WorldWideScience

Sample records for proton treatment facility an

  1. Proton facility economics: the importance of "simple" treatments.

    Science.gov (United States)

    Johnstone, Peter A S; Kerstiens, John; Richard, Helsper

    2012-08-01

    Given the cost and debt incurred to build a modern proton facility, impetus exists to minimize treatment of patients with complex setups because of their slower throughput. The aim of this study was to determine how many "simple" cases are necessary given different patient loads simply to recoup construction costs and debt service, without beginning to cover salaries, utilities, beam costs, and so on. Simple cases are ones that can be performed quickly because of an easy setup for the patient or because the patient is to receive treatment to just one or two fields. A "standard" construction cost and debt for 1, 3, and 4 gantry facilities were calculated from public documents of facilities built in the United States, with 100% of the construction funded through standard 15-year financing at 5% interest. Clinical best case (that each room was completely scheduled with patients over a 14-hour workday) was assumed, and a statistical analysis was modeled with debt, case mix, and payer mix moving independently. Treatment times and reimbursement data from the investigators' facility for varying complexities of patients were extrapolated for varying numbers treated daily. Revenue assumptions of $X per treatment were assumed both for pediatric cases (a mix of Medicaid and private payer) and state Medicare simple case rates. Private payer reimbursement averages $1.75X per treatment. The number of simple patients required daily to cover construction and debt service costs was then derived. A single gantry treating only complex or pediatric patients would need to apply 85% of its treatment slots simply to service debt. However, that same room could cover its debt treating 4 hours of simple patients, thus opening more slots for complex and pediatric patients. A 3-gantry facility treating only complex and pediatric cases would not have enough treatment slots to recoup construction and debt service costs at all. For a 4-gantry center, focusing on complex and pediatric cases alone

  2. Status of proton treatment facility at National Cancer Center, Kashiwa

    International Nuclear Information System (INIS)

    Tachikawa, T.; Kohmura, I.; Kataoka, S.; Nonaka, H.; Kimura, T.; Sato, T.; Nishio, T.; Shimbo, M.; Ogino, T.; Ikeda, H.

    2001-01-01

    Proton treatment facility at National Cancer Center Hospital East (Kashiwa) has two rotating gantry ports and one horizontal fixed port. In order to provide the same dose distribution at different gantry angles, the beam optics from the accelerator (235 MeV cyclotron) to the entrance of nozzle is specially tuned. Recently developed automatic tuning method of beam alignment can realize a sequential treatment at three irradiation ports. (author)

  3. An outline of research facilities of high intensity proton accelerator

    International Nuclear Information System (INIS)

    Tanaka, Shun-ichi

    1995-01-01

    A plan called PROTON ENGINEERING CENTER has been proposed in JAERI. The center is a complex composed of research facilities and a beam shape and storage ring based on a proton linac with an energy of 1.5 GeV and an average current of 10 mA. The research facilities planned are OMEGA·Nuclear Energy Development Facility, Neutron Facility for Material Irradiation, Nuclear Data Experiment Facility, Neutron Factory, Meson Factory, spallation Radioisotope Beam Facility, and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutrons, π-mesons, muons, and unstable isotopes originated from the protons are available for promoting the innovative research of nuclear energy and basic science and technology. (author)

  4. Study on patient-induced radioactivity during proton treatment in hengjian proton medical facility.

    Science.gov (United States)

    Wu, Qingbiao; Wang, Qingbin; Liang, Tianjiao; Zhang, Gang; Ma, Yinglin; Chen, Yu; Ye, Rong; Liu, Qiongyao; Wang, Yufei; Wang, Huaibao

    2016-09-01

    At present, increasingly more proton medical facilities have been established globally for better curative effect and less side effect in tumor treatment. Compared with electron and photon, proton delivers more energy and dose at its end of range (Bragg peak), and has less lateral scattering for its much larger mass. However, proton is much easier to produce neutron and induced radioactivity, which makes radiation protection for proton accelerators more difficult than for electron accelerators. This study focuses on the problem of patient-induced radioactivity during proton treatment, which has been ignored for years. However, we confirmed it is a vital factor for radiation protection to both patient escort and positioning technician, by FLUKA's simulation and activation formula calculation of Hengjian Proton Medical Facility (HJPMF), whose energy ranges from 130 to 230MeV. Furthermore, new formulas for calculating the activity buildup process of periodic irradiation were derived and used to study the relationship between saturation degree and half-life of nuclides. Finally, suggestions are put forward to lessen the radiation hazard from patient-induced radioactivity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Study on patient-induced radioactivity during proton treatment in hengjian proton medical facility

    International Nuclear Information System (INIS)

    Wu, Qingbiao; Wang, Qingbin; Liang, Tianjiao; Zhang, Gang; Ma, Yinglin; Chen, Yu; Ye, Rong; Liu, Qiongyao; Wang, Yufei; Wang, Huaibao

    2016-01-01

    At present, increasingly more proton medical facilities have been established globally for better curative effect and less side effect in tumor treatment. Compared with electron and photon, proton delivers more energy and dose at its end of range (Bragg peak), and has less lateral scattering for its much larger mass. However, proton is much easier to produce neutron and induced radioactivity, which makes radiation protection for proton accelerators more difficult than for electron accelerators. This study focuses on the problem of patient-induced radioactivity during proton treatment, which has been ignored for years. However, we confirmed it is a vital factor for radiation protection to both patient escort and positioning technician, by FLUKA’s simulation and activation formula calculation of Hengjian Proton Medical Facility (HJPMF), whose energy ranges from 130 to 230 MeV. Furthermore, new formulas for calculating the activity buildup process of periodic irradiation were derived and used to study the relationship between saturation degree and half-life of nuclides. Finally, suggestions are put forward to lessen the radiation hazard from patient-induced radioactivity. - Highlights: • A detailed study on patient-induced radioactivity was conducted by adopting Monte Carlo code FLUKA and activation formula. • New formulas for calculating the activity build-up process of periodic irradiation were derived and extensively studied. • Patient induced radioactivity, which has been ignored for years, is confirmed as a vital factor for radiation protection. • The induced radioactivity from single short-time treatment and long-time running (saturation) were studied and compared. • Some suggestions on how to reduce the hazard of patient’s induced radioactivity were given.

  6. TU-G-BRCD-01: Will the High Cost of Proton Therapy Facilities Limit the Availability of Proton Therapy Treatment?

    Science.gov (United States)

    Maughan, R

    2012-06-01

    The potential dose distribution advantages associated with proton therapy, and particularly with pencil beam scanning (PBS) techniques, have lead to considerable interest in this modality in recent years. However, the large capital expenditure necessary for such a project requires careful financial consideration and business planning. The complexity of the beam delivery systems impacts the capital expenditure and the PBS only systems presently being advocated can reduce these costs. Also several manufacturers are considering "one-room" facilities as less expensive alternatives to multi-room facilities. This presentation includes a brief introduction to beam delivery options (passive scattering, uniform and modulated scanning) and some of the new technologies proposed for providing less expensive proton therapy systems. Based on current experience, data on proton therapy center start-up costs, running costs and the financial challenges associated with making this highly conformal therapy more widely available will be discussed. Issues associated with proton therapy implementation that are key to project success include strong project management, vendor cooperation and collaboration, staff recruitment and training. Time management during facility start up is a major concern, particularly in multi-room systems, where time must be shared between continuing vendor system validation, verification and acceptance testing, and user commissioning and patient treatments. The challenges associated with facility operation during this period and beyond are discussed, focusing on how standardization of process, downtime and smart scheduling can influence operational efficiency. 1. To understand the available choices for proton therapy facilities, the different beam delivery systems and the financial implications associated with these choices. 2. To understand the key elements necessary for successfully implementing a proton therapy program. 3. To understand the challenges

  7. Australian national proton facility

    International Nuclear Information System (INIS)

    Jackson, M.

    2000-01-01

    important in children and other long-term survivors. When used with chemotherapy, the lower dose to normal tissue will reduce acute toxicity and the risk of second malignancies. It may also be possible to use a smaller number of radiotherapy fractions and thus reduce the total cost of treatment. With the development of more compact and reliable accelerators it is now possible to realistically plan for proton therapy in an Australian hospital. The Australian National Proton Project has been formed to look at the feasibility of such a facility, which would be primarily for patient treatment but would also be suitable for research and commercial applications. A detailed report will be produced early next year. This presentation will outline the planned facility that would have a combination of fixed and rotating beams with an energy range of 70-250 MeV. Such a centre would enable the conduct of randomised trials and a comparison with other radiotherapy techniques such as Intensity Modulated Radiation Therapy. The beam would be available for physics, engineering and biological research

  8. Defocusing beam line design for an irradiation facility at the TAEA SANAEM Proton Accelerator Facility

    Science.gov (United States)

    Gencer, A.; Demirköz, B.; Efthymiopoulos, I.; Yiğitoğlu, M.

    2016-07-01

    Electronic components must be tested to ensure reliable performance in high radiation environments such as Hi-Limu LHC and space. We propose a defocusing beam line to perform proton irradiation tests in Turkey. The Turkish Atomic Energy Authority SANAEM Proton Accelerator Facility was inaugurated in May 2012 for radioisotope production. The facility has also an R&D room for research purposes. The accelerator produces protons with 30 MeV kinetic energy and the beam current is variable between 10 μA and 1.2 mA. The beam kinetic energy is suitable for irradiation tests, however the beam current is high and therefore the flux must be lowered. We plan to build a defocusing beam line (DBL) in order to enlarge the beam size, reduce the flux to match the required specifications for the irradiation tests. Current design includes the beam transport and the final focusing magnets to blow up the beam. Scattering foils and a collimator is placed for the reduction of the beam flux. The DBL is designed to provide fluxes between 107 p /cm2 / s and 109 p /cm2 / s for performing irradiation tests in an area of 15.4 cm × 21.5 cm. The facility will be the first irradiation facility of its kind in Turkey.

  9. The Australian National Proton Facility

    International Nuclear Information System (INIS)

    Jackson, M.; Rozenfeld, A.; Bishop, J.

    2002-01-01

    Full text: Protons have been used in the treatment of cancer since 1954 and over 30,000 patients have been treated around the world. Their precise dose distribution allows the treatment of small tumours in critical locations such as the base of skull and orbit and is an alternative to stereotactic radiotherapy in other sites. With the development of hospital-based systems in the 1990's, common tumours such as prostate, breast and lung cancer can now also be treated using simple techniques. The therapeutic ratio is improved as the dose to the tumour can be increased while sparing normal tissues. The well defined high dose region and low integral dose compared with photon treatments is a particular advantage in children and other situations where long-term survival is expected and when used in combination with chemotherapy. In January 2002, the NSW Health Department initiated a Feasibility Study for an Australian National Proton Facility. This Study will address the complex medical, scientific, engineering, commercial and legal issues required to design and build a proton facility in Australia. The Facility will be mainly designed for patient treatment but will also provide facilities for biological, physical and engineering research. The proposed facility will have a combination of fixed and rotating beams with an energy range of 70-250 MeV. Such a centre will enable the conduct of randomised clinical trials and a comparison with other radiotherapy techniques such as Intensity Modulated Radiation Therapy. Cost-utility comparisons with other medical treatments will also be made and further facilities developed if the expected benefit is confirmed. When patients are not being treated, the beam will be available for commercial and research purposes. This presentation will summarize the progress of the Study and discuss the important issues that need to be resolved before the Facility is approved and constructed

  10. Performance specifications for proton medical facility

    Energy Technology Data Exchange (ETDEWEB)

    Chu, W.T.; Staples, J.W.; Ludewigt, B.A.; Renner, T.R.; Singh, R.P.; Nyman, M.A.; Collier, J.M.; Daftari, I.K.; Petti, P.L.; Alonso, J.R. [Lawrence Berkeley Lab., CA (United States); Kubo, H.; Verhey, L.J. [University of California Davis Medical Center, Sacramento, CA (United States). Cancer Center]|[California Univ., San Francisco, CA (United States). School of Medicine; Castro, J.R. [Lawrence Berkeley Lab., CA (United States)]|[University of California Davis Medical Center, Sacramento, CA (United States). Cancer Center]|[California Univ., San Francisco, CA (United States). School of Medicine

    1993-03-01

    Performance specifications of technical components of a modern proton radiotherapy facility are presented. The technical items specified include: the accelerator; the beam transport system including rotating gantry; the treatment beamline systems including beam scattering, beam scanning, and dosimetric instrumentation; and an integrated treatment and accelerator control system. Also included are treatment ancillary facilities such as diagnostic tools, patient positioning and alignment devices, and treatment planning systems. The facility specified will accommodate beam scanning enabling the three-dimensional conformal therapy deliver .

  11. Defocusing beam line design for an irradiation facility at the TAEA SANAEM Proton Accelerator Facility

    CERN Document Server

    Gencer, A.; Efthymiopoulos, I.; Yiğitoğlu, M.

    2016-01-01

    Electronic components must be tested to ensure reliable performance in high radiation environments such as Hi-Limu LHC and space. We propose a defocusing beam line to perform proton irradiation tests in Turkey. The Turkish Atomic Energy Authority SANAEM Proton Accelerator Facility was inaugurated in May 2012 for radioisotope production. The facility has also an R&D room for research purposes. The accelerator produces protons with 30 MeV kinetic energy and the beam current is variable between View the MathML source10μA and View the MathML source1.2mA. The beam kinetic energy is suitable for irradiation tests, however the beam current is high and therefore the flux must be lowered. We plan to build a defocusing beam line (DBL) in order to enlarge the beam size, reduce the flux to match the required specifications for the irradiation tests. Current design includes the beam transport and the final focusing magnets to blow up the beam. Scattering foils and a collimator is placed for the reduction of the beam ...

  12. Proposal for an irradiation facility at the TAEK SANAEM Proton Accelerator Facility

    Science.gov (United States)

    Demirköz, B.; Gencer, A.; Kiziloren, D.; Apsimon, R.

    2013-12-01

    Turkish Atomic Energy Authority's (TAEK's) Proton Accelerator Facility in Ankara, Turkey, has been inaugurated in May 2012 and is under the process of being certified for commercial radio-isotope production. Three of the four arms of the 30 MeV cyclotron are being used for radio-isotope production, while the fourth is foreseen for research and development of novel ideas and methods. The cyclotron can vary the beam current between 12 μA and 1.2 mA, sufficient for irradiation tests for semiconductor materials, detectors and devices. We propose to build an irradiation facility in the R&D room of this complex, open for use to the international detector development community.

  13. Proton beam therapy facility

    International Nuclear Information System (INIS)

    1984-01-01

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs

  14. Proton beam therapy facility

    Energy Technology Data Exchange (ETDEWEB)

    1984-10-09

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs.

  15. Independent dose per monitor unit review of eight U.S.A. proton treatment facilities

    International Nuclear Information System (INIS)

    Moyers, M. F.; Ibbott, G. S.; Grant, R. L.; Summers, P. A.; Followill, D. S.

    2014-01-01

    Purpose: Compare the dose per monitor unit at different proton treatment facilities using three different dosimetry methods. Methods: Measurements of dose per monitor unit were performed by a single group at eight facilities using 11 test beams and up to six different clinical portal treatment sites. These measurements were compared to the facility reported dose per monitor unit values. Results: Agreement between the measured and reported doses was similar using any of the three dosimetry methods. Use of the ICRU 59 N D,w based method gave results approximately 3% higher than both the ICRU 59 N X and ICRU 78 (TRS-398) N D,w based methods. Conclusions: Any single dosimetry method could be used for multi-institution trials with similar conformity between facilities. A multi-institutional trial could support facilities using both the ICRU 59 N X based and ICRU 78 (TRS-398) N D,w based methods but use of the ICRU 59 N D,w based method should not be allowed simultaneously with the other two until the difference is resolved

  16. Proton radiography to improve proton therapy treatment

    NARCIS (Netherlands)

    Takatsu, J.; van der Graaf, E. R.; van Goethem, Marc-Jan; van Beuzekom, M.; Klaver, T.; Visser, Jan; Brandenburg, S.; Biegun, A. K.

    The quality of cancer treatment with protons critically depends on an accurate prediction of the proton stopping powers for the tissues traversed by the protons. Today, treatment planning in proton radiotherapy is based on stopping power calculations from densities of X-ray Computed Tomography (CT)

  17. Characterization of the microbunch time structure of proton pencil beams at a clinical treatment facility.

    Science.gov (United States)

    Petzoldt, J; Roemer, K E; Enghardt, W; Fiedler, F; Golnik, C; Hueso-González, F; Helmbrecht, S; Kormoll, T; Rohling, H; Smeets, J; Werner, T; Pausch, G

    2016-03-21

    Proton therapy is an advantageous treatment modality compared to conventional radiotherapy. In contrast to photons, charged particles have a finite range and can thus spare organs at risk. Additionally, the increased ionization density in the so-called Bragg peak close to the particle range can be utilized for maximum dose deposition in the tumour volume. Unfortunately, the accuracy of the therapy can be affected by range uncertainties, which have to be covered by additional safety margins around the treatment volume. A real-time range and dose verification is therefore highly desired and would be key to exploit the major advantages of proton therapy. Prompt gamma rays, produced in nuclear reactions between projectile and target nuclei, can be used to measure the proton's range. The prompt gamma-ray timing (PGT) method aims at obtaining this information by determining the gamma-ray emission time along the proton path using a conventional time-of-flight detector setup. First tests at a clinical accelerator have shown the feasibility to observe range shifts of about 5 mm at clinically relevant doses. However, PGT spectra are smeared out by the bunch time spread. Additionally, accelerator related proton bunch drifts against the radio frequency have been detected, preventing a potential range verification. At OncoRay, first experiments using a proton bunch monitor (PBM) at a clinical pencil beam have been conducted. Elastic proton scattering at a hydrogen-containing foil could be utilized to create a coincident proton-proton signal in two identical PBMs. The selection of coincident events helped to suppress uncorrelated background. The PBM setup was used as time reference for a PGT detector to correct for potential bunch drifts. Furthermore, the corrected PGT data were used to image an inhomogeneous phantom. In a further systematic measurement campaign, the bunch time spread and the proton transmission rate were measured for several beam energies between 69 and 225 Me

  18. Australian proton therapy facilities - status report

    International Nuclear Information System (INIS)

    Bleasel, S.; Jackson, M.

    2000-01-01

    Full text: Radiotherapy plays an important role in the treatment of cancer; both in the curative treatment of localised disease and in alleviating symptoms in more advanced disease. Radiotherapy is usually given with megavoltage X-rays which give good penetration at depth and a lower dose on the skin. The aim is to give a high dose to the tumour while keeping the dose to normal tissues as low as possible. While X-rays continue beyond the target volume, protons and other charged particles have a finite range in tissue and this allows the high dose region to closely conform to the tumour, thereby giving the best chance of tumour control with minimum side effects. This is particularly important for small tumours adjacent to critical normal structures. The unmodified Bragg peak is too narrow to be useful but can be spread out to cover the tumour. Protons of energy 70 - 250 MeV are required to achieve the optimal depth in the body. Protons have been used for cancer treatment since 1954 but most of these treatments have been given in physics-based facilities which do not provide an ideal environment for the patient and may have only limited beam time available. A dedicated, hospital based facility was built at Loma Linda in California in 1991 and has now treated over 5,000 patients. Several other centres are being built in the USA, Japan and Europe and one is now being considered for Australia. Early 1998 Hitachi Australia Ltd. was asked to research the possibility of building a facility in Australia to serve Oceania. Two major hospitals showed interest, Royal Brisbane Hospital and Royal Prince Alfred Hospital. Both hospitals are undergoing redevelopment and have space for a building 3 stories high with a foot-print of approximately 50 m x 50 m. What is proposed for Australia is a principally clinical research facility with a dedicated area for physics research. A Steering Committee will be established to develop a document for presentation to Government. The facility

  19. SU-F-T-169: A Periodic Quality Assurance Program for a Spot-Scanning Proton Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Mundy, D; Tryggestad, E; Beltran, C; Furutani, K; Gilson, G; Ito, S; Johnson, J; Kruse, J; Remmes, N; Tasson, A; Whitaker, T; Herman, M [Mayo Clinic, Rochester, MN (United States)

    2016-06-15

    Purpose: To develop daily and monthly quality assurance (QA) programs in support of a new spot-scanning proton treatment facility using a combination of commercial and custom equipment and software. Emphasis was placed on efficiency and evaluation of key quality parameters. Methods: The daily QA program was developed to test output, spot size and position, proton beam energy, and image guidance using the Sun Nuclear Corporation rf-DQA™3 device and Atlas QA software. The program utilizes standard Atlas linear accelerator tests repurposed for proton measurements and a custom jig for indexing the device to the treatment couch. The monthly QA program was designed to test mechanical performance, image quality, radiation quality, isocenter coincidence, and safety features. Many of these tests are similar to linear accelerator QA counterparts, but many require customized test design and equipment. Coincidence of imaging, laser marker, mechanical, and radiation isocenters, for instance, is verified using a custom film-based device devised and manufactured at our facility. Proton spot size and position as a function of energy are verified using a custom spot pattern incident on film and analysis software developed in-house. More details concerning the equipment and software developed for monthly QA are included in the supporting document. Thresholds for daily and monthly tests were established via perturbation analysis, early experience, and/or proton system specifications and associated acceptance test results. Results: The periodic QA program described here has been in effect for approximately 9 months and has proven efficient and sensitive to sub-clinical variations in treatment delivery characteristics. Conclusion: Tools and professional guidelines for periodic proton system QA are not as well developed as their photon and electron counterparts. The program described here efficiently evaluates key quality parameters and, while specific to the needs of our facility

  20. SU-F-T-169: A Periodic Quality Assurance Program for a Spot-Scanning Proton Treatment Facility

    International Nuclear Information System (INIS)

    Mundy, D; Tryggestad, E; Beltran, C; Furutani, K; Gilson, G; Ito, S; Johnson, J; Kruse, J; Remmes, N; Tasson, A; Whitaker, T; Herman, M

    2016-01-01

    Purpose: To develop daily and monthly quality assurance (QA) programs in support of a new spot-scanning proton treatment facility using a combination of commercial and custom equipment and software. Emphasis was placed on efficiency and evaluation of key quality parameters. Methods: The daily QA program was developed to test output, spot size and position, proton beam energy, and image guidance using the Sun Nuclear Corporation rf-DQA™3 device and Atlas QA software. The program utilizes standard Atlas linear accelerator tests repurposed for proton measurements and a custom jig for indexing the device to the treatment couch. The monthly QA program was designed to test mechanical performance, image quality, radiation quality, isocenter coincidence, and safety features. Many of these tests are similar to linear accelerator QA counterparts, but many require customized test design and equipment. Coincidence of imaging, laser marker, mechanical, and radiation isocenters, for instance, is verified using a custom film-based device devised and manufactured at our facility. Proton spot size and position as a function of energy are verified using a custom spot pattern incident on film and analysis software developed in-house. More details concerning the equipment and software developed for monthly QA are included in the supporting document. Thresholds for daily and monthly tests were established via perturbation analysis, early experience, and/or proton system specifications and associated acceptance test results. Results: The periodic QA program described here has been in effect for approximately 9 months and has proven efficient and sensitive to sub-clinical variations in treatment delivery characteristics. Conclusion: Tools and professional guidelines for periodic proton system QA are not as well developed as their photon and electron counterparts. The program described here efficiently evaluates key quality parameters and, while specific to the needs of our facility

  1. Proton-proton colliding beam facility ISABELLE

    International Nuclear Information System (INIS)

    Hahn, H.

    1980-01-01

    This paper attempts to present the status of the ISABELLE construction project, which has the objective of building a 400 + 400 GeV proton colliding beam facility. The major technical features of the superconducting accelerators with their projected performance are described. Progress made so far, difficulties encountered, and the program until completion in 1986 is briefly reviewed

  2. The PIREX proton irradiation facility

    International Nuclear Information System (INIS)

    Victoria, M.

    1995-01-01

    The proton Irradiation Experiment (PIREX) is a materials irradiation facility installed in a beam line of the 590 MeV proton accelerator at the Paul Scherrer Institute. Its main purpose is the testing of candidate materials for fusion reactor components. Protons of this energy produce simultaneously displacement damage and spallation products, amongst them helium and can therefore simulate any possible synergistic effects of damage and helium, that would be produced by the fusion neutrons

  3. The PIREX proton irradiation facility

    Energy Technology Data Exchange (ETDEWEB)

    Victoria, M. [Association EURATOM, Villigen (Switzerland)

    1995-10-01

    The proton Irradiation Experiment (PIREX) is a materials irradiation facility installed in a beam line of the 590 MeV proton accelerator at the Paul Scherrer Institute. Its main purpose is the testing of candidate materials for fusion reactor components. Protons of this energy produce simultaneously displacement damage and spallation products, amongst them helium and can therefore simulate any possible synergistic effects of damage and helium, that would be produced by the fusion neutrons.

  4. An overview of the PIREX Proton Irradiation facility and its research program

    Energy Technology Data Exchange (ETDEWEB)

    Victoria, M.; Gavillet, D. [Association EURATOM, Villigen (Switzerland)

    1995-10-01

    The main design characteristics of PIREX (Proton Irradiation Experiment) are described. The facility is installed in the 590 MeV proton beam of the PSI accelerator system. Its main task is the irradiation and testing of fusion reactor candidate materials. Protons of this energy produce simultaneously in the target material displacement damage and impurities, amongst them helium. They can therefore simulate possible synergistic effects between helium and damage that would result from irradiations with the fusion neutrons. The research program being developed includes studies on both materials of technological interest, such as martensitic stainless steels and Mo - based alloys and basic radiation damage research on pure metals. The facility is also being used for actinide transmutation studies, in the so called ATHENA experiment. The main directions of the research program are described and examples of present results are given.

  5. TH-A-19A-01: An Open Source Software for Proton Treatment Planning in Heterogeneous Medium

    International Nuclear Information System (INIS)

    Desplanques, M; Baroni, G; Wang, K; Phillips, J; Gueorguiev, G; Sharp, G

    2014-01-01

    Purpose: Due to its success in Radiation Oncology during the last decade, interest in proton therapy is on the rise. Unfortunately, despite the global enthusiasm in the field, there is presently no free, multiplatform and customizable Treatment Planning System (TPS) providing proton dose distributions in heterogenous medium. This restricts substantially the progress of clinical research for groups without access to a commercial Proton TPS. The latest implementation of our pencil beam dose calculation algorithm for proton beams within the 3D Slicer open-source environment fulfills all the conditions described above. Methods: The core dose calculation algorithm is based on the Hong algorithm (1), which was upgraded with the Kanematsu theory describing the evolution of the lateral scattering of proton beamlets in heterogeneous medium. This algorithm deals with both mono-energetic beams and Spread Out Bragg Peak (SOBP). In order to be user-friendly, we provide a graphical user interface implemented with the Qt libraries, and visualization with the 3D Slicer medical image analysis software. Two different pencil beam algorithms were developed, and the clinical proton beam line at our facility was modeled. Results: The dose distributions provided by our algorithms were compared to dose distributions coming from both commercialized XiO TPS and literature (dose measurements, GEANT4 and MCNPx) and turned out to be in a good agreement, with maximum dose discrepancies of 5% in homogeneous phantoms and 10% in heterogeneous phantoms. The algorithm of SOBP creation from an optimized weigthing of mono-energetic beams results in flat SOBP. Conclusion: We hope that our efforts in implementing this new, open-source proton TPS will help the research groups to have a free access to a useful, reliable proton dose calculation software.(1) L. Hong et al., A pencil beam algorithm for proton dose calculations, Phys. Med. Biol. 41 (1996) 1305–1330. This project is paid for by NCI

  6. Proton beam characterization in the experimental room of the Trento Proton Therapy facility

    Science.gov (United States)

    Tommasino, F.; Rovituso, M.; Fabiano, S.; Piffer, S.; Manea, C.; Lorentini, S.; Lanzone, S.; Wang, Z.; Pasini, M.; Burger, W. J.; La Tessa, C.; Scifoni, E.; Schwarz, M.; Durante, M.

    2017-10-01

    As proton therapy is becoming an established treatment methodology for cancer patients, the number of proton centres is gradually growing worldwide. The economical effort for building these facilities is motivated by the clinical aspects, but might be also supported by the potential relevance for the research community. Experiments with high-energy protons are needed not only for medical physics applications, but represent also an essential part of activities dedicated to detector development, space research, radiation hardness tests, as well as of fundamental research in nuclear and particle physics. Here we present the characterization of the beam line installed in the experimental room of the Trento Proton Therapy Centre (Italy). Measurements of beam spot size and envelope, range verification and proton flux were performed in the energy range between 70 and 228 MeV. Methods for reducing the proton flux from typical treatments values of 106-109 particles/s down to 101-105 particles/s were also investigated. These data confirm that a proton beam produced in a clinical centre build by a commercial company can be exploited for a broad spectrum of experimental activities. The results presented here will be used as a reference for future experiments.

  7. An assessment of the secondary neutron dose in the passive scattering proton beam facility of the national cancer center

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sang Eun [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Cho, Gyuseong [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Lee, Se Byeong [Proton Therapy Center, National Cancer Center, Goyang (Korea, Republic of)

    2017-06-15

    The purpose of this study is to assess the additional neutron effective dose during passive scattering proton therapy. Monte Carlo code (Monte Carlo N-Particle 6) simulation was conducted based on a precise modeling of the National Cancer Center's proton therapy facility. A three-dimensional neutron effective dose profile of the interior of the treatment room was acquired via a computer simulation of the 217.8-MeV proton beam. Measurements were taken with a 3He neutron detector to support the simulation results, which were lower than the simulation results by 16% on average. The secondary photon dose was about 0.8% of the neutron dose. The dominant neutron source was deduced based on flux calculation. The secondary neutron effective dose per proton absorbed dose ranged from 4.942 ± 0.031 mSv/Gy at the end of the field to 0.324 ± 0.006 mSv/Gy at 150 cm in axial distance.

  8. Experimental support at proton--proton colliding beam facilities

    International Nuclear Information System (INIS)

    Potter, K.

    1977-01-01

    Proton--proton colliding beam facilities have a number of special features which increase the importance of support for experiments when compared to fixed target accelerators: (1) the laboratory system is very close to the center-of-mass system; this affects the geometry and general size of the experiments; (2) the primary p--p interaction is inaccessible, that is, it takes place in an ultrahigh vacuum chamber; and (3) the experiment detection system is necessarily inside the machine structure and becomes very closely linked to it in many respects. An overall picture is given of experimental support based on experience at the CERN ISR under the following headings: Experimental Areas, Scheduling, Intersection Vacuum Chambers, Machine Background, and Magnets for Experiments. The first two of these topics concern the requirements in space and time of an experiment, while the last three are all related to the close interaction between experiment and machine

  9. Proton Therapy Research and Treatment Center

    Energy Technology Data Exchange (ETDEWEB)

    Goodnight, J.E. Jr. (University of California Davis Medical Center, Sacramento, CA (United States). Cancer Center); Alonso, J.R. (Lawrence Berkeley Lab., CA (United States))

    1992-05-01

    This Grant proposal outlines the steps that will be undertaken to bring the UC Davis Proton Therapy Research and Treatment, known locally as the Proton Therapy Facility (PTF), through its design and construction phases. This application concentrates on the design phase of the PTF project.

  10. An Effective Web Presence for Substance Abuse Treatment Facilities.

    Science.gov (United States)

    Link, Thomas W; Hefner, Jennifer L; Ford, Eric W; Huerta, Timothy R

    2016-01-01

    Website development for health care has only been prevalent in the last two and a half decades. The first websites were electronic versions of brochures providing hardly any interaction with the consumer or potential consumer. The percentage of consumers that use the internet during the decision-making process for health care providers continues to rise. As a result, the websites of health care providers are becoming more of a representation of the facility and creating an organizational image rather than a brochure-like informational page. The purpose of this study was to analyze substance abuse treatment center's websites in the State of California with the goal of informing the management of substance abuse centers regarding an effective and inexpensive means to closing the marketing gaps in the industry. This brief research report presents the results of employing an automated web-crawler to assess website quality along five dimensions: accessibility, content, marketing, technology, and usability score. The sample mean scores for all dimensions were between 4 and 6 on a 10-point scale. On average larger facilities had higher quality websites. The low mean scores on these dimensions indicate that that substance abuse centers have significant room for improvement of their website's. Efficiently spending marketing funds to increase the effectiveness of a treatment center's website can be a low cost way for even small facilities to increase market competitiveness.

  11. Team Update on North American Proton Facilities for Radiation Testing

    Science.gov (United States)

    Label, Kenneth A.; Turflinger, Thomas; Haas, Thurman; George, Jeffrey; Moss, Steven; Davis, Scott; Kostic, Andrew; Wie, Brian; Reed, Robert; Guertin, Steven; hide

    2016-01-01

    In the wake of the closure of the Indiana University Cyclotron Facility (IUCF), this presentation provides an overview of the options for North American proton facilities. This includes those in use by the aerospace community as well as new additions from the cancer therapy regime. In addition, proton single event testing background is provided for understanding the criteria needed for these facilities for electronics testing.

  12. Is there an overprescription of proton pump inhibitors in oncohematologic patients undergoing ambulatory oncospecific treatment?

    Directory of Open Access Journals (Sweden)

    Meritxell Pujal Herranz

    2016-09-01

    Full Text Available Objective: The aim of this study is to evaluate the prevalence of proton pump inhibitors (PPIs prescription, and the level of adequacy of the indication of these drugs in oncohematologic patients under ambulatory oncoespecific treatment. Method: An observational descriptive study in oncohematologic patients under ambulatory oncoespecific treatment. A protocol for the rational use of PPI targeted to oncohematologic patients based on the PPI protocol of our hospital was designed. Patients under active treatment with PPIs were quantified and the appropriateness of their indications evaluated. Results: 111 patients (71 oncologic and 40 hematologic were included. 56% of all oncologic patients and 63% of all hematologic patients were under active treatment with PPIs. After reviewing the indications for PPI in all patients, 72% of oncologic and 12% of hematologic patients did not present evidence justifying treatment with these drugs. Conclusion: It is important the pharmacist to detect unappropriated prescriptions of PPIs, especially among oncologic patients, and to promote a deprescription of these drugs

  13. An experiment to test advanced materials impacted by intense proton pulses at CERN HiRadMat facility

    CERN Document Server

    Bertarelli, A; Boccone, V; Carra, F; Cerutti, F; Charitonidis, N; Charrondiere, C; Dallocchio, A; Fernandez Carmona, P; Francon, P; Gentini, L; Guinchard, M; Mariani, N; Masi, A; Marques dos Santos, S D; Moyret, P; Peroni, L; Redaelli, S; Scapin, M

    2013-01-01

    Predicting the consequences of highly energetic particle beams impacting protection devices as collimators or high power target stations is a fundamental issue in the design of state-of-the-art facilities for high-energy particle physics. These complex dynamic phenomena can be successfully simulated resorting to highly non-linear numerical tools (Hydrocodes). In order to produce accurate results, however, these codes require reliable material constitutive models that, at the extreme conditions induced by a destructive beam impact, are scarce and often inaccurate. In order to derive or validate such models a comprehensive, first-of-its-kind experiment has been recently carried out at CERN HiRadMat facility: performed tests entailed the controlled impact of intense and energetic proton pulses on a number of specimens made of six different materials. Experimental data were acquired relying on embedded instrumentation (strain gauges, temperature probes and vacuum sensors) and on remote-acquisition devices (laser ...

  14. Cost considerations for an ionising energy treatment facility

    International Nuclear Information System (INIS)

    Culpitt, R.A.

    1985-01-01

    Variables influencing the cost of food irradiation can be included under three broad headings: the physical characteristics of products to be treated; the operational characteristics of the plant to be used; costs of establishment and operation of an ionising energy treatment

  15. A simple irradiation facility for radiobiological experiments with low energy protons from a cyclotron

    International Nuclear Information System (INIS)

    Mukherjee, B.

    1982-01-01

    An experimental facility for irradiation of small biological targets with low-energy protons has been developed. The depth-dose distribution in soft-tissue is calculated from the proton energy spectrum. (orig.)

  16. ISABELLE: a proposal for construction of a proton--proton storage accelerator facility

    International Nuclear Information System (INIS)

    1976-05-01

    The construction of an Intersecting Storage Accelerator Facility (ISA or ISABELLE) at Brookhaven National Laboratory is proposed. ISABELLE will permit the exploration of proton-proton collisions at center-of-mass energies continuously variable from 60 to 400 GeV and with luminosities of 10 32 to 10 33 cm -2 sec -1 over the entire range. An overview of the physics potential of this machine is given, covering the production of charged and neutral intermediate vector bosons, the hadron production at high transverse momentum, searches for new, massive particles, and the energy dependence of the strong interactions. The facility consists of two interlaced rings of superconducting magnets in a common tunnel about 3 km in circumference. The proton beams will collide at eight intersection regions where particle detectors will be arranged for studying the collision processes. Protons of approximately 30 GeV from the AGS will be accumulated to obtain the design current of 10A prior to acceleration to final energy. The design and performance of existing full-size superconducting dipoles and quadrupoles is described. The conceptual design of the accelerator systems and the conventional structures and buildings is presented. A preliminary cost estimate and construction schedule are given. Possible future options such as proton-antiproton, proton-deuteron and electron-proton collisions are discussed

  17. Wastewater Treatment Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Individual permits for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System (NPDES)...

  18. An experiment to test advanced materials impacted by intense proton pulses at CERN HiRadMat facility

    Energy Technology Data Exchange (ETDEWEB)

    Bertarelli, A., E-mail: alessandro.bertarelli@cern.ch [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Berthome, E. [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Boccone, V. [CERN, Engineering Department, Sources, Targets and Interactions Group (EN-STI), CH-1211 Geneva 23 (Switzerland); Carra, F. [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Cerutti, F. [CERN, Engineering Department, Sources, Targets and Interactions Group (EN-STI), CH-1211 Geneva 23 (Switzerland); Charitonidis, N. [CERN, Engineering Department, Machines and Experimental Facilities Group (EN-MEF), CH-1211 Geneva 23 (Switzerland); École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Charrondiere, C. [CERN, Engineering Department, Industrial Controls and Engineering Group (EN-ICE), CH-1211 Geneva 23 (Switzerland); Dallocchio, A.; Fernandez Carmona, P.; Francon, P.; Gentini, L.; Guinchard, M.; Mariani, N. [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Masi, A. [CERN, Engineering Department, Sources, Targets and Interactions Group (EN-STI), CH-1211 Geneva 23 (Switzerland); Marques dos Santos, S.D.; Moyret, P. [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Peroni, L. [Politecnico di Torino, Department of Mechanical and Aerospace Engineering (DIMEAS), Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Redaelli, S. [CERN, Beams Department, Accelerators and Beams Physics Group (BE-ABP), CH-1211 Geneva 23 (Switzerland); Scapin, M. [Politecnico di Torino, Department of Mechanical and Aerospace Engineering (DIMEAS), Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2013-08-01

    Predicting the consequences of highly energetic particle beams impacting protection devices as collimators or high power target stations is a fundamental issue in the design of state-of-the-art facilities for high-energy particle physics. These complex dynamic phenomena can be successfully simulated resorting to highly non-linear numerical tools (Hydrocodes). In order to produce accurate results, however, these codes require reliable material constitutive models that, at the extreme conditions induced by a destructive beam impact, are scarce and often inaccurate. In order to derive or validate such models a comprehensive, first-of-its-kind experiment has been recently carried out at CERN HiRadMat facility: performed tests entailed the controlled impact of intense and energetic proton pulses on a number of specimens made of six different materials. Experimental data were acquired relying on embedded instrumentation (strain gauges, temperature probes and vacuum sensors) and on remote-acquisition devices (laser Doppler vibrometer and high-speed camera). The method presented in this paper, combining experimental measurements with numerical simulations, may find applications to assess materials under very high strain rates and temperatures in domains well beyond particle physics (severe accidents in fusion and fission nuclear facilities, space debris impacts, fast and intense loadings on materials and structures etc.)

  19. Proton therapy detector studies under the experience gained at the CATANA facility

    International Nuclear Information System (INIS)

    Cuttone, G.; Cirrone, G.A.P.; Di Rosa, F.; Lojacono, P.A.; Lo Nigro, S.; Marino, C.; Mongelli, V.; Patti, I.V.; Pittera, S.; Raffaele, L.; Russo, G.; Sabini, M.G.; Salamone, V.; Valastro, L.M.

    2007-01-01

    Proton therapy represents the most promising radiotherapy technique for external tumor treatments. At Laboratori Nazionali del Sud of the Istituto Nazionale di Fisica Nucleare (INFN-LNS), Catania (I), a proton therapy facility is active since March 2002 and 140 patients, mainly affected by choroidal and iris melanoma, have been successfully treated. Proton beams are characterized by higher dose gradients and linear energy transfer with respect to the conventional photon and electron beams, commonly used in medical centers for radiotherapy. In this paper, we report the experience gained in the characterization of different dosimetric systems, studied and/or developed during the last ten years in our proton therapy facility

  20. Proton therapy detector studies under the experience gained at the CATANA facility

    Energy Technology Data Exchange (ETDEWEB)

    Cuttone, G.; Cirrone, G.A.P.; Di Rosa, F. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali dei Sud, Catania (Italy); Lojacono, P.A. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali dei Sud, Catania (Italy); Dipartimento di Fisica ed Astronomia, Universita degli Studi di Catania (Italy); Lo Nigro, S.; Marino, C. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali dei Sud, Catania (Italy); Dipartimento di Fisica ed Astronomia, Universita degli Studi di Catania (Italy); Centro Siciliano di Fisica Nucleare e Struttura della Materia, Catania (Italy); Mongelli, V. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali dei Sud, Catania (Italy); Dipartimento di Fisica ed Astronomia, Universita degli Studi di Catania (Italy); Patti, I.V. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali dei Sud, Catania (Italy); Pittera, S. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali dei Sud, Catania (Italy); Dipartimento di Fisica ed Astronomia, Universita degli Studi di Catania (Italy); Centro Siciliano di Fisica Nucleare e Struttura della Materia, Catania (Italy); Raffaele, L. [A.O.U. Policlinico, Universita degli Studi di Catania (Italy); Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali dei Sud, Catania (Italy); Russo, G. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali dei Sud, Catania (Italy); Dipartimento di Fisica ed Astronomia, Universita degli Studi di Catania (Italy); Sabini, M.G. [A.O. Cannizzaro, Catania (Italy); Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali dei Sud, Catania (Italy); Salamone, V.; Valastro, L.M. [A.O.U. Policlinico, Universita degli Studi di Catania (Italy); Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali dei Sud, Catania (Italy)

    2007-10-15

    Proton therapy represents the most promising radiotherapy technique for external tumor treatments. At Laboratori Nazionali del Sud of the Istituto Nazionale di Fisica Nucleare (INFN-LNS), Catania (I), a proton therapy facility is active since March 2002 and 140 patients, mainly affected by choroidal and iris melanoma, have been successfully treated. Proton beams are characterized by higher dose gradients and linear energy transfer with respect to the conventional photon and electron beams, commonly used in medical centers for radiotherapy. In this paper, we report the experience gained in the characterization of different dosimetric systems, studied and/or developed during the last ten years in our proton therapy facility.

  1. Proton therapy detector studies under the experience gained at the CATANA facility

    Science.gov (United States)

    Cuttone, G.; Cirrone, G. A. P.; Di Rosa, F.; Lojacono, P. A.; Lo Nigro, S.; Marino, C.; Mongelli, V.; Patti, I. V.; Pittera, S.; Raffaele, L.; Russo, G.; Sabini, M. G.; Salamone, V.; Valastro, L. M.

    2007-10-01

    Proton therapy represents the most promising radiotherapy technique for external tumor treatments. At Laboratori Nazionali del Sud of the Istituto Nazionale di Fisica Nucleare (INFN-LNS), Catania (I), a proton therapy facility is active since March 2002 and 140 patients, mainly affected by choroidal and iris melanoma, have been successfully treated. Proton beams are characterized by higher dose gradients and linear energy transfer with respect to the conventional photon and electron beams, commonly used in medical centers for radiotherapy.In this paper, we report the experience gained in the characterization of different dosimetric systems, studied and/or developed during the last ten years in our proton therapy facility.

  2. Proton beam therapy how protons are revolutionizing cancer treatment

    CERN Document Server

    Yajnik, Santosh

    2013-01-01

    Proton beam therapy is an emerging technology with promise of revolutionizing the treatment of cancer. While nearly half of all patients diagnosed with cancer in the US receive radiation therapy, the majority is delivered via electron accelerators, where photons are used to irradiate cancerous tissue. Because of the physical properties of photon beams, photons may deposit energy along their entire path length through the body. On the other hand, a proton beam directed at a tumor travels in a straight trajectory towards its target, gives off most of its energy at a defined depth called the Bragg peak, and then stops. While photons often deposit more energy within the healthy tissues of the body than within the cancer itself, protons can deposit most of their cancer-killing energy within the area of the tumor. As a result, in the properly selected patients, proton beam therapy has the ability to improve cure rates by increasing the dose delivered to the tumor and simultaneously reduce side-effects by decreasing...

  3. Clinical commissioning of an in vivo range verification system for prostate cancer treatment with anterior and anterior oblique proton beams

    Science.gov (United States)

    Hoesl, M.; Deepak, S.; Moteabbed, M.; Jassens, G.; Orban, J.; Park, Y. K.; Parodi, K.; Bentefour, E. H.; Lu, H. M.

    2016-04-01

    The purpose of this work is the clinical commissioning of a recently developed in vivo range verification system (IRVS) for treatment of prostate cancer by anterior and anterior oblique proton beams. The IRVS is designed to perform a complete workflow for pre-treatment range verification and adjustment. It contains specifically designed dosimetry and electronic hardware and a specific software for workflow control with database connection to the treatment and imaging systems. An essential part of the IRVS system is an array of Si-diode detectors, designed to be mounted to the endorectal water balloon routinely used for prostate immobilization. The diodes can measure dose rate as function of time from which the water equivalent path length (WEPL) and the dose received are extracted. The former is used for pre-treatment beam range verification and correction, if necessary, while the latter is to monitor the dose delivered to patient rectum during the treatment and serves as an additional verification. The entire IRVS workflow was tested for anterior and 30 degree inclined proton beam in both solid water and anthropomorphic pelvic phantoms, with the measured WEPL and rectal doses compared to the treatment plan. Gafchromic films were also used for measurement of the rectal dose and compared to IRVS results. The WEPL measurement accuracy was in the order of 1 mm and after beam range correction, the dose received by the rectal wall were 1.6% and 0.4% from treatment planning, respectively, for the anterior and anterior oblique field. We believe the implementation of IRVS would make the treatment of prostate with anterior proton beams more accurate and reliable.

  4. DoPET: an in-treatment monitoring system for proton therapy at 62 MeV

    Science.gov (United States)

    Rosso, V.; Belcari, N.; Bisogni, M. G.; Camarlinghi, N.; Cirrone, G. A. P.; Collini, F.; Cuttone, G.; Del Guerra, A.; Milluzzo, G.; Morrocchi, M.; Raffaele, L.; Romano, F.; Sportelli, G.; Zaccaro, E.

    2016-12-01

    Proton beam radiotherapy is highly effective in treating cancer thanks to its conformal dose deposition. This superior capability in dose deposition has led to a massive growth of the treated patients around the world, raising the need of treatment monitoring systems. An in-treatment PET system, DoPET, was constructed and tested at CATANA beam-line, LNS-INFN in Catania, where 62 MeV protons are used to treat ocular melanoma. The PET technique profits from the beta+ emitters generated by the proton beam in the irradiated body, mainly 15-O and 11-C. The current DoPET prototype consists of two planar 15 cm × 15 cm LYSO-based detector heads. With respect to the previous versions, the system was enlarged and the DAQ up-graded during the years so now also anthropomorphic phantoms, can be fitted within the field of view of the system. To demonstrate the capability of DoPET to detect changes in the delivered treatment plan with respect to the planned one, various treatment plans were used delivering a standard 15 Gy fraction to an anthropomorphic phantom. Data were acquired during and after the treatment delivery up to 10 minutes. When the in-treatment phase was long enough (more than 1 minute), the corresponding activated volume was visible just after the treatment delivery, even if in presence of a noisy background. The after-treatment data, acquired for about 9 minutes, were segmented finding that few minutes are enough to be able to detect changes. These experiments will be presented together with the studies performed with PMMA phantoms where the DoPET response was characterized in terms of different dose rates and in presence of range shifters: the system response is linear up to 16.9 Gy/min and has the ability to see a 1 millimeter range shifter.

  5. DoPET: an in-treatment monitoring system for proton therapy at 62 MeV

    International Nuclear Information System (INIS)

    Rosso, V.; Belcari, N.; Bisogni, M.G.; Camarlinghi, N.; Guerra, A. Del; Morrocchi, M.; Sportelli, G.; Zaccaro, E.; Cirrone, G.A.P.; Cuttone, G.; Milluzzo, G.; Raffaele, L.; Romano, F.; Collini, F.

    2016-01-01

    Proton beam radiotherapy is highly effective in treating cancer thanks to its conformal dose deposition. This superior capability in dose deposition has led to a massive growth of the treated patients around the world, raising the need of treatment monitoring systems. An in-treatment PET system, DoPET, was constructed and tested at CATANA beam-line, LNS-INFN in Catania, where 62 MeV protons are used to treat ocular melanoma. The PET technique profits from the beta+ emitters generated by the proton beam in the irradiated body, mainly 15-O and 11-C. The current DoPET prototype consists of two planar 15 cm × 15 cm LYSO-based detector heads. With respect to the previous versions, the system was enlarged and the DAQ up-graded during the years so now also anthropomorphic phantoms, can be fitted within the field of view of the system. To demonstrate the capability of DoPET to detect changes in the delivered treatment plan with respect to the planned one, various treatment plans were used delivering a standard 15 Gy fraction to an anthropomorphic phantom. Data were acquired during and after the treatment delivery up to 10 minutes. When the in-treatment phase was long enough (more than 1 minute), the corresponding activated volume was visible just after the treatment delivery, even if in presence of a noisy background. The after-treatment data, acquired for about 9 minutes, were segmented finding that few minutes are enough to be able to detect changes. These experiments will be presented together with the studies performed with PMMA phantoms where the DoPET response was characterized in terms of different dose rates and in presence of range shifters: the system response is linear up to 16.9 Gy/min and has the ability to see a 1 millimeter range shifter.

  6. Development of an Integrated Leachate Treatment Solution for the Port Granby Waste Management Facility - 12429

    Energy Technology Data Exchange (ETDEWEB)

    Conroy, Kevin W. [Golder Associates Inc., Lakewood, Colorado (United States); Vandergaast, Gerald [Atomic Energy of Canada Limited, Port Hope, Ontario (Canada)

    2012-07-01

    The Port Granby Project (the Project) is located near the north shore of Lake Ontario in the Municipality of Clarington, Ontario, Canada. The Project consists of relocating approximately 450,000 m{sup 3} of historic Low-Level Radioactive Waste (LLRW) and contaminated soil from the existing Port Granby Waste Management Facility (WMF) to a proposed Long-Term Waste Management Facility (LTWMF) located adjacent to the WMF. The LTWMF will include an engineered waste containment facility, a Wastewater Treatment Plant (WTP), and other ancillary facilities. A series of bench- and pilot-scale test programs have been conducted to identify preferred treatment processes to be incorporated into the WTP to treat wastewater generated during the construction, closure and post-closure periods at the WMF/LTWMF. (authors)

  7. Development and implementation of an anthropomorphic pediatric spine phantom for the assessment of craniospinal irradiation procedures in proton therapy

    OpenAIRE

    Dana J Lewis; Paige A Summers; David S Followill; Narayan Sahoo; Anita Mahajan; Francesco C Stingo; Stephen F Kry

    2014-01-01

    Purpose: To design an anthropomorphic pediatric spine phantom for use in the evaluation of proton therapy facilities for clinical trial participation by the Imaging and Radiation Oncology Core (IROC) Houston QA Center (formerly RPC).Methods: This phantom was designed to perform an end-to-end audit of the proton spine treatment process, including simulation, dose calculation by the treatment planning system (TPS), and proton treatment delivery. The design incorporated materials simulating the ...

  8. Proton therapy for prostate cancer treatment employing online image guidance and an action level threshold.

    Science.gov (United States)

    Vargas, Carlos; Falchook, Aaron; Indelicato, Daniel; Yeung, Anamaria; Henderson, Randall; Olivier, Kenneth; Keole, Sameer; Williams, Christopher; Li, Zuofeng; Palta, Jatinder

    2009-04-01

    The ability to determine the accuracy of the final prostate position within a determined action level threshold for image-guided proton therapy is unclear. Three thousand one hundred ten images for 20 consecutive patients treated in 1 of our 3 proton prostate protocols from February to May of 2007 were analyzed. Daily kV images and patient repositioning were performed employing an action-level threshold (ALT) of > or = 2.5 mm for each beam. Isocentric orthogonal x-rays were obtained, and prostate position was defined via 3 gold markers for each patient in the 3 axes. To achieve and confirm our action level threshold, an average of 2 x-rays sets (median 2; range, 0-4) was taken daily for each patient. Based on our ALT, we made no corrections in 8.7% (range, 0%-54%), 1 correction in 82% (41%-98%), and 2 to 3 corrections in 9% (0-27%). No patient needed 4 or more corrections. All patients were treated with a confirmed error of < 2.5 mm for every beam delivered. After all corrections, the mean and standard deviations were: anterior-posterior (z): 0.003 +/- 0.094 cm; superior-inferior (y): 0.028 +/- 0.073 cm; and right-left (x) -0.013 +/- 0.08 cm. It is feasible to limit all final prostate positions to less than 2.5 mm employing an action level image-guided radiation therapy (IGRT) process. The residual errors after corrections were very small.

  9. Note: A monoenergetic proton backlighter for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Rygg, J. R.; LePape, S.; Bachmann, B.; Khan, S. F.; Sayre, D. B. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Zylstra, A. B.; Séguin, F. H.; Gatu-Johnson, M.; Lahmann, B. J.; Petrasso, R. D.; Sio, H. W. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Craxton, R. S.; Garcia, E. M.; Kong, Y. Z.; McKenty, P. W. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Rinderknecht, H. G. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Rosenberg, M. J. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2015-11-15

    A monoenergetic, isotropic proton source suitable for proton radiography applications has been demonstrated at the National Ignition Facility (NIF). A deuterium and helium-3 gas-filled glass capsule was imploded with 39 kJ of laser energy from 24 of NIF’s 192 beams. Spectral, spatial, and temporal measurements of the 15-MeV proton product of the {sup 3}He(d,p){sup 4}He nuclear reaction reveal a bright (10{sup 10} protons/sphere), monoenergetic (ΔE/E = 4%) spectrum with a compact size (80 μm) and isotropic emission (∼13% proton fluence variation and <0.4% mean energy variation). Simultaneous measurements of products produced by the D(d,p)T and D(d,n){sup 3}He reactions also show 2 × 10{sup 10} isotropically distributed 3-MeV protons.

  10. Design and construction of a spectrometer facility and experiment for intermediate energy proton scattering on helium

    International Nuclear Information System (INIS)

    Rolfe, R.M.

    1976-12-01

    The goal of the research was to investigate proton scattering on nuclei at intermediate energies and in particular to investigate proton scattering on helium. A theoretical investigation of the helium nucleus and the nature of the intermediate energy interaction, design and optimization of an energy-loss spectrometer facility for proton-nucleus scattering, and the unique superfluid helium target and experimental design are discussed

  11. Proposal for construction of a proton--proton storage accelerator facility (Isabelle)

    International Nuclear Information System (INIS)

    1975-06-01

    A proposal is made for the construction of proton storage rings at the Brookhaven Alternating Gradient Synchrotron (AGS) using superconducting magnets for which much of the technology has already been developed. This proton-proton colliding beam facility, ''ISABELLE,'' will provide large increases in both the center-of-mass energy and the luminosity, key machine parameters for high energy physics. The physics potential and the general description of the facility are discussed in detail, and the physical plant layout, a cost estimate and schedule, and future options are given.(U.S.)

  12. An integrated prediction and optimization model of biogas production system at a wastewater treatment facility.

    Science.gov (United States)

    Akbaş, Halil; Bilgen, Bilge; Turhan, Aykut Melih

    2015-11-01

    This study proposes an integrated prediction and optimization model by using multi-layer perceptron neural network and particle swarm optimization techniques. Three different objective functions are formulated. The first one is the maximization of methane percentage with single output. The second one is the maximization of biogas production with single output. The last one is the maximization of biogas quality and biogas production with two outputs. Methane percentage, carbon dioxide percentage, and other contents' percentage are used as the biogas quality criteria. Based on the formulated models and data from a wastewater treatment facility, optimal values of input variables and their corresponding maximum output values are found out for each model. It is expected that the application of the integrated prediction and optimization models increases the biogas production and biogas quality, and contributes to the quantity of electricity production at the wastewater treatment facility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Microdosimetric investigation at the therapeutic proton beam facility of CATANA.

    Science.gov (United States)

    De Nardo, L; Moro, D; Colautti, P; Conte, V; Tornielli, G; Cuttone, G

    2004-01-01

    Proton beams (62 Mev) are used by the Laboratori Nazionali del Sud of the Italian Institute of Nuclear Physics to treat eye melanoma tumours at the therapeutic facility called CATANA. A cylindrical slim tissue-equivalent proportional counter (TEPC) of 2.7 mm external diameter has been used to compare the radiation quality of two spread-out Bragg peaks (SOBP) at the CATANA proton beam.

  14. Microdosimetric investigation at the therapeutic proton beam facility of Catana

    International Nuclear Information System (INIS)

    De Nardo, L.; Moro, D.; Colautti, P.; Conte, V.; Tornielli, G.; Cuttone, G.

    2004-01-01

    Proton beams (62 Mev) are used by the Laboratori Nazionali del Sud of the Italian Inst. of Nuclear Physics to treat eye melanoma tumours at the therapeutic facility called CATANA. A cylindrical slim tissue-equivalent proportional counter (TEPC) of 2.7 mm external diameter has been used to compare the radiation quality of two spread-out Bragg peaks (SOBP) at the CATANA proton beam. (authors)

  15. Maximizing Production Capacity from an Ultrafiltration Process at the Hanford Department of Waste Treatment Facility

    International Nuclear Information System (INIS)

    Foust, Henry C.; Holton, Langdon K.; Demick, Laurence E.

    2005-01-01

    The Department of Energy has contracted Bechtel National, Inc. to design, construct and commission a Waste Treatment and Immobilization Plant (WTP) to treat radioactive slurry currently stored in underground waste storage tanks. A critical element of the waste treatment capacity for the WTP is the proper operation of an ultrafiltration process (UFP). The UFP separates supernate solution from radioactive solids. The solution and solid phases are separately immobilized. An oversight review of the UFP design and operation has identified several methods to improve the capacity of the ultrafiltration process, which will also improve the capacity of the WTP. Areas explored were the basis of design, an analysis of the WTP capacity, process chemistry within the UFP, and UFP process control. This article discusses some of the findings of this oversight review in terms of sodium and solid production, which supports the treatment of low activity waste (LAW) associated with the facility, and solid production, which supports the treatment of high level waste (HLW) associated with the facility

  16. ISABELLE: a 400 x 400 GeV proton--proton colliding beam facility

    International Nuclear Information System (INIS)

    1978-01-01

    A conceptual design report is presented for the construction of an Intersecting Storage Accelerator, ISABELLE, to be located at Brookhaven National Laboratory. At this major research facility beams of protons with energies up to 400 GeV will be collided in six experimental areas. At each area particle physicists will install detector apparatus to study the interaction and reaction products for such very high energy collisions. The proposal results from several years of study and development work on such a facility. Topics discussed include: (1) introduction and summary of the proposal; (2) physics at ISABELLE (including physics objectives and typical experiments and detectors); description of ISABELLE (overview; magnetic ring structure and lattice characteristics; performance; beam transfer, stacking, and acceleration; magnet system; refrigeration system; vacuum system; power supplies, instrumentation, and control system; physical plant and experimental halls; and operation and safety); and (3) cost estimate and schedule

  17. ISABELLE: a 400 x 400 GeV proton--proton colliding beam facility

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    A conceptual design report is presented for the construction of an Intersecting Storage Accelerator, ISABELLE, to be located at Brookhaven National Laboratory. At this major research facility beams of protons with energies up to 400 GeV will be collided in six experimental areas. At each area particle physicists will install detector apparatus to study the interaction and reaction products for such very high energy collisions. The proposal results from several years of study and development work on such a facility. Topics discussed include: (1) introduction and summary of the proposal; (2) physics at ISABELLE (including physics objectives and typical experiments and detectors); description of ISABELLE (overview; magnetic ring structure and lattice characteristics; performance; beam transfer, stacking, and acceleration; magnet system; refrigeration system; vacuum system; power supplies, instrumentation, and control system; physical plant and experimental halls; and operation and safety); and (3) cost estimate and schedule.

  18. Neutron field characterization and dosimetry at the TRIUMF proton therapy facility

    International Nuclear Information System (INIS)

    Mukherjee, B.

    2002-01-01

    Full text: In 1972 the 500 MeV H' Cyclotron of the TRIUMF (Tri University Meson Factory) located in Vancouver, Canada became operational. Beside Meson Physics, high-energy protons of various energy and beam current levels from the TRIUMF Cyclotron are used for scientific research and biomedical applications. Recently, a 500 MeV proton beam from the cyclotron was used as the booster beam for the radioactive ion beam facility, ISAC (Isotope Separator Accelerator) and a second beam as primary irradiation source for the Proton Irradiation Facility (PIF). The major commercial applications of the PIF are the provision of high-energy proton beams for radiation hardness testing of electronic components used in space applications (NASA) and proton therapy of ocular tumors (British Columbia Proton Therapy Facility). The PIF vault was constructed within the main accelerator hall of the TRIUMF using stacks of large concrete blocks. An intense field of fast neutrons is produced during the interaction of high-energy proton beam with target materials, such as, beam stops, collimators and beam energy degraders. The leakage of such neutrons due to insufficient radiological shielding or through the shielding discontinuities may constitute a major share of the personnel radiation exposure of the radiation workers. The neutron energy distribution and dose equivalent near a lead beam stopper bombarded with 116 MeV and 65 MeV collimated proton beams at the Ocular Tumor irradiation facility were evaluated using a Bonner-Sphere Spectrometer and a REM counter respectively. The results were utilized to investigate efficacy of the existing radiological shielding of the PIF. This paper highlights experimental methods to analyze the high-energy accelerator produced neutron beam and basic guideline for the radiological shielding designs of irradiation vault of Proton Therapy facilities

  19. ISABELLE: a proton-proton colliding beam facility. [Proposal for the construction of ISABELLE

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-04-01

    A proposal is presented for the construction of an Intersecting Storage Accelerator, ISABELLE, to be located at Brookhaven National Laboratory. At this major research facility, colliding beams of protons will be produced and studied by particle physicists. This proposal combines the interests of these particle physicists in exploring a new energy regime with the challenge of building a new research instrument. The proposal results from several years of considering such devices in parallel with extensive developmental work. The proposal is divided into several major parts. Following an introduction is an overall summary of the proposal covering its highlights. Part II contains a thorough discussion of the physics objectives that can be addressed by the storage ring. It begins with an explanation of current theoretical concepts that occupy the curiosity of high energy physicists. Then follows a brief discussion of possible experiments that might be assembled at the interaction regions to test these concepts. The third part of the proposal goes into the details of the design of the intersecting storage accelerators. It begins with a description of the entire facility and the design of the magnet ring structure. The processes of proton beam accumulation and acceleration are thoroughly described. The discussion then turns to the design of the components and subsystems for the accelerator. The accelerator elements are described followed by a description of the physical plant. The cost estimate and time scales are displayed in Part IV. Here the estimate has been based on the experience gained from working with the prototype units at the laboratory. The appendices are an important part of the proposal. The parameter list for the 200 x 200 GeV ISABELLE is carefully documented. An example of a possible research program can be found in an appendix. The performance of prototype units is documented in one of the appendices.

  20. SU-E-T-130: Are Proton Gantries Needed? An Analysis of 4332 Patient Proton Gantry Treatment Plans From the Past 10 Years

    International Nuclear Information System (INIS)

    Yan, S; Lu, H; Flanz, J; Depauw, N; Adams, J; Gorissen, BL; Wang, Y; Daartz, J; Bortfeld, T

    2015-01-01

    Purpose: To ascertain the necessity of a proton gantry, as compared to the feasibility of using a horizontal fixed proton beam-line for treatment with advanced technology. Methods: To calculate the percentage of patients that can be treated with a horizontal fixed beam-line instead of a gantry, we analyze the distributions of beam orientations of our proton gantry patients treated over the past 10 years. We identify three horizontal fixed beam geometries (FIXED, BEND and MOVE) with the patient in lying and/or sitting positions. The FIXED geometry includes only table/chair rotations and translations. In BEND, the beam can be bent up/down for up to 20 degrees. MOVE allows for patient head/body angle adjustment. Based on the analysis, we select eight patients whose plan involves beams which are still challenging to achieve with a horizontal fixed beam. These beams are removed in the pencil beam scanning (PBS) plan optimized for the fixed beam-line (PBS-fix). We generate non-coplanar PBS-gantry plans for comparison, and perform a robustness analysis. Results: The percentage of patients with head-and-neck/brain tumors that can be treated with horizontal fixed beam is 44% in FIXED, 70% in 20-degrees BEND, and 100% in 90-degrees MOVE. For torso regions, 99% of the patients can be treated in 20-degree BEND. The target coverage is more homogeneous with PBS-fix plans compared to the clinical scattering treatment plans. The PBS-fix plans reduce the mean dose to organs-at-risk by a factor of 1.1–28.5. PBS-gantry plans are as good as PBS-fix plans, sometimes marginally better. Conclusion: The majority of the beam orientations can be realized with a horizontal fixed beam-line. Challenging non-coplanar beams can be eliminated with PBS delivery. Clinical implementation of the proposed fixed beam-line requires use of robotic patient positioning, further developments in immobilization, and image guidance. However, our results suggest that fixed beam-lines can be as effective as

  1. SU-E-T-130: Are Proton Gantries Needed? An Analysis of 4332 Patient Proton Gantry Treatment Plans From the Past 10 Years

    Energy Technology Data Exchange (ETDEWEB)

    Yan, S; Lu, H; Flanz, J; Depauw, N; Adams, J; Gorissen, BL; Wang, Y; Daartz, J; Bortfeld, T [Massachusetts General Hospital, Boston, MA (United States)

    2015-06-15

    Purpose: To ascertain the necessity of a proton gantry, as compared to the feasibility of using a horizontal fixed proton beam-line for treatment with advanced technology. Methods: To calculate the percentage of patients that can be treated with a horizontal fixed beam-line instead of a gantry, we analyze the distributions of beam orientations of our proton gantry patients treated over the past 10 years. We identify three horizontal fixed beam geometries (FIXED, BEND and MOVE) with the patient in lying and/or sitting positions. The FIXED geometry includes only table/chair rotations and translations. In BEND, the beam can be bent up/down for up to 20 degrees. MOVE allows for patient head/body angle adjustment. Based on the analysis, we select eight patients whose plan involves beams which are still challenging to achieve with a horizontal fixed beam. These beams are removed in the pencil beam scanning (PBS) plan optimized for the fixed beam-line (PBS-fix). We generate non-coplanar PBS-gantry plans for comparison, and perform a robustness analysis. Results: The percentage of patients with head-and-neck/brain tumors that can be treated with horizontal fixed beam is 44% in FIXED, 70% in 20-degrees BEND, and 100% in 90-degrees MOVE. For torso regions, 99% of the patients can be treated in 20-degree BEND. The target coverage is more homogeneous with PBS-fix plans compared to the clinical scattering treatment plans. The PBS-fix plans reduce the mean dose to organs-at-risk by a factor of 1.1–28.5. PBS-gantry plans are as good as PBS-fix plans, sometimes marginally better. Conclusion: The majority of the beam orientations can be realized with a horizontal fixed beam-line. Challenging non-coplanar beams can be eliminated with PBS delivery. Clinical implementation of the proposed fixed beam-line requires use of robotic patient positioning, further developments in immobilization, and image guidance. However, our results suggest that fixed beam-lines can be as effective as

  2. Radiobiology of Proton Therapy - Results of an international expert workshop

    DEFF Research Database (Denmark)

    Lühr, Armin; von Neubeck, Cläre; Pawelke, Jörg

    2018-01-01

    The physical properties of proton beams offer the potential to reduce toxicity in tumor-adjacent normal tissues. Toward this end, the number of proton radiotherapy facilities has steeply increased over the last 10-15 years to currently around 70 operational centers worldwide. However, taking full...... in proton therapy combined with systemic treatments, and (4) testing biological effects of protons in clinical trials. Finally, important research avenues for improvement of proton radiotherapy based on radiobiological knowledge are identified. The clinical distribution of radiobiological effectiveness...... of protons alone or in combination with systemic chemo- or immunotherapies as well as patient stratification based on biomarker expressions are key to reach the full potential of proton beam therapy. Dedicated preclinical experiments, innovative clinical trial designs, and large high-quality data...

  3. Is it possible to verify directly a proton-treatment plan using positron emission tomography?

    International Nuclear Information System (INIS)

    Vynckier, S.; Derreumaux, S.; Richard, F.; Wambersie, A.; Bol, A.; Michel, C.

    1993-01-01

    A PET camera is used to visualize the positron activity induced during protonbeam therapy in order to verify directly the proton-treatment plans. The positron emitters created are predominantly the 15 O and 11 C, whose total activity amounts to 12 MBq after an irradiation with 85 MeV protons, delivering 3 Gy in a volume of approximately 300 cm 3 . Although this method is a useful verification of patient setup, care must be taken when deriving dose distributions from activity distributions. Correlation between both quantities is difficult, moreover at the last millimeters of their range, protons will no longer activate tissue. Due to the short half-lives the PET camera must be located close to the treatment facility. (author) 17 refs

  4. Proton-beam window design for a transmutation facility operating with a liquid lead target

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, C.; Lypsch, F.; Lizana, P. [Institute for Safety Research and Reactor Technology, Juelich (Germany)] [and others

    1995-10-01

    The proton beam target of an accelerator-driven transmutation facility can be designed as a vertical liquid lead column. To prevent lead vapor from entering the accelerator vacuum, a proton-beam window has to separate the area above the lead surface from the accelerator tube. Two radiation-cooled design alternatives have been investigated which should withstand a proton beam of 1.6 GeV and 25 mA. Temperature calculations based on energy deposition calculations with the Monte Carlo code HETC, stability analysis and spallation-induced damage calculations have been performed showing the applicability of both designs.

  5. Facility for the measurement of proton polarization in the range 50-70 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, M; Sakaguchi, H; Sakamoto, H; Ogawa, H; Cynshi, O; Kobayashi, S [Kyoto Univ. (Japan). Dept. of Physics; Kato, S [Osaka Univ., Toyonaka (Japan). Lab. of Nuclear Studies; Matsuoka, N; Hatanaka, K; Noro, T [Osaka Univ., Toyonaka (Japan). Research Center for Nuclear Physics

    1983-07-01

    A proton polarimetry facility based on silicon analyzers combined with high-purity germanium detectors is described. The scattering efficiency is 1.5 x 10/sup -5/ at 60 MeV with an effective analyzing power of 0.71 and the energy resolution is about 300 keV fwhm. The facility has succeeded in measuring the depolarization in p-/sup 13/C elastic scattering separated clearly from inelastic events. In order to use a silicon detector as an analyzer target, measurements of cross sections and analyzing powers have been performed at proton energies of 65, 60, 55, 50 and 45 MeV.

  6. Superpower proton linear accelerators for neutron generators and electronuclear facilities

    International Nuclear Information System (INIS)

    Lazarev, N.V.; Kozodaev, A.M.

    2000-01-01

    The report is a review of projects on the superpower proton linear accelerators (SPLA) for neutron generators (NG) and electronuclear facilities, proposed in the recent years. The beam average output capacity in these projects reaches 100 MW. The basic parameters of certain operating NGs, as well as some projected NGs will the SPLA drivers are presented. The problems on application of superconducting resonators in the SPLA as well as the issues of the SPLA reliability and costs are discussed [ru

  7. Overview of high intensity proton accelerator facility, J-PARC

    International Nuclear Information System (INIS)

    Ikeda, Y.

    2010-01-01

    The J-PARC project of high intensity proton accelerator research complex, conducted jointly by JAERI and KEK, has been completed with demonstration of all beam productions in 2009 as the facility construction phase, and the operation started to offer the secondary beams of neutron, muon, kaon, and neutrino, to the advanced scientific experimental research aiming at making breakthroughs in materials and life science, nuclear and elementary physics, etc. This text describes the overview of the J-PARC present status with emphasis of a performance toward to 1MW power as user facilities. (author)

  8. Construction Management for Conventional Facilities of Proton Accelerator

    International Nuclear Information System (INIS)

    Kim, Jun Yeon; Cho, Jang Hyung; Cho, Sung Won

    2013-01-01

    Proton Engineering Frontier Project, puts its aim to building 100MeV 20mA linear proton accelerator which is national facility for NT, BT, IT, and future technologies, expected to boost up the national industry competitiveness. This R and D, Construction Management is in charge of the supportive works such as site selection, architecture and engineering of conventional facilities, and overall construction management. The major goals of this work are as follows: At first, architecture and engineering of conventional facilities. Second, construction management, supervision and inspection on construction of conventional facilities. Lastly, cooperation with the project host organization, Gyeongju city, for adjusting technically interrelated work during construction. In this research, We completed the basic, detail, and field changed design of conventional facilities. Acquisition of necessary construction and atomic license, radiation safety analysis, site improvement, access road construction were successfully done as well. Also, we participated in the project host related work as follows: Project host organization and site selection, construction technical work for project host organization and procedure management, etc. Consequently, we so fulfilled all of the own goals which were set up in the beginning of this construction project that we could made contribution for installing and running PEFP's developed 100MeV 20mA linear accelerator

  9. Construction Management for Conventional Facilities of Proton Accelerator

    International Nuclear Information System (INIS)

    Kim, Jun Yeon; Cho, Jin Sam; Lee, Jae Sang

    2008-05-01

    Proton Engineering Frontier Project, puts its aim to building 100MeV 20mA linear proton accelerator which is national facility for NT, BT, IT, and future technologies, expected to boost up the national industry competitiveness. This R and D, Construction Management is in charge of the supportive works as site selection, architecture and engineering of conventional facilities, and overall construction management. The major goals of this work are as follows: At first, architecture and engineering of conventional facilities. Second, construction management, audit and inspection on construction of conventional facilities. Lastly, cooperation with the project host organization for adjusting technical issues of overall construction. In this research, We reviewed the basic design and made a detail design of conventional facilities. Preparation for construction license, site improvement and access road construction is fulfilled. Also, we made the technical support for project host as follows : selection of project host organization and host site selection, construction technical work for project host organization and procedure management

  10. A New High-intensity Proton Irradiation Facility at the CERN PS East Area

    CERN Document Server

    Gkotse, B; Lima, P; Matli, E; Moll, M; Ravotti, F

    2014-01-01

    and IRRAD2), were heavily and successfully used for irradiation of particle detectors, electronic components and materials since 1992. These facilities operated with particle bursts - protons with momentum of 24GeV/c - delivered from the PS accelerator in “spills” of about 400ms (slow extraction). With the increasing demand of irradiation experiments, these facilities suffered from a number of restrictions such as the space availability, the maximum achievable particle flux and several access constraints. In the framework of the AIDA project, an upgrade of these facilities has been realized during the CERN long shutdown (LS1). While the new proton facility (IRRAD) will continue to be mainly devoted to the radiation hardness studies for the High Energy Physics (HEP) experimental community, the new mixed-field facility (CHARM) will mainly host irradiation experiments for the validation of electronic systems used in a...

  11. Formation of an intense proton beam of microsecond duration

    Energy Technology Data Exchange (ETDEWEB)

    Engelko, V [Efremov Inst. of Electrophysical Apparatus, St. Petersburg (Russian Federation); Giese, H; Schalk, S [Forschungszentrum Karlsruhe (Germany)

    1997-12-31

    The proton beam facility PROFA serves as a test installation for ion source development and beam transport optimization for an intense pulsed proton beam of low kinetic energy, envisaged for ITER divertor load simulation. The present state of the investigations is discussed with emphasis on the diode operation parameters, beam divergence and beam transport efficiency. (author). 7 figs., 5 refs.

  12. Liquid Effluent Retention Facility/Effluent Treatment Facility Hazards Assessment

    International Nuclear Information System (INIS)

    Simiele, G.A.

    1994-01-01

    This document establishes the technical basis in support of Emergency Planning activities for the Liquid Effluent Retention Facility and Effluent Treatment Facility the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE ORDER 5500.3A. Through this document, the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is demonstrated

  13. Registration and planning of radiotherapy and proton therapy treatment

    International Nuclear Information System (INIS)

    Bausse, Jerome

    2010-01-01

    Within the frame of an update and renewal project, the Orsay Proton Therapy Centre of the Curie Institute (IPCO) renews its software used for the treatment of patients by proton therapy, a radiotherapy technique which uses proton beams. High energies used in these treatments and the precision provided by proton particle characteristics require a more precise patient positioning than conventional radiotherapy: proton therapy requires a precision of about a millimetre. Thus, markers are placed on the skull which are generally well accepted by patients, but are a problem in the case of paediatric treatment, notably for the youngest children whose skull is still growing. The first objective of this research is thus to use only intrinsic information from X-ray images used when positioning the patient. A second objective is to make the new software (TPS Isogray) perfectly compatible with IPCO requirements by maintaining the strengths of the previous TPS (Treatment Planning System) and being prepared to the implementation of a new installation. After a presentation of the context and state of the art in radiotherapy and patient positioning, the author proposes an overview of 2D registration methods, presents a new method for 2x2D registration, and addresses the problem of 3D registration. Then, after a presentation of proton therapy, the author addresses different specific issues and aspects: the compensator (simulation, calculation, and tests), dose calculation, the 'Pencil-Beam' algorithm, tests, and introduced improvements [fr

  14. Proton and neutron radiation in cancer treatment: clinical and economic outcomes

    International Nuclear Information System (INIS)

    Fleurette, F.; Charvet-Protat, S.

    1996-01-01

    The French National Agency for Medical Evaluation (ANDEM) was requested to assess the effectiveness of proton and neutron beam therapy in cancer treatment compared to conventional radiotherapy. This task was accomplished by a critical appraisal of the clinical and economic literature. According to the published economic literature and the capital and staffing cost analysis, it appears that the costs of proton therapy are likely to be two or three times greater than those conformal therapy. According to the published clinical literature, proton beam therapy should be proposed as a routine treatment only for uveal melanoma and skull base cancers. Neutron beam therapy should be proposed as a routine treatment for inoperable salivary gland tumors; its use may be also discussed in cases of stage C-D1 prostate cancers and soft tissue sarcomas. Based on the current scientific evidence and given the incidence rate of these tumors, the time and material requirements, the current French proton/neutron beam facilities are able to meet the current demand. FOr other cancers the medical and economic potential of proton therapy is still an open question. (author)

  15. Hypofractionated high-energy proton-beam irradiation is an alternative treatment for WHO grade I meningiomas.

    Science.gov (United States)

    Vlachogiannis, Pavlos; Gudjonsson, Olafur; Montelius, Anders; Grusell, Erik; Isacsson, Ulf; Nilsson, Kristina; Blomquist, Erik

    2017-12-01

    Radiation treatment is commonly employed in the treatment of meningiomas. The aim of this study was to evaluate the effectiveness and safety of hypofractionated high-energy proton therapy as adjuvant or primary treatment for WHO grade I meningiomas. A total of 170 patients who received irradiation with protons for grade I meningiomas between 1994 and 2007 were included in the study. The majority of the tumours were located at the skull base (n = 155). Eighty-four patients were treated post subtotal resection, 42 at tumour relapse and 44 with upfront radiotherapy after diagnosis based on the typical radiological image. Irradiation was given in a hypofractionated fashion (3-8 fractions, usually 5 or 6 Gy) with a mean dose of 21.9 Gy (range, 14-46 Gy). All patients were planned for follow-up with clinical controls and magnetic resonance imaging scans at 6 months and 1, 2, 3, 5, 7 and 10 years after treatment. The median follow-up time was 84 months. Age, gender, tumour location, Simpson resection grade and target volume were assessed as possible prognostic factors for post-irradiation tumour progression and radiation related complications. The actuarial 5- and 10-year progression-free survival rates were 93% and 85% respectively. Overall mortality rate was 13.5%, while disease-specific mortality was 1.7% (3/170 patients). Older patients and patients with tumours located in the middle cranial fossa had a lower risk for tumour progression. Radiation-related complications were seen in 16 patients (9.4%), with pituitary insufficiency being the most common. Tumour location in the anterior cranial fossa was the only factor that significantly increased the risk of complications. Hypofractionated proton-beam radiation therapy may be used particularly in the treatment of larger World Health Organisation grade I meningiomas not amenable to total surgical resection. Treatment is associated with high rates of long-term tumour growth control and acceptable risk for

  16. Final environmental impact statement. Proton--Proton Storage Accelerator Facility (ISABELLE), Brookhaven National Laboratory, Upton, New York

    International Nuclear Information System (INIS)

    1978-08-01

    An Environmental Impact Statement for a proposed research facility (ISABELLE) to be built at Brookhaven National Laboratory (BNL) is presented. It was prepared by the Department of Energy (DOE) following guidelines issued for such analyses. In keeping with DOE policy, this statement presents a concise and issues-oriented analysis of the significant environmental effects associated with the proposed action. ISABELLE is a proposed physics research facility where beams of protons collide providing opportunities to study high energy interactions. The facility would provide two interlaced storage ring proton accelerators, each with an energy up to 400 GeV intersecting in six experimental areas. The rings are contained in a tunnel with a circumference of 3.8 km (2.3 mi). The facility will occupy 250 ha (625 acres) in the NW corner of the existing BNL site. A draft Environmental Impact Statement for this proposed facility was issued for public review and comment by DOE on February 21, 1978. The principal areas of concern expressed were in the areas of radiological impacts and preservation of cultural values. After consideration of these comments, appropriate actions were taken and the text of the statement has been amended to reflect the comments. The text was annotated to indicate the origin of the comment. The Appendices contain a glossary of terms and listings of metric prefixes and conversions and symbols and abbreviations

  17. Proton microscope design for 9 GeV pRad facility

    International Nuclear Information System (INIS)

    Barminova, H.Y.; Turtikov, V.I.

    2016-01-01

    The proton microscope design for 9 GeV proton radiography facility is described. Basic principles of proton microscope development are discussed. Two variants of microscope optical scheme are proposed. Simulation of the proton beam dynamics is carried out, the results showing the possibility to obtain the microscope spatial resolution not worse than 10 μ m.

  18. Freshwater Treatment and Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Freshwater Treatment and Test Facility, located at SANGB, has direct year-round access to water from Lake St. Clair and has a State of Michigan approved National...

  19. Proton pinhole imaging on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Zylstra, A. B., E-mail: zylstra@lanl.gov [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Park, H.-S.; Ross, J. S.; Higginson, D. P.; Huntington, C.; Pollock, B.; Remington, B.; Rinderknecht, H. G.; Ryutov, D.; Turnbull, D.; Wilks, S. C. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Fiuza, F. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Frenje, J. A.; Li, C. K.; Petrasso, R. D.; Séguin, F. H. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2016-11-15

    Pinhole imaging of large (mm scale) carbon-deuterium (CD) plasmas by proton self-emission has been used for the first time to study the microphysics of shock formation, which is of astrophysical relevance. The 3 MeV deuterium-deuterium (DD) fusion proton self-emission from these plasmas is imaged using a novel pinhole imaging system, with up to five different 1 mm diameter pinholes positioned 25 cm from target-chamber center. CR39 is used as the detector medium, positioned at 100 cm distance from the pinhole for a magnification of 4 ×. A Wiener deconvolution algorithm is numerically demonstrated and used to interpret the images. When the spatial morphology is known, this algorithm accurately reproduces the size of features larger than about half the pinhole diameter. For these astrophysical plasma experiments on the National Ignition Facility, this provides a strong constraint on simulation modeling of the experiment.

  20. Poster - 40: Treatment Verification of a 3D-printed Eye Phantom for Proton Therapy

    International Nuclear Information System (INIS)

    Dunning, Chelsea; Lindsay, Clay; Unick, Nick; Sossi, Vesna; Martinez, Mark; Hoehr, Cornelia

    2016-01-01

    Purpose: Ocular melanoma is a form of eye cancer which is often treated using proton therapy. The benefit of the steep proton dose gradient can only be leveraged for accurate patient eye alignment. A treatment-planning program was written to plan on a 3D-printed anatomical eye-phantom, which was then irradiated to demonstrate the feasibility of verifying in vivo dosimetry for proton therapy using PET imaging. Methods: A 3D CAD eye model with critical organs was designed and voxelized into the Monte-Carlo transport code FLUKA. Proton dose and PET isotope production were simulated for a treatment plan of a test tumour, generated by a 2D treatment-planning program developed using NumPy and proton range tables. Next, a plastic eye-phantom was 3D-printed from the CAD model, irradiated at the TRIUMF Proton Therapy facility, and imaged using a PET scanner. Results: The treatment-planning program prediction of the range setting and modulator wheel was verified in FLUKA to treat the tumour with at least 90% dose coverage for both tissue and plastic. An axial isotope distribution of the PET isotopes was simulated in FLUKA and converted to PET scan counts. Meanwhile, the 3D-printed eye-phantom successfully yielded a PET signal. Conclusions: The 2D treatment-planning program can predict required parameters to sufficiently treat an eye tumour, which was experimentally verified using commercial 3D-printing hardware to manufacture eye-phantoms. Comparison between the simulated and measured PET isotope distribution could provide a more realistic test of eye alignment, and a variation of the method using radiographic film is being developed.

  1. Poster - 40: Treatment Verification of a 3D-printed Eye Phantom for Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, Chelsea; Lindsay, Clay; Unick, Nick; Sossi, Vesna; Martinez, Mark; Hoehr, Cornelia [University of British Columbia, University of Victoria, University of British Columbia, University of British Columbia, University of British Columbia, TRIUMF (Canada)

    2016-08-15

    Purpose: Ocular melanoma is a form of eye cancer which is often treated using proton therapy. The benefit of the steep proton dose gradient can only be leveraged for accurate patient eye alignment. A treatment-planning program was written to plan on a 3D-printed anatomical eye-phantom, which was then irradiated to demonstrate the feasibility of verifying in vivo dosimetry for proton therapy using PET imaging. Methods: A 3D CAD eye model with critical organs was designed and voxelized into the Monte-Carlo transport code FLUKA. Proton dose and PET isotope production were simulated for a treatment plan of a test tumour, generated by a 2D treatment-planning program developed using NumPy and proton range tables. Next, a plastic eye-phantom was 3D-printed from the CAD model, irradiated at the TRIUMF Proton Therapy facility, and imaged using a PET scanner. Results: The treatment-planning program prediction of the range setting and modulator wheel was verified in FLUKA to treat the tumour with at least 90% dose coverage for both tissue and plastic. An axial isotope distribution of the PET isotopes was simulated in FLUKA and converted to PET scan counts. Meanwhile, the 3D-printed eye-phantom successfully yielded a PET signal. Conclusions: The 2D treatment-planning program can predict required parameters to sufficiently treat an eye tumour, which was experimentally verified using commercial 3D-printing hardware to manufacture eye-phantoms. Comparison between the simulated and measured PET isotope distribution could provide a more realistic test of eye alignment, and a variation of the method using radiographic film is being developed.

  2. Application of an experimental irradiation facility type K-120 for the radiation treatment of agricultural products in large quantity

    International Nuclear Information System (INIS)

    Stenger, V.; Foeldiak, G.; Horvath, I.; Hargittai, P.; Bartfai, Cs.

    1979-01-01

    During experimental and pilot irradiation carried out by the 60 Co irradiation facility type K-120 of the Institute of Isotopes of the Hungarian Academy of Sciences an irradiation technology for the treatment of agricultural and food products of considerable density has been developed. Applying transport containers of commercial size the intermittent radiation treatment of great quantity products was made possible with homogeneous dose distribution. The radiation technical characteristics, the utilization coefficient and the capacity of the facility for every agricultural product were calculated. (author)

  3. Enhancements to the analytical facilities at the GNS proton microprobe

    International Nuclear Information System (INIS)

    Barry, B.J.; Markwitz, A.; Kennedy, V.J.; Trompetter, W.J.

    2005-01-01

    In recent years a number of detection systems have been added to the proton microprobe facility at GNS Science. Particular additions have been a large area HPGe detector and a system for scanning transmission imaging microscopy. The HPGe detector has improved detection sensitivity, particularly for higher energy K x-rays where energy resolution is of lesser importance. The scanning microscopy system has enabled mapping of areal densities in biological samples to give accurate elemental maps. Examples are given of these applications. (author). 22 refs., 7 figs

  4. SU-E-T-419: Workflow and FMEA in a New Proton Therapy (PT) Facility

    International Nuclear Information System (INIS)

    Cheng, C; Wessels, B; Hamilton, H; Difranco, T; Mansur, D

    2014-01-01

    Purpose: Workflow is an important component in the operational planning of a new proton facility. By integrating the concept of failure mode and effect analysis (FMEA) and traditional QA requirements, a workflow for a proton therapy treatment course is set up. This workflow serves as the blue print for the planning of computer hardware/software requirements and network flow. A slight modification of the workflow generates a process map(PM) for FMEA and the planning of QA program in PT. Methods: A flowchart is first developed outlining the sequence of processes involved in a PT treatment course. Each process consists of a number of sub-processes to encompass a broad scope of treatment and QA procedures. For each subprocess, the personnel involved, the equipment needed and the computer hardware/software as well as network requirements are defined by a team of clinical staff, administrators and IT personnel. Results: Eleven intermediate processes with a total of 70 sub-processes involved in a PT treatment course are identified. The number of sub-processes varies, ranging from 2-12. The sub-processes within each process are used for the operational planning. For example, in the CT-Sim process, there are 12 sub-processes: three involve data entry/retrieval from a record-and-verify system, two controlled by the CT computer, two require department/hospital network, and the other five are setup procedures. IT then decides the number of computers needed and the software and network requirement. By removing the traditional QA procedures from the workflow, a PM is generated for FMEA analysis to design a QA program for PT. Conclusion: Significant efforts are involved in the development of the workflow in a PT treatment course. Our hybrid model of combining FMEA and traditional QA program serves a duo purpose of efficient operational planning and designing of a QA program in PT

  5. Characterization of the secondary neutron field produced during treatment of an anthropomorphic phantom with x-rays, protons and carbon ions

    Science.gov (United States)

    La Tessa, C.; Berger, T.; Kaderka, R.; Schardt, D.; Burmeister, S.; Labrenz, J.; Reitz, G.; Durante, M.

    2014-04-01

    Short- and long-term side effects following the treatment of cancer with radiation are strongly related to the amount of dose deposited to the healthy tissue surrounding the tumor. The characterization of the radiation field outside the planned target volume is the first step for estimating health risks, such as developing a secondary radioinduced malignancy. In ion and high-energy photon treatments, the major contribution to the dose deposited in the far-out-of-field region is given by neutrons, which are produced by nuclear interaction of the primary radiation with the beam line components and the patient’s body. Measurements of the secondary neutron field and its contribution to the absorbed dose and equivalent dose for different radiotherapy technologies are presented in this work. An anthropomorphic RANDO phantom was irradiated with a treatment plan designed for a simulated 5 × 2 × 5 cm3 cancer volume located in the center of the head. The experiment was repeated with 25 MV IMRT (intensity modulated radiation therapy) photons and charged particles (protons and carbon ions) delivered with both passive modulation and spot scanning in different facilities. The measurements were performed with active (silicon-scintillation) and passive (bubble, thermoluminescence 6LiF:Mg, Ti (TLD-600) and 7LiF:Mg, Ti (TLD-700)) detectors to investigate the production of neutral particles both inside and outside the phantom. These techniques provided the whole energy spectrum (E ⩽ 20 MeV) and corresponding absorbed dose and dose equivalent of photo neutrons produced by x-rays, the fluence of thermal neutrons for all irradiation types and the absorbed dose deposited by neutrons with 0.8 energy x-rays, the contribution of secondary neutrons to the dose equivalent is of the same order of magnitude as the primary radiation. In carbon therapy delivered with raster scanning, the absorbed dose deposited by neutrons in the energy region between 0.8 and 10 MeV is almost two orders of

  6. Shielding design of a treatment room for an accelerator-based epithermal neutron irradiation facility for BNCT

    International Nuclear Information System (INIS)

    Evans, J.F.; Blue, T.E.

    1996-01-01

    Protecting the facility personnel and the general public from radiation exposure is a primary safety concern of an accelerator-based epithermal neutron irradiation facility. This work makes an attempt at answering the questions open-quotes How much?close quotes and open-quotes What kind?close quotes of shielding will meet the occupational limits of such a facility. Shielding effectiveness is compared for ordinary and barytes concretes in combination with and without borated polyethylene. A calculational model was developed of a treatment room, patient open-quotes scatterer,close quotes and the epithermal neutron beam. The Monte Carlo code, MCNP, was used to compute the total effective dose equivalent rates at specific points of interest outside of the treatment room. A conservative occupational effective dose rate limit of 0.01 mSv h -1 was the guideline for this study. Conservative Monte Carlo calculations show that constructing the treatment room walls with 1.5 m of ordinary concrete, 1.2 m of barytes concrete, 1.0 m of ordinary concrete preceded by 10 cm of 5% boron-polyethylene, or 0.8 m of barytes concrete preceded by 10 cm of 5% boron-polyethylene will adequately protect facility personnel. 20 refs., 8 figs., 2 tabs

  7. Experience at the Los Alamos Meson Physics Facility with the use of alloy Inconel 718 as an enclosure for a beam degrader and as a proton beam entry window

    International Nuclear Information System (INIS)

    Sommer, W.F.; Ferguson, P.D.; Brown, R.D.; Cedillo, C.M.; Zimmerman, E.

    1994-01-01

    Operation of the Los Alamos Meson Physics Facility (LAMPF) began in 1972 and continues at present. An injector delivers protons to a 0.8 kin long linear accelerator which produces a particle energy of 800 MeV; the protons are then transported to a variety of experimental areas. The proton beam is transported in a vacuum tube, controlled and bent by electromagnets. The highest intensity beam, at a maximum level of 1 mA, is delivered to the experimental area designated as Area A. At the end of the experimental area, the beam is transported through an interface between beamline vacuum and one atmosphere air pressure. This interface is made of metal and is generally referred to as a beam entry window. At LAMPF, after the beam has exited the vacuum tube, it becomes incident on a number of experiments or ''targets.'' These include capsules for radiation damage studies, a beam ''degrader'' for the long-term neutrino experiment, and as many nine targets in the Isotope Production (IP) stringer system used to produce medically significant isotopes. Following the IP system is a beam stop used for the purpose its name implies. The beam stop also contains a beam entry window, whose purpose is to separate the 250 psig water cooling environment from I atmosphere of air. The beam entry window, the beam degrader, and the beam stop window are made of alloy Inconel 718, have endured a lengthy irradiation service time at LAMPF, and are the subject of this report

  8. Evaluation of the Induced Activity in Air by the External Proton Beam in the Target Room of the Proton Accelerator Facility of Proton Engineering Frontier Project

    International Nuclear Information System (INIS)

    Lee, Cheol Woo; Lee, Young Ouk; Cho, Young Sik; Ahn, So Hyun

    2007-01-01

    One of the radiological concerns is the worker's exposure level and the concentration of the radionuclides in the air after shutdown, for the safety analysis on the proton accelerator facility. Although, the primary radiation source is the protons accelerated up to design value, all of the radio-nuclide is produced from the secondary neutron and photon induced reaction in air. Because, the protons don't penetrate the acceleration equipment like the DTL tank wall or BTL wall, secondary neutrons or photons are only in the air in the accelerator tunnel building because of the short range of the proton in the materials. But, for the case of the target rooms, external proton beams are occasionally used in the various experiments. When these external proton beams travel through air from the end of the beam transport line to the target, they interact directly with air and produce activation products from the proton induced reaction. The external proton beam will be used in the target rooms in the accelerator facility of the Proton Accelerator Frontier Project (PEFP). In this study, interaction characteristics of the external proton beam with air and induced activity in air from the direct interaction of the proton beam were evaluated

  9. Effluent Treatment Facility tritium emissions monitoring

    International Nuclear Information System (INIS)

    Dunn, D.L.

    1991-01-01

    An Environmental Protection Agency (EPA) approved sampling and analysis protocol was developed and executed to verify atmospheric emissions compliance for the new Savannah River Site (SRS) F/H area Effluent Treatment Facility. Sampling equipment was fabricated, installed, and tested at stack monitoring points for filtrable particulate radionuclides, radioactive iodine, and tritium. The only detectable anthropogenic radionuclides released from Effluent Treatment Facility stacks during monitoring were iodine-129 and tritium oxide. This paper only examines the collection and analysis of tritium oxide

  10. Determination of proton and neutron spectra in the LANSCE spallation irradiation facility

    International Nuclear Information System (INIS)

    James, M.R.; Maloy, S.A.; Sommer, W.F.; Fowler, M.M.; Dry, D.; Ferguson, P.D.; Mueller, G.; Corzine, R.K.

    1999-01-01

    Materials samples were recently irradiated in the Los Alamos Radiation Effects Facility (LASREF) at the Los Alamos Neutron Science Center (LANSCE) to provide data for the Accelerator Production of Tritium (APT) project on the effect of irradiation on the mechanical and physical properties of materials. The targets were configured to expose samples to a variety of radiation environments including, high-energy protons, mixed protons and high-energy neutrons, and low-energy neutrons. The samples were irradiated for approximately six months during a ten month period using an 800 MeV proton beam with a circular Gaussian shape of approximately 2σ = 3.0 cm. At the end of this period, the samples were extracted and tested. Activation foils were also extracted that had been placed in proximity to the materials samples. These were used to quantify the fluences in various locations

  11. IRRAD: The New 24GeV/c Proton Irradiation Facility at CERN

    CERN Document Server

    Gkotse, Blerina; Moll, Michael; Ravotti, Federico

    2016-01-01

    The proton and mixed-field irradiation facilities at the CERN PS East Area (known as IRRAD1 and IRRAD2), have been heavily exploited for irradiation of particle detectors, electronic components and materials since 1992. With the increasing demand of irradiation experiments, and in view of the High-Luminosity upgrade of the CERN Large Hadron Collider (HL-LHC), these facilities suffered of a number of unpleasant restrictions such as the space availability, the maximum achievable particle flux and several access constraints. In the framework of the AIDA project, an upgrade of these facilities was carried out during the Long Shutdown 1 (LS1) of the CERN accelerator complex. The new combined East Area IRRADiation facility (EA-IRRAD) started the commissioning in October 2014. While the new proton facility (IRRAD) continue to be mainly devoted to the radiation hardness studies for the High Energy Physics community, the new mixed-field facility (CHARM) mainly hosts irradiation experiments for the validation of electr...

  12. Current and future applications of protons in medical imaging and treatment

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, Reinhard W. [Loma Linda University Medical Center, CA (United States). Dept. of Radiation Medicine

    2011-07-01

    Protons have a more than 50-year history of applications in medical therapy and more recently also in imaging. Therapy with protons became possible after proton accelerators capable of accelerating protons to energies higher than 150 MeV had been built during the 1940s in a few places around the world. Proton radiography experiments started at the Harvard Cyclotron in the early 1960s. Physicist Allan Cormack, who shared the Nobel Prize for laying the foundation of computed tomography together with Sir Godfrey Hounsfield in 1979, suggested that protons can be used for tomographic imaging for the first time in 1963. Proton CT requires a rotating proton gantry, which did not become available until 1991, at our institution. The interest in proton CT has been renewed due to the fact that exact proton treatment planning is only possible with accurate knowledge of the relative proton stopping power distribution (with respect to water) of the patient, which is best derived by using protons for imaging. Early attempts to do proton CT were hampered by the lack of high-resolution particle trackers, fast data acquisition electronics, and sufficient computing power. Also, efficient proton CT reconstruction algorithms had to be developed that can handle reconstruction based on a large number of proton histories, taking into account the non-straight probabilistic paths of multiply scattered protons. Most of these challenges have been or are about to be solved with the help of high-energy and particle physicists, computer science engineers, and applied mathematicians. In this talk, I will give an update on the development of proton CT for applications in proton therapy. This is an update from a talk I gave at the Annual Brazilian Physics Meeting in 2001, when I first suggested that physicists should contribute to the development of modern proton CT. Brazilian physicists have provided many valuable ideas and discussions for this exciting development. (author)

  13. Current and future applications of protons in medical imaging and treatment

    International Nuclear Information System (INIS)

    Schulte, Reinhard W.

    2011-01-01

    Protons have a more than 50-year history of applications in medical therapy and more recently also in imaging. Therapy with protons became possible after proton accelerators capable of accelerating protons to energies higher than 150 MeV had been built during the 1940s in a few places around the world. Proton radiography experiments started at the Harvard Cyclotron in the early 1960s. Physicist Allan Cormack, who shared the Nobel Prize for laying the foundation of computed tomography together with Sir Godfrey Hounsfield in 1979, suggested that protons can be used for tomographic imaging for the first time in 1963. Proton CT requires a rotating proton gantry, which did not become available until 1991, at our institution. The interest in proton CT has been renewed due to the fact that exact proton treatment planning is only possible with accurate knowledge of the relative proton stopping power distribution (with respect to water) of the patient, which is best derived by using protons for imaging. Early attempts to do proton CT were hampered by the lack of high-resolution particle trackers, fast data acquisition electronics, and sufficient computing power. Also, efficient proton CT reconstruction algorithms had to be developed that can handle reconstruction based on a large number of proton histories, taking into account the non-straight probabilistic paths of multiply scattered protons. Most of these challenges have been or are about to be solved with the help of high-energy and particle physicists, computer science engineers, and applied mathematicians. In this talk, I will give an update on the development of proton CT for applications in proton therapy. This is an update from a talk I gave at the Annual Brazilian Physics Meeting in 2001, when I first suggested that physicists should contribute to the development of modern proton CT. Brazilian physicists have provided many valuable ideas and discussions for this exciting development. (author)

  14. Patient Satisfaction in Military Dental Treatment Facilities

    Science.gov (United States)

    2006-03-07

    the variance in regards to overall satisfaction. 15. SUBJECT TERMS Dentistry, Patient Satisfaction, Military, Consumer Satisfaction, Dental... patient satisfaction in military dental treatment facilities. Dental health is extremely important for the military as dental assets are not always... customer satisfaction is an important component of military dental care. Quarterly patient satisfaction reports are generated for each dental treatment

  15. Proton therapy

    International Nuclear Information System (INIS)

    Smith, Alfred R

    2006-01-01

    Proton therapy has become a subject of considerable interest in the radiation oncology community and it is expected that there will be a substantial growth in proton treatment facilities during the next decade. I was asked to write a historical review of proton therapy based on my personal experiences, which have all occurred in the United States, so therefore I have a somewhat parochial point of view. Space requirements did not permit me to mention all of the existing proton therapy facilities or the names of all of those who have contributed to proton therapy. (review)

  16. Margins for treatment planning of proton therapy

    International Nuclear Information System (INIS)

    Thomas, Simon J

    2006-01-01

    For protons and other charged particles, the effect of set-up errors on the position of isodoses is considerably less in the direction of the incident beam than it is laterally. Therefore, the margins required between the clinical target volume (CTV) and planning target volume (PTV) can be less in the direction of the incident beam than laterally. Margins have been calculated for a typical head plan and a typical prostate plan, for a single field, a parallel opposed and a four-field arrangement of protons, and compared with margins calculated for photons, assuming identical geometrical uncertainties for each modality. In the head plan, where internal motion was assumed negligible, the CTV-PTV margin reduced from approximately 10 mm to 3 mm in the axial direction for the single field and parallel opposed plans. For a prostate plan, where internal motion cannot be ignored, the corresponding reduction in margin was from 11 mm to 7 mm. The planning organ at risk (PRV) margin in the axial direction reduced from 6 mm to 2 mm for the head plan, and from 7 mm to 4 mm for the prostate plan. No reduction was seen on the other axes, or for any axis of the four-field plans. Owing to the shape of proton dose distributions, there are many clinical cases in which good dose distributions can be obtained with one or two fields. When this is done, it is possible to use smaller PTV and PRV margins. This has the potential to convert untreatable cases, in which the PTV and PRV overlap, into cases with a gap between PTV and PRV of adequate size for treatment planning

  17. Proton Therapy Coverage for Prostate Cancer Treatment

    International Nuclear Information System (INIS)

    Vargas, Carlos; Wagner, Marcus; Mahajan, Chaitali; Indelicato, Daniel; Fryer, Amber; Falchook, Aaron; Horne, David C.; Chellini, Angela; McKenzie, Craig C.; Lawlor, Paula C.; Li Zuofeng; Lin Liyong; Keole, Sameer

    2008-01-01

    Purpose: To determine the impact of prostate motion on dose coverage in proton therapy. Methods and Materials: A total of 120 prostate positions were analyzed on 10 treatment plans for 10 prostate patients treated using our low-risk proton therapy prostate protocol (University of Florida Proton Therapy Institute 001). Computed tomography and magnetic resonance imaging T 2 -weighted turbo spin-echo scans were registered for all cases. The planning target volume included the prostate with a 5-mm axial and 8-mm superoinferior expansion. The prostate was repositioned using 5- and 10-mm one-dimensional vectors and 10-mm multidimensional vectors (Points A-D). The beam was realigned for the 5- and 10-mm displacements. The prescription dose was 78 Gy equivalent (GE). Results: The mean percentage of rectum receiving 70 Gy (V 70 ) was 7.9%, the bladder V 70 was 14.0%, and the femoral head/neck V 50 was 0.1%, and the mean pelvic dose was 4.6 GE. The percentage of prostate receiving 78 Gy (V 78 ) with the 5-mm movements changed by -0.2% (range, 0.006-0.5%, p > 0.7). However, the prostate V 78 after a 10-mm displacement changed significantly (p 78 coverage had a large and significant reduction of 17.4% (range, 13.5-17.4%, p 78 coverage of the clinical target volume. The minimal prostate dose was reduced 33% (25.8 GE), on average, for Points A-D. The prostate minimal dose improved from 69.3 GE to 78.2 GE (p < 0.001) with realignment for 10-mm movements. Conclusion: The good dose coverage and low normal doses achieved for the initial plan was maintained with movements of ≤5 mm. Beam realignment improved coverage for 10-mm displacements

  18. The Effects of Response Effort on Safe Performance by Therapists at an Autism Treatment Facility

    Science.gov (United States)

    Casella, Sarah E.; Wilder, David A.; Neidert, Pamela; Rey, Catalina; Compton, Megan; Chong, Ivy

    2010-01-01

    The effects of response effort on safe behaviors (i.e., glove wearing, hand sanitizing, and electrical outlet replacement) exhibited by therapists at an autism treatment center were examined. Participants were exposed to 2 or 3 levels of effort (i.e., high, medium, low) for each dependent variable. Results showed increased safe performance during…

  19. The scrounge-atron: a phased approach to the advanced hydrotest facility utilizing proton radiography

    International Nuclear Information System (INIS)

    Alford, O.J.; Barnes, P.D. Jr.; Chargin, A.K.; Dekin, W.D.; Hartouni, E.P.; Hockman, J.; Hockman, J.N.; Ladran, A.S.; Libkind, M.A.; Moore, T.L.; Ohnuma, S.; Pastrnak, J.W.; Pico, R.E.; Ruggiero, A.G.; Souza, R.J.; Stoner, J.M.; Wilson, J.H.

    1999-01-01

    The Department of Energy has initiated its Stockpile Stewardship and Management Program (SSMP) to provide a single, integrated technical program for maintaining the continued safety and reliability of the nation's nuclear weapons stockpile in the absence of nuclear testing. Consistent with the SSMP, the Advanced Hydrotest Facility (AHF) has been conceived to provide improved radiographic imaging with multiple axes and multiple time frames. The AHF would be used to better understand the evolution of nuclear weapon primary implosion shape under normal and accident scenarios. There are three fundamental technologies currently under consideration for use on the AHF. These include linear induction acceleration, inductive-adder pulsed-power technology (both technologies using high current electron beams to produce an intense X-ray beam) and high-energy proton accelerators to produce a proton beam. The Scrounge-atron (a proton synchrotron) was conceived to be a relatively low cost demonstration of the viability of the third technology using bursts of energetic protons, magnetic lenses, and particle detectors to produce the radiographic image. In order for the Scrounge-atron to provide information useful for the AHF technology decision, the accelerator would have to be built as quickly and as economically as possible. These conditions can be met by scrounging parts from decommissioned accelerators across the country, especially the Main Ring at Fermilab. The Scrounge-atron is designed to meet the baseline parameters for single axis proton radiography: a 20 GeV proton beam of ten pulses, 10 11 protons each, spaced 250 ns apart

  20. Developing a clinical proton accelerator facility: Consortium-assisted technology transfer

    International Nuclear Information System (INIS)

    Slater, J.M.; Miller, D.W.; Slater, J.W.

    1991-01-01

    A hospital-based proton accelerator facility has emerged from the efforts of a consortium of physicists, engineers and physicians from several high-energy physics laboratories, industries and universities, working together to develop the requirements and conceptual design for a clinical program. A variable-energy medical synchrotron for accelerating protons to a prescribed energy, intensity and beam quality, has been placed in a hospital setting at Loma Linda University Medical Center for treating patients with localized cancer. Treatments began in October 1990. Scientists from Fermi National Accelerator Laboratory; Harvard Cyclotron Laboratory; Lawrence Berkeley Laboratories; the Paul Scherrer Institute; Uppsala, Sweden; Argonne, Brookhaven and Los Alamos National Laboratories; and Loma Linda University, all cooperated to produce the conceptual design. Loma Linda University contracted with Fermi National Accelerator Laboratory to design and build a 250 MeV synchrotron and beam transport system, the latter to guide protons into four treatment rooms. Lawrence Berkeley Laboratories consulted with Loma Linda University on the design of the beam delivery system (nozzle). A gantry concept devised by scientists at Harvard Cyclotron Laboratory, was adapted and fabricated by Science Applications International Corporation. The control and safety systems were designed and developed by Loma Linda University Radiation Research Laboratory. Presently, the synchrotron, beam transport system and treatment room hardware have been installed and tested and are operating satisfactorily

  1. SU-F-T-168: Development and Implementation of An Anthropomorphic Head & Neck Phantom for the Assessment of Proton Therapy Treatment Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Branco, D; Taylor, P; Frank, S; Li, H; Zhang, X; Mehrens, H; Guindani, M; Followill, D [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: To design a Head and Neck (H&N) anthropomorphic QA phantom that the Imaging and Radiation Oncology Core Houston (IROC-H) can use to verify the quality of intensity modulated proton therapy (IMPT) H&N treatments for institutions participating in NCI clinical trials. Methods: The phantom was created to serve as a remote auditing tool for IROC-H to evaluate an institution’s IMPT planning and delivery abilities. The design was based on the composition, size, and geometry of a generalized oropharyngeal tumor and contains critical structures (parotids and spinal cord). Radiochromic film in the axial and sagittal planes and thermoluminescent dosimeters (TLD)-100 capsules were embedded in the phantom and used to perform the dose delivery evaluation. A CT simulation was used to create a passive scatter and a spot scanning treatment plan with typical clinical constraints for H&N cancer. The IMPT plan was approved by a radiation oncologist and the phantom was irradiated multiple times. The measured dose distribution using a 7%/4mm gamma analysis (85% of pixels passing) and point doses were compared with the treatment planning system calculations. Results: The designed phantom could not achieve the target dose prescription and organ at risk dose constraints with the passive scatter treatment plan. The target prescription dose could be met but not the parotid dose constraint. The average TLD point dose ratio in the target was 0.975, well within the 5% acceptance criterion. The dose distribution analysis using various acceptance criteria, 5%/4mm, 5%/3mm, 7%/4mm and 7%/5mm, had average pixel passing rates of 85.9%, 81.8%, 89.6% and 91.6%, and respectively. Conclusion: An anthropomorphic IMPT H&N phantom was designed that can assess the dose delivery of proton sites wishing to participate in clinical trials using a 5% TLD dose and 7%/4mm gamma analysis acceptance criteria.

  2. Grout Treatment Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1992-07-01

    The Grout Treatment Facility (GTF) is an existing treatment, storage, and/or disposal (TSD) unit located in the 200 East Area and the adjacent 600 Area of the Hanford Site. The GTF mixes dry cementitious solids with liquid mixed waste (containing both dangerous and radioactive constituents) produced by Hanford Site operations. The GTF consists of the following: The 241-AP-02D and 241-AP-04D waste pump pits and transfer piping; Dry Materials Facility (DMF); Grout Disposal Facility (GDF), consisting of the disposal vault and support and monitoring equipment; and Grout Processing Facility (GPF) and Westinghouse Hanford Company on the draft Hanford Facility Dangerous Waste Permit and may not be read to conflict with those comments. The Grout Treatment Facility Dangerous Waste Permit Application consists of both a Part A and a Part B permit application. An explanation of the Part A revisions associated with this TSD unit, including the current revision, is provided at the beginning of the Part A section. The Part B consists of 15 chapters addressing the organization and content of the Part B checklist prepared by the Washington State Department of Ecology (Ecology 1987). For ease of reference, the checklist section numbers, in brackets, follow chapter headings and subheadings

  3. Test facility of proton beam utilization of the PEFP at the SNU-AMS tandem accelerator

    International Nuclear Information System (INIS)

    Kim, K. R.; Park, B. S.; Lee, H. R.

    2004-01-01

    The PEFP (Proton Engineering Frontier Project) will supply users with a 20-MeV proton beam by the middle of 2007. A survey on users' demand was performed to draw the concept for the 20-MeV user facilities and to investigate users' requirements. In the mean time, a 6-MeV test facility has been developed to give users opportunities to experiment with proton beams. That facility will be attached to the 3-MV tandem accelerator at Seoul National University.

  4. Proton Radiation Therapy in the Hospital Environment: Conception, Development, and Operation of the Initial Hospital-Based Facility

    Science.gov (United States)

    Slater, James M.; Slater, Jerry D.; Wroe, Andrew J.

    The world's first hospital-based proton treatment center opened at Loma Linda University Medical Center in 1990, following two decades of development. Patients' needs were the driving force behind its conception, development, and execution; the primary needs were delivery of effective conformal doses of ionizing radiation and avoidance of normal tissue to the maximum extent possible. The facility includes a proton synchrotron and delivery system developed in collaboration with physicists and engineers at Fermi National Accelerator Laboratory and from other high-energy-physics laboratories worldwide. The system, operated and maintained by Loma Linda personnel, was designed to be safe, reliable, flexible in utilization, efficient in use, and upgradeable to meet demands of changing patient needs and advances in technology. Since the facility opened, nearly 14,000 adults and children have been treated for a wide range of cancers and other diseases. Ongoing research is expanding the applications of proton therapy, while reducing costs.

  5. Proton radiotherapy facility for ocular tumours at IFJ PAN in Krakow, Poland

    International Nuclear Information System (INIS)

    Michalec, Barbara; Swakon, Jan; Sowa, Urszula; Olko, Pawe

    2008-01-01

    Full text: Uveal melanoma is the most common human intraocular tumor in adult patient. Overall annual incidence is 5-7 cases per million/year and it is higher amongst fair skinned pale eyed individuals. There is about 100 cases of new diagnosed uveal melanoma per year in Poland. Presently, the clinically recommended therapy of intraocular melanoma is radiotherapy with a proton beam of initial energy 55-80 MeV. The unique properties of the Bragg curve enable a precise delivery of a high dose of radiation to the tumor region and the simultaneous spare of critical organs and healthy tissues. In most patients treated with proton radiotherapy, 5-year patient survivals of 95% as well as vision in the treated eye were achieved. The Institute of Nuclear Physics (IFJ) in Cracow, in cooperation with the Clinic of Ophthalmology and Ocular Oncology of the Collegium Medicum, Jagiellonian University and the Krakow Branch of the Maria Sklodowska-Curie Memorial Centre of Oncology, is carrying out a project of designing and operating a proton ocular radiotherapy facility in which the 55-60 MeV proton beam accelerated in the AIC-144 isochronous cyclotron of IFJ is applied. The proton beam from the cyclotron is delivered to the therapeutic room where it is formed and monitored. The facility has been equipped with beam forming and beam monitoring elements (a range shifter, a range modulator, set of collimators for beam forming and a Spread Out Bragg Peak measuring system, an X direction scanner, an XYZ scanner for beam monitoring) as well as with some detectors dedicated for beam dosimetry. A patient positioning system i.e. the eye therapeutic chair made by Schaer Engineering which enables the patient's positioning and immobilizing with precision of tenth of millimetre has been installed. The patient's eye positioning system is ready too. The X ray system, used for eye positioning and irradiation area localization has been installed. The dosimetric system, which monitors neutron and

  6. Prospects for studies of ground-state proton decays with the Holifield Radioactive Ion Beam Facility

    International Nuclear Information System (INIS)

    Toth, K.S.

    1994-01-01

    By using radioactive ions from the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory it should be possible to identify many new ground-state proton emitters in the mass region from Sn to Pb. During this production and search process the limits of stability on the proton-rich side of the nuclidic chart will be delineated for a significant fraction of medium-weight elements and our understanding of the proton-emission process will be expanded and improved

  7. Kaon: an advanced hadron facility

    International Nuclear Information System (INIS)

    Oers, W.T.H. van; Manitoba Univ., Winnipeg, MB

    1990-01-01

    An advanced hadron facility KAON has been proposed to be built in Canada. The report of the Project Definition Study has been presented to both levels of Government (federal and provincial) on May 24, 1990, for action in the near future. A short discussion will be given of the scientific motivation. The physics along the intensity and precision frontier is fully complementary to the physics along the energy frontier. Following, a description will be given of the 100 μA, 30 GeV proton synchrotron proposed. The accelerator will consist of five rings using the present 500 MeV cyclotron as an injector. If the project were funded this year, the accelerators would be completed by 1995 or so, with the experimental program starting a year later

  8. Principles and Reality of Proton Therapy Treatment Allocation

    Energy Technology Data Exchange (ETDEWEB)

    Bekelman, Justin E., E-mail: bekelman@uphs.upenn.edu [Department of Radiation Oncology, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Department of Medical Ethics and Health Policy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Asch, David A. [Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, Pennsylvania (United States); The Wharton School and Penn Medicine Center for Health Care Innovation, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Tochner, Zelig [Department of Radiation Oncology, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Friedberg, Joseph [Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Vaughn, David J. [Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Rash, Ellen [Department of Radiation Oncology, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Raksowski, Kevin [Department of Internal Medicine, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania (United States); Hahn, Stephen M. [Department of Radiation Oncology, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States)

    2014-07-01

    Purpose: To present the principles and rationale of the Proton Priority System (PROPS), a priority points framework that assigns higher scores to patients thought to more likely benefit from proton therapy, and the distribution of PROPS scores by patient characteristics Methods and Materials: We performed multivariable logistic regression to evaluate the association between PROPS scores and receipt of proton therapy, adjusted for insurance status, gender, race, geography, and the domains that inform the PROPS score. Results: Among 1529 adult patients considered for proton therapy prioritization during our Center's ramp-up phase of treatment availability, PROPS scores varied by age, diagnosis, site, and other PROPS domains. In adjusted analyses, receipt of proton therapy was lower for patients with non-Medicare relative to Medicare health insurance (commercial vs Medicare: adjusted odds ratio [OR] 0.47, 95% confidence interval [CI] 0.34-0.64; managed care vs Medicare: OR 0.40, 95% CI 0.28-0.56; Medicaid vs Medicare: OR 0.24, 95% CI 0.13-0.44). Proton Priority System score and age were not significantly associated with receipt of proton therapy. Conclusions: The Proton Priority System is a rationally designed and transparent system for allocation of proton therapy slots based on the best available evidence and expert opinion. Because the actual allocation of treatment slots depends mostly on insurance status, payers may consider incorporating PROPS, or its underlying principles, into proton therapy coverage policies.

  9. Principles and Reality of Proton Therapy Treatment Allocation

    International Nuclear Information System (INIS)

    Bekelman, Justin E.; Asch, David A.; Tochner, Zelig; Friedberg, Joseph; Vaughn, David J.; Rash, Ellen; Raksowski, Kevin; Hahn, Stephen M.

    2014-01-01

    Purpose: To present the principles and rationale of the Proton Priority System (PROPS), a priority points framework that assigns higher scores to patients thought to more likely benefit from proton therapy, and the distribution of PROPS scores by patient characteristics Methods and Materials: We performed multivariable logistic regression to evaluate the association between PROPS scores and receipt of proton therapy, adjusted for insurance status, gender, race, geography, and the domains that inform the PROPS score. Results: Among 1529 adult patients considered for proton therapy prioritization during our Center's ramp-up phase of treatment availability, PROPS scores varied by age, diagnosis, site, and other PROPS domains. In adjusted analyses, receipt of proton therapy was lower for patients with non-Medicare relative to Medicare health insurance (commercial vs Medicare: adjusted odds ratio [OR] 0.47, 95% confidence interval [CI] 0.34-0.64; managed care vs Medicare: OR 0.40, 95% CI 0.28-0.56; Medicaid vs Medicare: OR 0.24, 95% CI 0.13-0.44). Proton Priority System score and age were not significantly associated with receipt of proton therapy. Conclusions: The Proton Priority System is a rationally designed and transparent system for allocation of proton therapy slots based on the best available evidence and expert opinion. Because the actual allocation of treatment slots depends mostly on insurance status, payers may consider incorporating PROPS, or its underlying principles, into proton therapy coverage policies

  10. A centralized hazardous waste treatment plant: the facilities of the ZVSMM at Schwabach as an example

    Energy Technology Data Exchange (ETDEWEB)

    Amsoneit, Norbert [Zweckverband Sondermuell-Entsorgung Mittelfranken, Rednitzhembach (Germany)

    1993-12-31

    In this work a centralized hazardous waste treatment plant is described and its infra-structure is presented. Special emphasis is given to the handling of the residues produced and the different treatment processes at the final disposal. 2 refs., 4 figs.

  11. A centralized hazardous waste treatment plant: the facilities of the ZVSMM at Schwabach as an example

    Energy Technology Data Exchange (ETDEWEB)

    Amsoneit, Norbert [Zweckverband Sondermuell-Entsorgung Mittelfranken, Rednitzhembach (Germany)

    1994-12-31

    In this work a centralized hazardous waste treatment plant is described and its infra-structure is presented. Special emphasis is given to the handling of the residues produced and the different treatment processes at the final disposal. 2 refs., 4 figs.

  12. Dosimetric and clinical experience in eye proton treatment at INFN-LNS

    International Nuclear Information System (INIS)

    Cirrone, G. A. P.; Cuttone, G.; Di Rosa, F.; Lojacono, P.; Mongelli, V.; Patti, I. V.; Pittera, S.; Russo, G.; Valastro, L. M.; Lo Nigro, S.; Ott, J.; Reibaldi, A.; Privitera, G.; Raffaele, L.; Salamone, V.; Spatola, C.; Sabini, M. G.

    2009-01-01

    After six years of activity 155 patients have been treated inside the CATANA (Centro di AdroTerapia ed Applicazioni Nucleari Avanzate) facility. CATANA is the first and unique proton therapy facility in which the 62 MeV proton beams, accelerated by a Superconducting Cyclotron, are used for the radio-therapeutic treatments of choroidal and iris melanomas. Inside CATANA new absolute and relative dosimetric techniques have been developed in order to achieve the best results in terms of treatment precision and dose release accuracy. The follow-up results for 42 patients demonstrated the efficacy of high energy protons in the radiotherapeutic field and encouraged us in our activity in the battle against cancer

  13. Dosimetric and clinical experience in eye proton treatment at INFN-LNS

    Science.gov (United States)

    Cirrone, G. A. P.; Cuttone, G.; Di Rosa, F.; Lojacono, P.; Mongelli, V.; Lo Nigro, S.; Ott, J.; Patti, I. V.; Pittera, S.; Privitera, G.; Raffaele, L.; Reibaldi, A.; Russo, G.; Salamone, V.; Sabini, M. G.; Spatola, C.; Valastro, L. M.

    2009-05-01

    After six years of activity 155 patients have been treated inside the CATANA (Centro di AdroTerapia ed Applicazioni Nucleari Avanzate) facility. CATANA is the first and unique proton therapy facility in which the 62 MeV proton beams, accelerated by a Superconducting Cyclotron, are used for the radio-therapeutic treatments of choroidal and iris melanomas. Inside CATANA new absolute and relative dosimetric techniques have been developed in order to achieve the best results in terms of treatment precision and dose release accuracy. The follow-up results for 42 patients demonstrated the efficacy of high energy protons in the radiotherapeutic field and encouraged us in our activity in the battle against cancer

  14. Design concept of radiation control system for the high intensity proton accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yukihiro; Ikeno, Koichi; Akiyama, Shigenori; Harada, Yasunori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-11-01

    Description is given for the characteristic radiation environment for the High Intensity Proton Accelerator Facility and the design concept of the radiation control system of it. The facility is a large scale accelerator complex consisting of high energy proton accelerators carrying the highest beam intensity in the world and the related experimental facilities and therefore provides various issues relevant to the radiation environment. The present report describes the specifications for the radiation control system for the facility, determined in consideration of these characteristics. (author)

  15. Target irradiation facility and targetry development at 160 MeV proton beam of Moscow linac

    CERN Document Server

    Zhuikov, B L; Konyakhin, N A; Vincent, J

    1999-01-01

    A facility has been built and successfully operated with the 160 MeV proton beam of Moscow Meson factory LINAC, Institute for Nuclear Research (INR) of Russian Academy of Science, Troitsk. The facility was created for various isotope production goals as well as for fundamental nuclear investigations at high intensity beam (100 mu A and more). An important part of the facility targetry system is a high-intensity beam monitoring collimator device. Measurements of the temperature distribution between collimator sectors, cooling water flow and temperature, and the beam current, provide an opportunity to compute beam losses and beam position. The target holder design allows easy insertion by manipulator and simultaneous bombardment of several different targets of various types and forms, and variation of proton energy on each target over a wide range below 160 MeV. The main target utilized for commercial sup 8 sup 2 Sr isotope production is metallic rubidium in a stainless-steel container. A regular wet chemistry ...

  16. Mechanical Treatment: Material Recovery Facilities

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Bilitewski, B.

    2011-01-01

    A wide variety of mechanical treatment unit processes, including manual sorting, is described in Chapter 7.1. These unit processes may be used as a single separate operation (e.g. baling of recyclable cardboard) or as a single operation before or after biological and thermal treatment processes (e.......g. shredding prior to incineration or screening after composting). The mechanical treatment unit process is in the latter case an integrated part of the overall treatment usually with the purpose of improving the quality of the input material, or the efficiency or stability of the biological or thermal process......, or improving the quality of the output material. Examples hereof appear in the chapters on biological and thermal treatment. Mechanical treatment unit processes may also appear at industries using recycled material as part of their feedstock, for example, for removing impurities and homogenizing the material...

  17. Physics at an upgraded Fermilab proton driver

    Energy Technology Data Exchange (ETDEWEB)

    Geer, S.; /Fermilab

    2005-07-01

    In 2004 the Fermilab Long Range Planning Committee identified a new high intensity Proton Driver as an attractive option for the future, primarily motivated by the recent exciting developments in neutrino physics. Over the last few months a physics study has developed the physics case for the Fermilab Proton Driver. The potential physics opportunities are discussed.

  18. The Midwest Proton Radiation Institute project at the Indiana University Cyclotron Facility

    Energy Technology Data Exchange (ETDEWEB)

    Anferov, V; Broderick, B; Collins, J C; Friesel, D L; Jenner, D; Jones, W P; Katuin, J; Klein, S B; Starks, W; Self, J; Schreuder, N [IUCF, Bloomington, Indiana 47408 (United States)

    2001-12-12

    The IUCF cyclotrons ceased delivering particle beams for physics research and became dedicated medical proton beam accelerators in 1999. Removal of the beam lines and nuclear research facilities associated with the cyclotrons to make room for the new medical beam delivery systems was completed in October, 2000. A new achromatic beam line was completed, extending from the main stage cyclotron and ending at a temporary research platform. This beam line is being commissioned during ongoing applied research. The achromatic line will deliver 0.5 {mu}A of 205 MeV protons from which the treatment room technician may draw current at any time via fast switching, laminated magnets located at the entrances to the energy selection systems upstream of each of the treatment rooms. Three treatment rooms are planned, one containing two fixed horizontal lines and two gantry rooms. The cyclotrons will also support full time research in radiation effects, single event upset, radiation biology and pre-clinical research. This contribution describes the status of the medical construction project.

  19. Preparation of pediatric patients for treatment with proton beam therapy

    International Nuclear Information System (INIS)

    Mizumoto, Masashi; Oshiro, Yoshiko; Ayuzawa, Kaoru; Miyamoto, Toshio; Okumura, Toshiyuki; Fukushima, Takashi; Fukushima, Hiroko; Ishikawa, Hitoshi; Tsuboi, Koji; Sakurai, Hideyuki

    2015-01-01

    Purpose: Anesthesia is often used in proton beam therapy (PBT) for pediatric patients and this may prolong the treatment time. The aim of the study was to examine preparation of pediatric patients to allow smooth performance of PBT. Material and methods: Preparation was initiated 1–2 days before treatment planning CT and continued for 10 days. The patient first visited the facility to become familiar with the treatment room and staff. As the second step, the patient stayed in the treatment bed for a certain time with their mother, and then stayed on the treatment bed alone. Special fixtures painted with characters, music, and gifts were also prepared. Results: From 2010 to 2014, 111 pediatric patients underwent PBT. These patients were divided into 3 groups: 40 who could follow instructions well (group A, median age: 13.6 years old), 60 who could communicate, but found it difficult to stay alone for a long time (group B, median age: 4.6 years old), and 11 who could not follow instructions (group C, median age: 1.6 years old). Preparation was used for patients in group B. The mean treatment times in groups A, B and C were 13.6, 17.1, and 15.6 min, respectively, on PBT treatment days 2–6, and 11.8, 13.0, and 16.9 min, respectively, for the last 5 days of PBT treatment. The time reduction was significant in group B (p = 0.003). Conclusion: Preparation is useful for pediatric patients who can communicate. This approach allows PBT to be conducted more smoothly over a shorter treatment time

  20. Grout treatment facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1992-07-01

    The Grout Treatment Facility (GTF) will provide permanent disposal for approximately 43 Mgal of radioactive liquid waste currently being stored in underground tanks on the Hanford Site. The first step in permanent disposal is accomplished by solidifying the low-level liquid waste with cementitious dry materials. The resulting grout is cast within underground vaults. This report on the GTF contains information on the following: Hanford Site Maps, road evaluation for the grout treatment facility, Department of Ecology certificate of non-designation for centralia fly ash, double-shell tank waste compositional modeling, laboratory analysis reports for double-shell tank waste, stored in tanks 241-AN-103, 241-AN-106, and 241-AW-101, grout vault heat transfer results for M-106 grout formulation, test results for extraction procedure toxicity testing, test results for toxicity testing of double-shell tank grout, pilot-scale grout production test with a simulated low-level waste, characterization of simulated low-level waste grout produced in a pilot-scale test, description of the procedure for sampling nonaging waste storage tanks, description of laboratory procedures, grout campaign waste composition verification, variability in properties of grouted phosphate/sulfate N-reactor waste, engineering drawings, description of operating procedures, equipment list--transportable grout equipment, grout treatment facility--tank integrity assessment plan, long-term effects of waste solutions on concrete and reinforcing steel, vendor information, grout disposal facilities construction quality assurance plan, and flexible membrane liner/waste compatibility test results

  1. Overview of Japan Proton Accelerator Research Complex (J-PARC) project and Materials and Life Science Experimental Facility (MLF)

    International Nuclear Information System (INIS)

    Ikeda, Yujiro

    2008-01-01

    The J-PARC project has been conducted jointly by JAERI and KEK since 2001. This paper reports an overview and current status of the project. The high intensity proton accelerator consists of a 400 MeV Linac, a 3 GeV synchrotron and 50 GeV synchrotron to deliver MW level pulsed proton beam to experimental facilities. The MW proton power will provide an advanced scientific experimental research complex aiming at making breakthroughs in materials and life science with neutron and muon, nuclear and elementary physics, etc. Regarding the project being close to its completion in 2008, this paper describes the overview of J-PARC project with emphasis of the Materials and Life Science Experimental Facility, in which the MW pulsed neutron and muon sources, are placed to provide high quality neutron and muon beams to the world wide users. (author)

  2. Proton Stereotactic Radiosurgery for the Treatment of Benign Meningiomas

    Energy Technology Data Exchange (ETDEWEB)

    Halasz, Lia M., E-mail: lhalasz@partners.org [Harvard Radiation Oncology Program, Boston, Massachusetts (United States); Harvard Medical School, Boston, Massachusetts (United States); Bussiere, Marc R.; Dennis, Elizabeth R.; Niemierko, Andrzej [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Chapman, Paul H. [Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (United States); Harvard Medical School, Boston, Massachusetts (United States); Loeffler, Jay S.; Shih, Helen A. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Harvard Medical School, Boston, Massachusetts (United States)

    2011-12-01

    Purpose: Given the excellent prognosis for patients with benign meningiomas, treatment strategies to minimize late effects are important. One strategy is proton radiation therapy (RT), which allows less integral dose to normal tissue and greater homogeneity than photon RT. Here, we report the first series of proton stereotactic radiosurgery (SRS) used for the treatment of meningiomas. Methods and Materials: We identified 50 patients with 51 histologically proven or image- defined, presumed-benign meningiomas treated at our institution between 1996 and 2007. Tumors of <4 cm in diameter and located {>=}2 mm from the optic apparatus were eligible for treatment. Indications included primary treatment (n = 32), residual tumor following surgery (n = 8), and recurrent tumor following surgery (n = 10). The median dose delivered was 13 Gray radiobiologic equivalent (Gy[RBE]) (range, 10.0-15.5 Gy[RBE]) prescribed to the 90% isodose line. Results: Median follow-up was 32 months (range, 6-133 months). Magnetic resonance imaging at the most recent follow-up or time of progression revealed 33 meningiomas with stable sizes, 13 meningiomas with decreased size, and 5 meningiomas with increased size. The 3-year actuarial tumor control rate was 94% (95% confidence interval, 77%-98%). Symptoms were improved in 47% (16/ 34) of patients, unchanged in 44% (15/34) of patients, and worse in 9% (3/34) of patients. The rate of potential permanent adverse effects after SRS was 5.9% (3/51 patients). Conclusions: Proton SRS is an effective therapy for small benign meningiomas, with a potentially lower rate of long-term treatment-related morbidity. Longer follow-up is needed to assess durability of tumor control and late effects.

  3. A proton irradiation test facility for space research in Ankara, Turkey

    Science.gov (United States)

    Gencer, Ayşenur; Yiǧitoǧlu, Merve; Bilge Demirköz, Melahat; Efthymiopoulos, Ilias

    2016-07-01

    Space radiation often affects the electronic components' performance during the mission duration. In order to ensure reliable performance, the components must be tested to at least the expected dose that will be received in space, before the mission. Accelerator facilities are widely used for such irradiation tests around the world. Turkish Atomic Energy Authority (TAEA) has a 15MeV to 30MeV variable proton cyclotron in Ankara and the facility's main purpose is to produce radioisotopes in three different rooms for different target systems. There is also an R&D room which can be used for research purposes. This paper will detail the design and current state of the construction of a beamline to perform Single Event Effect (SEE) tests in Ankara for the first time. ESA ESCC No.25100 Standard Single Event Effect Test Method and Guidelines is being considered for these SEE tests. The proton beam kinetic energy must be between 20MeV and 200MeV according to the standard. While the proton energy is suitable for SEE tests, the beam size must be 15.40cm x 21.55cm and the flux must be between 10 ^{5} p/cm ^{2}/s to at least 10 ^{8} p/cm ^{2}/s according to the standard. The beam size at the entrance of the R&D room is mm-sized and the current is variable between 10μA and 1.2mA. Therefore, a defocusing beam line has been designed to enlarge the beam size and reduce the flux value. The beam line has quadrupole magnets to enlarge the beam size and the collimators and scattering foils are used for flux reduction. This facility will provide proton fluxes between 10 ^{7} p/cm ^{2}/s and 10 ^{10} p/cm ^{2}/s for the area defined in the standard when completed. Also for testing solar cells developed for space, the proton beam energy will be lowered below 10MeV. This project has been funded by Ministry of Development in Turkey and the beam line construction will finish in two years and SEE tests will be performed for the first time in Turkey.

  4. Comparison Between In-Beam and Offline Positron Emission Tomography Imaging of Proton and Carbon Ion Therapeutic Irradiation at Synchrotron- and Cyclotron-Based Facilities

    International Nuclear Information System (INIS)

    Parodi, Katia; Bortfeld, Thomas; Haberer, Thomas

    2008-01-01

    Purpose: The benefit of using dedicated in-beam positron emission tomography (PET) detectors in the treatment room instead of commercial tomographs nearby is an open question. This work quantitatively compares the measurable signal for in-beam and offline PET imaging, taking into account realistic acquisition strategies at different ion beam facilities. Both scenarios of pulsed and continuous irradiation from synchrotron and cyclotron accelerators are considered, because of their widespread use in most carbon ion and proton therapy centers. Methods and Materials: A mathematical framework is introduced to compare the time-dependent amount and spatial distribution of decays from irradiation-induced isotope production. The latter is calculated with Monte Carlo techniques for real proton treatments of head-and-neck and paraspinal tumors. Extrapolation to carbon ion irradiation is based on results of previous phantom experiments. Biologic clearance is modeled taking into account available data from previous animal and clinical studies. Results: Ratios between the amount of physical decays available for in-beam and offline detection range from 40% to 60% for cyclotron-based facilities, to 65% to 110% (carbon ions) and 94% to 166% (protons) at synchrotron-based facilities, and increase when including biologic clearance. Spatial distributions of decays during irradiation exhibit better correlation with the dose delivery and reduced influence of biologic processes. Conclusions: In-beam imaging can be advantageous for synchrotron-based facilities, provided that efficient PET systems enabling detection of isotope decays during beam extraction are implemented. For very short (<2 min) irradiation times at cyclotron-based facilities, a few minutes of acquisition time after the end of irradiation are needed for counting statistics, thus affecting patient throughput

  5. Region 9 NPDES Facilities 2012- Waste Water Treatment Plants

    Science.gov (United States)

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  6. Region 9 NPDES Facilities - Waste Water Treatment Plants

    Science.gov (United States)

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  7. Security of water treatment facilities

    Energy Technology Data Exchange (ETDEWEB)

    Forsha, C.A. [Univ. of Pittsburgh at Johnstown, Johnstowne, PA (United States)

    2002-06-15

    The safety of the nation's water supply is at risk. Although harm may or may not be done to water sources, the fear is definitely a factor. No matter what size system supplies water, the community will expect increased security. Decisions must be made as to how much will be spent on security and what measures will be taken with the money. Small systems often have a difficult time in finding a direction to focus on. Physical and electronic protection is less involved because of the scale of service. Biological contamination is difficult to prevent if the assailants are determined. Small-scale water storage and low magnitudes of flow increase a contamination threat. Large systems have a size advantage when dealing with biological contamination because of the dilution factor, but physical and electronic protection is more involved. Large-scale systems are more likely to overlook components. A balance is maintained through anything dealing with the public. Having greater assurance that water quality will be maintained comes at the cost of knowing less about how water is protected and treated, and being banned from public land within watersheds that supply drinking water. Whether good or bad ideas are being implemented, security of water treatment facilities is changing. (author)

  8. Security of water treatment facilities

    International Nuclear Information System (INIS)

    Forsha, C.A.

    2002-01-01

    The safety of the nation's water supply is at risk. Although harm may or may not be done to water sources, the fear is definitely a factor. No matter what size system supplies water, the community will expect increased security. Decisions must be made as to how much will be spent on security and what measures will be taken with the money. Small systems often have a difficult time in finding a direction to focus on. Physical and electronic protection is less involved because of the scale of service. Biological contamination is difficult to prevent if the assailants are determined. Small-scale water storage and low magnitudes of flow increase a contamination threat. Large systems have a size advantage when dealing with biological contamination because of the dilution factor, but physical and electronic protection is more involved. Large-scale systems are more likely to overlook components. A balance is maintained through anything dealing with the public. Having greater assurance that water quality will be maintained comes at the cost of knowing less about how water is protected and treated, and being banned from public land within watersheds that supply drinking water. Whether good or bad ideas are being implemented, security of water treatment facilities is changing. (author)

  9. Measuring relative humidity in the radioactive environment of the IRRAD proton facility

    CERN Document Server

    Paerg, Marten

    2017-01-01

    The aim of the project was to obtain information on relative humidity conditions at different locations in the IRRAD proton facility. Due to high radiation levels inside the facility, different sensors had to be qualified and dedicated electronics had to be built to transfer the data of the sensors over long wires to a less radioactive area, where it could be collected.

  10. SU-E-T-210: Comparison of Proton with Electron Boost in Breast Cancer Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Y; Chang, A [Procure Proton Therapy Center, Oklahoma City, OK (United States); Liu, Y [INTEGRIS Cancer Institute of Oklahoma, Oklahoma City, OK (United States)

    2015-06-15

    Purpose: Electron beams are commonly used for boost radiation following whole breast irradiation (WBI) to improve the in-breast local control. Proton beams have a finite range and a sharper distal dose falloff compared to electron beams, thus potentially sparing more heart and lung in breast treatment. The purpose of the study is to compare protons with electrons for boost breast treatment in terms of target coverage and normal tissue sparing. Methods: Six breast cancer patients were included in this study. All women received WBI to 45–50 Gy, followed by a 10–16.2 Gy boost with standard fractionation. If proton beams were used for the boost treatment, an electron plan was retrospectively generated for comparison using the same CT set and structures, and vice versa if electron beams were used for treatment. Proton plans were generated using the treatment planning system (TPS) with two to three uniform scanning proton beams. Electron plans were generated using the Pinnacle TPS with one single en face beam. Dose-volume histograms (DVH) were calculated and compared between proton and electron boost plans. Results: Proton plans show a similar boost target coverage, similar skin dose, and much better heart and lung sparing. For an example patient, V95% for PTV was 99.98% and skin (5 mm shell) received a max dose close to the prescription dose for both protons and electrons; however, V2 and V5 for the ipsilateral lung and heart were 37.5%, 17.9% and 19.9%, 4.9% respectively for electrons, but were essentially 0 for protons. Conclusions: This dosimetric comparison demonstrates that while both proton therapy and electron therapy provided similar coverage and skin dose, proton therapy could largely reduce the dose to lung and heart, thus leading to potential less side effects.

  11. Nuclear fuel treatment facility for 'Mutsu'

    International Nuclear Information System (INIS)

    Kanazawa, Toshio; Fujimura, Kazuo; Horiguchi, Eiji; Kobayashi, Tetsuji; Tamekiyo, Yoshizou

    1989-01-01

    A new fixed mooring harbor in Sekinehama and surrounding land facilities to accommodate a test voyage for the nuclear-powered ship 'Mutsu' in 1990 were constructed by the Japan Atomic Energy Research Institute. Kobe Steel took part in the construction of the nuclear fuel treatment process in various facilities, beginning in October, 1988. This report describes the outline of the facility. (author)

  12. A beam optics study of the biomedical beam line at a proton therapy facility

    International Nuclear Information System (INIS)

    Yun, Chong Cheoul; Kim, Jong-Won

    2007-01-01

    A biomedical beam line has been designed for the experimental area of a proton therapy facility to deliver mm to sub-mm size beams in the energy range of 20-50 MeV using the TRANSPORT/TURTLE beam optics codes and a newly-written program. The proton therapy facility is equipped with a 230 MeV fixed-energy cyclotron and an energy selection system based on a degrader and slits, so that beam currents available for therapy decrease at lower energies in the therapeutic beam energy range of 70-230 MeV. The new beam line system is composed of an energy-degrader, two slits, and three quadrupole magnets. The minimum beam sizes achievable at the focal point are estimated for the two energies of 50 and 20 MeV. The focused FWHM beam size is approximately 0.3 mm with an expected beam current of 20 pA when the beam energy is reduced to 50 MeV from 100 MeV, and roughly 0.8 mm with a current of 10 pA for a 20 MeV beam

  13. 200 Area Effluent Treatment Facility: Delisting petition

    International Nuclear Information System (INIS)

    1993-08-01

    Waste water has been generated for over 40 years as a result of operations conducted on the Hanford Site. This waste water previously was discharged to cribs, ponds, or ditches. An example of such waste water includes process condensate that might have been in contact with dangerous waste or mixed waste (containing both radioactive and dangerous components). This petition presents the treatment technologies that are designed into the 200 Area Effluent Treatment Facility to eliminate the dangerous characteristics of the waste and to delist the effluent in accordance with the requirements found in 40 Code of Federal Regulations 260.20 and 260.22. The purpose of this petition is to demonstrate that the 242-A Evaporator process condensate will be treated adequately so that the effluent from the 200 Area Effluent Treatment Facility will no longer require management as a regulated dangerous waste. This demonstration was performed by use of a surrogate (synthetic) waste, designed by the US Department of Energy, Richland Operations Office to include species that represent all organic and inorganic constituents (but not radionuclide species) expected to be found on the Hanford Site. Thus, the surrogate will encompass not only the expected 242-A Evaporator process condensate characteristics, but those of other potential 200 Area Effluent Treatment Facility waste streams and additional 40 CFR Appendix VIII constituents

  14. Hazard Baseline Downgrade Effluent Treatment Facility

    International Nuclear Information System (INIS)

    Blanchard, A.

    1998-01-01

    This Hazard Baseline Downgrade reviews the Effluent Treatment Facility, in accordance with Department of Energy Order 5480.23, WSRC11Q Facility Safety Document Manual, DOE-STD-1027-92, and DOE-EM-STD-5502-94. It provides a baseline grouping based on the chemical and radiological hazards associated with the facility. The Determination of the baseline grouping for ETF will aid in establishing the appropriate set of standards for the facility

  15. Simulating demand for innovative radiotherapies: An illustrative model based on carbon ion and proton radiotherapy

    International Nuclear Information System (INIS)

    Pommier, Pascal; Lievens, Yolande; Feschet, Fabien; Borras, Josep M.; Baron, Marie Helene; Shtiliyanova, Anastasiya; Pijls-Johannesma, Madelon

    2010-01-01

    Background and purpose: Innovative therapies are not only characterized by major uncertainties regarding clinical benefit and cost but also the expected recruitment of patients. An original model was developed to simulate patient recruitment to a costly particle therapy by varying layout of the facility and patient referral (one vs. several countries) and by weighting the treated indication by the expected benefit of particle therapy. Material and methods: A multi-step probabilistic spatial model was used to allocate patients to the optimal treatment strategy and facility taking into account the estimated therapeutic gain from the new therapy for each tumour type, the geographical accessibility of the facilities and patient preference. Recruitment was simulated under different assumptions relating to the demand and supply. Results: Extending the recruitment area, reducing treatment capacity, equipping all treatment rooms with a carbon ion gantry and inclusion of proton protocols in carbon ion facilities led to an increased proportion of indications with the highest expected benefit. Assuming the existence of a competing carbon ions facility, lower values of therapeutic gain, and a greater unwillingness of patients to travel for treatment increased the proportion of indications with low expected benefit. Conclusions: Modelling patient recruitment may aid decision-making when planning new and expensive treatments.

  16. The disparity of health facilities in an urban area discourages proposed treatment application in inoperable lung cancer patients

    International Nuclear Information System (INIS)

    Hillas, Georgios; Bakakos, Petros; Trichas, Miltiadis; Vlastos, Fotis

    2010-01-01

    Patients with a newly diagnosed non-small cell lung cancer (NSCLC) stage IIIB are offered chemoradiotherapy, as proposed by the current guidelines. This combination treatment is facilitated by the coexistence of corresponding departments in the same establishment. The geographical disparity of these health facilities influences patients’ willingness to be treated and may influence their survival. This is an observational study that compares the survival of two groups of patients with NSCLC stage IIIB: those treated with chemoradiotherapy versus those treated only with chemotherapy. These two comparable groups were formed exclusively by patients’ and/or their families’ decisions. One hundred fifteen consecutive NSCLC stage IIIB patients were included in the study. All were hospitalized in the biggest Chest Disease Hospital in Athens and were offered sequential chemoradiotherapy. Only 54 patients opted for the proposed treatment, while 61 decided to be treated with chemotherapy only, denying continuing their treatment in another health care unit (radiotherapy). Their survival and related factors were analyzed. Mean overall survival was estimated 10 months (95% confidence interval [CI]: 7.96–12.04). Patients treated with chemoradiotherapy had almost double overall survival compared to those under chemotherapy (P = 0.001): 13.6 months (95% CI: 12.3–14.9) versus 7.5 (95% CI: 6.1–8.9). Patients aged ≤ 65 years (P < 0.001), smokers (P < 0.001), and those without a cancer history (P < 0.001) survived longer. The lack of a radiotherapy department in a hospital providing chemotherapy impedes the application of current guidelines advocating combined radiochemotherapy. When recommended radiotherapy after six chemo cycles, half of the patients are unwilling to be displaced and do not follow the recommendations. This has an impact on patient survival

  17. Treatment planning, optimization, and beam delivery technqiues for intensity modulated proton therapy

    Science.gov (United States)

    Sengbusch, Evan R.

    Physical properties of proton interactions in matter give them a theoretical advantage over photons in radiation therapy for cancer treatment, but they are seldom used relative to photons. The primary barriers to wider acceptance of proton therapy are the technical feasibility, size, and price of proton therapy systems. Several aspects of the proton therapy landscape are investigated, and new techniques for treatment planning, optimization, and beam delivery are presented. The results of these investigations suggest a means by which proton therapy can be delivered more efficiently, effectively, and to a much larger proportion of eligible patients. An analysis of the existing proton therapy market was performed. Personal interviews with over 30 radiation oncology leaders were conducted with regard to the current and future use of proton therapy. In addition, global proton therapy market projections are presented. The results of these investigations serve as motivation and guidance for the subsequent development of treatment system designs and treatment planning, optimization, and beam delivery methods. A major factor impacting the size and cost of proton treatment systems is the maximum energy of the accelerator. Historically, 250 MeV has been the accepted value, but there is minimal quantitative evidence in the literature that supports this standard. A retrospective study of 100 patients is presented that quantifies the maximum proton kinetic energy requirements for cancer treatment, and the impact of those results with regard to treatment system size, cost, and neutron production is discussed. This study is subsequently expanded to include 100 cranial stereotactic radiosurgery (SRS) patients, and the results are discussed in the context of a proposed dedicated proton SRS treatment system. Finally, novel proton therapy optimization and delivery techniques are presented. Algorithms are developed that optimize treatment plans over beam angle, spot size, spot spacing

  18. Routine delivery of artemisinin-based combination treatment at fixed health facilities reduces malaria prevalence in Tanzania: an observational study

    Directory of Open Access Journals (Sweden)

    Khatib Rashid A

    2012-04-01

    Full Text Available Abstract Background Artemisinin-based combination therapy (ACT has been promoted as a means to reduce malaria transmission due to their ability to kill both asexual blood stages of malaria parasites, which sustain infections over long periods and the immature derived sexual stages responsible for infecting mosquitoes and onward transmission. Early studies reported a temporal association between ACT introduction and reduced malaria transmission in a number of ecological settings. However, these reports have come from areas with low to moderate malaria transmission, been confounded by the presence of other interventions or environmental changes that may have reduced malaria transmission, and have not included a comparison group without ACT. This report presents results from the first large-scale observational study to assess the impact of case management with ACT on population-level measures of malaria endemicity in an area with intense transmission where the benefits of effective infection clearance might be compromised by frequent and repeated re-infection. Methods A pre-post observational study with a non-randomized comparison group was conducted at two sites in Tanzania. Both sites used sulphadoxine-pyrimethamine (SP monotherapy as a first-line anti-malarial from mid-2001 through 2002. In 2003, the ACT, artesunate (AS co-administered with SP (AS + SP, was introduced in all fixed health facilities in the intervention site, including both public and registered non-governmental facilities. Population-level prevalence of Plasmodium falciparum asexual parasitaemia and gametocytaemia were assessed using light microscopy from samples collected during representative household surveys in 2001, 2002, 2004, 2005 and 2006. Findings Among 37,309 observations included in the analysis, annual asexual parasitaemia prevalence in persons of all ages ranged from 11% to 28% and gametocytaemia prevalence ranged from Interpretation The introduction of ACT at

  19. Quantitative analysis of treatment process time and throughput capacity for spot scanning proton therapy

    International Nuclear Information System (INIS)

    Suzuki, Kazumichi; Sahoo, Narayan; Zhang, Xiaodong; Poenisch, Falk; Mackin, Dennis S.; Liu, Amy Y.; Wu, Richard; Zhu, X. Ronald; Gillin, Michael T.; Palmer, Matthew B.; Frank, Steven J.; Lee, Andrew K.

    2016-01-01

    Purpose: To determine the patient throughput and the overall efficiency of the spot scanning system by analyzing treatment time, equipment availability, and maximum daily capacity for the current spot scanning port at Proton Therapy Center Houston and to assess the daily throughput capacity for a hypothetical spot scanning proton therapy center. Methods: At their proton therapy center, the authors have been recording in an electronic medical record system all treatment data, including disease site, number of fields, number of fractions, delivered dose, energy, range, number of spots, and number of layers for every treatment field. The authors analyzed delivery system downtimes that had been recorded for every equipment failure and associated incidents. These data were used to evaluate the patient census, patient distribution as a function of the number of fields and total target volume, and equipment clinical availability. The duration of each treatment session from patient walk-in to patient walk-out of the spot scanning treatment room was measured for 64 patients with head and neck, central nervous system, thoracic, and genitourinary cancers. The authors retrieved data for total target volume and the numbers of layers and spots for all fields from treatment plans for a total of 271 patients (including the above 64 patients). A sensitivity analysis of daily throughput capacity was performed by varying seven parameters in a throughput capacity model. Results: The mean monthly equipment clinical availability for the spot scanning port in April 2012–March 2015 was 98.5%. Approximately 1500 patients had received spot scanning proton therapy as of March 2015. The major disease sites treated in September 2012–August 2014 were the genitourinary system (34%), head and neck (30%), central nervous system (21%), and thorax (14%), with other sites accounting for the remaining 1%. Spot scanning beam delivery time increased with total target volume and accounted for

  20. The Design of HVAC System in the Conventional Facility of Proton Accelerator Research Center

    International Nuclear Information System (INIS)

    Jeon, G. P.; Kim, J. Y.; Choi, B. H.

    2007-01-01

    The HVAC systems for conventional facility of Proton Accelerator Research Center consist of 3 systems : accelerator building HVAC system, beam application building HVAC system and miscellaneous HVAC system. We designed accelerator building HVAC system and beam application research area HVAC system in the conventional facilities of Proton Accelerator research center. Accelerator building HVAC system is divided into accelerator tunnel area, klystron area, klystron gallery area, accelerator assembly area. Also, Beam application research area HVAC system is divided into those of beam experimental hall, accelerator control area, beam application research area and Ion beam application building. In this paper, We described system design requirements and explained system configuration for each systems. We presented operation scenario of HVAC system in the Conventional Facility of Proton Accelerator Research Center

  1. Grout treatment facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1992-07-01

    The Grout Treatment Facility (GTF) will provide permanent disposal for approximately 43 Mgal of low-level radioactive liquid waste currently being stored in underground tanks on the Hanford Site. The first step in permanent disposal is accomplished by solidifying the liquid waste with cementitious dry materials. The resulting grout is cast within underground vaults. This report on the GTF contains information on the following: Geologic data, hydrologic data, groundwater monitoring program, information, detection monitoring program, groundwater characterization drawings, building emergency plan--grout treatment facility, response action plan for grout treatment facility, Hanford Facility contingency plan, training course descriptions, overview of the Hanford Facility Grout Performance, assessment, bland use and zoning map, waste minimization plan, cover design engineering report, and clay liners (ADMIXTURES) in semiarid environments

  2. Changes in CR-39 proton sensitivity due to prolonged exposure to high vacuums relevant to the National Ignition Facility and OMEGA.

    Science.gov (United States)

    Manuel, M J-E; Rosenberg, M J; Sinenian, N; Rinderknecht, H; Zylstra, A B; Séguin, F H; Frenje, J; Li, C K; Petrasso, R D

    2011-09-01

    When used at facilities like OMEGA and the NIF, CR-39 is exposed to high vacuum environments before and after irradiation by charged particles and neutrons. Using an electrostatic linear accelerator at MIT, studies have been conducted to investigate the effects of high vacuum exposure on the sensitivity of CR-39 to fusion protons in the ~1-9 MeV energy range. High vacuum conditions, of order 10(-5) Torr, experienced by CR-39 samples at these facilities were emulated. It is shown that vacuum exposure times longer than ~16 h before proton irradiation result in a decrease in proton sensitivity, whereas no effect was observed for up to 67 h of vacuum exposure after proton irradiation. CR-39 sensitivity curves are presented for samples with prolonged exposure to high vacuum before and after proton irradiation. © 2011 American Institute of Physics

  3. Wireless local network architecture for Naval medical treatment facilities

    OpenAIRE

    Deason, Russell C.

    2004-01-01

    Approved for public release; distribution is unlimited In today's Navy Medicine, an approach towards wireless networks is coming into view. The idea of developing and deploying workable Wireless Local Area Networks (WLAN) throughout Naval hospitals is but just a few years down the road. Currently Naval Medical Treatment Facilities (MTF) are using wired Local Area Networks (LANs) throughout the infrastructure of each facility. Civilian hospitals and other medical treatment facilities have b...

  4. Facility for the measurement of proton polarization in nuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Slobodrian, R J; Irshad, M; Labrie, R; Rioux, C; Roy, R; Pigeon, R [Laval Univ., Quebec City (Canada). Lab. de Physique Nucleaire

    1979-02-15

    A polarimetry facility based on high resolution and high efficiency silicon polarimeters with on-line particle identification is described. It has proven its capability to measure polarization in (/sup 3/He, p(pol)) reaction with cross section levels of 40 ..mu..b/sr.

  5. Unbunched beam electron-proton instability in the PSR and advanced hadron facilities

    International Nuclear Information System (INIS)

    Wang, Tai-Sen; Pisent, A.; Neuffer, D.V.

    1989-01-01

    We studied the possibility of the occurrence of transverse instability induced by trapped electrons in unbunched beams in the Proton Storage Ring and the proposed Advance Hadron Facility (AHF) at Los Alamos, as well as in the proposed Kaon Factory at TRIUMF. We found that the e-p instability may be possible for unbunched beams in the PSR but is unlikely to occur in the advanced hadron facilities. 8 refs., 4 figs

  6. 4D Proton treatment planning strategy for mobile lung tumors

    International Nuclear Information System (INIS)

    Kang Yixiu; Zhang Xiaodong; Chang, Joe Y.; Wang He; Wei Xiong; Liao Zhongxing; Komaki, Ritsuko; Cox, James D.; Balter, Peter A.; Liu, Helen; Zhu, X. Ronald; Mohan, Radhe; Dong Lei

    2007-01-01

    Purpose: To investigate strategies for designing compensator-based 3D proton treatment plans for mobile lung tumors using four-dimensional computed tomography (4DCT) images. Methods and Materials: Four-dimensional CT sets for 10 lung cancer patients were used in this study. The internal gross tumor volume (IGTV) was obtained by combining the tumor volumes at different phases of the respiratory cycle. For each patient, we evaluated four planning strategies based on the following dose calculations: (1) the average (AVE) CT; (2) the free-breathing (FB) CT; (3) the maximum intensity projection (MIP) CT; and (4) the AVE CT in which the CT voxel values inside the IGTV were replaced by a constant density (AVE R IGTV). For each strategy, the resulting cumulative dose distribution in a respiratory cycle was determined using a deformable image registration method. Results: There were dosimetric differences between the apparent dose distribution, calculated on a single CT dataset, and the motion-corrected 4D dose distribution, calculated by combining dose distributions delivered to each phase of the 4DCT. The AVE R IGTV plan using a 1-cm smearing parameter had the best overall target coverage and critical structure sparing. The MIP plan approach resulted in an unnecessarily large treatment volume. The AVE and FB plans using 1-cm smearing did not provide adequate 4D target coverage in all patients. By using a larger smearing value, adequate 4D target coverage could be achieved; however, critical organ doses were increased. Conclusion: The AVE R IGTV approach is an effective strategy for designing proton treatment plans for mobile lung tumors

  7. Observation of gaseous nitric acid production at a high-energy proton accelerator facility

    CERN Document Server

    Kanda, Y; Nakajima, H

    2005-01-01

    High-energy protons and neutrons produce a variety of radionuclides as well as noxious and oxidative gases, such as ozone and nitric acid, in the air mainly through the nuclear spallation of atmospheric elements. Samples were collected from the surfaces of magnets, walls, and floors in the neutrino beamline tunnel and the target station of the KEK 12-GeV proton synchrotron facility by wiping surfaces with filter paper. Considerably good correlations were found between the amounts of nitrate and tritium and between those of nitrate and /sup 7/Be. This finding gives evidence that at high-energy proton facilities, nitric acid is produced in the radiolysis of air in beam- loss regions. Also, the nitric acid on the surfaces was found to be desorbed and tended to be more uniform throughout the tunnel due to air circulation. The magnitude of diminishing from the surfaces was in the order of tritium>nitrate>/sup 7/Be1).

  8. Investigating proton emitters at the limits of stability with radioactive beams from the Oak Ridge facility

    Energy Technology Data Exchange (ETDEWEB)

    Toth, K.S. [Oak Ridge National Lab., TN (United States); Batchelder, J.C.; Zganjar, E.F. [Louisiana State Univ., Baton Rouge, LA (United States); Bingham, C.R.; Wauters, J. [Tennessee Univ., Knoxville, TN (United States); Davinson, T.; MacKenzie, J.A.; Woods, P.J. [Edinburgh Univ. (United Kingdom)

    1996-10-01

    By using beams from the Holifield Radioactive Ion Beam Facility at ORNL, it should be possible to identify many new ground-state proton emitters in the mass region from Sn to Pb. In these investigations nuclei produced in fusion-evaporation reactions will be separated from incident ions and dispersed in mass/charge with a recoil mass separator and then implanted into a double-sided Si strip detector for study of proton (and {alpha}-particle) radioactivity. This paper summarizes data presently extant on proton emitters and then focuses on tests and initial experiments that will be carried out with stable beams and with radioactive ions as they are developed at the Oak Ridge facility.

  9. Quantitative analysis of beam delivery parameters and treatment process time for proton beam therapy

    International Nuclear Information System (INIS)

    Suzuki, Kazumichi; Gillin, Michael T.; Sahoo, Narayan; Zhu, X. Ronald; Lee, Andrew K.; Lippy, Denise

    2011-01-01

    Purpose: To evaluate patient census, equipment clinical availability, maximum daily treatment capacity, use factor for major beam delivery parameters, and treatment process time for actual treatments delivered by proton therapy systems. Methods: The authors have been recording all beam delivery parameters, including delivered dose, energy, range, spread-out Bragg peak widths, gantry angles, and couch angles for every treatment field in an electronic medical record system. We analyzed delivery system downtimes that had been recorded for every equipment failure and associated incidents. These data were used to evaluate the use factor of beam delivery parameters, the size of the patient census, and the equipment clinical availability of the facility. The duration of each treatment session from patient walk-in and to patient walk-out of the treatment room was measured for 82 patients with cancers at various sites. Results: The yearly average equipment clinical availability in the last 3 yrs (June 2007-August 2010) was 97%, which exceeded the target of 95%. Approximately 2200 patients had been treated as of August 2010. The major disease sites were genitourinary (49%), thoracic (25%), central nervous system (22%), and gastrointestinal (2%). Beams have been delivered in approximately 8300 treatment fields. The use factor for six beam delivery parameters was also evaluated. Analysis of the treatment process times indicated that approximately 80% of this time was spent for patient and equipment setup. The other 20% was spent waiting for beam delivery and beam on. The total treatment process time can be expressed by a quadratic polynomial of the number of fields per session. The maximum daily treatment capacity of our facility using the current treatment processes was estimated to be 133 ± 35 patients. Conclusions: This analysis shows that the facility has operated at a high performance level and has treated a large number of patients with a variety of diseases. The use

  10. An analysis of beam parameters on proton-acoustic waves through an analytic approach.

    Science.gov (United States)

    Kipergil, Esra Aytac; Erkol, Hakan; Kaya, Serhat; Gulsen, Gultekin; Unlu, Mehmet Burcin

    2017-06-21

    It has been reported that acoustic waves are generated when a high-energy pulsed proton beam is deposited in a small volume within tissue. One possible application of proton-induced acoustics is to get real-time feedback for intra-treatment adjustments by monitoring such acoustic waves. A high spatial resolution in ultrasound imaging may reduce proton range uncertainty. Thus, it is crucial to understand the dependence of the acoustic waves on the proton beam characteristics. In this manuscript, firstly, an analytic solution for the proton-induced acoustic wave is presented to reveal the dependence of the signal on the beam parameters; then it is combined with an analytic approximation of the Bragg curve. The influence of the beam energy, pulse duration and beam diameter variation on the acoustic waveform are investigated. Further analysis is performed regarding the Fourier decomposition of the proton-acoustic signals. Our results show that the smaller spill time of the proton beam upsurges the amplitude of the acoustic wave for a constant number of protons, which is hence beneficial for dose monitoring. The increase in the energy of each individual proton in the beam leads to the spatial broadening of the Bragg curve, which also yields acoustic waves of greater amplitude. The pulse duration and the beam width of the proton beam do not affect the central frequency of the acoustic wave, but they change the amplitude of the spectral components.

  11. Grout treatment facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1988-01-01

    This section briefly describes the Hanford Site, provides a general description of the site operations and administration, provides an overview of the contents of this Grout Treatment Facility (GTF) Permit Application, and gives a list of acronyms and abbreviations used in the document. The decision was made to use the checklist as a locator reference instead of using the checklist section numbers as paragraph section numbers because several different types of waste management units, some of which are not addressed in the checklists, are part of the GTF. The GTF is a waste management unit within the Hanford Site facility. In May 1988, permit application was filed that identified the GTF as an existing facility. The GTF mixes dry cementitious solids with liquid mixed wastes (containing both dangerous and radioactive constituents) produced by Hanford Site operations. In addition to the design and operating features of the GTF that are intended to meet the requirements of dangerous waste regulations, many additional design and operating features are necessary to comply with radioactive waste management practices. The GTF design features and practices are intended to keep operational exposure to radionuclides and dangerous substances ''as low as reasonably achievable'' (ALARA) and to provide a disposal system that protects the environment for at least 10,000 yr. In some instances, ALARA practices present difficulties when complying with requirements of dangerous waste regulations

  12. Grout treatment facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1988-01-01

    This section briefly describes the Hanford Site, provides a general description of the site operations and administration, provides an overview of the contents of this Grout Treatment Facility (GTF) Permit Application, and gives a list of acronyms and abbreviations used in the document. The decision was made to use the checklist as a locator reference instead of using the checklist section numbers as paragraph section numbers because several different types of waste management units, some of which are not addressed in the checklists, are part of the GTF. The GTF is a waste management unit within the Hanford Site facility. In May 1988, a permit application was filed that identified the GTF as an existing facility. The GTF mixes dry cementitious solids with liquid mixed wastes (containing both dangerous and radioactive constituents) produced by Hanford Site operations. In addition to the design and operating features of the GTF that are intended to meet the requirements of dangerous waste regulations, many additional design and operating features are necessary to comply with radioactive waste management practices. The GTF design features and practices are intended to keep operational exposure to radionuclides and dangerous substances ''as low as reasonably achievable'' (ALARA) and to provide a disposal system that protects the environment for at least 10,000 yr. In some instances, ALARA practices present difficulties when complying with requirements of dangerous waste regulations. This volume contains 2 appendices covering engineering drawings and operating procedures

  13. Grout treatment facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1988-01-01

    This section briefly describes the Hanford Site, provides a general description of the site operations and administration, provides an overview of the contents of this Grout Treatment Facility (GTF) Permit Application, and gives a list of acronyms and abbreviations used in the document. The decision was made to use the checklist as a locator reference instead of using the checklist section numbers as paragraph section numbers because several different types of waste management units, some of which are not addressed in the checklists, are part of the GTF. The GTF is a waste management unit within the Hanford Site facility. In May 1988, a permit application was filed that identified the GTF as an existing facility. The GTF mixes dry cementitious solids with liquid mixed wastes (containing both dangerous and radioactive constitutents) produced by Hanford Site operations. In addition to the design and operating features of the GTF that are intended to meet the requirements of dangerous waste regulations, many additional design and operating features are necessary to comply with radioactive waste management practices. The GTF design features and practices are intended to keep operational exposure to radionuclides and dangerous substances ''as low as reasonably achievable'' (ALARA) and to provide a disposal system that protects the environment for at least 10,000 yr. In some instances, ALARA practices present difficulties when complying with requirements of dangerous waste regulations. This volume contains 2 Appendices covering engineering drawings and operating procedures

  14. Grout Treatment Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1988-01-01

    This section briefly describes the Hanford Site, provides a general description of the site operations and administration, provides an overview of the contents of this Grout Treatment Facility (GTF) Permit Application, and gives a list of acronyms and abbreviations used in the document. The decision was made to use the checklist as a locator reference instead of using the checklist section numbers as paragraph section numbers because several different types of waste management units, some of which are not addressed in the checklists, are part of the GTF. The GTF is a waste management unit within the Hanford Site facility. In May 1988, a permit application was filed that identified the GTF as an existing facility. The GTF mixes dry cementitious solids with liquid wastes (containing both dangerous and radioactive constituents) produced by Hanford Site operations. In addition to the design and operating features of the GTF that are intended to meet the requirements of dangerous waste regulations, many additional design and operating features are necessary to comply with radioactive waste management practices. The GTF design features and practices are intended to keep operational exposure to radionuclides and dangerous substances ''as low as reasonably achievable'' (ALARA) and to provide a disposal system that protects the environment for at least 10,000 yr. In some instances, ALARA practices present difficulties when complying with requirements of dangerous waste regulations. This volume contains 14 Appendices. Topics include Engineering Drawings, Maps, Roads, Toxicity Testing, and Pilot-Scale Testing

  15. Charge collection in an external proton beam

    International Nuclear Information System (INIS)

    Wookey, C.W.; Somswasdi, B.; Rouse, J.L.

    1982-01-01

    Results from the measurement of the stability of charge collected from the target and exit foil, or as alternatives, the γ-ray or backscattered proton counts from the exit foil and the Ar X-ray counts from the air path in an external proton beam are presented. These results show that comparative analysis of material mounted in air is reliable, using either the collected charge or the γ-ray counts as the normalizing factor, if there are no earthed objects in close geometry. The backscattered proton counts can also be used, but not the Ar X-ray counts, unless the current is stabilized. The electrical or thermal conductivity of the target and the target to exit foil separation do not affect the proportionality of the collected charge and the γ-ray counts to the charge incident on the target

  16. High-intensity, subkolovolt x-ray calibration facility using a Cockroft--Walton proton accelerator

    International Nuclear Information System (INIS)

    Kuckuck, R.W.; Gaines, J.L.; Ernst, R.D.

    1976-01-01

    Considerable need has arisen for the development of well-calibrated x-ray detectors capable of detecting photons with energies between 100 and 1000 electron-volts. This energy region is of significant interest since the x-ray emission from high-temperature (kT approximately 1.0 keV), laser-produced plasmas is predominantly in this range. A high-intensity, subkilovolt x-ray calibration source was developed which utilizes proton-induced inner-shell atomic fluorescence of low-Z elements. The high photon yields and low bremsstrahlung background associated with this phenomenon are ideally suited to provide an intense, nearly monoenergetic x-ray calibration source for detector development applications. The proton accelerator is a 3 mA, 300 kV Cockroft-Walton using a conventional rf hydrogen ion source. Seven remotely-selectable liquid-cooled targets capable of heat dissipation of 5 kW/cm 2 are used to provide characteristic x-rays with energies between 100 and 1000 eV. Source strengths are of the order of 10 13 to 10 14 photons/sec. A description of the facility is presented. Typical x-ray spectra (B-K, C-K, Ti-L, Fe-L and Cu-L) and flux values will be shown. Problems such as spectral contamination due to carbon buildup on the target and to backscattered particles are discussed

  17. Membrane technology water treatment facility

    International Nuclear Information System (INIS)

    Gruzdev, E. N.; Starikov, E.N.

    2009-01-01

    The suggested technical solution, in contrast with the traditional treatment methods using pressure filtration and sorption cleaning, can be applied with minimal used for equipment, stable production and the use of reagents, prevention of the formation of waste water with high mineral content and avoid the need for neutralization of the main stream of waste water

  18. A proton-recoil neutron spectrometer for time-dependent ion temperatures on the National Ignition Facility

    International Nuclear Information System (INIS)

    Murphy, T.J.

    1995-01-01

    Ion temperatures from inertial confinement fusion targets are usually determined by measuring the Doppler broadening of the neutron spectrum using the time-of-flight method. Measurement systems are generally designed so that the contribution of the duration of neutron production (∼100 ps) to the width of the neutron signal is negligible. This precludes the possibility of time-dependent ion temperature. If, however, one could measure the neutron energy and arrival time at a detector independently, then time-dependent neutron spectra could be obtained, and ion temperature information deduced. A concept utilizing a proton-recoil neutron spectrometer has been developed in which recoil protons from a small plastic foil are measured. From the energy, arrival time, and recoil angle of the recoil proton, the birth time and energy of the incident neutron can be deduced. The sensitivity of the system is low, but the higher anticipated neutron yields from the proposed National Ignition Facility may make the technique feasible. Large scintillator arrays currently in use on the Nova facility for neutron spectral measurements consist of ∼1,000 channels and detect between 50 and 500 counts for typical time-integrated data. Time-dependent results would then require about an order of magnitude larger system. Key issues for making this system feasible will be keeping the cost per channel low while allowing adequately time (∼ 50 ps), energy (20 keV), and angular resolution (2 mrad) for each of the proton detectors

  19. The precision of proton range calculations in proton radiotherapy treatment planning: experimental verification of the relation between CT-HU and proton stopping power

    International Nuclear Information System (INIS)

    Schaffner, B.; Pedroni, E.

    1998-01-01

    The precision in proton radiotherapy treatment planning depends on the accuracy of the information used to calculate the stopping power properties of the tissues in the patient's body. This information is obtained from computed tomography (CT) images using a calibration curve to convert CT Hounsfield units into relative proton stopping power values. The validity of a stoichiometric method to create the calibration curve has been verified by measuring pairs of Hounsfield units and stopping power values for animal tissue samples. It was found that the agreement between measurement and calibration curve is better than 1% if beam hardening effects in the acquisition of the CT images can be neglected. The influence of beam hardening effects on the quantitative reading of the CT measurements is discussed and an estimation for the overall range precision of proton beams is given. It is expected that the range of protons in the human body can be controlled to better than ±1.1% of the water equivalent range in soft tissue and ±1.8% in bone, which translates into a range precision of about 1-3 mm in typical treatment situations. (author)

  20. findings from audits of specialist treatment facilities

    African Journals Online (AJOL)

    Adele

    population groups in terms of the allocation of resources to, and the quality of ... facilities has decreased in real terms, limiting their treatment capacity and their capacity ... fordable, and accessible substance abuse treatment services1, ... The terms “white, black, asian/indian, and coloured” refer to demographic markers and ...

  1. Hanford facilities tracer study report (315 Water Treatment Facility)

    International Nuclear Information System (INIS)

    Ambalam, T.

    1995-01-01

    This report presents the results and findings of a tracer study to determine contact time for the disinfection process of 315 Water Treatment Facility that supplies sanitary water for the 300 Area. The study utilized fluoride as the tracer and contact times were determined for two flow rates. Interpolation of data and short circuiting effects are also discussed. The 315 Water Treatment Facility supplies sanitary water for the 300 Area to various process and domestic users. The Surface Water Treatment Rule (SWTR), outlined in the 1986 Safe Drinking Water Act Amendments enacted by the EPA in 1989 and regulated by the Washington State Department of Health (DOH) in Section 246-290-600 of the Washington Administrative Code (WAC), stipulates filtration and disinfection requirements for public water systems under the direct influence of surface water. The SWTR disinfection guidelines require that each treatment system achieves predetermined inactivation ratios. The inactivation by disinfection is approximated with a measure called CxT, where C is the disinfectant residual concentration and T is the effective contact time of the water with the disinfectant. The CxT calculations for the Hanford water treatment plants were derived from the total volume of the contact basin(s). In the absence of empirical data to support CxT calculations, the DOH determined that the CxT values used in the monthly reports for the water treatment plants on the Hanford site were invalid and required the performance of a tracer study at each plant. In response to that determination, a tracer study will be performed to determine the actual contact times of the facilities for the CxT calculations

  2. The present status of medical application of particle accelerator. Started construction of a new medically dedicated proton accelerator facility in Tsukuba

    International Nuclear Information System (INIS)

    Sakae, Takeji; Maruhashi, Akira

    1999-01-01

    A new facility of PMRC starts the construction in the neighborhood of Tsukuba university hospital, in order to establish technical skill for practical use in the cancer treatment and to grope for new skill. The facility has a linac injection system, a compact synchrotron, two rotating gantry rooms and two fixed horizontal beam lines. The outline of the design arranged for the facility is reviewed. As one of the important technique for the treatment, investigation into target adjusting accuracy in respiration-gated proton irradiation is presented. (author)

  3. Ambient dose equivalent measurements in secondary radiation fields at proton therapy facility CCB IFJ PAN in Krakow using recombination chambers

    Directory of Open Access Journals (Sweden)

    Jakubowska Edyta A.

    2016-03-01

    Full Text Available This work presents recombination methods used for secondary radiation measurements at the Facility for Proton Radiotherapy of Eye Cancer at the Institute for Nuclear Physics, IFJ, in Krakow (Poland. The measurements of H*(10 were performed, with REM-2 tissue equivalent chamber in two halls of cyclotrons AIC-144 and Proteus C-235 and in the corridors close to treatment rooms. The measurements were completed by determination of gamma radiation component, using a hydrogen-free recombination chamber. The results were compared with the measurements using rem meter types FHT 762 (WENDI-II and NM2 FHT 192 gamma probe and with stationary dosimetric system.

  4. Evolution of a beam dynamics model for the transport line in a proton therapy facility

    Science.gov (United States)

    Rizzoglio, V.; Adelmann, A.; Baumgarten, C.; Frey, M.; Gerbershagen, A.; Meer, D.; Schippers, J. M.

    2017-12-01

    During the conceptual design of an accelerator or beamline, first-order beam dynamics models are essential for studying beam properties. However, they can only produce approximate results. During commissioning, these approximate results are compared to measurements, which will rarely coincide if the model does not include the relevant physics. It is therefore essential that this linear model is extended to include higher-order effects. In this paper, the effects of particle-matter interaction have been included in the model of the transport lines in the proton therapy facility at the Paul Scherrer Institut (PSI) in Switzerland. The first-order models of these beamlines provide an approximated estimation of beam size, energy loss and transmission. To improve the performance of the facility, a more precise model was required and has been developed with opal (Object Oriented Parallel Accelerator Library), a multiparticle open source beam dynamics code. In opal, the Monte Carlo simulations of Coulomb scattering and energy loss are performed seamless with the particle tracking. Beside the linear optics, the influence of the passive elements (e.g., degrader, collimators, scattering foils, and air gaps) on the beam emittance and energy spread can be analyzed in the new model. This allows for a significantly improved precision in the prediction of beam transmission and beam properties. The accuracy of the opal model has been confirmed by numerous measurements.

  5. MO-D-BRB-02: Pediatric Treatment Planning II: Applications of Proton Beams for Pediatric Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hua, C. [St. Jude Childrens Research Hospital (United States)

    2015-06-15

    , neuroblastoma, requiring focal abdominal irradiation to avoid kidney, liver, and vertebral body damage, retinoblastoma, requiring treatment to an eye while minimizing dose to surrounding tissues, and a variety of other tumors which occur anywhere in the body. Case studies will be presented showing the treatment technique and resulting dosimetry, highlighting the objectives for tumor coverage and organ-at-risk sparing. Practical issues that have to be faced when treating children will also be discussed such as daily sedation and immobilization. Late effects based on the current understanding of dose-volume response in normal tissues will be discussed. In the second presentation, specific focus will be on pediatric proton therapy. We will review literature publications on dosimetric comparison of proton versus photon plans, common pediatric tumors treated with protons, and available clinical outcomes. We will describe simulation technique, treatment planning, image guidance for setup verification, and proton beam delivery unique to pediatric and adolescent patients. Finally, we will discuss desired improvements, outlook, and opportunities for medical physicists in pediatric proton therapy. Learning Objectives: Improve understanding about childhood cancer and treatment with radiation Understand treatment planning and delivery issues and associated late effects specific to children Become aware of specific treatment methods for the most challenging pediatric cancers Know the current status, techniques, and desired improvements for pediatric proton therapy.

  6. Ballast Water Treatment Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides functionality for the full-scale testing and controlled simulation of ship ballasting operations for assessment of aquatic nuisance species (ANS)...

  7. Study of measurement method of tritium induced in concrete of high-energy proton accelerator facilities

    International Nuclear Information System (INIS)

    Ohtsuka, N.; Ishihama, S.; Kunifuda, T.; Hayasaka, N.; Miura, T.

    2001-01-01

    Various long-loved radionuclides, 3 H, 7 Be, 22 Na, 51 Cr, 54 Mn, 56 Co, 57 Co, 60 Co, 134 Cs, 152 Eu and 154 Eu, have been produced in the shielding concrete of high energy proton accelerator facility through both nuclear spallation reactions and thermal neutron capture reactions of concrete elements, during machine operation. Tritium is the most important nuclide from the radiation protection. There were, however, few measurements of tritium concentration induced in the shielding concrete. In this study, the conditions of measurement method of tritium concentration induced in shielding concrete have been investigated using the activated shielding concrete of the 12 GeV proton beam-line tunnel at KEK and the standard rock (JG-1) irradiated of thermal neutron at the reactor. And the depth profiles of tritium induced in the shielding concrete of slow extracted proton beam line at KEK were determined using this method. (author)

  8. The SPS beam parameters, the operational cycle, and proton sharing with the SHiP facility

    CERN Document Server

    Arduini, Gianluigi; Gatignon, Lau; Cornelis, Karel

    2015-01-01

    The SHiP experiment aims at acquiring a total of 4×1019 protons on target per year. Based on demonstrated SPS performance for CNGS, the expected proton sharing between the TCC2 targets and SHiP is estimated taking into account the constraints in the super-cycle composition. We review the SPS beam parameters, the operational cycles taking into account the concurrent operation of the SPS as LHC injector and for the TCC2 experiments and the limitations on the maximum possible power dissipation and the expected sharing of the protons on target of the SHiP facility with the TCC2 targets. As a typical example this aim could be achieved while maintaining a duty cycle for the other fixed target experiments of about 18%.

  9. Minimizing treatment planning errors in proton therapy using failure mode and effects analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yuanshui, E-mail: yuanshui.zheng@okc.procure.com [ProCure Proton Therapy Center, 5901 W Memorial Road, Oklahoma City, Oklahoma 73142 and Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078-3072 (United States); Johnson, Randall; Larson, Gary [ProCure Proton Therapy Center, 5901 W Memorial Road, Oklahoma City, Oklahoma 73142 (United States)

    2016-06-15

    Purpose: Failure mode and effects analysis (FMEA) is a widely used tool to evaluate safety or reliability in conventional photon radiation therapy. However, reports about FMEA application in proton therapy are scarce. The purpose of this study is to apply FMEA in safety improvement of proton treatment planning at their center. Methods: The authors performed an FMEA analysis of their proton therapy treatment planning process using uniform scanning proton beams. The authors identified possible failure modes in various planning processes, including image fusion, contouring, beam arrangement, dose calculation, plan export, documents, billing, and so on. For each error, the authors estimated the frequency of occurrence, the likelihood of being undetected, and the severity of the error if it went undetected and calculated the risk priority number (RPN). The FMEA results were used to design their quality management program. In addition, the authors created a database to track the identified dosimetric errors. Periodically, the authors reevaluated the risk of errors by reviewing the internal error database and improved their quality assurance program as needed. Results: In total, the authors identified over 36 possible treatment planning related failure modes and estimated the associated occurrence, detectability, and severity to calculate the overall risk priority number. Based on the FMEA, the authors implemented various safety improvement procedures into their practice, such as education, peer review, and automatic check tools. The ongoing error tracking database provided realistic data on the frequency of occurrence with which to reevaluate the RPNs for various failure modes. Conclusions: The FMEA technique provides a systematic method for identifying and evaluating potential errors in proton treatment planning before they result in an error in patient dose delivery. The application of FMEA framework and the implementation of an ongoing error tracking system at their

  10. Minimizing treatment planning errors in proton therapy using failure mode and effects analysis

    International Nuclear Information System (INIS)

    Zheng, Yuanshui; Johnson, Randall; Larson, Gary

    2016-01-01

    Purpose: Failure mode and effects analysis (FMEA) is a widely used tool to evaluate safety or reliability in conventional photon radiation therapy. However, reports about FMEA application in proton therapy are scarce. The purpose of this study is to apply FMEA in safety improvement of proton treatment planning at their center. Methods: The authors performed an FMEA analysis of their proton therapy treatment planning process using uniform scanning proton beams. The authors identified possible failure modes in various planning processes, including image fusion, contouring, beam arrangement, dose calculation, plan export, documents, billing, and so on. For each error, the authors estimated the frequency of occurrence, the likelihood of being undetected, and the severity of the error if it went undetected and calculated the risk priority number (RPN). The FMEA results were used to design their quality management program. In addition, the authors created a database to track the identified dosimetric errors. Periodically, the authors reevaluated the risk of errors by reviewing the internal error database and improved their quality assurance program as needed. Results: In total, the authors identified over 36 possible treatment planning related failure modes and estimated the associated occurrence, detectability, and severity to calculate the overall risk priority number. Based on the FMEA, the authors implemented various safety improvement procedures into their practice, such as education, peer review, and automatic check tools. The ongoing error tracking database provided realistic data on the frequency of occurrence with which to reevaluate the RPNs for various failure modes. Conclusions: The FMEA technique provides a systematic method for identifying and evaluating potential errors in proton treatment planning before they result in an error in patient dose delivery. The application of FMEA framework and the implementation of an ongoing error tracking system at their

  11. Proton therapy in Australia

    International Nuclear Information System (INIS)

    Jackson, M.

    2000-01-01

    Full text: Proton therapy has been in use since 1954 and over 25,000 patients have been treated worldwide. Until recently most patients were treated at physics research facilities but with the development of more compact and reliable accelerators it is now possible to realistically plan for proton therapy in an Australian hospital. The Australian National Proton Project has been formed to look at the feasibility of a facility which would be primarily for patient treatment but would also be suitable for research and commercial applications. A detailed report will be produced by the end of the year. The initial clinical experience was mainly with small tumours and other lesions close to critical organs. Large numbers of eye tumours have also been treated. Protons have a well-defined role in these situations and are now being used in the treatment of more common cancers. With the development of hospital-based facilities, over 2,500 patients with prostate cancer have been treated using a simple technique which gives results at least as good as radical surgery, external beam radiotherapy or brachytherapy. Importantly, the incidence of severe complications is very low. There are encouraging results in many disease sites including lung, liver, soft tissue sarcomas and oesophagus. As proton therapy becomes more widely available, randomised trials comparing it with conventional radiotherapy or Intensity Modulated Radiation Therapy (IMRT) will be possible. In most situations the use of protons will enable a higher dose to be given safely but in situations where local control rates are already satisfactory, protons are expected to produce less complications than conventional treatment. The initial costs of a proton facility are high but the recurrent costs are similar to other forms of high technology radiotherapy. . Simple treatment techniques with only a few fields are usually possible and proton therapy avoids the high integral doses associated with IMRT. This reduction in

  12. Real time data acquisition system for the High Current Test Facility proton accelerator

    International Nuclear Information System (INIS)

    Langlais, C.E.; Erickson, P.D.; Caissie, L.P.

    1975-01-01

    A real time data acquisition system was developed to monitor and control the High Current Test Facility Proton Accelerator. It is a PDP-8/E computer system with virtual memory capability that is fully interrupt driven and operates under a real-time, multi-tasking executive. The application package includes mode selection to automatically modify programs and optimize operation under varying conditions. (U.S.)

  13. DWTF [decontamination and waste treatment facilities] assessment

    International Nuclear Information System (INIS)

    Maimoni, A.

    1986-01-01

    The purpose of this study has been to evaluate the adequacy of present and proposed decontamination and waste treatment facilities (DWTF) at LLNL, to determine the cost effectiveness for proposed improvements, and possible alternatives for accomplishing these improvements. To the extent possible, we have also looked at some of the proposed environmental compliance and cleanup (ECC) projects

  14. Accelerator technical design report for high-intensity proton accelerator facility project, J-PARC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-01

    This report presents the detail of the technical design of the accelerators for the High-Intensity Proton Accelerator Facility Project, J-PARC. The accelerator complex comprises a 400-MeV room-temperature linac (600-MeV superconducting linac), 3-GeV rapid-cycling synchrotron (RCS), and a 50-GeV synchrotron (MR). The 400-MeV beam is injected to the RCS, being accelerated to 3 GEV. The 1-MW beam thus produced is guided to the Materials Life Science Experimental Facility, with both the pulsed spallation neutron source and muon source. A part of the beam is transported to the MR, which provides the 0.75-MW beam to either the Nuclear and Fundamental Particle Experimental Facility or the Neutrino Production Target. On the other hand, the beam accelerated to 600 MeV by the superconducting linac is used for the Nuclear Waster Transmutation Experiment. In this way, this facility is unique, being multipurpose one, including many new inventions and Research and Development Results. This report is based upon the accomplishments made by the Accelerator Group and others of the Project Team, which is organized on the basis of the Agreement between JAERI and KEK on the Construction and Research and Development of the High-Intensity Proton Accelerator Facility. (author)

  15. Radiation protection of the operation of accelerator facilities. On high energy proton and electron accelerators

    International Nuclear Information System (INIS)

    Kondo, Kenjiro

    1997-01-01

    Problems in the radiation protection raised by accelerated particles with energy higher than several hundreds MeV in strong accelerator facilities were discussed in comparison with those with lower energy in middle- and small-scale facilities. The characteristics in the protection in such strong accelerator facilities are derived from the qualitative changes in the interaction between the high energy particles and materials and from quantitative one due to the beam strength. In the former which is dependent on the emitting mechanism of the radiation, neutron with broad energy spectrum and muon are important in the protection, and in the latter, levels of radiation and radioactivity which are proportional to the beam strength are important. The author described details of the interaction between high energy particles and materials: leading to the conclusion that in the electron accelerator facilities, shielding against high energy-blemsstrahlung radiation and -neutron is important and in the proton acceleration, shielding against neutron is important. The characteristics of the radiation field in the strong accelerator facilities: among neutron, ionized particles and electromagnetic wave, neutron is most important in shielding since it has small cross sections relative to other two. Considerations for neutron are necessary in the management of exposure. Multiplicity of radionuclides produced: which is a result of nuclear spallation reaction due to high energy particles, especially to proton. Radioactivation of the accelerator equipment is a serious problem. Other problems: the interlock systems, radiation protection for experimenters and maintenance of the equipment by remote systems. (K.H.). 11 refs

  16. Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility

    International Nuclear Information System (INIS)

    1993-08-01

    The 200 Area Effluent Treatment Facility Dangerous Waste Permit Application documentation consists of both Part A and a Part B permit application documentation. An explanation of the Part A revisions associated with this treatment and storage unit, including the current revision, is provided at the beginning of the Part A section. Once the initial Hanford Facility Dangerous Waste Permit is issued, the following process will be used. As final, certified treatment, storage, and/or disposal unit-specific documents are developed, and completeness notifications are made by the US Environmental Protection Agency and the Washington State Department of Ecology, additional unit-specific permit conditions will be incorporated into the Hanford Facility Dangerous Waste Permit through the permit modification process. All treatment, storage, and/or disposal units that are included in the Hanford Facility Dangerous Waste Permit Application will operate under interim status until final status conditions for these units are incorporated into the Hanford Facility Dangerous Waste Permit. The Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility contains information current as of May 1, 1993

  17. Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The 200 Area Effluent Treatment Facility Dangerous Waste Permit Application documentation consists of both Part A and a Part B permit application documentation. An explanation of the Part A revisions associated with this treatment and storage unit, including the current revision, is provided at the beginning of the Part A section. Once the initial Hanford Facility Dangerous Waste Permit is issued, the following process will be used. As final, certified treatment, storage, and/or disposal unit-specific documents are developed, and completeness notifications are made by the US Environmental Protection Agency and the Washington State Department of Ecology, additional unit-specific permit conditions will be incorporated into the Hanford Facility Dangerous Waste Permit through the permit modification process. All treatment, storage, and/or disposal units that are included in the Hanford Facility Dangerous Waste Permit Application will operate under interim status until final status conditions for these units are incorporated into the Hanford Facility Dangerous Waste Permit. The Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility contains information current as of May 1, 1993.

  18. EFFLUENT TREATMENT FACILITY PEROXIDE DESTRUCTION CATALYST TESTING

    International Nuclear Information System (INIS)

    HALGREN DL

    2008-01-01

    The 200 Area Effluent Treatment Facility (ETF) main treatment train includes the peroxide destruction module (PDM) where the hydrogen peroxide residual from the upstream ultraviolet light/hydrogen peroxide oxidation unit is destroyed. Removal of the residual peroxide is necessary to protect downstream membranes from the strong oxidizer. The main component of the PDM is two reaction vessels utilizing granular activated carbon (GAC) as the reaction media. The PDM experienced a number of operability problems, including frequent plugging, and has not been utilized since the ETF changed to groundwater as the predominant feed. The unit seemed to be underperforming in regards to peroxide removal during the early periods of operation as well. It is anticipated that a functional PDM will be required for wastewater from the vitrification plant and other future streams. An alternate media or methodology needs to be identified to replace the GAC in the PDMs. This series of bench scale tests is to develop information to support an engineering study on the options for replacement of the existing GAC method for peroxide destruction at the ETF. A number of different catalysts will be compared as well as other potential methods such as strong reducing agents. The testing should lead to general conclusions on the viability of different catalysts and identify candidates for further study and evaluation

  19. High energy collisions and the proton structure: an ambiguity

    International Nuclear Information System (INIS)

    Franca, H.M.

    1980-01-01

    It is pointed out an ambiguity in the determination of the sign of the imaginary part of the proton-proton elastic-scattering amplitude for ]t]>]t min . Some implications of such and ambiguity concerning the proton structure are discussed and finally, an experimental analysis which could solve it is suggested. (L.C.) [pt

  20. Effectiveness of a clinical practice change intervention in increasing the provision of nicotine dependence treatment in inpatient psychiatric facilities: an implementation trial.

    Science.gov (United States)

    Wye, Paula M; Stockings, Emily A; Bowman, Jenny A; Oldmeadow, Chris; Wiggers, John H

    2017-02-07

    Despite clinical practice guidelines recommending the routine provision of nicotine dependence treatment to smokers in inpatient psychiatric facilities, the prevalence of such treatment provision is low. The aim of this study was to examine the effectiveness of a clinical practice change intervention in increasing clinician recorded provision of nicotine dependence treatment to patients in inpatient psychiatric facilities. We undertook an interrupted time series analysis of nicotine dependence treatment provision before, during and after a clinical practice change intervention to increase clinician recorded provision of nicotine dependence treatment for all hospital discharges (aged >18 years, N = 4175) over a 19 month period in two inpatient adult psychiatric facilities in New South Wales, Australia. The clinical practice change intervention comprised six key strategies: leadership and consensus, enabling systems and procedures, training and education, information and resources, audit and feedback and an on-site practice change support officer. Systematic medical record audit and segmented logistic regression was used to determine differences in proportions for each nicotine dependence treatment outcome measure between the 'pre', 'during' and 'post-intervention' periods. The prevalence of all five outcome measures increased significantly between the pre and post-intervention periods, including clinician recorded: assessment of patient smoking status (36.43 to 51.95%; adjusted odds ratio [AOR] = 2.39, 99% Confidence Interval [CI]: 1.23 to 4.66); assessment of patient nicotine dependence status (4.74 to 11.04%; AOR = 109.67, 99% CI: 35.35 to 340.22); provision of brief advice to quit (0.85 to 8.81%; AOR = 97.43, 99% CI: 31.03 to 306.30); provision of nicotine replacement therapy (8.06 to 26.25%; AOR = 19.59, 99% CI: 8.17 to 46.94); and provision of nicotine dependence treatment on discharge (8.82 to 13.45%, AOR = 12.36; 99% CI: 6.08 to 25

  1. Proposal of experimental facilities for studies of nuclear data and radiation engineering in the Intense Proton Accelerator Project

    CERN Document Server

    Baba, M; Nagai, Y; Ishibashi, K

    2003-01-01

    A proposal is given on the facilities and experiments in the Intense Proton Accelerator Project (J-PARC) relevant to the nuclear data and radiation engineering, nuclear astrophysics, nuclear transmutation, accelerator technology and space technology and so on. (3 refs).

  2. The JAERI-KEK joint project on high intensity proton accelerator and overview of nuclear transmutation experimental facilities

    International Nuclear Information System (INIS)

    Ikeda, Yujiro

    2001-01-01

    A status of the JAERI/KEK joint project on High Intensity Proton Accelerator is overviewed. It is highlighted that Experimental facilities for development of the accelerator driven system (ADS) for nuclear transmutation technology is proposed under the project. (author)

  3. Proton magnetic resonance spectroscopy (1H-MRS) for the evaluation of treatment of brain tumours

    International Nuclear Information System (INIS)

    Houkin, K.; Kamada, K.; Sawamura, Y.; Iwasaki, Y.; Abe, H.; Kashiwaba, T.

    1995-01-01

    We investigated metabolic changes in brain tumours following treatment, using proton magnetic resonance spectroscopy. In meningiomas, effective therapeutic embolisation led to an acute increase in lactate. In radiosensitive tumours such as malignant lymphoma, a decrease in lactate and in increase in N-acetyl-aspartate occurred after radiotherapy, which preceded changes observed on magnetic resonance imaging. On the other hand, no significant changes in spectral patterns were observed in malignant gliomas resistant to therapy. Tissue characterisation of brain tumours by spectral patterns on proton magnetic resonance spectroscopy remains controversial. However, we have shown it to be sensitive to metabolic changes following treatment, which may reflect the efficacy of the therapy. (orig.)

  4. In 2011 Valencia will house the first Spanish centre for the treatment of cancer with protons

    International Nuclear Information System (INIS)

    Tobalina, B.

    2008-01-01

    The most advanced countries are beginning to apply a new type of radiotherapy, more powerful and specific than that currently in use, based on the use of protons. The first Spanish centre to be equipped with a complex facility of this type will be the Valencian Institute of Medical Physics, which will be able to treat 2,000 patients a year. This radiotherapy technique is especially suitable for the treatment of cancers in children and cerebral and ocular cancers, which affect some 8,000 patients a year in Spain. (Author)

  5. WE-D-BRB-02: Proton Treatment Planning and Beam Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Pankuch, M. [Northwestern Medicine Proton Center (United States)

    2016-06-15

    The goal of this session is to review the physics of proton therapy, treatment planning techniques, and the use of volumetric imaging in proton therapy. The course material covers the physics of proton interaction with matter and physical characteristics of clinical proton beams. It will provide information on proton delivery systems and beam delivery techniques for double scattering (DS), uniform scanning (US), and pencil beam scanning (PBS). The session covers the treatment planning strategies used in DS, US, and PBS for various anatomical sites, methods to address uncertainties in proton therapy and uncertainty mitigation to generate robust treatment plans. It introduces the audience to the current status of image guided proton therapy and clinical applications of CBCT for proton therapy. It outlines the importance of volumetric imaging in proton therapy. Learning Objectives: Gain knowledge in proton therapy physics, and treatment planning for proton therapy including intensity modulated proton therapy. The current state of volumetric image guidance equipment in proton therapy. Clinical applications of CBCT and its advantage over orthogonal imaging for proton therapy. B. Teo, B.K Teo had received travel funds from IBA in 2015.

  6. A 62-MeV Proton Beam for the Treatment of Ocular Melanoma at Laboratori Nazionali del Sud-INFN

    Science.gov (United States)

    Cirrone, G. A. P.; Cuttone, G.; Lojacono, P. A.; Lo Nigro, S.; Mongelli, V.; Patti, I. V.; Privitera, G.; Raffaele, L.; Rifuggiato, D.; Sabini, M. G.; Salamone, V.; Spatola, C.; Valastro, L. M.

    2004-06-01

    At the Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali del Sud (INFN-LNS) in Catania, Italy, the first Italian protontherapy facility, named Centro di AdroTerapia e Applicazioni Nucleari Avanzate (CATANA) has been built in collaboration with the University of Catania. It is based on the use of the 62-MeV proton beam delivered by the K=800 Superconducting Cyclotron installed and working at INFN-LNS since 1995. The facility is mainly devoted to the treatment of ocular diseases like uveal melanoma. A beam treatment line in air has been assembled together with a dedicated positioning patient system. The facility has been in operation since the beginning of 2002 and 66 patients have been successfully treated up to now. The main features of CATANA together with the clinical and dosimetric features will be extensively described; particularly, the proton beam line, that has been entirely built at LNS, with all its elements, the experimental transversal and depth dose distributions of the 62-MeV proton beam obtained for a final collimator of 25-mm diameter and the experimental depth dose distributions of a modulated proton beam obtained for the same final collimator. Finally, the clinical results over 1 yr of treatments, describing the features of the treated diseases will be reported.

  7. Examination of Beryllium Under Intense High Energy Proton Beam at CERN's HiRadMat Facility

    CERN Document Server

    Ammigan, K.; Hurh, P.; Zwaska, R.; Atherton, A.; Caretta, O.; Davenne,T.; Densham, C.; Fitton, M.; Loveridge, P.; O'Dell, J.; Roberts, S.; Kuksenko, V.; Butcher, M.; Calviani, M.; Guinchard, M.; Losito, R.

    2017-01-01

    Beryllium is extensively used in various accelerator beam lines and target facilities as material for beam win- dows, and to a lesser extent, as secondary particle produc- tion targets. With increasing beam intensities of future ac- celerator facilities, it is critical to understand the response of beryllium under extreme conditions to avoid compro- mising particle production efficiency by limiting beam pa- rameters. As a result, the planned experiment at CERN’s HiRadMat facility will take advantage of the test facility’s tunable high intensity proton beam to probe and investigate the damage mechanisms of several grades of beryllium. The test matrix will consist of multiple arrays of thin discs of varying thicknesses as well as cylinders, each exposed to increasing beam intensities. Online instrumentations will acquire real time temperature, strain, and vibration data of the cylinders, while Post-Irradiation-Examination (PIE) of the discs will exploit advanced microstructural characteri- zation and imagin...

  8. Examination of Beryllium Under Intense High Energy Proton Beam at CERN's HiRadMat Facility

    CERN Document Server

    Ammigan, K; Hurh, P; Zwaska, R; Atherton, A; Caretta, O; Davenne, t; Densham, C; Fitton, M; Loveridge, P; O'Dell, J; Roberts, S; Kuksenko, v; Butcher, M; Calviani, M; Guinchard, M; Losito, R

    2015-01-01

    Beryllium is extensively used in various accelerator beam lines and target facilities as material for beam win- dows, and to a lesser extent, as secondary particle produc- tion targets. With increasing beam intensities of future ac- celerator facilities, it is critical to understand the response of beryllium under extreme conditions to avoid compro- mising particle production efficiency by limiting beam pa- rameters. As a result, the planned experiment at CERN’s HiRadMat facility will take advantage of the test facility’s tunable high intensity proton beam to probe and investigate the damage mechanisms of several grades of beryllium. The test matrix will consist of multiple arrays of thin discs of varying thicknesses as well as cylinders, each exposed to increasing beam intensities. Online instrumentations will acquire real time temperature, strain, and vibration data of the cylinders, while Post-Irradiation-Examination (PIE) of the discs will exploit advanced microstructural characteri- zation and imagin...

  9. Hanford Facility dangerous waste permit application, liquid effluent retention facility and 200 area effluent treatment facility

    Energy Technology Data Exchange (ETDEWEB)

    Coenenberg, J.G.

    1997-08-15

    The Hanford Facility Dangerous Waste Permit Application is considered to 10 be a single application organized into a General Information Portion (document 11 number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the 12 Unit-Specific Portion is limited to Part B permit application documentation 13 submitted for individual, `operating` treatment, storage, and/or disposal 14 units, such as the Liquid Effluent Retention Facility and 200 Area Effluent 15 Treatment Facility (this document, DOE/RL-97-03). 16 17 Both the General Information and Unit-Specific portions of the Hanford 18 Facility Dangerous Waste Permit Application address the content of the Part B 19 permit application guidance prepared by the Washington State Department of 20 Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency 21 (40 Code of Federal Regulations 270), with additional information needs 22 defined by the Hazardous and Solid Waste Amendments and revisions of 23 Washington Administrative Code 173-303. For ease of reference, the Washington 24 State Department of Ecology alpha-numeric section identifiers from the permit 25 application guidance documentation (Ecology 1996) follow, in brackets, the 26 chapter headings and subheadings. A checklist indicating where information is 27 contained in the Liquid Effluent Retention Facility and 200 Area Effluent 28 Treatment Facility permit application documentation, in relation to the 29 Washington State Department of Ecology guidance, is located in the Contents 30 Section. 31 32 Documentation contained in the General Information Portion is broader in 33 nature and could be used by multiple treatment, storage, and/or disposal units 34 (e.g., the glossary provided in the General Information Portion). Wherever 35 appropriate, the Liquid Effluent Retention Facility and 200 Area Effluent 36 Treatment Facility permit application documentation makes cross-reference to 37 the General Information Portion, rather than duplicating

  10. Hanford Facility dangerous waste permit application, liquid effluent retention facility and 200 area effluent treatment facility

    International Nuclear Information System (INIS)

    Coenenberg, J.G.

    1997-01-01

    The Hanford Facility Dangerous Waste Permit Application is considered to 10 be a single application organized into a General Information Portion (document 11 number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the 12 Unit-Specific Portion is limited to Part B permit application documentation 13 submitted for individual, 'operating' treatment, storage, and/or disposal 14 units, such as the Liquid Effluent Retention Facility and 200 Area Effluent 15 Treatment Facility (this document, DOE/RL-97-03). 16 17 Both the General Information and Unit-Specific portions of the Hanford 18 Facility Dangerous Waste Permit Application address the content of the Part B 19 permit application guidance prepared by the Washington State Department of 20 Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency 21 (40 Code of Federal Regulations 270), with additional information needs 22 defined by the Hazardous and Solid Waste Amendments and revisions of 23 Washington Administrative Code 173-303. For ease of reference, the Washington 24 State Department of Ecology alpha-numeric section identifiers from the permit 25 application guidance documentation (Ecology 1996) follow, in brackets, the 26 chapter headings and subheadings. A checklist indicating where information is 27 contained in the Liquid Effluent Retention Facility and 200 Area Effluent 28 Treatment Facility permit application documentation, in relation to the 29 Washington State Department of Ecology guidance, is located in the Contents 30 Section. 31 32 Documentation contained in the General Information Portion is broader in 33 nature and could be used by multiple treatment, storage, and/or disposal units 34 (e.g., the glossary provided in the General Information Portion). Wherever 35 appropriate, the Liquid Effluent Retention Facility and 200 Area Effluent 36 Treatment Facility permit application documentation makes cross-reference to 37 the General Information Portion, rather than duplicating

  11. Proton irradiated graphite grades for a long baseline neutrino facility experiment

    International Nuclear Information System (INIS)

    Simos, N.; Nocera, P.; Zwaska, R.; Mokhov, N.

    2017-01-01

    In search of a low-Z pion production target for the Long Baseline Neutrino Facility (LBNF) of the Deep Underground Neutrino Experiment (DUNE) four graphite grades were irradiated with protons in the energy range of 140–180 MeV, to peak fluence of ~6.1×10"2"0 p/cm"2 and irradiation temperatures between 120–200 °C. The test array included POCO ZXF-5Q, Toyo-Tanso IG 430, Carbone-Lorraine 2020 and SGL R7650 grades of graphite. Irradiation was performed at the Brookhaven Linear Isotope Producer. Postirradiation analyses were performed with the objective of (a) comparing their response under the postulated irradiation conditions to guide a graphite grade selection for use as a pion target and (b) understanding changes in physical and mechanical properties as well as microstructure that occurred as a result of the achieved fluence and in particular at this low-temperature regime where pion graphite targets are expected to operate. A further goal of the postirradiation evaluation was to establish a proton-neutron correlation damage on graphite that will allow for the use of a wealth of available neutron-based damage data in proton-based studies and applications. Macroscopic postirradiation analyses as well as energy dispersive x-ray diffraction of 200 KeV x rays at the NSLS synchrotron of Brookhaven National Laboratory were employed. The macroscopic analyses revealed differences in the physical and strength properties of the four grades with behavior however under proton irradiation that qualitatively agrees with that reported for graphite under neutrons for the same low temperature regime and in particular the increase of thermal expansion, strength and Young’s modulus. The proton fluence level of ~10"2"0 cm"-"2 where strength reaches a maximum before it begins to decrease at higher fluences has been identified and it agrees with neutron-induced changes. X-ray diffraction analyses of the proton irradiated graphite revealed for the first time the similarity in

  12. Proton irradiated graphite grades for a long baseline neutrino facility experiment

    Science.gov (United States)

    Simos, N.; Nocera, P.; Zhong, Z.; Zwaska, R.; Mokhov, N.; Misek, J.; Ammigan, K.; Hurh, P.; Kotsina, Z.

    2017-07-01

    In search of a low-Z pion production target for the Long Baseline Neutrino Facility (LBNF) of the Deep Underground Neutrino Experiment (DUNE) four graphite grades were irradiated with protons in the energy range of 140-180 MeV, to peak fluence of ˜6.1 ×1020 p /cm2 and irradiation temperatures between 120 - 200 °C . The test array included POCO ZXF-5Q, Toyo-Tanso IG 430, Carbone-Lorraine 2020 and SGL R7650 grades of graphite. Irradiation was performed at the Brookhaven Linear Isotope Producer. Postirradiation analyses were performed with the objective of (a) comparing their response under the postulated irradiation conditions to guide a graphite grade selection for use as a pion target and (b) understanding changes in physical and mechanical properties as well as microstructure that occurred as a result of the achieved fluence and in particular at this low-temperature regime where pion graphite targets are expected to operate. A further goal of the postirradiation evaluation was to establish a proton-neutron correlation damage on graphite that will allow for the use of a wealth of available neutron-based damage data in proton-based studies and applications. Macroscopic postirradiation analyses as well as energy dispersive x-ray diffraction of 200 KeV x rays at the NSLS synchrotron of Brookhaven National Laboratory were employed. The macroscopic analyses revealed differences in the physical and strength properties of the four grades with behavior however under proton irradiation that qualitatively agrees with that reported for graphite under neutrons for the same low temperature regime and in particular the increase of thermal expansion, strength and Young's modulus. The proton fluence level of ˜1020 cm-2 where strength reaches a maximum before it begins to decrease at higher fluences has been identified and it agrees with neutron-induced changes. X-ray diffraction analyses of the proton irradiated graphite revealed for the first time the similarity in

  13. Protonic conductors for proton exchange membrane fuel cells: An overview

    Directory of Open Access Journals (Sweden)

    Jurado Ramon Jose

    2002-01-01

    Full Text Available At present, Nation, which is a perfluorinated polymer, is one of the few materials that deliver the set of chemical and mechanical properties required to perform as a good electrolyte in proton exchange membrane fuel cells (PEMFCs. However, Nation presents some disadvantages, such as limiting the operational temperature of the fuel system (So°C, because of its inability to retain water at higher temperatures and also suffers chemical crossover. In addition to these restrictions, Nation membranes are very expensive. Reducing costs and using environmentally friendly materials are good reasons to make a research effort in this field in order to achieve similar or even better fuel-cell performances. Glass materials of the ternary system SiO2-ZrO2-P2O5, hybrid materials based on Nation, and nanopore ceramic membranes based on SiO2 TiO2, Al2O3, etc. are considered at present, as promising candidates to replace Nation as the electrolyte in PEMFCs. These types of materials are generally prepared by sol-gel processes in order to tailor their channel-porous structure and pore size. In this communication, the possible candidates in the near future as electrolytes (including other polymers different than Nation in PEMFCs are briefly reviewed. Their preparation methods, their electrical transport properties and conduction mechanisms are considered. The advantages and disadvantages of these materials with respect to Nation are also discussed.

  14. Grout treatment facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1992-07-01

    The Grout Treatment Facility (GTF) will provide permanent disposal for approximately 43 Mgal of radioactive liquid waste currently being stored in underground tanks on the Hanford Site. The first step in permanent disposal is accomplished by solidifying the liquid waste with cementitious dry materials. The resulting grout is cast within underground vaults. This report on the GTF contains information on the following: Vault design, run-on/run-off control design, and asphalt compatibility with 90-degree celsius double-shell slurry feed

  15. Addressing social aspects associated with wastewater treatment facilities

    International Nuclear Information System (INIS)

    Padilla-Rivera, Alejandro; Morgan-Sagastume, Juan Manuel; Noyola, Adalberto; Güereca, Leonor Patricia

    2016-01-01

    In wastewater treatment facilities (WWTF), technical and financial aspects have been considered a priority, while other issues, such as social aspects, have not been evaluated seriously and there is not an accepted methodology for assessing it. In this work, a methodology focused on social concerns related to WWTF is presented. The methodology proposes the use of 25 indicators as a framework for measuring social performance to evaluate the progress in moving towards sustainability. The methodology was applied to test its applicability and effectiveness in two WWTF in Mexico (urban and rural). This evaluation helped define the key elements, stakeholders and barriers in the facilities. In this context, the urban facility showed a better overall performance, a result that may be explained mainly by the better socioeconomic context of the urban municipality. Finally, the evaluation of social aspects using the semi-qualitative approach proposed in this work allows for a comparison between different facilities and for the identification of strengths and weakness, and it provides an alternative tool for achieving and improving wastewater management. - Highlights: • The methodology proposes 25 indicators as a framework for measuring social performance in wastewater treatment facilities. • The evaluation helped to define the key elements, stakeholders and barriers in the wastewater treatment facilities. • The evaluation of social aspects allows the identification of strengths and weakness for improving wastewater management. • It provides a social profile of the facility that highlights the best and worst performances.

  16. Addressing social aspects associated with wastewater treatment facilities

    Energy Technology Data Exchange (ETDEWEB)

    Padilla-Rivera, Alejandro; Morgan-Sagastume, Juan Manuel; Noyola, Adalberto; Güereca, Leonor Patricia, E-mail: lguerecah@iingen.unam.mx

    2016-02-15

    In wastewater treatment facilities (WWTF), technical and financial aspects have been considered a priority, while other issues, such as social aspects, have not been evaluated seriously and there is not an accepted methodology for assessing it. In this work, a methodology focused on social concerns related to WWTF is presented. The methodology proposes the use of 25 indicators as a framework for measuring social performance to evaluate the progress in moving towards sustainability. The methodology was applied to test its applicability and effectiveness in two WWTF in Mexico (urban and rural). This evaluation helped define the key elements, stakeholders and barriers in the facilities. In this context, the urban facility showed a better overall performance, a result that may be explained mainly by the better socioeconomic context of the urban municipality. Finally, the evaluation of social aspects using the semi-qualitative approach proposed in this work allows for a comparison between different facilities and for the identification of strengths and weakness, and it provides an alternative tool for achieving and improving wastewater management. - Highlights: • The methodology proposes 25 indicators as a framework for measuring social performance in wastewater treatment facilities. • The evaluation helped to define the key elements, stakeholders and barriers in the wastewater treatment facilities. • The evaluation of social aspects allows the identification of strengths and weakness for improving wastewater management. • It provides a social profile of the facility that highlights the best and worst performances.

  17. Design of radiation shielding for the proton therapy facility at the National Cancer Center in Korea

    International Nuclear Information System (INIS)

    Kim, J. W.; Kwon, J. W.; Lee, J.

    2005-01-01

    The design of radiation shielding was evaluated for a proton therapy facility being established at the National Cancer Center in Korea. The proton beam energy from a 230 MeV cyclotron is varied for therapy using a graphite target. This energy variation process produces high radiation and thus thick shielding walls surround the region. The evaluation was first carried out using analytical expressions at selected locations. Further detailed evaluations have been performed using the Monte Carlo method. Dose equivalent values were calculated to be compared with analytical results. The analytical method generally yielded more conservative values. With consideration of adequate occupancy factors annual dose equivalent rates are kept -1 in all areas. Construction of the building is expected to be completed near the end of 2004 and the installation of therapy equipments will begin a few months later. (authors)

  18. Secondary neutron doses received by patients of different ages during intracranial proton therapy treatments

    International Nuclear Information System (INIS)

    Sayah, R.

    2012-01-01

    Proton therapy is an advanced radiation therapy technique that allows delivering high doses to the tumor while saving the healthy surrounding tissues due to the protons' ballistic properties. However, secondary particles, especially neutrons, are created during protons' nuclear reactions in the beam-line and the treatment room components, as well as inside the patient. Those secondary neutrons lead to unwanted dose deposition to the healthy tissues located at distance from the target, which may increase the secondary cancer risks to the patients, especially the pediatric ones. The aim of this work was to calculate the neutron secondary doses received by patients of different ages treated at the Institut Curie-centre de Protontherapie d'Orsay (ICPO) for intracranial tumors, using a 178 MeV proton beam. The treatments are undertaken at the new ICPO room equipped with an IBA gantry. The treatment room and the beam-line components, as well as the proton source were modeled using the Monte Carlo code MCNPX. The obtained model was then validated by a series of comparisons between model calculations and experimental measurements. The comparisons concerned: a) depth and lateral proton dose distributions in a water phantom, b) neutron spectrometry at one position in the treatment room, c) ambient dose equivalents at different positions in the treatment room and d) secondary absorbed doses inside a physical anthropomorphic phantom. A general good agreement was found between calculations and measurements, thus our model was considered as validated. The University of Florida hybrid voxelized phantoms of different ages were introduced into the MCNPX validated model, and secondary neutron doses were calculated to many of these phantoms' organs. The calculated doses were found to decrease as the organ's distance to the treatment field increases and as the patient's age increases. The secondary doses received by a one year-old patient may be two times higher than the doses

  19. Intense-proton-beam transport through an insulator beam guide

    International Nuclear Information System (INIS)

    Hanamori, Susumu; Kawata, Shigeo; Kikuchi, Takashi; Fujita, Akira; Chiba, Yasunobu; Hikita, Taisuke; Kato, Shigeru

    1998-01-01

    In this paper we study intense-proton-beam transport through an insulator guide. In our previous papers (Jpn. J. Appl. Phys. 34 (1995) L520, Jpn. J. Appl. Phys. 35 (1996) L1127) we proposed a new system for intense-electron-beam transport using an insulator guide. In contrast to the electron beam, an intense-proton beam tends to generate a virtual anode, because of the large proton mass. The virtual anode formation at the initial stage is prevented by prefilled plasma in this system. During and after this, electrons are extracted from the plasma generated at the insulator surface by the proton beam space charge and expand over the transport area. The proton beam charge is effectively neutralized by the electrons. Consequently, the proton beam propagates efficiently through the insulator beam guide. The electron extraction is self-regulated by the net space charge of the proton beam. (author)

  20. Improvement of the management of residual waste in areas without thermal treatment facilities: A life cycle analysis of an Italian management district

    Energy Technology Data Exchange (ETDEWEB)

    Di Maria, Francesco, E-mail: francesco.dimaria@unipg.it [LAR Laboratory, Dipartimento di Ingegneria, Via G. Duranti 93, Perugia (Italy); Micale, Caterina; Morettini, Emanuela [LAR Laboratory, Dipartimento di Ingegneria, Via G. Duranti 93, Perugia (Italy); Sisani, Luciano [TSA spa, Via Case Sparse 107, Magione (Italy); Damiano, Roberto [GESENU spa, Via della Molinella 7, Perugia (Italy)

    2015-10-15

    Highlights: • LCA analysis of two option for residual waste management. • Exploitation of mechanical physical sorting facility for extracting recyclable from RMSW. • Processing the mechanically sorted organic fraction in bioreactor landfill. • Sensitivity analysis demonstrate high influence for impact assessment of substitution ratio for recycle materials. - Abstract: Starting from an existing waste management district without thermal treatment facilities, two different management scenarios for residual waste were compared by life cycle assessment (LCA). The adoption of a bioreactor landfill for managing the mechanically sorted organic fraction instead of bio-stabilization led to reduction of global warming and fresh water eutrophication by 50% and 10%, respectively. Extraction of recyclables from residual waste led to avoided emissions for particulate matter, acidification and resource depletion impact categories. Marginal energy and the amount of energy recovered from landfill gas marginally affected the LCA results. On the contrary the quality of the recyclables extracted can significantly modify the eco profile of the management schemes.

  1. Dosimetry of clinical neutron and proton beams: An overview of recommendations

    International Nuclear Information System (INIS)

    Vynckier, S.

    2004-01-01

    Neutron therapy beams are obtained by accelerating protons or deuterons on Beryllium. These neutron therapy beams present comparable dosimetric characteristics as those for photon beams obtained with linear accelerators; for instance, the penetration of a p(65) + Be neutron beam is comparable with the penetration of an 8 MV photon beam. In order to be competitive with conventional photon beam therapy, the dosimetric characteristics of the neutron beam should therefore not deviate too much from the photon beam characteristics. This paper presents a brief summary of the neutron beams used in radiotherapy. The dosimetry of the clinical neutron beams is described. Finally, recent and future developments in the field of physics for neutron therapy is mentioned. In the last two decades, a considerable number of centres have established radiotherapy treatment facilities using proton beams with energies between 50 and 250 MeV. Clinical applications require a relatively uniform dose to be delivered to the volume to be treated, and for this purpose the proton beam has to be spread out, both laterally and in depth. The technique is called 'beam modulation' and creates a region of high dose uniformity referred to as the 'spread-out Bragg peak'. Meanwhile, reference dosimetry in these beams had to catch up with photon and electron beams for which a much longer tradition of dosimetry exists. Proton beam dosimetry can be performed using different types of dosemeters, such as calorimeters, Faraday cups, track detectors and ionisation chambers. National standard dosimetry laboratories will, however, not provide a standard for the dosimetry of proton beams. To achieve uniformity on an international level, the use of an ionisation chamber should be considered. This paper reviews and summarises the basic principles and recommendations for the absorbed dose determination in a proton beam, utilising ionisation chambers calibrated in terms of absorbed dose to water. These recommendations

  2. Biological effects of proton radiation: an update

    International Nuclear Information System (INIS)

    Girdhani, S.; Hlatky, L.; Sachs, R.

    2015-01-01

    Proton radiation provides significant dosimetric advantages when compared with gamma radiation due to its superior energy deposition characteristics. Although the physical aspects of proton radiobiology are well understood, biological and clinical endpoints are understudied. The current practice to assume the relative biological effectiveness of low linear energy transfer (LET) protons to be a generic value of about 1.1 relative to photons likely obscures important unrecognised differentials in biological response between these radiation qualities. A deeper understanding of the biological properties induced by proton radiation would have both radiobiological and clinical impact. This article briefly points to some of the literature pertinent to the effects of protons on tissue-level processes that modify disease progression, such as angiogenesis, cell invasion and cancer metastasis. Recent findings hint that proton radiation may, in addition to offering improved radio-therapeutic targeting, be a means to provide a new dimension for increasing therapeutic benefits for patients by manipulating these tissue-level processes. (authors)

  3. An introduction to proton conduction in solids

    International Nuclear Information System (INIS)

    Poulsen, F.W.

    1980-09-01

    Proton conducting solids have been studied intensively in recent years due to their potential use as ion conducting separators in efficient fuel cells for electricity generation. This report describes fuel cell - and other possible applications of solid proton conductors. The best performing materials known today are listed. Typical synthetic routes and some models for proton transport in solids are discussed. Hints to future research are given. The litterature collected for this report covers mainly the period 1974-1980. (author)

  4. Pain treatment facilities: do we need quantity or quality?

    Science.gov (United States)

    de Meij, Nelleke; Köke, Albère; van der Weijden, Trudy; van Kleef, Maarten; Patijn, Jacob

    2014-10-01

    Chronic pain patients referred to a pain treatment facility have no guarantee that they will receive a proper diagnostic procedure or treatment. To obtain information about organizational aspects of pain treatment facilities and the content of their daily pain practice, we performed a questionnaire survey. The aim of the study was to evaluate the amount of pain treatment facilities, the content of organized specialized pain care and adherence to the criteria of the internationally accepted guidelines for pain treatment services. The University Pain Centre Maastricht in the Department of Anaesthesiology and Pain Management at Maastricht University Medical Centre developed a questionnaire survey based on the Recommendations for Pain Treatment Services of the International Association for the Study of Pain (IASP). The questionnaire was sent to the medical boards of all hospitals in the Netherlands (n=94). The response rate was 86% (n=81). Of all hospitals, 88.9% (n=72) reported the provision of organized specialized pain care, which was provided by a pain management team in 86.1% (n=62) and by an individual specialist in 13.9% (n=10). Insight was obtained from pain treatment facilities in five different domains: the organizational structure of pain management, composition of the pain team, pain team practice, patient characteristics, and research and education facilities. Although 88.9% of all hospitals stated that organized specialized pain care was provided, only a few hospitals could adhere to the criteria for pain treatment services of the IASP. The outcome of the questionnaire survey may help to define quality improvement standards for pain treatment facilities. © 2014 John Wiley & Sons, Ltd.

  5. The Design of Compressed air system in the Conventional Facility of Proton Accelerator Research Center

    International Nuclear Information System (INIS)

    Jeon, G. P.; Kim, J. Y.; Cho, S. W.; Min, Y. S.; Mun, K. J.; Cho, J. S.; Nam, J. M.; Park, S. S.; Jo, J. H.

    2012-01-01

    The Compressed Air System (CA) supplies compressed air for all air operated devices and instruments, pneumatic equipment and other miscellaneous air user points in the Conventional Facilities of Proton Engineering Frontier Project. CA System consist of the Instrument Air System and the Service air System. The Instrument Air System supplies oil-free, dried, filtered, and compressed instrument air for the air operated control devices and instruments in the Accelerator and Beam Application Building, Ion Beam Application Building, Utility Building and etc.. The Service air System supplies compressed air for pneumatic equipment and other services

  6. Proton energy and scattering angle radiographs to improve proton treatment planning : a Monte Carlo study

    NARCIS (Netherlands)

    Biegun, Aleksandra; Takatsu, Jun; Nakaji, Taku; van Goethem, Marc-Jan; van der Graaf, Emiel; Koffeman, E.; Visser, Jan; Brandenburg, Sijtze

    2016-01-01

    The novel proton radiography imaging technique has a large potential to be used in direct measurement of the proton energy loss (proton stopping power, PSP) in various tissues in the patient. The uncertainty of PSPs, currently obtained from translation of X-ray Computed Tomography (xCT) images,

  7. Wastewater treatment facilities: Energy efficient improvements and cogeneration

    International Nuclear Information System (INIS)

    Kunkle, R.; Gray, R.; Delzel, D.

    1992-10-01

    The Washington State Energy Office (WSEO) has worked with both the Bonneville Power Administration (BPA) and the US Department of Energy to provide technical and financial assistance to local governments. Based on a recent study conducted by Ecotope for WSEO, local governments spend an estimated $45 million on utility bills statewide. Water and wastewater facilities account for almost a third of this cost. As a result, WSEO decided to focus its efforts on the energy intensive water and wastewater sector. The ultimate goal of this project was to develop mechanisms to incorporate energy efficiency improvements into wastewater treatment facilities in retrofits and during upgrades, remodels, and new construction. Project activities included the following: The review of the existing regulatory environment for treatment system construction, A summary of financing options for efficiency improvements in treatment facilities, A literature review of energy efficiency opportunities in treatment plants, Survey and site visits to characterize existing facilities in Washington State, Estimates of the energy efficiency and cogeneration potential in the sector, and A case study to illustrate the implementation of an efficiency improvement in a treatment facility

  8. Radiotherapy : proton therapy

    International Nuclear Information System (INIS)

    1991-01-01

    The first phase of proton therapy at the National Accelerator Centre will be the development of a 200 MeV small-field horizontal beam radioneurosurgical facility in the south treatment vault. A progressive expansion of this facility is planned. The patient support and positioning system has been designed and developed by the Departments of Mechanical Engineering and Surveying of the University of Cape Town to ensure the accurate positioning in the proton beam of the lesion to be treated. The basic components of the system are an adjustable chair, a series of video cameras and two computers. The specifications for the proton therapy interlock system require that the inputs to and the outputs from the system be similar to those of the neutron therapy system. Additional facilities such as a full diagnostic system which would assist the operators in the event of an error will also be provided. Dosimeters are required for beam monitoring, for monitor calibration and for determining dose distributions. Several designs of transmission ionization chambers for beam monitoring have been designed and tested, while several types of ionization chambers and diodes have been used for the dose distribution measurements. To facilitate the comparison of measured ranges and energy losses of proton beams in the various materials with tabled values, simple empirical approximations, which are sufficiently accurate for most applications, have been used. 10 refs., 10 fig., 4 tabs

  9. Proton Radiation Therapy for the Treatment of Retinoblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Mouw, Kent W. [Harvard Radiation Oncology Program, Boston, Massachusetts (United States); Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Sethi, Roshan V.; Yeap, Beow Y.; MacDonald, Shannon M.; Chen, Yen-Lin E.; Tarbell, Nancy J.; Yock, Torunn I.; Munzenrider, John E.; Adams, Judith [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Grabowski, Eric [Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts (United States); Mukai, Shizuo [Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts (United States); Shih, Helen A., E-mail: hshih@partners.org [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)

    2014-11-15

    Purpose: To investigate long-term disease and toxicity outcomes for pediatric retinoblastoma patients treated with proton radiation therapy (PRT). Methods and Materials: This is a retrospective analysis of 49 retinoblastoma patients (60 eyes) treated with PRT between 1986 and 2012. Results: The majority (84%) of patients had bilateral disease, and nearly half (45%) had received prior chemotherapy. At a median follow-up of 8 years (range, 1-24 years), no patients died of retinoblastoma or developed metastatic disease. The post-PRT enucleation rate was low (18%), especially in patients with early-stage disease (11% for patients with International Classification for Intraocular Retinoblastoma [ICIR] stage A-B disease vs 23% for patients with ICIR stage C-D disease). Post-PRT ophthalmologic follow-up was available for 61% of the preserved eyes (30 of 49): 14 of 30 eyes (47%) had 20/40 visual acuity or better, 7 of 30 (23%) had moderate visual acuity (20/40-20/600), and 9 of 30 (30%) had little or no useful vision (worse than 20/600). Twelve of 60 treated eyes (20%) experienced a post-PRT event requiring intervention, with cataracts the most common (4 eyes). No patients developed an in-field second malignancy. Conclusions: Long-term follow-up of retinoblastoma patients treated with PRT demonstrates that PRT can achieve high local control rates, even in advanced cases, and many patients retain useful vision in the treated eye. Treatment-related ocular side effects were uncommon, and no radiation-associated malignancies were observed.

  10. High intensity proton injector for facility of antiproton and ion research

    Energy Technology Data Exchange (ETDEWEB)

    Berezov, R., E-mail: r.berezov@gsi.de; Brodhage, R.; Fils, J.; Hollinger, R.; Ivanova, V. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany); Chauvin, N.; Delferriere, O.; Tuske, O. [Commissariat à l’Energie Atomique et aux Energies Alternatives, IRFU, F-91191 Gif-sur-Yvette (France); Ullmann, C. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany); Institut für Angewandte Physik, Goethe-Universität Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt/Main (Germany)

    2016-02-15

    The high current ion source with the low energy beam transport (LEBT) will serve as injector into the proton LINAC to provide primary proton beam for the production of antiprotons. The pulsed ion source developed and built in CEA/Saclay operates with a frequency of 2.45 GHz based on ECR plasma production with two coils with 87.5 mT magnetic field necessary for the electron cyclotron resonance. The compact LEBT consists of two solenoids with a maximum magnetic field of 500 mT including two integrated magnetic steerers to adjust the horizontal and vertical beam positions. The total length of the compact LEBT is 2.3 m and was made as short as possible to reduced emittance growth along the beam line. To measure ion beam intensity behind the pentode extraction system, between solenoids and at the end of the beam line, two current transformers and a Faraday cup are installed. To get information about the beam quality and position, the diagnostic chamber with different equipment will be installed between the two solenoids. This article reports the current status of the proton injector for the facility of antiproton and ion research.

  11. Conceptual design of tritium treatment facility

    International Nuclear Information System (INIS)

    Tachikawa, Katsuhiro

    1982-01-01

    In connection with the development of fusion reactors, the development of techniques concerning tritium fuel cycle, such as the refining and circulation of fuel, the recovery of tritium from blanket, waste treatment and safe handling, is necessary. In Japan Atomic Energy Research Institute, the design of the tritium process research laboratory has been performed since fiscal 1977, in which the following research is carried out: 1) development of hydrogen isotope separation techniques by deep cooling distillation method and thermal diffusion method, 2) development of the refining, collection and storage techniques for tritium using metallic getters and palladium-silver alloy films, and 3) development of the safe handling techniques for tritium. The design features of this facility are explained, and the design standard for radiation protection is shown. At present, in the detailed design stage, the containment of tritium and safety analysis are studied. The building is of reinforced concrete, and the size is 48 m x 26 m. Glove boxes and various tritium-removing facilities are installed in two operation rooms. Multiple wall containment system and tritium-removing facilities are explained. (Kako, I.)

  12. Outcomes of Proton Therapy for the Treatment of Uveal Metastases

    International Nuclear Information System (INIS)

    Kamran, Sophia C.; Collier, John M.; Lane, Anne Marie; Kim, Ivana; Niemierko, Andrzej; Chen, Yen-Lin E.; MacDonald, Shannon M.; Munzenrider, John E.; Gragoudas, Evangelos; Shih, Helen A.

    2014-01-01

    Purpose/Objective(s): Radiation therapy can be used to treat uveal metastases with the goal of local control and improvement of quality of life. Proton therapy can be used to treat uveal tumors efficiently and with expectant minimization of normal tissue injury. Here, we report the use of proton beam therapy for the management of uveal metastases. Methods and Materials: A retrospective chart review was made of all patients with uveal metastases treated at our institution with proton therapy between June 2002 and June 2012. Patient and tumor characteristics, fractionation and dose schemes, local control, and toxicities are reported. Results: Ninety patients were identified. Of those, 13 were excluded because of missing information. We report on 77 patients with 99 affected eyes with available data. Patients were 68% female, and the most common primary tumor was breast carcinoma (49%). The median age at diagnosis of uveal metastasis was 57.9 years. Serous retinal detachment was seen in 38% of treated eyes. The median follow-up time was 7.7 months. The median dose delivered to either eye was 20 Gy(relative biological effectiveness [RBE]) in 2 fractions. Local control was 94%. The median survival after diagnosis of uveal metastases was 12.3 months (95% confidence interval, 7.7-16.8). Death in all cases was secondary to systemic disease. Radiation vasculopathy, measured decreased visual acuity, or both was observed in 50% of evaluable treated eyes. The actuarial rate of radiation vasculopathy, measured decreased visual acuity, or both was 46% at 6 months and 73% at 1 year. The 6 eyes with documented local failure were successfully salvaged with retreatment. Conclusions: Proton therapy is an effective and efficient means of treating uveal metastases. Acutely, the majority of patients experience minor adverse effects. For longer-term survivors, the risk of retinal injury with vision loss increases significantly over the first year

  13. Outcomes of Proton Therapy for the Treatment of Uveal Metastases

    Energy Technology Data Exchange (ETDEWEB)

    Kamran, Sophia C. [Harvard Medical School, Boston, Massachusetts (United States); Collier, John M. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Lane, Anne Marie; Kim, Ivana [Retina Service, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts (United States); Niemierko, Andrzej [Division of Biostatistics, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Chen, Yen-Lin E.; MacDonald, Shannon M.; Munzenrider, John E. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Gragoudas, Evangelos [Retina Service, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts (United States); Shih, Helen A., E-mail: hshih@partners.org [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)

    2014-12-01

    Purpose/Objective(s): Radiation therapy can be used to treat uveal metastases with the goal of local control and improvement of quality of life. Proton therapy can be used to treat uveal tumors efficiently and with expectant minimization of normal tissue injury. Here, we report the use of proton beam therapy for the management of uveal metastases. Methods and Materials: A retrospective chart review was made of all patients with uveal metastases treated at our institution with proton therapy between June 2002 and June 2012. Patient and tumor characteristics, fractionation and dose schemes, local control, and toxicities are reported. Results: Ninety patients were identified. Of those, 13 were excluded because of missing information. We report on 77 patients with 99 affected eyes with available data. Patients were 68% female, and the most common primary tumor was breast carcinoma (49%). The median age at diagnosis of uveal metastasis was 57.9 years. Serous retinal detachment was seen in 38% of treated eyes. The median follow-up time was 7.7 months. The median dose delivered to either eye was 20 Gy(relative biological effectiveness [RBE]) in 2 fractions. Local control was 94%. The median survival after diagnosis of uveal metastases was 12.3 months (95% confidence interval, 7.7-16.8). Death in all cases was secondary to systemic disease. Radiation vasculopathy, measured decreased visual acuity, or both was observed in 50% of evaluable treated eyes. The actuarial rate of radiation vasculopathy, measured decreased visual acuity, or both was 46% at 6 months and 73% at 1 year. The 6 eyes with documented local failure were successfully salvaged with retreatment. Conclusions: Proton therapy is an effective and efficient means of treating uveal metastases. Acutely, the majority of patients experience minor adverse effects. For longer-term survivors, the risk of retinal injury with vision loss increases significantly over the first year.

  14. Optimization of a general-purpose, actively scanned proton beamline for ocular treatments: Geant4 simulations.

    Science.gov (United States)

    Piersimoni, Pierluigi; Rimoldi, Adele; Riccardi, Cristina; Pirola, Michele; Molinelli, Silvia; Ciocca, Mario

    2015-03-08

    The Italian National Center for Hadrontherapy (CNAO, Centro Nazionale di Adroterapia Oncologica), a synchrotron-based hospital facility, started the treatment of patients within selected clinical trials in late 2011 and 2012 with actively scanned proton and carbon ion beams, respectively. The activation of a new clinical protocol for the irradiation of uveal melanoma using the existing general-purpose proton beamline is foreseen for late 2014. Beam characteristics and patient treatment setup need to be tuned to meet the specific requirements for such a type of treatment technique. The aim of this study is to optimize the CNAO transport beamline by adding passive components and minimizing air gap to achieve the optimal conditions for ocular tumor irradiation. The CNAO setup with the active and passive components along the transport beamline, as well as a human eye-modeled detector also including a realistic target volume, were simulated using the Monte Carlo Geant4 toolkit. The strong reduction of the air gap between the nozzle and patient skin, as well as the insertion of a range shifter plus a patient-specific brass collimator at a short distance from the eye, were found to be effective tools to be implemented. In perspective, this simulation toolkit could also be used as a benchmark for future developments and testing purposes on commercial treatment planning systems.

  15. Profile of European proton and carbon ion therapy centers assessed by the EORTC facility questionnaire.

    Science.gov (United States)

    Weber, Damien C; Abrunhosa-Branquinho, André; Bolsi, Alessandra; Kacperek, Andrzej; Dendale, Rémi; Geismar, Dirk; Bachtiary, Barbara; Hall, Annika; Heufelder, Jens; Herfarth, Klaus; Debus, Jürgen; Amichetti, Maurizio; Krause, Mechthild; Orecchia, Roberto; Vondracek, Vladimir; Thariat, Juliette; Kajdrowicz, Tomasz; Nilsson, Kristina; Grau, Cai

    2017-08-01

    We performed a survey using the modified EORTC Facility questionnaire (pFQ) to evaluate the human, technical and organizational resources of particle centers in Europe. The modified pFQ consisted of 235 questions distributed in 11 sections accessible on line on an EORTC server. Fifteen centers from 8 countries completed the pFQ between May 2015 and December 2015. The average number of patients treated per year and per particle center was 221 (range, 40-557). The majority (66.7%) of centers had pencil beam or raster scanning capability. Four (27%) centers were dedicated to eye treatment only. An increase in the patients-health professional FTE ratio was observed for eye tumor only centers when compared to other centers. All centers treated routinely chordomas/chondrosarcomas, brain tumors and sarcomas but rarely breast cancer. The majority of centers treated pediatric cases with particles. Only a minority of the queried institutions treated non-static targets. As the number of particle centers coming online will increase, the experience with this treatment modality will rise in Europe. Children can currently be treated in these facilities in a majority of cases. The majority of these centers provide state of the art particle beam therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Adjuvant Ab Interno Tumor Treatment After Proton Beam Irradiation.

    Science.gov (United States)

    Seibel, Ira; Riechardt, Aline I; Heufelder, Jens; Cordini, Dino; Joussen, Antonia M

    2017-06-01

    This study was performed to show long-term outcomes concerning globe preservation in uveal melanoma patients after proton beam therapy with the main focus on outcomes according to different adjuvant ab interno surgical procedures. Retrospective cohort study. All patients treated with primary proton beam therapy for choroidal or ciliary body melanoma between June 1998 and June 2015 were included. A total of 2499 patients underwent primary proton beam therapy, with local tumor control and globe preservation rates of 95.9% and 94.8% after 5 years, respectively. A total of 110 (4.4%) patients required secondary enucleation. Unresponsive neovascular glaucoma was the leading cause of secondary enucleation in 78 of the 2499 patients (3.1%). The 5-year enucleation-free survival rate was 94.8% in the endoresection group, 94.3% in the endodrainage group, and 93.5% in the comparator group. The log-rank test showed P = .014 (comparator group vs endoresection group) and P = .06 (comparator group vs endodrainage-vitrectomy group). Patients treated with endoresection or endodrainage-vitrectomy developed less radiation retinopathy (30.5% and 37.4% after 5 years, P = .001 and P = .048 [Kaplan-Meier], respectively) and less neovascular glaucoma (11.6% and 21.3% after 5 years, P = .001 and P = .01 [Kaplan-Meier], respectively) compared with the comparator group (52.3% radiation retinopathy and 57.8% neovascular glaucoma after 5 years). This study suggests that in larger tumors the enucleation and neovascular glaucoma rates might be reduced by adjuvant surgical procedures. Although endoresection is the most promising adjuvant treatment option, the endodrainage-vitrectomy is recommended in patients who are ineligible for endoresection. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Opportunities for Automated Demand Response in California Wastewater Treatment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Aghajanzadeh, Arian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wray, Craig [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McKane, Aimee [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-30

    Previous research over a period of six years has identified wastewater treatment facilities as good candidates for demand response (DR), automated demand response (Auto-­DR), and Energy Efficiency (EE) measures. This report summarizes that work, including the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy used and demand, as well as details of the wastewater treatment process. It also discusses control systems and automated demand response opportunities. Furthermore, this report summarizes the DR potential of three wastewater treatment facilities. In particular, Lawrence Berkeley National Laboratory (LBNL) has collected data at these facilities from control systems, submetered process equipment, utility electricity demand records, and governmental weather stations. The collected data were then used to generate a summary of wastewater power demand, factors affecting that demand, and demand response capabilities. These case studies show that facilities that have implemented energy efficiency measures and that have centralized control systems are well suited to shed or shift electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. In summary, municipal wastewater treatment energy demand in California is large, and energy-­intensive equipment offers significant potential for automated demand response. In particular, large load reductions were achieved by targeting effluent pumps and centrifuges. One of the limiting factors to implementing demand response is the reaction of effluent turbidity to reduced aeration at an earlier stage of the process. Another limiting factor is that cogeneration capabilities of municipal facilities, including existing power purchase agreements and utility receptiveness to purchasing electricity from cogeneration facilities, limit a facility’s potential to participate in other DR activities.

  18. Measurement of stray radiation within a scanning proton therapy facility: EURADOS WG9 intercomparison exercise of active dosimetry systems

    Energy Technology Data Exchange (ETDEWEB)

    Farah, J., E-mail: jad.farah@irsn.fr; Trompier, F. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Radioprotection de l’Homme, BP17, Fontenay-aux-Roses 92260 (France); Mares, V.; Schinner, K.; Wielunski, M. [Helmholtz Zentrum München, Institute of Radiation Protection, Ingolstädter Landstraße 1, Neuherberg 85764 (Germany); Romero-Expósito, M.; Domingo, C. [Departament de Física, Universitat Autònoma de Barcelona, Bellaterra E-08193 (Spain); Trinkl, S. [Helmholtz Zentrum München, Institute of Radiation Protection, Ingolstädter Landstraße 1, Neuherberg 85764, Germany and Physik-Department, Technische Universität München, Garching 85748 (Germany); Dufek, V. [Czech Technical University in Prague, FNSPE, Břehová 7, Prague 115 19, Czech Republic and National Radiation Protection Institute, Bartoškova 28, Prague 140 00 (Czech Republic); Klodowska, M.; Liszka, M.; Stolarczyk, L.; Olko, P. [Institute of Nuclear Physics PAN, Radzikowskiego 152, Krakow 31-342 (Poland); Kubancak, J. [Czech Technical University in Prague, FNSPE, Břehová 7, Prague 115 19, Czech Republic and Department of Radiation Dosimetry, Nuclear Physics Institute, Řež CZ-250 68 (Czech Republic); and others

    2015-05-15

    Purpose: To characterize stray radiation around the target volume in scanning proton therapy and study the performance of active neutron monitors. Methods: Working Group 9 of the European Radiation Dosimetry Group (EURADOS WG9—Radiation protection in medicine) carried out a large measurement campaign at the Trento Centro di Protonterapia (Trento, Italy) in order to determine the neutron spectra near the patient using two extended-range Bonner sphere spectrometry (BSS) systems. In addition, the work focused on acknowledging the performance of different commercial active dosimetry systems when measuring neutron ambient dose equivalents, H{sup ∗}(10), at several positions inside (8 positions) and outside (3 positions) the treatment room. Detectors included three TEPCs—tissue equivalent proportional counters (Hawk type from Far West Technology, Inc.) and six rem-counters (WENDI-II, LB 6411, RadEye™ NL, a regular and an extended-range NM2B). Meanwhile, the photon component of stray radiation was deduced from the low-lineal energy transfer part of TEPC spectra or measured using a Thermo Scientific™ FH-40G survey meter. Experiments involved a water tank phantom (60 × 30 × 30 cm{sup 3}) representing the patient that was uniformly irradiated using a 3 mm spot diameter proton pencil beam with 10 cm modulation width, 19.95 cm distal beam range, and 10 × 10 cm{sup 2} field size. Results: Neutron spectrometry around the target volume showed two main components at the thermal and fast energy ranges. The study also revealed the large dependence of the energy distribution of neutrons, and consequently of out-of-field doses, on the primary beam direction (directional emission of intranuclear cascade neutrons) and energy (spectral composition of secondary neutrons). In addition, neutron mapping within the facility was conducted and showed the highest H{sup ∗}(10) value of ∼51 μSv Gy{sup −1}; this was measured at 1.15 m along the beam axis. H{sup ∗}(10) values

  19. Development and implementation of an anthropomorphic pediatric spine phantom for the assessment of craniospinal irradiation procedures in proton therapy

    Directory of Open Access Journals (Sweden)

    Dana J Lewis

    2014-03-01

    Full Text Available Purpose: To design an anthropomorphic pediatric spine phantom for use in the evaluation of proton therapy facilities for clinical trial participation by the Imaging and Radiation Oncology Core (IROC Houston QA Center (formerly RPC.Methods: This phantom was designed to perform an end-to-end audit of the proton spine treatment process, including simulation, dose calculation by the treatment planning system (TPS, and proton treatment delivery. The design incorporated materials simulating the thoracic spinal column of a pediatric patient, along with two thermoluminescent dosimeter (TLD-100 capsules and radiochromic film embedded in the phantom for dose evaluation. Fourteen potential materials were tested to determine relative proton stopping power (RSP and Hounsfield unit (HU values. Each material was CT scanned at 120 kVp, and the RSP was obtained from depth ionization scans using the Zebra multi-layer ion chamber (MLIC at two energies: 160 MeV and 250 MeV. To determine tissue equivalency, the measured RSP for each material was compared to the RSP calculated by the Eclipse TPS for a given HU.Results: The materials selected as bone, tissue, and cartilage substitutes were Techron HPV Bearing Grade (Boedeker Plastics, Inc., solid water, and blue water, respectively. The RSP values did not differ by more than 1.8% between the two energies. The measured RSP for each selected material agreed with the RSP calculated by the Eclipse TPS within 1.2%.Conclusion: An anthropomorphic pediatric proton spine phantom was designed to evaluate proton therapy delivery. The inclusion of multiple tissue substitutes increases heterogeneity and the level of difficulty for institutions to successfully treat the phantom. The following attributes will be evaluated: absolute dose agreement, distal range, field width, junction match and right/left dose profile alignment. The phantom will be tested at several institutions using a 5% dose agreement criterion, and a 5%/3mm gamma

  20. Proton irradiated graphite grades for a long baseline neutrino facility experiment

    Directory of Open Access Journals (Sweden)

    N. Simos

    2017-07-01

    Full Text Available In search of a low-Z pion production target for the Long Baseline Neutrino Facility (LBNF of the Deep Underground Neutrino Experiment (DUNE four graphite grades were irradiated with protons in the energy range of 140–180 MeV, to peak fluence of ∼6.1×10^{20}  p/cm^{2} and irradiation temperatures between 120–200 °C. The test array included POCO ZXF-5Q, Toyo-Tanso IG 430, Carbone-Lorraine 2020 and SGL R7650 grades of graphite. Irradiation was performed at the Brookhaven Linear Isotope Producer. Postirradiation analyses were performed with the objective of (a comparing their response under the postulated irradiation conditions to guide a graphite grade selection for use as a pion target and (b understanding changes in physical and mechanical properties as well as microstructure that occurred as a result of the achieved fluence and in particular at this low-temperature regime where pion graphite targets are expected to operate. A further goal of the postirradiation evaluation was to establish a proton-neutron correlation damage on graphite that will allow for the use of a wealth of available neutron-based damage data in proton-based studies and applications. Macroscopic postirradiation analyses as well as energy dispersive x-ray diffraction of 200 KeV x rays at the NSLS synchrotron of Brookhaven National Laboratory were employed. The macroscopic analyses revealed differences in the physical and strength properties of the four grades with behavior however under proton irradiation that qualitatively agrees with that reported for graphite under neutrons for the same low temperature regime and in particular the increase of thermal expansion, strength and Young’s modulus. The proton fluence level of ∼10^{20}  cm^{−2} where strength reaches a maximum before it begins to decrease at higher fluences has been identified and it agrees with neutron-induced changes. X-ray diffraction analyses of the proton irradiated graphite

  1. Treatment planning with protons for pediatric retinoblastoma, medulloblastoma, and pelvic sarcoma: How do protons compare with other conformal techniques?

    International Nuclear Information System (INIS)

    Lee, Catherine T.; Bilton, Stephen D.; Famiglietti, Robin M.; Riley, Beverly A.; Mahajan, Anita; Chang, Eric L.; Maor, Moshe H.; Woo, Shiao Y.; Cox, James D.; Smith, Alfred R.

    2005-01-01

    Purpose: To calculate treatment plans and compare the dose distributions and dose-volume histograms (DVHs) for photon three-dimensional conformal radiation therapy (3D-CRT), electron therapy, intensity-modulated radiation therapy (IMRT), and standard (nonintensity modulated) proton therapy in three pediatric disease sites. Methods and Materials: The tumor volumes from 8 patients (3 retinoblastomas, 2 medulloblastomas, and 3 pelvic sarcomas) were studied retrospectively to compare DVHs from proton therapy with 3D-CRT, electron therapy, and IMRT. In retinoblastoma, several planning techniques were analyzed: A single electron appositional beam was compared with a single 3D-CRT lateral beam, a 3D-CRT anterior beam paired with a lateral beam, IMRT, and protons. In medulloblastoma, three posterior fossa irradiation techniques were analyzed: 3D-CRT, IMRT, and protons. Craniospinal irradiation (which consisted of composite plans of both the posterior fossa and craniospinal components) was also evaluated, primarily comparing spinal irradiation using 3D-CRT electrons, 3D-CRT photons, and protons. Lastly, in pelvic sarcoma, 3D-CRT, IMRT, and proton plans were assessed. Results: In retinoblastoma, protons resulted in the best target coverage combined with the most orbital bone sparing (10% was the mean orbital bone volume irradiated at ≥5 Gy for protons vs. 25% for 3D-CRT electrons, 69% for IMRT, 41% for a single 3D lateral beam, 51% for a 3D anterolateral beam with a lens block, and 65% for a 3D anterolateral beam without a lens block). A single appositional electron field was the next best technique followed by other planning approaches. In medulloblastoma, for posterior fossa and craniospinal irradiation, protons resulted in the least dose to the cochlea (for only posterior fossa irradiation at ≥20 Gy, 34% was the mean cochlear volume irradiated for protons, 87% for IMRT, 89% for 3D-CRT) and hypothalamus-pituitary axis (for only posterior fossa irradiation at ≥10 Gy

  2. 1976 Hanford americium-exposure incident: decontamination and treatment facility

    International Nuclear Information System (INIS)

    Berry, J.R.; McMurray, B.J.; Jech, J.J.; Breitenstein, B.D.; Quigley, E.J.

    1982-01-01

    An injured worker, contaminated with over 6 mCi of americium-241, required special treatment and housing for 4 months. This paper is a description of the design and management of the facility in which most of the treatment and housing occurred. The problems associated with contamination control, waste handling, supplies, and radiological concerns during the two-stage transfer of the patient from a controlled situation to his normal living environment are discussed in detail

  3. SU-F-T-218: Validation of An In-Vivo Proton Range Verification Method for Reducing the Risk of Permanent Alopecia in the Treatment of Pediatric Medulloblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Lucconi, G [Department of Medical Physics, S. Orsola-Malpighi University Hospital, Bologna (Italy); Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); Bentefour, E; Janssens, G [Advanced Technology Group, Ion Beam Applications (IBA), Louvain la Neuve (Belgium); Deepak, S [Department of Physics, Central University of Karnataka, Karnataka 585367 (India); Weaver, K; Moteabbed, M; Lu, H-M [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States)

    2016-06-15

    Purpose: The clinical commissioning of a workflow for pre-treatment range verification/adjustment for the head treatment of pediatric medulloblastoma patients, including dose monitoring during treatment. Methods: An array of Si-diodes (DIODES Incorporated) is placed on the patient skin on the opposite side to the beam entrance. A “scout” SOBP beam, with a longer beam range to cover the diodes in its plateau, is delivered; the measured signal is analyzed and the extracted water equivalent path lengths (WEPL) are compared to the expected values, revealing if a range correction is needed. Diodes stay in place during treatment to measure dose. The workflow was tested in solid water and head phantoms and validated against independent WEPL measurements. Both measured WEPL and skin doses were compared to computed values from the TPS (XiO); a Markus chamber was used for reference dose measurements. Results: The WEPL accuracy of the method was verified by comparing it with the dose extinction method. It resulted, for both solid water and head phantom, in the sub-millimeter range, with a deviation less than 1% to the value extracted from the TPS. The accuracy of dose measurements in the fall-off part of the dose profile was validated against the Markus chamber. The entire range verification workflow was successfully tested for the mock-treatment of head phantom with the standard delivery of 90 cGy per field per fraction. The WEPL measurement revealed no need for range correction. The dose measurements agreed to better than 4% with the prescription dose. The robustness of the method and workflow, including detector array, hardware set and software functions, was successfully stress-tested with multiple repetitions. Conclusion: The performance of the in-vivo range verification system and related workflow meet the clinical requirements in terms of the needed WEPL accuracy for pretreatment range verification with acceptable dose to the patient.

  4. Energy Efficiency Strategies for Municipal Wastewater Treatment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Daw, J.; Hallett, K.; DeWolfe, J.; Venner, I.

    2012-01-01

    Water and wastewater systems are significant energy consumers with an estimated 3%-4% of total U.S. electricity consumption used for the movement and treatment of water and wastewater. Water-energy issues are of growing importance in the context of water shortages, higher energy and material costs, and a changing climate. In this economic environment, it is in the best interest for utilities to find efficiencies, both in water and energy use. Performing energy audits at water and wastewater treatment facilities is one way community energy managers can identify opportunities to save money, energy, and water. In this paper the importance of energy use in wastewater facilities is illustrated by a case study of a process energy audit performed for Crested Butte, Colorado's wastewater treatment plant. The energy audit identified opportunities for significant energy savings by looking at power intensive unit processes such as influent pumping, aeration, ultraviolet disinfection, and solids handling. This case study presents best practices that can be readily adopted by facility managers in their pursuit of energy and financial savings in water and wastewater treatment. This paper is intended to improve community energy managers understanding of the role that the water and wastewater sector plays in a community's total energy consumption. The energy efficiency strategies described provide information on energy savings opportunities, which can be used as a basis for discussing energy management goals with water and wastewater treatment facility managers.

  5. Operational experience at the Sludge Treatment Facility

    International Nuclear Information System (INIS)

    Sy, D.J.

    1987-01-01

    The Sludge Treatment Facility (STF) at the Oak Ridge Gaseous Diffusion Plant has been in operation since April 1987. The facility was designed to encapsulate hazardous sludge wastes in a cement matrix. Fixation will allow the waste to meet or exceed applicable compressive strength and leachability requirements. Thus, the grout mixture complies with the Resource Conservation and Recovery Act (RCRA) guidelines as a nonhazardous waste. The grout mixture is based upon a recipe formulation developed after several years of waste stream characterization and formulation studies. The wastes to be treated at the STF are wastes impounded in two ponds. The ponds have a combined capacity of 4.5 million gallons of sludge. The sludge is transferred from the ponds to a 15,000-gallon capacity storage tank by the use of a dredge. The grout mixture recipe dictates the amount of sludge, cement, fly ash, and admixture required for weighing per batch. All ingredients are weighed and then transferred to a tilt or high energy mixer for mixing. The grout mixture is then transferred to 89- or 96-gallon steel drums. The drums are placed in a storage yard designed for a point source discharge from the yard

  6. Experiences with an application of industrial robotics for accurate patient positioning in proton radiotherapy.

    Science.gov (United States)

    Allgower, C E; Schreuder, A N; Farr, J B; Mascia, A E

    2007-03-01

    Protons beams deliver targeted radiation doses with greater precision than is possible with electrons or megavoltage X-ray photons, but to retain this advantage, patient positioning systems at proton clinics must meet tighter accuracy requirements. For this and other reasons, robots were incorporated into the treatment room systems at MPRI. The Midwest Proton Radiotherapy Institute (MPRI) is the first radiotherapy facility in the United States to use commercial robots with six degrees of freedom for patient positioning, rather than a traditional bed with four degrees of freedom. This paper outlines the ways in which robots are used at MPRI and attempts to distil insights from the experience of treating over 200 radiotherapy patients with a robotic system from February 2004 to late 2006. The system has performed well, and with great reliability, but there is room for future improvement, especially in ease of use and in reducing the time to get patients into position. Copyright 2006 John Wiley & Sons, Ltd.

  7. PROJECTIZING AN OPERATING NUCLEAR FACILITY

    International Nuclear Information System (INIS)

    Adams, N

    2007-01-01

    This paper will discuss the evolution of an operations-based organization to a project-based organization to facilitate successful deactivation of a major nuclear facility. It will describe the plan used for scope definition, staff reorganization, method estimation, baseline schedule development, project management training, and results of this transformation. It is a story of leadership and teamwork, pride and success. Workers at the Savannah River Site's (SRS) F Canyon Complex (FCC) started with a challenge--take all the hazardous byproducts from nearly 50 years of operations in a major, first-of-its-kind nuclear complex and safely get rid of them, leaving the facility cold, dark, dry and ready for whatever end state is ultimately determined by the United States Department of Energy (DOE). And do it in four years, with a constantly changing workforce and steadily declining funding. The goal was to reduce the overall operating staff by 93% and budget by 94%. The facilities, F Canyon and its adjoined sister, FB Line, are located at SRS, a 310-square-mile nuclear reservation near Aiken, S.C., owned by DOE and managed by Washington Group International subsidiary Washington Savannah River Company (WSRC). These facilities were supported by more than 50 surrounding buildings, whose purpose was to provide support services during operations. The radiological, chemical and industrial hazards inventory in the old buildings was significant. The historical mission at F Canyon was to extract plutonium-239 and uranium-238 from irradiated spent nuclear fuel through chemical processing. FB Line's mission included conversion of plutonium solutions into metal, characterization, stabilization and packaging, and storage of both metal and oxide forms. The plutonium metal was sent to another DOE site for use in weapons. Deactivation in F Canyon began when chemical separations activities were completed in 2002, and a cross-functional project team concept was implemented to successfully

  8. CONCERT A high power proton accelerator driven multi-application facility concept

    CERN Document Server

    Laclare, J L

    2000-01-01

    A new generation of High Power Proton Accelerator (HPPA) is being made available. It opens new avenues to a long series of scientific applications in fundamental and applied research, which can make use of the boosted flux of secondary particles. Presently, in Europe, several disciplines are preparing their project of dedicated facility, based on the upgraded performances of HPPAs. Given the potential synergies between these different projects, for reasons of cost effectiveness, it was considered appropriate to look into the possibility to group a certain number of these applications around a single HPPA: CONCERT project left bracket 1 right bracket . The ensuing 2-year feasibility study organized in collaboration between the European Spallation Source and the CEA just started. EURISOL left bracket 2 right bracket project and CERN participate in the steering committee.

  9. Sludge treatment facility preliminary siting study for the sludge treatment project (A-13B)

    International Nuclear Information System (INIS)

    WESTRA, A.G.

    1999-01-01

    This study evaluates various sites in the 100 K area and 200 areas of Hanford for locating a treatment facility for sludge from the K Basins. Both existing facilities and a new standalone facility were evaluated. A standalone facility adjacent to the AW Tank Farm in the 200 East area of Hanford is recommended as the best location for a sludge treatment facility

  10. Study and conception of the decay ring of a neutrino facility using the β decays of the helium 6 and neon 18 nuclei produced by an intense beam of protons hitting various targets

    International Nuclear Information System (INIS)

    Chance, A.

    2007-09-01

    The study of the neutrino oscillation between its different flavours needs pure and very intense flux of energetic, well collimated neutrinos with a well determined energy spectrum. So, a dedicated machine seems necessary nowadays. Among the different concepts of neutrino facilities, the one which will be studied here, called Beta-Beams, lies on the neutrino production by beta decay of radioactive ions after their acceleration. More precisely, the thesis is focused on the study and the design of the race-track-shaped storage ring of the high energy ions. Its aim is to store the ions until decaying. After a brief description of the neutrino oscillation mechanism and a review of the different experiments, an introduction to the neutrino facility concept and more precisely to the Beta-Beams will be given. Then, the issues linked to the Beta-Beams will be presented. After a description of the beam transport formalism, a first design and the optical properties of the ring will be then given. The effects of the misalignment and of the field errors in the dipoles have been studied. The dynamic aperture optimization is then realized. Handling of the decay losses or the energy collimation scheme will be developed. The off-momentum injection needed in presence of a circulating beam will be explained. Finally, the specific radiofrequency program needed by the beam merging will be presented. (author)

  11. RETROFITTING CONTROL FACILITIES FOR WET-WEATHER FLOW TREATMENT

    Science.gov (United States)

    Available technologies were evaluated to demonstrate the technical feasibility and cost effectiveness of retrofitting existing facilities to handle wet-weather flow. Cost/benefit relationships were also compared to construction of new conventional control and treatment facilities...

  12. Dosimetric comparison of photon and proton treatment techniques for chondrosarcoma of thoracic spine

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Poonam, E-mail: yadav@humonc.wisc.edu [Department of Human Oncology, University of Wisconsin, Madison, WI (United States); Department of Medical Physics, University of Wisconsin, Madison, WI (United States); University of Wisconsin Riverview Cancer Center, Wisconsin Rapids, WI (United States); Paliwal, Bhudatt R. [Department of Human Oncology, University of Wisconsin, Madison, WI (United States); Department of Medical Physics, University of Wisconsin, Madison, WI (United States); Kozak, Kevin [Department of Human Oncology, University of Wisconsin, Madison, WI (United States)

    2013-10-01

    Chondrosarcomas are relatively radiotherapy resistant, and also delivering high radiation doses is not feasible owing to anatomic constraints. In this study, the feasibility of helical tomotherapy for treatment of chondrosarcoma of thoracic spine is explored and compared with other available photon and proton radiotherapy techniques in the clinical setting. A patient was treated for high-grade chondrosarcoma of the thoracic spine using tomotherapy. Retrospectively, the tomotherapy plan was compared with intensity-modulated radiation therapy, dynamic arc photon therapy, and proton therapy. Two primary comparisons were made: (1) comparison of normal tissue sparing with comparable target volume coverage (plan-1), and (2) comparison of target volume coverage with a constrained maximum dose to the cord center (plan-2). With constrained target volume coverage, proton plans were found to yield lower mean doses for all organs at risk (spinal cord, esophagus, heart, and both lungs). Tomotherapy planning resulted in the lowest mean dose to all organs at risk amongst photon-based methods. For cord dose constrained plans, the static-field intensity-modulated radiation therapy and dynamic arc plans resulted target underdosing in 20% and 12% of planning target volume2 volumes, respectively, whereas both proton and tomotherapy plans provided clinically acceptable target volume coverage with no portion of planning target volume2 receiving less than 90% of the prescribed dose. Tomotherapy plans are comparable to proton plans and produce superior results compared with other photon modalities. This feasibility study suggests that tomotherapy is an attractive alternative to proton radiotherapy for delivering high doses to lesions in the thoracic spine.

  13. Dosimetric comparison of photon and proton treatment techniques for chondrosarcoma of thoracic spine

    International Nuclear Information System (INIS)

    Yadav, Poonam; Paliwal, Bhudatt R.; Kozak, Kevin

    2013-01-01

    Chondrosarcomas are relatively radiotherapy resistant, and also delivering high radiation doses is not feasible owing to anatomic constraints. In this study, the feasibility of helical tomotherapy for treatment of chondrosarcoma of thoracic spine is explored and compared with other available photon and proton radiotherapy techniques in the clinical setting. A patient was treated for high-grade chondrosarcoma of the thoracic spine using tomotherapy. Retrospectively, the tomotherapy plan was compared with intensity-modulated radiation therapy, dynamic arc photon therapy, and proton therapy. Two primary comparisons were made: (1) comparison of normal tissue sparing with comparable target volume coverage (plan-1), and (2) comparison of target volume coverage with a constrained maximum dose to the cord center (plan-2). With constrained target volume coverage, proton plans were found to yield lower mean doses for all organs at risk (spinal cord, esophagus, heart, and both lungs). Tomotherapy planning resulted in the lowest mean dose to all organs at risk amongst photon-based methods. For cord dose constrained plans, the static-field intensity-modulated radiation therapy and dynamic arc plans resulted target underdosing in 20% and 12% of planning target volume2 volumes, respectively, whereas both proton and tomotherapy plans provided clinically acceptable target volume coverage with no portion of planning target volume2 receiving less than 90% of the prescribed dose. Tomotherapy plans are comparable to proton plans and produce superior results compared with other photon modalities. This feasibility study suggests that tomotherapy is an attractive alternative to proton radiotherapy for delivering high doses to lesions in the thoracic spine

  14. A proton medical accelerator by the SBIR route — an example of technology transfer

    Science.gov (United States)

    Martin, R. L.

    1989-04-01

    Medical facilities for radiation treatment of cancer with protons have been established in many laboratories throughout the world. Essentially all of these have been designed as physics facilities, however, because of the requirement for protons up to 250 MeV. Most of the experience in this branch of accelerator technology lies in the national laboratories and a few large universities. A major issue is the transfer of this technology to the commercial sector to provide hospitals with simple, reliable and relatively inexpensive accelerators for this application. The author has chosen the SBIR route to accomplish this goal. ACCTEK Associates has received grants from the National Cancer Institute for development of the medical accelerator and beam delivery systems. Considerable encouragement and help has been received from Argonne National Laboratory and the Department of Energy. The experiences to date and the pros and cons on this approach to commercializing medical accelerators are described.

  15. A proton medical accelerator by the SBIR route - an example of technology transfer

    International Nuclear Information System (INIS)

    Martin, R.L.

    1989-01-01

    Medical facilities for radiation treatment of cancer with protons have been established in many laboratories throughout the world. Essentially all of these have been designed as physics facilities, however, because of the requirement for protons up to 250 MeV. Most of the experience on this branch of accelerator technology lies in the national laboratories and a few large universities. A major issue is the transfer of this technology to the commercial sector to provide hospitals with simple, reliable, and relatively inexpensive accelerators for this application. The author has chosen the SBIR route to accomplish this goal. ACCTEK Associates has received grants from the National Cancer Institute for development of the medical accelerator and beam delivery systems. Considerable encouragement and help has been received from Argonne National Laboratory and the Department of Energy. The experiences to date and the pros and cons on this approach to commercializing medical accelerators are described. (orig.)

  16. A proton medical accelerator by the SBIR route: An example of technology transfer

    International Nuclear Information System (INIS)

    Martin, R.L.

    1988-01-01

    Medical facilities for radiation treatment of cancer with protons have been established in many laboratories throughout the world. Essentially all of these have been designed as physics facilities, however, because of the requirement for protons up to 250 MeV. Most of the experience in this branch of accelerator technology lies in the national laboratories and a few large universities. A major issue is the transfer of this technology to the commercial sector to provide hospitals with simple, reliable, and relatively inexpensive accelerators for this application. The author has chosen the SBIR route to accomplish this goal. ACCTEK Associates have received grants from the National Cancer Institute for development of the medical accelerator and beam delivery systems. Considerable encouragement and help has been received from Argonne National Laboratory and the Department of Energy. The experiences to date and the pros and cons on this approach to commercializing medical accelerators are described. 4 refs., 1 fig

  17. Shortening Delivery Times of Intensity Modulated Proton Therapy by Reducing Proton Energy Layers During Treatment Plan Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Water, Steven van de, E-mail: s.vandewater@erasmusmc.nl [Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam (Netherlands); Kooy, Hanne M. [F. H. Burr Proton Therapy Center, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Heijmen, Ben J.M.; Hoogeman, Mischa S. [Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam (Netherlands)

    2015-06-01

    Purpose: To shorten delivery times of intensity modulated proton therapy by reducing the number of energy layers in the treatment plan. Methods and Materials: We have developed an energy layer reduction method, which was implemented into our in-house-developed multicriteria treatment planning system “Erasmus-iCycle.” The method consisted of 2 components: (1) minimizing the logarithm of the total spot weight per energy layer; and (2) iteratively excluding low-weighted energy layers. The method was benchmarked by comparing a robust “time-efficient plan” (with energy layer reduction) with a robust “standard clinical plan” (without energy layer reduction) for 5 oropharyngeal cases and 5 prostate cases. Both plans of each patient had equal robust plan quality, because the worst-case dose parameters of the standard clinical plan were used as dose constraints for the time-efficient plan. Worst-case robust optimization was performed, accounting for setup errors of 3 mm and range errors of 3% + 1 mm. We evaluated the number of energy layers and the expected delivery time per fraction, assuming 30 seconds per beam direction, 10 ms per spot, and 400 Giga-protons per minute. The energy switching time was varied from 0.1 to 5 seconds. Results: The number of energy layers was on average reduced by 45% (range, 30%-56%) for the oropharyngeal cases and by 28% (range, 25%-32%) for the prostate cases. When assuming 1, 2, or 5 seconds energy switching time, the average delivery time was shortened from 3.9 to 3.0 minutes (25%), 6.0 to 4.2 minutes (32%), or 12.3 to 7.7 minutes (38%) for the oropharyngeal cases, and from 3.4 to 2.9 minutes (16%), 5.2 to 4.2 minutes (20%), or 10.6 to 8.0 minutes (24%) for the prostate cases. Conclusions: Delivery times of intensity modulated proton therapy can be reduced substantially without compromising robust plan quality. Shorter delivery times are likely to reduce treatment uncertainties and costs.

  18. Treatment of DOE mixed wastes using commercial facilities

    International Nuclear Information System (INIS)

    Kramer, J.F.; Ross, M.A.; Dilday, D.R.

    1992-02-01

    In a demonstration program, Department of Energy (DOE) solid mixed wastes generated during uranium processing operations are characterized to define the unit operations required for treatment. The objectives included the implementation of these treatment operations utilizing a commercial Treatment, Storage and Disposal Facility (TSDF). In contracting for commercial hazardous and mixed waste treatment, it is important to characterize the waste beyond the identification of toxicity characteristic (TC) and radiological content. Performing treatability studies and verification of all the unit operations required for treatment is critical. The stream selected for this program was TC hazardous for barium (D005) and contaminated with both depleted and low enriched uranium. The program resulted in the generation of characterization data and treatment strategies. The characterization and treatability studies indicated that although a common unit operation was required to remove the toxic characteristic, multiple pretreatment operations were needed. Many of these operations do not exist at available TSDF's, rendering some portions of the stream untreatable using existing commercial TSDF's. For this project the need for pretreatment operations resulted in only a portion of the waste originally targeted for treatment being accepted for treatment at a commercial TSDF. The majority of the targeted stream could not be successfully treated due to lack of an off-site commercial treatment facility having the available equipment and capacity or with the correct combination of RCRA permits and radioactive material handling licenses. This paper presents a case study documenting the results of the project

  19. Improvement of Oil-Vapor Treatment Facility for Wolsong Unit 3,4

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Kwon, S. W.; Lee, H. S.

    2009-11-01

    With the purpose to minimize an oil-vapor discharge to the atmosphere and to be an environmentally friendly nuclear power plant by an improvement of mist eliminator for turbine lubricant system at Wolsong Nuclear Power Plant Unit 3,4, this project - project name : Improvement of Oil-vapor Treatment Facility for Wolsong Unit 3,4 - was conducted for six months (from Apr. 15, 2009 to Oct. 14, 2009). This Project contains Oil-vapor Source and Environmental Regulation, Analysis on the Present Oil-vapor Treatment Facility, Improvement of Oil-vapor Treatment Facility, Test Facility Design, Fabrication, Installation, Test Operation, Evaluation of the Facility

  20. Diagnosis and treatment of malaria in peripheral health facilities in Uganda: findings from an area of low transmission in south-western Uganda

    Directory of Open Access Journals (Sweden)

    Clarke Siân

    2007-04-01

    Full Text Available Abstract Background Early recognition of symptoms and signs perceived as malaria are important for effective case management, as few laboratories are available at peripheral health facilities. The validity and reliability of clinical signs and symptoms used by health workers to diagnose malaria were assessed in an area of low transmission in south-western Uganda. Methods The study had two components: 1 passive case detection where all patients attending the out patient clininc with a febrile illness were included and 2 a longitudinal active malaria case detection survey was conducted in selected villages. A malaria case was defined as any slide-confirmed parasitaemia in a person with an axillary temperature ≥ 37.5°C or a history of fever within the last 24 hrs and no signs suggestive of other diseases. Results Cases of malaria were significantly more likely to report joint pains, headache, vomiting and abdominal pains. However, due to the low prevalence of malaria, the predictive values of these individual signs alone, or in combination, were poor. Only 24.8% of 1627 patients had malaria according to case definition and > 75% of patients were unnecessarily treated for malaria and few slide negative cases received alternative treatment. Conclusion In low-transmission areas, more attention needs to be paid to differential diagnosis of febrile illnesses In view of suggested changes in anti-malarial drug policy, introducing costly artemisinin combination therapy accurate, rapid diagnostic tools are necessary to target treatment to people in need.

  1. FoCa: a modular treatment planning system for proton radiotherapy with research and educational purposes.

    Science.gov (United States)

    Sánchez-Parcerisa, D; Kondrla, M; Shaindlin, A; Carabe, A

    2014-12-07

    FoCa is an in-house modular treatment planning system, developed entirely in MATLAB, which includes forward dose calculation of proton radiotherapy plans in both active and passive modalities as well as a generic optimization suite for inverse treatment planning. The software has a dual education and research purpose. From the educational point of view, it can be an invaluable teaching tool for educating medical physicists, showing the insights of a treatment planning system from a well-known and widely accessible software platform. From the research point of view, its current and potential uses range from the fast calculation of any physical, radiobiological or clinical quantity in a patient CT geometry, to the development of new treatment modalities not yet available in commercial treatment planning systems. The physical models in FoCa were compared with the commissioning data from our institution and show an excellent agreement in depth dose distributions and longitudinal and transversal fluence profiles for both passive scattering and active scanning modalities. 3D dose distributions in phantom and patient geometries were compared with a commercial treatment planning system, yielding a gamma-index pass rate of above 94% (using FoCa's most accurate algorithm) for all cases considered. Finally, the inverse treatment planning suite was used to produce the first prototype of intensity-modulated, passive-scattered proton therapy, using 13 passive scattering proton fields and multi-leaf modulation to produce a concave dose distribution on a cylindrical solid water phantom without any field-specific compensator.

  2. Pain treatment facilities: do we need quantity or quality?

    NARCIS (Netherlands)

    de Meij, N.; Koke, A.; van der Weijden, T.; van Kleef, M.; Patijn, J.

    2014-01-01

    Rationale, aims and objectives: Chronic pain patients referred to a pain treatment facility have no guarantee that they will receive a proper diagnostic procedure or treatment. To obtain information about organizational aspects of pain treatment facilities and the content of their daily pain

  3. Evaluating proton stereotactic body radiotherapy to reduce chest wall dose in the treatment of lung cancer

    International Nuclear Information System (INIS)

    Welsh, James; Amini, Arya; Ciura, Katherine; Nguyen, Ngoc; Palmer, Matt; Soh, Hendrick; Allen, Pamela K.; Paolini, Michael; Liao, Zhongxing; Bluett, Jaques; Mohan, Radhe; Gomez, Daniel; Cox, James D.; Komaki, Ritsuko; Chang, Joe Y.

    2013-01-01

    Stereotactic body radiotherapy (SBRT) can produce excellent local control of several types of solid tumor; however, toxicity to nearby critical structures is a concern. We found previously that in SBRT for lung cancer, the chest wall (CW) volume receiving 20, 30, or 40 Gy (V 20 , V 30 , or V 40 ) was linked with the development of neuropathy. Here we sought to determine whether the dosimetric advantages of protons could produce lower CW doses than traditional photon-based SBRT. We searched an institutional database to identify patients treated with photon SBRT for lung cancer with tumors within 20 was 364.0 cm 3 and 160.0 cm 3 (p 30 was 144.6 cm 3 vs 77.0 cm 3 (p = 0.0012), V 35 was 93.9 cm 3 vs 57.9 cm 3 (p = 0.005), V 40 was 66.5 cm 3 vs 45.4 cm 3 (p = 0.0112), and mean lung dose was 5.9 Gy vs 3.8 Gy (p = 0.0001) for photons and protons, respectively. Coverage of the planning target volume (PTV) was comparable between the 2 sets of plans (96.4% for photons and 97% for protons). From a dosimetric standpoint, proton SBRT can achieve the same coverage of the PTV while significantly reducing the dose to the CW and lung relative to photon SBRT and therefore may be beneficial for the treatment of lesions closer to critical structures

  4. More than 10 years experience of beam monitoring with the Gantry 1 spot scanning proton therapy facility at PSI

    International Nuclear Information System (INIS)

    Lin Shixiong; Boehringer, Terence; Coray, Adolf; Grossmann, Martin; Pedroni, Eros

    2009-01-01

    Purpose: The beam monitoring equipments developed for the first PSI spot scanning proton therapy facility, Gantry 1, have been successfully used for more than 10 years. The purpose of this article is to summarize the author's experience in the beam monitoring technique for dynamic proton scanning. Methods: The spot dose delivery and verification use two independent beam monitoring and computer systems. In this article, the detector construction, electronic system, dosimetry, and quality assurance results are described in detail. The beam flux monitor is calibrated with a Faraday cup. The beam position monitoring is realized by measuring the magnetic fields of deflection magnets with Hall probes before applying the spot and by checking the beam position and width with an ionization strip chamber after the spot delivery. Results: The results of thimble ionization chamber dosimetry measurements are reproducible (with a mean deviation of less than 1% and a standard deviation of 1%). The resolution in the beam position measurement is of the order of a tenth of a millimeter. The tolerance of the beam position delivery and monitoring during scanning is less than 1.5 mm. Conclusions: The experiences gained with the successful operation of Gantry 1 represent a unique and solid background for the development of a new system, Gantry 2, in order to perform new advanced scanning techniques.

  5. More than 10 years experience of beam monitoring with the Gantry 1 spot scanning proton therapy facility at PSI

    Energy Technology Data Exchange (ETDEWEB)

    Lin Shixiong; Boehringer, Terence; Coray, Adolf; Grossmann, Martin; Pedroni, Eros [Center for Proton Therapy, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)

    2009-11-15

    Purpose: The beam monitoring equipments developed for the first PSI spot scanning proton therapy facility, Gantry 1, have been successfully used for more than 10 years. The purpose of this article is to summarize the author's experience in the beam monitoring technique for dynamic proton scanning. Methods: The spot dose delivery and verification use two independent beam monitoring and computer systems. In this article, the detector construction, electronic system, dosimetry, and quality assurance results are described in detail. The beam flux monitor is calibrated with a Faraday cup. The beam position monitoring is realized by measuring the magnetic fields of deflection magnets with Hall probes before applying the spot and by checking the beam position and width with an ionization strip chamber after the spot delivery. Results: The results of thimble ionization chamber dosimetry measurements are reproducible (with a mean deviation of less than 1% and a standard deviation of 1%). The resolution in the beam position measurement is of the order of a tenth of a millimeter. The tolerance of the beam position delivery and monitoring during scanning is less than 1.5 mm. Conclusions: The experiences gained with the successful operation of Gantry 1 represent a unique and solid background for the development of a new system, Gantry 2, in order to perform new advanced scanning techniques.

  6. Study on bulk shielding for a spallation neutron source facility in the high-intensity proton accelerator project

    CERN Document Server

    Maekawa, F; Takada, H; Teshigawara, M; Watanabe, N

    2002-01-01

    Under the JAERI-KEK High-Intensity Proton Accelerator Project, a spallation neutron source driven by a 3 GeV-1 MW proton beam is planed to be constructed in a main part of the Materials and Life Science Facility. This report describes results of a study on bulk shielding performance of a biological shield for the spallation neutron source by means of a Monte Carlo calculation method, that is important in terms of radiation safety and cost reduction. A shielding configuration was determined as a reference case by considering preliminary studies and interaction with other components, then shielding thickness that was required to achieve a target dose rate of 1 mu Sv/h was derived. Effects of calculation conditions such as shielding materials and dimensions on the shielding performance was investigated by changing those parameters. By taking all the results and design margins into account, a shielding configuration that was identified as the most appropriate was finally determined as follows. An iron shield regi...

  7. Proton therapy for pediatric cranial tumors: preliminary report on treatment and disease-related morbidities

    International Nuclear Information System (INIS)

    McAllister, Bruce; Archambeau, John O.; Nguyen, M. Connie; Slater, Jerry D.; Loredo, Lilia; Schulte, Reinhard; Alvarez, Ofelia; Bedros, Antranik A.; Kaleita, Thomas; Moyers, Michael; Miller, Daniel; Slater, James M.

    1997-01-01

    Purpose: Accelerated protons were used in an attempt to limit treatment-related morbidity in children with tumors in or near the developing brain, by reducing the integral dose to adjacent normal tissues. Methods and Materials: Children treated with protons at Loma Linda University Medical Center between August 1991 and December 1994 were analyzed retrospectively. Twenty-eight children, aged 1 to 18 years, were identified as at risk for brain injury from treatment. Medical records, physical examinations, and correspondence with patients, their parents, and referring physicians were analyzed. The investigators tabulated post-treatment changes in pre-treatment signs and symptoms and made judgments as to whether improvement, no change, or worsening related to disease or treatment had supervened. Magnetic resonance images were correlated with clinical findings and radiographic impressions were tabulated. Results: Follow-up ranged from 7 to 49 months (median 25 months). Four instances of treatment-related morbidity were identified. Forty-one instances of site-specific, disease-related morbidity were identified: 15 improved or resolved and 26 remained unchanged after treatment. Four patients had radiographic evidence of local failure. Three of these patients, including two with high-grade glioma, have died. Conclusion: Early treatment-related morbidity associated with proton therapy is low. Tumor progression remains a problem when treating certain histologies such as high-grade glioma. Escalating the dose delivered to target volumes may benefit children with tumors associated with poor rates of local control. Long-term follow-up, including neurocognitive testing, is in progress to assess integral-dose effects on cognitive, behavioral and developmental outcomes in children with cranial tumors

  8. Obesity does not affect treatment outcomes with proton pump inhibitors.

    Science.gov (United States)

    Sharma, Prateek; Vakil, Nimish; Monyak, John T; Silberg, Debra G

    2013-09-01

    Obesity is associated with increased risk of gastroesophageal reflux disease (GERD). To evaluate the effect of obesity on symptom resolution in patients with nonerosive reflux disease (NERD) and healing rates in patients with erosive esophagitis (EE). Two post hoc analyses were performed. Analyses included pooled data from randomized, double-blind, multicenter studies of proton pump inhibitors (PPIs) in GERD patients. Analysis 1 included 704 patients with NERD receiving esomeprazole 20 mg, esomeprazole 40 mg, or placebo. Analysis 2 included 11,027 patients with EE receiving esomeprazole 40 mg, omeprazole 20 mg, or lansoprazole 30 mg. For NERD patients, no significant association between baseline heartburn severity and body mass index (BMI) was observed. In EE patients, overweight (BMI 25 to <35 kg/m) and obese (BMI ≥35 kg/m) patients had significantly higher rates of Los Angeles (LA) grade C or D EE than patients with BMI <25 kg/m (P<0.0001). Percentages of PPI-treated patients who achieved heartburn resolution or EE healing within a given LA grade were similar across BMI categories. Heartburn resolution was significantly associated with treatment (esomeprazole vs. placebo), increasing age, and for men versus women (all P≤0.0284). EE healing was significantly associated with PPI treatment (esomeprazole and lansoprazole vs. omeprazole), increasing age, race, presence of a hiatal hernia, and lower LA grade at baseline (all P≤0.0183). In patients with GERD, high BMI was associated with more severe EE at baseline. However, during PPI treatment, BMI is not a significant independent predictor of heartburn resolution or EE healing.

  9. SU-E-T-400: Evaluation of Shielding and Activation at Two Pencil Beam Scanning Proton Facilities

    International Nuclear Information System (INIS)

    Remmes, N; Mundy, D; Classic, K; Beltran, C; Kruse, J; Herman, M; Stoker, J; Nelson, K; Bues, M

    2015-01-01

    Purpose: To verify acceptably low dose levels around two newly constructed identical pencil beam scanning proton therapy facilities and to evaluate accuracy of pre-construction shielding calculations. Methods: Dose measurements were taken at select points of interest using a WENDI-2 style wide-energy neutron detector. Measurements were compared to pre-construction shielding calculations. Radiation badges with neutron dose measurement capabilities were worn by personnel and also placed at points throughout the facilities. Seven neutron and gamma detectors were permanently installed throughout the facility, continuously logging data. Potential activation hazards have also been investigated. Dose rates near water tanks immediately after prolonged irradiation have been measured. Equipment inside the treatment room and accelerator vault has been surveyed and/or wipe tested. Air filters from air handling units, sticky mats placed outside of the accelerator vault, and water samples from the magnet cooling water loops have also been tested. Results: All radiation badges have been returned with readings below the reporting minimum. Measurements of mats, air filters, cooling water, wipe tests and surveys of equipment that has not been placed in the beam have all come back at background levels. All survey measurements show the analytical shielding calculations to be conservative by at least a factor of 2. No anomalous events have been identified by the building radiation monitoring system. Measurements of dose rates close to scanning water tanks have shown dose rates of approximately 10 mrem/hr with a half-life less than 5 minutes. Measurements around the accelerator show some areas with dose rates slightly higher than 10 mrem/hr. Conclusion: The shielding design is shown to be adequate. Measured dose rates are below those predicted by shielding calculations. Activation hazards are minimal except in certain very well defined areas within the accelerator vault and for objects

  10. SU-E-CAMPUS-T-03: Development and Implementation of An Anthropomorphic Pediatric Spine Phantom for the Assessment of Craniospinal Irradiation Procedures in Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, D; Summers, P; Followill, D; Sahoo, N; Mahajan, A; Stingo, F; Kry, S [UT MD Anderson Cancer Center, Houston, TX (United States)

    2014-06-15

    Purpose: To design an anthropomorphic pediatric spine phantom for use in the evaluation of proton therapy facilities for clinical trial participation by the Imaging and Radiation Oncology Core (IROC) Houston QA Center (formerly RPC). Methods: This phantom was designed to perform an end-to-end audit of the proton spine treatment process, including simulation, dose calculation by the treatment planning system (TPS), and proton treatment delivery. The design incorporated materials simulating the thoracic spinal column of a pediatric patient, along with two thermoluminescent dosimeter (TLD)-100 capsules and radiochromic film embedded in the phantom for dose evaluation. Fourteen potential materials were tested to determine relative proton stopping power (RSP) and Hounsfield unit (HU) values. Each material was CT scanned at 120kVp, and the RSP was obtained from depth ionization scans using the Zebra multilayer ion chamber (MLIC) at two energies: 160 MeV and 250 MeV. To determine tissue equivalency, the measured RSP for each material was compared to the RSP calculated by the Eclipse TPS for a given HU. Results: The materials selected as bone, tissue, and cartilage substitutes were Techron HPV Bearing Grade (Boedeker Plastics, Inc.), solid water, and blue water, respectively. The RSP values did not differ by more than 1.8% between the two energies. The measured RSP for each selected material agreed with the RSP calculated by the Eclipse TPS within 1.2%. Conclusion: An anthropomorphic pediatric proton spine phantom was designed to evaluate proton therapy delivery. The inclusion of multiple tissue substitutes increases heterogeneity and the level of difficulty for institutions to successfully treat the phantom. The following attributes will be evaluated: absolute dose agreement, distal range, field width, junction match and right/left dose profile alignment. The phantom will be tested at several institutions using a 5% dose agreement criterion, and a 5%/3mm gamma analysis

  11. SU-E-CAMPUS-T-03: Development and Implementation of An Anthropomorphic Pediatric Spine Phantom for the Assessment of Craniospinal Irradiation Procedures in Proton Therapy

    International Nuclear Information System (INIS)

    Lewis, D; Summers, P; Followill, D; Sahoo, N; Mahajan, A; Stingo, F; Kry, S

    2014-01-01

    Purpose: To design an anthropomorphic pediatric spine phantom for use in the evaluation of proton therapy facilities for clinical trial participation by the Imaging and Radiation Oncology Core (IROC) Houston QA Center (formerly RPC). Methods: This phantom was designed to perform an end-to-end audit of the proton spine treatment process, including simulation, dose calculation by the treatment planning system (TPS), and proton treatment delivery. The design incorporated materials simulating the thoracic spinal column of a pediatric patient, along with two thermoluminescent dosimeter (TLD)-100 capsules and radiochromic film embedded in the phantom for dose evaluation. Fourteen potential materials were tested to determine relative proton stopping power (RSP) and Hounsfield unit (HU) values. Each material was CT scanned at 120kVp, and the RSP was obtained from depth ionization scans using the Zebra multilayer ion chamber (MLIC) at two energies: 160 MeV and 250 MeV. To determine tissue equivalency, the measured RSP for each material was compared to the RSP calculated by the Eclipse TPS for a given HU. Results: The materials selected as bone, tissue, and cartilage substitutes were Techron HPV Bearing Grade (Boedeker Plastics, Inc.), solid water, and blue water, respectively. The RSP values did not differ by more than 1.8% between the two energies. The measured RSP for each selected material agreed with the RSP calculated by the Eclipse TPS within 1.2%. Conclusion: An anthropomorphic pediatric proton spine phantom was designed to evaluate proton therapy delivery. The inclusion of multiple tissue substitutes increases heterogeneity and the level of difficulty for institutions to successfully treat the phantom. The following attributes will be evaluated: absolute dose agreement, distal range, field width, junction match and right/left dose profile alignment. The phantom will be tested at several institutions using a 5% dose agreement criterion, and a 5%/3mm gamma analysis

  12. An end-to-end assessment of range uncertainty in proton therapy using animal tissues

    Science.gov (United States)

    Zheng, Yuanshui; Kang, Yixiu; Zeidan, Omar; Schreuder, Niek

    2016-11-01

    Accurate assessment of range uncertainty is critical in proton therapy. However, there is a lack of data and consensus on how to evaluate the appropriate amount of uncertainty. The purpose of this study is to quantify the range uncertainty in various treatment conditions in proton therapy, using transmission measurements through various animal tissues. Animal tissues, including a pig head, beef steak, and lamb leg, were used in this study. For each tissue, an end-to-end test closely imitating patient treatments was performed. This included CT scan simulation, treatment planning, image-guided alignment, and beam delivery. Radio-chromic films were placed at various depths in the distal dose falloff region to measure depth dose. Comparisons between measured and calculated doses were used to evaluate range differences. The dose difference at the distal falloff between measurement and calculation depends on tissue type and treatment conditions. The estimated range difference was up to 5, 6 and 4 mm for the pig head, beef steak, and lamb leg irradiation, respectively. Our study shows that the TPS was able to calculate proton range within about 1.5% plus 1.5 mm. Accurate assessment of range uncertainty in treatment planning would allow better optimization of proton beam treatment, thus fully achieving proton beams’ superior dose advantage over conventional photon-based radiation therapy.

  13. Centralized treatment facility for L/ILW produced in Iran

    International Nuclear Information System (INIS)

    Ettehadian, M.; Momenzadeh, S.; Ansar, M.; Burcl, R.

    2001-01-01

    Full text: Normal operation of 5 MW research reactor, and radioisotope application in medicine, industry and research institutes generate a significant amount of low level radioactive waste. The volume is expected to increase with the expansion of nuclear application. This paper describes the establishing of centralized waste treatment facility developed by Atomic Energy Organization of Iran (AEOI) using IAEA technical assistance and recommendation. The new treatment facility will enable the currently produced RW to be treated conditioned and stored until a national repository becomes available. The centralized facility consists of a waste processing and storage buildings, which will be used to store conditioned waste drums. The treatment methods used for liquid wastes are precipitation, ion exchange and ultra filtration followed by In-drum cementation of residues. An In-drum compactor will be used for compaction of solid wastes. Safe management of low and intermediate radioactive waste, better protection of environment and population and applying suitable and economical processes for treatment of L/ILW are the other objectives of this activity. (author)

  14. Analysis of 440 GeV proton beam-matter interaction experiments at the High Radiation Materials test facility at CERN

    Science.gov (United States)

    Burkart, F.; Schmidt, R.; Raginel, V.; Wollmann, D.; Tahir, N. A.; Shutov, A.; Piriz, A. R.

    2015-08-01

    In a previous paper [Schmidt et al., Phys. Plasmas 21, 080701 (2014)], we presented the first results on beam-matter interaction experiments that were carried out at the High Radiation Materials test facility at CERN. In these experiments, extended cylindrical targets of solid copper were irradiated with beam of 440 GeV protons delivered by the Super Proton Synchrotron (SPS). The beam comprised of a large number of high intensity proton bunches, each bunch having a length of 0.5 ns with a 50 ns gap between two neighboring bunches, while the length of this entire bunch train was about 7 μs. These experiments established the existence of the hydrodynamic tunneling phenomenon the first time. Detailed numerical simulations of these experiments were also carried out which were reported in detail in another paper [Tahir et al., Phys. Rev. E 90, 063112 (2014)]. Excellent agreement was found between the experimental measurements and the simulation results that validate our previous simulations done using the Large Hadron Collider (LHC) beam of 7 TeV protons [Tahir et al., Phys. Rev. Spec. Top.--Accel. Beams 15, 051003 (2012)]. According to these simulations, the range of the full LHC proton beam and the hadronic shower can be increased by more than an order of magnitude due to the hydrodynamic tunneling, compared to that of a single proton. This effect is of considerable importance for the design of machine protection system for hadron accelerators such as SPS, LHC, and Future Circular Collider. Recently, using metal cutting technology, the targets used in these experiments have been dissected into finer pieces for visual and microscopic inspection in order to establish the precise penetration depth of the protons and the corresponding hadronic shower. This, we believe will be helpful in studying the very important phenomenon of hydrodynamic tunneling in a more quantitative manner. The details of this experimental work together with a comparison with the numerical

  15. High intensity proton accelerator and its application (Proton Engineering Center)

    International Nuclear Information System (INIS)

    Tanaka, Shun-ichi

    1995-01-01

    A plan called PROTON ENGINEERING CENTER has been proposed in JAERI. The center is a complex composed of research facilities and a beam shape and storage ring based on a proton linac with an energy of 1.5 GeV and an average current of 10 mA. The research facilities planned are OMEGA·Nuclear Energy Development Facility, Neutron Facility for Material Irradiation, Nuclear Data Experiment Facility, Neutron Factory, Meson Factory, Spallation Radioisotope Beam Facility, and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutrons, π-mesons, muons, and unstable isotopes originated from the protons are available for promoting the innovative research of nuclear energy and basic science and technology. (author)

  16. Neutron shielding calculations in a proton therapy facility based on Monte Carlo simulations and analytical models: Criterion for selecting the method of choice

    International Nuclear Information System (INIS)

    Titt, U.; Newhauser, W. D.

    2005-01-01

    Proton therapy facilities are shielded to limit the amount of secondary radiation to which patients, occupational workers and members of the general public are exposed. The most commonly applied shielding design methods for proton therapy facilities comprise semi-empirical and analytical methods to estimate the neutron dose equivalent. This study compares the results of these methods with a detailed simulation of a proton therapy facility by using the Monte Carlo technique. A comparison of neutron dose equivalent values predicted by the various methods reveals the superior accuracy of the Monte Carlo predictions in locations where the calculations converge. However, the reliability of the overall shielding design increases if simulation results, for which solutions have not converged, e.g. owing to too few particle histories, can be excluded, and deterministic models are being used at these locations. Criteria to accept or reject Monte Carlo calculations in such complex structures are not well understood. An optimum rejection criterion would allow all converging solutions of Monte Carlo simulation to be taken into account, and reject all solutions with uncertainties larger than the design safety margins. In this study, the optimum rejection criterion of 10% was found. The mean ratio was 26, 62% of all receptor locations showed a ratio between 0.9 and 10, and 92% were between 1 and 100. (authors)

  17. Commissioning of the ECR ion source of the high intensity proton injector of the Facility for Antiproton and Ion Research (FAIR)

    Science.gov (United States)

    Tuske, O.; Chauvin, N.; Delferriere, O.; Fils, J.; Gauthier, Y.

    2018-05-01

    The CEA at Saclay is in charge of developing and building the ion source and the low energy line of the proton linac of the FAIR (Facility for Antiproton and Ion Research) accelerator complex located at GSI (Darmstadt) in Germany. The FAIR facility will deliver stable and rare isotope beams covering a huge range of intensities and beam energies for experiments in the fields of atomic physics, plasma physics, nuclear physics, hadron physics, nuclear matter physics, material physics, and biophysics. A significant part of the experimental program at FAIR is dedicated to antiproton physics that requires an ultimate number 7 × 1010 cooled pbar/h. The high-intensity proton beam that is necessary for antiproton production will be delivered by a dedicated 75 mA/70 MeV proton linac. A 2.45 GHz microwave ion source will deliver a 100 mA H+ beam pulsed at 4 Hz with an energy of 95 keV. A 2 solenoids low energy beam transport line allows the injection of the proton beam into the radio frequency quadrupole (RFQ) within an acceptance of 0.3π mm mrad (norm. rms). An electrostatic chopper system located between the second solenoid and the RFQ is used to cut the beam macro-pulse from the source to inject 36 μs long beam pulses into the RFQ. At present time, a Ladder-RFQ is under construction at the University of Frankfurt. This article reports the first beam measurements obtained since mid of 2016. Proton beams have been extracted from the ECR ion source and analyzed just after the extraction column on a dedicated diagnostic chamber. Emittance measurements as well as extracted current and species proportion analysis have been performed in different configurations of ion source parameters, such as magnetic field profile, radio frequency power, gas injection, and puller electrode voltage.

  18. Estimation of marginal costs at existing waste treatment facilities.

    Science.gov (United States)

    Martinez-Sanchez, Veronica; Hulgaard, Tore; Hindsgaul, Claus; Riber, Christian; Kamuk, Bettina; Astrup, Thomas F

    2016-04-01

    This investigation aims at providing an improved basis for assessing economic consequences of alternative Solid Waste Management (SWM) strategies for existing waste facilities. A bottom-up methodology was developed to determine marginal costs in existing facilities due to changes in the SWM system, based on the determination of average costs in such waste facilities as function of key facility and waste compositional parameters. The applicability of the method was demonstrated through a case study including two existing Waste-to-Energy (WtE) facilities, one with co-generation of heat and power (CHP) and another with only power generation (Power), affected by diversion strategies of five waste fractions (fibres, plastic, metals, organics and glass), named "target fractions". The study assumed three possible responses to waste diversion in the WtE facilities: (i) biomass was added to maintain a constant thermal load, (ii) Refused-Derived-Fuel (RDF) was included to maintain a constant thermal load, or (iii) no reaction occurred resulting in a reduced waste throughput without full utilization of the facility capacity. Results demonstrated that marginal costs of diversion from WtE were up to eleven times larger than average costs and dependent on the response in the WtE plant. Marginal cost of diversion were between 39 and 287 € Mg(-1) target fraction when biomass was added in a CHP (from 34 to 303 € Mg(-1) target fraction in the only Power case), between -2 and 300 € Mg(-1) target fraction when RDF was added in a CHP (from -2 to 294 € Mg(-1) target fraction in the only Power case) and between 40 and 303 € Mg(-1) target fraction when no reaction happened in a CHP (from 35 to 296 € Mg(-1) target fraction in the only Power case). Although average costs at WtE facilities were highly influenced by energy selling prices, marginal costs were not (provided a response was initiated at the WtE to keep constant the utilized thermal capacity). Failing to systematically

  19. A comprehensive centralized control system for radiation waste treatment facility

    International Nuclear Information System (INIS)

    Kong Jinsong

    2014-01-01

    A comprehensive centralized control system is designed for the radiation waste treatment facility that lacking of coordinated operational mechanism for the radiation waste treatment. The centralized control and alarm linkage of various systems is implemented to ensure effectively the safety of nuclear facility and materials, improve the integral control ability through advanced informatization ways. (author)

  20. Development of a tritium monitor combined with an electrochemical tritium pump using a proton conducting oxide

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, M. [National Institute for Fusion Science, Toki, Gifu (Japan); Sugiyama, T. [Nagoya University, Fro-cho, Chikusa-ku, Nagoya (Japan)

    2015-03-15

    The detection of low level tritium is one of the key issues for tritium management in tritium handling facilities. Such a detection can be performed by tritium monitors based on proton conducting oxide technique. We tested a tritium monitoring system composed of a commercial proportional counter combined with an electrochemical hydrogen pump equipped with CaZr{sub 0.9}In{sub 0.1}O{sub 3-α} as proton conducting oxide. The hydrogen pump operated at 973 K under electrolysis conditions using tritiated water vapor (HTO). The proton conducting oxide extracts tritium molecules (HT) from HTO and tritium concentration is measured by the proportional counter. The advantage of the proposed tritium monitoring system is that it is able to convert HTO into molecular hydrogen.

  1. 3-dimensional shielding design for a spallation neutron source facility in the high-intensity proton accelerator project

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Masaya; Maekawa, Fujio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    Evaluation of shielding performance for a 1 MW spallation neutron source facility in the Materials and Life Science Facility being constructed in the High-Intensity Proton Accelerator Project (J-PARC) is important from a viewpoint of radiation safety and optimization of arrangement of components. This report describes evaluated results for the shielding performance with modeling three-dimensionally whole structural components including gaps between them in detail. A Monte Carlo calculation method with MCNPX2.2.6 code and LA-150 library was adopted. Streaming and void effects, optimization of shield for cost reduction and optimization of arrangement of structures such as shutters were investigated. The streaming effects were investigated quantitatively by changing the detailed structure of components and gap widths built into the calculation model. Horizontal required shield thicknesses were ranged from about 6.5 m to 7.5 m as a function of neutron beam line angles. A shutter mechanism for a horizontal neutron reflectometer that was directed downward was devised, and it was shown that the shielding performance of the shutter was acceptable. An optimal biological shield configuration was finally determined according to the calculated results. (author)

  2. The RaDIATE High-Energy Proton Materials Irradiation Experiment at the Brookhaven Linac Isotope Producer Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ammigan, Kavin; et al.

    2017-05-01

    The RaDIATE collaboration (Radiation Damage In Accelerator Target Environments) was founded in 2012 to bring together the high-energy accelerator target and nuclear materials communities to address the challenging issue of radiation damage effects in beam-intercepting materials. Success of current and future high intensity accelerator target facilities requires a fundamental understanding of these effects including measurement of materials property data. Toward this goal, the RaDIATE collaboration organized and carried out a materials irradiation run at the Brookhaven Linac Isotope Producer facility (BLIP). The experiment utilized a 181 MeV proton beam to irradiate several capsules, each containing many candidate material samples for various accelerator components. Materials included various grades/alloys of beryllium, graphite, silicon, iridium, titanium, TZM, CuCrZr, and aluminum. Attainable peak damage from an 8-week irradiation run ranges from 0.03 DPA (Be) to 7 DPA (Ir). Helium production is expected to range from 5 appm/DPA (Ir) to 3,000 appm/DPA (Be). The motivation, experimental parameters, as well as the post-irradiation examination plans of this experiment are described.

  3. Conceptual Design of an Antiproton Generation and Storage Facility

    Energy Technology Data Exchange (ETDEWEB)

    Peggs, Stephen

    2006-10-24

    The Antiproton Generation and Storage Facility (AGSF) creates copious quantities of antiprotons, for bottling and transportation to remote cancer therapy centers. The first step in the generation and storage process is to accelerate an intense proton beam down the Main Linac for injection into the Main Ring, which is a Rapid Cycling Synchrotron that accelerates the protons to high energy. The beam is then extracted from the ring into a transfer line and into a Proton Target. Immediately downstream of the target is an Antiproton Collector that captures some of the antiprotons and focuses them into a beam that is transported sequentially into two antiproton rings. The Precooler ring rapidly manipulates antiproton bunches from short and broad (in momentum) to long and thin. It then performs some preliminary beam cooling, in the fraction of a second before the next proton bunch is extracted from the Main Ring. Pre-cooled antiprotons are passed on to the Accumulator ring before the next antiprotons arrive from the target. The Accumulator ring cools the antiprotons, compressing them into a dense state that is convenient for mass storage over many hours. Occasionally the Accumulator ring decelerates a large number of antiprotons, injecting them into a Deceleration Linac that passes them into a waiting Penning trap.

  4. Conceptual Design of an Antiproton Generation and Storage Facility

    International Nuclear Information System (INIS)

    Peggs, Stephen

    2006-01-01

    The Antiproton Generation and Storage Facility (AGSF) creates copious quantities of antiprotons, for bottling and transportation to remote cancer therapy centers. The first step in the generation and storage process is to accelerate an intense proton beam down the Main Linac for injection into the Main Ring, which is a Rapid Cycling Synchrotron that accelerates the protons to high energy. The beam is then extracted from the ring into a transfer line and into a Proton Target. Immediately downstream of the target is an Antiproton Collector that captures some of the antiprotons and focuses them into a beam that is transported sequentially into two antiproton rings. The Precooler ring rapidly manipulates antiproton bunches from short and broad (in momentum) to long and thin. It then performs some preliminary beam cooling, in the fraction of a second before the next proton bunch is extracted from the Main Ring. Pre-cooled antiprotons are passed on to the Accumulator ring before the next antiprotons arrive from the target. The Accumulator ring cools the antiprotons, compressing them into a dense state that is convenient for mass storage over many hours. Occasionally the Accumulator ring decelerates a large number of antiprotons, injecting them into a Deceleration Linac that passes them into a waiting Penning trap

  5. Evaluating proton stereotactic body radiotherapy to reduce chest wall dose in the treatment of lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Welsh, James, E-mail: jwelsh@mdanderson.org [Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Amini, Arya [Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); UC Irvine School of Medicine, Irvine, CA (United States); Ciura, Katherine; Nguyen, Ngoc; Palmer, Matt [Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Soh, Hendrick [Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Department of Radiation Physics, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Allen, Pamela K.; Paolini, Michael; Liao, Zhongxing [Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Bluett, Jaques; Mohan, Radhe [Department of Radiation Physics, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Gomez, Daniel; Cox, James D.; Komaki, Ritsuko; Chang, Joe Y. [Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States)

    2013-01-01

    Stereotactic body radiotherapy (SBRT) can produce excellent local control of several types of solid tumor; however, toxicity to nearby critical structures is a concern. We found previously that in SBRT for lung cancer, the chest wall (CW) volume receiving 20, 30, or 40 Gy (V{sub 20}, V{sub 30}, or V{sub 40}) was linked with the development of neuropathy. Here we sought to determine whether the dosimetric advantages of protons could produce lower CW doses than traditional photon-based SBRT. We searched an institutional database to identify patients treated with photon SBRT for lung cancer with tumors within < 2.5 cm of the CW. We found 260 cases; of these, chronic grade ≥ 2 CW pain was identified in 23 patients. We then selected 10 representative patients from this group and generated proton SBRT treatment plans, using the identical dose of 50 Gy in 4 fractions, and assessed potential differences in CW dose between the 2 plans. The proton SBRT plans reduced the CW doses at all dose levels measured. The median CW V{sub 20} was 364.0 cm{sup 3} and 160.0 cm{sup 3} (p < 0.0001), V{sub 30} was 144.6 cm{sup 3}vs 77.0 cm{sup 3} (p = 0.0012), V{sub 35} was 93.9 cm{sup 3}vs 57.9 cm{sup 3} (p = 0.005), V{sub 40} was 66.5 cm{sup 3}vs 45.4 cm{sup 3} (p = 0.0112), and mean lung dose was 5.9 Gy vs 3.8 Gy (p = 0.0001) for photons and protons, respectively. Coverage of the planning target volume (PTV) was comparable between the 2 sets of plans (96.4% for photons and 97% for protons). From a dosimetric standpoint, proton SBRT can achieve the same coverage of the PTV while significantly reducing the dose to the CW and lung relative to photon SBRT and therefore may be beneficial for the treatment of lesions closer to critical structures.

  6. Estimate of neutron secondary doses received by patients in proton therapy: cases of ophthalmologic treatments

    International Nuclear Information System (INIS)

    Martinetti, F.

    2009-12-01

    This research thesis aims at assessing doses due to secondary neutrons and received by the organs of a patient which are located outside of the treatment field. The study focused on ophthalmological treatments performed at the Orsay proton therapy centre. A 75 eV beam line model has first been developed with the MCNPX Monte Carlo code. Several experimental validations of this model have been performed: proton dose distribution in a water phantom, ambient equivalent dose due to secondary neutrons and neutron spectra in the treatment room, and doses deposited by secondary neutrons in an anthropomorphous phantom. Simulations and measurements are in correct agreement. Then, a numeric assessment of secondary doses received by the patient's organs has been performed by using a MIRD-type mathematical phantom. These doses have been computed for several organs: the non-treated eye, the brain, the thyroid, and other parts of the body situated either in the front part of the body (the one directly exposed to neutrons generated in the treatment line) or deeper and further from the treatment field

  7. Mixed and Low-Level Waste Treatment Facility project

    International Nuclear Information System (INIS)

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report, Appendix A, Environmental ampersand Regulatory Planning ampersand Documentation, identifies the regulatory requirements that would be imposed on the operation or construction of a facility designed to process the INEL's waste streams. These requirements are contained in five reports that discuss the following topics: (1) an environmental compliance plan and schedule, (2) National Environmental Policy Act requirements, (3) preliminary siting requirements, (4) regulatory justification for the project, and (5) health and safety criteria

  8. Determination of elemental tissue composition following proton treatment using positron emission tomography

    International Nuclear Information System (INIS)

    Cho, Jongmin; Ibbott, Geoffrey; Gillin, Michael; Gonzalez-Lepera, Carlos; Min, Chul Hee; Zhu, Xuping; El Fakhri, Georges; Paganetti, Harald; Mawlawi, Osama

    2013-01-01

    Positron emission tomography (PET) has been suggested as an imaging technique for in vivo proton dose and range verification after proton induced-tissue activation. During proton treatment, irradiated tissue is activated and decays while emitting positrons. In this paper, we assessed the feasibility of using PET imaging after proton treatment to determine tissue elemental composition by evaluating the resultant composite decay curve of activated tissue. A phantom consisting of sections composed of different combinations of 1 H, 12 C, 14 N, and 16 O was irradiated using a pristine Bragg peak and a 6 cm spread-out Bragg-peak (SOBP) proton beam. The beam ranges defined at 90% distal dose were 10 cm; the delivered dose was 1.6 Gy for the near monoenergetic beam and 2 Gy for the SOBP beam. After irradiation, activated phantom decay was measured using an in-room PET scanner for 30 min in list mode. Decay curves from the activated 12 C and 16 O sections were first decomposed into multiple simple exponential decay curves, each curve corresponding to a constituent radioisotope, using a least-squares method. The relative radioisotope fractions from each section were determined. These fractions were used to guide the decay curve decomposition from the section consisting mainly of 12 C + 16 O and calculate the relative elemental composition of 12 C and 16 O. A Monte Carlo simulation was also used to determine the elemental composition of the 12 C + 16 O section. The calculated compositions of the 12 C + 16 O section using both approaches (PET and Monte Carlo) were compared with the true known phantom composition. Finally, two patients were imaged using an in-room PET scanner after proton therapy of the head. Their PET data and the technique described above were used to construct elemental composition ( 12 C and 16 O) maps that corresponded to the proton-activated regions. We compared the 12 C and 16 O compositions of seven ROIs that corresponded to the vitreous humor, adipose

  9. Treatment of the uterus cervix cancer with the JINR phasotron proton beam

    International Nuclear Information System (INIS)

    Astrakhan, B.V.; Kiseleva, V.N.; Pojdenko, V.K.; Klochkov, I.I.; Molokanov, A.G.; Mitsin, G.V.; Savchenko, O.V.; Zorin, V.P.

    1995-01-01

    The methods of the uterus cervix cancer proton-and-gamma treatment for the first time were elaborated in the CRC RAMS and ITEP in Moscow and then developed for the JINR proton beam in Dubna. The results of the clinical probation of the methods for the uterus cervix cancer treatment have confirmed the advantage of the proton irradiation. The most important advantage of the proton beam treatment is absence of postradiation reactions and complications in the critical organs (bladder and rectum). Up to now 31 patients with the uterus cervix cancer have been treated at the JINR phasotron. 6 of them had proton-and-gamma treatment combined with surgical operation and 22 patients received a radical proton-and-gamma treatment (without surgery). The clinical results are in good agreement with the preceding results of the ITEP group. After receiving proton-and-gamma radiotherapy of the uterus cervix, 83% of the patients are alive without recurrences, metastases and complications. 10 refs., 4 figs., 2 tabs

  10. Reducing the Cost of Proton Radiation Therapy: The Feasibility of a Streamlined Treatment Technique for Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Newhauser, Wayne D., E-mail: newhauser@lsu.edu [Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, LA 70803 (United States); Department of Physics, Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, LA 70809 (United States); Zhang, Rui [Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, LA 70803 (United States); Department of Physics, Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, LA 70809 (United States); Departments of Radiation Physics and Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 (United States); The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030 (United States); Jones, Timothy G. [Departments of Radiation Physics and Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 (United States); The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030 (United States); Department of Physics, Abilene Christian University, ACU Box 27963, Abilene, TX 79699 (United States); Giebeler, Annelise; Taddei, Phillip J. [Departments of Radiation Physics and Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 (United States); The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030 (United States); Stewart, Robert D. [Department of Radiation Oncology, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356043, Seattle, WA 98195 (United States); Lee, Andrew [Departments of Radiation Physics and Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 (United States); Vassiliev, Oleg [Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, LA 70803 (United States); Department of Physics, Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, LA 70809 (United States)

    2015-04-24

    Proton radiation therapy is an effective modality for cancer treatments, but the cost of proton therapy is much higher compared to conventional radiotherapy and this presents a formidable barrier to most clinical practices that wish to offer proton therapy. Little attention in literature has been paid to the costs associated with collimators, range compensators and hypofractionation. The objective of this study was to evaluate the feasibility of cost-saving modifications to the present standard of care for proton treatments for prostate cancer. In particular, we quantified the dosimetric impact of a treatment technique in which custom fabricated collimators were replaced with a multileaf collimator (MLC) and the custom range compensators (RC) were eliminated. The dosimetric impacts of these modifications were assessed for 10 patients with a commercial treatment planning system (TPS) and confirmed with corresponding Monte Carlo simulations. We assessed the impact on lifetime risks of radiogenic second cancers using detailed dose reconstructions and predictive dose-risk models based on epidemiologic data. We also performed illustrative calculations, using an isoeffect model, to examine the potential for hypofractionation. Specifically, we bracketed plausible intervals of proton fraction size and total treatment dose that were equivalent to a conventional photon treatment of 79.2 Gy in 44 fractions. Our results revealed that eliminating the RC and using an MLC had negligible effect on predicted dose distributions and second cancer risks. Even modest hypofractionation strategies can yield substantial cost savings. Together, our results suggest that it is feasible to modify the standard of care to increase treatment efficiency, reduce treatment costs to patients and insurers, while preserving high treatment quality.

  11. Reducing the Cost of Proton Radiation Therapy: The Feasibility of a Streamlined Treatment Technique for Prostate Cancer

    International Nuclear Information System (INIS)

    Newhauser, Wayne D.; Zhang, Rui; Jones, Timothy G.; Giebeler, Annelise; Taddei, Phillip J.; Stewart, Robert D.; Lee, Andrew; Vassiliev, Oleg

    2015-01-01

    Proton radiation therapy is an effective modality for cancer treatments, but the cost of proton therapy is much higher compared to conventional radiotherapy and this presents a formidable barrier to most clinical practices that wish to offer proton therapy. Little attention in literature has been paid to the costs associated with collimators, range compensators and hypofractionation. The objective of this study was to evaluate the feasibility of cost-saving modifications to the present standard of care for proton treatments for prostate cancer. In particular, we quantified the dosimetric impact of a treatment technique in which custom fabricated collimators were replaced with a multileaf collimator (MLC) and the custom range compensators (RC) were eliminated. The dosimetric impacts of these modifications were assessed for 10 patients with a commercial treatment planning system (TPS) and confirmed with corresponding Monte Carlo simulations. We assessed the impact on lifetime risks of radiogenic second cancers using detailed dose reconstructions and predictive dose-risk models based on epidemiologic data. We also performed illustrative calculations, using an isoeffect model, to examine the potential for hypofractionation. Specifically, we bracketed plausible intervals of proton fraction size and total treatment dose that were equivalent to a conventional photon treatment of 79.2 Gy in 44 fractions. Our results revealed that eliminating the RC and using an MLC had negligible effect on predicted dose distributions and second cancer risks. Even modest hypofractionation strategies can yield substantial cost savings. Together, our results suggest that it is feasible to modify the standard of care to increase treatment efficiency, reduce treatment costs to patients and insurers, while preserving high treatment quality

  12. The RADEX facility as a tool for studies of radiation damage under proton and spallation neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Koptelov, E.A.; Lebedev, S.G.; Matveev, V.A.; Sobolevsky, N.M. [Institute for Nuclear Research of Russian Academy of Sciences, Moscow (Russian Federation); Strebkov, Yu.S.; Subbotin, A.V. [Research and Development Institute of Power Engineering, Moscow (Russian Federation)

    2001-03-01

    We present results of numerical modeling for processes of primary protons and spallation neutrons interactions with structural materials at the RADiation EXperiment facility of the Neutron Complex. The installation has a vertical irradiation channel inside the beam stop for horizontally incident protons with energies up to 600 MeV of the Moscow Meson Factory of the INR (Institute for Nuclear Research) RAS (Russian Academy of Science). The calculations are based on a set of computer codes SHIELD and RADDAM, which were developed in the INR RAS and give data on point defect generation by irradiation, rate of accumulation of H and He atoms produced in nuclear reactions, energetic spectra of primary knocked-off atoms in collision displacements, temperature of samples under irradiation. Different positions of the channel, which are available by rotation of a target relatively the vertical axis for angles 0, 60, 120 and 180 degrees to the proton beam direction, are considered. Changes of irradiation damage parameters due to various inputs of primary protons and spallation neutrons at different target orientations are demonstrated. It is shown also that the spallation neutron facility RADEX may provide with perspective experimental possibilities for modeling of irradiation conditions for fusion reactors ITER and DEMO. (author)

  13. Radioactive Liquid Waste Treatment Facility: Environmental Information Document

    Energy Technology Data Exchange (ETDEWEB)

    Haagenstad, H.T.; Gonzales, G.; Suazo, I.L. [Los Alamos National Lab., NM (United States)

    1993-11-01

    At Los Alamos National Laboratory (LANL), the treatment of radioactive liquid waste is an integral function of the LANL mission: to assure U.S. military deterrence capability through nuclear weapons technology. As part of this mission, LANL conducts nuclear materials research and development (R&D) activities. These activities generate radioactive liquid waste that must be handled in a manner to ensure protection of workers, the public, and the environment. Radioactive liquid waste currently generated at LANL is treated at the Radioactive Liquid Waste Treatment Facility (RLWTF), located at Technical Area (TA)-50. The RLWTF is 30 years old and nearing the end of its useful design life. The facility was designed at a time when environmental requirements, as well as more effective treatment technologies, were not inherent in engineering design criteria. The evolution of engineering design criteria has resulted in the older technology becoming less effective in treating radioactive liquid wastestreams in accordance with current National Pollutant Discharge Elimination System (NPDES) and Department of Energy (DOE) regulatory requirements. Therefore, to support ongoing R&D programs pertinent to its mission, LANL is in need of capabilities to efficiently treat radioactive liquid waste onsite or to transport the waste off site for treatment and/or disposal. The purpose of the EID is to provide the technical baseline information for subsequent preparation of an Environmental Impact Statement (EIS) for the RLWTF. This EID addresses the proposed action and alternatives for meeting the purpose and need for agency action.

  14. Radioactive Liquid Waste Treatment Facility: Environmental Information Document

    International Nuclear Information System (INIS)

    Haagenstad, H.T.; Gonzales, G.; Suazo, I.L.

    1993-11-01

    At Los Alamos National Laboratory (LANL), the treatment of radioactive liquid waste is an integral function of the LANL mission: to assure U.S. military deterrence capability through nuclear weapons technology. As part of this mission, LANL conducts nuclear materials research and development (R ampersand D) activities. These activities generate radioactive liquid waste that must be handled in a manner to ensure protection of workers, the public, and the environment. Radioactive liquid waste currently generated at LANL is treated at the Radioactive Liquid Waste Treatment Facility (RLWTF), located at Technical Area (TA)-50. The RLWTF is 30 years old and nearing the end of its useful design life. The facility was designed at a time when environmental requirements, as well as more effective treatment technologies, were not inherent in engineering design criteria. The evolution of engineering design criteria has resulted in the older technology becoming less effective in treating radioactive liquid wastestreams in accordance with current National Pollutant Discharge Elimination System (NPDES) and Department of Energy (DOE) regulatory requirements. Therefore, to support ongoing R ampersand D programs pertinent to its mission, LANL is in need of capabilities to efficiently treat radioactive liquid waste onsite or to transport the waste off site for treatment and/or disposal. The purpose of the EID is to provide the technical baseline information for subsequent preparation of an Environmental Impact Statement (EIS) for the RLWTF. This EID addresses the proposed action and alternatives for meeting the purpose and need for agency action

  15. The Beam Profile Monitoring System for the CERN IRRAD Proton Facility

    CERN Document Server

    Ravotti, F; Glaser, M; Matli, E; Pezzullo, G; Gan, K K; Kagan, H; Smith, S; Warner, J D

    2017-01-01

    GeV/c proton beam is used. During beam steering and irradiation, the intensity and the transverse profile of the proton beam are monitored online with custom-made Beam Profile Monitor (BPM) devices. In this work, we present the design and the architecture of the IRRAD BPM system, some results on its performance with the proton beam, as well as its planned grades.

  16. Implementation of an Analytical Model for Leakage Neutron Equivalent Dose in a Proton Radiotherapy Planning System

    Energy Technology Data Exchange (ETDEWEB)

    Eley, John [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030 (United States); Graduate School of Biomedical Sciences, The University of Texas, 6767 Bertner Ave., Houston, TX 77030 (United States); Newhauser, Wayne, E-mail: newhauser@lsu.edu [Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, 202 Nicholson Hall, Tower Drive, Baton Rouge, LA 70803 (United States); Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, LA 70809 (United States); Homann, Kenneth; Howell, Rebecca [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030 (United States); Graduate School of Biomedical Sciences, The University of Texas, 6767 Bertner Ave., Houston, TX 77030 (United States); Schneider, Christopher [Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, 202 Nicholson Hall, Tower Drive, Baton Rouge, LA 70803 (United States); Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, LA 70809 (United States); Durante, Marco; Bert, Christoph [GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, Darmstadt 64291 (Germany)

    2015-03-11

    Equivalent dose from neutrons produced during proton radiotherapy increases the predicted risk of radiogenic late effects. However, out-of-field neutron dose is not taken into account by commercial proton radiotherapy treatment planning systems. The purpose of this study was to demonstrate the feasibility of implementing an analytical model to calculate leakage neutron equivalent dose in a treatment planning system. Passive scattering proton treatment plans were created for a water phantom and for a patient. For both the phantom and patient, the neutron equivalent doses were small but non-negligible and extended far beyond the therapeutic field. The time required for neutron equivalent dose calculation was 1.6 times longer than that required for proton dose calculation, with a total calculation time of less than 1 h on one processor for both treatment plans. Our results demonstrate that it is feasible to predict neutron equivalent dose distributions using an analytical dose algorithm for individual patients with irregular surfaces and internal tissue heterogeneities. Eventually, personalized estimates of neutron equivalent dose to organs far from the treatment field may guide clinicians to create treatment plans that reduce the risk of late effects.

  17. Future proton and mixed-field irradiation facilities with slow extraction for LHC operation phase and for LHC upgrades

    CERN Document Server

    Assmann, Ralph Wolfgang; Brugger, Markus; Efthymiopoulos, Ilias; Feldbaumer, Eduard; Garrido, Mar Capeans; Glaser, Maurice; Kramer, Daniel; Linssen, Lucie; Losito, Roberto; Moll, Michael; Rembser, Christoph; Silari, Marco; Thurel, Yves; Tsesmelis, Emmanuel; Vincke, Helmut; CERN. Geneva. The LHC experiments Committee; LHCC

    2010-01-01

    In the present proposal we present the need for improved proton and mixed-field irradiation facilities with slow beam extraction at CERN. Strong needs are expressed by both the detector and accelerator communities and concern the LHC operation era as well as the upgrades of machine and experiments. The current facilities and test areas have a number of limitations and drawbacks. Preliminary studies indicate that there are possibilities for a coherent and cost-effective approach towards improved facilities for the future. The aim of this document is to inform the LHCC and seek its recognition for the need of such facilities. In addition we would appreciate the support of the LHCC for pursuing further implementation studies at a PS East Hall location.

  18. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    1991-12-01

    Since 1987, Westinghouse Hanford Company has been a major contractor to the U.S. Department of Energy-Richland Operations Office and has served as co-operator of the 3718-F Alkali Metal Treatment and Storage Facility, the waste management unit addressed in this closure plan. The closure plan consists of a Part A Dangerous waste Permit Application and a RCRA Closure Plan. An explanation of the Part A Revision (Revision 1) submitted with this document is provided at the beginning of the Part A section. The closure plan consists of 9 chapters and 5 appendices. The chapters cover: introduction; facility description; process information; waste characteristics; groundwater; closure strategy and performance standards; closure activities; postclosure; and references

  19. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-12-01

    Since 1987, Westinghouse Hanford Company has been a major contractor to the U.S. Department of Energy-Richland Operations Office and has served as co-operator of the 3718-F Alkali Metal Treatment and Storage Facility, the waste management unit addressed in this closure plan. The closure plan consists of a Part A Dangerous waste Permit Application and a RCRA Closure Plan. An explanation of the Part A Revision (Revision 1) submitted with this document is provided at the beginning of the Part A section. The closure plan consists of 9 chapters and 5 appendices. The chapters cover: introduction; facility description; process information; waste characteristics; groundwater; closure strategy and performance standards; closure activities; postclosure; and references.

  20. Mixed and Low-Level Waste Treatment Facility Project

    International Nuclear Information System (INIS)

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report documents those studies so the project can continue with an evaluation of programmatic options, system tradeoff studies, and the conceptual design phase of the project. This report, appendix B, comprises the engineering design files for this project study. The engineering design files document each waste steam, its characteristics, and identified treatment strategies

  1. Review of 3D image data calibration for heterogeneity correction in proton therapy treatment planning

    International Nuclear Information System (INIS)

    Zhu, Jiahua; Penfold, Scott N.

    2016-01-01

    Correct modelling of the interaction parameters of patient tissues is of vital importance in proton therapy treatment planning because of the large dose gradients associated with the Bragg peak. Different 3D imaging techniques yield different information regarding these interaction parameters. Given the rapidly expanding interest in proton therapy, this review is written to make readers aware of the current challenges in accounting for tissue heterogeneities and the imaging systems that are proposed to tackle these challenges. A summary of the interaction parameters of interest in proton therapy and the current and developmental 3D imaging techniques used in proton therapy treatment planning is given. The different methods to translate the imaging data to the interaction parameters of interest are reviewed and a summary of the implementations in several commercial treatment planning systems is presented.

  2. Review of 3D image data calibration for heterogeneity correction in proton therapy treatment planning.

    Science.gov (United States)

    Zhu, Jiahua; Penfold, Scott N

    2016-06-01

    Correct modelling of the interaction parameters of patient tissues is of vital importance in proton therapy treatment planning because of the large dose gradients associated with the Bragg peak. Different 3D imaging techniques yield different information regarding these interaction parameters. Given the rapidly expanding interest in proton therapy, this review is written to make readers aware of the current challenges in accounting for tissue heterogeneities and the imaging systems that are proposed to tackle these challenges. A summary of the interaction parameters of interest in proton therapy and the current and developmental 3D imaging techniques used in proton therapy treatment planning is given. The different methods to translate the imaging data to the interaction parameters of interest are reviewed and a summary of the implementations in several commercial treatment planning systems is presented.

  3. An intense neutron generator based on a proton accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomew, G A; Milton, J C.D.; Vogt, E W

    1964-07-01

    A study has been made of the demand for a neutron facility with a thermal flux of {>=} 10{sup 16} n cm{sup -2} sec{sup -1} and of possible methods of producing such fluxes with existing or presently developing technology. Experimental projects proposed by neutron users requiring high fluxes call for neutrons of all energies from thermal to 100 MeV with both continuous-wave and pulsed output. Consideration of the heat generated in the source per useful neutron liberated shows that the (p,xn) reaction with 400 1000 MeV bombarding energies and heavy element targets (e.g. bismuth, lead) is capable of greater specific source strength than other possible methods realizable within the time scale. A preliminary parameter optimization carried through for the accelerator currently promising greatest economy (the separated orbit cyclotron or S.O.C.), reveals that a facility delivering a proton beam of about 65 mA at about 1 BeV would satisfy the flux requirement with a neutron cost significantly more favourable than that projected for a high flux reactor. It is suggested that a proton storage ring providing post-acceleration pulsing of the proton beam should be developed for the facility. With this elaboration, and by taking advantage of the intrinsic microscopic pulse structure provided by the radio frequency duty cycle, a very versatile source may be devised capable of producing multiple beams of continuous and pulsed neutrons with a wide range of energies and pulse widths. The source promises to be of great value for high flux irradiations and as a pilot facility for advanced reactor technology. The proposed proton accelerator also constitutes a meson source capable of producing beams of {pi} and {mu} mesons and of neutrinos orders of magnitude more intense than those of any accelerator presently in use. These beams, which can be produced simultaneously with the neutron beams, open vast areas of new research in fundamental nuclear structure, elementary particle physics

  4. An intense neutron generator based on a proton accelerator

    International Nuclear Information System (INIS)

    Bartholomew, G.A.; Milton, J.C.D.; Vogt, E.W.

    1964-01-01

    A study has been made of the demand for a neutron facility with a thermal flux of ≥ 10 16 n cm -2 sec -1 and of possible methods of producing such fluxes with existing or presently developing technology. Experimental projects proposed by neutron users requiring high fluxes call for neutrons of all energies from thermal to 100 MeV with both continuous-wave and pulsed output. Consideration of the heat generated in the source per useful neutron liberated shows that the (p,xn) reaction with 400 1000 MeV bombarding energies and heavy element targets (e.g. bismuth, lead) is capable of greater specific source strength than other possible methods realizable within the time scale. A preliminary parameter optimization carried through for the accelerator currently promising greatest economy (the separated orbit cyclotron or S.O.C.), reveals that a facility delivering a proton beam of about 65 mA at about 1 BeV would satisfy the flux requirement with a neutron cost significantly more favourable than that projected for a high flux reactor. It is suggested that a proton storage ring providing post-acceleration pulsing of the proton beam should be developed for the facility. With this elaboration, and by taking advantage of the intrinsic microscopic pulse structure provided by the radio frequency duty cycle, a very versatile source may be devised capable of producing multiple beams of continuous and pulsed neutrons with a wide range of energies and pulse widths. The source promises to be of great value for high flux irradiations and as a pilot facility for advanced reactor technology. The proposed proton accelerator also constitutes a meson source capable of producing beams of π and μ mesons and of neutrinos orders of magnitude more intense than those of any accelerator presently in use. These beams, which can be produced simultaneously with the neutron beams, open vast areas of new research in fundamental nuclear structure, elementary particle physics, and perhaps also in

  5. Proton therapy of uveal melanomas. Intercomparison of MRI-based and conventional treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Marnitz, S.; Hinkelbein, W. [Dept. of Radiooncology, Charite Univ. Medicine, Berlin (Germany); Cordini, D.; Heufelder, J.; Simiantonakis, I.; Kluge, H. [Eye Tumor Therapy, Hahn-Meitner Inst., Berlin (Germany); Bendl, R. [Dept. of Medical Physics, German Cancer Research Center (DKFZ), Heidelberg (Germany); Lemke, A.J. [Dept. of Diagnostic Radiology, Charite Univ. Medicine, Berlin (Germany); Bechrakis, N.E.; Foerster, M.H. [Dept. of Ophthalmology, Charite Univ. Medicine, Berlin (Germany)

    2006-07-15

    Background and purpose: proton therapy for uveal melanoma provides high-conformal dose application to the target volume and, thus, an optimal saving of the organs at risk nearby. Treatment planning is done with the model-based treatment-planning system eyeplan. Tumor reconstruction is based only on a fundus composite, which often leads to an overestimation of the clinical target volume (CTV). The purpose was to exploit MRI on trial in a proton therapy-planning system by using the novel image-based treatment-planning system octopus. Patients and methods: ten patients with uveal melanomas received both a high-resolution planning CT and MRI of the eye. MR examinations were made with an eye coil. Eyeplan requires eye geometry data for modeling, and tantalum marker clips for submillimeter positioning and additional information from ultrasound and 3-D imaging. By contrast, octopus provides the full integration of 3-D imaging (e.g., CT, MRI). CTVs were delineated in each slice. For all patients, CTVs (eyeplan vs. octopus) were compared intraindividually. Results: octopus planning led to a mean reduction of the target volume by a factor of 1.7 (T1-weighted [T1w]) and 2.2 (T2w) without compromising safety. The corresponding field size could be scaled down on average by a factor of 1.2 (T1w) and 1.4 (T2w), respectively. Conclusion: compared with the conventional eyeplan, MRI-based treatment planning of ocular tumors with octopus could be a powerful tool for reducing the CTV and, consequently, the treatment volume and the field size. This might be translated into a better patient compliance during treatment and a decreased late toxicity. (orig.)

  6. Proton therapy of uveal melanomas. Intercomparison of MRI-based and conventional treatment planning

    International Nuclear Information System (INIS)

    Marnitz, S.; Hinkelbein, W.; Cordini, D.; Heufelder, J.; Simiantonakis, I.; Kluge, H.; Bendl, R.; Lemke, A.J.; Bechrakis, N.E.; Foerster, M.H.

    2006-01-01

    Background and purpose: proton therapy for uveal melanoma provides high-conformal dose application to the target volume and, thus, an optimal saving of the organs at risk nearby. Treatment planning is done with the model-based treatment-planning system eyeplan. Tumor reconstruction is based only on a fundus composite, which often leads to an overestimation of the clinical target volume (CTV). The purpose was to exploit MRI on trial in a proton therapy-planning system by using the novel image-based treatment-planning system octopus. Patients and methods: ten patients with uveal melanomas received both a high-resolution planning CT and MRI of the eye. MR examinations were made with an eye coil. Eyeplan requires eye geometry data for modeling, and tantalum marker clips for submillimeter positioning and additional information from ultrasound and 3-D imaging. By contrast, octopus provides the full integration of 3-D imaging (e.g., CT, MRI). CTVs were delineated in each slice. For all patients, CTVs (eyeplan vs. octopus) were compared intraindividually. Results: octopus planning led to a mean reduction of the target volume by a factor of 1.7 (T1-weighted [T1w]) and 2.2 (T2w) without compromising safety. The corresponding field size could be scaled down on average by a factor of 1.2 (T1w) and 1.4 (T2w), respectively. Conclusion: compared with the conventional eyeplan, MRI-based treatment planning of ocular tumors with octopus could be a powerful tool for reducing the CTV and, consequently, the treatment volume and the field size. This might be translated into a better patient compliance during treatment and a decreased late toxicity. (orig.)

  7. Infection control challenges in deployed US military treatment facilities.

    Science.gov (United States)

    Hospenthal, Duane R; Crouch, Helen K

    2009-04-01

    Personnel sustaining combat-related injuries in current overseas conflicts continue to have their care complicated by infections caused by multidrug-resistant organisms, including Acinetobacter, Klebsiella, and Pseudomonas. Although presumed to be due to multiple factors both within and outside of the combat theater, concern has been raised about the difficulties in establishing and maintaining standard infection control (IC) practices in deployed medical treatment facilities and in the evacuation of the injured back to the United States. Level III facilities (hospitals capable of holding patients >72 hours) in Iraq and Afghanistan and the evacuation system from Iraq to the continental US were reviewed by an expert IC-infectious disease team. All reviewed facilities had established IC programs, but these were staffed by personnel with limited IC experience, often without perceived adequate time dedicated to perform their duties, and without uniform levels of command emphasis or support. Proper hand hygiene between patients was not always ideal. Isolation and cohorting of patients to decrease multidrug-resistant organism colonization and infection varied among facilities. Review of standard operating procedures found variability among institutions and in quality of these documents. Application of US national and theater-specific guidelines and of antimicrobial control measures also varied among facilities. Effective IC practices are often difficult to maintain in modern US hospitals. In the deployed setting, with ever-changing personnel in a less than optimal practice environment, IC is even more challenging. Standardization of practice with emphasis on the basics of IC practice (e.g., hand hygiene and isolation procedures) needs to be emplaced and maintained in the deployed setting.

  8. Induced radioactivity studies of the shielding and beamline equipment of the high intensity proton accelerator facility at PSI

    Directory of Open Access Journals (Sweden)

    Otiougova Polina

    2017-01-01

    Full Text Available The Paul Scherrer Institute (PSI is the largest national research center in Switzerland. Its multidisciplinary research is dedicated to a wide ↓eld in natural science and technology as well as particle physics. The High Intensity Proton Accelerator Facility (HIPA has been in operation at PSI since 1974. It includes an 870 keV Cockroft-Walton pre-accelerator, a 72 MeV injector cyclotron as well as a 590 MeV ring cyclotron. The experimental facilities, the meson production graphite targets, Target E and Target M, and the spallation target stations (SINQ and UCN are used for material research and particle physics. In order to ful↓ll the request of the regulatory authorities and to be reported to the regulators, the expected radioactive waste and nuclide inventory after an anticipated ↓nal shutdown in the far future has to be estimated. In this contribution, calculations for the 20 m long beamline between Target E and the 590 MeV beam dump of HIPA are presented. The ↓rst step in the calculations was determining spectra and spatial particle distributions around the beamlines using the Monte-Carlo particle transport code MCNPX2.7.0 [1]. To perform the analysis of the MCNPX output and to determine the radionuclide inventory as well as the speci↓c activity of the nuclides, an activation script [2] using the FISPACT10 code with the cross sections from the European Activation File (EAF2010 [3] was applied. The speci↓c activity values were compared to the currently existing Swiss exemption limits (LE [4] as well as to the Swiss liberation limits (LL [5], becoming e↑ective in the near future. The obtained results were used to estimate the total volume of the radioactive waste produced at HIPA and have to be reported to the Swiss regulatory authorities. The comparison of the performed calculations to measurements is discussed as well.

  9. Feasibility of proton pencil beam scanning treatment of free-breathing lung cancer patients

    NARCIS (Netherlands)

    Jakobi, Annika; Perrin, Rosalind; Knopf, Antje; Richter, Christian

    BACKGROUND: The interplay effect might degrade the dose of pencil beam scanning proton therapy to a degree that free-breathing treatment might be impossible without further motion mitigation techniques, which complicate and prolong the treatment. We assessed whether treatment of free-breathing

  10. EPA Facility Registry Service (FRS): Wastewater Treatment Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — This GIS dataset contains data on wastewater treatment plants, based on EPA's Facility Registry Service (FRS), EPA's Integrated Compliance Information System (ICIS)...

  11. Overview of a conceptualized waste water treatment facility for the Consolidated Incinerator Facility

    International Nuclear Information System (INIS)

    McCabe, D.J.

    1992-01-01

    The offgas system in the Consolidated Incinerator Facility (CIF) will generate an aqueous waste stream which is expected to contain hazardous, nonhazardous, and radioactive components. The actual composition of this waste stream will not be identified until startup of the facility, and is expected to vary considerably. Wastewater treatment is being considered as a pretreatment to solidification in order to make a more stable final waste form and to reduce disposal costs. A potential treatment scenario has been defined which may allow disposition of this waste in compliance with all applicable regulations. The conceptualized wastewater treatment plant is based on literature evaluations for treating hazardous metals. Laboratory tests hwill be run to verify the design for its ability to remove the hazardous and radioactive components from this waste stream. The predominant mechanism employed for removal of the hazardous and radioactive metal ions is coprecipitation. The literature indicates that reasonably low quantities of hazardous metals can be achieved with this technique. The effect on the radioactive metal ions is not predictable and has not been tested. The quantity of radioactive metal ions predicted to be present in the waste is significantly less than the solubility limit of those ions, but is higher than the discharge guidelines established by DOE Order 5400.5

  12. Proton decay in a nucleus: Nonrelativistic treatment of nuclear effects

    International Nuclear Information System (INIS)

    Fernandez, L.A.; Alvarez-Estrada, R.F.; Sanchez-Gomez, J.L.

    1983-01-01

    In this paper, proton decay in a large nucleus is studied in the framework of SU(5) grand unification theory (GUT). By using a method based upon the Green's-function technique of many-body physics, nuclear effects on spectator and pole terms are computed. The decay width in the nucleus is found to be practically the same as in free space. However, nuclear effects are of considerable importance concerning the positron spectrum. A density-correlation expansion is introduced which is useful for carrying out a systematic study of nuclear effects in proton decay in a large nucleus. The method presented here can be easily extended to other GUT's or supersymmetric GUT's

  13. Outline of a fuel treatment facility in NUCEF

    International Nuclear Information System (INIS)

    Sugikawa, Susumu; Umeda, Miki; Kokusen, Junya

    1997-03-01

    This report presents outline of the nuclear fuel treatment facility for the purpose of preparing solution fuel used in Static Experiment Critical Facility (STACY) and Transient Experiment Critical Facility (TRACY) in Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF), including descriptions of process conditions and dimensions of major process equipments on dissolution system of oxide fuel, chemical adjustment system, purification system, acid recovery system, solution fuel storage system, and descriptions of safety design philosophy such as safety considerations of criticality, solvent fire, explosion of hydrogen and red-oil and so on. (author)

  14. Fabrication of fine imaging devices using an external proton microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, T., E-mail: sakai.takuro@jaea.go.jp [Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan); Yasuda, R.; Iikura, H.; Nojima, T. [Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan); Koka, M.; Satoh, T.; Ishii, Y. [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA), Takasaki, Gunma 370-1292 (Japan); Oshima, A. [Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047 (Japan)

    2014-08-01

    We have successfully fabricated novel microscopic imaging devices made from UV/EB curable resin using an external scanning proton microbeam. The devices are micro-structured fluorescent plates that consist of an array of micro-pillars that align periodically. The base material used in the pillars is UV/EB curable resin and each pillar contains phosphor grains. The pattern exposures were performed using a proton beam writing technique. The height of the pillars depends on the range of the proton beam. Optical microscopy and scanning electron microscopy have been used to characterize the samples. The results show that the fabricated fluorescent plates are expected to be compatible with both spatial resolution and detection efficiency.

  15. Neutron transmission benchmark problems for iron and concrete shields in low, intermediate and high energy proton accelerator facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nakane, Yoshihiro; Sakamoto, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Hayashi, Katsumi [and others

    1996-09-01

    Benchmark problems were prepared for evaluating the calculation codes and the nuclear data for accelerator shielding design by the Accelerator Shielding Working Group of the Research Committee on Reactor Physics in JAERI. Four benchmark problems: transmission of quasi-monoenergetic neutrons generated by 43 MeV and 68 MeV protons through iron and concrete shields at TIARA of JAERI, neutron fluxes in and around an iron beam stop irradiated by 500 MeV protons at KEK, reaction rate distributions inside a thick concrete shield irradiated by 6.2 GeV protons at LBL, and neutron and hadron fluxes inside an iron beam stop irradiated by 24 GeV protons at CERN are compiled in this document. Calculational configurations and neutron reaction cross section data up to 500 MeV are provided. (author)

  16. TOPAS: An innovative proton Monte Carlo platform for research and clinical applications

    Energy Technology Data Exchange (ETDEWEB)

    Perl, J.; Shin, J.; Schuemann, J.; Faddegon, B.; Paganetti, H. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); University of California San Francisco Comprehensive Cancer Center, 1600 Divisadero Street, San Francisco, California 94143-1708 (United States); Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States); University of California San Francisco Comprehensive Cancer Center, 1600 Divisadero Street, San Francisco, California 94143-1708 (United States); Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States)

    2012-11-15

    Purpose: While Monte Carlo particle transport has proven useful in many areas (treatment head design, dose calculation, shielding design, and imaging studies) and has been particularly important for proton therapy (due to the conformal dose distributions and a finite beam range in the patient), the available general purpose Monte Carlo codes in proton therapy have been overly complex for most clinical medical physicists. The learning process has large costs not only in time but also in reliability. To address this issue, we developed an innovative proton Monte Carlo platform and tested the tool in a variety of proton therapy applications. Methods: Our approach was to take one of the already-established general purpose Monte Carlo codes and wrap and extend it to create a specialized user-friendly tool for proton therapy. The resulting tool, TOol for PArticle Simulation (TOPAS), should make Monte Carlo simulation more readily available for research and clinical physicists. TOPAS can model a passive scattering or scanning beam treatment head, model a patient geometry based on computed tomography (CT) images, score dose, fluence, etc., save and restart a phase space, provides advanced graphics, and is fully four-dimensional (4D) to handle variations in beam delivery and patient geometry during treatment. A custom-designed TOPAS parameter control system was placed at the heart of the code to meet requirements for ease of use, reliability, and repeatability without sacrificing flexibility. Results: We built and tested the TOPAS code. We have shown that the TOPAS parameter system provides easy yet flexible control over all key simulation areas such as geometry setup, particle source setup, scoring setup, etc. Through design consistency, we have insured that user experience gained in configuring one component, scorer or filter applies equally well to configuring any other component, scorer or filter. We have incorporated key lessons from safety management, proactively

  17. TOPAS: An innovative proton Monte Carlo platform for research and clinical applications

    International Nuclear Information System (INIS)

    Perl, J.; Shin, J.; Schümann, J.; Faddegon, B.; Paganetti, H.

    2012-01-01

    Purpose: While Monte Carlo particle transport has proven useful in many areas (treatment head design, dose calculation, shielding design, and imaging studies) and has been particularly important for proton therapy (due to the conformal dose distributions and a finite beam range in the patient), the available general purpose Monte Carlo codes in proton therapy have been overly complex for most clinical medical physicists. The learning process has large costs not only in time but also in reliability. To address this issue, we developed an innovative proton Monte Carlo platform and tested the tool in a variety of proton therapy applications. Methods: Our approach was to take one of the already-established general purpose Monte Carlo codes and wrap and extend it to create a specialized user-friendly tool for proton therapy. The resulting tool, TOol for PArticle Simulation (TOPAS), should make Monte Carlo simulation more readily available for research and clinical physicists. TOPAS can model a passive scattering or scanning beam treatment head, model a patient geometry based on computed tomography (CT) images, score dose, fluence, etc., save and restart a phase space, provides advanced graphics, and is fully four-dimensional (4D) to handle variations in beam delivery and patient geometry during treatment. A custom-designed TOPAS parameter control system was placed at the heart of the code to meet requirements for ease of use, reliability, and repeatability without sacrificing flexibility. Results: We built and tested the TOPAS code. We have shown that the TOPAS parameter system provides easy yet flexible control over all key simulation areas such as geometry setup, particle source setup, scoring setup, etc. Through design consistency, we have insured that user experience gained in configuring one component, scorer or filter applies equally well to configuring any other component, scorer or filter. We have incorporated key lessons from safety management, proactively

  18. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    1992-11-01

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 3718-F Alkali Metal Treatment and Storage Facility (3718-F Facility), located in the 300 Area, was used to store and treat alkali metal wastes. Therefore, it is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989) and 40 CFR 270.1. Closure also will satisfy the thermal treatment facility closure requirements of 40 CFR 265.381. This closure plan presents a description of the 3718-F Facility, the history of wastes managed, and the approach that will be followed to close the facility. Only hazardous constituents derived from 3718-F Facility operations will be addressed

  19. An NMR Protonation Study of Metal Diethylenetriaminepentaacetic Acid Complexes.

    Science.gov (United States)

    Letkeman, Peter

    1979-01-01

    This experiment is suitable for an integrated laboratory course for senior chemistry majors. It introduces the student to a study of the relative basicity of different proton accepting sites. It serves as an opportunity to learn about nmr techniques and could extend to infrared, as well. (BB)

  20. Improved Beam Angle Arrangement in Intensity Modulated Proton Therapy Treatment Planning for Localized Prostate Cancer

    International Nuclear Information System (INIS)

    Cao, Wenhua; Lim, Gino J.; Li, Yupeng; Zhu, X. Ronald; Zhang, Xiaodong

    2015-01-01

    Purpose: This study investigates potential gains of an improved beam angle arrangement compared to a conventional fixed gantry setup in intensity modulated proton therapy (IMPT) treatment for localized prostate cancer patients based on a proof of principle study. Materials and Methods: Three patients with localized prostate cancer retrospectively selected from our institution were studied. For each patient, IMPT plans were designed using two, three and four beam angles, respectively, obtained from a beam angle optimization algorithm. Those plans were then compared with ones using two lateral parallel-opposed beams according to the conventional planning protocol for localized prostate cancer adopted at our institution. Results: IMPT plans with two optimized angles achieved significant improvements in rectum sparing and moderate improvements in bladder sparing against those with two lateral angles. Plans with three optimized angles further improved rectum sparing significantly over those two-angle plans, whereas four-angle plans found no advantage over three-angle plans. A possible three-beam class solution for localized prostate patients was suggested and demonstrated with preserved dosimetric benefits because individually optimized three-angle solutions were found sharing a very similar pattern. Conclusions: This study has demonstrated the potential of using an improved beam angle arrangement to better exploit the theoretical dosimetric benefits of proton therapy and provided insights of selecting quality beam angles for localized prostate cancer treatment

  1. An evaluation of NCRP report 151--radiation shielding design for radiotherapy facilities, and a feasibility study for 6 MV open-door treatments in an existing high-energy radiation therapy bunker

    Science.gov (United States)

    Kildea, John

    This thesis describes a study of shielding design techniques used for radiation therapy facilities that employ megavoltage linear accelerators. Specifically, an evaluation of the shielding design formalism described in NCRP report 151 was undertaken and a feasibility study for open-door 6 MV radiation therapy treatments in existing 6 MV, 18 MV treatment rooms at the Montreal General Hospital (MGH) was conducted. To evaluate the shielding design formalism of NCRP 151, barrier-attenuated equivalent doses were measured for several of the treatment rooms at the MGH and compared with expectations from NCRP 151 calculations. It was found that, while the insight and recommendations of NCRP 151 are very valuable, its dose predictions are not always correct. As such, the NCRP 151 methodology is best used in conjunction with physical measurements. The feasibility study for 6 MV open-door treatments made use of the NCRP 151 formalism, together with physical measurements for realistic 6 MV workloads. The results suggest that, dosimetrically, 6 MV open door treatments are feasible. A conservative estimate for the increased dose at the door arising from such treatments is 0.1 mSv, with a 1/8 occupancy factor, as recommended in NCRP 151, included.

  2. The Wastewater Treatment Test Facility at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Richardson, S.A.; Kent, T.E.; Taylor, P.A.

    1995-01-01

    The Wastewater Treatment Test Facility (WTTF) contains 0.5 L/min test systems which provide a wide range of physical and chemical separation unit operations. The facility is a modified 48 foot trailer which contains all the unit operations of the ORNL's Process Waste Treatment Plant and Nonradiological Wastewater Treatment Plant including chemical precipitation, clarification, filtration, ion-exchange, air stripping, activated carbon adsorption, and zeolite system. This facility has been used to assess treatability of potential new wastewaters containing mixed radioactive, hazardous organic, and heavy metal compounds. With the ability to simulate both present and future ORNL wastewater treatment systems, the WTTF has fast become a valuable tool in solving wastewater treatment problems at the Oak Ridge reservation

  3. Designing a range modulator wheel to spread-out the Bragg peak for a passive proton therapy facility

    International Nuclear Information System (INIS)

    Jia, S. Bijan; Romano, F.; Cirrone, Giuseppe A.P.; Cuttone, G.; Hadizadeh, M.H.; Mowlavi, A.A.; Raffaele, L.

    2016-01-01

    In proton beam therapy, a Spread-Out Bragg peak (SOBP) is used to establish a uniform dose distribution in the target volume. In order to create a SOBP, several Bragg peaks of different ranges, corresponding to different entrance energies, with certain intensities (weights) should be combined each other. In a passive beam scattering system, the beam is usually extracted from a cyclotron at a constant energy throughout a treatment. Therefore, a SOBP is produced by a range modulator wheel, which is basically a rotating wheel with steps of variable thicknesses, or by using the ridge filters. In this study, we used the Geant4 toolkit to simulate a typical passive scattering beam line. In particular, the CATANA transport beam line of INFN Laboratori Nazionali del Sud (LNS) in Catania has been reproduced in this work. Some initial properties of the entrance beam have been checked by benchmarking simulations with experimental data. A class dedicated to the simulation of the wheel modulators has been implemented. It has been designed in order to be easily modified for simulating any desired modulator wheel and, hence, any suitable beam modulation. By using some auxiliary range-shifters, a set of pristine Bragg peaks was obtained from the simulations. A mathematical algorithm was developed, using the simulated pristine dose profiles as its input, to calculate the weight of each pristine peak, reproduce the SOBP, and finally generate a flat dose distribution. Therefore, once the designed modulator has been realized, it has been tested at CATANA facility, comparing the experimental data with the simulation results.

  4. Designing a range modulator wheel to spread-out the Bragg peak for a passive proton therapy facility

    Energy Technology Data Exchange (ETDEWEB)

    Jia, S. Bijan [Physics Department, University of Bojnord, Bojnord (Iran, Islamic Republic of); Romano, F. [INFN, Laboratori Nazionali del Sud, Catania (Italy); Cirrone, Giuseppe A.P. [INFN, Laboratori Nazionali del Sud, Catania (Italy); Institute of Physics of the ASCR, ELI-Beamlines Project, Prague (Czech Republic); Cuttone, G. [INFN, Laboratori Nazionali del Sud, Catania (Italy); Hadizadeh, M.H. [Physics Department, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Mowlavi, A.A. [Physics Department, Hakim Sabzevari University, Sabzevar (Iran, Islamic Republic of); ICTP, Associate Federation Scheme, Medical Physics Field, Trieste (Italy); Raffaele, L. [Azienda Ospedaliero-Universitaria “Policlinico – Vittorio Emanuele”, Catania (Italy)

    2016-01-11

    In proton beam therapy, a Spread-Out Bragg peak (SOBP) is used to establish a uniform dose distribution in the target volume. In order to create a SOBP, several Bragg peaks of different ranges, corresponding to different entrance energies, with certain intensities (weights) should be combined each other. In a passive beam scattering system, the beam is usually extracted from a cyclotron at a constant energy throughout a treatment. Therefore, a SOBP is produced by a range modulator wheel, which is basically a rotating wheel with steps of variable thicknesses, or by using the ridge filters. In this study, we used the Geant4 toolkit to simulate a typical passive scattering beam line. In particular, the CATANA transport beam line of INFN Laboratori Nazionali del Sud (LNS) in Catania has been reproduced in this work. Some initial properties of the entrance beam have been checked by benchmarking simulations with experimental data. A class dedicated to the simulation of the wheel modulators has been implemented. It has been designed in order to be easily modified for simulating any desired modulator wheel and, hence, any suitable beam modulation. By using some auxiliary range-shifters, a set of pristine Bragg peaks was obtained from the simulations. A mathematical algorithm was developed, using the simulated pristine dose profiles as its input, to calculate the weight of each pristine peak, reproduce the SOBP, and finally generate a flat dose distribution. Therefore, once the designed modulator has been realized, it has been tested at CATANA facility, comparing the experimental data with the simulation results.

  5. Experimental area plans for an advanced hadron facility

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, E.W.; Macek, R.J.; Tschalear, C.

    1986-01-01

    A brief overview is presented of the current plans for an experimental area for a new advanced hadron facility for the exploration of nuclear and particle physics. The facility, LAMPF II, is presently visualized as consisting of the LAMPF linac sending 800 MeV protons to a 6 GeV booster ring followed by a 45 GeV main ring. Two experimental areas area planned. The first is intended to provide neutrinos via a pair of pulsed focusing horns. The other is designed to accommodate secondary beams that span the range of useful energies up to GeV/c. Beam specification goals are discussed with respect to source brightness, beam purity, and beam-line acceptance and length. The various beam lines are briefly described. Production cross sections and rates are estimated for antiproton production. Problems of thermal energy deposition in both components and targets and of effectiveness of particle separators are discussed. 9 refs. (LEW)

  6. Experimental area plans for an advanced hadron facility

    International Nuclear Information System (INIS)

    Hoffman, E.W.; Macek, R.J.; Tschalear, C.

    1986-01-01

    A brief overview is presented of the current plans for an experimental area for a new advanced hadron facility for the exploration of nuclear and particle physics. The facility, LAMPF II, is presently visualized as consisting of the LAMPF linac sending 800 MeV protons to a 6 GeV booster ring followed by a 45 GeV main ring. Two experimental areas area planned. The first is intended to provide neutrinos via a pair of pulsed focusing horns. The other is designed to accommodate secondary beams that span the range of useful energies up to GeV/c. Beam specification goals are discussed with respect to source brightness, beam purity, and beam-line acceptance and length. The various beam lines are briefly described. Production cross sections and rates are estimated for antiproton production. Problems of thermal energy deposition in both components and targets and of effectiveness of particle separators are discussed. 9 refs

  7. Shielding calculation of slow extracted beam facility at KEK proton synchrotron

    International Nuclear Information System (INIS)

    Hirabayashi, Hiromi; Katoh, Kazuaki

    1978-01-01

    The KEK proton synchrotron has two external beam lines, i.e. a fast extracted beam line for a bubble chamber and a slow extracted beam line for counter experiments. The maximum total intensity of the slow beam is estimated as 5 x 10 12 protons per sec. For beam losses along the line, shielding calculation was made, and on the basis of these results, adequacy of the current shielding construction plans was discussed. (Mori, K.)

  8. Facile Dry Surface Cleaning of Graphene by UV Treatment

    Science.gov (United States)

    Kim, Jin Hong; Haidari, Mohd Musaib; Choi, Jin Sik; Kim, Hakseong; Yu, Young-Jun; Park, Jonghyurk

    2018-05-01

    Graphene has been considered an ideal material for application in transparent lightweight wearable electronics due to its extraordinary mechanical, optical, and electrical properties originating from its ordered hexagonal carbon atomic lattice in a layer. Precise surface control is critical in maximizing its performance in electronic applications. Graphene grown by chemical vapor deposition is widely used but it produces polymeric residue following wet/chemical transfer process, which strongly affects its intrinsic electrical properties and limits the doping efficiency by adsorption. Here, we introduce a facile dry-cleaning method based on UV irradiation to eliminate the organic residues even after device fabrication. Through surface topography, Raman analysis, and electrical transport measurement characteristics, we confirm that the optimized UV treatment can recover the clean graphene surface and improve graphene-FET performance more effectively than thermal treatment. We propose our UV irradiation method as a systematically controllable and damage-free post process for application in large-area devices.

  9. Hazardous Waste Treatment Facility and skid-mounted treatment systems at Los Alamos

    International Nuclear Information System (INIS)

    Lussiez, G.W.; Zygmunt, S.J.

    1994-01-01

    To centralize treatment, storage, and areas for hazardous wastes, Los Alamos National Laboratory has designed a 1115 m2 hazardous waste treatment facility. The facility will house a treatment room for each of four kinds of wastes: nonradioactive characteristic wastes, nonradioactive listed wastes, radioactive characteristic wastes, and radioactive listed wastes. The facility will be used for repacking labpacks; bulking small organic waste volumes; processing scintillation vials; treating reactives such as lithium hydride and pyrophoric uranium; treating contaminated solids such as barium sand; treating plating wastes and other solutions with heavy metals and oxidizing organics: Separate treatment rooms will allow workers to avoid mixing waste types and prevent cross-contamination. The ventilation air from the treatment areas may contain hazardous or radioactive dust. Gas may also leak from process equipment. The gas treatment process includes separating solids and gases and neutralization or adsorption of the hazardous gases. The ventilation air from each room will first be filtered before being scrubbed in a common gas caustic scrubber on an outside pad. There are two levels of exhaust in each treatment room, one for heavy gases and another for light gases. Several features help mitigate or eliminate hazards due to spills and releases: each treatment room is sealed and under slight negative pressure; each room has its own HEPA filtration; to avoid mixing of incompatible wastes and reagents, portable individual spill-containment trays are used for skids, to limit the danger of spills, the waste is directly transferred from outside storage to the treatment room; to mitigate the consequences of a gas release in the room, mobile hoods are connected to the exhaust-air treatment system; the floor, walls, ceilings, fixtures, ducts, and piping are made of acid-resistant material or are coated

  10. WE-E-BRB-03: Implementation of PBS Proton Therapy Treatment for Free Breathing Lung Cancer Patients

    International Nuclear Information System (INIS)

    Li, H.

    2016-01-01

    Strategies for treating thoracic and liver tumors using pencil beam scanning proton therapy Thoracic and liver tumors have not been treated with pencil beam scanning (PBS) proton therapy until recently. This is because of concerns about the significant interplay effects between proton spot scanning and patient’s respiratory motion. However, not all tumors have unacceptable magnitude of motion for PBS proton therapy. Therefore it is important to analyze the motion and understand the significance of the interplay effect for each patient. The factors that affect interplay effect and its washout include magnitude of motion, spot size, spot scanning sequence and speed. Selection of beam angle, scanning direction, repainting and fractionation can all reduce the interplay effect. An overview of respiratory motion management in PBS proton therapy including assessment of tumor motion and WET evaluation will be first presented. As thoracic tumors have very different motion patterns from liver tumors, examples would be provided for both anatomic sites. As thoracic tumors are typically located within highly heterogeneous environments, dose calculation accuracy is a concern for both treatment target and surrounding organs such as spinal cord or esophagus. Strategies for mitigating the interplay effect in PBS will be presented and the pros and cons of various motion mitigation strategies will be discussed. Learning Objectives: Motion analysis for individual patients with respect to interplay effect Interplay effect and mitigation strategies for treating thoracic/liver tumors with PBS Treatment planning margins for PBS The impact of proton dose calculation engines over heterogeneous treatment target and surrounding organs I have a current research funding from Varian Medical System under the master agreement between University of Pennsylvania and Varian; L. Lin, I have a current funding from Varian Medical System under the master agreement between University of Pennsylvania and

  11. WE-E-BRB-02: Implementation of Pencil Beam Scanning (PBS) Proton Therapy Treatment for Liver Patient

    International Nuclear Information System (INIS)

    Lin, L.

    2016-01-01

    Strategies for treating thoracic and liver tumors using pencil beam scanning proton therapy Thoracic and liver tumors have not been treated with pencil beam scanning (PBS) proton therapy until recently. This is because of concerns about the significant interplay effects between proton spot scanning and patient’s respiratory motion. However, not all tumors have unacceptable magnitude of motion for PBS proton therapy. Therefore it is important to analyze the motion and understand the significance of the interplay effect for each patient. The factors that affect interplay effect and its washout include magnitude of motion, spot size, spot scanning sequence and speed. Selection of beam angle, scanning direction, repainting and fractionation can all reduce the interplay effect. An overview of respiratory motion management in PBS proton therapy including assessment of tumor motion and WET evaluation will be first presented. As thoracic tumors have very different motion patterns from liver tumors, examples would be provided for both anatomic sites. As thoracic tumors are typically located within highly heterogeneous environments, dose calculation accuracy is a concern for both treatment target and surrounding organs such as spinal cord or esophagus. Strategies for mitigating the interplay effect in PBS will be presented and the pros and cons of various motion mitigation strategies will be discussed. Learning Objectives: Motion analysis for individual patients with respect to interplay effect Interplay effect and mitigation strategies for treating thoracic/liver tumors with PBS Treatment planning margins for PBS The impact of proton dose calculation engines over heterogeneous treatment target and surrounding organs I have a current research funding from Varian Medical System under the master agreement between University of Pennsylvania and Varian; L. Lin, I have a current funding from Varian Medical System under the master agreement between University of Pennsylvania and

  12. WE-E-BRB-03: Implementation of PBS Proton Therapy Treatment for Free Breathing Lung Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Li, H. [UT MD Anderson Cancer Center (United States)

    2016-06-15

    Strategies for treating thoracic and liver tumors using pencil beam scanning proton therapy Thoracic and liver tumors have not been treated with pencil beam scanning (PBS) proton therapy until recently. This is because of concerns about the significant interplay effects between proton spot scanning and patient’s respiratory motion. However, not all tumors have unacceptable magnitude of motion for PBS proton therapy. Therefore it is important to analyze the motion and understand the significance of the interplay effect for each patient. The factors that affect interplay effect and its washout include magnitude of motion, spot size, spot scanning sequence and speed. Selection of beam angle, scanning direction, repainting and fractionation can all reduce the interplay effect. An overview of respiratory motion management in PBS proton therapy including assessment of tumor motion and WET evaluation will be first presented. As thoracic tumors have very different motion patterns from liver tumors, examples would be provided for both anatomic sites. As thoracic tumors are typically located within highly heterogeneous environments, dose calculation accuracy is a concern for both treatment target and surrounding organs such as spinal cord or esophagus. Strategies for mitigating the interplay effect in PBS will be presented and the pros and cons of various motion mitigation strategies will be discussed. Learning Objectives: Motion analysis for individual patients with respect to interplay effect Interplay effect and mitigation strategies for treating thoracic/liver tumors with PBS Treatment planning margins for PBS The impact of proton dose calculation engines over heterogeneous treatment target and surrounding organs I have a current research funding from Varian Medical System under the master agreement between University of Pennsylvania and Varian; L. Lin, I have a current funding from Varian Medical System under the master agreement between University of Pennsylvania and

  13. WE-E-BRB-02: Implementation of Pencil Beam Scanning (PBS) Proton Therapy Treatment for Liver Patient

    Energy Technology Data Exchange (ETDEWEB)

    Lin, L. [University of Pennsylvania (United States)

    2016-06-15

    Strategies for treating thoracic and liver tumors using pencil beam scanning proton therapy Thoracic and liver tumors have not been treated with pencil beam scanning (PBS) proton therapy until recently. This is because of concerns about the significant interplay effects between proton spot scanning and patient’s respiratory motion. However, not all tumors have unacceptable magnitude of motion for PBS proton therapy. Therefore it is important to analyze the motion and understand the significance of the interplay effect for each patient. The factors that affect interplay effect and its washout include magnitude of motion, spot size, spot scanning sequence and speed. Selection of beam angle, scanning direction, repainting and fractionation can all reduce the interplay effect. An overview of respiratory motion management in PBS proton therapy including assessment of tumor motion and WET evaluation will be first presented. As thoracic tumors have very different motion patterns from liver tumors, examples would be provided for both anatomic sites. As thoracic tumors are typically located within highly heterogeneous environments, dose calculation accuracy is a concern for both treatment target and surrounding organs such as spinal cord or esophagus. Strategies for mitigating the interplay effect in PBS will be presented and the pros and cons of various motion mitigation strategies will be discussed. Learning Objectives: Motion analysis for individual patients with respect to interplay effect Interplay effect and mitigation strategies for treating thoracic/liver tumors with PBS Treatment planning margins for PBS The impact of proton dose calculation engines over heterogeneous treatment target and surrounding organs I have a current research funding from Varian Medical System under the master agreement between University of Pennsylvania and Varian; L. Lin, I have a current funding from Varian Medical System under the master agreement between University of Pennsylvania and

  14. Evolution of dose calculation models for proton-therapy treatment planning

    International Nuclear Information System (INIS)

    Vidal, Marie

    2011-01-01

    This work was achieved in collaboration between the Institut Curie proton-therapy Center of Orsay (ICPO), the DOSIsoft company and the CREATIS laboratory, in order to develop a new dose calculation model for the new ICPO treatment room. A new accelerator and gantry room from the IBA company were installed during the up-grade project of the proton-therapy center, with the intention of enlarging the cancer localizations treated at ICPO. Developing a package of methods and new dose calculation algorithms to adapt them to the new specific characteristics of the delivered beams by the IBA system is the first goal of this PhD work. They all aim to be implemented in the DOSIsoft treatment planning software, Isogray. First, the double scattering technique is treated in taking into account major differences between the IBA system and the ICPO fixed beam lines passive system. Secondly, a model is explored for the scanned beams modality. The second objective of this work is improving the Ray-Tracing and Pencil-Beam dose calculation models already in use. For the double scattering and uniform scanning techniques, the patient personalized collimator at the end of the beam line causes indeed a patient dose distribution contamination. A reduction method of that phenomenon was set up for the passive beam system. An analytical model was developed which describes the contamination function with parameters validated through Monte-Carlo simulations on the GATE platform. It allows us to apply those methods to active scanned beams [fr

  15. Conservation treatment of the eye: Conformal proton reirradiation for recurrent uveal melanoma

    International Nuclear Information System (INIS)

    Marucci, Laura; Lane, Anne M.; Li Wenjun; Egan, Kathleen M.; Gragoudas, Evangelos S.; Adams, Judy; Collier, John M.; Munzenrider, John E.

    2006-01-01

    Purpose: To evaluate the outcomes of a second course of proton beam radiation therapy (PBRT) in patients with recurrent uveal melanoma. Methods and Materials: Thirty-one patients received a second course of PBRT. The mean interval between the first and the second PBRT course was 50.2 months (range, 8-165 months). Most patients (87%) received 70 cobalt Gray equivalent (CGE) for both courses. Visual acuity was 20/200 or better in 30 patients initially and in 22 patients at the second treatment. The mean follow-up time after the second treatment was 50 months (range, 6-164 months). Results: At the time of the last follow-up, 20 patients were classified as having no evidence of disease, defined as tumor regression or an absence of tumor progression. Nine eyes (29%) were enucleated because of local recurrence (n = 5) or intractable pain (n = 4). The 5-year eye retention rate was 55% (95% confidence interval: 25.2-77.4). Six of the 22 patients who retained the eye (27%) had useful vision (20/200 or better). Conclusions A second course of PBRT for recurrent uveal melanoma to total doses between 118 and 140 CGE was associated with a relatively good probability of local control and a low enucleation rate. Although most patients lost vision, the majority were able to retain the reirradiated eye. Further evaluation is needed to assess metastasis-free survival of additional proton irradiation vs. enucleation after local recurrence

  16. The study of PDMS surface treatment and it's applications by using proton beam

    International Nuclear Information System (INIS)

    Baek, J. Y.; Kim, J. Y.; Kwon, K. H.; Park, J. Y.

    2007-04-01

    PDMS(Polydimethylsiloxane) is mainly used as a material to do lab on a chip for biochemical analysis. PDMS has many applicability at the Bio-Technology(BT) field, because it is flexible, biocompatible and has good oxygen permeability. In this study, we have investigated to physical and chemical changes of PDMS surface by proton beam radiation conditions. The used kind of ion were Ar and N, beam energy was 30keV, 60keV, 80keV, total fluence was 1E10 to 1E16 [ions/cm 2 ]. PDMS membrane was produced as 150 μm thick on the 3' silicon wafer. We inquired into physical and chemical changes up to beam radiation conditions through the investigate the change of surface roughness by AFM(Atomic Force Microscope), the change of surface morphology by SEM(Scanning Electron Microscope) and the change of chemical composition by FT-IR(Fourier Transform Infrared Raman spectroscopy) and XPS(X-ray Photoelectron Spectroscopy). From these basic data to we set up the proton beam radiation conditions to secure metal layer and PDMS adhesion. This enables to produce the electrode at the PDMS material lab on a chip. From now on, we'll investigate the cell patterning possibility after carry out of cell culture with mouse fibroblast at PDMS surface what is surface modification by using of proton beam radiation and apply this to produce lab on a chip. Physical property: Surface roughness of PDMS membrane was observed using AFM, after exposure of proton beam on it. The roughness increased as the power level of proton beam increase. This phenomena was caused by the kinetic energy of particle. Chemical property: Long term observation was conducted on the contact angles of the samples made by the proton beam exposure or oxygen plasma treatment; the hydrophilicity was found to be stronger in the samples made by the proton beam exposure. We found the reason of this was the destruction of polymer chains by proton beam. Feasibility of Through-hole: Considering that comparatively high level energy beam

  17. The study of PDMS surface treatment and it's applications by using proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Baek, J. Y.; Kim, J. Y.; Kwon, K. H.; Park, J. Y. [Korea Univ., Seoul (Korea, Republic of)

    2007-04-15

    PDMS(Polydimethylsiloxane) is mainly used as a material to do lab on a chip for biochemical analysis. PDMS has many applicability at the Bio-Technology(BT) field, because it is flexible, biocompatible and has good oxygen permeability. In this study, we have investigated to physical and chemical changes of PDMS surface by proton beam radiation conditions. The used kind of ion were Ar and N, beam energy was 30keV, 60keV, 80keV, total fluence was 1E10 to 1E16 [ions/cm{sup 2}]. PDMS membrane was produced as 150 {mu}m thick on the 3' silicon wafer. We inquired into physical and chemical changes up to beam radiation conditions through the investigate the change of surface roughness by AFM(Atomic Force Microscope), the change of surface morphology by SEM(Scanning Electron Microscope) and the change of chemical composition by FT-IR(Fourier Transform Infrared Raman spectroscopy) and XPS(X-ray Photoelectron Spectroscopy). From these basic data to we set up the proton beam radiation conditions to secure metal layer and PDMS adhesion. This enables to produce the electrode at the PDMS material lab on a chip. From now on, we'll investigate the cell patterning possibility after carry out of cell culture with mouse fibroblast at PDMS surface what is surface modification by using of proton beam radiation and apply this to produce lab on a chip. Physical property: Surface roughness of PDMS membrane was observed using AFM, after exposure of proton beam on it. The roughness increased as the power level of proton beam increase. This phenomena was caused by the kinetic energy of particle. Chemical property: Long term observation was conducted on the contact angles of the samples made by the proton beam exposure or oxygen plasma treatment; the hydrophilicity was found to be stronger in the samples made by the proton beam exposure. We found the reason of this was the destruction of polymer chains by proton beam. Feasibility of Through-hole: Considering that comparatively high

  18. Niobium phosphates as an intermediate temperature proton conducting electrolyte for fuel cells

    DEFF Research Database (Denmark)

    Huang, Yunjie; Li, Qingfeng; Jensen, Annemette Hindhede

    2012-01-01

    A new proton conductor based on niobium phosphates was synthesized using niobium pentoxide and phosphoric acid as precursors. The existence of hydroxyl groups in the phosphates was confirmed and found to be preserved after heat treatment at 500 °C or higher, contributing to an anhydrous proton co...... are of high interest as potential proton conducting electrolytes for fuel cells operational in an intermediate temperature range....... conductivity of 1.6 × 10−2 S cm−1 at 250 °C. The conductivity increased with water content in the atmosphere and reached 5.8 × 10−2 S cm−1 under pure water vapour at the same temperature. The conductivity showed good stability in the low water partial pressure range of up to 0.05 atm. The metal phosphates...

  19. Hexone Storage and Treatment Facility closure plan

    International Nuclear Information System (INIS)

    1992-11-01

    The HSTF is a storage and treatment unit subject to the requirements for the storage and treatment of dangerous waste. Closure is being conducted under interim status and will be completed pursuant to the requirements of Washington State Department of Ecology (Ecology) Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-610 and WAC 173-303-640. Because dangerous waste does not include the source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of WAC 173-303 or of this closure plan. The information on radionuclides is provided only for general knowledge where appropriate. The known hazardous/dangerous waste remaining at the site before commencing other closure activities consists of the still vessels, a tarry sludge in the storage tanks, and residual contamination in equipment, piping, filters, etc. The treatment and removal of waste at the HSTF are closure activities as defined in the Resource Conservation and Recovery Act (RCRA) of 1976 and WAC 173-303

  20. Hong kong chemical waste treatment facilities: a technology overview

    Energy Technology Data Exchange (ETDEWEB)

    Siuwang, Chu [Enviropace Ltd., Hong Kong (Hong Kong)

    1993-12-31

    The effective management of chemical and industrial wastes represents one of the most pressing environmental problems confronting the Hong Kong community. In 1990, the Hong Kong government contracted Enviropace Limited for the design, construction and operation of a Chemical Waste Treatment Facility. The treatment and disposal processes, their integration and management are the subject of discussion in this paper

  1. Hong kong chemical waste treatment facilities: a technology overview

    Energy Technology Data Exchange (ETDEWEB)

    Siuwang, Chu [Enviropace Ltd., Hong Kong (Hong Kong)

    1994-12-31

    The effective management of chemical and industrial wastes represents one of the most pressing environmental problems confronting the Hong Kong community. In 1990, the Hong Kong government contracted Enviropace Limited for the design, construction and operation of a Chemical Waste Treatment Facility. The treatment and disposal processes, their integration and management are the subject of discussion in this paper

  2. Hazardous waste treatment facility and skid-mounted treatment systems at Los Alamos

    International Nuclear Information System (INIS)

    Lussiez, G.W.; Zygmunt, S.J.

    1993-01-01

    To centralize treatment, storage, and staging areas for hazardous wastes, Los Alamos National Laboratory has designed a 12,000-ft 2 hazardous waste treatment facility. The facility will house a treatment room for each of four kinds of wastes: nonradioactive characteristic wastes, nonradioactive listed wastes radioactive characteristic wastes, and radioactive listed wastes. The facility will be used for repacking labpacks, bulking small organic waste volumes, processing scintillation vials, treating reactives such as lithium hydride and pyrophoric uranium, treating contaminated solids such as barium sand, and treating plating wastes. The treated wastes will then be appropriately disposed of. This report describes the integral features of the hazardous waste treatment facility

  3. Proton radiotherapy for chest wall and regional lymphatic radiation; dose comparisons and treatment delivery

    International Nuclear Information System (INIS)

    MacDonald, Shannon M; Jimenez, Rachel; Paetzold, Peter; Adams, Judith; Beatty, Jonathan; DeLaney, Thomas F; Kooy, Hanne; Taghian, Alphonse G; Lu, Hsiao-Ming

    2013-01-01

    The delivery of post-mastectomy radiation therapy (PMRT) can be challenging for patients with left sided breast cancer that have undergone mastectomy. This study investigates the use of protons for PMRT in selected patients with unfavorable cardiac anatomy. We also report the first clinical application of protons for these patients. Eleven patients were planned with protons, partially wide tangent photon fields (PWTF), and photon/electron (P/E) fields. Plans were generated with the goal of achieving 95% coverage of target volumes while maximally sparing cardiac and pulmonary structures. In addition, we report on two patients with unfavorable cardiac anatomy and IMN involvement that were treated with a mix of proton and standard radiation. PWTF, P/E, and proton plans were generated and compared. Reasonable target volume coverage was achieved with PWTF and P/E fields, but proton therapy achieved superior coverage with a more homogeneous plan. Substantial cardiac and pulmonary sparing was achieved with proton therapy as compared to PWTF and P/E. In the two clinical cases, the delivery of proton radiation with a 7.2 to 9 Gy photon and electron component was feasible and well tolerated. Akimbo positioning was necessary for gantry clearance for one patient; the other was treated on a breast board with standard positioning (arms above her head). LAO field arrangement was used for both patients. Erythema and fatigue were the only noted side effects. Proton RT enables delivery of radiation to the chest wall and regional lymphatics, including the IMN, without compromise of coverage and with improved sparing of surrounding normal structures. This treatment is feasible, however, optimal patient set up may vary and field size is limited without multiple fields/matching

  4. Proton Beam Writing

    International Nuclear Information System (INIS)

    Rajta, I.; Szilasi, S.Z.; Csige, I.; Baradacs, E.

    2005-01-01

    flow channel, which were also implanted at the same irradiation. During the porous Si formation we developed the sample 6-8 μm deeper than the implanting ion range damaged the crystal. Due to the isotropic nature of the porous Si etching, the thick sidewall blocks are still connected to the crystal while the thin membranes detached from the bottom, and they are only connected to one of the sidewalls. The other construction utilized the goniometer facility mounted on the microbeam chamber, we implanted the samples at 40 degrees tilt, and developed the samples not as deep as the ion range. This way both the sidewalls and the membranes are attached to the bottom of the sample. The SEM images of the samples showed that both of these types of valves can be actively working, however, the thickness of the moving membrane requires extremely large force according to the fluidic tests. In order to achieve a successful demonstration of the functionality, the membrane rigidity should be reduced by decreasing the wall thickness. Reduction of optimal fluence by CO 2 treatment after exposure and vacuum effects in proton beam micromachining of CR-39 CR-39 has been shown to be a suitable material as a thick resist for Proton Beam Writing [5]. These samples are normally used to detect single alpha particles in normal air conditions. However, to use this material as proton or alpha micromachinable resists, we need to irradiate the samples in vacuum. In this work, we investigated the effects of vacuum on the micromachinable properties of CR-39. Our investigations proved that there were no drawbacks of the vacuum storage of the samples, so we concluded that CR-39 is a suitable material as a PBM resist in this respect, too. Another part of the current work concentrated on the effect of post-irradiaton CO 2 treatment of the samples. Such a treatment increased the radiation sensitivity of CR-39, i.e. decreased the necessary optimal ion fluence. We have found that approximately 60% of fluence

  5. Waste analysis plan for the 200 area effluent treatment facility and liquid effluent retention facility

    International Nuclear Information System (INIS)

    Ballantyne, N.A.

    1995-01-01

    This waste analysis plan (WAP) has been prepared for startup of the 200 Area Effluent Treatment Facility (ETF) and operation of the Liquid Effluent Retention Facility (LERF), which are located on the Hanford Facility, Richland, Washington. This WAP documents the methods used to obtain and analyze representative samples of dangerous waste managed in these units, and of the nondangerous treated effluent that is discharged to the State-Approved Land Disposal System (SALDS). Groundwater Monitoring at the SALDS will be addressed in a separate plan

  6. Dosimetric properties of a proton beamline dedicated to the treatment of ocular disease

    International Nuclear Information System (INIS)

    Slopsema, R. L.; Mamalui, M.; Yeung, D.; Malyapa, R.; Li, Z.; Zhao, T.

    2014-01-01

    Purpose: A commercial proton eyeline has been developed to treat ocular disease. Radiotherapy of intraocular lesions (e.g., uveal melanoma, age-related macular degeneration) requires sharp dose gradients to avoid critical structures like the macula and optic disc. A high dose rate is needed to limit patient gazing times during delivery of large fractional dose. Dose delivery needs to be accurate and predictable, not in the least because current treatment planning algorithms have limited dose modeling capabilities. The purpose of this paper is to determine the dosimetric properties of a new proton eyeline. These properties are compared to those of existing systems and evaluated in the context of the specific clinical requirements of ocular treatments. Methods: The eyeline is part of a high-energy, cyclotron-based proton therapy system. The energy at the entrance of the eyeline is 105 MeV. A range modulator (RM) wheel generates the spread-out Bragg peak, while a variable range shifter system adjusts the range and spreads the beam laterally. The range can be adjusted from 0.5 up to 3.4 g/cm 2 ; the modulation width can be varied in steps of 0.3 g/cm 2 or less. Maximum field diameter is 2.5 cm. All fields can be delivered with a dose rate of 30 Gy/min or more. The eyeline is calibrated according to the IAEA TRS-398 protocol using a cylindrical ionization chamber. Depth dose distributions and dose/MU are measured with a parallel-plate ionization chamber; lateral profiles with radiochromic film. The dose/MU is modeled as a function of range, modulation width, and instantaneous MU rate with fit parameters determined per option (RM wheel). Results: The distal fall-off of the spread-out Bragg peak is 0.3 g/cm 2 , larger than for most existing systems. The lateral penumbra varies between 0.9 and 1.4 mm, except for fully modulated fields that have a larger penumbra at skin. The source-to-axis distance is found to be 169 cm. The dose/MU shows a strong dependence on range (up

  7. Dosimetric properties of a proton beamline dedicated to the treatment of ocular disease

    Energy Technology Data Exchange (ETDEWEB)

    Slopsema, R. L., E-mail: rslopsema@floridaproton.org; Mamalui, M.; Yeung, D.; Malyapa, R.; Li, Z. [University of Florida Proton Therapy Institute, 2015 North Jefferson Street, Jacksonville, Florida 32205 (United States); Zhao, T. [Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Place, St. Louis, Missouri 63110 (United States)

    2014-01-15

    Purpose: A commercial proton eyeline has been developed to treat ocular disease. Radiotherapy of intraocular lesions (e.g., uveal melanoma, age-related macular degeneration) requires sharp dose gradients to avoid critical structures like the macula and optic disc. A high dose rate is needed to limit patient gazing times during delivery of large fractional dose. Dose delivery needs to be accurate and predictable, not in the least because current treatment planning algorithms have limited dose modeling capabilities. The purpose of this paper is to determine the dosimetric properties of a new proton eyeline. These properties are compared to those of existing systems and evaluated in the context of the specific clinical requirements of ocular treatments. Methods: The eyeline is part of a high-energy, cyclotron-based proton therapy system. The energy at the entrance of the eyeline is 105 MeV. A range modulator (RM) wheel generates the spread-out Bragg peak, while a variable range shifter system adjusts the range and spreads the beam laterally. The range can be adjusted from 0.5 up to 3.4 g/cm{sup 2}; the modulation width can be varied in steps of 0.3 g/cm{sup 2} or less. Maximum field diameter is 2.5 cm. All fields can be delivered with a dose rate of 30 Gy/min or more. The eyeline is calibrated according to the IAEA TRS-398 protocol using a cylindrical ionization chamber. Depth dose distributions and dose/MU are measured with a parallel-plate ionization chamber; lateral profiles with radiochromic film. The dose/MU is modeled as a function of range, modulation width, and instantaneous MU rate with fit parameters determined per option (RM wheel). Results: The distal fall-off of the spread-out Bragg peak is 0.3 g/cm{sup 2}, larger than for most existing systems. The lateral penumbra varies between 0.9 and 1.4 mm, except for fully modulated fields that have a larger penumbra at skin. The source-to-axis distance is found to be 169 cm. The dose/MU shows a strong dependence

  8. MYRRHA. An experimental ADS Facility for Research and Development

    International Nuclear Information System (INIS)

    Ait Abderrahim, H.

    2006-01-01

    Full text of publication follows: Since 1998, SCK-CEN in partnership with IBA s.a. and many European research laboratories, is designing a multipurpose ADS for R and D applications MYRRHA - and is conducting an associated R and D support programme. MYRRHA is an Accelerator Driven System (ADS) under development at Mol in Belgium and aiming to serve as a basis for the European experimental ADS to provide protons and neutrons for various R and D applications. It consists of a proton accelerator delivering a 350 MeV * 5 mA proton beam to a liquid Pb-Bi spallation target that in turn couples to a Pb-Bi cooled, subcritical fast core. In a first stage, the project focuses mainly on demonstration of the ADS concept, safety research on sub-critical systems and nuclear waste transmutation studies. In a later stage, the device will also be dedicated to research on structural materials, nuclear fuel, liquid metal technology and associated aspects and on sub-critical reactor physics. Subsequently, it will be used as fast spectrum irradiation facility and as radioisotope production facility. Along the above design features, the MYRRHA project team is developing the MYRRHA project as a multipurpose irradiation facility for R and D applications on the basis of an Accelerator Driven System (ADS). The project is intended to fit into the European strategy towards an ADS Demo facility for nuclear waste transmutation as described in the PDS-XADS FP5 Project. As such it should serve the following task catalogue: ADS concept demonstration, Safety studies for ADS, MA transmutation studies, LLFP transmutation studies, Medical radioisotopes, Material research, Fuel research. A first preliminary conceptual design file of MYRRHA was completed by the end of 2001 and has been reviewed by an International Technical Guidance Committee that concluded that there are no show stoppers in the project even thought some topics such as the safety studies and the fuel qualification need to be addressed

  9. Analysis of 440 GeV proton beam–matter interaction experiments at the High Radiation Materials test facility at CERN

    International Nuclear Information System (INIS)

    Burkart, F.; Schmidt, R.; Wollmann, D.; Raginel, V.; Tahir, N. A.; Shutov, A.; Piriz, A. R.

    2015-01-01

    In a previous paper [Schmidt et al., Phys. Plasmas 21, 080701 (2014)], we presented the first results on beam–matter interaction experiments that were carried out at the High Radiation Materials test facility at CERN. In these experiments, extended cylindrical targets of solid copper were irradiated with beam of 440 GeV protons delivered by the Super Proton Synchrotron (SPS). The beam comprised of a large number of high intensity proton bunches, each bunch having a length of 0.5 ns with a 50 ns gap between two neighboring bunches, while the length of this entire bunch train was about 7 μs. These experiments established the existence of the hydrodynamic tunneling phenomenon the first time. Detailed numerical simulations of these experiments were also carried out which were reported in detail in another paper [Tahir et al., Phys. Rev. E 90, 063112 (2014)]. Excellent agreement was found between the experimental measurements and the simulation results that validate our previous simulations done using the Large Hadron Collider (LHC) beam of 7 TeV protons [Tahir et al., Phys. Rev. Spec. Top.--Accel. Beams 15, 051003 (2012)]. According to these simulations, the range of the full LHC proton beam and the hadronic shower can be increased by more than an order of magnitude due to the hydrodynamic tunneling, compared to that of a single proton. This effect is of considerable importance for the design of machine protection system for hadron accelerators such as SPS, LHC, and Future Circular Collider. Recently, using metal cutting technology, the targets used in these experiments have been dissected into finer pieces for visual and microscopic inspection in order to establish the precise penetration depth of the protons and the corresponding hadronic shower. This, we believe will be helpful in studying the very important phenomenon of hydrodynamic tunneling in a more quantitative manner. The details of this experimental work together with a comparison with the

  10. FY-1981 project status for the Transuranic Waste Treatment Facility

    International Nuclear Information System (INIS)

    Benedetti, R.L.; Tait, T.D.

    1981-11-01

    The primary objective of the Transuranic Waste Treatment Facility (TWTF) Project is to provide a facility to process low-level transuranic waste stored at the Idaho National Engineering Laboratory (INEL) into a form acceptable for disposal at the Waste Isolation Pilot Plant. This report provides brief summary descriptions of the project objectives and background, project status through FY-1981, planned activities for FY-1982, and the EG and G TWTF Project office position on processing INEL transuranic waste

  11. SU-E-T-337: Treatment Planning Study of Craniospinal Irradiation with Spot Scanning Proton Therapy

    International Nuclear Information System (INIS)

    Tasson, A; Beltran, C; Laack, N; Childs, S; Tryggestad, E; Whitaker, T

    2014-01-01

    Purpose: To develop a treatment planning technique that achieves optimal robustness against systematic position and range uncertainties, and interfield position errors for craniospinal irradiation (CSI) using spot scanning proton radiotherapy. Methods: Eighteen CSI patients who had previously been treated using photon radiation were used for this study. Eight patients were less than 10 years old. The prescription dose was 23.4Gy in 1.8Gy fractions. Two different field arrangement types were investigated: 1 posterior field per isocenter and 2 posterior oblique fields per isocenter. For each field type, two delivery configurations were used: 5cm bolus attached to the treatment table and a 4.5cm range shifter located inside the nozzle. The target for each plan was the whole brain and thecal sac. For children under the age of 10, all plan types were repeated with an additional dose of 21Gy prescribed to the vertebral bodies. Treatment fields were matched by stepping down the dose in 10% increments over 9cm. Robustness against 3% and 3mm uncertainties, as well as a 3mm inter-field error was analyzed. Dose coverage of the target and critical structure sparing for each plan type will be considered. Ease of planning and treatment delivery was also considered for each plan type. Results: The mean dose volume histograms show that the bolus plan with posterior beams gave the best overall plan, and all proton plans were comparable to or better than the photon plans. The plan type that was the most robust against the imposed uncertainties was also the bolus plan with posterior beams. This is also the plan configuration that is the easiest to deliver and plan. Conclusion: The bolus plan with posterior beams achieved optimal robustness against systematic position and range uncertainties, as well as inter-field position errors

  12. Synthetic Secoisolariciresinol Diglucoside (LGM2605 Protects Human Lung in an Ex Vivo Model of Proton Radiation Damage

    Directory of Open Access Journals (Sweden)

    Anastasia Velalopoulou

    2017-11-01

    Full Text Available Radiation therapy for the treatment of thoracic malignancies has improved significantly by directing of the proton beam in higher doses on the targeted tumor while normal tissues around the tumor receive much lower doses. Nevertheless, exposure of normal tissues to protons is known to pose a substantial risk in long-term survivors, as confirmed by our work in space-relevant exposures of murine lungs to proton radiation. Thus, radioprotective strategies are being sought. We established that LGM2605 is a potent protector from radiation-induced lung toxicity and aimed in the current study to extend the initial findings of space-relevant, proton radiation-associated late lung damage in mice by looking at acute changes in human lung. We used an ex vivo model of organ culture where tissue slices of donor living human lung were kept in culture and exposed to proton radiation. We exposed donor human lung precision-cut lung sections (huPCLS, pretreated with LGM2605, to 4 Gy proton radiation and evaluated them 30 min and 24 h later for gene expression changes relevant to inflammation, oxidative stress, and cell cycle arrest, and determined radiation-induced senescence, inflammation, and oxidative tissue damage. We identified an LGM2605-mediated reduction of proton radiation-induced cellular senescence and associated cell cycle changes, an associated proinflammatory phenotype, and associated oxidative tissue damage. This is a first report on the effects of proton radiation and of the radioprotective properties of LGM2605 on human lung.

  13. Generation of warm dense matter and strongly coupled plasmas using the High Radiation on Materials facility at the CERN Super Proton Synchrotron

    CERN Document Server

    Tahir, N A; Brugger, M; Assmann, R; Shutov, A; Lomonosov, I V; Gryaznov, V; Piriz, A R; Udrea, S; Hoffmann, D H H; Fortov, V E; Deutsch, C

    2009-01-01

    A dedicated facility named High Radiation on Materials (HiRadMat) is being constructed at CERN to study the interaction of the 450 GeV protons generated by the Super Proton Synchrotron (SPS) with fixed solid targets of different materials. The main purpose of these future experiments is to study the generation and propagation of thermal shock waves in the target in order to assess the damage caused to the equipment, including collimators and absorbers, in case of an accident involving an uncontrolled release of the entire beam at a given point. Detailed numerical simulations of the beam-target interaction of several cases of interest have been carried out. In this paper we present simulations of the thermodynamic and the hydrodynamic response of a solid tungsten cylindrical target that is facially irradiated with the SPS beam with nominal parameters. These calculations have been carried out in two steps. First, the energy loss of the protons is calculated in the solid target using the FLUKA code (Fasso et al....

  14. Federal Facilities Compliance Act, Conceptual Site Treatment Plan. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-10-29

    This Conceptual Site Treatment Plan was prepared by Ames Laboratory to meet the requirements of the Federal Facilities Compliance Act. Topics discussed in this document include: general discussion of the plan, including the purpose and scope; technical aspects of preparing plans, including the rationale behind the treatability groupings and a discussion of characterization issues; treatment technology needs and treatment options for specific waste streams; low-level mixed waste options; TRU waste options; and future waste generation from restoration activities.

  15. NPDES Permit for Town of Lodge Grass Wastewater Treatment Facility in Montana

    Science.gov (United States)

    Under National Pollutant Discharge Elimination System permit number MT0021890, the Town of Lodge Grass is authorized to discharge from from its wastewater treatment facility in Big Horn County to an unnamed slough to the Little Bighorn River.

  16. NPDES Permit for Dakota Magic Casino Wastewater Treatment Facility in North Dakota

    Science.gov (United States)

    Under NPDES permit ND-0030813, the Dakota Nation Gaming Enterprise is authorized to discharge from the wastewater treatment facility in Richland County, North Dakota, to a roadside ditch flowing to an unnamed tributary to the Bois de Sioux.

  17. NPDES Permit for Rosebud Casino and Hotel Wastewater Treatment Facility in South Dakota

    Science.gov (United States)

    Under NPDES permit SD-0034584, Rosebud Casino and Hotel, South Dakota, is authorized to discharge from its wastewater treatment facility in Todd County, South Dakota to an unnamed drainageway(s) tributary to Rock Creek.

  18. The planned Alaska SAR Facility - An overview

    Science.gov (United States)

    Carsey, Frank; Weeks, Wilford

    1987-01-01

    The Alaska SAR Facility (ASF) is described in an overview fashion. The facility consists of three major components, a Receiving Ground System, a SAR Processing System and an Analysis and Archiving System; the ASF Program also has a Science Working Team and the requisite management and operations systems. The ASF is now an approved and fully funded activity; detailed requirements and science background are presented for the facility to be implemented for data from the European ERS-1, the Japanese ERS-1 and Radarsat.

  19. An update in proton probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Sakellariou, A; Cholewa, M; Saint, A; Legge, G L.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Howard, J [Australian National Univ., Canberra, ACT (Australia). Research School of Physical Sciences

    1997-12-31

    The analysis of scanning transmission ion microscopy (STIM) tomography data is improved. The volumetric density information is obtained directly from an iterative convolution and back-projection (BFP) reconstruction method. The iterative method allows the effects of stopping-power to be incorporated easily. One draw back is that a priori constituency information is required for the iterative method to work However, this is of no concern because the iterative method was designed with PIXE tomography in mind. In this light, the a priori information will be obtained as the zeroth iteration of a PIXE tomography iterative reconstruction method. 4 refs., 1 tab., 4 figs.

  20. An update in proton probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Sakellariou, A.; Cholewa, M.; Saint, A.; Legge, G.L.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Howard, J. [Australian National Univ., Canberra, ACT (Australia). Research School of Physical Sciences

    1996-12-31

    The analysis of scanning transmission ion microscopy (STIM) tomography data is improved. The volumetric density information is obtained directly from an iterative convolution and back-projection (BFP) reconstruction method. The iterative method allows the effects of stopping-power to be incorporated easily. One draw back is that a priori constituency information is required for the iterative method to work However, this is of no concern because the iterative method was designed with PIXE tomography in mind. In this light, the a priori information will be obtained as the zeroth iteration of a PIXE tomography iterative reconstruction method. 4 refs., 1 tab., 4 figs.

  1. Proton therapy physics

    CERN Document Server

    2012-01-01

    Proton Therapy Physics goes beyond current books on proton therapy to provide an in-depth overview of the physics aspects of this radiation therapy modality, eliminating the need to dig through information scattered in the medical physics literature. After tracing the history of proton therapy, the book summarizes the atomic and nuclear physics background necessary for understanding proton interactions with tissue. It describes the physics of proton accelerators, the parameters of clinical proton beams, and the mechanisms to generate a conformal dose distribution in a patient. The text then covers detector systems and measuring techniques for reference dosimetry, outlines basic quality assurance and commissioning guidelines, and gives examples of Monte Carlo simulations in proton therapy. The book moves on to discussions of treatment planning for single- and multiple-field uniform doses, dose calculation concepts and algorithms, and precision and uncertainties for nonmoving and moving targets. It also exami...

  2. Operation technology of air treatment system in nuclear facilities

    CERN Document Server

    Chun, Y B; Hwong, Y H; Lee, H K; Min, D K; Park, K J; Uom, S H; Yang, S Y

    2001-01-01

    Effective operation techniques were reviewed on the air treatment system to protect the personnel in nuclear facilities from the contamination of radio-active particles and to keep the environment clear. Nuclear air treatment system consisted of the ventilation and filtering system was characterized by some test. Measurement of air velocity of blowing/exhaust fan in the ventilation system, leak tests of HEPA filters in the filtering, and measurement of pressure difference between the areas defined by radiation level were conducted. The results acquired form the measurements were reflected directly for the operation of air treatment. In the abnormal state of virus parts of devices composted of the system, the repairing method, maintenance and performance test were also employed in operating effectively the air treatment system. These measuring results and techniques can be available to the operation of air treatment system of PIEF as well as the other nuclear facilities in KAERI.

  3. Induced radioactivity studies of the shielding and beamline equipment of the high intensity proton accelerator facility at PSI

    Science.gov (United States)

    Otiougova, Polina; Bergmann, Ryan; Kiselev, Daniela; Talanov, Vadim; Wohlmuther, Michael

    2017-09-01

    The Paul Scherrer Institute (PSI) is the largest national research center in Switzerland. Its multidisciplinary research is dedicated to a wide ↓eld in natural science and technology as well as particle physics. The High Intensity Proton Accelerator Facility (HIPA) has been in operation at PSI since 1974. It includes an 870 keV Cockroft-Walton pre-accelerator, a 72 MeV injector cyclotron as well as a 590 MeV ring cyclotron. The experimental facilities, the meson production graphite targets, Target E and Target M, and the spallation target stations (SINQ and UCN) are used for material research and particle physics. In order to ful↓ll the request of the regulatory authorities and to be reported to the regulators, the expected radioactive waste and nuclide inventory after an anticipated ↓nal shutdown in the far future has to be estimated. In this contribution, calculations for the 20 m long beamline between Target E and the 590 MeV beam dump of HIPA are presented. The ↓rst step in the calculations was determining spectra and spatial particle distributions around the beamlines using the Monte-Carlo particle transport code MCNPX2.7.0 [1]. To perform the analysis of the MCNPX output and to determine the radionuclide inventory as well as the speci↓c activity of the nuclides, an activation script [2] using the FISPACT10 code with the cross sections from the European Activation File (EAF2010) [3] was applied. The speci↓c activity values were compared to the currently existing Swiss exemption limits (LE) [4] as well as to the Swiss liberation limits (LL) [5], becoming e↑ective in the near future. The obtained results were used to estimate the total volume of the radioactive waste produced at HIPA and have to be reported to the Swiss regulatory authorities. The comparison of the performed calculations to measurements is discussed as well. Note to the reader: the pdf file has been changed on September 22, 2017.

  4. An Evaluation of the Performance Diagnostic Checklist-Human Services to Assess an Employee Performance Problem in a Center-Based Autism Treatment Facility

    Science.gov (United States)

    Ditzian, Kyle; Wilder, David A.; King, Allison; Tanz, Jeanine

    2015-01-01

    The Performance Diagnostic Checklist-Human Services (PDC-HS) is an informant-based tool designed to assess the environmental variables that contribute to poor employee performance in human services settings. We administered the PDC-HS to 3 supervisors to assess the variables that contributed to poor performance by 4 staff members when securing…

  5. Operation, Maintenance and Management of Wastewater Treatment Facilities: A Bibliography of Technical Documents.

    Science.gov (United States)

    Himes, Dottie

    This is an annotated bibliography of wastewater treatment manuals. Fourteen manuals are abstracted including: (1) A Planned Maintenance Management System for Municipal Wastewater Treatment Plants; (2) Anaerobic Sludge Digestion, Operations Manual; (3) Emergency Planning for Municipal Wastewater Treatment Facilities; (4) Estimating Laboratory Needs…

  6. Analytical incorporation of fractionation effects in probabilistic treatment planning for intensity-modulated proton therapy.

    Science.gov (United States)

    Wahl, Niklas; Hennig, Philipp; Wieser, Hans-Peter; Bangert, Mark

    2018-04-01

    We show that it is possible to explicitly incorporate fractionation effects into closed-form probabilistic treatment plan analysis and optimization for intensity-modulated proton therapy with analytical probabilistic modeling (APM). We study the impact of different fractionation schemes on the dosimetric uncertainty induced by random and systematic sources of range and setup uncertainty for treatment plans that were optimized with and without consideration of the number of treatment fractions. The APM framework is capable of handling arbitrarily correlated uncertainty models including systematic and random errors in the context of fractionation. On this basis, we construct an analytical dose variance computation pipeline that explicitly considers the number of treatment fractions for uncertainty quantitation and minimization during treatment planning. We evaluate the variance computation model in comparison to random sampling of 100 treatments for conventional and probabilistic treatment plans under different fractionation schemes (1, 5, 30 fractions) for an intracranial, a paraspinal and a prostate case. The impact of neglecting the fractionation scheme during treatment planning is investigated by applying treatment plans that were generated with probabilistic optimization for 1 fraction in a higher number of fractions and comparing them to the probabilistic plans optimized under explicit consideration of the number of fractions. APM enables the construction of an analytical variance computation model for dose uncertainty considering fractionation at negligible computational overhead. It is computationally feasible (a) to simultaneously perform a robustness analysis for all possible fraction numbers and (b) to perform a probabilistic treatment plan optimization for a specific fraction number. The incorporation of fractionation assumptions for robustness analysis exposes a dose to uncertainty trade-off, i.e., the dose in the organs at risk is increased for a

  7. Treatment and storage of radioactive gases from nuclear facilities

    International Nuclear Information System (INIS)

    Johannsen, K.H.; Schwarzbach, R.

    1980-01-01

    Treatment of exhaust air from nuclear facilities aimed at retaining or separating the radionuclides of iodine, xenon, and krypton as well as of tritium and carbon-14 and their storage are of special interest in connection with increasing utilization of nuclear power in order to reduce releases of radioactive materials to the atmosphere. The state of the art and applicability of potential processes of separating volatile fission and activation products from nuclear power stations and reprocessing plants are reviewed. Possibilities of ultimate storage are presented. An evaluation of the current stage of development shows that processes for effective separation of radioactive gases are available. Recent works are focused on economy and safety optimization. Long-term storage, in particular of extremely long-lived radionuclides, needs further investigation. (author)

  8. In-treatment tests for the monitoring of proton and carbon-ion therapy with a large area PET system at CNAO

    Energy Technology Data Exchange (ETDEWEB)

    Rosso, V., E-mail: valeria.rosso@pi.infn.it [Department of Physics, University of Pisa and INFN, Pisa (Italy); Battistoni, G. [INFN Sezione di Milano, Milano (Italy); Belcari, N.; Camarlinghi, N. [Department of Physics, University of Pisa and INFN, Pisa (Italy); Ciocca, M. [Fondazione CNAO, Pavia (Italy); Collini, F. [Department of Physical Sciences, Earth and Environment, University of Siena and INFN, Pisa (Italy); Ferretti, S.; Kraan, A.C.; Lucenò, S. [Department of Physics, University of Pisa and INFN, Pisa (Italy); Molinelli, S.; Pullia, M. [Fondazione CNAO, Pavia (Italy); Sportelli, G.; Zaccaro, E.; Del Guerra, A. [Department of Physics, University of Pisa and INFN, Pisa (Italy)

    2016-07-11

    One of the most promising new radiotherapy techniques makes use of charged particles like protons and carbon ions, rather than photons. At present, there are more than 50 particle therapy centers operating worldwide, and many new centers are being constructed. Positron Emission Tomography (PET) is considered a well-established non-invasive technique to monitor range and delivered dose in patients treated with particle therapy. Nuclear interactions of the charged hadrons with the patient tissue lead to the production of β+ emitting isotopes (mainly {sup 15}O and {sup 11}C), that decay with a short lifetime producing a positron. The two 511 keV annihilation photons can be detected with a PET detector. In-beam PET is particularly interesting because it could allow monitoring the ions range also during dose delivery. A large area dual head PET prototype was built and tested. The system is based on an upgraded version of the previously developed DoPET prototype. Each head covers now 15×15 cm{sup 2} and is composed by 9 (3×3) independent modules. Each module consists of a 23×23 LYSO crystal matrix (2 mm pitch) coupled to H8500 PMT and is readout by custom front-end and a FPGA based data acquisition electronics. Data taken at the CNAO treatment facility in Pavia with proton and carbon beams impinging on heterogeneous phantoms demonstrate the DoPET capability to detect the presence of a small air cavity in the phantom.

  9. An overview of current experiments in search of proton decay

    International Nuclear Information System (INIS)

    Goldhaber, M.; Sulak, L.R.

    1981-01-01

    Detectors being used in current experiments dedicated to the search for proton decay, fall into two classes, totally active water Cherenkov detectors with light collected by phototubes, and sampling calorimeters with particle ionization tracked by gas tube arrays. An example of each type is considered in detail, the features of other detectors in the two classes are pointed out and compared with those of the same type. (U.K.)

  10. A Treatment Planning Comparison of Combined Photon-Proton Beams Versus Proton Beams-Only for the Treatment of Skull Base Tumors

    International Nuclear Information System (INIS)

    Feuvret, Loic; Noel, Georges; Weber, Damien C.; Pommier, Pascal; Ferrand, Regis; De Marzi, Ludovic; Dhermain, Frederic; Alapetite, Claire; Mammar, Hamid; Boisserie, Gilbert; Habrand, Jean-Louis; Mazeron, Jean-Jacques

    2007-01-01

    Purpose: To compare treatment planning between combined photon-proton planning (CP) and proton planning (PP) for skull base tumors, so as to assess the potential limitations of CP for these tumors. Methods and Materials: Plans for 10 patients were computed for both CP and PP. Prescribed dose was 67 cobalt Gray equivalent (CGE) for PP; 45 Gy (photons) and 22 CGE (protons) for CP. Dose-volume histograms (DVHs) were calculated for gross target volume (GTV), clinical target volume (CTV), normal tissues (NT), and organs at risk (OARs) for each plan. Results were analyzed using DVH parameters, inhomogeneity coefficient (IC), and conformity index (CI). Results: Mean doses delivered to the GTVs and CTVs with CP (65.0 and 61.7 CGE) and PP (65.3 and 62.2 Gy CGE) were not significantly different (p > 0.1 and p = 0.72). However, the dose inhomogeneity was drastically increased with CP, with a mean significant incremental IC value of 10.5% and CP of 6.8%, for both the GTV (p = 0.01) and CTV (p = 0.04), respectively. The CI 80% values for the GTV and CTV were significantly higher with PP compared with CP. Compared with CP, the use of protons only led to a significant reduction of NT and OAR irradiation, in the intermediate-to-low dose (≤80% isodose line) range. Conclusions: These results suggest that the use of CP results in levels of target dose conformation similar to those with PP. Use of PP significantly reduced the tumor dose inhomogeneity and the delivered intermediate-to-low dose to NT and OARs, leading us to conclude that this treatment is mainly appropriate for tumors in children

  11. First Dutch Consensus of Pain Quality Indicators for Pain Treatment Facilities.

    Science.gov (United States)

    de Meij, Nelleke; van Grotel, Marloes; Patijn, Jacob; van der Weijden, Trudy; van Kleef, Maarten

    2016-01-01

    There is a general consensus about the need to define and improve the quality of pain treatment facilities. Although guidelines and recommendations to improve the quality of pain practice management have been launched, provision of appropriate pain treatment is inconsistent and the quality of facilities varies widely. The aim of the study was to develop an expert-agreed list of quality indicators applicable to pain treatment facilities. The list was also intended to be used as the basis for a set of criteria for registered status of pain treatment facilities. The University Pain Center Maastricht at the Department of Anesthesiology and Pain Management of the Maastricht University Medical Center conducted a 3-round Delphi study in collaboration with the Board of the Pain Section of the Dutch Society of Anesthesiologists (NVA). Twenty-five quality indicators were selected as relevant to 2 types of pain treatment facilities, pain clinics and pain centers. The final expert-agreed list consisted of 22 quality indicators covering 7 quality domains: supervision, availability of care, staffing level and patient load, quality policy, multidisciplinarity, regionalization, and research and education. This set of quality indicators may facilitate organizational evaluation and improve insight into service quality from the perspectives of patients, pain specialists, and other healthcare professionals. Recommendations for improvements to the current set of quality indicators are made. In 2014 the process of registering pain treatment facilities in the Netherlands started; facilities can register as a pain clinic or pain center. © 2015 World Institute of Pain.

  12. An imaging proton spectrometer for short-pulse laser plasma experiments

    International Nuclear Information System (INIS)

    Chen Hui; Hazi, A. U.; Maren, R. van; Chen, S. N.; Le Pape, S.; Rygg, J. R.; Shepherd, R.; Fuchs, J.; Gauthier, M.

    2010-01-01

    The ultraintense short pulse laser pulses incident on solid targets can generate energetic protons. In addition to their potentially important applications such as in cancer treatments and proton fast ignition, these protons are essential to understand the complex physics of intense laser plasma interaction. To better characterize these laser-produced protons, we designed and constructed a novel spectrometer that will not only measure proton energy distribution with high resolution but also provide its angular characteristics. The information obtained from this spectrometer compliments those from commonly used diagnostics including radiochromic film packs, CR39 nuclear track detectors, and nonimaging magnetic spectrometers. The basic characterizations and sample data from this instrument are presented.

  13. An imaging proton spectrometer for short-pulse laser plasma experiments

    Energy Technology Data Exchange (ETDEWEB)

    Chen Hui; Hazi, A. U.; Maren, R. van; Chen, S. N.; Le Pape, S.; Rygg, J. R.; Shepherd, R. [Lawrence Livermore National Laboratory, Livemore, California 94551 (United States); Fuchs, J.; Gauthier, M. [LULI Ecole Polytechnique, 91128 Palaiseau Cedex (France)

    2010-10-15

    The ultraintense short pulse laser pulses incident on solid targets can generate energetic protons. In addition to their potentially important applications such as in cancer treatments and proton fast ignition, these protons are essential to understand the complex physics of intense laser plasma interaction. To better characterize these laser-produced protons, we designed and constructed a novel spectrometer that will not only measure proton energy distribution with high resolution but also provide its angular characteristics. The information obtained from this spectrometer compliments those from commonly used diagnostics including radiochromic film packs, CR39 nuclear track detectors, and nonimaging magnetic spectrometers. The basic characterizations and sample data from this instrument are presented.

  14. Proton and carbon ion therapy

    CERN Document Server

    Lomax, Tony

    2013-01-01

    Proton and Carbon Ion Therapy is an up-to-date guide to using proton and carbon ion therapy in modern cancer treatment. The book covers the physics and radiobiology basics of proton and ion beams, dosimetry methods and radiation measurements, and treatment delivery systems. It gives practical guidance on patient setup, target localization, and treatment planning for clinical proton and carbon ion therapy. The text also offers detailed reports on the treatment of pediatric cancers, lymphomas, and various other cancers. After an overview, the book focuses on the fundamental aspects of proton and carbon ion therapy equipment, including accelerators, gantries, and delivery systems. It then discusses dosimetry, biology, imaging, and treatment planning basics and provides clinical guidelines on the use of proton and carbon ion therapy for the treatment of specific cancers. Suitable for anyone involved with medical physics and radiation therapy, this book offers a balanced and critical assessment of state-of-the-art...

  15. The swelling transition of lepidocrocite-type protonated layered titanates into anatase under hydrothermal treatment

    OpenAIRE

    Yuan, Huiyu; Besselink, Rogier; Liao, Zhaoliang; ten Elshof, Johan E.

    2014-01-01

    The common facets of anatase crystals are the (001) and (101) planes. However, the phase transformation from lepidocrocite-type titanate into anatase by hydrothermal processing yields an anatase microstructure with high concentration of exposed (010) planes. The phase transformation of a lepidocrocite-type protonated layered titanate (HTO) into anatase was studied using XRD, TEM, FTIR, and measurement of pH and zeta potential. It was found that HTO is proton-deficient. The phase transformatio...

  16. Latest development in project site radwaste treatment facility (SRTF) Sanmen

    International Nuclear Information System (INIS)

    Mennicken, K.; Lohmann, P.

    2015-01-01

    Westinghouse Electric Germany GmbH (WEG) was successful in being awarded a contract as to the planning, delivery, installation and commissioning of radwaste treatment systems for the AP1000 units at Sanmen site, PR China. Operational low and intermediate level radioactive waste will be processed in the Site Radwaste Treatment Facility (SRTF). This paper explains the latest developments of the project, especially the experience with customer-hired Chinese planning partners, installation companies and Customer operating personnel. (authors)

  17. Radiation protection -Operation of chemical wastewater treatment facility

    International Nuclear Information System (INIS)

    Lee, M. J.; Lim, M. H.; Ahn, S. S.; Jeong, Y. S.

    1996-12-01

    The wastewater and sewage treatment facility have been operated. From the results of operation, it was confirmed that the quality of treated wastewater was 1/5 or 1/10 lower than that of regulation of law for environmental conservation. The quality of treated sewage has been maintained to 70% of regulation of law for environmental conservation. (author). 14 tabs., 8 figs

  18. 200 area effluent treatment facility opertaional test report

    International Nuclear Information System (INIS)

    Crane, A.F.

    1995-01-01

    This document reports the results of the 200 Area Effluent Treatment Facility (200 Area ETF) operational testing activities. These Operational testing activities demonstrated that the functional, operational and design requirements of the 200 Area ETF have been met and identified open items which require retesting

  19. Mixed and Low-Level Waste Treatment Facility project

    International Nuclear Information System (INIS)

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. The engineering studies, initiated in July 1991, identified 37 mixed waste streams, and 55 low-level waste streams. This report documents the waste stream information and potential treatment strategies, as well as the regulatory requirements for the Department of Energy-owned treatment facility option. The total report comprises three volumes and two appendices. This report consists of Volume 1, which explains the overall program mission, the guiding assumptions for the engineering studies, and summarizes the waste stream and regulatory information, and Volume 2, the Waste Stream Technical Summary which, encompasses the studies conducted to identify the INEL's waste streams and their potential treatment strategies

  20. The swelling transition of lepidocrocite-type protonated layered titanates into anatase under hydrothermal treatment

    Science.gov (United States)

    Yuan, Huiyu; Besselink, Rogier; Liao, Zhaoliang; Ten Elshof, Johan E.

    2014-04-01

    The common facets of anatase crystals are the (001) and (101) planes. However, the phase transformation from lepidocrocite-type titanate into anatase by hydrothermal processing yields an anatase microstructure with high concentration of exposed (010) planes. The phase transformation of a lepidocrocite-type protonated layered titanate (HTO) into anatase was studied using XRD, TEM, FTIR, and measurement of pH and zeta potential. It was found that HTO is proton-deficient. The phase transformation process begins after uptake of a sufficient number of protons into the lepidocrocite-type structure. With the uptake of protons new hydroxyl groups form on the internal surfaces of the layered titanate and result in a bilayer state of HTO. The phase transformation reaction is a topotactic dehydration reaction in which anatase forms and water is expelled by syneresis.

  1. The swelling transition of lepidocrocite-type protonated layered titanates into anatase under hydrothermal treatment.

    Science.gov (United States)

    Yuan, Huiyu; Besselink, Rogier; Liao, Zhaoliang; Ten Elshof, Johan E

    2014-04-03

    The common facets of anatase crystals are the (001) and (101) planes. However, the phase transformation from lepidocrocite-type titanate into anatase by hydrothermal processing yields an anatase microstructure with high concentration of exposed (010) planes. The phase transformation of a lepidocrocite-type protonated layered titanate (HTO) into anatase was studied using XRD, TEM, FTIR, and measurement of pH and zeta potential. It was found that HTO is proton-deficient. The phase transformation process begins after uptake of a sufficient number of protons into the lepidocrocite-type structure. With the uptake of protons new hydroxyl groups form on the internal surfaces of the layered titanate and result in a bilayer state of HTO. The phase transformation reaction is a topotactic dehydration reaction in which anatase forms and water is expelled by syneresis.

  2. Proton Radiotherapy for Prostate Cancer Is Not Associated With Post-Treatment Testosterone Suppression

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, R. Charles, E-mail: rnichols@floridaproton.org [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); University of Florida Proton Therapy Institute, Jacksonville, FL (United States); Morris, Christopher G.; Hoppe, Bradford S.; Henderson, Randal H.; Marcus, Robert B.; Mendenhall, William M.; Li Zuofeng [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); University of Florida Proton Therapy Institute, Jacksonville, FL (United States); Williams, Christopher R.; Costa, Joseph A. [Division of Urology, University of Florida Shands Hospital, Jacksonville, FL (United States); Mendenhall, Nancy P. [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); University of Florida Proton Therapy Institute, Jacksonville, FL (United States)

    2012-03-01

    Purpose: Three independent studies of photon (x-ray) radiotherapy (RT) for prostate cancer have demonstrated evidence of testosterone suppression after treatment. The present study was undertaken to determine whether this would also be the case with conformal protons. Methods and Materials: Between August 2006 and October 2007, 171 patients with low- and intermediate-risk prostate cancer were enrolled and underwent treatment according to University of Florida Proton Therapy Institute institutional review board-approved PR01 and PR02 protocols. Of the 171 patients, 18 were excluded because they had received androgen deprivation therapy either before (n = 17) or after (n = 1) RT. The pretreatment serum testosterone level was available for 150 of the remaining 153 patients. These 150 patients were included in the present study. The post-treatment levels were compared with the pretreatment levels. Results: The median baseline pretreatment serum testosterone level was 357.9 ng/dL. The median post-treatment testosterone value was 375.5 ng/dL at treatment completion (p = .1935) and 369.9 ng/dL (p = .1336), 348.7 ng/dL (p = .7317), 353.4 ng/dL (p = .6996), and 340.9 ng/dL (p = .1669) at 6, 12, 18, and 24 months after proton therapy, respectively. Conclusions: Conformal proton therapy to the prostate, as delivered using University of Florida Proton Therapy Institute PR01 and PR02 protocols, did not appear to significantly affect the serum testosterone levels within 24 months after RT.

  3. Proton Radiotherapy for Prostate Cancer Is Not Associated With Post-Treatment Testosterone Suppression

    International Nuclear Information System (INIS)

    Nichols, R. Charles; Morris, Christopher G.; Hoppe, Bradford S.; Henderson, Randal H.; Marcus, Robert B.; Mendenhall, William M.; Li Zuofeng; Williams, Christopher R.; Costa, Joseph A.; Mendenhall, Nancy P.

    2012-01-01

    Purpose: Three independent studies of photon (x-ray) radiotherapy (RT) for prostate cancer have demonstrated evidence of testosterone suppression after treatment. The present study was undertaken to determine whether this would also be the case with conformal protons. Methods and Materials: Between August 2006 and October 2007, 171 patients with low- and intermediate-risk prostate cancer were enrolled and underwent treatment according to University of Florida Proton Therapy Institute institutional review board-approved PR01 and PR02 protocols. Of the 171 patients, 18 were excluded because they had received androgen deprivation therapy either before (n = 17) or after (n = 1) RT. The pretreatment serum testosterone level was available for 150 of the remaining 153 patients. These 150 patients were included in the present study. The post-treatment levels were compared with the pretreatment levels. Results: The median baseline pretreatment serum testosterone level was 357.9 ng/dL. The median post-treatment testosterone value was 375.5 ng/dL at treatment completion (p = .1935) and 369.9 ng/dL (p = .1336), 348.7 ng/dL (p = .7317), 353.4 ng/dL (p = .6996), and 340.9 ng/dL (p = .1669) at 6, 12, 18, and 24 months after proton therapy, respectively. Conclusions: Conformal proton therapy to the prostate, as delivered using University of Florida Proton Therapy Institute PR01 and PR02 protocols, did not appear to significantly affect the serum testosterone levels within 24 months after RT.

  4. Dosimetric Feasibility of Hypofractionated Proton Radiotherapy for Neoadjuvant Pancreatic Cancer Treatment

    International Nuclear Information System (INIS)

    Kozak, Kevin R.; Kachnic, Lisa A.; Adams, Judith C; Crowley, Elizabeth M.; Alexander, Brian M.; Mamon, Harvey J.; Fernandez-Del Castillo, Carlos; Ryan, David P.; DeLaney, Thomas F.; Hong, Theodore S.

    2007-01-01

    Purpose: To evaluate tumor and normal tissue dosimetry of a 5 cobalt gray equivalent (CGE) x 5 fraction proton radiotherapy schedule, before initiating a clinical trial of neoadjuvant, short-course proton radiotherapy for pancreatic adenocarcinoma. Methods and Materials: The first 9 pancreatic cancer patients treated with neoadjuvant intensity-modulated radiotherapy (1.8 Gy x 28) at the Massachusetts General Hospital had treatment plans generated using a 5 CGE x 5 fraction proton regimen. To facilitate dosimetric comparisons, clinical target volumes and normal tissue volumes were held constant. Plans were optimized for target volume coverage and normal tissue sparing. Results: Hypofractionated proton and conventionally fractionated intensity-modulated radiotherapy plans both provided acceptable target volume coverage and dose homogeneity. Improved dose conformality provided by the hypofractionated proton regimen resulted in significant sparing of kidneys, liver, and small bowel, evidenced by significant reductions in the mean doses, expressed as percentage prescribed dose, to these structures. Kidney and liver sparing was most evident in low-dose regions (≤20% prescribed dose for both kidneys and ≤60% prescribed dose for liver). Improvements in small-bowel dosimetry were observed in high- and low-dose regions. Mean stomach and duodenum doses, expressed as percentage prescribed dose, were similar for the two techniques. Conclusions: A proton radiotherapy schedule consisting of 5 fractions of 5 CGE as part of neoadjuvant therapy for adenocarcinoma of the pancreas seems dosimetrically feasible, providing excellent target volume coverage, dose homogeneity, and normal tissue sparing. Hypofractionated proton radiotherapy in this setting merits Phase I clinical trial investigation

  5. Two-dimensional pencil beam scaling: an improved proton dose algorithm for heterogeneous media

    International Nuclear Information System (INIS)

    Szymanowski, Hanitra; Oelfke, Uwe

    2002-01-01

    New dose delivery techniques with proton beams, such as beam spot scanning or raster scanning, require fast and accurate dose algorithms which can be applied for treatment plan optimization in clinically acceptable timescales. The clinically required accuracy is particularly difficult to achieve for the irradiation of complex, heterogeneous regions of the patient's anatomy. Currently applied fast pencil beam dose calculations based on the standard inhomogeneity correction of pathlength scaling often cannot provide the accuracy required for clinically acceptable dose distributions. This could be achieved with sophisticated Monte Carlo simulations which are still unacceptably time consuming for use as dose engines in optimization calculations. We therefore present a new algorithm for proton dose calculations which aims to resolve the inherent problem between calculation speed and required clinical accuracy. First, a detailed derivation of the new concept, which is based on an additional scaling of the lateral proton fluence is provided. Then, the newly devised two-dimensional (2D) scaling method is tested for various geometries of different phantom materials. These include standard biological tissues such as bone, muscle and fat as well as air. A detailed comparison of the new 2D pencil beam scaling with the current standard pencil beam approach and Monte Carlo simulations, performed with GEANT, is presented. It was found that the new concept proposed allows calculation of absorbed dose with an accuracy almost equal to that achievable with Monte Carlo simulations while requiring only modestly increased calculation times in comparison to the standard pencil beam approach. It is believed that this new proton dose algorithm has the potential to significantly improve the treatment planning outcome for many clinical cases encountered in highly conformal proton therapy. (author)

  6. Design of safeguards information treatment system at the facility level

    Energy Technology Data Exchange (ETDEWEB)

    Song, Dae Yong; Lee, Byung Doo; Kwack, Eun Ho; Choi, Young Myong

    2001-05-01

    We are developing Safeguards Information Treatment System at the facility level(SITS) to manage synthetically safeguards information and to implement efficiently the obligations under the Korea-IAEA Safeguards Agreement, bilateral agreements with other countries and domestic law. In this report, we described the contents of the detailed design of SITS such as database, I/O layout and program. In the present, we are implementing the SITS based on the contents of the design of SITS, and then we plan to provide the system for the facilities after we finish implementing and testing the system.

  7. Development of safeguards information treatment system at the facility level

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Doo; Song, Dae Yong; So, Dong Sup; Kwack, Eun Ho [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-04-01

    Safeguards Information Treatment System(SITS) at the facility level is required to implement efficiently the obligations under the Korea-IAEA Safeguards Agreement, bilateral agreements with other countries and domestic law. In this report, the requirements and major functions of SITS were considered, and the error checking methods and the relationships of safeguards information were reviewed. SITS will be developed to cover the different accounting procedures and methods applied at the various facilities under IAEA safeguards. Also, the resolved result of the Y2K problem in the existing nuclear material accounting program was described. 3 tabs. (Author)

  8. Design of safeguards information treatment system at the facility level

    International Nuclear Information System (INIS)

    Song, Dae Yong; Lee, Byung Doo; Kwack, Eun Ho; Choi, Young Myong

    2001-05-01

    We are developing Safeguards Information Treatment System at the facility level(SITS) to manage synthetically safeguards information and to implement efficiently the obligations under the Korea-IAEA Safeguards Agreement, bilateral agreements with other countries and domestic law. In this report, we described the contents of the detailed design of SITS such as database, I/O layout and program. In the present, we are implementing the SITS based on the contents of the design of SITS, and then we plan to provide the system for the facilities after we finish implementing and testing the system

  9. Results of treatment of Icenko-Cushing disease with proton beam irradiation of the pituitary gland

    International Nuclear Information System (INIS)

    Marova, E.I.; Starkova, N.T.; Kirpatovskaya, L.E.; Kolesnikova, G.S.; Bukhman, A.I.; Rozhinskaya, L.Ya.; Bel'chenko, L.V.

    1987-01-01

    Proton beam therapy was given to 98 patients with Icenko-Cushing disease aged 15 to 40. Mild cases were treated by proton beam irradiation only while severe cases were managed using proton beam therapy combined with unilateral adrenalectomy or ortho-para-DDD. Catamnesis duration varied from 3 to 5 years. In most cases the exposure dose was 80-90 Gy (50-110 Gy). The procedure was well tolerated by all the patients. A dynamic multipolar converting method with 15-20 entrance poles in the left temporal area was employed (with the beam energy of 200 MeV). Stabilization of the course of disease and some clinical improvement were observed in most of the patients 3-4 months after proton beam therapy. In 6-36 months after irradiation 90% of the patients showed normal biochemical indices and the absence of any clinical signs of the disease. Thus the results of proton beam therapy of 98 patients with Icenko-Cushing disease after a follow-up of 3-5 years showed a high efficacy of this type of treatment. The method can be used alone or in combination with unilateral adrenalectomy as well as with oral administration of ortho-para-DDD

  10. Treatability studies of alternative wastewaters for Metal Finishing Effluent Treatment Facility

    International Nuclear Information System (INIS)

    Wittry, D.M.; Martin, H.L.

    1994-01-01

    The 300-M Area Liquid Effluent Treatment Facility (LETF) of the Savannah River Site (SRS) is an end-of-pipe industrial wastewater treatment facility that uses precipitation and filtration, which is the EPA Best Available Technology economically achievable for a Metal Finishing and Aluminum Form Industries. Upon the completion of stored waste treatment, the LETF will be shut down, because production of nuclear materials for reactors stopped at the end of the Cold War. The economic use of the LETF for the treatment of alternative wastewater streams is being evaluated through laboratory bench-scale treatability studies

  11. Precautions for preventing criticality at plutonium fuel treatment facilities

    International Nuclear Information System (INIS)

    Deworm, J.P.; Fieuw, G.; Cank, H. de

    1976-01-01

    Four criticality accidents took place between 1958 and 1964 at fuel processing plants using wet methods. So far accident of this type has taken place at production units where fissionable material is used. The prevention of criticality is one of the major concerns of the officials in charge of the plutonium fuel research laboratories operated at the Mol Nuclear Energy Study Centre by the SCK/CEN-Belgonucleaire Association. The means of preventing such an accident are of three types: introducing different types of treatment in well-defined work units; thorough analysis of planned experiments or fabrication programmes to determine the sub-criticality factors; application of technical and administrative procedures which ensure that the facilities are always sub-critical during the treatment and storage of fissionable materials. The installation includes a detection and warning system and provision is made for the immediate evacuation of staff should a crticality incident occur. The effects of a critical excursion on the building have been assessed. (author)

  12. MO-F-CAMPUS-T-01: IROC Houston QA Center’s Anthropomorphic Proton Phantom Program

    International Nuclear Information System (INIS)

    Lujano, C; Hernandez, N; Keith, T; Nguyen, T; Taylor, P; Molineu, A; Followill, D

    2015-01-01

    Purpose: To describe the proton phantoms that IROC Houston uses to approve and credential proton institutions to participate in NCI-sponsored clinical trials. Methods: Photon phantoms cannot necessarily be used for proton measurements because protons react differently than photons in some plastics. As such plastics that are tissue equivalent for protons were identified. Another required alteration is to ensure that the film dosimeters are housed in the phantom with no air gap to avoid proton streaming. Proton-equivalent plastics/materials used include RMI Solid Water, Techron HPV, blue water, RANDO soft tissue material, balsa wood, compressed cork and polyethylene. Institutions wishing to be approved or credentialed request a phantom and are prioritized for delivery. At the institution, the phantom is imaged, a treatment plan is developed, positioned on the treatment couch and the treatment is delivered. The phantom is returned and the measured dose distributions are compared to the institution’s electronically submitted treatment plan dosimetry data. Results: IROC Houston has developed an extensive proton phantom approval/credentialing program consisting of five different phantoms designs: head, prostate, lung, liver and spine. The phantoms are made with proton equivalent plastics that have HU and relative stopping powers similar (within 5%) of human tissues. They also have imageable targets, avoidance structures, and heterogeneities. TLD and radiochromic film are contained in the target structures. There have been 13 head, 33 prostate, 18 lung, 2 liver and 16 spine irradiations with either passive scatter, or scanned proton beams. The pass rates have been: 100%, 69.7%, 72.2%, 50%, and 81.3%, respectively. Conclusion: IROC Houston has responded to the recent surge in proton facilities by developing a family of anthropomorphic phantoms that are able to be used for remote audits of proton beams. Work supported by PHS grant CA10953 and CA081647

  13. MO-F-CAMPUS-T-01: IROC Houston QA Center’s Anthropomorphic Proton Phantom Program

    Energy Technology Data Exchange (ETDEWEB)

    Lujano, C; Hernandez, N; Keith, T; Nguyen, T; Taylor, P; Molineu, A; Followill, D [UT MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: To describe the proton phantoms that IROC Houston uses to approve and credential proton institutions to participate in NCI-sponsored clinical trials. Methods: Photon phantoms cannot necessarily be used for proton measurements because protons react differently than photons in some plastics. As such plastics that are tissue equivalent for protons were identified. Another required alteration is to ensure that the film dosimeters are housed in the phantom with no air gap to avoid proton streaming. Proton-equivalent plastics/materials used include RMI Solid Water, Techron HPV, blue water, RANDO soft tissue material, balsa wood, compressed cork and polyethylene. Institutions wishing to be approved or credentialed request a phantom and are prioritized for delivery. At the institution, the phantom is imaged, a treatment plan is developed, positioned on the treatment couch and the treatment is delivered. The phantom is returned and the measured dose distributions are compared to the institution’s electronically submitted treatment plan dosimetry data. Results: IROC Houston has developed an extensive proton phantom approval/credentialing program consisting of five different phantoms designs: head, prostate, lung, liver and spine. The phantoms are made with proton equivalent plastics that have HU and relative stopping powers similar (within 5%) of human tissues. They also have imageable targets, avoidance structures, and heterogeneities. TLD and radiochromic film are contained in the target structures. There have been 13 head, 33 prostate, 18 lung, 2 liver and 16 spine irradiations with either passive scatter, or scanned proton beams. The pass rates have been: 100%, 69.7%, 72.2%, 50%, and 81.3%, respectively. Conclusion: IROC Houston has responded to the recent surge in proton facilities by developing a family of anthropomorphic phantoms that are able to be used for remote audits of proton beams. Work supported by PHS grant CA10953 and CA081647.

  14. An investigation of proton conductivity of binary matrices sulfonated ...

    Indian Academy of Sciences (India)

    to their potential applications in proton exchange membrane fuel cells (PEMFCs) ... is highly sulfonated and has high water uptake property.11,12 The proton conductivity ... SPSU membranes have lower gas permeability and liquid. (water and ...

  15. First test of the prompt gamma ray timing method with heterogeneous targets at a clinical proton therapy facility

    International Nuclear Information System (INIS)

    Hueso-González, Fernando; Enghardt, Wolfgang; Golnik, Christian; Petzoldt, Johannes; Pausch, Guntram; Fiedler, Fine; Priegnitz, Marlen; Römer, Katja E; Wagner, Andreas; Janssens, Guillaume; Prieels, Damien; Smeets, Julien; Vander Stappen, François

    2015-01-01

    Ion beam therapy promises enhanced tumour coverage compared to conventional radiotherapy, but particle range uncertainties significantly blunt the achievable precision. Experimental tools for range verification in real-time are not yet available in clinical routine. The prompt gamma ray timing method has been recently proposed as an alternative to collimated imaging systems. The detection times of prompt gamma rays encode essential information about the depth-dose profile thanks to the measurable transit time of ions through matter. In a collaboration between OncoRay, Helmholtz-Zentrum Dresden-Rossendorf and IBA, the first test at a clinical proton accelerator (Westdeutsches Protonentherapiezentrum Essen, Germany) with several detectors and phantoms is performed. The robustness of the method against background and stability of the beam bunch time profile is explored, and the bunch time spread is characterized for different proton energies. For a beam spot with a hundred million protons and a single detector, range differences of 5 mm in defined heterogeneous targets are identified by numerical comparison of the spectrum shape. For higher statistics, range shifts down to 2 mm are detectable. A proton bunch monitor, higher detector throughput and quantitative range retrieval are the upcoming steps towards a clinically applicable prototype. In conclusion, the experimental results highlight the prospects of this straightforward verification method at a clinical pencil beam and settle this novel approach as a promising alternative in the field of in vivo dosimetry. (paper)

  16. An advanced hadron facility: A combined kaon factory and cold-neutron source

    International Nuclear Information System (INIS)

    Thiessen, H.A.

    1987-01-01

    A design concept is presented for an advanced hadron facility consisting of a combined kaon factory and second generation spallation source. Our proposed facility consists of a 1.2 GeV superconducting H - linac to bring the LAMPF energy up to 2 GeV, a multi-ring 2 GeV compressor, a shared cold-neutron and stopped-pion neutrino source, a 60 GeV 25 μAmp 6 Hz proton synchrotron, and kaon and proton experimental areas. We discuss the considerations which led to this design concept. We summarize recent results of r and d work on components for rapid-cycling synchrotrons. Finally, we mention briefly a pion linac, which may be a good way to gain experience with superconducting cavities if advanced hadron facility funding is delayed

  17. Risk management program for the 283-W water treatment facility

    International Nuclear Information System (INIS)

    Green, W.E.

    1999-01-01

    This Risk Management (RM) Program covers the 283-W Water Treatment Facility (283W Facility), located in the 200 West Area of the Hanford Site. A RM Program is necessary for this facility because it stores chlorine, a listed substance, in excess of or has the potential to exceed the threshold quantities defined in Title 40 of the Code of Federal Regulations (CFR) Part 68 (EPA, 1998). The RM Program contains data that will be used to prepare a RM Plan, which is required by 40 CFR 68. The RM Plan is a summary of the RM Program information, contained within this document, and will be submitted to the U.S. Environmental Protection Agency (EPA) ultimately for distribution to the public. The RM Plan will be prepared and submitted separately from this document

  18. Pencil beam scanning proton therapy vs rotational arc radiation therapy: A treatment planning comparison for postoperative oropharyngeal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Apinorasethkul, Ontida, E-mail: Ontida.a@gmail.com; Kirk, Maura; Teo, Kevin; Swisher-McClure, Samuel; Lukens, John N.; Lin, Alexander

    2017-04-01

    Patients diagnosed with head and neck cancer are traditionally treated with photon radiotherapy. Proton therapy is currently being used clinically and may potentially reduce treatment-related toxicities by minimizing the dose to normal organs in the treatment of postoperative oropharyngeal cancer. The finite range of protons has the potential to significantly reduce normal tissue toxicity compared to photon radiotherapy. Seven patients were planned with both proton and photon modalities. The planning goal for both modalities was achieving the prescribed dose to 95% of the planning target volume (PTV). Dose-volume histograms were compared in which all cases met the target coverage goals. Mean doses were significantly lower in the proton plans for the oral cavity (1771 cGy photon vs 293 cGy proton, p < 0.001), contralateral parotid (1796 cGy photon vs 1358 proton, p < 0.001), and the contralateral submandibular gland (3608 cGy photon vs 3251 cGy proton, p = 0.03). Average total integral dose was 9.1% lower in proton plans. The significant dosimetric sparing seen with proton therapy may lead to reduced side effects such as pain, weight loss, taste changes, and dry mouth. Prospective comparisons of protons vs photons for disease control, toxicity, and patient-reported outcomes are therefore warranted and currently being pursued.

  19. Measurement of the absolute differential cross section of proton-proton elastic scattering at small angles, using ANKE-COSY facility

    Energy Technology Data Exchange (ETDEWEB)

    Bagdasarian, Zara [Forschungszentrum Juelich (Germany)

    2016-07-01

    The most accepted approach to describe nucleon-nucleon (NN) interaction is the partial wave analysis (PWA). The goal of many experiments held at COSY-Juelich has been to provide PWA with valuable precision measurements at different energies aiming to cover the full angular range. This contribution reports on the differential cross section for proton-proton elastic scattering that has been measured at a beam energy of 1.0 GeV and in 200 MeV steps from 1.6 to 2.8 GeV at centre-of-mass angles between about 10 and 30 degrees. The ANKE collaboration and the COSY machine crew have jointly developed a very accurate method for determining the absolute luminosity in an experiment at an internal target position. The technique relies on measuring the energy losses due to the electromagnetic interactions of the beam as it passes repeatedly through the thin target and measuring the shift of the revolution frequency by studying the Schottky spectrum. This powerful technique allows one to measure the absolute differential cross section for elastic pp scattering with the accuracy of typically 3%. After extrapolating the differential cross sections to the forward direction, the results are broadly compatible with the predictions of forward dispersion relations. Finally, it is shown that the data have a significant impact on the partial wave analysis.

  20. Biological Information Document, Radioactive Liquid Waste Treatment Facility

    International Nuclear Information System (INIS)

    Biggs, J.

    1995-01-01

    This document is intended to act as a baseline source material for risk assessments which can be used in Environmental Assessments and Environmental Impact Statements. The current Radioactive Liquid Waste Treatment Facility (RLWTF) does not meet current General Design Criteria for Non-reactor Nuclear Facilities and could be shut down affecting several DOE programs. This Biological Information Document summarizes various biological studies that have been conducted in the vicinity of new Proposed RLWTF site and an Alternative site. The Proposed site is located on Mesita del Buey, a mess top, and the Alternative site is located in Mortandad Canyon. The Proposed Site is devoid of overstory species due to previous disturbance and is dominated by a mixture of grasses, forbs, and scattered low-growing shrubs. Vegetation immediately adjacent to the site is a pinyon-juniper woodland. The Mortandad canyon bottom overstory is dominated by ponderosa pine, willow, and rush. The south-facing slope was dominated by ponderosa pine, mountain mahogany, oak, and muhly. The north-facing slope is dominated by Douglas fir, ponderosa pine, and oak. Studies on wildlife species are limited in the vicinity of the proposed project and further studies will be necessary to accurately identify wildlife populations and to what extent they utilize the project area. Some information is provided on invertebrates, amphibians and reptiles, and small mammals. Additional species information from other nearby locations is discussed in detail. Habitat requirements exist in the project area for one federally threatened wildlife species, the peregrine falcon, and one federal candidate species, the spotted bat. However, based on surveys outside of the project area but in similar habitats, these species are not expected to occur in either the Proposed or Alternative RLWTF sites. Habitat Evaluation Procedures were used to evaluate ecological functioning in the project area

  1. PEROXIDE DESTRUCTION TESTING FOR THE 200 AREA EFFLUENT TREATMENT FACILITY

    International Nuclear Information System (INIS)

    Halgren, D.L.

    2010-01-01

    The hydrogen peroxide decomposer columns at the 200 Area Effluent Treatment Facility (ETF) have been taken out of service due to ongoing problems with particulate fines and poor destruction performance from the granular activated carbon (GAC) used in the columns. An alternative search was initiated and led to bench scale testing and then pilot scale testing. Based on the bench scale testing three manganese dioxide based catalysts were evaluated in the peroxide destruction pilot column installed at the 300 Area Treated Effluent Disposal Facility. The ten inch diameter, nine foot tall, clear polyvinyl chloride (PVC) column allowed for the same six foot catalyst bed depth as is in the existing ETF system. The flow rate to the column was controlled to evaluate the performance at the same superficial velocity (gpm/ft 2 ) as the full scale design flow and normal process flow. Each catalyst was evaluated on peroxide destruction performance and particulate fines capacity and carryover. Peroxide destruction was measured by hydrogen peroxide concentration analysis of samples taken before and after the column. The presence of fines in the column headspace and the discharge from carryover was generally assessed by visual observation. All three catalysts met the peroxide destruction criteria by achieving hydrogen peroxide discharge concentrations of less than 0.5 mg/L at the design flow with inlet peroxide concentrations greater than 100 mg/L. The Sud-Chemie T-2525 catalyst was markedly better in the minimization of fines and particle carryover. It is anticipated the T-2525 can be installed as a direct replacement for the GAC in the peroxide decomposer columns. Based on the results of the peroxide method development work the recommendation is to purchase the T-2525 catalyst and initially load one of the ETF decomposer columns for full scale testing.

  2. Biological Information Document, Radioactive Liquid Waste Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Biggs, J.

    1995-12-31

    This document is intended to act as a baseline source material for risk assessments which can be used in Environmental Assessments and Environmental Impact Statements. The current Radioactive Liquid Waste Treatment Facility (RLWTF) does not meet current General Design Criteria for Non-reactor Nuclear Facilities and could be shut down affecting several DOE programs. This Biological Information Document summarizes various biological studies that have been conducted in the vicinity of new Proposed RLWTF site and an Alternative site. The Proposed site is located on Mesita del Buey, a mess top, and the Alternative site is located in Mortandad Canyon. The Proposed Site is devoid of overstory species due to previous disturbance and is dominated by a mixture of grasses, forbs, and scattered low-growing shrubs. Vegetation immediately adjacent to the site is a pinyon-juniper woodland. The Mortandad canyon bottom overstory is dominated by ponderosa pine, willow, and rush. The south-facing slope was dominated by ponderosa pine, mountain mahogany, oak, and muhly. The north-facing slope is dominated by Douglas fir, ponderosa pine, and oak. Studies on wildlife species are limited in the vicinity of the proposed project and further studies will be necessary to accurately identify wildlife populations and to what extent they utilize the project area. Some information is provided on invertebrates, amphibians and reptiles, and small mammals. Additional species information from other nearby locations is discussed in detail. Habitat requirements exist in the project area for one federally threatened wildlife species, the peregrine falcon, and one federal candidate species, the spotted bat. However, based on surveys outside of the project area but in similar habitats, these species are not expected to occur in either the Proposed or Alternative RLWTF sites. Habitat Evaluation Procedures were used to evaluate ecological functioning in the project area.

  3. Legal problems of waste treatment in German atomic energy facilities

    International Nuclear Information System (INIS)

    Pfaffelhuber, J.K.

    1980-01-01

    The execution of the strategies of waste treatment and disposal calls for the laws and regulations on the obligations of the owners of equipments and facilities and of the state for securing safety and the final elimination of radioactive wastes, which are defined mainly in Article 9 of Atomgesetz and Section 2 (Article 44 - 48) of the order on protection from radiation. The owners of equipments and facilities of atomic energy technology shall limit the emission of radiation to about 6% of internationally permissible values, avoid uncontrolled emission without fail, inspect emission and submit reports yearly to government offices. The owners have attention obligations to utilize harmlessly produced radioactive residues and the expanded or dismantled parts of radioactive equipments or to eliminate orderly such things as radioactive wastes, only when such utilization is unable technically or economically, or not adequate under the protection aims of Atomgesetz. The possessors of radioactive wastes shall deliver the wastes to the accumulation places of provinces for intermediate storage, to the facilities of the Federal Republic for securing safety or final storage, or the facilities authorized by government offices for the elimination of radioactive wastes. Provinces shall install the accumulation places for the intermediate storage of radioactive wastes produced in their territories, and the Federal Republic shall set up the facilities for securing safety and the final elimination of radioactive wastes (Article 9, Atomgesetz). (Okada, K.)

  4. The choice of treatment after incomplete adenomectomy in acromegaly: Proton - versus highvoltage radiation

    International Nuclear Information System (INIS)

    Luedecke, D.K.; Lutz, B.S.; Niedworok, G.

    1989-01-01

    The authors report the results of a study designed to compare the effectiveness of two different types of radiation in patients with acromegaly where surgical therapy had failed to normalize growth hormone(GH). Longterm follow-up after conventional high voltage radiation in 17 patients and protons therapy in 13 patients confirmed a similar reduction of GH levels in both groups. After 4,5 years a decrease of about 80% was achieved. After 'conventional radiation' GH was normal in 8(47%) and near normal in 6(35%) while proton therapy resulted in normalization in 5 and improvement in 5(38%). The slightly better results of 'conventional radiation' must be attributed to lower pretreatment levels of GH. Side effects as additional pituitary deficits and oculomotor palsies were more often seen after proton treatment. Since the results of both radiation methods are similar and proton therapy has a tendency to more serious side effects we recommend 'conventional radiation' as secondary treatment of acromegaly. (Authors)

  5. Materials and Life Science Experimental Facility (MLF at the Japan Proton Accelerator Research Complex II: Neutron Scattering Instruments

    Directory of Open Access Journals (Sweden)

    Kenji Nakajima

    2017-11-01

    Full Text Available The neutron instruments suite, installed at the spallation neutron source of the Materials and Life Science Experimental Facility (MLF at the Japan Proton Accelerator Research Complex (J-PARC, is reviewed. MLF has 23 neutron beam ports and 21 instruments are in operation for user programs or are under commissioning. A unique and challenging instrumental suite in MLF has been realized via combination of a high-performance neutron source, optimized for neutron scattering, and unique instruments using cutting-edge technologies. All instruments are/will serve in world-leading investigations in a broad range of fields, from fundamental physics to industrial applications. In this review, overviews, characteristic features, and typical applications of the individual instruments are mentioned.

  6. Development and verification of an analytical algorithm to predict absorbed dose distributions in ocular proton therapy using Monte Carlo simulations

    International Nuclear Information System (INIS)

    Koch, Nicholas C; Newhauser, Wayne D

    2010-01-01

    Proton beam radiotherapy is an effective and non-invasive treatment for uveal melanoma. Recent research efforts have focused on improving the dosimetric accuracy of treatment planning and overcoming the present limitation of relative analytical dose calculations. Monte Carlo algorithms have been shown to accurately predict dose per monitor unit (D/MU) values, but this has yet to be shown for analytical algorithms dedicated to ocular proton therapy, which are typically less computationally expensive than Monte Carlo algorithms. The objective of this study was to determine if an analytical method could predict absolute dose distributions and D/MU values for a variety of treatment fields like those used in ocular proton therapy. To accomplish this objective, we used a previously validated Monte Carlo model of an ocular nozzle to develop an analytical algorithm to predict three-dimensional distributions of D/MU values from pristine Bragg peaks and therapeutically useful spread-out Bragg peaks (SOBPs). Results demonstrated generally good agreement between the analytical and Monte Carlo absolute dose calculations. While agreement in the proximal region decreased for beams with less penetrating Bragg peaks compared with the open-beam condition, the difference was shown to be largely attributable to edge-scattered protons. A method for including this effect in any future analytical algorithm was proposed. Comparisons of D/MU values showed typical agreement to within 0.5%. We conclude that analytical algorithms can be employed to accurately predict absolute proton dose distributions delivered by an ocular nozzle.

  7. An analytic distorted wave approximation for intermediate energy proton scattering

    International Nuclear Information System (INIS)

    Di Marzio, F.; Amos, K.

    1982-01-01

    An analytic Distorted Wave approximation has been developed for use in analyses of intermediate energy proton inelastic scattering from nuclei. Applications are made to analyse 402 and 800 MeV data from the isoscalar and isovector 1 + and 2 + states in 12 C and to the 800 MeV data from the excitation of the 2 - (8.88MeV) state in 16 O. Comparisons of predictions made using different model two-nucleon t-matrices and different models of nuclear structure are given

  8. Argonne-West facility requirements for a radioactive waste treatment demonstration

    International Nuclear Information System (INIS)

    Dwight, C.C.; Felicione, F.S.; Black, D.B.; Kelso, R.B.; McClellan, G.C.

    1995-01-01

    At Argonne National Laboratory-West (ANL-W), near Idaho Falls, Idaho, facilities that were originally constructed to support the development of liquid-metal reactor technology are being used and/or modified to meet the environmental and waste management research needs of DOE. One example is the use of an Argonne-West facility to conduct a radioactive waste treatment demonstration through a cooperative project with Science Applications International Corporation (SAIC) and Lockheed Idaho Technologies Company. The Plasma Hearth Process (PBP) project will utilize commercially-adapted plasma arc technology to demonstrate treatment of actual mixed waste. The demonstration on radioactive waste will be conducted at Argonne's Transient Reactor Test Facility (TREAT). Utilization of an existing facility for a new and different application presents a unique set of issues in meeting applicable federal state, and local requirements as well as the additional constraints imposed by DOE Orders and ANL-W site requirements. This paper briefly describes the PHP radioactive demonstrations relevant to the interfaces with the TREAT facility. Safety, environmental design, and operational considerations pertinent to the PHP radioactive demonstration are specifically addressed herein. The personnel equipment, and facility interfaces associated with a radioactive waste treatment demonstration are an important aspect of the demonstration effort. Areas requiring significant effort in preparation for the PBP Project being conducted at the TREAT facility include confinement design, waste handling features, and sampling and analysis considerations. Information about the facility in which a radioactive demonstration will be conducted, specifically Argonne's TREAT facility in the case of PHP, may be of interest to other organizations involved in developing and demonstrating technologies for mixed waste treatment

  9. A Monte Carlo pencil beam scanning model for proton treatment plan simulation using GATE/GEANT4

    Energy Technology Data Exchange (ETDEWEB)

    Grevillot, L; Freud, N; Sarrut, D [Universite de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Universite Lyon 1, Centre Leon Berard, Lyon (France); Bertrand, D; Dessy, F, E-mail: loic.grevillot@creatis.insa-lyon.fr [IBA, B-1348, Louvain-la Neuve (Belgium)

    2011-08-21

    This work proposes a generic method for modeling scanned ion beam delivery systems, without simulation of the treatment nozzle and based exclusively on beam data library (BDL) measurements required for treatment planning systems (TPS). To this aim, new tools dedicated to treatment plan simulation were implemented in the Gate Monte Carlo platform. The method was applied to a dedicated nozzle from IBA for proton pencil beam scanning delivery. Optical and energy parameters of the system were modeled using a set of proton depth-dose profiles and spot sizes measured at 27 therapeutic energies. For further validation of the beam model, specific 2D and 3D plans were produced and then measured with appropriate dosimetric tools. Dose contributions from secondary particles produced by nuclear interactions were also investigated using field size factor experiments. Pristine Bragg peaks were reproduced with 0.7 mm range and 0.2 mm spot size accuracy. A 32 cm range spread-out Bragg peak with 10 cm modulation was reproduced with 0.8 mm range accuracy and a maximum point-to-point dose difference of less than 2%. A 2D test pattern consisting of a combination of homogeneous and high-gradient dose regions passed a 2%/2 mm gamma index comparison for 97% of the points. In conclusion, the generic modeling method proposed for scanned ion beam delivery systems was applicable to an IBA proton therapy system. The key advantage of the method is that it only requires BDL measurements of the system. The validation tests performed so far demonstrated that the beam model achieves clinical performance, paving the way for further studies toward TPS benchmarking. The method involves new sources that are available in the new Gate release V6.1 and could be further applied to other particle therapy systems delivering protons or other types of ions like carbon.

  10. An external proton beam at VERA to study objects of art by proton induced x-ray emission (PIXE)

    International Nuclear Information System (INIS)

    Kroepfl, P.; Forstner, O.; Kutschera, W.; Priller, A.; Steier, P.; Wallner, A.; Wuenschek, B.; Golser, R.

    2006-01-01

    Full text: PIXE is a very sensitive analytical method to determine the chemical composition of art objects, e.g. drawings, handwritings etc. A particular advantage is the possibility to analyze objects non-destructively under atmospheric pressure. Such an external beam PIXE facility is currently implemented at the Vienna Environmental Research Accelerator (VERA). The set-up allows to extract a 3 MeV proton beam of approximately 100 μm in diameter and currents in the range of a few nA's through an ultra-thin (0.1 μm) Silicon Nitride window. The characteristic x-rays emitted from the specimen are recorded with a Si(Li) and a Silicon Drift detector simultaneously to cover the widest possible Z-range of the detected elements. We have just completed an extensive period of studying beam effects on ancient paper to exclude possible damage to art objects, in particular drawings of the Renaissance that are among the most precious and rarest treasuries of graphical collections. They were created with different materials such as inks, chalks and metal points. A large collection of these fine arts objects is situated at the Albertina in Vienna. Together with scientists from the Centre de Recherche et de Restauration des Musees de France (C2RMF) in Paris, I. Reiche, A. Duval, H. Guicharnaud, from the CEREGE UMR CNRS 6635 in Aix-en-Provence, S. Merchel, from the Albertina in Vienna, E. Thobois, H. Singer, and from the Akademie der bildenden Kuenste in Vienna, M. Schreiner, we want then to analyze a few selected silverpoint drawings by Albrecht Duerer (1471-1528). (author)

  11. Comparative Characteristics of the Results of Evacuation to Healthcare Facilities and Treatment Outcomes of Children Who Applied for First Aid With Acute Abdominal Pains. The Case of an Emergency Medical Setting of an Average Municipal Entity

    OpenAIRE

    Ekaterina А. Romanova; Leyla S. Namazova-Baranova; Elena Yu. Dyakonova; Aleksey Yu. Romanov; Kazbek S. Mezhidov; Zharadat I. Dohshukaeva

    2017-01-01

    Background. Despite the active development of diagnostic capabilities, the problems of diagnosis at the pre-hospital stage with abdominal pain remain unresolved. Objective. Our aim was to analyze the results of evacuation to healthcare facilities as well as treatment outcomes (conservative and surgical) of hospitalized children who applied for first aid with acute abdominal pain, in order to identify possible shortcomings in the existing diagnostic algorithm and its optimization. Methods. The...

  12. On Start to End Simulation and Modeling Issues of the Megawatt Proton Beam Facility at PSI

    CERN Document Server

    Adelmann, Andreas; Fitze, Hansruedi; Geus, Roman; Humbel, Martin; Stingelin, Lukas

    2005-01-01

    At the Paul Scherrer Institut (PSI) we routinely extract a one megawatt (CW) proton beam out of our 590 MeV Ring Cyclotron. In the frame of the ongoing upgrade program, large scale simulations have been undertaken in order to provide a sound basis to assess the behaviour of very intense beams in cyclotrons. The challenges and attempts towards massive parallel three dimensional start-to- end simulations will be discussed. The used state of the art numerical tools (mapping techniques, time integration, parallel FFT and finite element based multigrid Poisson solver) and their parallel implementation will be discussed. Results will be presented in the area of: space charge dominated beam transport including neighbouring turns, eigenmode analysis to obtain accurate electromagnetic fields in large the rf cavities and higher order mode interaction between the electromagnetic fields and the particle beam. For the problems investigated so far a good agreement between theory i.e. calculations and measurements is obtain...

  13. Comparative Characteristics of the Results of Evacuation to Healthcare Facilities and Treatment Outcomes of Children Who Applied for First Aid With Acute Abdominal Pains. The Case of an Emergency Medical Setting of an Average Municipal Entity

    Directory of Open Access Journals (Sweden)

    Ekaterina А. Romanova

    2017-01-01

    Full Text Available Background. Despite the active development of diagnostic capabilities, the problems of diagnosis at the pre-hospital stage with abdominal pain remain unresolved. Objective. Our aim was to analyze the results of evacuation to healthcare facilities as well as treatment outcomes (conservative and surgical of hospitalized children who applied for first aid with acute abdominal pain, in order to identify possible shortcomings in the existing diagnostic algorithm and its optimization. Methods. The results of treatment outcomes for children with acute abdominal pain at the pre-hospital stage and evacuation to healthcare facilities by visiting teams for the period 2014–2015. are presented by the example of the State Institution «Engels Emergency Medical Setting». Results. Difficulties in routing children to the necessary healthcare facilities (surgical or somatic are due to the complexities of differential diagnosis of the disease in children with acute abdominal pain at the pre-hospital stage. Conclusion. The main task of the primary care and emergency physician at the pre-hospital stage, whose decision determines the direction of the diagnostic search, timeliness and adequacy of the subsequent treatment measures, is to give a correct assessment of abdominal pain syndrome. 

  14. Experimental equipment for an advanced ISOL facility

    International Nuclear Information System (INIS)

    Baktash, C.; Lee, I.Y.; Rehm, K.E.

    1999-01-01

    This report summarizes the proceedings and recommendations of the Workshop on the Experimental Equipment for an Advanced ISOL Facility which was held at Lawrence Berkeley National Laboratory on July 22--25, 1998. The purpose of this workshop was to discuss the performance requirements, manpower and cost estimates, as well as a schedule of the experimental equipment needed to fully exploit the new physics which can be studied at an advanced ISOL facility. An overview of the new physics opportunities that would be provided by such a facility has been presented in the White Paper that was issued following the Columbus Meeting. The reactions and experimental techniques discussed in the Columbus White Paper served as a guideline for the formulation of the detector needs at the Berkeley Workshop. As outlined a new ISOL facility with intense, high-quality beams of radioactive nuclei would provide exciting new research opportunities in the areas of: the nature of nucleonic matter; the origin of the elements; and tests of the Standard Model. After an introductory section, the following equipment is discussed: gamma-ray detectors; recoil separators; magnetic spectrographs; particle detectors; targets; and apparatus using non-accelerated beams

  15. Dismantling an alpha-contaminated facility

    International Nuclear Information System (INIS)

    Caldwell, R.D.; Harper, R.M.

    1975-01-01

    The difficult task of removing large pieces of highly contaminated equipment from an obsolete plutonium-239 facility was completed in a seven-month operation that included structural alteration of the process building. Detailed job planning, job execution and contamination control were major factors in accomplishing the task

  16. Materials science at an Advanced Hadron Facility

    International Nuclear Information System (INIS)

    Pynn, R.

    1988-01-01

    The uses of neutron scattering as a probe for condensed matter phenomena are described briefly and some arguments are given to justify the community's desire for more powerful neutron sources. Appropriate design parameters for a neutron source at an Advanced Hadron Facility are presented, and such a source is compared with other existing and planned spallation neutron sources. 5 refs

  17. Malaria prevalence and treatment of febrile patients at health facilities and medicine retailers in Cameroon.

    Science.gov (United States)

    Mangham, Lindsay J; Cundill, Bonnie; Achonduh, Olivia A; Ambebila, Joel N; Lele, Albertine K; Metoh, Theresia N; Ndive, Sarah N; Ndong, Ignatius C; Nguela, Rachel L; Nji, Akindeh M; Orang-Ojong, Barnabas; Wiseman, Virginia; Pamen-Ngako, Joelle; Mbacham, Wilfred F

    2012-03-01

    To investigate the quality of malaria case management in Cameroon 5 years after the adoption of artemisinin-based combination therapy (ACT). Treatment patterns were examined in different types of facility, and the factors associated with being prescribed or receiving an ACT were investigated. A cross-sectional cluster survey was conducted among individuals of all ages who left public and private health facilities and medicine retailers in Cameroon and who reported seeking treatment for a fever. Prevalence of malaria was determined by rapid diagnostic tests (RDTs) in consenting patients attending the facilities and medicine retailers. Among the patients, 73% were prescribed or received an antimalarial, and 51% were prescribed or received an ACT. Treatment provided to patients significantly differed by type of facility: 65% of patients at public facilities, 55% of patients at private facilities and 45% of patients at medicine retailers were prescribed or received an ACT (P = 0.023). The odds of a febrile patient being prescribed or receiving an ACT were significantly higher for patients who asked for an ACT (OR = 24.1, P < 0.001), were examined by the health worker (OR = 1.88, P = 0.021), had not previously sought an antimalarial for the illness (OR = 2.29, P = 0.001) and sought treatment at a public (OR = 3.55) or private facility (OR = 1.99, P = 0.003). Malaria was confirmed in 29% of patients and 70% of patients with a negative result were prescribed or received an antimalarial. Malaria case management could be improved. Symptomatic diagnosis is inefficient because two-thirds of febrile patients do not have malaria. Government plans to extend malaria testing should promote rational use of ACT; though, the introduction of rapid diagnostic testing needs to be accompanied by updated clinical guidelines that provide clear guidance for the treatment of patients with negative test results. © 2011 Blackwell Publishing Ltd.

  18. SU-E-J-72: Geant4 Simulations of Spot-Scanned Proton Beam Treatment Plans

    Energy Technology Data Exchange (ETDEWEB)

    Kanehira, T; Sutherland, K; Matsuura, T; Umegaki, K; Shirato, H [Hokkaido University, Sapporo, Hokkaido (Japan)

    2014-06-01

    Purpose: To evaluate density inhomogeneities which can effect dose distributions for real-time image gated spot-scanning proton therapy (RGPT), a dose calculation system, using treatment planning system VQA (Hitachi Ltd., Tokyo) spot position data, was developed based on Geant4. Methods: A Geant4 application was developed to simulate spot-scanned proton beams at Hokkaido University Hospital. A CT scan (0.98 × 0.98 × 1.25 mm) was performed for prostate cancer treatment with three or four inserted gold markers (diameter 1.5 mm, volume 1.77 mm3) in or near the target tumor. The CT data was read into VQA. A spot scanning plan was generated and exported to text files, specifying the beam energy and position of each spot. The text files were converted and read into our Geant4-based software. The spot position was converted into steering magnet field strength (in Tesla) for our beam nozzle. Individual protons were tracked from the vacuum chamber, through the helium chamber, steering magnets, dose monitors, etc., in a straight, horizontal line. The patient CT data was converted into materials with variable density and placed in a parametrized volume at the isocenter. Gold fiducial markers were represented in the CT data by two adjacent voxels (volume 2.38 mm3). 600,000 proton histories were tracked for each target spot. As one beam contained about 1,000 spots, approximately 600 million histories were recorded for each beam on a blade server. Two plans were considered: two beam horizontal opposed (90 and 270 degree) and three beam (0, 90 and 270 degree). Results: We are able to convert spot scanning plans from VQA and simulate them with our Geant4-based code. Our system can be used to evaluate the effect of dose reduction caused by gold markers used for RGPT. Conclusion: Our Geant4 application is able to calculate dose distributions for spot scanned proton therapy.

  19. First experimental evidence of hydrodynamic tunneling of ultra-relativistic protons in extended solid copper target at the CERN HiRadMat facility

    Science.gov (United States)

    Schmidt, R.; Blanco Sancho, J.; Burkart, F.; Grenier, D.; Wollmann, D.; Tahir, N. A.; Shutov, A.; Piriz, A. R.

    2014-08-01

    A novel experiment has been performed at the CERN HiRadMat test facility to study the impact of the 440 GeV proton beam generated by the Super Proton Synchrotron on extended solid copper cylindrical targets. Substantial hydrodynamic tunneling of the protons in the target material has been observed that leads to significant lengthening of the projectile range, which confirms our previous theoretical predictions [N. A. Tahir et al., Phys. Rev. Spec. Top.-Accel. Beams 15, 051003 (2012)]. Simulation results show very good agreement with the experimental measurements. These results have very important implications on the machine protection design for powerful machines like the Large Hadron Collider (LHC), the future High Luminosity LHC, and the proposed huge 80 km circumference Future Circular Collider, which is currently being discussed at CERN. Another very interesting outcome of this work is that one may also study the field of High Energy Density Physics at this test facility.

  20. Hydrodynamic Tunneling of 440 GeV SPS protons in Solid Material: Production of Warm Dense Matter at CERN HiRadMat Facility

    Science.gov (United States)

    Tahir, Naeem Ahmad; Blanco Sancho, Juan; Schmidt, Ruediger; Shutov, Alaxander; Burkart, Florian; Wollmann, Daniel; Piriz, Antonio Roberto

    2013-10-01

    Numerical simulations have shown that the range of 7 TeV LHC protons in solid matter will be significantly increased due to hydrodynamic tunneling. For example, in solid copper and solid carbon, these protons and the shower can penetrate up to 35 m and 25 m, respectively. However, their corresponding static range in the two materials is 1 m and 3 m, respectively. This will have important implications on machine protection design. In order to validate these simulation results, experiments have been performed at the CERN HiRadMat facility using the 440 GeV SPS proton beam irradiating solid copper cylindrical target. The phenomenon of hydrodynamic tunneling has been experimentally confirmed and good agreement has been found between the simulations and the experimental results. A very interesting outcome of this work is that the HiRadMat facility can be used to generate High Energy Density matter including Warm Dense Matter and strongly coupled plasmas in the laboratory.

  1. First experimental evidence of hydrodynamic tunneling of ultra–relativistic protons in extended solid copper target at the CERN HiRadMat facility

    CERN Document Server

    Schmidt, R; Sancho, J Blanco; Burkart, F; Grenier, D; Wollmann, D; Tahir, N A; Shutov, A; Piriz, A R

    2014-01-01

    A novel experiment has been performed at the CERN HiRadMat test facility to study the impact of the 440 GeV proton beam generated by the Super Proton Synchrotron on extended solid copper cylindrical targets. Substantial hydrodynamic tunneling of the protons in the target material has been observed that leads to significant lengthening of the projectile range, which confirms our previous theoretical predictions [N. A. Tahir et al., Phys. Rev. Spec. Top.-Accel. Beams 15, 051003 (2012)]. Simulation results show very good agreement with the experimental measurements. These results have very important implications on the machine protection design for powerful machines like the Large Hadron Collider (LHC), the future High Luminosity LHC, and the proposed huge 80 km circumference Future Circular Collider, which is currently being discussed at CERN. Another very interesting outcome of this work is that one may also study the field of High Energy Density Physics at this test facility.

  2. Search for exotic baryons in the experiments on proton beam with Ep = 70 GeV and other measurements with the SPHINX facility

    International Nuclear Information System (INIS)

    Landsberg, L.G.

    1997-01-01

    In this review the results of the first stage of experiments with the SPHINX facility are presented. Several diffractive production processes in a 70 GeV proton beam of the IHEP accelerator were studied. The unusual features of these massive states make them serious candidates for cryptoexotic pentaquark baryons with hidden strangeness

  3. Facility safeguards at an LEU fuel fabrication facility in Japan

    International Nuclear Information System (INIS)

    Kuroi, H.; Osabe, T.

    1984-01-01

    A facility description of a Japanese LEU BWR-type fuel fabrication plant focusing on safeguards viewpoints is presented. Procedures and practices of MC and A plan, measurement program, inventory taking, and the report and record system are described. Procedures and practices of safeguards inspection are discussed and lessons learned from past experiences are reviewed

  4. Gamma irradiation for sewage treatment at US army facilities

    International Nuclear Information System (INIS)

    Van den Berg, A.J.; Hollis, H.D.; Musselman, H.D.; Woodbridge, D.D.

    1975-01-01

    The US Army Corps of Engineers has been sponsoring research for many years on the use of gamma irradiation for disinfection and sterilization of sewage plant effluents. Initial research was directed to laboratory experiments using sterile solutions to determine the effects of gamma irradiation on E. coli, M-pyogenes and M-smegmatis organisms, and on the chemical constituents of sewage such as phenols, surfactants and pesticides. The results of the initial research warranted further study using municipal sewage secondary effluent as test samples. Current research is directed towards investigating the effects of radiation on the constituents of sewage sludge and on the cyst stage of the amoebic protozoa. Consideration has been given by the Corps to the management of waste-waters by disposal on land. Legal and medical reasons dictate that the plant effluents be sterilized before being used as fertilizers and soil conditioners. Gamma radiation from isotopic sources appears to be the best source of sterilizing energy for Army waste-water disposal. The Corps of Engineers is considering the construction of an experimental gamma irradiation pilot facility to validate laboratory experimental work and to establish design criteria for operating plants. The data obtained will provide a basis for performing detailed cost effectiveness studies on gamma irradiation as a method to treat secondary plant effluent. In addition, optimization work will be conducted to determine where in the sewage treatment cycle the use of gamma irradiation will produce the best results in meeting current and anticipated standards. (author)

  5. IKOR - An isochronous pulse compressor ring for proton beams

    International Nuclear Information System (INIS)

    Schaffer, G.

    1981-06-01

    This report contains the results of a study carried out for an isochronous compressor ring IKOR which compresses the 500 μs linac macropulses into pulses of 0.68 μs length. Its basic component is a ring magnet with alternating gradient and separated functions. Due to the isochronous operation, an rf system can be avoided which otherwise would be necessary in order to maintain a void in the circulating beam for the purpose of ejection. Injection is performed by charge exchange. The H - beam of the accelerator is first converted into a H 0 beam by stripping off one electron by a high gradient magnet placed in the transfer channel. Subsequently, the beam is converted into a proton beam by removing the remaining electron through a stripping foil in the ring. IKOR will be filled in 658 turns. Immediately after filling, the beam is ejected in a single turn via a kicker and a septum magnet and is transported to the spallation target. Because of the high intensity of 2.7 x 10 14 protons per pulse and, secondly, due to the high repetition rate of 100 Hz, beam dynamics and radiation protection aspects dominate the design and are, for this reason, treated in detail. (orig.)

  6. SU-E-T-531: Performance Evaluation of Multithreaded Geant4 for Proton Therapy Dose Calculations in a High Performance Computing Facility

    International Nuclear Information System (INIS)

    Shin, J; Coss, D; McMurry, J; Farr, J; Faddegon, B

    2014-01-01

    Purpose: To evaluate the efficiency of multithreaded Geant4 (Geant4-MT, version 10.0) for proton Monte Carlo dose calculations using a high performance computing facility. Methods: Geant4-MT was used to calculate 3D dose distributions in 1×1×1 mm3 voxels in a water phantom and patient's head with a 150 MeV proton beam covering approximately 5×5 cm2 in the water phantom. Three timestamps were measured on the fly to separately analyze the required time for initialization (which cannot be parallelized), processing time of individual threads, and completion time. Scalability of averaged processing time per thread was calculated as a function of thread number (1, 100, 150, and 200) for both 1M and 50 M histories. The total memory usage was recorded. Results: Simulations with 50 M histories were fastest with 100 threads, taking approximately 1.3 hours and 6 hours for the water phantom and the CT data, respectively with better than 1.0 % statistical uncertainty. The calculations show 1/N scalability in the event loops for both cases. The gains from parallel calculations started to decrease with 150 threads. The memory usage increases linearly with number of threads. No critical failures were observed during the simulations. Conclusion: Multithreading in Geant4-MT decreased simulation time in proton dose distribution calculations by a factor of 64 and 54 at a near optimal 100 threads for water phantom and patient's data respectively. Further simulations will be done to determine the efficiency at the optimal thread number. Considering the trend of computer architecture development, utilizing Geant4-MT for radiotherapy simulations is an excellent cost-effective alternative for a distributed batch queuing system. However, because the scalability depends highly on simulation details, i.e., the ratio of the processing time of one event versus waiting time to access for the shared event queue, a performance evaluation as described is recommended

  7. An easily sintered, chemically stable, barium zirconate-based proton conductor for high-performance proton-conducting solid oxide fuel cells

    KAUST Repository

    Sun, Wenping

    2014-07-25

    Yttrium and indium co-doped barium zirconate is investigated to develop a chemically stable and sintering active proton conductor for solid oxide fuel cells (SOFCs). BaZr0.8Y0.2-xInxO3- δ possesses a pure cubic perovskite structure. The sintering activity of BaZr0.8Y0.2-xInxO3- δ increases significantly with In concentration. BaZr0.8Y0.15In0.05O3- δ (BZYI5) exhibits the highest total electrical conductivity among the sintered oxides. BZYI5 also retains high chemical stability against CO2, vapor, and reduction of H2. The good sintering activity, high conductivity, and chemical stability of BZYI5 facilitate the fabrication of durable SOFCs based on a highly conductive BZYI5 electrolyte film by cost-effective ceramic processes. Fully dense BZYI5 electrolyte film is successfully prepared on the anode substrate by a facile drop-coating technique followed by co-firing at 1400 °C for 5 h in air. The BZYI5 film exhibits one of the highest conductivity among the BaZrO3-based electrolyte films with various sintering aids. BZYI5-based single cells output very encouraging and by far the highest peak power density for BaZrO3-based proton-conducting SOFCs, reaching as high as 379 mW cm-2 at 700 °C. The results demonstrate that Y and In co-doping is an effective strategy for exploring sintering active and chemically stable BaZrO3-based proton conductors for high performance proton-conducting SOFCs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Impact of Spot Size and Beam-Shaping Devices on the Treatment Plan Quality for Pencil Beam Scanning Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Moteabbed, Maryam, E-mail: mmoteabbed@partners.org; Yock, Torunn I.; Depauw, Nicolas; Madden, Thomas M.; Kooy, Hanne M.; Paganetti, Harald

    2016-05-01

    Purpose: This study aimed to assess the clinical impact of spot size and the addition of apertures and range compensators on the treatment quality of pencil beam scanning (PBS) proton therapy and to define when PBS could improve on passive scattering proton therapy (PSPT). Methods and Materials: The patient cohort included 14 pediatric patients treated with PSPT. Six PBS plans were created and optimized for each patient using 3 spot sizes (∼12-, 5.4-, and 2.5-mm median sigma at isocenter for 90- to 230-MeV range) and adding apertures and compensators to plans with the 2 larger spots. Conformity and homogeneity indices, dose-volume histogram parameters, equivalent uniform dose (EUD), normal tissue complication probability (NTCP), and integral dose were quantified and compared with the respective PSPT plans. Results: The results clearly indicated that PBS with the largest spots does not necessarily offer a dosimetric or clinical advantage over PSPT. With comparable target coverage, the mean dose (D{sub mean}) to healthy organs was on average 6.3% larger than PSPT when using this spot size. However, adding apertures to plans with large spots improved the treatment quality by decreasing the average D{sub mean} and EUD by up to 8.6% and 3.2% of the prescribed dose, respectively. Decreasing the spot size further improved all plans, lowering the average D{sub mean} and EUD by up to 11.6% and 10.9% compared with PSPT, respectively, and eliminated the need for beam-shaping devices. The NTCP decreased with spot size and addition of apertures, with maximum reduction of 5.4% relative to PSPT. Conclusions: The added benefit of using PBS strongly depends on the delivery configurations. Facilities limited to large spot sizes (>∼8 mm median sigma at isocenter) are recommended to use apertures to reduce treatment-related toxicities, at least for complex and/or small tumors.

  9. The Proton Beams for the New Time-of-Flight Neutron Facility at the CERN-PS

    CERN Document Server

    Cappi, R; Métral, G

    2000-01-01

    The experimental determination of neutron cross sections in fission and capture reactions as a function of the neutron energy is of primary importance in nuclear physics. Recent developments at CERN and elsewhere have shown that many fields of research and development, such as the design of Accelerator-Driven Systems (ADS) for nuclear waste incineration, nuclear astrophysics, fundamental nuclear physics, dosimetry for radiological protection and therapy, would benefit from a better knowledge of neutron cross sections. A neutron facility at the CERN-PS has been proposed with the aim of carrying out a systematic and high resolution study of neutron cross sections through Time-Of-Flight (n-TOF) measurement. The facility requires a high intensity proton beam (about 0.7x1013 particles/bunch) distributed in a short bunch (about 25 ns total length) to produce the neutrons by means of a spallation process in a lead target. To achieve these characteristics, a number of complex beam gymnastics have to be performed. All...

  10. Modeling Accessibility of Screening and Treatment Facilities for Older Adults using Transportation Networks.

    Science.gov (United States)

    Zhang, Qiuyi; Northridge, Mary E; Jin, Zhu; Metcalf, Sara S

    2018-04-01

    Increased lifespans and population growth have resulted in an older U.S. society that must reckon with the complex oral health needs that arise as adults age. Understanding accessibility to screening and treatment facilities for older adults is necessary in order to provide them with preventive and restorative services. This study uses an agent-based model to examine the accessibility of screening and treatment facilities via transportation networks for older adults living in the neighborhoods of northern Manhattan, New York City. Older adults are simulated as socioeconomically distinct agents who move along a GIS-based transportation network using transportation modes that mediate their access to screening and treatment facilities. This simulation model includes four types of mobile agents as a simplifying assumption: walk, by car, by bus, or by van (i.e., a form of transportation assistance for older adults). These mobile agents follow particular routes: older adults who travel by car, bus, and van follow street roads, whereas pedestrians follow walkways. The model enables the user to focus on one neighborhood at a time for analysis. The spatial dimension of an older adult's accessibility to screening and treatment facilities is simulated through the travel costs (indicated by travel time or distance) incurred in the GIS-based model environment, where lower travel costs to screening and treatment facilities imply better access. This model provides a framework for representing health-seeking behavior that is contextualized by a transportation network in a GIS environment.

  11. Implementation of pencil kernel and depth penetration algorithms for treatment planning of proton beams

    International Nuclear Information System (INIS)

    Russell, K.R.; Saxner, M.; Ahnesjoe, A.; Montelius, A.; Grusell, E.; Dahlgren, C.V.

    2000-01-01

    The implementation of two algorithms for calculating dose distributions for radiation therapy treatment planning of intermediate energy proton beams is described. A pencil kernel algorithm and a depth penetration algorithm have been incorporated into a commercial three-dimensional treatment planning system (Helax-TMS, Helax AB, Sweden) to allow conformal planning techniques using irregularly shaped fields, proton range modulation, range modification and dose calculation for non-coplanar beams. The pencil kernel algorithm is developed from the Fermi-Eyges formalism and Moliere multiple-scattering theory with range straggling corrections applied. The depth penetration algorithm is based on the energy loss in the continuous slowing down approximation with simple correction factors applied to the beam penumbra region and has been implemented for fast, interactive treatment planning. Modelling of the effects of air gaps and range modifying device thickness and position are implicit to both algorithms. Measured and calculated dose values are compared for a therapeutic proton beam in both homogeneous and heterogeneous phantoms of varying complexity. Both algorithms model the beam penumbra as a function of depth in a homogeneous phantom with acceptable accuracy. Results show that the pencil kernel algorithm is required for modelling the dose perturbation effects from scattering in heterogeneous media. (author)

  12. Facile nanofibrillation of chitin derivatives by gas bubbling and ultrasonic treatments in water.

    Science.gov (United States)

    Tanaka, Kohei; Yamamoto, Kazuya; Kadokawa, Jun-ichi

    2014-10-29

    In this paper, we report that nanofiber network structures were constructed from chitin derivatives by gas bubbling and ultrasonic treatments in water. When chitin was first subjected to N2 gas bubbling with ultrasonication in water, the SEM images of the product showed nanofiber network morphology. However, nanofiber network was not re-constructed by the same N2 gas bubbling and ultrasonic treatments after agglomeration. We then have paid attention to an amidine group to provide the agglomeration-nanofibrillation behavior of chitin derivatives. An amidinated chitin was synthesized by the reaction of the amino groups in a partially deacetylated chitin with N,N-dimethylacetamide dimethyl acetal, which was subjected to CO2 gas bubbling and ultrasonic treatments in water to convert into an amidinium chitin by protonation. The SEM images of the product clearly showed nanofiber network morphology. We further examined re-nanofibrillation of the agglomerated material, which was obtained by mixing the nanofibrillated amidinium chitin with water, followed by drying under reduced pressure. Consequently, the material was re-nanofibrillated by N2 gas bubbling with ultrasonication in water owing to electrostatic repulsion between the amidinium groups. Furthermore, deprotonation of the amidinium chitin and re-protonation of the resulting amidinated chitin were conducted by alkaline treatment and CO2 gas bubbling-ultrasonic treatments, respectively. The material showed the agglomeration-nanofibrillation behavior during the processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. A critical appraisal of the clinical utility of proton therapy in oncology

    Science.gov (United States)

    Wang, Dongxu

    2015-01-01

    Proton therapy is an emerging technology for providing radiation therapy to cancer patients. The depth dose distribution of a proton beam makes it a preferable radiation modality as it reduces radiation to the healthy tissue outside the tumor, compared with conventional photon therapy. While theoretically beneficial, its clinical values are still being demonstrated from the increasing number of patients treated with proton therapy, from several dozen proton therapy centers around the world. High equipment and facility costs are often the major obstacle for its wider adoption. Because of the high cost and lack of definite clinical evidence of its superiority, proton therapy treatment faces criticism on its cost-effectiveness. Technological development is causing a gradual lowering of costs, and research and clinical studies are providing further evidence on its clinical utility. PMID:26604838

  14. Delisting strategy for the Hanford Site 242-A Evaporator PUREX Plant Condensate Treatment Facility

    International Nuclear Information System (INIS)

    1992-04-01

    This document describes the strategy that the US Department of Energy, Richland Field Office intends to use in preparing the delisting petition for the 242-A Evaporator/PUREX Plant Condensate Treatment Facility. Because the 242-A Evaporator/PUREX Plant Condensate Treatment Facility will not be operational until 1994, the delisting petition will be structured as an up-front petition based on the ''multiple waste treatment facility'' approach outline in the 1985 US Environmental Protection Agency's Petitions to Delist Hazardous Waste. The 242-A evaporator/PUREX Plant Condensate Treatment Facility effluent characterization data will not be available to support the delisting petition, because the delisting petition will be submitted to the US Environmental Protection Agency before start-up of the 242-A Evaporator/PUREX Plant Condensate Treatment Facility. Therefore, the delisting petition will be based on data collected during the pilot plant testing for the 242-A Evaporator/PUREX Plant Condensate Treatment Facility. This pilot plant testing will be conducted on synthetic waste. The composition of the synthetic waste will be based on: (1) constituents of regulatory concern, and (2) on process knowledge. The pilot plant testing will be performed to determine the removal efficiencies of the process equipment at concentrations greater than reasonably could be expected in the actual waste. This strategy document also describes the logic used to develop the synthetic waste, to develop the pilot plant testing program, and to prepare the delisting petition. This strategy document also described how full-scale operating data will be collected during initial operation of the 242-A Evaporator/PUREX Plant Condensate Treatment Facility to verify information presented in the delisting petition

  15. A Simulation Study for Radiation Treatment Planning Based on the Atomic Physics of the Proton-Boron Fusion Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sunmi; Yoon, Do-Kun; Shin, Han-Back; Jung, Joo-Young; Kim, Moo-Sub; Kim, Kyeong-Hyeon; Jang, Hong-Seok; Suh, Tae Suk [the Catholic University of Korea, Seoul (Korea, Republic of)

    2017-03-15

    The purpose of this research is to demonstrate, based on a Monte Carlo simulation code, the procedure of radiation treatment planning for proton-boron fusion therapy (PBFT). A discrete proton beam (60 - 120 MeV) relevant to the Bragg peak was simulated using a Monte Carlo particle extended (MCNPX, Ver. 2.6.0, National Laboratory, Los Alamos NM, USA) simulation code. After computed tomography (CT) scanning of a virtual water phantom including air cavities, the acquired CT images were converted using the simulation source code. We set the boron uptake regions (BURs) in the simulated water phantom to achieve the proton-boron fusion reaction. Proton sources irradiated the BUR, in the phantom. The acquired dose maps were overlapped with the original CT image of the phantom to analyze the dose volume histogram (DVH). We successfully confirmed amplifications of the proton doses (average: 130%) at the target regions. From the DVH result for each simulation, we acquired a relatively accurate dose map for the treatment. A simulation was conducted to characterize the dose distribution and verify the feasibility of proton boron fusion therapy (PBFT). We observed a variation in proton range and developed a tumor targeting technique for treatment that was more accurate and powerful than both conventional proton therapy and boron-neutron capture therapy.

  16. Japan hadron facility

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Tokushi [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    1998-03-01

    JHF aims at promoting the variety of research fields using various secondary beams produced by high-intensity proton beams. The accelerator of JHF will be an accelerator complex of a 200 MeV LINAC, a 3 GeV booster proton synchrotron, and a 50 GeV proton synchrotron. The four main experimental facilities of K-Arena, M-Arena, N-Arena, and E-Arena are planed. The outline of the project is presented. (author)

  17. Dose mapping sensitivity to deformable registration uncertainties in fractionated radiotherapy – applied to prostate proton treatments

    International Nuclear Information System (INIS)

    Tilly, David; Tilly, Nina; Ahnesjö, Anders

    2013-01-01

    Calculation of accumulated dose in fractionated radiotherapy based on spatial mapping of the dose points generally requires deformable image registration (DIR). The accuracy of the accumulated dose thus depends heavily on the DIR quality. This motivates investigations of how the registration uncertainty influences dose planning objectives and treatment outcome predictions. A framework was developed where the dose mapping can be associated with a variable known uncertainty to simulate the DIR uncertainties in a clinical workflow. The framework enabled us to study the dependence of dose planning metrics, and the predicted treatment outcome, on the DIR uncertainty. The additional planning margin needed to compensate for the dose mapping uncertainties can also be determined. We applied the simulation framework to a hypofractionated proton treatment of the prostate using two different scanning beam spot sizes to also study the dose mapping sensitivity to penumbra widths. The planning parameter most sensitive to the DIR uncertainty was found to be the target D 95 . We found that the registration mean absolute error needs to be ≤0.20 cm to obtain an uncertainty better than 3% of the calculated D 95 for intermediate sized penumbras. Use of larger margins in constructing PTV from CTV relaxed the registration uncertainty requirements to the cost of increased dose burdens to the surrounding organs at risk. The DIR uncertainty requirements should be considered in an adaptive radiotherapy workflow since this uncertainty can have significant impact on the accumulated dose. The simulation framework enabled quantification of the accuracy requirement for DIR algorithms to provide satisfactory clinical accuracy in the accumulated dose

  18. Risk communication on the construction of radioactive waste treatment facility

    International Nuclear Information System (INIS)

    Okoshi, Minoru

    2005-01-01

    In this paper, risk communications among the Japan Radioisotope Association (JRIA), a local government and the general public which were carried out during the development process of a radioactive waste treatment facility in Takizawa Village, Iwate Prefecture are analyzed based on the articles of newspapers and the interviews with the concerned people. The analysis results show good risk communications were not carried out because of the absence of the confidence to the JRIA, decision making rules and the merits. In order to make good use of this experience for the future development of radioactive waste management facilities, the lessons learned from this case are summarized and the check lists for good risk communication are proposed. (author)

  19. First experiences in treatment of low-grade glioma grade I and II with proton therapy

    International Nuclear Information System (INIS)

    Hauswald, Henrik; Rieken, Stefan; Ecker, Swantje; Kessel, Kerstin A; Herfarth, Klaus; Debus, Jürgen; Combs, Stephanie E

    2012-01-01

    To retrospectively assess feasibility and toxicity of proton therapy in patients with low-grade glioma (WHO °I/II). Proton beam therapy only administered in 19 patients (median age 29 years; 9 female, 10 male) for low-grade glioma between 2010 and 2011 was reviewed. In 6 cases proton therapy was performed due to tumor progression after biopsy, in 8 cases each due to tumor progression after (partial-) resection, and in 5 cases due to tumor progression after chemotherapy. Median total dose applied was 54 GyE (range, 48,6-54 GyE) in single fractions of median 1.8 GyE. Median clinical target volume was 99 cc (range, 6–463 cc) and treated using median 2 beams (range, 1–2). Proton therapy was finished as planned in all cases. At end of proton therapy, 13 patients showed focal alopecia, 6 patients reported mild fatigue, one patient with temporal tumor localization concentration deficits and speech errors and one more patient deficits in short-term memory. Four patients did not report any side effects. During follow-up, one patient presented with pseudo-progression showing worsening of general condition and brain edema 1–2 months after last irradiation and restitution after 6 months. In the present MR imaging (median follow-up 5 months; range 0–22 months) 12 patients had stable disease, 2 (1) patients partial (complete) remission, one more patient pseudo-progression (differential diagnosis: tumor progression) 4 weeks after irradiation without having had further follow-up imaging so far, and one patient tumor progression approximately 9 months after irradiation. Regarding early side effects, mild alopecia was the predominant finding. The rate of alopecia seems to be due to large treatment volumes as well as the anatomical locations of the target volumes and might be avoided by using multiple beams and the gantry in the future. Further evaluations including neuropsychological testing are in preparation

  20. Development of an Extreme Environment Materials Research Facility at Princeton

    International Nuclear Information System (INIS)

    Cohen, A.B.; Gentile, C.A.; Tully, C.G.; Austin, R.; Calaprice, F.; McDonald, K.; Ascione, G.; Baker, G.; Davidson, R.; Dudek, L.; Grisham, L.; Kugel, H.; Pagdon, K.; Stevenson, T.; Woolley, R.; Zwicker, A.

    2010-01-01

    The need for a fundamental understanding of material response to a neutron and/or high heat flux environment can yield development of improved materials and operations with existing materials. Such understanding has numerous applications in fields such as nuclear power (for the current fleet and future fission and fusion reactors), aerospace, and other research fields (e.g., high-intensity proton accelerator facilities for high energy physics research). A proposal has been advanced to develop a facility for testing various materials under extreme heat and neutron exposure conditions at Princeton. The Extreme Environment Materials Research Facility comprises an environmentally controlled chamber (48 m 3 ) capable of high vacuum conditions, with extreme flux beams and probe beams accessing a central, large volume target. The facility will have the capability to expose large surface areas (1 m 2 ) to 14 MeV neutrons at a fluence in excess of 10 13 n/s. Depending on the operating mode. Additionally beam line power on the order of 15-75 MW/m 2 for durations of 1-15 seconds are planned. The multi-second duration of exposure can be repeated every 2-10 minutes for periods of 10-12 hours. The facility will be housed in the test cell that held the Tokamak Fusion Test Reactor (TFTR), which has the desired radiation and safety controls as well as the necessary loading and assembly infrastructure. The facility will allow testing of various materials to their physical limit of thermal endurance and allow for exploring the interplay between radiation-induced embrittlement, swelling and deformation of materials, and the fatigue and fracturing that occur in response to thermal shocks. The combination of high neutron energies and intense fluences will enable accelerated time scale studies. The results will make contributions for refining predictive failure modes (modeling) in extreme environments, as well as providing a technical platform for the development of new alloys, new

  1. Support of the radioactive waste treatment nuclear fuel fabrication facility

    International Nuclear Information System (INIS)

    Park, H.H.; Han, K.W.; Lee, B.J.; Shim, G.S.; Chung, M.S.

    1982-01-01

    Technical service of radioactive waste treatment in Daeduck Engineering Center includes; 1) Treatment of radioactive wastes from the nuclear fuel fabrication facility and from laboratories. 2) Establishing a process for intermediate treatment necessary till the time when RWTF is in completion. 3) Technical evaluation of unit processes and equipments concerning RWTF. About 35 drums (8 m 3 ) of solid wastes were treated and stored while more than 130 m 3 of liquid wastes were disposed or stored. A process with evaporators of 10 1/hr in capacity, a four-stage solvent washer, storage tanks and disposal system was designed and some of the equipments were manufactured. Concerning RWTF, its process was reviewed technically and emphasis were made on stability of the bituminization process against explosion, function of PAAC pump, decontamination, and finally on problems to be solved in the comming years. (Author)

  2. Proton Beam Therapy for Hepatocellular Carcinoma: A Comparison of Three Treatment Protocols

    Energy Technology Data Exchange (ETDEWEB)

    Mizumoto, Masashi; Okumura, Toshiyuki; Hashimoto, Takayuki [Proton Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki (Japan); Department of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki (Japan); Fukuda, Kuniaki [Department of Gastroenterology, University of Tsukuba, Tsukuba, Ibaraki (Japan); Oshiro, Yoshiko; Fukumitsu, Nobuyoshi [Proton Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki (Japan); Department of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki (Japan); Abei, Masato [Department of Gastroenterology, University of Tsukuba, Tsukuba, Ibaraki (Japan); Kawaguchi, Atsushi [Biostatistics Center, Kurume University, Fukuoka (Japan); Hayashi, Yasutaka; Ookawa, Ayako; Hashii, Haruko; Kanemoto, Ayae [Department of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki (Japan); Moritake, Takashi [Proton Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki (Japan); Department of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki (Japan); Tohno, Eriko [Department of Diagnostic Radiology, University of Tsukuba, Tsukuba, Ibaraki (Japan); Tsuboi, Koji [Proton Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki (Japan); Department of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki (Japan); Sakae, Takeji [Proton Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki (Japan); Sakurai, Hideyuki, E-mail: hsakurai@pmrc.tsukuba.ac.jp [Proton Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki (Japan); Department of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki (Japan)

    2011-11-15

    Background: Our previous results for treatment of hepatocellular carcinoma (HCC) with proton beam therapy revealed excellent local control with low toxicity. Three protocols were used to avoid late complications such as gastrointestinal ulceration and bile duct stenosis. In this study, we examined the efficacy of these protocols. Methods and Materials: The subjects were 266 patients (273 HCCs) treated by proton beam therapy at University of Tsukuba between January 2001 and December 2007. Three treatment protocols (A, 66 GyE in 10 fractions; B, 72.6 GyE in 22 fractions; and C, 77 GyE in 35 fractions) were used, depending on the tumor location. Results: Of the 266 patients, 104, 95, and 60 patients were treated with protocols A, B, and C, respectively. Seven patients with double lesions underwent two different protocols. The overall survival rates after 1, 3 and 5 years were 87%, 61%, and 48%, respectively (median survival, 4.2 years). Multivariate analysis showed that better liver function, small clinical target volume, and no prior treatment (outside the irradiated field) were associated with good survival. The local control rates after 1, 3, and 5 years were 98%, 87%, and 81%, respectively. Multivariate analysis did not identify any factors associated with good local control. Conclusions: This study showed that proton beam therapy achieved good local control for HCC using each of three treatment protocols. This suggests that selection of treatment schedules based on tumor location may be used to reduce the risk of late toxicity and maintain good treatment efficacy.

  3. Esophageal Baseline Impedance Reflects Mucosal Integrity and Predicts Symptomatic Outcome With Proton Pump Inhibitor Treatment.

    Science.gov (United States)

    Xie, Chenxi; Sifrim, Daniel; Li, Yuwen; Chen, Minhu; Xiao, Yinglian

    2018-01-30

    Esophageal baseline impedance, which is decreased in gastroesophageal reflux disease (GERD) patients, is related to the severity of acid reflux and the integrity of the esophageal mucosa. The study aims to compare the baseline impedance and the dilated intercellular spaces (DIS) within patients with typical reflux symptoms and to evaluate the correlation of baseline impedance with DIS, esophageal acid exposure, as well as the efficacy of proton pump inhibitor (PPI) treatment. Ninety-two patients and 10 healthy controls were included in the study. Erosive esophagitis (EE) was defined by esophageal mucosal erosion under upper endoscopy. Patients without mucosa erosion were divided into groups with pathologic acid reflux (non-erosive reflux disease [NERD]) or with hypersensitive esophagus. The biopsies of esophageal mucosa were taken 2-4 cm above the gastroesophageal junction Z-line during upper endoscopy for DIS measurement. All the patients received esomeprazole 20 mg twice-daily treatment for 8 weeks. The efficacy of esomeprazole was evaluated among all patients. The intercellular spaces were dilated in both EE and NERD patients ( P baseline impedance was decreased in both EE patients and NERD patients, and negatively correlated to the acid exposure time ( r = -0.527, P baseline impedance ( r = -0.230, P Baseline impedance > 1764 Ω" was an independent predictor for PPI failure (OR, 11.9; 95% CI, 2.4-58.9; P baseline impedance was observed in patients with mucosa erosion or pathological acid reflux. The baseline impedance reflected the mucosal integrity, it was more sensitive to esophageal acid exposure. Patients with high impedance might not benefit from the PPI treatment.

  4. Development of an integrated assay facility

    International Nuclear Information System (INIS)

    Molesworth, T.V.; Bailey, M.; Findlay, D.J.S.; Parsons, T.V.; Sene, M.R.; Swinhoe, M.T.

    1990-01-01

    The I.R.I.S. concept proposed the use of passive examination and active interrogation techniques in an integrated assay facility. A linac would generate the interrogating gamma and neutron beams. Insufficiently detailed knowledge about active neutron and gamma interrogation of 500 litre drums of cement immobilised intermediate level waste led to a research programme which is now in its main experimental stage. Measurements of interrogation responses are being made using simulated waste drums containing actinide samples and calibration sources, in an experimental assay assembly. Results show that responses are generally consistent with theory, but that improvements are needed in some areas. A preliminary appraisal of the engineering and economic aspects of integrated assay shows that correct operational sequencing is required to achieve the short cycle time needed for high throughput. The main engineering features of a facility have been identified

  5. Preliminary exploitation of industrial facility for flue gas treatment

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Zimek, Z.; Iller, E.; Tyminski, B.; Licki, J.

    2001-01-01

    Full text: High emission of SO 2 and NO x in the process of fossil fuel combustion creates a major world environmental problem. Poland which uses for energy production mainly pit and brown coal produces these pollutants as well. The certain amount of SO 2 and slightly less NO x pollutants is introduced into the atmosphere. 1/2 of SO 2 and 1/3 NO x pollution is contributed by heat and electricity generating boilers. The biggest sources of pollution are located in south west side of Poland and are connected with industrial centers but over 45% of the total 802 and 69% of NO x pollutants distributed over polish territory come from external sources. The laboratory facility for flue gas treatment radiation technology was organized in Institute of Nuclear Chemistry and Technology at Warsaw at the end of 80s. Soon after the pilot plant for flue gas treatment with electron beam has been installed at Power Plant Kaweczyn near Warsaw. The flow capacity trough those installations was respectively 400 and 20000 Nm /h. Three new elements have been introduced to the construction of the radiation chamber in Polish pilot installation. Those are: cascade double stage irradiation, longitudinal irradiation, (beam scanned along the chamber axis) and the air blow under the chamber window with the purpose to create air curtain separating the window from the flue gases causing corrosion. Three different system for filtration aid has been constructed and tested: bag filter, gravel bead filter and electrostatic precipitator. The pilot plant installation was used to establish the optimal parameters of industrial facility: optimizing of the process parameters leading to reduction of energy with high efficiency of SO 2 and NO x removal; selecting and testing filter devices and filtration process; developing of the monitoring and control systems at industrial plant for flue gas cleaning, preparation of the design for industrial scale facility. The positive results of the tests performed on

  6. PROTON MICROSCOPY AT FAIR

    International Nuclear Information System (INIS)

    Merrill, F. E.; Mariam, F. G.; Golubev, A. A.; Turtikov, V. I.; Varentsov, D.

    2009-01-01

    Proton radiography was invented in the 1990's at Los Alamos National Laboratory (LANL) as a diagnostic to study dynamic material properties under extreme pressures, strain and strain rate. Since this time hundreds of dynamic proton radiography experiments have been performed at LANL and a facility has been commissioned at the Institute for Theoretical and Experimental Physics (ITEP) in Russia for similar applications in dynamic material studies. Recently an international effort has investigated a new proton radiography capability for the study of dynamic material properties at the Facility for Anti-proton and Ion Research (FAIR) located in Darmstadt, Germany. This new Proton microscope for FAIR(PRIOR) will provide radiographic imaging of dynamic systems with unprecedented spatial, temporal and density resolution, resulting in a window for understanding dynamic material properties at new length scales. It is also proposed to install the PRIOR system at the GSI Helmholtzzentrum fuer Schwerionenforschung before installation at FAIR for dynamic experiments with different drivers including high explosives, pulsed power and lasers. The design of the proton microscope and expected radiographic performance is presented.

  7. Proton Neutron Gamma-X Detection (PNGXD): An introduction to contrast agent detection during proton therapy via prompt gamma neutron activation

    Science.gov (United States)

    Gräfe, James L.

    2017-09-01

    Proton therapy is an alternative external beam cancer treatment modality to the conventional linear accelerator-based X-ray radiotherapy. An inherent by-product of proton-nuclear interactions is the production of secondary neutrons. These neutrons have long been thought of as a secondary contaminant, nuisance, and source of secondary cancer risk. In this paper, a method is proposed to use these neutrons to identify and localize the presence of the tumor through neutron capture reactions with the gadolinium-based MRI contrast agent. This could provide better confidence in tumor targeting by acting as an additional quality assurance tool of tumor position during treatment. This effectively results in a neutron induced nuclear medicine scan. Gadolinium (Gd), is an ideal candidate for this novel nuclear contrast imaging procedure due to its unique nuclear properties and its widespread use as a contrast agent in MRI. Gd has one of the largest thermal neutron capture cross sections of all the stable nuclides, and the gadolinium-based contrast agents localize in leaky tissues and tumors. Initial characteristics of this novel concept were explored using the Monte Carlo code MCNP6. The number of neutron capture reactions per Gy of proton dose was found to be approximately 50,000 neutron captures/Gy, for a 8 cm3 tumor containing 300 ppm Gd at 8 cm depth with a simple simulation designed to represent the active delivery method. Using the passive method it is estimated that this number can be up to an order of magnitude higher. The thermal neutron distribution was found to not be localized within the spread out Bragg peak (SOBP) for this geometrical configuration and therefore would not allow for the identification of a geometric miss of the tumor by the proton SOBP. However, this potential method combined with nuclear medicine imaging and fused with online CBCT and prior MRI or CT imaging could help to identify tumor position during treatment. More computational and

  8. Optical diagnostics of mercury jet for an intense proton target.

    Science.gov (United States)

    Park, H; Tsang, T; Kirk, H G; Ladeinde, F; Graves, V B; Spampinato, P T; Carroll, A J; Titus, P H; McDonald, K T

    2008-04-01

    An optical diagnostic system is designed and constructed for imaging a free mercury jet interacting with a high intensity proton beam in a pulsed high-field solenoid magnet. The optical imaging system employs a backilluminated, laser shadow photography technique. Object illumination and image capture are transmitted through radiation-hard multimode optical fibers and flexible coherent imaging fibers. A retroreflected illumination design allows the entire passive imaging system to fit inside the bore of the solenoid magnet. A sequence of synchronized short laser light pulses are used to freeze the transient events, and the images are recorded by several high speed charge coupled devices. Quantitative and qualitative data analysis using image processing based on probability approach is described. The characteristics of free mercury jet as a high power target for beam-jet interaction at various levels of the magnetic induction field is reported in this paper.

  9. 40 CFR 403.19 - Provisions of specific applicability to the Owatonna Waste Water Treatment Facility.

    Science.gov (United States)

    2010-07-01

    ... the Owatonna Waste Water Treatment Facility. 403.19 Section 403.19 Protection of Environment... Owatonna Waste Water Treatment Facility. (a) For the purposes of this section, the term “Participating... Industrial User discharging to the Owatonna Waste Water Treatment Facility in Owatonna, Minnesota, when a...

  10. Robust Proton Pencil Beam Scanning Treatment Planning for Rectal Cancer Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Blanco Kiely, Janid Patricia, E-mail: jkiely@sas.upenn.edu; White, Benjamin M.

    2016-05-01

    Purpose: To investigate, in a treatment plan design and robustness study, whether proton pencil beam scanning (PBS) has the potential to offer advantages, relative to interfraction uncertainties, over photon volumetric modulated arc therapy (VMAT) in a locally advanced rectal cancer patient population. Methods and Materials: Ten patients received a planning CT scan, followed by an average of 4 weekly offline CT verification CT scans, which were rigidly co-registered to the planning CT. Clinical PBS plans were generated on the planning CT, using a single-field uniform-dose technique with single-posterior and parallel-opposed (LAT) fields geometries. The VMAT plans were generated on the planning CT using 2 6-MV, 220° coplanar arcs. Clinical plans were forward-calculated on verification CTs to assess robustness relative to anatomic changes. Setup errors were assessed by forward-calculating clinical plans with a ±5-mm (left–right, anterior–posterior, superior–inferior) isocenter shift on the planning CT. Differences in clinical target volume and organ at risk dose–volume histogram (DHV) indicators between plans were tested for significance using an appropriate Wilcoxon test (P<.05). Results: Dosimetrically, PBS plans were statistically different from VMAT plans, showing greater organ at risk sparing. However, the bladder was statistically identical among LAT and VMAT plans. The clinical target volume coverage was statistically identical among all plans. The robustness test found that all DVH indicators for PBS and VMAT plans were robust, except the LAT's genitalia (V5, V35). The verification CT plans showed that all DVH indicators were robust. Conclusions: Pencil beam scanning plans were found to be as robust as VMAT plans relative to interfractional changes during treatment when posterior beam angles and appropriate range margins are used. Pencil beam scanning dosimetric gains in the bowel (V15, V20) over VMAT suggest that using PBS to treat rectal

  11. Robust Proton Pencil Beam Scanning Treatment Planning for Rectal Cancer Radiation Therapy

    International Nuclear Information System (INIS)

    Blanco Kiely, Janid Patricia; White, Benjamin M.

    2016-01-01

    Purpose: To investigate, in a treatment plan design and robustness study, whether proton pencil beam scanning (PBS) has the potential to offer advantages, relative to interfraction uncertainties, over photon volumetric modulated arc therapy (VMAT) in a locally advanced rectal cancer patient population. Methods and Materials: Ten patients received a planning CT scan, followed by an average of 4 weekly offline CT verification CT scans, which were rigidly co-registered to the planning CT. Clinical PBS plans were generated on the planning CT, using a single-field uniform-dose technique with single-posterior and parallel-opposed (LAT) fields geometries. The VMAT plans were generated on the planning CT using 2 6-MV, 220° coplanar arcs. Clinical plans were forward-calculated on verification CTs to assess robustness relative to anatomic changes. Setup errors were assessed by forward-calculating clinical plans with a ±5-mm (left–right, anterior–posterior, superior–inferior) isocenter shift on the planning CT. Differences in clinical target volume and organ at risk dose–volume histogram (DHV) indicators between plans were tested for significance using an appropriate Wilcoxon test (P<.05). Results: Dosimetrically, PBS plans were statistically different from VMAT plans, showing greater organ at risk sparing. However, the bladder was statistically identical among LAT and VMAT plans. The clinical target volume coverage was statistically identical among all plans. The robustness test found that all DVH indicators for PBS and VMAT plans were robust, except the LAT's genitalia (V5, V35). The verification CT plans showed that all DVH indicators were robust. Conclusions: Pencil beam scanning plans were found to be as robust as VMAT plans relative to interfractional changes during treatment when posterior beam angles and appropriate range margins are used. Pencil beam scanning dosimetric gains in the bowel (V15, V20) over VMAT suggest that using PBS to treat rectal cancer

  12. Regional waste treatment facilities with underground monolith disposal for all low-heat-generating nuclear wastes

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1982-01-01

    An alternative system for treatment and disposal of all ''low-heat-generating'' nuclear wastes from all sources is proposed. The system, Regional Waste Treatment Facilities with Underground Monolith Disposal (RWTF/UMD), integrates waste treatment and disposal operations into single facilities at regional sites. Untreated and/or pretreated wastes are transported from generation sites such as reactors, hospitals, and industries to regional facilities in bulk containers. Liquid wastes are also transported in bulk after being gelled for transport. The untreated and pretreated wastes are processed by incineration, crushing, and other processes at the RWTF. The processed wastes are mixed with cement. The wet concrete mixture is poured into large low-cost, manmade caverns or deep trenches. Monolith dimensions are from 15 to 25 m wide, and 20 to 60 m high and as long as required. This alternative waste system may provide higher safety margins in waste disposal at lower costs

  13. Neutron radiography characterization of an operating proton exchange membrane fuel cell with localized current distribution measurements

    International Nuclear Information System (INIS)

    Gagliardo, J.J.; Owejan, J.P.; Trabold, T.A.; Tighe, T.W.

    2009-01-01

    Neutron radiography has proven to be a powerful tool to study and understand the effects of liquid water in an operating fuel cell. In the present work, this experimental method is coupled with locally resolved current and ohmic resistance measurements, giving additional insight into water management and fuel cell performance under a variety of conditions. The effects of varying the inlet humidification level and the current density of the 50 cm 2 cell are studied by simultaneously monitoring electrochemical performance with a 10x10 matrix of current sensors, and liquid water volumes are measured using the National Institute of Standards and Technology (NIST) neutron imaging facility. A counter flow, straight channel proton exchange membrane (PEM) fuel cell is used to demonstrate localized performance loss corresponds to water-filled channels that impede gas transport to the catalyst layer, thereby creating an area that has low current density. Furthermore, certain operating conditions causing excess water accumulation in the channels can result in localized proton resistance increase, a result that can only be accurately observed with combined radiography and distributed electrochemical measurements.

  14. Reactivation of Latent Epstein-Barr Virus; A Comparison After Gamma Rays and Proton Treatment

    Science.gov (United States)

    Mehta, Satish K.; Plante, Ianik; Bloom, David C.; Stowe, Raymond; Renner, Ashlie; Wu, Honglu; Crucian, Brian; Pierson, Duane L.

    2017-01-01

    Among different unique stressors astronauts are exposed to during spaceflight, cosmic radiation constitutes an important one that leads to various health effects. In particular, space radiation may contribute to decreased immunity, which has been observed in astronauts during short and long duration missions, as evidenced by several changes in cellular immunity and plasma cytokines levels. Reactivation of latent herpes viruses, either directly from radiation or resulting from perturbation in the immune system, is also observed in astronauts. While EBV is one of the eight human herpes viruses known to infect more than 90% human adults and stays latent for the life of the host without normally causing adverse effects of reactivation, increased reactivation in astronauts is well-documented, though the mechanism of this increase is not understood. In this work, we have studied the effect of two different types of radiations, Cs-137 gamma and 150-MeV proton on the reactivation rates of the Epstein - Barr virus (EBV) in vitro in EBV latent cell lines at doses of 0.1, 0.5, 1.0 and 2.0 Gy. While we find that both types of radiations reactivated latent EBV in vitro, we observe that at equivalent doses, early response is stronger for protons but with time, the reactivation induced by gamma rays is more persistent. These differences between the protons and gamma rays curves in latent virus reactivation challenge the common paradigm that protons and gamma rays have similar biological effects.

  15. Mixed and low-level waste treatment facility project

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

  16. Mixed and low-level waste treatment facility project

    International Nuclear Information System (INIS)

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies

  17. Liquid waste treatment at plutonium fuels fabrication facility, 2

    International Nuclear Information System (INIS)

    Matsumoto, Ken-ichi; Itoh, Ichiroh; Ohuchi, Jin; Miyo, Hiroaki

    1974-01-01

    The economics in the management of the radioactive liquid waste from Plutonium Fuels Fabrication Facility with sludge-blanket type flocculators has been evaluated. (1) Cost calculation: The cost of chemicals and electricity to treat 1 cubic meter of liquid waste is about 876 yen, while the total operating cost is 250 thousand yen per cubic meter in the case of 140 m 3 /year treatment. These figures are much higher than those for ordinary wastes, due to the particular operation against plutonium. (2) Proposal of the closed system for liquid waste treatment at PFFF: In the case of a closed system using evaporator, ion exchange column and rotary-kiln calciner, the operating cost is estimated at 40 thousand yen per cubic meter of liquid waste. Final radioactivity of treated liquid is below 10 -8 micro curies/ml. (Mori, K.)

  18. Infection prevention and control in deployed military medical treatment facilities.

    Science.gov (United States)

    Hospenthal, Duane R; Green, Andrew D; Crouch, Helen K; English, Judith F; Pool, Jane; Yun, Heather C; Murray, Clinton K

    2011-08-01

    Infections have complicated the care of combat casualties throughout history and were at one time considered part of the natural history of combat trauma. Personnel who survived to reach medical care were expected to develop and possibly succumb to infections during their care in military hospitals. Initial care of war wounds continues to focus on rapid surgical care with debridement and irrigation, aimed at preventing local infection and sepsis with bacteria from the environment (e.g., clostridial gangrene) or the casualty's own flora. Over the past 150 years, with the revelation that pathogens can be spread from patient to patient and from healthcare providers to patients (including via unwashed hands of healthcare workers, the hospital environment and fomites), a focus on infection prevention and control aimed at decreasing transmission of pathogens and prevention of these infections has developed. Infections associated with combat-related injuries in the recent operations in Iraq and Afghanistan have predominantly been secondary to multidrug-resistant pathogens, likely acquired within the military healthcare system. These healthcare-associated infections seem to originate throughout the system, from deployed medical treatment facilities through the chain of care outside of the combat zone. Emphasis on infection prevention and control, including hand hygiene, isolation, cohorting, and antibiotic control measures, in deployed medical treatment facilities is essential to reducing these healthcare-associated infections. This review was produced to support the Guidelines for the Prevention of Infections Associated With Combat-Related Injuries: 2011 Update contained in this supplement of Journal of Trauma.

  19. Preparations of an inorganic-framework proton exchange nanochannel membrane

    Science.gov (United States)

    Yan, X. H.; Jiang, H. R.; Zhao, G.; Zeng, L.; Zhao, T. S.

    2016-09-01

    In this work, a proton exchange membrane composed of straight and aligned proton conducting nanochannels is developed. Preparation of the membrane involves the surface sol-gel method assisted with a through-hole anodic aluminum oxide (AAO) template to form the framework of the PEM nanochannels. A monomolecular layer (SO3Hsbnd (CH2)3sbnd Sisbnd (OCH3)3) is subsequently added onto the inner surfaces of the nanochannels to shape a proton-conducting pathway. Straight nanochannels exhibit long range order morphology, contributing to a substantial improvement in the proton mobility and subsequently proton conductivity. In addition, the nanochannel size can be altered by changing the surface sol-gel condition, allowing control of the active species/charge carrier selectivity via pore size exclusion. The proton conductivity of the nanochannel membrane is reported as high as 11.3 mS cm-1 at 70 °C with a low activation energy of 0.21 eV (20.4 kJ mol-1). First-principle calculations reveal that the activation energy for proton transfer is impressively low (0.06 eV and 0.07 eV) with the assistance of water molecules.

  20. Antiproton-proton annihilation into light neutral meson pairs within an effective meson theory

    Science.gov (United States)

    Wang, Ying; Bystritskiy, Yury M.; Ahmadov, Azad I.; Tomasi-Gustafsson, Egle

    2017-08-01

    Antiproton-proton annihilation into light neutral mesons in the few GeV energy domain is investigated in view of a global description of the existing data and predictions for future work at the Antiproton Annihilation at Darmstadt (PANDA) experiment at the Facility for Antiproton and Ion Research (FAIR). An effective meson model earlier developed, with mesonic and baryonic degrees of freedom in s , t , and u channels, is applied here to π0π0 production. Form factors with logarithmic s and t (u ) dependencies are applied. A fair agreement with the existing angular distributions is obtained. Applying SU(3) symmetry, it is straightforward to recover the angular distributions for π0η and η η production in the same energy range. A good agreement is generally obtained with all existing data.

  1. SU-E-J-122: Detecting Treatment-Induced Metabolic Abnormalities in Craniopharyngioma Patients Undergoing Surgery and Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hua, C; Shulkin, B; Li, Y; LI, X; Merchant, T [St. Jude Children' s Research Hospital, Memphis, TN (United States); Indelicato, D [University of Florida Proton Therapy Institute, Jacksonville, FL (United States); Boop, F [Semmes-Murphey Neurologic and Spine Institute, Memphis, TN (United States)

    2014-06-01

    Purpose: To identify treatment-induced defects in the brain of children with craniopharyngioma receiving surgery and proton therapy using fluorodeoxyglucose positron emission tomography (FDG PET). Methods: Forty seven patients were enrolled on a clinical trial for craniopharyngioma with serial imaging and functional evaluations. Proton therapy was delivered using the double-scattered beams with a prescribed dose of 54 Cobalt Gray Equivalent. FDG tracer uptake in each of 63 anatomical regions was computed after warping PET images to a 3D reference template in Talairach coordinates. Regional uptake was deemed significantly low or high if exceeding two standard deviations of normal population from the mean. For establishing the normal ranges, 132 children aged 1–20 years with noncentral nervous system related diseases and normal-appearing cerebral PET scans were analyzed. Age- and gender-dependent regional uptake models were developed by linear regression and confidence intervals were calculated. Results: Most common PET abnormality before proton therapy was significantly low uptake in the frontal lobe, the occipital lobe (particularly in cuneus), the medial and ventral temporal lobe, cingulate gyrus, caudate nuclei, and thalamus. They were related to injury from surgical corridors, tumor mass effect, insertion of a ventricular catheter, and the placement of an Ommaya reservoir. Surprisingly a significantly high uptake was observed in temporal gyri and the parietal lobe. In 13 patients who already completed 18-month PET scans, metabolic abnormalities improved in 11 patients from baseline. One patient had persistent abnormalities. Only one revealed new uptake abnormalities in thalamus, brainstem, cerebellum, and insula. Conclusion: Postoperative FDG PET of craniopharyngioma patients revealed metabolic abnormalities in specific regions of the brain. Proton therapy did not appear to exacerbate these surgery- and tumor-induced defects. In patients with persistent and

  2. SU-E-J-122: Detecting Treatment-Induced Metabolic Abnormalities in Craniopharyngioma Patients Undergoing Surgery and Proton Therapy

    International Nuclear Information System (INIS)

    Hua, C; Shulkin, B; Li, Y; LI, X; Merchant, T; Indelicato, D; Boop, F

    2014-01-01

    Purpose: To identify treatment-induced defects in the brain of children with craniopharyngioma receiving surgery and proton therapy using fluorodeoxyglucose positron emission tomography (FDG PET). Methods: Forty seven patients were enrolled on a clinical trial for craniopharyngioma with serial imaging and functional evaluations. Proton therapy was delivered using the double-scattered beams with a prescribed dose of 54 Cobalt Gray Equivalent. FDG tracer uptake in each of 63 anatomical regions was computed after warping PET images to a 3D reference template in Talairach coordinates. Regional uptake was deemed significantly low or high if exceeding two standard deviations of normal population from the mean. For establishing the normal ranges, 132 children aged 1–20 years with noncentral nervous system related diseases and normal-appearing cerebral PET scans were analyzed. Age- and gender-dependent regional uptake models were developed by linear regression and confidence intervals were calculated. Results: Most common PET abnormality before proton therapy was significantly low uptake in the frontal lobe, the occipital lobe (particularly in cuneus), the medial and ventral temporal lobe, cingulate gyrus, caudate nuclei, and thalamus. They were related to injury from surgical corridors, tumor mass effect, insertion of a ventricular catheter, and the placement of an Ommaya reservoir. Surprisingly a significantly high uptake was observed in temporal gyri and the parietal lobe. In 13 patients who already completed 18-month PET scans, metabolic abnormalities improved in 11 patients from baseline. One patient had persistent abnormalities. Only one revealed new uptake abnormalities in thalamus, brainstem, cerebellum, and insula. Conclusion: Postoperative FDG PET of craniopharyngioma patients revealed metabolic abnormalities in specific regions of the brain. Proton therapy did not appear to exacerbate these surgery- and tumor-induced defects. In patients with persistent and

  3. Sci—Fri PM: Topics — 07: Monte Carlo Simulation of Primary Dose and PET Isotope Production for the TRIUMF Proton Therapy Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, C; Jirasek, A [University of Victoria (Australia); Blackmore, E; Hoehr, C; Schaffer, P; Trinczek, M [TRIUMF (Canada); Sossi, V [University of British Columbia (Canada)

    2014-08-15

    Uveal melanoma is a rare and deadly tumour of the eye with primary metastases in the liver resulting in an 8% 2-year survival rate upon detection. Large growths, or those in close proximity to the optic nerve, pose a particular challenge to the commonly employed eye-sparing technique of eye-plaque brachytherapy. In these cases external beam charged particle therapy offers improved odds in avoiding catastrophic side effects such as neuropathy or blindness. Since 1995, the British Columbia Cancer Agency in partnership with the TRIUMF national laboratory have offered proton therapy in the treatment of difficult ocular tumors. Having seen 175 patients, yielding 80% globe preservation and 82% metastasis free survival as of 2010, this modality has proven to be highly effective. Despite this success, there have been few studies into the use of the world's largest cyclotron in patient care. Here we describe first efforts of modeling the TRIUMF dose delivery system using the FLUKA Monte Carlo package. Details on geometry, estimating beam parameters, measurement of primary dose and simulation of PET isotope production are discussed. Proton depth dose in both modulated and pristine beams is successfully simulated to sub-millimeter precision in range (within limits of measurement) and 2% agreement to measurement within in a treatment volume. With the goal of using PET signals for in vivo dosimetry (alignment), a first look at PET isotope depth distribution is presented — comparing favourably to a naive method of approximating simulated PET slice activity in a Lucite phantom.

  4. Beam tests of an integrated prototype of the ATLAS Forward Proton detector

    CERN Document Server

    INSPIRE-00397348

    2016-09-19

    The ATLAS Forward Proton (AFP) detector is intended to measure protons scattered at small angles from the ATLAS interaction point. To this end, a combination of 3D Silicon pixel tracking modules and Quartz-Cherenkov time-of-flight (ToF) detectors is installed 210m away from the interaction point at both sides of ATLAS. Beam tests with an AFP prototype detector combining tracking and timing sub-detectors and a common readout have been performed at the CERN-SPS test-beam facility in November 2014 and September 2015 to complete the system integration and to study the detector performance. The successful tracking-timing integration was demonstrated. Good tracker hit efficiencies above 99.9% at a sensor tilt of 14{\\deg}, as foreseen for AFP, were observed. Spatial resolutions in the short pixel direction with 50 {\\mu}m pitch of 5.5 +/- 0.5 {\\mu}m per pixel plane and of 2.8 +/- 0.5 {\\mu}m for the full four-plane tracker at 14{\\deg} were found, largely surpassing the AFP requirement of 10 {\\mu}m. The timing detector...

  5. Economic impacts of zebra mussels on drinking water treatment and electric power generation facilities.

    Science.gov (United States)

    Connelly, Nancy A; O'Neill, Charles R; Knuth, Barbara A; Brown, Tommy L

    2007-07-01

    Invasions of nonnative species such as zebra mussels can have both ecological and economic consequences. The economic impacts of zebra mussels have not been examined in detail since the mid-1990s. The purpose of this study was to quantify the annual and cumulative economic impact of zebra mussels on surface water-dependent drinking water treatment and electric power generation facilities (where previous research indicated the greatest impacts). The study time frame was from the first full year after discovery in North America (Lake St. Clair, 1989) to the present (2004); the study area was throughout the mussels' North American range. A mail survey resulted in a response rate of 31% for electric power companies and 41% for drinking water treatment plants. Telephone interviews with a sample of nonrespondents assessed nonresponse bias; only one difference was found and adjusted for. Over one-third (37%) of surveyed facilities reported finding zebra mussels in the facility and almost half (45%) have initiated preventive measures to prevent zebra mussels from entering the facility operations. Almost all surveyed facilities (91%) with zebra mussels have used control or mitigation alternatives to remove or control zebra mussels. We estimated that 36% of surveyed facilities experienced an economic impact. Expanding the sample to the population of the study area, we estimated 267 million dollars (BCa 95% CI = 161 million dollars - 467 million dollars) in total economic costs for electric generation and water treatment facilities through late 2004, since 1989. Annual costs were greater (44,000 dollars/facility) during the early years of zebra mussel infestation than in recent years (30,000 dollars). As a result of this and other factors, early predictions of the ultimate costs of the zebra mussel invasion may have been excessive.

  6. The neutron total cross-section measurement of 56Fe and 57Fe by using Japan Proton Accelerator Research Complex facility

    International Nuclear Information System (INIS)

    Kim, Eun Ae; Shvetsov, Valery; Cho, Moo Hyun; Won, Nam Kung; Kim, Kwang Soo; Yang, Sung Chul; Lee, Man Woo; Kim, Guin Yun; Yi, Kyoung Rak; Choi, Hong Yub; Ro, Tae Ik; Mizumoto, Motoharu; Katabuchi, Tatsuya; Igashira, Masayuki

    2012-01-01

    The measurement of neutron cross section using Time-Of-Flight (TOF) method gives significant information for the nuclear data research. In the present work, the neutron total cross section of 56 Fe and 57 Fe has been measured in the energy range between 10 eV and 100 keV by using the neutron beam produced from 3-GeV proton synchrotron accelerator. The 3-GeV proton synchrotron accelerator is located at Japan Proton Accelerator Research Complex (J-PARC) facility in Tokai village. In this study, the neutron total cross section data measured by 6 Li glass scintillator detector was compared with the evaluated values of ENDF/B-VII.0

  7. The neutron total cross-section measurement of {sup 56}Fe and {sup 57}Fe by using Japan Proton Accelerator Research Complex facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Ae; Shvetsov, Valery; Cho, Moo Hyun [Pohang University of Science and Technology, Pohang (Korea, Republic of); Won, Nam Kung [Pohang Accelerator Laboratory, Pohang (Korea, Republic of); Kim, Kwang Soo; Yang, Sung Chul; Lee, Man Woo; Kim, Guin Yun [Kyungpook National University, Daegu (Korea, Republic of); Yi, Kyoung Rak; Choi, Hong Yub; Ro, Tae Ik [Dong-A University, Pusan (Korea, Republic of); Mizumoto, Motoharu; Katabuchi, Tatsuya; Igashira, Masayuki [Tokyo Institute of Technology, Tokyo (Japan)

    2012-05-15

    The measurement of neutron cross section using Time-Of-Flight (TOF) method gives significant information for the nuclear data research. In the present work, the neutron total cross section of {sup 56}Fe and {sup 57}Fe has been measured in the energy range between 10 eV and 100 keV by using the neutron beam produced from 3-GeV proton synchrotron accelerator. The 3-GeV proton synchrotron accelerator is located at Japan Proton Accelerator Research Complex (J-PARC) facility in Tokai village. In this study, the neutron total cross section data measured by {sup 6}Li glass scintillator detector was compared with the evaluated values of ENDF/B-VII.0

  8. Theme day: corrosion and surface treatments in nuclear facilities. Proceedings

    International Nuclear Information System (INIS)

    2012-02-01

    This document brings together the available presentations given at the theme day organized by the Bourgogne Nuclear Pole on the topic of corrosion and surface treatments in nuclear facilities. Eleven presentations (slides) are compiled in this document: 1 - Introduction - PNB centre of competitiveness and R and D activities (A. Mantovan, PNB); 2 - Corrosion damage (M. Foucault, Areva NP - Centre Technique Le Creusot); 3 - Corrosion mechanisms (R. Oltra, UB-ICB); 4 - Examples of expertise management (C. Duret-Thual, Institut de la corrosion/Corrosion Institute); 5 - General framework of surface treatments (C. Nouveau, ENSAM Cluny Paris Tech); 6 - Surfaces et interfaces characterisation - Part A (C. Langlade, Y. Gachon, UTBM and HEF); 7 - Surfaces et interfaces characterisation - Part B (C. Langlade, Y. Gachon, UTBM and HEF); 8 - Ion beam surface treatment (Y. Le Guellec, Quertech Ingenierie); 9 - Impact surface treatment (G. Saout, Sonats); 10 - Metal oxides Characterisation by US laser (R. Oltra, UB-ICB); 11 - Detection and Characterisation of intergranular corrosion (Y. Kernin, Stephane Bourgois, Areva Intercontrole)

  9. WE-E-BRF-01: The ESTRO-AAPM Joint Symposium On Imaging for Proton Treatment Planning and Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Parodi, K [Ludwig-Maximilians-University Munich, Garching, Bavaria (Germany); Dauvergne, D [Institut de Physique Nucleaire de Lyon, Lyon (France); Kruse, J [Mayo Clinic, Rochester, MN (United States)

    2014-06-15

    beam scale for active proton beam delivery in homogenous targets. The development of gamma cameras, that has been studied by several groups worldwide over the last years, now reaches - for some of them - the stage of being applicable in clinical conditions, with real size prototypes and count rate capability matching the therapeutic beam intensities. We will review the different concepts of gamma cameras, the advantages and limitations of this method, and the main challenges that should still be overcome before the widespread of prompt gamma quality assurance for proton and hadrontherapy. Jon Kruse (Mayo Clinic, Rochester, MN, USA) Treatment simulation images for proton therapy are used to determine proton stopping power and range in the patient. This talk will discuss the careful control of CT numbers and conversion of CT number to stopping power required in proton therapy. Imaging for treatment guidance of proton therapy also presents unique challenges which will be addressed. Among them are the enhanced relationship between internal anatomy changes and dosimetry, the need for imaging to support adaptive planning protocols, and high operational efficiency. Learning Objectives: To learn about the possibilities of using activation products to determine the range of particle beams in a patient treatment setting To be informed on an alternative methodology using prompt gamma detectors To understand the impact of the accuracy of the knowledge of the patient information with respect to the delivered treatment.

  10. Incidence of Second Malignancies Among Patients Treated With Proton Versus Photon Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Christine S., E-mail: chungc1@sutterhealth.org [Department of Radiation Oncology, Alta Bates Summit Medical Center, Berkeley, California (United States); Yock, Torunn I. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Nelson, Kerrie [Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts (United States); Xu, Yang [Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts (United States); Keating, Nancy L. [Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts (United States); Department of General Internal Medicine, Brigham and Women' s Hospital, Boston, Massachusetts (United States); Tarbell, Nancy J. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Office of the Executive Dean, Harvard Medical School, Boston, Massachusetts (United States)

    2013-09-01

    Purpose: Proton radiation, when compared with photon radiation, allows delivery of increased radiation dose to the tumor while decreasing dose to adjacent critical structures. Given the recent expansion of proton facilities in the United States, the long-term sequelae of proton therapy should be carefully assessed. The objective of this study was to compare the incidence of second cancers in patients treated with proton radiation with a population-based cohort of matched patients treated with photon radiation. Methods and Materials: We performed a retrospective cohort study of 558 patients treated with proton radiation from 1973 to 2001 at the Harvard Cyclotron in Cambridge, MA and 558 matched patients treated with photon therapy in the Surveillance, Epidemiology, and End Results (SEER) Program cancer registry. Patients were matched by age at radiation treatment, sex, year of treatment, cancer histology, and site. The main outcome measure was the incidence of second malignancies after radiation. Results: We matched 558 proton patients with 558 photon patients from the Surveillance, Epidemiology, and End Results registry. The median duration of follow-up was 6.7 years (interquartile range, 7.4) and 6.0 years (interquartile range, 9.3) in the proton and photon cohorts, respectively. The median age at treatment was 59 years in each cohort. Second malignancies occurred in 29 proton patients (5.2%) and 42 photon patients (7.5%). After we adjusted for sex, age at treatment, primary site, and year of diagnosis, proton therapy was not associated with an increased risk of second malignancy (adjusted hazard ratio, 0.52 [95% confidence interval, 0.32-0.85]; P=.009). Conclusions: The use of proton radiation therapy was not associated with a significantly increased risk of secondary malignancies compared with photon therapy. Longer follow-up of these patients is needed to determine if there is a significant decrease in second malignancies. Given the limitations of the study

  11. Incidence of Second Malignancies Among Patients Treated With Proton Versus Photon Radiation

    International Nuclear Information System (INIS)

    Chung, Christine S.; Yock, Torunn I.; Nelson, Kerrie; Xu, Yang; Keating, Nancy L.; Tarbell, Nancy J.

    2013-01-01

    Purpose: Proton radiation, when compared with photon radiation, allows delivery of increased radiation dose to the tumor while decreasing dose to adjacent critical structures. Given the recent expansion of proton facilities in the United States, the long-term sequelae of proton therapy should be carefully assessed. The objective of this study was to compare the incidence of second cancers in patients treated with proton radiation with a population-based cohort of matched patients treated with photon radiation. Methods and Materials: We performed a retrospective cohort study of 558 patients treated with proton radiation from 1973 to 2001 at the Harvard Cyclotron in Cambridge, MA and 558 matched patients treated with photon therapy in the Surveillance, Epidemiology, and End Results (SEER) Program cancer registry. Patients were matched by age at radiation treatment, sex, year of treatment, cancer histology, and site. The main outcome measure was the incidence of second malignancies after radiation. Results: We matched 558 proton patients with 558 photon patients from the Surveillance, Epidemiology, and End Results registry. The median duration of follow-up was 6.7 years (interquartile range, 7.4) and 6.0 years (interquartile range, 9.3) in the proton and photon cohorts, respectively. The median age at treatment was 59 years in each cohort. Second malignancies occurred in 29 proton patients (5.2%) and 42 photon patients (7.5%). After we adjusted for sex, age at treatment, primary site, and year of diagnosis, proton therapy was not associated with an increased risk of second malignancy (adjusted hazard ratio, 0.52 [95% confidence interval, 0.32-0.85]; P=.009). Conclusions: The use of proton radiation therapy was not associated with a significantly increased risk of secondary malignancies compared with photon therapy. Longer follow-up of these patients is needed to determine if there is a significant decrease in second malignancies. Given the limitations of the study

  12. Imaging an optogenetic pH sensor reveals that protons mediate lateral inhibition in the retina.

    Science.gov (United States)

    Wang, Tzu-Ming; Holzhausen, Lars C; Kramer, Richard H

    2014-02-01

    The reciprocal synapse between photoreceptors and horizontal cells underlies lateral inhibition and establishes the antagonistic center-surround receptive fields of retinal neurons to enhance visual contrast. Despite decades of study, the signal mediating the negative feedback from horizontal cells to cones has remained under debate because the small, invaginated synaptic cleft has precluded measurement. Using zebrafish retinas, we show that light elicits a change in synaptic proton concentration with the correct magnitude, kinetics and spatial dependence to account for lateral inhibition. Light, which hyperpolarizes horizontal cells, causes synaptic alkalinization, whereas activating an exogenously expressed ligand-gated Na(+) channel, which depolarizes horizontal cells, causes synaptic acidification. Whereas acidification was prevented by blocking a proton pump, re-alkalinization was prevented by blocking proton-permeant ion channels, suggesting that distinct mechanisms underlie proton efflux and influx. These findings reveal that protons mediate lateral inhibition in the retina, raising the possibility that protons are unrecognized retrograde messengers elsewhere in the nervous system.

  13. Evaluation and comparison of New 4DCT based strategies for proton treatment planning for lung tumors

    International Nuclear Information System (INIS)

    Wang, Ning; Patyal, Baldev; Ghebremedhin, Abiel; Bush, David

    2013-01-01

    To evaluate different strategies for proton lung treatment planning based on four-dimensional CT (4DCT) scans. Twelve cases, involving only gross tumor volumes (GTV), were evaluated. Single image sets of (1) maximum intensity projection (MIP3) of end inhale (EI), middle exhale (ME) and end exhale (EE) images; (2) average intensity projection (AVG) of all phase images; and (3) EE images from 4DCT scans were selected as primary images for proton treatment planning. Internal target volumes (ITVs) outlined by a clinician were imported into MIP3, AVG, and EE images as planning targets. Initially, treatment uncertainties were not included in planning. Each plan was imported into phase images of 4DCT scans. Relative volumes of GTVs covered by 95% of prescribed dose and mean ipsilateral lung dose of a phase image obtained by averaging the dose in inspiration and expiration phases were used to evaluate the quality of a plan for a particular case. For comparing different planning strategies, the mean of the averaged relative volumes of GTVs covered by 95% of prescribed dose and its standard deviation for each planning strategy for all cases were used. Then, treatment uncertainties were included in planning. Each plan was recalculated in phase images of 4DCT scans. Same strategies were used for plan evaluation except dose-volume histograms of the planning target volumes (PTVs) instead of GTVs were used and the mean and standard deviation of the relative volumes of PTVs covered by 95% of prescribed dose and the ipsilateral lung dose were used to compare different planning strategies. MIP3 plans without treatment uncertainties yielded 96.7% of the mean relative GTV covered by 95% of prescribed dose (standard deviations of 5.7% for all cases). With treatment uncertainties, MIP3 plans yielded 99.5% of mean relative PTV covered by 95% of prescribed dose (standard deviations of 0.7%). Inclusion of treatment uncertainties improved PTV dose coverage but also increased the ipsilateral

  14. MYRRHA. An innovative and unique research facility

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Rafaeol; Neerdael, Bernard; Schyns, Marc; Dyck, Steven Van; Michiels, Sidney; Ait Abderrahim, Hamid, E-mail: myrrha@sckcen.be [Belgian Nuclear Research Centre (SCK-CEN), Mol (Belgium)

    2012-03-15

    The MYRRHA project started in 1998 by SCK{center_dot}CEN in collaboration with Ion Beam Applications (IBA, Louvain-la-Neuve), as an upgrade of the ADONIS project. MYRRHA is designed as a multi-purpose irradiation facility in order to support research programmes on fission and fusion reactor structural materials and nuclear fuel development. Applications of these are found in Accelerator Driven Systems (ADS) systems and in present generation as well as in next generation critical reactors. The first objective of MYRRHA however, will be to demonstrate on one hand the ADS concept at a reasonable power level and on the other hand the technological feasibility of transmutation of Minor Actinides (MA) and Long-Lived Fission Products (LLFP) arising from the reprocessing of radioactive waste. MYRRHA will also help the development of the Pb-alloys technology needed for the LFR (Lead Fast Reactor) Gen.IV concept. Transmutation of MA can be completed in an efficient way in fast neutron spectrum facilities. Both critical reactors and sub-critical ADS are potential candidates as dedicated transmutation systems. However, critical reactors, heavily loaded with fuel containing large amounts of MA, pose safety problems caused by unfavourable reactivity coefficients due to the little delayed neutron fraction. A sub-critical ADS operates in a flexible and safe manner even with a core loading containing a high amount of MA leading to achieve a high efficient transmutation. Thus, the sub-criticality is not a virtue but rather a necessity for an efficient and economical burning of the MA. Besides the reduction of the HLW burden, the MYRRHA project will serve the purpose of developing the lead alloys technology as a reactor coolant that can be used in one of the Generation IV reactor concepts namely the Lead Fast Reactor (LFR). Although carrying out the MYRRHA project will lead to the demonstration of the efficient and safe transmutation of MA in ADS systems as the ultimate goal the

  15. An upper bound for the proton temperature anisotrophy

    International Nuclear Information System (INIS)

    Gary, S.P.

    1994-01-01

    This tutorial describes recent research concerning the upper bound on the hot proton temperature anisotropy imposed by wave-particle scattering due to enhanced fluctuations from the electromagnetic proton cyclotron anisotropy instability. This upper bound, which has been observed in both the magnetosheath and the outer magnetosphere, represents a limited closure relation for the equations of anisotropic magnetohydrodynamics. Such a closure relation has the potential to improve the predictive capability of large-scale anisotropic models of the magnetosphere

  16. Phase I/II study of proton beam irradiation for the treatment of subfoveal choroidal neovascularization in age-related macular degeneration: treatment techniques and preliminary results

    International Nuclear Information System (INIS)

    Yonemoto, Leslie T.; Slater, Jerry D.; Friedrichsen, Eric J.; Loredo, Lilia N.; Ing, Jeffrey; Archambeau, John O.; Teichman, Sandra; Moyers, Michael F.; Blacharski, Paul A.; Slater, James M.

    1996-01-01

    Purpose: Age-related macular degeneration is the prevalent etiology of subfoveal choroidal neovascularization (CNV). The only effective treatment is laser photocoagulation, which is associated with decreased visual acuity following treatment in most patients. This study assessed both the response of subfoveal CNV to proton beam irradiation and treatment-related morbidity. We evaluated preliminary results in patients treated with an initial dose of 8 Cobalt Gray Equivalents (CGE) using a relative biological effectiveness (RBE) of 1.1. Methods and Materials: Twenty-one patients with subfoveal CNV received proton irradiation to the central macula with a single fraction of 8 CGE; 19 were eligible for evaluation. Treatment-related morbidity was based on Radiation Therapy Oncology Group (RTOG) criteria; response was evaluated by Macular Photocoagulation Study (MPS) guidelines. Fluorescein angiography was performed; visual acuity, contrast sensitivity, and reading speed were measured at study entry and at 3-month intervals after treatment. Follow-up ranged from 6 to 15 months. Results: No measurable treatment-related morbidity was seen during or after treatment. Of 19 patients evaluated at 6 months, fluorescein angiography demonstrated treatment response in 10 (53%); 14 (74%) patients had improved or stable visual acuity. With a mean follow-up of 11.6 months, 11 (58%) patients have demonstrated improved or stable visual acuity. Conclusion: A macular dose of 8 CGE yielded no measurable treatment morbidity in patients studied. Fluorescein nagiography demonstrated that regressed or stabilized lesions were associated with improved visual acuity as compared with MPS results. In the next phase, a dose of 14 CGE in a single fraction will be used to further define the optimal dose fractionation schedule

  17. Hypofractionated Proton Boost Combined with External Beam Radiotherapy for Treatment of Localized Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Silvia Johansson

    2012-01-01

    Full Text Available Proton boost of 20 Gy in daily 5 Gy fractions followed by external beam radiotherapy (EBRT of 50 Gy in daily 2 Gy fractions were given to 278 patients with prostate cancer with T1b to T4N0M0 disease. Fifty-three percent of the patients received neoadjuvant androgen deprivation therapy (N-ADT. The medium followup was 57 months. The 5-year PSA progression-free survival was 100%, 95%, and 74% for low-, intermediate-, and high-risk patients, respectively. The toxicity evaluation was supported by a patient-reported questionnaire before every consultant visit. Cumulative probability and actuarial prevalence of genitourinary (GU and gastrointestinal (GI toxicities are presented according to the RTOG classification. N-ADT did not influence curability. Mild pretreatment GU-symptoms were found to be a strong predictive factor for GU-toxicity attributable to treatment. The actuarial prevalence declined over 3 to 5 years for both GU and GI toxicities, indicating slow resolution of epithelial damage to the genitourinary and gastrointestinal tract. Bladder toxicities rather than gastrointestinal toxicities seem to be dose limiting. More than 5-year followup is necessary to reveal any sign of true progressive late side effects of the given treatment. Hypofractionated proton-boost combined with EBRT is associated with excellent curability of localized PC and acceptable frequencies of treatment toxicity.

  18. Hypofractionated Proton Boost Combined with External Beam Radiotherapy for Treatment of Localized Prostate Cancer

    Science.gov (United States)

    Johansson, Silvia; Åström, Lennart; Sandin, Fredrik; Isacsson, Ulf; Montelius, Anders; Turesson, Ingela

    2012-01-01

    Proton boost of 20 Gy in daily 5 Gy fractions followed by external beam radiotherapy (EBRT) of 50 Gy in daily 2 Gy fractions were given to 278 patients with prostate cancer with T1b to T4N0M0 disease. Fifty-three percent of the patients received neoadjuvant androgen deprivation therapy (N-ADT). The medium followup was 57 months. The 5-year PSA progression-free survival was 100%, 95%, and 74% for low-, intermediate-, and high-risk patients, respectively. The toxicity evaluation was supported by a patient-reported questionnaire before every consultant visit. Cumulative probability and actuarial prevalence of genitourinary (GU) and gastrointestinal (GI) toxicities are presented according to the RTOG classification. N-ADT did not influence curability. Mild pretreatment GU-symptoms were found to be a strong predictive factor for GU-toxicity attributable to treatment. The actuarial prevalence declined over 3 to 5 years for both GU and GI toxicities, indicating slow resolution of epithelial damage to the genitourinary and gastrointestinal tract. Bladder toxicities rather than gastrointestinal toxicities seem to be dose limiting. More than 5-year followup is necessary to reveal any sign of true progressive late side effects of the given treatment. Hypofractionated proton-boost combined with EBRT is associated with excellent curability of localized PC and acceptable frequencies of treatment toxicity. PMID:22848840

  19. New treatment facility for low level process effluents at the Savannah River site

    International Nuclear Information System (INIS)

    Ebra, M.A.; Bibler, J.P.; Johnston, B.S.; Kilpatrick, L.L.; Poy, F.L.; Wallace, R.M.

    1987-01-01

    A new facility, the F/H Effluent Treatment Facility (F/H ETF) is under construction at the Savannah River site. It will decontaminate process effluents containing low levels of radionuclides and hazardous chemicals prior to discharge to a surface stream. These effluents, which are currently discharged to seepage basins,