estimated by applying organ equivalent dose to dose distributions. Results: The average secondary doses of proton therapy for prostate cancer patients, measured 20-60cm from the isocenter, ranged from 0.4 mSv/Gy to 0.1 mSv/Gy. The average secondary doses of IMRT for prostate patients, however, ranged between 3 mSv/Gy and 1 mSv/Gy, approximately one order of magnitude higher than for proton therapy. Although the average secondary doses of IMRT were higher than those of proton therapy for head-and-neck cancers, these differences were not significant. Organ equivalent dose calculations showed that, for prostate cancer patients, the risk of secondary cancers in out-of-field organs, such as the stomach, lungs, and thyroid, was at least 5 times higher for IMRT than for proton therapy, whereas the difference was lower for head-and-neck cancer patients. Conclusions: Comparisons of organ-specific organ equivalent dose showed that the estimated secondary cancer risk using scattering mode in proton therapy is either significantly lower than the cases in IMRT treatment or, at least, does not exceed the risk induced by conventional IMRT treatment.

  13. Secondary osteoporosis.

    Science.gov (United States)

    Gennari, C; Martini, G; Nuti, R

    1998-06-01

    Generalized osteoporosis currently represents a heterogeneous group of conditions with many different causes and pathogenetic mechanisms, that often are variably associated. The term "secondary" is applied to all patients with osteoporosis in whom the identifiable causal factors are other than menopause and aging. In this heterogeneous group of conditions, produced by many different pathogenetic mechanisms, a negative bone balance may be variably associated with low, normal or increased bone remodeling states. A consistent group of secondary osteoporosis is related to endocrinological or iatrogenic causes. Exogenous hypercortisolism may be considered an important risk factor for secondary osteoporosis in the community, and probably glucocorticoid-induced osteoporosis is the most common type of secondary osteoporosis. Supraphysiological doses of corticosteroids cause two abnormalities in bone metabolism: a relative increase in bone resorption, and a relative reduction in bone formation. Bone loss, mostly of trabecular bone, with its resultant fractures is the most incapacitating consequence of osteoporosis. The estimated incidence of fractures in patients prescribed corticosteroid is 30% to 50%. Osteoporosis is considered one of the potentially serious side effects of heparin therapy. The occurrence of heparin-induced osteoporosis appeared to be strictly related to the length of treatment (over 4-5 months), and the dosage (15,000 U or more daily), but the pathogenesis is poorly understood. It has been suggested that heparin could cause an increase in bone resorption by increasing the number of differentiated osteoclasts, and by enhancing the activity of individual osteoclasts. Hyperthyroidism is frequently associated with loss of trabecular and cortical bone; the enhanced bone turnover that develops in thyrotoxicosis is characterized by an increase in the number of osteoclasts and resorption sites, and an increase in the ratio of resorptive to formative bone

  14. Neutron-to-proton ratios in pA and π+-A interactions

    International Nuclear Information System (INIS)

    Bayukov, Yu.D.; Degtyarenko, P.V.; Druzhinin, B.L.

    1983-01-01

    Measurements of neutron and proton yields at 120 deg have been carried out in 7.5 GeV/c pA and in 1.4 GeV/c and 5.0 GeV/c π +- A interactions. The ratios of secondary neutrons to protons are considered in detail. The ratios depend on kinetic energy of secondary nucleons and this dependence is more pronounced for heavy nuclei. Dependence of this ratios on the incident particle charge and the asymmetry resulting from a different number of protons and neutrons in the nucleus are discussed

  15. Cross sections for pion, proton, and heavy-ion production from 800 MeV protons incident upon aluminum and silicon

    Energy Technology Data Exchange (ETDEWEB)

    Dicello, J.F. (Clarkson Univ., Potsdam, NY (USA)); Schillaci, M.E.; Liu Lonchang (Los Alamos National Lab., NM (USA))

    1990-01-01

    When high-energy cosmic rays interact with electronics or other materials in a spacecraft, including the occupants themselves, pions are produced as secondary particles. These secondary pions interact further in the materials producing nuclear secondaries, including nuclear recoils and heavy-ion tertiaries. The secondary pions and the the tertiary particles are capable of producing single-event upsets and other damage in integrated circuits and damage in biological systems. Negative pions stopping in materials are particularly effective because of their unique ability to produce short-range heavy particles from pion stars. With the Los Alamos National Laboratory's version of the intranuclear cascade evaporation code, VEGAS, we have calculated the number of pions produced per energy interval per incident proton from 800 MeV protons on aluminum-27 and silicon-28 along with corresponding results for neutrons, protons, and heavier ions. (orig.).

  16. Violent collisions of spinning protons

    Energy Technology Data Exchange (ETDEWEB)

    Krisch, A.D. [Michigan Univ., Spin Physics Center, Ann Arbor, MI (United States)

    2005-07-01

    The author draws the history of polarized proton beams that has relied on experiments that took place in different accelerators like ZGS (zero gradient synchrotron, Argonne), AGS (Brookhaven) and Fermilab from 1973 till today. The first studies of the behavior and spin-manipulation of polarized protons helped in developing polarized beams around the world: Brookhaven now has 200 GeV polarized protons in the RHIC collider, perhaps someday the 7 TeV LHC at CERN might have polarized protons.

  17. Neutron-proton scattering

    International Nuclear Information System (INIS)

    Doll, P.

    1990-02-01

    Neutron-proton scattering as fundamental interaction process below and above hundred MeV is discussed. Quark model inspired interactions and phenomenological potential models are described. The seminar also indicates the experimental improvements for achieving new precise scattering data. Concluding remarks indicate the relevance of nucleon-nucleon scattering results to finite nuclei. (orig.) [de

  18. Radiotherapy : proton therapy

    International Nuclear Information System (INIS)

    1991-01-01

    The first phase of proton therapy at the National Accelerator Centre will be the development of a 200 MeV small-field horizontal beam radioneurosurgical facility in the south treatment vault. A progressive expansion of this facility is planned. The patient support and positioning system has been designed and developed by the Departments of Mechanical Engineering and Surveying of the University of Cape Town to ensure the accurate positioning in the proton beam of the lesion to be treated. The basic components of the system are an adjustable chair, a series of video cameras and two computers. The specifications for the proton therapy interlock system require that the inputs to and the outputs from the system be similar to those of the neutron therapy system. Additional facilities such as a full diagnostic system which would assist the operators in the event of an error will also be provided. Dosimeters are required for beam monitoring, for monitor calibration and for determining dose distributions. Several designs of transmission ionization chambers for beam monitoring have been designed and tested, while several types of ionization chambers and diodes have been used for the dose distribution measurements. To facilitate the comparison of measured ranges and energy losses of proton beams in the various materials with tabled values, simple empirical approximations, which are sufficiently accurate for most applications, have been used. 10 refs., 10 fig., 4 tabs

  19. Proton Pulse Radiolysis

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, H C; Nilsson, G; Reitberger, T; Thuomas, K A

    1973-03-15

    A 5 MeV proton accelerator (Van de Graaff) has been used for pulse radiolysis of a number of organic gases and the transient spectra obtained from the alkanes methane, ethane, propane, n-butane and neopentane have tentatively been assigned to alkyl radicals. Some methodological aspects of this new technique are discussed

  20. The Melbourne proton microprobe

    International Nuclear Information System (INIS)

    Legge, G.J.F.; McKenzie, C.D.; Mazzolini, A.P.

    1979-01-01

    A scanning proton microprobe is described which operates in ultra-high vacuum with a resolution of ten microns. The operating principles and main features of the design are discussed and the ability of such an instrument to detect trace elements down to a few ppm by mass is illustrated

  1. Proton microanalysis in plants

    International Nuclear Information System (INIS)

    Garrec, J.P.

    Micro-analyses by nuclear reactions and atomic excitation are used to determine the distribution of fluorine and calcium in the needles of Abies Alba. Fluorine is detected by the nuclear reaction 19 F(p,α) 16 O at the 1.35 MeV resonance. Calcium is measured by its characteristic X-rays due to proton excitation [fr

  2. Calculated secondary yields for proton broadband using DECAY TURTLE

    International Nuclear Information System (INIS)

    Sondgeroth, A.

    1995-02-01

    The calculations for the yields were done by Al Sondgeroth and Anthony Malensek. The authors used the DECAY deck called PBSEC E.DAT from the CMS DECKS library. After obtaining the run modes and calibration modes from the liaison physicist, they made individual decay runs, using DECAY TURTLE from the CMS libraries and a production spectrum subroutine which was modified by Anthony, for each particle and decay mode for all particle types coming out of the target box. Results were weighted according to branching ratios for particles with more than one decay mode. The production spectra were produced assuming beryllium as the target. The optional deuterium target available to broadband will produce slightly higher yields. It should be noted that they did not include pion yields from klong decays because they could not simulate three body decays. Pions from klongs would add a very small fraction to the total yield

  3. Secondary osteoporosis.

    Science.gov (United States)

    Boyle, I T

    1993-10-01

    Osteoporosis with attendant increased fracture risk is a common complication of many other diseases. Indeed, almost all chronic diseases make some impact on life-style, usually by restricting physical activity and hence reducing the anabolic effect of exercise and gravitational strains on the skeleton. Restricted appetite and modified gastrointestinal tract function is another commonplace finding that has an impact on bone nutrition and synthesis, as on other systems. Sex hormone status is of particular importance for the maintenance of the normal skeleton, and the postmenopausal woman is at particular risk for most causes of secondary osteoporosis. In dealing with secondary osteoporosis in the hypo-oestrogenic woman, the question of giving hormone replacement therapy in addition to other disease-specific therapy should always be considered, as, for example, in a young amenorrhoeic woman with Crohn's disease. Similarly, in hypogonadal men the administration of testosterone is useful for bone conservation. The wider availability of bone densitometry ought to make us more aware of the presence of osteoporosis in the many disease states discussed above. This is particularly important as the life span of such patients is now increased by improved management of the underlying disease process in many instances. Even in steroid-induced osteoporosis--one of the commonest and most severe forms of osteoporosis--we now have some effective therapy in the form of the bisphosphonates and other anti-bone-resorbing drug classes. The possibility of prophylaxis against secondary osteoporosis has therefore become a possibility, although the very long-term effects of such drug regimens are still unknown. In some situations, such as thyrotoxicosis, Cushing's syndrome and immobilization, spontaneous resolution of at least part of the osteoporosis is possible after cure of the underlying problem. The shorter the existence of the basic problem, the more successful the restoration of the

  4. Louis L'Amour's American West. A Sound Filmstrip Program. Study Guide.

    Science.gov (United States)

    Peters, John; Peters, Frances

    Adapted from the motion picture based on two of Louis L'Amour's novels of the American West, "The Daybreakers" and "Sackett," this filmstrip program will help secondary students interpret the meaning of the frontier experience in American history. In the first three filmstrips--"Heading West,""Staking…

  5. Proton transfer events in GFP

    NARCIS (Netherlands)

    Di Donato, M.; van Wilderen, L.J.G.W.; van Stokkum, I.H.M.; Cohen Stuart, T.A.; Kennis, J.T.M.; Hellingwerf, K.J.; van Grondelle, R.; Groot, M.L.

    2011-01-01

    Proton transfer is one of the most important elementary processes in biology. Green fluorescent protein (GFP) serves as an important model system to elucidate the mechanistic details of this reaction, because in GFP proton transfer can be induced by light absorption. Illumination initiates proton

  6. Islam and the West

    Directory of Open Access Journals (Sweden)

    Mohd. Kamal Hassan

    1997-06-01

    Full Text Available The scientific and technological developments during the 18th and' the 19th centuries ensured material progress of the West, as well as emergence of the West as the dominating power which colonized the rest of the world. During the post-colonial phase, Islam emerged as a revitalized sociopolitical force. This has been mistaken as a threat by the West, and Islam has been portrayed as the "new enemy after the demise of communism. This is partly an effort to establish a Western identity, which is disintegrating due to lack of a challenge; and partly a reflection of the failure of Muslims to realize the social and ethical ideals of Islam.

  7. Examination of roundwood utilization rates in West Virginia

    Science.gov (United States)

    Shawn T. Grushecky; Jan Wiedenbeck; Curt C. Hassler

    2013-01-01

    Forest harvesting is an integral part of the West Virginia forest economy. This component of the supply chain supports a diverse array of primary and secondary processors. A key metric used to describe the efficiency of the roundwood extraction process is the logging utilization factor (LUF). The LUF is one way managers can discern the overall use of harvested...

  8. Enabling affordable access to fibre infrastructure for West and ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    In recent years, tremendous progress has been made in improving access to primary and secondary education in West and Central Africa. At the same time, tertiary education is experiencing increased enrollment and declining investment in infrastructure and human resource development. Consequently, African institutions ...

  9. Australian national proton facility

    International Nuclear Information System (INIS)

    Jackson, M.

    2000-01-01

    Full text: Proton therapy has been in use since 1954 and over 25,000 patients have been treated worldwide. Until recently most patients were treated at physics research facilities and apart from the Harvard Cyclotron Laboratory and some low energy machines for eye treatment, only small numbers of patients were treated in each centre and conditions were less than optimal. Limited beam time and lack of support facilities restricted the type of patient treated and conventional fractionation could not be used. The initial clinical experience was mainly with small tumours and other lesions close to critical organs. Large numbers of eye tumours have also been treated. Protons have a well-defined role in these situations and are now being used in the treatment of more common cancers. Since the development of hospital-based facilities, such as the one in Loma Linda in California, over 2,500 patients with prostate cancer have been treated using a simple technique which gives results at least as good as radical surgery, external beam radiotherapy or brachytherapy. Importantly, the incidence of severe complications is very low. There are encouraging results in many disease sites including lung, liver, soft tissue sarcomas and oesophagus. As proton therapy becomes more widely available, randomised trials comparing it with conventional radiotherapy or intensity modulated radiotherapy (IMRT) will be possible. In most situations the use of protons will enable a higher dose to be given safely but in situations where local control rates are already satisfactory, protons are expected to produce less complications than conventional treatment. The initial costs of a proton facility are high but the recurrent costs are similar to other forms of high technology radiotherapy. Simple treatment techniques with only a few fields are usually possible and proton therapy avoids the high integral doses associated with IMRT. This reduction in the low dose volume is likely to be particularly

  10. Protonation of pyridine. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Zahran, N F; Ghoniem, H; Helal, A I [Physics Dept., Nuclear Research Center, AEA., Cairo, (Egypt); Rasheed, N [Nuclear Material Authority, Cairo, (Egypt)

    1996-03-01

    Field ionization mass spectra of pyridine is measured using 10{mu}m activated wire. protonation of pyridine, is observed as an intense peak in the mass spectra. Charge distribution of pyridine molecule is calculated using the modified neglect of diatomic overlap (MNDO) technique, and consequently proton attachment is proposed to be on the nitrogen atom. Temperature dependence of (M+H){sup +} ion is investigated and discussed. MNDO calculations of the protonated species are done, and the proton affinity of pyridine molecule is estimated. Time dependence of the field ionization process of pyridine and protonated ions are observed and discussed. 5 figs.

  11. Nuclear reactions excited by recoil protons on a nuclear reactor

    International Nuclear Information System (INIS)

    Mukhammedov, S.; Khaydarov, A.; Barsukova, E.G.

    2006-01-01

    The nuclear reactions excited by recoil protons and of the detection possibility of the various chemical elements with the use of these secondary nucleus reactions were investigated. The recoil protons are produced on a nuclear reactor in the result of (n, p) inelastic and elastic scattering interaction of fast neutrons with nuclei of hydrogen. It is well known that the share of fast neutrons in energetic spectrum of reactor's neutrons in comparison with the share of thermal neutrons is small. . Consequently, the share of recoil protons produced in the result of fast neutron interaction with nuclei of light elements, capable to cause the nuclear reactions, is also small, des, due to Coulomb barrier of nuclei the recoil protons can cause the nuclear reactions only on nuclei of light and some middle elements. Our studies show that observable yields have radio nuclides excited in the result of nuclear reactions on Li, B, O, V and Cu. Our experimental results have demonstrated that the proton activation analysis based on the application of secondary nuclear reactions is useful technique to determine large contents of various light and medium chemical elements. Detection limits for studied chemical elements are estimated better than 10 ppm

  12. Proton transfer events in GFP.

    Science.gov (United States)

    Di Donato, Mariangela; van Wilderen, Luuk J G W; Van Stokkum, Ivo H M; Stuart, Thomas Cohen; Kennis, John T M; Hellingwerf, Klaas J; van Grondelle, Rienk; Groot, Marie Louise

    2011-09-28

    Proton transfer is one of the most important elementary processes in biology. Green fluorescent protein (GFP) serves as an important model system to elucidate the mechanistic details of this reaction, because in GFP proton transfer can be induced by light absorption. Illumination initiates proton transfer through a 'proton-wire', formed by the chromophore (the proton donor), water molecule W22, Ser205 and Glu222 (the acceptor), on a picosecond time scale. To obtain a more refined view of this process, we have used a combined approach of time resolved mid-infrared spectroscopy and visible pump-dump-probe spectroscopy to resolve with atomic resolution how and how fast protons move through this wire. Our results indicate that absorption of light by GFP induces in 3 ps (10 ps in D(2)O) a shift of the equilibrium positions of all protons in the H-bonded network, leading to a partial protonation of Glu222 and to a so-called low barrier hydrogen bond (LBHB) for the chromophore's proton, giving rise to dual emission at 475 and 508 nm. This state is followed by a repositioning of the protons on the wire in 10 ps (80 ps in D(2)O), ultimately forming the fully deprotonated chromophore and protonated Glu222.

  13. Solar proton fluxes since 1956

    International Nuclear Information System (INIS)

    Reedy, R.C.

    1977-01-01

    The fluxes of protons emitted during solar flares since 1956 were evaluated. The depth-versus-activity profiles of 56 Co in several lunar rocks are consistent with the solar-proton fluxes detected by experiments on several satellites. Only about 20% of the solar-proton-induced activities of 22 Na and 55 Fe in lunar rocks from early Apollo missions were produced by protons emitted from the sun during solar cycle 20 (1965--1975). The depth-versus-activity data for these radionuclides in several lunar rocks were used to determine the fluxes of protons during solar cycle 19 (1954--1964). The average proton fluxes for cycle 19 are about five times those for both the last million years and for cycle 20. These solar-proton flux variations correlate with changes in sunspot activity

  14. Advances in compact proton spectrometers for inertial-confinement fusion and plasma nuclear science.

    Science.gov (United States)

    Seguin, F H; Sinenian, N; Rosenberg, M; Zylstra, A; Manuel, M J-E; Sio, H; Waugh, C; Rinderknecht, H G; Johnson, M Gatu; Frenje, J; Li, C K; Petrasso, R; Sangster, T C; Roberts, S

    2012-10-01

    Compact wedge-range-filter proton spectrometers cover proton energies ∼3-20 MeV. They have been used at the OMEGA laser facility for more than a decade for measuring spectra of primary D(3)He protons in D(3)He implosions, secondary D(3)He protons in DD implosions, and ablator protons in DT implosions; they are now being used also at the National Ignition Facility. The spectra are used to determine proton yields, shell areal density at shock-bang time and compression-bang time, fuel areal density, and implosion symmetry. There have been changes in fabrication and in analysis algorithms, resulting in a wider energy range, better accuracy and precision, and better robustness for survivability with indirect-drive inertial-confinement-fusion experiments.

  15. Proton mass decomposition

    Science.gov (United States)

    Yang, Yi-Bo; Chen, Ying; Draper, Terrence; Liang, Jian; Liu, Keh-Fei

    2018-03-01

    We report the results on the proton mass decomposition and also on the related quark and glue momentum fractions. The results are based on overlap valence fermions on four ensembles of Nf = 2 + 1 DWF configurations with three lattice spacings and volumes, and several pion masses including the physical pion mass. With 1-loop pertur-bative calculation and proper normalization of the glue operator, we find that the u, d, and s quark masses contribute 9(2)% to the proton mass. The quark energy and glue field energy contribute 31(5)% and 37(5)% respectively in the MS scheme at µ = 2 GeV. The trace anomaly gives the remaining 23(1)% contribution. The u, d, s and glue momentum fractions in the MS scheme are consistent with the global analysis at µ = 2 GeV.

  16. Proton solar flares

    International Nuclear Information System (INIS)

    Shaposhnikova, E.F.

    1979-01-01

    The observations of proton solar flares have been carried out in 1950-1958 using the extrablackout coronograph of the Crimea astrophysical observatory. The experiments permit to determine two characteristic features of flares: the directed motion of plasma injection flux from the solar depths and the appearance of a shock wave moving from the place of the injection along the solar surface. The appearance of the shock wave is accompanied by some phenomena occuring both in the sunspot zone and out of it. The consistent flash of proton flares in the other groups of spots, the disappearance of fibres and the appearance of eruptive prominences is accomplished in the sunspot zone. Beyond the sunspot zone the flares occur above spots, the fibres disintegrate partially or completely and the eruptive prominences appear in the regions close to the pole

  17. The Amsterdam proton microbeam

    International Nuclear Information System (INIS)

    Bos, A.J.J.

    1984-01-01

    The aim of the work presented in this thesis is to develop a microbeam setup such that small beam spot sizes can be produced routinely, and to investigate the capabilities of the setup for micro-PIXE analysis. The development and performance of the Amsterdam proton microbeam setup are described. The capabilities of the setup for micro-PIXE are shown with an investigation into the presence of trace elements in human hair. (Auth.)

  18. The proton radius puzzle

    Science.gov (United States)

    Bonesini, Maurizio

    2017-12-01

    The FAMU (Fisica degli Atomi Muonici) experiment has the goal to measure precisely the proton Zemach radius, thus contributing to the solution of the so-called proton radius "puzzle". To this aim, it makes use of a high-intensity pulsed muon beam at RIKEN-RAL impinging on a cryogenic hydrogen target with an high-Z gas admixture and a tunable mid-IR high power laser, to measure the hyperfine (HFS) splitting of the 1S state of the muonic hydrogen. From the value of the exciting laser frequency, the energy of the HFS transition may be derived with high precision ( 10-5) and thus, via QED calculations, the Zemach radius of the proton. The experimental apparatus includes a precise fiber-SiPMT beam hodoscope and a crown of eight LaBr3 crystals and a few HPGe detectors for detection of the emitted characteristic X-rays. Preliminary runs to optimize the gas target filling and its operating conditions have been taken in 2014 and 2015-2016. The final run, with the pump laser to drive the HFS transition, is expected in 2018.

  19. Heavy quarks in proton

    CERN Document Server

    AUTHOR|(SzGeCERN)655637

    The measurement of prompt photon associated with a b jet in proton-proton interactions can provide us insight into the inner structure of proton. This is because precision of determination of parton distribution functions of b quark and gluon can be increased by such a measurement. The measurement of cross-section of prompt photon associated with a b jet (process $pp\\longrightarrow \\gamma + b + X$) at $\\sqrt{s}$= 8 TeV with the ATLAS detector is presented. Full 8 TeV dataset collected by ATLAS during the year 2012 was used in this analysis. Corresponding integrated luminosity is 20.3 $fb^{-1}$. Fiducial differential cross-section as a function of photon transverse momentum at particle level was extracted from data and compared with the prediction of leading order event generator Pythia 8. Cross-section extracted from data is normalised independently on the Monte Carlo prediction. Values of data distribution lie above Monte Carlo values. The difference can be explained by presence of higher order effects not ...

  20. Biological effectiveness of high-energy protons - Target fragmentation

    International Nuclear Information System (INIS)

    Cucinotta, F.A.; Katz, R.; Wilson, J.W.; Townsend, L.W.; Shinn, J.; Hajnal, F.

    1991-01-01

    High-energy protons traversing tissue produce local sources of high-linear-energy-transfer ions through nuclear fragmentation. The contribution of these target fragments to the biological effectiveness of high-energy protons using the cellular track model is examined. The effects of secondary ions are treated in terms of the production collision density using energy-dependent parameters from a high-energy fragmentation model. Calculations for mammalian cell cultures show that at high dose, at which intertrack effects become important, protons deliver damage similar to that produced by gamma rays, and with fragmentation the relative biological effectiveness (RBE) of protons increases moderately from unity. At low dose, where sublethal damage is unimportant, the contribution from target fragments dominates, causing the proton effectiveness to be very different from that of gamma rays with a strongly fluence-dependent RBE. At high energies, the nuclear fragmentation cross sections become independent of energy. This leads to a plateau in the proton single-particle-action cross section, below 1 keV/micron, since the target fragments dominate. 29 refs

  1. Modelling of a proton spot scanning system using MCNP6

    International Nuclear Information System (INIS)

    Ardenfors, O; Gudowska, I; Dasu, A; Kopeć, M

    2017-01-01

    The aim of this work was to model the characteristics of a clinical proton spot scanning beam using Monte Carlo simulations with the code MCNP6. The proton beam was defined using parameters obtained from beam commissioning at the Skandion Clinic, Uppsala, Sweden. Simulations were evaluated against measurements for proton energies between 60 and 226 MeV with regard to range in water, lateral spot sizes in air and absorbed dose depth profiles in water. The model was also used to evaluate the experimental impact of lateral signal losses in an ionization chamber through simulations using different detector radii. Simulated and measured distal ranges agreed within 0.1 mm for R 90 and R 80 , and within 0.2 mm for R 50 . The average absolute difference of all spot sizes was 0.1 mm. The average agreement of absorbed dose integrals and Bragg-peak heights was 0.9%. Lateral signal losses increased with incident proton energy with a maximum signal loss of 7% for 226 MeV protons. The good agreement between simulations and measurements supports the assumptions and parameters employed in the presented Monte Carlo model. The characteristics of the proton spot scanning beam were accurately reproduced and the model will prove useful in future studies on secondary neutrons. (paper)

  2. Secondary interactions in HIJET

    International Nuclear Information System (INIS)

    Longacre, R.S.

    1990-01-01

    This talk deals with the investigation of secondary interactions in proton-nucleus and nucleus-nucleus collisions using the Monte Carlo event generator HIJET. The HIJET generator considers p-A and A-A collisions to be a sum of independent N-N collisions, with the N-N cross section and scattering dynamics not dependent on whether the nucleon has previously participated in an interaction. It is very reasonable to assume that each collision should be well represented by an independent N-N collision, however the cross section for the forward going struck nucleon may be different. For each primary N-N interaction, a call is made to the MINBIAS routine of the program ISAJET - an event generator for high energy N-N interactions. MINBIAS computes the energy loss of the colliding nucleons and production of particles. MINBIAS is based on inclusive high energy N-N interactions forming multi-pomeron chains, with each chain fragmenting according to the Field-Feynman algorithm

  3. Conception of a New Recoil Proton Telescope for Real-Time Neutron Spectrometry in Proton-Therapy

    Science.gov (United States)

    Combe, Rodolphe; Arbor, Nicolas; el Bitar, Ziad; Higueret, Stéphane; Husson, Daniel

    2018-01-01

    Neutrons are the main type of secondary particles emitted in proton-therapy. Because of the risk of secondary cancer and other late occurring effects, the neutron dose should be included in the out-of-field dose calculations. A neutron spectrometer has to be used to take into account the energy dependence of the neutron radiological weighting factor. Due to its high dependence on various parameters of the irradiation (beam, accelerator, patient), the neutron spectrum should be measured independently for each treatment. The current reference method for the measurement of the neutron energy, the Bonner Sphere System, consists of several homogeneous polyethylene spheres with increasing diameters equipped with a proportional counter. It provides a highresolution reconstruction of the neutron spectrum but requires a time-consuming work of signal deconvolution. New neutron spectrometers are being developed, but the main experimental limitation remains the high neutron flux in proton therapy treatment rooms. A new model of a real-time neutron spectrometer, based on a Recoil Proton Telescope technology, has been developed at the IPHC. It enables a real-time high-rate reconstruction of the neutron spectrum from the measurement of the recoil proton trajectory and energy. A new fast-readout microelectronic integrated sensor, called FastPixN, has been developed for this specific purpose. A first prototype, able to detect neutrons between 5 and 20 MeV, has already been validated for metrology with the AMANDE facility at Cadarache. The geometry of the new Recoil Proton Telescope has been optimized via extensive Geant4 Monte Carlo simulations. Uncertainty sources have been carefully studied in order to improve simultaneously efficiency and energy resolution, and solutions have been found to suppress the various expected backgrounds. We are currently upgrading the prototype for secondary neutron detection in proton therapy applications.

  4. Exclusive production of meson pairs and resonances in proton-proton collisions

    International Nuclear Information System (INIS)

    Lebiedowicz, Piotr; Szczurek, Antoni

    2013-01-01

    We report a study of the central exclusive production of π + π − and K + K − pairs in high energy hadron-hadron collisions. The amplitude is calculated in the Regge approach including both pomeron and secondary reggeon exchanges and absorption effects due to proton-proton interaction and ππ (KK) rescattering. We discuss a measurement of exclusive production of a scalar χ c0 meson via χ c0 →π + π − , K + K − decay. We find that the relative contribution of resonance states and the ππ (KK) continuum strongly depend on the cut on pion (kaon) transverse momentum. We compare the results with the existing experimental data and present predictions for the RHIC, Tevatron and LHC colliders. We discuss also the f 2 (1270) meson production mediated by an effective tensor pomeron exchanges.

  5. Exclusive production of meson pairs and resonances in proton-proton collisions

    Energy Technology Data Exchange (ETDEWEB)

    Lebiedowicz, Piotr [Institute of Nuclear Physics PAN, PL-31-342 Cracow (Poland); Szczurek, Antoni [Institute of Nuclear Physics PAN, PL-31-342 Cracow, Poland and University of Rzeszow, PL-35-959 Rzeszow (Poland)

    2013-04-15

    We report a study of the central exclusive production of {pi}{sup +}{pi}{sup -} and K{sup +}K{sup -} pairs in high energy hadron-hadron collisions. The amplitude is calculated in the Regge approach including both pomeron and secondary reggeon exchanges and absorption effects due to proton-proton interaction and {pi}{pi} (KK) rescattering. We discuss a measurement of exclusive production of a scalar {chi}{sub c0} meson via {chi}{sub c0}{yields}{pi}{sup +}{pi}{sup -}, K{sup +}K{sup -} decay. We find that the relative contribution of resonance states and the {pi}{pi} (KK) continuum strongly depend on the cut on pion (kaon) transverse momentum. We compare the results with the existing experimental data and present predictions for the RHIC, Tevatron and LHC colliders. We discuss also the f{sub 2} (1270) meson production mediated by an effective tensor pomeron exchanges.

  6. [Why proton therapy? And how?

    Science.gov (United States)

    Thariat, Juliette; Habrand, Jean Louis; Lesueur, Paul; Chaikh, Abdulhamid; Kammerer, Emmanuel; Lecomte, Delphine; Batalla, Alain; Balosso, Jacques; Tessonnier, Thomas

    2018-03-01

    Proton therapy is a radiotherapy, based on the use of protons, charged subatomic particles that stop at a given depth depending on their initial energy (pristine Bragg peak), avoiding any output beam, unlike the photons used in most of the other modalities of radiotherapy. Proton therapy has been used for 60 years, but has only become ubiquitous in the last decade because of recent major advances in particle accelerator technology. This article reviews the history of clinical implementation of protons, the nature of the technological advances that now allows its expansion at a lower cost. It also addresses the technical and physical specificities of proton therapy and the clinical situations for which proton therapy may be relevant but requires evidence. Different proton therapy techniques are possible. These are explained in terms of their clinical potential by explaining the current terminology (such as cyclotrons, synchrotrons or synchrocyclotrons, using superconducting magnets, fixed line or arm rotary with passive diffusion delivery or active by scanning) in basic words. The requirements associated with proton therapy are increased due to the precision of the depth dose deposit. The learning curve of proton therapy requires that clinical indications be prioritized according to their associated uncertainties (such as range uncertainties and movement in lung tumors). Many clinical indications potentially fall under proton therapy ultimately. Clinical strategies are explained in a paralleled manuscript. Copyright © 2018 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  7. Development of a high intensity proton accelerator

    International Nuclear Information System (INIS)

    Mizumoto, Motoharu; Kusano, Joichi; Hasegawa, Kazuo; Ito, Nobuo; Oguri, Hidetomo; Touchi, Yutaka; Mukugi, Ken; Ino, Hiroshi

    1997-01-01

    The high-intensity proton linear accelerator with a beam power of 15 MW has been proposed for various engineering tests for the nuclear waste transmutation system as one of the research plans in the Neutron Science Research Program (NSRP) in JAERI. High intensity proton beam and secondary particle beams such as neutron, pion, muon and unstable radio isotope (RI) beam generated from the proton spallation reaction will be utilized at these facilities in each research field. The R and D work has been carried out for the components of the front-end part of the proton accelerator; ion source, RFQ, DTL and RF source. In the beam test, the current of 70 mA with a duty factor of 7% has been accelerated from the RFQ at the energy of 2 MeV. A hot test model of the DTL for the high power and high duty operation was fabricated and tested. For the high energy portion above 100 MeV, superconducting accelerating cavity is studied as a main option. The superconducting linac is expected to have several favourable characteristics for high intensity accelerator such as short accelerator length, large bore radius resulting in low beam losses and cost effectiveness for construction and operation. A test stand with equipment of cryogenics system, vacuum system, RF system and cavity processing and cleaning is prepared to test the physics issues and fabrication process. The proposed plan for accelerator design and construction will compose of two consecutive stages. The first stage will be completed in about 7 years with the beam power of 1.5 MW. As the second stage gradual upgrading of the beam power will be made up to 15 MW. 7 refs., 3 figs., 4 tabs

  8. Proton permeation of lipid bilayers.

    Science.gov (United States)

    Deamer, D W

    1987-10-01

    Proton permeation of the lipid bilayer barrier has two unique features. First, permeability coefficients measured at neutral pH ranges are six to seven orders of magnitude greater than expected from knowledge of other monovalent cations. Second, proton conductance across planar lipid bilayers varies at most by a factor of 10 when pH is varied from near 1 to near 11. Two mechanisms have been proposed to account for this anomalous behavior: proton conductance related to contaminants of lipid bilayers, and proton translocation along transient hydrogen-bonded chains (tHBC) of associated water molecules in the membrane. The weight of evidence suggests that trace contaminants may contribute to proton conductance across planar lipid membranes at certain pH ranges, but cannot account for the anomalous proton flux in liposome systems. Two new results will be reported here which were designed to test the tHBC model. These include measurements of relative proton/potassium permeability in the gramicidin channel, and plots of proton flux against the magnitude of pH gradients. (1) The relative permeabilities of protons and potassium through the gramicidin channel, which contains a single strand of hydrogen-bonded water molecules, were found to differ by at least four orders of magnitude when measured at neutral pH ranges. This result demonstrates that a hydrogen-bonded chain of water molecules can provide substantial discrimination between protons and other cations. It was also possible to calculate that if approximately 7% of bilayer water was present in a transient configuration similar to that of the gramicidin channel, it could account for the measured proton flux. (2) The plot of proton conductance against pH gradient across liposome membranes was superlinear, a result that is consistent with one of three alternative tHBC models for proton conductance described by Nagle elsewhere in this volume.

  9. Modeling Secondary Neutral Helium in the Heliosphere

    International Nuclear Information System (INIS)

    Müller, Hans-Reinhard; Möbius, Eberhard; Wood, Brian E.

    2016-01-01

    An accurate, analytic heliospheric neutral test-particle code for helium atoms from the interstellar medium (ISM) is coupled to global heliospheric models dominated by hydrogen and protons from the solar wind and the ISM. This coupling enables the forward-calculation of secondary helium neutrals from first principles. Secondaries are produced predominantly in the outer heliosheath, upwind of the heliopause, by charge exchange of helium ions with neutral atoms. The forward model integrates the secondary production terms along neutral trajectories and calculates the combined neutral helium phase space density in the innermost heliosphere where it can be related to in-situ observations. The phase space density of the secondary component is lower than that of primary neutral helium, but its presence can change the analysis of primaries and the ISM, and can yield valuable insight into the characteristics of the plasma in the outer heliosheath. (paper)

  10. MUSE: Measuring the proton radius with muon-proton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bernauer, Jan Christopher [Massachusetts Institute of Technology, Cambridge (United States)

    2014-07-01

    The proton radius has been measured so far using electron-proton scattering, electronic Hydrogen spectroscopy and muonic Hydrogen spectroscopy, the latter producing a much more accurate, but seven sigma different, result, leading to the now famous proton radius puzzle. The MUSE collaboration aims to complete the set of measurements by using muon scattering to determine the proton radius and to shed light on possible explanations of the discrepancy. The talk gives an overview of the experiment motivation and design and a status report on the progress.

  11. Vibrational spectroscopy on protons and deuterons in proton conducting perovskites

    DEFF Research Database (Denmark)

    Glerup, M.; Poulsen, F.W.; Berg, R.W.

    2002-01-01

    A short review of IR-spectroscopy on protons in perovskite structure oxides is given. The nature of possible proton sites, libration and combination tones and degree of hydrogen bonding is emphasised. Three new spectroscopic experiments and/or interpretations are presented. An IR-microscopy exper......A short review of IR-spectroscopy on protons in perovskite structure oxides is given. The nature of possible proton sites, libration and combination tones and degree of hydrogen bonding is emphasised. Three new spectroscopic experiments and/or interpretations are presented. An IR...

  12. Measurement of small-angle antiproton-proton and proton-proton elastic scattering at the CERN intersecting storage rings

    NARCIS (Netherlands)

    Amos, N.; Block, M.M.; Bobbink, G.J.; Botje, M.A.J.; Favart, D.; Leroy, C.; Linde, F.; Lipnik, P.; Matheys, J-P.; Miller, D.

    1985-01-01

    Antiproton-proton and proton-proton small-angle elastic scattering was measured for centre-of-mass energies at the CERN Intersectung Storage Rings. In addition, proton-proton elastic scattering was measured at . Using the optical theorem, total cross sections are obtained with an accuracy of about

  13. Proton and carbon ion therapy

    CERN Document Server

    Lomax, Tony

    2013-01-01

    Proton and Carbon Ion Therapy is an up-to-date guide to using proton and carbon ion therapy in modern cancer treatment. The book covers the physics and radiobiology basics of proton and ion beams, dosimetry methods and radiation measurements, and treatment delivery systems. It gives practical guidance on patient setup, target localization, and treatment planning for clinical proton and carbon ion therapy. The text also offers detailed reports on the treatment of pediatric cancers, lymphomas, and various other cancers. After an overview, the book focuses on the fundamental aspects of proton and carbon ion therapy equipment, including accelerators, gantries, and delivery systems. It then discusses dosimetry, biology, imaging, and treatment planning basics and provides clinical guidelines on the use of proton and carbon ion therapy for the treatment of specific cancers. Suitable for anyone involved with medical physics and radiation therapy, this book offers a balanced and critical assessment of state-of-the-art...

  14. Measurement of production cross sections for negative pions, kaons, and protons at 10, 18, and 24 GeV

    International Nuclear Information System (INIS)

    Amann, J.F.; Macek, R.J.; Sanford, T.W.L.

    1982-10-01

    We report here on a measurement of the 0 0 -production cross sections for low-energy negative secondaries from 10-, 18-, and 24-GeV protons on a variety of targets. Special emphasis is given to determining the dependence of the cross sections on incident proton energy

  15. The PIREX proton irradiation facility

    International Nuclear Information System (INIS)

    Victoria, M.

    1995-01-01

    The proton Irradiation Experiment (PIREX) is a materials irradiation facility installed in a beam line of the 590 MeV proton accelerator at the Paul Scherrer Institute. Its main purpose is the testing of candidate materials for fusion reactor components. Protons of this energy produce simultaneously displacement damage and spallation products, amongst them helium and can therefore simulate any possible synergistic effects of damage and helium, that would be produced by the fusion neutrons

  16. The PIREX proton irradiation facility

    Energy Technology Data Exchange (ETDEWEB)

    Victoria, M. [Association EURATOM, Villigen (Switzerland)

    1995-10-01

    The proton Irradiation Experiment (PIREX) is a materials irradiation facility installed in a beam line of the 590 MeV proton accelerator at the Paul Scherrer Institute. Its main purpose is the testing of candidate materials for fusion reactor components. Protons of this energy produce simultaneously displacement damage and spallation products, amongst them helium and can therefore simulate any possible synergistic effects of damage and helium, that would be produced by the fusion neutrons.

  17. Search for proton decay: introduction

    International Nuclear Information System (INIS)

    Goldhaber, M.

    1984-01-01

    In interpreting contained events observed in various proton decay detectors one can sometimes postulate, though usually not unambiguously, a potential decay mode of the proton, called a candidate. It is called a candidate, because for any individual event it is not possible to exclude the possibility that it is instead due to cosmic ray background, chiefly atmospheric neutrinos. Some consistency checks are proposed which could help establish proton decay, if it does occur in the presently accessible lifetime window

  18. Sea Quarks in the Proton

    Directory of Open Access Journals (Sweden)

    Reimer Paul E

    2016-01-01

    Full Text Available The proton is a composite particle in which the binding force is responsible for the majority of its mass. To understand this structure, the distributions and origins of the quark-antiquark pairs produced by the strong force must be measured. The SeaQuest collaboration is using the Drell-Yan process to elucidate antiquark distributions in the proton and to study their modification when the proton is held within a nucleus.

  19. Proton multiplicity distributions in pion-xenon nucleus collisions at 3.5 GeV/c

    International Nuclear Information System (INIS)

    Strugalski, Z.; Pawlak, T.; Peryt, W.; Pluta, J.

    1980-01-01

    Experimental results from the proton emission investigation in 3.5 GeV/c pion minus-xenon nucleus collisions detected in the 180 xenon bubble chamber are presented and analyzed. The emitted protons are of kinetic energies from 20 to 400 MeV. Multiplicity distributions of protons both accompanied and not accompanied by secondary charged and neutral pions are given. Large proton multiplicities are observed in the events without multiparticle production, the proton multiplicity distribution in this class of events being of an irregular character. The experimental results are well described in the model based on the following hypothesis: a high energy hadron traversing the target causes the monotonous emission of the fast protons in numbers nsub(p) being equal to the number of protons encountered in the neighbourhood of its path inside the nucleus target. In this case the multiple production goes through some intermediate states which decay after having left the target nucleus

  20. Ebola in West Africa

    OpenAIRE

    Raka, Lul; Guardo, Monica

    2015-01-01

    Ebola viral disease (EVD) is a severe and life-threatening disease. The current Ebola outbreak in West Africa entered its second year and is unprecedented because it is the largest one in history, involved urban centers and affected a large number of health care workers. It quickly escalated from medical into a humanitarian, social, economic, and security crisis. The primary pillars to prevent EVD are: early diagnosis, isolation of patients, contact tracing and monitoring, safe burials, infec...

  1. West Virginia's Forests 2008

    Science.gov (United States)

    Richard H. Widmann; Gregory W. Cook; Charles J. Barnett; Brett J. Butler; Douglas M. Griffith; Mark A. Hatfield; Cassandra M. Kurtz; Randall S. Morin; W. Keith Moser; Charles H. Perry; Ronald J. Piva; Rachel Riemann; Christopher W. Woodall

    2012-01-01

    The first full annual inventory of West Virginia's forests reports 12.0 million acres of forest land or 78 percent of the State's land area. The area of forest land has changed little since 2000. Of this land, 7.2 million acres (60 percent) are held by family forest owners. The current growing-stock inventory is 25 billion cubic feet--12 percent more than in...

  2. West Virginia Forests 2013

    Science.gov (United States)

    Randall S. Morin; Gregory W. Cook; Charles J. Barnett; Brett J. Butler; Susan J. Crocker; Mark A. Hatfield; Cassandra M. Kurtz; Tonya W. Lister; William G. Luppold; William H. McWilliams; Patrick D. Miles; Mark D. Nelson; Charles H. (Hobie) Perry; Ronald J. Piva; James E. Smith; Jim Westfall; Richard H. Widmann; Christopher W. Woodall

    2016-01-01

    The annual inventory of West Virginia's forests, completed in 2013, covers nearly 12.2 million acres of forest land with an average volume of more than 2,300 cubic feet per acre. This report is based data collected from 2,808 plots located across the State. Forest land is dominated by the oak/hickory forest-type group, which occupies 74 percent of total forest...

  3. The West Heslerton Assessment

    Directory of Open Access Journals (Sweden)

    Dominic Powlesland

    1999-03-01

    Full Text Available The excavation of the Early Anglo-Saxon or Anglian Settlement at West Heslerton, North Yorkshire, between 1986 and 1995, represents one of the largest excavations conducted in Britain in the last two decades. The project, funded by English Heritage, combined the fundamental needs of rescue and research archaeology. The excavation has produced a wealth of new evidence which is forcing us to re-evaluate much that has been said about the formative period of the English nation.

  4. Nuclear fragmentation with secondary decay in the context of conventional percolation model

    International Nuclear Information System (INIS)

    Santiago, A.J.

    1989-09-01

    Mass and energy spectra arising from proton-nucleus collisions at energies between 80 and 350 GeV were studied, using the conventional percolation model coupled with secondary decay of the clusters. (L.C.J.A.)

  5. Proton irradiation and endometriosis

    International Nuclear Information System (INIS)

    Wood, D.H.; Yochmowitz, M.G.; Salmon, Y.L.; Eason, R.L.; Boster, R.A.

    1983-01-01

    Female rhesus monkeys given single total-body exposures of protons of varying energies developed endometriosis at a frequency significantly higher than that of nonirradiated animals of the same age. The minimum latency period was 7 years after exposure. The doses and energies of the radiation received were within the range that could be received by an aircrew member in near-earth orbit during a random solar flare event, leading to the conclusion that endometriosis should be a consideration in assessing the risk of delayed radiation effects in female crewmembers

  6. Proton nuclear scattering radiography

    International Nuclear Information System (INIS)

    Duchazeaubeneix, J.C.; Faivre, J.C.; Garreta, D.

    1982-10-01

    Nuclear scattering of protons allows to radiograph objects with specific properties: direct 3- dimensional radiography, different information as compared to X-ray technique, hydrogen radiography. Furthermore, it is a well adapted method to gating techniques allowing the radiography of fast periodic moving systems. Results obtained on different objects (light and heavy materials) are shown and discussed. The dose delivery is compatible with clinical use, but at the moment, the irradiation time is too long between 1 and 4 hours. Perspectives to make the radiography faster and to get a practical method are discussed

  7. Proton nuclear scattering radiography

    International Nuclear Information System (INIS)

    Saudinos, J.

    1982-04-01

    Nuclear scattering of protons allows to radiograph objects with specific properties: 3-dimensional radiography, different information as compared to X-ray technique, hydrogen radiography. Furthermore the nuclear scattering radiography (NSR) is a well adapted method to gating techniques allowing the radiography of fast periodic moving objects. Results obtained on phantoms, formalin fixed head and moving object are shown and discussed. The dose delivery is compatible with clinical use, but at the moment, the irradiation time is too long between 1 and 4 hours. Perspectives to make the radiograph faster and to get a practical method are discussed

  8. Proton relativistic model

    International Nuclear Information System (INIS)

    Araujo, Wilson Roberto Barbosa de

    1995-01-01

    In this dissertation, we present a model for the nucleon, which is composed by three relativistic quarks interacting through a contract force. The nucleon wave-function was obtained from the Faddeev equation in the null-plane. The covariance of the model under kinematical null-plane boots is discussed. The electric proton form-factor, calculated from the Faddeev wave-function, was in agreement with the data for low-momentum transfers and described qualitatively the asymptotic region for momentum transfers around 2 GeV. (author)

  9. Proton-proton bremsstrahlung towards the elastic limit

    Science.gov (United States)

    Mahjour-Shafiei, M.; Amir-Ahmadi, H. R.; Bacelar, J. C. S.; Castelijns, R.; Ermisch, K.; van Garderen, E.; Gašparić, I.; Harakeh, M. N.; Kalantar-Nayestanaki, N.; Kiš, M.; Löhner, H.

    2005-05-01

    In oder to study proton-proton bremsstrahlung moving towards the elastic limit, a detection system, consisting of Plastic-ball and SALAD, was set up and an experiment at 190 MeV incident beam energy was performed. Here, the experimental setup and the data analysis procedure along with some results obtained in the measurement are discussed.

  10. Proton-proton bremsstrahlung towards the elastic limit

    International Nuclear Information System (INIS)

    Mahjour-Shafiei, M.; Amir-Ahmadi, H.R.; Bacelar, J.C.S.; Castelijns, R.; Ermisch, K.; Garderen, E. van; Harakeh, M.N.; Kalantar-Nayestanaki, N.; Kis, M.; Loehner, H.; Gasparic, I.

    2005-01-01

    In oder to study proton-proton bremsstrahlung moving towards the elastic limit, a detection system, consisting of Plastic-ball and SALAD, was set up and an experiment at 190 MeV incident beam energy was performed. Here, the experimental setup and the data analysis procedure along with some results obtained in the measurement are discussed

  11. The FAIR proton linac

    International Nuclear Information System (INIS)

    Kester, O.

    2015-01-01

    FAIR - the Facility for Antiproton and Ion Research in Europe - constructed at GSI in Darmstadt comprises an international centre of heavy ion accelerators that will drive heavy ion and antimatter research. FAIR will provide worldwide unique accelerator and experimental facilities, allowing a large variety of fore-front research in physics and applied science. FAIR will deliver antiproton and ion beams of unprecedented intensities and qualities. The main part of the FAIR facility is a sophisticated accelerator system, which delivers beams to different experiments of the FAIR experimental collaborations - APPA, NuSTAR, CBM and PANDA - in parallel. Modern H-type cavities offer highest shunt impedances of resonant structures of heavy ion linacs at low beam energies < 20 MeV/u and enable the acceleration of intense proton and ion beams. One example is the interdigital H-type structure. The crossed-bar H-cavities extend these properties to high energies even beyond 100 MeV/u. Compared to conventional Alvarez cavities, these crossed-bar (CH) cavities feature much higher shunt impedance at low energies. The design of the proton linac is based on those cavities

  12. Berkeley Proton Linear Accelerator

    Science.gov (United States)

    Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.

    1953-10-13

    A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.

  13. Exposure parameters in proton beam writing for hydrogen silsesquioxane

    International Nuclear Information System (INIS)

    Kan, J.A. van; Zhang, F.; Zhang, C.; Bettiol, A.A.; Watt, F.

    2008-01-01

    In proton beam writing (PBW) a focused MeV proton beam is scanned in a predetermined pattern over a resist (e.g. PMMA, SU-8 or HSQ), which is subsequently chemically developed. In e-beam writing as well as p-beam writing the energy loss of the primary beam is dominated by energy transfer to substrate electrons. Unlike the high energy secondary electrons generated during e-beam writing the secondary electrons induced by the primary proton beam have low energy and therefore a limited range, resulting in minimal proximity effects. The low proximity effects exhibited by p-beam writing coupled with the straight trajectory and high penetration of the proton beam enables the production of high aspect ratio, high density 3D micro and nanostructures with well defined smooth side walls to be directly written into resist materials. This property together with the stability and focusing power of the end station ensures even exposures with nm smoothness and allows fabrication of details down to the 20 nm level. In this paper, we present results like contrast and sensitivity for PBW using, hydrogen silsesquioxane (HSQ) and XR-1541, both are non-C based resists. Unlike PMMA and SU-8 resist HSQ shows aging effects, requiring optimized processing parameters in PBW

  14. Ultrafast Melting of Carbon Induced by Intense Proton Beams

    International Nuclear Information System (INIS)

    Pelka, A.; Guenther, M. M.; Harres, K.; Otten, A.; Roth, M.; Gregori, G.; Gericke, D. O.; Vorberger, J.; Glenzer, S. H.; Kritcher, A. L.; Heathcote, R.; Li, B.; Neely, D.; Kugland, N. L.; Niemann, C.; Makita, M.; Riley, D.; Mithen, J.; Schaumann, G.; Schollmeier, M.

    2010-01-01

    Laser-produced proton beams have been used to achieve ultrafast volumetric heating of carbon samples at solid density. The isochoric melting of carbon was probed by a scattering of x rays from a secondary laser-produced plasma. From the scattering signal, we have deduced the fraction of the material that was melted by the inhomogeneous heating. The results are compared to different theoretical approaches for the equation of state which suggests modifications from standard models.

  15. Polarized Proton Collisions at RHIC

    CERN Document Server

    Bai, Mei; Alekseev, Igor G; Alessi, James; Beebe-Wang, Joanne; Blaskiewicz, Michael; Bravar, Alessandro; Brennan, Joseph M; Bruno, Donald; Bunce, Gerry; Butler, John J; Cameron, Peter; Connolly, Roger; De Long, Joseph; Drees, Angelika; Fischer, Wolfram; Ganetis, George; Gardner, Chris J; Glenn, Joseph; Hayes, Thomas; Hseuh Hsiao Chaun; Huang, Haixin; Ingrassia, Peter; Iriso, Ubaldo; Laster, Jonathan S; Lee, Roger C; Luccio, Alfredo U; Luo, Yun; MacKay, William W; Makdisi, Yousef; Marr, Gregory J; Marusic, Al; McIntyre, Gary; Michnoff, Robert; Montag, Christoph; Morris, John; Nicoletti, Tony; Oddo, Peter; Oerter, Brian; Osamu, Jinnouchi; Pilat, Fulvia Caterina; Ptitsyn, Vadim; Roser, Thomas; Satogata, Todd; Smith, Kevin T; Svirida, Dima; Tepikian, Steven; Tomas, Rogelio; Trbojevic, Dejan; Tsoupas, Nicholaos; Tuozzolo, Joseph; Vetter, Kurt; Wilinski, Michelle; Zaltsman, Alex; Zelenski, Anatoli; Zeno, Keith; Zhang, S Y

    2005-01-01

    The Relativistic Heavy Ion Collider~(RHIC) provides not only collisions of ions but also collisions of polarized protons. In a circular accelerator, the polarization of polarized proton beam can be partially or fully lost when a spin depolarizing resonance is encountered. To preserve the beam polarization during acceleration, two full Siberian snakes were employed in RHIC to avoid depolarizing resonances. In 2003, polarized proton beams were accelerated to 100~GeV and collided in RHIC. Beams were brought into collisions with longitudinal polarization at the experiments STAR and PHENIX by using spin rotators. RHIC polarized proton run experience demonstrates that optimizing polarization transmission efficiency and improving luminosity performance are significant challenges. Currently, the luminosity lifetime in RHIC is limited by the beam-beam effect. The current state of RHIC polarized proton program, including its dedicated physics run in 2005 and efforts to optimize luminosity production in beam-beam limite...

  16. Polarized proton collider at RHIC

    International Nuclear Information System (INIS)

    Alekseev, I.; Allgower, C.; Bai, M.; Batygin, Y.; Bozano, L.; Brown, K.; Bunce, G.; Cameron, P.; Courant, E.; Erin, S.; Escallier, J.; Fischer, W.; Gupta, R.; Hatanaka, K.; Huang, H.; Imai, K.; Ishihara, M.; Jain, A.; Lehrach, A.; Kanavets, V.; Katayama, T.; Kawaguchi, T.; Kelly, E.; Kurita, K.; Lee, S.Y.; Luccio, A.; MacKay, W.W.; Mahler, G.; Makdisi, Y.; Mariam, F.; McGahern, W.; Morgan, G.; Muratore, J.; Okamura, M.; Peggs, S.; Pilat, F.; Ptitsin, V.; Ratner, L.; Roser, T.; Saito, N.; Satoh, H.; Shatunov, Y.; Spinka, H.; Syphers, M.; Tepikian, S.; Tominaka, T.; Tsoupas, N.; Underwood, D.; Vasiliev, A.; Wanderer, P.; Willen, E.; Wu, H.; Yokosawa, A.; Zelenski, A.N.

    2003-01-01

    In addition to heavy ion collisions (RHIC Design Manual, Brookhaven National Laboratory), RHIC will also collide intense beams of polarized protons (I. Alekseev, et al., Design Manual Polarized Proton Collider at RHIC, Brookhaven National Laboratory, 1998, reaching transverse energies where the protons scatter as beams of polarized quarks and gluons. The study of high energy polarized protons beams has been a long term part of the program at BNL with the development of polarized beams in the Booster and AGS rings for fixed target experiments. We have extended this capability to the RHIC machine. In this paper we describe the design and methods for achieving collisions of both longitudinal and transverse polarized protons in RHIC at energies up to √s=500 GeV

  17. Protonic decay of oriented nuclei

    International Nuclear Information System (INIS)

    Kadmensky, S.G.

    2002-01-01

    On the basis of the multiparticle theory of protonic decay, the angular distributions of protons emitted by oriented spherical and deformed nuclei in the laboratory frame and in the internal coordinate frame of deformed parent nuclei are constructed with allowance for symmetry with respect to time inversion. It is shown that, because of the deep-subbarrier character of protonic decay, the adiabatic approximation is not applicable to describing the angular distributions of protons emitted by oriented deformed nuclei and that the angular distribution of protons in the laboratory frame does not coincide with that in the internal coordinate frame. It is demonstrated that these angular distributions coincide only if the adiabatic and the semiclassical approximation are simultaneously valid

  18. Protein proton-proton dynamics from amide proton spin flip rates

    International Nuclear Information System (INIS)

    Weaver, Daniel S.; Zuiderweg, Erik R. P.

    2009-01-01

    Residue-specific amide proton spin-flip rates K were measured for peptide-free and peptide-bound calmodulin. K approximates the sum of NOE build-up rates between the amide proton and all other protons. This work outlines the theory of multi-proton relaxation, cross relaxation and cross correlation, and how to approximate it with a simple model based on a variable number of equidistant protons. This model is used to extract the sums of K-rates from the experimental data. Error in K is estimated using bootstrap methodology. We define a parameter Q as the ratio of experimental K-rates to theoretical K-rates, where the theoretical K-rates are computed from atomic coordinates. Q is 1 in the case of no local motion, but decreases to values as low as 0.5 with increasing domination of sidechain protons of the same residue to the amide proton flips. This establishes Q as a monotonous measure of local dynamics of the proton network surrounding the amide protons. The method is applied to the study of proton dynamics in Ca 2+ -saturated calmodulin, both free in solution and bound to smMLCK peptide. The mean Q is 0.81 ± 0.02 for free calmodulin and 0.88 ± 0.02 for peptide-bound calmodulin. This novel methodology thus reveals the presence of significant interproton disorder in this protein, while the increase in Q indicates rigidification of the proton network upon peptide binding, confirming the known high entropic cost of this process

  19. West Europe Report

    Science.gov (United States)

    1987-04-28

    resume of his 5 years on the job. Jagmetti makes use of a revealing image in assessing his job. "Given the choice of attending a lecture on the global ...the Netherlands and in West Germany with Hawk and now also Patriot surface-to-air guided missiles. The Nike will be phased out within the...becomes obsolete, it should be modernized to fly for another 20-25 years. This kind of thing is very common in the navy, but it is a brand new idea

  20. West African Antislavery Movements

    DEFF Research Database (Denmark)

    Hahonou, Eric Komlavi; Pelckmans, Lotte

    2011-01-01

    In the context of liberalization of West African political regimes, the upsurge of audacious political entrepreneurs who want to end chattel slavery in their nation-state, resulted in the legal criminalisation of slavery in both Mauritania (2007) and Niger (2003) and in a proposal to revise......-slavery movements had raised awareness, this political emergence was even easier. Indeed the fight against ‘slave mentalities’ was everywhere a major challenge and a crucial step to mobilize groups of slave status under a united force. As this article argues changes in political structures and changes in political...

  1. Track structure model for damage to mammalian cell cultures during solar proton events

    Science.gov (United States)

    Cucinotta, F. A.; Wilson, J. W.; Townsend, L. W.; Shinn, J. L.; Katz, R.

    1992-01-01

    Solar proton events (SPEs) occur infrequently and unpredictably, thus representing a potential hazard to interplanetary space missions. Biological damage from SPEs will be produced principally through secondary electron production in tissue, including important contributions due to delta rays from nuclear reaction products. We review methods for estimating the biological effectiveness of SPEs using a high energy proton model and the parametric cellular track model. Results of the model are presented for several of the historically largest flares using typical levels and body shielding.

  2. Energy deposition around swift proton tracks in polymethylmethacrylate: How much and how far

    Science.gov (United States)

    Dapor, Maurizio; Abril, Isabel; de Vera, Pablo; Garcia-Molina, Rafael

    2017-08-01

    The use of proton beams in several modern technologies to probe or modify the properties of materials, such as proton beam lithography or ion beam cancer therapy, requires us to accurately know the extent to which the energy lost by the swift projectiles in the medium is redistributed radially around their tracks, since this determines several endpoints, such as the resolution of imaging or manufacturing techniques, or even the biological outcomes of radiotherapy. In this paper, the radial distribution of the energy deposited around swift-proton tracks in polymethylmethacrylate (PMMA) by the transport of secondary electrons is obtained by means of a detailed Monte Carlo simulation. The initial energy and angular distributions of the secondary electrons generated by proton impact, as well as the electronic cross sections for the ejection of these electrons, are reliably calculated in the framework of the dielectric formalism, where a realistic electronic excitation spectrum of PMMA is accounted for. The cascade of all secondary electrons generated in PMMA is simulated taking into account the main interactions that occur between these electrons and the condensed phase target. After analyzing the influence that several angular distributions of the electrons generated by the proton beam have on the resulting radial profiles of deposited energy, we conclude that the widely used Rudd and Kim formula should be replaced by the simpler isotropic angular distribution, which leads to radial energy distributions comparable to the ones obtained from more realistic angular distributions. By studying the dependence of the radial dose on the proton energy we recommend lower proton energies than previously published for reducing proximity effects around a proton track. The obtained results are of relevance for assessing the resolution limits of proton beam based imaging and manufacturing techniques.

  3. Proton femtoscopy at STAR

    International Nuclear Information System (INIS)

    Zbroszczyk, H.P.

    2011-01-01

    The analysis of two-particle femtoscopy provides a powerful tool to study the properties of matter created in heavy-ion collisions. Applied to identical and nonidentical hadron pairs, it makes the study of space-time evolution of the source in femtoscopic scale possible. Baryon femtoscopy allows extraction of the radii of produced sources which can be compared to those deduced from identical pion studies, providing additional information about source characteristics. In this paper we present the correlation functions obtained for protons and antiprotons for Au + Au collisions at √ s NN = 62.4 and 200 GeV. On the other hand, as STAR experiment participates in the Beam Energy Scan (BES) program, we present theoretical predictions of p - p , p-bar - p-bar and p - p-bar femtoscopic measurements, based on UrQMD simulation for √ s NN = 5-39 GeV

  4. Proton synchrotron accelerator theory

    International Nuclear Information System (INIS)

    Wilson, E.J.N.

    1977-01-01

    This is the text of a series of lectures given as part of the CERN Academic Training Programme and primarily intended for young engineers and technicians in preparation for the running-in of the 400 GeV Super Proton Synchrotron (SPS). Following the definition of basic quantities, the problems of betatron motion and the effect of momentum spread and orbital errors on the transverse motion of the beam are reviewed. Consideration is then given to multipole fields, chromaticity and non-linear resonances. After dealing with basic relations governing longitudinal beam dynamics, the space-charge, resistive-wall and other collective effects are treated, with reference to precautions in the SPS to prevent their occurrence. (Auth.)

  5. Proton decay: 1982

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1982-01-01

    Employing the current world average Λ/sub MS/ = 0.160 GeV as input, the minimal Georgi-Glashow SU(5) model predicts sin 2 theta/sub W/(m/sub W/) = 0.214, m/sub b//m/sub tau/ approx. = 2.8 and tau/sub p/ approx. = (0.4 approx. 12) x 10 29 yr. The first two predictions are in excellent agreement with experiment; but the implied proton lifetime is already somewhat below the present experimental bound. In this status report, uncertainties in tau/sub p/ are described and effects of appendages to the SU(5) model (such as new fermion generations, scalars, supersymmetry, etc.) are examined

  6. BROOKHAVEN: Proton goal reached

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    On March 30 the 35-year old Alternating Gradient Synchrotron (AGS) exceeded its updated design goal of 6 x 10 13 protons per pulse (ppp), by accelerating 6.3 x 10 13 ppp, a world record intensity. This goal was set 11 years ago and achieving it called for the construction of a new booster and the reconstruction of much of the AGS. The booster was completed in 1991, and reached its design intensity of 1.5 x 10 13 ppp in 1993. The AGS reconstruction was finished in 1994, and by July of that year the AGS claimed a new US record intensity for a proton synchrotron of 4 x 10 13 ppp, using four booster pulses. Reaching the design intensity was scheduled for 1995. In 1994, the AGS had seemed to be solidly limited to 4 x 10 13 ppp, but in 1995 the operations crew, working on their own in the quiet of the owl shift, steadily improved the intensity, regularly setting new records, much to the bemusement of the machine physicists. The physicists, however, did contribute. A second harmonic radiofrequency cavity in the booster increased the radiofrequency bucket area for capture, raising the booster intensity from 1.7 to 2.1 x 10 13 ppp. In the AGS, new radiofrequency power supplies raised the available voltage from 8 to 13 kV, greatly enhancing the beam loading capabilities of the system. A powerful new transverse damping system successfully controlled instabilities that otherwise would have destroyed the beam in less than a millisecond. Also in the AGS, 35th harmonic octupole resonances were found

  7. BROOKHAVEN: Proton goal reached

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1995-09-15

    On March 30 the 35-year old Alternating Gradient Synchrotron (AGS) exceeded its updated design goal of 6 x 10{sup 13} protons per pulse (ppp), by accelerating 6.3 x 10{sup 13} ppp, a world record intensity. This goal was set 11 years ago and achieving it called for the construction of a new booster and the reconstruction of much of the AGS. The booster was completed in 1991, and reached its design intensity of 1.5 x 10{sup 13} ppp in 1993. The AGS reconstruction was finished in 1994, and by July of that year the AGS claimed a new US record intensity for a proton synchrotron of 4 x 10{sup 13} ppp, using four booster pulses. Reaching the design intensity was scheduled for 1995. In 1994, the AGS had seemed to be solidly limited to 4 x 10{sup 13} ppp, but in 1995 the operations crew, working on their own in the quiet of the owl shift, steadily improved the intensity, regularly setting new records, much to the bemusement of the machine physicists. The physicists, however, did contribute. A second harmonic radiofrequency cavity in the booster increased the radiofrequency bucket area for capture, raising the booster intensity from 1.7 to 2.1 x 10{sup 13} ppp. In the AGS, new radiofrequency power supplies raised the available voltage from 8 to 13 kV, greatly enhancing the beam loading capabilities of the system. A powerful new transverse damping system successfully controlled instabilities that otherwise would have destroyed the beam in less than a millisecond. Also in the AGS, 35th harmonic octupole resonances were found.

  8. Carbon filament beam profile monitor for high energy proton-antiproton storage rings

    International Nuclear Information System (INIS)

    Evans, L.R.; Shafer, R.E.

    1979-01-01

    The measurement of the evolution of the transverse profile of the stored beams in high energy proton storage rings such as the p-anti p colliders at CERN and at FNAL is of considerable importance. In the present note, a simple monitor is discussed which will allow almost non-destructive measurement of the profile of each individual proton and antiproton bunch separately. It is based on the flying wire technique first used at CEA and more recently at the CPS. A fine carbon filament is passed quickly through the beam, acting as a target for secondary particle production. The flux of secondary particles is measured by two scintillator telescopes, one for protons and one for antiprotons, having an angular acceptance between 30 and 100 mrad. Measurements of secondary particle production performed at FNAL in this angular range show that a very respectable flux can be expected

  9. A system for monitoring the radiation effects of a proton linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Skorkin, V. M., E-mail: skorkin@inr.ru; Belyanski, K. L.; Skorkin, A. V. [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation)

    2016-12-15

    The system for real-time monitoring of radioactivity of a high-current proton linear accelerator detects secondary neutron emission from proton beam losses in transport channels and measures the activity of radionuclides in gas and aerosol emissions and the radiation background in the environment affected by a linear accelerator. The data provided by gamma, beta, and neutron detectors are transferred over a computer network to the central server. The system allows one to monitor proton beam losses, the activity of gas and aerosol emissions, and the radiation emission level of a linear accelerator in operation.

  10. Interactions of 400 GeV proton with Different target nuclei in emulsion

    International Nuclear Information System (INIS)

    El-Nadi, M.; Abdel-Halim, S.M.; Yasin, M.N.; El-Nagdy, M.S.

    1995-01-01

    The interaction characteristics of 400 GeV proton with emulsion nuclei were studied and discussed. The multiplicity distributions of secondary charged particles have been measured for 480 inelastic events and are compared with the results obtained in p-emulsion collisions at different energies. The integral distribution of the number of disintegrated particles from the target nuclei N h are used to separate the number of the inelastic interactions of proton with light (Cno) and heavy (Ag Br) nuclei in the emulsion. The interaction characteristics of proton (400 GeV) with different groups of target nuclei have been investigated

  11. Interactions of 400 GeV protons with different target nuclei in emulsion

    International Nuclear Information System (INIS)

    El-Nadi, M.; Abdel Halim, S.M.; Yasin, M.N.; El-Nagdy, M.S.

    1996-01-01

    The interaction characteristics of 400 GeV protons with emulsion nuclei were studied and discussed. The multiplicity distributions of secondary charged particles have been measured for 480 inelastic events and are compared with the results obtained in p-emulsion (P-Em) collisions at different energies. The integral distribution of the number of disintegrated particles from the target nuclei N h is used to separate the number of the inelastic interactions of proton with light (CNO) and heavy (AgBR) nuclei in the emulsion. The interaction characteristics of protons (400 GeV) with different groups of target nuclei have been investigated. (author)

  12. Ion-/proton-conducting apparatus and method

    Science.gov (United States)

    Yates, Matthew [Penfield, NY; Liu, Dongxia [Rochester, NY

    2011-05-17

    A c-axis-oriented HAP thin film synthesized by seeded growth on a palladium hydrogen membrane substrate. An exemplary synthetic process includes electrochemical seeding on the substrate, and secondary and tertiary hydrothermal treatments under conditions that favor growth along c-axes and a-axes in sequence. By adjusting corresponding synthetic conditions, an HAP this film can be grown to a controllable thickness with a dense coverage on the underlying substrate. The thin films have relatively high proton conductivity under hydrogen atmosphere and high temperature conditions. The c-axis oriented films may be integrated into fuel cells for application in the intermediate temperature range of 200-600.degree. C. The electrochemical-hydrothermal deposition technique may be applied to create other oriented crystal materials having optimized properties, useful for separations and catalysis as well as electronic and electrochemical applications, electrochemical membrane reactors, and in chemical sensors.

  13. Two proton decay in 12O

    International Nuclear Information System (INIS)

    Kumawat, M.; Singh, U.K.; Jain, S.K.; Saxena, G.; Kaushik, M.; Aggarwal, Mamta

    2017-01-01

    Two-proton radioactivity was observed experimentally in the decay of 45 Fe, 54 Zn and 48 Ni. From then many theoretical studies of one and two-proton radioactivity have been carried out within the framework of different models including RMF+BCS approach for medium mass region. Towards light mass region proton-proton correlations were observed in two-proton decay of 19 Mg and 16 Ne. Recently, different mechanism of two-proton emission from proton-rich nuclei 23 Al and 22 Mg has been investigated and transition from direct to sequential two-proton decay in sd shell nuclei is observed. Encouraged with these recent studies of two proton emission in light mass nuclei, we have applied our RMF+BCS approach for the study of two proton emission in light mass region and in this paper we present our result of two proton emission in 12 O

  14. PMMA/MWCNT nanocomposite for proton radiation shielding applications

    Science.gov (United States)

    Li, Zhenhao; Chen, Siyuan; Nambiar, Shruti; Sun, Yonghai; Zhang, Mingyu; Zheng, Wanping; Yeow, John T. W.

    2016-06-01

    Radiation shielding in space missions is critical in order to protect astronauts, spacecraft and payloads from radiation damage. Low atomic-number materials are efficient in shielding particle-radiation, but they have relatively weak material properties compared to alloys that are widely used in space applications as structural materials. However, the issues related to weight and the secondary radiation generation make alloys not suitable for space radiation shielding. Polymers, on the other hand, can be filled with different filler materials for reinforcement of material properties, while at the same time provide sufficient radiation shielding function with lower weight and less secondary radiation generation. In this study, poly(methyl-methacrylate)/multi-walled carbon nanotube (PMMA/MWCNT) nanocomposite was fabricated. The role of MWCNTs embedded in PMMA matrix, in terms of radiation shielding effectiveness, was experimentally evaluated by comparing the proton transmission properties and secondary neutron generation of the PMMA/MWCNT nanocomposite with pure PMMA and aluminum. The results showed that the addition of MWCNTs in PMMA matrix can further reduce the secondary neutron generation of the pure polymer, while no obvious change was found in the proton transmission property. On the other hand, both the pure PMMA and the nanocomposite were 18%-19% lighter in weight than aluminum for stopping the protons with the same energy and generated up to 5% fewer secondary neutrons. Furthermore, the use of MWCNTs showed enhanced thermal stability over the pure polymer, and thus the overall reinforcement effects make MWCNT an effective filler material for applications in the space industry.

  15. The underlying event in proton-proton collisions

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel, F.

    2009-05-15

    In this thesis, studies of the underlying event in proton-proton collisions at a center-of-mass energy of {radical}(s) = 10 TeV are presented. Crucial ingredient to underlying event models are multiple parton-parton scatters in single proton-proton collisions. The feasibility of measuring the underlying event was investigated with the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) using charged particles and charged-particle jets. Systematic uncertainties of the underlying event measurement due to detector misalignment and imperfect track reconstruction are found to be negligible after {integral}Ldt=1 pb{sup -1} of data are available. Different model predictions are compared with each other using fully simulated Monte Carlo samples. It is found, that distinct models differ strongly enough to tell them apart with early data. (orig.)

  16. Proton-proton elastic scattering measurements at COSY

    Energy Technology Data Exchange (ETDEWEB)

    Bagdasarian, Zara [Forschungszentrum Juelich, Juelich (Germany); Tbilisi State University, Tbilisi (Georgia); Collaboration: ANKE-Collaboration

    2014-07-01

    To construct the reliable phase shift analysis (PSA) that can successfully describe the nucleon-nucleon (NN) interaction it is necessary to measure variety of experimental observables for both proton-proton (pp) and neutron-proton (np) elastic scattering. The polarized beams and targets at COSY-ANKE facility allow a substantial contribution to the existing database. The experiment was carried out in April 2013 at ANKE using a transversely polarized proton beam incident on an unpolarized hydrogen cluster target. Six beam energies of T{sub p}=0.8,1.6,1.8,2.0,2.2,2.4 GeV were used. The aim of this talk is to present the preliminary results for the analyzing power (A{sub y}) for the pp elastic scattering in the so-far unexplored 5 <θ{sub cm}<30 angular range. Our measurements are also compared to the world data and current partial wave solutions.

  17. Where is the proton's spin?

    International Nuclear Information System (INIS)

    Close, F.E.

    1988-01-01

    There has been much recent excitement arising from the claim by the EMC collaboration that none of the proton's spin is carried by quarks. There are many textbooks, including those written by some members of this audience, which assert that the proton's spin is carried by quarks. I will review the history of deep inelastic scattering of polarized leptons from polarized protons, culminating in this most recent dramatic claim. I will show that, for the last decade, data have appeared consistent with predictions of the quark model and highlight what the new and potentially exciting data are. I will conclude with suggestions for the future. 33 refs

  18. Acceleration of polarized proton beams

    International Nuclear Information System (INIS)

    Roser, T.

    1998-01-01

    The acceleration of polarized beams in circular accelerators is complicated by the numerous depolarizing spin resonances. Using a partial Siberian snake and a rf dipole that ensure stable adiabatic spin motion during acceleration has made it possible to accelerate polarized protons to 25 GeV at the Brookhaven AGS. Full Siberian snakes are being developed for RHIC to make the acceleration of polarized protons to 250 GeV possible. A similar scheme is being studied for the 800 GeV HERA proton accelerator

  19. Where is the proton's spin?

    International Nuclear Information System (INIS)

    Close, F.E.

    1989-01-01

    There has been much recent excitement arising from the claim by the EMC collaboration that none of the proton's spin is carried by quarks. There are many textbooks, including those written by some members of this audience, which assert that the proton's spin is carried by quarks. I will review the history of deep inelastic scattering of polarized leptons from polarized protons, culminating in this most recent dramatic claim. I will show that, for the last decade, data have appeared consistent with predictions of the quark model and highlight what the new and potentially exciting data are. I will conclude with suggestions for the future

  20. Measurement of proton autoneutralization potential

    International Nuclear Information System (INIS)

    Garcia, M.

    1984-09-01

    A proton space charge having multi-MeV kinetic energy was injected through a thin ground plane to extract electrons and produce a time-dependent autoneutralization space potential. An electon-emitting floating-potential resistive divider was used to measure the space potential during 20 ns of the proton current pulse. During this time, proton kinetic energy fell from 10.6 MeV to 8.5 MeV and thus the space potential (taken as 1.09 x the floating potential) fell from 5.8 kV to 4.6 kV

  1. Scattering of intermediate energy protons

    International Nuclear Information System (INIS)

    Chaumeaux, Alain.

    1980-06-01

    The scattering of 1 GeV protons appears to be a powerful means of investigating nuclear matter. We worked with SPESI and the formalism of Kerman-Mc Manus and Thaler. The amplitude of nucleon-nucleon scattering was studied as were the aspects of 1 GeV proton scattering (multiple scattering, absorption, spin-orbit coupling, N-N amplitude, KMT-Glauber comparison, second order effects). The results of proton scattering on 16 O, the isotopes of calcium, 58 Ni, 90 Zr and 208 Pb are given [fr

  2. Aspects of the fundamental theory of proton-proton scattering

    CERN Document Server

    Martin, A

    1973-01-01

    After recalling the existence of a high energy bound on proton-proton total cross-sections, the author discusses the various phenomena which occur when these cross-sections rise and especially when they have the qualitative behaviour of the bound: rising elastic cross- sections, shrinking diffraction peak, validity of the Pomeranchuk theorem for total and elastic cross-sections, existence of a positive real part of the forward amplitude at high energies. (16 refs).

  3. Proton-proton elastic scattering at ultrahigh energies

    International Nuclear Information System (INIS)

    Saleem, M.; Shaukat, M.A.; Fazal-e-Aleem

    1981-01-01

    Recent experimental results on proton-proton elastic scattering at high energies are discussed in the context of the comments by Chou and Yang. There does not appear to be any tendency that the experimental results would agree with the predictions of the geometrical model even at ultrahigh energies. The angular distribution structure as described by using the dipole pomeron is consistent with the experimental data at presently available high energies and predicts results quite different from the geometrical model. (author)

  4. Proton-proton elastic scattering at ultrahigh energies

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, M.; Shaukat, M.A.; Fazal-e-Aleem (University of the Punjab, Lahore (Pakistan). Dept. of Physics)

    1981-05-30

    Recent experimental results on proton-proton elastic scattering at high energies are discussed in the context of the comments by Chou and Yang. There does not appear to be any tendency that the experimental results would agree with the predictions of the geometrical model even at ultrahigh energies. The angular distribution structure as described by using the dipole pomeron is consistent with the experimental data at presently available high energies and predicts results quite different from the geometrical model.

  5. A critical study of emittance measurements of intense low-energy proton beams

    CERN Document Server

    Evans, Lyndon R

    1972-01-01

    The measurement of emittance in low energy proton beams suffers from two perturbing effects: 1) the neutralisation of the beam by backstreaming secondary electrons and 2) the space charge blowup of the beam sample between defining and analysing apparatus. An experimental study shows a significant change of the emittance orientation when bias is used to eliminate the secondary electrons. Biased and non-biased cases are also compared with computed dynamics including space charge. Criteria for the slit size and drift distance which make the space charge blow-up negligible are derived. In addition a transverse coherent oscillation of the proton beam, which was revealed the measurements, is discussed briefly. (11 refs).

  6. Geothermal investigations in West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Hendry, R.; Hilfiker, K.; Hodge, D.; Morgan, P.; Swanberg, C.; Shannon, S.S. Jr.

    1982-11-01

    Deep sedimentary basins and warm-spring systems in West Virginia are potential geothermal resources. A temperature gradient map based on 800 bottom-hole temperatures for West Virginia shows that variations of temperature gradient trend northeasterly, parallel to regional structure. Highest temperature gradient values of about 28/sup 0/C/km occur in east-central West Virginia, and the lowest gradients (18/sup 0/C/km) are found over the Rome Trough. Results from ground-water geochemistry indicate that the warm waters circulate in very shallow aquifers and are subject to seasonal temperature fluctuations. Silica heat-flow data in West Virginia vary from about 0.89 to 1.4 HFU and generally increase towards the west. Bouguer, magnetic, and temperature gradient profiles suggest that an ancient rift transects the state and is the site of several deep sedimentary basins.

  7. Ebola in West Africa.

    Science.gov (United States)

    Raka, Lul; Guardo, Monica

    2015-03-15

    Ebola viral disease (EVD) is a severe and life-threatening disease. The current Ebola outbreak in West Africa entered its second year and is unprecedented because it is the largest one in history, involved urban centers and affected a large number of health care workers. It quickly escalated from medical into a humanitarian, social, economic, and security crisis. The primary pillars to prevent EVD are: early diagnosis, isolation of patients, contact tracing and monitoring, safe burials, infection prevention and control and social mobilization. The implementation of all these components was challenged in the field. Key lessons from this Ebola outbreak are that countries with weak health care systems can't withstand the major outbreaks; preparedness to treat the first confirmed cases is a national emergency; all control measures must be coordinated together and community engagement is the great factor to combat this disease.

  8. Ebola in West Africa

    Directory of Open Access Journals (Sweden)

    Lul Raka

    2015-02-01

    Full Text Available Ebola viral disease (EVD is a severe and life-threatening disease. The current Ebola outbreak in West Africa entered its second year and is unprecedented because it is the largest one in history, involved urban centers and affected a large number of health care workers. It quickly escalated from medical into a humanitarian, social, economic, and security crisis. The primary pillars to prevent EVD are: early diagnosis, isolation of patients, contact tracing and monitoring, safe burials, infection prevention and control and social mobilization. The implementation of all these components was challenged in the field. Key lessons from this Ebola outbreak are that countries with weak health care systems can’t withstand the major outbreaks; preparedness to treat the first confirmed cases is a national emergency; all control measures must be coordinated together and community engagement is the great factor to combat this disease.

  9. West Germany's nuclear dilemma

    International Nuclear Information System (INIS)

    Dangelmayer, D.

    1978-01-01

    The US 1978 Nuclear Non-Proliferation Act legislated the embargo of enriched uranium supplies from that country to any other country which would not agree to tighter restrictions on a wide variety of their nuclear activities, including the reprocessing of spent uranium to provide separated plutonium. This has resulted in a three month supply cut-off to the EEC countries. However the EEC is now willing to renegotiate supply contracts with the US to accord with the tighter safeguards set down in the Act. Effectively both sides now have an 18 month breathing space for them to seek a compromise on the non-proliferation question. The effect of these strategies on West Germany's energy policy, which seeks to become increasingly energy self-sufficient through the use of nuclear fuel reprocessing and the fast reactor, is discussed. (U.K.)

  10. Proton radiotherapy: some perspectives

    International Nuclear Information System (INIS)

    Kirn, T.F.

    1988-01-01

    A news article highlighting the use of protons in radiotherapy is presented. Development of stereotaxic radiosurgery is the result of contributions from physicists, radiologists, and neurosurgeons, says Jacob Fabrikant, MD, head of the Arteriovenous Malformation Program at the University of California's Lawrence Berkeley laboratory. It also appears to have been the product of Harvard University (Boston) and University of California (Berkeley) cooperation. Robert R. Wilson, PhD, now a professor emeritus at Cornell University, Ithaca, NY, is credited with proposing the medical use of charged particles. Wilson, a physicist, says that the idea occurred to him while he was at Berkeley in the mid-1940's, designing the cyclotron to be built at Harvard. Although he was aware of their work, he does not remember discussing it with Robert Stone, MD, or John Lawrence, MD, who only a few years earlier at Berkeley had begun the initial medical experiments with neutrons. Wilson says that it simply occurred to him that in certain instances charged particles had two advantages over x-rays

  11. Polarized protons at RHIC

    International Nuclear Information System (INIS)

    Tannenbaum, M.J.

    1990-12-01

    The Physics case is presented for the use of polarized protons at RHIC for one or two months each year. This would provide a facility with polarizations of approx-gt 50% high luminosity ∼2.0 x 10 32 cm -2 s -1 , the possibility of both longitudinal and transverse polarization at the interaction regions, and frequent polarization reversal for control of systematic errors. The annual integrated luminosity for such running (∼10 6 sec per year) would be ∫ Ldt = 2 x 10 38 cm -2 -- roughly 20 times the total luminosity integrated in ∼ 10 years of operation of the CERN Collider (∼10 inverse picobarns, 10 37 cm -2 ). This facility would be unique in the ability to perform parity-violating measurements and polarization test of QCD. Also, the existence of p-p collisions in a new energy range would permit the study of ''classical'' reactions like the total cross section and elastic scattering, etc., and serve as a complement to measurements from p-bar p colliders. 11 refs

  12. Proton-proton and deuteron-deuteron correlations in interactions of relativistic helium nuclei with protons

    International Nuclear Information System (INIS)

    Galazka-Friedman, J.; Sobczak, T.; Stepaniak, J.; Zielinski, I.P.; Bano, M.; Hlavacova, J.; Martinska, G.; Patocka, J.; Seman, M.; Sandor, L.; Urban, J.

    1993-01-01

    The reactions 4 Hep→pp+X, 3 Hep→pp+X and 4 Hep→ddp have been investigated and the correlation function has been measured for protons and deuterons with small relative momenta. Strong positive correlation has been observed for protons related mainly to the final state interactions in 1 S 0 state. The root mean square radius of the proton source calculated from the correlation function has been found to be equal to (1.7±0.3) fm and (2.1±0.3) fm for 4 He and 3 He respectively. It agrees with the known radii of these nuclei. (orig.)

  13. Dynamics of Anti-Proton -- Protons and Anti-Proton -- Nucleus Reactions

    CERN Document Server

    Galoyan, A; Uzhinsky, V

    2016-01-01

    A short review of simulation results of anti-proton-proton and anti-proton-nucleus interactions within the framework of Geant4 FTF (Fritiof) model is presented. The model uses the main assumptions of the Quark-Gluon-String Model or Dual Parton Model. The model assumes production and fragmentation of quark-anti-quark and diquark-anti-diquark strings in the mentioned interactions. Key ingredients of the model are cross sections of string creation processes and an usage of the LUND string fragmentation algorithm. They allow one to satisfactory describe a large set of experimental data, especially, a strange particle production, Lambda hyperons and K mesons.

  14. A review of dosimetric and toxicity modeling of proton versus photon craniospinal irradiation for pediatrics medulloblastoma.

    Science.gov (United States)

    Ho, Evangeline S Q; Barrett, Sarah A; Mullaney, Laura M

    2017-08-01

    Craniospinal irradiation (CSI) is the standard radiation therapy treatment for medulloblastoma. Conventional CSI photon therapy (Photon-CSI) delivers significant dose to surrounding normal tissue (NT). Research into pediatric CSI with proton therapy (Proton-CSI) has increased, with the aim of exploiting the potential to reduce NT dose and associated post-treatment complications. This review aims to compare treatment outcomes of pediatric medulloblastoma patients between Proton- and Photon-CSI treatments. A search and review of studies published between 1990 and 2016 comparing pediatric (2-18 years) medulloblastoma Proton- and Photon-CSI in three aspects - normal organ sparing and target coverage; normal organ dysfunction and second malignancy risks - was completed. Fifteen studies were selected for review and the results were directly compared. Proton-CSI reported improved out-of-field organ sparing while target coverage improvements were inconsistent. Normal organ dysfunction risks were predicted to be lower following Proton-CSI. Secondary malignancy risks (SMRs) were generally lower with Proton-CSI based on several different risk models. Proton-CSI conferred better treatment outcomes than Photon-CSI for pediatric medulloblastoma patients. This review serves to compare the current literature in the absence of long-term data from prospective studies.

  15. School climate as correlate of bullying behaviour among secondary ...

    African Journals Online (AJOL)

    Bullying is the most common form of violence in schools. The current study examined the relationship between school climate and bullying behaviour among secondary school students in Yagba West, Kogi State, Nigeria. The research design employed for this study was a descriptive research method of the correlational ...

  16. Secondary sexual characteristics of stunted and non-stunted black ...

    African Journals Online (AJOL)

    It is known that sexual maturation is dependent on genetic and environmental factors and socio-economic status. The purpose of this study was to describe secondary sexual characteristics of stunted and non-stunted black South African boys from a low socio-economic status living in a township in the North West Province.

  17. Proton beam monitor chamber calibration

    International Nuclear Information System (INIS)

    Gomà, C; Meer, D; Safai, S; Lorentini, S

    2014-01-01

    The first goal of this paper is to clarify the reference conditions for the reference dosimetry of clinical proton beams. A clear distinction is made between proton beam delivery systems which should be calibrated with a spread-out Bragg peak field and those that should be calibrated with a (pseudo-)monoenergetic proton beam. For the latter, this paper also compares two independent dosimetry techniques to calibrate the beam monitor chambers: absolute dosimetry (of the number of protons exiting the nozzle) with a Faraday cup and reference dosimetry (i.e. determination of the absorbed dose to water under IAEA TRS-398 reference conditions) with an ionization chamber. To compare the two techniques, Monte Carlo simulations were performed to convert dose-to-water to proton fluence. A good agreement was found between the Faraday cup technique and the reference dosimetry with a plane-parallel ionization chamber. The differences—of the order of 3%—were found to be within the uncertainty of the comparison. For cylindrical ionization chambers, however, the agreement was only possible when positioning the effective point of measurement of the chamber at the reference measurement depth—i.e. not complying with IAEA TRS-398 recommendations. In conclusion, for cylindrical ionization chambers, IAEA TRS-398 reference conditions for monoenergetic proton beams led to a systematic error in the determination of the absorbed dose to water, especially relevant for low-energy proton beams. To overcome this problem, the effective point of measurement of cylindrical ionization chambers should be taken into account when positioning the reference point of the chamber. Within the current IAEA TRS-398 recommendations, it seems advisable to use plane-parallel ionization chambers—rather than cylindrical chambers—for the reference dosimetry of pseudo-monoenergetic proton beams. (paper)

  18. On the proton radius problem

    OpenAIRE

    Giannini, M. M.; Santopinto, E.

    2013-01-01

    The recent values of the proton charge radius obtained by means of muonic-hydrogen laser spectroscopy are about $4\\%$ different from the electron scattering data. It has been suggested that the proton radius is actually measured in different frames and that, starting from a non relativistic quark model calculation, the Lorentz transformation of the form factors accounts properly for the discepancy. We shall show that the relation between the charge radii measured in different frames can be de...

  19. Resist materials for proton beam writing: A review

    Energy Technology Data Exchange (ETDEWEB)

    Kan, J.A. van, E-mail: phyjavk@nus.edu.sg [Centre for Ion Beam Applications, Physics Department, 2 Science Drive 3, National University of Singapore, 117542 Singapore (Singapore); Malar, P. [Research Institute, SRM University, Kattankulathur, Chennai 603203 (India); Wang, Y.H. [Centre for Ion Beam Applications, Physics Department, 2 Science Drive 3, National University of Singapore, 117542 Singapore (Singapore)

    2014-08-15

    Highlights: • PBW can now achieve 19 nm details in HSQ and 65 nm in PMMA. • A complete table of resist materials for PBW has been presented, including minimum feature size, achievable aspect ratio, suitability for electroplating and where available contrast of the resist. • PBW fabricated molds can now be used for single DNA molecule detection, single DNA manipulation and large scale Genome mapping. - Abstract: Proton beam writing (PBW) is a lithographic technique that has been developed since the mid 1990s, initially in Singapore followed by several groups around the world. MeV protons while penetrating materials will maintain a practically straight path. During the continued slowing down of a proton in material it will mainly interact with substrate electrons and transfer a small amount of energy to each electron, the induced secondary electrons will modify the molecular structure of resist within a few nanometers around the proton track. The recent demonstration of high aspect ratio sub 20 nm lithography in HSQ shows the potential of PBW. To explore the full capabilities of PBW, the understanding of the interaction of fast protons with different resist materials is important. Here we give an update of the growing number of resist materials that have been evaluated for PBW. In particular we evaluate the exposure and development strategies for the most promising resist materials like PMMA, HSQ, SU-8 and AR-P and compare their characteristics with respect to properties such as contrast and sensitivity. Besides an updated literature survey we also present new findings on AR-P and PMGI resists. Since PBW is a direct write technology it is important to look for fast ways to replicate micro and nanostructures. In this respect we will discuss the suitability and performance of several resists for Ni electroplating for mold fabrication in nano imprint technologies. We will summarize with an overview of proton resist characteristics like sensitivity, contrast

  20. Resist materials for proton beam writing: A review

    International Nuclear Information System (INIS)

    Kan, J.A. van; Malar, P.; Wang, Y.H.

    2014-01-01

    Highlights: • PBW can now achieve 19 nm details in HSQ and 65 nm in PMMA. • A complete table of resist materials for PBW has been presented, including minimum feature size, achievable aspect ratio, suitability for electroplating and where available contrast of the resist. • PBW fabricated molds can now be used for single DNA molecule detection, single DNA manipulation and large scale Genome mapping. - Abstract: Proton beam writing (PBW) is a lithographic technique that has been developed since the mid 1990s, initially in Singapore followed by several groups around the world. MeV protons while penetrating materials will maintain a practically straight path. During the continued slowing down of a proton in material it will mainly interact with substrate electrons and transfer a small amount of energy to each electron, the induced secondary electrons will modify the molecular structure of resist within a few nanometers around the proton track. The recent demonstration of high aspect ratio sub 20 nm lithography in HSQ shows the potential of PBW. To explore the full capabilities of PBW, the understanding of the interaction of fast protons with different resist materials is important. Here we give an update of the growing number of resist materials that have been evaluated for PBW. In particular we evaluate the exposure and development strategies for the most promising resist materials like PMMA, HSQ, SU-8 and AR-P and compare their characteristics with respect to properties such as contrast and sensitivity. Besides an updated literature survey we also present new findings on AR-P and PMGI resists. Since PBW is a direct write technology it is important to look for fast ways to replicate micro and nanostructures. In this respect we will discuss the suitability and performance of several resists for Ni electroplating for mold fabrication in nano imprint technologies. We will summarize with an overview of proton resist characteristics like sensitivity, contrast

  1. Proton therapy project at PSI

    International Nuclear Information System (INIS)

    Nakagawa, K.; Akanuma, A.; Karasawa, K.

    1990-01-01

    Particle radiation which might present steeper dose distribution has received much attention as the third particle facility at the Paul Scherrer Institute (PSI), Switzerland. Proton conformation with sharp fall-off is considered to be the radiation beam suitable for confining high doses to a target volume without complications and for verifying which factor out of high RBE or physical dose distribution is more essential for local control in malignant tumors. This paper discusses the current status of the spot scanning method, which allows three dimensional conformation radiotherapy, and preliminary results. Preliminary dose distribution with proton conformation technique was acquired by modifying a computer program for treatment planning in pion treatment. In a patient with prostate carcinoma receiving both proton and pion radiation therapy, proton conformation was found to confine high doses to the target area and spare both the bladder and rectum well; and pion therapy was found to deliver non-homogeneous radiation to these organs. Although there are some obstacles in the proton project at PSI, experimental investigations are encouraging. The dynamic spot scanning method with combination of the kicker magnet, wobbler magnet, range shifter, patient transporter, and position sensitive monitor provides highly confined dose distribution, making it possible to increase total doses and thus to improve local control rate. Proton confirmation is considered to be useful for verifying possible biological effectiveness of negative pion treatment of PSI as well. (N.K.)

  2. When the proton becomes larger

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    The TOTEM experiment at the LHC has just confirmed that, at high energy, protons behave as if they were becoming larger. In more technical terms, their total cross-section – a parameter linked to the proton-proton interaction probability – increases with energy. This phenomenon, expected from previous measurements performed at much lower energy, has now been confirmed for the first time at the LHC’s unprecedented energy.   One arm of a TOTEM T2 detector during its installation at interaction point 5. A composite particle like the proton is a complex system that in no way resembles a static Lego construction: sub-components move inside and interactions keep the whole thing together, but in a very dynamic way. This partly explains why even the very common proton can still be hiding secrets about its nature, decades after its discovery. One way of studying the inner properties of protons is to observe how they interact with each other, which, in technical terms, i...

  3. Raw material studies of West Central Serbia

    Directory of Open Access Journals (Sweden)

    Vera Bogosavljević Petrović

    2014-03-01

    Full Text Available This paper deals with raw material problems in the territory of West Central Serbia geologically determined as the Čačak-Kraljevo (or West Morava basin. Our research is presented through the most striking case studies, Lojanik, Vlaška Glava and Lazac.  The Lojanik hill is a silicified forest by origin. It has occasionally been in use from the earliest periods of prehistory until today as a source of black and ochre-coloured flint, opal and silicified wood. A detailed prospection, including the mapping of surface finds using square nets, was conducted during two research campaigns.The Vlaška Glava is an open-air Palaeolithic site at which artefacts made of white, ochre, red, brown and black chert, silicified magnesite, volcanic and metamorphic rocks were found. Our research of primary and secondary geological deposits in the vicinity of the site showed equivalent raw material. We also found an interesting primary deposit of high quality bluish grey flint with outcrop activities (Workshop 1.The Lazac shaft is a contemporary magnesite mine, recently abandoned because of the high percentage of silicon-dioxide. We determined the same raw material in collections found at nearby Neolithic sites. Certain similarities between the wooden support systems of ore exploration in the Middle Ages and modern times were established at the entrance of the shaft.Our research in the territory of the West Morava basin resulted in reconstruction of some links between geological deposits and settlements and also creation of a relevant base for future raw material studies.

  4. Alien smuggling: East to West.

    Science.gov (United States)

    Walsh, J H

    1987-01-01

    This year untold millions of illegal aliens will enter Western Europe, Canada, and the US; in 1986, the US alone made 1.7 million apprehensions. Because of the numbers involved and the hard currency exchanged, alien smuggling has become big business--a lucrative track in desparate human beings. West Germany's open door asylum policy has been a boon to the smugglers, and West Berlin is currently a favored port of entry. The government provides social benefits--apartments, food, a stipend, and clothing--for asylum seekers. Smuggling operations appear to fit 3 categories: 1) state-sponsored alien smugglers, with a sub-category of terrorists; 2) ethnic smugglers with a history of terrorist spinoffs; and 3) independent smugglers, who are profit oriented, and willing to handle ethnic aliens and terrorists. In West Germany, immigration investigations begin at the border. West German officials often know that as they cause the Eastern border to be tightened, the flow will gravitate south toward Austria. Redirecting the trasit of Third Worlders from East Berlin away from West Germany, Sweden, and Denmark will be a stop-gap measure at best. Part of West Germany's immigration problem can be traced to the Basic Law that provides asylum for those who claim persecution (political, racial, ethnic, or religious). Yet, any attempt to change asylum would result in an admission of defeat in the quest for a unified Germany. Should Austria move to tighten its immigration laws, agreements similar to those between East and West Germany will likely follow.

  5. Effects of trapped proton flux anisotropy on dose rates in low Earth orbit

    International Nuclear Information System (INIS)

    Badhwar, G.D.; Kushin, V.V.; Akatov, Yu A.; Myltseva, V.A.

    1999-01-01

    Trapped protons in the South Atlantic Anomaly (SAA) have a rather narrow pitch angle distribution and exhibit east-west anisotropy. In low Earth orbits, the E-W effect results in different amounts of radiation dose received by different sections of the spacecraft. This effect is best studied on missions in which the spacecraft flies in a fixed orientation. The magnitude of the effect depends on the particle energy and altitude through the SAA. In this paper, we describe a clear example of this effect from measurements of radiation dose rates and linear energy transfer spectra made on Space Shuttle flight STS-94 (28.5 deg. inclination x 296 km altitude). The ratio of dose rates from the two directions at this location in the mid-deck was 2.7. As expected from model calculations, the spectra from the two directions are different, that is the ratio is energy dependent. The data can be used to distinguish the anisotropy models. The flight carried an active tissue equivalent proportional counter (TEPC), and passive thermoluminscent detectors (TLDs), and two types of nuclear emulsions. Using nuclear emulsions, charged particles and secondary neutron energy spectra were measured. The combined galactic cosmic radiation+trapped charged particle lineal energy spectra measured by the TEPC and the linear energy transfer spectrum measured by nuclear emulsions are in good agreement. The charged particle absorbed dose rates varied from 112 to 175 μGy/day, and dose equivalent rates from 264.3 to 413 μSv/day. Neutrons in the 1-10 MeV contributed a dose rate of 3.7 μGy/day and dose equivalent rate of 30.8 μSv/day, respectively

  6. Effects of trapped proton flux anisotropy on dose rates in low Earth orbit.

    Science.gov (United States)

    Badhwar, G D; Kushin, V V; Akatov YuA; Myltseva, V A

    1999-06-01

    Trapped protons in the South Atlantic Anomaly (SAA) have a rather narrow pitch angle distribution and exhibit east-west anisotropy. In low Earth orbits, the E-W effect results in different amounts of radiation dose received by different sections of the spacecraft. This effect is best studied on missions in which the spacecraft flies in a fixed orientation. The magnitude of the effect depends on the particle energy and altitude through the SAA. In this paper, we describe a clear example of this effect from measurements of radiation dose rates and linear energy transfer spectra made on Space Shuttle flight STS-94 (28.5 degree inclination x 296 km altitude). The ratio of dose rates from the two directions at this location in the mid-deck was 2.7. As expected from model calculations, the spectra from the two directions are different, that is the ratio is energy dependent. The data can be used to distinguish the anisotropy models. The flight carried an active tissue equivalent proportional counter (TEPC), and passive thermoluminscent detectors (TLDs), and two types of nuclear emulsions. Using nuclear emulsions, charged particles and secondary neutron energy spectra were measured. The combined galactic cosmic radiation+trapped charged particle lineal energy spectra measured by the TEPC and the linear energy transfer spectrum measured by nuclear emulsions are in good agreement. The charged particle absorbed dose rates varied from 112 to 175 microGy/day, and dose equivalent rates from 264.3 to 413 microSv/day. Neutrons in the 1-10 MeV contributed a dose rate of 3.7 microGy/day and dose equivalent rate of 30.8 microSv/day, respectively.

  7. Two-proton correlation functions in nuclear reactions

    International Nuclear Information System (INIS)

    Verde, G.

    2001-01-01

    Full text: Proton-proton correlation functions can be used to study the space-time characteristics of nuclear reactions. For very short-lived sources, the maximum value of the correlation at 20 MeV/c, due to the attractive nature of the S-wave phase shift, provides a unique measure of the size of the emitting source. For long-lived sources, the height of this maximum depends, in addition, on the life time of the source. In this talk, we investigate the common reaction scenario involving both fast dynamical as well as slower emissions from evaporation and/or secondary decays of heavy fragments. We show that the maximum at 20 MeV/c depends both on the source dimension and on the fraction of coincident proton pairs produced in the early stage of the reaction, dominated by fast dynamical preequilibrium emission. The width of the peak at 20 MeV/c, on the other hand, is uniquely correlated to the size of the source. Hence, the size of the emitting source must be extracted from the width or, even better, from the entire shape of the correlation peak, and not from the height. By numerically inverting the measured correlation function, we show that existing data determine only the shape of the fast dynamical source and that its size changes little with proton momenta, contrary to previous analyses with Gaussian sources of zero-lifetime. We further show that the well documented dramatic decrease in the correlation maximum with decreasing total proton momentum reflects directly a corresponding decrease in the fraction of contributing proton pairs from preequilibrium emissions. This provides a powerful method to decompose the proton spectrum into a fraction that originates from fast dynamical emission and a complimentary fraction that originates from slower evaporative emission or secondary decays. We discuss also the comparison of such correlations to transport theories and the generalizations of these techniques to correlations between composite particles. Such studies can

  8. Heteronuclear proton assisted recoupling

    Science.gov (United States)

    De Paëpe, Gaël; Lewandowski, Józef R.; Loquet, Antoine; Eddy, Matt; Megy, Simon; Böckmann, Anja; Griffin, Robert G.

    2011-03-01

    We describe a theoretical framework for understanding the heteronuclear version of the third spin assisted recoupling polarization transfer mechanism and demonstrate its potential for detecting long-distance intramolecular and intermolecular 15N-13C contacts in biomolecular systems. The pulse sequence, proton assisted insensitive nuclei cross polarization (PAIN-CP) relies on a cross term between 1H-15N and 1H-13C dipolar couplings to mediate zero- and/or double-quantum 15N-13C recoupling. In particular, using average Hamiltonian theory we derive effective Hamiltonians for PAIN-CP and show that the transfer is mediated by trilinear terms of the form N±C∓Hz (ZQ) or N±C±Hz (DQ) depending on the rf field strengths employed. We use analytical and numerical simulations to explain the structure of the PAIN-CP optimization maps and to delineate the appropriate matching conditions. We also detail the dependence of the PAIN-CP polarization transfer with respect to local molecular geometry and explain the observed reduction in dipolar truncation. In addition, we demonstrate the utility of PAIN-CP in structural studies with 15N-13C spectra of two uniformly 13C,15N labeled model microcrystalline proteins—GB1, a 56 amino acid peptide, and Crh, a 85 amino acid domain swapped dimer (MW = 2 × 10.4 kDa). The spectra acquired at high magic angle spinning frequencies (ωr/2π > 20 kHz) and magnetic fields (ω0H/2π = 700-900 MHz) using moderate rf fields, yield multiple long-distance intramonomer and intermonomer 15N-13C contacts. We use these distance restraints, in combination with the available x-ray structure as a homology model, to perform a calculation of the monomer subunit of the Crh protein.

  9. Distribution over pT of direct secondary ha drons in hadron-hadron and hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Braun, V.M.

    1986-01-01

    Transverse momentum distributions of direct secondary hadrons produced in proton, pion and kaon collisons with nucleons and nuclei are calculated in the additive quark model. Results of calculations are compared to the experimental data on production of neutral strange particles

  10. Sparse-view proton computed tomography using modulated proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jiseoc; Kim, Changhwan; Cho, Seungryong, E-mail: scho@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejon 305-701 (Korea, Republic of); Min, Byungjun [Department of Radiation Oncology, Kangbuk Samsung Hospital, 110–746 (Korea, Republic of); Kwak, Jungwon [Department of Radiation Oncology, Asan Medical Center, 138–736 (Korea, Republic of); Park, Seyjoon; Lee, Se Byeong [Proton Therapy Center, National Cancer Center, 410–769 (Korea, Republic of); Park, Sungyong [Proton Therapy Center, McLaren Cancer Institute, Flint, Michigan 48532 (United States)

    2015-02-15

    Purpose: Proton imaging that uses a modulated proton beam and an intensity detector allows a relatively fast image acquisition compared to the imaging approach based on a trajectory tracking detector. In addition, it requires a relatively simple implementation in a conventional proton therapy equipment. The model of geometric straight ray assumed in conventional computed tomography (CT) image reconstruction is however challenged by multiple-Coulomb scattering and energy straggling in the proton imaging. Radiation dose to the patient is another important issue that has to be taken care of for practical applications. In this work, the authors have investigated iterative image reconstructions after a deconvolution of the sparsely view-sampled data to address these issues in proton CT. Methods: Proton projection images were acquired using the modulated proton beams and the EBT2 film as an intensity detector. Four electron-density cylinders representing normal soft tissues and bone were used as imaged object and scanned at 40 views that are equally separated over 360°. Digitized film images were converted to water-equivalent thickness by use of an empirically derived conversion curve. For improving the image quality, a deconvolution-based image deblurring with an empirically acquired point spread function was employed. They have implemented iterative image reconstruction algorithms such as adaptive steepest descent-projection onto convex sets (ASD-POCS), superiorization method–projection onto convex sets (SM-POCS), superiorization method–expectation maximization (SM-EM), and expectation maximization-total variation minimization (EM-TV). Performance of the four image reconstruction algorithms was analyzed and compared quantitatively via contrast-to-noise ratio (CNR) and root-mean-square-error (RMSE). Results: Objects of higher electron density have been reconstructed more accurately than those of lower density objects. The bone, for example, has been reconstructed

  11. Trade networks in West Africa

    DEFF Research Database (Denmark)

    Walther, Olivier

    2014-01-01

    To date, most of the literature on trade networks in West Africa has considered networks in a metaphorical way. The aim of this paper is to go one step further by showing how social network analysis may be applied to the study of regional trade in West Africa. After a brief review of the literature......, this exploratory paper investigates two main issues related to regional trade. We start by discussing how recent developments in regional trade in West Africa have contributed to challenging the social structure of traders. We then discuss the changes that have affected the spatiality of regional trade by looking...

  12. Delayed protons and properties of proton-rich nuclei

    International Nuclear Information System (INIS)

    Karnaukhov, V.A.

    1976-01-01

    The object of the investigation is to study the properties of proton-rich nuclei. The emphasis in the proposed survey is made on investigations in the range of Z > 50. Measurement of the total energy in emission of delayed protons (DP) enables one to determine the difference between the masses of initial and final isotopes. The statistical model of the DP emission is used for describing the proton spectrum. A comparison of the DP experimental and theoretical spectra shows that the presence of local resonances in the strength functions of the β dacay is rather a rule than an exception. Studies into the fine structure of the proton spectra supply information of the density of nuclei considerably removed from the β-stability line at the excitation energies of 3-7 MeV. The aproaches for retrieval of nuclear information with the aid of proton radiators developed so far can serve as a good basis for systematic investigation over a wide range of A and Z

  13. Shielding measurements for a 230 MeV proton beam

    International Nuclear Information System (INIS)

    Siebers, J.V.

    1990-01-01

    Energetic secondary neutrons produced as protons interact with accelerator components and patients dominate the radiation shielding environment for proton radiotherapy facilities. Due to the scarcity of data describing neutron production, attenuation, absorbed dose, and dose equivalent values, these parameters were measured for 230 MeV proton bombardment of stopping length Al, Fe, and Pb targets at emission angles of 0 degree, 22 degree, 45 degree, and 90 degree in a thick concrete shield. Low pressure tissue-equivalent proportional counters with volumes ranging from 1 cm 3 to 1000 cm 3 were used to obtain microdosimetric spectra from which absorbed dose and radiation quality are deduced. Does equivalent values and attenuation lengths determined at depth in the shield were found to vary sharply with angle, but were found to be independent of target material. Neutron dose and radiation length values are compared with Monte Carlo neutron transport calculations performed using the Los Alamos High Energy Transport Code (LAHET). Calculations used 230 MeV protons incident upon an Fe target in a shielding geometry similar to that used in the experiment. LAHET calculations overestimated measured attenuation values at 0 degree, 22 degree, and 45 degree, yet correctly predicted the attenuation length at 90 degree. Comparison of the mean radiation quality estimated with the Monte Carlo calculations with measurements suggest that neutron quality factors should be increased by a factor of 1.4. These results are useful for the shielding design of new facilities as well as for testing neutron production and transport calculations

  14. A Monte Carlo track structure code for low energy protons

    CERN Document Server

    Endo, S; Nikjoo, H; Uehara, S; Hoshi, M; Ishikawa, M; Shizuma, K

    2002-01-01

    A code is described for simulation of protons (100 eV to 10 MeV) track structure in water vapor. The code simulates molecular interaction by interaction for the transport of primary ions and secondary electrons in the form of ionizations and excitations. When a low velocity ion collides with the atoms or molecules of a target, the ion may also capture or lose electrons. The probabilities for these processes are described by the quantity cross-section. Although proton track simulation at energies above Bragg peak (>0.3 MeV) has been achieved to a high degree of precision, simulations at energies near or below the Bragg peak have only been attempted recently because of the lack of relevant cross-section data. As the hydrogen atom has a different ionization cross-section from that of a proton, charge exchange processes need to be considered in order to calculate stopping power for low energy protons. In this paper, we have used state-of-the-art Monte Carlo track simulation techniques, in conjunction with the pub...

  15. Two-proton radioactivity in proton-rich fp shell nuclei at high spin

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, Mamta [Nuclear Science Centre, Aruna Asaf Ali Marg, Post Box 10502, New Delhi 110067 (India)

    2006-07-15

    Two-proton radioactivity in extremely proton-rich fp shell nuclei at high spins is investigated in a theoretical framework. Separation energy and entropy fluctuate with spin and hence affect the location of the proton drip line.

  16. Two-proton radioactivity in proton-rich fp shell nuclei at high spin

    International Nuclear Information System (INIS)

    Aggarwal, Mamta

    2006-01-01

    Two-proton radioactivity in extremely proton-rich fp shell nuclei at high spins is investigated in a theoretical framework. Separation energy and entropy fluctuate with spin and hence affect the location of the proton drip line

  17. External proton and Li beams

    International Nuclear Information System (INIS)

    Schuff, Juan A.; Burlon, Alejandro A.; Debray, Mario E.; Kesque, Jose M.; Kreiner, Andres J.; Stoliar, Pablo A.; Naab, Fabian; Ozafran, Mabel J.; Vazquez, Monica E.; Perez de la Hoz, A.; Somacal, Hector; Valda, Alejandro; Canevas, S.; Ruffolo, M.; Tasat, D.R.; Muhlmann, M. C.

    2000-01-01

    In the frame of a feasibility study to introduce proton therapy in Argentina in a collaborative agreement between the Physics and Radiobiology Departments of the National Atomic Energy Commission or Argentina and the Centre de Protontherapie de Orsay, France, external proton and Li beams were produced at the TANDAR accelerator in Buenos Aires. The specific aim of this work was to start radiobiology studies on cell cultures and small laboratory animals. In particular we seek to determine here the relative biological effectiveness, RBE, for proton and Li beams as a function of energy for different tumor and normal cell lines. The 24 MeV proton beam was diffused using a 25 μm gold foil and extracted through a Kapton window to obtain a homogeneous field (constant to 95%) of about 7 cm in diameter. Measurements were carried out with quasi-monoenergetic beams (of 20.2 ± 0.07 MeV, 2.9 ± 0.10 MeV y 1.5 ± 0.1 MeV for protons and 21.4 ± 0.4 MeV for Lithium). Proton fluence and Bragg peaks were measured. The dose delivered in each case was monitored on-line with a calibrated transmission ionization chamber. Three cell lines PDV, PDVC 57 and V 79 (as a reference) were irradiated with γ-rays, proton and lithium beams with linear energy transfer (LET) from 2 to 100 keV/μm. RBE values in the range of 1.2-5.9 were obtained. In addition preliminary studies on chromosomal aberrations and viability of alveolar macrophages were carried out. (author)

  18. Space for Convenience Planning and Academic Performance of Secondary School Students in Oyo State, Nigeria

    Science.gov (United States)

    Yakubu, Suleman

    2017-01-01

    Every secondary school leaver is expected to be able to seek and gain admission into institutions of higher learning, both locally and internationally. However, this has become unattainable as a result of the poor academic performance seen in senior secondary school examinations; the quintessential example being the West African Senior School…

  19. Proton-proton Scattering Above 3 GeV/c

    Energy Technology Data Exchange (ETDEWEB)

    A. Sibirtsev, J. Haidenbauer, H.-W. Hammer S. Krewald ,Ulf-G. Meissner

    2010-01-01

    A large set of data on proton-proton differential cross sections, analyzing powers and the double-polarization parameter A{sub NN} is analyzed employing the Regge formalism. We find that the data available at proton beam momenta from 3 GeV/c to 50 GeV/c exhibit features that are very well in line with the general characteristics of Regge phenomenology and can be described with a model that includes the {rho}, {omega}, f{sub 2}, and a{sub 2} trajectories and single-Pomeron exchange. Additional data, specifically for spin-dependent observables at forward angles, would be very helpful for testing and refining our Regge model.

  20. West African Journal of Medicine

    African Journals Online (AJOL)

    PROMOTING ACCESS TO AFRICAN RESEARCH ... To furnish a means whereby appropriate international medical and health organisations may transmit information to medical scientists in medical institutions of West Africa and elsewhere.

  1. Endoscopic capacity in West Africa.

    African Journals Online (AJOL)

    Results: In surveying physicians, less than half had resources to perform an ... In fact, a study in Zambia, which discussed ... als in West Africa via pre and post didactic examinations .... teaching tools for the participants who came from a va-.

  2. The matrix effect in secondary ion mass spectrometry

    Science.gov (United States)

    Seah, M. P.; Shard, A. G.

    2018-05-01

    Matrix effects in the secondary ion mass spectrometry (SIMS) of selected elemental systems have been analyzed to investigate the applicability of a mathematical description of the matrix effect, called here the charge transfer (CT) model. This model was originally derived for proton exchange and organic positive secondary ions, to characterise the enhancement or suppression of intensities in organic binary systems. In the systems considered in this paper protons are specifically excluded, which enables an assessment of whether the model applies for electrons as well. The present importance is in organic systems but, here we analyse simpler inorganic systems. Matrix effects in elemental systems cannot involve proton transfer if there are no protons present but may be caused by electron transfer and so electron transfer may also be involved in the matrix effects for organic systems. There are general similarities in both the magnitudes of the ion intensities as well as the matrix effects for both positive and negative secondary ions in both systems and so the CT model may be more widely applicable. Published SIMS analyses of binary elemental mixtures are analyzed. The data of Kim et al., for the Pt/Co system, provide, with good precision, data for such a system. This gives evidence for the applicability of the CT model, where electron, rather than proton, transfer is the matrix enhancing and suppressing mechanism. The published data of Prudon et al., for the important Si/Ge system, provides further evidence for the effects for both positive and negative secondary ions and allows rudimentary rules to be developed for the enhancing and suppressing species.

  3. The Structure of the Proton

    Science.gov (United States)

    Chambers, E. E.; Hofstadter, R.

    1956-04-01

    The structure and size of the proton have been studied by means of the methods of high-energy electron scattering. The elastic scattering of electrons from protons in polyethylene has been investigated at the following energies in the laboratory system: 200, 300, 400, 500, 550 Mev. The range of laboratory angles examined has been 30 degrees to 135 degrees. At the largest angles and the highest energy, the cross section for scattering shows a deviation below that expected from a point proton by a factor of about nine. The magnitude and variation with angle of the deviations determine a structure factor for the proton, and thereby determine the size and shape of the charge and magnetic-moment distributions within the proton. An interpretation, consistent at all energies and angles and agreeing with earlier results from this laboratory, fixes the rms radius at 0.77 {plus or minus} 0.10 x 10{sup -13} cm for each of the charge and moment distributions. The shape of the density function is not far from a Gaussian with rms radius 0.70 x 10{sup -13} cm or an exponential with rms radius 0.80 x 10 {sup -13} cm. An equivalent interpretation of the experiments would ascribe the apparent size to a breakdown of the Coulomb law and the conventional theory of electromagnetism.

  4. LHC Report: Ions cross protons

    CERN Multimedia

    Reyes Alemany Fernandez for the LHC team

    2013-01-01

    The LHC starts the New Year facing a new challenge: proton-lead collisions in the last month before the shutdown in mid-February.    The first stable beams were achieved on 20 January with 13 individual bunches per beam. In the next fill, the first bunch-trains were injected and stable beams were achieved with 96 proton on 120 ion bunches.  This fill was very important because we were able to study the so-called moving long-range beam-beam encounters. Long-range encounters, which are also seen in proton-proton runs, occur when the bunches in the two beams “see” each other as they travel in the same vacuum chamber at either side of the experiments.  The situation becomes more complicated with proton-lead ions because the two species have different revolution times (until the frequencies are locked at top energy- see “Cogging exercises”) and thus these encounters move. We found that this effect does not cause significant beam losses...

  5. High energy proton PIXE [HEPP

    International Nuclear Information System (INIS)

    McKee, J.S.C.

    1993-01-01

    Studies of particle induced X-ray emission (PIXE) have been widespread and detailed in recent years and despite the fact that most data obtained are from low energy 1-3 MeV experiments, the value of higher energy proton work with its emphasis on K X-ray emission has become more marked as time has progressed. The purpose of this review paper is to outline the history of analysis using high energy protons and to compare and contrast the results obtained with those from lower energy analysis using more firmly established analytical techniques. The work described will concentrate exclusively on proton induced processes and will attempt to outline the rationale for selecting an energy, greater than 20 and up to 70 MeV protons for initiating particles. The relative ease and accuracy of the measurements obtained will be addressed. Clearly such X-ray studies should be seen as complementing low energy work in many instances rather than competing directly with them. However, it will be demonstrated that above a Z value of approximately 20, K X-ray analysis using high energy protons is the only way to go in this type of analysis. (author)

  6. ATLAS proton-proton event containing four muons

    CERN Multimedia

    ATLAS Collaboration

    2011-01-01

    An event with four identified muons from a proton-proton collision in ATLAS. This event is consistent with coming from two Z particles decaying: both Z particles decay to two muons each. Such events are produced by Standard Model processes without Higgs particles. They are also a possible signature for Higgs particle production, but many events must be analysed together in order to tell if there is a Higgs signal. This view is a zoom into the central part of the detector. The four muons are picked out as red tracks. Other tracks and deposits of energy in the calorimeters are shown in yellow.

  7. ATLAS proton-proton event containing two high energy photons

    CERN Multimedia

    ATLAS Collaboration

    2011-01-01

    An event where two energetic photons ("gammas") are produced in a proton-proton collision in ATLAS. Many events of this type are produced by well-understood Standard Model processes ("backgrounds") which do not involve Higgs particles. A small excess of events of this type with similar masses could indicate evidence for Higgs particle production, but any specific event is most likely to be from the background. The photons are indicated, in the different projections and views, by the clusters of energy shown in yellow.

  8. Concept for a Future Super Proton-Proton Collider

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jingyu; et al.

    2015-07-12

    Following the discovery of the Higgs boson at LHC, new large colliders are being studied by the international high-energy community to explore Higgs physics in detail and new physics beyond the Standard Model. In China, a two-stage circular collider project CEPC-SPPC is proposed, with the first stage CEPC (Circular Electron Positron Collier, a so-called Higgs factory) focused on Higgs physics, and the second stage SPPC (Super Proton-Proton Collider) focused on new physics beyond the Standard Model. This paper discusses this second stage.

  9. Concept for a Future Super Proton-Proton Collider

    CERN Document Server

    Tang, Jingyu; Chai, Weiping; Chen, Fusan; Chen, Nian; Chou, Weiren; Dong, Haiyi; Gao, Jie; Han, Tao; Leng, Yongbin; Li, Guangrui; Gupta, Ramesh; Li, Peng; Li, Zhihui; Liu, Baiqi; Liu, Yudong; Lou, Xinchou; Luo, Qing; Malamud, Ernie; Mao, Lijun; Palmer, Robert B.; Peng, Quanling; Peng, Yuemei; Ruan, Manqi; Sabbi, GianLuca; Su, Feng; Su, Shufang; Stratakis, Diktys; Sun, Baogeng; Wang, Meifen; Wang, Jie; Wang, Liantao; Wang, Xiangqi; Wang, Yifang; Wang, Yong; Xiao, Ming; Xing, Qingzhi; Xu, Qingjin; Xu, Hongliang; Xu, Wei; Witte, Holger; Yan, Yingbing; Yang, Yongliang; Yang, Jiancheng; Yuan, Youjin; Zhang, Bo; Zhang, Yuhong; Zheng, Shuxin; Zhu, Kun; Zhu, Zian; Zou, Ye

    2015-01-01

    Following the discovery of the Higgs boson at LHC, new large colliders are being studied by the international high-energy community to explore Higgs physics in detail and new physics beyond the Standard Model. In China, a two-stage circular collider project CEPC-SPPC is proposed, with the first stage CEPC (Circular Electron Positron Collier, a so-called Higgs factory) focused on Higgs physics, and the second stage SPPC (Super Proton-Proton Collider) focused on new physics beyond the Standard Model. This paper discusses this second stage.

  10. Parity Non-Conservation in Proton-Proton Elastic Scattering

    International Nuclear Information System (INIS)

    Brown, V.R.; B.F. Gibson; J.A. Carlson; R. Schiavilla

    2002-01-01

    The parity non-conserving longitudinal asymmetry in proton-proton (pp) elastic scattering is calculated in the lab-energy range 0-350 MeV using contemporary, realistic strong-interaction potentials combined with a weak-interaction potential comprised of rho- and omega-meson exchanges as exemplified by the DDH model. Values for the rho- and omega-meson coupling constants, h rho rho rho and h rho rho omega , are determined from comparison with the measured asymmetries at 13.6 MeV, 45 MeV, and 221 MeV

  11. Analyses of the Secondary Particle Radiation and the DNA Damage it Causes to Human Keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lebel E. A.; Tafrov S.; Rusek, A.; Sivertz, M. B.; Yip, K.; Thompson, K. H.

    2011-11-01

    High-energy protons, and high mass and energy ions, along with the secondary particles they produce, are the main contributors to the radiation hazard during space explorations. Skin, particularly the epidermis, consisting mainly of keratinocytes with potential for proliferation and malignant transformation, absorbs the majority of the radiation dose. Therefore, we used normal human keratinocytes to investigate and quantify the DNA damage caused by secondary radiation. Its manifestation depends on the presence of retinol in the serum-free media, and is regulated by phosphatidylinositol 3-kinases. We simulated the generation of secondary radiation after the impact of protons and iron ions on an aluminum shield. We also measured the intensity and the type of the resulting secondary particles at two sample locations; our findings agreed well with our predictions. We showed that secondary particles inflict DNA damage to different extents, depending on the type of primary radiation. Low-energy protons produce fewer secondary particles and cause less DNA damage than do high-energy protons. However, both generate fewer secondary particles and inflict less DNA damage than do high mass and energy ions. The majority of cells repaired the initial damage, as denoted by the presence of 53BPI foci, within the first 24 hours after exposure, but some cells maintained the 53BP1 foci longer.

  12. Incidence of Second Malignancies Among Patients Treated With Proton Versus Photon Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Christine S., E-mail: chungc1@sutterhealth.org [Department of Radiation Oncology, Alta Bates Summit Medical Center, Berkeley, California (United States); Yock, Torunn I. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Nelson, Kerrie [Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts (United States); Xu, Yang [Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts (United States); Keating, Nancy L. [Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts (United States); Department of General Internal Medicine, Brigham and Women' s Hospital, Boston, Massachusetts (United States); Tarbell, Nancy J. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Office of the Executive Dean, Harvard Medical School, Boston, Massachusetts (United States)

    2013-09-01

    Purpose: Proton radiation, when compared with photon radiation, allows delivery of increased radiation dose to the tumor while decreasing dose to adjacent critical structures. Given the recent expansion of proton facilities in the United States, the long-term sequelae of proton therapy should be carefully assessed. The objective of this study was to compare the incidence of second cancers in patients treated with proton radiation with a population-based cohort of matched patients treated with photon radiation. Methods and Materials: We performed a retrospective cohort study of 558 patients treated with proton radiation from 1973 to 2001 at the Harvard Cyclotron in Cambridge, MA and 558 matched patients treated with photon therapy in the Surveillance, Epidemiology, and End Results (SEER) Program cancer registry. Patients were matched by age at radiation treatment, sex, year of treatment, cancer histology, and site. The main outcome measure was the incidence of second malignancies after radiation. Results: We matched 558 proton patients with 558 photon patients from the Surveillance, Epidemiology, and End Results registry. The median duration of follow-up was 6.7 years (interquartile range, 7.4) and 6.0 years (interquartile range, 9.3) in the proton and photon cohorts, respectively. The median age at treatment was 59 years in each cohort. Second malignancies occurred in 29 proton patients (5.2%) and 42 photon patients (7.5%). After we adjusted for sex, age at treatment, primary site, and year of diagnosis, proton therapy was not associated with an increased risk of second malignancy (adjusted hazard ratio, 0.52 [95% confidence interval, 0.32-0.85]; P=.009). Conclusions: The use of proton radiation therapy was not associated with a significantly increased risk of secondary malignancies compared with photon therapy. Longer follow-up of these patients is needed to determine if there is a significant decrease in second malignancies. Given the limitations of the study

  13. Incidence of Second Malignancies Among Patients Treated With Proton Versus Photon Radiation

    International Nuclear Information System (INIS)

    Chung, Christine S.; Yock, Torunn I.; Nelson, Kerrie; Xu, Yang; Keating, Nancy L.; Tarbell, Nancy J.

    2013-01-01

    Purpose: Proton radiation, when compared with photon radiation, allows delivery of increased radiation dose to the tumor while decreasing dose to adjacent critical structures. Given the recent expansion of proton facilities in the United States, the long-term sequelae of proton therapy should be carefully assessed. The objective of this study was to compare the incidence of second cancers in patients treated with proton radiation with a population-based cohort of matched patients treated with photon radiation. Methods and Materials: We performed a retrospective cohort study of 558 patients treated with proton radiation from 1973 to 2001 at the Harvard Cyclotron in Cambridge, MA and 558 matched patients treated with photon therapy in the Surveillance, Epidemiology, and End Results (SEER) Program cancer registry. Patients were matched by age at radiation treatment, sex, year of treatment, cancer histology, and site. The main outcome measure was the incidence of second malignancies after radiation. Results: We matched 558 proton patients with 558 photon patients from the Surveillance, Epidemiology, and End Results registry. The median duration of follow-up was 6.7 years (interquartile range, 7.4) and 6.0 years (interquartile range, 9.3) in the proton and photon cohorts, respectively. The median age at treatment was 59 years in each cohort. Second malignancies occurred in 29 proton patients (5.2%) and 42 photon patients (7.5%). After we adjusted for sex, age at treatment, primary site, and year of diagnosis, proton therapy was not associated with an increased risk of second malignancy (adjusted hazard ratio, 0.52 [95% confidence interval, 0.32-0.85]; P=.009). Conclusions: The use of proton radiation therapy was not associated with a significantly increased risk of secondary malignancies compared with photon therapy. Longer follow-up of these patients is needed to determine if there is a significant decrease in second malignancies. Given the limitations of the study

  14. Why the West?

    Directory of Open Access Journals (Sweden)

    Marc Ferguson

    2009-03-01

    Full Text Available La cuestión de cómo "Occidente" llegó a dominar el mundo durante la era moderna se ha debatido recientemente entre los historiadores. El debate se ha polarizado entre quienes ven en la "modernidad" como resultado de un 'milagro', el proceso cultural único generado en el seno del mismo Occidente, y aquellos que cuestionan este "milagro" como paradigma eurocéntrico, y buscan otros factores para entender y explicar el dominio occidental del mundo económico y político. La literatura tradicional, representada por David Landes en su reciente “La riqueza y la pobreza de las naciones”, atribuye el éxito europeo a sus valores culturales únicos, a sus instituciones sociales y sus prácticas políticas. Este éxito fue completamente "impulsado desde dentro” por estas características. Recientemente, varios historiadores han cuestionado este "paradigma del milagro" como eurocéntrica, y miran a otros factores para comprender y explicar el dominio occidental del mundo económico y político. Después de examinar los recientes trabajos de los historiadores frente a este problema, este artículo trata de colocar la expansión europea en un contexto global, y la comprensión de la Revolución Industrial como una transformación global. Esta perspectiva nos permite entender los cambios tecnológicos y económicos Europeos en el contexto más amplio de patrones de interacción económica y cultural de todo el mundo._____________ABSTRACT:The question of how 'the West' came to dominate the globe during the modern era has been debated recently among historians. The debate has been polarized between those who view 'modernity' as the result of a 'European miracle', the culturally unique and internally generated project of the West, and those who question this 'European miracle' paradigm as Eurocentric, and look to other factors to understand and explain Western economic and political world dominance. The traditional narrative, represented by David

  15. Conceptual design of proton beam window

    International Nuclear Information System (INIS)

    Teraoku, Takuji; Kaminaga, Masanori; Terada, Atsuhiko; Ishikura, Syuichi; Kinoshita, Hidetaka; Hino, Ryutaro

    2001-01-01

    In a MW-scale neutron scattering facility coupled with a high-intensity proton accelerator, a proton beam window is installed as the boundary between a high vacuum region of the proton beam transport line and a helium environment around the target assembly working as a neutron source. The window is cooled by water so as to remove high volumetric heat generated by the proton beam. A concept of the flat-type proton beam window consisting of two plates of 3 mm thick was proposed, which was found to be feasible under the proton beam power of 5 MW through thermal-hydraulic and structural strength analyses. (authors)

  16. Family symmetries and proton decay

    International Nuclear Information System (INIS)

    Murayama, Hitoshi; Kaplan, D.B.

    1994-01-01

    The proton decay modes p → K 0 e + and p → K 0 μ + may be visible in certain supersymmetric theories, and if seen would provide evidence for new flavor physics at extremely short distances. These decay modes can arise from the dimension five operator (Q 1 Q 1 Q 2 L 1,2 ), where Q i and L i are i th generation quark and lepton superfields respectively. Such an operator is not generated at observable levels due to gauge or Higgs boson exchange in a minimal GUT. However in theories that explain the fermion mass hierarchy, it may be generated at the Planck scale with a strength such that the decays p → K 0 ell + are both compatible with the proton lifetime and visible at Super-Kamiokande. Observable proton decay can even occur in theories without unification

  17. The search for proton decay

    International Nuclear Information System (INIS)

    Haines, T.; Kaneyuki, K.; McGrew, C.; Mohapatra, R.; Peterson, E.; Cline, D.B.

    1994-01-01

    The conservation of the quantum number called baryon number, like lepton (or family) number, is an empirical fact even though there are very good reasons to expect otherwise. Experimentalists have been searching for baryon number violating decays of the proton and neutron for decades now without success. Theorists have evolved deep understanding of the relationship between the natural forces in the development of various Grand Unified Theories (GUTs) that nearly universally predict baryon number violating proton decay, or related phenomena like n-bar n oscillations. With this in mind, the Proton Decay Working Group reviewed the current experimental and theoretical status of the search for baryon number violation with an eye to the advancement in the next decade

  18. Proton and neutron structure functions

    International Nuclear Information System (INIS)

    Rock, S.

    1991-01-01

    New result on charged lepton scattering from hydrogen and deuterium targets by the BCDMS, NMC and SLAC collaborations have greatly increased our knowledge of the structure functions of protons and neutrons. The disagreement between the high energy muon scattering cross sections obtained by the EMC and BCDMS collaborations have been almost completely resolved by comparison with a global analysis of old and new SLAC data and a reanalysis of EMC data. We now have a consistent set of structure functions which covers an approximate range 1 ≤ Q 2 ≤ 200 (GeV/c) 2 and 0.07 ≤ x ≤ 0.7. The ratio of neutron to proton structure functions decreases with increasing Q 2 for values of x ≥ 0.1. The difference between proton and neutron structure functions approaches zero as x decreases, consistent with the expected √x behavior. (orig.)

  19. West Valley feasibility study

    International Nuclear Information System (INIS)

    Pirro, J.

    1981-01-01

    This report presents the results of a technical assessment of decontamination alternative prepared for the Western New York Nuclear Service Center (WNYNSC). The purpose of the assessment is to determine the recommended method for decontamination of cell surfaces and decontamination and removal of fuel reprocessing cell equipment to permit manual entry into the cells for the installation of waste solidification equipment. The primary cells of interest are the PMC, GPC, and CPC because they offer the largest usable volume for the solidification program. The secondary cells include XC-1, XC-2, XC-3 and the PPC which may be needed to support the solidification program. Five decontamination assessments were evaluated (A-E). The assessments included the estimated cost, occupational exposure, duration, manpower, waste volume generated, and final cell radiation levels achieved with the alternative decontamination methods. The methods varied from thorough destructive decontamination to equipment removal without decontamination followed by cell wall and floor decontamination. The recommended method for the primary cells is to utilize the remote manipulators and cranes to the maximum extent possible to decontaminate equipment and cell surfaces remotely, and to remove the equipment for temporary on-site storage. The recommended method for secondary cell decontamination is to remotely decontaminate the cells to the maximum extent possible prior to manned entry for contact-removal of the fuel reprocessing equipment (Assessment D). Assessment A is expected to cost $8,713,500 in 1980 dollars (including a 25% contingency) and will result in an occupational exposure of 180.3 manRem. Assessment D is expected to cost $11,039,800 and will result in an occupational exposure of 259 manRems

  20. West Valley feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Pirro, J.

    1981-01-01

    This report presents the results of a technical assessment of decontamination alternative prepared for the Western New York Nuclear Service Center (WNYNSC). The purpose of the assessment is to determine the recommended method for decontamination of cell surfaces and decontamination and removal of fuel reprocessing cell equipment to permit manual entry into the cells for the installation of waste solidification equipment. The primary cells of interest are the PMC, GPC, and CPC because they offer the largest usable volume for the solidification program. The secondary cells include XC-1, XC-2, XC-3 and the PPC which may be needed to support the solidification program. Five decontamination assessments were evaluated (A-E). The assessments included the estimated cost, occupational exposure, duration, manpower, waste volume generated, and final cell radiation levels achieved with the alternative decontamination methods. The methods varied from thorough destructive decontamination to equipment removal without decontamination followed by cell wall and floor decontamination. The recommended method for the primary cells is to utilize the remote manipulators and cranes to the maximum extent possible to decontaminate equipment and cell surfaces remotely, and to remove the equipment for temporary on-site storage. The recommended method for secondary cell decontamination is to remotely decontaminate the cells to the maximum extent possible prior to manned entry for contact-removal of the fuel reprocessing equipment (Assessment D). Assessment A is expected to cost $8,713,500 in 1980 dollars (including a 25% contingency) and will result in an occupational exposure of 180.3 manRem. Assessment D is expected to cost $11,039,800 and will result in an occupational exposure of 259 manRems.

  1. Towards structural and functional analysis of the plant plasma membrane proton pump

    DEFF Research Database (Denmark)

    Justesen, Bo Højen

    The plasma membrane H+-ATPase is a proton pump essential for several physiological important processes in plants. Through the extrusion of protons from the cell, the PM H+-ATPase establishes and maintains a proton gradient used by proton coupled transporters and secondary active transport...... of nutrients and metabolites across the plasma membrane. Additional processes involving the PM H+-ATPase includes plant growth, development, and response to biotic and abiotic stresses. Extensive efforts have been made in attempts to elucidate the detailed physiological role and biochemical characteristics...... of plasma membrane H+-ATPases. Studies on the plasma membrane H+-ATPases have involved both in vivo and in vitro approaches, with the latter employing either solubilisation by detergent micelles, or reconstitution into lipid vesicles. Despite resulting in a large body of information on structure, function...

  2. Anode-Engineered Protonic Ceramic Fuel Cell with Excellent Performance and Fuel Compatibility

    NARCIS (Netherlands)

    Hua, B.; Yan, N.; Li, M.; Sun, Y.-F.; Zhang, Y.-Q.; Li, J.; Etsell, T.; Sarkar, P.; Luo, J.L.

    2016-01-01

    Directly utilizing hydrocarbon fuels, particularly methane, is advantageous yet challenging in high-performance protonic ceramic fuel cells. In this work, this technological hurdle is well addressed by selective deposition of secondary electrocatalysts within the porous Ni-cermet anode. This novel

  3. Measurement of stray neutron doses inside the treatment room from a proton pencil beam scanning system

    Czech Academy of Sciences Publication Activity Database

    Mojzeszek, N.; Farah, J.; Klodowska, M.; Ploc, Ondřej; Stolarczyk, L.; Waligorski, M. P. R.; Olko, P.

    2017-01-01

    Roč. 34, č. 2 (2017), s. 80-84 ISSN 1120-1797 Institutional support: RVO:61389005 Keywords : secondary neutrons * proton therapy * pencil beam scanning systtems * out-of-field doses * stray neutron doses * TEPC Subject RIV: FP - Other Medical Disciplines OBOR OECD: Radiology, nuclear medicine and medical imaging Impact factor: 1.990, year: 2016

  4. Proton induced target fragmentation studies on solid state nuclear track detectors using Carbon radiators

    Science.gov (United States)

    Szabó, J.; Pálfalvi, J. K.; Strádi, A.; Bilski, P.; Swakoń, J.; Stolarczyk, L.

    2018-04-01

    One of the limiting factors of an astronaut's career is the dose received from space radiation. High energy protons, being the main components of the complex radiation field present on a spacecraft, give a significant contribution to the dose. To investigate the behavior of solid state nuclear track detectors (SSNTDs) if they are irradiated by such particles, SSNTD stacks containing carbon blocks were exposed to high energy proton beams (70, 100, 150 and 230 MeV) at the Proteus cyclotron, IFJ PAN -Krakow. The incident protons cannot be detected directly; however, tracks of secondary particles, recoils and fragments of the constituent atoms of the detector material and of the carbon radiator are formed. It was found that as the proton energy increases, the number of tracks induced in the PADC material by secondary particles decreases. From the measured geometrical parameters of the tracks the linear energy transfer (LET) spectrum and the dosimetric quantities were determined, applying appropriate calibration. In the LET spectra the LET range of the most important secondary particles could be identified and their abundance showed differences in the spectra if the detectors were short or long etched. The LET spectra obtained on the SSNTDs irradiated by protons were compared to LET spectra of detectors flown on the International Space Station (ISS): they were quite similar, resulting in a quality factor difference of only 5%. Thermoluminescent detectors (TLDs) were applied in each case to measure the dose from primary protons and other lower LET particles present in space. Comparing and analyzing the results of the TLD and SSNTD measurements, it was obtained that proton induced target fragments contributed to the total absorbed dose in 3.2% and to the dose equivalent in 14.2% in this particular space experiment.

  5. Nuclear breakup of 17Ne and its two-proton halo structure

    Energy Technology Data Exchange (ETDEWEB)

    Wamers, Felix; Aumann, Thomas [Institut fuer Kernphysik, TU Darmstadt (Germany); Bertulani, Carlos [Texas A and M University-Commerce, Commerce (United States); Chulkov, Leonid; Heil, Michael; Simon, Haik [Kernreaktionen und Nukleare Astrophysik, GSI, Darmstadt (Germany); Marganiec, Justyna [Extreme Matter Institute, GSI, Darmstadt (Germany); JINA, Notre Dame (United States); Plag, Ralf [Kernreaktionen und Nukleare Astrophysik, GSI, Darmstadt (Germany); Goethe Universitaet, Frankfurt am Main (Germany); Collaboration: R3B-Collaboration

    2012-07-01

    {sup 17}Ne is a proton-dripline nucleus that has raised interest in nuclear-structure physics in recent years. As a ({sup 15}O+2p) Borromean 3-body system, it is often considered to be a 2-proton-halo nucleus, yet lacking concluding experimental quantification of structure. We have studied breakup reactions of 500 AMeV {sup 17}Ne secondary beams in inverse kinematics using the R3B-LAND setup at GSI. The foci were on (p,2p) quasi-free scattering on a CH{sub 2} target, and on one-proton-knockout reactions on a carbon target. Recoil protons have been detected with Si-Strip detectors and a surrounding 4{pi} NaI spectrometer. Furthermore, projectile-like forward protons after one-proton knockout from {sup 17}Ne have been measured in coincidence with the {sup 15}O residual core. The resulting relative-energy spectrum of the unbound {sup 16}F, as well as proton-removal cross sections with CH{sub 2} and C targets, and the transverse-momentum distributions of the residual fragments are presented. Conclusions on the ground-state structure of {sup 17}Ne are discussed.

  6. Superconducting proton ring for PETRA

    International Nuclear Information System (INIS)

    Baynham, E.

    1979-01-01

    A powerful new facility for colliding beam physics could be provided by adding a proton storage ring in the range of several hundred GeV to the electron-positron storage ring PETRA at DESY. This can be achieved in an economic way utilizing the PETRA tunnel and taking advantage of the higher magnetic fields of superconducting magnets which would be placed above or below the PETRA magnets. A central field of 4 Tesla in the bending magnets corresponds to a proton energy of 225 GeV. (orig.)

  7. Protons in near earth orbit

    CERN Document Server

    Alcaraz, J; Alpat, B; Ambrosi, G; Anderhub, H; Ao, L; Arefev, A; Azzarello, P; Babucci, E; Baldini, L; Basile, M; Barancourt, D; Barão, F; Barbier, G; Barreira, G; Battiston, R; Becker, R; Becker, U; Bellagamba, L; Béné, P; Berdugo, J; Berges, P; Bertucci, B; Biland, A; Bizzaglia, S; Blasko, S; Bölla, G; Boschini, M; Bourquin, Maurice; Bruni, G; Buénerd, M; Burger, J D; Burger, W J; Cai, X D; Cavalletti, R; Camps, C; Cannarsa, P; Capell, M; Casadei, D; Casaus, J; Castellini, G; Chang, Y H; Chen, H F; Chen, H S; Chen, Z G; Chernoplekov, N A; Chiarini, A; Tzi Hong Chiueh; Chuang, Y L; Cindolo, F; Commichau, V; Contin, A; Cotta-Ramusino, A; Crespo, P; Cristinziani, M; Da Cunha, J P; Dai, T S; Deus, J D; Dinu, N; Djambazov, L; D'Antone, I; Dong, Z R; Emonet, P; Engelberg, J; Eppling, F J; Eronen, T; Esposito, G; Extermann, Pierre; Favier, Jean; Feng, C C; Fiandrini, E; Finelli, F; Fisher, P H; Flaminio, R; Flügge, G; Fouque, N; Galaktionov, Yu; Gervasi, M; Giusti, P; Grandi, D; Gu, W Q; Hangarter, K; Hasan, A; Hermel, V; Hofer, H; Huang, M A; Hungerford, W; Ionica, M; Ionica, R; Jongmanns, M; Karlamaa, K; Karpinski, W; Kenney, G; Kenny, J; Kim, W; Klimentov, A; Kossakowski, R; Koutsenko, V F; Laborie, G; Laitinen, T; Lamanna, G; Laurenti, G; Lebedev, A; Lee, S C; Levi, G; Levchenko, P M; Liu, C L; Liu Hong Tao; Lolli, M; Lopes, I; Lu, G; Lü, Y S; Lübelsmeyer, K; Luckey, D; Lustermann, W; Maña, C; Margotti, A; Massera, F; Mayet, F; McNeil, R R; Meillon, B; Menichelli, M; Mezzanotte, F; Mezzenga, R; Mihul, A; Molinari, G; Mourão, A M; Mujunen, A; Palmonari, F; Pancaldi, G; Papi, A; Park, I H; Pauluzzi, M; Pauss, Felicitas; Perrin, E; Pesci, A; Pevsner, A; Pilastrini, R; Pimenta, M; Plyaskin, V; Pozhidaev, V; Postema, H; Postolache, V; Prati, E; Produit, N; Rancoita, P G; Rapin, D; Raupach, F; Recupero, S; Ren, D; Ren, Z; Ribordy, M; Richeux, J P; Riihonen, E; Ritakari, J; Röser, U; Roissin, C; Sagdeev, R; Santos, D; Sartorelli, G; Schultz von Dratzig, A; Schwering, G; Seo, E S; Shoutko, V; Shoumilov, E; Siedling, R; Son, D; Song, T; Steuer, M; Sun, G S; Suter, H; Tang, X W; Ting, Samuel C C; Ting, S M; Tornikoski, M; Torromeo, G; Torsti, J; Trümper, J E; Ulbricht, J; Urpo, S; Usoskin, I; Valtonen, E; Van den Hirtz, J; Velcea, F; Velikhov, E P; Verlaat, B; Vetlitskii, I; Vezzu, F; Vialle, J P; Viertel, Gert M; Vitè, Davide F; Von Gunten, H P; Waldmeier-Wicki, S; Wallraff, W; Wang, B C; Wang, J Z; Wang, Y H; Wiik, K; Williams, C; Wu, S X; Xia, P C; Yan, J L; Yan Lu Guang; Yang, C G; Yang, M; Ye Shu Wei; Yeh, P; Xu, Z Z; Zhang, H Y; Zhang, Z P; Zhao, D X; Zhu, G Y; Zhu, W Z; Zhuang, H L; Zichichi, A

    2000-01-01

    The proton spectrum in the kinetic energy range 0.1 to 200 GeV was measuredby the Alpha Magnetic Spectrometer (AMS) during space shuttle flight STS-91 atan altitude of 380 km. Above the geomagnetic cutoff the observed spectrum isparameterized by a power law. Below the geomagnetic cutoff a substantial secondspectrum was observed concentrated at equatorial latitudes with a flux ~ 70m^-2 sec^-1 sr^-1. Most of these second spectrum protons follow a complicatedtrajectory and originate from a restricted geographic region.

  8. The proton-antiproton collider

    International Nuclear Information System (INIS)

    Evans, L.

    1988-01-01

    The subject of this lecture is the CERN Proton-Antiproton (panti p) Collider, in which John Adams was intimately involved at the design, development, and construction stages. Its history is traced from the original proposal in 1966, to the first panti p collisions in the Super Proton Synchrotron (SPS) in 1981, and to the present time with drastically improved performance. This project led to the discovery of the intermediate vector boson in 1983 and produced one of the most exciting and productive physics periods in CERN's history. (orig.)

  9. Active interrogation using energetic protons

    International Nuclear Information System (INIS)

    Morris, Christopher L.; Chung, Kiwhan; Greene, Steven J.; Hogan, Gary E.; Makela, Mark; Mariam, Fesseha; Milner, Edward C.; Murray, Matthew; Saunders, Alexander; Spaulding, Randy; Wang, Zhehui; Waters, Laurie; Wysocki, Frederick

    2010-01-01

    Energetic proton beams provide an attractive alternative when compared to electromagnetic and neutron beams for active interrogation of nuclear threats because they have large fission cross sections, long mean free paths and high penetration, and they can be manipulated with magnetic optics. We have measured time-dependent cross sections and neutron yields for delayed neutrons and gamma rays using 800 MeV and 4 GeV proton beams with a set of bare and shielded targets. The results show significant signals from both unshielded and shielded nuclear materials. Measurements of neutron energies yield suggest a signature unique to fissile material. Results are presented in this paper.

  10. Proton exchange membrane fuel cells

    CERN Document Server

    Qi, Zhigang

    2013-01-01

    Preface Proton Exchange Membrane Fuel CellsFuel CellsTypes of Fuel CellsAdvantages of Fuel CellsProton Exchange Membrane Fuel CellsMembraneCatalystCatalyst LayerGas Diffusion MediumMicroporous LayerMembrane Electrode AssemblyPlateSingle CellStackSystemCell Voltage Monitoring Module (CVM)Fuel Supply Module (FSM)Air Supply Module (ASM)Exhaust Management Module (EMM)Heat Management Module (HMM)Water Management Module (WMM)Internal Power Supply Module (IPM)Power Conditioning Module (PCM)Communications Module (COM)Controls Module (CM)SummaryThermodynamics and KineticsTheoretical EfficiencyVoltagePo

  11. Proton therapy of hypophyseal adenomas

    International Nuclear Information System (INIS)

    Mirakova, E.I.; Kirpatovskaya, L.E.; Lyass, F.M.; Snigireva, R.Ya.; Krymskij, V.A.; Akademiya Meditsinskikh Nauk SSSR, Moscow. Inst. Ehksperimental'noj Ehndokrinologii i Khimii Gormonov)

    1983-01-01

    The authors present the results of proton therapy in 59 patients with different hypophyseal adenomas. The period of observation lasted from 6 mos. to 5 yrs. Irradiation was done using a multifield-convergent method and a proton beam of the ITEF synchrotron. The beam energy was 200 MeV, the beam diameter 7-15 mm. Radiation response and immediate results were evaluated for all the patients. The least favorable results were noted in the patients with prolactinomas, for which, in addition to irradiation, parlodel therapy is needed. No marked radiation reactions, neurological complications and manifestations of hypopituitarism were observed with the chosen doses and schemes of irradiation

  12. Proton-antiproton collider physics

    CERN Document Server

    Altarelli, Guido

    1989-01-01

    This volume reviews the physics studied at the CERN proton-antiproton collider during its first phase of operation, from the first physics run in 1981 to the last one at the end of 1985. The volume consists of a series of review articles written by physicists who are actively involved with the collider research program. The first article describes the proton-antiproton collider facility itself, including the antiproton source and its principle of operation based on stochastic cooling. The subsequent six articles deal with the various physics subjects studied at the collider. Each article descr

  13. Search for Sphalerons in Proton-Proton Collisions

    CERN Document Server

    Ellis, John

    2016-04-14

    In a recent paper, Tye and Wong (TW) have argued that sphaleron-induced transitions in high-energy proton-proton collisions should be enhanced compared to previous calculations, based on a construction of a Bloch wave function in the periodic sphaleron potential and the corresponding pass band structure. Here we convolute the calculations of TW with parton distribution functions and simulations of final states to explore the signatures of sphaleron transitions at the LHC and possible future colliders. We calculate the increase of sphaleron transition rates in proton-proton collisions at centre-of-mass energies of 13/14/33/100 TeV for different sphaleron barrier heights, while recognising that the rates have large overall uncertainties. We use a simulation to show that LHC searches for microscopic black holes should have good efficiency for detecting sphaleron-induced final states, and discuss their experimental signatures and observability in Run 2 of the LHC and beyond. We recast the early ATLAS Run-2 search...

  14. Proton beam therapy how protons are revolutionizing cancer treatment

    CERN Document Server

    Yajnik, Santosh

    2013-01-01

    Proton beam therapy is an emerging technology with promise of revolutionizing the treatment of cancer. While nearly half of all patients diagnosed with cancer in the US receive radiation therapy, the majority is delivered via electron accelerators, where photons are used to irradiate cancerous tissue. Because of the physical properties of photon beams, photons may deposit energy along their entire path length through the body. On the other hand, a proton beam directed at a tumor travels in a straight trajectory towards its target, gives off most of its energy at a defined depth called the Bragg peak, and then stops. While photons often deposit more energy within the healthy tissues of the body than within the cancer itself, protons can deposit most of their cancer-killing energy within the area of the tumor. As a result, in the properly selected patients, proton beam therapy has the ability to improve cure rates by increasing the dose delivered to the tumor and simultaneously reduce side-effects by decreasing...

  15. Correlated stopping, proton clusters and higher order proton cumulants

    Energy Technology Data Exchange (ETDEWEB)

    Bzdak, Adam [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow (Poland); Koch, Volker [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Skokov, Vladimir [RIKEN/BNL, Brookhaven National Laboratory, Upton, NY (United States)

    2017-05-15

    We investigate possible effects of correlations between stopped nucleons on higher order proton cumulants at low energy heavy-ion collisions. We find that fluctuations of the number of wounded nucleons N{sub part} lead to rather nontrivial dependence of the correlations on the centrality; however, this effect is too small to explain the large and positive four-proton correlations found in the preliminary data collected by the STAR collaboration at √(s) = 7.7 GeV. We further demonstrate that, by taking into account additional proton clustering, we are able to qualitatively reproduce the preliminary experimental data. We speculate that this clustering may originate either from collective/multi-collision stopping which is expected to be effective at lower energies or from a possible first-order phase transition, or from (attractive) final state interactions. To test these ideas we propose to measure a mixed multi-particle correlation between stopped protons and a produced particle (e.g. pion, antiproton). (orig.)

  16. Proton-90Zr interaction at sub-coulomb proton energies

    International Nuclear Information System (INIS)

    Laird, C.E.; Flynn, D.; Hershberger, R.L.; Gabbard, F.

    1985-01-01

    Measurements have been made of proton elastic scattering differential cross sections for proton scattering at 135 0 and 165 0 from 2 to 7 MeV, of inelastic scattering cross sections for proton scattering from 3.9 to 5.7 MeV, and of the radiative capture cross sections from 1.9 to 5.7 MeV detecting primary and cascade gamma rays. Optical potentials with Hauser-Feshbach and coupled-channel models have been used to analyze the data. This analysis yields an energy dependent absorptive potential of W = 2.63+.73 whose mean value of 5 MeV at E/sub p/ = 4 MeV is consistent with previously reported, but anomalously small values. The diffuseness of the real potential is .54 fm, which is consistent with values found for 92 Zr and 94 Zr. The adopted model values are used to deduce a total proton strength function which displays the features of both the 3s and the 3p single particle resonances

  17. An integral test of FLUKA nuclear models with 160 MeV proton beams in multi-layer Faraday cups

    CERN Document Server

    Rinaldi, I; Parodi, K; Ferrari, A; Sala, P; Mairani, A

    2011-01-01

    Monte Carlo (MC) codes are useful tools to simulate the complex processes of proton beam interactions with matter. In proton therapy, nuclear reactions influence the dose distribution. Therefore, the validation of nuclear models adopted in MC codes is a critical requisite for their use in this field. A simple integral test can be performed using a multi-layer Faraday cup (MLFC). This method allows separation of the nuclear and atomic interaction processes, which are responsible for secondary particle emission and the finite primary proton range, respectively. In this work, the propagation of 160 MeV protons stopping in two MLFCs made of polyethylene and copper has been simulated by the FLUKA MC code. The calculations have been performed with and without secondary electron emission and transport, as well as charge sharing in the dielectric layers. Previous results with other codes neglected those two effects. The impact of this approximation has been investigated and found to be relevant only in the proximity ...

  18. From 2D to 3D: Proton Radiography and Proton CT in proton therapy: A simulation study

    NARCIS (Netherlands)

    Takatsu, J.; van der Graaf, E.R.; van Goethem, M.-J.; Brandenburg, S.; Biegun, Aleksandra

    (1) Purpose In order to reduce the uncertainty in translation of the X-ray Computed Tomography (CT) image into a map of proton stopping powers (3-4% and even up to 10% in regions containing bones [1-8]), proton radiography is being studied as an alternative imaging technique in proton therapy. We

  19. Quarkonium production in high energy proton-proton and proton-nucleus collisions

    International Nuclear Information System (INIS)

    Conesa del Valle, Z.; Corcella, G.; Fleuret, F.; Ferreiro, E.G.; Kartvelishvili, V.; Kopeliovich, B.; Lansberg, J.P.; Lourenco, C.; Martinez, G.; Papadimitriou, V.; Satz, H.; Scomparin, E.; Ullrich, T.; Teryaev, O.; Vogt, R.; Wang, J.X.

    2011-01-01

    We present a brief overview of the most relevant current issues related to quarkonium production in high energy proton-proton and proton-nucleus collisions along with some perspectives. After reviewing recent experimental and theoretical results on quarkonium production in pp and pA collisions, we discuss the emerging field of polarisation studies. Afterwards, we report on issues related to heavy-quark production, both in pp and pA collisions, complemented by AA collisions. To put the work in broader perpectives, we emphasize the need for new observables to investigate the quarkonium production mechanisms and reiterate the qualities that make quarkonia a unique tool for many investigations in particle and nuclear physics.

  20. Polarized protons and parity violating asymmetries

    International Nuclear Information System (INIS)

    Trueman, T.L.

    1984-01-01

    The potential for utilizing parity violating effects, associated with polarized protons, to study the standard model, proton structure, and new physics at the SPS Collider is summarized. 24 references

  1. Polarized protons at the AGS

    International Nuclear Information System (INIS)

    Krisch, A.D.

    1981-01-01

    Various aspects of the project of modifying the Brookhaven AGS for the production of polarized proton beams are discussed. It is observed that pure spin state cross sections are of great importance in many investigations since differences between spin states are frequently significant. Financial and technical aspects of the modification of the Brookhaven accelerator are also discussed

  2. High intensity circular proton accelerators

    International Nuclear Information System (INIS)

    Craddock, M.K.

    1987-12-01

    Circular machines suitable for the acceleration of high intensity proton beams include cyclotrons, FFAG accelerators, and strong-focusing synchrotrons. This paper discusses considerations affecting the design of such machines for high intensity, especially space charge effects and the role of beam brightness in multistage accelerators. Current plans for building a new generation of high intensity 'kaon factories' are reviewed. 47 refs

  3. Rise in proton structure function

    International Nuclear Information System (INIS)

    Fazal-e-Aleem; Rashid, H.; Ali, S.

    1996-08-01

    By the choice of a new scale factor we obtain a good qualitative fit to the HERA data for the proton structure function in the small x region which exhibits double asymptotic scaling. Any scaling violations in the future measurements when made in smaller bins will be of immense value. (author). 19 refs, 6 figs

  4. Uncertainties in the proton lifetime

    International Nuclear Information System (INIS)

    Ellis, J.; Nanopoulos, D.V.; Rudaz, S.; Gaillard, M.K.

    1980-04-01

    We discuss the masses of the leptoquark bosons m(x) and the proton lifetime in Grand Unified Theories based principally on SU(5). It is emphasized that estimates of m(x) based on the QCD coupling and the fine structure constant are probably more reliable than those using the experimental value of sin 2 theta(w). Uncertainties in the QCD Λ parameter and the correct value of α are discussed. We estimate higher order effects on the evolution of coupling constants in a momentum space renormalization scheme. It is shown that increasing the number of generations of fermions beyond the minimal three increases m(X) by almost a factor of 2 per generation. Additional uncertainties exist for each generation of technifermions that may exist. We discuss and discount the possibility that proton decay could be 'Cabibbo-rotated' away, and a speculation that Lorentz invariance may be violated in proton decay at a detectable level. We estimate that in the absence of any substantial new physics beyond that in the minimal SU(5) model the proton lifetimes is 8 x 10 30+-2 years

  5. Proton exciting X ray analysis

    International Nuclear Information System (INIS)

    Ma Xinpei

    1986-04-01

    The analyzing capability of proton exciting X ray analysis for different elements in organisms was discussed, and dealing with examples of trace element analysis in the human body and animal organisms, such as blood serum, urine, and hair. The sensitivity, accuracy, and capability of multielement analysis were discussed. Its strong points for the trace element analysis in biomedicine were explained

  6. Playing with Protons CREATIONS Demonstrator

    CERN Multimedia

    Alexopoulos, Angelos

    2017-01-01

    This document describes Playing with Protons, a CMS education initiative that seeks to enhance teachers’ pedagogical practice with creative, hands-on methodologies through which 10-12 year old students can, in turn, get engaged effectively with science, technology and innovation.

  7. Proton-beam energy analyzer

    International Nuclear Information System (INIS)

    Belan, V.N.; Bolotin, L.I.; Kiselev, V.A.; Linnik, A.F.; Uskov, V.V.

    1989-01-01

    The authors describe a magnetic analyzer for measurement of proton-beam energy in the range from 100 keV to 25 MeV. The beam is deflected in a uniform transverse magnetic field and is registered by photographing a scintillation screen. The energy spectrum of the beam is constructed by microphotometry of the photographic film

  8. Proton gyromagnetic precision measurement system

    International Nuclear Information System (INIS)

    Zhu Deming; Deming Zhu

    1991-01-01

    A computerized control and measurement system used in the proton gyromagnetic precision meausrement is descirbed. It adopts the CAMAC data acquisition equipment, using on-line control and analysis with the HP85 and PDP-11/60 computer systems. It also adopts the RSX11M computer operation system, and the control software is written in FORTRAN language

  9. Resist materials for proton micromachining

    International Nuclear Information System (INIS)

    Kan, J.A. van; Sanchez, J.L.; Xu, B.; Osipowicz, T.; Watt, F.

    1999-01-01

    The production of high aspect ratio microstructures is a potential growth area. The combination of deep X-ray lithography with electroforming and micromolding (i.e. LIGA) is one of the main techniques used to produce 3D microstructures. The new technique of proton micromachining employs focused MeV protons in a direct write process which is complementary to LIGA, e.g. micromachining with 2 MeV protons results in microstructures with a height of 63 μm and lateral sub-micrometer resolution in PMMA resist. The aim of this paper is to investigate the capabilities of proton micromachining as a lithographic technique. This involves the study of different types of resists. The dose distribution of high molecular weight PMMA is compared with three other types of resist: First the positive photo resist AZ P4620 will be discussed and then PMGI SF 23, which can be used as a deep UV, e-beam or X-ray resist. Finally SU-8, a new deep UV negative type of chemically amplified resist will be discussed. All these polymers are applied using the spin coating technique at thicknesses of between 1 and 36 μm

  10. Tests of SEC stability in high flux proton beams

    International Nuclear Information System (INIS)

    Agoritsas, V.; Witkover, R.L.

    1979-01-01

    The Secondary Emission Chamber (SEC) is used to measure the beam intensity in slow extracted beam channels of proton synchrotrons around the world. With the improvements in machine intensity, these monitors have been exposed to higher flux conditions than in the past. A change in sensitivity of up to 25% has been observed in the region around the beam spot. Using SEC's of special construction, a series of tests was performed at FNAL, BNL-AGS and CERN-PS. The results of these tests and conclusions about the construction of more stable SEC's are presented

  11. Commissioning of polarized-proton and antiproton beams at Fermilab

    International Nuclear Information System (INIS)

    Yokosawa, A.

    1988-01-01

    The author described the polarized-proton and polarized-antiproton beams up to 200 GeV/c at Fermilab. The beam line, called MP, consists of the 400-m long primary and 350-m long secondary beam line followed by 60-m long experimental hall. We discuss the characteristics of the polarized beams. The Fermilab polarization projects are designated at E-581/704 initiated and carried out by an international collaboration, Argonne (US), Fermilab (US), Kyoto-Kyushu-Hiroshima-KEK (Japan), LAPP (France), Northwestern University (US), Los Alamos Laboratory (US), Rice (US), Saclay (France), Serpukhov (USSR), INFN Trieste (Italy), and University of Texas (US)

  12. Overview of high intensity proton accelerator facility, J-PARC

    International Nuclear Information System (INIS)

    Ikeda, Y.

    2010-01-01

    The J-PARC project of high intensity proton accelerator research complex, conducted jointly by JAERI and KEK, has been completed with demonstration of all beam productions in 2009 as the facility construction phase, and the operation started to offer the secondary beams of neutron, muon, kaon, and neutrino, to the advanced scientific experimental research aiming at making breakthroughs in materials and life science, nuclear and elementary physics, etc. This text describes the overview of the J-PARC present status with emphasis of a performance toward to 1MW power as user facilities. (author)

  13. Beam intensity monitoring for the external proton beam at LAMPF

    International Nuclear Information System (INIS)

    Barrett, R.J.; Anderson, B.D.; Willard, H.B.; Anderson, A.N.; Jarmie, N.

    1975-07-01

    Three different intensity monitors were tested in the external proton beam at LAMPF, and together cover the entire range of beam currents available. A 800 kg Faraday cup was installed and used to measure the absolute intensity to better than 1 percent for beam currents up to several nanoamperes. A high gain ion chamber was used as part of the calibration procedure for the Faraday cup, and was found to be useful when monitoring very small beam intensities, being reliable down to the few picoampere level. A secondary emission monitor was also tested, calibrated, and found to be trustworthy only for beams of greater than 50 pA intensity. (auth)

  14. Analysis of sludge using Proton induced X-ray emission

    International Nuclear Information System (INIS)

    Aspiazu, J.; Moreno, E.; Andrade, E.; Miranda, J.; Citalan, S.; Moeller, G.; Soler, F.

    1996-01-01

    Regulations to control the huge amounts of sludge produced by wastewater are needed. Sludge generated in conventional sedimentators or anaerobic digesters were characterized by Proton Induced X-ray Emission (PIXE). It was possible to determine the presence of macro nutrient elements, such as P and K, and secondary nutrients like Ca, S, and Mg. Moreover, heavy elements like Cu, Zn, and Pb were also found. The sludge treatment in anaerobic digesters increased the amount of certain elements Al, Si, S, Cl, and K; decrease in Ca, Ti, and Cu, and no change in V, Cr, and Zn. Possible uses of this sludge are also suggested

  15. Proton Therapy at the Paul Scherrer Institute

    International Nuclear Information System (INIS)

    1996-03-01

    The brochure deals with the following topics: radiation therapy and its significance, proton therapy - worldwide and at PSI, advantages of the protons, the new proton therapy facility at PSI, therapy at PSI using the spot-scan technique. figs., tabs., refs

  16. Neutrino proton scattering and the isosinglet term

    International Nuclear Information System (INIS)

    White, D.H.

    1990-01-01

    Elastic neutrino proton scattering is sensitive to the SU(3) axial isosinglet term which is in turn dependent on the strangeness content of the proton. The uncertainties in the analysis of a neutrino proton elastic scattering experiment are discussed, and an experiment which is insensitive to many of the difficulties of the previous experiment is described

  17. Energizing porters by proton-motive force.

    Science.gov (United States)

    Nelson, N

    1994-11-01

    It is generally accepted that the chemistry of water was the most crucial determinant in shaping life on earth. Among the more important chemical features of water is its dissociation into protons and hydroxyl ions. The presence of relatively high proton concentrations in the ambient solution resulted in the evolution of proton pumps during the dawn of life on earth. These proton pumps maintained neutral pH inside the cells and generated electrochemical gradients of protons (proton-motive force) across their membranes. The existence of proton-motive force enabled the evolution of porters driven by it that are most probably among the more primitive porters in the world. The directionality of the substrate transport by the porters could be to both sides of the membranes because they can serve as proton symporters or antiporters. One of the most important subjects of this meeting is the mechanism by which proton-motive and other ion-motive forces drive the transport processes through porters. Is there a common mechanism of action for all proton-driven porters? Is there some common partial reaction by which we can identify the way that porters are energized by proton-motive force? Is there a common coupling between proton movement and uptake or secretion of certain molecules? Even a partial answer to one of these questions would advance our knowledge... or confusion. As my mentor Efraim Racker used to say: 'If you are not totally confused you do not understand the issue'.

  18. Proton hexality in local grand unification

    Energy Technology Data Exchange (ETDEWEB)

    Foerste, Stefan; Nilles, Hans Peter [Bonn Univ. (Germany). Bethe Center for Theoretical Physics and Physikalisches Institut; Ramos-Sanchez, Saul [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Vaudrevange, Patrick K.S. [Muenchen Univ. (Germany). Arnold Sommerfeld Center for Theoretical Physics

    2010-07-15

    Proton hexality is a discrete symmetry that avoids the problem of too fast proton decay in the supersymmetric extension of the standard model. Unfortunately it is inconsistent with conventional grand unification. We show that proton hexality can be incorporated in the scheme of ''Local Grand Unification'' discussed in the framework of model building in (heterotic) string theory. (orig.)

  19. Evaluating Subcriticality during the Ebola Epidemic in West Africa.

    Directory of Open Access Journals (Sweden)

    Wayne T A Enanoria

    Full Text Available The 2014-2015 Ebola outbreak is the largest and most widespread to date. In order to estimate ongoing transmission in the affected countries, we estimated the weekly average number of secondary cases caused by one individual infected with Ebola throughout the infectious period for each affected West African country using a stochastic hidden Markov model fitted to case data from the World Health Organization. If the average number of infections caused by one Ebola infection is less than 1.0, the epidemic is subcritical and cannot sustain itself. The epidemics in Liberia and Sierra Leone have approached subcriticality at some point during the epidemic; the epidemic in Guinea is ongoing with no evidence that it is subcritical. Response efforts to control the epidemic should continue in order to eliminate Ebola cases in West Africa.

  20. Nuclear data relevant to single event upsets in semiconductor memories induced by cosmic-ray neutrons and protons

    International Nuclear Information System (INIS)

    Watanabe, Yukinobu

    2008-01-01

    The role of nuclear data is examined in the study of single event upset (SEU) phenomena in semiconductor memories caused by cosmic-ray neutrons and protons. Neutron and proton SEU cross sections are calculated with a simplified semi-empirical model using experimental heavy-ion SEU cross-sections and a dedicated database of neutron and proton induced reactions on 28 Si. Some impacts of the nuclear reaction data on SEU simulation are analyzed by investigating relative contribution of secondary ions and neutron elastic scattering to SEU and influence of simultaneous multiple ions emission on SEU. (author)

  1. Proton-proton, anti-proton-anti-proton, proton-anti-proton correlations in Au+Au collisions measured by STAR at RHIC

    International Nuclear Information System (INIS)

    Gos, H.P.

    2007-01-01

    The analysis of two-particle correlations provides a powerful tool to study the properties of hot and dense matter created in heavy-ion collisions at ultra-relativistic energies. Applied to identical and non-identical hadron pairs, it makes the study of space-time evolution of the source in femtoscopic scale possible. Baryon femtoscopy allows extraction of the radii of produced sources which can be compared to those deduced from identical pion studies, providing complete information about the source characteristics. In this paper we present the correlation functions obtained for identical and non-identical baryon pairs of protons and anti-protons. The data were collected recently in Au+Au collisions at √(s NN )=62 GeV and √(s NN )=200 GeV by the STAR detector at the RHIC accelerator. We introduce corrections to the baryon-baryon correlations taking into account: residual correlations from weak decays, particle identification probability and the fraction of primary baryons. Finally we compare our results to theoretical predictions. (orig.)

  2. SRNA-2K5, Proton Transport Using 3-D by Monte Carlo Techniques

    International Nuclear Information System (INIS)

    Ilic, Radovan D.

    2005-01-01

    ) protons step is corrected with data about protons position before and after scattering; (vi) there is final probability on step for nonelastic nuclear interaction to happen, and for proton to be absorbed. Compound nucleus decays with emission of protons, neutrons, deuterons, tritons, alpha particles or photons. Particular decay particle is sampled from Poisson's distribution with appropriate average values of multiplication factor of each particle. Energy and angle of particle emission and factors of multiplication are determined from the cross section that obtained by the integration of differential cross section for nonelastic nuclear interaction. Energy and angle of secondary neutron are sampled from emission spectrum. Neutron and photon transport are not included in the current model. They are registered in data file and can be used by other code to simulate their transport. Emitted deuteron, triton and alpha particles are absorbed at the place their creation. 3 - Restrictions on the complexity of the problem: Proton kinetic energies have to be in the range from 100 keV to 250 MeV. No more then 128 geometry zones and less then 32 materials with no more then 15 elements in each material. In these conditions user can obtain geometry image by gview2d.exe

  3. Quasi-free knockout reactions with the proton-dripline nucleus {sup 17}Ne

    Energy Technology Data Exchange (ETDEWEB)

    Wamers, Felix; Aumann, Thomas [Institut fuer Kernphysik, TU, Darmstadt (Germany); Heil, Michael [Kernreaktionen und Nukleare Astrophysik, GSI, Darmstadt (Germany); Marganiec, Justyna [ExtreMe Matter Institute EMMI, GSI, Darmstadt (Germany); Plag, Ralf [Kernreaktionen und Nukleare Astrophysik, GSI, Darmstadt (Germany); Goethe Universitaet, Frankfurt a.M. (Germany); Collaboration: R3B-Collaboration

    2011-07-01

    {sup 17}Ne is a proton-dripline nucleus that has raised special interest in nuclear-structure physics in recent years. As a ({sup 15}O+2p) Borromean 3-body system, it is often considered to be a 2-proton-halo nucleus, yet lacking concluding experimental evidence about its structure. We have studied breakup reactions of 500 AMeV {sup 17}Ne secondary beams using the R{sup 3}B-LAND setup at GSI. One focus was on the quasi-free one-proton knockout in a proton-rich paraffin (CH{sub 2}) target in inverse kinematics, i.e., {sup 17}Ne(p,2p){sup 16}F{yields}{sup 15}O+p, in comparison to the one-proton knockout with a carbon target. Recoil protons have been detected with Si-Strip detectors and the surrounding 4{pi} NaI spectrometer ''Crystal Ball'', thus providing a clean signature for quasi-free knockout. First results on two-proton removal cross sections with CH{sub 2} and C targets will be presented, as well as transverse momentum distributions of the {sup 15}O core in {sup 17}Ne. Projectile-like forward protons after one-proton knockout from {sup 17}Ne have been measured in coincidence with the {sup 15}O residual core, leading to the relative-energy spectrum of the unbound {sup 16}F. Possible interpretations and implications regarding the structure of {sup 17}Ne are discussed.

  4. CHARGE-2/C, Flux and Dose Behind Shield from Electron, Proton, Heavy Particle Irradiation

    International Nuclear Information System (INIS)

    Ucker, W.R.; Lilley, J.R.

    1994-01-01

    1 - Description of problem or function: The CHARGE code computes flux spectra, dose and other response rates behind a multilayered spherical or infinite planar shield exposed to isotopic fluxes of electrons, protons and heavy charged particles. The doses, or other responses, to electron, primary proton, heavy particle, electron Bremsstrahlung, secondary proton, and secondary neutron radiations are calculated as a function of penetration into the shield; the materials of each layer may be mixtures of elements contained in the accompanying data library, or supplied by the user. The calculation may optionally be halted before the entire shield is traversed by specifying a minimum total dose rate; the computation stops when the dose drops below this value. The ambient electron, proton and heavy particle spectra may be specified in tabular or functional form. These incident charged particle spectra are divided into energy bands or groups, the number or spacing of which are controlled by input data. The variation of the group boundary energies and group spectra as a function of shield penetration uniquely determines charged particle dose rates and secondary particle production rates. The charged particle shielding calculation is essentially the integration of the range- energy equation which expresses the variation of particle energy wit distance travelled. 2 - Method of solution: The 'straight-ahead' approximation is used throughout, that is the changes in particle direction of motion due to elastic scattering are ignored. This approximation is corrected, in the case of electrons, by applying transmission factors obtained from Monte Carlo calculations. Inelastic scattering between protons and the shielding material is assumed to produce two classes of secondaries 1) Cascade protons and neutrons, emitted in the same direction as the primaries 2) Evaporation neutrons, emitted isotropically. The transmission of secondary protons is analyzed in exactly the same way as the

  5. Electron cloud development in the Proton Storage Ring and in the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Pivi, M.T.F.; Furman, M.A.

    2002-01-01

    We have applied our simulation code ''POSINST'' to evaluate the contribution to the growth rate of the electron-cloud instability in proton storage rings. Recent simulation results for the main features of the electron cloud in the storage ring of the Spallation Neutron Source(SNS) at Oak Ridge, and updated results for the Proton Storage Ring (PSR) at Los Alamos are presented in this paper. A key ingredient in our model is a detailed description of the secondary emitted-electron energy spectrum. A refined model for the secondary emission process including the so-called true secondary, rediffused and backscattered electrons has recently been included in the electron-cloud code

  6. The enrichment secondary market

    International Nuclear Information System (INIS)

    Einbund, D.R.

    1986-01-01

    This paper will addresses two topics: the background to the present status of the enrichment secondary market and the future outlook of the secondary market in enrichment services, and the viability of the nuclear fuel brokerage industry. These two topics are inevitably connected, as most secondary market activity, not only in enrichment but also in natural uranium, has traditionally been conducted with the participation of brokers. Therefore, the author interrelates these topics

  7. Human Monoclonal Antibodies against West Nile Virus Induced by Natural Infection Neutralize at a Postattachment Step

    NARCIS (Netherlands)

    Vogt, Matthew R.; Moesker, Bastiaan; Goudsmit, Jaap; Jongeneelen, Mandy; Austin, S. Kyle; Oliphant, Theodore; Nelson, Steevenson; Pierson, Theodore C.; Wilschut, Jan; Throsby, Mark; Diamond, Michael S.

    West Nile virus (WNV) is a neurotropic flavivirus that is now a primary cause of epidemic encephalitis in North America. Studies of mice have demonstrated that the humoral immune response against WNV limits primary infection and protects against a secondary challenge. The most-potent neutralizing

  8. The Sex Education Debates: Teaching "Life Style" in West Bengal, India

    Science.gov (United States)

    Chakravarti, Paromita

    2011-01-01

    This paper examines the recent controversies surrounding the decision to introduce sex education in secondary schools in India to combat the rapid spread of HIV and AIDS in the country. While 11 Indian states have banned it, the Left-ruled state of West Bengal has designed a teachers' manual to impart sex education. However, a close analysis of…

  9. Pair angular correlations for pions, kaons and protons in proton-proton collisions in ALICE

    CERN Document Server

    Zaborowska, Anna

    2014-01-01

    This thesis presents the correlation functions in $\\Delta\\eta\\, \\Delta\\phi$ space for pairs of pions, kaons and protons. The studies were carried out on the set of proton-proton collisions at the centre-of-mass energy $\\sqrt{s}$ = 7 TeV, obtained in ALICE, A Large Ion Collider Experiment at CERN, the European Organization for Nuclear Research. The analysis was performed for two charge combinations (like-sign pairs and unlike-sign pairs) as well as for three multiplicity ranges. Angular correlations are a rich source of information about the elementary particles behaviour. They result in from the interplay of numerous effects, including resonances’ decays, Coulomb interactions and energy and momentum conservation. In case of identical particles quantum statistics needs to be taken into account. Moreover, particles differ in terms of quark content. Kaons, carrying the strange quark obey the strangeness conservation law. In the production of protons baryon number must be conserved. These features are reflected...

  10. Quantitative secondary electron detection

    Science.gov (United States)

    Agrawal, Jyoti; Joy, David C.; Nayak, Subuhadarshi

    2018-05-08

    Quantitative Secondary Electron Detection (QSED) using the array of solid state devices (SSD) based electron-counters enable critical dimension metrology measurements in materials such as semiconductors, nanomaterials, and biological samples (FIG. 3). Methods and devices effect a quantitative detection of secondary electrons with the array of solid state detectors comprising a number of solid state detectors. An array senses the number of secondary electrons with a plurality of solid state detectors, counting the number of secondary electrons with a time to digital converter circuit in counter mode.

  11. Dielectron production in proton-proton collisions with ALICE

    CERN Document Server

    Koehler, Markus K

    Ultrarelativistic hadron collisions, such as delivered since a couple of years at the Large Hadron Collider (LHC), provide new insights into the properties of strongly interacting matter at high temperatures and densities, which is expected to have existed a few of a millionth seconds after the big bang. Electromagnetic probes, such as leptons and photons, are emitted during the entire collision. Since they do not undergo strong interactions, they reflect the entire evolution of the collision.\\\\ Pairs of leptons, so called dileptons, have the advantage compared to real photons, that they do not only carry momentum, but also have a non-zero invariant mass. The invariant mass spectrum of dileptons is a superposition of several components and allows to address different characteristics of the medium.\\\\ To understand dielectron production in heavy-ion collisions, reference measurements in proton-proton (pp) collisions are necessary. pp collisions reflect the vacuum contribution of the particles produced in heavy-...

  12. Search for Sphalerons in Proton-Proton Collisions

    CERN Document Server

    Satco, Daria

    2017-01-01

    In view of new possibilities becoming more realistic with FCC design and of recent promising results regarding $(B+L)$-violating processes detection we concentrated our research on generation and analysis of sphaleron transitions. The existence of instanton and sphaleron solutions which are associated with transitions between different vacuum states is well known since 1980s. However first calculations of instanton rate killed any hope to detect them even at very high energies while the calculation of sphaleron transitions rate is a tricky problem which continue being widely discussed. In our research we used HERBVI package to generate baryon- and lepton-number violating processes in proton-proton collisions at typical energies 14, 33, 40 and 100 TeV in order to estimate the upper limit on the sphaleron cross-section. We considered the background processes and determined the zero background regions.

  13. Experimental support at proton--proton colliding beam facilities

    International Nuclear Information System (INIS)

    Potter, K.

    1977-01-01

    Proton--proton colliding beam facilities have a number of special features which increase the importance of support for experiments when compared to fixed target accelerators: (1) the laboratory system is very close to the center-of-mass system; this affects the geometry and general size of the experiments; (2) the primary p--p interaction is inaccessible, that is, it takes place in an ultrahigh vacuum chamber; and (3) the experiment detection system is necessarily inside the machine structure and becomes very closely linked to it in many respects. An overall picture is given of experimental support based on experience at the CERN ISR under the following headings: Experimental Areas, Scheduling, Intersection Vacuum Chambers, Machine Background, and Magnets for Experiments. The first two of these topics concern the requirements in space and time of an experiment, while the last three are all related to the close interaction between experiment and machine

  14. ACCELERATION OF POLARIZED PROTONS AT RHIC

    International Nuclear Information System (INIS)

    HUANG, H.

    2002-01-01

    Relativistic Heavy Ion Collider (RHIC) ended its second year of operation in January 2002 with five weeks of polarized proton collisions. Polarized protons were successfully injected in both RHIC rings and maintained polarization during acceleration up to 100 GeV per ring using two Siberian snakes in each ring. This is the first time that polarized protons have been accelerated to 100 GeV. The machine performance and accomplishments during the polarized proton run will be reviewed. The plans for the next polarized proton run will be outlined

  15. Construction and test of a proton detector

    International Nuclear Information System (INIS)

    Kranefeld, G.

    1990-08-01

    Nonmagnetic proton detectors will be used in future at the ELAN experiment. For this purpose a prototype of a proton telescope has being designed. The detector consists of three scintillation counters which are used as dE/dx counter, energy (stopping) counter and veto counter. This telescope was calibrated by using elastic electron proton scattering and tested with quasielastic electrodisintegration of the deuteron. These are no principal problems to identify the protons. In the electrodisintegration of the deuteron a missing mass resolution of ± 5.1 MeV was achieved. It has been shown, that such detectors are well suited for proton detection. (orig.) [de

  16. Proton conduction in biopolymer exopolysaccharide succinoglycan

    Energy Technology Data Exchange (ETDEWEB)

    Kweon, Jin Jung [Department of Physics, Korea University, Seoul 136-713 (Korea, Republic of); National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310 (United States); Lee, Kyu Won; Kim, Hyojung; Lee, Cheol Eui, E-mail: rscel@korea.ac.kr [Department of Physics, Korea University, Seoul 136-713 (Korea, Republic of); Jung, Seunho [Department of Bioscience and Biotechnology and UBITA, Konkuk University, Seoul 143-701 (Korea, Republic of); Kwon, Chanho [Naraebio Research Laboratories, 177 Dangha-ri, Bongdam-eup, Hawseong-si 445-892 (Korea, Republic of)

    2014-07-07

    Protonic currents play a vital role in electrical signalling in living systems. It has been suggested that succinoglycan plays a specific role in alfalfa root nodule development, presumably acting as the signaling molecules. In this regard, charge transport and proton dynamics in the biopolymer exopolysaccharide succinoglycan have been studied by means of electrical measurements and nuclear magnetic resonance (NMR) spectroscopy. In particular, a dielectric dispersion in the system has revealed that the electrical conduction is protonic rather electronic. Besides, our laboratory- and rotating-frame {sup 1}H NMR measurements have elucidated the nature of the protonic conduction, activation of the protonic motion being associated with a glass transition.

  17. Fine structure in deformed proton emitting nuclei

    International Nuclear Information System (INIS)

    Sonzogni, A. A.; Davids, C. N.; Woods, P. J.; Seweryniak, D.; Carpenter, M. P.; Ressler, J. J.; Schwartz, J.; Uusitalo, J.; Walters, W. B.

    1999-01-01

    In a recent experiment to study the proton radioactivity of the highly deformed 131 Eu nucleus, two proton lines were detected. The higher energy one was assigned to the ground-state to ground-state decay, while the lower energy, to the ground-state to the 2 + state decay. This constitutes the first observation of fine structure in proton radioactivity. With these four measured quantities, proton energies, half-life and branching ratio, it is possible to determine the Nilsson configuration of the ground state of the proton emitting nucleus as well as the 2 + energy and nuclear deformation of the daughter nucleus. These results will be presented and discussed

  18. Proton and non-proton activation of ASIC channels.

    Directory of Open Access Journals (Sweden)

    Ivan Gautschi

    Full Text Available The Acid-Sensing Ion Channels (ASIC exhibit a fast desensitizing current when activated by pH values below 7.0. By contrast, non-proton ligands are able to trigger sustained ASIC currents at physiological pHs. To analyze the functional basis of the ASIC desensitizing and sustained currents, we have used ASIC1a and ASIC2a mutants with a cysteine in the pore vestibule for covalent binding of different sulfhydryl reagents. We found that ASIC1a and ASIC2a exhibit two distinct currents, a proton-induced desensitizing current and a sustained current triggered by sulfhydryl reagents. These currents differ in their pH dependency, their sensitivity to the sulfhydryl reagents, their ionic selectivity and their relative magnitude. We propose a model for ASIC1 and ASIC2 activity where the channels can function in two distinct modes, a desensitizing mode and a sustained mode depending on the activating ligands. The pore vestibule of the channel represents a functional site for binding non-proton ligands to activate ASIC1 and ASIC2 at neutral pH and to prevent channel desensitization.

  19. Proton and non-proton activation of ASIC channels.

    Science.gov (United States)

    Gautschi, Ivan; van Bemmelen, Miguel Xavier; Schild, Laurent

    2017-01-01

    The Acid-Sensing Ion Channels (ASIC) exhibit a fast desensitizing current when activated by pH values below 7.0. By contrast, non-proton ligands are able to trigger sustained ASIC currents at physiological pHs. To analyze the functional basis of the ASIC desensitizing and sustained currents, we have used ASIC1a and ASIC2a mutants with a cysteine in the pore vestibule for covalent binding of different sulfhydryl reagents. We found that ASIC1a and ASIC2a exhibit two distinct currents, a proton-induced desensitizing current and a sustained current triggered by sulfhydryl reagents. These currents differ in their pH dependency, their sensitivity to the sulfhydryl reagents, their ionic selectivity and their relative magnitude. We propose a model for ASIC1 and ASIC2 activity where the channels can function in two distinct modes, a desensitizing mode and a sustained mode depending on the activating ligands. The pore vestibule of the channel represents a functional site for binding non-proton ligands to activate ASIC1 and ASIC2 at neutral pH and to prevent channel desensitization.

  20. Golden Jubilee photos: ISR - The first proton-proton interactions

    CERN Document Server

    2004-01-01

    At the inauguration ceremony for the Intersecting Storage Rings (ISR) on 16 October 1971, the man in charge of their construction, Kjell Johnsen, presented the "key" to the machine to Edoardo Amaldi, President of Council. Seated on the stage with them for this symbolic event were Victor Weisskopf, Marcel Antonioz, Willy Jentschke (seen on the left of the photo) and Werner Heisenberg (on the far right). On 27 January that year, in a world premier, signals produced by proton-proton collisions had been observed at the ISR. The protons, supplied by the PS, were injected into two identical rings, each measuring 300 metres in diameter, and collided head on at the 8 points where the rings intersected. The installation, which remained in operation until 1984, gave physicists access to a wide range of energies for hadron physics, hitherto restricted to the data from cosmic ray studies. The many technological challenges that were met at the ISR, in the fields of vacuum technology and stochastic cooling for instance,...

  1. Cosmic ray antimatter: Is it primary or secondary?

    Science.gov (United States)

    Stecker, F. W.; Protheroe, R. J.; Kazanas, D.

    1981-01-01

    The relative merits and difficulties of the primary and secondary origin hypotheses for the observed cosmic ray antiprotons, including the low energy measurement of Buffington, were examined. It is concluded that the cosmic ray antiproton data may be strong evidence for antimatter galaxies and baryon symmetric cosmology. The present antiproton data are consistent with a primary extragalactic component having antiproton/proton approximately equal to .0032 + or - 0.7.

  2. Proton-rich nuclear statistical equilibrium

    International Nuclear Information System (INIS)

    Seitenzahl, I.R.; Timmes, F.X.; Marin-Lafleche, A.; Brown, E.; Magkotsios, G.; Truran, J.

    2008-01-01

    Proton-rich material in a state of nuclear statistical equilibrium (NSE) is one of the least studied regimes of nucleosynthesis. One reason for this is that after hydrogen burning, stellar evolution proceeds at conditions of an equal number of neutrons and protons or at a slight degree of neutron-richness. Proton-rich nucleosynthesis in stars tends to occur only when hydrogen-rich material that accretes onto a white dwarf or a neutron star explodes, or when neutrino interactions in the winds from a nascent proto-neutron star or collapsar disk drive the matter proton-rich prior to or during the nucleosynthesis. In this Letter we solve the NSE equations for a range of proton-rich thermodynamic conditions. We show that cold proton-rich NSE is qualitatively different from neutron-rich NSE. Instead of being dominated by the Fe-peak nuclei with the largest binding energy per nucleon that have a proton-to-nucleon ratio close to the prescribed electron fraction, NSE for proton-rich material near freezeout temperature is mainly composed of 56Ni and free protons. Previous results of nuclear reaction network calculations rely on this nonintuitive high-proton abundance, which this Letter explains. We show how the differences and especially the large fraction of free protons arises from the minimization of the free energy as a result of a delicate competition between the entropy and nuclear binding energy.

  3. Transport Theory for Kinetic Emission of Secondary Electrons from Solids

    DEFF Research Database (Denmark)

    Schou, Jørgen

    1980-01-01

    a solid is derived. To find the former, existing computations for ion slowing down and experimental and theoretical ones for electron bombardment can be utilized. The energy and angular distribution of the secondary electrons and the secondary electron yield are both expressed as products of the deposited...... in the keV region is largely taken into account. The predicted energy and angular distribution agree with absolute spectra for incident electrons, whereas the agreement with absolute spectra for incident protons is less satisfactory. Extrapolation of the energy distribution down to the vacuum level gives...

  4. Principles and practice of proton beam therapy

    CERN Document Server

    Das, Indra J

    2015-01-01

    Commissioned by The American Association of Physicists in Medicine (AAPM) for their June 2015 Summer School, this is the first AAPM monograph printed in full color. Proton therapy has been used in radiation therapy for over 70 years, but within the last decade its use in clinics has grown exponentially. This book fills in the proton therapy gap by focusing on the physics of proton therapy, including beam production, proton interactions, biology, dosimetry, treatment planning, quality assurance, commissioning, motion management, and uncertainties. Chapters are written by the world's leading medical physicists who work at the pioneering proton treatment centers around the globe. They share their understandings after years of experience treating thousands of patients. Case studies involving specific cancer treatments show that there is some art to proton therapy as well as state-of-the-art science. Even though the focus lies on proton therapy, the content provided is also valuable to heavy charged particle th...

  5. Report of the Fixed-Target Proton-Accelerator Group

    International Nuclear Information System (INIS)

    Abe, K.; Bunce, G.; Fisk, G.

    1982-01-01

    The fixed target proton accelerator group divided itself into two roughly equal parts. One sub-group concentrated on a high intensity (10 14 protons/sec) moderate energy (30 GeV) machine while the other worked on a moderate intensity (5 x 10 11 protons/sec) very high energy (20 TeV) machine. For experiments where the total available energy is adequate, the fixed target option added to a anti p p 20 TeV collider ring has several attractive features: (1) high luminosity afforded by intense beams striking thick solid targets; (2) secondary beams of hadrons, photons, and leptons; and (3) the versatility of a fixed target facility, where many experiments can be performed independently. The proposed experiments considered by the subgroup, including neutrino, photon, hadron, and very short lived particle beams were based both on scaled up versions of similar experiments proposed for Tevatron II at Fermilab and on the 400 GeV fixed target programs at Fermilab and CERN

  6. A new proton spill from CERN to Gran Sasso

    CERN Document Server

    CERN Bulletin

    2011-01-01

    Since 21 October, CERN has been sending a new type of neutrino beam to Gran Sasso. The new configuration is intended to allow the experiments to define the departure time of the neutrinos more accurately and thus check the previous results obtained using the nominal beam configuration.   The CERN Neutrino to Gran Sasso (CNGS) beam no longer operates using the standard beam time structure. Instead, a new type of proton pulse is being produced by CERN’s accelerators and sent to the graphite target to generate neutrinos. “We are now producing extremely short beam pulses,” explains Edda Gschwendtner, the physicist in charge of the CNGS secondary beam. “During a CNGS cycle we now have a LHC type bunched beam with four bunches, each about 2 ns long. Each bunch contains more than 2.5 x 1011 protons; bunches are spaced by 500 ns. In total, this makes about 1012 protons on target for each extraction from the SPS.” The CNGS beam was originally designed to m...

  7. Cover Crops in West Africa

    International Development Research Centre (IDRC) Digital Library (Canada)

    Sasakawa Global 2000 — Bénin, 04 BP 1091, Cotonou, Benin ..... and West African farmers have been remarkably creative with GMCCs, developing and ...... Journal d'agriculture tropicale et de botanique appliquée, 4(5). ...... political; the best approach is therefore thought to be to accept this limitation and work with it.

  8. West Virginia's forest resources, 2009

    Science.gov (United States)

    R.H. Widmann; G.W. Cook

    2011-01-01

    This publication provides an overview of forest resource attributes for West Virginia based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These estimates, along with web-posted core tables, will be updated annually. For more information, please refer to page 4 of this...

  9. West Virginia's forest resources, 2010

    Science.gov (United States)

    R.H. Widmann; G.W. Cook

    2011-01-01

    This publication provides an overview of forest resource attributes for West Virginia based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These estimates, along with web-posted core tables, will be updated annually. For more information please refer to page 4 of this...

  10. West Virginia's forest resources, 2008

    Science.gov (United States)

    R.H. Widmann; B.J. Butler; G.W. Cook

    2010-01-01

    This publication provides an overview of forest resource attributes for West Virginia based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These estimates, along with web-posted core tables, will be updated annually. For more information please refer to page 4 of this...

  11. WEST AFRICAN JOURNAL OF MEDICINE

    African Journals Online (AJOL)

    user1

    WEST AFRICAN JOURNAL OF MEDICINE. Tuberculous Lymphadenitis: Skin Delayed-Type Hypersensitivity Reaction and. Cellular Immune Responses. Lymphadénite Tuberculeuse: Peau Réaction d'hypersensibilité Retardée de Type et les Réponses. Immunitaires Cellulaires. E. A. G. Khalil†*, A. A. Elnour†, A. M. Musa†, ...

  12. Anurans Collected in West Malaysia

    DEFF Research Database (Denmark)

    Cedhagen, Tomas

    1997-01-01

    Distributional records and natural history noles are given for anurans collected in West Malaysia 1976. Rano baramica was observed when it was caught by an Ahaetulfa nasula (Serpentes: Colubridae). Rhacophorus leucomystax, Limnonectes limnociulris and Microhyla heymonsi were all found al night on...

  13. Primary Schooling in West Bengal

    Science.gov (United States)

    Sen, Amartya

    2010-01-01

    With his Nobel Prize award money, Amartya Sen set up the Pratichi Trust which carries out research, advocacy and experimental projects in basic education, primary health care, and women's development in West Bengal and Bangladesh. Professor Sen himself took active interest in this work--helping set the agenda, looking at the evidence from…

  14. Verbal aspects in West Greenlandic

    DEFF Research Database (Denmark)

    Trondhjem, Naja Blytmann

    2017-01-01

    In this article, lexical aspectual types in West Greenlandic are investigated in the five aspectual types, states, achievements, semelfactives, activities and accomplishments. It is shown that derivational verbalizing affixes include aspectual type congruent with the lexical aspect and how the as...

  15. West Nile Virus Neuroinvasive Disease

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2009-07-01

    Full Text Available Epidemiological features of West Nile Virus (WNV disease among children (<18 years of age reported to the Centers for Disease Control and Prevention from 1999 through 2007 were analyzed and compared with those of adult WNV neuroinvasive disease (WNND, in a study at CDC&P, Fort Collins, CO.

  16. West Europe without Nuclear Energy

    International Nuclear Information System (INIS)

    1999-01-01

    This document contains basic conclusions of discussion if West Europe can exist without nuclear energy: 1. Presumptions for the nuclear energy removal 2. Regional and international consulting 3. Economic competition 4. Role of the nuclear energy 5. Situation in the energetic industry 6. Costs, safety and public relations 7. Energy policy

  17. The West in Early Cinema

    NARCIS (Netherlands)

    Verhoeff, Nanna

    2006-01-01

    Verhoeff investigates the emergence of the western genre, made in the first two decades of cinema (1895-1915). By analyzing many unknown and forgotten films from international archives she traces the relationships between films about the American West, their surrounding films, and other popular

  18. Cerebral gigantism with West syndrome.

    Science.gov (United States)

    Ray, Munni; Malhi, P; Bhalla, A K; Singhi, P D

    2003-07-01

    A case of cerebral gigantism (Sotos syndrome) with West syndrome in a one-year-old male child is reported. The case had a large stature, typical facies and neurodevelopmental delay along with infantile spasms, which were refractory to treatment with valproate and clonazepam.

  19. West African Journal of Radiology: Journal Sponsorship

    African Journals Online (AJOL)

    West African Journal of Radiology: Journal Sponsorship. Journal Home > About the Journal > West African Journal of Radiology: Journal Sponsorship. Log in or Register to get access to full text downloads.

  20. Team West Virginia/Rome Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Korakakis, Dimitris [West Virginia Univ., Morgantown, WV (United States)

    2017-04-10

    Overall, the team, West Virginia University (WVU) and University of Rome Tor Vergata (UTV), has a goal of building an attractive, low-cost, energy-efficient solar-powered home that represents both the West Virginian and Italian cultures.

  1. Secondary acute pneumonias

    International Nuclear Information System (INIS)

    Rozenshtraukh, L.C.; Rybakova, N.I.; Vinner, M.G.

    1987-01-01

    Pathological changes, promoting the development of secondary pneumonias, are investigated. To this group belong: blood circulation disturbance in small circle, bronchial passability disturbance, aspiration of liquids, gases and vapors, infections and purulent processes, intoxications, injuries, operative interference. Roetgenologic symptomatics of each secondary acute pneumonia form is presented in detail

  2. Neutron and proton optical potentials

    International Nuclear Information System (INIS)

    Hansen, L.F.

    1985-11-01

    The neutron and proton optical model potentials (OMP) are discussed in terms of microscopic (MOMP) and phenomenological (POMP) models. For the MOMP, two approaches are discussed, the nucleus matter approach [Jeukenne-Lejeune-Mahaux (JLM) and Brieva-Rook-von Geramb (BRVG), potentials] and the finite nuclei approach (Osterfeld and Madsen). For the POMP, the Lane charge-exchange potential and its validity over a wide mass range is reviewed. In addition to the Lane symmetry term, the Coulomb correction to both the real and imaginary parts of the OMP is discussed for the above models. The use of the OMP to calculate collective inelastic scattering and observed differences between the neutron- and proton-deformation parameters is also illustrated. 25 refs., 3 figs

  3. Proton Radiography at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-28

    The proton radiography (pRad) facility at Los Alamos National Lab uses high energy protons to acquire multiple frame flash radiographic sequences at megahertz speeds: that is, it can make movies of the inside of explosions as they happen. The facility is primarily used to study the damage to and failure of metals subjected to the shock forces of high explosives as well as to study the detonation of the explosives themselves. Applications include improving our understanding of the underlying physical processes that drive the performance of the nuclear weapons in the United States stockpile and developing novel armor technologies in collaboration with the Army Research Lab. The principle and techniques of pRad will be described, and examples of some recent results will be shown.

  4. Proton radiotherapy of skin carcinomas

    International Nuclear Information System (INIS)

    Umebayashi, Y.; Uyeno, K.; Otsuka, F.

    1994-01-01

    At the Proton Medical Research Centre, University of Tsukuba, a pilot study of proton-beam radiotherapy was performed in 12 patients with the following types of carcinoma: Bowen's disease (4), oral verrucous carcinoma (5), and squamous cell carcinoma (3). They received total doses of 51-99.2 Gy in fractions of 2-12.5 Gy. All tumours responded well to the treatment. All four lesions of Bowen's disease, three of the five oral verrucous carcinomas, and the three squamous cell carcinomas completely regressed following irradiation. Two squamous cell carcinomas recurred during the follow-up period. One recurrent squamous cell carcinoma was successfully treated by a salvage surgical operation, and in the other case the patient refused further therapy. In two verrucous carcinomas there was 90% regression of tumour volume. No severe radiation-related complication occurred. (Author)

  5. Radiotherapy Proton Interactions in Matter

    OpenAIRE

    Gottschalk, Bernard

    2018-01-01

    A survey of physics useful to proton radiotherapy, centered on stopping, scattering and hard scatters: 1. Introduction 2. The fundamental formula dose = fluence x mass stopping power. Practical units, comments on effective stopping power. 3. Range: experimental definition, Beth-Bloch CSDA theory, range-energy tables and approximations, range straggling. 4. Multiple Coulomb Scattering: suggested reading, elements of Moliere theory, the Gaussian approximation, scattering power. 5. Hard scatters...

  6. Are starburst galaxies proton calorimeters?

    Science.gov (United States)

    Wang, Xilu; Fields, Brian D.

    2018-03-01

    Several starburst galaxies have been observed in the GeV and TeV bands. In these dense environments, gamma-ray emission should be dominated by cosmic ray (CR) interactions with the interstellar medium (pcrpism → π0 → γγ). Indeed, starbursts may act as proton `calorimeters' where a substantial fraction of CR energy input is emitted in gamma-rays. Here, we build a one-zone, `thick-target' model implementing calorimetry and placing a firm upper bound on gamma-ray emission from CR interactions. The model assumes that CRs are accelerated by supernovae (SNe), and all suffer nuclear interactions rather than escape. Our model has only two free parameters: the CR proton acceleration energy per SN ɛcr, and the proton injection spectral index s. We calculate the pionic gamma-ray emission from 10 MeV to 10 TeV, and derive thick-target parameters for six galaxies with Fermi, H.E.S.S., and/or VERITAS data. Our model provides good fits for the M82 and NGC 253, and yields ɛcr and s values suggesting that SN CR acceleration is similar in starbursts and in our Galaxy. We find that these starbursts are indeed nearly if not fully proton calorimeters. For NGC 4945 and NGC 1068, the models are consistent with calorimetry but are less well-constrained due to the lack of TeV data. However, the Circinus galaxy and the ultra-luminous infrared galaxy Arp 220 exceed our pionic upper-limit; possible explanations are discussed.

  7. Proton Therapy for Thoracoabdominal Tumors

    Science.gov (United States)

    Sakurai, Hideyuki; Okumura, Toshiyuki; Sugahara, Shinji; Nakayama, Hidetsugu; Tokuuye, Koichi

    In advanced-stage disease of certain thoracoabdominal tumors, proton therapy (PT) with concurrent chemotherapy may be an option to reduce side effects. Several technological developments, including a respiratory gating system and implantation of fiducial markers for image guided radiation therapy (IGRT), are necessary for the treatment in thoracoabdominal tumors. In this chapter, the role of PT for tumors of the lung, the esophagus, and liver are discussed.

  8. Proton Resonance Spectroscopy -- Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Shriner, Jr., J. F. [Tennessee Technological Univ., Cookeville, TN (United States)

    2009-07-27

    This report summarizes work supported by the DOE Grant DE-FG02-96ER40990 during its duration from June 1996 to May 2009. Topics studied include (1) statistical descriptions of nuclear levels and measurements of proton resonances relevant to such descriptions, including measurements toward a complete level scheme for 30P, (2) the development of methods to estimate the missing fraction of levels in a given measurement, and (3) measurements at HRIBF relevant to nuclear astrophysics.

  9. Secondary fuel delivery system

    Science.gov (United States)

    Parker, David M.; Cai, Weidong; Garan, Daniel W.; Harris, Arthur J.

    2010-02-23

    A secondary fuel delivery system for delivering a secondary stream of fuel and/or diluent to a secondary combustion zone located in the transition piece of a combustion engine, downstream of the engine primary combustion region is disclosed. The system includes a manifold formed integral to, and surrounding a portion of, the transition piece, a manifold inlet port, and a collection of injection nozzles. A flowsleeve augments fuel/diluent flow velocity and improves the system cooling effectiveness. Passive cooling elements, including effusion cooling holes located within the transition boundary and thermal-stress-dissipating gaps that resist thermal stress accumulation, provide supplemental heat dissipation in key areas. The system delivers a secondary fuel/diluent mixture to a secondary combustion zone located along the length of the transition piece, while reducing the impact of elevated vibration levels found within the transition piece and avoiding the heat dissipation difficulties often associated with traditional vibration reduction methods.

  10. Secondary and tertiary hyperparathyroidism.

    Science.gov (United States)

    Jamal, Sophie A; Miller, Paul D

    2013-01-01

    We reviewed the etiology and management of secondary and tertiary hyperparathyroidism. Secondary hyperparathyroidism is characterized by an increase in parathyroid hormone (PTH) that is appropriate and in response to a stimulus, most commonly low serum calcium. In secondary hyperparathyroidism, the serum calcium is normal and the PTH level is elevated. Tertiary hyperparathyroidism is characterized by excessive secretion of PTH after longstanding secondary hyperparathyroidism, in which hypercalcemia has ensued. Tertiary hyperparathyroidism typically occurs in men and women with chronic kidney disease usually after kidney transplant. The etiology and treatment of secondary hyperparathyroidism is relatively straightforward whereas data on the management of tertiary hyperparathyroidism is limited to a few small trials with short follow-up. Copyright © 2013 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  11. Antiquark distributions in the proton

    International Nuclear Information System (INIS)

    Brooks, M.; Carey, T.; Garvey, G.

    1997-01-01

    This is the final report of a three-year Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The study of quark and antiquark distributions in the nucleon has been a major endeavor in nuclear and particle physics. Results from a recent deep-inelastic scattering experiment suggest the surprising possibility that the up and down antiquark distributions in the proton are not symmetric. A sensitive and direct determination of the antiquark distributions in the proton can be made by comparing the Drell-Yan cross sections on hydrogen versus deuterium targets. The authors have proposed a new experiment (E866) at Fermilab to carry out such measurements. E866 has been taking data since September 1996. Preliminary results show that the apparatus is working very well. The authors anticipate having seven months of beam in 1997, which would allow them to achieve the sensitivities for a definitive measurement of flavor symmetry of sea quarks in the proton

  12. The intense proton accelerator program

    International Nuclear Information System (INIS)

    Kaneko, Yoshihiko

    1990-01-01

    The Science and Technology Agency of Japan has formulated the OMEGA project, in which incineration of nuclear wastes by use of accelerators is defined as one of the important tasks. Japan Atomic Energy Research Institute (JAERI) has been engaged for several years in basic studies in incineration technology with use of an intense proton linear accelerator. The intense proton accelerator program intends to provide a large scale proton linear accelerator called Engineering Test Accelerator. The principal purpose of the accelerator is to develop nuclear waste incineration technology. The accelerator will also be used for other industrial applications and applied science studies. The present report further outlines the concept of incineration of radio-activities of nuclear wastes, focusing on nuclear reactions and a concept of incineration plant. Features of Engineering Test Accelerator are described focusing on the development of the accelerator, and research and development of incineration technology. Applications of science and technology other than nuclear waste incineration are also discussed. (N.K.)

  13. Ever-changing proton radius?

    Energy Technology Data Exchange (ETDEWEB)

    Mihovilovic, Miha [Institut fuer Kernphysik, Johannes-Gutenberg-Universitaet, Mainz (Germany)

    2016-07-01

    The discrepancy between the proton charge radius extracted from the muonic hydrogen Lamb shift measurement and the presently best value obtained from elastic scattering experiments remains unexplained and represents a burning problem of today's nuclear physics. Therefore, several new experiments are underway, committed to provide new insight into the problem. High-precision electron scattering experiments are in progress at the Jefferson Lab and the Mainz Microtron. As a counterpart to these measurements, a muon-proton scattering experiment is envisioned at the Paul Scherrer Institute. Together with the nuclear scattering experiments, new atomic measurements are underway at the Max Planck Institute in Garching, which aim to further improve also the spectroscopic results on electronic hydrogen. These experiments are complemented by extensive theoretical efforts focused on studying various processes contributing to the atomic Lamb shift measurements that could explain the difference, as well as on pursuing different ways to interpret nuclear form-factor measurements, which could lead to a consistent value of the radius. In this presentation the currently best proton radius measurements are summarized, and the importance of the observed inconsistency between the hydrogen and the muonic-hydrogen data is discussed. Selected new experiments dedicated to remeasuring the radius are described, and the results of the MAMI experiment are presented.

  14. Neutron-proton bremsstrahlung experiments

    Energy Technology Data Exchange (ETDEWEB)

    Koster, J.E. (Los Alamos National Lab., NM (United States)); Nelson, R.O. (Los Alamos National Lab., NM (United States)); Schillaci, M.E. (Los Alamos National Lab., NM (United States)); Wender, S.A. (Los Alamos National Lab., NM (United States)); Mayo, D. (Univ. of California at Davis, CA (United States)); Brady, F.P. (Univ. of California at Davis, CA (United States)); Romero, J. (Univ. of California at Davis, CA (United States)); Krofcheck, D. (Lawrence Livermore National Lab., CA (United States)); Blann, M. (Lawrence Livermore National Lab., CA (United States)); Anthony, P. (Lawrence Livermore National Lab., CA (United States)); Brown, V.R. (Lawrence Livermore National Lab., CA (United States)); Hansen, L. (Lawrence Livermore National Lab., CA (United States)); Pohl, B. (Lawrence Livermore National Lab., CA (United States)); Sangster, T.C. (Lawrence Livermore National Lab., CA (United States)); Nifenecker, H. (Inst. des Sciences Nucleaires, Grenoble (France)); Pinston,

    1993-06-01

    It is well known that charged particles emit bremsstrahlung radiation when they are accelerated. Classical electron bremsstrahlung occurs when a proton is emitted by an electron accelerated in the field of a nucleus. The bremsstrahlung process also occurs in the scattering of nucleons, for which it is the lowest energy inelastic process that can occur. Like electron bremsstrahlung, nucleon-nucleon bremsstrahlung also requires the exchange of a virtual particle to conserve energy and momentum. In electron bremsstrahlung a virtual photon is exchanged but with two nucleons a meson can be exchanged. Unlike electron bremsstrahlung, in nucleon-nucleon bremsstrahlung the photon can originate from the exchanged meson. This exchange contribution has been shown in calculations to be a significant fraction of bremsstrahlung events. Thus bremsstrahlung serves as a probe of exchange currents in the nucleon-nucleon interaction. Because of a lack of a free neutron target or an intense neutron beam, few measurements of neutron-proton bremsstrahlung exist, each having poor statistical accuracy and poor energy resolution. The white neutron source at the Weapons Neutron Research (WNR) target area at the Los Alamos Meson Physics Facility (LAMPF) produces neutrons with energies from below 50 to above 400 MeV. Using time-of-flight techniques and a liquid hydrogen target, we are measuring the outgoing photons of energies up to 250 MeV at gamma ray angles of around 90 relative to the incident beam. Protons scattered at very forward angles are also detected in coincidence with the gamma rays. (orig.)

  15. Biophysical characterization of a relativistic proton beam for image-guided radiosurgery.

    Science.gov (United States)

    Yu, Zhan; Vanstalle, Marie; La Tessa, Chiara; Jiang, Guo-Liang; Durante, Marco

    2012-07-01

    We measured the physical and radiobiological characteristics of 1 GeV protons for possible applications in stereotactic radiosurgery (image-guided plateau-proton radiosurgery). A proton beam was accelerated at 1 GeV at the Brookhaven National Laboratory (Upton, NY) and a target in polymethyl methacrylate (PMMA) was used. Clonogenic survival was measured after exposures to 1-10 Gy in three mammalian cell lines. Measurements and simulations demonstrate that the lateral scattering of the beam is very small. The lateral dose profile was measured with or without the 20-cm plastic target, showing no significant differences up to 2 cm from the axis A large number of secondary swift protons are produced in the target and this leads to an increase of approximately 40% in the measured dose on the beam axis at 20 cm depth. The relative biological effectiveness at 10% survival level ranged between 1.0 and 1.2 on the beam axis, and was slightly higher off-axis. The very low lateral scattering of relativistic protons and the possibility of using online proton radiography during the treatment make them attractive for image-guided plateau (non-Bragg peak) stereotactic radiosurgery.

  16. Biophysical characterization of a relativistic proton beam for image-guided radiosurgery

    International Nuclear Information System (INIS)

    Yu, Z.; Vanstalle, M.; La Tessa, C.; Durante, M.; Jiang Guoliang

    2012-01-01

    We measured the physical and radiobiological characteristics of 1 GeV protons for possible applications in stereotactic radiosurgery (image-guided plateau-proton radiosurgery). A proton beam was accelerated at 1 GeV at the Brookhaven National Laboratory (Upton, NY) and a target in polymethyl methacrylate (PMMA) was used. Clonogenic survival was measured after exposures to 1-10 Gy in three mammalian cell lines. Measurements and simulations demonstrate that the lateral scattering of the beam is very small. The lateral dose profile was measured with or without the 20-cm plastic target, showing no significant differences up to 2 cm from the axis A large number of secondary swift protons are produced in the target and this leads to an increase of approximately 40% in the measured dose on the beam axis at 20 cm depth. The relative biological effectiveness at 10% survival level ranged between 1.0 and 1.2 on the beam axis, and was slightly higher off-axis. The very low lateral scattering of relativistic protons and the possibility of using online proton radiography during the treatment make them attractive for image-guided plateau (non-Bragg peak) stereotactic radiosurgery. (author)

  17. Proton transfer and complex formation of angiotensin I ions with gaseous molecules at various temperature

    International Nuclear Information System (INIS)

    Nonose, Shinji; Yamashita, Kazuki; Sudo, Ayako; Kawashima, Minami

    2013-01-01

    Highlights: • Proton transfer from angiotensin I ions (z = 2, 3) to gaseous molecules was studied. • Temperature dependence of absolute reaction rate constants was measured. • Remarkable changes were obtained for distribution of product ions and reaction rate constants. • Proton transfer reaction was enhanced and reduced by complex formation. • Conformation changes are induced by complex formation and or by thermal collision with He. - Abstract: Proton transfer reactions of angiotensin I ions for +2 charge state, [M + 2H] 2+ , to primary, secondary and aromatic amines were examined in the gas phase. Absolute reaction rate constants for proton transfer were determined from intensities of parent and product ions in the mass spectra. Temperature dependence of the reaction rate constants was measured. Remarkable change was observed for distribution of product ions and reaction rate constants. Proton transfer reaction was enhanced or reduced by complex formation of [M + 2H] 2+ with gaseous molecules. The results relate to conformation changes of [M + 2H] 2+ with change of temperature, which are induced by complex formation and or by thermal collision with He. Proton transfer reactions of angiotensin I ions for +3 charge state, [M + 3H] 3+ , were also studied. The reaction rates did not depend on temperature so definitely

  18. Two- and three-dimensional proton NMR studies of apo-neocarzinostatin

    International Nuclear Information System (INIS)

    Xiaolian Gao; Burkhart, W.

    1991-01-01

    Neocarzinostatin (NCS) is an antitumor protein from Streptomyces carzinostaticus that is identical in apo-protein sequence with mitomalcin (MMC) from Streptomyces malayensis. The authors describe the use of apo-NCS as a model system for applying combined two-and three-dimensional (2D and 3D) proton NMR spectroscopy to the structure determination of proteins without isotope labeling. Strategies aimed at accurately assigning overlapped 2D cross-peaks by using semiautomated combined 2D and 3D data analysis are developed. Using this approach, they have assigned 99% of the protons, including those of the side chains, and identified about 1,270 intra- and interresidue proton-proton interactions (fixed distances are not included) in apo-NCS. Comparing these results with those reported recently on 2D NMR studies of apo-NCS demonstrated advantages of proton 3D NMR spectroscopy in protein spectral assignments. They are able to obtain more complete proton resonance and secondary structural assignments and find several misassignments in the earlier report. Strategies utilized in this work should be useful for developing automation procedures for spectral assignments

  19. Parameters of medical proton beam of JINR and study on its medical use

    International Nuclear Information System (INIS)

    Dzhelepov, V.P.; Abazov, V.M.; Komarov, V.I.; Kuz'min, E.S.; Reshetnikov, G.P.; Savchenko, O.V.; Cherevatenko, E.P.; Ruderman, A.I.; Astrakhan, B.V.; Vajnberg, M.Sh.

    1975-01-01

    Experiments are described on irradiation of deep-lying tumours in man with a proton beam on the Dubna synchrocyclotron. A proton beam with an energy of 680 MeV is focused on a braking filter of liquid paraffin or water, 1.5 m thick. The slowed-down protons are cleared of impurity particles by the magnetic field and are transported for about 30 m to clinical premises located behind a 2 m concrete shield. The total intensity and maximum density of the proton flux with an energy of 185 MeV are about 10 9 s -1 and 5x10 7 cm -2 s -1 , respectively. The results of dose measurements showed that the maximum dose rate is about 300 rad/min at a proton energy of 185 MeV, and about 120 rad/min at 90 MeV. The contribution of the secondary particles to the dose distribution is about 10%. Patients can be irradiated either in the static regime, or in the rotation regime, when the patient rotates about a vertical axis passing through the tumour centre. While the patient is rotating, all the changes in the thickness of the tissues through which the beam passes before it reaches the tumour, are automatically compensated by a change in the thickness of the water absorber installed in front of the patient. Irradiations of patients with surface tumours showed that the proton beam parameters and the technical equipment of the systems meet the medical requirements

  20. Spatial distributions of dose enhancement around a gold nanoparticle at several depths of proton Bragg peak

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jihun [Department of Radiation Oncology, Hokkaido University Graduate School of Medicine, Hokkaido University (Japan); Sutherland, Kenneth [Department of Medical Physics, Hokkaido University Graduate School of Medicine, Hokkaido University (Japan); Hashimoto, Takayuki [Department of Radiation Medicine, Hokkaido University Graduate School of Medicine (Japan); Shirato, Hiroki [Department of Radiation Medicine, Hokkaido University Graduate School of Medicine and Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University (Japan); Date, Hiroyuki, E-mail: date@hs.hokudai.ac.jp [Faculty of Health Sciences, Hokkaido University (Japan)

    2016-10-01

    Gold nanoparticles (GNPs) have been recognized as a promising candidate for a radiation sensitizer. A proton beam incident on a GNP can produce secondary electrons, resulting in an enhancement of the dose around the GNP. However, little is known about the spatial distribution of dose enhancement around the GNP, especially in the direction along the incident proton. The purpose of this study is to determine the spatial distribution of dose enhancement by taking the incident direction into account. Two steps of calculation were conducted using the Geant4 Monte Carlo simulation toolkit. First, the energy spectra of 100 and 195 MeV protons colliding with a GNP were calculated at the Bragg peak and three other depths around the peak in liquid water. Second, the GNP was bombarded by protons with the obtained energy spectra. Radial dose distributions were computed along the incident beam direction. The spatial distributions of the dose enhancement factor (DEF) and subtracted dose (D{sub sub}) were then evaluated. The spatial DEF distributions showed hot spots in the distal radial region from the proton beam axis. The spatial D{sub sub} distribution isotropically spread out around the GNP. Low energy protons caused higher and wider dose enhancement. The macroscopic dose enhancement in clinical applications was also evaluated. The results suggest that the consideration of the spatial distribution of GNPs in treatment planning will maximize the potential of GNPs.

  1. Report of the Snowmass M6 Working Group on high intensity proton sources

    Energy Technology Data Exchange (ETDEWEB)

    Weiren Chou and J. Wei

    2002-08-20

    The U.S. high-energy physics program needs an intense proton source, a 1-4 MW Proton Driver (PD), by the end of this decade. This machine will serve as a stand-alone facility that will provide neutrino superbeams and other high intensity secondary beams such as kaons, muons, neutrons, and anti-protons (cf. E1 and E5 group reports) and also serve as the first stage of a neutrino factory (cf. M1 group report). It can also be a high brightness source for a VLHC. Based on present accelerator technology and project construction experience, it is both feasible and cost-effective to construct a 1-4 MW Proton Driver. Two recent PD design studies have been made, one at FNAL and the other at the BNL. Both designed PD's for 1 MW proton beams at a cost of about U.S. $200M (excluding contingency and overhead) and both designs were upgradeable to 4 MW. An international collaboration between FNAL, BNL and KEK on high intensity proton facilities is addressing a number of key design issues. The superconducting (sc) RF cavities, cryogenics, and RF controls developed for the SNS can be directly adopted to save R&D efforts, cost, and schedule. PD studies are also actively being pursued at Europe and Japan.

  2. Protons and π- generation at 188 mrad in proton-nucleus interaction for 9 GeV/c

    International Nuclear Information System (INIS)

    Belikov, Yu.E.; Bukley, A.E.; Gavrilov, V.B.

    1977-01-01

    The cross-sections of inclusive proton and negative pion production by 9 GeV/c protons on Be, Al, Cu and Au nuclei at the laboratory angle of 188 mrad have been measured. Invariant function F(x, psub(t))=E/p 2 xddelta/dpdΩ (here x-the Feynman variable, psub(t)-transverse momentum) having been compared with the higher energy data was found to be independent of the primary momentum at psub(o) > or approximately 9 GeV/c with the accuracy of about 15% (that is the accuracy of the cross-sections absolute normalization) both for secondary protons and pions. Both ratio R=rhosub(A)/rhosub(Be) (where rhosub(A)=1/deltasub(PA)sup(in) Fsub(A)(x,psub(t), A=Al, Cu, Au) and R=rhosub(A)/rhosub(Al) (A=Cu, Au-for reaction pA → p increase with x growth at the fixed laboratory production angle and are the most sharp at the largest x. R=rhosub(cu)/rhosub(Be) ratio for pA → π - reaction increases with psub(t) rise at x fixed for 0.3 0.6. The experimental data are discussed within the framework of the multiple rescattering picture

  3. 75 FR 17463 - Key West Bank, Key West, Florida; Notice of Appointment of Receiver

    Science.gov (United States)

    2010-04-06

    ... DEPARTMENT OF THE TREASURY Office of Thrift Supervision Key West Bank, Key West, Florida; Notice... section 5(d)(2) of the Home Owners' Loan Act, the Office of Thrift Supervision has duly appointed the Federal Deposit Insurance Corporation as sole Receiver for Key West Bank, Key West, Florida, (OTS No...

  4. Population Structure of West Greenland Narwhals

    DEFF Research Database (Denmark)

    Riget, F.; Dietz, R.; Møller, P.

    The hypothesis that different populations of narwhals in the West Greenland area exist has been tested by different biomarkers (metal and organochlorine concentrations, stable isotopes and DNA). Samples of muscle, liver, kidney, blubber and skin tissues of narwhals from West Greenland have been...... isotopes could not support the population structure with two West Greenland populations suggested by the genetic study....

  5. Regionalizing Telecommunications Reform in West Africa

    OpenAIRE

    World Bank

    2007-01-01

    This report assesses the potential gains from regionalized telecommunications policy in West Africa. The report seeks to assist officials in the Economic Community of West African States (ECOWAS), the West African Telecommunications Regulators Assembly (WATRA) and member states in designing an effective regional regulatory process. To this end, the report: (i) discusses how regional coop...

  6. Magnetic Resonance Studies of Proton Loss from Carotenoid Radical Cations

    Energy Technology Data Exchange (ETDEWEB)

    Kispert, Lowell D [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Focsan, A Ligia [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Konovalova, Tatyana A [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lawrence, Jesse [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bowman, Michael K [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dixon, David A [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Molnar, Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Deli, Jozsef [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2007-06-11

    Carotenoids, intrinsic components of reaction centers and pigment-protein complexes in photosynthetic membranes, play a photoprotective role and serve as a secondary electron donor. Before optimum use of carotenoids can be made in artificial photosynthetic systems, their robust nature in living materials requires extensive characterization of their electron transfer, radical trapping ability, stability, structure in and on various hosts, and photochemical behavior. Pulsed ENDOR and 2D-HYSCORE studies combined with DFT calculations reveal that photo-oxidation of natural zeaxanthin (I) and violaxanthin (II) on silica-alumina produces not only the carotenoid radical cations (Car•+) but also neutral radicals (#Car•) by proton loss from the methyl groups at positions 5 or 5', and possibly 9 or 9' and 13 or 13'. Notably, the proton loss favored in I at the 5 position by DFT calculations, is unfavorable in II due to the epoxide at the 5, 6 position. DFT calculations predict the isotropic methyl proton couplings of 8-10 MHz for Car•+ which agree with the ENDOR for carotenoid α-conjugated radical cations. Large α-proton hyperfine coupling constants (>10 MHz) determined from HYSCORE are assigned from the DFT calculations to neutral carotenoid radicals. Proton loss upon photolysis was also examined as a function of carotenoid polarity [Lycopene (III) versus 8'-apo-β-caroten-8'-al (IV)]; hydrogen bonding [Lutein (V) versus III]; host [silica-alumina versus MCM-41 molecular sieve]; and substituted metal in MCM-41. Loss of H+ from the 5(5'), 9(9') or 13(13') methyl positions has importance in photoprotection. Photoprotection involves nonphotochemical quenching (NPQ) in which 1Ch1* decays via energy transfer to the carotenoid which returns to the ground state by thermal dissipation; or via electron transfer to form a charge transfer state (I •+…Chl•-), lower in energy than 1Chl*. Formation of I •+ results in bond

  7. Magnetic Resonance Studies of Proton Loss from Carotenoid Radical Cations

    International Nuclear Information System (INIS)

    Kispert, Lowell D.; Focsan, A. Ligia; Konovalova, Tatyana A.; Lawrence, Jesse; Bowman, Michael K.; Dixon, David A.; Molnar, Peter; Deli, Jozsef

    2007-01-01

    Carotenoids, intrinsic components of reaction centers and pigment-protein complexes in photosynthetic membranes, play a photoprotective role and serve as a secondary electron donor. Before optimum use of carotenoids can be made in artificial photosynthetic systems, their robust nature in living materials requires extensive characterization of their electron transfer, radical trapping ability, stability, structure in and on various hosts, and photochemical behavior. Pulsed ENDOR and 2D-HYSCORE studies combined with DFT calculations reveal that photo-oxidation of natural zeaxanthin (I) and violaxanthin (II) on silica-alumina produces not only the carotenoid radical cations (Car ·+ ) but also neutral radicals ((number s ign)Car · ) by proton loss from the methyl groups at positions 5 or 5(prime), and possibly 9 or 9(prime) and 13 or 13(prime). Notably, the proton loss favored in I at the 5 position by DFT calculations, is unfavorable in II due to the epoxide at the 5, 6 position. DFT calculations predict the isotropic methyl proton couplings of 8-10 MHz for Car # center d ot# + which agree with the ENDOR for carotenoid π-conjugated radical cations. Large α-proton hyperfine coupling constants (>10 MHz) determined from HYSCORE are assigned from the DFT calculations to neutral carotenoid radicals. Proton loss upon photolysis was also examined as a function of carotenoid polarity (Lycopene (III) versus 8(prime)-apo-β-caroten-8(prime)-al (IV)); hydrogen bonding (Lutein (V) versus III); host (silica-alumina versus MCM-41 molecular sieve); and substituted metal in MCM-41. Loss of H + from the 5(5(prime)), 9(9(prime)) or 13(13(prime)) methyl positions has importance in photoprotection. Photoprotection involves nonphotochemical quenching (NPQ) in which 1 Ch1* decays via energy transfer to the carotenoid which returns to the ground state by thermal dissipation; or via electron transfer to form a charge transfer state (I # center d ot# + ...Chl # center d ot# - ), lower in

  8. Adjuvant Ab Interno Tumor Treatment After Proton Beam Irradiation.

    Science.gov (United States)

    Seibel, Ira; Riechardt, Aline I; Heufelder, Jens; Cordini, Dino; Joussen, Antonia M

    2017-06-01

    This study was performed to show long-term outcomes concerning globe preservation in uveal melanoma patients after proton beam therapy with the main focus on outcomes according to different adjuvant ab interno surgical procedures. Retrospective cohort study. All patients treated with primary proton beam therapy for choroidal or ciliary body melanoma between June 1998 and June 2015 were included. A total of 2499 patients underwent primary proton beam therapy, with local tumor control and globe preservation rates of 95.9% and 94.8% after 5 years, respectively. A total of 110 (4.4%) patients required secondary enucleation. Unresponsive neovascular glaucoma was the leading cause of secondary enucleation in 78 of the 2499 patients (3.1%). The 5-year enucleation-free survival rate was 94.8% in the endoresection group, 94.3% in the endodrainage group, and 93.5% in the comparator group. The log-rank test showed P = .014 (comparator group vs endoresection group) and P = .06 (comparator group vs endodrainage-vitrectomy group). Patients treated with endoresection or endodrainage-vitrectomy developed less radiation retinopathy (30.5% and 37.4% after 5 years, P = .001 and P = .048 [Kaplan-Meier], respectively) and less neovascular glaucoma (11.6% and 21.3% after 5 years, P = .001 and P = .01 [Kaplan-Meier], respectively) compared with the comparator group (52.3% radiation retinopathy and 57.8% neovascular glaucoma after 5 years). This study suggests that in larger tumors the enucleation and neovascular glaucoma rates might be reduced by adjuvant surgical procedures. Although endoresection is the most promising adjuvant treatment option, the endodrainage-vitrectomy is recommended in patients who are ineligible for endoresection. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Outcomes of Proton Therapy for the Treatment of Uveal Metastases

    International Nuclear Information System (INIS)

    Kamran, Sophia C.; Collier, John M.; Lane, Anne Marie; Kim, Ivana; Niemierko, Andrzej; Chen, Yen-Lin E.; MacDonald, Shannon M.; Munzenrider, John E.; Gragoudas, Evangelos; Shih, Helen A.

    2014-01-01

    Purpose/Objective(s): Radiation therapy can be used to treat uveal metastases with the goal of local control and improvement of quality of life. Proton therapy can be used to treat uveal tumors efficiently and with expectant minimization of normal tissue injury. Here, we report the use of proton beam therapy for the management of uveal metastases. Methods and Materials: A retrospective chart review was made of all patients with uveal metastases treated at our institution with proton therapy between June 2002 and June 2012. Patient and tumor characteristics, fractionation and dose schemes, local control, and toxicities are reported. Results: Ninety patients were identified. Of those, 13 were excluded because of missing information. We report on 77 patients with 99 affected eyes with available data. Patients were 68% female, and the most common primary tumor was breast carcinoma (49%). The median age at diagnosis of uveal metastasis was 57.9 years. Serous retinal detachment was seen in 38% of treated eyes. The median follow-up time was 7.7 months. The median dose delivered to either eye was 20 Gy(relative biological effectiveness [RBE]) in 2 fractions. Local control was 94%. The median survival after diagnosis of uveal metastases was 12.3 months (95% confidence interval, 7.7-16.8). Death in all cases was secondary to systemic disease. Radiation vasculopathy, measured decreased visual acuity, or both was observed in 50% of evaluable treated eyes. The actuarial rate of radiation vasculopathy, measured decreased visual acuity, or both was 46% at 6 months and 73% at 1 year. The 6 eyes with documented local failure were successfully salvaged with retreatment. Conclusions: Proton therapy is an effective and efficient means of treating uveal metastases. Acutely, the majority of patients experience minor adverse effects. For longer-term survivors, the risk of retinal injury with vision loss increases significantly over the first year

  10. Outcomes of Proton Therapy for the Treatment of Uveal Metastases

    Energy Technology Data Exchange (ETDEWEB)

    Kamran, Sophia C. [Harvard Medical School, Boston, Massachusetts (United States); Collier, John M. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Lane, Anne Marie; Kim, Ivana [Retina Service, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts (United States); Niemierko, Andrzej [Division of Biostatistics, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Chen, Yen-Lin E.; MacDonald, Shannon M.; Munzenrider, John E. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Gragoudas, Evangelos [Retina Service, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts (United States); Shih, Helen A., E-mail: hshih@partners.org [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)

    2014-12-01

    Purpose/Objective(s): Radiation therapy can be used to treat uveal metastases with the goal of local control and improvement of quality of life. Proton therapy can be used to treat uveal tumors efficiently and with expectant minimization of normal tissue injury. Here, we report the use of proton beam therapy for the management of uveal metastases. Methods and Materials: A retrospective chart review was made of all patients with uveal metastases treated at our institution with proton therapy between June 2002 and June 2012. Patient and tumor characteristics, fractionation and dose schemes, local control, and toxicities are reported. Results: Ninety patients were identified. Of those, 13 were excluded because of missing information. We report on 77 patients with 99 affected eyes with available data. Patients were 68% female, and the most common primary tumor was breast carcinoma (49%). The median age at diagnosis of uveal metastasis was 57.9 years. Serous retinal detachment was seen in 38% of treated eyes. The median follow-up time was 7.7 months. The median dose delivered to either eye was 20 Gy(relative biological effectiveness [RBE]) in 2 fractions. Local control was 94%. The median survival after diagnosis of uveal metastases was 12.3 months (95% confidence interval, 7.7-16.8). Death in all cases was secondary to systemic disease. Radiation vasculopathy, measured decreased visual acuity, or both was observed in 50% of evaluable treated eyes. The actuarial rate of radiation vasculopathy, measured decreased visual acuity, or both was 46% at 6 months and 73% at 1 year. The 6 eyes with documented local failure were successfully salvaged with retreatment. Conclusions: Proton therapy is an effective and efficient means of treating uveal metastases. Acutely, the majority of patients experience minor adverse effects. For longer-term survivors, the risk of retinal injury with vision loss increases significantly over the first year.

  11. Proton driver optimization for new-generation neutrino superbeams to search for sub-leading νμ→νe oscillations (θ13 angle)

    International Nuclear Information System (INIS)

    Ferrari, A; Rubbia, A; Rubbia, C; Sala, P R

    2002-01-01

    In this paper, we perform a systematic study of particle production and neutrino yields for different incident proton energies E p and baselines L, with the aim of optimizing the parameters of a neutrino beam for the investigation of θ 13 -driven neutrino oscillations in the Δm 2 range allowed by Superkamiokande results. We study the neutrino energy spectra in the 'relevant' region of the first maximum of the oscillation at a given baseline L. We find that to each baseline L corresponds an 'optimal' proton energy E p which minimizes the required integrated proton intensity needed to observe a fixed number of oscillated events. In addition, we find that the neutrino event rate in the relevant region scales approximately linearly with the proton energy. Hence, baselines L and proton energies E p can be adjusted and the performance for neutrino oscillation searches will remain approximately unchanged provided that the product of the proton energy times the number of protons on target remains constant. We apply these ideas to the specific cases of 2.2, 4.4, 20, 50 and 400 GeV protons. We simulate focusing systems that are designed to best capture the secondary pions of the 'optimal' energy. We compute the expected sensitivities to sin 2 2θ 13 for the various configurations by assuming the existence of new-generation accelerators able to deliver integrated proton intensities on target times the proton energy of the order of O(5x10 23 ) GeVxpot/year

  12. Chemiluminescence of Secondary Peroxyesters.

    Science.gov (United States)

    1980-11-14

    and followed by NMR spectroscopy which showed the consumption of the phosphite protons and appearance of the phosphate product. Also,absorptions -20...scence iond -, t a a ta in reproducible resul tst is important that the (I assveare’ Us(’, 0e ul cleaned. We susoect that trace metal ions adsorbed oni...the reduction product. This may indicate a relationship between the reaction of the peroxide with the phosphite and its CIEEL behavior (vide infra

  13. Antiproton-proton and proton-proton elastic scattering at 100 and 200 GeV/c

    International Nuclear Information System (INIS)

    Kaplan, D.H.; Karchin, P.; Orear, J.; Kalbach, R.M.; Krueger, K.W.; Pifer, A.E.; Baker, W.F.; Eartly, D.P.; Klinger, J.S.; Lennox, A.J.; Rubinstein, R.; McHugh, S.F.

    1982-01-01

    Antiproton-proton elastic scattering has been measured at 100 GeV/c for 0.5 2 and at 200 GeV/c for 0.9 2 . The data show that the -tapprox. =1.4 (GeV/c) 2 dip recently observed at 50 GeV/c persists to higher incident momenta. Proton-proton measurements made at the same beam momenta show similar structure

  14. Structure of final states with a high transverse momentum$\\pi^{0}$ in proton-proton collisions

    CERN Document Server

    Darriulat, Pierre; Eggert, Karsten; Holder, M; McDonald, K T; Modis, T; Navarria, Francesco Luigi; Seiden, A; Strauss, J; Vesztergombi, G; Williams, E G H; Darriulat, P; Dittmann, P; Eggert, K; Holder, M; Mcdonald, K T; Modis, T; Navarria, F L; Seiden, A; Strauss, J; Vesztergombi, G; Williams, E G H

    1976-01-01

    A study of the final state structure in proton-proton collisions is presented ( square root s=53 GeV) where a large transverse momentum pi /sup 0/(p/sub t/>2 GeV/c) is produced at an angle of 90 degrees . Charged secondaries have been detected and momentum analysed in the split field magnet detector at the CERN Intersecting Storage Rings. The large angular coverage of this detector extends over +or-2.5 units of rapidity and +or-30 degrees of azimuth with respect to the trigger pi /sup 0/, both towards and away from it. In each of these directions, charged particle distributions are presented in rapidity and momentum. In the hemisphere containing the trigger pi /sup 0/ the cross section for inclusive production of large transverse momentum rho /sup +or-/ mesons has been measured. In the opposite hemisphere the data exhibit several features predicted by hard scattering quark- parton models: coplanarity and short-range rapidity correlation for the large transverse momentum secondaries as well as a transverse mom...

  15. Inclusive Education for Pupils with Autistic Spectrum Disorders in Secondary Mainstream Schools: Teacher Attitudes, Experience and Knowledge

    Science.gov (United States)

    Humphrey, Neil; Symes, Wendy

    2013-01-01

    The aim of the current study was to examine the experience, attitudes and knowledge of school staff in relation to inclusive education for pupils with autistic spectrum disorders (ASDs) in mainstream secondary schools. Fifty-three participants from 11 secondary schools in the north-west of England completed a survey that covered socio-demographic…

  16. Teaching secondary mathematics

    CERN Document Server

    Rock, David

    2013-01-01

    Solidly grounded in up-to-date research, theory and technology,?Teaching Secondary Mathematics?is a practical, student-friendly, and popular text for secondary mathematics methods courses. It provides clear and useful approaches for mathematics teachers, and shows how concepts typically found in a secondary mathematics curriculum can be taught in a positive and encouraging way. The thoroughly revised fourth edition combines this pragmatic approach with truly innovative and integrated technology content throughout. Synthesized content between the book and comprehensive companion websi

  17. Experimental characterization and physical modelling of the dose distribution of scanned proton pencil beams

    International Nuclear Information System (INIS)

    Pedroni, E; Scheib, S; Boehringer, T; Coray, A; Grossmann, M; Lin, S; Lomax, A

    2005-01-01

    In this paper we present the pencil beam dose model used for treatment planning at the PSI proton gantry, the only system presently applying proton therapy with a beam scanning technique. The scope of the paper is to give a general overview on the various components of the dose model, on the related measurements and on the practical parametrization of the results. The physical model estimates from first physical principles absolute dose normalized to the number of incident protons. The proton beam flux is measured in practice by plane-parallel ionization chambers (ICs) normalized to protons via Faraday-cup measurements. It is therefore possible to predict and deliver absolute dose directly from this model without other means. The dose predicted in this way agrees very well with the results obtained with ICs calibrated in a cobalt beam. Emphasis is given in this paper to the characterization of nuclear interaction effects, which play a significant role in the model and are the major source of uncertainty in the direct estimation of the absolute dose. Nuclear interactions attenuate the primary proton flux, they modify the shape of the depth-dose curve and produce a faint beam halo of secondary dose around the primary proton pencil beam in water. A very simple beam halo model has been developed and used at PSI to eliminate the systematic dependences of the dose observed as a function of the size of the target volume. We show typical results for the relative (using a CCD system) and absolute (using calibrated ICs) dosimetry, routinely applied for the verification of patient plans. With the dose model including the nuclear beam halo we can predict quite precisely the dose directly from treatment planning without renormalization measurements, independently of the dose, shape and size of the dose fields. This applies also to the complex non-homogeneous dose distributions required for the delivery of range-intensity-modulated proton therapy, a novel therapy technique

  18. Correlations associated with small angle protons produced in proton- proton collisions at 31 GeV total energy

    CERN Document Server

    Albrow, M G; Barber, D P; Bogaerts, A; Bosnjakovic, B; Brooks, J R; Clegg, A B; Erné, F C; Gee, C N P; Locke, D H; Loebinger, F K; Murphy, P G; Rudge, A; Sens, Johannes C

    1973-01-01

    High energy inelastic protons with x=2 p/sub L//s/sup 1/2/>0.99 observed in 15.3/15.3 GeV proton-proton collisions at the CERN ISR are accompanied by particles whose angular distribution is confined to a narrow cone in the opposite direction. In contrast, lower energy protons (0.72

  19. The clinical case for proton beam therapy

    Directory of Open Access Journals (Sweden)

    Foote Robert L

    2012-10-01

    Full Text Available Abstract Over the past 20 years, several proton beam treatment programs have been implemented throughout the United States. Increasingly, the number of new programs under development is growing. Proton beam therapy has the potential for improving tumor control and survival through dose escalation. It also has potential for reducing harm to normal organs through dose reduction. However, proton beam therapy is more costly than conventional x-ray therapy. This increased cost may be offset by improved function, improved quality of life, and reduced costs related to treating the late effects of therapy. Clinical research opportunities are abundant to determine which patients will gain the most benefit from proton beam therapy. We review the clinical case for proton beam therapy. Summary sentence Proton beam therapy is a technically advanced and promising form of radiation therapy.

  20. Absolute measurements methods for proton beam dosimetry

    International Nuclear Information System (INIS)

    Laitano, R.F.

    1998-01-01

    A widespread interest in improving proton beam characteristics and related dosimetry became apparent in the recent years, even if the advantages of protons in radiotherapy were pointed out since 1946. The early treatments by proton beams were made for a long time on a small number of patients in very few accelerators sharing their use with nuclear-physics experiments. The first proton accelerator totally dedicated to radiotherapy was established just in 1990 at the Loma Linda Medical Center in the USA. A further reason of the slowly growing use of protons for therapy in the early years, was the lack of adequate means for accurate localization of the treatment volume. The potentialities of protons in imparting a largest part of their energy to very small volumes became exploitable only after the established clinical use of accurate imaging techniques such as based on CT, NMR, PET, etc

  1. The clinical case for proton beam therapy

    International Nuclear Information System (INIS)

    Foote, Robert L; Haddock, Michael G; Yan, Elizabeth; Laack, Nadia N; Arndt, Carola A S

    2012-01-01

    Over the past 20 years, several proton beam treatment programs have been implemented throughout the United States. Increasingly, the number of new programs under development is growing. Proton beam therapy has the potential for improving tumor control and survival through dose escalation. It also has potential for reducing harm to normal organs through dose reduction. However, proton beam therapy is more costly than conventional x-ray therapy. This increased cost may be offset by improved function, improved quality of life, and reduced costs related to treating the late effects of therapy. Clinical research opportunities are abundant to determine which patients will gain the most benefit from proton beam therapy. We review the clinical case for proton beam therapy. Proton beam therapy is a technically advanced and promising form of radiation therapy

  2. Biological effects of proton radiation: an update

    International Nuclear Information System (INIS)

    Girdhani, S.; Hlatky, L.; Sachs, R.

    2015-01-01

    Proton radiation provides significant dosimetric advantages when compared with gamma radiation due to its superior energy deposition characteristics. Although the physical aspects of proton radiobiology are well understood, biological and clinical endpoints are understudied. The current practice to assume the relative biological effectiveness of low linear energy transfer (LET) protons to be a generic value of about 1.1 relative to photons likely obscures important unrecognised differentials in biological response between these radiation qualities. A deeper understanding of the biological properties induced by proton radiation would have both radiobiological and clinical impact. This article briefly points to some of the literature pertinent to the effects of protons on tissue-level processes that modify disease progression, such as angiogenesis, cell invasion and cancer metastasis. Recent findings hint that proton radiation may, in addition to offering improved radio-therapeutic targeting, be a means to provide a new dimension for increasing therapeutic benefits for patients by manipulating these tissue-level processes. (authors)

  3. Disintegration phenomena in Comet West

    Science.gov (United States)

    Sekanina, Z.

    1976-01-01

    Two peculiarities of Comet West, the multiple splitting of the nucleus as seen in telescope observations and the complex structure of the dust tail, are discussed. A method of analysis based on the premise that the observed rate of separation of a fragment from the principal nucleus is determined by the difference in effective solar attraction acting on the bodies is applied to investigate the motion of the four fragments that separated from the nucleus of Comet West. The predicted motion of the fragments is in good agreement with available observations. It is suggested that the 'synchronic' bands of the dust tail consist of tiny fragments from relatively large particles that burst after release from the comet. The unusual orientation of these bands and their high surface brightness relative to the diffuse tail are explained by a sudden increase in the particle acceleration and in the total scattering surface as the result of the disintegration of the larger particles.

  4. Permafrost degradation in West Greenland

    DEFF Research Database (Denmark)

    Foged, Niels Nielsen; Ingeman-Nielsen, Thomas

    2012-01-01

    Important aspects of civil engineering in West Greenland relate to the presence of permafrost and mapping of the annual and future changes in the active layer due to the ongoing climatically changes in the Arctic. The Arctic Technology Centre (ARTEK) has worked more than 10 years on this topic...... and the first author has been involved since 1970 in engineering geology, geotechnical engineering and permafrost related studies for foundation construction and infrastructures in towns and communities mainly in West Greenland. We have since 2006 together with the Danish Meteorological Institute, Greenland...... Survey (ASIAQ) and the University of Alaska Fairbanks carried out the US NSF funded project ARC-0612533: Recent and future permafrost variability, retreat and degradation in Greenland and Alaska: An integrated approach. This contribution will present data and observations from the towns Ilulissat...

  5. Measurement of stray radiation within a scanning proton therapy facility: EURADOS WG9 intercomparison exercise of active dosimetry systems

    Energy Technology Data Exchange (ETDEWEB)

    Farah, J., E-mail: jad.farah@irsn.fr; Trompier, F. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Radioprotection de l’Homme, BP17, Fontenay-aux-Roses 92260 (France); Mares, V.; Schinner, K.; Wielunski, M. [Helmholtz Zentrum München, Institute of Radiation Protection, Ingolstädter Landstraße 1, Neuherberg 85764 (Germany); Romero-Expósito, M.; Domingo, C. [Departament de Física, Universitat Autònoma de Barcelona, Bellaterra E-08193 (Spain); Trinkl, S. [Helmholtz Zentrum München, Institute of Radiation Protection, Ingolstädter Landstraße 1, Neuherberg 85764, Germany and Physik-Department, Technische Universität München, Garching 85748 (Germany); Dufek, V. [Czech Technical University in Prague, FNSPE, Břehová 7, Prague 115 19, Czech Republic and National Radiation Protection Institute, Bartoškova 28, Prague 140 00 (Czech Republic); Klodowska, M.; Liszka, M.; Stolarczyk, L.; Olko, P. [Institute of Nuclear Physics PAN, Radzikowskiego 152, Krakow 31-342 (Poland); Kubancak, J. [Czech Technical University in Prague, FNSPE, Břehová 7, Prague 115 19, Czech Republic and Department of Radiation Dosimetry, Nuclear Physics Institute, Řež CZ-250 68 (Czech Republic); and others

    2015-05-15

    Purpose: To characterize stray radiation around the target volume in scanning proton therapy and study the performance of active neutron monitors. Methods: Working Group 9 of the European Radiation Dosimetry Group (EURADOS WG9—Radiation protection in medicine) carried out a large measurement campaign at the Trento Centro di Protonterapia (Trento, Italy) in order to determine the neutron spectra near the patient using two extended-range Bonner sphere spectrometry (BSS) systems. In addition, the work focused on acknowledging the performance of different commercial active dosimetry systems when measuring neutron ambient dose equivalents, H{sup ∗}(10), at several positions inside (8 positions) and outside (3 positions) the treatment room. Detectors included three TEPCs—tissue equivalent proportional counters (Hawk type from Far West Technology, Inc.) and six rem-counters (WENDI-II, LB 6411, RadEye™ NL, a regular and an extended-range NM2B). Meanwhile, the photon component of stray radiation was deduced from the low-lineal energy transfer part of TEPC spectra or measured using a Thermo Scientific™ FH-40G survey meter. Experiments involved a water tank phantom (60 × 30 × 30 cm{sup 3}) representing the patient that was uniformly irradiated using a 3 mm spot diameter proton pencil beam with 10 cm modulation width, 19.95 cm distal beam range, and 10 × 10 cm{sup 2} field size. Results: Neutron spectrometry around the target volume showed two main components at the thermal and fast energy ranges. The study also revealed the large dependence of the energy distribution of neutrons, and consequently of out-of-field doses, on the primary beam direction (directional emission of intranuclear cascade neutrons) and energy (spectral composition of secondary neutrons). In addition, neutron mapping within the facility was conducted and showed the highest H{sup ∗}(10) value of ∼51 μSv Gy{sup −1}; this was measured at 1.15 m along the beam axis. H{sup ∗}(10) values

  6. Secondary amenorrhea (image)

    Science.gov (United States)

    Secondary amenorrhea is the cessation of menstrual flow for a period of 6 months or more in the absence ... as anxiety can be the root cause of amenorrhea. Treatment can range from behavior modification for excessive ...

  7. The West Bank: An Assessment.

    Science.gov (United States)

    1984-01-20

    78 percent Muslim, 9.6 percent Christian, 11 percent Jewish and I percent other. The Muslim population was distributed in urban and rural aleas ...to cluster in the mountains and hill country as a refuge from depredations by Beduins in the plains. Village feuds and the pressures of Turkish tax...modern living patterns, industry, and co-merce--well developed in the coastal areas--were, by comparison, primitive in the mountainous West Bank

  8. Towards secondary fingerprint classification

    CSIR Research Space (South Africa)

    Msiza, IS

    2011-07-01

    Full Text Available an accuracy figure of 76.8%. This small difference between the two figures is indicative of the validity of the proposed secondary classification module. Keywords?fingerprint core; fingerprint delta; primary classifi- cation; secondary classification I..., namely, the fingerprint core and the fingerprint delta. Forensically, a fingerprint core is defined as the innermost turning point where the fingerprint ridges form a loop, while the fingerprint delta is defined as the point where these ridges form a...

  9. Secondary Fire Analysis.

    Science.gov (United States)

    1981-09-01

    Megaton Weapons and Secondary Ignition There are very few well documented data on fires initiated by physical damage (i.e., secondary ignitions). Those data...where significant physical damage to buildings and/or contents can occur. Where this outer bound is located relative to the primary ignition range is...maintenance 7.9 Busline facilities, including shops 3.0 Convalescent homes8 3.1 Hospitals 8.0 Radio and television transmitters Collges and universities

  10. Laser Compton polarimetry of proton beams

    International Nuclear Information System (INIS)

    Stillman, A.

    1995-01-01

    A need exists for non-destructive polarization measurements of the polarized proton beams in the AGS and, in the future, in RHIC. One way to make such measurements is to scatter photons from the polarized beams. Until now, such measurements were impossible because of the extremely low Compton scattering cross section from protons. Modern lasers now can provide enough photons per laser pulse not only to scatter from proton beams but also, at least in RHIC, to analyze their polarization

  11. An introduction to proton conduction in solids

    International Nuclear Information System (INIS)

    Poulsen, F.W.

    1980-09-01

    Proton conducting solids have been studied intensively in recent years due to their potential use as ion conducting separators in efficient fuel cells for electricity generation. This report describes fuel cell - and other possible applications of solid proton conductors. The best performing materials known today are listed. Typical synthetic routes and some models for proton transport in solids are discussed. Hints to future research are given. The litterature collected for this report covers mainly the period 1974-1980. (author)

  12. Proton radiography using highpower femtosecond laser

    International Nuclear Information System (INIS)

    Choi, Chang Il

    2010-08-01

    A femtosecond laser emits pulses whose width is between few and few hundreds femtoseconds (10 -15 s). The production mechanism of the high energy protons generated by the femtosecond laser is not clear so far, but the technologies have been improving. The applications using the generated protons are the proton therapy, proton radiography, nuclear physics, security inspection, and so on. Especially in the radiography, the laser-generated protons are very useful to obtain high quality images of thin objects, because protons are able to penetrate an object following an almost straight path and give a depth distribution information of various elements in a subject. Since the laser-driven protons require lower cost and smaller facility than accelerator-based protons, the radiography using laser-driven protons have been of interest. In this research, we have performed the radiography experiments by using protons generated by the 100 TW titanium sapphire femtosecond laser facility of Advanced Photonics Research Institute (APRI) of Gwangju Institute of Science Technology (GIST). A CR-39 Solid State Nuclear Track Detector (SSNTD) has been used as radiography screen. The radiography digital images have been obtained by using an optical microscope and a CCD camera. Modulation Transfer Function (MTF) has been derived from analyzing the obtained images, and the spatial resolution of the images have been evaluated. And, we have performed the radiography experiments of monoenergetic proton from the Tandem Van de Graaff accelerator of Korea Institute of Geoscience and Mineral Resources (KIGAM). We have obtained and compared the radiography images from other proton production methods which are the laser and the accelerator, respectively. And also, we have found out the optimized chemical etching condition, in order to improve the spatial resolution of the radiography images. Finally, the evaluated maximum spatial resolution of the images are 2.09 μm

  13. The proton's spin: A quark model perspective

    International Nuclear Information System (INIS)

    Close, F.E.

    1989-01-01

    Magnetic moments and g A /g V provide information on the correlations among quark spins and flavors in the proton. I compare this information with the deep inelastic polarized data from EMC which has been claimed to show that very little of the proton's spin is due to the quarks. The possibility that there is significant polarization of strange quarks within protons is discussed. 38 refs

  14. Surface proton transport of fully protonated poly(aspartic acid) thin films on quartz substrates

    Science.gov (United States)

    Nagao, Yuki; Kubo, Takahiro

    2014-12-01

    Thin film structure and the proton transport property of fully protonated poly(aspartic acid) (P-Asp100) have been investigated. An earlier study assessed partially protonated poly(aspartic acid), highly oriented thin film structure and enhancement of the internal proton transport. In this study of P-Asp100, IR p-polarized multiple-angle incidence resolution (P-MAIR) spectra were measured to investigate the thin film structure. The obtained thin films, with thicknesses of 120-670 nm, had no oriented structure. Relative humidity dependence of the resistance, proton conductivity, and normalized resistance were examined to ascertain the proton transport property of P-Asp100 thin films. The obtained data showed that the proton transport of P-Asp100 thin films might occur on the surface, not inside of the thin film. This phenomenon might be related with the proton transport of the biological system.

  15. Shielding implications for secondary neutrons and photons produced within the patient during IMPT

    International Nuclear Information System (INIS)

    DeMarco, J.; Kupelian, P.; Santhanam, A.; Low, D.

    2013-01-01

    Purpose: Intensity modulated proton therapy (IMPT) uses a combination of computer controlled spot scanning and spot-weight optimized planning to irradiate the tumor volume uniformly. In contrast to passive scattering systems, secondary neutrons and photons produced from inelastic proton interactions within the patient represent the major source of emitted radiation during IMPT delivery. Various published studies evaluated the shielding considerations for passive scattering systems but did not directly address secondary neutron production from IMPT and the ambient dose equivalent on surrounding occupational and nonoccupational work areas. Thus, the purpose of this study was to utilize Monte Carlo simulations to evaluate the energy and angular distributions of secondary neutrons and photons following inelastic proton interactions within a tissue-equivalent phantom for incident proton spot energies between 70 and 250 MeV.Methods: Monte Carlo simulation methods were used to calculate the ambient dose equivalent of secondary neutrons and photons produced from inelastic proton interactions in a tissue-equivalent phantom. The angular distribution of emitted neutrons and photons were scored as a function of incident proton energy throughout a spherical annulus at 1, 2, 3, 4, and 5 m from the phantom center. Appropriate dose equivalent conversion factors were applied to estimate the total ambient dose equivalent from secondary neutrons and photons.Results: A reference distance of 1 m from the center of the patient was used to evaluate the mean energy distribution of secondary neutrons and photons and the resulting ambient dose equivalent. For an incident proton spot energy of 250 MeV, the total ambient dose equivalent (3.6 × 10 −3 mSv per proton Gy) was greatest along the direction of the incident proton spot (0°–10°) with a mean secondary neutron energy of 71.3 MeV. The dose equivalent decreased by a factor of 5 in the backward direction (170°–180°) with a mean

  16. Shielding implications for secondary neutrons and photons produced within the patient during IMPT

    Energy Technology Data Exchange (ETDEWEB)

    DeMarco, J.; Kupelian, P.; Santhanam, A.; Low, D. [UCLA Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California 90095 (United States)

    2013-07-15

    Purpose: Intensity modulated proton therapy (IMPT) uses a combination of computer controlled spot scanning and spot-weight optimized planning to irradiate the tumor volume uniformly. In contrast to passive scattering systems, secondary neutrons and photons produced from inelastic proton interactions within the patient represent the major source of emitted radiation during IMPT delivery. Various published studies evaluated the shielding considerations for passive scattering systems but did not directly address secondary neutron production from IMPT and the ambient dose equivalent on surrounding occupational and nonoccupational work areas. Thus, the purpose of this study was to utilize Monte Carlo simulations to evaluate the energy and angular distributions of secondary neutrons and photons following inelastic proton interactions within a tissue-equivalent phantom for incident proton spot energies between 70 and 250 MeV.Methods: Monte Carlo simulation methods were used to calculate the ambient dose equivalent of secondary neutrons and photons produced from inelastic proton interactions in a tissue-equivalent phantom. The angular distribution of emitted neutrons and photons were scored as a function of incident proton energy throughout a spherical annulus at 1, 2, 3, 4, and 5 m from the phantom center. Appropriate dose equivalent conversion factors were applied to estimate the total ambient dose equivalent from secondary neutrons and photons.Results: A reference distance of 1 m from the center of the patient was used to evaluate the mean energy distribution of secondary neutrons and photons and the resulting ambient dose equivalent. For an incident proton spot energy of 250 MeV, the total ambient dose equivalent (3.6 Multiplication-Sign 10{sup -3} mSv per proton Gy) was greatest along the direction of the incident proton spot (0 Degree-Sign -10 Degree-Sign ) with a mean secondary neutron energy of 71.3 MeV. The dose equivalent decreased by a factor of 5 in the

  17. Proton Transport Chains in Glucose Metabolism: Mind the Proton

    Directory of Open Access Journals (Sweden)

    Dirk Roosterman

    2018-06-01

    Full Text Available The Embden–Meyerhof–Parnas (EMP pathway comprises eleven cytosolic enzymes interacting to metabolize glucose to lactic acid [CH3CH(OHCOOH]. Glycolysis is largely considered as the conversion of glucose to pyruvate (CH3COCOO-. We consider glycolysis to be a cellular process and as such, transporters mediating glucose uptake and lactic acid release and enable the flow of metabolites through the cell, must be considered as part of the EMP pathway. In this review, we consider the flow of metabolites to be coupled to a flow of energy that is irreversible and sufficient to form ordered structures. This latter principle is highlighted by discussing that lactate dehydrogenase (LDH complexes irreversibly reduce pyruvate/H+ to lactate [CH3CH(OHCOO-], or irreversibly catalyze the opposite reaction, oxidation of lactate to pyruvate/H+. However, both LDH complexes are considered to be driven by postulated proton transport chains. Metabolism of glucose to two lactic acids is introduced as a unidirectional, continuously flowing pathway. In an organism, cell membrane-located proton-linked monocarboxylate transporters catalyze the final step of glycolysis, the release of lactic acid. Consequently, both pyruvate and lactate are discussed as intermediate products of glycolysis and substrates of regulated crosscuts of the glycolytic flow.

  18. Structural studies on proton/protonation of the protein molecule

    International Nuclear Information System (INIS)

    Morimoto, Yukio; Kida, Akiko; Chatake, Toshiyuki; Yamaguchi, Hiroshi; Hosokawa, Keiichi; Murakami, Takuto; Umino, Masaaki; Tanaka, Ichiro; Hisatome, Ichiro; Yanagisawa, Yasutake; Fujiwara, Satoshi; Hidaka, Yuji; Shimamoto, Shigeru; Fujiwara, Mitsutoshi; Nakanishi, Takeyoshi

    2015-01-01

    This paper reports three studies involved in the analysis of protons and protonation at physiologically active sites in protein molecules. (1) 'Elucidation of the higher-order structure formation and activity performing mechanism of yeast proteasome.' With an aim to apply to anti-cancer drugs, this study performed the shape analysis of the total structure of 26S proteasome using small-angle X-ray scattering to clarify the complex form where controlling elements bonded to the both ends of 20S catalyst body, and analyzed the complex structure between the active sites of 20S and inhibitor (drug). (2) 'Basic study on the neutron experiment of biomolecules such as physiologically active substances derived from Natto-bacteria.' This study conducted the purification, crystallization, and X-ray analysis experiment of nattokinase; high-grade purification and solution experiment of vitamin K2 (menaquinone-7); and Z-DNA crystal structure study related to the neutron crystal analysis of DNA as another biomolecule structure study. (3) 'Functional evaluation on digestive enzymes derived from Nephila clavata.' As an Alzheimer's disease-related amyloid fibril formation model, this study carried out elucidation on the fibrosis and fiber-forming mechanism of the traction fiber of Nephila clavata, and the functional analysis of its degrading enzyme. (A.O.)

  19. The Australian National Proton Facility

    International Nuclear Information System (INIS)

    Jackson, M.; Rozenfeld, A.; Bishop, J.

    2002-01-01

    Full text: Protons have been used in the treatment of cancer since 1954 and over 30,000 patients have been treated around the world. Their precise dose distribution allows the treatment of small tumours in critical locations such as the base of skull and orbit and is an alternative to stereotactic radiotherapy in other sites. With the development of hospital-based systems in the 1990's, common tumours such as prostate, breast and lung cancer can now also be treated using simple techniques. The therapeutic ratio is improved as the dose to the tumour can be increased while sparing normal tissues. The well defined high dose region and low integral dose compared with photon treatments is a particular advantage in children and other situations where long-term survival is expected and when used in combination with chemotherapy. In January 2002, the NSW Health Department initiated a Feasibility Study for an Australian National Proton Facility. This Study will address the complex medical, scientific, engineering, commercial and legal issues required to design and build a proton facility in Australia. The Facility will be mainly designed for patient treatment but will also provide facilities for biological, physical and engineering research. The proposed facility will have a combination of fixed and rotating beams with an energy range of 70-250 MeV. Such a centre will enable the conduct of randomised clinical trials and a comparison with other radiotherapy techniques such as Intensity Modulated Radiation Therapy. Cost-utility comparisons with other medical treatments will also be made and further facilities developed if the expected benefit is confirmed. When patients are not being treated, the beam will be available for commercial and research purposes. This presentation will summarize the progress of the Study and discuss the important issues that need to be resolved before the Facility is approved and constructed

  20. Study on design of proton linacs

    International Nuclear Information System (INIS)

    Yu Qingchang

    2000-01-01

    Two important directions in the development of proton linacs are high-current proton linacs (mainly applied in nuclear power field) and compact proton linacs (for proton therapy). There are some common characteristics in them: (1) Employment of the novel accelerating structures, which are combination and evolution of the conventional ones; (2) Accelerating beam with small emittance; (3) Requirement for high reliability. The construction of the former is, however, much more difficult because it still needs low beam lose rate and as high power transformation efficiency as possible. Some important problems in the design of these accelerators are discussed and some schemes designed are presented

  1. Quality verification for respiratory gated proton therapy

    International Nuclear Information System (INIS)

    Kim, Eun Sook; Jang, Yo Jong; Park, Ji Yeon; Kang, Dong Yun; Yeom, Doo Seok

    2013-01-01

    To verify accuracy of respiratory gated proton therapy by measuring and analyzing proton beam delivered when respiratory gated proton therapy is being performed in our institute. The plan data of 3 patients who took respiratory gated proton therapy were used to deliver proton beam from proton therapy system. The manufactured moving phantom was used to apply respiratory gating system to reproduce proton beam which was partially irradiated. The key characteristics of proton beam, range, spreat-out Bragg peak (SOBP) and output factor were measured 5 times and the same categories were measured in the continuous proton beam which was not performed with respiratory gating system. Multi-layer ionization chamber was used to measure range and SOBP, and Scanditronix Wellhofer and farmer chamber was used to measure output factor. The average ranges of 3 patients (A, B, C), who had taken respiratory gated proton therapy or not, were (A) 7.226, 7.230, (B) 12.216, 12.220 and (C) 19.918, 19.920 g/cm 2 and average SOBP were (A) 4.950, 4.940, (B) 6.496, 6.512 and (C) 8.486, 8.490 g/cm 2 . And average output factor were (A) 0.985, 0.984 (B) 1.026, 1.027 and (C) 1.138, 1.136 cGy/MU. The differences of average range were -0.004, -0.004, -0.002 g/cm 2 , that of SOBP were 0.010, -0.016, -0.004 g/cm 2 and that of output factor were 0.001, -0.001, 0.002 cGy/MU. It is observed that the range, SOBP and output factor of proton beam delivered when respiratory gated proton therapy is being performed have the same beam quality with no significant difference compared to the proton beam which was continuously irradiated. Therefore, this study verified the quality of proton beam delivered when respiratory gated proton therapy and confirmed the accuracy of proton therapy using this

  2. Proton ejection project for Saturne

    International Nuclear Information System (INIS)

    Bronca, G.; Gendreau, G.

    1959-01-01

    The reasons for choosing the ejection system are given. The characteristics required for the ejected beam are followed by a description of the ejection process, in chronological order from the viewpoint of the protons: movement of the particles, taking into account the various elements which make up the system (internal magnet, external magnet, quadrupoles, ejection correction coils, thin and thick cables,...) and specification of these elements. Then follows an estimation of the delay in manufacture and the cost of the project. Finally, the characteristics of the magnets and quadrupoles are listed in an appendix. (author) [fr

  3. Proton beam therapy control system

    Science.gov (United States)

    Baumann, Michael A [Riverside, CA; Beloussov, Alexandre V [Bernardino, CA; Bakir, Julide [Alta Loma, CA; Armon, Deganit [Redlands, CA; Olsen, Howard B [Colton, CA; Salem, Dana [Riverside, CA

    2008-07-08

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

  4. Radiative pion-proton scattering

    International Nuclear Information System (INIS)

    Ho-Kim, Q.; Lavine, J.P.

    1977-01-01

    The results are presented of a non-relativistic calculation of the π +- proton bremsstrahlung cross section at the pion kinetic energy of 298 MeV for backward photon angles. The pion-nucleon interaction is given by models that are based on the p-wave Chew-Low theory. An interaction current is included in an attempt to make the overall bremsstrahlung amplitude gauge-invariant. The predicted cross sections show little of the expected resonance, and are in fair agreement with the data. The authors have also calculated the cross sections at other kinetic energies, and have studied effects of the off-mass-shell electromagnetic vertex. (Auth.)

  5. Storage ring proton EDM experiment

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    sensitivity of 10^-29 e-cm.  The strength of the method originates from the fact that there are high intensity polarized proton beams available and the fact that the so-called geometric phase systematic error background cancels with clock-wise and counter-clock-wise storage possible in electric rings. The ultimate sensitivity of the method is 10^-30 e-cm. At this level it will either detect a non-zero EDM or it will eliminate electro-weak baryogenesis.

  6. Proton capture by magnetic monopoles

    International Nuclear Information System (INIS)

    Olaussen, K.; Olsen, H.A.; Oeverboe, I.; Osland, P.

    1983-09-01

    In the Kazama-Yang approximation, the lowest monopole-proton bound states have binding energies of 938 MeV, 263 keV, 105 eV, and 0.04 eV. The cross section for radiative capture to these states is for velocities β = 10 -5 - 10 -3 found to be of the order of 10 -28 - 10 -26 cm 2 . For the state that has a binding energy of 263 keV, the capture length in water is 171 x (β/10 -4 )sup(0.48) m. Observation of photons from the capture process would indicate the presence of monopoles. (orig.)

  7. The IMB proton decay detector

    International Nuclear Information System (INIS)

    Svoboda, R.C.; Gajewski, W.; Kropp, W.R.; Reines, F.; Schultz, J.; Smith, D.W.; Sobel, H.; Wuest, C.; Bionta, R.M.; Cortez, B.G.; Errede, S.; Foster, G.W.; Greenberg, J.; Park, H.S.; Shumard, E.; Sinclair, D.; Stone, J.L.; Sulak, L.R.; Velde, J.C. van der; Goldhaber, M.; Blewitt, G.; Lehmann, E.; LoSecco, J.M.; Bratton, C.B.; Learned, J.; Svoboda, R.; Jones, T.W.; Ramana Murthy, P.V.

    1983-01-01

    A description is given of the Irvine-Michigan-Brookhaven proton decay detector which is nearing completion in a salt mine in Cleveland, Ohio, U.S.A. The detector is a water Cerenkov one with a fiducial volume of 4,000 tons and a threshold of 24 MeV. Initial results indicate that the detector is working according to specification and has a high potential for deep underground cosmic ray applications. I will give a brief account of the IMB detector construction and operation and also its present status and possible cosmic ray applications. (orig.)

  8. Pitfalls of tungsten multileaf collimator in proton beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Moskvin, Vadim; Cheng, Chee-Wai; Das, Indra J. [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202 (United States) and Indiana University Health Proton Therapy Center (Formerly Midwest Proton Radiotherapy Institute), Bloomington, Indiana 47408 (United States)

    2011-12-15

    Purpose: Particle beam therapy is associated with significant startup and operational cost. Multileaf collimator (MLC) provides an attractive option to improve the efficiency and reduce the treatment cost. A direct transfer of the MLC technology from external beam radiation therapy is intuitively straightforward to proton therapy. However, activation, neutron production, and the associated secondary cancer risk in proton beam should be an important consideration which is evaluated. Methods: Monte Carlo simulation with FLUKA particle transport code was applied in this study for a number of treatment models. The authors have performed a detailed study of the neutron generation, ambient dose equivalent [H*(10)], and activation of a typical tungsten MLC and compared with those obtained from a brass aperture used in a typical proton therapy system. Brass aperture and tungsten MLC were modeled by absorber blocks in this study, representing worst-case scenario of a fully closed collimator. Results: With a tungsten MLC, the secondary neutron dose to the patient is at least 1.5 times higher than that from a brass aperture. The H*(10) from a tungsten MLC at 10 cm downstream is about 22.3 mSv/Gy delivered to water phantom by noncollimated 200 MeV beam of 20 cm diameter compared to 14 mSv/Gy for the brass aperture. For a 30-fraction treatment course, the activity per unit volume in brass aperture reaches 5.3 x 10{sup 4} Bq cm{sup -3} at the end of the last treatment. The activity in brass decreases by a factor of 380 after 24 h, additional 6.2 times after 40 days of cooling, and is reduced to background level after 1 yr. Initial activity in tungsten after 30 days of treating 30 patients per day is about 3.4 times higher than in brass that decreases only by a factor of 2 after 40 days and accumulates to 1.2 x 10{sup 6} Bq cm{sup -3} after a full year of operation. The daily utilization of the MLC leads to buildup of activity with time. The overall activity continues to increase

  9. A research plan based on high intensity proton accelerator Neutron Science Research Center

    International Nuclear Information System (INIS)

    Mizumoto, Motoharu

    1997-01-01

    A plan called Neutron Science Research Center (NSRC) has been proposed in JAERI. The center is a complex composed of research facilities based on a proton linac with an energy of 1.5GeV and an average current of 10mA. The research facilities will consist of Thermal/Cold Neutron Facility, Neutron Irradiation Facility, Neutron Physics Facility, OMEGA/Nuclear Energy Facility, Spallation RI Beam Facility, Meson/Muon Facility and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutron, pion, muon and unstable radio isotope (RI) beams generated from the proton beam will be utilized for innovative researches in the fields on nuclear engineering and basic sciences. (author)

  10. A research plan based on high intensity proton accelerator Neutron Science Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Mizumoto, Motoharu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    A plan called Neutron Science Research Center (NSRC) has been proposed in JAERI. The center is a complex composed of research facilities based on a proton linac with an energy of 1.5GeV and an average current of 10mA. The research facilities will consist of Thermal/Cold Neutron Facility, Neutron Irradiation Facility, Neutron Physics Facility, OMEGA/Nuclear Energy Facility, Spallation RI Beam Facility, Meson/Muon Facility and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutron, pion, muon and unstable radio isotope (RI) beams generated from the proton beam will be utilized for innovative researches in the fields on nuclear engineering and basic sciences. (author)

  11. Sub 100 nm proton beam micromachining: theoretical calculations on resolution limits

    International Nuclear Information System (INIS)

    Kan, J.A. van; Sum, T.C.; Osipowicz, T.; Watt, F.

    2000-01-01

    Proton beam micromachining is a novel direct-write process for the production of three-dimensional (3D) microstructures. A focused beam of MeV protons is scanned in a pre-determined pattern over a suitable resist material (e.g. PMMA or SU-8) and the latent image formed is subsequently developed chemically. In this paper calculations on theoretical resolution limits of proton beam micromachined three-dimensional microstructures are presented. Neglecting the finite beam size, a Monte Carlo ion transport code was used in combination with a theoretical model describing the delta-ray (δ-ray) energy deposition to determine the lateral energy deposition distribution in PMMA resist material. The energy deposition distribution of ion induced secondary electrons (δ-rays) has been parameterized using analytical models. It is assumed that the attainable resolution is limited by a convolution of the spread of the ion beam and energy deposition of the δ-rays

  12. Inter- and intra-annular proton exchange in gaseous benzylbenzenium ions (protonated diphenylmethane)

    OpenAIRE

    Kuck, Dietmar; Bäther, Wolfgang

    1986-01-01

    Two distinct proton exchange reactions occur in metastable gaseous benzylbenzenium ions, generated by isobutane chemical ionization of diphenylmethane and four deuterium-labelled analogues. Whereas the proton ring-walk at the benzenium moiety is fast giving rise to a completely random intraannular proton exchange, the interannular proton exchange is surprisingly slow and competes with the elimination of benzene. A kinetic isotope effect of kH/kD= 5 has been determined for the interannular pro...

  13. Aspects of uranium mineralization in the Beaufort West Karoo

    Energy Technology Data Exchange (ETDEWEB)

    Pretorius, L E

    1977-01-01

    The distribution and controlling factors of uranium mineralization in the sedimentary rocks of the Lower Beaufort Group have been investigated in the Beaufort West area between 22/sup 0/O' and 24/sup 0/O'E longitude and 32/sup 0/O' and 32/sup 0/45'S latitude. The mineralization is classified as 'primary' or 'secondary', depending on the time of emplacement and not on the oxidation state of the uranium minerals present. Petrographic and geochemical aspects of primary uranium deposition point to a syngenetic origin. Reconstruction of the paleodepositional environment suggests that the primary mineralization is restricted to paleo-pools or -meander cut-offs where stagnant reducing conditions existed. From geological mapping done to the south of Beaufort West it appears that this uranium mineralization is located in an 'intermediate' paleo-depositional zone between the true fluvial and delta front environments. The indications of secondary uranium distribution and epigenetic concentration in 'rolls' within the area were studied along with various other aspects of such mineralization. The permeability of the arenaceous rocks in the area seems to be too low to host large uranium deposits of this kind. Detail geochemical soil sampling suggests that Zn, P, Co and As could be used as pathfinder elements for uranium. Although regional anomalies were investigated no meaningful pattern could be developed.

  14. Impact of spot size on plan quality of spot scanning proton radiosurgery for peripheral brain lesions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dongxu, E-mail: dongxu-wang@uiowa.edu; Dirksen, Blake; Hyer, Daniel E.; Buatti, John M.; Sheybani, Arshin; Dinges, Eric; Felderman, Nicole; TenNapel, Mindi; Bayouth, John E.; Flynn, Ryan T. [Department of Radiation Oncology, University of Iowa, Iowa City, Iowa 52242 (United States)

    2014-12-15

    Purpose: To determine the plan quality of proton spot scanning (SS) radiosurgery as a function of spot size (in-air sigma) in comparison to x-ray radiosurgery for treating peripheral brain lesions. Methods: Single-field optimized (SFO) proton SS plans with sigma ranging from 1 to 8 mm, cone-based x-ray radiosurgery (Cone), and x-ray volumetric modulated arc therapy (VMAT) plans were generated for 11 patients. Plans were evaluated using secondary cancer risk and brain necrosis normal tissue complication probability (NTCP). Results: For all patients, secondary cancer is a negligible risk compared to brain necrosis NTCP. Secondary cancer risk was lower in proton SS plans than in photon plans regardless of spot size (p = 0.001). Brain necrosis NTCP increased monotonically from an average of 2.34/100 (range 0.42/100–4.49/100) to 6.05/100 (range 1.38/100–11.6/100) as sigma increased from 1 to 8 mm, compared to the average of 6.01/100 (range 0.82/100–11.5/100) for Cone and 5.22/100 (range 1.37/100–8.00/100) for VMAT. An in-air sigma less than 4.3 mm was required for proton SS plans to reduce NTCP over photon techniques for the cohort of patients studied with statistical significance (p = 0.0186). Proton SS plans with in-air sigma larger than 7.1 mm had significantly greater brain necrosis NTCP than photon techniques (p = 0.0322). Conclusions: For treating peripheral brain lesions—where proton therapy would be expected to have the greatest depth-dose advantage over photon therapy—the lateral penumbra strongly impacts the SS plan quality relative to photon techniques: proton beamlet sigma at patient surface must be small (<7.1 mm for three-beam single-field optimized SS plans) in order to achieve comparable or smaller brain necrosis NTCP relative to photon radiosurgery techniques. Achieving such small in-air sigma values at low energy (<70 MeV) is a major technological challenge in commercially available proton therapy systems.

  15. Impact of spot size on plan quality of spot scanning proton radiosurgery for peripheral brain lesions

    International Nuclear Information System (INIS)

    Wang, Dongxu; Dirksen, Blake; Hyer, Daniel E.; Buatti, John M.; Sheybani, Arshin; Dinges, Eric; Felderman, Nicole; TenNapel, Mindi; Bayouth, John E.; Flynn, Ryan T.

    2014-01-01

    Purpose: To determine the plan quality of proton spot scanning (SS) radiosurgery as a function of spot size (in-air sigma) in comparison to x-ray radiosurgery for treating peripheral brain lesions. Methods: Single-field optimized (SFO) proton SS plans with sigma ranging from 1 to 8 mm, cone-based x-ray radiosurgery (Cone), and x-ray volumetric modulated arc therapy (VMAT) plans were generated for 11 patients. Plans were evaluated using secondary cancer risk and brain necrosis normal tissue complication probability (NTCP). Results: For all patients, secondary cancer is a negligible risk compared to brain necrosis NTCP. Secondary cancer risk was lower in proton SS plans than in photon plans regardless of spot size (p = 0.001). Brain necrosis NTCP increased monotonically from an average of 2.34/100 (range 0.42/100–4.49/100) to 6.05/100 (range 1.38/100–11.6/100) as sigma increased from 1 to 8 mm, compared to the average of 6.01/100 (range 0.82/100–11.5/100) for Cone and 5.22/100 (range 1.37/100–8.00/100) for VMAT. An in-air sigma less than 4.3 mm was required for proton SS plans to reduce NTCP over photon techniques for the cohort of patients studied with statistical significance (p = 0.0186). Proton SS plans with in-air sigma larger than 7.1 mm had significantly greater brain necrosis NTCP than photon techniques (p = 0.0322). Conclusions: For treating peripheral brain lesions—where proton therapy would be expected to have the greatest depth-dose advantage over photon therapy—the lateral penumbra strongly impacts the SS plan quality relative to photon techniques: proton beamlet sigma at patient surface must be small (<7.1 mm for three-beam single-field optimized SS plans) in order to achieve comparable or smaller brain necrosis NTCP relative to photon radiosurgery techniques. Achieving such small in-air sigma values at low energy (<70 MeV) is a major technological challenge in commercially available proton therapy systems

  16. Influence of proton scattering angles on the energy radiograph in proton radiotherapy : A simulation study

    NARCIS (Netherlands)

    Biegun, A.K.; Takatsu, J.; van Beuzekom, M.; van der Graaf, E.R.; van Goethem, M-J.; Klaver, T.; Visser, J.; Brandenburg, S.

    2015-01-01

    The treatment quality of cancer patients with a proton beam critically depends on accurate predictions of proton stopping powers. Uncertainties in proton range that occur from translation of an X-ray CT patient image, of typical 3–4% or more, lead to necessary enlargements of contours around the

  17. Proton energy and scattering angle radiographs to improve proton treatment planning : a Monte Carlo study

    NARCIS (Netherlands)

    Biegun, Aleksandra; Takatsu, Jun; Nakaji, Taku; van Goethem, Marc-Jan; van der Graaf, Emiel; Koffeman, E.; Visser, Jan; Brandenburg, Sijtze

    2016-01-01

    The novel proton radiography imaging technique has a large potential to be used in direct measurement of the proton energy loss (proton stopping power, PSP) in various tissues in the patient. The uncertainty of PSPs, currently obtained from translation of X-ray Computed Tomography (xCT) images,

  18. Proton tracking in a high-granularity Digital Tracking Calorimeter for proton CT purposes

    NARCIS (Netherlands)

    Pettersen, H. E.S.; Alme, J.; Biegun, A.; van den Brink, A.; Chaar, M.; Fehlker, D.; Meric, I.; Odland, O. H.; Peitzmann, T.; Rocco, E.; Ullaland, K.; Wang, H.; Yang, S.; Zhang, C.; Röhrich, D.

    2017-01-01

    Radiation therapy with protons as of today utilizes information from x-ray CT in order to estimate the proton stopping power of the traversed tissue in a patient. The conversion from x-ray attenuation to proton stopping power in tissue introduces range uncertainties of the order of 2–3% of the

  19. Proton tracking in a high-granularity Digital Tracking Calorimeter for proton CT purposes

    NARCIS (Netherlands)

    Pettersen, H. E. S.; Alme, J.; Biegun, A.; van den Brink, A.; Chaar, M.; Fehlker, D.; Meric, I.; Odland, O. H.; Peitzmann, T.; Rocco, E.; Ullaland, K.; Wang, H.; Yang, S.; Zhang, C.; Rohrich, D.

    2017-01-01

    Radiation therapy with protons as of today utilizes information from x-ray CT in order to estimate the proton stopping power of the traversed tissue in a patient. The conversion from x-ray attenuation to proton stopping power in tissue introduces range uncertainties of the order of 2-3% of the

  20. Surface proton transport of fully protonated poly(aspartic acid) thin films on quartz substrates

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, Yuki, E-mail: ynagao@jaist.ac.jp; Kubo, Takahiro

    2014-12-30

    Graphical abstract: - Highlights: • Proton transport of fully protonated poly(aspartic acid) thin film was investigated. • The thin film structure differed greatly from the partially protonated one. • Proton transport occurs on the surface, not inside of the thin film. • This result contributes to biological transport systems such as bacteriorhodopsin. - Abstract: Thin film structure and the proton transport property of fully protonated poly(aspartic acid) (P-Asp100) have been investigated. An earlier study assessed partially protonated poly(aspartic acid), highly oriented thin film structure and enhancement of the internal proton transport. In this study of P-Asp100, IR p-polarized multiple-angle incidence resolution (P-MAIR) spectra were measured to investigate the thin film structure. The obtained thin films, with thicknesses of 120–670 nm, had no oriented structure. Relative humidity dependence of the resistance, proton conductivity, and normalized resistance were examined to ascertain the proton transport property of P-Asp100 thin films. The obtained data showed that the proton transport of P-Asp100 thin films might occur on the surface, not inside of the thin film. This phenomenon might be related with the proton transport of the biological system.