WorldWideScience

Sample records for proton radiotherapy era

  1. Proton minibeam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Girst, Stefanie

    2016-03-08

    The risk of developing adverse side effects in the normal tissue after radiotherapy is often limiting for the dose that can be applied to the tumor. Proton minibeam radiotherapy, a spatially fractionated radiotherapy method using sub-millimeter proton beams, similar to grid therapy or microbeam radiation radiotherapy (MRT) using X-rays, has recently been invented at the ion microprobe SNAKE in Munich. The aim of this new concept is to minimize normal tissue injuries in the entrance channel and especially in the skin by irradiating only a small percentage of the cells in the total irradiation field, while maintaining tumor control via a homogeneous dose in the tumor, just like in conventional broad beam radiotherapy. This can be achieved by optimizing minibeam sizes and distances according to the prevailing tumor size and depth such that after widening of the minibeams due to proton interactions in the tissue, the overlapping minibeams produce a homogeneous dose distribution throughout the tumor. The aim of this work was to elucidate the prospects of minibeam radiation therapy compared to conventional homogeneous broad beam radiotherapy in theory and in experimental studies at the ion microprobe SNAKE. Treatment plans for model tumors of different sizes and depths were created using the planning software LAPCERR, to elaborate suitable minibeam sizes and distances for the individual tumors. Radiotherapy-relevant inter-beam distances required to obtain a homogeneous dose in the target volume were found to be in the millimeter range. First experiments using proton minibeams of only 10 μm and 50 μm size (termed microchannels in the corresponding publication Zlobinskaya et al. 2013) and therapy-conform larger dimensions of 100 μm and 180 μm were performed in the artificial human in-vitro skin model EpiDermFT trademark (MatTek). The corresponding inter-beam distances were 500 μm, 1mm and 1.8 mm, respectively, leading to irradiation of only a few percent of the cells

  2. Proton beam radiotherapy of iris melanoma

    International Nuclear Information System (INIS)

    Damato, Bertil; Kacperek, Andrzej; Chopra, Mona; Sheen, Martin A.; Campbell, Ian R.; Errington, R. Douglas

    2005-01-01

    Purpose: To report on outcomes after proton beam radiotherapy of iris melanoma. Methods and Materials: Between 1993 and 2004, 88 patients with iris melanoma received proton beam radiotherapy, with 53.1 Gy in 4 fractions. Results: The patients had a mean age of 52 years and a median follow-up of 2.7 years. The tumors had a median diameter of 4.3 mm, involving more than 2 clock hours of iris in 32% of patients and more than 2 hours of angle in 27%. The ciliary body was involved in 20%. Cataract was present in 13 patients before treatment and subsequently developed in another 18. Cataract had a 4-year rate of 63% and by Cox analysis was related to age (p = 0.05), initial visual loss (p < 0.0001), iris involvement (p < 0.0001), and tumor thickness (p < 0.0001). Glaucoma was present before treatment in 13 patients and developed after treatment in another 3. Three eyes were enucleated, all because of recurrence, which had an actuarial 4-year rate of 3.3% (95% CI 0-8.0%). Conclusions: Proton beam radiotherapy of iris melanoma is well tolerated, the main problems being radiation-cataract, which was treatable, and preexisting glaucoma, which in several patients was difficult to control

  3. Dosimetric Feasibility of Hypofractionated Proton Radiotherapy for Neoadjuvant Pancreatic Cancer Treatment

    International Nuclear Information System (INIS)

    Kozak, Kevin R.; Kachnic, Lisa A.; Adams, Judith C; Crowley, Elizabeth M.; Alexander, Brian M.; Mamon, Harvey J.; Fernandez-Del Castillo, Carlos; Ryan, David P.; DeLaney, Thomas F.; Hong, Theodore S.

    2007-01-01

    Purpose: To evaluate tumor and normal tissue dosimetry of a 5 cobalt gray equivalent (CGE) x 5 fraction proton radiotherapy schedule, before initiating a clinical trial of neoadjuvant, short-course proton radiotherapy for pancreatic adenocarcinoma. Methods and Materials: The first 9 pancreatic cancer patients treated with neoadjuvant intensity-modulated radiotherapy (1.8 Gy x 28) at the Massachusetts General Hospital had treatment plans generated using a 5 CGE x 5 fraction proton regimen. To facilitate dosimetric comparisons, clinical target volumes and normal tissue volumes were held constant. Plans were optimized for target volume coverage and normal tissue sparing. Results: Hypofractionated proton and conventionally fractionated intensity-modulated radiotherapy plans both provided acceptable target volume coverage and dose homogeneity. Improved dose conformality provided by the hypofractionated proton regimen resulted in significant sparing of kidneys, liver, and small bowel, evidenced by significant reductions in the mean doses, expressed as percentage prescribed dose, to these structures. Kidney and liver sparing was most evident in low-dose regions (≤20% prescribed dose for both kidneys and ≤60% prescribed dose for liver). Improvements in small-bowel dosimetry were observed in high- and low-dose regions. Mean stomach and duodenum doses, expressed as percentage prescribed dose, were similar for the two techniques. Conclusions: A proton radiotherapy schedule consisting of 5 fractions of 5 CGE as part of neoadjuvant therapy for adenocarcinoma of the pancreas seems dosimetrically feasible, providing excellent target volume coverage, dose homogeneity, and normal tissue sparing. Hypofractionated proton radiotherapy in this setting merits Phase I clinical trial investigation

  4. Proton beam radiotherapy of choroidal melanoma: The Liverpool-Clatterbridge experience

    International Nuclear Information System (INIS)

    Damato, Bertil; Kacperek, Andrzej; Chopra, Mona; Campbell, Ian R.; Errington, R. Douglas

    2005-01-01

    Purpose To report on outcomes after proton beam radiotherapy of choroidal melanoma using a 62-MeV cyclotron in patients considered unsuitable for other forms of conservative therapy. Methods and Materials A total of 349 patients with choroidal melanoma referred to the Liverpool Ocular Oncology Centre underwent proton beam radiotherapy at Clatterbridge Centre for Oncology (CCO) between January 1993 and December 2003. Four daily fractions of proton beam radiotherapy were delivered, with a total dose of 53.1 proton Gy, and with lateral and distal safety margins of 2.5 mm. Outcomes measured were local tumor recurrence; ocular conservation; vision; and metastatic death according to age, gender, eye, visual acuity, location of anterior and posterior tumor margins, quadrant, longest basal tumor dimension, tumor height, extraocular extension, and retinal invasion. Results The 5-year actuarial rates were 3.5% for local tumor recurrence, 9.4% for enucleation, 79.1% for conservation of vision of counting fingers or better, 61.1% for conservation of vision of 20/200 or better, 44.8% for conservation of vision of 20/40 or better, and 10.0% for death from metastasis. Conclusion Proton beam radiotherapy with a 62 MeV cyclotron achieves high rates of local tumor control and ocular conservation, with visual outcome depending on tumor size and location

  5. Properties of the proton therapy. A high precision radiotherapy

    International Nuclear Information System (INIS)

    Anon.

    2005-01-01

    The proton therapy is a radiotherapy using protons beams. The protons present interesting characteristics but they need heavy technologies to be used, such particles accelerators, radiation protection wall and sophisticated technologies to reach the high precision allowed by their ballistic qualities (planning of treatment, beam conformation and patient positioning). (N.C.)

  6. Registration and planning of radiotherapy and proton therapy treatment

    International Nuclear Information System (INIS)

    Bausse, Jerome

    2010-01-01

    Within the frame of an update and renewal project, the Orsay Proton Therapy Centre of the Curie Institute (IPCO) renews its software used for the treatment of patients by proton therapy, a radiotherapy technique which uses proton beams. High energies used in these treatments and the precision provided by proton particle characteristics require a more precise patient positioning than conventional radiotherapy: proton therapy requires a precision of about a millimetre. Thus, markers are placed on the skull which are generally well accepted by patients, but are a problem in the case of paediatric treatment, notably for the youngest children whose skull is still growing. The first objective of this research is thus to use only intrinsic information from X-ray images used when positioning the patient. A second objective is to make the new software (TPS Isogray) perfectly compatible with IPCO requirements by maintaining the strengths of the previous TPS (Treatment Planning System) and being prepared to the implementation of a new installation. After a presentation of the context and state of the art in radiotherapy and patient positioning, the author proposes an overview of 2D registration methods, presents a new method for 2x2D registration, and addresses the problem of 3D registration. Then, after a presentation of proton therapy, the author addresses different specific issues and aspects: the compensator (simulation, calculation, and tests), dose calculation, the 'Pencil-Beam' algorithm, tests, and introduced improvements [fr

  7. Proton Radiotherapy for Parameningeal Rhabdomyosarcoma: Clinical Outcomes and Late Effects

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Stephanie K. [Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (United States); Kozak, Kevin R. [Department of Radiation Oncology, University of Wisconsin Cancer Center Johnson Creek, Madison, WI (United States); Friedmann, Alison M. [Department of Pediatric Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (United States); Yeap, Beow Y. [Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA (United States); Adams, Judith; MacDonald, Shannon M.; Liebsch, Norbert J.; Tarbell, Nancy J. [Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (United States); Yock, Torunn I., E-mail: tyock@partners.org [Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (United States)

    2012-02-01

    Purpose: To report the clinical outcome and late side effect profile of proton radiotherapy in the treatment of children with parameningeal rhabdomyosarcoma (PM-RMS). Methods and Materials: Seventeen consecutive children with PM-RMS were treated with proton radiotherapy at Massachusetts General Hospital between 1996 and 2005. We reviewed the medical records of all patients and asked referring physicians to report specific side effects of interest. Results: Median patient age at diagnosis was 3.4 years (range, 0.4-17.6). Embryonal (n = 11), alveolar (n = 4), and undifferentiated (n = 2) histologies were represented. Ten patients (59%) had intracranial extension. Median prescribed dose was 50.4 cobalt gray equivalents (GyRBE) (range, 50.4-56.0 GyRBE) delivered in 1.8-2.0-GyRBE daily fractions. Median follow-up was 5.0 years for survivors. The 5-year failure-free survival estimate was 59% (95% confidence interval, 33-79%), and overall survival estimate was 64% (95% confidence interval, 37-82%). Among the 7 patients who failed, sites of first recurrence were local only (n = 2), regional only (n = 2), distant only (n = 2), and local and distant (n = 1). Late effects related to proton radiotherapy in the 10 recurrence-free patients (median follow-up, 5 years) include failure to maintain height velocity (n = 3), endocrinopathies (n = 2), mild facial hypoplasia (n = 7), failure of permanent tooth eruption (n = 3), dental caries (n = 5), and chronic nasal/sinus congestion (n = 2). Conclusions: Proton radiotherapy for patients with PM-RMS yields tumor control and survival comparable to that in historical controls with similar poor prognostic factors. Furthermore, rates of late effects from proton radiotherapy compare favorably to published reports of photon-treated cohorts.

  8. Endocrine outcomes with proton and photon radiotherapy for standard risk medulloblastoma.

    Science.gov (United States)

    Eaton, Bree R; Esiashvili, Natia; Kim, Sungjin; Patterson, Briana; Weyman, Elizabeth A; Thornton, Lauren T; Mazewski, Claire; MacDonald, Tobey J; Ebb, David; MacDonald, Shannon M; Tarbell, Nancy J; Yock, Torunn I

    2016-06-01

    Endocrine dysfunction is a common sequela of craniospinal irradiation (CSI). Dosimetric data suggest that proton radiotherapy (PRT) may reduce radiation-associated endocrine dysfunction but clinical data are limited. Seventy-seven children were treated with chemotherapy and proton (n = 40) or photon (n = 37) radiation between 2000 and 2009 with ≥3 years of endocrine screening. The incidence of multiple endocrinopathies among the proton and photon cohorts is compared. Multivariable analysis and propensity score adjusted analysis are performed to estimate the effect of radiotherapy type while adjusting for other variables. The median age at diagnosis was 6.2 and 8.3 years for the proton and photon cohorts, respectively (P = .010). Cohorts were similar with respect to gender, histology, CSI dose, and total radiotherapy dose and whether the radiotherapy boost was delivered to the posterior fossa or tumor bed. The median follow-up time was 5.8 years for proton patients and 7.0 years for photon patients (P = .010). PRT was associated with a reduced risk of hypothyroidism (23% vs 69%, P < .001), sex hormone deficiency (3% vs 19%, P = .025), requirement for any endocrine replacement therapy (55% vs 78%, P = .030), and a greater height standard deviation score (mean (± SD) -1.19 (± 1.22) vs -2 (± 1.35), P = .020) on both univariate and multivariate and propensity score adjusted analysis. There was no significant difference in the incidence of growth hormone deficiency (53% vs 57%), adrenal insufficiency (5% vs 8%), or precocious puberty (18% vs 16%). Proton radiotherapy may reduce the risk of some, but not all, radiation-associated late endocrine abnormalities. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Radiotherapy Proton Interactions in Matter

    OpenAIRE

    Gottschalk, Bernard

    2018-01-01

    A survey of physics useful to proton radiotherapy, centered on stopping, scattering and hard scatters: 1. Introduction 2. The fundamental formula dose = fluence x mass stopping power. Practical units, comments on effective stopping power. 3. Range: experimental definition, Beth-Bloch CSDA theory, range-energy tables and approximations, range straggling. 4. Multiple Coulomb Scattering: suggested reading, elements of Moliere theory, the Gaussian approximation, scattering power. 5. Hard scatters...

  10. Radiation-Induced Cancers From Modern Radiotherapy Techniques: Intensity-Modulated Radiotherapy Versus Proton Therapy

    International Nuclear Information System (INIS)

    Yoon, Myonggeun; Ahn, Sung Hwan; Kim, Jinsung; Shin, Dong Ho; Park, Sung Yong; Lee, Se Byeong; Shin, Kyung Hwan; Cho, Kwan Ho

    2010-01-01

    Purpose: To assess and compare secondary cancer risk resulting from intensity-modulated radiotherapy (IMRT) and proton therapy in patients with prostate and head-and-neck cancer. Methods and Materials: Intensity-modulated radiotherapy and proton therapy in the scattering mode were planned for 5 prostate caner patients and 5 head-and-neck cancer patients. The secondary doses during irradiation were measured using ion chamber and CR-39 detectors for IMRT and proton therapy, respectively. Organ-specific radiation-induced cancer risk was estimated by applying organ equivalent dose to dose distributions. Results: The average secondary doses of proton therapy for prostate cancer patients, measured 20-60cm from the isocenter, ranged from 0.4 mSv/Gy to 0.1 mSv/Gy. The average secondary doses of IMRT for prostate patients, however, ranged between 3 mSv/Gy and 1 mSv/Gy, approximately one order of magnitude higher than for proton therapy. Although the average secondary doses of IMRT were higher than those of proton therapy for head-and-neck cancers, these differences were not significant. Organ equivalent dose calculations showed that, for prostate cancer patients, the risk of secondary cancers in out-of-field organs, such as the stomach, lungs, and thyroid, was at least 5 times higher for IMRT than for proton therapy, whereas the difference was lower for head-and-neck cancer patients. Conclusions: Comparisons of organ-specific organ equivalent dose showed that the estimated secondary cancer risk using scattering mode in proton therapy is either significantly lower than the cases in IMRT treatment or, at least, does not exceed the risk induced by conventional IMRT treatment.

  11. Enhanced relative biological effectiveness of proton radiotherapy in tumor cells with internalized gold nanoparticles

    International Nuclear Information System (INIS)

    Polf, Jerimy C.; Gillin, Michael; Bronk, Lawrence F.; Driessen, Wouter H. P.; Arap, Wadih; Pasqualini, Renata

    2011-01-01

    The development and use of sensitizing agents to improve the effectiveness of radiotherapy have long been sought to improve our ability to treat cancer. In this letter, we have studied the relative biological effectiveness of proton beam radiotherapy on prostate tumor cells with and without internalized gold nanoparticles. The effectiveness of proton radiotherapy for the killing of prostate tumor cells was increased by approximately 15%-20% for those cells containing internalized gold nanoparticles.

  12. Low early ototoxicity rates for pediatric medulloblastoma patients treated with proton radiotherapy

    International Nuclear Information System (INIS)

    Moeller, Benjamin J; Chintagumpala, Murali; Philip, Jimmy J; Grosshans, David R; McAleer, Mary F; Woo, Shiao Y; Gidley, Paul W; Vats, Tribhawan S; Mahajan, Anita

    2011-01-01

    Hearing loss is common following chemoradiotherapy for children with medulloblastoma. Compared to photons, proton radiotherapy reduces radiation dose to the cochlea for these patients. Here we examine whether this dosimetric advantage leads to a clinical benefit in audiometric outcomes. From 2006-2009, 23 children treated with proton radiotherapy for medulloblastoma were enrolled on a prospective observational study, through which they underwent pre- and 1 year post-radiotherapy pure-tone audiometric testing. Ears with moderate to severe hearing loss prior to therapy were censored, leaving 35 ears in 19 patients available for analysis. The predicted mean cochlear radiation dose was 30 60 Co-Gy Equivalents (range 19-43), and the mean cumulative cisplatin dose was 303 mg/m 2 (range 298-330). Hearing sensitivity significantly declined following radiotherapy across all frequencies analyzed (P < 0.05). There was partial sparing of mean post-radiation hearing thresholds at low-to-midrange frequencies and, consequently, the rate of high-grade (grade 3 or 4) ototoxicity at 1 year was favorable (5%). Ototoxicity did not correlate with predicted dose to the auditory apparatus for proton-treated patients, potentially reflecting a lower-limit threshold for radiation effect on the cochlea. Rates of high-grade early post-radiation ototoxicity following proton radiotherapy for pediatric medulloblastoma are low. Preservation of hearing in the audible speech range, as observed here, may improve both quality of life and cognitive functioning for these patients

  13. Enhanced relative biological effectiveness of proton radiotherapy in tumor cells with internalized gold nanoparticles

    Science.gov (United States)

    Polf, Jerimy C.; Bronk, Lawrence F.; Driessen, Wouter H. P.; Arap, Wadih; Pasqualini, Renata; Gillin, Michael

    2011-01-01

    The development and use of sensitizing agents to improve the effectiveness of radiotherapy have long been sought to improve our ability to treat cancer. In this letter, we have studied the relative biological effectiveness of proton beam radiotherapy on prostate tumor cells with and without internalized gold nanoparticles. The effectiveness of proton radiotherapy for the killing of prostate tumor cells was increased by approximately 15%–20% for those cells containing internalized gold nanoparticles. PMID:21915155

  14. Proton radiotherapy of skin carcinomas

    International Nuclear Information System (INIS)

    Umebayashi, Y.; Uyeno, K.; Otsuka, F.

    1994-01-01

    At the Proton Medical Research Centre, University of Tsukuba, a pilot study of proton-beam radiotherapy was performed in 12 patients with the following types of carcinoma: Bowen's disease (4), oral verrucous carcinoma (5), and squamous cell carcinoma (3). They received total doses of 51-99.2 Gy in fractions of 2-12.5 Gy. All tumours responded well to the treatment. All four lesions of Bowen's disease, three of the five oral verrucous carcinomas, and the three squamous cell carcinomas completely regressed following irradiation. Two squamous cell carcinomas recurred during the follow-up period. One recurrent squamous cell carcinoma was successfully treated by a salvage surgical operation, and in the other case the patient refused further therapy. In two verrucous carcinomas there was 90% regression of tumour volume. No severe radiation-related complication occurred. (Author)

  15. Proton Radiotherapy for Pediatric Ewing’s Sarcoma: Initial Clinical Outcomes

    International Nuclear Information System (INIS)

    Rombi, Barbara; DeLaney, Thomas F.; MacDonald, Shannon M.; Huang, Mary S.; Ebb, David H.; Liebsch, Norbert J.; Raskin, Kevin A.; Yeap, Beow Y.; Marcus, Karen J.; Tarbell, Nancy J.; Yock, Torunn I.

    2012-01-01

    Purpose: Proton radiotherapy (PT) has been prescribed similarly to photon radiotherapy to achieve comparable disease control rates at comparable doses. The chief advantage of protons in this setting is to reduce acute and late toxicities by decreasing the amount of normal tissue irradiated. We report the preliminary clinical outcomes including late effects on our pediatric Ewing’s sarcoma patients treated with PT at the Francis H. Burr Proton Therapy Center at Massachusetts General Hospital (Boston, MA). Methods and Materials: This was a retrospective review of the medical records of 30 children with Ewing’s sarcoma who were treated with PT between April 2003 and April 2009. Results: A total of 14 male and 16 female patients with tumors in several anatomic sites were treated with PT at a median age of 10 years. The median dose was 54 Gy (relative biological effectiveness) with a median follow-up of 38.4 months. The 3-year actuarial rates of event-free survival, local control, and overall survival were 60%, 86%, and 89%, respectively. PT was acutely well tolerated, with mostly mild-to-moderate skin reactions. At the time of writing, the only serious late effects have been four hematologic malignancies, which are known risks of topoisomerase and anthracyline exposure. Conclusions: Proton radiotherapy was well tolerated, with few adverse events. Longer follow-up is needed to more fully assess tumor control and late effects, but the preliminary results are encouraging.

  16. Proton radiotherapy facility for ocular tumours at IFJ PAN in Krakow, Poland

    International Nuclear Information System (INIS)

    Michalec, Barbara; Swakon, Jan; Sowa, Urszula; Olko, Pawe

    2008-01-01

    Full text: Uveal melanoma is the most common human intraocular tumor in adult patient. Overall annual incidence is 5-7 cases per million/year and it is higher amongst fair skinned pale eyed individuals. There is about 100 cases of new diagnosed uveal melanoma per year in Poland. Presently, the clinically recommended therapy of intraocular melanoma is radiotherapy with a proton beam of initial energy 55-80 MeV. The unique properties of the Bragg curve enable a precise delivery of a high dose of radiation to the tumor region and the simultaneous spare of critical organs and healthy tissues. In most patients treated with proton radiotherapy, 5-year patient survivals of 95% as well as vision in the treated eye were achieved. The Institute of Nuclear Physics (IFJ) in Cracow, in cooperation with the Clinic of Ophthalmology and Ocular Oncology of the Collegium Medicum, Jagiellonian University and the Krakow Branch of the Maria Sklodowska-Curie Memorial Centre of Oncology, is carrying out a project of designing and operating a proton ocular radiotherapy facility in which the 55-60 MeV proton beam accelerated in the AIC-144 isochronous cyclotron of IFJ is applied. The proton beam from the cyclotron is delivered to the therapeutic room where it is formed and monitored. The facility has been equipped with beam forming and beam monitoring elements (a range shifter, a range modulator, set of collimators for beam forming and a Spread Out Bragg Peak measuring system, an X direction scanner, an XYZ scanner for beam monitoring) as well as with some detectors dedicated for beam dosimetry. A patient positioning system i.e. the eye therapeutic chair made by Schaer Engineering which enables the patient's positioning and immobilizing with precision of tenth of millimetre has been installed. The patient's eye positioning system is ready too. The X ray system, used for eye positioning and irradiation area localization has been installed. The dosimetric system, which monitors neutron and

  17. Proton Radiotherapy for Pediatric Ewing's Sarcoma: Initial Clinical Outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Rombi, Barbara [ATreP (Provincial Agency for Proton Therapy), Trento (Italy); DeLaney, Thomas F.; MacDonald, Shannon M. [Department of Radiation Oncology, Massachusetts General Hospital-Harvard Medical School, Boston, MA (United States); Huang, Mary S.; Ebb, David H. [Department of Pediatric Hematology and Oncology, Massachusetts General Hospital-Harvard Medical School, Boston, MA (United States); Liebsch, Norbert J. [Department of Radiation Oncology, Massachusetts General Hospital-Harvard Medical School, Boston, MA (United States); Raskin, Kevin A. [Department of Orthopaedic Surgery, Massachusetts General Hospital-Harvard Medical School, Boston, MA (United States); Yeap, Beow Y. [Department of Medicine, Massachusetts General Hospital-Harvard Medical School, Boston, MA (United States); Marcus, Karen J. [Division of Radiation Oncology, Children' s Hospital Boston, MA (United States); Tarbell, Nancy J. [Department of Radiation Oncology, Massachusetts General Hospital-Harvard Medical School, Boston, MA (United States); Yock, Torunn I., E-mail: tyock@partners.org [Department of Radiation Oncology, Massachusetts General Hospital-Harvard Medical School, Boston, MA (United States)

    2012-03-01

    Purpose: Proton radiotherapy (PT) has been prescribed similarly to photon radiotherapy to achieve comparable disease control rates at comparable doses. The chief advantage of protons in this setting is to reduce acute and late toxicities by decreasing the amount of normal tissue irradiated. We report the preliminary clinical outcomes including late effects on our pediatric Ewing's sarcoma patients treated with PT at the Francis H. Burr Proton Therapy Center at Massachusetts General Hospital (Boston, MA). Methods and Materials: This was a retrospective review of the medical records of 30 children with Ewing's sarcoma who were treated with PT between April 2003 and April 2009. Results: A total of 14 male and 16 female patients with tumors in several anatomic sites were treated with PT at a median age of 10 years. The median dose was 54 Gy (relative biological effectiveness) with a median follow-up of 38.4 months. The 3-year actuarial rates of event-free survival, local control, and overall survival were 60%, 86%, and 89%, respectively. PT was acutely well tolerated, with mostly mild-to-moderate skin reactions. At the time of writing, the only serious late effects have been four hematologic malignancies, which are known risks of topoisomerase and anthracyline exposure. Conclusions: Proton radiotherapy was well tolerated, with few adverse events. Longer follow-up is needed to more fully assess tumor control and late effects, but the preliminary results are encouraging.

  18. A GPU implementation of a track-repeating algorithm for proton radiotherapy dose calculations

    International Nuclear Information System (INIS)

    Yepes, Pablo P; Mirkovic, Dragan; Taddei, Phillip J

    2010-01-01

    An essential component in proton radiotherapy is the algorithm to calculate the radiation dose to be delivered to the patient. The most common dose algorithms are fast but they are approximate analytical approaches. However their level of accuracy is not always satisfactory, especially for heterogeneous anatomical areas, like the thorax. Monte Carlo techniques provide superior accuracy; however, they often require large computation resources, which render them impractical for routine clinical use. Track-repeating algorithms, for example the fast dose calculator, have shown promise for achieving the accuracy of Monte Carlo simulations for proton radiotherapy dose calculations in a fraction of the computation time. We report on the implementation of the fast dose calculator for proton radiotherapy on a card equipped with graphics processor units (GPUs) rather than on a central processing unit architecture. This implementation reproduces the full Monte Carlo and CPU-based track-repeating dose calculations within 2%, while achieving a statistical uncertainty of 2% in less than 1 min utilizing one single GPU card, which should allow real-time accurate dose calculations.

  19. Experiences with an application of industrial robotics for accurate patient positioning in proton radiotherapy.

    Science.gov (United States)

    Allgower, C E; Schreuder, A N; Farr, J B; Mascia, A E

    2007-03-01

    Protons beams deliver targeted radiation doses with greater precision than is possible with electrons or megavoltage X-ray photons, but to retain this advantage, patient positioning systems at proton clinics must meet tighter accuracy requirements. For this and other reasons, robots were incorporated into the treatment room systems at MPRI. The Midwest Proton Radiotherapy Institute (MPRI) is the first radiotherapy facility in the United States to use commercial robots with six degrees of freedom for patient positioning, rather than a traditional bed with four degrees of freedom. This paper outlines the ways in which robots are used at MPRI and attempts to distil insights from the experience of treating over 200 radiotherapy patients with a robotic system from February 2004 to late 2006. The system has performed well, and with great reliability, but there is room for future improvement, especially in ease of use and in reducing the time to get patients into position. Copyright 2006 John Wiley & Sons, Ltd.

  20. Monte-Carlo simulation of proton radiotherapy for human eye

    International Nuclear Information System (INIS)

    Liu Yunpeng; Tang Xiaobin; Xie Qin; Chen Feida; Geng Changran; Chen Da

    2010-01-01

    The 62 MeV proton beam was selected to develop a MCNPX model of the human eye to approximate dose delivered from proton therapy by. In the course of proton therapy, two treatment simulations were considered. The first simulation was an ideal treatment scenario. In this case, the dose of tumor was 50.03 Gy, which was at the level of effective treatment, while other organizations were in the range of acceptable dose. The second case was a worst case scenario to simulate a patient gazing directly into the treatment beam during therapy. The bulk of dose deposited in the cornea, lens, and anterior chamber region. However, the dose of tumor area was zero. The calculated results show an agreement accordance with the relative reference, which confirmed that the MCNPX code can simulate proton radiotherapy perfectly, and is a capable platform for patient planning. The data from the worst case can be used for dose reconstruction of the clinical accident. (authors)

  1. Predicted risks of radiogenic cardiac toxicity in two pediatric patients undergoing photon or proton radiotherapy

    International Nuclear Information System (INIS)

    Zhang, Rui; Howell, Rebecca M; Homann, Kenneth; Giebeler, Annelise; Taddei, Phillip J; Mahajan, Anita; Newhauser, Wayne D

    2013-01-01

    Hodgkin disease (HD) and medulloblastoma (MB) are common malignancies found in children and young adults, and radiotherapy is part of the standard treatment. It was reported that these patients who received radiation therapy have an increased risk of cardiovascular late effects. We compared the predicted risk of developing radiogenic cardiac toxicity after photon versus proton radiotherapies for a pediatric patient with HD and a pediatric patient with MB. In the treatment plans, each patient’s heart was contoured in fine detail, including substructures of the pericardium and myocardium. Risk calculations took into account both therapeutic and stray radiation doses. We calculated the relative risk (RR) of cardiac toxicity using a linear risk model and the normal tissue complication probability (NTCP) values using relative seriality and Lyman models. Uncertainty analyses were also performed. The RR values of cardiac toxicity for the HD patient were 7.27 (proton) and 8.37 (photon), respectively; the RR values for the MB patient were 1.28 (proton) and 8.39 (photon), respectively. The predicted NTCP values for the HD patient were 2.17% (proton) and 2.67% (photon) for the myocardium, and were 2.11% (proton) and 1.92% (photon) for the whole heart. The predicted ratios of NTCP values (proton/photon) for the MB patient were much less than unity. Uncertainty analyses revealed that the predicted ratio of risk between proton and photon therapies was sensitive to uncertainties in the NTCP model parameters and the mean radiation weighting factor for neutrons, but was not sensitive to heart structure contours. The qualitative findings of the study were not sensitive to uncertainties in these factors. We conclude that proton and photon radiotherapies confer similar predicted risks of cardiac toxicity for the HD patient in this study, and that proton therapy reduced the predicted risk for the MB patient in this study

  2. New era of radiotherapy: An update in radiation-induced lung disease

    International Nuclear Information System (INIS)

    Benveniste, M.F.K.; Welsh, J.; Godoy, M.C.B.; Betancourt, S.L.; Mawlawi, O.R.; Munden, R.F.

    2013-01-01

    Over the last few decades, advances in radiotherapy (RT) technology have improved delivery of radiation therapy dramatically. Advances in treatment planning with the development of image-guided radiotherapy and in techniques such as proton therapy, allows the radiation therapist to direct high doses of radiation to the tumour. These advancements result in improved local regional control while reducing potentially damaging dosage to surrounding normal tissues. It is important for radiologists to be aware of the radiological findings from these advances in order to differentiate expected radiation-induced lung injury (RILD) from recurrence, infection, and other lung diseases. In order to understand these changes and correlate them with imaging, the radiologist should have access to the radiation therapy treatment plans

  3. Evolution of treatment for nasopharyngeal cancer – Success and setback in the intensity-modulated radiotherapy era

    International Nuclear Information System (INIS)

    Lee, Anne W.M.; Ng, Wai Tong; Chan, Lucy L.K.; Hung, Wai Man; Chan, Connie C.C.; Sze, Henry C.K.; Chan, Oscar S.H.; Chang, Amy T.Y.; Yeung, Rebecca M.W.

    2014-01-01

    Background and purpose: To assess the therapeutic gains and setbacks as we evolved from the 2-dimensional radiotherapy (2DRT) to conformal 3-dimensional (3DRT) and to intensity-modulated (IMRT) era. Materials and methods: 1593 consecutive patients from 1994 to 2010 were retrospectively analyzed. Evolving changes in the different era included advances in staging investigation, radiotherapy technique, dose escalation, and use of chemotherapy. Results: The 3DRT era achieved significant improvement in local failure-free rate (L-FFR), disease-specific survival (DSS) and overall survival (OS). Neurological damage and bone/soft tissue necrosis were significantly reduced. However, the improvement in distant failure-free rate (D-FFR) was insignificant, and more hearing impairment occurred due to chemotherapy. Significantly higher D-FFR was achieved in the IMRT era, but L-FFR did not show further improvement. 5-Year DSS increased from 78% in the 2DRT, to 81% in the 3DRT, and 85% in the IMRT era, while the corresponding neurological toxicity rate decreased from 7.4% to 3.5% and 1.8%. Conclusions: Significant improvement in survival and reduction of serious toxicity was achieved as we evolved from 2DRT to 3DRT and IMRT era; the therapeutic ratio for all T-categories improved with more conformal techniques. Improvements in tumor control were attributed not only to advances in RT technique, but also to better imaging and increasing use of potent chemotherapy. However, it should also be noted that hearing impairment significantly increased due to chemotherapy, L-FFR reached a plateau in the 3DRT era, and it is worrisome that the result for T4 remained unsatisfactory. Besides exploring for more potent chemotherapy and innovative methods, the guideline on dose constraint should be re-visited to optimize the therapeutic ratio

  4. Dosimetric Comparison of Three-Dimensional Conformal Proton Radiotherapy, Intensity-Modulated Proton Therapy, and Intensity-Modulated Radiotherapy for Treatment of Pediatric Craniopharyngiomas

    Energy Technology Data Exchange (ETDEWEB)

    Boehling, Nicholas S. [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Grosshans, David R., E-mail: dgrossha@mdanderson.org [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Bluett, Jaques B. [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Palmer, Matthew T. [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Song, Xiaofei; Amos, Richard A.; Sahoo, Narayan [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Meyer, Jeffrey J.; Mahajan, Anita; Woo, Shiao Y. [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States)

    2012-02-01

    Purpose: Cranial irradiation in pediatric patients is associated with serious long-term adverse effects. We sought to determine whether both three-dimensional conformal proton radiotherapy (3D-PRT) and intensity-modulated proton therapy (IMPT) compared with intensity-modulated radiotherapy (IMRT) decrease integral dose to brain areas known to harbor neuronal stem cells, major blood vessels, and other normal brain structures for pediatric patients with craniopharyngiomas. Methods and Materials: IMRT, forward planned, passive scattering proton, and IMPT plans were generated and optimized for 10 pediatric patients. The dose was 50.4 Gy (or cobalt Gy equivalent) delivered in 28 fractions with the requirement for planning target volume (PTV) coverage of 95% or better. Integral dose data were calculated from differential dose-volume histograms. Results: The PTV target coverage was adequate for all modalities. IMRT and IMPT yielded the most conformal plans in comparison to 3D-PRT. Compared with IMRT, 3D-PRT and IMPT plans had a relative reduction of integral dose to the hippocampus (3D-PRT, 20.4; IMPT, 51.3%{sup Asterisk-Operator }), dentate gyrus (27.3, 75.0%{sup Asterisk-Operator }), and subventricular zone (4.5, 57.8%{sup Asterisk-Operator }). Vascular organs at risk also had reduced integral dose with the use of proton therapy (anterior cerebral arteries, 33.3{sup Asterisk-Operator }, 100.0%{sup Asterisk-Operator }; middle cerebral arteries, 25.9%{sup Asterisk-Operator }, 100%{sup Asterisk-Operator }; anterior communicating arteries, 30.8{sup Asterisk-Operator }, 41.7%{sup Asterisk-Operator }; and carotid arteries, 51.5{sup Asterisk-Operator }, 77.6{sup Asterisk-Operator }). Relative reduction of integral dose to the infratentorial brain (190.7{sup Asterisk-Operator }, 109.7%{sup Asterisk-Operator }), supratentorial brain without PTV (9.6, 26.8%{sup Asterisk-Operator }), brainstem (45.6, 22.4%{sup Asterisk-Operator }), and whole brain without PTV (19.4{sup Asterisk

  5. A new concept of radiotherapy: space fractionation in proton therapy; Un nuevo concepto en radioterapia: fraccionamiento espacial en terapia con protones

    Energy Technology Data Exchange (ETDEWEB)

    Prezado Alonso, Y.; Fois, G.

    2013-07-01

    In recent years several experiments with animals have shown that the combination of small field sizes and a spatial neighborhood of the dose of radiation therapy with synchrotron radiation techniques lead to a significant increase of the dose of tolerance of healthy tissues. The aim of this study is to evaluate the feasibility of a new form of radiotherapy: radiotherapy with proton minibeams. (Author)

  6. The influence of patient positioning uncertainties in proton radiotherapy on proton range and dose distributions

    Energy Technology Data Exchange (ETDEWEB)

    Liebl, Jakob, E-mail: jakob.liebl@medaustron.at [EBG MedAustron GmbH, 2700 Wiener Neustadt (Austria); Francis H. Burr Proton Therapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States); Department of Therapeutic Radiology and Oncology, Medical University of Graz, 8036 Graz (Austria); Paganetti, Harald; Zhu, Mingyao; Winey, Brian A. [Francis H. Burr Proton Therapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States)

    2014-09-15

    Purpose: Proton radiotherapy allows radiation treatment delivery with high dose gradients. The nature of such dose distributions increases the influence of patient positioning uncertainties on their fidelity when compared to photon radiotherapy. The present work quantitatively analyzes the influence of setup uncertainties on proton range and dose distributions. Methods: Thirty-eight clinical passive scattering treatment fields for small lesions in the head were studied. Dose distributions for shifted and rotated patient positions were Monte Carlo-simulated. Proton range uncertainties at the 50%- and 90%-dose falloff position were calculated considering 18 arbitrary combinations of maximal patient position shifts and rotations for two patient positioning methods. Normal tissue complication probabilities (NTCPs), equivalent uniform doses (EUDs), and tumor control probabilities (TCPs) were studied for organs at risk (OARs) and target volumes of eight patients. Results: The authors identified a median 1σ proton range uncertainty at the 50%-dose falloff of 2.8 mm for anatomy-based patient positioning and 1.6 mm for fiducial-based patient positioning as well as 7.2 and 5.8 mm for the 90%-dose falloff position, respectively. These range uncertainties were correlated to heterogeneity indices (HIs) calculated for each treatment field (38% < R{sup 2} < 50%). A NTCP increase of more than 10% (absolute) was observed for less than 2.9% (anatomy-based positioning) and 1.2% (fiducial-based positioning) of the studied OARs and patient shifts. For target volumes TCP decreases by more than 10% (absolute) occurred in less than 2.2% of the considered treatment scenarios for anatomy-based patient positioning and were nonexistent for fiducial-based patient positioning. EUD changes for target volumes were up to 35% (anatomy-based positioning) and 16% (fiducial-based positioning). Conclusions: The influence of patient positioning uncertainties on proton range in therapy of small lesions

  7. SU-F-T-198: Dosimetric Comparison of Carbon and Proton Radiotherapy for Recurrent Nasopharynx Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Y; Zhao, J; Wang, W; Lin, L; Liu, X; Shahnazi, K [Shanghai Proton and Heavy Ion Center, Shanghai (China)

    2016-06-15

    Purpose: Various radiotherapy planning methods for locally recurrent nasopharynx carcinoma (R-NPC) have been proposed. The purpose of this study was to compare carbon and proton therapy for the treatment of R-NPC in terms of dose coverage for target volume and sparing for organs at risk (OARs). Methods: Six patients who were suffering from R-NPC and treated using carbon therapy were selected for this study. Treatment plans with a total dose of 57.5Gy (RBE) in 23 fractions were made using SIEMENS Syngo V11. An intensity-modulated radiotherapy optimization method was chosen for carbon plans (IMCT) while for proton plans both intensity-modulated radiotherapy (IMPT) and single beam optimization (proton-SBO) methods were chosen. Dose distributions, dose volume parameters, and selected dosimetric indices for target volumes and OARs were compared for all treatment plans. Results: All plans provided comparable PTV coverage. The volume covered by 95% of the prescribed dose was comparable for all three plans. The average values were 96.11%, 96.24% and 96.11% for IMCT, IMPT, and proton-SBO respectively. A significant reduction of the 80% and 50% dose volumes were observed for the IMCT plans compared to the IMPT and proton-SBO plans. Critical organs lateral to the target such as brain stem and spinal cord were better spared by IMPT than by proton-SBO, while IMCT spared those organs best. For organs in the beam path, such as parotid glands, the mean dose results were similar for all three plans. Conclusion: Carbon plans yielded better dose conformity than proton plans. They provided similar or better target coverage while significantly lowering the dose for normal tissues. Dose sparing for critical organs in IMPT plans was better than proton-SBO, however, IMPT is known to be more sensitive to range uncertainties. For proton plans it is essential to find a balance between the two optimization methods.

  8. Protons Offer Reduced Normal-Tissue Exposure for Patients Receiving Postoperative Radiotherapy for Resected Pancreatic Head Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, Romaine C., E-mail: rnichols@floridaproton.org [University of Florida Proton Therapy Institute, Jacksonsville, FL (United States); Huh, Soon N. [University of Florida Proton Therapy Institute, Jacksonsville, FL (United States); Prado, Karl L.; Yi, Byong Y.; Sharma, Navesh K. [Department of Radiation Oncology, University of Maryland, Baltimore, MD (United States); Ho, Meng W.; Hoppe, Bradford S.; Mendenhall, Nancy P.; Li, Zuofeng [University of Florida Proton Therapy Institute, Jacksonsville, FL (United States); Regine, William F. [Department of Radiation Oncology, University of Maryland, Baltimore, MD (United States)

    2012-05-01

    Purpose: To determine the potential role for adjuvant proton-based radiotherapy (PT) for resected pancreatic head cancer. Methods and Materials: Between June 2008 and November 2008, 8 consecutive patients with resected pancreatic head cancers underwent optimized intensity-modulated radiotherapy (IMRT) treatment planning. IMRT plans used between 10 and 18 fields and delivered 45 Gy to the initial planning target volume (PTV) and a 5.4 Gy boost to a reduced PTV. PTVs were defined according to the Radiation Therapy Oncology Group 9704 radiotherapy guidelines. Ninety-five percent of PTVs received 100% of the target dose and 100% of the PTVs received 95% of the target dose. Normal tissue constraints were as follows: right kidney V18 Gy to <70%; left kidney V18 Gy to <30%; small bowel/stomach V20 Gy to <50%, V45 Gy to <15%, V50 Gy to <10%, and V54 Gy to <5%; liver V30 Gy to <60%; and spinal cord maximum to 46 Gy. Optimized two- to three-field three-dimensional conformal proton plans were retrospectively generated on the same patients. The team generating the proton plans was blinded to the dose distributions achieved by the IMRT plans. The IMRT and proton plans were then compared. A Wilcoxon paired t-test was performed to compare various dosimetric points between the two plans for each patient. Results: All proton plans met all normal tissue constraints and were isoeffective with the corresponding IMRT plans in terms of PTV coverage. The proton plans offered significantly reduced normal-tissue exposure over the IMRT plans with respect to the following: median small bowel V20 Gy, 15.4% with protons versus 47.0% with IMRT (p = 0.0156); median gastric V20 Gy, 2.3% with protons versus 20.0% with IMRT (p = 0.0313); and median right kidney V18 Gy, 27.3% with protons versus 50.5% with IMRT (p = 0.0156). Conclusions: By reducing small bowel and stomach exposure, protons have the potential to reduce the acute and late toxicities of postoperative chemoradiation in this setting.

  9. Proton radiotherapy: some perspectives

    International Nuclear Information System (INIS)

    Kirn, T.F.

    1988-01-01

    A news article highlighting the use of protons in radiotherapy is presented. Development of stereotaxic radiosurgery is the result of contributions from physicists, radiologists, and neurosurgeons, says Jacob Fabrikant, MD, head of the Arteriovenous Malformation Program at the University of California's Lawrence Berkeley laboratory. It also appears to have been the product of Harvard University (Boston) and University of California (Berkeley) cooperation. Robert R. Wilson, PhD, now a professor emeritus at Cornell University, Ithaca, NY, is credited with proposing the medical use of charged particles. Wilson, a physicist, says that the idea occurred to him while he was at Berkeley in the mid-1940's, designing the cyclotron to be built at Harvard. Although he was aware of their work, he does not remember discussing it with Robert Stone, MD, or John Lawrence, MD, who only a few years earlier at Berkeley had begun the initial medical experiments with neutrons. Wilson says that it simply occurred to him that in certain instances charged particles had two advantages over x-rays

  10. TECHNOLOGIES FOR DELIVERY OF PROTON AND ION BEAMS FOR RADIOTHERAPY

    CERN Document Server

    Owen, H; Alonso, J; Mackay, R

    2014-01-01

    Recent developments for the delivery of proton and ion beam therapy have been significant, and a number of technological solutions now exist for the creation and utilisation of these particles for the treatment of cancer. In this paper we review the historical development of particle accelerators used for external beam radiotherapy and discuss the more recent progress towards more capable and cost-effective sources of particles.

  11. Radiotherapy of uveal melanomas experiences with proton beam irradiation of high risk parapapillary, paramaculary tumors

    International Nuclear Information System (INIS)

    Hideghety, K.; Sauerwein, W.; Fluehs, D.; Sack, H.; Quast

    1999-01-01

    The role of the radiotherapy in the treatment of malignant chorioidal melanomas has been established by means of 106 Ru or 125 I applicators and proton therapy. The rationale of the indication to utilize brachytherapy or proton therapy is presented on the basis of the clinical situation and physical characteristic of the different radiation modalities. (author)

  12. Proton imaging apparatus for proton therapy application

    International Nuclear Information System (INIS)

    Sipala, V.; Lo Presti, D.; Brianzi, M.; Civinini, C.; Bruzzi, M.; Scaringella, M.; Talamonti, C.; Bucciolini, M.; Cirrone, G.A.P.; Cuttone, G.; Randazzo, N.; Stancampiano, C.; Tesi, M.

    2011-01-01

    Radiotherapy with protons, due to the physical properties of these particles, offers several advantages for cancer therapy as compared to the traditional radiotherapy and photons. In the clinical use of proton beams, a p CT (Proton Computer Tomography) apparatus can contribute to improve the accuracy of the patient positioning and dose distribution calculation. In this paper a p CT apparatus built by the Prima (Proton Imaging) Italian Collaboration will be presented and the preliminary results will be discussed.

  13. Phase I/II Trial of Hyperfractionated Concomitant Boost Proton Radiotherapy for Supratentorial Glioblastoma Multiforme

    International Nuclear Information System (INIS)

    Mizumoto, Masashi; Tsuboi, Koji; Igaki, Hiroshi; Yamamoto, Tetsuya; Takano, Shingo; Oshiro, Yoshiko; Hayashi, Yasutaka; Hashii, Haruko; Kanemoto, Ayae; Nakayama, Hidetsugu; Sugahara, Shinji; Sakurai, Hideyuki; Matsumura, Akira; Tokuuye, Koichi

    2010-01-01

    Purpose: To evaluate the safety and efficacy of postoperative hyperfractionated concomitant boost proton radiotherapy with nimustine hydrochloride for supratentorial glioblastoma multiforme (GBM). Methods and Materials: Twenty patients with histologically confirmed supratentorial GBM met the following criteria: (1) a Karnofsky performance status of ≥60; (2) the diameter of the enhanced area before radiotherapy was ≤40 cm; and (3) the enhanced area did not extend to the brain stem, hypothalamus, or thalamus. Magnetic resonance imaging (MRI) T 2 -weighted high area (clinical tumor volume 3 [CTV3]) was treated by x-ray radiotherapy in the morning (50.4 Gy in 28 fractions). More than 6 hours later, 250 MeV proton beams were delivered to the enhanced area plus a 10-mm margin (CTV2) in the first half of the protocol (23.1 GyE in 14 fractions) and to the enhanced volume (CTV1) in the latter half (23.1 GyE in 14 fraction). The total dose to the CTV1 was 96.6 GyE. Nimustine hydrochloride (80 mg/m2) was administered during the first and fourth weeks. Results: Acute toxicity was mainly hematologic and was controllable. Late radiation necrosis and leukoencephalopathy were each seen in one patient. The overall survival rates after 1 and 2 years were 71.1% and 45.3%, respectively. The median survival period was 21.6 months. The 1- and 2-year progression-free survival rates were 45.0% and 15.5%, respectively. The median MRI change-free survival was 11.2 months. Conclusions: Hyperfractionated concomitant boost proton radiotherapy (96.6 GyE in 56 fractions) for GBM was tolerable and beneficial if the target size was well considered. Further studies are warranted to pursue the possibility of controlling border region recurrences.

  14. Changes in Pulmonary Function After Three-Dimensional Conformal Radiotherapy, Intensity-Modulated Radiotherapy, or Proton Beam Therapy for Non-Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Lopez Guerra, Jose L.; Gomez, Daniel R.; Zhuang Yan; Levy, Lawrence B.; Eapen, George; Liu, Hongmei; Mohan, Radhe; Komaki, Ritsuko; Cox, James D.; Liao Zhongxing

    2012-01-01

    Purpose: To investigate the extent of change in pulmonary function over time after definitive radiotherapy for non-small-cell lung cancer (NSCLC) with modern techniques and to identify predictors of changes in pulmonary function according to patient, tumor, and treatment characteristics. Patients and Methods: We analyzed 250 patients who had received ≥60 Gy radio(chemo)therapy for primary NSCLC in 1998–2010 and had undergone pulmonary function tests before and within 1 year after treatment. Ninety-three patients were treated with three-dimensional conformal radiotherapy, 97 with intensity-modulated radiotherapy, and 60 with proton beam therapy. Postradiation pulmonary function test values were evaluated among individual patients compared with the same patient’s preradiation value at the following time intervals: 0–4 (T1), 5–8 (T2), and 9–12 (T3) months. Results: Lung diffusing capacity for carbon monoxide (DLCO) was reduced in the majority of patients along the three time periods after radiation, whereas the forced expiratory volume in 1 s per unit of vital capacity (FEV1/VC) showed an increase and decrease after radiation in a similar percentage of patients. There were baseline differences (stage, radiotherapy dose, concurrent chemotherapy) among the radiation technology groups. On multivariate analysis, the following features were associated with larger posttreatment declines in DLCO: pretreatment DLCO, gross tumor volume, lung and heart dosimetric data, and total radiation dose. Only pretreatment DLCO was associated with larger posttreatment declines in FEV1/VC. Conclusions: Lung diffusing capacity for carbon monoxide is reduced in the majority of patients after radiotherapy with modern techniques. Multiple factors, including gross tumor volume, preradiation lung function, and dosimetric parameters, are associated with the DLCO decline. Prospective studies are needed to better understand whether new radiation technology, such as proton beam therapy

  15. Implementation of an Analytical Model for Leakage Neutron Equivalent Dose in a Proton Radiotherapy Planning System

    Energy Technology Data Exchange (ETDEWEB)

    Eley, John [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030 (United States); Graduate School of Biomedical Sciences, The University of Texas, 6767 Bertner Ave., Houston, TX 77030 (United States); Newhauser, Wayne, E-mail: newhauser@lsu.edu [Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, 202 Nicholson Hall, Tower Drive, Baton Rouge, LA 70803 (United States); Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, LA 70809 (United States); Homann, Kenneth; Howell, Rebecca [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030 (United States); Graduate School of Biomedical Sciences, The University of Texas, 6767 Bertner Ave., Houston, TX 77030 (United States); Schneider, Christopher [Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, 202 Nicholson Hall, Tower Drive, Baton Rouge, LA 70803 (United States); Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, LA 70809 (United States); Durante, Marco; Bert, Christoph [GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, Darmstadt 64291 (Germany)

    2015-03-11

    Equivalent dose from neutrons produced during proton radiotherapy increases the predicted risk of radiogenic late effects. However, out-of-field neutron dose is not taken into account by commercial proton radiotherapy treatment planning systems. The purpose of this study was to demonstrate the feasibility of implementing an analytical model to calculate leakage neutron equivalent dose in a treatment planning system. Passive scattering proton treatment plans were created for a water phantom and for a patient. For both the phantom and patient, the neutron equivalent doses were small but non-negligible and extended far beyond the therapeutic field. The time required for neutron equivalent dose calculation was 1.6 times longer than that required for proton dose calculation, with a total calculation time of less than 1 h on one processor for both treatment plans. Our results demonstrate that it is feasible to predict neutron equivalent dose distributions using an analytical dose algorithm for individual patients with irregular surfaces and internal tissue heterogeneities. Eventually, personalized estimates of neutron equivalent dose to organs far from the treatment field may guide clinicians to create treatment plans that reduce the risk of late effects.

  16. Results of a multicentric in silico clinical trial (ROCOCO): comparing radiotherapy with photons and protons for non-small cell lung cancer.

    Science.gov (United States)

    Roelofs, Erik; Engelsman, Martijn; Rasch, Coen; Persoon, Lucas; Qamhiyeh, Sima; de Ruysscher, Dirk; Verhaegen, Frank; Pijls-Johannesma, Madelon; Lambin, Philippe

    2012-01-01

    This multicentric in silico trial compares photon and proton radiotherapy for non-small cell lung cancer patients. The hypothesis is that proton radiotherapy decreases the dose and the volume of irradiated normal tissues even when escalating to the maximum tolerable dose of one or more of the organs at risk (OAR). Twenty-five patients, stage IA-IIIB, were prospectively included. On 4D F18-labeled fluorodeoxyglucose-positron emission tomography-computed tomography scans, the gross tumor, clinical and planning target volumes, and OAR were delineated. Three-dimensional conformal radiotherapy (3DCRT) and intensity-modulated radiotherapy (IMRT) photon and passive scattered conformal proton therapy (PSPT) plans were created to give 70 Gy to the tumor in 35 fractions. Dose (de-)escalation was performed by rescaling to the maximum tolerable dose. Protons resulted in the lowest dose to the OAR, while keeping the dose to the target at 70 Gy. The integral dose (ID) was higher for 3DCRT (59%) and IMRT (43%) than for PSPT. The mean lung dose reduced from 18.9 Gy for 3DCRT and 16.4 Gy for IMRT to 13.5 Gy for PSPT. For 10 patients, escalation to 87 Gy was possible for all 3 modalities. The mean lung dose and ID were 40 and 65% higher for photons than for protons, respectively. The treatment planning results of the Radiation Oncology Collaborative Comparison trial show a reduction of ID and the dose to the OAR when treating with protons instead of photons, even with dose escalation. This shows that PSPT is able to give a high tumor dose, while keeping the OAR dose lower than with the photon modalities.

  17. Water versus DNA: new insights into proton track-structure modelling in radiobiology and radiotherapy.

    Science.gov (United States)

    Champion, C; Quinto, M A; Monti, J M; Galassi, M E; Weck, P F; Fojón, O A; Hanssen, J; Rivarola, R D

    2015-10-21

    Water is a common surrogate of DNA for modelling the charged particle-induced ionizing processes in living tissue exposed to radiations. The present study aims at scrutinizing the validity of this approximation and then revealing new insights into proton-induced energy transfers by a comparative analysis between water and realistic biological medium. In this context, a self-consistent quantum mechanical modelling of the ionization and electron capture processes is reported within the continuum distorted wave-eikonal initial state framework for both isolated water molecules and DNA components impacted by proton beams. Their respective probability of occurrence-expressed in terms of total cross sections-as well as their energetic signature (potential and kinetic) are assessed in order to clearly emphasize the differences existing between realistic building blocks of living matter and the controverted water-medium surrogate. Consequences in radiobiology and radiotherapy will be discussed in particular in view of treatment planning refinement aiming at better radiotherapy strategies.

  18. Monte Carlo simulations of the dosimetric impact of radiopaque fiducial markers for proton radiotherapy of the prostate

    Science.gov (United States)

    Newhauser, Wayne; Fontenot, Jonas; Koch, Nicholas; Dong, Lei; Lee, Andrew; Zheng, Yuanshui; Waters, Laurie; Mohan, Radhe

    2007-06-01

    Many clinical studies have demonstrated that implanted radiopaque fiducial markers improve targeting accuracy in external-beam radiotherapy, but little is known about the dose perturbations these markers may cause in patients receiving proton radiotherapy. The objective of this study was to determine what types of implantable markers are visible in setup radiographs and, at the same time, perturb the therapeutic proton dose to the prostate by less than 10%. The radiographic visibility of the markers was assessed by visual inspection of lateral setup radiographs of a pelvic phantom using a kilovoltage x-ray imaging system. The fiducial-induced perturbations in the proton dose were estimated with Monte Carlo simulations. The influence of marker material, size, placement depth and orientation within the pelvis was examined. The radiographic tests confirmed that gold and stainless steel markers were clearly visible and that titanium markers were not. The Monte Carlo simulations revealed that titanium and stainless steel markers minimally perturbed the proton beam, but gold markers cast unacceptably large dose shadows. A 0.9 mm diameter, 3.1 mm long cylindrical stainless steel marker provides good radiographic visibility yet perturbs the proton dose distribution in the prostate by less than 8% when using a parallel opposed lateral beam arrangement.

  19. SU-E-T-324: The Influence of Patient Positioning Uncertainties in Proton Radiotherapy On Proton Range and Dose Distributions

    Energy Technology Data Exchange (ETDEWEB)

    Liebl, J [EBG MedAustron GmbH, Wiener Neustadt (Austria); Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Medical University of Graz, Graz (Austria); Paganetti, H; Winey, B [Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States)

    2014-06-01

    Purpose: Proton radiotherapy allows radiation treatment delivery with high dose gradients. The nature of such dose distributions increases the influence of patient positioning uncertainties on their fidelity when compared to photon radiotherapy. The present work quantitatively analyzes the influence of setup uncertainties on proton range and dose distributions. Methods: 38 clinical passive scattering treatment fields for small lesions in the head were studied. Dose distributions for shifted and rotated patient positions were Monte Carlo-simulated. Proton range uncertainties at the 50% and 90%-dose falloff position were calculated considering 18 arbitrary combinations of maximal patient position shifts and rotations for two patient positioning methods. Normal tissue complication probabilities (NTCPs), equivalent uniform doses (EUDs) and tumor control probabilities (TCPs) were studied for organs at risk (OARs) and target volumes of eight patients. Results: We identified a median 1σ proton range uncertainty at the 50%-dose falloff of 2.8 mm for anatomy-based patient positioning and 1.6 mm for fiducial-based patient positioning as well as 7.2 mm and 5.8 mm for the 90%-dose falloff position respectively. These range uncertainties were correlated to heterogeneity indices (HIs) calculated for each treatment field (38% < R{sup 2} < 50%). A NTCP increase of more than 10% (absolute) was observed for less than 2.9% (anatomy-based positioning) and 1.2% (fiducial-based positioning) of the studied OARs and patient shifts. TCP decreases larger than 10% (absolute) were seen for less than 2.2% of the target volumes or non-existent. EUD changes were up to 178% for OARs and 35% for target volumes. Conclusion: The influence of patient positioning uncertainties on proton range in therapy of small lesions in the human brain and target and OAR dosimetry were studied. Observed range uncertainties were correlated with HIs. The clinical practice of using multiple compensator

  20. Proton radiography to improve proton therapy treatment

    NARCIS (Netherlands)

    Takatsu, J.; van der Graaf, E. R.; van Goethem, Marc-Jan; van Beuzekom, M.; Klaver, T.; Visser, Jan; Brandenburg, S.; Biegun, A. K.

    The quality of cancer treatment with protons critically depends on an accurate prediction of the proton stopping powers for the tissues traversed by the protons. Today, treatment planning in proton radiotherapy is based on stopping power calculations from densities of X-ray Computed Tomography (CT)

  1. The precision of proton range calculations in proton radiotherapy treatment planning: experimental verification of the relation between CT-HU and proton stopping power

    International Nuclear Information System (INIS)

    Schaffner, B.; Pedroni, E.

    1998-01-01

    The precision in proton radiotherapy treatment planning depends on the accuracy of the information used to calculate the stopping power properties of the tissues in the patient's body. This information is obtained from computed tomography (CT) images using a calibration curve to convert CT Hounsfield units into relative proton stopping power values. The validity of a stoichiometric method to create the calibration curve has been verified by measuring pairs of Hounsfield units and stopping power values for animal tissue samples. It was found that the agreement between measurement and calibration curve is better than 1% if beam hardening effects in the acquisition of the CT images can be neglected. The influence of beam hardening effects on the quantitative reading of the CT measurements is discussed and an estimation for the overall range precision of proton beams is given. It is expected that the range of protons in the human body can be controlled to better than ±1.1% of the water equivalent range in soft tissue and ±1.8% in bone, which translates into a range precision of about 1-3 mm in typical treatment situations. (author)

  2. Calculation of nuclear data for fast neutron and proton radiotherapy: A new ICRU report

    International Nuclear Information System (INIS)

    Chadwick, M.B.

    1997-01-01

    The author discusses the determination of nuclear interaction cross sections that are needed for fast neutron and proton radiotherapy. Both nuclear theory and experimental results are used to evaluate these data. An International Commission on Radiation Units and Measurements (ICRU) report, which is expected to be issued in 1998 and which compiles these data, is described

  3. A Medical Application of Nuclear Physics: Particle Radiotherapy with Protons

    Science.gov (United States)

    Farr, Jonathan B.

    2006-10-01

    Since the discovery of radiation, applications have been made to medicine. The advent of higher energy particle accelerators in the second half of the twentieth century enabled modern tele-therapy using relatively high energy x-rays and particles. Today mega-voltage (MV) x-rays are the most common modality of delivering high doses of potentially life saving radiation to a wide variety of disease, mostly malignant cancers. However, the maximum radiation dose that can be delivered is always limited by the effects to critical surrounding biologic structures. In many cases, due to their physical properties, ``heavy'' particle radiotherapy with protons and light ions may provide an advantage in this respect over MV x-rays allowing either a higher dose of radiation to be delivered to the volume or, for the same dose, reducing the concomitant damage to critical structures. This motivation, together with recent advances in particle therapy systems that are making the technology more readily available, is serving to grow the field of particle therapy. In particular, treatment with fast protons is becoming more widespread with over 20 facilities operating worldwide and more under construction. This presentation will provide an introduction to heavy particle therapy and additional details specifically on proton therapy.

  4. A Monte Carlo simulation of the possible use of Positron Emission Tomography in proton radiotherapy

    International Nuclear Information System (INIS)

    Del Guerra, Alberto; Di Domenico, Giovanni; Gambaccini, Mauro; Marziani, Michele

    1994-01-01

    We have used the Monte Carlo technique to evaluate the applicability of Positron Emission Tomography to in vivo dosimetry for proton radiotherapy. A fair agreement has been found between Monte Carlo results and experimental data. The simulation shows that PET can be useful especially for in vivo Bragg's peak localization. ((orig.))

  5. Proton beam radiotherapy versus fractionated stereotactic radiotherapy for uveal melanomas: A comparative study.

    Science.gov (United States)

    Weber, Damien C; Bogner, Joachim; Verwey, Jorn; Georg, Dietmar; Dieckmann, Karin; Escudé, Lluis; Caro, Monica; Pötter, Richard; Goitein, Gudrun; Lomax, Antony J; Miralbell, Raymond

    2005-10-01

    A comparative treatment planning study was undertaken between proton and photon therapy in uveal melanoma to assess the potential benefits and limitations of these treatment modalities. A fixed proton horizontal beam (OPTIS) and intensity-modulated spot-scanning proton therapy (IMPT), with multiple noncoplanar beam arrangements, was compared with linear accelerator-based stereotactic radiotherapy (SRT), using a static and a dynamic micromultileaf collimator and intensity-modulated RT (IMRS). A planning CT scan was performed on a brain metastasis patient, with a 3-mm acquisition slice spacing and the patient looking at a luminous spot with the eyes in three different positions (neutral and 25 degrees right and left). Four different gross tumor volumes were defined for each treatment technique. These target scenarios represented different locations (involving vs. not involving the macula and temporal vs. nasal) and volumes (10 x 6 mm vs. 16 x 10 mm) to challenge the proton and photon treatment techniques. The planning target volume was defined as the gross tumor volume plus 2 mm laterally and 3 mm craniocaudally for both modalities. A dose homogeneity of 95-99% of the planning target volume was used as the "goal" for all techniques. The dose constraint (maximum) for the organs at risk (OARs) for both the proton and the SRT photon plans was 27.5, 22.5, 20, and 9 CGE-Gy for the optic apparatus, retina, lacrimal gland, and lens, respectively. The dose to the planning target volume was 50 CGE-Gy in 10 CGE-Gy daily fractions. The plans for proton and photon therapy were computed using the Paul Scherrer Institute and BrainSCAN, version 5.2 (BrainLAB, Heimstetten, Germany) treatment planning systems, respectively. Tumor and OARs dose-volume histograms were calculated. The results were analyzed using the dose-volume histogram parameters, conformity index (CI(95%)), and inhomogeneity coefficient. Target coverage of all simulated uveal melanomas was equally conformal with the

  6. Proton beam radiotherapy versus fractionated stereotactic radiotherapy for uveal melanomas: A comparative study

    International Nuclear Information System (INIS)

    Weber, Damien C.; Bogner, Joachim; Verwey, Jorn; Georg, Dietmar; Dieckmann, Karin; Escude, Lluis; Caro, Monica; Poetter, Richard; Goitein, Gudrun; Lomax, Antony J.; Miralbell, Raymond

    2005-01-01

    Purpose: A comparative treatment planning study was undertaken between proton and photon therapy in uveal melanoma to assess the potential benefits and limitations of these treatment modalities. A fixed proton horizontal beam (OPTIS) and intensity-modulated spot-scanning proton therapy (IMPT), with multiple noncoplanar beam arrangements, was compared with linear accelerator-based stereotactic radiotherapy (SRT), using a static and a dynamic micromultileaf collimator and intensity-modulated RT (IMRS). Method and Materials: A planning CT scan was performed on a brain metastasis patient, with a 3-mm acquisition slice spacing and the patient looking at a luminous spot with the eyes in three different positions (neutral and 25 deg right and left). Four different gross tumor volumes were defined for each treatment technique. These target scenarios represented different locations (involving vs. not involving the macula and temporal vs. nasal) and volumes (10 x 6 mm vs. 16 x 10 mm) to challenge the proton and photon treatment techniques. The planning target volume was defined as the gross tumor volume plus 2 mm laterally and 3 mm craniocaudally for both modalities. A dose homogeneity of 95-99% of the planning target volume was used as the 'goal' for all techniques. The dose constraint (maximum) for the organs at risk (OARs) for both the proton and the SRT photon plans was 27.5, 22.5, 20, and 9 CGE-Gy for the optic apparatus, retina, lacrimal gland, and lens, respectively. The dose to the planning target volume was 50 CGE-Gy in 10 CGE-Gy daily fractions. The plans for proton and photon therapy were computed using the Paul Scherrer Institute and BrainSCAN, version 5.2 (BrainLAB, Heimstetten, Germany) treatment planning systems, respectively. Tumor and OARs dose-volume histograms were calculated. The results were analyzed using the dose-volume histogram parameters, conformity index (CI 95% ), and inhomogeneity coefficient. Results: Target coverage of all simulated uveal

  7. Poster - 31: Predicting IQ and hearing loss following radiotherapy in pediatric brain tumors: proton vs photon

    International Nuclear Information System (INIS)

    Fortin, Dominique; Ng, Angela; Tsang, Derek; Sharpe, Michael; Laperriere, Norm; Hodgson, David

    2016-01-01

    Purpose: The increased sparing of normal tissues in intensity modulated proton therapy (IMPT) in pediatric brain tumor treatments should translate into improved neurocognitive outcomes. Models were used to estimate the intelligence quotient (IQ) and the risk of hearing loss 5 years post radiotherapy and to compare outcomes of proton against photon in pediatric brain tumors. Methods: Patients who had received intensity modulated radiotherapy (IMRT) were randomly selected from our retrospective database. The existing planning CT and contours were used to generate IMPT plans. The RBE-corrected dose was calculated for both IMPT and IMRT. For each patient, the IQ was estimated via a Monte Carlo technique, whereas the reported incidence of hearing loss as a function of cochlear dose was used to estimate the probability of occurrence. Results: The integrated brain dose was reduced in all IMPT plans, translating into a gain of 2 IQ points on average for protons for the whole cohort at 5 years post-treatment. In terms of specific diseases, the gains in IQ ranged from 0.8 points for medulloblastoma, to 2.7 points for craniopharyngioma. Hearing loss probability was evaluated on a per-ear-basis and was found to be systematically less for proton versus photon: overall 2.9% versus 7.2%. Conclusions: A method was developed to predict IQ and hearing outcomes in pediatric brain tumor patients on a case-by-case basis. A modest gain was systematically observed for proton in all patients. Given the uncertainties within the model used and our reinterpretation, these gains may be underestimated.

  8. Poster - 31: Predicting IQ and hearing loss following radiotherapy in pediatric brain tumors: proton vs photon

    Energy Technology Data Exchange (ETDEWEB)

    Fortin, Dominique; Ng, Angela; Tsang, Derek; Sharpe, Michael; Laperriere, Norm; Hodgson, David [Princess Margaret Cancer Centre, University of Toronto (Canada)

    2016-08-15

    Purpose: The increased sparing of normal tissues in intensity modulated proton therapy (IMPT) in pediatric brain tumor treatments should translate into improved neurocognitive outcomes. Models were used to estimate the intelligence quotient (IQ) and the risk of hearing loss 5 years post radiotherapy and to compare outcomes of proton against photon in pediatric brain tumors. Methods: Patients who had received intensity modulated radiotherapy (IMRT) were randomly selected from our retrospective database. The existing planning CT and contours were used to generate IMPT plans. The RBE-corrected dose was calculated for both IMPT and IMRT. For each patient, the IQ was estimated via a Monte Carlo technique, whereas the reported incidence of hearing loss as a function of cochlear dose was used to estimate the probability of occurrence. Results: The integrated brain dose was reduced in all IMPT plans, translating into a gain of 2 IQ points on average for protons for the whole cohort at 5 years post-treatment. In terms of specific diseases, the gains in IQ ranged from 0.8 points for medulloblastoma, to 2.7 points for craniopharyngioma. Hearing loss probability was evaluated on a per-ear-basis and was found to be systematically less for proton versus photon: overall 2.9% versus 7.2%. Conclusions: A method was developed to predict IQ and hearing outcomes in pediatric brain tumor patients on a case-by-case basis. A modest gain was systematically observed for proton in all patients. Given the uncertainties within the model used and our reinterpretation, these gains may be underestimated.

  9. Radiotherapy of non-small-cell lung cancer in the era of EGFR gene mutations and EGF receptor tyrosine kinase inhibitors.

    Science.gov (United States)

    Moschini, Ilaria; Dell'Anna, Cristina; Losardo, Pier Luigi; Bordi, Paola; D'Abbiero, Nunziata; Tiseo, Marcello

    2015-01-01

    Non-small-cell lung cancer (NSCLC) occurs, approximately, in 80-85% of all cases of lung cancer. The majority of patients present locally advanced or metastatic disease when diagnosed, with poor prognosis. The discovery of activating mutations in the EGFR gene has started a new era of personalized treatment for NSCLC patients. To improve the treatment outcome in patients with unresectable NSCLC and, in particular, EGFR mutated, a combined strategy of radiotherapy and medical treatment can be undertaken. In this review we will discuss preclinical data regarding EGF receptor (EGFR) tyrosine kinase inhibitors (TKIs) and radiotherapy, available clinical trials investigating efficacy and toxicity of combined treatment (thoracic or whole brain radiotherapy and EGFR-TKIs) and, also, the role of local radiation in mutated EGFR patients who developed EGFR-TKI resistance.

  10. Normal liver tissue sparing by intensity-modulated proton stereotactic body radiotherapy for solitary liver tumours

    International Nuclear Information System (INIS)

    Petersen, Joergen B. B.; Hansen, Anders T.; Lassen, Yasmin; Grau, Cai; Hoeyer, Morten; Muren, Ludvig P.

    2011-01-01

    Background. Stereotactic body radiotherapy (SBRT) is often the preferred treatment for the advanced liver tumours which owing to tumour distribution, size and multi-focality are out of range of surgical resection or radiofrequency ablation. However, only a minority of patients with liver tumours may be candidates for conventional SBRT because of the limited radiation tolerance of normal liver, intestine and other normal tissues. Due to the favourable depth-dose characteristics of protons, intensity-modulated proton therapy (IMPT) may be a superior alternative to photon-based SBRT. The purpose of this treatment planning study was therefore to investigate the potential sparing of normal liver by IMPT compared to photon-based intensity-modulated radiotherapy (IMRT) for solitary liver tumours. Material and methods. Ten patients with solitary liver metastasis treated at our institution with multi-field SBRT were retrospectively re-planned with IMRT and proton pencil beam scanning techniques. For the proton plans, two to three coplanar fields were used in contrast to five to six coplanar and non-coplanar photon fields. The same planning objectives were used for both techniques. A risk adapted dose prescription to the PTV surface of 12.5-16.75 Gy x 3 was used. Results. The spared liver volume for IMPT was higher compared to IMRT in all 10 patients. At the highest prescription dose level, the median liver volume receiving less than 15 Gy was 1411 cm 3 for IMPT and 955 cm 3 for IMRT (p D 15 Gy > 700 cm 3 constraint. For the D mean = 15 Gy constraint, nine of 10 cases could be treated at the highest dose level using IMPT whereas with IMRT, only two cases met this constraint at the highest dose level and six at the lowest dose level. Conclusion. A considerable sparing of normal liver tissue can be obtained using proton-based SBRT for solitary liver tumours

  11. Hypofractionated passively scattered proton radiotherapy for low- and intermediate-risk prostate cancer is not associated with post-treatment testosterone suppression

    Energy Technology Data Exchange (ETDEWEB)

    Kil, Whoon Jong; Nichols, Romaine C. Jr. [Dept. of Radiation Oncology, Univ. of Florida, Gainesville (United States); Univ. of Florida Proton Therapy Inst., Jacksonville (United States)], e-mail: rnichols@floridaproton.org; And others

    2013-04-15

    Background: To investigate post-treatment changes in serum testosterone in low- and intermediate-risk prostate cancer patients treated with hypofractionated passively scattered proton radiotherapy. Material and methods: Between April 2008 and October 2011, 228 patients with low- and intermediate-risk prostate cancer were enrolled into an institutional review board-approved prospective protocol. Patients received doses ranging from 70 Cobalt Gray Equivalent (CGE) to 72.5 CGE at 2.5 CGE per fraction using passively scattered protons. Three patients were excluded for receiving androgen deprivation therapy (n = 2) or testosterone supplementation (n = 1) before radiation. Of the remaining 226 patients, pretreatment serum testosterone levels were available for 217. Of these patients, post-treatment serum testosterone levels were available for 207 in the final week of treatment, 165 at the six-month follow-up, and 116 at the 12-month follow-up. The post-treatment testosterone levels were compared with the pretreatment levels using Wilcoxon's signed-rank test for matched pairs. Results: The median pretreatment serum testosterone level was 367.7 ng/dl (12.8 nmol/l). The median changes in post-treatment testosterone value were as follows: +3.0 ng/dl (+0.1 nmol/l) at treatment completion; +6.0 ng/dl (+0.2 nmol/l) at six months after treatment; and +5.0 ng/dl (0.2 nmol/l) at 12 months after treatment. None of these changes were statistically significant. Conclusion: Patients with low- and intermediate-risk prostate cancer treated with hypofractionated passively scattered proton radiotherapy do not experience testosterone suppression. Our findings are consistent with physical measurements demonstrating that proton radiotherapy is associated with less scatter radiation exposure to tissues beyond the beam paths compared with intensity-modulated photon radiotherapy.

  12. TU-FG-BRB-05: A 3 Dimensional Prompt Gamma Imaging System for Range Verification in Proton Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Draeger, E; Chen, H; Polf, J [University of Maryland School of Medicine, Baltimore, MD (United States); Mackin, D; Beddar, S [MD Anderson Cancer Center, Houston, TX (United States); Avery, S [University of Cape Town, Rondebosch (South Africa); Peterson, S

    2016-06-15

    Purpose: To report on the initial developments of a clinical 3-dimensional (3D) prompt gamma (PG) imaging system for proton radiotherapy range verification. Methods: The new imaging system under development consists of a prototype Compton camera to measure PG emission during proton beam irradiation and software to reconstruct, display, and analyze 3D images of the PG emission. For initial test of the system, PGs were measured with a prototype CC during a 200 cGy dose delivery with clinical proton pencil beams (ranging from 100 MeV – 200 MeV) to a water phantom. Measurements were also carried out with the CC placed 15 cm from the phantom for a full range 150 MeV pencil beam and with its range shifted by 2 mm. Reconstructed images of the PG emission were displayed by the clinical PG imaging software and compared to the dose distributions of the proton beams calculated by a commercial treatment planning system. Results: Measurements made with the new PG imaging system showed that a 3D image could be reconstructed from PGs measured during the delivery of 200 cGy of dose, and that shifts in the Bragg peak range of as little as 2 mm could be detected. Conclusion: Initial tests of a new PG imaging system show its potential to provide 3D imaging and range verification for proton radiotherapy. Based on these results, we have begun work to improve the system with the goal that images can be produced from delivery of as little as 20 cGy so that the system could be used for in-vivo proton beam range verification on a daily basis.

  13. Radiotherapy : proton therapy

    International Nuclear Information System (INIS)

    1991-01-01

    The first phase of proton therapy at the National Accelerator Centre will be the development of a 200 MeV small-field horizontal beam radioneurosurgical facility in the south treatment vault. A progressive expansion of this facility is planned. The patient support and positioning system has been designed and developed by the Departments of Mechanical Engineering and Surveying of the University of Cape Town to ensure the accurate positioning in the proton beam of the lesion to be treated. The basic components of the system are an adjustable chair, a series of video cameras and two computers. The specifications for the proton therapy interlock system require that the inputs to and the outputs from the system be similar to those of the neutron therapy system. Additional facilities such as a full diagnostic system which would assist the operators in the event of an error will also be provided. Dosimeters are required for beam monitoring, for monitor calibration and for determining dose distributions. Several designs of transmission ionization chambers for beam monitoring have been designed and tested, while several types of ionization chambers and diodes have been used for the dose distribution measurements. To facilitate the comparison of measured ranges and energy losses of proton beams in the various materials with tabled values, simple empirical approximations, which are sufficiently accurate for most applications, have been used. 10 refs., 10 fig., 4 tabs

  14. Radiotherapy for Brain Metastases From Renal Cell Carcinoma in the Targeted Therapy Era: The University of Rochester Experience.

    Science.gov (United States)

    Bates, James E; Youn, Paul; Peterson, Carl R; Usuki, Kenneth Y; Walter, Kevin A; Okunieff, Paul; Milano, Michael T

    2017-10-01

    Radiotherapy remains the standard approach for brain metastases from renal cell carcinoma (RCC). Kinase inhibitors (KI) have become standard of care for metastatic RCC. They also increase the radiosensitivity of various tumor types in preclinical models. Data are lacking regarding the effect of KIs among RCC patients undergoing radiotherapy for brain metastases. We report our experience of radiotherapy for brain metastatic RCC in the era of targeted therapy and analyzed effects of concurrent KI therapy. We retrospectively analyzed 25 consecutive patients who received radiotherapy for brain metastases from RCC with whole-brain radiotherapy (WBRT), stereotactic radiosurgery (SRS), or both. Kaplan-Meier rates of overall survival (OS) and brain progression-free survival (BPFS) were calculated and univariate analyses performed. Lower diagnosis-specific graded prognostic assessment (DS-GPA) score and multiple intracranial metastases were associated with decreased OS and BPFS on univariate analysis; DS-GPA is also a prognostic factor on multivariate analysis. There was no significant difference in OS or BPFS for SRS compared with WBRT or WBRT and SRS combined. The concurrent use of KI was not associated with any change in OS or BPFS. This hypothesis-generating analysis suggests among patients with brain metastatic RCC treated with the most current therapies, those selected to undergo SRS did not experience significantly different survival or control outcomes than those selected to undergo WBRT. From our experience to date, limited in patient numbers, there seems to be neither harm nor benefit in using concurrent KI therapy during radiotherapy. Given that most patients progress systemically, we would recommend considering KI use during brain radiotherapy in these patients.

  15. Population-based outcomes after brain radiotherapy in patients with brain metastases from breast cancer in the Pre-Trastuzumab and Trastuzumab eras

    International Nuclear Information System (INIS)

    Karam, Irene; Hamilton, Sarah; Nichol, Alan; Woods, Ryan; Speers, Caroline; Kennecke, Hagen; Tyldesley, Scott

    2013-01-01

    To evaluate the survival of patients with human epidermal growth factor receptor 2 (HER2) positive and negative metastatic breast cancer irradiated for brain metastases before and after the availability of trastuzumab (T). Women diagnosed with brain metastasis from breast cancer in two eras between 2000 and 2007 (T-era, n = 441) and 1986 to 1992 (PreT-era, n = 307), treated with whole brain radiotherapy (RT) were identified. In the T-era, HER2 testing was part of routine clinical practice, and in the preT-era 128/307 (42%) cases had HER2 testing performed retrospectively on tissue microarrays. Overall survival (OS) was estimated using the Kaplan-Meier method and comparisons between eras used log-rank tests. In the preT- and T-era cohorts, the rate of HER2 positivity was 40% (176/441) and 26% (33/128) (p < 0.001). The median time from diagnosis to brain RT was longer in the preT-era (3.3 years versus 2.3 years, p < 0.001). Survival after brain RT was improved in the T-era compared to the preT-era (1-year OS 26% versus 12%, p < 0.001). The 1-year OS rate for HER2 negative patients was 20% in both eras (p = 0.97). Among HER2 positive patients, the 1-year OS in the preT-era was 5% compared to 40% in the T-era (p < 0.001). Distinct from patients with HER2 negative disease in whom no difference in survival after brain RT was observed over time, patients with HER2 positive brain metastases experienced significantly improved survival subsequent to the availability of trastuzumab

  16. Feasibility of MR-only proton dose calculations for prostate cancer radiotherapy using a commercial pseudo-CT generation method

    Science.gov (United States)

    Maspero, Matteo; van den Berg, Cornelis A. T.; Landry, Guillaume; Belka, Claus; Parodi, Katia; Seevinck, Peter R.; Raaymakers, Bas W.; Kurz, Christopher

    2017-12-01

    A magnetic resonance (MR)-only radiotherapy workflow can reduce cost, radiation exposure and uncertainties introduced by CT-MRI registration. A crucial prerequisite is generating the so called pseudo-CT (pCT) images for accurate dose calculation and planning. Many pCT generation methods have been proposed in the scope of photon radiotherapy. This work aims at verifying for the first time whether a commercially available photon-oriented pCT generation method can be employed for accurate intensity-modulated proton therapy (IMPT) dose calculation. A retrospective study was conducted on ten prostate cancer patients. For pCT generation from MR images, a commercial solution for creating bulk-assigned pCTs, called MR for Attenuation Correction (MRCAT), was employed. The assigned pseudo-Hounsfield Unit (HU) values were adapted to yield an increased agreement to the reference CT in terms of proton range. Internal air cavities were copied from the CT to minimise inter-scan differences. CT- and MRCAT-based dose calculations for opposing beam IMPT plans were compared by gamma analysis and evaluation of clinically relevant target and organ at risk dose volume histogram (DVH) parameters. The proton range in beam’s eye view (BEV) was compared using single field uniform dose (SFUD) plans. On average, a (2%, 2 mm) gamma pass rate of 98.4% was obtained using a 10% dose threshold after adaptation of the pseudo-HU values. Mean differences between CT- and MRCAT-based dose in the DVH parameters were below 1 Gy (radiotherapy, is feasible following adaptation of the assigned pseudo-HU values.

  17. Proton-Based Stereotactic Ablative Radiotherapy in Early-Stage Non-Small-Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Jonathan D. Grant

    2014-01-01

    Full Text Available Stereotactic ablative radiotherapy (SABR, a recent implementation in the practice of radiation oncology, has been shown to confer high rates of local control in the treatment of early stage non-small-cell lung cancer (NSCLC. This technique, which involves limited invasive procedures and reduced treatment intervals, offers definitive treatment for patients unable or unwilling to undergo an operation. The use of protons in SABR delivery confers the added physical advantage of normal tissue sparing due to the absence of collateral radiation dose delivered to regions distal to the target. This may translate into clinical benefit and a decreased risk of clinical toxicity in patients with nearby critical structures or limited pulmonary reserve. In this review, we present the rationale for proton-based SABR, principles relating to the delivery and planning of this modality, and a summary of published clinical studies.

  18. Proton Radiotherapy for Prostate Cancer Is Not Associated With Post-Treatment Testosterone Suppression

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, R. Charles, E-mail: rnichols@floridaproton.org [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); University of Florida Proton Therapy Institute, Jacksonville, FL (United States); Morris, Christopher G.; Hoppe, Bradford S.; Henderson, Randal H.; Marcus, Robert B.; Mendenhall, William M.; Li Zuofeng [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); University of Florida Proton Therapy Institute, Jacksonville, FL (United States); Williams, Christopher R.; Costa, Joseph A. [Division of Urology, University of Florida Shands Hospital, Jacksonville, FL (United States); Mendenhall, Nancy P. [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); University of Florida Proton Therapy Institute, Jacksonville, FL (United States)

    2012-03-01

    Purpose: Three independent studies of photon (x-ray) radiotherapy (RT) for prostate cancer have demonstrated evidence of testosterone suppression after treatment. The present study was undertaken to determine whether this would also be the case with conformal protons. Methods and Materials: Between August 2006 and October 2007, 171 patients with low- and intermediate-risk prostate cancer were enrolled and underwent treatment according to University of Florida Proton Therapy Institute institutional review board-approved PR01 and PR02 protocols. Of the 171 patients, 18 were excluded because they had received androgen deprivation therapy either before (n = 17) or after (n = 1) RT. The pretreatment serum testosterone level was available for 150 of the remaining 153 patients. These 150 patients were included in the present study. The post-treatment levels were compared with the pretreatment levels. Results: The median baseline pretreatment serum testosterone level was 357.9 ng/dL. The median post-treatment testosterone value was 375.5 ng/dL at treatment completion (p = .1935) and 369.9 ng/dL (p = .1336), 348.7 ng/dL (p = .7317), 353.4 ng/dL (p = .6996), and 340.9 ng/dL (p = .1669) at 6, 12, 18, and 24 months after proton therapy, respectively. Conclusions: Conformal proton therapy to the prostate, as delivered using University of Florida Proton Therapy Institute PR01 and PR02 protocols, did not appear to significantly affect the serum testosterone levels within 24 months after RT.

  19. Proton Radiotherapy for Prostate Cancer Is Not Associated With Post-Treatment Testosterone Suppression

    International Nuclear Information System (INIS)

    Nichols, R. Charles; Morris, Christopher G.; Hoppe, Bradford S.; Henderson, Randal H.; Marcus, Robert B.; Mendenhall, William M.; Li Zuofeng; Williams, Christopher R.; Costa, Joseph A.; Mendenhall, Nancy P.

    2012-01-01

    Purpose: Three independent studies of photon (x-ray) radiotherapy (RT) for prostate cancer have demonstrated evidence of testosterone suppression after treatment. The present study was undertaken to determine whether this would also be the case with conformal protons. Methods and Materials: Between August 2006 and October 2007, 171 patients with low- and intermediate-risk prostate cancer were enrolled and underwent treatment according to University of Florida Proton Therapy Institute institutional review board-approved PR01 and PR02 protocols. Of the 171 patients, 18 were excluded because they had received androgen deprivation therapy either before (n = 17) or after (n = 1) RT. The pretreatment serum testosterone level was available for 150 of the remaining 153 patients. These 150 patients were included in the present study. The post-treatment levels were compared with the pretreatment levels. Results: The median baseline pretreatment serum testosterone level was 357.9 ng/dL. The median post-treatment testosterone value was 375.5 ng/dL at treatment completion (p = .1935) and 369.9 ng/dL (p = .1336), 348.7 ng/dL (p = .7317), 353.4 ng/dL (p = .6996), and 340.9 ng/dL (p = .1669) at 6, 12, 18, and 24 months after proton therapy, respectively. Conclusions: Conformal proton therapy to the prostate, as delivered using University of Florida Proton Therapy Institute PR01 and PR02 protocols, did not appear to significantly affect the serum testosterone levels within 24 months after RT.

  20. The influence of CT image noise on proton range calculation in radiotherapy planning

    International Nuclear Information System (INIS)

    Chvetsov, Alexei V; Paige, Sandra L

    2010-01-01

    The purpose of this note is to evaluate the relationship between the stochastic errors in CT numbers and the standard deviation of the computed proton beam range in radiotherapy planning. The stochastic voxel-to-voxel variation in CT numbers called 'noise,' may be due to signal registration, processing and numerical image reconstruction technique. Noise in CT images may cause a deviation in the computed proton range from the physical proton range, even assuming that the error due to CT number-stopping power calibration is removed. To obtain the probability density function (PDF) of the computed proton range, we have used the continuing slowing down approximation (CSDA) and the uncorrelated white Gaussian noise along the proton path. The model of white noise was accepted because for the slice-based fan-beam CT scanner; the power-spectrum properties apply only to the axial (x, y) domain and the noise is uncorrelated in the z domain. However, the possible influence of the noise power spectrum on the standard deviation of the range should be investigated in the future. A random number generator was utilized for noise simulation and this procedure was iteratively repeated to obtain convergence of range PDF, which approached a Gaussian distribution. We showed that the standard deviation of the range, σ, increases linearly with the initial proton energy, computational grid size and standard deviation of the voxel values. The 95% confidence interval width of the range PDF, which is defined as 4σ, may reach 0.6 cm for the initial proton energy of 200 MeV, computational grid 0.25 cm and 5% standard deviation of CT voxel values. Our results show that the range uncertainty due to random errors in CT numbers may be significant and comparable to the uncertainties due to calibration of CT numbers. (note)

  1. Proton Radiography to Improve Proton Radiotherapy : Simulation Study at Different Proton Beam Energies

    NARCIS (Netherlands)

    Biegun, Aleksandra; Takatsu, Jun; van Goethem, Marc-Jan; van der Graaf, Emiel; van Beuzekom, Martin; Visser, Jan; Brandenburg, Sijtze

    To improve the quality of cancer treatment with protons, a translation of X-ray Computed Tomography (CT) images into a map of the proton stopping powers needs to be more accurate. Proton stopping powers determined from CT images have systematic uncertainties in the calculated proton range in a

  2. Proton Radiotherapy for High-Risk Pediatric Neuroblastoma: Early Outcomes and Dose Comparison

    Energy Technology Data Exchange (ETDEWEB)

    Hattangadi, Jona A. [Harvard Radiation Oncology Program, Boston, MA (United States); Rombi, Barbara [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); Provincial Agency for Proton Therapy, Trento (Italy); Yock, Torunn I.; Broussard, George [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); Friedmann, Alison M.; Huang, Mary [Department of Pediatric Hematology-Oncology, Massachusetts General Hospital, Boston, MA (United States); Chen, Yen-Lin E.; Lu, Hsiao-Ming; Kooy, Hanne [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); MacDonald, Shannon M., E-mail: smacdonald@partners.org [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States)

    2012-07-01

    Purpose: To report the early outcomes for children with high-risk neuroblastoma treated with proton radiotherapy (RT) and to compare the dose distributions for intensity-modulated photon RT (IMRT), three-dimensional conformal proton RT (3D-CPT), and intensity-modulated proton RT to the postoperative tumor bed. Methods and Materials: All patients with high-risk (International Neuroblastoma Staging System Stage III or IV) neuroblastoma treated between 2005 and 2010 at our institution were included. All patients received induction chemotherapy, surgical resection of residual disease, high-dose chemotherapy with stem cell rescue, and adjuvant 3D-CPT to the primary tumor sites. The patients were followed with clinical examinations, imaging, and laboratory testing every 6 months to monitor disease control and side effects. IMRT, 3D-CPT, and intensity-modulated proton RT plans were generated and compared for a representative case of adjuvant RT to the primary tumor bed followed by a boost. Results: Nine patients were treated with 3D-CPT. The median age at diagnosis was 2 years (range 10 months to 4 years), and all patients had Stage IV disease. All patients had unfavorable histologic characteristics (poorly differentiated histologic features in 8, N-Myc amplification in 6, and 1p/11q chromosomal abnormalities in 4). The median tumor size at diagnosis was 11.4 cm (range 7-16) in maximal dimension. At a median follow-up of 38 months (range 11-70), there were no local failures. Four patients developed distant failure, and, of these, two died of disease. Acute side effects included Grade 1 skin erythema in 5 patients and Grade 2 anorexia in 2 patients. Although comparable target coverage was achieved with all three modalities, proton therapy achieved substantial normal tissue sparing compared with IMRT. Intensity-modulated proton RT allowed additional sparing of the kidneys, lungs, and heart. Conclusions: Preliminary outcomes reveal excellent local control with proton therapy

  3. Proton radiotherapy in management of pediatric base of skull tumors

    International Nuclear Information System (INIS)

    Hug, Eugen B.; Sweeney, Reinhart A.; Nurre, Pamela M.; Holloway, Kitty C.; Slater, Jerry D.; Munzenrider, John E.

    2002-01-01

    Purpose: Primary skull base tumors of the developing child are rare and present a formidable challenge to both surgeons and radiation oncologists. Gross total resection with negative margins is rarely achieved, and the risks of functional, structural, and cosmetic deficits limit the radiation dose using conventional radiation techniques. Twenty-nine children and adolescents treated with conformal proton radiotherapy (proton RT) were analyzed to assess treatment efficacy and safety. Methods and Materials: Between July 1992 and April 1999, 29 patients with mesenchymal tumors underwent fractionated proton (13 patients) or fractionated combined proton and photon (16 patients) irradiation. The age at treatment ranged from 1 to 19 years (median 12); 14 patients were male and 15 female. Tumors were grouped as malignant or benign. Twenty patients had malignant histologic findings, including chordoma (n=10), chondrosarcoma (n=3), rhabdomyosarcoma (n=4), and other sarcomas (n=3). Target doses ranged between 50.4 and 78.6 Gy/cobalt Gray equivalent (CGE), delivered at doses of 1.8-2.0 Gy/CGE per fraction. The benign histologic findings included giant cell tumors (n=6), angiofibromas (n=2), and chondroblastoma (n=1). RT doses for this group ranged from 45.0 to 71.8 Gy/CGE. Despite maximal surgical resection, 28 (97%) of 29 patients had gross disease at the time of proton RT. Follow-up after proton RT ranged from 13 to 92 months (mean 40). Results: Of the 20 patients with malignant tumors, 5 (25%) had local failure; 1 patient had failure in the surgical access route and 3 patients developed distant metastases. Seven patients had died of progressive disease at the time of analysis. Local tumor control was maintained in 6 (60%) of 10 patients with chordoma, 3 (100%) of 3 with chondrosarcoma, 4 (100%) of 4 with rhabdomyosarcoma, and 2 (66%) of 3 with other sarcomas. The actuarial 5-year local control and overall survival rate was 72% and 56%, respectively, and the overall survival

  4. Pelvic insufficiency fracture after radiotherapy in patients with cervical cancer in the era of PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Park, Shin Hyung; Kim, Jae Chul; Lee, Jeong Eun; Park, In Kyu [Kyungpook National University School of Medicine, Daegu (Korea, Republic of)

    2011-12-15

    To determine the incidence, risk factors, and clinical characteristics of pelvic insufficiency fracture (PIF) in patients with cervical cancer. Between July 2004 and August 2009, 235 patients with non-metastatic cervical cancer were treated with definitive chemoradiation or postoperative radiotherapy. Among 235 patients, 117 (49.8%) underwent the first positron emission tomography/computed tomography (PET/CT) within 1 year after radiotherapy. The median radiation dose was 55 Gy (range, 45 to 60 Gy). Medical charts and imaging studies, including PET/CT, magnetic resonance imaging (MRI), CT, bone scintigraphy were reviewed to evaluate the patients with PIF. Among 235 patients, 16 developed PIF. The 5-year detection rate of PIF was 9.5%. The 5-year detection rate of PIF in patients who underwent the first PET/CT within a year was 15.6%. The median time to development of PIF was 12.5 months (range, 5 to 30 months). The sites of fracture included 12 sacroiliac joints, 3 pubic rami, 3 iliac bones, and 1 femoral neck. Eleven of 16 patients having PIF complained of hip pain requiring medications. One patient required hospitalization for pain control. The significant risk factors of PIF were old age, body mass index less than 23, bone mineral density less than -3.5 SD, and the first PET/CT within a year after radiotherapy. Radiation dose and concurrent chemotherapy had no impact on PIF rate. PIFs were not rare after pelvic radiotherapy in cervical cancer patients in the era of PET/CT. Timely diagnosis and management of PIF can improve quality of life in patients with cervical cancer, in addition to reducing unnecessary medical expenses.

  5. Pelvic insufficiency fracture after radiotherapy in patients with cervical cancer in the era of PET/CT

    International Nuclear Information System (INIS)

    Park, Shin Hyung; Kim, Jae Chul; Lee, Jeong Eun; Park, In Kyu

    2011-01-01

    To determine the incidence, risk factors, and clinical characteristics of pelvic insufficiency fracture (PIF) in patients with cervical cancer. Between July 2004 and August 2009, 235 patients with non-metastatic cervical cancer were treated with definitive chemoradiation or postoperative radiotherapy. Among 235 patients, 117 (49.8%) underwent the first positron emission tomography/computed tomography (PET/CT) within 1 year after radiotherapy. The median radiation dose was 55 Gy (range, 45 to 60 Gy). Medical charts and imaging studies, including PET/CT, magnetic resonance imaging (MRI), CT, bone scintigraphy were reviewed to evaluate the patients with PIF. Among 235 patients, 16 developed PIF. The 5-year detection rate of PIF was 9.5%. The 5-year detection rate of PIF in patients who underwent the first PET/CT within a year was 15.6%. The median time to development of PIF was 12.5 months (range, 5 to 30 months). The sites of fracture included 12 sacroiliac joints, 3 pubic rami, 3 iliac bones, and 1 femoral neck. Eleven of 16 patients having PIF complained of hip pain requiring medications. One patient required hospitalization for pain control. The significant risk factors of PIF were old age, body mass index less than 23, bone mineral density less than -3.5 SD, and the first PET/CT within a year after radiotherapy. Radiation dose and concurrent chemotherapy had no impact on PIF rate. PIFs were not rare after pelvic radiotherapy in cervical cancer patients in the era of PET/CT. Timely diagnosis and management of PIF can improve quality of life in patients with cervical cancer, in addition to reducing unnecessary medical expenses.

  6. Intravitreal bevacizumab for macular edema due to proton beam radiotherapy: Favorable results shown after eighteen months follow-up

    Directory of Open Access Journals (Sweden)

    Eleni Loukianou

    2010-05-01

    Full Text Available Eleni Loukianou, Dimitrios Brouzas, Eleni Georgopoulou, Chrysanthi Koutsandrea, Michael ApostolopoulosEye Department, University of Athens, Athens, GreecePurpose: To evaluate the safety and efficacy of intravitreal injections of bevacizumab (Avastin® as a treatment option for radiation maculopathy secondary to proton beam radiotherapy for choroidal melanoma.Case: A 61-year-old woman presented with a gradual decrease in left eye visual acuity (VA 29 months after proton beam radiotherapy for choroidal melanoma. On presentation, her best-corrected VA (BCVA was 2/10 in the left eye and the intraocular pressure was 15 mmHg. Fundoscopy revealed cystoid macular edema, intraretinal hemorrhages, epiretinal membrane in the posterior pole, and residual tumor scar with exudative retinal detachment and hard exudates in the periphery of the superotemporal quadrant. A treatment with intravitreal injections of bevacizumab (Avastin® was recommended. The injections were performed on a six-weekly basis.Results: The central retinal thickness prior to the treatment was 458 μm. After the first intravitreal injection of bevacizumab, the retinal thickness at the centre of the fovea was reduced to 322 μm. After the third injection, the central retinal thickness was 359 μm and 18 months after presentation, it reduced to 334 μm. The BCVA increased to 3/10 after the intravitreal injections of bevacizumab and remained stable during the follow-up period. The intraocular pressure was within normal range during the follow-up period.Conclusion: Bevacizumab should be regarded as a treatment option for macular edema due to proton beam radiotherapy for choroidal melanoma. By reducing the central retinal thickness, intravitreal bevacizumab can improve VA or ameliorate further decline caused by radiation maculopathy.Keywords: bevacizumab (Avastin®, choroidal melanoma, macular edema, radiation retinopathy

  7. Out-of-field dose measurements in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kaderka, Robert

    2011-07-13

    This thesis describes the results from measurements of the out-of-field dose in radiotherapy. The dose outside the treatment volume has been determined in a water phantom and an anthropomorphic phantom. Measurements were performed with linac photons, passively delivered protons, scanned protons, passively delivered carbon ions as well as scanned carbon ions. It was found that the use of charged particles for radiotherapy reduces the out-of-field dose by up to three orders of magnitude compared to conventional radiotherapy with photons.

  8. Reduction of the secondary neutron dose in passively scattered proton radiotherapy, using an optimized pre-collimator/collimator

    International Nuclear Information System (INIS)

    Brenner, David J; Elliston, Carl D; Hall, Eric J; Paganetti, Harald

    2009-01-01

    Proton radiotherapy represents a potential major advance in cancer therapy. Most current proton beams are spread out to cover the tumor using passive scattering and collimation, resulting in an extra whole-body high-energy neutron dose, primarily from proton interactions with the final collimator. There is considerable uncertainty as to the carcinogenic potential of low doses of high-energy neutrons, and thus we investigate whether this neutron dose can be significantly reduced without major modifications to passively scattered proton beam lines. Our goal is to optimize the design features of a patient-specific collimator or pre-collimator/collimator assembly. There are a number of often contradictory design features, in terms of geometry and material, involved in an optimal design. For example, plastic or hybrid plastic/metal collimators have a number of advantages. We quantify these design issues, and investigate the practical balances that can be achieved to significantly reduce the neutron dose without major alterations to the beamline design or function. Given that the majority of proton therapy treatments, at least for the next few years, will use passive scattering techniques, reducing the associated neutron-related risks by simple modifications of the collimator assembly design is a desirable goal.

  9. Dosimetric Study of Pelvic Proton Radiotherapy for High-Risk Prostate Cancer

    International Nuclear Information System (INIS)

    Chera, Bhishamjit S.; Vargas, Carlos; Morris, Christopher G.; Louis, Debbie; Flampouri, Stella; Yeung, Daniel; Duvvuri, Srividya; Li Zuofeng; Mendenhall, Nancy Price

    2009-01-01

    Purpose: To compare dose distributions in targeted tissues (prostate, seminal vesicles, pelvic regional nodes) and nontargeted tissues in the pelvis with intensity-modulated radiotherapy (IMRT) and forward-planned, double-scattered, three-dimensional proton radiotherapy (3D-PRT). Methods and Materials: IMRT, IMRT followed by a prostate 3D-PRT boost (IMRT/3D-PRT), and 3D-PRT plans were created for 5 high-risk prostate cancer patients (n = 15 plans). A 78-CGE/Gy dose was prescribed to the prostate and proximal seminal vesicles and a 46-CGE/Gy was prescribed to the pelvic nodes. Various dosimetric endpoints were compared. Results: Target coverage of the prostate and nodal planning target volumes was adequate for all three plans. Compared with the IMRT and IMRT/3D-PRT plans, the 3D-PRT plans reduced the mean dose to the rectum, rectal wall, bladder, bladder wall, small bowel, and pelvis. The relative benefit of 3D-PRT (vs IMRT) at reducing the rectum and rectal wall V5-V40 was 53% to 71% (p < 0.05). For the bladder and bladder wall, the relative benefit for V5 to V40 CGE/Gy was 40% to 63% (p < 0.05). The relative benefit for reducing the volume of small bowel irradiated from 5 to 30 CGE/Gy in the 3D-PRT ranged from 62% to 69% (p < 0.05). Use of 3D-PRT did not produce the typical low-dose 'bath' of radiation to the pelvis seen with IMRT. Femoral head doses were higher for the 3D-PRT. Conclusions: Use of 3D-PRT significantly reduced the dose to normal tissues in the pelvis while maintaining adequate target coverage compared with IMRT or IMRT/3D-PRT. When treating the prostate, seminal vesicles, and pelvic lymph nodes in prostate cancer, proton therapy may improve the therapeutic ratio beyond what is possible with IMRT.

  10. Optic neuropathy following combined proton and photon radiotherapy for base of skull tumors

    International Nuclear Information System (INIS)

    Kim, June; Munzenrider, John; Maas, Alicea; Finkelstein, Dianne; Liebsch, Norbert; Hug, Eugen; Suit, Herman; Smith, Al; Goitein, Michael

    1997-01-01

    Purpose/Objective: To evaluate the risk of radiation injury to the optic pathway following high dose radiation therapy (RT) for base of skull tumors with regard to the following variables: diabetes, hypertension, number of surgical procedures, use of patch, patch distance, radiation dose, and volume of optic structures receiving 50, 55, or 60 Cobalt Gray Equivalent (CGE). Materials and Methods: A total of 359 patients with base of skull chordoma or low grade chondrosarcoma received high dose radiation therapy. Patients were treated with external beam radiotherapy utilizing protons alone or combined protons and photons. Protons of 160 MeV were delivered at the Harvard Cyclotron Laboratory using a modulated Bragg peak. The tumor dose ranged from 61 to 76 CGE. CGE was used because modulated protons have an RBE of 1.1 compared to 60 Co. Among 359 patients, 85 patients were excluded from evaluation based on age, tumor location, and pre-RT treatment criteria. All 274 evaluable patients had a minimum follow up of 12 months. Medical records were reviewed to determine the actual cause of vision changes. A total of 12 patients with grade II, III, and IV radiation-induced optic neuropathy were identified. Twenty-four patients without complications who closely matched the aforementioned 12 cases with optic neuropathy were selected from the 274 patients as a control group. Dose volume histograms of 12 cases and 24 controls were reviewed to determine minimum, median, and maximum dose to the optic apparatus as well as dose volume at 50, 55, and 60 CGE. Other information regarding remaining potential risk factors, such as diabetes, hypertension, number of surgical procedures, use of patch, and patch distance, was also obtained. Results: A total of 12 patients (4.4%) developed radiation-induced optic neuropathy: 1 grade II, 9 grade III, and 2 grade IV. Specific sites of involvement were left optic nerve in 9, right optic nerve in 5, and chiasm in 4 cases. The duration to the onset

  11. The use of low energy, ion induced nuclear reactions for proton radiotherapy applications

    International Nuclear Information System (INIS)

    Horn, K.M.; Doyle, B.; Segal, M.N.; Adler, R.J.; Glatstein, E.

    1995-01-01

    Medical radiotherapy has traditionally relied upon the use of external photon beams and internally implanted radioisotopes as the chief means of irradiating tumors. However, advances in accelerator technology and the exploitation of novel means of producing radiation may provide useful alternatives to some current modes of medical radiation delivery with reduced total dose to surrounding healthy tissue, reduced expense, or increased treatment accessibility. This paper will briefly overview currently established modes of radiation therapy, techniques still considered experimental but in clinical use, innovative concepts under study that may enable new forms of treatment or enhance existing ones. The potential role of low energy, ion-induced nuclear reactions in radiotherapy applications is examined specifically for the 650 keV d( 3 He,p) 4 He nuclear reaction. This examination will describe the basic physics associated with this reaction's production of 17.4 MeV protons and the processes used to fabricate the necessary materials used in the technique. Calculations of the delivered radiation dose, heat generation, and required exposure times are presented. Experimental data are also presented validating the dose calculations. The design of small, lower cost ion accelerators, as embodied in 'nested'-tandem and radio frequency quadrupole accelerators is examined, as is the potential use of high-output 3 He and deuterium ion sources. Finally, potential clinical applications are discussed in terms of the advantages and disadvantages of this technique with respect to current radiotherapy methods and equipment

  12. The use of low energy, ion induced nuclear reactions for proton radiotherapy applications

    Science.gov (United States)

    Horn, K. M.; Doyle, B.; Segal, M. N.; Hamm, R. W.; Adler, R. J.; Glatstein, E.

    1995-12-01

    Medical radiotherapy has traditionally relied upon the use of external photon beams and internally implanted radioisotopes as the chief means of irradiating tumors. However, advances in accelerator technology and the exploitation of novel means of producing radiation may provide useful alternatives to some current modes of medical radiation delivery — with reduced total dose to surrounding healthy tissue, reduced expense, or increased treatment accessibility. This paper will briefly overview currently established modes of radiation therapy, techniques still considered experimental but in clinical use and innovative concepts under study that may enable new forms of treatment or enhance existing ones. The potential role of low energy, ion-induced nuclear reactions in radiotherapy applications is examined specifically for the 650 keV d( 3He,p) 4 He nuclear reaction. This examination will describe the basic physics associated with this reaction's production of 17.4 MeV protons and the processes used to fabricate the necessary materials used in the technique. Calculations of the delivered radiation dose, heat generation, and required exposure times are presented. Experimental data is also presented validating the dose calculations. The design of small, lower cost ion accelerators, as embodied in "nested"-tandem and radio frequency quadrupole accelerators is examined, as is the potential use of high-output 3He and deuterium ion sources. Finally, potential clinical applications are discussed in terms of the advantages and disadvantages of this technique with respect to current radiotherapy methods and equipment.

  13. Australian national proton facility

    International Nuclear Information System (INIS)

    Jackson, M.

    2000-01-01

    Full text: Proton therapy has been in use since 1954 and over 25,000 patients have been treated worldwide. Until recently most patients were treated at physics research facilities and apart from the Harvard Cyclotron Laboratory and some low energy machines for eye treatment, only small numbers of patients were treated in each centre and conditions were less than optimal. Limited beam time and lack of support facilities restricted the type of patient treated and conventional fractionation could not be used. The initial clinical experience was mainly with small tumours and other lesions close to critical organs. Large numbers of eye tumours have also been treated. Protons have a well-defined role in these situations and are now being used in the treatment of more common cancers. Since the development of hospital-based facilities, such as the one in Loma Linda in California, over 2,500 patients with prostate cancer have been treated using a simple technique which gives results at least as good as radical surgery, external beam radiotherapy or brachytherapy. Importantly, the incidence of severe complications is very low. There are encouraging results in many disease sites including lung, liver, soft tissue sarcomas and oesophagus. As proton therapy becomes more widely available, randomised trials comparing it with conventional radiotherapy or intensity modulated radiotherapy (IMRT) will be possible. In most situations the use of protons will enable a higher dose to be given safely but in situations where local control rates are already satisfactory, protons are expected to produce less complications than conventional treatment. The initial costs of a proton facility are high but the recurrent costs are similar to other forms of high technology radiotherapy. Simple treatment techniques with only a few fields are usually possible and proton therapy avoids the high integral doses associated with IMRT. This reduction in the low dose volume is likely to be particularly

  14. Proton therapy device

    International Nuclear Information System (INIS)

    Tronc, D.

    1994-01-01

    The invention concerns a proton therapy device using a proton linear accelerator which produces a proton beam with high energies and intensities. The invention lies in actual fact that the proton beam which is produced by the linear accelerator is deflected from 270 deg in its plan by a deflecting magnetic device towards a patient support including a bed the longitudinal axis of which is parallel to the proton beam leaving the linear accelerator. The patient support and the deflecting device turn together around the proton beam axis while the bed stays in an horizontal position. The invention applies to radiotherapy. 6 refs., 5 figs

  15. Proton therapy in Australia

    International Nuclear Information System (INIS)

    Jackson, M.

    2000-01-01

    Full text: Proton therapy has been in use since 1954 and over 25,000 patients have been treated worldwide. Until recently most patients were treated at physics research facilities but with the development of more compact and reliable accelerators it is now possible to realistically plan for proton therapy in an Australian hospital. The Australian National Proton Project has been formed to look at the feasibility of a facility which would be primarily for patient treatment but would also be suitable for research and commercial applications. A detailed report will be produced by the end of the year. The initial clinical experience was mainly with small tumours and other lesions close to critical organs. Large numbers of eye tumours have also been treated. Protons have a well-defined role in these situations and are now being used in the treatment of more common cancers. With the development of hospital-based facilities, over 2,500 patients with prostate cancer have been treated using a simple technique which gives results at least as good as radical surgery, external beam radiotherapy or brachytherapy. Importantly, the incidence of severe complications is very low. There are encouraging results in many disease sites including lung, liver, soft tissue sarcomas and oesophagus. As proton therapy becomes more widely available, randomised trials comparing it with conventional radiotherapy or Intensity Modulated Radiation Therapy (IMRT) will be possible. In most situations the use of protons will enable a higher dose to be given safely but in situations where local control rates are already satisfactory, protons are expected to produce less complications than conventional treatment. The initial costs of a proton facility are high but the recurrent costs are similar to other forms of high technology radiotherapy. . Simple treatment techniques with only a few fields are usually possible and proton therapy avoids the high integral doses associated with IMRT. This reduction in

  16. Treatment of Non-Small Cell Lung Cancer Patients With Proton Beam-Based Stereotactic Body Radiotherapy: Dosimetric Comparison With Photon Plans Highlights Importance of Range Uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Seco, Joao, E-mail: jseco@partners.org [Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, MA (United States); Panahandeh, Hamid Reza [Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, MA (United States); Westover, Kenneth [Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, MA (United States); Harvard Radiation Oncology Program, Harvard Medical School, Boston, MA (United States); Adams, Judith; Willers, Henning [Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, MA (United States)

    2012-05-01

    Purpose: Proton beam radiotherapy has been proposed for use in stereotactic body radiotherapy (SBRT) for early-stage non-small-cell lung cancer. In the present study, we sought to analyze how the range uncertainties for protons might affect its therapeutic utility for SBRT. Methods and Materials: Ten patients with early-stage non-small-cell lung cancer received SBRT with two to three proton beams. The patients underwent repeat planning for photon SBRT, and the dose distributions to the normal and tumor tissues were compared with the proton plans. The dosimetric comparisons were performed within an operational definition of high- and low-dose regions representing volumes receiving >50% and <50% of the prescription dose, respectively. Results: In high-dose regions, the average volume receiving {>=}95% of the prescription dose was larger for proton than for photon SBRT (i.e., 46.5 cm{sup 3} vs. 33.5 cm{sup 3}; p = .009, respectively). The corresponding conformity indexes were 2.46 and 1.56. For tumors in close proximity to the chest wall, the chest wall volume receiving {>=}30 Gy was 7 cm{sup 3} larger for protons than for photons (p = .06). In low-dose regions, the lung volume receiving {>=}5 Gy and maximum esophagus dose were smaller for protons than for photons (p = .019 and p < .001, respectively). Conclusions: Protons generate larger high-dose regions than photons because of range uncertainties. This can result in nearby healthy organs (e.g., chest wall) receiving close to the prescription dose, at least when two to three beams are used, such as in our study. Therefore, future research should explore the benefit of using more than three beams to reduce the dose to nearby organs. Additionally, clinical subgroups should be identified that will benefit from proton SBRT.

  17. Modelling carcinogenesis after radiotherapy using Poisson statistics: implications for IMRT, protons and ions

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Bleddyn [Gray Institute for Radiation Oncology and Biology, University of Oxford, Old Road Campus, Headington, Oxford OX3 7DQ (United Kingdom)], E-mail: Bleddyn.Jones@rob.ox.ac.uk

    2009-06-01

    Current technical radiotherapy advances aim to (a) better conform the dose contours to cancers and (b) reduce the integral dose exposure and thereby minimise unnecessary dose exposure to normal tissues unaffected by the cancer. Various types of conformal and intensity modulated radiotherapy (IMRT) using x-rays can achieve (a) while charged particle therapy (CPT)-using proton and ion beams-can achieve both (a) and (b), but at greater financial cost. Not only is the long term risk of radiation related normal tissue complications important, but so is the risk of carcinogenesis. Physical dose distribution plans can be generated to show the differences between the above techniques. IMRT is associated with a dose bath of low to medium dose due to fluence transfer: dose is effectively transferred from designated organs at risk to other areas; thus dose and risk are transferred. Many clinicians are concerned that there may be additional carcinogenesis many years after IMRT. CPT reduces the total energy deposition in the body and offers many potential advantages in terms of the prospects for better quality of life along with cancer cure. With C ions there is a tail of dose beyond the Bragg peaks, due to nuclear fragmentation; this is not found with protons. CPT generally uses higher linear energy transfer (which varies with particle and energy), which carries a higher relative risk of malignant induction, but also of cell death quantified by the relative biological effect concept, so at higher dose levels the frank development of malignancy should be reduced. Standard linear radioprotection models have been used to show a reduction in carcinogenesis risk of between two- and 15-fold depending on the CPT location. But the standard risk models make no allowance for fractionation and some have a dose limit at 4 Gy. Alternatively, tentative application of the linear quadratic model and Poissonian statistics to chromosome breakage and cell kill simultaneously allows estimation of

  18. Scanned proton radiotherapy for mobile targets-the effectiveness of re-scanning in the context of different treatment planning approaches and for different motion characteristics

    NARCIS (Netherlands)

    Knopf, Antje-Christin; Hong, Theodore S; Lomax, Antony

    2011-01-01

    The most advanced delivery technique for proton radiotherapy is active spot scanning. So far, predominantly static targets have been treated with active spot scanning, since mobile targets in combination with dynamic treatment delivery can lead to interplay effects, causing inhomogeneous dose

  19. Absolute measurements methods for proton beam dosimetry

    International Nuclear Information System (INIS)

    Laitano, R.F.

    1998-01-01

    A widespread interest in improving proton beam characteristics and related dosimetry became apparent in the recent years, even if the advantages of protons in radiotherapy were pointed out since 1946. The early treatments by proton beams were made for a long time on a small number of patients in very few accelerators sharing their use with nuclear-physics experiments. The first proton accelerator totally dedicated to radiotherapy was established just in 1990 at the Loma Linda Medical Center in the USA. A further reason of the slowly growing use of protons for therapy in the early years, was the lack of adequate means for accurate localization of the treatment volume. The potentialities of protons in imparting a largest part of their energy to very small volumes became exploitable only after the established clinical use of accurate imaging techniques such as based on CT, NMR, PET, etc

  20. Power of protons in the fight against cancer

    International Nuclear Information System (INIS)

    Hansen, W.

    2011-01-01

    a large percentage of patients with cancer are receiving radiotherapy as part of their treatment. At present it is possible to plan with precision these treatments, reducing the risk of side effects and increasing therapeutic efficiency. Proton therapy (also known as particle therapy) is a form external radiotherapy that uses beams of energized protons to treat cancer. The main advantage of proton therapy is its ability to accurately manage an optimal dose of radiation to the tumor, without damaging surrounding healthy tissues and significantly reducing the likelihood and/or severity of side effects. (Author)

  1. Radiobiology of Proton Therapy - Results of an international expert workshop

    DEFF Research Database (Denmark)

    Lühr, Armin; von Neubeck, Cläre; Pawelke, Jörg

    2018-01-01

    The physical properties of proton beams offer the potential to reduce toxicity in tumor-adjacent normal tissues. Toward this end, the number of proton radiotherapy facilities has steeply increased over the last 10-15 years to currently around 70 operational centers worldwide. However, taking full...... in proton therapy combined with systemic treatments, and (4) testing biological effects of protons in clinical trials. Finally, important research avenues for improvement of proton radiotherapy based on radiobiological knowledge are identified. The clinical distribution of radiobiological effectiveness...... of protons alone or in combination with systemic chemo- or immunotherapies as well as patient stratification based on biomarker expressions are key to reach the full potential of proton beam therapy. Dedicated preclinical experiments, innovative clinical trial designs, and large high-quality data...

  2. [Why proton therapy? And how?

    Science.gov (United States)

    Thariat, Juliette; Habrand, Jean Louis; Lesueur, Paul; Chaikh, Abdulhamid; Kammerer, Emmanuel; Lecomte, Delphine; Batalla, Alain; Balosso, Jacques; Tessonnier, Thomas

    2018-03-01

    Proton therapy is a radiotherapy, based on the use of protons, charged subatomic particles that stop at a given depth depending on their initial energy (pristine Bragg peak), avoiding any output beam, unlike the photons used in most of the other modalities of radiotherapy. Proton therapy has been used for 60 years, but has only become ubiquitous in the last decade because of recent major advances in particle accelerator technology. This article reviews the history of clinical implementation of protons, the nature of the technological advances that now allows its expansion at a lower cost. It also addresses the technical and physical specificities of proton therapy and the clinical situations for which proton therapy may be relevant but requires evidence. Different proton therapy techniques are possible. These are explained in terms of their clinical potential by explaining the current terminology (such as cyclotrons, synchrotrons or synchrocyclotrons, using superconducting magnets, fixed line or arm rotary with passive diffusion delivery or active by scanning) in basic words. The requirements associated with proton therapy are increased due to the precision of the depth dose deposit. The learning curve of proton therapy requires that clinical indications be prioritized according to their associated uncertainties (such as range uncertainties and movement in lung tumors). Many clinical indications potentially fall under proton therapy ultimately. Clinical strategies are explained in a paralleled manuscript. Copyright © 2018 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  3. Evaluating proton stereotactic body radiotherapy to reduce chest wall dose in the treatment of lung cancer

    International Nuclear Information System (INIS)

    Welsh, James; Amini, Arya; Ciura, Katherine; Nguyen, Ngoc; Palmer, Matt; Soh, Hendrick; Allen, Pamela K.; Paolini, Michael; Liao, Zhongxing; Bluett, Jaques; Mohan, Radhe; Gomez, Daniel; Cox, James D.; Komaki, Ritsuko; Chang, Joe Y.

    2013-01-01

    Stereotactic body radiotherapy (SBRT) can produce excellent local control of several types of solid tumor; however, toxicity to nearby critical structures is a concern. We found previously that in SBRT for lung cancer, the chest wall (CW) volume receiving 20, 30, or 40 Gy (V 20 , V 30 , or V 40 ) was linked with the development of neuropathy. Here we sought to determine whether the dosimetric advantages of protons could produce lower CW doses than traditional photon-based SBRT. We searched an institutional database to identify patients treated with photon SBRT for lung cancer with tumors within 20 was 364.0 cm 3 and 160.0 cm 3 (p 30 was 144.6 cm 3 vs 77.0 cm 3 (p = 0.0012), V 35 was 93.9 cm 3 vs 57.9 cm 3 (p = 0.005), V 40 was 66.5 cm 3 vs 45.4 cm 3 (p = 0.0112), and mean lung dose was 5.9 Gy vs 3.8 Gy (p = 0.0001) for photons and protons, respectively. Coverage of the planning target volume (PTV) was comparable between the 2 sets of plans (96.4% for photons and 97% for protons). From a dosimetric standpoint, proton SBRT can achieve the same coverage of the PTV while significantly reducing the dose to the CW and lung relative to photon SBRT and therefore may be beneficial for the treatment of lesions closer to critical structures

  4. The future of personalised radiotherapy for head and neck cancer.

    Science.gov (United States)

    Caudell, Jimmy J; Torres-Roca, Javier F; Gillies, Robert J; Enderling, Heiko; Kim, Sungjune; Rishi, Anupam; Moros, Eduardo G; Harrison, Louis B

    2017-05-01

    Radiotherapy has long been the mainstay of treatment for patients with head and neck cancer and has traditionally involved a stage-dependent strategy whereby all patients with the same TNM stage receive the same therapy. We believe there is a substantial opportunity to improve radiotherapy delivery beyond just technological and anatomical precision. In this Series paper, we explore several new ideas that could improve understanding of the phenotypic and genotypic differences that exist between patients and their tumours. We discuss how exploiting these differences and taking advantage of precision medicine tools-such as genomics, radiomics, and mathematical modelling-could open new doors to personalised radiotherapy adaptation and treatment. We propose a new treatment shift that moves away from an era of empirical dosing and fractionation to an era focused on the development of evidence to guide personalisation and biological adaptation of radiotherapy. We believe these approaches offer the potential to improve outcomes and reduce toxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. COMPARISON OF RESPONSE OF PASSIVE DOSIMETRY SYSTEMS IN SCANNING PROTON RADIOTHERAPY-A STUDY USING PAEDIATRIC ANTHROPOMORPHIC PHANTOMS.

    Science.gov (United States)

    Kneževic, Ž; Ambrozova, I; Domingo, C; De Saint-Hubert, M; Majer, M; Martínez-Rovira, I; Miljanic, S; Mojzeszek, N; Porwol, P; Ploc, O; Romero-Expósito, M; Stolarczyk, L; Trinkl, S; Harrison, R M; Olko, P

    2017-11-18

    Proton beam therapy has advantages in comparison to conventional photon radiotherapy due to the physical properties of proton beams (e.g. sharp distal fall off, adjustable range and modulation). In proton therapy, there is the possibility of sparing healthy tissue close to the target volume. This is especially important when tumours are located next to critical organs and while treating cancer in paediatric patients. On the other hand, the interactions of protons with matter result in the production of secondary radiation, mostly neutrons and gamma radiation, which deposit their energy at a distance from the target. The aim of this study was to compare the response of different passive dosimetry systems in mixed radiation field induced by proton pencil beam inside anthropomorphic phantoms representing 5 and 10 years old children. Doses were measured in different organs with thermoluminescent (MTS-7, MTS-6 and MCP-N), radiophotoluminescent (GD-352 M and GD-302M), bubble and poly-allyl-diglycol carbonate (PADC) track detectors. Results show that RPL detectors are the less sensitive for neutrons than LiF TLDs and can be applied for in-phantom dosimetry of gamma component. Neutron doses determined using track detectors, bubble detectors and pairs of MTS-7/MTS-6 are consistent within the uncertainty range. This is the first study dealing with measurements on child anthropomorphic phantoms irradiated by a pencil scanning beam technique. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. The dosimetric control in radiotherapy

    International Nuclear Information System (INIS)

    Veres, A.

    2009-01-01

    The author first presents the thermoluminescent dosimetry method developed by the Equal-Estro Laboratory to control radiotherapy systems, according to which dosimeters are mailed by the radiotherapy centres to the laboratory, and then analyzed with respect to the level of dose bias. In a second part, he discusses the different techniques used for the dosimetric control of new radiotherapy methods (intensity-modulated radiation therapy, tomo-therapy) for which film dosimetry is applied. He also evokes the development of new phantoms and the development of a method for the dosimetric control of proton beams

  7. Physiologic and Radiographic Evidence of the Distal Edge of the Proton Beam in Craniospinal Irradiation

    International Nuclear Information System (INIS)

    Krejcarek, Stephanie C.; Grant, P. Ellen; Henson, John W.; Tarbell, Nancy J.; Yock, Torunn I.

    2007-01-01

    Purpose: Fatty replacement of bone marrow resulting from radiation therapy can be seen on T1-weighted magnetic resonance (MR) images. We evaluated the radiographic appearance of the vertebral bodies in children treated with proton craniospinal irradiation (CSI) to illustrate the distal edge effect of proton radiotherapy. Methods and Materials: The study cohort consisted of 13 adolescents aged 12-18 years who received CSI with proton radiotherapy at Massachusetts General Hospital. Ten of these patients had reached maximal or near-maximal growth. Proton beam radiation for these 10 patients was delivered to the thecal sac and exiting nerve roots only, whereas the remaining 3 patients had a target volume that included the thecal sac, exiting nerve roots, and entire vertebral bodies. Median CSI dose was 27 [range, 23.4-36] cobalt gray equivalent (CGE) given in 1.8-CGE fractions. Magnetic resonance images of the spine were obtained after completion of radiotherapy. Results: Magnetic resonance images of patients who received proton radiotherapy to the thecal sac only demonstrate a sharp demarcation of hyperintense T1-weighted signal in the posterior aspects of the vertebral bodies, consistent with radiation-associated fatty marrow replacement. Magnetic resonance images of the patients prescribed proton radiotherapy to the entire vertebral column had corresponding hyperintense T1-weighted signal involving the entire vertebral bodies. Conclusion: The sharp delineation of radiation-associated fatty marrow replacement in the vertebral bodies demonstrates the rapid decrease in energy at the edge of the proton beam. This provides evidence for a sharp fall-off in radiation dose and supports the premise that proton radiotherapy spares normal tissues unnecessary irradiation

  8. Whole-pelvic radiotherapy with spot-scanning proton beams for uterine cervical cancer: a planning study

    International Nuclear Information System (INIS)

    Hashimoto, Shingo; Shibamoto, Yuta; Iwata, Hiromitsu; Ogino, Hiroyuki; Shibata, Hiroki; Toshito, Toshiyuki; Sugie, Chikao; Mizoe, Jun-etsu

    2016-01-01

    The aim of this study was to compare the dosimetric parameters of whole-pelvic radiotherapy (WPRT) for cervical cancer among plans involving 3D conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT), or spot-scanning proton therapy (SSPT). The dose distributions of 3D-CRT-, IMRT-, and SSPT-based WPRT plans were compared in 10 patients with cervical cancer. All of the patients were treated with a prescribed dose of 50.4 Gy in 1.8-Gy daily fractions, and all of the plans involved the same planning target volume (PTV) constrictions. A 3D-CRT plan involving a four-field box, an IMRT plan involving seven coplanar fields, and an SSPT plan involving four fields were created. The median PTV D95% did not differ between the 3D-CRT, IMRT and SSPT plans. The median conformity index 95% and homogeneity index of the IMRT and SSPT were better than those of the 3D-CRT. The homogeneity index of the SSPT was better than that of the IMRT. SSPT resulted in lower median V20 values for the bladder wall, small intestine, colon, bilateral femoral heads, skin, and pelvic bone than IMRT. Comparing the Dmean values, SSPT spared the small intestine, colon, bilateral femoral heads, skin and pelvic bone to a greater extent than the other modalities. SSPT can reduce the irradiated volume of the organs at risk compared with 3D-CRT and IMRT, while maintaining excellent PTV coverage. Further investigations of SSPT are warranted to assess its role in the treatment of cervical cancer.

  9. FoCa: a modular treatment planning system for proton radiotherapy with research and educational purposes.

    Science.gov (United States)

    Sánchez-Parcerisa, D; Kondrla, M; Shaindlin, A; Carabe, A

    2014-12-07

    FoCa is an in-house modular treatment planning system, developed entirely in MATLAB, which includes forward dose calculation of proton radiotherapy plans in both active and passive modalities as well as a generic optimization suite for inverse treatment planning. The software has a dual education and research purpose. From the educational point of view, it can be an invaluable teaching tool for educating medical physicists, showing the insights of a treatment planning system from a well-known and widely accessible software platform. From the research point of view, its current and potential uses range from the fast calculation of any physical, radiobiological or clinical quantity in a patient CT geometry, to the development of new treatment modalities not yet available in commercial treatment planning systems. The physical models in FoCa were compared with the commissioning data from our institution and show an excellent agreement in depth dose distributions and longitudinal and transversal fluence profiles for both passive scattering and active scanning modalities. 3D dose distributions in phantom and patient geometries were compared with a commercial treatment planning system, yielding a gamma-index pass rate of above 94% (using FoCa's most accurate algorithm) for all cases considered. Finally, the inverse treatment planning suite was used to produce the first prototype of intensity-modulated, passive-scattered proton therapy, using 13 passive scattering proton fields and multi-leaf modulation to produce a concave dose distribution on a cylindrical solid water phantom without any field-specific compensator.

  10. Radiotherapy and Brachytherapy : Proceedings of the NATO Advanced Study Institute on Physics of Modern Radiotherapy & Brachytherapy

    CERN Document Server

    Lemoigne, Yves

    2009-01-01

    This volume collects a series of lectures presented at the tenth ESI School held at Archamps (FR) in November 2007 and dedicated to radiotherapy and brachytherapy. The lectures focus on the multiple facets of radiotherapy in general, including external radiotherapy (often called teletherapy) as well as internal radiotherapy (called brachytherapy). Radiotherapy strategy and dose management as well as the decisive role of digital imaging in the associated clinical practice are developed in several articles. Grouped under the discipline of Conformal Radiotherapy (CRT), numerous modern techniques, from Multi-Leaf Collimators (MLC) to Intensity Modulated RadioTherapy (IMRT), are explained in detail. The importance of treatment planning based upon patient data from digital imaging (Computed Tomography) is also underlined. Finally, despite the quasi- totality of patients being presently treated with gamma and X-rays, novel powerful tools are emerging using proton and light ions (like carbon ions) beams, bound to bec...

  11. Evaluating proton stereotactic body radiotherapy to reduce chest wall dose in the treatment of lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Welsh, James, E-mail: jwelsh@mdanderson.org [Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Amini, Arya [Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); UC Irvine School of Medicine, Irvine, CA (United States); Ciura, Katherine; Nguyen, Ngoc; Palmer, Matt [Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Soh, Hendrick [Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Department of Radiation Physics, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Allen, Pamela K.; Paolini, Michael; Liao, Zhongxing [Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Bluett, Jaques; Mohan, Radhe [Department of Radiation Physics, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Gomez, Daniel; Cox, James D.; Komaki, Ritsuko; Chang, Joe Y. [Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States)

    2013-01-01

    Stereotactic body radiotherapy (SBRT) can produce excellent local control of several types of solid tumor; however, toxicity to nearby critical structures is a concern. We found previously that in SBRT for lung cancer, the chest wall (CW) volume receiving 20, 30, or 40 Gy (V{sub 20}, V{sub 30}, or V{sub 40}) was linked with the development of neuropathy. Here we sought to determine whether the dosimetric advantages of protons could produce lower CW doses than traditional photon-based SBRT. We searched an institutional database to identify patients treated with photon SBRT for lung cancer with tumors within < 2.5 cm of the CW. We found 260 cases; of these, chronic grade ≥ 2 CW pain was identified in 23 patients. We then selected 10 representative patients from this group and generated proton SBRT treatment plans, using the identical dose of 50 Gy in 4 fractions, and assessed potential differences in CW dose between the 2 plans. The proton SBRT plans reduced the CW doses at all dose levels measured. The median CW V{sub 20} was 364.0 cm{sup 3} and 160.0 cm{sup 3} (p < 0.0001), V{sub 30} was 144.6 cm{sup 3}vs 77.0 cm{sup 3} (p = 0.0012), V{sub 35} was 93.9 cm{sup 3}vs 57.9 cm{sup 3} (p = 0.005), V{sub 40} was 66.5 cm{sup 3}vs 45.4 cm{sup 3} (p = 0.0112), and mean lung dose was 5.9 Gy vs 3.8 Gy (p = 0.0001) for photons and protons, respectively. Coverage of the planning target volume (PTV) was comparable between the 2 sets of plans (96.4% for photons and 97% for protons). From a dosimetric standpoint, proton SBRT can achieve the same coverage of the PTV while significantly reducing the dose to the CW and lung relative to photon SBRT and therefore may be beneficial for the treatment of lesions closer to critical structures.

  12. SU-F-T-116: Predicting IQ and the Risk of Hearing Loss Following Proton Versus Photon Radiotherapy for Pediatric Brain Tumor Patients

    International Nuclear Information System (INIS)

    Fortin, D; Sharpe, M; Laperriere, N; Hodgson, D; Ng, A; Tsang, D

    2016-01-01

    Purpose: The increased sparing of normal tissues in intensity modulated proton therapy (IMPT) compared to photon intensity modulated radiotherapy (IMRT) in brain tumor treatments should translate into improved neurocognitive outcomes. Models were used to estimate the intelligence quotient (IQ) and the risk of hearing loss 5 years post radiotherapy and to compare outcomes of proton against photon in pediatric brain tumors. Methods: Patients who had received radical IMRT were randomly selected from our retrospective database: 10 cases each of craniopharyngioma, ependymoma and medulloblastoma, and 20 cases of glioma. The existing planning CT and contours were used to generate IMPT plans. The RBE-corrected dose to brain structures and cochleas were calculated for both IMPT and IMRT. A model was applied to estimate IQ using a Markov chain Monte Carlo technique. The reported incidence of hearing loss as a function of cochlear dose was used to estimate the rate of occurrence. Results: The average brain dose was less in all IMPT plans compared to IMRT: ranging from a 6.7% reduction (P=0.003) in the case of medulloblastoma to 38% (P=0.007) for craniopharyngioma. This dose reduction translated into a gain in IQ of 1.9 points on average for protons vs photons for the whole cohort at 5 years post-treatment (P=0.011). In terms of specific diseases, the gains in IQ ranged from 0.8 points for medulloblastoma, to 2.7 points for craniopharyngioma. Hearing loss probability was evaluated on a per-ear-basis and was found to be systematically less for proton versus photon: overall 2.9% versus 7.2% (P < 0.001). Conclusion: A novel method was developed to predict neurocognitive outcomes in pediatric brain tumor patients on a case-by-case basis. A modest gain in IQ was systematically observed for proton in all patients. Given the uncertainties within the model used and our reinterpretation, these gains may be underestimated.

  13. SU-F-T-116: Predicting IQ and the Risk of Hearing Loss Following Proton Versus Photon Radiotherapy for Pediatric Brain Tumor Patients

    Energy Technology Data Exchange (ETDEWEB)

    Fortin, D; Sharpe, M; Laperriere, N; Hodgson, D [UHN Princess Margaret Cancer Centre, Toronto, ON (Canada); University of Toronto, Toronto, ON (Canada); Ng, A [UHN Princess Margaret Cancer Centre, Toronto, ON (Canada); Tsang, D [University of Toronto, Toronto, ON (Canada)

    2016-06-15

    Purpose: The increased sparing of normal tissues in intensity modulated proton therapy (IMPT) compared to photon intensity modulated radiotherapy (IMRT) in brain tumor treatments should translate into improved neurocognitive outcomes. Models were used to estimate the intelligence quotient (IQ) and the risk of hearing loss 5 years post radiotherapy and to compare outcomes of proton against photon in pediatric brain tumors. Methods: Patients who had received radical IMRT were randomly selected from our retrospective database: 10 cases each of craniopharyngioma, ependymoma and medulloblastoma, and 20 cases of glioma. The existing planning CT and contours were used to generate IMPT plans. The RBE-corrected dose to brain structures and cochleas were calculated for both IMPT and IMRT. A model was applied to estimate IQ using a Markov chain Monte Carlo technique. The reported incidence of hearing loss as a function of cochlear dose was used to estimate the rate of occurrence. Results: The average brain dose was less in all IMPT plans compared to IMRT: ranging from a 6.7% reduction (P=0.003) in the case of medulloblastoma to 38% (P=0.007) for craniopharyngioma. This dose reduction translated into a gain in IQ of 1.9 points on average for protons vs photons for the whole cohort at 5 years post-treatment (P=0.011). In terms of specific diseases, the gains in IQ ranged from 0.8 points for medulloblastoma, to 2.7 points for craniopharyngioma. Hearing loss probability was evaluated on a per-ear-basis and was found to be systematically less for proton versus photon: overall 2.9% versus 7.2% (P < 0.001). Conclusion: A novel method was developed to predict neurocognitive outcomes in pediatric brain tumor patients on a case-by-case basis. A modest gain in IQ was systematically observed for proton in all patients. Given the uncertainties within the model used and our reinterpretation, these gains may be underestimated.

  14. Physical fundamentals of the application of heavy charged particles in radiotherapy

    International Nuclear Information System (INIS)

    Bueche, G.

    1977-01-01

    In the chapter 'Medical Applications' A 'Radiotherapy' of the study, the following subjects are treated in detail by various authors: Physical fundamentals of the application of heavy charged particles in radiotherapy-radiation-biological fundamentals; clinical aspects of radiotherapy with protons and negative pions; patients and clinical dosimetry. (MG) [de

  15. Hippocampal sparing radiotherapy for pediatric medulloblastoma: impact of treatment margins and treatment technique.

    Science.gov (United States)

    Brodin, N Patrik; Munck af Rosenschöld, Per; Blomstrand, Malin; Kiil-Berthlesen, Anne; Hollensen, Christian; Vogelius, Ivan R; Lannering, Birgitta; Bentzen, Søren M; Björk-Eriksson, Thomas

    2014-04-01

    We investigated how varying the treatment margin and applying hippocampal sparing and proton therapy impact the risk of neurocognitive impairment in pediatric medulloblastoma patients compared with current standard 3D conformal radiotherapy. We included 17 pediatric medulloblastoma patients to represent the variability in tumor location relative to the hippocampal region. Treatment plans were generated using 3D conformal radiotherapy, hippocampal sparing intensity-modulated radiotherapy, and spot-scanned proton therapy, using 3 different treatment margins for the conformal tumor boost. Neurocognitive impairment risk was estimated based on dose-response models from pediatric CNS malignancy survivors and compared among different margins and treatment techniques. Mean hippocampal dose and corresponding risk of cognitive impairment were decreased with decreasing treatment margins (P < .05). The largest risk reduction, however, was seen when applying hippocampal sparing proton therapy-the estimated risk of impaired task efficiency (95% confidence interval) was 92% (66%-98%), 81% (51%-95%), and 50% (30%-70%) for 3D conformal radiotherapy, intensity-modulated radiotherapy, and proton therapy, respectively, for the smallest boost margin and 98% (78%-100%), 90% (60%-98%), and 70% (39%-90%) if boosting the whole posterior fossa. Also, the distance between the closest point of the planning target volume and the center of the hippocampus can be used to predict mean hippocampal dose for a given treatment technique. We estimate a considerable clinical benefit of hippocampal sparing radiotherapy. In choosing treatment margins, the tradeoff between margin size and risk of neurocognitive impairment quantified here should be considered.

  16. Cardiac Side-effects From Breast Cancer Radiotherapy.

    Science.gov (United States)

    Taylor, C W; Kirby, A M

    2015-11-01

    Breast cancer radiotherapy reduces the risk of cancer recurrence and death. However, it usually involves some radiation exposure of the heart and analyses of randomised trials have shown that it can increase the risk of heart disease. Estimates of the absolute risks of radiation-related heart disease are needed to help oncologists plan each individual woman's treatment. The risk for an individual woman varies according to her estimated cardiac radiation dose and her background risk of ischaemic heart disease in the absence of radiotherapy. When it is known, this risk can then be compared with the absolute benefit of the radiotherapy. At present, many UK cancer centres are already giving radiotherapy with mean heart doses of less than 3 Gy and for most women the benefits of the radiotherapy will probably far outweigh the risks. Technical approaches to minimising heart dose in breast cancer radiotherapy include optimisation of beam angles, use of multileaf collimator shielding, intensity-modulated radiotherapy, treatment in a prone position, treatment in deep inspiration (including the use of breath-hold and gating techniques), proton therapy and partial breast irradiation. The multileaf collimator is suitable for many women with upper pole left breast cancers, but for women with central or lower pole cancers, breath-holding techniques are now recommended in national UK guidelines. Ongoing work aims to identify ways of irradiating pan-regional lymph nodes that are effective, involve minimal exposure of organs at risk and are feasible to plan, deliver and verify. These will probably include wide tangent-based field-in-field intensity-modulated radiotherapy or arc radiotherapy techniques in combination with deep inspiratory breath-hold, and proton beam irradiation for women who have a high predicted heart dose from intensity-modulated radiotherapy. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  17. Expected proton signal sizes in the PRaVDA Range Telescope for proton Computed Tomography

    International Nuclear Information System (INIS)

    Price, T.; Parker, D.J.; Green, S.; Esposito, M.; Waltham, C.; Allinson, N.M.; Poludniowski, G.; Evans, P.; Taylor, J.; Manolopoulos, S.; Anaxagoras, T.; Nieto-Camero, J.

    2015-01-01

    Proton radiotherapy has demonstrated benefits in the treatment of certain cancers. Accurate measurements of the proton stopping powers in body tissues are required in order to fully optimise the delivery of such treaments. The PRaVDA Consortium is developing a novel, fully solid state device to measure these stopping powers. The PRaVDA Range Telescope (RT), uses a stack of 24 CMOS Active Pixel Sensors (APS) to measure the residual proton energy after the patient. We present here the ability of the CMOS sensors to detect changes in the signal sizes as the proton traverses the RT, compare the results with theory, and discuss the implications of these results on the reconstruction of proton tracks

  18. Heavy particle radiotherapy: prospects and pitfalls

    International Nuclear Information System (INIS)

    Faju, M.R.

    1980-01-01

    The use of heavy particles in radiotherapy of tumor volumes is examined. Particles considered are protons, helium ions, heavy ions, negative pions, and fast neutrons. Advantages and disadvantages are discussed

  19. Proton therapy detector studies under the experience gained at the CATANA facility

    International Nuclear Information System (INIS)

    Cuttone, G.; Cirrone, G.A.P.; Di Rosa, F.; Lojacono, P.A.; Lo Nigro, S.; Marino, C.; Mongelli, V.; Patti, I.V.; Pittera, S.; Raffaele, L.; Russo, G.; Sabini, M.G.; Salamone, V.; Valastro, L.M.

    2007-01-01

    Proton therapy represents the most promising radiotherapy technique for external tumor treatments. At Laboratori Nazionali del Sud of the Istituto Nazionale di Fisica Nucleare (INFN-LNS), Catania (I), a proton therapy facility is active since March 2002 and 140 patients, mainly affected by choroidal and iris melanoma, have been successfully treated. Proton beams are characterized by higher dose gradients and linear energy transfer with respect to the conventional photon and electron beams, commonly used in medical centers for radiotherapy. In this paper, we report the experience gained in the characterization of different dosimetric systems, studied and/or developed during the last ten years in our proton therapy facility

  20. Proton therapy detector studies under the experience gained at the CATANA facility

    Energy Technology Data Exchange (ETDEWEB)

    Cuttone, G.; Cirrone, G.A.P.; Di Rosa, F. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali dei Sud, Catania (Italy); Lojacono, P.A. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali dei Sud, Catania (Italy); Dipartimento di Fisica ed Astronomia, Universita degli Studi di Catania (Italy); Lo Nigro, S.; Marino, C. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali dei Sud, Catania (Italy); Dipartimento di Fisica ed Astronomia, Universita degli Studi di Catania (Italy); Centro Siciliano di Fisica Nucleare e Struttura della Materia, Catania (Italy); Mongelli, V. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali dei Sud, Catania (Italy); Dipartimento di Fisica ed Astronomia, Universita degli Studi di Catania (Italy); Patti, I.V. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali dei Sud, Catania (Italy); Pittera, S. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali dei Sud, Catania (Italy); Dipartimento di Fisica ed Astronomia, Universita degli Studi di Catania (Italy); Centro Siciliano di Fisica Nucleare e Struttura della Materia, Catania (Italy); Raffaele, L. [A.O.U. Policlinico, Universita degli Studi di Catania (Italy); Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali dei Sud, Catania (Italy); Russo, G. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali dei Sud, Catania (Italy); Dipartimento di Fisica ed Astronomia, Universita degli Studi di Catania (Italy); Sabini, M.G. [A.O. Cannizzaro, Catania (Italy); Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali dei Sud, Catania (Italy); Salamone, V.; Valastro, L.M. [A.O.U. Policlinico, Universita degli Studi di Catania (Italy); Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali dei Sud, Catania (Italy)

    2007-10-15

    Proton therapy represents the most promising radiotherapy technique for external tumor treatments. At Laboratori Nazionali del Sud of the Istituto Nazionale di Fisica Nucleare (INFN-LNS), Catania (I), a proton therapy facility is active since March 2002 and 140 patients, mainly affected by choroidal and iris melanoma, have been successfully treated. Proton beams are characterized by higher dose gradients and linear energy transfer with respect to the conventional photon and electron beams, commonly used in medical centers for radiotherapy. In this paper, we report the experience gained in the characterization of different dosimetric systems, studied and/or developed during the last ten years in our proton therapy facility.

  1. Proton therapy detector studies under the experience gained at the CATANA facility

    Science.gov (United States)

    Cuttone, G.; Cirrone, G. A. P.; Di Rosa, F.; Lojacono, P. A.; Lo Nigro, S.; Marino, C.; Mongelli, V.; Patti, I. V.; Pittera, S.; Raffaele, L.; Russo, G.; Sabini, M. G.; Salamone, V.; Valastro, L. M.

    2007-10-01

    Proton therapy represents the most promising radiotherapy technique for external tumor treatments. At Laboratori Nazionali del Sud of the Istituto Nazionale di Fisica Nucleare (INFN-LNS), Catania (I), a proton therapy facility is active since March 2002 and 140 patients, mainly affected by choroidal and iris melanoma, have been successfully treated. Proton beams are characterized by higher dose gradients and linear energy transfer with respect to the conventional photon and electron beams, commonly used in medical centers for radiotherapy.In this paper, we report the experience gained in the characterization of different dosimetric systems, studied and/or developed during the last ten years in our proton therapy facility.

  2. Hypofractionated Proton Boost Combined with External Beam Radiotherapy for Treatment of Localized Prostate Cancer

    Science.gov (United States)

    Johansson, Silvia; Åström, Lennart; Sandin, Fredrik; Isacsson, Ulf; Montelius, Anders; Turesson, Ingela

    2012-01-01

    Proton boost of 20 Gy in daily 5 Gy fractions followed by external beam radiotherapy (EBRT) of 50 Gy in daily 2 Gy fractions were given to 278 patients with prostate cancer with T1b to T4N0M0 disease. Fifty-three percent of the patients received neoadjuvant androgen deprivation therapy (N-ADT). The medium followup was 57 months. The 5-year PSA progression-free survival was 100%, 95%, and 74% for low-, intermediate-, and high-risk patients, respectively. The toxicity evaluation was supported by a patient-reported questionnaire before every consultant visit. Cumulative probability and actuarial prevalence of genitourinary (GU) and gastrointestinal (GI) toxicities are presented according to the RTOG classification. N-ADT did not influence curability. Mild pretreatment GU-symptoms were found to be a strong predictive factor for GU-toxicity attributable to treatment. The actuarial prevalence declined over 3 to 5 years for both GU and GI toxicities, indicating slow resolution of epithelial damage to the genitourinary and gastrointestinal tract. Bladder toxicities rather than gastrointestinal toxicities seem to be dose limiting. More than 5-year followup is necessary to reveal any sign of true progressive late side effects of the given treatment. Hypofractionated proton-boost combined with EBRT is associated with excellent curability of localized PC and acceptable frequencies of treatment toxicity. PMID:22848840

  3. Hypofractionated Proton Boost Combined with External Beam Radiotherapy for Treatment of Localized Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Silvia Johansson

    2012-01-01

    Full Text Available Proton boost of 20 Gy in daily 5 Gy fractions followed by external beam radiotherapy (EBRT of 50 Gy in daily 2 Gy fractions were given to 278 patients with prostate cancer with T1b to T4N0M0 disease. Fifty-three percent of the patients received neoadjuvant androgen deprivation therapy (N-ADT. The medium followup was 57 months. The 5-year PSA progression-free survival was 100%, 95%, and 74% for low-, intermediate-, and high-risk patients, respectively. The toxicity evaluation was supported by a patient-reported questionnaire before every consultant visit. Cumulative probability and actuarial prevalence of genitourinary (GU and gastrointestinal (GI toxicities are presented according to the RTOG classification. N-ADT did not influence curability. Mild pretreatment GU-symptoms were found to be a strong predictive factor for GU-toxicity attributable to treatment. The actuarial prevalence declined over 3 to 5 years for both GU and GI toxicities, indicating slow resolution of epithelial damage to the genitourinary and gastrointestinal tract. Bladder toxicities rather than gastrointestinal toxicities seem to be dose limiting. More than 5-year followup is necessary to reveal any sign of true progressive late side effects of the given treatment. Hypofractionated proton-boost combined with EBRT is associated with excellent curability of localized PC and acceptable frequencies of treatment toxicity.

  4. Radiotherapy for Vestibular Schwannomas: A Critical Review

    International Nuclear Information System (INIS)

    Murphy, Erin S.; Suh, John H.

    2011-01-01

    Vestibular schwannomas are slow-growing tumors of the myelin-forming cells that cover cranial nerve VIII. The treatment options for patients with vestibular schwannoma include active observation, surgical management, and radiotherapy. However, the optimal treatment choice remains controversial. We have reviewed the available data and summarized the radiotherapeutic options, including single-session stereotactic radiosurgery, fractionated conventional radiotherapy, fractionated stereotactic radiotherapy, and proton beam therapy. The comparisons of the various radiotherapy modalities have been based on single-institution experiences, which have shown excellent tumor control rates of 91-100%. Both stereotactic radiosurgery and fractionated stereotactic radiotherapy have successfully improved cranial nerve V and VII preservation to >95%. The mixed data regarding the ideal hearing preservation therapy, inherent biases in patient selection, and differences in outcome analysis have made the comparison across radiotherapeutic modalities difficult. Early experience using proton therapy for vestibular schwannoma treatment demonstrated local control rates of 84-100% but disappointing hearing preservation rates of 33-42%. Efforts to improve radiotherapy delivery will focus on refined dosimetry with the goal of reducing the dose to the critical structures. As future randomized trials are unlikely, we suggest regimented pre- and post-treatment assessments, including validated evaluations of cranial nerves V, VII, and VIII, and quality of life assessments with long-term prospective follow-up. The results from such trials will enhance the understanding of therapy outcomes and improve our ability to inform patients.

  5. Compensation techniques in NIRS proton beam radiotherapy

    International Nuclear Information System (INIS)

    Akanuma, A.; Majima, H.; Furukawa, S.

    1982-01-01

    Proton beam has the dose distribution advantage in radiation therapy, although it has little advantage in biological effects. One of the best advantages is its sharp fall off of dose after the peak. With proton beam, therefore, the dose can be given just to cover a target volume and potentially no dose is delivered thereafter in the beam direction. To utilize this advantage, bolus techniques in conjunction with CT scanning are employed in NIRS proton beam radiation therapy planning. A patient receives CT scanning first so that the target volume can be clearly marked and the radiation direction and fixation method can be determined. At the same time bolus dimensions are calculated. The bolus frames are made with dental paraffin sheets according to the dimensions. The paraffin frame is replaced with dental resin. Alginate (a dental impression material with favorable physical density and skin surface contact) is now employed for the bolus material. With fixation device and bolus on, which are constructed individually, the patient receives CT scanning again prior to a proton beam treatment in order to prove the devices are suitable. Alginate has to be poured into the frame right before each treatments. Further investigations are required to find better bolus materials and easier construction methods

  6. Compensation techniques in NIRS proton beam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Akanuma, A. (Univ. of Tokyo, Japan); Majima, H.; Furukawa, S.

    1982-09-01

    Proton beam has the dose distribution advantage in radiation therapy, although it has little advantage in biological effects. One of the best advantages is its sharp fall off of dose after the peak. With proton beam, therefore, the dose can be given just to cover a target volume and potentially no dose is delivered thereafter in the beam direction. To utilize this advantage, bolus techniques in conjunction with CT scanning are employed in NIRS proton beam radiation therapy planning. A patient receives CT scanning first so that the target volume can be clearly marked and the radiation direction and fixation method can be determined. At the same time bolus dimensions are calculated. The bolus frames are made with dental paraffin sheets according to the dimensions. The paraffin frame is replaced with dental resin. Alginate (a dental impression material with favorable physical density and skin surface contact) is now employed for the bolus material. With fixation device and bolus on, which are constructed individually, the patient receives CT scanning again prior to a proton beam treatment in order to prove the devices are suitable. Alginate has to be poured into the frame right before each treatments. Further investigations are required to find better bolus materials and easier construction methods.

  7. Second cancers in children treated with modern radiotherapy techniques

    International Nuclear Information System (INIS)

    Schneider, Uwe; Lomax, Antony; Timmermann, Beate

    2008-01-01

    Background and Purpose: The scattered radiation from the treatment volume might be more significant for children than for adults and, as a consequence, modern radiotherapy treatment techniques such as IMRT and passive proton therapy could potentially increase the number of secondary cancers. In this report, secondary cancer risk resulting from new treatment technologies was estimated for an adult prostate patient and a child. Material and methods: The organ equivalent dose (OED) concept with a linear-exponential, a plateau and a linear dose-response curve was applied to dose distributions of an adult prostate patient and a child with a rhabdomyosarcoma of the prostate. Conformal radiotherapy, IMRT with 6 MV photons and proton therapy were planned. OED (cancer risk) was estimated for the whole body, the rectum and the bladder. In addition, relative cumulative risk was calculated. Results: Secondary cancer risk in the adult is not more than 15% it increased when IMRT or passive proton therapy was compared to conventional treatment planning. In the child, risk remains practically constant or was even reduced for proton therapy. The cumulative risk in the child relative to that in the adult can be as large as 10-15. Conclusions: By a comparison between an adult patient and a child treated for a disease of the prostate, it was shown that modern radiotherapy techniques such as IMRT and proton therapy (active and passive) do not increase the risk for secondary cancers

  8. Dosimetric uncertainty in prostate cancer proton radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Lin Liyong; Vargas, Carlos; Hsi Wen; Indelicato, Daniel; Slopsema, Roelf; Li Zuofeng; Yeung, Daniel; Horne, Dave; Palta, Jatinder [University of Florida Proton Therapy Institute, Jacksonville, Florida 32206 (United States)

    2008-11-15

    Purpose: The authors we evaluate the uncertainty in proton therapy dose distribution for prostate cancer due to organ displacement, varying penumbra width of proton beams, and the amount of rectal gas inside the rectum. Methods and Materials: Proton beam treatment plans were generated for ten prostate patients with a minimum dose of 74.1 cobalt gray equivalent (CGE) to the planning target volume (PTV) while 95% of the PTV received 78 CGE. Two lateral or lateral oblique proton beams were used for each plan. The authors we investigated the uncertainty in dose to the rectal wall (RW) and the bladder wall (BW) due to organ displacement by comparing the dose-volume histograms (DVH) calculated with the original or shifted contours. The variation between DVHs was also evaluated for patients with and without rectal gas in the rectum for five patients who had 16 to 47 cc of visible rectal gas in their planning computed tomography (CT) imaging set. The uncertainty due to the varying penumbra width of the delivered protons for different beam setting options on the proton delivery system was also evaluated. Results: For a 5 mm anterior shift, the relative change in the RW volume receiving 70 CGE dose (V{sub 70}) was 37.9% (5.0% absolute change in 13.2% of a mean V{sub 70}). The relative change in the BW volume receiving 70 CGE dose (V{sub 70}) was 20.9% (4.3% absolute change in 20.6% of a mean V{sub 70}) with a 5 mm inferior shift. A 2 mm penumbra difference in beam setting options on the proton delivery system resulted in the relative variations of 6.1% (0.8% absolute change) and 4.4% (0.9% absolute change) in V{sub 70} of RW and BW, respectively. The data show that the organ displacements produce absolute DVH changes that generally shift the entire isodose line while maintaining the same shape. The overall shape of the DVH curve for each organ is determined by the penumbra and the distance of the target in beam's eye view (BEV) from the block edge. The beam setting

  9. Dosimetric uncertainty in prostate cancer proton radiotherapy.

    Science.gov (United States)

    Lin, Liyong; Vargas, Carlos; Hsi, Wen; Indelicato, Daniel; Slopsema, Roelf; Li, Zuofeng; Yeung, Daniel; Horne, Dave; Palta, Jatinder

    2008-11-01

    The authors we evaluate the uncertainty in proton therapy dose distribution for prostate cancer due to organ displacement, varying penumbra width of proton beams, and the amount of rectal gas inside the rectum. Proton beam treatment plans were generated for ten prostate patients with a minimum dose of 74.1 cobalt gray equivalent (CGE) to the planning target volume (PTV) while 95% of the PTV received 78 CGE. Two lateral or lateral oblique proton beams were used for each plan. The authors we investigated the uncertainty in dose to the rectal wall (RW) and the bladder wall (BW) due to organ displacement by comparing the dose-volume histograms (DVH) calculated with the original or shifted contours. The variation between DVHs was also evaluated for patients with and without rectal gas in the rectum for five patients who had 16 to 47 cc of visible rectal gas in their planning computed tomography (CT) imaging set. The uncertainty due to the varying penumbra width of the delivered protons for different beam setting options on the proton delivery system was also evaluated. For a 5 mm anterior shift, the relative change in the RW volume receiving 70 CGE dose (V70) was 37.9% (5.0% absolute change in 13.2% of a mean V70). The relative change in the BW volume receiving 70 CGE dose (V70) was 20.9% (4.3% absolute change in 20.6% of a mean V70) with a 5 mm inferior shift. A 2 mm penumbra difference in beam setting options on the proton delivery system resulted in the relative variations of 6.1% (0.8% absolute change) and 4.4% (0.9% absolute change) in V70 of RW and BW, respectively. The data show that the organ displacements produce absolute DVH changes that generally shift the entire isodose line while maintaining the same shape. The overall shape of the DVH curve for each organ is determined by the penumbra and the distance of the target in beam's eye view (BEV) from the block edge. The beam setting option producing a 2 mm sharper penumbra at the isocenter can reduce the

  10. Odds of death after glioblastoma diagnosis in the United States by chemotherapeutic era

    International Nuclear Information System (INIS)

    Wachtel, Mitchell S; Yang, Shengping

    2014-01-01

    Bevacizumab (BZM) and temozolomide (TMZ) have been shown to be beneficial in the treatment of patients with glioblastoma. We sought evidence for the benefit of BZM in the general patient population at large. The Surveillance, Epidemiology, and End Results SEER database was queried for patients diagnosed with glioblastoma between 2000 and 2009, divided into a pre-TMZ era (January 2000–June 2003), a transitional era (July 2003–March 2005), a TMZ era (April 2005–October 2007), and a BZM-TMZ era (November 2007–December 2009). Binomial logit regression analyzed odds of death, taking into account age at diagnosis, tumor size, gender, race, marital status, radiotherapy, and extensive surgery. Compared with the pre-TMZ era, odds of death were decreased in the TMZ era by 12% (97.5% CI [confidence interval] 3–20%) 6 months after diagnosis and 36% (30–42%) a year after diagnosis; corresponding values for BZM-TMZ were 31% (24–37%) and 50% (45–55%). For era comparisons, decreases in odds of death were larger at 12 than 6 months; the opposite was true for extensive surgery and radiotherapy (P < 0.025, Wald χ 2 test, for each analysis). For both 6 and 12 month comparisons, odds of death in the BZM-TMZ era were lower than in the TMZ era (P < 0.025, Wald χ 2 test, for each analysis). The results provide evidence that TMZ positively impacted survival of glioblastoma patients and that the addition of BZM further improved survival, this lends support to the addition of BZM to the chemotherapeutic armamentarium. Evaluation of odds of death is an attractive alternative to Cox regression when proportional hazards assumptions are violated and follow-up is good

  11. The future and progress of proton beam radiotherapy

    International Nuclear Information System (INIS)

    Tsujii, Hirohiko

    1994-01-01

    The advantage of proton therapy is reduction of treatment volumes relative to those feasible with conventional photon therapy. The consequence is that the radiation dose to the target can be raised, with a resultant increase in tumor control probability. Proton beams, however, yield no biological gains because their biological properties are similar to conventional low LET radiations. As more sophisticated technologies are needed, there have been many advances which are applicable to photon therapy; 3-D treatment planning, DVH analysis, and systems for positioning, etc. As of January 1994, a total of about 13,000 cases were reported as having had treatments with proton beams in 16 centers world wide. The tumor sites for those include uveal melanoma (30-40%), intra-cranial small targets (40%), and others. Uveal melanomas had been most extensively treated with 70 Gy/5 fx or 60 Gy/4 fx which resulted in local control and survival rates of >96% and 80%, respectively. For chordoma and chondrosarcoma of the skull base and cervical spine, the 5 year local control rates were 65% and 91%, respectively. Promising results are also being obtained for head and neck and pelvic tumors. Deeper-seated tumors have been treated only at Tsukuba University with successful results in some anatomic sites. Among these, inoperable primary hepatocellular carcinomas were effectively treated with a total dose of 75-85 Gy (3.0-4.5 Gy/fx). The 3 year survival rates for all patients, Child A+B patient, and Child A patients were 38%, 47%, and 60%, respectively, which compare favorably to other modalities. These successful results of world wide proton therapy have led us to the conclusion that a hospital-based proton facility will provide opportunities for additional patients to be treated with protons. Thus, new plans are proposed from more than 10 institutions to build a new treatment center or upgrade the energy of currently available proton beams. (author)

  12. Cost of New Technologies in Prostate Cancer Treatment: Systematic Review of Costs and Cost Effectiveness of Robotic-assisted Laparoscopic Prostatectomy, Intensity-modulated Radiotherapy, and Proton Beam Therapy.

    Science.gov (United States)

    Schroeck, Florian Rudolf; Jacobs, Bruce L; Bhayani, Sam B; Nguyen, Paul L; Penson, David; Hu, Jim

    2017-11-01

    Some of the high costs of robot-assisted radical prostatectomy (RARP), intensity-modulated radiotherapy (IMRT), and proton beam therapy may be offset by better outcomes or less resource use during the treatment episode. To systematically review the literature to identify the key economic trade-offs implicit in a particular treatment choice for prostate cancer. We systematically reviewed the literature according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement and protocol. We searched Medline, Embase, and Web of Science for articles published between January 2001 and July 2016, which compared the treatment costs of RARP, IMRT, or proton beam therapy to the standard treatment. We identified 37, nine, and three studies, respectively. RARP is costlier than radical retropubic prostatectomy for hospitals and payers. However, RARP has the potential for a moderate cost advantage for payers and society over a longer time horizon when optimal cancer and quality-of-life outcomes are achieved. IMRT is more expensive from a payer's perspective compared with three-dimensional conformal radiotherapy, but also more cost effective when defined by an incremental cost effectiveness ratio new versus traditional technologies is costlier. However, given the low quality of evidence and the inconsistencies across studies, the precise difference in costs remains unclear. Attempts to estimate whether this increased cost is worth the expense are hampered by the uncertainty surrounding improvements in outcomes, such as cancer control and side effects of treatment. If the new technologies can consistently achieve better outcomes, then they may be cost effective. We review the cost and cost effectiveness of robot-assisted radical prostatectomy, intensity-modulated radiotherapy, and proton beam therapy in prostate cancer treatment. These technologies are costlier than their traditional counterparts. It remains unclear whether their use is associated

  13. Influence of proton scattering angles on the energy radiograph in proton radiotherapy : A simulation study

    NARCIS (Netherlands)

    Biegun, A.K.; Takatsu, J.; van Beuzekom, M.; van der Graaf, E.R.; van Goethem, M-J.; Klaver, T.; Visser, J.; Brandenburg, S.

    2015-01-01

    The treatment quality of cancer patients with a proton beam critically depends on accurate predictions of proton stopping powers. Uncertainties in proton range that occur from translation of an X-ray CT patient image, of typical 3–4% or more, lead to necessary enlargements of contours around the

  14. Experimental radiotherapy and clinical radiobiology. Vol. 20. Proceedings

    International Nuclear Information System (INIS)

    Baumann, Michael; Dahm-Daphi, Jochen; Dikomey, Ekkehard; Petersen, Cordula; Rodemannn, Hans-Peter; Zips, Daniel

    2011-01-01

    The proceedings include contributions on the following issues: laser driven proton accelerators on the way for radiotherapy, radiobiological evaluation of new radiations; molecular factors of radiation response; biological targeting; EGFR epidermal growth factor receptor/targeting - combined internal and external irradiation, radiobiology of normal tissues; dose-volume histograms for the radiotherapy: curves without radiobiological relevance or important information for the therapy planning; HPV (human papilloma virus) and radiation sensitivity of HNSCC (head and neck squamous cell carcinomas): evidence, radiobiological mechanism, clinical consequences and perspectives; mechanisms of action and intertumoral heterogeneity of response to EGFR inhibition in radiotherapy of solid tumors; evaluation of biomarkers for radiotherapy.

  15. Online advertising and marketing claims by providers of proton beam therapy: are they guideline-based?

    Science.gov (United States)

    Corkum, Mark T; Liu, Wei; Palma, David A; Bauman, Glenn S; Dinniwell, Robert E; Warner, Andrew; Mishra, Mark V; Louie, Alexander V

    2018-03-15

    Cancer patients frequently search the Internet for treatment options, and hospital websites are seen as reliable sources of knowledge. Guidelines support the use of proton radiotherapy in specific disease sites or on clinical trials. This study aims to evaluate direct-to-consumer advertising content and claims made by proton therapy centre (PTC) websites worldwide. Operational PTC websites in English were identified through the Particle Therapy Co-Operative Group website. Data abstraction of website content was performed independently by two investigators. Eight international guidelines were consulted to determine guideline-based indications for proton radiotherapy. Univariate and multivariate logistic regression models were used to determine the characteristics of PTC websites that indicated proton radiotherapy offered greater disease control or cure rates. Forty-eight PTCs with 46 English websites were identified. 60·9% of PTC websites claimed proton therapy provided improved disease control or cure. U.S. websites listed more indications than international websites (15·5 ± 5·4 vs. 10·4 ± 5·8, p = 0·004). The most common disease sites advertised were prostate (87·0%), head and neck (87·0%) and pediatrics (82·6%), all of which were indicated in least one international guideline. Several disease sites advertised were not present in any consensus guidelines, including pancreatobiliary (52·2%), breast (50·0%), and esophageal (43·5%) cancers. Multivariate analysis found increasing number of disease sites and claiming their centre was a local or regional leader in proton radiotherapy was associated with indicating proton radiotherapy offers greater disease control or cure. Information from PTC websites often differs from recommendations found in international consensus guidelines. As online marketing information may have significant influence on patient decision-making, alignment of such information with accepted guidelines and consensus

  16. Beam monitoring in radiotherapy and hadron-therapy

    International Nuclear Information System (INIS)

    Fontbonne, J.M.

    2012-01-01

    Radiotherapy techniques have evolved over the past twenty years. For photon beams, the development of tools such as multi leaf collimators, machines such as Cyberknife or tomo-therapy, have improved the conformation of treatments to the tumor volume and lowered maximum dose to healthy tissue. In another register, the use of proton-therapy is expanding in all countries and the development of carbon ions beams for hadron-therapy is also increasing. If techniques improve, the control requirements for the monitoring of the dose administered to patients are always the same. This document presents, first, the ins and outs of the different techniques of external beam radiotherapy: photon treatments, protons and hadrons. Starting from the basis of clinical requirements, it sets the variables to be measured in order to ensure the quality of treatment for the different considered modalities. It then describes some implementations, based on precise and rigorous specifications, for the monitoring and measurement of beams delivered by external beam radiotherapy equipments. Two instrumental techniques are particularly highlighted, plastic scintillators dosimetry for the control of megavoltage photon beams and ionization chamber dosimetry applied to proton-therapy or radiobiology experiments conducted at the GANIL facility. Analyzes and perspectives, based on the recent developments of treatment techniques, are delivered in conclusion and can serve as guide for future instrumental developments. (author)

  17. Comparison of Geant4 multiple Coulomb scattering models with theory for radiotherapy protons.

    Science.gov (United States)

    Makarova, Anastasia; Gottschalk, Bernard; Sauerwein, Wolfgang

    2017-07-06

    Usually, Monte Carlo models are validated against experimental data. However, models of multiple Coulomb scattering (MCS) in the Gaussian approximation are exceptional in that we have theories which are probably more accurate than the experiments which have, so far, been done to test them. In problems directly sensitive to the distribution of angles leaving the target, the relevant theory is the Molière/Fano/Hanson variant of Molière theory (Gottschalk et al 1993 Nucl. Instrum. Methods Phys. Res. B 74 467-90). For transverse spreading of the beam in the target itself, the theory of Preston and Koehler (Gottschalk (2012 arXiv:1204.4470)) holds. Therefore, in this paper we compare Geant4 simulations, using the Urban and Wentzel models of MCS, with theory rather than experiment, revealing trends which would otherwise be obscured by experimental scatter. For medium-energy (radiotherapy) protons, and low-Z (water-like) target materials, Wentzel appears to be better than Urban in simulating the distribution of outgoing angles. For beam spreading in the target itself, the two models are essentially equal.

  18. Historical review of radiotherapy

    International Nuclear Information System (INIS)

    Onai, Yoshio

    1993-01-01

    The techniques of radiotherapy have been improved by development of particle accelerators, radionuclides and computers. This paper presents a historical review of the physical and technical aspects of radiotherapy in Japan. Changes in the kinds of radiation, such as X-rays, gamma rays, electrons, neutrons and protons used for external radiotherapy, and the equipment involved are described chronologically, and historical changes in the quality of radiotherapy apparatus are outlined. Patient data acquisition equipment, such as X-ray simulator and X-ray CT, beam modifying devices, patient setup devices, and devices to verify treatment fields and patient doses are reviewed historically. Radiation sources for brachytherapy and internal radiotherapy, and remotely controlled afterloading systems are reviewed chronologically. Historical changes in methods to evaluate absorbed doses, dose monitor systems and beam data acquisition systems are outlined. Changes in methods of calculating dose distributions for external X-ray and electron therapy, brachytherapy and internal radiotherapy by unsealded radionuclides are described and calculation techniques for treatment planning system are reviewed. Annual figures in the numbers of radiotherapy equipment, such as telecobalt and telecesium units, linear accelerators, betatrons, microtrons, stereotactic gamma units, conformation radiotherapy units, remotely controlled afterloading systems, and associated equipment such as X-ray simulators and treatment planning systems are provided, as are changes in the number of accelerators by maximum X-ray energy and maximum electron energy, and in the number of licensed hospitals and clinics using small sealed sources. Changes in techniques of external radiotherapy and brachytherapy are described briefly from the point of view of dose distributions. (author)

  19. SU-E-T-04: 3D Dose Based Patient Compensator QA Procedure for Proton Radiotherapy

    International Nuclear Information System (INIS)

    Zou, W; Reyhan, M; Zhang, M; Davis, R; Jabbour, S; Khan, A; Yue, N

    2015-01-01

    Purpose: In proton double-scattering radiotherapy, compensators are the essential patient specific devices to contour the distal dose distribution to the tumor target. Traditional compensator QA is limited to checking the drilled surface profiles against the plan. In our work, a compensator QA process was established that assess the entire compensator including its internal structure for patient 3D dose verification. Methods: The fabricated patient compensators were CT scanned. Through mathematical image processing and geometric transformations, the CT images of the proton compensator were combined with the patient simulation CT images into a new series of CT images, in which the imaged compensator is placed at the planned location along the corresponding beam line. The new CT images were input into the Eclipse treatment planning system. The original plan was calculated to the combined CT image series without the plan compensator. The newly computed patient 3D dose from the combined patientcompensator images was verified against the original plan dose. Test plans include the compensators with defects intentionally created inside the fabricated compensators. Results: The calculated 3D dose with the combined compensator and patient CT images reflects the impact of the fabricated compensator to the patient. For the test cases in which no defects were created, the dose distributions were in agreement between our method and the corresponding original plans. For the compensator with the defects, the purposely changed material and a purposely created internal defect were successfully detected while not possible with just the traditional compensator profiles detection methods. Conclusion: We present here a 3D dose verification process to qualify the fabricated proton double-scattering compensator. Such compensator detection process assesses the patient 3D impact of the fabricated compensator surface profile as well as the compensator internal material and structure changes

  20. Situation of radiotherapy in 2010 - context and methods, data for 2003/2010, synthesis

    International Nuclear Information System (INIS)

    2011-03-01

    Illustrated by data tables and figures, this report first gives an overview of the status and situation of European and French radiotherapy centres, and of care activity authorizations regarding external radiotherapy. It gives an overview of equipment used for treatments and for treatment preparation and delivery, and of the different treatment techniques (three dimensional conformational, intensity-modulated conformational, stereotactic, whole body radiotherapy, proton-therapy). It comments the activity of radiotherapy centres: patients (age, sessions, and treated pathologies), comments data regarding medical and paramedical personnel involved in radiotherapy, and financial data regarding radiotherapy in 2009

  1. TU-H-CAMPUS-JeP3-04: Factors Predicting a Need for Treatment Replanning with Proton Radiotherapy for Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Teng, C; Janssens, G; Ainsley, C; Teo, B; Valdes, G; Burgdorf, B; Berman, A; Levin, W; Xiao, Y; Lin, L; Gabriel, P; Simone, C; Solberg, T [University of Pennsylvania, Philadelphia, PA (United States)

    2016-06-15

    Purpose: Proton dose distribution is sensitive to tumor regression and tissue and normal anatomy changes. Replanning is sometimes necessary during treatment to ensure continue tumor coverage or avoid overtreatment of organs at risk (OARs). We investigated action thresholds for replanning and identified both dosimetric and non-dosimetric metrics that would predict a need for replan. Methods: All consecutive lung cancer patients (n = 188) who received definitive proton radiotherapy and had more than two evaluation CT scans at the Roberts Proton Therapy Center (Philadelphia, USA) from 2011 to 2015 were included in this study. The cohort included a variety of tumor sizes, locations, histology, beam angles, as well as radiation-induced tumor and lung change. Dosimetric changes during therapy were characterized by changes in the dose volume distribution of PTV, ITV, and OARs (heart, cord, esophagus, brachial plexus and lungs). Tumor and lung change were characterized by changes in sizes, and in the distribution of Hounsfield numbers and water equivalent thickness (WET) along the beam path. We applied machine learning tools to identify both dosimetric and non-dosimetric metrics that predicted a replan. Results: Preliminary data showed that clinical indicators (n = 54) were highly correlated; thus, a simple indicator may be derived to guide the action threshold for replanning. Additionally, tumor regression alone could not predict dosimetric changes in OARs; it required further information about beam angles and tumor locations. Conclusion: Both dosimetric and non-dosimetric factors are predictive of the need for replanning during proton treatment.

  2. Development of a Multileaf Collimator for Proton Radiotherapy

    Science.gov (United States)

    2010-06-01

    the oxygen fraction would be underestimated by the MGH calibration, and the carbon fraction would be overestimated. The differences are likely due...the Roberts Proton Therapy Center. Our long term goal is to simulate and measure proton-induced positron isotope distributions at different time...Dr. Mayer has considerable experience extending from medical physics to image-processing. Ms. Kathleen Noel and Ms. Jean Petrov, both research nurses

  3. Relative biological effectiveness (RBE) of proton beams in radiotherapy

    International Nuclear Information System (INIS)

    Calugaru, V.

    2011-01-01

    Treatment planning in proton therapy uses a generic value for the Relative Biological Efficiency (RBE) of 1.1 relative to 60 Co gamma-rays throughout the Spread Out Bragg Peak (SOBP). We have studied the variation of the RBE at three positions in the SOBP of the 76 and 201 MeV proton beams used for cancer treatment at the Institut Curie Proton Therapy in Orsay (ICPO) in two human tumor cell lines using clonogenic cell death and the incidence of DNA double-strand breaks (DSB) as measured by pulse-field gel electrophoresis without and with endonuclease treatment to reveal clustered lesions as endpoints.The RBE for induced cell killing by the 76 MeV beam increased with depth in the SOBP. However for the 201 MeV protons it was close to that for 137 Cs gamma-rays and did not vary significantly. The incidence of DSBs and clustered lesions was higher for protons than for 137 Cs g-rays, but did not depend on the proton energy or the position in the SOBP. In the second part of our work, we have shown using cell clones made deficient for known repair genes by stable or transient shRNA transfection, that the D-NHEJ pathway determine the response to protons. The response of DNA damages created in the distal part of the 76 MeV SOBP suggests that those damages belong to the class of DNA 'complex lesions' (LMDS). It also appears that the particle fluence is a major determinant of the outcome of treatment in the distal part of the SOBP. (author)

  4. Radiotherapy in prostate cancer. Innovative techniques and current controversies

    International Nuclear Information System (INIS)

    Geinitz, Hans

    2015-01-01

    Examines in detail the role of innovative radiation techniques in the management of prostate cancer, including IMRT, IGRT, BART, and modern brachytherapy. Explores a range of current controversies in patient treatment. Intended for both radiation oncologists and urologists. Radiation treatment is rapidly evolving owing to the coordinated research of physicists, engineers, computer and imaging specialists, and physicians. Today, the arsenal of ''high-precision'' or ''targeted'' radiotherapy includes multimodal imaging, in vivo dosimetry, Monte Carlo techniques for dose planning, patient immobilization techniques, intensity-modulated radiotherapy (IMRT), image-guided radiotherapy (IGRT), biologically adapted radiotherapy (BART), quality assurance methods, novel methods of brachytherapy, and, at the far end of the scale, particle beam radiotherapy using protons and carbon ions. These approaches are like pieces of a puzzle that need to be put together to provide the prostate cancer patient with high-level optimized radiation treatment. This book examines in detail the role of the above-mentioned innovative radiation techniques in the management of prostate cancer. In addition, a variety of current controversies regarding treatment are carefully explored, including whether prophylactic treatment of the pelvic lymphatics is essential, the magnitude of the effect of dose escalation, whether a benefit accrues from hypofractionation, and what evidence exists for the superiority of protons or heavy ions. Radiotherapy in Prostate Cancer: Innovative Techniques and Current Controversies is intended for both radiation oncologists and urologists with an interest in the up-to-date capabilities of modern radiation oncology for the treatment of prostate cancer.

  5. Project of compact accelerator for cancer proton therapy

    International Nuclear Information System (INIS)

    Picardi, L.; Ronsivalle, C.; Vignati, A.

    1995-04-01

    The status of the sub-projetc 'Compact Accelerator' in the framework of the Hadrontherapy Project leaded by Prof. Amaldi is described. Emphasis is given to the reasons of the use of protons for radiotherapy applications, to the results of the preliminary design studies of four types of accelerators as possible radiotherapy dedicated 'Compact Accelerator' and to the scenario of the fonts of financial resources

  6. Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions

    CERN Document Server

    AUTHOR|(CDS)2070213; Arnaldi, R.; Beraudo, A.; Bruna, E.; Caffarri, D.; del Valle, Z.Conesa; Contreras, J.G.; Dahms, T.; Dainese, A.; Djordjevic, M.; Ferreiro, E.G.; Fujii, H.; Gossiaux, P.B.; de Cassagnac, R.Granier; Hadjidakis, C.; He, M.; van Hees, H.; Horowitz, W.A.; Kolevatov, R.; Kopeliovich, B.Z.; Lansberg, J.P.; Lombardo, M.P.; Lourenço, C.; Martinez-Garcia, G.; Massacrier, L.; Mironov, C.; Mischke, A.; Nahrgang, M.; Nguyen, M.; Nystrand, J.; Peigné, S.; Porteboeuf-Houssais, S.; Potashnikova, I.K.; Rakotozafindrabe, A.; Rapp, R.; Robbe, P.; Rosati, M.; Rosnet, P.; Satz, H.; Schicker, R.; Schienbein, I.; Schmidt, I.; Scomparin, E.; Sharma, R.; Stachel, J.; Stocco, D.; Strickland, M.; Tieulent, R.; Trzeciak, B.A.; Uphoff, J.; Vitev, I.; Vogt, R.; Watanabe, K.; Woehri, H.; Zhuang, P.

    2016-01-01

    This report reviews the study of open heavy-flavour and quarkonium production in high-energy hadronic collisions, as tools to investigate fundamental aspects of Quantum Chromodynamics, from the proton and nucleus structure at high energy to deconfinement and the properties of the Quark-Gluon Plasma. Emphasis is given to the lessons learnt from LHC Run 1 results, which are reviewed in a global picture with the results from SPS and RHIC at lower energies, as well as to the questions to be addressed in the future. The report covers heavy flavour and quarkonium production in proton-proton, proton-nucleus and nucleus-nucleus collisions. This includes discussion of the effects of hot and cold strongly interacting matter, quarkonium photo-production in nucleus-nucleus collisions and perspectives on the study of heavy flavour and quarkonium with upgrades of existing experiments and new experiments. The report results from the activity of the SaporeGravis network of the I3 Hadron Physics programme of the European Unio...

  7. Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Andronic, A. [GSI Helmholzzentrum fuer Schwerionenforschung, Research Division, ExtreMe Matter Institute (EMMI), Darmstadt (Germany); Arleo, F. [Ecole Polytechnique, CNRS/IN2P3, Universite Paris-Saclay, Laboratoire Leprince-Ringuet, Palaiseau (France); Universite de Savoie, CNRS, Laboratoire d' Annecy-le-Vieux de Physique Theorique (LAPTh), Annecy-le-Vieux (France); Arnaldi, R.; Beraudo, A.; Bruna, E.; Scomparin, E. [INFN, Sezione di Torino, Turin (Italy); Caffarri, D.; Lourenco, C.; Woehri, H. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Del Valle, Z.C.; Hadjidakis, C.; Lansberg, J.P. [CNRS/IN2P3, Universite Paris-Saclay, IPNO, Univ. Paris-Sud, Orsay Cedex (France); Contreras, J.G.; Trzeciak, B.A. [Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Prague (Czech Republic); Dahms, T. [Technische Universitaet Muenchen, Excellence Cluster Universe, Munich (Germany); Dainese, A. [INFN, Sezione di Padova, Padua (Italy); Djordjevic, M. [University of Belgrade, Institute of Physics Belgrade (Serbia); Ferreiro, E.G. [Universidad de Santiago de Compostela, Departamento de Fisica de Particulas, IGFAE, Santiago de Compostela (Spain); Fujii, H. [University of Tokyo, Institute of Physics, Tokyo (Japan); Gossiaux, P.B.; Martinez-Garcia, G.; Peigne, S.; Stocco, D. [Ecole des Mines de Nantes, Universite de Nantes, CNRS-IN2P3, SUBATECH, Nantes (France); Cassagnac, R.G. de; Mironov, C.; Nguyen, M. [Ecole Polytechnique, CNRS/IN2P3, Universite Paris-Saclay, Laboratoire Leprince-Ringuet, Palaiseau (France); He, M. [Nanjing University of Science and Technology, Department of Applied Physics, Nanjing (China); Hees, H. van [FIAS, Institute for Theoretical Physics, Frankfurt (Germany); Horowitz, W.A. [University of Cape Town, Department of Physics, Cape Town (South Africa); Kolevatov, R. [Ecole des Mines de Nantes, Universite de Nantes, CNRS-IN2P3, SUBATECH, Nantes (France); Saint-Petersburg State University, Department of High Energy Physics, Saint Petersburg (Russian Federation); Kopeliovich, B.Z.; Potashnikova, I.K.; Schmidt, I. [Centro Cientifico-Tecnologico de Valparaiso, Universidad Tecnica Federico Santa Maria, Departamento de Fisica, Valparaiso (Chile); Lombardo, M.P. [INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Massacrier, L. [CNRS/IN2P3, Universite Paris-Saclay, IPNO, Univ. Paris-Sud, Orsay Cedex (France); Ecole des Mines de Nantes, Universite de Nantes, CNRS-IN2P3, SUBATECH, Nantes (France); Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, LAL, Orsay (France); Mischke, A. [Utrecht University, Faculty of Science, Institute for Subatomic Physics, Utrecht (Netherlands); National Institute for Subatomic Physics, Amsterdam (Netherlands); Nahrgang, M. [Duke University, Department of Physics, Durham (United States); Nystrand, J. [University of Bergen, Department of Physics and Technology, Bergen (Norway); Porteboeuf-Houssais, S.; Rosnet, P. [Universite Clermont Auvergne, Universite Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire (LPC), Clermont-Ferrand (France); Rakotozafindrabe, A. [IRFU/SPhN, CEA Saclay, Gif-sur-Yvette Cedex (France); Rapp, R. [Texas A and M University, Department of Physics and Astronomy, Cyclotron Institute, College Station (United States); Robbe, P. [Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, LAL, Orsay (France); Rosati, M. [Iowa State University, Ames (United States); Satz, H. [Universitaet Bielefeld, Fakultaet fuer Physik, Bielefeld (Germany); Schicker, R.; Stachel, J. [Ruprecht-Karls-Universitaet Heidelberg, Physikalisches Institut, Heidelberg (Germany); Schienbein, I. [Universite Grenoble-Alpes, CNRS/IN2P3, Laboratoire de Physique Subatomique et de Cosmologie, Grenoble (France); Sharma, R. [Tata Institute of Fundamental Research, Department of Theoretical Physics, Mumbai (India); Strickland, M. [Kent State University, Department of Physics, Kent (United States); Tieulent, R. [IPN-Lyon, Universite de Lyon, Universite Lyon 1, CNRS/IN2P3, Villeurbanne (France); Uphoff, J. [Johann Wolfgang Goethe-Universitaet, Institut fuer Theoretische Physik, Frankfurt am Main (Germany); Vitev, I. [Los Alamos National Laboratory, Theoretical Division, Los Alamos (United States); Vogt, R. [Lawrence Livermore National Laboratory, Physics Division, Livermore (United States); University of California, Physics Department, Davis (United States); Watanabe, K. [University of Tokyo, Institute of Physics, Tokyo (Japan); Central China Normal University, Key Laboratory of Quark and Lepton Physics (MOE), Institute of Particle Physics, Wuhan (China); Zhuang, P. [Collaborative Innovation Center of Quantum Matter, Tsinghua University, Physics Department, Beijing (China)

    2016-03-15

    This report reviews the study of open heavy-flavour and quarkonium production in high-energy hadronic collisions, as tools to investigate fundamental aspects of Quantum Chromodynamics, from the proton and nucleus structure at high energy to deconfinement and the properties of the Quark-Gluon Plasma. Emphasis is given to the lessons learnt from LHC Run 1 results, which are reviewed in a global picture with the results from SPS and RHIC at lower energies, as well as to the questions to be addressed in the future. The report covers heavy flavour and quarkonium production in proton-proton, proton-nucleus and nucleus-nucleus collisions. This includes discussion of the effects of hot and cold strongly interacting matter, quarkonium photoproduction in nucleus-nucleus collisions and perspectives on the study of heavy flavour and quarkonium with upgrades of existing experiments and new experiments. The report results from the activity of the SaporeGravis network of the I3 Hadron Physics programme of the European Union 7th Framework Programme. (orig.)

  8. Synthesis and characterization of water-dispersible core/shell Mn-doped magnetite/Au nanoparticles for proton radiotherapy

    International Nuclear Information System (INIS)

    Park, Jeong Chan

    2015-01-01

    The surface modification of the nanomaterials is required for the biomedical use to give physiological stability, surface reactivity and targeting properties. Among many approaches for the surface modification with materials, such as polymers, organic ligands and metals, one of the most attractive ways is to employ metals. The fabrication of metal-based, monolayer coated magnetic nanoparticles has been intensively studied. However, the synthesis of metal-capped magnetic nanoparticles with monodispersities and controllable sizes is still challenged. Recently, gold-capped magnetic nanoparticles have been reported to increase stability and to provide biocompatibility. Gold-coated magnetic nanoparticles are an attractive system, which can be stabilized in biological conditions and readily functionalized through well-established surface modification chemistry. In addition, the Au coating offers plasmonic properties to magnetic nanoparticles. This makes the magnetic/Au core/shell combinations interesting for magnetic and optical applications. The monodisperse Mn:Fe3O4/Au nanoparticles have been prepared in organic solvent first and then transferred from an organic phase to an aqueous solution. The resulting core/shell-structured nanoparticles may be an attractive system for biomedical applications, which are needed both magnetic resonance imaging and optical imaging. In addition, the resulting nanoparticles may be useful for proton radiotherapy due to the enhanced therapeutic effects of secondary radiation stemmed from gold and proton beam bombardment

  9. A new silicon tracker for proton imaging and dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, J.T., E-mail: jtaylor@hep.ph.liv.ac.uk [Department of Physics, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Waltham, C. [Laboratory of Vision Engineering, School of Computer Science, University of Lincoln, Lincoln LN6 7TS (United Kingdom); Price, T. [School of Physics and Astronomy, University of Birmingham, Birmingham B25 2TT (United Kingdom); Allinson, N.M. [Laboratory of Vision Engineering, School of Computer Science, University of Lincoln, Lincoln LN6 7TS (United Kingdom); Allport, P.P. [School of Physics and Astronomy, University of Birmingham, Birmingham B25 2TT (United Kingdom); Casse, G.L. [Department of Physics, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Kacperek, A. [Douglas Cyclotron, The Clatterbridge Cancer Centre NHS Foundation Trust, Clatterbridge Road, Bebington, Wirral CH63 4JY (United Kingdom); Manger, S. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Smith, N.A.; Tsurin, I. [Department of Physics, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom)

    2016-09-21

    For many years, silicon micro-strip detectors have been successfully used as tracking detectors for particle and nuclear physics experiments. A new application of this technology is to the field of particle therapy where radiotherapy is carried out by use of charged particles such as protons or carbon ions. Such a treatment has been shown to have advantages over standard x-ray radiotherapy and as a result of this, many new centres offering particle therapy are currently under construction around the world today. The Proton Radiotherapy, Verification and Dosimetry Applications (PRaVDA) consortium are developing instrumentation for particle therapy based upon technology from high-energy physics. The characteristics of a new silicon micro-strip tracker for particle therapy will be presented. The array uses specifically designed, large area sensors with technology choices that follow closely those taken for the ATLAS experiment at the HL-LHC. These detectors will be arranged into four units each with three layers in an x–u–v configuration to be suitable for fast proton tracking with minimal ambiguities. The sensors will form a tracker capable of tracing the path of ~200 MeV protons entering and exiting a patient allowing a new mode of imaging known as proton computed tomography (pCT). This will aid the accurate delivery of treatment doses and in addition, the tracker will also be used to monitor the beam profile and total dose delivered during the high fluences used for treatment. We present here details of the design, construction and assembly of one of the four units that will make up the complete tracker along with its characterisation using radiation tests carried out using a {sup 90}Sr source in the laboratory and a 60 MeV proton beam at the Clatterbridge Cancer Centre.

  10. Cost-effectiveness analysis of cochlear dose reduction by proton beam therapy for medulloblastoma in childhood

    International Nuclear Information System (INIS)

    Hirano, Emi; Kawabuchi, Koichi; Fuji, Hiroshi; Onoe, Tsuyoshi; Kumar, Vinay; Shirato, Hiroki

    2014-01-01

    The aim of this study is to evaluate the cost-effectiveness of proton beam therapy with cochlear dose reduction compared with conventional X-ray radiotherapy for medulloblastoma in childhood. We developed a Markov model to describe health states of 6-year-old children with medulloblastoma after treatment with proton or X-ray radiotherapy. The risks of hearing loss were calculated on cochlear dose for each treatment. Three types of health-related quality of life (HRQOL) of EQ-5D, HUI3 and SF-6D were used for estimation of quality-adjusted life years (QALYs). The incremental cost-effectiveness ratio (ICER) for proton beam therapy compared with X-ray radiotherapy was calculated for each HRQOL. Sensitivity analyses were performed to model uncertainty in these parameters. The ICER for EQ-5D, HUI3 and SF-6D were $21 716/QALY, $11 773/QALY, and $20 150/QALY, respectively. One-way sensitivity analyses found that the results were sensitive to discount rate, the risk of hearing loss after proton therapy, and costs of proton irradiation. Cost-effectiveness acceptability curve analysis revealed a 99% probability of proton therapy being cost effective at a societal willingness-to-pay value. Proton beam therapy with cochlear dose reduction improves health outcomes at a cost that is within the acceptable cost-effectiveness range from the payer's standpoint. (author)

  11. Proton Beam Radiotherapy for Uveal Melanomas at Nice Teaching Hospital: 16 Years' Experience

    International Nuclear Information System (INIS)

    Caujolle, Jean-Pierre; Mammar, Hamid; Chamorey, Emmanuel Phar; Pinon, Fabien; Herault, Joel; Gastaud, Pierre

    2010-01-01

    Purpose: To present the results of uveal melanomas treated at Nice Teaching Hospital. Methods and Materials: This retrospective study included 886 consecutive patients referred to our clinic for the treatment of uveal melanomas by proton beam radiotherapy from June 1991 to December 2007. Survival rates were determined by using Kaplan-Meier estimates, and prognostic factors were evaluated using the log-rank test or Cox model. Results: The number (percent total) of subjects staged according to the TNM classification system (6th edition) of malignant tumors included 39 stage T1 (4.4%), 420 stage T2 (47.40%), 409 stage T3 (46.16%), and 18 stage T4 (2.03%) patients. The median follow-up was 63.7 months. The Kaplan-Meier overall survival rate at 5 years according to the sixth edition TNM classification was 92% for T1, 89% for T2, 67% for T3, and 62% for T4; and at 10 years, 86% for T1, 78% for T2, 43% for T3, and 41% for T4. Five factors were found to be associated with an increased death rate: advanced age, tumor thickness, largest tumor basal diameter, tumor volume, and tumor volume-to-eyeball volume ratio. The metastasis-free survival rates were 88.3 % at 5 years and 76.4 % at 10 years. The local control rates were 93.9% at 5 years and 92.1% at 10 years. The ocular conservation rates were 91.1% at 5 years and 87.3% at 10 years. Conclusions: We report the results of a large series of patients treated for uveal melanomas with a very long follow-up. Despite the large tumor volume treated, our results were similar to previously published findings relating to proton beam therapy.

  12. The progress in radiotherapy techniques and it's clinical implications

    International Nuclear Information System (INIS)

    Reinfuss, M.; Walasek, T.; Byrski, E.; Blecharz, P.

    2011-01-01

    Three modem radiotherapy techniques were introduced into clinical practice at the onset of the 21 st century - stereotactic radiation therapy (SRT), proton therapy and carbon-ion radiotherapy. Our paper summarizes the basic principles of physics, as well as the technical reqirements and clinical indications for those techniques. SRT is applied for intracranial diseases (arteriovenous malformations, acoustic nerve neuromas, brain metastases, skull base tumors) and in such cases it is referred to as stereotactic radiosurgery (SRS). Techniques used during SRS include GammaKnife, CyberKnife and dedicated linacs. SRT can also be applied for extracranial disease (non-small cell lung cancer, lung metastases, spinal and perispinal tumors, primary liver tumors, breast cancer, pancreatic tumors, prostate cancer, head and neck tumors) and in such cases it is referred to as stereotactic body radiation therapy (SBRT). Eye melanomas, skull base and cervical spine chordomas and chordosarcomas, as well as childhood neoplasms, are considered to be the classic indications for proton therapy. Clinical trials are currently conducted to investigate the usefulness of proton beam in therapy of non-small cell lung cancer, prostate cancer, head and neck tumors, primary liver and oesophageal cancer Carbon-ion radiotherapy is presumed to be more advantageous than proton therapy because of its higher relative biological effectiveness (RBE) and possibility of real-time control of the irradiated volume under PET visualization. The basic indications for carbon-ion therapy are salivary glands neoplasms, selected types of soft tissue and bone sarcomas, skull base chordomas and chordosarcomas, paranasal sinus neoplasms, primary liver cancers and inoperable rectal adenocarcinoma recurrences. (authors)

  13. Radiotherapy in prostate cancer. Innovative techniques and current controversies

    Energy Technology Data Exchange (ETDEWEB)

    Geinitz, Hans [Krankenhaus der Barmherzigen Schwestern, Linz (Austria). Dept. of Radiation Oncology; Linz Univ. (Austria). Medical Faculty; Roach, Mack III [California Univ., San Francisco, CA (United States). Dept. of Radiation Oncology; Van As, Nicholas (ed.) [The Institute of Cancer Research, Sutton Surrey (United Kingdom)

    2015-04-01

    Examines in detail the role of innovative radiation techniques in the management of prostate cancer, including IMRT, IGRT, BART, and modern brachytherapy. Explores a range of current controversies in patient treatment. Intended for both radiation oncologists and urologists. Radiation treatment is rapidly evolving owing to the coordinated research of physicists, engineers, computer and imaging specialists, and physicians. Today, the arsenal of ''high-precision'' or ''targeted'' radiotherapy includes multimodal imaging, in vivo dosimetry, Monte Carlo techniques for dose planning, patient immobilization techniques, intensity-modulated radiotherapy (IMRT), image-guided radiotherapy (IGRT), biologically adapted radiotherapy (BART), quality assurance methods, novel methods of brachytherapy, and, at the far end of the scale, particle beam radiotherapy using protons and carbon ions. These approaches are like pieces of a puzzle that need to be put together to provide the prostate cancer patient with high-level optimized radiation treatment. This book examines in detail the role of the above-mentioned innovative radiation techniques in the management of prostate cancer. In addition, a variety of current controversies regarding treatment are carefully explored, including whether prophylactic treatment of the pelvic lymphatics is essential, the magnitude of the effect of dose escalation, whether a benefit accrues from hypofractionation, and what evidence exists for the superiority of protons or heavy ions. Radiotherapy in Prostate Cancer: Innovative Techniques and Current Controversies is intended for both radiation oncologists and urologists with an interest in the up-to-date capabilities of modern radiation oncology for the treatment of prostate cancer.

  14. WE-D-BRE-03: Late Toxicity Following Photon Or Proton Radiotherapy in Patients with Brain Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Munbodh, R; Ding, X; Yin, L; Anamalayil, S; Dorsey, J; Lustig, R; Alonso-Basanta, M [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States)

    2014-06-15

    Purpose: To identify indicators of Late Grade 3 (LG3) toxicity, late vision and hearing changes in patients treated for primary brain tumors with photon (XRT) or proton radiotherapy (PRT). Methods: We retrospectively reviewed 102 patients who received brain XRT or PRT to doses of 54 or 59.6 Gy in daily fractions of 1.8–2 Gy. Of the 80 patients (34 XRT, 39 PRT and 7 both modalities) reviewed for indicators of LG3 toxicity, 25 developed LG3 toxicity 90 to 500 days after radiotherapy completion. 55 patients had less than LG3 toxicity > 500 days after treatment. In that time, late vision and hearing changes were seen in 44 of 75 and 25 of 78 patients, respectively. The correlation between late toxicity and prescription dose, planning target volume (PTV) size, and doses to the brainstem, brain, optic chiasm, optic nerves, eyes and cochlea was evaluated. A two-tailed Fisher's exact test and Wilcoxon rank sum test were used for the statistical analysis for XRT, PRT and all patients combined. Results: Exceeding the 54 Gy-5% dose-volume brainstem constraint, but not the optic structure constraints, was significantly correlated (p < 0.05) with late vision changes in all three groups. Exceeding maximum and mean cochlear doses of 45 and 30 Gy, respectively, was a significant indicator of hearing changes (p < 0.05) in PRT patients and all patients combined. In a sub-group of 52 patients in whom the brain was contoured, the absolute brain volume receiving ≤ 50 Gy and > 60 Gy was significantly larger in patients with LG3 toxicity for all patients combined (p < 0.05). Prescription dose, brainstem dose and PTV volume were not correlated to LG3 toxicity. Conclusion: Our results indicate the importance of minimizing the brain volume irradiated, and brainstem and cochlea doses to reduce the risk of late toxicities following brain radiotherapy.

  15. SU-F-R-01: Preclinical Radioimmunogenomics Study to Design Personalized Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Abdollahi, H [Iran University of Medical Sciences, Tehran, Iran, Tehran, Tehran (Iran, Islamic Republic of)

    2016-06-15

    Purpose: Radiogenomics is an active area of research to find clinical correlation between genomics and radiotherapy outcomes. In this era, many different biological issues should be taken into account. In this study we aimed to introduce “Radioimmunogenomics” as a new approach to study immunogetics issue regard to radiotherapy induced clinical manifestations. Methods: We studied different immunological pathways and signaling molecules which underling radiation response of normal and malignant tissues. In the other hand, we found many genes and proteins are responsible to radiation effects on biological tissues. We defined a theoretical framework to correlate these genes with radiotherapy outcomes as TCP and NTCP biological dose tools. Results: Our theoretical results showed, high-throughput immunogenomics biomarkers can be correlated with radiotherapy outcomes. Genes regarding to inflammation, apoptosis, repair molecules and many other immunological markers can be defined as radioimmune markers to predict radiotherapy response. Conclusion: Radioimmunogenomics can be used as a new personalized radiotherapy research area to enhance treatment outcome as well as quality of life.

  16. Moving toward multi-dimensional radiotherapy and the role of radiobiology

    International Nuclear Information System (INIS)

    Oita, Masataka; Uto, Yoshihiro; Aoyama, Hideki

    2014-01-01

    Recent radiotherapy for cancer treatment enable the high-precision irradiation to the target under the computed image guidance. Developments of such radiotherapy has played large role in the improved strategy of cancer treatments. In addition, the molecular mechanistic studies related to proliferations of cancer cell contribute the multidisciplinary fields of clinical radiotherapies. Therefore, the combination of the image guidance and molecular targeting of cancer cells make it possible for individualized cancer treatment. Especially, the use of particle beam or boron neutron capture therapy (BNCT) has been spotlighted, and installations of such devices are planned widely. As the progress and collaborations of radiation biology and engineering physics, establishment of a new style of radiotherapy becomes available in post-genome era. In 2010s, the hi-tech machines controlling the spaciotemporal radiotherapy become in practice. Although, there still remains to be improved, e.g., more precise prediction of radiosensitivity or growth of individual tumors, and adverse outcomes after treatments, multi-dimensional optimizations of the individualized irradiations based on the molecular radiation biologies and medical physics are important for further development of radiotherapy. (author)

  17. Dose mapping sensitivity to deformable registration uncertainties in fractionated radiotherapy – applied to prostate proton treatments

    International Nuclear Information System (INIS)

    Tilly, David; Tilly, Nina; Ahnesjö, Anders

    2013-01-01

    Calculation of accumulated dose in fractionated radiotherapy based on spatial mapping of the dose points generally requires deformable image registration (DIR). The accuracy of the accumulated dose thus depends heavily on the DIR quality. This motivates investigations of how the registration uncertainty influences dose planning objectives and treatment outcome predictions. A framework was developed where the dose mapping can be associated with a variable known uncertainty to simulate the DIR uncertainties in a clinical workflow. The framework enabled us to study the dependence of dose planning metrics, and the predicted treatment outcome, on the DIR uncertainty. The additional planning margin needed to compensate for the dose mapping uncertainties can also be determined. We applied the simulation framework to a hypofractionated proton treatment of the prostate using two different scanning beam spot sizes to also study the dose mapping sensitivity to penumbra widths. The planning parameter most sensitive to the DIR uncertainty was found to be the target D 95 . We found that the registration mean absolute error needs to be ≤0.20 cm to obtain an uncertainty better than 3% of the calculated D 95 for intermediate sized penumbras. Use of larger margins in constructing PTV from CTV relaxed the registration uncertainty requirements to the cost of increased dose burdens to the surrounding organs at risk. The DIR uncertainty requirements should be considered in an adaptive radiotherapy workflow since this uncertainty can have significant impact on the accumulated dose. The simulation framework enabled quantification of the accuracy requirement for DIR algorithms to provide satisfactory clinical accuracy in the accumulated dose

  18. Radiotherapy in Cancer Care: Facing the Global Challenge

    International Nuclear Information System (INIS)

    Rosenblatt, Eduardo; Zubizarreta, Eduardo

    2017-06-01

    Cancer treatment is complex and calls for a diverse set of services. Radiotherapy is recognized as an essential tool in the cure and palliation of cancer. Currently, access to radiation treatment is limited in many countries and non-existent in some. This lack of radiotherapy resources exacerbates the burden of disease and underscores the continuing health care disparity among States. Closing this gap represents an essential measure in addressing this global health equity problem. This publication presents a comprehensive overview of the major topics and issues to be taken into consideration when planning a strategy to address this problem, in particular in low and middle income countries. With contributions from leaders in the field, it provides an introduction to the achievements and issues of radiation therapy as a cancer treatment modality around the world. Dedicated chapters focus on proton therapy, carbon ion radiotherapy, intraoperative radiotherapy, radiotherapy for children, HIV/AIDS related malignancies, and costing and quality management issues.

  19. Dosimetric comparison of photon and proton treatment techniques for chondrosarcoma of thoracic spine

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Poonam, E-mail: yadav@humonc.wisc.edu [Department of Human Oncology, University of Wisconsin, Madison, WI (United States); Department of Medical Physics, University of Wisconsin, Madison, WI (United States); University of Wisconsin Riverview Cancer Center, Wisconsin Rapids, WI (United States); Paliwal, Bhudatt R. [Department of Human Oncology, University of Wisconsin, Madison, WI (United States); Department of Medical Physics, University of Wisconsin, Madison, WI (United States); Kozak, Kevin [Department of Human Oncology, University of Wisconsin, Madison, WI (United States)

    2013-10-01

    Chondrosarcomas are relatively radiotherapy resistant, and also delivering high radiation doses is not feasible owing to anatomic constraints. In this study, the feasibility of helical tomotherapy for treatment of chondrosarcoma of thoracic spine is explored and compared with other available photon and proton radiotherapy techniques in the clinical setting. A patient was treated for high-grade chondrosarcoma of the thoracic spine using tomotherapy. Retrospectively, the tomotherapy plan was compared with intensity-modulated radiation therapy, dynamic arc photon therapy, and proton therapy. Two primary comparisons were made: (1) comparison of normal tissue sparing with comparable target volume coverage (plan-1), and (2) comparison of target volume coverage with a constrained maximum dose to the cord center (plan-2). With constrained target volume coverage, proton plans were found to yield lower mean doses for all organs at risk (spinal cord, esophagus, heart, and both lungs). Tomotherapy planning resulted in the lowest mean dose to all organs at risk amongst photon-based methods. For cord dose constrained plans, the static-field intensity-modulated radiation therapy and dynamic arc plans resulted target underdosing in 20% and 12% of planning target volume2 volumes, respectively, whereas both proton and tomotherapy plans provided clinically acceptable target volume coverage with no portion of planning target volume2 receiving less than 90% of the prescribed dose. Tomotherapy plans are comparable to proton plans and produce superior results compared with other photon modalities. This feasibility study suggests that tomotherapy is an attractive alternative to proton radiotherapy for delivering high doses to lesions in the thoracic spine.

  20. Dosimetric comparison of photon and proton treatment techniques for chondrosarcoma of thoracic spine

    International Nuclear Information System (INIS)

    Yadav, Poonam; Paliwal, Bhudatt R.; Kozak, Kevin

    2013-01-01

    Chondrosarcomas are relatively radiotherapy resistant, and also delivering high radiation doses is not feasible owing to anatomic constraints. In this study, the feasibility of helical tomotherapy for treatment of chondrosarcoma of thoracic spine is explored and compared with other available photon and proton radiotherapy techniques in the clinical setting. A patient was treated for high-grade chondrosarcoma of the thoracic spine using tomotherapy. Retrospectively, the tomotherapy plan was compared with intensity-modulated radiation therapy, dynamic arc photon therapy, and proton therapy. Two primary comparisons were made: (1) comparison of normal tissue sparing with comparable target volume coverage (plan-1), and (2) comparison of target volume coverage with a constrained maximum dose to the cord center (plan-2). With constrained target volume coverage, proton plans were found to yield lower mean doses for all organs at risk (spinal cord, esophagus, heart, and both lungs). Tomotherapy planning resulted in the lowest mean dose to all organs at risk amongst photon-based methods. For cord dose constrained plans, the static-field intensity-modulated radiation therapy and dynamic arc plans resulted target underdosing in 20% and 12% of planning target volume2 volumes, respectively, whereas both proton and tomotherapy plans provided clinically acceptable target volume coverage with no portion of planning target volume2 receiving less than 90% of the prescribed dose. Tomotherapy plans are comparable to proton plans and produce superior results compared with other photon modalities. This feasibility study suggests that tomotherapy is an attractive alternative to proton radiotherapy for delivering high doses to lesions in the thoracic spine

  1. Off-axis dose equivalent due to secondary neutrons from uniform scanning proton beams during proton radiotherapy

    Science.gov (United States)

    Islam, M. R.; Collums, T. L.; Zheng, Y.; Monson, J.; Benton, E. R.

    2013-11-01

    The production of secondary neutrons is an undesirable byproduct of proton therapy and it is important to quantify the contribution from secondary neutrons to patient dose received outside the treatment volume. The purpose of this study is to investigate the off-axis dose equivalent from secondary neutrons experimentally using CR-39 plastic nuclear track detectors (PNTD) at ProCure Proton Therapy Center, Oklahoma City, OK. In this experiment, we placed several layers of CR-39 PNTD laterally outside the treatment volume inside a phantom and in air at various depths and angles with respect to the primary beam axis. Three different proton beams with max energies of 78, 162 and 226 MeV and 4 cm modulation width, a 5 cm diameter brass aperture, and a small snout located 38 cm from isocenter were used for the entire experiment. Monte Carlo simulations were also performed based on the experimental setup using a simplified snout configuration and the FLUKA Monte Carlo radiation transport code. The measured ratio of secondary neutron dose equivalent to therapeutic primary proton dose (H/D) ranged from 0.3 ± 0.08 mSv Gy-1 for 78 MeV proton beam to 37.4 ± 2.42 mSv Gy-1 for 226 MeV proton beam. Both experiment and simulation showed a similar decreasing trend in dose equivalent with distance to the central axis and the magnitude varied by a factor of about 2 in most locations. H/D was found to increase as the energy of the primary proton beam increased and higher H/D was observed at 135° compared to 45° and 90°. The overall higher H/D in air indicates the predominance of external neutrons produced in the nozzle rather than inside the body.

  2. Off-axis dose equivalent due to secondary neutrons from uniform scanning proton beams during proton radiotherapy

    International Nuclear Information System (INIS)

    Islam, M R; Collums, T L; Monson, J; Benton, E R; Zheng, Y

    2013-01-01

    The production of secondary neutrons is an undesirable byproduct of proton therapy and it is important to quantify the contribution from secondary neutrons to patient dose received outside the treatment volume. The purpose of this study is to investigate the off-axis dose equivalent from secondary neutrons experimentally using CR-39 plastic nuclear track detectors (PNTD) at ProCure Proton Therapy Center, Oklahoma City, OK. In this experiment, we placed several layers of CR-39 PNTD laterally outside the treatment volume inside a phantom and in air at various depths and angles with respect to the primary beam axis. Three different proton beams with max energies of 78, 162 and 226 MeV and 4 cm modulation width, a 5 cm diameter brass aperture, and a small snout located 38 cm from isocenter were used for the entire experiment. Monte Carlo simulations were also performed based on the experimental setup using a simplified snout configuration and the FLUKA Monte Carlo radiation transport code. The measured ratio of secondary neutron dose equivalent to therapeutic primary proton dose (H/D) ranged from 0.3 ± 0.08 mSv Gy −1  for 78 MeV proton beam to 37.4 ± 2.42 mSv Gy −1  for 226 MeV proton beam. Both experiment and simulation showed a similar decreasing trend in dose equivalent with distance to the central axis and the magnitude varied by a factor of about 2 in most locations. H/D was found to increase as the energy of the primary proton beam increased and higher H/D was observed at 135° compared to 45° and 90°. The overall higher H/D in air indicates the predominance of external neutrons produced in the nozzle rather than inside the body. (paper)

  3. Child cranio-pharyngioma: the benefit of proton-therapy; Craniopharyngiome de l'enfant: interet de la protontherapie

    Energy Technology Data Exchange (ETDEWEB)

    Alapetite, C.; Bolle, S. [Institut Curie, 75 - Paris (France); Alapetite, C.; Habrand, J.L.; Bolle, S.; Datchary, J.; Nauraye, C.; De Marzy, L. [Institut Curie Centre de protontherapie d' Orsay, 91 - Orsay (France); Puget, S.; Sainte Rose, C. [Hopital Necker-Enfants Malades, 75 - Paris (France); Habrand, J.L.; Datchary, J. [Institut Gustave-Roussy, 94 - Villejuif (France); Noel, G. [Centre Paul-Strauss, 67 - Strasbourg (France); Laffond, C. [Hopital national Saint-Maurice, Saint-Maurice (France)

    2010-10-15

    Based on a survey concerning 33 children suffering from cranio-pharyngiomas, the authors report a comparison of the dosimetry of different techniques (three-dimensional conformational radiotherapy, intensity-modulated conformation radiotherapy or IMRT, and proton therapy). They show that the ballistic peculiarities of proton beams result in a better protection of proximity critical structures and a reduction of the parenchyma total dose, and therefore in morbidity reduction without altering the local control rate. Short communication

  4. Projected Second Tumor Risk and Dose to Neurocognitive Structures After Proton Versus Photon Radiotherapy for Benign Meningioma

    Energy Technology Data Exchange (ETDEWEB)

    Arvold, Nils D. [Harvard Radiation Oncology Program, Harvard Medical School, Boston, MA (United States); Niemierko, Andrzej; Broussard, George P.; Adams, Judith; Fullerton, Barbara; Loeffler, Jay S. [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Shih, Helen A., E-mail: hshih@partners.org [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States)

    2012-07-15

    Purpose: To calculated projected second tumor rates and dose to organs at risk (OAR) in patients with benign intracranial meningioma (BM), according to dosimetric comparisons between proton radiotherapy (PRT) and photon radiotherapy (XRT) treatment plans. Methods and Materials: Ten patients with BM treated at Massachusetts General Hospital during 2006-2010 with PRT were replanned with XRT (intensity-modulated or three-dimensional conformal radiotherapy), optimizing dose to the tumor while sparing OAR. Total dose was 54 Gy in 1.8 Gy per fraction for all plans. We calculated equivalent uniform doses, normal tissue complication probabilities, and whole brain-based estimates of excess risk of radiation-associated intracranial second tumors. Results: Excess risk of second tumors was significantly lower among PRT compared with XRT plans (1.3 vs. 2.8 per 10,000 patients per year, p < 0.002). Mean equivalent uniform doses were lower among PRT plans for the whole brain (19.0 vs. 22.8 Gy, p < 0.0001), brainstem (23.8 vs. 35.2 Gy, p = 0.004), hippocampi (left, 13.5 vs. 25.6 Gy, p < 0.0001; right, 7.6 vs. 21.8 Gy, p = 0.001), temporal lobes (left, 25.8 vs. 34.6 Gy, p = 0.007; right, 25.8 vs. 32.9 Gy, p = 0.008), pituitary gland (29.2 vs. 37.0 Gy, p = 0.047), optic nerves (left, 28.5 vs. 33.8 Gy, p = 0.04; right, 25.1 vs. 31.1 Gy, p = 0.07), and cochleas (left, 12.2 vs. 15.8 Gy, p = 0.39; right,1.5 vs. 8.8 Gy, p = 0.01). Mean normal tissue complication probability was <1% for all structures and not significantly different between PRT and XRT plans. Conclusions: Compared with XRT, PRT for BM decreases the risk of RT-associated second tumors by half and delivers significantly lower doses to neurocognitive and critical structures of vision and hearing.

  5. Projected Second Tumor Risk and Dose to Neurocognitive Structures After Proton Versus Photon Radiotherapy for Benign Meningioma

    International Nuclear Information System (INIS)

    Arvold, Nils D.; Niemierko, Andrzej; Broussard, George P.; Adams, Judith; Fullerton, Barbara; Loeffler, Jay S.; Shih, Helen A.

    2012-01-01

    Purpose: To calculated projected second tumor rates and dose to organs at risk (OAR) in patients with benign intracranial meningioma (BM), according to dosimetric comparisons between proton radiotherapy (PRT) and photon radiotherapy (XRT) treatment plans. Methods and Materials: Ten patients with BM treated at Massachusetts General Hospital during 2006–2010 with PRT were replanned with XRT (intensity-modulated or three-dimensional conformal radiotherapy), optimizing dose to the tumor while sparing OAR. Total dose was 54 Gy in 1.8 Gy per fraction for all plans. We calculated equivalent uniform doses, normal tissue complication probabilities, and whole brain–based estimates of excess risk of radiation-associated intracranial second tumors. Results: Excess risk of second tumors was significantly lower among PRT compared with XRT plans (1.3 vs. 2.8 per 10,000 patients per year, p < 0.002). Mean equivalent uniform doses were lower among PRT plans for the whole brain (19.0 vs. 22.8 Gy, p < 0.0001), brainstem (23.8 vs. 35.2 Gy, p = 0.004), hippocampi (left, 13.5 vs. 25.6 Gy, p < 0.0001; right, 7.6 vs. 21.8 Gy, p = 0.001), temporal lobes (left, 25.8 vs. 34.6 Gy, p = 0.007; right, 25.8 vs. 32.9 Gy, p = 0.008), pituitary gland (29.2 vs. 37.0 Gy, p = 0.047), optic nerves (left, 28.5 vs. 33.8 Gy, p = 0.04; right, 25.1 vs. 31.1 Gy, p = 0.07), and cochleas (left, 12.2 vs. 15.8 Gy, p = 0.39; right,1.5 vs. 8.8 Gy, p = 0.01). Mean normal tissue complication probability was <1% for all structures and not significantly different between PRT and XRT plans. Conclusions: Compared with XRT, PRT for BM decreases the risk of RT-associated second tumors by half and delivers significantly lower doses to neurocognitive and critical structures of vision and hearing.

  6. Proton-counting radiography for proton therapy: a proof of principle using CMOS APS technology

    International Nuclear Information System (INIS)

    Poludniowski, G; Esposito, M; Evans, P M; Allinson, N M; Anaxagoras, T; Green, S; Parker, D J; Price, T; Manolopoulos, S; Nieto-Camero, J

    2014-01-01

    Despite the early recognition of the potential of proton imaging to assist proton therapy (Cormack 1963 J. Appl. Phys. 34 2722), the modality is still removed from clinical practice, with various approaches in development. For proton-counting radiography applications such as computed tomography (CT), the water-equivalent-path-length that each proton has travelled through an imaged object must be inferred. Typically, scintillator-based technology has been used in various energy/range telescope designs. Here we propose a very different alternative of using radiation-hard CMOS active pixel sensor technology. The ability of such a sensor to resolve the passage of individual protons in a therapy beam has not been previously shown. Here, such capability is demonstrated using a 36 MeV cyclotron beam (University of Birmingham Cyclotron, Birmingham, UK) and a 200 MeV clinical radiotherapy beam (iThemba LABS, Cape Town, SA). The feasibility of tracking individual protons through multiple CMOS layers is also demonstrated using a two-layer stack of sensors. The chief advantages of this solution are the spatial discrimination of events intrinsic to pixelated sensors, combined with the potential provision of information on both the range and residual energy of a proton. The challenges in developing a practical system are discussed. (paper)

  7. Proton-counting radiography for proton therapy: a proof of principle using CMOS APS technology.

    Science.gov (United States)

    Poludniowski, G; Allinson, N M; Anaxagoras, T; Esposito, M; Green, S; Manolopoulos, S; Nieto-Camero, J; Parker, D J; Price, T; Evans, P M

    2014-06-07

    Despite the early recognition of the potential of proton imaging to assist proton therapy (Cormack 1963 J. Appl. Phys. 34 2722), the modality is still removed from clinical practice, with various approaches in development. For proton-counting radiography applications such as computed tomography (CT), the water-equivalent-path-length that each proton has travelled through an imaged object must be inferred. Typically, scintillator-based technology has been used in various energy/range telescope designs. Here we propose a very different alternative of using radiation-hard CMOS active pixel sensor technology. The ability of such a sensor to resolve the passage of individual protons in a therapy beam has not been previously shown. Here, such capability is demonstrated using a 36 MeV cyclotron beam (University of Birmingham Cyclotron, Birmingham, UK) and a 200 MeV clinical radiotherapy beam (iThemba LABS, Cape Town, SA). The feasibility of tracking individual protons through multiple CMOS layers is also demonstrated using a two-layer stack of sensors. The chief advantages of this solution are the spatial discrimination of events intrinsic to pixelated sensors, combined with the potential provision of information on both the range and residual energy of a proton. The challenges in developing a practical system are discussed.

  8. Evaluation of pituitary toxicity after radiotherapy for cerebral chondrosarcomas in adult patients

    OpenAIRE

    Laroche , Suzanne,

    2016-01-01

    Pituitary dysfunction is a late-delayed side effect of cranial radiotherapy. The object of this study was to evaluate radiation induced pituitary toxicity of proton beam therapy in a cohort of adult chondrosarcoma patients. The files of 113 patients were reviewed retrospectively. Mean age at the beginning of radiotherapy was 43 years old (18 to 76). Mean dose delivered to the tumor was 67 Gy and mean dose delivered to the pituitary gland was 59 Gy. Mean post radiotherapy follow up time was 7 ...

  9. Non-invasive anesthesia for children undergoing proton radiation therapy

    International Nuclear Information System (INIS)

    Owusu-Agyemang, Pascal; Grosshans, David; Arunkumar, Radha; Rebello, Elizabeth; Popovich, Shannon; Zavala, Acsa; Williams, Cynthia; Ruiz, Javier; Hernandez, Mike; Mahajan, Anita; Porche, Vivian

    2014-01-01

    Background: Proton therapy is a newer modality of radiotherapy during which anesthesiologists face specific challenges related to the setup and duration of treatment sessions. Purpose: Describe our anesthesia practice for children treated in a standalone proton therapy center, and report on complications encountered during anesthesia. Materials and methods: A retrospective review of anesthetic records for patients ⩽18 years of age treated with proton therapy at our institution between January 2006 and April 2013 was performed. Results: A total of 9328 anesthetics were administered to 340 children with a median age of 3.6 years (range, 0.4–14.2). The median daily anesthesia time was 47 min (range, 15–79). The average time between start of anesthesia to the start of radiotherapy was 7.2 min (range, 1–83 min). All patients received Total Intravenous Anesthesia (TIVA) with spontaneous ventilation, with 96.7% receiving supplemental oxygen by non-invasive methods. None required daily endotracheal intubation. Two episodes of bradycardia, and one episode each of; seizure, laryngospasm and bronchospasm were identified for a cumulative incidence of 0.05%. Conclusions: In this large series of children undergoing proton therapy at a freestanding center, TIVA without daily endotracheal intubation provided a safe, efficient, and less invasive option of anesthetic care

  10. Physical and biological basis of hadron radiotherapy. Book of abstracts

    International Nuclear Information System (INIS)

    2011-09-01

    The Workshop was a satellite event of the 14 th International Congress of Radiation Research (ICRR-2011). It was held in Cracow, Poland, on the 2 and 3 September 2011, at the Collegium Novum of the Jagiellonian University. The Workshop organized, jointly by the Institute of Nuclear Physics of the Polish Academy of Sciences and the Polish Radiation Research Society, would provide its participants with an opportunity to discuss current topics in proton and carbon radiotherapy, clinical aspects of ion radiotherapy, ion beam dosimetry, unwanted patient exposure, radiobiology for ion radiotherapy and other relevant subjects. Book of Abstracts contains abstracts of 33 oral presentations and 12 posters.

  11. Physical and biological factors determining the effective proton range

    International Nuclear Information System (INIS)

    Grün, Rebecca; Friedrich, Thomas; Krämer, Michael; Scholz, Michael; Zink, Klemens; Durante, Marco; Engenhart-Cabillic, Rita

    2013-01-01

    Purpose: Proton radiotherapy is rapidly becoming a standard treatment option for cancer. However, even though experimental data show an increase of the relative biological effectiveness (RBE) with depth, particularly at the distal end of the treatment field, a generic RBE of 1.1 is currently used in proton radiotherapy. This discrepancy might affect the effective penetration depth of the proton beam and thus the dose to the surrounding tissue and organs at risk. The purpose of this study was thus to analyze the impact of a tissue and dose dependent RBE of protons on the effective range of the proton beam in comparison to the range based on a generic RBE of 1.1.Methods: Factors influencing the biologically effective proton range were systematically analyzed by means of treatment planning studies using the Local Effect Model (LEM IV) and the treatment planning software TRiP98. Special emphasis was put on the comparison of passive and active range modulation techniques.Results: Beam energy, tissue type, and dose level significantly affected the biological extension of the treatment field at the distal edge. Up to 4 mm increased penetration depth as compared to the depth based on a constant RBE of 1.1. The extension of the biologically effective range strongly depends on the initial proton energy used for the most distal layer of the field and correlates with the width of the distal penumbra. Thus, the range extension, in general, was more pronounced for passive as compared to active range modulation systems, whereas the maximum RBE was higher for active systems.Conclusions: The analysis showed that the physical characteristics of the proton beam in terms of the width of the distal penumbra have a great impact on the RBE gradient and thus also the biologically effective penetration depth of the beam

  12. Will ALICE run in the HL-LHC era?

    International Nuclear Information System (INIS)

    Wessels, J.P.

    2012-01-01

    We will present the perspectives for ion running in the HL-LHC era. In particular, ALICE is preparing a significant upgrade of its rate capabilities and is further extending its particle identification potential. This paves the way for heavy ion physics at unprecedented luminosities, which are expected in the HL-LHC era with the heaviest ions. Here, we outline a scenario, in which ALICE will be taking data at a luminosity of L > 6*10 27 cm -2 *s -1 for Pb-Pb with the aim of collecting at least 10 nb -1 . The potential interest of data-taking during high luminosity proton runs for ATLAS and CMS will also be commented. (author)

  13. Deformable motion reconstruction for scanned proton beam therapy using on-line x-ray imaging

    NARCIS (Netherlands)

    Zhang, Ye; Knopf, A; Tanner, Colby; Boye, Dirk; Lomax, Antony J.

    2013-01-01

    Organ motion is a major problem for any dynamic radiotherapy delivery technique, and is particularly so for spot scanned proton therapy. On the other hand, the use of narrow, magnetically deflected proton pencil beams is potentially an ideal delivery technique for tracking tumour motion on-line. At

  14. Dosimetry of clinical neutron and proton beams: An overview of recommendations

    International Nuclear Information System (INIS)

    Vynckier, S.

    2004-01-01

    Neutron therapy beams are obtained by accelerating protons or deuterons on Beryllium. These neutron therapy beams present comparable dosimetric characteristics as those for photon beams obtained with linear accelerators; for instance, the penetration of a p(65) + Be neutron beam is comparable with the penetration of an 8 MV photon beam. In order to be competitive with conventional photon beam therapy, the dosimetric characteristics of the neutron beam should therefore not deviate too much from the photon beam characteristics. This paper presents a brief summary of the neutron beams used in radiotherapy. The dosimetry of the clinical neutron beams is described. Finally, recent and future developments in the field of physics for neutron therapy is mentioned. In the last two decades, a considerable number of centres have established radiotherapy treatment facilities using proton beams with energies between 50 and 250 MeV. Clinical applications require a relatively uniform dose to be delivered to the volume to be treated, and for this purpose the proton beam has to be spread out, both laterally and in depth. The technique is called 'beam modulation' and creates a region of high dose uniformity referred to as the 'spread-out Bragg peak'. Meanwhile, reference dosimetry in these beams had to catch up with photon and electron beams for which a much longer tradition of dosimetry exists. Proton beam dosimetry can be performed using different types of dosemeters, such as calorimeters, Faraday cups, track detectors and ionisation chambers. National standard dosimetry laboratories will, however, not provide a standard for the dosimetry of proton beams. To achieve uniformity on an international level, the use of an ionisation chamber should be considered. This paper reviews and summarises the basic principles and recommendations for the absorbed dose determination in a proton beam, utilising ionisation chambers calibrated in terms of absorbed dose to water. These recommendations

  15. Pencil beam scanning proton therapy vs rotational arc radiation therapy: A treatment planning comparison for postoperative oropharyngeal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Apinorasethkul, Ontida, E-mail: Ontida.a@gmail.com; Kirk, Maura; Teo, Kevin; Swisher-McClure, Samuel; Lukens, John N.; Lin, Alexander

    2017-04-01

    Patients diagnosed with head and neck cancer are traditionally treated with photon radiotherapy. Proton therapy is currently being used clinically and may potentially reduce treatment-related toxicities by minimizing the dose to normal organs in the treatment of postoperative oropharyngeal cancer. The finite range of protons has the potential to significantly reduce normal tissue toxicity compared to photon radiotherapy. Seven patients were planned with both proton and photon modalities. The planning goal for both modalities was achieving the prescribed dose to 95% of the planning target volume (PTV). Dose-volume histograms were compared in which all cases met the target coverage goals. Mean doses were significantly lower in the proton plans for the oral cavity (1771 cGy photon vs 293 cGy proton, p < 0.001), contralateral parotid (1796 cGy photon vs 1358 proton, p < 0.001), and the contralateral submandibular gland (3608 cGy photon vs 3251 cGy proton, p = 0.03). Average total integral dose was 9.1% lower in proton plans. The significant dosimetric sparing seen with proton therapy may lead to reduced side effects such as pain, weight loss, taste changes, and dry mouth. Prospective comparisons of protons vs photons for disease control, toxicity, and patient-reported outcomes are therefore warranted and currently being pursued.

  16. Proton irradiation augments the reduction in tumor progression observed with advanced age

    Data.gov (United States)

    National Aeronautics and Space Administration — Proton irradiation is touted for its improved tumor targeting due to the physical advantages of ion beams for radiotherapy. Recent studies from our laboratory have...

  17. Aftereffect of radiotherapy of upper aero-digestive tracts in odontological care

    International Nuclear Information System (INIS)

    Schiochet, Luc

    2010-01-01

    In its first part, this thesis proposes a detailed presentation of the upper aero-digestive tract cancer. The author defines the cancerous process, describes anatomic aspects, and discusses epidemiological aspects (occurrence, mortality, survival, and epidemiological data in different countries). In the second part, the author discusses the role of radiotherapy and of dental surgery in taking a cancerous patient into care (general principles of radiotherapy, therapeutic options and choices, association of radiotherapy, chemotherapy and surgery). Principles of radiotherapy are then more precisely addressed: physical principles (X rays, gamma rays, electrons, neutrons, and protons), radioactivity doses, radiotherapy effect, main equipment, radiotherapy techniques (conformational or intensity-modulated radiotherapy, computed tomography, Cyberknife, external radiotherapy, brachytherapy). The third part addresses early oral-facial complications induced by radiotherapy: factors favouring these complications, nervous effects, effects on the blood system and on the skin, hyposialia and xerostomia, radio-induced mucositis of upper aero-digestive tracts. The next part addresses late effects: late cutaneous after-effects, late radio-mucositis, limitation of mouth opening, tooth decays, osteoradionecrosis. The last part addresses the role of the dental surgeon in taking into care a patient whose head and neck have been irradiated: role before irradiation, during irradiation, and after irradiation [fr

  18. Proton therapy

    International Nuclear Information System (INIS)

    Jongen, Y.

    1995-01-01

    Ideal radiotherapy deposits a large amount of energy in the tumour volume, and none in the surrounding healthy tissues. Proton therapy comes closer to this goal because of a greater concentration of dose, well defined proton ranges and points of energy release which are precisely known - the Bragg peak1. In the past, the development of clinical proton therapy has been hampered by complexity, size, and cost. To be clinically effective, energies of several hundred MeV are required; these were previously unavailable for hospital installations, and pioneering institutions had to work with complex, inadequate equipment originally intended for nuclear physics research. Recently a number of specialist organizations and commercial companies have been working on dedicated systems for proton therapy. One, IBA of Belgium, has equipment for inhouse hospital operation which encompasses a complete therapy centre, delivered as a turnkey package and incorporating a compact, automated, higher energy cyclotron with isocentric gantries. Their system will be installed at Massachusetts General Hospital, Boston. The proton therapy system comprises: - a 235 MeV isochronous cyclotron to deliver beams of up to 1.5 microamps, but with a hardware limitation to restrict the maximum possible dose; - variable energy beam (235 to 70 MeV ) with energy spread and emittance verification; - a beam transport and switching system to connect the exit of the energy selection system to the entrances of a number of gantries and fixed beamlines. Along the beam transport system, the beam characteristics are monitored with non-interceptive multiwire ionization chambers for automatic tuning; - gantries fitted with nozzles and beamline elements for beam control; both beam scattering and beam wobbling techniques are available for shaping the beam;

  19. Technology for bolus verification in proton therapy

    Science.gov (United States)

    Shipulin, K. N.; Mytsin, G. V.; Agapov, A. V.

    2015-01-01

    To ensure the conformal depth-dose distribution of a proton beam within a target volume, complex shaped range shifters (so-called boluses), which account for the heterogeneous structure of patient tissue and organs in the beam path, were calculated and manufactured. The precise manufacturing of proton compensators used for patient treatment is a vital step in quality assurance in proton therapy. In this work a software-hardware complex that verifies the quality and precision of bolus manufacturing at the Medico-Technical Complex (MTC) was developed. The boluses consisted of a positioning system with two photoelectric biosensors. We evaluated 20 boluses used in proton therapy of five patients. A total number of 2562 experimental points were measured, of which only two points had values that differed from the calculated value by more than 0.5 mm. The other data points displayed a deviation within ±0.5 mm from the calculated value. The technology for bolus verification developed in this work can be used for the high precision testing of geometrical parameters of proton compensators in radiotherapy.

  20. Significant reduction of normal tissue dose by proton radiotherapy compared with three-dimensional conformal or intensity-modulated radiation therapy in Stage I or Stage III non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Chang, Joe Y.; Zhang Xiaodong; Wang Xiaochun; Kang Yixiu; Riley, Beverly C.; Bilton, Stephen C.; Mohan, Radhe; Komaki, Ritsuko; Cox, James D.

    2006-01-01

    Purpose: To compare dose-volume histograms (DVH) in patients with non-small-cell lung cancer (NSCLC) treated by photon or proton radiotherapy. Methods and Materials: Dose-volume histograms were compared between photon, including three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), and proton plans at doses of 66 Gy, 87.5 Gy in Stage I (n = 10) and 60-63 Gy, and 74 Gy in Stage III (n 15). Results: For Stage I, the mean total lung V5, V10, and V20 were 31.8%, 24.6%, and 15.8%, respectively, for photon 3D-CRT with 66 Gy, whereas they were 13.4%, 12.3%, and 10.9%, respectively, with proton with dose escalation to 87.5 cobalt Gray equivalents (CGE) (p = 0.002). For Stage III, the mean total lung V5, V10, and V20 were 54.1%, 46.9%, and 34.8%, respectively, for photon 3D-CRT with 63 Gy, whereas they were 39.7%, 36.6%, and 31.6%, respectively, for proton with dose escalation to 74 CGE (p = 0.002). In all cases, the doses to lung, spinal cord, heart, esophagus, and integral dose were lower with proton therapy even compared with IMRT. Conclusions: Proton treatment appears to reduce dose to normal tissues significantly, even with dose escalation, compared with standard-dose photon therapy, either 3D-CRT or IMRT

  1. Changing prostate-specific antigen outcome after surgery or radiotherapy for localized prostate cancer during the prostate-specific antigen era

    International Nuclear Information System (INIS)

    D'Amico, Anthony V.; Chen, M.-H.; Oh-Ung, Jean; Renshaw, Andrew A.; Cote, Kerri; Loffredo, Marian; Richie, Jerome P.

    2002-01-01

    Purpose: To evaluate the change in prostate-specific antigen (PSA) outcome after radical prostatectomy (RP) or external beam radiotherapy (EBRT), controlling for follow-up during the PSA era. Methods and Materials: The study cohort consisted of 1440 patients with clinically localized prostate cancer managed with RP (n=1059) or EBRT (n=381) between 1989 and 2000. A single genitourinary pathologist reviewed all pathology specimens. For patients with a 2-year minimal follow-up, the 2-year actual PSA outcome stratified by risk group (low vs. high) was calculated for three periods (January 1, 1989 to December 31, 1992; January 1, 1993 to December 31, 1996; and January 1, 1997 to December 31, 2000) and compared for each treatment modality. PSA failure was defined using the American Society for Therapeutic Radiology and Oncology consensus definition for all patients, and comparisons were made using a chi-square metric. Results: During the study period, the proportion of patients treated with RP and EBRT with low-risk disease increased significantly (p <0.0001) from 60% to 89% and from 26% to 76%, respectively. In addition, the 2-year actual PSA outcome also improved from 60% to 82% (RP: p<0.0001) and from 67% to 91% (RT: p=0.0008). The 2-year actual PSA outcome was not significantly different in the low-risk patients but improved during the three periods in the high-risk patients treated with RP (from 20% to 39% to 75%, p=0.0004) or EBRT (from 50% to 59% to 83%, p=0.01). This improvement in PSA outcome could be explained by a shift toward a more favorable PSA level (RP: p=0.0002; RT: p=0.006) and clinical T stage (RP: p=0.0008, RT: p<0.0001) distribution for patients with biopsy Gleason score ≥7 disease. Conclusion: Improved PSA outcome during the PSA era after RP or EBRT has resulted from a shift in presentation toward low-risk disease and earlier detection of high-grade disease

  2. Cardiac dose sparing and avoidance techniques in breast cancer radiotherapy

    International Nuclear Information System (INIS)

    Shah, Chirag; Badiyan, Shahed; Berry, Sameer; Khan, Atif J.; Goyal, Sharad; Schulte, Kevin; Nanavati, Anish; Lynch, Melanie; Vicini, Frank A.

    2014-01-01

    Breast cancer radiotherapy represents an essential component in the overall management of both early stage and locally advanced breast cancer. As the number of breast cancer survivors has increased, chronic sequelae of breast cancer radiotherapy become more important. While recently published data suggest a potential for an increase in cardiac events with radiotherapy, these studies do not consider the impact of newer radiotherapy techniques commonly utilized. Therefore, the purpose of this review is to evaluate cardiac dose sparing techniques in breast cancer radiotherapy. Current options for cardiac protection/avoidance include (1) maneuvers that displace the heart from the field such as coordinating the breathing cycle or through prone patient positioning, (2) technological advances such as intensity modulated radiation therapy (IMRT) or proton beam therapy (PBT), and (3) techniques that treat a smaller volume around the lumpectomy cavity such as accelerated partial breast irradiation (APBI), or intraoperative radiotherapy (IORT). While these techniques have shown promise dosimetrically, limited data on late cardiac events exist due to the difficulties of long-term follow up. Future studies are required to validate the efficacy of cardiac dose sparing techniques and may use surrogates for cardiac events such as biomarkers or perfusion imaging

  3. Proton therapy Monte Carlo SRNA-VOX code

    Directory of Open Access Journals (Sweden)

    Ilić Radovan D.

    2012-01-01

    Full Text Available The most powerful feature of the Monte Carlo method is the possibility of simulating all individual particle interactions in three dimensions and performing numerical experiments with a preset error. These facts were the motivation behind the development of a general-purpose Monte Carlo SRNA program for proton transport simulation in technical systems described by standard geometrical forms (plane, sphere, cone, cylinder, cube. Some of the possible applications of the SRNA program are: (a a general code for proton transport modeling, (b design of accelerator-driven systems, (c simulation of proton scattering and degrading shapes and composition, (d research on proton detectors; and (e radiation protection at accelerator installations. This wide range of possible applications of the program demands the development of various versions of SRNA-VOX codes for proton transport modeling in voxelized geometries and has, finally, resulted in the ISTAR package for the calculation of deposited energy distribution in patients on the basis of CT data in radiotherapy. All of the said codes are capable of using 3-D proton sources with an arbitrary energy spectrum in an interval of 100 keV to 250 MeV.

  4. Third step report of the National Committee for the follow-up of radiotherapy

    International Nuclear Information System (INIS)

    Maraninchi, D.; Lacoste, A.C.; Marimbert, J.; Degos, L.; Lartigau, E.; Le Du, D.; Saout, C.; Houssin, D.; Podeur, A.; Renody, N.; Depenweiller, C.; Goinere, R. c

    2010-08-01

    In a first part, this report presents actions undertaken during the first half of 2010 to support the evolution of radiotherapy professions and care organization (increasing the number of radiotherapists, the possibility of welcoming radio-physics trainees, supporting the profession of technician in dosimetry), to strengthen the vigilance system in radiotherapy, to support the implementation of authorizations and agreement criteria, and to define the R and D prospective in radiotherapy. The second part addresses some actions of the 2009-2013 Cancer Plan (support for practice quality and safety in authorized radiotherapy centres, strengthening of human means in these centres, updating good practice recommendations). The third part addresses actions regarding international cooperation and comparison (international conference, French posture at the European level and in proton therapy)

  5. Dosimetry in radiotherapy with natural diamond detectors

    International Nuclear Information System (INIS)

    De Angelis, C.; Onori, S.; Pacilio, M.; Cirrone, G.A.P.; Cuttone, G.; Raffaele, L.; Bucciolini, M.; Mazzocchi, S.

    2002-01-01

    There is wide interest in the use of diamond detectors for dosimetry in radiotherapy mainly because of the small dimensions, radiation hardness, nearly tissue equivalence of sensitive material and capability to deliver the dosimetric response 'on line'. In order to assess the dosimetric properties of PTW Riga diamond detectors type 60003, experiments were performed in conventional (high energy photon and electron) therapy beams as well as in proton therapy beams. The main detector features investigated were reproducibility of response, dose-signal relationship, temperature dependence, dose-rate dependence, energy dependence and angular dependence. High energy photons (6-25 MV) and electrons (6-22 MeV), available at the Radiotherapy Department of the Florence University, were used for investigating the general properties. Two different PTW diamond detectors of the same type were used to evidence inter-sample differences. The beam quality dependence of the detector response is probably the most critical point and this statement is of particular relevance for proton dosimetry since the proton LET changes with depth in the medium. Mainly because of the little information available on detector sensitivity variations with beam energy, the use of diamonds for clinical proton dosimetry is not widespread. In two recent papers a sensitivity dependence on proton energy of a natural PTW diamond detector has been reported. Due to the necessity to characterise each diamond detector individually the PTW Riga natural diamond detector in operation at the LNS-INFN, Catania, Italy was tested with the local proton beam line. This experiment is of main concern because this proton beam, produced by a superconducting cyclotron and used for ocular melanoma treatment, is available only since 2001 (CATANA beam). The first patient has been treated in February 2002. Proton irradiations were performed with non modulated and modulated 62 MeV beams. Attention was focused on diamond sensitivity

  6. Supine proton beam craniospinal radiotherapy using a novel tabletop adapter

    International Nuclear Information System (INIS)

    Buchsbaum, Jeffrey C.; Besemer, Abby; Simmons, Joseph; Hoene, Ted; Simoneaux, Victor; Sandefur, Amy; Wolanski, Mark; Li, Zhao; Cheng, Chee-Wei

    2013-01-01

    To develop a device that allows supine craniospinal proton and photon therapy to the vast majority of proton and photon facilities currently experiencing limitations as a result of couch design issues. Plywood and carbon fiber were used for the development of a prototype unit. Once this was found to be satisfactory after all design issues were addressed, computer-assisted design (CAD) was used and carbon fiber tables were built to our specifications at a local manufacturer of military and racing car carbon fiber parts. Clinic-driven design was done using real-time team discussion for a prototype design. A local machinist was able to construct a prototype unit for us in <2 weeks after the start of our project. Once the prototype had been used successfully for several months and all development issues were addressed, a custom carbon fiber design was developed in coordination with a carbon fiber manufacturer in partnership. CAD methods were used to design the units to allow oblique fields from head to thigh on patients up to 200 cm in height. Two custom-designed carbon fiber craniospinal tabletop designs now exist: one long and one short. Four are in successful use in our facility. Their weight tolerance is greater than that of our robot table joint (164 kg). The long unit allows for working with taller patients and can be converted into a short unit as needed. An affordable, practical means of doing supine craniospinal therapy with protons or photons can be used in most locations via the use of these devices. This is important because proton therapy provides a much lower integral dose than all other therapy methods for these patients and the supine position is easier for patients to tolerate and for anesthesia delivery. These units have been successfully used for adult and pediatric supine craniospinal therapy, proton therapy using oblique beams to the low pelvis, treatment of various spine tumors, and breast-sparing Hodgkin's therapy

  7. Supine proton beam craniospinal radiotherapy using a novel tabletop adapter

    Energy Technology Data Exchange (ETDEWEB)

    Buchsbaum, Jeffrey C., E-mail: jbuchsba@iupui.edu [IU Health Proton Therapy Center, Bloomington, IN (United States); Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN (United States); Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN (United States); Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN (United States); Besemer, Abby; Simmons, Joseph; Hoene, Ted; Simoneaux, Victor; Sandefur, Amy [IU Health Proton Therapy Center, Bloomington, IN (United States); Wolanski, Mark; Li, Zhao; Cheng, Chee-Wei [IU Health Proton Therapy Center, Bloomington, IN (United States); Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN (United States)

    2013-04-01

    To develop a device that allows supine craniospinal proton and photon therapy to the vast majority of proton and photon facilities currently experiencing limitations as a result of couch design issues. Plywood and carbon fiber were used for the development of a prototype unit. Once this was found to be satisfactory after all design issues were addressed, computer-assisted design (CAD) was used and carbon fiber tables were built to our specifications at a local manufacturer of military and racing car carbon fiber parts. Clinic-driven design was done using real-time team discussion for a prototype design. A local machinist was able to construct a prototype unit for us in <2 weeks after the start of our project. Once the prototype had been used successfully for several months and all development issues were addressed, a custom carbon fiber design was developed in coordination with a carbon fiber manufacturer in partnership. CAD methods were used to design the units to allow oblique fields from head to thigh on patients up to 200 cm in height. Two custom-designed carbon fiber craniospinal tabletop designs now exist: one long and one short. Four are in successful use in our facility. Their weight tolerance is greater than that of our robot table joint (164 kg). The long unit allows for working with taller patients and can be converted into a short unit as needed. An affordable, practical means of doing supine craniospinal therapy with protons or photons can be used in most locations via the use of these devices. This is important because proton therapy provides a much lower integral dose than all other therapy methods for these patients and the supine position is easier for patients to tolerate and for anesthesia delivery. These units have been successfully used for adult and pediatric supine craniospinal therapy, proton therapy using oblique beams to the low pelvis, treatment of various spine tumors, and breast-sparing Hodgkin's therapy.

  8. Assessment of improved organ at risk sparing for advanced cervix carcinoma utilizing precision radiotherapy techniques

    Energy Technology Data Exchange (ETDEWEB)

    Georg, D.; Georg, P.; Hillbrand, M.; Poetter, R.; Mock, U. [Dept. of Radiotherapy, Medical Univ. AKH, Vienna (Austria)

    2008-11-15

    Purpose: to evaluate the potential benefit of proton therapy and photon based intensity-modulated radiotherapy in comparison to 3-D conformal photon radiotherapy (3D-CRT) in locally advanced cervix cancer. Patients and methods: in five patients with advanced cervix cancer 3D-CRT (four-field box) was compared with intensity modulated photon (IMXT) and proton therapy (IMPT) as well as proton beam therapy (PT) based on passive scattering. Planning target volumes (PTVs) included primary tumor and pelvic and para-aortic lymph nodes. Dose-volume histograms (DVHs) were analyzed for the PTV and various organs at risk (OARs) (rectal wall, bladder, small bowel, colon, femoral heads, and kidneys). In addition dose conformity, dose inhomogeneity and overall volumes of 50% isodoses were assessed. Results: all plans were comparable concerning PTV parameters. Large differences between photon and proton techniques were seen in volumes of the 50% isodoses and conformity indices. DVH for colon and small bowel were significantly improved with PT and IMPT compared to IMXT, with D{sub mean} reductions of 50-80%. Doses to kidneys and femoral heads could also be substantially reduced with PT and IMPT. Sparing of rectum and bladder was superior with protons as well but less pronounced. Conclusion: proton beam RT has significant potential to improve treatment related side effects in the bowel compared to photon beam RT in patients with advanced cervix carcinoma. (orig.)

  9. Assessment of improved organ at risk sparing for advanced cervix carcinoma utilizing precision radiotherapy techniques

    International Nuclear Information System (INIS)

    Georg, D.; Georg, P.; Hillbrand, M.; Poetter, R.; Mock, U.

    2008-01-01

    Purpose: to evaluate the potential benefit of proton therapy and photon based intensity-modulated radiotherapy in comparison to 3-D conformal photon radiotherapy (3D-CRT) in locally advanced cervix cancer. Patients and methods: in five patients with advanced cervix cancer 3D-CRT (four-field box) was compared with intensity modulated photon (IMXT) and proton therapy (IMPT) as well as proton beam therapy (PT) based on passive scattering. Planning target volumes (PTVs) included primary tumor and pelvic and para-aortic lymph nodes. Dose-volume histograms (DVHs) were analyzed for the PTV and various organs at risk (OARs) (rectal wall, bladder, small bowel, colon, femoral heads, and kidneys). In addition dose conformity, dose inhomogeneity and overall volumes of 50% isodoses were assessed. Results: all plans were comparable concerning PTV parameters. Large differences between photon and proton techniques were seen in volumes of the 50% isodoses and conformity indices. DVH for colon and small bowel were significantly improved with PT and IMPT compared to IMXT, with D mean reductions of 50-80%. Doses to kidneys and femoral heads could also be substantially reduced with PT and IMPT. Sparing of rectum and bladder was superior with protons as well but less pronounced. Conclusion: proton beam RT has significant potential to improve treatment related side effects in the bowel compared to photon beam RT in patients with advanced cervix carcinoma. (orig.)

  10. Proteomic analysis of proton beam irradiated human melanoma cells.

    Directory of Open Access Journals (Sweden)

    Sylwia Kedracka-Krok

    Full Text Available Proton beam irradiation is a form of advanced radiotherapy providing superior distributions of a low LET radiation dose relative to that of photon therapy for the treatment of cancer. Even though this clinical treatment has been developing for several decades, the proton radiobiology critical to the optimization of proton radiotherapy is far from being understood. Proteomic changes were analyzed in human melanoma cells treated with a sublethal dose (3 Gy of proton beam irradiation. The results were compared with untreated cells. Two-dimensional electrophoresis was performed with mass spectrometry to identify the proteins. At the dose of 3 Gy a minimal slowdown in proliferation rate was seen, as well as some DNA damage. After allowing time for damage repair, the proteomic analysis was performed. In total 17 protein levels were found to significantly (more than 1.5 times change: 4 downregulated and 13 upregulated. Functionally, they represent four categories: (i DNA repair and RNA regulation (VCP, MVP, STRAP, FAB-2, Lamine A/C, GAPDH, (ii cell survival and stress response (STRAP, MCM7, Annexin 7, MVP, Caprin-1, PDCD6, VCP, HSP70, (iii cell metabolism (TIM, GAPDH, VCP, and (iv cytoskeleton and motility (Moesin, Actinin 4, FAB-2, Vimentin, Annexin 7, Lamine A/C, Lamine B. A substantial decrease (2.3 x was seen in the level of vimentin, a marker of epithelial to mesenchymal transition and the metastatic properties of melanoma.

  11. The Structure of the Proton in the LHC Precision Era

    NARCIS (Netherlands)

    Gao, Jun; Harland-Lang, Lucian; Rojo, Juan

    2017-01-01

    We review recent progress in the determination of the parton distribution functions (PDFs) of the proton, with emphasis on the applications for precision phenomenology at the Large Hadron Collider (LHC). First of all, we introduce the general theoretical framework underlying the global QCD analysis

  12. Particle radiotherapy for patients with H and N malignant tumor

    International Nuclear Information System (INIS)

    Murakami, Masao; Demizu, Yusuke; Niwa, Yasue; Terashima, Kazuki; Fujii, Osamu; Mima, Masayuki; Hashimoto, Naoki; Jin, Dongcun

    2011-01-01

    Particle beams have a characteristic called the Bragg peak, which is a peak formed at a fixed depth in the body depending on the acceleration energy. Utilizing this property, a high dose can be concentrated in the target tumor while minimizing damage to surrounding normal tissues. Proton and carbon ion beams have a higher linear energy transfer (LET) than X-rays. The relative biological effectiveness of proton and carbon ion beams compared with X-rays (=1) is estimated to be 1.1 and 3.0, respectively. Therefore, we can expect particle radiotherapy to be effective for patients with radio-resistant tumors such as malignant melanoma, adenoidcystic carcinoma and adenocarcinoma. As of the end of July 2011, there were 9 particle institutes operating in Japan; the Hyogo Ion Beam Medical Center was established in May 2001 as a leading project of the ''Hyogo Cancer Strategy''. One major characteristic is that the Center can generate both proton and carbon ion beams. Locally advanced nasal, paranasal or salivary gland cell tumors are good candidates for particle radiotherapy. Downsizing of the accelerator, price reduction of the machine, broad use of particle therapy in the field of clinical oncology, and intensity modulated particle therapy are future challenges. (author)

  13. Proton external beam in the TANDAR Accelerator; Haz externo de protones en el acelerador TANDAR

    Energy Technology Data Exchange (ETDEWEB)

    Rey, R; Schuff, J A; Perez de la Hoz, A.; Debray, M E; Hojman, D; Kreiner, A J; Kesque, J M; Saint-Martin, G; Oppezzo, O; Bernaola, O A; Molinari, B L; Duran, H A; Policastro, L; Palmieri, M; Ibanez, J; Stoliar, P; Mazal, A; Caraballo, M E; Burlon, A; Cardona, M A; Vazquez, M E; Salfity, M F; Ozafran, M J; Naab, F; Levinton, G; Davidson, M; Buhler, M [Departamento de Fisica, Comision Nacional de Energia Atomica, Av. Gral. Paz 1499, C.P. 1650 San Martin, Buenos Aires (Argentina)

    1999-12-31

    An external proton beam has been obtained in the TANDAR accelerator with radiological and biomedical purposes. The protons have excellent physical properties for their use in radiotherapy allowing a very good accuracy in the dose spatial distribution inside the tissue so in the side direction as in depth owing to the presence of Bragg curve. The advantage of the accuracy in the dose localization with proton therapy is good documented (M. Wagner, Med. Phys. 9, 749 (1982); M. Goitein and F. Chen, Med. Phys. 10, 831 (1983); M.R. Raju, Rad. Res. 145, 391 (1996)). It was obtained external proton beams with energies between 15-25 MeV, currents between 2-10 p A and a uniform transversal sections of 40 mm{sup 2} approximately. It was realized dosimetric evaluations with CR39 and Makrofol foliation. The irradiations over biological material contained experiences In vivo with laboratory animals, cellular and bacterial crops. It was fixed the optimal conditions of position and immobilization of the Wistar rats breeding for the In vivo studies. It was chosen dilutions and sowing techniques adequate for the exposition at the cellular and bacterial crops beam. (Author)

  14. Proton external beam in the TANDAR Accelerator; Haz externo de protones en el acelerador TANDAR

    Energy Technology Data Exchange (ETDEWEB)

    Rey, R.; Schuff, J.A.; Perez de la Hoz, A.; Debray, M.E.; Hojman, D.; Kreiner, A.J.; Kesque, J.M.; Saint-Martin, G.; Oppezzo, O.; Bernaola, O.A.; Molinari, B.L.; Duran, H.A.; Policastro, L.; Palmieri, M.; Ibanez, J.; Stoliar, P.; Mazal, A.; Caraballo, M.E.; Burlon, A.; Cardona, M.A.; Vazquez, M.E.; Salfity, M.F.; Ozafran, M.J.; Naab, F.; Levinton, G.; Davidson, M.; Buhler, M. [Departamento de Fisica, Comision Nacional de Energia Atomica, Av. Gral. Paz 1499, C.P. 1650 San Martin, Buenos Aires (Argentina)

    1998-12-31

    An external proton beam has been obtained in the TANDAR accelerator with radiological and biomedical purposes. The protons have excellent physical properties for their use in radiotherapy allowing a very good accuracy in the dose spatial distribution inside the tissue so in the side direction as in depth owing to the presence of Bragg curve. The advantage of the accuracy in the dose localization with proton therapy is good documented (M. Wagner, Med. Phys. 9, 749 (1982); M. Goitein and F. Chen, Med. Phys. 10, 831 (1983); M.R. Raju, Rad. Res. 145, 391 (1996)). It was obtained external proton beams with energies between 15-25 MeV, currents between 2-10 p A and a uniform transversal sections of 40 mm{sup 2} approximately. It was realized dosimetric evaluations with CR39 and Makrofol foliation. The irradiations over biological material contained experiences In vivo with laboratory animals, cellular and bacterial crops. It was fixed the optimal conditions of position and immobilization of the Wistar rats breeding for the In vivo studies. It was chosen dilutions and sowing techniques adequate for the exposition at the cellular and bacterial crops beam. (Author)

  15. Experimental radiotherapy and clinical radiobiology. Vol. 20. Proceedings; Experimentelle Strahlentherapie und Klinische Strahlenbiologie. Bd. 20. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Michael; Dahm-Daphi, Jochen; Dikomey, Ekkehard; Petersen, Cordula; Rodemannn, Hans-Peter; Zips, Daniel (eds.)

    2011-07-01

    The proceedings include contributions on the following issues: laser driven proton accelerators on the way for radiotherapy, radiobiological evaluation of new radiations; molecular factors of radiation response; biological targeting; EGFR epidermal growth factor receptor/targeting - combined internal and external irradiation, radiobiology of normal tissues; dose-volume histograms for the radiotherapy: curves without radiobiological relevance or important information for the therapy planning; HPV (human papilloma virus) and radiation sensitivity of HNSCC (head and neck squamous cell carcinomas): evidence, radiobiological mechanism, clinical consequences and perspectives; mechanisms of action and intertumoral heterogeneity of response to EGFR inhibition in radiotherapy of solid tumors; evaluation of biomarkers for radiotherapy.

  16. The clinical rationale for MRI-guided radiotherapy : the dawn of a new era

    NARCIS (Netherlands)

    Kerkhof, E.M.

    2010-01-01

    Current radiotherapy treatment machines use the treatment beam or the integrated cone-beam computed tomography (CBCT) functionality for patient positioning based on bony structures or implanted tumour markers. The University Medical Center Utrecht, in cooperation with Elekta and Philips, is

  17. Treatment planning with protons for pediatric retinoblastoma, medulloblastoma, and pelvic sarcoma: How do protons compare with other conformal techniques?

    International Nuclear Information System (INIS)

    Lee, Catherine T.; Bilton, Stephen D.; Famiglietti, Robin M.; Riley, Beverly A.; Mahajan, Anita; Chang, Eric L.; Maor, Moshe H.; Woo, Shiao Y.; Cox, James D.; Smith, Alfred R.

    2005-01-01

    , 21% was the mean hypothalamus-pituitary volume irradiated for protons, 81% for IMRT, 91% for 3D-CRT); additional dose reductions to the optic chiasm, eyes, vertebrae, mandible, thyroid, lung, kidneys, heart, and liver were seen. Intensity-modulated radiotherapy appeared to be the second best technique for posterior fossa irradiation. For spinal irradiation 3D-CRT electrons were better than 3D-CRT photons in sparing dose to the thyroid, heart, lung, kidney, and liver. With pelvic sarcoma, protons were superior in eliminating any dose to the ovaries (0% of mean ovarian volume was irradiated at ≥2 Gy with protons) and to some extent, the pelvic bones and vertebrae. Intensity-modulated radiotherapy did show more bladder dose reduction than the other techniques in pelvic sarcoma irradiation. Conclusions: In the diseases studied, using various techniques of 3D-CRT, electrons, IMRT, and protons, protons are most optimal in treating retinoblastomas, medulloblastomas (posterior fossa and craniospinal), and pelvic sarcomas. Protons delivered superior target dose coverage and sparing of normal structures. As dose-volume parameters are expected to correlate with acute and late toxicity, proton therapy should receive serious consideration as the preferred technique for the treatment of pediatric tumors

  18. Proton therapy project at PSI

    International Nuclear Information System (INIS)

    Nakagawa, K.; Akanuma, A.; Karasawa, K.

    1990-01-01

    Particle radiation which might present steeper dose distribution has received much attention as the third particle facility at the Paul Scherrer Institute (PSI), Switzerland. Proton conformation with sharp fall-off is considered to be the radiation beam suitable for confining high doses to a target volume without complications and for verifying which factor out of high RBE or physical dose distribution is more essential for local control in malignant tumors. This paper discusses the current status of the spot scanning method, which allows three dimensional conformation radiotherapy, and preliminary results. Preliminary dose distribution with proton conformation technique was acquired by modifying a computer program for treatment planning in pion treatment. In a patient with prostate carcinoma receiving both proton and pion radiation therapy, proton conformation was found to confine high doses to the target area and spare both the bladder and rectum well; and pion therapy was found to deliver non-homogeneous radiation to these organs. Although there are some obstacles in the proton project at PSI, experimental investigations are encouraging. The dynamic spot scanning method with combination of the kicker magnet, wobbler magnet, range shifter, patient transporter, and position sensitive monitor provides highly confined dose distribution, making it possible to increase total doses and thus to improve local control rate. Proton confirmation is considered to be useful for verifying possible biological effectiveness of negative pion treatment of PSI as well. (N.K.)

  19. Preliminary results of an in-beam PET prototype for proton therapy

    International Nuclear Information System (INIS)

    Attanasi, F.; Belcari, N.; Camarda, M.; Cirrone, G.A.P.; Cuttone, G.; Del Guerra, A.; Di Rosa, F.; Lanconelli, N.; Rosso, V.; Russo, G.; Vecchio, S.

    2008-01-01

    Proton therapy can overcome the limitations of conventional radiotherapy due to the more selective energy deposition in depth and to the increased biological effectiveness. Verification of the delivered dose is desirable, but the complete stopping of the protons in patient prevents the application of electronic portal imaging methods that are used in conventional radiotherapy During proton therapy β + emitters like 11 C, 15 O, 10 C are generated in irradiated tissues by nuclear reactions. The measurement of the spatial distribution of this activity, immediately after patient irradiation, can lead to information on the effective delivered dose. First, results of a feasibility study of an in-beam PET for proton therapy are reported. The prototype is based on two planar heads with an active area of about 5x5 cm 2 . Each head is made up of a position sensitive photomultiplier coupled to a square matrix of same size of LYSO scintillating crystals (2x2x18 mm 3 pixel dimensions). Four signals from each head are acquired through a dedicated electronic board that performs signal amplification and digitization. A 3D reconstruction of the activity distribution is calculated using an expectation maximization algorithm. To characterize the PET prototype, the detection efficiency and the spatial resolution were measured using a point-like radioactive source. The validation of the prototype was performed using 62 MeV protons at the CATANA beam line of INFN LNS and PMMA phantoms. Using the full energy proton beam and various range shifters, a good correlation between the position of the activity distal edge and the thickness of the beam range shifter was found along the axial direction

  20. Preliminary results of an in-beam PET prototype for proton therapy

    Science.gov (United States)

    Attanasi, F.; Belcari, N.; Camarda, M.; Cirrone, G. A. P.; Cuttone, G.; Del Guerra, A.; Di Rosa, F.; Lanconelli, N.; Rosso, V.; Russo, G.; Vecchio, S.

    2008-06-01

    Proton therapy can overcome the limitations of conventional radiotherapy due to the more selective energy deposition in depth and to the increased biological effectiveness. Verification of the delivered dose is desirable, but the complete stopping of the protons in patient prevents the application of electronic portal imaging methods that are used in conventional radiotherapy During proton therapy β + emitters like 11C, 15O, 10C are generated in irradiated tissues by nuclear reactions. The measurement of the spatial distribution of this activity, immediately after patient irradiation, can lead to information on the effective delivered dose. First, results of a feasibility study of an in-beam PET for proton therapy are reported. The prototype is based on two planar heads with an active area of about 5×5 cm 2. Each head is made up of a position sensitive photomultiplier coupled to a square matrix of same size of LYSO scintillating crystals (2×2×18 mm 3 pixel dimensions). Four signals from each head are acquired through a dedicated electronic board that performs signal amplification and digitization. A 3D reconstruction of the activity distribution is calculated using an expectation maximization algorithm. To characterize the PET prototype, the detection efficiency and the spatial resolution were measured using a point-like radioactive source. The validation of the prototype was performed using 62 MeV protons at the CATANA beam line of INFN LNS and PMMA phantoms. Using the full energy proton beam and various range shifters, a good correlation between the position of the activity distal edge and the thickness of the beam range shifter was found along the axial direction.

  1. Preliminary results of an in-beam PET prototype for proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Attanasi, F.; Belcari, N.; Camarda, M. [Department of Physics, University of Pisa and INFN Sezione di Pisa, Pisa (Italy); Cirrone, G.A.P.; Cuttone, G. [INFN Laboratori Nazionali del Sud, Catania (Italy); Del Guerra, A. [Department of Physics, University of Pisa and INFN Sezione di Pisa, Pisa (Italy); Di Rosa, F. [INFN Laboratori Nazionali del Sud, Catania (Italy); Lanconelli, N. [Department of Physics, University of Bologna and INFN Sezione di Bologna, Bologna (Italy); Rosso, V. [Department of Physics, University of Pisa and INFN Sezione di Pisa, Pisa (Italy)], E-mail: valeria.rosso@pi.infn.it; Russo, G. [INFN Laboratori Nazionali del Sud, Catania (Italy); Vecchio, S. [Department of Physics, University of Pisa and INFN Sezione di Pisa, Pisa (Italy)

    2008-06-11

    Proton therapy can overcome the limitations of conventional radiotherapy due to the more selective energy deposition in depth and to the increased biological effectiveness. Verification of the delivered dose is desirable, but the complete stopping of the protons in patient prevents the application of electronic portal imaging methods that are used in conventional radiotherapy During proton therapy {beta}{sup +} emitters like {sup 11}C, {sup 15}O, {sup 10}C are generated in irradiated tissues by nuclear reactions. The measurement of the spatial distribution of this activity, immediately after patient irradiation, can lead to information on the effective delivered dose. First, results of a feasibility study of an in-beam PET for proton therapy are reported. The prototype is based on two planar heads with an active area of about 5x5 cm{sup 2}. Each head is made up of a position sensitive photomultiplier coupled to a square matrix of same size of LYSO scintillating crystals (2x2x18 mm{sup 3} pixel dimensions). Four signals from each head are acquired through a dedicated electronic board that performs signal amplification and digitization. A 3D reconstruction of the activity distribution is calculated using an expectation maximization algorithm. To characterize the PET prototype, the detection efficiency and the spatial resolution were measured using a point-like radioactive source. The validation of the prototype was performed using 62 MeV protons at the CATANA beam line of INFN LNS and PMMA phantoms. Using the full energy proton beam and various range shifters, a good correlation between the position of the activity distal edge and the thickness of the beam range shifter was found along the axial direction.

  2. Hippocampal sparing radiotherapy for pediatric medulloblastoma: impact of treatment margins and treatment technique

    DEFF Research Database (Denmark)

    Brodin, N. Patrik; af Rosenschold, Per Munck; Blomstrand, Malin

    2014-01-01

    BackgroundWe investigated how varying the treatment margin and applying hippocampal sparing and proton therapy impact the risk of neurocognitive impairment in pediatric medulloblastoma patients compared with current standard 3D conformal radiotherapy.MethodsWe included 17 pediatric medulloblastoma...

  3. Prognostic Value of Plasma Epstein-Barr Virus DNA for Local and Regionally Advanced Nasopharyngeal Carcinoma Treated With Cisplatin-Based Concurrent Chemoradiotherapy in Intensity-Modulated Radiotherapy Era.

    Science.gov (United States)

    Chen, Wen-Hui; Tang, Lin-Quan; Guo, Shan-Shan; Chen, Qiu-Yan; Zhang, Lu; Liu, Li-Ting; Qian, Chao-Nan; Guo, Xiang; Xie, Dan; Zeng, Mu-Sheng; Mai, Hai-Qiang

    2016-02-01

    This study aimed to evaluate the prognostic value of plasma Epstein-Barr Virus DNA (EBV DNA) for local and regionally advanced nasopharyngeal carcinoma (NPC) patients treated with concurrent chemoradiotherapy in intensity-modulated radiotherapy (IMRT) era.In this observational study, 404 nonmetastatic local and regionally advanced NPC patients treated with IMRT and cisplatin-based concurrent chemotherapy were recruited. Blood samples were collected before treatment for examination of plasma EBV DNA levels. We evaluated the association of pretreatment plasma EBV DNA levels with progression-free survival rate (PFS), distant metastasis-free survival rate (DMFS), and overall survival rate (OS).Compared to patients with an EBV DNA level advanced NPC patients treated with IMRT and cisplatin-based concurrent chemotherapy. Future ramdomized clinical trials are needed to further evaluate whether plasma EBV DNA levels could be applied to guide concurrent chemotherapy regimen for local and regionally advanced NPC patients.

  4. Treatment planning, optimization, and beam delivery technqiues for intensity modulated proton therapy

    Science.gov (United States)

    Sengbusch, Evan R.

    , beamlet weight, the number of delivered beamlets, and the number of delivery angles. These methods are evaluated via treatment planning studies including left-sided whole breast irradiation, lung stereotactic body radiotherapy, nasopharyngeal carcinoma, and whole brain radiotherapy with hippocampal avoidance. Improvements in efficiency and efficacy relative to traditional proton therapy and intensity modulated photon radiation therapy are discussed.

  5. Paediatric Photon and Proton Radiotherapy Treatment Planning Based on Advanced Imaging

    DEFF Research Database (Denmark)

    Kornerup, Josefine S.

    The overall cure-rates for young cancer patients are continuously increasing and about 80% of the children diagnosed with cancer today will survive for more than five years. However, the cancer treatment, usually a combination of surgery, radiotherapy and chemotherapy, is aggressive. Apart from a...

  6. Treatment of the uterus cervix cancer with the JINR phasotron proton beam

    International Nuclear Information System (INIS)

    Astrakhan, B.V.; Kiseleva, V.N.; Pojdenko, V.K.; Klochkov, I.I.; Molokanov, A.G.; Mitsin, G.V.; Savchenko, O.V.; Zorin, V.P.

    1995-01-01

    The methods of the uterus cervix cancer proton-and-gamma treatment for the first time were elaborated in the CRC RAMS and ITEP in Moscow and then developed for the JINR proton beam in Dubna. The results of the clinical probation of the methods for the uterus cervix cancer treatment have confirmed the advantage of the proton irradiation. The most important advantage of the proton beam treatment is absence of postradiation reactions and complications in the critical organs (bladder and rectum). Up to now 31 patients with the uterus cervix cancer have been treated at the JINR phasotron. 6 of them had proton-and-gamma treatment combined with surgical operation and 22 patients received a radical proton-and-gamma treatment (without surgery). The clinical results are in good agreement with the preceding results of the ITEP group. After receiving proton-and-gamma radiotherapy of the uterus cervix, 83% of the patients are alive without recurrences, metastases and complications. 10 refs., 4 figs., 2 tabs

  7. The Australian National Proton Facility

    International Nuclear Information System (INIS)

    Jackson, M.; Rozenfeld, A.; Bishop, J.

    2002-01-01

    Full text: Protons have been used in the treatment of cancer since 1954 and over 30,000 patients have been treated around the world. Their precise dose distribution allows the treatment of small tumours in critical locations such as the base of skull and orbit and is an alternative to stereotactic radiotherapy in other sites. With the development of hospital-based systems in the 1990's, common tumours such as prostate, breast and lung cancer can now also be treated using simple techniques. The therapeutic ratio is improved as the dose to the tumour can be increased while sparing normal tissues. The well defined high dose region and low integral dose compared with photon treatments is a particular advantage in children and other situations where long-term survival is expected and when used in combination with chemotherapy. In January 2002, the NSW Health Department initiated a Feasibility Study for an Australian National Proton Facility. This Study will address the complex medical, scientific, engineering, commercial and legal issues required to design and build a proton facility in Australia. The Facility will be mainly designed for patient treatment but will also provide facilities for biological, physical and engineering research. The proposed facility will have a combination of fixed and rotating beams with an energy range of 70-250 MeV. Such a centre will enable the conduct of randomised clinical trials and a comparison with other radiotherapy techniques such as Intensity Modulated Radiation Therapy. Cost-utility comparisons with other medical treatments will also be made and further facilities developed if the expected benefit is confirmed. When patients are not being treated, the beam will be available for commercial and research purposes. This presentation will summarize the progress of the Study and discuss the important issues that need to be resolved before the Facility is approved and constructed

  8. Challenging the standard model by high-precision comparisons of the fundamental properties of protons and antiprotons

    Science.gov (United States)

    Ulmer, S.; Mooser, A.; Nagahama, H.; Sellner, S.; Smorra, C.

    2018-03-01

    The BASE collaboration investigates the fundamental properties of protons and antiprotons, such as charge-to-mass ratios and magnetic moments, using advanced cryogenic Penning trap systems. In recent years, we performed the most precise measurement of the magnetic moments of both the proton and the antiproton, and conducted the most precise comparison of the proton-to-antiproton charge-to-mass ratio. In addition, we have set the most stringent constraint on directly measured antiproton lifetime, based on a unique reservoir trap technique. Our matter/antimatter comparison experiments provide stringent tests of the fundamental charge-parity-time invariance, which is one of the fundamental symmetries of the standard model of particle physics. This article reviews the recent achievements of BASE and gives an outlook to our physics programme in the ELENA era. This article is part of the Theo Murphy meeting issue `Antiproton physics in the ELENA era'.

  9. Challenging the standard model by high-precision comparisons of the fundamental properties of protons and antiprotons.

    Science.gov (United States)

    Ulmer, S; Mooser, A; Nagahama, H; Sellner, S; Smorra, C

    2018-03-28

    The BASE collaboration investigates the fundamental properties of protons and antiprotons, such as charge-to-mass ratios and magnetic moments, using advanced cryogenic Penning trap systems. In recent years, we performed the most precise measurement of the magnetic moments of both the proton and the antiproton, and conducted the most precise comparison of the proton-to-antiproton charge-to-mass ratio. In addition, we have set the most stringent constraint on directly measured antiproton lifetime, based on a unique reservoir trap technique. Our matter/antimatter comparison experiments provide stringent tests of the fundamental charge-parity-time invariance, which is one of the fundamental symmetries of the standard model of particle physics. This article reviews the recent achievements of BASE and gives an outlook to our physics programme in the ELENA era.This article is part of the Theo Murphy meeting issue 'Antiproton physics in the ELENA era'. © 2018 The Authors.

  10. Proton radiotherapy for chest wall and regional lymphatic radiation; dose comparisons and treatment delivery

    International Nuclear Information System (INIS)

    MacDonald, Shannon M; Jimenez, Rachel; Paetzold, Peter; Adams, Judith; Beatty, Jonathan; DeLaney, Thomas F; Kooy, Hanne; Taghian, Alphonse G; Lu, Hsiao-Ming

    2013-01-01

    The delivery of post-mastectomy radiation therapy (PMRT) can be challenging for patients with left sided breast cancer that have undergone mastectomy. This study investigates the use of protons for PMRT in selected patients with unfavorable cardiac anatomy. We also report the first clinical application of protons for these patients. Eleven patients were planned with protons, partially wide tangent photon fields (PWTF), and photon/electron (P/E) fields. Plans were generated with the goal of achieving 95% coverage of target volumes while maximally sparing cardiac and pulmonary structures. In addition, we report on two patients with unfavorable cardiac anatomy and IMN involvement that were treated with a mix of proton and standard radiation. PWTF, P/E, and proton plans were generated and compared. Reasonable target volume coverage was achieved with PWTF and P/E fields, but proton therapy achieved superior coverage with a more homogeneous plan. Substantial cardiac and pulmonary sparing was achieved with proton therapy as compared to PWTF and P/E. In the two clinical cases, the delivery of proton radiation with a 7.2 to 9 Gy photon and electron component was feasible and well tolerated. Akimbo positioning was necessary for gantry clearance for one patient; the other was treated on a breast board with standard positioning (arms above her head). LAO field arrangement was used for both patients. Erythema and fatigue were the only noted side effects. Proton RT enables delivery of radiation to the chest wall and regional lymphatics, including the IMN, without compromise of coverage and with improved sparing of surrounding normal structures. This treatment is feasible, however, optimal patient set up may vary and field size is limited without multiple fields/matching

  11. Severe Late Toxicities Following Concomitant Chemoradiotherapy Compared to Radiotherapy Alone in Cervical Cancer: An Inter-era Analysis

    International Nuclear Information System (INIS)

    Gondi, Vinai; Bentzen, Søren M.; Sklenar, Kathryn L.; Dunn, Emily F.; Petereit, Daniel G.; Tannehill, Scott P.; Straub, Margaret; Bradley, Kristin A.

    2012-01-01

    Purpose: To compare rates of severe late toxicities following concomitant chemoradiotherapy and radiotherapy alone for cervical cancer. Methods and Materials: Patients with cervical cancer were treated at a single institution with radiotherapy alone or concomitant chemoradiotherapy for curative intent. Severe late toxicity was defined as grade ≥3 vaginal, urologic, or gastrointestinal toxicity or any pelvic fracture, using Common Terminology Criteria for Adverse Events version 4.0 (CTCAE), occurring ≥6 months from treatment completion and predating any salvage therapy. Severe late toxicity rates were compared after adjusting for pertinent covariates. Results: At 3 years, probability of vaginal severe late toxicity was 20.2% for radiotherapy alone and 35.1% for concomitant chemoradiotherapy (P=.026). At 3 years, probability of skeletal severe late toxicity was 1.6% for radiotherapy alone and 7.5% for concomitant chemoradiotherapy (P=.010). After adjustment for case mix, concomitant chemoradiotherapy was associated with higher vaginal (hazard ratio [HR] 3.0, 95% confidence interval [CI], 1.7-5.2, P 50 was associated with higher vaginal (HR 1.8, 95% CI 1.1-3.0, P=.013) and skeletal (HR 5.7, 95% CI 1.2-27.0, P=.028) severe late toxicity. Concomitant chemoradiotherapy was not associated with higher gastrointestinal (P=.886) or urologic (unadjusted, P=.053; adjusted, P=.063) severe late toxicity. Conclusion: Compared to radiotherapy alone, concomitant chemoradiotherapy is associated with higher rates of severe vaginal and skeletal late toxicities. Other predictive factors include dilator compliance for severe vaginal late toxicity and age for severe vaginal and skeletal late toxicities.

  12. High energy protons application for radiotherapy of the esophagus affected with cancer

    International Nuclear Information System (INIS)

    Ruderman, A.I.; Astrakhan, B.V.; Kulakov, G.A.; Makarova, G.V.; Zhuravleva, N.T.

    1975-01-01

    As in radiation therapy of tumours located elsewhere, local radiation treatment of an esophagus tumour is often aggravated by the development, after some time, of a trophic ulcer as a result of decreased regenerative ability of the irradiated sound tissues and also of newly formed hystostructures which have replaced the destroyed tumorous tissue. It has been established that the number of complications increases with the total focal dose, but at the same time (up to a certain point) the number of local curings increases as well. Some promise was shown by high-energy protons with their physical advantages unique for radiation therapy, such as the strictly controlled free path length of particles in the tissues, the presence of the Bragg peak, the absence of lateral scattering, i.e. features which permit of a high dose in the target with a minimum injury to the sound tissues surrounding the tumour. Proton therapy of esophagus cancer was carried out by two techniques, static and shuttle-rotary. The results of proton therapy of esophagus cancer indicate that the use of high-energy protons for treating esophagus cancer holds promise

  13. Quantification of the Relative Biological Effectiveness for Ion Beam Radiotherapy: Direct Experimental Comparison of Proton and Carbon Ion Beams and a Novel Approach for Treatment Planning

    International Nuclear Information System (INIS)

    Elsaesser, Thilo; Weyrather, Wilma K.; Friedrich, Thomas; Durante, Marco; Iancu, Gheorghe; Kraemer, Michael; Kragl, Gabriele; Brons, Stephan; Winter, Marcus; Weber, Klaus-Josef; Scholz, Michael

    2010-01-01

    Purpose: To present the first direct experimental in vitro comparison of the biological effectiveness of range-equivalent protons and carbon ion beams for Chinese hamster ovary cells exposed in a three-dimensional phantom using a pencil beam scanning technique and to compare the experimental data with a novel biophysical model. Methods and Materials: Cell survival was measured in the phantom after irradiation with two opposing fields, thus mimicking the typical patient treatment scenario. The novel biophysical model represents a substantial extension of the local effect model, previously used for treatment planning in carbon ion therapy for more than 400 patients, and potentially can be used to predict effectiveness of all ion species relevant for radiotherapy. A key feature of the new approach is the more sophisticated consideration of spatially correlated damage induced by ion irradiation. Results: The experimental data obtained for Chinese hamster ovary cells clearly demonstrate that higher cell killing is achieved in the target region with carbon ions as compared with protons when the effects in the entrance channel are comparable. The model predictions demonstrate agreement with these experimental data and with data obtained with helium ions under similar conditions. Good agreement is also achieved with relative biological effectiveness values reported in the literature for other cell lines for monoenergetic proton, helium, and carbon ions. Conclusion: Both the experimental data and the new modeling approach are supportive of the advantages of carbon ions as compared with protons for treatment-like field configurations. Because the model predicts the effectiveness for several ion species with similar accuracy, it represents a powerful tool for further optimization and utilization of the potential of ion beams in tumor therapy.

  14. Direct Comparison of Biologically Optimized Spread-out Bragg Peaks for Protons and Carbon Ions

    International Nuclear Information System (INIS)

    Wilkens, Jan J.; Oelfke, Uwe

    2008-01-01

    Purpose: In radiotherapy with hadrons, it is anticipated that carbon ions are superior to protons, mainly because of their biological properties: the relative biological effectiveness (RBE) for carbon ions is supposedly higher in the target than in the surrounding normal tissue, leading to a therapeutic advantage over protons. The purpose of this report is to investigate this effect by using biological model calculations. Methods and Materials: We compared spread-out Bragg peaks for protons and carbon ions by using physical and biological optimization. The RBE for protons and carbon ions was calculated according to published biological models. These models predict increased RBE values in regions of high linear energy transfer (LET) and an inverse dependency of the RBE on dose. Results: For pure physical optimization, protons yield a better dose distribution along the central axis. In biologically optimized plans, RBE variations for protons were relatively small. For carbon ions, high RBE values were found in the high-LET target region, as well as in the low-dose region outside the target. This means that the LET dependency and dose dependency of the RBE can cancel each other. We show this for radioresistant tissues treated with two opposing beams, for which the predicted carbon RBE within the target volume was lower than outside. Conclusions: For tissue parameters used in this study, the model used does not predict a biologic advantage of carbon ions. More reliable model parameters and clinical trials are necessary to explore the true potential of radiotherapy with carbon ions

  15. An imaging informatics-based system utilizing DICOM objects for treating pain in spinal cord injury patients utilizing proton beam radiotherapy

    Science.gov (United States)

    Verma, Sneha K.; Liu, Brent J.; Chun, Sophia; Gridley, Daila S.

    2014-03-01

    Many US combat personnel have sustained nervous tissue trauma during service, which often causes Neuropathic pain as a side effect and is difficult to manage. However in select patients, synapse lesioning can provide significant pain control. Our goal is to determine the effectiveness of using Proton Beam radiotherapy for treating spinal cord injury (SCI) related neuropathic pain as an alternative to invasive surgical lesioning. The project is a joint collaboration of USC, Spinal Cord Institute VA Healthcare System, Long Beach, and Loma Linda University. This is first system of its kind that supports integration and standardization of imaging informatics data in DICOM format; clinical evaluation forms outcomes data and treatment planning data from the Treatment planning station (TPS) utilized to administer the proton therapy in DICOM-RT format. It also supports evaluation of SCI subjects for recruitment into the clinical study, which includes the development, and integration of digital forms and tools for automatic evaluation and classification of SCI pain. Last year, we presented the concept for the patient recruitment module based on the principle of Bayesian decision theory. This year we are presenting the fully developed patient recruitment module and its integration to other modules. In addition, the DICOM module for integrating DICOM and DICOM-RT-ION data is also developed and integrated. This allows researchers to upload animal/patient study data into the system. The patient recruitment module has been tested using 25 retrospective patient data and DICOM data module is tested using 5 sets of animal data.

  16. Proton Beam Therapy for Non-Small Cell Lung Cancer: Current Clinical Evidence and Future Directions

    International Nuclear Information System (INIS)

    Berman, Abigail T.; James, Sara St.; Rengan, Ramesh

    2015-01-01

    Lung cancer is the leading cancer cause of death in the United States. Radiotherapy is an essential component of the definitive treatment of early-stage and locally-advanced lung cancer, and the palliative treatment of metastatic lung cancer. Proton beam therapy (PBT), through its characteristic Bragg peak, has the potential to decrease the toxicity of radiotherapy, and, subsequently improve the therapeutic ratio. Herein, we provide a primer on the physics of proton beam therapy for lung cancer, present the existing data in early-stage and locally-advanced non-small cell lung cancer (NSCLC), as well as in special situations such as re-irradiation and post-operative radiation therapy. We then present the technical challenges, such as anatomic changes and motion management, and future directions for PBT in lung cancer, including pencil beam scanning

  17. Dosimetric advantages of proton therapy over conventional radiotherapy with photons in young patients and adults with low-grade glioma

    Energy Technology Data Exchange (ETDEWEB)

    Harrabi, S.B.; Herfarth, K. [Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg (Germany); Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg (Germany); University Hospital Heidelberg, Dept. of Radiation Oncology, Heidelberg (Germany); Bougatf, N. [Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg (Germany); University Hospital Heidelberg, Dept. of Radiation Oncology, Heidelberg (Germany); German Cancer Research Center (DKFZ), Department of Medical Physics in Radiation Oncology, Heidelberg (Germany); Mohr, A. [Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg (Germany); University Hospital Heidelberg, Dept. of Radiation Oncology, Heidelberg (Germany); Haberer, T. [Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg (Germany); Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg (Germany); Combs, S.E. [Helmholtz Zentrum Muenchen, Department of Radiation Sciences (DRS), Institute of Innovative Radiotherapy (iRT), Oberschleissheim (Germany); Deutsches Konsortium fuer Translationale Krebsforschung (dktk), Partner Site Munich, Munich (Germany); Debus, J.; Adeberg, S. [Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg (Germany); Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg (Germany); University Hospital Heidelberg, Dept. of Radiation Oncology, Heidelberg (Germany); German Cancer Research Center (DKFZ), Clinical Cooperation Unit Radiation Oncology, Heidelberg (Germany)

    2016-11-15

    Low-grade glioma (LGG) is a very common brain tumor in pediatric patients typically associated with a very good prognosis. This prognosis makes it imperative that the risk of long-term treatment-related side effects be kept at an absolute minimum. Proton therapy (PRT) provides a radiation technique that has the potential to further reduce the genesis of radiogenic impairment. We retrospectively assessed 74 patients with LGG who underwent PRT. Conventional three-dimensional photon and PRT plans were generated after contouring structures of neurogenesis, crucial neuronal structures, and areas susceptible to secondary malignancies. Target volume coverage was evaluated using the homogeneity index (HI) and inhomogeneity coefficient (IC). Results were compared using the Wilcoxon-signed rank test, with p < 0.05 being statistically significant. Target volume coverage was comparable for the photon and proton plans. Overall, we could show an essential reduction in maximal, mean, and integral doses in critical neurologic structures, areas of neurogenesis, and structures of neurocognitive function. The study indicated specifically how contralaterally located structures could be spared with PRT. PRT is a highly conformal radiation technique offering superior dosimetric advantages over conventional radiotherapy by allowing significant dose reduction for organs at risk (OAR) that are essential for neurologic function, neurocognition, and quality of life, thus demonstrating the potential of this technique for minimizing long-term sequelae. (orig.) [German] Niedriggradige Gliome (LGG) zaehlen zu den haeufigsten Hirntumoren im Kindesalter und sind ueblicherweise mit einer sehr guten Prognose vergesellschaftet. Es gilt daher, das Risiko fuer therapieassoziierte Spaetfolgen so gering wie moeglich zu halten. Mit der Protonenbestrahlung steht eine Bestrahlungsmodalitaet zur Verfuegung, mit der das Auftreten radiogener Spaetfolgen im Vergleich zu konventionellen Bestrahlungstechniken

  18. Nuclear data for fast neutron and proton therapy

    International Nuclear Information System (INIS)

    Chadwick, M.B.; Jones, D.T.L.; Barschall, H.H.

    2001-01-01

    ICRU Report 63 entitled 'Nuclear Data for Neutron and Proton Radiotherapy and for Radiation Protection' has recently been published. The present paper presents an overview of this report, along with examples of some of the results obtained for evaluated nuclear cross sections and kerma coefficients. These cross sections are evaluated using a combination of measured data and the GNASH nuclear model code for elements of importance for biological, dosimetric, beam modification and shielding purposes. In the case of hydrogen both R-matrix and phase-shift scattering theories are used. Neutron cross sections and kerma coefficients were evaluated up to 100 MeV and proton cross sections up to 250 MeV. (author)

  19. Rhabdomyosarcoma of the trachea: first reported case treated with proton beam therapy.

    Science.gov (United States)

    Exley, R; Bernstein, J M; Brennan, B; Rothera, M P

    2012-09-01

    We report a case of rhabdomyosarcoma of the trachea in a 14-month-old child, and we present the first reported use of proton beam therapy for this tumour. A 14-month-old girl presented acutely with a seven-day history of biphasic stridor. Emergency endoscopic debulking of a posterior tracheal mass was undertaken. Histological examination revealed an embryonal rhabdomyosarcoma with anaplasia. Multimodality therapy with surgery and chemotherapy was administered in the UK, and proton beam therapy in the USA. Only three cases of rhabdomyosarcoma of the trachea have previously been reported in the world literature. This is the first reported case of treatment of this tumour with proton beam therapy. Compared with conventional radiotherapy, proton beam therapy may confer improved long-term outcome in children, with benefits including reduced irradiation of the spinal cord.

  20. Redesigning Radiotherapy Quality Assurance: Opportunities to Develop an Efficient, Evidence-Based System to Support Clinical Trials—Report of the National Cancer Institute Work Group on Radiotherapy Quality Assurance

    International Nuclear Information System (INIS)

    Bekelman, Justin E.; Deye, James A.; Vikram, Bhadrasain; Bentzen, Soren M.; Bruner, Deborah; Curran, Walter J.; Dignam, James; Efstathiou, Jason A.; FitzGerald, T.J.; Hurkmans, Coen; Ibbott, Geoffrey S.; Lee, J. Jack; Merchant, Thomas E.; Michalski, Jeff; Palta, Jatinder R.; Simon, Richard; Ten Haken, Randal K.; Timmerman, Robert; Tunis, Sean; Coleman, C. Norman

    2012-01-01

    Purpose: In the context of national calls for reorganizing cancer clinical trials, the National Cancer Institute sponsored a 2-day workshop to examine challenges and opportunities for optimizing radiotherapy quality assurance (QA) in clinical trial design. Methods and Materials: Participants reviewed the current processes of clinical trial QA and noted the QA challenges presented by advanced technologies. The lessons learned from the radiotherapy QA programs of recent trials were discussed in detail. Four potential opportunities for optimizing radiotherapy QA were explored, including the use of normal tissue toxicity and tumor control metrics, biomarkers of radiation toxicity, new radiotherapy modalities such as proton beam therapy, and the international harmonization of clinical trial QA. Results: Four recommendations were made: (1) to develop a tiered (and more efficient) system for radiotherapy QA and tailor the intensity of QA to the clinical trial objectives (tiers include general credentialing, trial-specific credentialing, and individual case review); (2) to establish a case QA repository; (3) to develop an evidence base for clinical trial QA and introduce innovative prospective trial designs to evaluate radiotherapy QA in clinical trials; and (4) to explore the feasibility of consolidating clinical trial QA in the United States. Conclusion: Radiotherapy QA can affect clinical trial accrual, cost, outcomes, and generalizability. To achieve maximum benefit, QA programs must become more efficient and evidence-based.

  1. Redesigning Radiotherapy Quality Assurance: Opportunities to Develop an Efficient, Evidence-Based System to Support Clinical Trials-Report of the National Cancer Institute Work Group on Radiotherapy Quality Assurance

    Energy Technology Data Exchange (ETDEWEB)

    Bekelman, Justin E., E-mail: bekelman@uphs.upenn.edu [University of Pennsylvania, Philadelphia, Pennsylvania (United States); Deye, James A.; Vikram, Bhadrasain [National Cancer Institute, Bethesda, Maryland (United States); Bentzen, Soren M. [University of Wisconsin, Madison, Wisconsin (United States); Bruner, Deborah [University of Pennsylvania, Philadelphia, Pennsylvania (United States); Curran, Walter J. [Emory University, Atlanta, Georgia (United States); Dignam, James [University of Chicago, Chicago, Illinois (United States); Efstathiou, Jason A. [Massachusetts General Hospital, Boston, Massachusetts (United States); FitzGerald, T.J. [University of Massachusetts, Boston, Massachusetts (United States); Hurkmans, Coen [European Organization for Research and Treatment of Cancer, Brussels (Belgium); Ibbott, Geoffrey S.; Lee, J. Jack [University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Merchant, Thomas E. [St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Michalski, Jeff [University of Washington, St. Louis, Missouri (United States); Palta, Jatinder R. [University of Florida, Miami, Florida (United States); Simon, Richard [National Institutes of Health, Bethesda, Maryland (United States); Ten Haken, Randal K. [University of Michigan, Ann Arbor, Michigan (United States); Timmerman, Robert [University of Texas Southwestern Medical Center, Dallas, Texas (United States); Tunis, Sean [Center for Medical Technology Policy, Baltimore, Maryland (United States); Coleman, C. Norman [National Cancer Institute, Bethesda, Maryland (United States); and others

    2012-07-01

    Purpose: In the context of national calls for reorganizing cancer clinical trials, the National Cancer Institute sponsored a 2-day workshop to examine challenges and opportunities for optimizing radiotherapy quality assurance (QA) in clinical trial design. Methods and Materials: Participants reviewed the current processes of clinical trial QA and noted the QA challenges presented by advanced technologies. The lessons learned from the radiotherapy QA programs of recent trials were discussed in detail. Four potential opportunities for optimizing radiotherapy QA were explored, including the use of normal tissue toxicity and tumor control metrics, biomarkers of radiation toxicity, new radiotherapy modalities such as proton beam therapy, and the international harmonization of clinical trial QA. Results: Four recommendations were made: (1) to develop a tiered (and more efficient) system for radiotherapy QA and tailor the intensity of QA to the clinical trial objectives (tiers include general credentialing, trial-specific credentialing, and individual case review); (2) to establish a case QA repository; (3) to develop an evidence base for clinical trial QA and introduce innovative prospective trial designs to evaluate radiotherapy QA in clinical trials; and (4) to explore the feasibility of consolidating clinical trial QA in the United States. Conclusion: Radiotherapy QA can affect clinical trial accrual, cost, outcomes, and generalizability. To achieve maximum benefit, QA programs must become more efficient and evidence-based.

  2. Performance specifications for proton medical facility

    Energy Technology Data Exchange (ETDEWEB)

    Chu, W.T.; Staples, J.W.; Ludewigt, B.A.; Renner, T.R.; Singh, R.P.; Nyman, M.A.; Collier, J.M.; Daftari, I.K.; Petti, P.L.; Alonso, J.R. [Lawrence Berkeley Lab., CA (United States); Kubo, H.; Verhey, L.J. [University of California Davis Medical Center, Sacramento, CA (United States). Cancer Center]|[California Univ., San Francisco, CA (United States). School of Medicine; Castro, J.R. [Lawrence Berkeley Lab., CA (United States)]|[University of California Davis Medical Center, Sacramento, CA (United States). Cancer Center]|[California Univ., San Francisco, CA (United States). School of Medicine

    1993-03-01

    Performance specifications of technical components of a modern proton radiotherapy facility are presented. The technical items specified include: the accelerator; the beam transport system including rotating gantry; the treatment beamline systems including beam scattering, beam scanning, and dosimetric instrumentation; and an integrated treatment and accelerator control system. Also included are treatment ancillary facilities such as diagnostic tools, patient positioning and alignment devices, and treatment planning systems. The facility specified will accommodate beam scanning enabling the three-dimensional conformal therapy deliver .

  3. submitter Next generation multi-scale biophysical characterization of high precision cancer particle radiotherapy using clinical proton, helium-, carbon- and oxygen ion beams

    CERN Document Server

    Dokic, Ivana; Niklas, Martin; Zimmermann, Ferdinand; Chaudhri, Naved; Krunic, Damir; Tessonnier, Thomas; Ferrari, Alfredo; Parodi, Katia; Jäkel, Oliver; Debus, Jürgen; Haberer, Thomas; Abdollahi, Amir

    2016-01-01

    The growing number of particle therapy facilities worldwide landmarks a novel era of precision oncology. Implementation of robust biophysical readouts is urgently needed to assess the efficacy of different radiation qualities. This is the first report on biophysical evaluation of Monte Carlo simulated predictive models of prescribed dose for four particle qualities i.e., proton, helium-, carbon- or oxygen ions using raster-scanning technology and clinical therapy settings at HIT. A high level of agreement was found between the in silico simulations, the physical dosimetry and the clonogenic tumor cell survival. The cell fluorescence ion track hybrid detector (Cell-Fit-HD) technology was employed to detect particle traverse per cell nucleus. Across a panel of radiobiological surrogates studied such as late ROS accumulation and apoptosis (caspase 3/7 activation), the relative biological effectiveness (RBE) chiefly correlated with the radiation species-specific spatio-temporal pattern of DNA double strand break ...

  4. Effectiveness of different rescanning techniques for scanned proton radiotherapy in lung cancer patients

    Science.gov (United States)

    Engwall, E.; Glimelius, L.; Hynning, E.

    2018-05-01

    Non-small cell lung cancer (NSCLC) is a tumour type thought to be well-suited for proton radiotherapy. However, the lung region poses many problems related to organ motion and can for actively scanned beams induce severe interplay effects. In this study we investigate four mitigating rescanning techniques: (1) volumetric rescanning, (2) layered rescanning, (3) breath-sampled (BS) layered rescanning, and (4) continuous breath-sampled (CBS) layered rescanning. The breath-sampled methods will spread the layer rescans over a full breathing cycle, resulting in an improved averaging effect at the expense of longer treatment times. In CBS, we aim at further improving the averaging by delivering as many rescans as possible within one breathing cycle. The interplay effect was evaluated for 4D robustly optimized treatment plans (with and without rescanning) for seven NSCLC patients in the treatment planning system RayStation. The optimization and final dose calculation used a Monte Carlo dose engine to account for the density heterogeneities in the lung region. A realistic treatment delivery time structure given from the IBA ScanAlgo simulation tool served as basis for the interplay evaluation. Both slow (2.0 s) and fast (0.1 s) energy switching times were simulated. For all seven studied patients, rescanning improves the dose conformity to the target. The general trend is that the breath-sampled techniques are superior to layered and volumetric rescanning with respect to both target coverage and variability in dose to OARs. The spacing between rescans in our breath-sampled techniques is set at planning, based on the average breathing cycle length obtained in conjunction with CT acquisition. For moderately varied breathing cycle lengths between planning and delivery (up to 15%), the breath-sampled techniques still mitigate the interplay effect well. This shows the potential for smooth implementation at the clinic without additional motion monitoring equipment.

  5. Proton external beam in the TANDAR Accelerator

    International Nuclear Information System (INIS)

    Rey, R.; Schuff, J.A.; Perez de la Hoz, A.; Debray, M.E.; Hojman, D.; Kreiner, A.J.; Kesque, J.M.; Saint-Martin, G.; Oppezzo, O.; Bernaola, O.A.; Molinari, B.L.; Duran, H.A.; Policastro, L.; Palmieri, M.; Ibanez, J.; Stoliar, P.; Mazal, A.; Caraballo, M.E.; Burlon, A.; Cardona, M.A.; Vazquez, M.E.; Salfity, M.F.; Ozafran, M.J.; Naab, F.; Levinton, G.; Davidson, M.; Buhler, M.

    1998-01-01

    An external proton beam has been obtained in the TANDAR accelerator with radiological and biomedical purposes. The protons have excellent physical properties for their use in radiotherapy allowing a very good accuracy in the dose spatial distribution inside the tissue so in the side direction as in depth owing to the presence of Bragg curve. The advantage of the accuracy in the dose localization with proton therapy is good documented (M. Wagner, Med. Phys. 9, 749 (1982); M. Goitein and F. Chen, Med. Phys. 10, 831 (1983); M.R. Raju, Rad. Res. 145, 391 (1996)). It was obtained external proton beams with energies between 15-25 MeV, currents between 2-10 p A and a uniform transversal sections of 40 mm 2 approximately. It was realized dosimetric evaluations with CR39 and Makrofol foliation. The irradiations over biological material contained experiences In vivo with laboratory animals, cellular and bacterial crops. It was fixed the optimal conditions of position and immobilization of the Wistar rats breeding for the In vivo studies. It was chosen dilutions and sowing techniques adequate for the exposition at the cellular and bacterial crops beam. (Author)

  6. Project of compact accelerator for cancer proton therapy; Progetto di acceleratore compatto per terapia oncologica con protoni (TOP)

    Energy Technology Data Exchange (ETDEWEB)

    Picardi, L; Ronsivalle, C; Vignati, A [ENEA, Cntro Ricerche Frascati, Rome (Italy). Dip. Innovazione

    1995-04-01

    The status of the sub-project `Compact Accelerator` in the framework of the Hadrontherapy Project leaded by Prof. Amaldi is described. Emphasis is given to the reasons of the use of protons for radiotherapy applications, to the results of the preliminary design studies of four types of accelerators as possible radiotherapy dedicated `Compact Accelerator` and to the scenario of the fonts of financial resources.

  7. Is proton beam therapy the future of radiotherapy? Part I: Clinical aspects; La protontherapie: avenir de la radiotherapie? Premiere partie: aspects cliniques

    Energy Technology Data Exchange (ETDEWEB)

    Bouyon-Monteau, A.; Habrand, J.L.; Datchary, J.; Alapetite, C.; Bolle, S.; Dendale, R.; Feuvret, L.; Helfre, S.; Calugaru, V. [Centre de protontherapie d' Orsay, institut Curie, campus universitaire, 91 - Orsay (France); Bouyon-Monteau, A.; Alapetite, C.; Bolle, S.; Dendale, R.; Helfre, S.; Calugaru, V.; Cosset, J.M.; Bey, P. [Departement d' oncologie-radiotherapie, institut Curie, 75 - Paris (France); Habrand, J.L.; Datchary, J. [Departement d' oncologie-radiotherapie, institut de cancerologie Gustave-Roussy, 94 - Villejuif (France); Feuvret, L. [Departement d' oncologie-radiotherapie, hopital Pitie-Salpetriere, 75 - Paris (France)

    2010-12-15

    Proton beam therapy uses positively charged particles, protons, whose physical properties improve dose-distribution (Bragg peak characterized by a sharp distal and lateral penumbra) compared with conventional photon-based radiation therapy (X-ray). These ballistic advantages apply to the treatment of deep-sited tumours located close to critical structures and requiring high-dose levels. [60-250 MeV] proton-beam therapy is now widely accepted as the 'gold standard' in specific indications in adults - ocular melanoma, chordoma and chondrosarcoma of the base of skull - and is regarded as a highly promising treatment modality in the treatment of paediatric malignancies (brain tumours, sarcomas..). This includes the relative sparing of surrounding normal organs from low and mid-doses that can cause deleterious side-effects such as radiation-induced secondary malignancies. Other clinical studies are currently testing proton beam in dose-escalation evaluations, in prostate, lung, hepatocellular cancers, etc. Clinical validation of these new indications appears necessary. To date, over 60, 000 patients worldwide have received part or all of their radiation therapy program by proton beams, in approximately 30 treatment facilities. (authors)

  8. Rework of the ERA software system: ERA-8

    Science.gov (United States)

    Pavlov, D.; Skripnichenko, V.

    2015-08-01

    The software system that has been powering many products of the IAA during decades has undergone a major rework. ERA has capabilities for: processing tables of observations of different kinds, fitting parameters to observations, integrating equations of motion of the Solar system bodies. ERA comprises a domain-specific language called SLON, tailored for astronomical tasks. SLON provides a convenient syntax for reductions of observations, choosing of IAU standards to use, applying rules for filtering observations or selecting parameters for fitting. Also, ERA includes a table editor and a graph plotter. ERA-8 has a number of improvements over previous versions such as: integration of the Solar system and TT xA1 TDB with arbitrary number of asteroids; option to use different ephemeris (including DE and INPOP); integrator with 80-bit floating point. The code of ERA-8 has been completely rewritten from Pascal to C (for numerical computations) and Racket (for running SLON programs and managing data). ERA-8 is portable across major operating systems. The format of tables in ERA-8 is based on SQLite. The SPICE format has been chosen as the main format for ephemeris in ERA-8.

  9. The structure of the proton in the LHC precision era

    Science.gov (United States)

    Gao, Jun; Harland-Lang, Lucian; Rojo, Juan

    2018-05-01

    We review recent progress in the determination of the parton distribution functions (PDFs) of the proton, with emphasis on the applications for precision phenomenology at the Large Hadron Collider (LHC). First of all, we introduce the general theoretical framework underlying the global QCD analysis of the quark and gluon internal structure of protons. We then present a detailed overview of the hard-scattering measurements, and the corresponding theory predictions, that are used in state-of-the-art PDF fits. We emphasize here the role that higher-order QCD and electroweak corrections play in the description of recent high-precision collider data. We present the methodology used to extract PDFs in global analyses, including the PDF parametrization strategy and the definition and propagation of PDF uncertainties. Then we review and compare the most recent releases from the various PDF fitting collaborations, highlighting their differences and similarities. We discuss the role that QED corrections and photon-initiated contributions play in modern PDF analysis. We provide representative examples of the implications of PDF fits for high-precision LHC phenomenological applications, such as Higgs coupling measurements and searches for high-mass New Physics resonances. We conclude this report by discussing some selected topics relevant for the future of PDF determinations, including the treatment of theoretical uncertainties, the connection with lattice QCD calculations, and the role of PDFs at future high-energy colliders beyond the LHC.

  10. Relationship between radiotherapy and gastroesophageal reflux disease in causing tracheoesophageal voice rehabilitation failure.

    Science.gov (United States)

    Cocuzza, Salvatore; Bonfiglio, Marco; Chiaramonte, Rita; Serra, Agostino

    2014-03-01

    The objective was to analyze the association of radiotherapy with gastroesophageal reflux as determinant of fistula related pathology, in voice prosthesis patients. Retrospective study. Sixty-one laryngectomy patients were enrolled between 2005 and 2012. All patients underwent phonatory rehabilitation with voice prosthesis, along with evidence of gastroesophageal reflux disease, for which proton pump inhibitors (PPIs) were prescribed. We analyzed the occurrence of fistula-related problems among patients who received postoperative radiotherapy and those patients who did not. We observed a higher rate of failure of speech rehabilitation in laryngectomy patients with gastroesphageal reflux: this occurred when they had a history of postoperative radiotherapy (45%) compared with patients who did not (17%) (P gastroesophageal reflux for the determinism of fistula-related problems. Copyright © 2014 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  11. Australian proton therapy facilities - status report

    International Nuclear Information System (INIS)

    Bleasel, S.; Jackson, M.

    2000-01-01

    Full text: Radiotherapy plays an important role in the treatment of cancer; both in the curative treatment of localised disease and in alleviating symptoms in more advanced disease. Radiotherapy is usually given with megavoltage X-rays which give good penetration at depth and a lower dose on the skin. The aim is to give a high dose to the tumour while keeping the dose to normal tissues as low as possible. While X-rays continue beyond the target volume, protons and other charged particles have a finite range in tissue and this allows the high dose region to closely conform to the tumour, thereby giving the best chance of tumour control with minimum side effects. This is particularly important for small tumours adjacent to critical normal structures. The unmodified Bragg peak is too narrow to be useful but can be spread out to cover the tumour. Protons of energy 70 - 250 MeV are required to achieve the optimal depth in the body. Protons have been used for cancer treatment since 1954 but most of these treatments have been given in physics-based facilities which do not provide an ideal environment for the patient and may have only limited beam time available. A dedicated, hospital based facility was built at Loma Linda in California in 1991 and has now treated over 5,000 patients. Several other centres are being built in the USA, Japan and Europe and one is now being considered for Australia. Early 1998 Hitachi Australia Ltd. was asked to research the possibility of building a facility in Australia to serve Oceania. Two major hospitals showed interest, Royal Brisbane Hospital and Royal Prince Alfred Hospital. Both hospitals are undergoing redevelopment and have space for a building 3 stories high with a foot-print of approximately 50 m x 50 m. What is proposed for Australia is a principally clinical research facility with a dedicated area for physics research. A Steering Committee will be established to develop a document for presentation to Government. The facility

  12. Proton Beam Therapy for Non-Small Cell Lung Cancer: Current Clinical Evidence and Future Directions

    Directory of Open Access Journals (Sweden)

    Abigail T. Berman

    2015-07-01

    Full Text Available Lung cancer is the leading cancer cause of death in the United States. Radiotherapy is an essential component of the definitive treatment of early-stage and locally-advanced lung cancer, and the palliative treatment of metastatic lung cancer. Proton beam therapy (PBT, through its characteristic Bragg peak, has the potential to decrease the toxicity of radiotherapy, and, subsequently improve the therapeutic ratio. Herein, we provide a primer on the physics of proton beam therapy for lung cancer, present the existing data in early-stage and locally-advanced non-small cell lung cancer (NSCLC, as well as in special situations such as re-irradiation and post-operative radiation therapy. We then present the technical challenges, such as anatomic changes and motion management, and future directions for PBT in lung cancer, including pencil beam scanning.

  13. Radiogenomics and radiotherapy response modeling

    Science.gov (United States)

    El Naqa, Issam; Kerns, Sarah L.; Coates, James; Luo, Yi; Speers, Corey; West, Catharine M. L.; Rosenstein, Barry S.; Ten Haken, Randall K.

    2017-08-01

    Advances in patient-specific information and biotechnology have contributed to a new era of computational medicine. Radiogenomics has emerged as a new field that investigates the role of genetics in treatment response to radiation therapy. Radiation oncology is currently attempting to embrace these recent advances and add to its rich history by maintaining its prominent role as a quantitative leader in oncologic response modeling. Here, we provide an overview of radiogenomics starting with genotyping, data aggregation, and application of different modeling approaches based on modifying traditional radiobiological methods or application of advanced machine learning techniques. We highlight the current status and potential for this new field to reshape the landscape of outcome modeling in radiotherapy and drive future advances in computational oncology.

  14. Radiation for skull base meningiomas: review of the literature on the approach to radiotherapy.

    Science.gov (United States)

    Moraes, Fabio Y; Chung, Caroline

    2017-07-01

    Skull base meningiomas (SBM) pose unique challenges for radiotherapy as these tumors are often in close proximity to a number of critical structures and may not be surgically addressed in many cases, leaving the question about the tumor grade and expected biological behaviour. External beam radiotherapy and radiosurgery are longstanding treatments for meningioma that are typically used as upfront primary therapy, for recurrent tumors and as adjuvant therapy following surgical resection. There is controversy regarding the optimal timing and approach for radiation therapy in various clinical settings such as the role of adjuvant radiotherapy for completely resected grade 2 tumours. Despite the use of radiotherapy for many decades, the evidence to guide optimal radiation treatment is limited largely to single institution series of EBRT, SRS and particle therapy. In this article, we review the published data to clarify the role of external beam radiotherapy, proton radiotherapy and single and multi-fraction radiosurgery for SBM. We also highlight the areas of potential research and need for clinical improvement, including the growing awareness and effort to improve cognitive function in this patient population, who typically have long life expectancy following their meningioma diagnosis.

  15. Clinical equipoise: protons and the child with craniopharyngioma

    International Nuclear Information System (INIS)

    Conroy, Ruth; Owen, Catherine; Ahern, Verity; Gomes, Lavier; Buchsbaum, Jeremy

    2015-01-01

    Childhood craniopharyngioma is a complex condition to manage. Survival figures are high but the potential for long-term morbidity is great. There is much debate regarding the best management for these tumours with increasing interest in the use of proton beam therapy. We have therefore reviewed our radiotherapy (RT) practice at Westmead Hospital and the literature regarding the use of protons for these children. Three children have received fractionated stereotactic RT for craniopharyngioma at Westmead Hospital since 2007. Each RT plan was reviewed and additional organs at risk were contoured to enable comparison with published proton data. Planning target volume coverage was similar with all modalities: with the conformity index ranging from 0.70 to 0.78 in our patients compared with 0.50–0.84 in the published data. RT dose to temporal lobes, hippocampi and whole brain was also similar with protons and photons. Proton beam therapy may give lower dose to the Circle of Willis than stereotactic RT. Currently there is no clear evidence that proton beam therapy will improve survival or reduce morbidity for children with craniopharyngioma. However, proton therapy has the potential to reduce RT dose to the Circle of Willis, which may reduce the risk of future cerebrovascular complications. We propose that more resources should be allocated to ensuring these patients are managed by experienced multidisciplinary teams through the continuum from diagnosis to long-term follow-up.

  16. Clinical equipoise: Protons and the child with craniopharyngioma.

    Science.gov (United States)

    Conroy, Ruth; Gomes, Lavier; Owen, Catherine; Buchsbaum, Jeffrey; Ahern, Verity

    2015-06-01

    Childhood craniopharyngioma is a complex condition to manage. Survival figures are high but the potential for long-term morbidity is great. There is much debate regarding the best management for these tumours with increasing interest in the use of proton beam therapy. We have therefore reviewed our radiotherapy (RT) practice at Westmead Hospital and the literature regarding the use of protons for these children. Three children have received fractionated stereotactic RT for craniopharyngioma at Westmead Hospital since 2007. Each RT plan was reviewed and additional organs at risk were contoured to enable comparison with published proton data. Planning target volume coverage was similar with all modalities: with the conformity index ranging from 0.70 to 0.78 in our patients compared with 0.50-0.84 in the published data. RT dose to temporal lobes, hippocampi and whole brain was also similar with protons and photons. Proton beam therapy may give lower dose to the Circle of Willis than stereotactic RT. Currently there is no clear evidence that proton beam therapy will improve survival or reduce morbidity for children with craniopharyngioma. However, proton therapy has the potential to reduce RT dose to the Circle of Willis, which may reduce the risk of future cerebrovascular complications. We propose that more resources should be allocated to ensuring these patients are managed by experienced multidisciplinary teams through the continuum from diagnosis to long-term follow-up. © 2014 The Royal Australian and New Zealand College of Radiologists.

  17. Review of medical radiography and tomography with proton beams

    Science.gov (United States)

    Johnson, Robert P.

    2018-01-01

    The use of hadron beams, especially proton beams, in cancer radiotherapy has expanded rapidly in the past two decades. To fully realize the advantages of hadron therapy over traditional x-ray and gamma-ray therapy requires accurate positioning of the Bragg peak throughout the tumor being treated. A half century ago, suggestions had already been made to use protons themselves to develop images of tumors and surrounding tissue, to be used for treatment planning. The recent global expansion of hadron therapy, coupled with modern advances in computation and particle detection, has led several collaborations around the world to develop prototype detector systems and associated reconstruction codes for proton computed tomography (pCT), as well as more simple proton radiography, with the ultimate intent to use such systems in clinical treatment planning and verification. Recent imaging results of phantoms in hospital proton beams are encouraging, but many technical and programmatic challenges remain to be overcome before pCT scanners will be introduced into clinics. This review introduces hadron therapy and the perceived advantages of pCT and proton radiography for treatment planning, reviews its historical development, and discusses the physics related to proton imaging, the associated experimental and computation issues, the technologies used to attack the problem, contemporary efforts in detector and computational development, and the current status and outlook.

  18. Target tailoring and proton beam therapy to reduce small bowel dose in cervical cancer radiotherapy. A comparison of benefits

    International Nuclear Information System (INIS)

    Boer, Peter de; Westerveld, Henrike; Smit, Mark; Bel, Arjan; Rasch, Coen R.N.; Stalpers, Lukas J.A.; Schoot, Agustinus J.A.J. van de; Buist, Marrije R.

    2018-01-01

    The aim of the study was to investigate the potential clinical benefit from both target tailoring by excluding the tumour-free proximal part of the uterus during image-guided adaptive radiotherapy (IGART) and improved dose conformity based on intensity-modulated proton therapy (IMPT). The study included planning CTs from 11 previously treated patients with cervical cancer with a >4-cm tumour-free part of the proximal uterus on diagnostic magnetic resonance imaging (MRI). IGART and robustly optimised IMPT plans were generated for both conventional target volumes and for MRI-based target tailoring (where the non-invaded proximal part of the uterus was excluded), yielding four treatment plans per patient. For each plan, the V 15Gy , V 30Gy , V 45Gy and D mean for bladder, sigmoid, rectum and bowel bag were compared, and the normal tissue complication probability (NTCP) for ≥grade 2 acute small bowel toxicity was calculated. Both IMPT and MRI-based target tailoring resulted in significant reductions in V 15Gy , V 30Gy , V 45Gy and D mean for bladder and small bowel. IMPT reduced the NTCP for small bowel toxicity from 25% to 18%; this was further reduced to 9% when combined with MRI-based target tailoring. In four of the 11 patients (36%), NTCP reductions of >10% were estimated by IMPT, and in six of the 11 patients (55%) when combined with MRI-based target tailoring. This >10% NTCP reduction was expected if the V 45Gy for bowel bag was >275 cm 3 and >200 cm 3 , respectively, during standard IGART alone. In patients with cervical cancer, both proton therapy and MRI-based target tailoring lead to a significant reduction in the dose to surrounding organs at risk and small bowel toxicity. (orig.) [de

  19. Eye tracking and gating system for proton therapy of orbital tumors

    International Nuclear Information System (INIS)

    Shin, Dongho; Yoo, Seung Hoon; Moon, Sung Ho; Yoon, Myonggeun; Lee, Se Byeong; Park, Sung Yong

    2012-01-01

    Purpose: A new motion-based gated proton therapy for the treatment of orbital tumors using real-time eye-tracking system was designed and evaluated. Methods: We developed our system by image-pattern matching, using a normalized cross-correlation technique with LabVIEW 8.6 and Vision Assistant 8.6 (National Instruments, Austin, TX). To measure the pixel spacing of an image consistently, four different calibration modes such as the point-detection, the edge-detection, the line-measurement, and the manual measurement mode were suggested and used. After these methods were applied to proton therapy, gating was performed, and radiation dose distributions were evaluated. Results: Moving phantom verification measurements resulted in errors of less than 0.1 mm for given ranges of translation. Dosimetric evaluation of the beam-gating system versus nongated treatment delivery with a moving phantom shows that while there was only 0.83 mm growth in lateral penumbra for gated radiotherapy, there was 4.95 mm growth in lateral penumbra in case of nongated exposure. The analysis from clinical results suggests that the average of eye movements depends distinctively on each patient by showing 0.44 mm, 0.45 mm, and 0.86 mm for three patients, respectively. Conclusions: The developed automatic eye-tracking based beam-gating system enabled us to perform high-precision proton radiotherapy of orbital tumors.

  20. Four and five dimensional radiotherapy with reference to prostate cancer - definitions, state of the art and further directions - an overview

    Energy Technology Data Exchange (ETDEWEB)

    Lennernaes, Bo (Dept. of Oncology, Sahlgrenska Hospital and Academy, Univ. of Gothenburg, Gothenburg (Sweden)), e-mail: bo.lennernas@telia.com; Castellanos, Enrique; Nilsson, Sten; Levitt, Seymour (Dept. of Oncology/Pathology, Karolinska Univ. Hospital and Institutet, Stockholm (Sweden))

    2011-06-15

    Radiotherapy (RT) always requires a compromise between tumor control and normal tissue side-effects. Technical innovation in radiation therapy (RT), such as three dimensional RT, is now established. Concerning prostate cancer (PC), it is reasonable to assume that RT of PC will increase in the future. The combination of small margins, a movable target (prostate), few fractions and high doses will probably demand dynamically positioning systems and in real time. This is called four dimensional radiotherapy (4DRT). Moreover, biological factors must be included in new treatments such as hypofractionation schedules. This new era is called five dimensional radiotherapy, 5DRT. In this paper we discuss new concepts in RT in respect to PC

  1. New era of neutron scattering research on advanced materials

    International Nuclear Information System (INIS)

    Ikeda, Susumu

    2001-01-01

    The projects of the next generation of pulsed spallation neutron source are planed in USA, Europe and Japan. They are one order of magnitude more powerful than the most powerful existing neutron source, ISIS in UK. They offer the exciting prospects for the future, and will open the new era of neutron scattering research on advanced materials. The Japanese project is named as the 'Joint project' between JAERI and KEK on high-intensity proton accelerators. The details of the neutron science facility in the 'Joint project' and the sciences to be developed are summarized. (author)

  2. Bystander effects and radiotherapy.

    Science.gov (United States)

    Marín, Alicia; Martín, Margarita; Liñán, Olga; Alvarenga, Felipe; López, Mario; Fernández, Laura; Büchser, David; Cerezo, Laura

    2015-01-01

    Radiation-induced bystander effects are defined as biological effects expressed after irradiation by cells whose nuclei have not been directly irradiated. These effects include DNA damage, chromosomal instability, mutation, and apoptosis. There is considerable evidence that ionizing radiation affects cells located near the site of irradiation, which respond individually and collectively as part of a large interconnected web. These bystander signals can alter the dynamic equilibrium between proliferation, apoptosis, quiescence or differentiation. The aim of this review is to examine the most important biological effects of this phenomenon with regard to areas of major interest in radiotherapy. Such aspects include radiation-induced bystander effects during the cell cycle under hypoxic conditions when administering fractionated modalities or combined radio-chemotherapy. Other relevant aspects include individual variation and genetics in toxicity of bystander factors and normal tissue collateral damage. In advanced radiotherapy techniques, such as intensity-modulated radiation therapy (IMRT), the high degree of dose conformity to the target volume reduces the dose and, therefore, the risk of complications, to normal tissues. However, significant doses can accumulate out-of-field due to photon scattering and this may impact cellular response in these regions. Protons may offer a solution to reduce out-of-field doses. The bystander effect has numerous associated phenomena, including adaptive response, genomic instability, and abscopal effects. Also, the bystander effect can influence radiation protection and oxidative stress. It is essential that we understand the mechanisms underlying the bystander effect in order to more accurately assess radiation risk and to evaluate protocols for cancer radiotherapy.

  3. Proton and neutron radiation in cancer treatment: clinical and economic outcomes

    International Nuclear Information System (INIS)

    Fleurette, F.; Charvet-Protat, S.

    1996-01-01

    The French National Agency for Medical Evaluation (ANDEM) was requested to assess the effectiveness of proton and neutron beam therapy in cancer treatment compared to conventional radiotherapy. This task was accomplished by a critical appraisal of the clinical and economic literature. According to the published economic literature and the capital and staffing cost analysis, it appears that the costs of proton therapy are likely to be two or three times greater than those conformal therapy. According to the published clinical literature, proton beam therapy should be proposed as a routine treatment only for uveal melanoma and skull base cancers. Neutron beam therapy should be proposed as a routine treatment for inoperable salivary gland tumors; its use may be also discussed in cases of stage C-D1 prostate cancers and soft tissue sarcomas. Based on the current scientific evidence and given the incidence rate of these tumors, the time and material requirements, the current French proton/neutron beam facilities are able to meet the current demand. FOr other cancers the medical and economic potential of proton therapy is still an open question. (author)

  4. A survey of neutron energy spectra and angular distributions of the 9Be(p,n)9B reaction for fast neutron radiotherapy

    International Nuclear Information System (INIS)

    Allab, M.

    1984-03-01

    Encouraging findings in radiobiology have stimulated a renewed use of fast neutrons in radiotherapy. The physical characteristics required for neutron beams to be suitable for radiotherapy are well established. As a result, the tendency is to replace the previous machines which generated the neutron beams from deuteron bombardment of thick targets (T, Li, Be) by hospital based cyclotrons which accelerate protons on thick Beryllium targets. This report surveys the available experimental data of the 9 Be(p,n) reaction (cross sections, neutron spectra, yields, mean neutron energies) from the threshold to the proton energy Esub(p)=120 MeV and the works using this reaction in dosimetry measurements, with an emphasis on the data since 1977

  5. Prognostic impact of leukocyte counts before and during radiotherapy for oropharyngeal cancer

    Directory of Open Access Journals (Sweden)

    Garrett L. Jensen

    2017-12-01

    Full Text Available Introduction: Peripheral blood count components are accessible and evidently predictive in other cancers but have not been explored in oropharyngeal carcinoma. We examine if there is an association between the use of intensity-modulated radiotherapy (IMRT or intensity-modulated proton therapy (IMPT and lymphopenia, as well as if there is an association between baseline neutrophilia, baseline leukocytosis and lymphocyte nadir in oropharyngeal cancer. Materials and Methods: Analysis started with 150 patients from a previous case to case study design, which retrospectively identified adults with oropharyngeal carcinoma, 100 treated with IMRT in 2010-2012 and 50 treated with IMPT in 2011–2014. Pretreatment leukocyte, neutrophil, lymphocyte, and hemoglobin levels were extracted, as were neutrophil and lymphocyte nadir levels during radiotherapy. We retained 137 patients with recorded pre-treatment leukocyte and neutrophil levels for associated analysis and 114 patients with recorded lymphocyte levels during radiation and associated analysis. Multivariate survival analyses were done with Cox regression. Results: The radiotherapy type (IMRT vs. IMPT was not associated with lymphopenia (grade 3 P > .99; grade 4 P = .55. In univariate analyses, poor overall survival was associated with pretreatment neutrophilia (hazard ratio [HR] 5.58, 95% confidence interval [CI] 1.99–15.7, P = .001, pretreatment leukocytosis (HR 4.85, 95% CI 1.73–13.6, P = .003, grade 4 lymphopenia during radiotherapy (HR 3.28, 95% CI 1.14–9.44, P = .03, and possibly smoking status >10 pack-years (HR 2.88, 95% CI 1.01–8.18, P = .05, but only T status was possibly significant in multivariate analysis (HR 2.64, 95% CI 0.99–7.00, P = .05. Poor progression-free survival was associated with pretreatment leukocytosis and T status in univariate analysis, and pretreatment neutrophilia and

  6. Codes of practice and protocols for the dosimetry in reference conditions of proton and ion beams

    International Nuclear Information System (INIS)

    Vatnitsky, S.; Andreo, P.

    2002-01-01

    The advantages of radiotherapy protons and heavier charged-particle beams, the technological feasibility, and the clinical results obtained so far have led to the establishment of about 20 treatment facilities worldwide and plans to open another 20 proton and light-ion therapy centres in the next five years. In order to meet the expanding capabilities of treatment techniques, considerable effort has been devoted during the last fifteen years to the development of the dosimetry and calibration of such beams. This paper reviews these developments and summarizes the present status of Codes of Practice and protocols for the dosimetry in reference conditions of proton and ion beams. The first dosimetry protocol for heavy-particle radiotherapy beams, AAPM TG 20, was based on the use of Faraday cups and calorimeters, whereas ionization chamber dosimetry received little attention. Following the trends in 'nuclear particle' radiotherapy, TG 20 included recommendations for specifying 'dose to tissue'. The lack of availability of a harmonized set of data for the different particles made this protocol to include data for stopping-powers and for the mean energy required to produce and ion pair in air, W air , from multiple authors, without enough attention being paid to their consistency. The increased focus into proton beams was materialized in the publication of the ECHED Code of Practice, dedicated exclusively to protons, where ionization dosimetry received more attention than in TG 20. It was not until the publication of the Supplement to the ECHED recommendations that ionization chambers having a 60 CO calibration factor were recommended as a reference detector for proton dosimetry, and data supplied for chambers with different wall materials. The emphasis on ionization chamber-based proton dosimetry was complemented with a recommendation for using water as dosimetry phantom material and the necessary data on tissue and water to air stopping-power ratios and W air . One of

  7. Rationale and early outcomes for the management of thymoma with proton therapy.

    Science.gov (United States)

    Zhu, He J; Hoppe, Bradford S; Flampouri, Stella; Louis, Debbie; Pirris, John; Nichols, R Charles; Henderson, Randal H; Mercado, Catherine E

    2018-04-01

    Radiotherapy for thymic malignancies is technically challenging due to their close proximity to the heart, lungs, esophagus, and breasts, raising concerns about significant acute and late toxicities from conventional photon radiotherapy. Proton therapy (PT) may reduce the radiation dose to these vital organs, leading to less toxicity. We reviewed the dosimetry and outcomes among patients treated with PT for thymic malignancies at our institution. From January 2008 to March 2017, six patients with de novo Masaoka stages II-III thymic malignancies were treated with PT on an IRB-approved outcomes tracking protocol. Patients were evaluated weekly during treatment, then every 3 months for 2 years, then every 6 months for 3 more years, and then annually for CTCAE vs. four toxicities and disease recurrence. Comparison intensity-modulated radiotherapy (IMRT) plans were developed for each patient. Mean doses to the heart, esophagus, bilateral breasts, lungs, and V20 of bilateral lungs were evaluated for the two treatment plans. At last follow-up (median follow-up, 2.6 years), there were two patients with recurrences, including metastatic disease in the patient treated definitively with chemotherapy and PT without surgery and a local-regional recurrence in the lung outside the proton field in one of the post-operative cases. No patients with de novo disease experienced grade ≥3 toxicities after PT. The mean dose to the heart, lung, and esophagus was reduced on average by 36.5%, 33.5%, and 60%, respectively, using PT compared with IMRT (P<0.05 for each dose parameter). PT achieved superior dose sparing to the heart, lung, and esophagus compared to IMRT for thymic malignancies. Patients treated with PT had few radiation-induced toxicities and similar survival compared to historic proton data.

  8. The use of Monte-Carlo codes for treatment planning in external-beam radiotherapy

    International Nuclear Information System (INIS)

    Alan, E.; Nahum, PhD.

    2003-01-01

    Monte Carlo simulation of radiation transport is a very powerful technique. There are basically no exact solutions to the Boltzmann transport equation. Even, the 'straightforward' situation (in radiotherapy) of an electron beam depth-dose distribution in water proves to be too difficult for analytical methods without making gross approximations such as ignoring energy-loss straggling, large-angle single scattering and Bremsstrahlung production. monte Carlo is essential when radiation is transport from one medium into another. As the particle (be it a neutron, photon, electron, proton) crosses the boundary then a new set of interaction cross-sections is simply read in and the simulation continues as though the new medium were infinite until the next boundary is encountered. Radiotherapy involves directing a beam of megavoltage x rays or electrons (occasionally protons) at a very complex object, the human body. Monte Carlo simulation has proved in valuable at many stages of the process of accurately determining the distribution of absorbed dose in the patient. Some of these applications will be reviewed here. (Rogers and al 1990; Andreo 1991; Mackie 1990). (N.C.)

  9. Particles that fight cancer: the use of protons and carbon ions in cancer therapy

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    Particles that fight cancer: the use of protons and carbon ions in cancer therapy Cancer is a major societal issue. A key challenge for cancer therapy is the complex and multifaceted nature of the disease, which calls for personalised treatment. Radiotherapy has been used to treat tumours for more than a century, and is still a staple in oncology: today, 50 % of cancer patients receive radiotherapy, half of them with curative intent. Hadrontherapy is one of the most technologically advanced methods of delivering radiation dose to the tumour while protecting surrounding healthy tissues. In addition, hadrontherapy can reach otherwise difficult to access deep-seated tumours and can be used for radio resistant tumours as in hypoxia. This year marks 60 years since the first patient was treated with protons in the US and 20 years since the use of carbon ions in Japan. Join us in learning about the journey of particle therapy in Japan and Europe, its challenges, clinical results and future prospects. Thursday 2...

  10. Relative biological effectiveness of the therapeutic proton beams at NIRS and Tsukuba University

    International Nuclear Information System (INIS)

    Ando, Koichi; Koike, Sachiko; Kawachi, Kiyomitsu

    1985-01-01

    Relative biological effectiveness (RBE) of proton beams dedicated to radiotherapy was examined using a method of simultaneous irradiation. Mice received i.v. transplantation of syngeneic fibrosarcoma (NFSa) cells. These mice were divided into 3 groups on the following day, and thorax was simultaneously irradiated with one of the following beams: 70MeV proton beam at National Institute of Radiological Sciences (NIRS), 250 MeV Proton beam at Tsukuba University (PARMS) and 60 Co γ ray. Ten to 13 days thereafter, lungs were removed for colony counts to give dose-cell survival relationships. RBE of NIRS proton was ranging from 1.01 to 1.12 with an average of 1.06 while that of PARMS proton was ranging from 1.03 to 1.09 with an average of 1.06 at surviving fraction of 0.01. The simultaneous irradiation for RBE study was found to be reliable at large dose-low survival regions. (author)

  11. Polarized proton beam for eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roser, T. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    RHIC has provided polarized proton collisions from 31 GeV to 255 GeV in the past decade. To preserve polarization through numerous depolarizing resonances through the whole accelerator chain, harmonic orbit correction, partial snakes, horizontal tune jump system and full snakes have been used. In addition, close attentions have been paid to betatron tune control, orbit control and beam line alignment. The polarization of 60% at 255 GeV has been delivered to experiments with 1.8×1011 bunch intensity. For the eRHIC era, the beam brightness has to be maintained to reach the desired luminosity. Since we only have one hadron ring in the eRHIC era, existing spin rotator and snakes can be converted to six snake configuration for one hadron ring. With properly arranged six snakes, the polarization can be maintained at 70% at 250 GeV. This paper summarizes the effort and plan to reach high polarization with small emittance for eRHIC.

  12. Proton or photon irradiation for hemangiomas of the choroid? A retrospective comparison

    International Nuclear Information System (INIS)

    Hoecht, Stefan; Wachtlin, Joachim; Bechrakis, Nikolaos E.; Schaefer, Christiane; Heufelder, Jens; Cordini, Dino; Kluge, Heinz; Foerster, Michael; Hinkelbein, Wolfgang

    2006-01-01

    Purpose: The aim of this study was to compare, on a retrospective basis, the results of therapy in patients with uveal hemangioma treated with photon or proton irradiation at a single center. Methods and Materials: From 1993 to 2002 a total of 44 patients were treated. Until 1998 radiotherapy was given with 6 MV photons in standard fractionation of 2.0 Gy 5 times per week. In 1998 proton therapy became available and was used since then. A dose of 20 to 22.5 Cobalt Gray Equivalent (CGE) 68 MeV protons was given on 4 consecutive days. Progressive symptoms or deterioration of vision were the indications for therapy. Results: Of the 44 patients treated, 36 had circumscribed choroidal hemangiomas and 8 had diffuse choroidal hemangiomas (DCH) and Sturge-Weber syndrome. Of the patients, 19 were treated with photons with a total dose in the range of 16 to 30 Gy. A total of 25 patients were irradiated with protons. All patients with DCH but 1 were treated with photons. Stabilization of visual acuity was achieved in 93.2% of all patients. Tumor thickness decreased in 95.4% and retinal detachment resolved in 92.9%. Late effects, although generally mild or moderate, were frequently detected. In all, 40.9% showed radiation-induced optic neuropathy, maximum Grade I. Retinopathy was found in 29.5% of cases, but only 1 patient experienced more than Grade II severity. Retinopathy and radiation-induced optic neuropathy were reversible in some of the patients and in some resolved completely. No differences could be detected between patients with circumscribed choroidal hemangiomas treated with protons and photons. Treatment was less effective in DCH patients (75%). Conclusions: Radiotherapy is effective in treating choroidal hemangiomas with respect to visual acuity and tumor thickness but a benefit of proton therapy could not be detected. Side effects are moderate but careful monitoring for side effects should be part of the follow-up procedures

  13. Sensitivity of HTB140 cell exposed to protons and alkylating agents

    International Nuclear Information System (INIS)

    Koricanac, L.; Petrovic, I.; Privitera, G.; Cuttone, G.; Ristic-Fira, A.

    2006-01-01

    Malignant melanoma is a highly aggressive cancer with a poor prognosis due to resistance to radiotherapy and chemotherapy regimens. The mainstay of treatment remains DNA-alkylating agent dacarbazine (DTIC). Fotemustine (FM), chloroethylnitrosourea agent, also has demonstrated significant antitumoral effects in malignant melanoma. However, the resistance of melanoma cells limits their clinical application. In order to enhance the inhibition of melanoma cell growth, in this study, combined treatment of FM and DTIC with proton irradiation, was investigated. We analyzed the effects of combined treatment on HTB140 melanoma cell viability and proliferation. Significant inhibition of cell growth, especially cell proliferation, was obtained after treatment with protons and FM compare to single irradiation or drug treatment. Treatment with protons and DTIC has shown improved growth inhibition compare to appropriate single drug treatment, but not compare to irradiation as a single treatment. (author)

  14. Salvage High-intensity Focused Ultrasound for the Recurrent Prostate Cancer after Radiotherapy

    International Nuclear Information System (INIS)

    Shoji, S.; Nakano, M.; Omata, T.; Harano, Y.; Nagata, Y.; Uchida, T.; Usui, Y.; Terachi, T.

    2010-01-01

    To investigate the use of minimally invasive high-intensity focused ultrasound (HIFU) as a salvage therapy in men with localized prostate cancer recurrence following external beam radiotherapy (EBRT), brachytherapy or proton therapy. A review of 20 cases treated using the Sonablate registered 500 HIFU device, between August 28, 2002 and September 1, 2009, was carried out. All men had presumed organ-confined, histologically confirmed recurrent prostate adenocarcinoma following radiation therapy. All men with presumed, organ-confined, recurrent disease following EBRT in 8 patients, brachytherapy in 7 patients or proton therapy in 5 patients treated with salvage HIFU were included. The patients were followed for a mean (range) of 16.0 (3-80) months. Biochemical disease-free survival (bDFS) rates in patients with low-intermediate and high risk groups were 86% and 50%, respectively. Side-effects included urethral stricture in 2 of the 16 patients (13%), urinary tract infection or dysuria syndrome in eight (26%), and urinary incontinence in one (6%). Recto-urethral fistula occurred in one patient (6%). Transrectal HIFU is an effective treatment for recurrence after radiotherapy especially in patients with low- and intermediate risk groups.

  15. ERA`s Ranger uranium mine

    Energy Technology Data Exchange (ETDEWEB)

    Davies, W. [Energy Resources of Australia Ltd., Sydney, NSW (Australia)

    1997-12-31

    Energy Resource of Australia (ERA) is a public company with 68% of its shares owned by the Australian company North Limited. It is currently operating one major production centre - Ranger Mine which is 260 kilometres east of Darwin, extracting and selling uranium from the Ranger Mine in the Northern Territory to nuclear electricity utilities in Japan, South Korea, Europe and North America. The first drum of uranium oxide from Ranger was drummed in August 1981 and operations have continued since that time. ERA is also in the process of working towards obtaining approvals for the development of a second mine - Jabiluka which is located 20 kilometres north of Ranger. The leases of Ranger and Jabiluka adjoin. The Minister for the Environment has advised the Minister for Resources and Energy that there does not appear to be any environmental issue which would prevent the preferred Jabiluka proposal from proceeding. Consent for the development of ERA`s preferred option for the development of Jabiluka is being sought from the Aboriginal Traditional Owners. Ranger is currently the third largest producing uranium mine in the world producing 4,237 tonnes of U{sub 3}O{sub 8} in the year to June 1997.

  16. Physical, biological and clinical basis of light ions using in radiotherapy: EULIMA project

    International Nuclear Information System (INIS)

    Chauvel, P.

    1991-01-01

    Improving the efficiency of radiotherapy is a constant concern in oncology: more than half of the patients who contract cancer receive radiotherapy at some stage. Use of charged particles in radiotherapy represents indisputable progress in localization of the dose delivered to tumour masses, thereby allowing reduction of dose received by adjacent healthy tissues. Protons improve the physical selectivity of the irradiation, i.e. the dose distribution. High-LET (Linear Energy Transfer) radiations produce different biological effects, decreasing the differences in radiosensitivity, and allowing radiation therapy to control radioresistant tumours. Fast neutrons represent the most known of these high-LET particles, but they suffer of a relatively poor physical selectivity. The two approaches (physical selectivity and biological advantages) are joined in by light ions (Carbon, Oxygen, Neon). Highly selective high-LET radiation therapy can be performed for radioresistant tumours without damage to healthy tissues. Preliminary results obtained in Berkeley (USA) demonstrate an improved local control of unresectable, slowly growing tumours, confirming what could be extrapolated from proton and neutrontherapy. Furthermore, radioactive light ion beams can be used to verify the accuracy of treatment planning by checking the range of the particle with a PET camera, and in the future for the treatment itself. In the framework of its programme Europe against Cancer, the Commission of the European Communities participates in the funding of the EULIMA (European Light Ion Medical Accelerator) project feasibility study, aiming to design an hospital-based light ion therapy facility in Europe [fr

  17. Clinical proton dosimetry. Part 1: Beam production, beam delivery and measurement of absorbed dose

    International Nuclear Information System (INIS)

    1998-01-01

    The development of accurate and uniform standards for radiation treatment dosimetry has been a continuing effort since the earliest days of radiotherapy. This ICRU Report is intended to promote uniformity of standards that will provide a basis for world-wide comparison of clinical results and allow the development of meaningful clinical trials. This Report describes current practice in proton therapy and recommends standards for the dosimetry of proton treatments. Established proton treatment facilities might use this Report as a source of information for the maintenance of accurate standards. New facilities may build their procedures from recommendations found in this Report and planners of new facilities may examine alternatives within current practice for the production and monitoring of treatment beams. This Report includes a description of the interaction of protons with matter, various methods of beam production, the characteristics of proton beams in clinical use, current methods for beam monitoring and specific recommendations for dose calibration

  18. SU-E-T-542: Measurement of Internal Neutrons for Uniform Scanning Proton Beams

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M; Ahmad, S [University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (United States); Zheng, Y; Rana, S [Procure Proton Therapy Center, Oklahoma City, OK (United States); Collums, T [University of Iowa Hospitals and Clinics, Iowa City, IA (United States); Monsoon, J; Benton, E [Oklahoma State University, Stillwater, OK (United States)

    2015-06-15

    Purpose: In proton radiotherapy, the production of neutrons is a wellknown problem since neutron exposure can lead to increased risk of secondary cancers later in the patient’s lifetime. The assessment of neutron exposure is, therefore, important for the overall quality of proton radiotherapy. This study investigates the secondary neutrons created inside the patient from uniform scanning proton beams. Methods: Dose equivalent due to secondary neutrons was measured outside the primary field as a function of distance from beam isocenter at three different angles, 45, 90 and 135 degree, relative to beam axis. Plastic track nuclear detector (CR-39 PNTD) was used for the measurement of neutron dose. Two experimental configurations, in-air and cylindrical-phantom, were designed. In a cylindrical-phantom configuration, a cylindrical phantom of 5.5 cm diameter and 35 cm long was placed along the beam direction and in an in-air configuration, no phantom was used. All the detectors were placed at nearly identical locations in both configurations. Three proton beams of range 5 cm, 18 cm, and 32 cm with 4 cm modulation width and a 5 cm diameter aperture were used. The contribution from internal neutrons was estimated from the differences in measured dose equivalent between in-air and cylindrical-phantom configurations at respective locations. Results: The measured ratio of neutron dose equivalent to the primary proton dose (H/D) dropped off with distance and ranged from 27 to 0.3 mSv/Gy. The contribution of internal neutrons near the treatment field edge was found to be up to 64 % of the total neutron exposure. As the distance from the field edge became larger, the external neutrons from the nozzle appear to dominate and the internal neutrons became less prominent. Conclusion: This study suggests that the contribution of internal neutrons could be significant to the total neutron dose equivalent.

  19. A phase I/II study of gemcitabine-concurrent proton radiotherapy for locally advanced pancreatic cancer without distant metastasis

    International Nuclear Information System (INIS)

    Terashima, Kazuki; Demizu, Yusuke; Hashimoto, Naoki; Jin, Dongcun; Mima, Masayuki; Fujii, Osamu; Niwa, Yasue; Takatori, Kento; Kitajima, Naoto; Sirakawa, Sachiyo; Yonson, Ku; Hishikawa, Yoshio; Abe, Mitsuyuki; Sasaki, Ryohei; Sugimura, Kazuro; Murakami, Masao

    2012-01-01

    Purpose: We conducted the study to assess the feasibility and efficacy of gemcitabine-concurrent proton radiotherapy (GPT) for locally advanced pancreatic cancer (LAPC). Materials and methods: Of all 50 patients who participated in the study, 5 patients with gastrointestinal (GI)-adjacent LAPC were enrolled in P-1 (50 Gy equivalent [GyE] in 25 fractions) and 5 patients with non-GI-adjacent LAPC in P-2 (70.2 GyE in 26 fractions), and 40 patients with LAPC regardless of GI-adjacency in P-3 (67.5 GyE in 25 fractions using the field-within-a-field technique). In every protocol, gemcitabine (800 mg/m 2 /week for 3 weeks) was administered concurrently. Every patient received adjuvant chemotherapy including gemcitabine after GPT within the tolerable limit. Results: The median follow-up period was 12.5 months. The scheduled GPT was feasible for all except 6 patients (12%) due to acute hematologic or GI toxicities. Grade 3 or greater late gastric ulcer and hemorrhage were seen in 5 patients (10%) in P-2 and P-3. The one-year freedom from local-progression, progression-free, and overall survival rates were 81.7%, 64.3%, and 76.8%, respectively. Conclusion: GPT was feasible and showed high efficacy. Although the number of patients and the follow-up periods are insufficient, the clinical results seem very encouraging.

  20. Proton beam therapy in non-small cell lung cancer: state of the art

    Directory of Open Access Journals (Sweden)

    Harada H

    2017-08-01

    Full Text Available Hideyuki Harada, Shigeyuki Murayama Radiation and Proton Therapy Center, Shizuoka Cancer Center Hospital, Nagaizumi, Shizuoka, Japan Abstract: This review summarizes the past and present status of proton beam therapy (PBT for lung cancer. PBT has a unique characteristic called the Bragg peak that enables a reduction in the dose of normal tissue around the tumor, but is sensitive to the uncertainties of density changes. The heterogeneity in electron density for thoracic lesions, such as those in the lung and mediastinum, and tumor movement according to respiration necessitates respiratory management for PBT to be applied in lung cancer patients. There are two types of PBT – a passively scattered approach and a scanning approach. Typically, a passively scattered approach is more robust for respiratory movement and a scanning approach could result in a more conformal dose distribution even when the tumor shape is complex. Large tumors of centrally located lung cancer may be more suitably irradiated than with intensity-modulated radiotherapy (IMRT or stereotactic body radiotherapy (SBRT. For a locally advanced lung cancer, PBT can spare the lung and heart more than photon IMRT. However, no randomized controlled trial has reported differences between PBT and IMRT or SBRT for early-stage and locally advanced lung cancers. Therefore, a well-designed controlled trial is warranted. Keywords: proton beam therapy, non-small cell lung cancer, survival, SBRT, IMRT

  1. Modeling the Risk of Secondary Malignancies after Radiotherapy

    Directory of Open Access Journals (Sweden)

    Uwe Schneider

    2011-11-01

    Full Text Available In developed countries, more than half of all cancer patients receive radiotherapy at some stage in the management of their disease. However, a radiation-induced secondary malignancy can be the price of success if the primary cancer is cured or at least controlled. Therefore, there is increasing concern regarding radiation-related second cancer risks in long-term radiotherapy survivors and a corresponding need to be able to predict cancer risks at high radiation doses. Of particular interest are second cancer risk estimates for new radiation treatment modalities such as intensity modulated radiotherapy, intensity modulated arc-therapy, proton and heavy ion radiotherapy. The long term risks from such modern radiotherapy treatment techniques have not yet been determined and are unlikely to become apparent for many years, due to the long latency time for solid tumor induction. Most information on the dose-response of radiation-induced cancer is derived from data on the A-bomb survivors who were exposed to γ-rays and neutrons. Since, for radiation protection purposes, the dose span of main interest is between zero and one Gy, the analysis of the A-bomb survivors is usually focused on this range. With increasing cure rates, estimates of cancer risk for doses larger than one Gy are becoming more important for radiotherapy patients. Therefore in this review, emphasis was placed on doses relevant for radiotherapy with respect to radiation induced solid cancer. Simple radiation protection models should be used only with extreme care for risk estimates in radiotherapy, since they are developed exclusively for low dose. When applied to scatter radiation, such models can predict only a fraction of observed second malignancies. Better semi-empirical models include the effect of dose fractionation and represent the dose-response relationships more accurately. The involved uncertainties are still huge for most of the organs and tissues. A major reason for

  2. In 2011 Valencia will house the first Spanish centre for the treatment of cancer with protons

    International Nuclear Information System (INIS)

    Tobalina, B.

    2008-01-01

    The most advanced countries are beginning to apply a new type of radiotherapy, more powerful and specific than that currently in use, based on the use of protons. The first Spanish centre to be equipped with a complex facility of this type will be the Valencian Institute of Medical Physics, which will be able to treat 2,000 patients a year. This radiotherapy technique is especially suitable for the treatment of cancers in children and cerebral and ocular cancers, which affect some 8,000 patients a year in Spain. (Author)

  3. Brainstem tolerance to conformal radiotherapy of skull base tumors

    International Nuclear Information System (INIS)

    Debus, J.; Hug, E.B.; Munzenrider, J.E.; Liebsch, N.J.; O'Farrell, D.; Efird, J.; Daly, W.; Suit, H.D.

    1996-01-01

    Purpose/Objective: Brainstem tolerance to inhomogenous radiation doses applied by modern conformal radiotherapy has not yet been examined. The aim of this study was to analyse the incidence of brainstem toxicity in patients treated for skull base tumors with high dose conformal radiotherapy. Materials and Methods: Between 1974 and 1995, 367 patients with chordomas (n=195) and chondrosarcomas (n=172) of the base of skull have been treated with combined megavoltage photon and 160 MeV proton radiotherapy. All patients had previously undergone biopsy, subtotal or total tumor removal. 104 patients had two or more surgical procedures before radiotherapy. Following 3D treatment planning with delineation of target volumes and critical non-target structures, dose distributions and dose volume histograms were calculated [at the time of treatment delivery]. Radiotherapy was given once a day, 1.8 Gy or CGE (Cobalt Gy Equivalent: Proton Gy X 1.1) per fraction, 5 fractions per week, with prescribed target doses ranging from 63 CGE to 79.2 CGE (mean = 67.8 CGE). Doses to the brainstem surface were limited to ≤64 CGE and to the brainstem center to ≤53 CGE. Dose distributions were developed to limit dose to brainstem surface and center; current plans limit dose to surface and center to ≤64 CGE and ≤53 CGE, respectively. Brainstem toxicity was scored according to the RTOG grading system. Results: Follow-up ranged from 6 months to 21.4 years (mean = 42.5 months). Brainstem symptoms, attributable to the treatment, developed in 17 of 282 patients with local tumor control (6.0%), resulting in death of three patients. The mean time to onset of symptoms was 17 months (range: 4.5 to 177 months). These symptoms appeared in 89.5% within 3 years. Grading of the brainstem toxicity is listed in table 1. Actuarial rates of 5 and 10 year toxicity free survival were 87% and 82% respectively. Increased risk of brainstem toxicity was significantly associated with maximum brainstem dose

  4. Detailed analysis of the cell-inactivation mechanism by accelerated protons and light ions

    Czech Academy of Sciences Publication Activity Database

    Kundrát, Pavel

    2006-01-01

    Roč. 51, - (2006), s. 1185-1199 ISSN 0031-9155 R&D Projects: GA ČR GA202/05/2728 Institutional research plan: CEZ:AV0Z10100502 Keywords : biological effects of ionizing particles * cell inactivation * modelling * protons * light ions * hadron radiotherapy Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 2.873, year: 2006

  5. Experimental control of the beam properties of laser-accelerated protons and carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Amin, Munib

    2008-12-15

    The laser generation of energetic high quality beams of protons and heavier ions has opened up the door to a plethora of applications. These beams are usually generated by the interaction of a short pulse high power laser with a thin metal foil target. They could already be applied to probe transient phenomena in plasmas and to produce warm dense matter by isochoric heating. Other applications such as the production of radioisotopes and tumour radiotherapy need further research to be put into practice. To meet the requirements of each application, the properties of the laser-accelerated particle beams have to be controlled precisely. In this thesis, experimental means to control the beam properties of laser-accelerated protons and carbon ions are investigated. The production and control of proton and carbon ion beams is studied using advanced ion source designs: Experiments concerning mass-limited (i.e. small and isolated) targets are conducted. These targets have the potential to increase both the number and the energy of laser-accelerated protons. Therefore, the influence of the size of a plane foil target on proton beam properties is measured. Furthermore, carbon ion sources are investigated. Carbon ions are of particular interest in the production of warm dense matter and in cancer radiotherapy. The possibility to focus carbon ion beams is investigated and a simple method for the production of quasi-monoenergetic carbon ion beams is presented. This thesis also provides an insight into the physical processes connected to the production and the control of laser-accelerated ions. For this purpose, laser-accelerated protons are employed to probe plasma phenomena on laser-irradiated targets. Electric fields evolving on the surface of laser-irradiated metal foils and hollow metal foil cylinders are investigated. Since these fields can be used to displace, collimate or focus proton beams, understanding their temporal and spatial evolution is crucial for the design of

  6. Experimental control of the beam properties of laser-accelerated protons and carbon ions

    International Nuclear Information System (INIS)

    Amin, Munib

    2008-12-01

    The laser generation of energetic high quality beams of protons and heavier ions has opened up the door to a plethora of applications. These beams are usually generated by the interaction of a short pulse high power laser with a thin metal foil target. They could already be applied to probe transient phenomena in plasmas and to produce warm dense matter by isochoric heating. Other applications such as the production of radioisotopes and tumour radiotherapy need further research to be put into practice. To meet the requirements of each application, the properties of the laser-accelerated particle beams have to be controlled precisely. In this thesis, experimental means to control the beam properties of laser-accelerated protons and carbon ions are investigated. The production and control of proton and carbon ion beams is studied using advanced ion source designs: Experiments concerning mass-limited (i.e. small and isolated) targets are conducted. These targets have the potential to increase both the number and the energy of laser-accelerated protons. Therefore, the influence of the size of a plane foil target on proton beam properties is measured. Furthermore, carbon ion sources are investigated. Carbon ions are of particular interest in the production of warm dense matter and in cancer radiotherapy. The possibility to focus carbon ion beams is investigated and a simple method for the production of quasi-monoenergetic carbon ion beams is presented. This thesis also provides an insight into the physical processes connected to the production and the control of laser-accelerated ions. For this purpose, laser-accelerated protons are employed to probe plasma phenomena on laser-irradiated targets. Electric fields evolving on the surface of laser-irradiated metal foils and hollow metal foil cylinders are investigated. Since these fields can be used to displace, collimate or focus proton beams, understanding their temporal and spatial evolution is crucial for the design of

  7. Predicted Rates of Secondary Malignancies From Proton Versus Photon Radiation Therapy for Stage I Seminoma

    Energy Technology Data Exchange (ETDEWEB)

    Simone, Charles B., E-mail: csimone@alumni.upenn.edu [Department of Radiation Oncology, Hospital of University of Pennsylvania, Philadelphia, Pennsylvania (United States); Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States); Kramer, Kevin [Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, Maryland (United States); O' Meara, William P. [Division of Radiation Oncology, National Naval Medical Center, Bethesda, Maryland (United States); Bekelman, Justin E. [Department of Radiation Oncology, Hospital of University of Pennsylvania, Philadelphia, Pennsylvania (United States); Belard, Arnaud [Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, Maryland (United States); McDonough, James [Department of Radiation Oncology, Hospital of University of Pennsylvania, Philadelphia, Pennsylvania (United States); O' Connell, John [Radiation Oncology Service, Walter Reed Army Medical Center, Washington, DC (United States)

    2012-01-01

    Purpose: Photon radiotherapy has been the standard adjuvant treatment for stage I seminoma. Single-dose carboplatin therapy and observation have emerged as alternative options due to concerns for acute toxicities and secondary malignancies from radiation. In this institutional review board-approved study, we compared photon and proton radiotherapy for stage I seminoma and the predicted rates of excess secondary malignancies for both treatment modalities. Methods and Material: Computed tomography images from 10 consecutive patients with stage I seminoma were used to quantify dosimetric differences between photon and proton therapies. Structures reported to be at increased risk for secondary malignancies and in-field critical structures were contoured. Reported models of organ-specific radiation-induced cancer incidence rates based on organ equivalent dose were used to determine the excess absolute risk of secondary malignancies. Calculated values were compared with tumor registry reports of excess secondary malignancies among testicular cancer survivors. Results: Photon and proton plans provided comparable target volume coverage. Proton plans delivered significantly lower mean doses to all examined normal tissues, except for the kidneys. The greatest absolute reduction in mean dose was observed for the stomach (119 cGy for proton plans vs. 768 cGy for photon plans; p < 0.0001). Significantly more excess secondary cancers per 10,000 patients/year were predicted for photon radiation than for proton radiation to the stomach (4.11; 95% confidence interval [CI], 3.22-5.01), large bowel (0.81; 95% CI, 0.39-1.01), and bladder (0.03; 95% CI, 0.01-0.58), while no difference was demonstrated for radiation to the pancreas (0.02; 95% CI, -0.01-0.06). Conclusions: For patients with stage I seminoma, proton radiation therapy reduced the predicted secondary cancer risk compared with photon therapy. We predict a reduction of one additional secondary cancer for every 50 patients

  8. Radiotherapy for locally recurrent rectal cancer treated with surgery alone as the initial treatment

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Hidekazu; Yamaguchi, Takahiro; Hachiya, Kae; Okada, Sunaho; Kitahara, Masashi; Matsuyama, Katsuya; Matsuo, Masayuki [Gifu University, Gifu (Japan)

    2017-03-15

    Although the technical developments of radiotherapy have been remarkable, there are currently few reports on the treatment results of radiotherapy for local recurrence of rectal cancer treated with surgery alone as initial treatment in this three-dimensional conformal radiotherapy era. Thus, we retrospectively evaluated the treatment results of radiotherapy for local recurrence of rectal cancer treated with surgery alone as the initial treatment. Thirty-two patients who underwent radiotherapy were enrolled in this study. The dose per fraction was 2.0–3.5 Gy. Because the treatment schedule was variable, the biological effective dose (BED) was calculated. Local control (LC) and overall survival (OS) rates from the completion of radiotherapy were calculated. The 1-, 2-, 3-, 4-, and 5-year LC rates were 51.5%, 24.5%, 19.6%, 19.6%, and 13.1%, respectively. LC rates were significantly higher for the high BED group (≥75 Gy10) than for the lower BED group (<75 Gy10). All patients who reported pain achieved pain relief. The duration of pain relief was significantly higher for the high BED group than for the lower BED group. The 1-, 2-, 3-, 4-, and 5-year OS rates were 82.6%, 56.5%, 45.2%, 38.7%, and 23.2%, respectively. There was a trend toward higher OS rates in with higher BED group compared to lower BED group. For patients with unresectable locally recurrent rectal cancer treated with surgery alone, radiotherapy is effective treatment. The prescribed BED should be more than 75 Gy10, if the dose to the organ at risk is within acceptable levels.

  9. Novel applications of particle accelerators to radiotherapy

    International Nuclear Information System (INIS)

    Kreiner, A.J.; Burlon, A.A.; Universidad Nacional de San Martin, Villa Ballester

    2002-01-01

    Charged hadrons (protons and heavier ions) have very definite advantages over photons as far as radiotherapy applications are concerned. They allow for much better spatial dose localization due to their charge, relatively high mass and nature of the energy deposition process. In the frame of an attempt to promote the introduction of hadrontherapy in Argentina an external beam facility has been installed at our tandem accelerator TANDAR. The advantages of heavy ions can only be fully exploited for tumors of well defined localization. In certain types of malignancies, however, the region infiltrated by tumor cells is diffuse, with no sharp boundaries and with microscopic ramifications. In such cases (particularly in certain brain cancers) a more sophisticated scheme has been suggested called boron neutron capture therapy (BNCT). In this work, the use of the Tandar accelerator to produce neutrons for feasibility studies for BNCT through low-energy proton beams on a thick LiF target is being briefly described. Studies on the 13 C(d,n) reaction and a comparison with other neutron-producing reactions are also mentioned. Simulation work to optimize an accelerator-based neutron production target is discussed. A project is being prepared to develop a small proton accelerator in Argentina. Technical specifications of this machine are briefly discussed. (author)

  10. Measurements of LET Spectra of the JINR Phasotron Radiotherapy Proton Beam

    Czech Academy of Sciences Publication Activity Database

    Kubančák, Ján; Molokanov, A. G.

    2013-01-01

    Roč. 2013, č. 6 (2013), s. 90-92 ISSN 1562-6016 R&D Projects: GA MŠk LA08002 Institutional support: RVO:61389005 Keywords : LET spectra * proton beam Subject RIV: BO - Biophysics Impact factor: 0.102, year: 2013 http:// vant .kipt.kharkov.ua/ARTICLE/ VANT _2013_6/article_2013_6_90.pdf

  11. SU-E-T-470: Beam Performance of the Radiance 330 Proton Therapy System

    International Nuclear Information System (INIS)

    Nazaryan, H; Nazaryan, V; Wang, F; Flanz, J; Alexandrov, V

    2014-01-01

    Purpose: The ProTom Radiance 330 proton radiotherapy system is a fully functional, compact proton radiotherapy system that provides advanced proton delivery capabilities. It supports three-dimensional beam scanning with energy and intensity modulation. A series of measurements have been conducted to characterize the beam performance of the first installation of the system at the McLaren Proton Therapy Center in Flint, Michigan. These measurements were part of the technical commissioning of the system. Select measurements and results are presented. Methods: The Radiance 330 proton beam energy range is 70–250 MeV for treatment, and up to 330 MeV for proton tomography and radiography. Its 3-D scanning capability, together with a small beam emittance and momentum spread, provides a highly efficient beam delivery. During the technical commissioning, treatment plans were created to deliver uniform maps at various energies to perform Gamma Index analysis. EBT3 Gafchromic films were irradiated using the Planned irradiation maps. Bragg Peak chamber was used to test the dynamic range during a scan in one layer for high (250 MeV) and Low (70 MeV) energies. The maximum and minimum range, range adjustment and modulation, distal dose falloff (80%–20%), pencil beam spot size, spot placement accuracy were also measured. The accuracy testing included acquiring images, image registration, receiving correction vectors and applying the corrections to the robotic patient positioner. Results: Gamma Index analysis of the Treatment Planning System (TPS) data vs. Measured data showed more than 90% of points within (3%, 3mm) for the maps created by the TPS. At Isocenter Beam Size (One sigma) < 3mm at highest energy (250 MeV) in air. Beam delivery was within 0.6 mm of the intended target at the entrance and the exit of the beam, through the phantom. Conclusion: The Radiance 330 Beam Performance Measurements have confirmed that the system operates as designed with excellent clinical

  12. SU-E-T-470: Beam Performance of the Radiance 330 Proton Therapy System

    Energy Technology Data Exchange (ETDEWEB)

    Nazaryan, H; Nazaryan, V; Wang, F [ProTom International, Inc., Flower Mound, TX (United States); Flanz, J [Massachusetts General Hospital, Boston, MA (United States); Alexandrov, V [ZAO ProTom, Protvino, Moscow region (Russian Federation)

    2014-06-01

    Purpose: The ProTom Radiance 330 proton radiotherapy system is a fully functional, compact proton radiotherapy system that provides advanced proton delivery capabilities. It supports three-dimensional beam scanning with energy and intensity modulation. A series of measurements have been conducted to characterize the beam performance of the first installation of the system at the McLaren Proton Therapy Center in Flint, Michigan. These measurements were part of the technical commissioning of the system. Select measurements and results are presented. Methods: The Radiance 330 proton beam energy range is 70–250 MeV for treatment, and up to 330 MeV for proton tomography and radiography. Its 3-D scanning capability, together with a small beam emittance and momentum spread, provides a highly efficient beam delivery. During the technical commissioning, treatment plans were created to deliver uniform maps at various energies to perform Gamma Index analysis. EBT3 Gafchromic films were irradiated using the Planned irradiation maps. Bragg Peak chamber was used to test the dynamic range during a scan in one layer for high (250 MeV) and Low (70 MeV) energies. The maximum and minimum range, range adjustment and modulation, distal dose falloff (80%–20%), pencil beam spot size, spot placement accuracy were also measured. The accuracy testing included acquiring images, image registration, receiving correction vectors and applying the corrections to the robotic patient positioner. Results: Gamma Index analysis of the Treatment Planning System (TPS) data vs. Measured data showed more than 90% of points within (3%, 3mm) for the maps created by the TPS. At Isocenter Beam Size (One sigma) < 3mm at highest energy (250 MeV) in air. Beam delivery was within 0.6 mm of the intended target at the entrance and the exit of the beam, through the phantom. Conclusion: The Radiance 330 Beam Performance Measurements have confirmed that the system operates as designed with excellent clinical

  13. Redesigning Radiotherapy Quality Assurance: Opportunities to Develop an Efficient, Evidence-Based System to Support Clinical Trials

    Science.gov (United States)

    Bekelman, Justin E.; Deye, James A.; Vikram, Bhadrasain; Bentzen, Soren M.; Bruner, Deborah; Curran, Walter J.; Dignam, James; Efstathiou, Jason A.; FitzGerald, T. J.; Hurkmans, Coen; Ibbott, Geoffrey S.; Lee, J. Jack; Merchant, Timothy E.; Michalski, Jeff; Palta, Jatinder R.; Simon, Richard; Ten Haken, Randal K.; Timmerman, Robert; Tunis, Sean; Coleman, C. Norman; Purdy, James

    2012-01-01

    Background In the context of national calls for reorganizing cancer clinical trials, the National Cancer Institute (NCI) sponsored a two day workshop to examine the challenges and opportunities for optimizing radiotherapy quality assurance (QA) in clinical trial design. Methods Participants reviewed the current processes of clinical trial QA and noted the QA challenges presented by advanced technologies. Lessons learned from the radiotherapy QA programs of recent trials were discussed in detail. Four potential opportunities for optimizing radiotherapy QA were explored, including the use of normal tissue toxicity and tumor control metrics, biomarkers of radiation toxicity, new radiotherapy modalities like proton beam therapy, and the international harmonization of clinical trial QA. Results Four recommendations were made: 1) Develop a tiered (and more efficient) system for radiotherapy QA and tailor intensity of QA to clinical trial objectives. Tiers include (i) general credentialing, (ii) trial specific credentialing, and (iii) individual case review; 2) Establish a case QA repository; 3) Develop an evidence base for clinical trial QA and introduce innovative prospective trial designs to evaluate radiotherapy QA in clinical trials; and 4) Explore the feasibility of consolidating clinical trial QA in the United States. Conclusion Radiotherapy QA may impact clinical trial accrual, cost, outcomes and generalizability. To achieve maximum benefit, QA programs must become more efficient and evidence-based. PMID:22425219

  14. Dosimetric evaluation of proton stereotactic radiosurgery

    International Nuclear Information System (INIS)

    Min, Byung Jun; Shin, Dong Ho; Yoo, Seung Hoon; Jeong, Hojin; Lee, Se Byeong

    2011-01-01

    Surgical excision, conventional external radiotherapy, and chemotherapy could prolong survival in patients with small intracranial tumors. However, surgical excision for meningiomas located in the region of the base of skull or re-resection is often difficult. Moreover, treatment is needed for patients with recurrent tumors or postoperative residual tumors. Conventional external radiotherapy is popular and has significantly increased for treating brain tumors. Stereotactic radiosurgery is an effective alternative treatment technique to microsurgical resection such as benign brain tumor or vestibular Schwannomas. In general, the dose to OAR of 3D conformal plan is lower than that of conformal arc and dynamic conformal arc plans. However, any of OARs was not reached to tolerance dose. Although mean dose of the healthy brain tissue for 3D conformal plan was slightly higher than that of arc plans, the doses of the healthy brain tissue at V10 and V20 were significantly low for dynamic conformal arc plan. The dosimetric differences were the greatest at lower doses. In contrast, 3D conformal plan was better spare at higher doses. In this study, a dosimetric evaluation of proton stereotactic radiosurgery for brain lesion tumors was using fixed and arc beams. A brass block fitted to the PTV structure was modeled for dynamic conformal collimator. Although all treatment plans offer a very good coverage of the PTV, we found that proton arc plans had significantly better conformity to the PTV than static 3D conformal plan. The V20 dose of normal brain for dynamic conformal arc therapy is dramatically reduced compare to those for other therapy techniques.

  15. Renal artery stenosis after radiotherapy for Ewing's sarcoma

    International Nuclear Information System (INIS)

    Tacconi, S.; Bieri, S.

    2008-01-01

    Background: the fact that therapeutic irradiation can induce significant stenosis in the arteries of the head, neck, and chest, as welt as in the aorta and the iliac arteries, is familiar in daily practice and well documented in the literature. By contrast, radiation-induced renal artery stenosis seems to be a less widely known complication. Patients and methods: the sudden onset of medically refractory arterial hypertension and coma in a 27-year-old man is reported, who had been treated at age 20 with chemotherapy and radiotherapy for Ewing's sarcoma in the lumbar region. This treatment had been performed at the hospital of Sion, Switzerland in 2001. Also, the relevant literature from 1965 to 2007 is reviewed to underscore various aspects of this problem and to demonstrate the clinical relevance of renal artery stenosis as a potential long-term sequela of radiotherapy. Conclusion: radiation-induced renal artery stenosis has only rarely been described in the literature, but arterial hypertension due to radiation-induced renal artery stenosis is a serious long-term sequela that can appear at a latency of up to 20 years after treatment. The paucity of reports presumably reflects the lesser frequency of radiotherapy for retroperitoneal tumors as compared to head-and-neck cancers, as well as lower awareness of the problem due to diagnostic bias in the era before CT and MRI were in routine use: at that time, carotid artery stenosis was easy to diagnose by ultrasonography, while radiation-induced renal artery stenosis, whose real incidence may well be higher, probably often went undetected. Thus, when a patient with a history of abdominal or retroperitoneal radiotherapy unexpectedly develops intractable hypertension, radiation-induced renal artery stenosis must be included in the differential diagnosis. (orig.)

  16. Characterization of the proton beam from an IBA Cyclone 18/9 with radiochromic film EBT2

    Energy Technology Data Exchange (ETDEWEB)

    Sansaloni, F.; Lagares, J. I.; Arce, P.; Llop, J.; Perez, J. M. [Medical Applications Unit, Technology Department, CIEMAT, Madrid (Spain); Radiochemistry Department, Molecular Imaging unit, CIC-biomaGUNE, San Sebastian (Spain); Technology Department, CIEMAT (Spain)

    2012-12-19

    The use of radiochromic films is widespread in different areas of medical physics like radiotherapy and hadrontherapy; however, radiochromic films have been scarcely used in the characterization of proton or deuteron beams generated in biomedical cyclotrons. In this paper the radiochromic film EBT2 was used to study the beam size and the proton beam energy of an IBA Cyclone 18/9 cyclotron. The results indicate that the beam size can be easily measured at a very low expense; however, an accurate determination of the beam energy might require the implementation of certain experimental improvements.

  17. Long term outcomes after salvage radiotherapy for postoperative locoregionally recurrent non-small-cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Ji; Song, Chang Hoon; Kim, Jae Sung [Dept. of Radiation Oncology, Seoul National University College of Medicine, Seoul (Korea, Republic of); Kim, Mi Young [Dept. of Radiation Oncology, Kyungpook National University Medical Center, Daegu (Korea, Republic of)

    2017-03-15

    The outcomes and toxicities of locoregionally recurrent non-small-cell lung cancer (NSCLC) patients treated with curative radiotherapy were evaluated in the modern era. Fifty-seven patients receiving radical radiotherapy for locoregionally recurrent NSCLC without distant metastasis after surgery from 2004 to 2014 were reviewed. Forty-two patients were treated with concurrent chemoradiotherapy (CCRT), and 15 patients with radiotherapy alone. The median radiation dose was 66 Gy (range, 45 to 70 Gy). Lung function change after radiotherapy was evaluated by comparing pulmonary function tests before and at 1, 6, and 12 months after radiotherapy. Median follow-up was 53.6 months (range, 12.0 to 107.5 months) among the survivors. The median overall survival (OS) and progression-free survival (PFS) were 54.8 months (range, 3.0 to 116.9 months) and 12.2 months (range, 0.8 to 100.2 months), respectively. Multivariate analyses revealed that single locoregional recurrence focus and use of concurrent chemotherapy were significant prognostic factors for OS (p = 0.048 and p = 0.001, respectively) and PFS (p = 0.002 and p = 0.026, respectively). There was no significant change in predicted forced expiratory volume in one second after radiotherapy. Although diffusing lung capacity for carbon monoxide decreased significantly at 1 month after radiotherapy (p < 0.001), it recovered to pretreatment levels within 12 months. Acute grade 3 radiation pneumonitis and esophagitis were observed in 3 and 2 patients, respectively. There was no chronic complication observed in all patients. Salvage radiotherapy showed good survival outcomes without severe complications in postoperative locoregionally recurrent NSCLC patients. A single locoregional recurrent focus and the use of CCRT chemotherapy were associated with improved survival. CCRT should be considered as a salvage treatment in patients with good prognostic factors.

  18. Physics aspects of recent and future concepts in radiotherapy

    International Nuclear Information System (INIS)

    Georg, D.

    2001-01-01

    Full text: The development of 3-D conformal radiotherapy (3D-CRT), in which the high dose volume matches as closely as possible the target volume and avoids therefore normal tissue irradiation as far as possible, has been a major theme in radiotherapy for improving the therapeutic window. Conformal radiotherapy is not a new concept but only the technological improvements of the last decade allow its clinical implementation. More recent and advanced forms of 3D-CRT are intensity modulated radiotherapy (IMRT) and stereotactic radiotherapy (SRT). IMRT uses an additional degree of freedom to achieve a new class of conformation: the variation of the primary beam intensity. SRT is based on a three dimensional stereotactic coordinate system which is correlated with the patient and the treatment facility through modern imaging technology. IMRT and SRT are related by common features, e.g. high dose gradients and small fields which require a high geometric precision. A high dosimetric and geometric precision can only be based on a detailed knowledge of the patient specific anatomy. Therefore, IMRT and SRT need to underlie multi-modality imaging studies. Both IMRT and SRT utilize photon beams and multiple field arrangements which increase the volumes of healthy tissue receiving low doses. Photons have a low selectivity along the beam direction implying that the sharp dose gradients are to be compromised. The increased low dose volume as well as the low selectivity of photon beams can be over-come by using proton or ions. Brachytherapy, a form of radiotherapy where encapsuled radioactive sources are placed directly in or in the vicinity of the tumor, is by definition conformal. Endovascular brachytherapy has become a promising new field in radiotherapy for the prevention of (re)stenosis after angioplasty. Although many clinical trials have been performed during the last years specific aspects related to endovascular brachytherapy have not been addressed clearly, such as the

  19. Definitive Radiotherapy for Skin and Adenoid Cystic Carcinoma with Perineural Invasion

    OpenAIRE

    Mendenhall, William M.; Dagan, Roi; Bryant, Curtis M.; Amdur, Robert J.

    2016-01-01

    Adenoid cystic carcinomas (ACC) and, to a lesser extent, cutaneous squamous cell carcinomas and basal cell carcinomas may exhibit perineural invasion (PNI). A subset of patients have tumors with extensive PNI tracking to the skull base that are incompletely resectable and are treated with definitive radiotherapy (RT). RT may be administered with intensity-modulated RT or proton RT. Patients with ACC may also be considered for neutron RT, although the number of available neutron facilities is ...

  20. Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality

    International Nuclear Information System (INIS)

    Ling, C. Clifton; Humm, John; Larson, Steven; Amols, Howard; Fuks, Zvi; Leibel, Steven; Koutcher, Jason A.

    2000-01-01

    target delineation and dose delivery. We emphasize, however, that much basic research and clinical studies are needed before this potential can be realized. Conclusions: Whereas IMRT may have initiated the beginning of the end relative to physical conformality in radiotherapy, biological imaging may launch the beginning of a new era of biological conformality. In combination, these approaches constitute MD-CRT that may further improve the efficacy of cancer radiotherapy in the new millennium

  1. Radiotherapy

    International Nuclear Information System (INIS)

    Prosnitz, L.R.; Kapp, D.S.; Weissberg, J.B.

    1983-01-01

    This review highlights developments over the past decade in radiotherapy and attempts to summarize the state of the art in the management of the major diseases in which radiotherapy has a meaningful role. The equipment, radiobiology of radiotherapy and carcinoma of the lung, breast and intestines are highlighted

  2. Search for long-lived neutral particles decaying into lepton-jets in 20.3 fb−1 proton-proton collisions at √s = 8 TeV with the ATLAS detector

    Directory of Open Access Journals (Sweden)

    Schioppa Marco

    2016-01-01

    Full Text Available Several models of elementary particle physics beyond the Standard Model, predict the existence of neutral particles that can decay in jets of leptons and light hadrons (lepton-jets. The present contribution collects the results about the lepton-jet search with the ATLAS experiment at the proton-proton LHC collider at √s = 8 TeV during the entire 2012 data taking (20 fb−1. No excess of events have been observed over the expected background and the exclusion limits for two different models, that predict the Higgs boson to decay in lepton-jets, have been computed. A new lepton-jet search is underway for the new LHC era at (√s = 13 TeV.

  3. The international protocol for the dosimetry of external radiotherapy beams based on standards of absorbed dose to water

    International Nuclear Information System (INIS)

    Andreo, P.

    2001-01-01

    An International Code of Practice (CoP, or dosimetry protocol) for external beam radiotherapy dosimetry based on standards of absorbed dose to water has been published by the IAEA on behalf of IAEA, WHO, PAHO and ESTRO. The CoP provides a systematic and internationally unified approach for the determination of the absorbed dose to water in reference conditions with radiotherapy beams. The development of absorbed-dose-to-water standards for high-energy photons and electrons offers the possibility of reducing the uncertainty in the dosimetry of radiotherapy beams. Many laboratories already provide calibrations at the radiation quality of 60Co gamma-rays and some have extended calibrations to high-energy photon and electron beams. The dosimetry of kilovoltage x-rays, as well as that of proton and ion beams can also be based on these standards. Thus, a coherent dosimetry system based on the same formalism is achieved for practically all radiotherapy beams. The practical use of the CoP as simple. The document is formed by a set of different CoPs for each radiation type, which include detailed procedures and worksheets. All CoPs are based on ND,w chamber calibrations at a reference beam quality Qo, together with radiation beam quality correction factors kQ preferably measured directly for the user's chamber in a standards laboratory. Calculated values of kQ are provided together with their uncertainty estimates. Beam quality specifiers are 60Co, TPR20,10 (high-energy photons), R50 (electrons), HVL and kV (x-rays) and Rres (protons and ions) [es

  4. Cardiotoxicity of concomitant radiotherapy and trastuzumab for early breast cancer

    International Nuclear Information System (INIS)

    Marinko, Tanja; Dolenc, Jure; Bilban-Jakopin, Cvetka

    2014-01-01

    Trastuzumab therapy given in combination with one of several chemotherapy regimens is currently considered the standard of care for the treatment of early-stage, human epidermal growth factor receptor-2 (HER2) -positive breast cancer. The treatment with trastuzumab is due to a significant impact on the survival part of the standard adjuvant treatment of patients with HER2-positive breast cancer. Patients treated with postoperative breast or chest wall irradiation receive trastuzumab concomitant with radiotherapy. In a small proportion of patients trastuzumab causes cardiotoxicity. Preclinical findings indicate a radiosensibilizing effect of trastuzumab in breast cancer cells, but it is not yet clear whether it radiosensibilizes cells of healthy tissues too. Special attention is required when left breast or left thoracic wall is irradiated in patient receiving trastuzumab, because long-term effects of the concurrent treatment with trastuzumab and radiotherapy are not yet known. In an era where more patients are surviving a diagnosis of breast cancer, better understanding and earlier detection of therapy-induced cardiac toxicity will be of paramount importance

  5. Cardiotoxicity of concomitant radiotherapy and trastuzumab for early breast cancer.

    Science.gov (United States)

    Marinko, Tanja; Dolenc, Jure; Bilban-Jakopin, Cvetka

    2014-06-01

    Trastuzumab therapy given in combination with one of several chemotherapy regimens is currently considered the standard of care for the treatment of early-stage, human epidermal growth factor receptor-2 (HER2) -positive breast cancer. The treatment with trastuzumab is due to a significant impact on the survival part of the standard adjuvant treatment of patients with HER2-positive breast cancer. Patients treated with postoperative breast or chest wall irradiation receive trastuzumab concomitant with radiotherapy. In a small proportion of patients trastuzumab causes cardiotoxicity. Preclinical findings indicate a radiosensibilizing effect of trastuzumab in breast cancer cells, but it is not yet clear whether it radiosensibilizes cells of healthy tissues too. Special attention is required when left breast or left thoracic wall is irradiated in patient receiving trastuzumab, because long-term effects of the concurrent treatment with trastuzumab and radiotherapy are not yet known. In an era where more patients are surviving a diagnosis of breast cancer, better understanding and earlier detection of therapy-induced cardiac toxicity will be of paramount importance.

  6. The generation of absorbed dose profiles of proton beam in water using Geant4 code

    International Nuclear Information System (INIS)

    Christovao, Marilia T.; Campos, Tarcisio Passos R. de

    2007-01-01

    The present article approaches simulations on the proton beam radiation therapy, using an application based on the code GEANT4, with Open GL as a visualization drive and JAS3 (Java Analysis Studio) analysis data tools systems, implementing the AIDA interfaces. The proton radiotherapy is adapted to treat cancer or other benign tumors that are close to sensitive structures, since it allows precise irradiation of the target with high doses, while the health tissues adjacent to vital organs and tissues are preserved, due to physical property of dose profile. GEANT4 is a toolkit for simulating the transport of particles through matter, in complex geometries. Taking advantage of the object-oriented project features, the user can adapt or extend the tool in all domain, due to the flexibility of the code, providing a subroutine's group for materials definition, geometries and particles properties in agreement with the user's needs to generate the Monte Carlo simulation. In this paper, the parameters of beam line used in the simulation possess adjustment elements, such as: the range shifter, composition and dimension; the beam line, energy, intensity, length, according with physic processes applied. The simulation result is the depth dose profiles on water, dependent on the various incident beam energy. Starting from those profiles, one can define appropriate conditions for proton radiotherapy in ocular region. (author)

  7. Survival of Er(a+) red cells in a patient with allo-anti-Era

    International Nuclear Information System (INIS)

    Thompson, H.W.; Skradski, K.J.; Thoreson, J.R.; Polesky, H.F.

    1985-01-01

    51 Chromium-labeled Er(a+) red cells survived nearly normally (T1/2 of 21 days) in a patient with allo-anti-Era. Transfusion of Er(a+) blood was without significant reaction and did not affect the anti-Era titer

  8. Research advances in proton beam therapy for hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    DAI Shuyang

    2013-10-01

    Full Text Available Hepatocellular carcinoma (HCC, one of the most common malignancies with high prevalence and mortality rate, usually results in poor prognosis and limited survival. A comprehensive analysis on the number and location of tumors, Child-Pugh grade, and Barcelona Clinic Liver Cancer stage will help the development of suitable treatment programs and improve prediction of prognosis. A majority of patients are complicated by cirrhosis, enlarged tumor, multiple lesions, vascular invasion, and even cancer embolus in the portal vein. With the growth of knowledge about the radiation tolerance of normal tissue and the advances in radiotherapy techniques, radiotherapy has become an important tool for step-down therapy and adjuvant therapy for liver cancer. Proton beam therapy (PBT is emerging as a novel radiotherapy for the management of HCC, which, benefiting from the effect of Bragg Peak from PBT, effectively decreases the toxicity of traditional radiotherapies to the liver and does little harm to the uninvolved liver tissue or the surrounding structures while intensifying the destruction in targeted malignant lesions. Furthermore, several previous studies on the treatment of HCC with PBT revealed excellent local control. The distinctive biophysical attributes of PBT in the treatment of HCC, as well as the available literature regarding clinical outcomes and toxicity of using PBT for HCC, are reviewed. Current evidence provides limited indications for PBT, which suggests that further study on the relationship between liver function and PBT is required to gain further insight into its indication and standardization.

  9. Proton therapy of tumours and possibilities of its implementation in the Slovak Republic

    International Nuclear Information System (INIS)

    Hanula, M.; Ruzicka, J.; Combor, I.; Cesakova, H.

    2008-01-01

    Besides other modalities irradiation of tumours with a beam of ionizing particles is applied in the treatment of cancer. Currently treatment with photon and electron beams is a standard worldwide and in Slovakia as well. These particles exhibit exponential fall off in tissues. This results in the irradiation of large volume of healthy tissues, which are located in the beam's path. Radiotoxicity of normal tissues is the limiting factor in radiotherapy. Protons are characterized by loosing the most of their energy at the end of their path. The range of protons can be controlled by the proper selection of their initial energy. These properties of protons make it possible to achieve lower doses to the healthy tissues thereby allowing escalation of dose to the tumour. Higher doses to the tumour result in higher efficiency of the treatment. Proton therapy represents a modern and highly effective tool in the struggle against cancer. The present clinical outcomes have proved the benefit of the proton therapy for the improvement of the treatment success-fullness. Slovakia has created conditions allowing implementation of the depth proton therapy within the frame of the Cyclotron centre of the SR project in a relatively short period of time. (author)

  10. Radiotherapy

    Directory of Open Access Journals (Sweden)

    Rema Jyothirmayi

    1999-01-01

    Full Text Available Purpose. Conservative treatment in the form of limited surgery and post-operative radiotherapy is controversial in hand and foot sarcomas, both due to poor radiation tolerance of the palm and sole, and due to technical difficulties in achieving adequate margins.This paper describes the local control and survival of 41 patients with soft tissue sarcoma of the hand or foot treated with conservative surgery and radiotherapy. The acute and late toxicity of megavoltage radiotherapy to the hand and foot are described. The technical issues and details of treatment delivery are discussed. The factors influencing local control after radiotherapy are analysed.

  11. Fixed Field Alternating Gradient (FFAG)accelerators and their medical application in proton therapy

    International Nuclear Information System (INIS)

    Fourrier, J.

    2008-10-01

    Radiotherapy uses particle beams to irradiate and kill cancer tumors while sparing healthy tissues. Bragg peak shape of the proton energy loss in matter allows a ballistic improvement of the dose deposition compared with X rays. Thus, the irradiated volume can be precisely adjusted to the tumour. This thesis, in the frame of the RACCAM project, aims to the study and the design of a proton therapy installation based on a fixed field alternating gradient (FFAG) accelerator in order to build a spiral sector FFAG magnet for validation. First, we present proton therapy to define medical specifications leading to the technical specifications of a proton therapy installation. Secondly, we introduce FFAG accelerators through their past and on-going projects which are on their way around the world before developing the beam dynamic theories in the case of invariant focusing optics (scaling FFAG). We describe modelling and simulation tools developed to study the dynamics in a spiral scaling FFAG accelerator. Then we explain the spiral optic parameter search which has leaded to the construction of a magnet prototype. Finally, we describe the RACCAM project proton therapy installation starting from the injector cyclotron and ending with the extraction system. (author)

  12. Geant4 simulation of clinical proton and carbon ion beams for the treatment of ocular melanomas with the full 3-D pencil beam scanning system

    Energy Technology Data Exchange (ETDEWEB)

    Farina, Edoardo; Riccardi, Cristina; Rimoldi, Adele; Tamborini, Aurora [University of Pavia and the INFN section of Pavia, via Bassi 6, 27100 Pavia (Italy); Piersimoni, Pierluigi [Division of Radiation Research, Loma Linda University, Loma Linda, CA 92354 (United States); Ciocca, Mario [Medical Physics Unit, CNAO Foundation, Strada Campeggi 53, 27100 Pavia (Italy)

    2015-07-01

    This work investigates the possibility to use carbon ion beams delivered with active scanning modality, for the treatment of ocular melanomas at the Centro Nazionale di Adroterapia Oncologica (CNAO) in Pavia. The radiotherapy with carbon ions offers many advantages with respect to the radiotherapy with protons or photons, such as a higher relative radio-biological effectiveness (RBE) and a dose release better localized to the tumor. The Monte Carlo (MC) Geant4 10.00 patch-03 toolkit is used to reproduce the complete CNAO extraction beam line, including all the active and passive components characterizing it. The simulation of proton and carbon ion beams and radiation scanned field is validated against CNAO experimental data. For the irradiation study of the ocular melanoma an eye-detector, representing a model of a human eye, is implemented in the simulation. Each element of the eye is reproduced with its chemical and physical properties. Inside the eye-detector a realistic tumor volume is placed and used as the irradiation target. A comparison between protons and carbon ions eye irradiations allows to study possible treatment benefits if carbon ions are used instead of protons. (authors)

  13. Spot-scanning proton therapy for malignant soft tissue tumors in childhood: First experiences at the Paul Scherrer Institute

    International Nuclear Information System (INIS)

    Timmermann, Beate; Schuck, Andreas; Niggli, Felix; Weiss, Markus; Lomax, Antony Jonathan; Pedroni, Eros; Coray, Adolf; Jermann, Martin; Rutz, Hans Peter; Goitein, Gudrun

    2007-01-01

    Purpose: Radiotherapy plays a major role in the treatment strategy of childhood sarcomas. Consequences of treatment are likely to affect the survivor's quality of life significantly. We investigated the feasibility of spot-scanning proton therapy (PT) for soft tissue tumors in childhood. Methods and Materials: Sixteen children with soft tissue sarcomas were included. Median age at PT was 3.3 years. In 10 children the tumor histology was embryonal rhabdomyosarcoma. All tumors were located in the head or neck, parameningeal, or paraspinal, or pelvic region. In the majority of children, the tumor was initially unresectable (Intergroup Rhabdomyosarcoma Study [IRS] Group III in 75%). In 50% of children the tumors exceeded 5 cm. Fourteen children had chemotherapy before and during PT. Median total dose of radiotherapy was 50 cobalt Gray equivalent (CGE). All 16 children were treated with spot-scanning proton therapy at the Paul Scherrer Institute, and in 3 children the PT was intensity-modulated (IMPT). Results: After median follow-up of 1.5 years, local control was achieved in 12 children. Four children failed locally, 1 at the border of the radiation field and 3 within the field. All 4 children died of tumor recurrence. All 4 showed unfavorable characteristic either of site or histopathology of the tumor. Acute toxicity was low, with Grade 3 or 4 side effects according to Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer (RTOG/EORTC) criteria occurring in the bone marrow only. Conclusions: Proton therapy was feasible and well tolerated. Early local control rates are comparable to those being achieved after conventional radiotherapy. For investigations on late effect, longer follow-up is needed

  14. Radiotherapy dosimetry audit: three decades of improving standards and accuracy in UK clinical practice and trials.

    Science.gov (United States)

    Clark, Catharine H; Aird, Edwin G A; Bolton, Steve; Miles, Elizabeth A; Nisbet, Andrew; Snaith, Julia A D; Thomas, Russell A S; Venables, Karen; Thwaites, David I

    2015-01-01

    Dosimetry audit plays an important role in the development and safety of radiotherapy. National and large scale audits are able to set, maintain and improve standards, as well as having the potential to identify issues which may cause harm to patients. They can support implementation of complex techniques and can facilitate awareness and understanding of any issues which may exist by benchmarking centres with similar equipment. This review examines the development of dosimetry audit in the UK over the past 30 years, including the involvement of the UK in international audits. A summary of audit results is given, with an overview of methodologies employed and lessons learnt. Recent and forthcoming more complex audits are considered, with a focus on future needs including the arrival of proton therapy in the UK and other advanced techniques such as four-dimensional radiotherapy delivery and verification, stereotactic radiotherapy and MR linear accelerators. The work of the main quality assurance and auditing bodies is discussed, including how they are working together to streamline audit and to ensure that all radiotherapy centres are involved. Undertaking regular external audit motivates centres to modernize and develop techniques and provides assurance, not only that radiotherapy is planned and delivered accurately but also that the patient dose delivered is as prescribed.

  15. Radiotherapy dosimetry audit: three decades of improving standards and accuracy in UK clinical practice and trials

    Science.gov (United States)

    Aird, Edwin GA; Bolton, Steve; Miles, Elizabeth A; Nisbet, Andrew; Snaith, Julia AD; Thomas, Russell AS; Venables, Karen; Thwaites, David I

    2015-01-01

    Dosimetry audit plays an important role in the development and safety of radiotherapy. National and large scale audits are able to set, maintain and improve standards, as well as having the potential to identify issues which may cause harm to patients. They can support implementation of complex techniques and can facilitate awareness and understanding of any issues which may exist by benchmarking centres with similar equipment. This review examines the development of dosimetry audit in the UK over the past 30 years, including the involvement of the UK in international audits. A summary of audit results is given, with an overview of methodologies employed and lessons learnt. Recent and forthcoming more complex audits are considered, with a focus on future needs including the arrival of proton therapy in the UK and other advanced techniques such as four-dimensional radiotherapy delivery and verification, stereotactic radiotherapy and MR linear accelerators. The work of the main quality assurance and auditing bodies is discussed, including how they are working together to streamline audit and to ensure that all radiotherapy centres are involved. Undertaking regular external audit motivates centres to modernize and develop techniques and provides assurance, not only that radiotherapy is planned and delivered accurately but also that the patient dose delivered is as prescribed. PMID:26329469

  16. Focused radiation hepatitis after Bragg-peak proton therapy for hepatocellular carcinoma: CT findings

    International Nuclear Information System (INIS)

    Okumura, Toshiyuki; Itai, Yuji; Tsuji, Hiroshi

    1994-01-01

    Radiation hepatitis is clearly demonstrated by noncontrast and contrast enhanced CT following radiotherapy for liver diseases. Radiation hepatitis is dependent on dose distribution and is usually demonstrated as nonsegmental bandlike lesion after photon therapy. We report a case of focused, oval-shaped radiation hepatitis that was induced by photon therapy. The attenuation difference was localized in a high-dose area caused by Bragg-peak proton therapy. 17 refs., 2 figs

  17. Deformable image registration for image guided prostate radiotherapy

    International Nuclear Information System (INIS)

    Cassetta, Roberto; Riboldi, Marco; Baroni, Guido; Leandro, Kleber; Novaes, Paulo Eduardo; Goncalves, Vinicius; Sakuraba, Roberto; Fattori, Giovanni

    2016-01-01

    In this study, we present a CT to CBCT deformable registration method based on the ITK library. An algorithm was developed in order to explore the soft tissue information of the CT-CBCT images to perform deformable image registration (DIR), making efforts to overcome the poor signal-to-noise ratio and HU calibration issues that limits CBCT use for treatment planning purposes. Warped CT images and contours were generated and their impact in adaptive radiotherapy was evaluated by DVH analysis for photon and proton treatments. Considerable discrepancies, related to the treatment planning dose distribution, might be found due to changes in patient’s anatomy. (author)

  18. A Case Study in Proton Pencil-Beam Scanning Delivery

    International Nuclear Information System (INIS)

    Kooy, Hanne M.; Clasie, Benjamin M.; Lu, H.-M.; Madden, Thomas M.; Bentefour, Hassan; Depauw, Nicolas M.S.; Adams, Judy A.; Trofimov, Alexei V.; Demaret, Denis; Delaney, Thomas F.; Flanz, Jacob B.

    2010-01-01

    Purpose: We completed an implementation of pencil-beam scanning (PBS), a technology whereby a focused beam of protons, of variable intensity and energy, is scanned over a plane perpendicular to the beam axis and in depth. The aim of radiotherapy is to improve the target to healthy tissue dose differential. We illustrate how PBS achieves this aim in a patient with a bulky tumor. Methods and Materials: Our first deployment of PBS uses 'broad' pencil-beams ranging from 20 to 35 mm (full-width-half-maximum) over the range interval from 32 to 7 g/cm 2 . Such beam-brushes offer a unique opportunity for treating bulky tumors. We present a case study of a large (4,295 cc clinical target volume) retroperitoneal sarcoma treated to 50.4 Gy relative biological effectiveness (RBE) (presurgery) using a course of photons and protons to the clinical target volume and a course of protons to the gross target volume. Results: We describe our system and present the dosimetry for all courses and provide an interdosimetric comparison. Discussion: The use of PBS for bulky targets reduces the complexity of treatment planning and delivery compared with collimated proton fields. In addition, PBS obviates, especially for cases as presented here, the significant cost incurred in the construction of field-specific hardware. PBS offers improved dose distributions, reduced treatment time, and reduced cost of treatment.

  19. Proton magnetic resonance spectroscopy (1H-MRS) for the evaluation of treatment of brain tumours

    International Nuclear Information System (INIS)

    Houkin, K.; Kamada, K.; Sawamura, Y.; Iwasaki, Y.; Abe, H.; Kashiwaba, T.

    1995-01-01

    We investigated metabolic changes in brain tumours following treatment, using proton magnetic resonance spectroscopy. In meningiomas, effective therapeutic embolisation led to an acute increase in lactate. In radiosensitive tumours such as malignant lymphoma, a decrease in lactate and in increase in N-acetyl-aspartate occurred after radiotherapy, which preceded changes observed on magnetic resonance imaging. On the other hand, no significant changes in spectral patterns were observed in malignant gliomas resistant to therapy. Tissue characterisation of brain tumours by spectral patterns on proton magnetic resonance spectroscopy remains controversial. However, we have shown it to be sensitive to metabolic changes following treatment, which may reflect the efficacy of the therapy. (orig.)

  20. High-energy proton irradiation of C57Bl6 mice under hindlimb unloading

    Science.gov (United States)

    Mendonca, Marc; Todd, Paul; Orschell, Christie; Chin-Sinex, Helen; Farr, Jonathan; Klein, Susan; Sokol, Paul

    2012-07-01

    Solar proton events (SPEs) pose substantial risk for crewmembers on deep space missions. It has been shown that low gravity and ionizing radiation both produce transient anemia and immunodeficiencies. We utilized the C57Bl/6 based hindlimb suspension model to investigate the consequences of hindlimb-unloading induced immune suppression on the sensitivity to whole body irradiation with modulated 208 MeV protons. Eight-week old C57Bl/6 female mice were conditioned by hindlimb-unloading. Serial CBC and hematocrit assays by HEMAVET were accumulated for the hindlimb-unloaded mice and parallel control animals subjected to identical conditions without unloading. One week of hindlimb-unloading resulted in a persistent, statistically significant 10% reduction in RBC count and a persistent, statistically significant 35% drop in lymphocyte count. This inhibition is consistent with published observations of low Earth orbit flown mice and with crewmember blood analyses. In our experiments the cell count suppression was sustained for the entire six-week period of observation and persisted for at least 7 days beyond the period of active hindlimb-unloading. C57Bl/6 mice were also irradiated with 208 MeV Spread Out Bragg Peak (SOBP) protons at the Midwest Proton Radiotherapy Institute at the Indiana University Cyclotron Facility. We found that at 8.5 Gy hindlimb-unloaded mice were significantly more radiation sensitive with 35 lethalities out of 51 mice versus 15 out of 45 control (non-suspended) mice within 30 days of receiving 8.5 Gy of SOBP protons (p =0.001). Both control and hindlimb-unloaded stocktickerCBC analyses of 8.5 Gy proton irradiated and control mice by HEMAVET demonstrated severe reductions in WBC counts (Lymphocytes and PMNs) by day 2 post-irradiation, followed a week to ten days later by reductions in platelets, and then reductions in RBCs about 2 weeks post-irradiation. Recovery of all blood components commenced by three weeks post-irradiation. CBC analyses of 8

  1. Effect of radiotherapy on immunity function of cancer patients receiving radiotherapy

    International Nuclear Information System (INIS)

    Li Xinli; Zhu Shentao; Xu Jiuhong

    2003-01-01

    Objective: In order to observe the effect of radiotherapy on immunity function of cancer patients receiving radiotherapy. Methods: Cellular immunity is determined by APAAP; Humoral immunity is determined by transmission method. Results: The items of cellular immunity is lower than the control after radiotherapy. These items decrease continually. The difference between before and after radiotherapy has statistic significance. Of all Humoral immunity items, IgA, IgM decreased after radiotherapy and the difference has statistic significance. Conclusions: Radiotherapy can damage patients' immunity function

  2. Quo vadis radiotherapy? Technological advances and the rising problems in cancer management.

    Science.gov (United States)

    Allen, Barry J; Bezak, Eva; Marcu, Loredana G

    2013-01-01

    Despite the latest technological advances in radiotherapy, cancer control is still challenging for several tumour sites. The survival rates for the most deadly cancers, such as ovarian and pancreatic, have not changed over the last decades. The solution to the problem lies in the change of focus: from local treatment to systemic therapy. The aim of this paper is to present the current status as well as the gaps in radiotherapy and, at the same time, to look into potential solutions to improve cancer control and survival. The currently available advanced radiotherapy treatment techniques have been analysed and their cost-effectiveness discussed. The problem of systemic disease management was specifically targeted. Clinical studies show limited benefit in cancer control from hadron therapy. However, targeted therapies together with molecular imaging could improve treatment outcome for several tumour sites while controlling the systemic disease. The advances in photon therapy continue to be competitive with the much more expensive hadron therapy. To justify the cost effectiveness of proton/heavy ion therapy, there is a need for phase III randomised clinical trials. Furthermore, the success of systemic disease management lies in the fusion between radiation oncology technology and microbiology.

  3. Positive correlation between occlusion rate and nidus size of proton beam treated brain arteriovenous malformations (AVMs)

    DEFF Research Database (Denmark)

    Blomquist, Erik; Ronne Engström, Elisabeth; Borota, Ljubisa

    2016-01-01

    symptoms, clinical course, the size of AVM nidus and rate of occlusion was collected. Outcome parameters were the occlusion of the AVM, clinical outcome and side effects.Results. The rate of total occlusion was overall 68%. For target volume 0-2cm3 it was 77%, for 3-10 cm3 80%, for 11-15 cm3 50% and for 16...... of these had no effect and the other only partial occlusion from proton beams. Two thirds of those presenting with seizures reported an improved seizure situation after treatment.Conclusion. Our observations agree with earlier results and show that proton beam irradiation is a treatment alternative for brain......Background. Proton beam radiotherapy of arteriovenous malformations (AVM) in the brain has been performed in Uppsala since 1991. An earlier study based on the first 26 patients concluded that proton beam can be used for treating large and medium sized AVMs that were considered difficult to treat...

  4. Proton therapy with concomitant capecitabine for pancreatic and ampullary cancers is associated with a low incidence of gastrointestinal toxicity

    International Nuclear Information System (INIS)

    Nichols, R. Charles Jr.; Huh, Soon; Ho, Meng Wei; Mendenhall, Nancy P.; Morris, Christopher G.; Hoppe, Bradford S.; George, Thomas J.; Zaiden, Robert A. Jr.; Awad, Ziad T.; Asbun, Horacio J.

    2013-01-01

    Background: To review treatment toxicity for patients with pancreatic and ampullary cancer treated with proton therapy at our institution. Material and methods: From March 2009 through April 2012, 22 patients were treated with proton therapy and concomitant capecitabine (1000 mg PO twice daily) for resected (n = 5); marginally resectable (n = 5); and unresectable/inoperable (n = 12) biopsy-proven pancreatic and ampullary adenocarcinoma. Two patients with unresectable disease were excluded from the analysis for reasons unrelated to treatment. Proton doses ranged from 50.40 cobalt gray equivalent (CGE) to 59.40 CGE. Results: Median follow-up for all patients was 11 (range 5-36) months. No patient demonstrated any grade 3 toxicity during treatment or during the follow-up period. Grade 2 gastrointestinal toxicities occurred in three patients, consisting of vomiting (n = 3); and diarrhea (n = 2). Median weight loss during treatment was 1.3 kg (1.75% of body weight). Chemotherapy was well-tolerated with a median 99% of the prescribed doses delivered. Percentage weight loss was reduced (p = 0.0390) and grade 2 gastrointestinal toxicity was eliminated (p = 0.0009) in patients treated with plans that avoided anterior and left lateral fields which were associated with reduced small bowel and gastric exposure. Discussion: Proton therapy may allow for significant sparing of the small bowel and stomach and is associated with a low rate of gastrointestinal toxicity. Although long-term follow-up will be needed to assess efficacy, we believe that the favorable toxicity profile associated with proton therapy may allow for radiotherapy dose escalation, chemotherapy intensification, and possibly increased acceptance of preoperative radiotherapy for patients with resectable or marginally resectable disease

  5. Proton therapy with concomitant capecitabine for pancreatic and ampullary cancers is associated with a low incidence of gastrointestinal toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, R. Charles Jr.; Huh, Soon; Ho, Meng Wei; Mendenhall, Nancy P.; Morris, Christopher G.; Hoppe, Bradford S. [Univ. of Florida Proton Therapy Inst., Jacksonville (United States)], e-mail: rnichols@floridaproton.org; George, Thomas J.; Zaiden, Robert A. Jr. [Dept. of Hematology and Medical Oncology, Univ. of Florida, Gainesville and Jacksonville (United States); Awad, Ziad T. [Dept. of Surgery, Univ. of Florida, Jacksonville (United States); Asbun, Horacio J. [Dept. of Surgery, Mayo Clinic, Jacksonville (United States)

    2013-04-15

    Background: To review treatment toxicity for patients with pancreatic and ampullary cancer treated with proton therapy at our institution. Material and methods: From March 2009 through April 2012, 22 patients were treated with proton therapy and concomitant capecitabine (1000 mg PO twice daily) for resected (n = 5); marginally resectable (n = 5); and unresectable/inoperable (n = 12) biopsy-proven pancreatic and ampullary adenocarcinoma. Two patients with unresectable disease were excluded from the analysis for reasons unrelated to treatment. Proton doses ranged from 50.40 cobalt gray equivalent (CGE) to 59.40 CGE. Results: Median follow-up for all patients was 11 (range 5-36) months. No patient demonstrated any grade 3 toxicity during treatment or during the follow-up period. Grade 2 gastrointestinal toxicities occurred in three patients, consisting of vomiting (n = 3); and diarrhea (n = 2). Median weight loss during treatment was 1.3 kg (1.75% of body weight). Chemotherapy was well-tolerated with a median 99% of the prescribed doses delivered. Percentage weight loss was reduced (p = 0.0390) and grade 2 gastrointestinal toxicity was eliminated (p = 0.0009) in patients treated with plans that avoided anterior and left lateral fields which were associated with reduced small bowel and gastric exposure. Discussion: Proton therapy may allow for significant sparing of the small bowel and stomach and is associated with a low rate of gastrointestinal toxicity. Although long-term follow-up will be needed to assess efficacy, we believe that the favorable toxicity profile associated with proton therapy may allow for radiotherapy dose escalation, chemotherapy intensification, and possibly increased acceptance of preoperative radiotherapy for patients with resectable or marginally resectable disease.

  6. Gold nanoparticle induced vasculature damage in radiotherapy: Comparing protons, megavoltage photons, and kilovoltage photons

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yuting, E-mail: yutingl188@gmail.com; Paganetti, Harald; Schuemann, Jan [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States); McMahon, Stephen J. [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 and Center for Cancer Research and Cell Biology, Queen’s University Belfast, 97 Lisburn Road, Belfast BT97AE, Northern Ireland (United Kingdom)

    2015-10-15

    Purpose: The purpose of this work is to investigate the radiosensitizing effect of gold nanoparticle (GNP) induced vasculature damage for proton, megavoltage (MV) photon, and kilovoltage (kV) photon irradiation. Methods: Monte Carlo simulations were carried out using tool for particle simulation (TOPAS) to obtain the spatial dose distribution in close proximity up to 20 μm from the GNPs. The spatial dose distribution from GNPs was used as an input to calculate the dose deposited to the blood vessels. GNP induced vasculature damage was evaluated for three particle sources (a clinical spread out Bragg peak proton beam, a 6 MV photon beam, and two kV photon beams). For each particle source, various depths in tissue, GNP sizes (2, 10, and 20 nm diameter), and vessel diameters (8, 14, and 20 μm) were investigated. Two GNP distributions in lumen were considered, either homogeneously distributed in the vessel or attached to the inner wall of the vessel. Doses of 30 Gy and 2 Gy were considered, representing typical in vivo enhancement studies and conventional clinical fractionation, respectively. Results: These simulations showed that for 20 Au-mg/g GNP blood concentration homogeneously distributed in the vessel, the additional dose at the inner vascular wall encircling the lumen was 43% of the prescribed dose at the depth of treatment for the 250 kVp photon source, 1% for the 6 MV photon source, and 0.1% for the proton beam. For kV photons, GNPs caused 15% more dose in the vascular wall for 150 kVp source than for 250 kVp. For 6 MV photons, GNPs caused 0.2% more dose in the vascular wall at 20 cm depth in water as compared to at depth of maximum dose (Dmax). For proton therapy, GNPs caused the same dose in the vascular wall for all depths across the spread out Bragg peak with 12.7 cm range and 7 cm modulation. For the same weight of GNPs in the vessel, 2 nm diameter GNPs caused three times more damage to the vessel than 20 nm diameter GNPs. When the GNPs were attached

  7. An analytical model of leakage neutron equivalent dose for passively-scattered proton radiotherapy and validation with measurements.

    Science.gov (United States)

    Schneider, Christopher; Newhauser, Wayne; Farah, Jad

    2015-05-18

    Exposure to stray neutrons increases the risk of second cancer development after proton therapy. Previously reported analytical models of this exposure were difficult to configure and had not been investigated below 100 MeV proton energy. The purposes of this study were to test an analytical model of neutron equivalent dose per therapeutic absorbed dose  at 75 MeV and to improve the model by reducing the number of configuration parameters and making it continuous in proton energy from 100 to 250 MeV. To develop the analytical model, we used previously published H/D values in water from Monte Carlo simulations of a general-purpose beamline for proton energies from 100 to 250 MeV. We also configured and tested the model on in-air neutron equivalent doses measured for a 75 MeV ocular beamline. Predicted H/D values from the analytical model and Monte Carlo agreed well from 100 to 250 MeV (10% average difference). Predicted H/D values from the analytical model also agreed well with measurements at 75 MeV (15% average difference). The results indicate that analytical models can give fast, reliable calculations of neutron exposure after proton therapy. This ability is absent in treatment planning systems but vital to second cancer risk estimation.

  8. Intensity modulated radiation therapy using laser-accelerated protons: a Monte Carlo dosimetric study

    International Nuclear Information System (INIS)

    Fourkal, E; Li, J S; Xiong, W; Nahum, A; Ma, C-M

    2003-01-01

    In this paper we present Monte Carlo studies of intensity modulated radiation therapy using laser-accelerated proton beams. Laser-accelerated protons coming out of a solid high-density target have broad energy and angular spectra leading to dose distributions that cannot be directly used for therapeutic applications. Through the introduction of a spectrometer-like particle selection system that delivers small pencil beams of protons with desired energy spectra it is feasible to use laser-accelerated protons for intensity modulated radiotherapy. The method presented in this paper is a three-dimensional modulation in which the proton energy spectrum and intensity of each individual beamlet are modulated to yield a homogeneous dose in both the longitudinal and lateral directions. As an evaluation of the efficacy of this method, it has been applied to two prostate cases using a variety of beam arrangements. We have performed a comparison study between intensity modulated photon plans and those for laser-accelerated protons. For identical beam arrangements and the same optimization parameters, proton plans exhibit superior coverage of the target and sparing of neighbouring critical structures. Dose-volume histogram analysis of the resulting dose distributions shows up to 50% reduction of dose to the critical structures. As the number of fields is decreased, the proton modality exhibits a better preservation of the optimization requirements on the target and critical structures. It is shown that for a two-beam arrangement (parallel-opposed) it is possible to achieve both superior target coverage with 5% dose inhomogeneity within the target and excellent sparing of surrounding tissue

  9. An investigation of anxiety about radiotherapy deploying the radiotherapy categorical anxiety scale

    International Nuclear Information System (INIS)

    Shimotsu, Sakie; Karasawa, Kumiko; Ito, Kana; Saito, Anneyuko I.; Izawa, Hiromi; Kawase, Eri; Horikawa, Naoshi

    2010-01-01

    Radiotherapy is one of the major methods for treating cancer, but many patients undergoing radiotherapy have deep concerns about receiving radiation treatment. This problem is not generally appreciated and has not been adequately studied. The objective of this investigation was to empirically investigate the anxieties that cancer patients feel towards radiotherapy by using questionnaires to classify and quantitatively measure their concerns. A preliminary interview to develop a questionnaire was carried out with 48 patients receiving radiotherapy to discover their anxieties about on-going treatments. Subsequently, a main study was performed using a questionnaire with 185 patients to classify their types of anxiety and to ascertain the reliability and validity of the responses. Confirmatory factor analysis was then carried out with a 17-item Radiotherapy Categorical Anxiety Scale. Three anxiety factors were abstracted by factor analysis: adverse effects of radiotherapy, environment of radiotherapy, and treatment effects of radiotherapy. Reliability, content validity, and concurrent validity were obtained. The adequacy of the three-factor model of anxiety concerning radiotherapy was confirmed. A 17-item Radiotherapy Categorical Anxiety Scale was formulated to quantitatively measure the specific types of anxiety among cancer patients receiving radiotherapy. (author)

  10. Measuring the contribution of low Bjorken-x gluons to the proton spin with polarized proton-proton collisions

    Science.gov (United States)

    Wolin, Scott Justin

    collide like and unlike sign helicity protons separately. It also requires understanding the ratio of the collision rates of these two portions of the beam exquisitely well. This is a long standing problem and, until recently, had threatened to severely restrict the ability of PHENIX to utilize the large data sets that have been acquired in the last two years to improve the constraints on DeltaG. We will conclude this thesis with a comprehensive overview of the relative luminosity systematic uncertainty and present a new framework within which this uncertainty can be determined. The measurement of the gluon contribution to the proton spin at the PHENIX experiment is a multi- faceted problem which requires a multi-faceted solution. This thesis describes several aspects of the solution as the single- and di-hadron measurements from MPC data are likely to provide the best constraints to Delta G at low-x for the next decade. Eventually, an Electron-Ion Collider (EIC) will be designed and commissioned that will further extend the kinematic reach of the polarized DIS experiments that motivated the spin program at RHIC. In the meantime, the goal of PHENIX in general, and the MPC in particular, is to glean as much information about the gluon polarization as possible before the EIC era arrives. (Abstract shortened by UMI.)

  11. Proton therapy for prostate cancer online: patient education or marketing?

    Science.gov (United States)

    Sadowski, Daniel J; Ellimoottil, Chandy S; Tejwani, Ajay; Gorbonos, Alex

    2013-12-01

    Proton therapy (PT) for prostate cancer is an expensive treatment with limited evidence of benefit over conventional radiotherapy. We sought to study whether online information on PT for prostate cancer was balanced and whether the website source influenced the content presented. We applied a systematic search process to identify 270 weblinks associated with PT for prostate cancer, categorized the websites by source, and filtered the results to 50 websites using predetermined criteria. We then used a customized version of the DISCERN instrument, a validated tool for assessing the quality of consumer health information, to evaluate the remaining websites for balance of content and description of risks, benefits and uncertainty. Depending on the search engine and key word used, proton center websites (PCWs) made up 10%-47% of the first 30 encountered links. In comparison, websites from academic and nonacademic medical centers without ownership stake in proton centers appeared much less frequently as a search result (0%-3%). PCWs scored lower on DISCERN questions compared to other sources for being balanced/unbiased (p online information regarding PT for prostate cancer may represent marketing by proton centers rather than comprehensive and unbiased patient education. An awareness of these results will also better prepare clinicians to address the potential biases of patients with prostate cancer who search the Internet for health information.

  12. Proton-air and proton-proton cross sections

    Directory of Open Access Journals (Sweden)

    Ulrich Ralf

    2013-06-01

    Full Text Available Different attempts to measure hadronic cross sections with cosmic ray data are reviewed. The major results are compared to each other and the differences in the corresponding analyses are discussed. Besides some important differences, it is crucial to see that all analyses are based on the same fundamental relation of longitudinal air shower development to the observed fluctuation of experimental observables. Furthermore, the relation of the measured proton-air to the more fundamental proton-proton cross section is discussed. The current global picture combines hadronic proton-proton cross section data from accelerator and cosmic ray measurements and indicates a good consistency with predictions of models up to the highest energies.

  13. Microdosimetry of proton and carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Liamsuwan, Thiansin [Thailand Institute of Nuclear Technology, Ongkharak, Nakhon Nayok 26120 (Thailand); Hultqvist, Martha [Medical Radiation Physics, Department of Physics, Stockholm University, SE-10691 (Sweden); Lindborg, Lennart; Nikjoo, Hooshang, E-mail: hooshang.nikjoo@ki.se [Radiation Biophysics Group, Department of Oncology-Pathology, Karolinska Institutet, Box 260 SE-17176, Stockholm (Sweden); Uehara, Shuzo [School of Health Sciences, Kyushu University, Fukuoka 812-8581 (Japan)

    2014-08-15

    carbon ion beams. The results are useful for characterizing ion beams of practical importance for biophysical modeling of radiation-induced DNA damage response and repair in the depth profiles of protons and carbon ions used in radiotherapy.

  14. Design of the new ATLAS Inner Tracker for the High Luminosity LHC era

    CERN Document Server

    Vickey, Trevor; The ATLAS collaboration

    2017-01-01

    Abstract: In the high luminosity era of the Large Hadron Collider (HL-LHC), the instantaneous luminosity is expected to reach unprecedented values, resulting in about 200 proton-proton interactions in a typical bunch crossing. To cope with this high rate, the ATLAS Inner Detector is being completely redesigned, and will be replaced by an all-silicon system, the Inner Tracker (ITk). This new tracker will have both silicon pixel and silicon strip sub-systems. The components of the Inner Tracker will have to be resistant to the large radiation dose from the particles produced in HL-LHC collisions, and have low mass and sufficient sensor granularity to ensure a good tracking performance over the pseudorapidity range |η|<4. In this talk, first the challenges and second possible solutions to these challenges will be discussed, i.e. designs under consideration for the pixel and strip modules, and the mechanics of local supports in the barrel and endcaps.

  15. An Analytical Model of Leakage Neutron Equivalent Dose for Passively-Scattered Proton Radiotherapy and Validation with Measurements

    International Nuclear Information System (INIS)

    Schneider, Christopher; Newhauser, Wayne; Farah, Jad

    2015-01-01

    Exposure to stray neutrons increases the risk of second cancer development after proton therapy. Previously reported analytical models of this exposure were difficult to configure and had not been investigated below 100 MeV proton energy. The purposes of this study were to test an analytical model of neutron equivalent dose per therapeutic absorbed dose (H/D) at 75 MeV and to improve the model by reducing the number of configuration parameters and making it continuous in proton energy from 100 to 250 MeV. To develop the analytical model, we used previously published H/D values in water from Monte Carlo simulations of a general-purpose beamline for proton energies from 100 to 250 MeV. We also configured and tested the model on in-air neutron equivalent doses measured for a 75 MeV ocular beamline. Predicted H/D values from the analytical model and Monte Carlo agreed well from 100 to 250 MeV (10% average difference). Predicted H/D values from the analytical model also agreed well with measurements at 75 MeV (15% average difference). The results indicate that analytical models can give fast, reliable calculations of neutron exposure after proton therapy. This ability is absent in treatment planning systems but vital to second cancer risk estimation

  16. An Analytical Model of Leakage Neutron Equivalent Dose for Passively-Scattered Proton Radiotherapy and Validation with Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Christopher; Newhauser, Wayne, E-mail: newhauser@lsu.edu [Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, 202 Nicholson Hall, Baton Rouge, LA 70803 (United States); Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, LA 70809 (United States); Farah, Jad [Institut de Radioprotection et de Sûreté Nucléaire, Service de Dosimétrie Externe, BP-17, 92262 Fontenay-aux-Roses (France)

    2015-05-18

    Exposure to stray neutrons increases the risk of second cancer development after proton therapy. Previously reported analytical models of this exposure were difficult to configure and had not been investigated below 100 MeV proton energy. The purposes of this study were to test an analytical model of neutron equivalent dose per therapeutic absorbed dose (H/D) at 75 MeV and to improve the model by reducing the number of configuration parameters and making it continuous in proton energy from 100 to 250 MeV. To develop the analytical model, we used previously published H/D values in water from Monte Carlo simulations of a general-purpose beamline for proton energies from 100 to 250 MeV. We also configured and tested the model on in-air neutron equivalent doses measured for a 75 MeV ocular beamline. Predicted H/D values from the analytical model and Monte Carlo agreed well from 100 to 250 MeV (10% average difference). Predicted H/D values from the analytical model also agreed well with measurements at 75 MeV (15% average difference). The results indicate that analytical models can give fast, reliable calculations of neutron exposure after proton therapy. This ability is absent in treatment planning systems but vital to second cancer risk estimation.

  17. Radiotherapy of bronchogenic carcinoma

    International Nuclear Information System (INIS)

    Heilmann, H.P.

    1982-01-01

    Radiotherapy of branchogenic carcinoma comprises; palliative treatment, postoperative or pre-operative radiotherapy, radiotherapy as part of a combination of chemotherapy and radiotherapy of small cell carcinoma and curative radiotherapy of non-operable non-small cell carcinoma. Atelectasis and obstruction are indications for palliative radiotherapy. Postoperative radiotherapy is given only in cases of incomplete resection or mediastinal metastases. In the treatment of small cell carcinoma by combined irradiation and chemotherapy the mediastinum and primary tumour are irradiated, generally after chemotherapy, and the C.N.S. receives prophylactic radiotherapy. Curative radiotherapy is indicated in cases of non-operable small cell carcinoma. Irradiation with doses of 60-70 Gy produced 5-years-survival rates of 10-14% in cases classified as T 1 -T 2 N 0 M 0 . (orig.) [de

  18. New 2-D dosimetric technique for radiotherapy based on planar thermoluminescent detectors

    International Nuclear Information System (INIS)

    Olko, P.; Marczewska, B.; Czopyk, L.; Czermak, M. A.; Klosowski, M.; Waligorski, M. P. R.

    2006-01-01

    At the Inst. of Nuclear Physics of the Polish Academy of Sciences (IFJ) in Krakow, a two-dimensional (2-D) thermoluminescence (TL) dosimetry system was developed within the MAESTRO (Methods and Advanced Equipment for Simulation and Treatment in Radio-Oncology) 6 Framework Programme and tested by evaluating 2-D dose distributions around radioactive sources. A thermoluminescent detector (TLD) foil was developed, of thickness 0.3 mm and diameter 60 mm, containing a mixture of highly sensitive LiF:Mg,Cu,P powder and Ethylene Tetrafluoroethylene (ETFE) polymer. Foil detectors were irradiated with 226 Ra brachytherapy sources and a 90 Sr/ 90 Y source. 2-D dose distributions were evaluated using a prototype planar (diameter 60 mm) reader, equipped with a 12 bit Charge Coupled Devices (CCD) PCO AG camera, with a resolution of 640 x 480 pixels. The new detectors, showing a spatial resolution better than 0.5 mm and a measurable dose range typical for radiotherapy, can find many applications in clinical dosimetry. Another technology applicable to clinical dosimetry, also developed at IFJ, is the Si microstrip detector of size 95 x 95 mm 2 , which may be used to evaluate the dose distribution with a spatial resolution of 120 μm along one direction, in real-time mode. The microstrip and TLD technology will be further improved, especially to develop detectors of larger area, and to make them applicable to some advanced radiotherapy modalities, such as intensity modulated radiotherapy (IMRT) or proton radiotherapy. (authors)

  19. Radiotherapy physics

    International Nuclear Information System (INIS)

    Chen, G.T.Y.; Collier, J.M.; Lyman, J.T.; Pitluck, S.

    1982-01-01

    The Radiotherapy Physics Group works on the physical and biophysical aspects of charged particle radiotherapy. Our activities include the development of isosurvival beams (beams of uniform biological effect), computerized treatment planning development for charged particle radiotherapy, design of compensation to shape dose distributions, and development of dosimetry techniques to verify planned irradiations in both phantoms and patients

  20. Assessment of doses due to secondary neutrons received by patient treated by proton therapy

    International Nuclear Information System (INIS)

    Sayah, R.; Martinetti, F.; Donadille, L.; Clairand, I.; Delacroix, S.; De Oliveira, A.; Herault, J.

    2010-01-01

    Proton therapy is a specific technique of radiotherapy which aims at destroying cancerous cells by irradiating them with a proton beam. Nuclear reactions in the device and in the patient himself induce secondary radiations involving mainly neutrons which contribute to an additional dose for the patient. The author reports a study aimed at the assessment of these doses due to secondary neutrons in the case of ophthalmological and intra-cranial treatments. He presents a Monte Carlo simulation of the room and of the apparatus, reports the experimental validation of the model (dose deposited by protons in a water phantom, ambient dose equivalent due to neutrons in the treatment room, absorbed dose due to secondary particles in an anthropomorphic phantom), and the assessment with a mathematical phantom of doses dues to secondary neutrons received by organs during an ophthalmological treatment. He finally evokes current works of calculation of doses due to secondary neutrons in the case of intra-cranial treatments

  1. Patient study of in vivo verification of beam delivery and range, using positron emission tomography and computed tomography imaging after proton therapy

    NARCIS (Netherlands)

    Parodi, Katia; Paganetti, Harald; Shih, Helen A; Michaud, Susan; Loeffler, Jay S; DeLaney, Thomas F; Liebsch, Norbert J; Munzenrider, John E; Fischman, Alan J; Knopf, Antje; Bortfeld, Thomas

    2007-01-01

    PURPOSE: To investigate the feasibility and value of positron emission tomography and computed tomography (PET/CT) for treatment verification after proton radiotherapy. METHODS AND MATERIALS: This study included 9 patients with tumors in the cranial base, spine, orbit, and eye. Total doses of 1.8-3

  2. Brainstem tolerance to conformal radiotherapy of skull base tumors

    International Nuclear Information System (INIS)

    Debus, J.; Hug, E.B.; Liebsch, N.J.; O'Farrel, D.; Finkelstein, D.; Efird, J.; Munzenrider, J.E.

    1997-01-01

    Purpose: The aim of this study was to analyze the long-term incidence of brainstem toxicity in patients treated for skull base tumors with high dose conformal radiotherapy. Methods and Materials: Between 1974 and 1995, 367 patients with chordomas (n = 195) and chondrosarcomas (n = 172) of the base of skull have been treated with combined megavoltage photon and 160 MeV proton radiotherapy. Following 3D treatment planning with delineation of target volumes and critical nontarget structures dose distributions and dose-volume histograms were calculated. Radiotherapy was given an 1.8 Gy or CGE (=Cobalt Gray Equivalent) dose per fraction, with prescribed target doses ranging from 63 CGE to 79.2 CGE (mean = 67.8 CGE). Doses to the brainstem surface were limited to ≤64 CGE and to the brainstem center to ≤53 CGE. Results: Follow-up time ranged from 6 months to 21.4 years (mean = 42.5 months). Brainstem toxicity was observed in 17 of 367 patients attributable to treatment, resulting in death of three patients. Actuarial rates of 5 and 10-year high-grade toxicity-free survival were 94 and 88%, respectively. Increased risk of brainstem toxicity was significantly associated with maximum dose to brainstem, volume of brainstem receiving ≥50 CGE, ≥55 CGE, and ≥60 CGE, number of surgical procedures, and prevalence of diabetes or high blood pressure. Multivariate analysis identified three independent factors as important prognosticators: number of surgical procedures (p < 0.001), volume of the brainstem receiving 60 CGE (p < 0.001), and prevalence of diabetes (p < 0.01). Conclusions: Tolerance of brainstem to fractionated radiotherapy appears to be a steep function of tissue volume included in high dose regions rather than the maximum dose of brainstem alone. In addition, presence of predisposing factors as well as extent of surgical manipulation can significantly lower brainstem tolerance in the individual patient

  3. Recent Reanalysis Activities at ECMWF: Results from ERA-20C and Plans for ERA5

    Science.gov (United States)

    Dragani, R.; Hersbach, H.; Poli, P.; Pebeuy, C.; Hirahara, S.; Simmons, A.; Dee, D.

    2015-12-01

    This presentation will provide an overview of the most recent reanalysis activities performed at the European Centre for Medium-Range Weather Forecasts (ECMWF). A pilot reanalysis of the 20th-century (ERA-20C) has recently been completed. Funded through the European FP7 collaborative project ERA-CLIM, ERA-20C is part of a suite of experiments that also includes a model-only integration (ERA-20CM) and a land-surface reanalysis (ERA-20CL). Its data assimilation system is constrained by only surface observations obtained from ISPD (3.2.6) and ICOADS (2.5.1). Surface boundary conditions are provided by the Hadley Centre (HadISST2.1.0.0) and radiative forcing follows CMIP5 recommended data sets. First-guess uncertainty estimates are based on a 10-member ensemble of Data Assimilations, ERA-20C ensemble, run prior to ERA-20C using ten SST and sea-ice realizations from the Hadley Centre. In November 2014, the European Commission entrusted ECMWF to run on its behalf the Copernicus Climate Change Service (C3S) aiming at producing quality-assured information about the past, current and future states of the climate at both European and global scales. Reanalysis will be one of the main components of the C3S portfolio and the first one to be produced is a global modern era reanalysis (ERA5) covering the period from 1979 onwards. Based on a recent version of the ECMWF data assimilation system, ERA5 will replace the widely used ERA-Interim dataset. This new production will benefit from a much improved model, and better characterized and exploited observations compared to its predecessor. The first part of the presentation will focus on the ERA-20C production, provide an overview of its main characteristics and discuss some of the key results from its assessment. The second part of the talk will give an overview of ERA5, and briefly discuss some of its challenges.

  4. Radiotherapy

    International Nuclear Information System (INIS)

    Zedgenidze, G.A.; Kulikov, V.A.; Mardynskij, Yu.S.

    1984-01-01

    The technique for roentgenotopometric and medicamentous preparation of patients for radiotherapy has been reported in detail. The features of planning and performing of remote, intracavitary and combined therapy in urinary bladder cancer are considered. The more effective methods of radiotherapy have been proposed taking into account own experience as well as literature data. The comparative evaluation of treatment results and prognosis are given. Radiation pathomorphism of tumors and tissues of urinary bladder is considered in detail. The problems of diagnosis, prophylaxis and treatment of complications following radiodiagnosis and radiotherapy in patients with urinary bladder cancer are illustrated widely

  5. Proton-proton bremsstrahlung

    International Nuclear Information System (INIS)

    Fearing, H.W.

    1990-01-01

    We summarize some of the information about the nucleon-nucleon force which has been obtained by comparing recent calculations of proton-proton bremsstrahlung with cross section and analyzing power data from the new TRIUMF bremsstrahlung experiment. Some comments are made as to how these results can be extended to neutron-proton bremsstrahlung. (Author) 17 refs., 6 figs

  6. Energy deposition around swift proton tracks in polymethylmethacrylate: How much and how far

    Science.gov (United States)

    Dapor, Maurizio; Abril, Isabel; de Vera, Pablo; Garcia-Molina, Rafael

    2017-08-01

    The use of proton beams in several modern technologies to probe or modify the properties of materials, such as proton beam lithography or ion beam cancer therapy, requires us to accurately know the extent to which the energy lost by the swift projectiles in the medium is redistributed radially around their tracks, since this determines several endpoints, such as the resolution of imaging or manufacturing techniques, or even the biological outcomes of radiotherapy. In this paper, the radial distribution of the energy deposited around swift-proton tracks in polymethylmethacrylate (PMMA) by the transport of secondary electrons is obtained by means of a detailed Monte Carlo simulation. The initial energy and angular distributions of the secondary electrons generated by proton impact, as well as the electronic cross sections for the ejection of these electrons, are reliably calculated in the framework of the dielectric formalism, where a realistic electronic excitation spectrum of PMMA is accounted for. The cascade of all secondary electrons generated in PMMA is simulated taking into account the main interactions that occur between these electrons and the condensed phase target. After analyzing the influence that several angular distributions of the electrons generated by the proton beam have on the resulting radial profiles of deposited energy, we conclude that the widely used Rudd and Kim formula should be replaced by the simpler isotropic angular distribution, which leads to radial energy distributions comparable to the ones obtained from more realistic angular distributions. By studying the dependence of the radial dose on the proton energy we recommend lower proton energies than previously published for reducing proximity effects around a proton track. The obtained results are of relevance for assessing the resolution limits of proton beam based imaging and manufacturing techniques.

  7. Dose distribution of secondary radiation in a water phantom for a proton pencil beam-EURADOS WG9 intercomparison exercise

    Czech Academy of Sciences Publication Activity Database

    Stolarczyk, L.; Trinkl, S.; Romero-Exposito, M.; Mojzeszek, N.; Ambrožová, Iva; Domingo, C.; Davídková, Marie; Farah, J.; Klodowska, M.; Kneževic, Z.; Liszka, M.; Majer, M.; Miljanic, S.; Ploc, Ondřej; Schwarz, M.; Harrison, R. M.; Olko, P.

    2018-01-01

    Roč. 63, č. 8 (2018), č. článku 085017. ISSN 0031-9155 Institutional support: RVO:61389005 Keywords : passive detectors * neutron dosimetry * gamma radiation dosimetry * water phantom measurements * secondary radiation measurements * pencil beam scanning proton radiotherapy Subject RIV: FP - Other Medical Disciplines OBOR OECD: Radiology, nuclear medicine and medical imaging Impact factor: 2.742, year: 2016

  8. Visual Outcome and Tumor Control After Conformal Radiotherapy for Patients With Optic Nerve Sheath Meningioma

    International Nuclear Information System (INIS)

    Arvold, Nils D.; Lessell, Simmons; Bussiere, Marc; Beaudette, Kevin; Rizzo, Joseph F.; Loeffler, Jay S.; Shih, Helen A.

    2009-01-01

    Purpose: Optic nerve sheath meningioma (ONSM) is a rare tumor that almost uniformly leads to visual dysfunction and even blindness without intervention. Because surgical extirpation carries a high risk of postoperative blindness, vision-sparing treatment strategies are desirable. Methods and Materials: We retrospectively reviewed the outcomes of 25 patients (25 optic nerves) with ONSM, treated at a single institution with conformal fractionated radiotherapy by either stereotactic photon or proton radiation. Primary endpoints were local control and visual acuity. Results: The patients presented with symptoms of visual loss (21) or orbital pain (3) or were incidentally diagnosed by imaging (3). The mean age was 44 years, and 64% were female patients. The indication for treatment was the development or progression of symptoms. Of the patients, 13 were treated with photons, 9 were treated with protons, and 3 received a combination of photons and protons. The median dose delivered was 50.4 gray equivalents (range, 45-59.4 gray equivalents). Median follow-up after radiotherapy was 30 months (range, 3-168 months), with 3 patients lost to follow-up. At most recent follow-up, 21 of 22 patients (95%) had improved (14) or stable (7) visual acuity. One patient had worsened visual acuity after initial postirradiation improvement. Of the 22 patients, 20 (95%) had no radiographic progression. Three patients had evidence of asymptomatic, limited retinopathy on ophthalmologic examination, and one had recurrent ONSM 11 years after treatment. Conclusions: Highly conformal, fractionated radiation therapy for symptomatic primary ONSM provides tumor control and improvement in visual function in most cases, with minimal treatment-induced morbidity. Longer follow-up is needed to assess the durability of tumor control and treatment-related late effects.

  9. National arrangements for radiotherapy

    International Nuclear Information System (INIS)

    2007-01-01

    After a presentation of several letters exchanged between the French health ministry and public agencies in charge of public health or nuclear safety after a radiotherapy accident in Epinal, this report comments the evolution of needs in cancerology care and the place given to radiotherapy. It outlines the technological and organisational evolution of radiotherapy and presents the distribution of radiotherapy equipment, of radio-therapists and other radiotherapy professionals in France. Within the context of radiotherapy accidents which occurred in 2007, it presents the regulatory arrangements which aimed at improving the safety, short term and middle term arrangements which are needed to support and structure radiotherapy practice quality. It stresses the fact that the system will deeply evolve by implementing a radiotherapy vigilance arrangement and a permanent follow-on and adaptation plan based on surveys and the creation of a national committee

  10. Clinical application of intensity and energy modulated radiotherapy with photon and electron beams

    International Nuclear Information System (INIS)

    Xiangkui Mu

    2005-01-01

    In modern, advanced radiotherapy (e.g. intensity modulated photon radiotherapy, IMXT) the delivery time for each fraction becomes prolonged to 10-20 minutes compared with the conventional, commonly 2-5 minutes. The biological effect of this prolongation is not fully known. The large number of beam directions in IMXT commonly leads to a large integral dose in the patient. Electrons would reduce the integral dose but are not suitable for treating deep-seated tumour, due to their limited penetration in tissues. By combining electron and photon beams, the dose distributions may be improved compared with either used alone. One obstacle for using electron beams in clinical routine is that there is no available treatment planning systems that optimise electron beam treatments in a similar way as for IMXT. Protons have an even more pronounced dose fall-off, larger penetration depth and less penumbra widening than electrons and are therefore more suitable for advanced radiotherapy. However, proton facilities optimised for advanced radiotherapy are not commonly available. In some instances electron beams may be an acceptable surrogate. The first part of this study is an experimental in vitro study where the situation in a tumour during fractionated radiotherapy is simulated. The effect of the prolonged fraction time is compared with the predictions by radiobiological models. The second part is a treatment planning study to analyse the mixing of electron and photon beams for at complex target volume in comparison with IMXT. In the next step a research version of an electron beam optimiser was used for the improvement of treatment plans. The aim was to develop a method for translating crude energy and intensity matrices for optimised electrons into a deliverable treatment plan without destroying the dose distribution. In the final part, different methods of treating the spinal canal in medulloblastoma were explored in a treatment planning study that was evaluated with

  11. Whither radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Ross, W M

    1987-03-01

    The 1986 Glyn Evans Memorial Lecture, given at the Joint Provincial Meeting of the Royal College of Radiologists, Sheffield, September 1986, sketches an outline of the history of radiotherapy and discusses the future development of the art. Topics included are siting of centres, training needs, the relationship of radiotherapy to other medical specialities, and the advantages and disadvantages of radiotherapy practitioners forming a separate medical College. (U.K.)

  12. Future of medical physics: Real-time MRI-guided proton therapy.

    Science.gov (United States)

    Oborn, Bradley M; Dowdell, Stephen; Metcalfe, Peter E; Crozier, Stuart; Mohan, Radhe; Keall, Paul J

    2017-08-01

    With the recent clinical implementation of real-time MRI-guided x-ray beam therapy (MRXT), attention is turning to the concept of combining real-time MRI guidance with proton beam therapy; MRI-guided proton beam therapy (MRPT). MRI guidance for proton beam therapy is expected to offer a compelling improvement to the current treatment workflow which is warranted arguably more than for x-ray beam therapy. This argument is born out of the fact that proton therapy toxicity outcomes are similar to that of the most advanced IMRT treatments, despite being a fundamentally superior particle for cancer treatment. In this Future of Medical Physics article, we describe the various software and hardware aspects of potential MRPT systems and the corresponding treatment workflow. Significant software developments, particularly focused around adaptive MRI-based planning will be required. The magnetic interaction between the MRI and the proton beamline components will be a key area of focus. For example, the modeling and potential redesign of a magnetically compatible gantry to allow for beam delivery from multiple angles towards a patient located within the bore of an MRI scanner. Further to this, the accuracy of pencil beam scanning and beam monitoring in the presence of an MRI fringe field will require modeling, testing, and potential further development to ensure that the highly targeted radiotherapy is maintained. Looking forward we envisage a clear and accelerated path for hardware development, leveraging from lessons learnt from MRXT development. Within few years, simple prototype systems will likely exist, and in a decade, we could envisage coupled systems with integrated gantries. Such milestones will be key in the development of a more efficient, more accurate, and more successful form of proton beam therapy for many common cancer sites. © 2017 American Association of Physicists in Medicine.

  13. Radiotherapy in bladder cancer

    International Nuclear Information System (INIS)

    Rozan, R.

    1992-01-01

    In 1992, the problem of the vesical radiotherapy is not resolved. The author presents the situation and the different techniques of radiotherapy in bladder cancers: external radiotherapy, only and associated with surgery, interstitial curietherapy and non-classical techniques as per operative radiotherapy, neutron therapy and concurrent radiotherapy with chemotherapy. In order to compare their efficiency, the five-year survival are given in all cases.(10 tabs)

  14. Intensity modulated radiotherapy and 3D conformal radiotherapy for whole breast irradiation: a comparative dosimetric study and introduction of a novel qualitative index for plan evaluation, the normal tissue index

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Jackie; Suttie, Clare; Bromley, Regina; Morgia, Marita; Lamoury, Gillian [Department of Radiation Oncology, Royal North Shore Hospital, St Leonards, New South Wales (Australia)

    2015-09-15

    We report on a retrospective dosimetric study, comparing 3D conformal radiotherapy (3DCRT) and hybrid intensity modulated radiotherapy (hIMRT). We evaluated plans based on their planning target volume coverage, dose homogeneity, dose to organs at risk (OARs) and exposure of normal tissue to radiation. The Homogeneity Index (HI) was used to assess the dose homogeneity in the target region, and we describe a new index, the normal tissue index (NTI), to assess the dose in the normal tissue inside the tangent treatment portal. Plans were generated for 25 early-stage breast cancer patients, using a hIMRT technique. These were compared with the 3DCRT plans of the treatment previously received by the patients. Plan quality was evaluated using the HI, NTI and dose to OARs. The hIMRT technique was significantly more homogenous than the 3DCRT technique, while maintaining target coverage. The hIMRT technique was also superior at minimising the amount of tissue receiving D{sub 105%} and above (P < 0.0001). The ipsilateral lung and contralateral breast maximum were significantly lower in the hIMRT plans (P < 0.05 and P < 0.005), but the 3DCRT technique achieved a lower mean heart dose in left-sided breast cancer patients (P < 0.05). Hybrid intensity modulated radiotherapy plans achieved improved dose homogeneity compared to the 3DCRT plans and superior outcome with regard to dose to normal tissues. We propose that the addition of both HI and NTI in evaluating the quality of intensity modulated radiotherapy (IMRT) breast plans provides clinically relevant comparators which more accurately reflect the new paradigm of treatment goals and outcomes in the era of breast IMRT.

  15. Intensity modulated radiotherapy and 3D conformal radiotherapy for whole breast irradiation: a comparative dosimetric study and introduction of a novel qualitative index for plan evaluation, the normal tissue index

    International Nuclear Information System (INIS)

    Yim, Jackie; Suttie, Clare; Bromley, Regina; Morgia, Marita; Lamoury, Gillian

    2015-01-01

    We report on a retrospective dosimetric study, comparing 3D conformal radiotherapy (3DCRT) and hybrid intensity modulated radiotherapy (hIMRT). We evaluated plans based on their planning target volume coverage, dose homogeneity, dose to organs at risk (OARs) and exposure of normal tissue to radiation. The Homogeneity Index (HI) was used to assess the dose homogeneity in the target region, and we describe a new index, the normal tissue index (NTI), to assess the dose in the normal tissue inside the tangent treatment portal. Plans were generated for 25 early-stage breast cancer patients, using a hIMRT technique. These were compared with the 3DCRT plans of the treatment previously received by the patients. Plan quality was evaluated using the HI, NTI and dose to OARs. The hIMRT technique was significantly more homogenous than the 3DCRT technique, while maintaining target coverage. The hIMRT technique was also superior at minimising the amount of tissue receiving D 105% and above (P < 0.0001). The ipsilateral lung and contralateral breast maximum were significantly lower in the hIMRT plans (P < 0.05 and P < 0.005), but the 3DCRT technique achieved a lower mean heart dose in left-sided breast cancer patients (P < 0.05). Hybrid intensity modulated radiotherapy plans achieved improved dose homogeneity compared to the 3DCRT plans and superior outcome with regard to dose to normal tissues. We propose that the addition of both HI and NTI in evaluating the quality of intensity modulated radiotherapy (IMRT) breast plans provides clinically relevant comparators which more accurately reflect the new paradigm of treatment goals and outcomes in the era of breast IMRT

  16. Can We Spare the Pancreas and Other Abdominal Organs at Risk? A Comparison of Conformal Radiotherapy, Helical Tomotherapy and Proton Beam Therapy in Pediatric Irradiation.

    Science.gov (United States)

    Jouglar, Emmanuel; Wagner, Antoine; Delpon, Grégory; Campion, Loïc; Meingan, Philippe; Bernier, Valérie; Demoor-Goldschmidt, Charlotte; Mahé, Marc-André; Lacornerie, Thomas; Supiot, Stéphane

    2016-01-01

    Late abdominal irradiation toxicity during childhood included renal damage, hepatic toxicity and secondary diabetes mellitus. We compared the potential of conformal radiotherapy (CRT), helical tomotherapy (HT) and proton beam therapy (PBT) to spare the abdominal organs at risk (pancreas, kidneys and liver- OAR) in children undergoing abdominal irradiation. We selected children with abdominal tumors who received more than 10 Gy to the abdomen. Treatment plans were calculated in order to keep the dose to abdominal OAR as low as possible while maintaining the same planned target volume (PTV) coverage. Dosimetric values were compared using the Wilcoxon signed-rank test. The dose distribution of 20 clinical cases with a median age of 8 years (range 1-14) were calculated with different doses to the PTV: 5 medulloblastomas (36 Gy), 3 left-sided and 2 right-sided nephroblastomas (14.4 Gy to the tumor + 10.8 Gy boost to para-aortic lymphnodes), 1 left-sided and 4 right-sided or midline neuroblastomas (21 Gy) and 5 Hodgkin lymphomas (19.8 Gy to the para-aortic lymphnodes and spleen). HT significantly reduced the mean dose to the whole pancreas (WP), the pancreatic tail (PT) and to the ipsilateral kidney compared to CRT. PBT reduced the mean dose to the WP and PT compared to both CRT and HT especially in midline and right-sided tumors. PBT decreased the mean dose to the ispilateral kidney but also to the contralateral kidney and the liver compared to CRT. Low dose to normal tissue was similar or increased with HT whereas integral dose and the volume of normal tissue receiving at least 5 and 10 Gy were reduced with PBT compared to CRT and HT. In children undergoing abdominal irradiation therapy, proton beam therapy reduces the dose to abdominal OAR while sparing normal tissue by limiting low dose irradiation.

  17. Non-randomized therapy trial to determine the safety and efficacy of heavy ion radiotherapy in patients with non-resectable osteosarcoma

    Directory of Open Access Journals (Sweden)

    Bischof Marc

    2010-03-01

    Full Text Available Abstract Background Osteosarcoma is the most common primary malignant bone tumor in children and adolescents. For effective treatment, local control of the tumor is absolutely critical, because the chances of long term survival are EURAMOS1. Local photon radiotherapy has previously been used in small series and in an uncontrolled, highly individualized fashion, which, however, documented that high dose radiotherapy can, in principle, be used to achieve local control. Generally the radiation dose that is necessary for a curative approach can hardly be achieved with conventional photon radiotherapy in patients with non-resectable tumors that are usually located near radiosensitive critical organs such as the brain, the spine or the pelvis. In these cases particle Radiotherapy (proton therapy (PT/heavy ion therapy (HIT may offer a promising new alternative. Moreover, compared with photons, heavy ion beams provide a higher physical selectivity because of their finite depth coverage in tissue. They achieve a higher relative biological effectiveness. Phase I/II dose escalation studies of HIT in adults with non-resectable bone and soft tissue sarcomas have already shown favorable results. Methods/Design This is a monocenter, single-arm study for patients ≥ 6 years of age with non-resectable osteosarcoma. Desired target dose is 60-66 Cobalt Gray Equivalent (Gy E with 45 Gy PT (proton therapy and a carbon ion boost of 15-21 GyE. Weekly fractionation of 5-6 × 3 Gy E is used. PT/HIT will be administered exclusively at the Ion Radiotherapy Center in Heidelberg. Furthermore, FDG-PET imaging characteristics of non-resectable osteosarcoma before and after PT/HIT will be investigated prospectively. Systemic disease before and after PT/HIT is targeted by standard chemotherapy protocols and is not part of this trial. Discussion The primary objectives of this trial are the determination of feasibility and toxicity of HIT. Secondary objectives are tumor response

  18. National arrangements for radiotherapy; Mesures nationales pour la radiotherapie. Travail collectif des missions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    After a presentation of several letters exchanged between the French health ministry and public agencies in charge of public health or nuclear safety after a radiotherapy accident in Epinal, this report comments the evolution of needs in cancerology care and the place given to radiotherapy. It outlines the technological and organisational evolution of radiotherapy and presents the distribution of radiotherapy equipment, of radio-therapists and other radiotherapy professionals in France. Within the context of radiotherapy accidents which occurred in 2007, it presents the regulatory arrangements which aimed at improving the safety, short term and middle term arrangements which are needed to support and structure radiotherapy practice quality. It stresses the fact that the system will deeply evolve by implementing a radiotherapy vigilance arrangement and a permanent follow-on and adaptation plan based on surveys and the creation of a national committee.

  19. Protein proton-proton dynamics from amide proton spin flip rates

    International Nuclear Information System (INIS)

    Weaver, Daniel S.; Zuiderweg, Erik R. P.

    2009-01-01

    Residue-specific amide proton spin-flip rates K were measured for peptide-free and peptide-bound calmodulin. K approximates the sum of NOE build-up rates between the amide proton and all other protons. This work outlines the theory of multi-proton relaxation, cross relaxation and cross correlation, and how to approximate it with a simple model based on a variable number of equidistant protons. This model is used to extract the sums of K-rates from the experimental data. Error in K is estimated using bootstrap methodology. We define a parameter Q as the ratio of experimental K-rates to theoretical K-rates, where the theoretical K-rates are computed from atomic coordinates. Q is 1 in the case of no local motion, but decreases to values as low as 0.5 with increasing domination of sidechain protons of the same residue to the amide proton flips. This establishes Q as a monotonous measure of local dynamics of the proton network surrounding the amide protons. The method is applied to the study of proton dynamics in Ca 2+ -saturated calmodulin, both free in solution and bound to smMLCK peptide. The mean Q is 0.81 ± 0.02 for free calmodulin and 0.88 ± 0.02 for peptide-bound calmodulin. This novel methodology thus reveals the presence of significant interproton disorder in this protein, while the increase in Q indicates rigidification of the proton network upon peptide binding, confirming the known high entropic cost of this process

  20. To understand radiotherapy

    International Nuclear Information System (INIS)

    2009-01-01

    Dealing with the use of radiotherapy for adults, this guide indicates when a radiotherapy is suggested, how it acts, how the treatment is chosen, which are the professionals involved. It describes how an external radiotherapy takes place and its various techniques, the different types of side effects (general, specific to the treated zone, late effects). It indicates which organs can be treated by curie-therapy, the different curie-therapy treatment modalities, how a curie-therapy takes place and which are its side effects. It outlines how to better cope with radiotherapy (how to be supported, the important role of relatives, everyday life questions, rights). It indicates and comments the different measures adopted for the safety and quality of radiotherapy

  1. MO-A-201-01: A Cliff’s Notes Version of Proton Therapy

    International Nuclear Information System (INIS)

    Kruse, J.

    2016-01-01

    Proton therapy is a rapidly growing modality in the fight against cancer. From a high-level perspective the process of proton therapy is identical to x-ray based external beam radiotherapy. However, this course is meant to illustrate for x-ray physicists the many differences between x-ray and proton based practices. Unlike in x-ray therapy, proton dose calculations use CT Hounsfield Units (HU) to determine proton stopping power and calculate the range of a beam in a patient. Errors in stopping power dominate the dosimetric uncertainty in the beam direction, while variations in patient position determine uncertainties orthogonal to the beam path. Mismatches between geometric and range errors lead to asymmetric uncertainties, and so while geometric uncertainties in x-ray therapy are mitigated through the use of a Planning Target Volume (PTV), this approach is not suitable for proton therapy. Robust treatment planning and evaluation are critical in proton therapy, and will be discussed in this course. Predicting the biological effect of a proton dose distribution within a patient is also a complex undertaking. The proton therapy community has generally regarded the Radiobiological Effectiveness (RBE) of a proton beam to be 1.1 everywhere in the patient, but there are increasing data to suggest that the RBE probably climbs higher than 1.1 near the end of a proton beam when the energy deposition density increases. This lecture will discuss the evidence for variable RBE in proton therapy and describe how this is incorporated into current proton treatment planning strategies. Finally, there are unique challenges presented by the delivery process of proton therapy. Many modern systems use a spot scanning technique which has several advantages over earlier scattered beam designs. However, the time dependence of the dose deposition leads to greater concern with organ motion than with scattered protons or x-rays. Image guidance techniques in proton therapy may also differ

  2. MO-A-201-00: A Cliff’s Notes Version of Proton Therapy

    International Nuclear Information System (INIS)

    2016-01-01

    Proton therapy is a rapidly growing modality in the fight against cancer. From a high-level perspective the process of proton therapy is identical to x-ray based external beam radiotherapy. However, this course is meant to illustrate for x-ray physicists the many differences between x-ray and proton based practices. Unlike in x-ray therapy, proton dose calculations use CT Hounsfield Units (HU) to determine proton stopping power and calculate the range of a beam in a patient. Errors in stopping power dominate the dosimetric uncertainty in the beam direction, while variations in patient position determine uncertainties orthogonal to the beam path. Mismatches between geometric and range errors lead to asymmetric uncertainties, and so while geometric uncertainties in x-ray therapy are mitigated through the use of a Planning Target Volume (PTV), this approach is not suitable for proton therapy. Robust treatment planning and evaluation are critical in proton therapy, and will be discussed in this course. Predicting the biological effect of a proton dose distribution within a patient is also a complex undertaking. The proton therapy community has generally regarded the Radiobiological Effectiveness (RBE) of a proton beam to be 1.1 everywhere in the patient, but there are increasing data to suggest that the RBE probably climbs higher than 1.1 near the end of a proton beam when the energy deposition density increases. This lecture will discuss the evidence for variable RBE in proton therapy and describe how this is incorporated into current proton treatment planning strategies. Finally, there are unique challenges presented by the delivery process of proton therapy. Many modern systems use a spot scanning technique which has several advantages over earlier scattered beam designs. However, the time dependence of the dose deposition leads to greater concern with organ motion than with scattered protons or x-rays. Image guidance techniques in proton therapy may also differ

  3. MO-A-201-00: A Cliff’s Notes Version of Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    Proton therapy is a rapidly growing modality in the fight against cancer. From a high-level perspective the process of proton therapy is identical to x-ray based external beam radiotherapy. However, this course is meant to illustrate for x-ray physicists the many differences between x-ray and proton based practices. Unlike in x-ray therapy, proton dose calculations use CT Hounsfield Units (HU) to determine proton stopping power and calculate the range of a beam in a patient. Errors in stopping power dominate the dosimetric uncertainty in the beam direction, while variations in patient position determine uncertainties orthogonal to the beam path. Mismatches between geometric and range errors lead to asymmetric uncertainties, and so while geometric uncertainties in x-ray therapy are mitigated through the use of a Planning Target Volume (PTV), this approach is not suitable for proton therapy. Robust treatment planning and evaluation are critical in proton therapy, and will be discussed in this course. Predicting the biological effect of a proton dose distribution within a patient is also a complex undertaking. The proton therapy community has generally regarded the Radiobiological Effectiveness (RBE) of a proton beam to be 1.1 everywhere in the patient, but there are increasing data to suggest that the RBE probably climbs higher than 1.1 near the end of a proton beam when the energy deposition density increases. This lecture will discuss the evidence for variable RBE in proton therapy and describe how this is incorporated into current proton treatment planning strategies. Finally, there are unique challenges presented by the delivery process of proton therapy. Many modern systems use a spot scanning technique which has several advantages over earlier scattered beam designs. However, the time dependence of the dose deposition leads to greater concern with organ motion than with scattered protons or x-rays. Image guidance techniques in proton therapy may also differ

  4. MO-A-201-01: A Cliff’s Notes Version of Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kruse, J. [Mayo Clinic (United States)

    2016-06-15

    Proton therapy is a rapidly growing modality in the fight against cancer. From a high-level perspective the process of proton therapy is identical to x-ray based external beam radiotherapy. However, this course is meant to illustrate for x-ray physicists the many differences between x-ray and proton based practices. Unlike in x-ray therapy, proton dose calculations use CT Hounsfield Units (HU) to determine proton stopping power and calculate the range of a beam in a patient. Errors in stopping power dominate the dosimetric uncertainty in the beam direction, while variations in patient position determine uncertainties orthogonal to the beam path. Mismatches between geometric and range errors lead to asymmetric uncertainties, and so while geometric uncertainties in x-ray therapy are mitigated through the use of a Planning Target Volume (PTV), this approach is not suitable for proton therapy. Robust treatment planning and evaluation are critical in proton therapy, and will be discussed in this course. Predicting the biological effect of a proton dose distribution within a patient is also a complex undertaking. The proton therapy community has generally regarded the Radiobiological Effectiveness (RBE) of a proton beam to be 1.1 everywhere in the patient, but there are increasing data to suggest that the RBE probably climbs higher than 1.1 near the end of a proton beam when the energy deposition density increases. This lecture will discuss the evidence for variable RBE in proton therapy and describe how this is incorporated into current proton treatment planning strategies. Finally, there are unique challenges presented by the delivery process of proton therapy. Many modern systems use a spot scanning technique which has several advantages over earlier scattered beam designs. However, the time dependence of the dose deposition leads to greater concern with organ motion than with scattered protons or x-rays. Image guidance techniques in proton therapy may also differ

  5. WE-FG-202-03: Quantitative CT-Based Analysis to Assess Lung Injury Following Proton Radiotherapy

    International Nuclear Information System (INIS)

    Underwood, T; Grassberger, C; Willers, H; MacDonald, S; Jimenez, R; Paganetti, H

    2016-01-01

    Purpose: Relative to photon alternatives, the increased dose-conformity associated with proton therapy is expected to reduce the extent of radiation-induced lung toxicity. However, analysis of follow-up data is yet to be published in this area. In this study we retrospectively analyzed late-phase HU changes for proton therapy cohorts of chest wall and lung patients. Methods: From our institution’s register of patients treated using double-scattered protons, all chest wall and stereotactic lung cases (treated 2011–2012 and 2008–2014 respectively) were initially considered. Follow-up CT data were accessible for 10 chest wall cases (prescribed 50.4 GyRBE in 28 fractions) and 16 lung cases (prescribed 42–50 GyRBE in 3–4 fractions). CT time-points ranged from 0.5–3.5 years post-treatment. Planning doses were recalculated using TOPAS Monte Carlo simulations and mapped onto the follow-up images using deformable registration. Excluding internal target volumes, changes in HU between each patient’s planning and follow-up CT(s) were evaluated for dose bins of 2–30 GyRBE (2 GyRBE increments). Results: Linear increases in HU per unit dose, with correlations statistically significant at the 1% level (one-sided Spearman’s rank test), were evident for all 10 chest wall cases and 14/16 lung cases. The mean changes in HU/Gy were: 1.76 (SD=0.73) for the chest wall cohort, and 1.40 (SD=0.87) for the lung cohort. The median scan times post treatment were 21 and 12 months respectively. All 26 patients developed solid consolidation (scar-like radiographic opacities) within the exposed lung(s). Conclusion: Analysis of follow-up CTs revealed statistically significant correlations in HU-change/dose for two proton cohorts (lung and chest wall). Quantitatively, the late-phase changes we report broadly match published photon data. Further analysis of such radiographic changes, particularly via matched cohort studies drawing upon consistent imaging protocols, could play an

  6. WE-FG-202-03: Quantitative CT-Based Analysis to Assess Lung Injury Following Proton Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Underwood, T [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); University College London, London (United Kingdom); Grassberger, C; Willers, H; MacDonald, S; Jimenez, R; Paganetti, H [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States)

    2016-06-15

    Purpose: Relative to photon alternatives, the increased dose-conformity associated with proton therapy is expected to reduce the extent of radiation-induced lung toxicity. However, analysis of follow-up data is yet to be published in this area. In this study we retrospectively analyzed late-phase HU changes for proton therapy cohorts of chest wall and lung patients. Methods: From our institution’s register of patients treated using double-scattered protons, all chest wall and stereotactic lung cases (treated 2011–2012 and 2008–2014 respectively) were initially considered. Follow-up CT data were accessible for 10 chest wall cases (prescribed 50.4 GyRBE in 28 fractions) and 16 lung cases (prescribed 42–50 GyRBE in 3–4 fractions). CT time-points ranged from 0.5–3.5 years post-treatment. Planning doses were recalculated using TOPAS Monte Carlo simulations and mapped onto the follow-up images using deformable registration. Excluding internal target volumes, changes in HU between each patient’s planning and follow-up CT(s) were evaluated for dose bins of 2–30 GyRBE (2 GyRBE increments). Results: Linear increases in HU per unit dose, with correlations statistically significant at the 1% level (one-sided Spearman’s rank test), were evident for all 10 chest wall cases and 14/16 lung cases. The mean changes in HU/Gy were: 1.76 (SD=0.73) for the chest wall cohort, and 1.40 (SD=0.87) for the lung cohort. The median scan times post treatment were 21 and 12 months respectively. All 26 patients developed solid consolidation (scar-like radiographic opacities) within the exposed lung(s). Conclusion: Analysis of follow-up CTs revealed statistically significant correlations in HU-change/dose for two proton cohorts (lung and chest wall). Quantitatively, the late-phase changes we report broadly match published photon data. Further analysis of such radiographic changes, particularly via matched cohort studies drawing upon consistent imaging protocols, could play an

  7. Shielding measurements for a 230 MeV proton beam

    International Nuclear Information System (INIS)

    Siebers, J.V.

    1990-01-01

    Energetic secondary neutrons produced as protons interact with accelerator components and patients dominate the radiation shielding environment for proton radiotherapy facilities. Due to the scarcity of data describing neutron production, attenuation, absorbed dose, and dose equivalent values, these parameters were measured for 230 MeV proton bombardment of stopping length Al, Fe, and Pb targets at emission angles of 0 degree, 22 degree, 45 degree, and 90 degree in a thick concrete shield. Low pressure tissue-equivalent proportional counters with volumes ranging from 1 cm 3 to 1000 cm 3 were used to obtain microdosimetric spectra from which absorbed dose and radiation quality are deduced. Does equivalent values and attenuation lengths determined at depth in the shield were found to vary sharply with angle, but were found to be independent of target material. Neutron dose and radiation length values are compared with Monte Carlo neutron transport calculations performed using the Los Alamos High Energy Transport Code (LAHET). Calculations used 230 MeV protons incident upon an Fe target in a shielding geometry similar to that used in the experiment. LAHET calculations overestimated measured attenuation values at 0 degree, 22 degree, and 45 degree, yet correctly predicted the attenuation length at 90 degree. Comparison of the mean radiation quality estimated with the Monte Carlo calculations with measurements suggest that neutron quality factors should be increased by a factor of 1.4. These results are useful for the shielding design of new facilities as well as for testing neutron production and transport calculations

  8. In vivo dosimetry in external beam radiotherapy

    International Nuclear Information System (INIS)

    Mijnheer, Ben; Beddar, Sam; Izewska, Joanna; Reft, Chester

    2013-01-01

    In vivo dosimetry (IVD) is in use in external beam radiotherapy (EBRT) to detect major errors, to assess clinically relevant differences between planned and delivered dose, to record dose received by individual patients, and to fulfill legal requirements. After discussing briefly the main characteristics of the most commonly applied IVD systems, the clinical experience of IVD during EBRT will be summarized. Advancement of the traditional aspects of in vivo dosimetry as well as the development of currently available and newly emerging noninterventional technologies are required for large-scale implementation of IVD in EBRT. These new technologies include the development of electronic portal imaging devices for 2D and 3D patient dosimetry during advanced treatment techniques, such as IMRT and VMAT, and the use of IVD in proton and ion radiotherapy by measuring the decay of radiation-induced radionuclides. In the final analysis, we will show in this Vision 20/20 paper that in addition to regulatory compliance and reimbursement issues, the rationale for in vivo measurements is to provide an accurate and independent verification of the overall treatment procedure. It will enable the identification of potential errors in dose calculation, data transfer, dose delivery, patient setup, and changes in patient anatomy. It is the authors’ opinion that all treatments with curative intent should be verified through in vivo dose measurements in combination with pretreatment checks

  9. In vivo dosimetry in external beam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Mijnheer, Ben [Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam 1066 CX (Netherlands); Beddar, Sam [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Izewska, Joanna [Division of Human Health, International Atomic Energy Agency, Vienna 1400 (Austria); Reft, Chester [Department of Radiation and Cellular Oncology, University of Chicago Medical Center, Chicago, Illinois 60637 (United States)

    2013-07-15

    In vivo dosimetry (IVD) is in use in external beam radiotherapy (EBRT) to detect major errors, to assess clinically relevant differences between planned and delivered dose, to record dose received by individual patients, and to fulfill legal requirements. After discussing briefly the main characteristics of the most commonly applied IVD systems, the clinical experience of IVD during EBRT will be summarized. Advancement of the traditional aspects of in vivo dosimetry as well as the development of currently available and newly emerging noninterventional technologies are required for large-scale implementation of IVD in EBRT. These new technologies include the development of electronic portal imaging devices for 2D and 3D patient dosimetry during advanced treatment techniques, such as IMRT and VMAT, and the use of IVD in proton and ion radiotherapy by measuring the decay of radiation-induced radionuclides. In the final analysis, we will show in this Vision 20/20 paper that in addition to regulatory compliance and reimbursement issues, the rationale for in vivo measurements is to provide an accurate and independent verification of the overall treatment procedure. It will enable the identification of potential errors in dose calculation, data transfer, dose delivery, patient setup, and changes in patient anatomy. It is the authors' opinion that all treatments with curative intent should be verified through in vivo dose measurements in combination with pretreatment checks.

  10. Nuclear data for radiotherapy: Presentation of a new ICRU report and IAEA initiatives

    International Nuclear Information System (INIS)

    Chadwick, M.B.; Jones, D.T.L.; Barschall, H.H.

    1998-01-01

    An ICRU report entitled ''Nuclear Data for neutron and Proton Radiotherapy and for Radiation Protection'' is in preparation. The present paper presents an overview of this report, along with examples of some of the results obtained for evaluated nuclear cross sections and kerma coefficients. These cross sections are evaluated using a combination of measured data and the GNASH nuclear model code for elements of importance for biological, dosimetric, beam modification and shielding purposes. In the case of hydrogen both R-matrix and phase-shift scattering theories are used. In the report neutron cross sections and kerma coefficients will be presented up to 100 MeV and proton cross sections up to 250 MeV. An IAEA Consultants' Meeting was also convened to examine the ''Status of Nuclear Data needed for Radiation Therapy and Existing Data Development Activities in Member States''. Recommendations were made regarding future endeavors

  11. Advances in radiotherapy

    International Nuclear Information System (INIS)

    Mackie, T.R.

    2005-01-01

    computer optimization to determine optimal beam delivery intensity maps in order to maximize the target coverage and spare critical tissues as much as possible. The intensity modulated beams are delivered by conventional multileaf collimators or binary collimators modulating fan beams delivered rotationally. IMRT can enable higher doses to be delivered to the tumor and/or reduce the complications of sensitive tissues. Variability in the setup of the patient and movement of organs has likely limited the success of radiation therapy in the past but has become critical with the newfound ability of IMRT to put high dose gradients between the tumor and critical tissues. These issues are now being addressed with imaging systems present in the treatment room. Image-guided radiation therapy (IGRT) includes methods, such as transabdominal ultrasound and in-room CT scanners to image the patient just before treatment to improve setup accuracy and methods such as electronic x-ray imaging systems viewing implanted markers during treatment to minimize the effect of organ motion. 18 Excluding proton radiotherapy, equipment costs of modern radiotherapy are only marginally greater than for conventional radiotherapy. In the developed world the cost of radiotherapy equipment is about 15-20% of the total to deliver the treatment. Moreover, the cost of radiation therapy delivery represents only about 10-15% of the budget of a comprehensive cancer center and so it is a bargain as compared to other therapy forms such as surgery and chemotherapy. (author)

  12. External beam radiotherapy dose response characteristics of 1127 men with prostate cancer treated in the PSA era

    International Nuclear Information System (INIS)

    Pollack, Alan; Smith, Lewis G.; Eschenbach, Andrew C. von

    2000-01-01

    Purpose: To characterize the relationship of radiotherapy dose to prostate cancer patient outcome, with an emphasis on the influence of pretreatment prognostic variables. Methods and Materials: The 1127 Stage T1-T4 prostate cancer patients examined were treated consecutively with definitive external beam radiotherapy at the University of Texas-M.D. Anderson Cancer Center from 1987 to 1997. All had a pretreatment prostate-specific antigen (PSA) level. Treatment failure was defined as two consecutive PSA elevations on follow-up. There were 994 patients treated with a four-field box throughout to 60-70 Gy after a small reduction at 46 Gy and 161 treated with a six-field conformal boost after 46 Gy to 74-78 Gy. No patient received neoadjuvant or adjuvant androgen ablation. Median follow-up was 51.8 months. Results: Patients were divided into three radiotherapy dose groups consisting of ≤67 Gy (n = 500), >67-77 Gy (n = 495), and >77 Gy (n = 132). Relative to other prognostic factors, there were fewer patients treated to the highest dose level with a pretreatment PSA (PSAB) ≤4 or >20 ng/ml, Stage T3/T4 disease, or a Gleason score of 2-6. Actuarial 4-year freedom from biochemical failure (bNED) rates for the entire cohort were 54%, 71%, and 77% (p 67-77 Gy was associated with improved bNED rates for all PSAB (≤10 and >10), stage (T1/T2 and T3/T4), and Gleason score (2-6 and 7-10) subgroups tested. In contrast, the only prognostic group that benefited from raising dose from >67-77 Gy to >77 Gy was patients with a PSAB >10 ng/ml; although trends were noted for Stage T1/T2 and Gleason 2-6 patients. Patients with the combined features of a PSAB >10 ng/ml and Stage T1/T2 disease had 4-year bNED rates of 61% and 93% at the intermediate- and high-dose levels. A strongly significant linear association between dose (60-78 Gy) and 4-year actuarial bNED was demonstrated for patients with these intermediate-risk features. Conclusion: Prostate cancer dose response to external

  13. PLANNING NATIONAL RADIOTHERAPY SERVICES

    Directory of Open Access Journals (Sweden)

    Eduardo eRosenblatt

    2014-11-01

    Full Text Available Countries, states and island nations often need forward planning of their radiotherapy services driven by different motives. Countries without radiotherapy services sponsor patients to receive radiotherapy abroad. They often engage professionals for a feasibility study in order to establish whether it would be more cost-beneficial to establish a radiotherapy facility. Countries where radiotherapy services have developed without any central planning, find themselves in situations where many of the available centres are private and thus inaccessible for a majority of patients with limited resources. Government may decide to plan ahead when a significant exodus of cancer patients travel to another country for treatment, thus exposing the failure of the country to provide this medical service for its citizens. In developed countries the trigger has been the existence of highly visible waiting lists for radiotherapy revealing a shortage of radiotherapy equipment.This paper suggests that there should be a systematic and comprehensive process of long-term planning of radiotherapy services at the national level, taking into account the regulatory infrastructure for radiation protection, planning of centres, equipment, staff, education pr

  14. Induction of cancer cell death by proton beam in tumor hypoxic region

    International Nuclear Information System (INIS)

    Hur, T. R.; Lee, Y. M.; Park, J. W.; Sohn, E. J.

    2006-05-01

    The physical properties of charged particles such as protons are uniquely suited to target the radiation dose precisely in the tumor. In proton therapy, the Bragg peak is spread out by modulating or degrading the energy of the particles to cover a well defined target volume at a given depth. Due to heterogeneity in the various tumors and end-points as well as in the physical properties of the beams considered, it is difficult to fit the various results into a clear general description of the biological effect of proton in tumor therapy. Tumor hypoxia is a main obstacle to radiotherapy, including gamma-ray. Survived tumor cells under hypoxic region are resistant to radiation and more aggressive to be metastasized. To investigate the dose of proton beam to induce cell death of various tumor cells and hypoxic tumor cells at the Bragg peak in vitro, we used 3 kinds of tumor cells, lung cancer, leukemia and hepatoma cells. Proton beam induces apoptosis in Lewis lung carcinoma cells dose dependently and, slightly in leukemia but not in hepatoma cells at all. Above 1000 gray of proton beam, 60% of cells died even the hypoxic cells in Lewis lung carcinoma cells. But the Molt-4 leukemia cells showed milder effect, 20% cell death by the above 1000 Gray of proton beam and typical resistant pattern (5-10%) of hypoxia in desferrioxamine treated cells. Hepatoma cells (HepG2) were not responsive to proton beam even in rather higher dose (4000G). However, by the gamma-irradiation, Molt-4 was more sensitive than hepatoma or lung cancer cells, but still showed hypoxic resistance. The cell death by proton beam in Lewis lung carcinoma cells was confirmed by PARP cleavage and may be mediated by increased p53. Pro-caspases were also activated and cleaved by the proton beam irradiations for lung cancer cell death. In conclusion, high dose of proton beam (above 1000 gray) may be a good therapeutic radiation even in hypoxic region at the Bragg peak, but further investigations about the

  15. A preliminary comparative treatment planning study for radiotherapy of age-related maculopathy

    International Nuclear Information System (INIS)

    Mazal, A.; Schwartz, L.; Lacroix, F.; Mammar, H.; Delacroix, S.; Ferrand, R.; Nauraye, C.; Desjardins, L.; Schlienger, P.; D'Hermies, F.; Frau, E.; Habrand, J.-L.; Rosenwald, J.-C.

    1998-01-01

    Purpose: We present a comparative planning of different approaches for external radiotherapy in age-related maculopathies. Materials and methods: Calculated dose distributions and dose-volume histograms for (a) bilateral irradiation with 6 MV photons, (b) a single lateral-oblique beam using either photons, electrons or protons and (c) an anterior circular proton beam. Results: For lateral photon or electron beams the dose to the lens is usually lower than 10% of the dose to the macula. The entrance doses for bilateral photon beams are about 50% which increase up to 100% at the orbital bone. About 5 mm of optic nerves are irradiated at the maximal dose while the optic chiasma is spared. A single photon beam gives 50% of the dose to the fellow eye. The electron beam spares the fellow eye but gives a rather inhomogeneous dose to the target volume. For a lateral proton beam, 4 mm of optic nerve receives 90% of the dose, the skin dose is at least 70% of the dose to the macula and the lens and the fellow eye are spared. An anterior proton beam gives 90% of the dose to 1 mm of optic nerve and the 50% isodose approaches the periphery of the lens. Conclusion: Doses to the critical structures can be dramatically diminished for all the techniques by reducing the beam size, but only if very precise set-up techniques are used. Proton beams are an attractive solution, but the impact of such a choice on the use of proton facilities and on the national health system should be carefully evaluated, as well as the risk of radio-induced secondary neoplasias. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  16. Inter-comparison of Dose Distributions Calculated by FLUKA, GEANT4, MCNP, and PHITS for Proton Therapy

    Science.gov (United States)

    Yang, Zi-Yi; Tsai, Pi-En; Lee, Shao-Chun; Liu, Yen-Chiang; Chen, Chin-Cheng; Sato, Tatsuhiko; Sheu, Rong-Jiun

    2017-09-01

    The dose distributions from proton pencil beam scanning were calculated by FLUKA, GEANT4, MCNP, and PHITS, in order to investigate their applicability in proton radiotherapy. The first studied case was the integrated depth dose curves (IDDCs), respectively from a 100 and a 226-MeV proton pencil beam impinging a water phantom. The calculated IDDCs agree with each other as long as each code employs 75 eV for the ionization potential of water. The second case considered a similar condition of the first case but with proton energies in a Gaussian distribution. The comparison to the measurement indicates the inter-code differences might not only due to different stopping power but also the nuclear physics models. How the physics parameter setting affect the computation time was also discussed. In the third case, the applicability of each code for pencil beam scanning was confirmed by delivering a uniform volumetric dose distribution based on the treatment plan, and the results showed general agreement between each codes, the treatment plan, and the measurement, except that some deviations were found in the penumbra region. This study has demonstrated that the selected codes are all capable of performing dose calculations for therapeutic scanning proton beams with proper physics settings.

  17. Target tailoring and proton beam therapy to reduce small bowel dose in cervical cancer radiotherapy. A comparison of benefits

    Energy Technology Data Exchange (ETDEWEB)

    Boer, Peter de; Westerveld, Henrike; Smit, Mark; Bel, Arjan; Rasch, Coen R.N.; Stalpers, Lukas J.A. [Academic Medical Center, University of Amsterdam, Department of Radiation Oncology, Amsterdam (Netherlands); Schoot, Agustinus J.A.J. van de [The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Department of Radiation Oncology, Amsterdam (Netherlands); Buist, Marrije R. [Academic Medical Center, University of Amsterdam, Department of Gynaecology and Obstetrics, Amsterdam (Netherlands)

    2018-03-15

    The aim of the study was to investigate the potential clinical benefit from both target tailoring by excluding the tumour-free proximal part of the uterus during image-guided adaptive radiotherapy (IGART) and improved dose conformity based on intensity-modulated proton therapy (IMPT). The study included planning CTs from 11 previously treated patients with cervical cancer with a >4-cm tumour-free part of the proximal uterus on diagnostic magnetic resonance imaging (MRI). IGART and robustly optimised IMPT plans were generated for both conventional target volumes and for MRI-based target tailoring (where the non-invaded proximal part of the uterus was excluded), yielding four treatment plans per patient. For each plan, the V{sub 15Gy}, V{sub 30Gy}, V{sub 45Gy} and D{sub mean} for bladder, sigmoid, rectum and bowel bag were compared, and the normal tissue complication probability (NTCP) for ≥grade 2 acute small bowel toxicity was calculated. Both IMPT and MRI-based target tailoring resulted in significant reductions in V{sub 15Gy}, V{sub 30Gy}, V{sub 45Gy} and D{sub mean} for bladder and small bowel. IMPT reduced the NTCP for small bowel toxicity from 25% to 18%; this was further reduced to 9% when combined with MRI-based target tailoring. In four of the 11 patients (36%), NTCP reductions of >10% were estimated by IMPT, and in six of the 11 patients (55%) when combined with MRI-based target tailoring. This >10% NTCP reduction was expected if the V{sub 45Gy} for bowel bag was >275 cm{sup 3} and >200 cm{sup 3}, respectively, during standard IGART alone. In patients with cervical cancer, both proton therapy and MRI-based target tailoring lead to a significant reduction in the dose to surrounding organs at risk and small bowel toxicity. (orig.) [German] In der vorliegenden Studie wurden die moeglichen klinischen Vorteile einer Zielvolumenpraezisierung durch Ausschluss des tumorfreien proximalen Gebaermutteranteils bei der ''image-guided adaptive radiotherapy

  18. From Passive to Active in the Design of External Radiotherapy Database at Oncology Institute

    Directory of Open Access Journals (Sweden)

    Valentin Ioan CERNEA

    2009-12-01

    Full Text Available Implementation during 1997 of a computer network at Oncology Institute “Prof. Dr. Ion Chiricuţă" from Cluj-Napoca (OICN opens the era of patient electronic file where the presented database is included. The database developed before 2000, used till December 2006 in all reports of OICN has collected data from primary documents as radiotherapy files. Present level of the computer network permits to change the sense of data from computer to primary document. Now the primary document is built firstly electronically inside the computer, and secondly, after validation is printed as a known document. The paper discusses the issues concerning safety, functionality and access derived.

  19. Risk-adapted targeted intraoperative radiotherapy versus whole-breast radiotherapy for breast cancer

    DEFF Research Database (Denmark)

    Vaidya, Jayant S; Wenz, Frederik; Bulsara, Max

    2014-01-01

    The TARGIT-A trial compared risk-adapted radiotherapy using single-dose targeted intraoperative radiotherapy (TARGIT) versus fractionated external beam radiotherapy (EBRT) for breast cancer. We report 5-year results for local recurrence and the first analysis of overall survival....

  20. Treatment outcome in patients with vulvar cancer: comparison of concurrent radiotherapy to postoperative radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ja Young; Kim, Sung Hwan; Kim, Ki Won; Park, Dong Choon; Yoon, Joo Hee; Yoon, Sei Chul [St. Vincent' s Hospital, The Catholic University of Korea School of Medicine, Seoul (Korea, Republic of); Yu, Mina [St. Mary' s Hospital, The Catholic University of Korea School of Medicine, Seoul (Korea, Republic of)

    2012-03-15

    To evaluate outcome and morbidity in patients with vulvar cancer treated with radiotherapy, concurrent chemoradiotherapy or postoperative radiotherapy. The records of 24 patients treated with radiotherapy for vulvar cancer between July 1993 and September 2009 were retrospectively reviewed. All patients received once daily 1.8-4 Gy fractions external beam radiotherapy to median 51.2 Gy (range, 19.8 to 81.6 Gy) on pelvis and inguinal nodes. Seven patients were treated with primary concurrent chemoradiotherapy, one patient was treated with primary radiotherapy alone, four patients received palliative radiotherapy, and twelve patients were treated with postoperative radiotherapy. Twenty patients were eligible for response evaluation. Response rate was 55% (11/20). The 5-year disease free survival was 42.2% and 5-year overall survival was 46.2%, respectively. Fifty percent (12/24) experienced with acute skin complications of grade III or more during radiotherapy. Late complications were found in 8 patients. 50% (6/12) of patients treated with lymph node dissection experienced severe late complications. One patient died of sepsis from lymphedema. However, only 16.6% (2/12) of patients treated with primary radiotherapy developed late complications. Outcome of patients with vulvar cancer treated with radiotherapy showed relatively good local control and low recurrence. Severe late toxicities remained higher in patients treated with both node dissection and radiotherapy.

  1. Radiotherapy in small countries.

    Science.gov (United States)

    Barton, Michael B; Zubizarreta, Eduardo H; Polo Rubio, J Alfredo

    2017-10-01

    To examine the availability of radiotherapy in small countries. A small country was defined as a country with a population less than one million persons. The economic status of each country was defined using the World Bank Classification. The number of cancers in each country was obtained from GLOBOCAN 2012. The number of cancer cases with an indication or radiotherapy was calculated using the CCORE model. There were 41 countries with a population of under 1 million; 15 were classified as High Income, 15 Upper Middle Income, 10 Lower Middle Income and one Low Income. 28 countries were islands. Populations ranged from 799 (Holy See) to 886450 (Fiji) and the total number of cancer cases occurring in small countries was 21,043 (range by country from 4 to 2476). Overall the total number of radiotherapy cases in small countries was 10982 (range by country from 2 to 1239). Radiotherapy was available in all HIC islands with 80 or more new cases of cancer in 2012 but was not available in any LMIC island. Fiji was the only LMIC island with a large radiotherapy caseload. Similar caseloads in non-island LMIC all had radiotherapy services. Most non-island HIC did not have radiotherapy services presumably because of the easy access to radiotherapy in neighbouring countries. There are no radiotherapy services in any LMIC islands. Copyright © 2017. Published by Elsevier Ltd.

  2. Status of Radiotherapy around the World: Radiotherapy in China. Chapter 25.6

    International Nuclear Information System (INIS)

    Zhu, Ci; Yin, Wei Bo; Chen, Bo; Zhang, Chun Li; Zhang, Hong Zhi; Li, Ye Xiong

    2017-01-01

    China’s experience of using radiotherapy to treat cancer began with the installation of the first superficial X ray machine at Peking Union Medical College Hospital in early 1920, followed by the first 200 kV deep X ray machine installed at the French Hospital in Shanghai in 1923, and the first Chinese radiotherapy department established at the Affiliated Hospital of Peking University in 1932. However, the field of radiotherapy in China was still in its infancy between the 1930s and 1960s, as all operating machines were imported from foreign countries, making radiotherapy very difficult to access for cancer patients. Progress was slow until the mid-1970s, when the first batch of megavoltage machines (cobalt-60 machines and linacs) was produced by Chinese manufacturers. Owing to the efforts of radiotherapy pioneers such as Wu Huanxing, Gu Xianzhi, Liu Taifu, and Yin Weibo, who brought radiotherapy to China and shaped how Chinese patients would be treated today, radiotherapy was installed as one of the mainstream modalities of cancer treatment. In 1986, the China Society for Radiation Oncology (CSTRO) was founded, indicating that a network advancing radiation oncology practice in China was taking shape. One year later, the first issue of the Chinese Journal of Radiation Oncology was published, offering a platform for the timely exchange and sharing of laboratory and clinical research outcomes among radiation oncology professions across the country. During the past two decades, with the introduction of the gamma knife and stereotactic radiotherapy, 3-D conformal radiotherapy, IMRT, IGRT and other advanced techniques, China experienced not only a big jump in its radiotherapy equipment and facilities, but also a dramatic growth in the excellence of radiation oncology specialist staff nationwide

  3. Hyperthermia and radiotherapy

    International Nuclear Information System (INIS)

    Fitspatrick, C.

    1990-01-01

    Hyperthermia and radiotherapy have for long been used to assist in the control of tumours, either as separate entities, or, in a combined treatment scheme. This paper outlines why hyperthermia works, thermal dose and the considerations required in the timing when hyperthermia is combined with radiotherapy. Previously reported results for hyperthermia and radiotherapy used together are also presented. 8 refs., 8 tabs

  4. Radiotherapy

    International Nuclear Information System (INIS)

    Wannenmacher, M.; Debus, J.; Wenz, F.

    2006-01-01

    The book is focussed on the actual knowledge on the clinical radiotherapy and radio-oncology. Besides fundamental and general contributions specific organ systems are treated in detail. The book contains the following contributions: Basic principles, radiobiological fundamentals, physical background, radiation pathology, basics and technique of brachytherapy, methodology and technique of the stereotactic radiosurgery, whole-body irradiation, operative radiotherapy, hadron therapy, hpyerthermia, combined radio-chemo-therapy, biometric clinical studies, intensity modulated radiotherapy, side effects, oncological diagnostics; central nervous system and sense organs, head-neck carcinomas, breast cancer, thorax organs, esophagus carcinoma, stomach carcinoma, pancreas carcinoma, heptabiliary cancer and liver metastases, rectal carcinomas, kidney and urinary tract, prostate carcinoma, testicular carcinoma, female pelvis, lymphatic system carcinomas, soft tissue carcinoma, skin cancer, bone metastases, pediatric tumors, nonmalignant diseases, emergency in radio-oncology, supporting therapy, palliative therapy

  5. Exploration of the possibility of high LET radiation for non-conventional radiotherapy in cancer

    International Nuclear Information System (INIS)

    1986-12-01

    The report summarizes the results of the researches performed by scientists from six Member States under an Agency-sponsored co-ordinated research programme (CRP) on exploration of the possibility of high linear energy transfer (LET) radiation for non-conventional radiotherapy in cancer. The projects within the CRP were focused on radiobiological and clinical aspects of neutron beam (3 reports) and neutron capture (2 reports), heavy ion beam (2 reports) and proton (1 report) therapy. A summary report is included. A separate abstract was prepared for each of these reports

  6. Randomised phase I/II study to evaluate carbon ion radiotherapy versus fractionated stereotactic radiotherapy in patients with recurrent or progressive gliomas: The CINDERELLA trial

    International Nuclear Information System (INIS)

    Combs, Stephanie E; Wick, Wolfgang; Debus, Jürgen; Burkholder, Iris; Edler, Lutz; Rieken, Stefan; Habermehl, Daniel; Jäkel, Oliver; Haberer, Thomas; Haselmann, Renate; Unterberg, Andreas

    2010-01-01

    Treatment of patients with recurrent glioma includes neurosurgical resection, chemotherapy, or radiation therapy. In most cases, a full course of radiotherapy has been applied after primary diagnosis, therefore application of re-irradiation has to be applied cauteously. With modern precision photon techniques such as fractionated stereotactic radiotherapy (FSRT), a second course of radiotherapy is safe and effective and leads to survival times of 22, 16 and 8 months for recurrent WHO grade II, III and IV gliomas. Carbon ions offer physical and biological characteristics. Due to their inverted dose profile and the high local dose deposition within the Bragg peak precise dose application and sparing of normal tissue is possible. Moreover, in comparison to photons, carbon ions offer an increased relative biological effectiveness (RBE), which can be calculated between 2 and 5 depending on the GBM cell line as well as the endpoint analyzed. Protons, however, offer an RBE which is comparable to photons. First Japanese Data on the evaluation of carbon ion radiation therapy for the treatment of primary high-grade gliomas showed promising results in a small and heterogeneous patient collective. In the current Phase I/II-CINDERELLA-trial re-irradiation using carbon ions will be compared to FSRT applied to the area of contrast enhancement representing high-grade tumor areas in patients with recurrent gliomas. Within the Phase I Part of the trial, the Recommended Dose (RD) of carbon ion radiotherapy will be determined in a dose escalation scheme. In the subsequent randomized Phase II part, the RD will be evaluated in the experimental arm, compared to the standard arm, FSRT with a total dose of 36 Gy in single doses of 2 Gy. Primary endpoint of the Phase I part is toxicity. Primary endpoint of the randomized part II is survival after re-irradiation at 12 months, secondary endpoint is progression-free survival. The Cinderella trial is the first study to evaluate carbon ion

  7. EPR/alanine dosimetry for two therapeutic proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Marrale, Maurizio, E-mail: maurizio.marrale@unipa.it [Dipartimento di Fisica e Chimica, Università di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); Gruppo V Sezione INFN di Catania, Via Santa Sofia, 64, 95123 Catania (Italy); Carlino, Antonio [Dipartimento di Fisica e Chimica, Università di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); EBG MedAustron GmbH, Marie Curie-Straße 5, A-2700 Wiener Neustadt (Austria); Gallo, Salvatore [Dipartimento di Fisica e Chimica, Università di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); Gruppo V Sezione INFN di Catania, Via Santa Sofia, 64, 95123 Catania (Italy); Laboratorio PH3DRA, Dipartimento di Fisica e Astronomia, Università di Catania, Via Santa Sofia 64, 95123 Catania (Italy); Longo, Anna; Panzeca, Salvatore [Dipartimento di Fisica e Chimica, Università di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); Gruppo V Sezione INFN di Catania, Via Santa Sofia, 64, 95123 Catania (Italy); Bolsi, Alessandra; Hrbacek, Jan; Lomax, Tony [Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland)

    2016-02-01

    In this work the analysis of the electron paramagnetic resonance (EPR) response of alanine pellets exposed to two different clinical proton beams employed for radiotherapy is performed. One beam is characterized by a passive delivery technique and is dedicated to the eyes treatment (OPTIS2 beam line). Alanine pellets were irradiated with a 70 MeV proton beam corresponding to 35 mm range in eye tissue. We investigated how collimators with different sizes and shape used to conform the dose to the planned target volume influence the delivered dose. For this purpose we performed measurements with varying the collimator size (Output Factor) and the results were compared with those obtained with other dosimetric techniques (such as Markus chamber and diode detector). This analysis showed that the dosimeter response is independent of collimator diameter if this is larger than or equal to 10 mm. The other beam is characterized by an active spot-scanning technique, the Gantry1 beam line (maximum energy 230 MeV), and is used to treat deep-seated tumors. The dose linearity of alanine response in the clinical dose range was tested and the alanine dose response at selected locations in depth was measured and compared with the TPS planned dose in a quasi-clinical scenario. The alanine response was found to be linear in the dose in the clinical explored range (from 10 to 70 Gy). Furthermore, a depth dose profile in a quasi-clinical scenario was measured and compared to the dose computed by the Treatment Planning System PSIPLAN. The comparison of calibrated proton alanine measurements and TPS dose shows a difference under 1% in the SOBP and a “quenching” effect up to 4% in the distal part of SOBP. The positive dosimetric characteristics of the alanine pellets confirm the feasibility to use these detectors for “in vivo” dosimetry in clinical proton beams.

  8. EPR/alanine dosimetry for two therapeutic proton beams

    International Nuclear Information System (INIS)

    Marrale, Maurizio; Carlino, Antonio; Gallo, Salvatore; Longo, Anna; Panzeca, Salvatore; Bolsi, Alessandra; Hrbacek, Jan; Lomax, Tony

    2016-01-01

    In this work the analysis of the electron paramagnetic resonance (EPR) response of alanine pellets exposed to two different clinical proton beams employed for radiotherapy is performed. One beam is characterized by a passive delivery technique and is dedicated to the eyes treatment (OPTIS2 beam line). Alanine pellets were irradiated with a 70 MeV proton beam corresponding to 35 mm range in eye tissue. We investigated how collimators with different sizes and shape used to conform the dose to the planned target volume influence the delivered dose. For this purpose we performed measurements with varying the collimator size (Output Factor) and the results were compared with those obtained with other dosimetric techniques (such as Markus chamber and diode detector). This analysis showed that the dosimeter response is independent of collimator diameter if this is larger than or equal to 10 mm. The other beam is characterized by an active spot-scanning technique, the Gantry1 beam line (maximum energy 230 MeV), and is used to treat deep-seated tumors. The dose linearity of alanine response in the clinical dose range was tested and the alanine dose response at selected locations in depth was measured and compared with the TPS planned dose in a quasi-clinical scenario. The alanine response was found to be linear in the dose in the clinical explored range (from 10 to 70 Gy). Furthermore, a depth dose profile in a quasi-clinical scenario was measured and compared to the dose computed by the Treatment Planning System PSIPLAN. The comparison of calibrated proton alanine measurements and TPS dose shows a difference under 1% in the SOBP and a “quenching” effect up to 4% in the distal part of SOBP. The positive dosimetric characteristics of the alanine pellets confirm the feasibility to use these detectors for “in vivo” dosimetry in clinical proton beams.

  9. Use of a two-dimensional ionization chamber array for proton therapy beam quality assurance

    International Nuclear Information System (INIS)

    Arjomandy, Bijan; Sahoo, Narayan; Ding Xiaoning; Gillin, Michael

    2008-01-01

    Two-dimensional ion chamber arrays are primarily used for conventional and intensity modulated radiotherapy quality assurance. There is no commercial device of such type available on the market that is offered for proton therapy quality assurance. We have investigated suitability of the MatriXX, a commercial two-dimensional ion chamber array detector for proton therapy QA. This device is designed to be used for photon and electron therapy QA. The device is equipped with 32x32 parallel plate ion chambers, each with 4.5 mm diam and 7.62 mm center-to-center separation. A 250 MeV proton beam was used to calibrate the dose measured by this device. The water equivalent thickness of the buildup material was determined to be 3.9 mm using a 160 MeV proton beam. Proton beams of different energies were used to measure the reproducibility of dose output and to evaluate the consistency in the beam flatness and symmetry measured by MatriXX. The output measurement results were compared with the clinical commissioning beam data that were obtained using a 0.6 cc Farmer chamber. The agreement was consistently found to be within 1%. The profiles were compared with film dosimetry and also with ion chamber data in water with an excellent agreement. The device is found to be well suited for quality assurance of proton therapy beams. It provides fast two-dimensional dose distribution information in real time with the accuracy comparable to that of ion chamber measurements and film dosimetry

  10. Heavy-ion transport codes for radiotherapy and radioprotection in space

    International Nuclear Information System (INIS)

    Mancusi, Davide

    2006-06-01

    Simulation of the transport of heavy ions in matter is a field of nuclear science that has recently received attention in view of its importance for some relevant applications. Accelerated heavy ions can, for example, be used to treat cancers (heavy-ion radiotherapy) and show some superior qualities with respect to more conventional treatment systems, like photons (x-rays) or protons. Furthermore, long-term manned space missions (like a possible future mission to Mars) pose the challenge to protect astronauts and equipment on board against the harmful space radiation environment, where heavy ions can be responsible for a significant share of the exposure risk. The high accuracy expected from a transport algorithm (especially in the case of radiotherapy) and the large amount of semi-empirical knowledge necessary to even state the transport problem properly rule out any analytical approach; the alternative is to resort to numerical simulations in order to build treatment-planning systems for cancer or to aid space engineers in shielding design. This thesis is focused on the description of HIBRAC, a one-dimensional deterministic code optimised for radiotherapy, and PHITS (Particle and Heavy- Ion Transport System), a general-purpose three-dimensional Monte-Carlo code. The structure of both codes is outlined and some relevant results are presented. In the case of PHITS, we also report the first results of an ongoing comprehensive benchmarking program for the main components of the code; we present the comparison of partial charge-changing cross sections for a 400 MeV/n 40 Ar beam impinging on carbon, polyethylene, aluminium, copper, tin and lead targets

  11. Therapeutic Results of Radiotherapy in Rectal Carcinoma -Comparison of Sandwich Technique Radiotherapy with Postoperative Radiotherapy

    International Nuclear Information System (INIS)

    Huh, Gil Cha; Suh, Hyun Suk; Lee, Hyuk Sang; Kim, Re Hwe; Kim, Chul Soo; Kim, Hong Yong; Kim, Sung Rok

    1996-01-01

    Purpose : To evaluate the potential advantage for 'sandwich' technique radiotherapy compared to postoperative radiotherapy in respectable rectal cancer. Between January 1989 and May 1994, 60 patients with respectable rectal cancer were treated at Inje University Seoul and Sanggye Paik Hospital.Fifty one patients were available for analysis : 20 patients were treated with sandwich technique radiotherapy and 31 patients were treated with postoperative radiotherapy. In sandwich technique radiotherapy(RT), patients were treated with preoperative RT 1500 cGy/5fx followed by immediate curative resection. Patients staged as Astler-Coller B2, C were considered for postoperative RT with 2500-4500 cGy. In postoperative RT, total radiation dose of 4500-6120 cGy, 180 cGy daily at 4-6 weeks was delivered. Patients were followed for median period of 25 months. Results : The overall 5-year survival rates for sandwich technique RT group and postoperative RT group were 60% and 71%, respectively(p>0.05). The 5-year disease free survival rates for each group were 63%. There was no difference in local failure rate between two groups(11% versus 7%). Incidence of distant metastasis was 11%(2/20) in the sandwich technique RT group and 20%(6/31) in the postoperative RT group(p>0.05). The frequencies of acute and chronic complications were comparable in both groups. Conclusion : The sandwich technique radiotherapy group shows local recurrence and survival similar to those of postoperative RT alone group but reduced distant metastasis compared to postoperative RT group. But long term follow-up and large number of patients is needed to make an any firm conclusion regarding the value of this sandwich technique RT

  12. TH-C-BRD-07: Minimizing Dose Uncertainty for Spot Scanning Beam Proton Therapy of Moving Tumor with Optimization of Delivery Sequence

    International Nuclear Information System (INIS)

    Li, H; Zhang, X; Zhu, X; Li, Y

    2014-01-01

    Purpose: Intensity modulated proton therapy (IMPT) has been shown to be able to reduce dose to normal tissue compared to intensity modulated photon radio-therapy (IMRT), and has been implemented for selected lung cancer patients. However, respiratory motion-induced dose uncertainty remain one of the major concerns for the radiotherapy of lung cancer, and the utility of IMPT for lung patients was limited because of the proton dose uncertainty induced by motion. Strategies such as repainting and tumor tracking have been proposed and studied but repainting could result in unacceptable long delivery time and tracking is not yet clinically available. We propose a novel delivery strategy for spot scanning proton beam therapy. Method: The effective number of delivery (END) for each spot position in a treatment plan was calculated based on the parameters of the delivery system, including time required for each spot, spot size and energy. The dose uncertainty was then calculated with an analytical formula. The spot delivery sequence was optimized to maximize END and minimize the dose uncertainty. 2D Measurements with a detector array on a 1D moving platform were performed to validate the calculated results. Results: 143 2D measurements on a moving platform were performed for different delivery sequences of a single layer uniform pattern. The measured dose uncertainty is a strong function of the delivery sequence, the worst delivery sequence results in dose error up to 70% while the optimized delivery sequence results in dose error of <5%. END vs. measured dose uncertainty follows the analytical formula. Conclusion: With optimized delivery sequence, it is feasible to minimize the dose uncertainty due to motion in spot scanning proton therapy

  13. A case of acute exacerbation of idiopathic pulmonary fibrosis after proton beam therapy for non-small cell lung cancer

    International Nuclear Information System (INIS)

    Nagano, Tatsuya; Kotani, Yoshikazu; Fujii, Osamu

    2012-01-01

    There have been no reports describing acute exacerbations of idiopathic pulmonary fibrosis after particle radiotherapy for non-small cell lung cancer. The present study describes the case of a 76-year-old Japanese man with squamous cell carcinoma of the lung that relapsed in the left upper lobe 1 year after right upper lobectomy. He had been treated with oral prednisolone 20 mg/day every 2 days for idiopathic pulmonary fibrosis, and the relapsed lung cancer was treated by proton beam therapy, which was expected to cause the least adverse effects on the idiopathic pulmonary fibrosis. Fifteen days after the initiation of proton beam therapy, the idiopathic pulmonary fibrosis exacerbated, centered on the left upper lobe, for which intensive steroid therapy was given. About 3 months later, the acute exacerbation of idiopathic pulmonary fibrosis had improved, and the relapsed lung cancer became undetectable. Clinicians should be aware that an acute exacerbation of idiopathic pulmonary fibrosis may occur even in proton beam therapy, although proton beam therapy appears to be an effective treatment option for patients with idiopathic pulmonary fibrosis. (author)

  14. Proton radioactivity from proton-rich nuclei

    International Nuclear Information System (INIS)

    Guzman, F.; Goncalves, M.; Tavares, O.A.P.; Duarte, S.B.; Garcia, F.; Rodriguez, O.

    1999-03-01

    Half-lives for proton emission from proton-rich nuclei have been calculated by using the effective liquid drop model of heavy-particle decay of nuclei. It is shown that this model is able to offer results or spontaneous proton-emission half-life-values in excellent agreement with the existing experimental data. Predictions of half-life-values for other possible proton-emission cases are present for null orbital angular momentum. (author)

  15. A Monte-Carlo study to assess the effect of 1.5 T magnetic fields on the overall robustness of pencil-beam scanning proton radiotherapy plans for prostate cancer

    Science.gov (United States)

    Kurz, Christopher; Landry, Guillaume; Resch, Andreas F.; Dedes, George; Kamp, Florian; Ganswindt, Ute; Belka, Claus; Raaymakers, Bas W.; Parodi, Katia

    2017-11-01

    Combining magnetic-resonance imaging (MRI) and proton therapy (PT) using pencil-beam scanning (PBS) may improve image-guided radiotherapy. We aimed at assessing the impact of a magnetic field on PBS-PT plan quality and robustness. Specifically, the robustness against anatomical changes and positioning errors in an MRI-guided scenario with a 30 cm radius 1.5 T magnetic field was studied for prostate PT. Five prostate cancer patients with three consecutive CT images (CT1-3) were considered. Single-field uniform dose PBS-PT plans were generated on the segmented CT1 with Monte-Carlo-based treatment planning software for inverse optimization. Plans were optimized at 90° gantry angle without B-field (no B), with  ±1.5 T B-field (B and minus B), as well as at 81° gantry angle and  +1.5 T (B G81). Plans were re-calculated on aligned CT2 and CT3 to study the impact of anatomical changes. Dose distributions were compared in terms of changes in DVH parameters, proton range and gamma-index pass-rates. To assess the impact of positioning errors, DVH parameters were compared for  ±5 mm CT1 patient shifts in anterior-posterior (AP) and left-right (LR) direction. Proton beam deflection considerably reduced robustness against inter-fractional changes for the B scenario. Range agreement, gamma-index pass-rates and PTV V95% were significantly lower compared to no B. Improved robustness was obtained for minus B and B G81, the latter showing only minor differences to no B. The magnetic field introduced slight dosimetric changes under LR shifts. The impact of AP shifts was considerably larger, and equivalent for scenarios with and without B-field. Results suggest that robustness equivalent to PT without magnetic field can be achieved by adaptation of the treatment parameters, such as B-field orientation (minus B) with respect to the patient and/or gantry angle (B G81). MRI-guided PT for prostate cancer might thus be implemented without compromising robustness

  16. A proton therapy model using discrete difference equations with an example of treating hepatocellular carcinoma.

    Science.gov (United States)

    Bodine, Erin N; Monia, K Lars

    2017-08-01

    Proton therapy is a type of radiation therapy used to treat cancer. It provides more localized particle exposure than other types of radiotherapy (e.g., x-ray and electron) thus reducing damage to tissue surrounding a tumor and reducing unwanted side effects. We have developed a novel discrete difference equation model of the spatial and temporal dynamics of cancer and healthy cells before, during, and after the application of a proton therapy treatment course. Specifically, the model simulates the growth and diffusion of the cancer and healthy cells in and surrounding a tumor over one spatial dimension (tissue depth) and the treatment of the tumor with discrete bursts of proton radiation. We demonstrate how to use data from in vitro and clinical studies to parameterize the model. Specifically, we use data from studies of Hepatocellular carcinoma, a common form of liver cancer. Using the parameterized model we compare the ability of different clinically used treatment courses to control the tumor. Our results show that treatment courses which use conformal proton therapy (targeting the tumor from multiple angles) provides better control of the tumor while using lower treatment doses than a non-conformal treatment course, and thus should be recommend for use when feasible.

  17. Dosimetric Comparison and Potential for Improved Clinical Outcomes of Paediatric CNS Patients Treated with Protons or IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Armoogum, Kris S., E-mail: kris.armoogum@nhs.net [Department of Radiotherapy Physics, Royal Derby Hospital, Derby Hospitals NHS Foundation Trust, Uttoxeter Road, Derby DE22 3NE (United Kingdom); Thorp, Nicola [The Clatterbridge Cancer Centre NHS Foundation Trust, Clatterbridge Road, Bebington, Wirral CH63 4JY (United Kingdom)

    2015-04-28

    Background: We compare clinical outcomes of paediatric patients with CNS tumours treated with protons or IMRT. CNS tumours form the second most common group of cancers in children. Radiotherapy plays a major role in the treatment of many of these patients but also contributes to late side effects in long term survivors. Radiation dose inevitably deposited in healthy tissues outside the clinical target has been linked to detrimental late effects such as neurocognitive, behavioural and vascular effects in addition to endocrine abnormalities and second tumours. Methods: A literature search was performed using keywords: protons, IMRT, CNS and paediatric. Of 189 papers retrieved, 10 were deemed relevant based on title and abstract screening. All papers directly compared outcomes from protons with photons, five papers included medulloblastoma, four papers each included craniopharyngioma and low grade gliomas and three papers included ependymoma. Results: This review found that while proton beam therapy offered similar clinical target coverage, there was a demonstrable reduction in integral dose to normal structures. Conclusions: This in turn suggests the potential for superior long term outcomes for paediatric patients with CNS tumours both in terms of radiogenic second cancers and out-of-field adverse effects.

  18. Dosimetric Comparison and Potential for Improved Clinical Outcomes of Paediatric CNS Patients Treated with Protons or IMRT

    Directory of Open Access Journals (Sweden)

    Kris S. Armoogum

    2015-04-01

    Full Text Available Background: We compare clinical outcomes of paediatric patients with CNS tumours treated with protons or IMRT. CNS tumours form the second most common group of cancers in children. Radiotherapy plays a major role in the treatment of many of these patients but also contributes to late side effects in long term survivors. Radiation dose inevitably deposited in healthy tissues outside the clinical target has been linked to detrimental late effects such as neurocognitive, behavioural and vascular effects in addition to endocrine abnormalities and second tumours. Methods: A literature search was performed using keywords: protons, IMRT, CNS and paediatric. Of 189 papers retrieved, 10 were deemed relevant based on title and abstract screening. All papers directly compared outcomes from protons with photons, five papers included medulloblastoma, four papers each included craniopharyngioma and low grade gliomas and three papers included ependymoma. Results: This review found that while proton beam therapy offered similar clinical target coverage, there was a demonstrable reduction in integral dose to normal structures. Conclusions: This in turn suggests the potential for superior long term outcomes for paediatric patients with CNS tumours both in terms of radiogenic second cancers and out-of-field adverse effects.

  19. Contact radiotherapy. Report of technological assessment

    International Nuclear Information System (INIS)

    Ortholan, Cecile; Melin, Nicole; Lee-Robin, Sun Hae; David, Denis Jean; Pages, Frederique; Devaud, Christine; Noel, Georges; Biga, Julie; Moty-Monnereau, Celine; Canet, Philippe; Lascols, Sylvie; Lamas, Muriel; Ramdine, Jessica; Tuil, Louise

    2008-10-01

    This report aims at assessing safety, indications, the role in therapeutic strategy, and efficiency of contact radiotherapy. It also aims at answering questions like: is the contact radiotherapy technique validated? What are the indications for contact radiotherapy? What about the efficiency and safety of contact radiotherapy? After a presentation of preliminary notions on radiotherapy (radiation types, dose, and irradiation techniques), the report presents this specific technique of contact radiotherapy: definition, devices, use recommendations, issues of radiation protection, modalities of performance of a contact radiotherapy session, and concerned pathologies. Then, based on a literature survey, this report addresses the various concerned tumours (skin, rectum, brain, breast), indicates some general information about these tumours (epidemiological data, anatomy and classification, therapeutic options, radiotherapy), and proposes an assessment of the efficiency and safety of contact radiotherapy

  20. Quality assurance in proton therapy: a systematic approach in progress at Orsay

    International Nuclear Information System (INIS)

    Mazal, A.; Habrand, J.L.; Laforture, F.; Breteau, N.; Mazal, A.; Habrand, J.L.; Breteau, N.

    1996-01-01

    The degree of accuracy and reliability required in proton therapy can only be guaranteed of a comprehensive quality assurance (QA) programme is established. Such a programme obviously has common features with general QA in radiotherapy, but some aspects are specific to the use of protons and particularly to the characteristics of each facility. A study is in progress at Orsay to convert a series of quality controls into a systematic quality assurance programme. It includes some basic steps on organisation, setting up a QA committee and QA task groups, organizing meetings, policies, procedures, records qualifications, and determining some examples of tolerance in controls. Among some critical and specific points identified in this process are the combined treatment with photons at different institutions, the specificity of a non-hospital and complex facility, the high degree of precision required for the patient setup, and the need to develop in-house basic tools such as the treatment planning system. The inclusion of all the patients in prospective well-defined clinical trials, the comparison with alternative techniques and the radiobiological studies are considered as fundamentals for the QA programme. Present dosimetric and radiobiological intercomparisons between proton-therapy centres are considered as partial audits. A study is in progress to establish common dosimetric and clinical protocols, radiological models and dose and volume specifications. In spite of the differences between the existing facilities, it should be possible to obtain international consensus on general guidelines for a QA programme in proton therapy. (author)

  1. Simulating demand for innovative radiotherapies: An illustrative model based on carbon ion and proton radiotherapy

    International Nuclear Information System (INIS)

    Pommier, Pascal; Lievens, Yolande; Feschet, Fabien; Borras, Josep M.; Baron, Marie Helene; Shtiliyanova, Anastasiya; Pijls-Johannesma, Madelon

    2010-01-01

    Background and purpose: Innovative therapies are not only characterized by major uncertainties regarding clinical benefit and cost but also the expected recruitment of patients. An original model was developed to simulate patient recruitment to a costly particle therapy by varying layout of the facility and patient referral (one vs. several countries) and by weighting the treated indication by the expected benefit of particle therapy. Material and methods: A multi-step probabilistic spatial model was used to allocate patients to the optimal treatment strategy and facility taking into account the estimated therapeutic gain from the new therapy for each tumour type, the geographical accessibility of the facilities and patient preference. Recruitment was simulated under different assumptions relating to the demand and supply. Results: Extending the recruitment area, reducing treatment capacity, equipping all treatment rooms with a carbon ion gantry and inclusion of proton protocols in carbon ion facilities led to an increased proportion of indications with the highest expected benefit. Assuming the existence of a competing carbon ions facility, lower values of therapeutic gain, and a greater unwillingness of patients to travel for treatment increased the proportion of indications with low expected benefit. Conclusions: Modelling patient recruitment may aid decision-making when planning new and expensive treatments.

  2. Technical assessment of the Loma Linda University proton therapy accelerator

    International Nuclear Information System (INIS)

    1989-10-01

    In April 1986, officials of Loma Linda University requested that Fermilab design and construct a 250 MeV proton synchrotron for radiotherapy, to be located at the Loma Linda University Medical Center. In June 1986 the project, having received all necessary approvals, commenced. In order to meet a desirable schedule providing for operation in early 1990, it was decided to erect such parts of the accelerator as were complete at Fermilab and conduct a precommissioning activity prior to the completion of the building at Loma Linda which will house the final radiotherapy facility. It was hoped that approximately one year would be saved by the precommissioning, and that important information would be obtained about the system so that improvements could be made during installation at Loma Linda. This report contains an analysis by Fermilab staff members of the information gained in the precommissioning activity and makes recommendations about steps to be taken to enhance the performance of the proton synchrotron at Loma Linda. In the design of the accelerator, effort was made to employ commercially available components, or to industrialize the products developed so that later versions of the accelerator could be produced industrially. The magnets could only be fabricated at Fermilab if the schedule was to be met, but efforts were made to transfer that technology to industry. Originally, it was planned to use a 1.7 MeV RFQ fabricated at the Lawrence Berkeley Laboratory as injector, but LBL would have found it difficult to meet the project schedule. After consideration of other options, for example a 3.4 MeV tandem accelerator, a supplier (AccSys Inc.) qualified itself to provide a 2 MeV RFQ on a schedule well matched to the project schedule. This choice was made, but a separate supplier was selected to develop and provide the 425 MHz power amplifier for the RFQ

  3. Transition from 2-D radiotherapy to 3-D conformal and intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    2008-05-01

    Cancer is one of the leading causes of death globally and radiotherapy is currently an essential component in the management of cancer patients, either alone or in combination with surgery or chemotherapy, both for cure or palliation. It is now recognized that safe and effective radiotherapy service needs not only substantial capital investment in radiotherapy equipment and specially designed facilities but also continuous investment in maintenance and upgrading of the equipment to comply with the technical progress, but also in training the staff. The recent IAEA-TECDOC publication 'Setting up a Radiotherapy Programme: Clinical, Medical Physics, Radiation Protection and Safety Aspects' provides general guidelines for designing and implementing radiotherapy services in Member States. Advances in computer technology have enabled the possibility of transitioning from basic 2- dimensional treatment planning and delivery (2-D radiotherapy) to a more sophisticated approach with 3-dimensional conformal radiotherapy (3-D CRT). Whereas 2-D radiotherapy can be applied with simple equipment, infrastructure and training, transfer to 3-D conformal treatments requires more resources in technology, equipment, staff and training. A novel radiation treatment approach using Intensity Modulated Radiation Therapy (IMRT) that optimizes the delivery of radiation to irregularly shaped tumour volumes demands even more sophisticated equipment and seamless teamwork, and consequentially more resources, advanced training and more time for treatment planning and verification of dose delivery than 3-D CRT. Whereas 3-D CRT can be considered as a standard, IMRT is still evolving. Due to the increased interest of Member States to the modern application of radiotherapy the IAEA has received a number of requests for guidance coming from radiotherapy departments that wish to upgrade their facilities to 3-D CRT and IMRT through Technical Cooperation programme. These requests are expected to increase

  4. SU-E-T-455: Characterization of 3D Printed Materials for Proton Beam Therapy

    International Nuclear Information System (INIS)

    Zou, W; Siderits, R; McKenna, M; Khan, A; Yue, N; McDonough, J; Yin, L; Teo, B; Fisher, T

    2014-01-01

    Purpose: The widespread availability of low cost 3D printing technologies provides an alternative fabrication method for customized proton range modifying accessories such as compensators and boluses. However the material properties of the printed object are dependent on the printing technology used. In order to facilitate the application of 3D printing in proton therapy, this study investigated the stopping power of several printed materials using both proton pencil beam measurements and Monte Carlo simulations. Methods: Five 3–4 cm cubes fabricated using three 3D printing technologies (selective laser sintering, fused-deposition modeling and stereolithography) from five printers were investigated. The cubes were scanned on a CT scanner and the depth dose curves for a mono-energetic pencil beam passing through the material were measured using a large parallel plate ion chamber in a water tank. Each cube was measured from two directions (perpendicular and parallel to printing plane) to evaluate the effects of the anisotropic material layout. The results were compared with GEANT4 Monte Carlo simulation using the manufacturer specified material density and chemical composition data. Results: Compared with water, the differences from the range pull back by the printed blocks varied and corresponded well with the material CT Hounsfield unit. The measurement results were in agreement with Monte Carlo simulation. However, depending on the technology, inhomogeneity existed in the printed cubes evidenced from CT images. The effect of such inhomogeneity on the proton beam is to be investigated. Conclusion: Printed blocks by three different 3D printing technologies were characterized for proton beam with measurements and Monte Carlo simulation. The effects of the printing technologies in proton range and stopping power were studied. The derived results can be applied when specific devices are used in proton radiotherapy

  5. Proton solvation and proton transfer in chemical and electrochemical processes

    International Nuclear Information System (INIS)

    Lengyel, S.; Conway, B.E.

    1983-01-01

    This chapter examines the proton solvation and characterization of the H 3 O + ion, proton transfer in chemical ionization processes in solution, continuous proton transfer in conductance processes, and proton transfer in electrode processes. Topics considered include the condition of the proton in solution, the molecular structure of the H 3 O + ion, thermodynamics of proton solvation, overall hydration energy of the proton, hydration of H 3 O + , deuteron solvation, partial molal entropy and volume and the entropy of proton hydration, proton solvation in alcoholic solutions, analogies to electrons in semiconductors, continuous proton transfer in conductance, definition and phenomenology of the unusual mobility of the proton in solution, solvent structure changes in relation to anomalous proton mobility, the kinetics of the proton-transfer event, theories of abnormal proton conductance, and the general theory of the contribution of transfer reactions to overall transport processes

  6. Protons and how they are transported by proton pumps

    DEFF Research Database (Denmark)

    Buch-Pedersen, Morten Jeppe; Pedersen, Bjørn Panyella; Nissen, Poul

    2008-01-01

    molecular components that allow the plasma membrane proton H(+)-ATPase to carry out proton transport against large membrane potentials. When divergent proton pumps such as the plasma membrane H(+)-ATPase, bacteriorhodopsin, and F(O)F(1) ATP synthase are compared, unifying mechanistic premises for biological...... proton pumps emerge. Most notably, the minimal pumping apparatus of all pumps consists of a central proton acceptor/donor, a positively charged residue to control pK (a) changes of the proton acceptor/donor, and bound water molecules to facilitate rapid proton transport along proton wires....

  7. Image-guided radiotherapy for effective radiotherapy delivery

    CERN Document Server

    Karlsson, Ulf Lennart

    2016-01-01

    Image-guided radiotherapy (IGRT) is a new radiotherapy technology that combines the rapid dose fall off associated with intensity-modulated radiotherapy (IMRT) and daily tumor imaging allowing for high precision tumor dose delivery and effective sparing of surrounding normal organs. The new radiation technology requires close collaboration between radiologists, nuclear medicine specialists, and radiation oncologists to avoid marginal miss. Modern diagnostic imaging such as positron emission tomography (PET) scans, positron emission tomography with Computed Tomograpgy (PET-CT), and magnetic resonance imaging (MRI) allows the radiation oncologist to target the positive tumor with high accuracy. As the tumor is well visualized during radiation treatment, the margins required to avoid geographic miss can be safely reduced , thus sparing the normal organs from excessive radiation. When the tumor is located close to critical radiosensitive structures such as the spinal cord, IGRT can deliver a high dose of radiatio...

  8. Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions.

    Science.gov (United States)

    Zhang, Rui; Taddei, Phillip J; Fitzek, Markus M; Newhauser, Wayne D

    2010-05-07

    Heavy charged particle beam radiotherapy for cancer is of increasing interest because it delivers a highly conformal radiation dose to the target volume. Accurate knowledge of the range of a heavy charged particle beam after it penetrates a patient's body or other materials in the beam line is very important and is usually stated in terms of the water equivalent thickness (WET). However, methods of calculating WET for heavy charged particle beams are lacking. Our objective was to test several simple analytical formulas previously developed for proton beams for their ability to calculate WET values for materials exposed to beams of protons, helium, carbon and iron ions. Experimentally measured heavy charged particle beam ranges and WET values from an iterative numerical method were compared with the WET values calculated by the analytical formulas. In most cases, the deviations were within 1 mm. We conclude that the analytical formulas originally developed for proton beams can also be used to calculate WET values for helium, carbon and iron ion beams with good accuracy.

  9. Carbon-ion radiotherapy for marginal lymph node recurrences of cervical cancer after definitive radiotherapy: a case report

    International Nuclear Information System (INIS)

    Tamaki, Tomoaki; Nakano, Takashi; Ohno, Tatsuya; Kiyohara, Hiroki; Noda, Shin-ei; Ohkubo, Yu; Ando, Ken; Wakatsuki, Masaru; Kato, Shingo; Kamada, Tadashi

    2013-01-01

    Recurrences of cervical cancer after definitive radiotherapy often occur at common iliac or para-aortic lymph nodes as marginal lymph node recurrences. Patients with these recurrences have a chance of long-term survival by optimal re-treatment with radiotherapy. However, the re-irradiation often overlaps the initial and the secondary radiotherapy fields and can result in increased normal tissue toxicities in the bowels or the stomach. Carbon-ion radiotherapy, a form of particle beam radiotherapy using accelerated carbon ions, offers more conformal and sharp dose distribution than X-ray radiotherapy. Therefore, this approach enables the delivery of high radiation doses to the target while sparing its surrounding normal tissues. Marginal lymph node recurrences in common iliac lymph nodes after radiotherapy were treated successfully by carbon-ion radiotherapy in two patients. These two patients were initially treated with a combination of external beam radiotherapy and intracavitary and interstitial brachytherapy. However, the diseases recurred in the lymph nodes near the border of the initial radiotherapy fields after 22 months and 23 months. Because re-irradiation with X-ray radiotherapy may deliver high doses to a section of the bowels, carbon-ion radiotherapy was selected to treat the lymph node recurrences. A total dose of 48 Gy (RBE) in 12 fractions over 3 weeks was given to the lymph node recurrences, and the tumors disappeared completely with no severe acute toxicities. The two patients showed no evidence of disease for 75 months and 63 months after the initial radiotherapy and for 50 months and 37 months after the carbon-ion radiotherapy, respectively. No severe late adverse effects are observed in these patients. The two presented cases suggest that the highly conformal dose distribution of carbon-ion radiotherapy may be beneficial in the treatment of marginal lymph node recurrences after radiotherapy. In addition, the higher biological effect of carbon

  10. Non small cells stage I bronchial cancers: three-dimensional radiotherapy and radiotherapy in stereotactic conditions; Cancers bronchiques non a petites cellules de stade I: radiotherapie tridimensionnelle et radiotherapie en conditions stereotaxiques

    Energy Technology Data Exchange (ETDEWEB)

    Schipman, B.; Bosset, J.F. [CHU, 25 - Besancon (France); Marchesi, V.; Beckendorf, V.; Desandes, E.; Peiffert, D. [CRLCC Alexis-Vautrin, 54 - Vandaeuvre-les-Nancy (France); Bosset, M. [CHU, 26 - Valence (France)

    2010-10-15

    The authors report a comparison between three-dimensional conformation radiotherapy and robotic irradiation in stereotactic conditions (with CyberKnife) for patients suffering from a bronchial cancer with no small cells of stage I. Acute and late toxicity have been recorded, and the monitoring comprised a clinic examination and a thoracic scanography. The external radiotherapy results in an important local control rate and an acceptable toxicity. Some prospective studies are still needed to compare three-dimensional conformation respiratory-gated radiotherapy and radiotherapy in stereotactic conditions. Short communication

  11. Radiological incidents in radiotherapy

    International Nuclear Information System (INIS)

    Hobzova, L.; Novotny, J.

    2008-01-01

    In many countries a reporting system of radiological incidents to national regulatory body exists and providers of radiotherapy treatment are obliged to report all major and/or in some countries all incidents occurring in institution. State Office for Nuclear Safety (SONS) is providing a systematic guidance for radiotherapy departments from 1997 by requiring inclusion of radiation safety problems into Quality assurance manual, which is the basic document for obtaining a license of SONS for handling with sources of ionizing radiation. For that purpose SONS also issued the recommendation 'Introduction of QA system for important sources in radiotherapy-radiological incidents' in which the radiological incidents are defined and the basic guidance for their classification (category A, B, C, D), investigation and reporting are given. At regular periods the SONS in co-operation with radiotherapy centers is making a survey of all radiological incidents occurring in institutions and it is presenting obtained information in synoptic communication (2003 Motolske dny, 2005 Novy Jicin). This presentation is another summary report of radiological incidents that occurred in our radiotherapy institutions during last 3 years. Emphasis is given not only to survey and statistics, but also to analysis of reasons of the radiological incidents and to their detection and prevention. Analyses of incidents in radiotherapy have led to a much broader understanding of incident causation. Information about the error should be shared as early as possible during or after investigation by all radiotherapy centers. Learning from incidents, errors and near misses should be a part of improvement of the QA system in institutions. Generally, it is recommended that all radiotherapy facilities should participate in the reporting, analyzing and learning system to facilitate the dissemination of knowledge throughout the whole country to prevent errors in radiotherapy.(authors)

  12. A Fano cavity test for Monte Carlo proton transport algorithms

    International Nuclear Information System (INIS)

    Sterpin, Edmond; Sorriaux, Jefferson; Souris, Kevin; Vynckier, Stefaan; Bouchard, Hugo

    2014-01-01

    Purpose: In the scope of reference dosimetry of radiotherapy beams, Monte Carlo (MC) simulations are widely used to compute ionization chamber dose response accurately. Uncertainties related to the transport algorithm can be verified performing self-consistency tests, i.e., the so-called “Fano cavity test.” The Fano cavity test is based on the Fano theorem, which states that under charged particle equilibrium conditions, the charged particle fluence is independent of the mass density of the media as long as the cross-sections are uniform. Such tests have not been performed yet for MC codes simulating proton transport. The objectives of this study are to design a new Fano cavity test for proton MC and to implement the methodology in two MC codes: Geant4 and PENELOPE extended to protons (PENH). Methods: The new Fano test is designed to evaluate the accuracy of proton transport. Virtual particles with an energy ofE 0 and a mass macroscopic cross section of (Σ)/(ρ) are transported, having the ability to generate protons with kinetic energy E 0 and to be restored after each interaction, thus providing proton equilibrium. To perform the test, the authors use a simplified simulation model and rigorously demonstrate that the computed cavity dose per incident fluence must equal (ΣE 0 )/(ρ) , as expected in classic Fano tests. The implementation of the test is performed in Geant4 and PENH. The geometry used for testing is a 10 × 10 cm 2 parallel virtual field and a cavity (2 × 2 × 0.2 cm 3 size) in a water phantom with dimensions large enough to ensure proton equilibrium. Results: For conservative user-defined simulation parameters (leading to small step sizes), both Geant4 and PENH pass the Fano cavity test within 0.1%. However, differences of 0.6% and 0.7% were observed for PENH and Geant4, respectively, using larger step sizes. For PENH, the difference is attributed to the random-hinge method that introduces an artificial energy straggling if step size is not

  13. Proton Neutron Gamma-X Detection (PNGXD): An introduction to contrast agent detection during proton therapy via prompt gamma neutron activation

    Science.gov (United States)

    Gräfe, James L.

    2017-09-01

    Proton therapy is an alternative external beam cancer treatment modality to the conventional linear accelerator-based X-ray radiotherapy. An inherent by-product of proton-nuclear interactions is the production of secondary neutrons. These neutrons have long been thought of as a secondary contaminant, nuisance, and source of secondary cancer risk. In this paper, a method is proposed to use these neutrons to identify and localize the presence of the tumor through neutron capture reactions with the gadolinium-based MRI contrast agent. This could provide better confidence in tumor targeting by acting as an additional quality assurance tool of tumor position during treatment. This effectively results in a neutron induced nuclear medicine scan. Gadolinium (Gd), is an ideal candidate for this novel nuclear contrast imaging procedure due to its unique nuclear properties and its widespread use as a contrast agent in MRI. Gd has one of the largest thermal neutron capture cross sections of all the stable nuclides, and the gadolinium-based contrast agents localize in leaky tissues and tumors. Initial characteristics of this novel concept were explored using the Monte Carlo code MCNP6. The number of neutron capture reactions per Gy of proton dose was found to be approximately 50,000 neutron captures/Gy, for a 8 cm3 tumor containing 300 ppm Gd at 8 cm depth with a simple simulation designed to represent the active delivery method. Using the passive method it is estimated that this number can be up to an order of magnitude higher. The thermal neutron distribution was found to not be localized within the spread out Bragg peak (SOBP) for this geometrical configuration and therefore would not allow for the identification of a geometric miss of the tumor by the proton SOBP. However, this potential method combined with nuclear medicine imaging and fused with online CBCT and prior MRI or CT imaging could help to identify tumor position during treatment. More computational and

  14. Estimated radiation pneumonitis risk after photon versus proton therapy alone or combined with chemotherapy for lung cancer

    DEFF Research Database (Denmark)

    Vogelius, Ivan R.; Westerly, David C; Aznar, Marianne Camille

    2011-01-01

    Background. Traditionally, radiation therapy plans are optimized without consideration of chemotherapy. Here, we model the risk of radiation pneumonitis (RP) in the presence of a possible interaction between chemotherapy and radiation dose distribution. Material and methods. Three alternative......-radiation combinations could be an interesting indication for selecting patients for proton therapy. It is likely that the IMRT plans would perform better if the CERD was accounted for during optimization, but more clinical data is required to facilitate evidence-based plan optimization in the multi-modality setting....... treatment plans are compared in 18 non-small cell lung cancer patients previously treated with helical tomotherapy; the tomotherapy plan, an intensity modulated proton therapy plan (IMPT) and a three dimensional conformal radiotherapy (3D-CRT) plan. All plans are optimized without consideration...

  15. Radiogenic Side Effects After Hypofractionated Stereotactic Photon Radiotherapy of Choroidal Melanoma in 212 Patients Treated Between 1997 and 2007

    Energy Technology Data Exchange (ETDEWEB)

    Dunavoelgyi, Roman [Department of Ophthalmology, Medical University of Vienna, Vienna (Austria); Dieckmann, Karin [Department of Radiology, Medical University of Vienna, Vienna (Austria); Gleiss, Andreas [Section of Clinical Biometrics, Medical University of Vienna, Vienna (Austria); Sacu, Stefan; Kircher, Karl; Georgopoulos, Michael [Department of Ophthalmology, Medical University of Vienna, Vienna (Austria); Georg, Dietmar [Department of Radiology, Medical University of Vienna, Vienna (Austria); Zehetmayer, Martin [Department of Ophthalmology, Medical University of Vienna, Vienna (Austria); Poetter, Richard [Department of Radiology, Medical University of Vienna, Vienna (Austria)

    2012-05-01

    Purpose: To evaluate side effects of hypofractionated stereotactic photon radiotherapy for patients with choroidal melanoma. Patients and Methods: Two hundred and twelve patients with choroidal melanoma unsuitable for ruthenium-106 brachytherapy or local resection were treated stereotactically at the Medical University of Vienna between 1997 and 2007 with a Linac with 6-MV photon beams in five fractions with 10, 12, or 14 Gy per fraction. Examinations for radiogenic side effects were performed at baseline and every 3 months in the first 2 years, then every 6 months until 5 years and then once a year thereafter until 10 years after radiotherapy. Adverse side effects were assessed using slit-lamp examination, funduscopy, gonioscopy, tonometry, and, if necessary, fundus photography and fluorescein angiography. Evaluations of incidence of side effects are based on an actuarial analysis. Results: One hundred and eighty-nine (89.2%) and 168 (79.2%) of the tumors were within 3 mm of the macula and the optic disc, respectively. The five most common radiotherapy side effects were retinopathy and optic neuropathy (114 cases and 107 cases, respectively), cataract development (87 cases), neovascular glaucoma (46 cases), and corneal epithelium defects (41 cases). In total, 33.6%, 38.5%, 51.2%, 75.5%, and 77.6% of the patients were free of any radiation retinopathy, optic neuropathy, cataract, neovascular glaucoma, or corneal epithelium defects 5 years after radiotherapy, respectively. Conclusion: In centrally located choroidal melanoma hypofractionated stereotactic photon radiotherapy shows a low to moderate rate of adverse long-term side effects comparable with those after proton beam radiotherapy. Future fractionation schemes should seek to further reduce adverse side effects rate while maintaining excellent local tumor control.

  16. Radiogenic Side Effects After Hypofractionated Stereotactic Photon Radiotherapy of Choroidal Melanoma in 212 Patients Treated Between 1997 and 2007

    International Nuclear Information System (INIS)

    Dunavoelgyi, Roman; Dieckmann, Karin; Gleiss, Andreas; Sacu, Stefan; Kircher, Karl; Georgopoulos, Michael; Georg, Dietmar; Zehetmayer, Martin; Poetter, Richard

    2012-01-01

    Purpose: To evaluate side effects of hypofractionated stereotactic photon radiotherapy for patients with choroidal melanoma. Patients and Methods: Two hundred and twelve patients with choroidal melanoma unsuitable for ruthenium-106 brachytherapy or local resection were treated stereotactically at the Medical University of Vienna between 1997 and 2007 with a Linac with 6-MV photon beams in five fractions with 10, 12, or 14 Gy per fraction. Examinations for radiogenic side effects were performed at baseline and every 3 months in the first 2 years, then every 6 months until 5 years and then once a year thereafter until 10 years after radiotherapy. Adverse side effects were assessed using slit-lamp examination, funduscopy, gonioscopy, tonometry, and, if necessary, fundus photography and fluorescein angiography. Evaluations of incidence of side effects are based on an actuarial analysis. Results: One hundred and eighty-nine (89.2%) and 168 (79.2%) of the tumors were within 3 mm of the macula and the optic disc, respectively. The five most common radiotherapy side effects were retinopathy and optic neuropathy (114 cases and 107 cases, respectively), cataract development (87 cases), neovascular glaucoma (46 cases), and corneal epithelium defects (41 cases). In total, 33.6%, 38.5%, 51.2%, 75.5%, and 77.6% of the patients were free of any radiation retinopathy, optic neuropathy, cataract, neovascular glaucoma, or corneal epithelium defects 5 years after radiotherapy, respectively. Conclusion: In centrally located choroidal melanoma hypofractionated stereotactic photon radiotherapy shows a low to moderate rate of adverse long-term side effects comparable with those after proton beam radiotherapy. Future fractionation schemes should seek to further reduce adverse side effects rate while maintaining excellent local tumor control.

  17. Demand for radiotherapy in Spain.

    Science.gov (United States)

    Rodríguez, A; Borrás, J M; López-Torrecilla, J; Algara, M; Palacios-Eito, A; Gómez-Caamaño, A; Olay, L; Lara, P C

    2017-02-01

    Assessing the demand for radiotherapy in Spain based on existing evidence to estimate the human resources and equipment needed so that every person in Spain has access to high-quality radiotherapy when they need it. We used data from the European Cancer Observatory on the estimated incidence of cancer in Spain in 2012, along with the evidence-based indications for radiotherapy developed by the Australian CCORE project, to obtain an optimal radiotherapy utilisation proportion (OUP) for each tumour. About 50.5 % of new cancers in Spain require radiotherapy at least once over the course of the disease. Additional demand for these services comes from reradiation therapy and non-melanoma skin cancer. Approximately, 25-30 % of cancer patients with an indication for radiotherapy do not receive it due to factors that include access, patient preference, familiarity with the treatment among physicians, and especially resource shortages, all of which contribute to its underutilisation. Radiotherapy is underused in Spain. The increasing incidence of cancer expected over the next decade and the greater frequency of reradiations necessitate the incorporation of radiotherapy demand into need-based calculations for cancer services planning.

  18. Heavy-ion transport codes for radiotherapy and radioprotection in space

    Energy Technology Data Exchange (ETDEWEB)

    Mancusi, Davide

    2006-06-15

    Simulation of the transport of heavy ions in matter is a field of nuclear science that has recently received attention in view of its importance for some relevant applications. Accelerated heavy ions can, for example, be used to treat cancers (heavy-ion radiotherapy) and show some superior qualities with respect to more conventional treatment systems, like photons (x-rays) or protons. Furthermore, long-term manned space missions (like a possible future mission to Mars) pose the challenge to protect astronauts and equipment on board against the harmful space radiation environment, where heavy ions can be responsible for a significant share of the exposure risk. The high accuracy expected from a transport algorithm (especially in the case of radiotherapy) and the large amount of semi-empirical knowledge necessary to even state the transport problem properly rule out any analytical approach; the alternative is to resort to numerical simulations in order to build treatment-planning systems for cancer or to aid space engineers in shielding design. This thesis is focused on the description of HIBRAC, a one-dimensional deterministic code optimised for radiotherapy, and PHITS (Particle and Heavy- Ion Transport System), a general-purpose three-dimensional Monte-Carlo code. The structure of both codes is outlined and some relevant results are presented. In the case of PHITS, we also report the first results of an ongoing comprehensive benchmarking program for the main components of the code; we present the comparison of partial charge-changing cross sections for a 400 MeV/n {sup 40}Ar beam impinging on carbon, polyethylene, aluminium, copper, tin and lead targets.

  19. Outcome of oligodendroglioma treatment in the era of modern neuroimaging

    International Nuclear Information System (INIS)

    Kleinberg, Lawrence R.; Silverman, Edward; Brem, Henry; Wharam, Moody D.

    1997-01-01

    Purpose/Objective: The benefit of routine postoperative radiotherapy for low grade oligodendroglioma remains controversial. Most published series include many patients treated before the availability of CT or MRI scans which allow early diagnosis, guide surgery, detect residual disease, improve radiotherapy, and detect asymptomatic recurrences. The purpose of this analysis is to determine whether observation rather than radiation continues to be an appropriate option for selected patients with the availability of modern neuroimaging. Materials and Methods: 58 patients (age 2-67 years, 6 pts. =2 poor prognostic factor (p=.04). Results: Two and five year actuarial freedom from local progression was 93 +/- 4% and 75% +/- 8% whereas 2 and 5 year overall survival was 94% +/- 3% and 80% +/- 7%. Despite the imbalance of prognostic factors, there was no significant difference whether or not postoperative RT was given. With RT, 2 and 4 year actuarial freedom from progression was 94% +/- 4% and 78% +/- 8%, whereas without RT it was 94% +/- 6% at 2 and 4 years. Similarly, 2 and 4 year actuarial survival was 94% +/- 4% and 78% +/- 8% with RT and was 91% +/- 8% without RT. (5(10)) recurrences were detected radiologically without new or progressive clinical symptoms. Conclusion: These data support the hypothesis that, in the era of modern neuroimaging, the initial observation of good risk patients and immediate irradiation of poor risk patients is an appropriate treatment approach which results in good medium term control and survival for low grade oligodendroglioma patients. A policy of treatment vs. observation based on selected prognostic factors will be tested prospectively in an intergroup trial for low grade glioma histologies

  20. Brain Injury After Proton Therapy or Carbon Ion Therapy for Head-and-Neck Cancer and Skull Base Tumors

    International Nuclear Information System (INIS)

    Miyawaki, Daisuke; Murakami, Masao; Demizu, Yusuke; Sasaki, Ryohei; Niwa, Yasue; Terashima, Kazuki; Nishimura, Hideki; Hishikawa, Yoshio; Sugimura, Kazuro

    2009-01-01

    Purpose: To assess the incidence of early delayed or late morbidity of Brain after particle therapy for skull base tumors and head-and-neck cancers. Methods and Materials: Between May 2001 and December 2005, 59 patients with cancerous invasion of the skull base were treated with proton or carbon ion therapy at the Hyogo Ion Beam Medical Center. Adverse events were assessed according to the magnetic resonance imaging findings (late effects of normal tissue-subjective, objective, management, analytic [LENT-SOMA]) and symptoms (Common Terminology Criteria for Adverse Events [CTCAE], version 3.0). Dose-volume histograms were used to analyze the relationship between the dose and volume of the irradiated brain and the occurrence of brain injury. The median follow-up time was 33 months. Results: Of the 48 patients treated with proton therapy and 11 patients treated with carbon ion radiotherapy, 8 (17%) and 7 (64%), respectively, developed radiation-induced brain changes (RIBCs) on magnetic resonance imaging (LENT-SOMA Grade 1-3). Four patients (7%) had some clinical symptoms, such as vertigo and headache (CTCAE Grade 2) or epilepsy (CTCAE Grade 3). The actuarial occurrence rate of RIBCs at 2 and 3 years was 20% and 39%, respectively, with a significant difference in the incidence between the proton and carbon ion radiotherapy groups. The dose-volume histogram analyses revealed significant differences between Brain lobes with and without RIBCs in the actuarial volume of brain lobes receiving high doses. Conclusion: Particle therapies produced minimal symptomatic brain toxicities, but sequential evaluation with magnetic resonance imaging detected a greater incidence of RIBCs. Significant differences were observed in the irradiated brain volume between Brain lobes with and without RIBCs.

  1. Optimal timing of salvage radiotherapy for biochemical recurrence after radical prostatectomy: is ultra-early salvage radiotherapy beneficial?

    International Nuclear Information System (INIS)

    Taguchi, Satoru; Shiraishi, Kenshiro; Fukuhara, Hiroshi; Nakagawa, Keiichi; Morikawa, Teppei; Naito, Akihiro; Kakutani, Shigenori; Takeshima, Yuta; Miyazaki, Hideyo; Nakagawa, Tohru; Fujimura, Tetsuya; Kume, Haruki; Homma, Yukio

    2016-01-01

    The optimal timing of salvage radiotherapy for biochemical recurrence after radical prostatectomy is controversial. In particular, the prognostic significance of salvage radiotherapy delivered before a current definition of biochemical recurrence, i.e. ultra-early salvage radiotherapy, is unclear. We reviewed 76 patients with pT2-3N0M0 prostate cancer who underwent salvage radiotherapy for post-prostatectomy biochemical recurrence at the following three timings: ultra-early salvage radiotherapy (n = 20) delivered before meeting a current definition of biochemical recurrence (two consecutive prostate-specific antigen [PSA] values ≥0.2 ng/mL); early salvage radiotherapy (n = 40) delivered after meeting the definition but before PSA reached 0.5 ng/mL; and delayed salvage radiotherapy (n = 16) delivered after PSA reached 0.5 ng/mL. The primary endpoint was failure of salvage radiotherapy, defined as a PSA value ≥0.2 ng/mL. The log-rank test and Cox proportional hazards model were used for univariate and multivariate analyses, respectively. During the follow-up period (median: 70 months), four of 20 (20 %), nine of 40 (23 %) and seven of 16 (44 %) patients failed biochemically in the ultra-early, early and delayed salvage radiotherapy groups, respectively. On univariate analyses, the outcome of delayed salvage radiotherapy was worse than the others, while there was no significant difference between ultra-early and early groups. Multivariate analysis demonstrated the presence of Gleason pattern 5, perineural invasion and delayed salvage radiotherapy as independent predictors of poorer survival. No survival benefit of ultra-early salvage radiotherapy was demonstrated, whereas delayed salvage radiotherapy was associated with worse outcome as reported in previous studies. Our results may support the current recommendations that salvage radiotherapy should be undertaken after two consecutive PSA values ≥0.2 ng/mL and before reaching 0.5 ng/mL

  2. SU-F-J-64: Comparison of Dosimetric Robustness Between Proton Therapy and IMRT Plans Following Tumor Regression for Locally Advanced Non-Small Cell Lung Cancer (NSCLC)

    Energy Technology Data Exchange (ETDEWEB)

    Teng, C; Ainsley, C; Teo, B; Burgdorf, B; Berman, A; Levin, W; Xiao, Y; Lin, L; Simone, C; Solberg, T [University of Pennsylvania, Philadelphia, PA (United States); Janssens, G [IBA, Louvain-la-Neuve (Belgium)

    2016-06-15

    Purpose: In the light of tumor regression and normal tissue changes, dose distributions can deviate undesirably from what was planned. As a consequence, replanning is sometimes necessary during treatment to ensure continued tumor coverage or to avoid overdosing organs at risk (OARs). Proton plans are generally thought to be less robust than photon plans because of the proton beam’s higher sensitivity to changes in tissue composition, suggesting also a higher likely replanning rate due to tumor regression. The purpose of this study is to compare dosimetric deviations between forward-calculated double scattering (DS) proton plans with IMRT plans upon tumor regression, and assesses their impact on clinical replanning decisions. Methods: Ten consecutive locally advanced NSCLC patients whose tumors shrank > 50% in volume and who received four or more CT scans during radiotherapy were analyzed. All the patients received proton radiotherapy (6660 cGy, 180 cGy/fx). Dosimetric robustness during therapy was characterized by changes in the planning objective metrics as well as by point-by-point root-mean-squared differences for the entire PTV, ITV, and OARs (heart, cord, esophagus, brachial plexus and lungs) DVHs. Results: Sixty-four pairs of DVHs were reviewed by three clinicians, who requested a replanning rate of 16.7% and 18.6% for DS and IMRT plans, respectively, with a high agreement between providers. Robustness of clinical indicators was found to depend on the beam orientation and dose level on the DVH curve. Proton dose increased most in OARs distal to the PTV along the beam path, but these changes were primarily in the mid to low dose levels. In contrast, the variation in IMRT plans occurred primarily in the high dose region. Conclusion: Robustness of clinical indicators depends where on the DVH curves comparisons are made. Similar replanning rates were observed for DS and IMRT plans upon large tumor regression.

  3. Breast cancer radiotherapy: controversies and prospectives

    Institute of Scientific and Technical Information of China (English)

    YU Jin-ming; WANG Yong-sheng

    2008-01-01

    @@ Despite consensus on breast cancer radiotherapy, there are still some controversies over post-mastectomy radiotherapy (PMRT) in patients with 1-3 positive lymph nodes, accelerated partial breast irradiation (APBI), appropriate sequence of radiotherapy, chemotherapy and hormonal treatment, and radiotherapy after preoperative systemic therapy.

  4. Initial clinical outcomes of proton beam radiotherapy for hepatocellular carcinoma.

    Science.gov (United States)

    Yu, Jeong Il; Yoo, Gyu Sang; Cho, Sungkoo; Jung, Sang Hoon; Han, Youngyih; Park, Seyjoon; Lee, Boram; Kang, Wonseok; Sinn, Dong Hyun; Paik, Yong-Han; Gwak, Geum-Youn; Choi, Moon Seok; Lee, Joon Hyeok; Koh, Kwang Cheol; Paik, Seung Woon; Park, Hee Chul

    2018-03-01

    This study aimed to evaluate the initial outcomes of proton beam therapy (PBT) for hepatocellular carcinoma (HCC) in terms of tumor response and safety. HCC patients who were not indicated for standard curative local modalities and who were treated with PBT at Samsung Medical Center from January 2016 to February 2017 were enrolled. Toxicity was scored using the Common Terminology Criteria for Adverse Events (CTCAE) version 4.0. Tumor response was evaluated using modified Response Evaluation Criteria in Solid Tumors (mRECIST). A total of 101 HCC patients treated with PBT were included. Patients were treated with an equivalent dose of 62-92 GyE 10 . Liver function status was not significantly affected after PBT. Greater than 80% of patients had Child-Pugh class A and albumin-bilirubin (ALBI) grade 1 up to 3-months after PBT. Of 78 patients followed for three months after PBT, infield complete and partial responses were achieved in 54 (69.2%) and 14 (17.9%) patients, respectively. PBT treatment of HCC patients showed a favorable infield complete response rate of 69.2% with acceptable acute toxicity. An additional follow-up study of these patients will be conducted.

  5. The radiotherapy affects the cognitive processes; La radiotherapie affecte la cognition

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2009-10-15

    Researchers from the medical center of the free university of Amsterdam report that the radiotherapy can hinder the cognitive functions of patients affected by cerebral tumors treated after a surgery. Even low dose radiation could contribute in their opinion, to the progressive cognitive decline of patients suffering of low grade gliomas, the most commune cerebral tumor. To get these conclusions, 65 patients, whom half of them received a radiotherapy, had a neurological and psychological evaluation twelve years after their treatment. Results: 53% of patients treated by radiotherapy present disorders of attention, memory, execution and speed of information treatment against 27% of these ones that received an only surgery. The researchers conclude to the necessity to take into account this risk in the choice of treatment, or even to avoid radiotherapy in this precise case. (N.C.)

  6. Proton decay: spectroscopic probe beyond the proton drip line

    International Nuclear Information System (INIS)

    Seweryniak, D; Davids, C N; Robinson, A; Woods, P J; Blank, B; Carpenter, M P; Davinson, T; Freeman, S J; Hammond, N; Hoteling, N; Janssens, R V F; Khoo, T L; Liu, Z; Mukherjee, G; Shergur, J; Sinha, S; Sonzogni, A A; Walters, W B; Woehr, A

    2005-01-01

    Proton decay has been transformed in recent years from an exotic phenomenon into a powerful spectroscopic tool. The frontiers of experimental and theoretical proton-decay studies will be reviewed. Different aspects of proton decay will be illustrated with recent results on the deformed proton emitter 135 Tb, the odd-odd deformed proton emitter 130 Eu, the complex fine structure in the odd-odd 146 Tm nucleus and on excited states in the transitional proton emitter 145 Tm

  7. Symptom resolution, tumor control, and side effects following postoperative radiotherapy for pituitary macroadenomas

    International Nuclear Information System (INIS)

    Rush, Stephen; Cooper, Paul R.

    1997-01-01

    This study reports the outcome of 70 patients who were treated by a consistent treatment plan of surgery and postoperative radiotherapy (RT) for pituitary macroadenomas in the modern era [computed tomographic scan or magnetic resonance imaging (MRI), dopamine agonist therapy (DA) added as indicated, and immunohistochemical staining]. Sixty-two patients underwent transsphenoidal surgery (vs. transcranial surgery) and 61 received 45-Gy/25 fractions postoperatively (vs. other dose fractionation schemes). Twenty-four patients received DA for prolactin-secreting tumors. With a median follow-up of 8 years (range 2-15), 68 patients have experienced continuous control of their tumors. Most symptoms related to mass effect abated, while physiologic symptoms such as amenorrhea from markedly elevated prolactin levels tended to persist. Treatment-induced hypopituitarism occurred in 42% of the patients at risk. No patients in this series have died as a result of their pituitary tumor. No gross neuropsychologic dysfunction after treatment has been noted. While it is possible at this time with serial MRI to withhold postoperative RT and observe some patients who have had a 'gross total' resection of a macroadenoma, the therapeutic ratio for surgery and adjuvant radiotherapy for patients with nonfunctional tumors as well as select patients with secretory macroadenomas is favorable

  8. Potential hazard due to induced radioactivity secondary to radiotherapy: the report of task group 136 of the American Association of Physicists in Medicine.

    Science.gov (United States)

    Thomadsen, Bruce; Nath, Ravinder; Bateman, Fred B; Farr, Jonathan; Glisson, Cal; Islam, Mohammad K; LaFrance, Terry; Moore, Mary E; George Xu, X; Yudelev, Mark

    2014-11-01

    External-beam radiation therapy mostly uses high-energy photons (x-rays) produced by medical accelerators, but many facilities now use proton beams, and a few use fast-neutron beams. High-energy photons offer several advantages over lower-energy photons in terms of better dose distributions for deep-seated tumors, lower skin dose, less sensitivity to tissue heterogeneities, etc. However, for beams operating at or above 10 MV, some of the materials in the accelerator room and the radiotherapy patient become radioactive due primarily to photonuclear reactions and neutron capture, exposing therapy staff and patients to unwanted radiation dose. Some recent advances in radiotherapy technology require treatments using a higher number of monitor units and monitor-unit rates for the same delivered dose, and compared to the conventional treatment techniques and fractionation schemes, the activation dose to personnel can be substantially higher. Radiotherapy treatments with proton and neutron beams all result in activated materials in the treatment room. In this report, the authors review critically the published literature on radiation exposures from induced radioactivity in radiotherapy. They conclude that the additional exposure to the patient due to induced radioactivity is negligible compared to the overall radiation exposure as a part of the treatment. The additional exposure to the staff due to induced activity from photon beams is small at an estimated level of about 1 to 2 mSv y. This is well below the allowed occupational exposure limits. Therefore, the potential hazard to staff from induced radioactivity in the use of high-energy x-rays is considered to be low, and no specific actions are considered necessary or mandatory. However, in the spirit of the "As Low as Reasonably Achievable (ALARA)" program, some reasonable steps are recommended that can be taken to reduce this small exposure to an even lower level. The dose reduction strategies suggested should be

  9. Proton Therapy for Malignant Pleural Mesothelioma After Extrapleural Pleuropneumonectomy

    International Nuclear Information System (INIS)

    Krayenbuehl, Jerome; Hartmann, Matthias; Lomax, Anthony J.

    2010-01-01

    Purpose: To perform comparative planning for intensity-modulated radiotherapy (IMRT) and proton therapy (PT) for malignant pleural mesothelioma after radical surgery. Methods and Materials: Eight patients treated with IMRT after extrapleural pleuropneumonectomy (EPP) were replanned for PT, comparing dose homogeneity, target volume coverage, and mean and maximal dose to organs at risk. Feasibility of PT was evaluated regarding the dose distribution with respect to air cavities after EPP. Results: Dose coverage and dose homogeneity of the planning target volume (PTV) were significantly better for PT than for IMRT regarding the volume covered by >95% (V95) for the high-dose PTV. The mean dose to the contralateral kidney, ipsilateral kidney, contralateral lung, liver, and heart and spinal cord dose were significantly reduced with PT compared with IMRT. After EPP, air cavities were common (range, 0-850 cm 3 ), decreasing from 0 to 18.5 cm 3 /day. In 2 patients, air cavity changes during RT decreased the generalized equivalent uniform dose (gEUD) in the case of using an a value of < - 10 to the PTV2 to <2 Gy in the presence of changing cavities for PT, and to 40 Gy for IMRT. Small changes were observed for gEUD of PTV1 because PTV1 was reached by the beams before air. Conclusion: Both PT and IMRT achieved good target coverage and dose homogeneity. Proton therapy accomplished additional dose sparing of most organs at risk compared with IMRT. Proton therapy dose distributions were more susceptible to changing air cavities, emphasizing the need for adaptive RT and replanning.

  10. Thermoluminescent dosemeters (TLD) exposed to high fluxes of gamma radiation, thermal neutrons and protons

    International Nuclear Information System (INIS)

    Gambarini, G.; Martini, M.; Meinardi, F.; Raffaglio, C.; Salvadori, P.; Scacco, A.; Sichirollo, A.E.

    1996-01-01

    Thermoluminescent dosemeters (TLD), widely experimented and utilized in personal dosimetry, have some advantageous characteristics which induce one to employ them also in radiotherapy. The new radiotherapy techniques are aimed at selectively depositing a high dose in cancerous tissues. This goal is reached by utilising both conventional and other more recently proposed radiation, such as thermal neutrons and heavy charged particles. In these inhomogeneous radiation fields a reliable mapping of the spatial distribution of absorbed dose is desirable, and the utilized dosemeters have to give such a possibility without notably perturbing the radiation field with the materials of the dosemeters themselves. TLDs, for their small dimension and their tissue equivalence for most radiation, give good support in the mapping of radiation fields. After exposure to the high fluxes of therapeutic beams, some commercial TL dosemeters have shown a loss of reliability. An investigation has therefore be performed, both on commercial and on laboratory made phosphors, in order to investigate their behaviour in such radiation fields. In particular the thermal neutron and gamma ray mixed field of the thermal column of a nuclear reactor, of interest for Boron Neutron Capture Therapy (B.N.C.T.) and a proton beam, of interest for proton therapy, were considered. Here some results obtained with new TL phosphors exposed in such radiation fields are presented, after a short description of some radiation damage effect on commercial LiF TLDs exposed in the (n th ,γ) field of the thermal column of a reactor. (author)

  11. Skin markings methods and guidelines: A reality in image guidance radiotherapy era

    Directory of Open Access Journals (Sweden)

    Shrinivas Rathod

    2012-01-01

    Full Text Available Preparation of site of radiation delivery is an important process in radiation treatment planning and plays a crucial role during a course of radiotherapy to achieve reproducibility of set-up and accuracy of treatment delivery. The preparation of treatment area is done by markings of field center, field edge or other reference point of planned field. Both non-invasive (marker pen, henna and invasive methods (tattoo are available for marking with limitations of each. Tattoo with a needle pricked at angle of 30° to 1-2 mm depth to create tattoo 2-3 mm diameter in size is an ideal procedure. Visibility, permanent nature, social-religious belief, and mobility of skin are one of the main concerns about tattoo. Tattoo removal can be done performed if desirable by patients by various modern ways, which will be esthetically available. Dermabrasion, cryotherapy, surgery, QSRL (Q-switched ruby laser are common methods of tattoo removal. Esthetic dissatisfaction, allergy, dermatoses, keloids, infection, fanning/fading of tattoo are associated problems. In IMRT and IGRT treatment, delivery dependence on tattoo in reduced and use of surrogate markers including particularly for bony set-up and implanted markers (e.g. gold seeds for tumor localization and treatment verification is increasing. However, these are complex procedures and require an expertise. Ease of set-up and less time required for tattooing are one of the main advantages of tattoo as compared to external or internal marker set-up. Tattoo still remains a crucial method of positioning, especially in developing countries and in palliative treatment settings.

  12. Protons and how they are transported by proton pumps

    DEFF Research Database (Denmark)

    Buch-Pedersen, Morten Jeppe; Pedersen, Bjørn Panyella; Veierskov, Bjarke

    2008-01-01

    The very high mobility of protons in aqueous solutions demands special features of membrane proton transporters to sustain efficient yet regulated proton transport across biological membranes. By the use of the chemical energy of ATP, plasma-membrane-embedded ATPases extrude protons from cells...... of plants and fungi to generate electrochemical proton gradients. The recently published crystal structure of a plasma membrane H(+)-ATPase contributes to our knowledge about the mechanism of these essential enzymes. Taking the biochemical and structural data together, we are now able to describe the basic...... molecular components that allow the plasma membrane proton H(+)-ATPase to carry out proton transport against large membrane potentials. When divergent proton pumps such as the plasma membrane H(+)-ATPase, bacteriorhodopsin, and F(O)F(1) ATP synthase are compared, unifying mechanistic premises for biological...

  13. Radiotherapy; Strahlentherapie

    Energy Technology Data Exchange (ETDEWEB)

    Wannenmacher, M. [Heidelberg Univ., Mannheim (Germany). Abt. fuer Klinische Radiologie; Debus, J. [Univ. Heidelberg (Germany). Abt. Radioonkologie und Strahlentherapie; Wenz, F. (eds.) [Universitaetsklinikum Mannheim (Germany). Klinik fuer Strahlentherapie und Radioonkologie

    2006-07-01

    The book is focussed on the actual knowledge on the clinical radiotherapy and radio-oncology. Besides fundamental and general contributions specific organ systems are treated in detail. The book contains the following contributions: Basic principles, radiobiological fundamentals, physical background, radiation pathology, basics and technique of brachytherapy, methodology and technique of the stereotactic radiosurgery, whole-body irradiation, operative radiotherapy, hadron therapy, hpyerthermia, combined radio-chemo-therapy, biometric clinical studies, intensity modulated radiotherapy, side effects, oncological diagnostics; central nervous system and sense organs, head-neck carcinomas, breast cancer, thorax organs, esophagus carcinoma, stomach carcinoma, pancreas carcinoma, heptabiliary cancer and liver metastases, rectal carcinomas, kidney and urinary tract, prostate carcinoma, testicular carcinoma, female pelvis, lymphatic system carcinomas, soft tissue carcinoma, skin cancer, bone metastases, pediatric tumors, nonmalignant diseases, emergency in radio-oncology, supporting therapy, palliative therapy.

  14. Proton-minibeam radiation therapy: A proof of concept

    Energy Technology Data Exchange (ETDEWEB)

    Prezado, Y. [IMNC-UMR 8165, CNRS, Paris 7 and Paris 11 Universities, 15 rue Georges Clemenceau, 91406 Orsay Cedex (France); Fois, G. R. [Dipartimento di Fisica, Universita degli Studi di Cagliari, Strada provinciale Monserrato Sestu km 0.700, Monserrato, Cagliari 09042 (Italy)

    2013-03-15

    Purpose: This Monte Carlo simulation work aims at studying a new radiotherapy approach called proton-minibeam radiation therapy (pMBRT). The main objective of this proof of concept was the evaluation of the possible gain in tissue sparing, thanks to the spatial fractionation of the dose, which could be used to deposit higher and potentially curative doses in clinical cases where tissue tolerances are a limit for conventional methods. Methods: Monte Carlo simulations (GATE v.6) have been used as a method to calculate the ratio of the peak-to-valley doses (PVDR) for arrays of proton minibeams of 0.7 mm width and several center-to-center distances, at different depths in a water phantom. The beam penumbras were also evaluated as an important parameter for tissue sparing, for example, in the treatment of non-cancer diseases like epilepsy. Two proton energies were considered in this study: a clinically relevant energy (105 MeV) and a very high energy (1 GeV), to benefit from a reduced lateral scattering. For the latter case, an interlaced geometry was also evaluated. Results: Higher or similar PVDR than the ones obtained in x-rays minibeam radiation therapy were achieved in several pMBRT configurations. In addition, for the two energies studied, the beam penumbras are smaller than in the case of Gamma Knife radiosurgery. Conclusions: The high PVDR obtained for some configurations and the small penumbras in comparison with existing radiosurgery techniques, suggest a potential gain in healthy tissue sparing in this new technique. Biological studies are warranted to assess the effects of pMBRT on both normal and tumoral tissues.

  15. The proton therapy nozzles at Samsung Medical Center: A Monte Carlo simulation study using TOPAS

    Science.gov (United States)

    Chung, Kwangzoo; Kim, Jinsung; Kim, Dae-Hyun; Ahn, Sunghwan; Han, Youngyih

    2015-07-01

    To expedite the commissioning process of the proton therapy system at Samsung Medical Center (SMC), we have developed a Monte Carlo simulation model of the proton therapy nozzles by using TOol for PArticle Simulation (TOPAS). At SMC proton therapy center, we have two gantry rooms with different types of nozzles: a multi-purpose nozzle and a dedicated scanning nozzle. Each nozzle has been modeled in detail following the geometry information provided by the manufacturer, Sumitomo Heavy Industries, Ltd. For this purpose, the novel features of TOPAS, such as the time feature or the ridge filter class, have been used, and the appropriate physics models for proton nozzle simulation have been defined. Dosimetric properties, like percent depth dose curve, spreadout Bragg peak (SOBP), and beam spot size, have been simulated and verified against measured beam data. Beyond the Monte Carlo nozzle modeling, we have developed an interface between TOPAS and the treatment planning system (TPS), RayStation. An exported radiotherapy (RT) plan from the TPS is interpreted by using an interface and is then translated into the TOPAS input text. The developed Monte Carlo nozzle model can be used to estimate the non-beam performance, such as the neutron background, of the nozzles. Furthermore, the nozzle model can be used to study the mechanical optimization of the design of the nozzle.

  16. External audit in radiotherapy dosimetry

    International Nuclear Information System (INIS)

    Thwaites, D.I.; Western General Hospital, Edinburgh

    1996-01-01

    Quality audit forms an essential part of any comprehensive quality assurance programme. This is true in radiotherapy generally and in specific areas such as radiotherapy dosimetry. Quality audit can independently test the effectiveness of the quality system and in so doing can identify problem areas and minimize their possible consequences. Some general points concerning quality audit applied to radiotherapy are followed by specific discussion of its practical role in radiotherapy dosimetry, following its evolution from dosimetric intercomparison exercises to routine measurement-based on-going audit in the various developing audit networks both in the UK and internationally. Specific examples of methods and results are given from some of these, including the Scottish+ audit group. Quality audit in radiotherapy dosimetry is now well proven and participation by individual centres is strongly recommended. Similar audit approaches are to be encouraged in other areas of the radiotherapy process. (author)

  17. Prospective Preference Assessment of Patients' Willingness to Participate in a Randomized Controlled Trial of Intensity-Modulated Radiotherapy Versus Proton Therapy for Localized Prostate Cancer

    International Nuclear Information System (INIS)

    Shah, Anand; Efstathiou, Jason A.; Paly, Jonathan J.; Halpern, Scott D.; Bruner, Deborah W.; Christodouleas, John P.; Coen, John J.; Deville, Curtiland; Vapiwala, Neha; Shipley, William U.; Zietman, Anthony L.; Hahn, Stephen M.; Bekelman, Justin E.

    2012-01-01

    Purpose: To investigate patients’ willingness to participate (WTP) in a randomized controlled trial (RCT) comparing intensity-modulated radiotherapy (IMRT) with proton beam therapy (PBT) for prostate cancer (PCa). Methods and Materials: We undertook a qualitative research study in which we prospectively enrolled patients with clinically localized PCa. We used purposive sampling to ensure a diverse sample based on age, race, travel distance, and physician. Patients participated in a semi-structured interview in which they reviewed a description of a hypothetical RCT, were asked open-ended and focused follow-up questions regarding their motivations for and concerns about enrollment, and completed a questionnaire assessing characteristics such as demographics and prior knowledge of IMRT or PBT. Patients’ stated WTP was assessed using a 6-point Likert scale. Results: Forty-six eligible patients (33 white, 13 black) were enrolled from the practices of eight physicians. We identified 21 factors that impacted patients’ WTP, which largely centered on five major themes: altruism/desire to compare treatments, randomization, deference to physician opinion, financial incentives, and time demands/scheduling. Most patients (27 of 46, 59%) stated they would either “definitely” or “probably” participate. Seventeen percent (8 of 46) stated they would “definitely not” or “probably not” enroll, most of whom (6 of 8) preferred PBT before their physician visit. Conclusions: A substantial proportion of patients indicated high WTP in a RCT comparing IMRT and PBT for PCa.

  18. Construction of a remote radiotherapy planning system

    International Nuclear Information System (INIS)

    Ogawa, Yoshihiro; Nemoto, Kenji; Takahashi, Chiaki; Takai, Yoshihiro; Yamada, Shogo; Seiji, Hiromasa; Sasaki, Kazuya

    2005-01-01

    We constructed a remote radiotherapy planning system, and we examined the usefulness of and faults in our system in this study. Two identical radiotherapy planning systems, one installed at our institution and the other installed at an affiliated hospital, were used for radiotherapy planning. The two systems were connected by a wide area network (WAN), using a leased line. Beam data for the linear accelerator at the affiliated hospital were installed in the two systems. During the period from December 2001 to December 2002, 43 remote radiotherapy plans were made using this system. Data were transmitted using a file transfer protocol (FTP) software program. The 43 radiotherapy plans examined in this study consisted of 13 ordinary radiotherapy plans, 28 radiotherapy plans sent to provide assistance for medical residents, and 2 radiotherapy plans for emergency cases. There were ten minor planning changes made in radiotherapy plans sent to provide assistance for medical residents. Our remote radiotherapy planning system based on WAN using a leased line is useful for remote radiotherapy, with advantages for both radiation oncologists and medical residents. (author)

  19. Guide of external radiotherapy procedures 2007

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    This work aims at participating in the permanent optimization of the returned medical service and the ratio profit-risk. This first version of the guide of external radiotherapy procedures 2007 processes only techniques of external radiotherapy, by opposition to the techniques of brachytherapy which use radioactive sources (iridium 192 , iodine 125 , cesium 137 ) placed in the contact of the tumor to be irradiated. Only, also, will be considered the irradiations of the most frequent cunning(malignant) tumors with the exception of the radiotherapy of the mild pathologies and the re-irradiations after a first radiotherapy. The first part is shared in eight chapters as follow: introduction, the steps of a treatment by radiotherapy, infrastructure, equipment and human resources, radiobiology mechanism of action of ionising radiations in radiotherapy, dose in radiotherapy, quality of treatment and radiation protection of patients in radiotherapy, prevention and risk management in radiotherapy, quality assurance and radiation protection for the pediatrics cancers and the case of pregnant women. The second part gives the tumoral localizations and the procedures; the third part is a glossary and different annexes such regulations and legislative texts. (N.C.)

  20. Every second cancer patient receives radiotherapy

    International Nuclear Information System (INIS)

    Ojala, A.

    1996-01-01

    Radiotherapy to treat cancer was given for the first time exactly one hundred years ago. Today, radiotherapy and surgery are the two main modes of treating cancer. One in two cancer patients receives radiotherapy at some point during the course of treatment for the disease. Radiotherapy is applied most commonly in cases where surgery is not possible. Moreover, these two modes of treatment are often used together to supplement each other. About half of new cancer cases detected today can be ordered. The estimate given by the EU for cancers cured is 45 per cent, which is divided between the various treatment modes as follows: surgery 22 %, radiotherapy 12 %, surgery plus radiotherapy 6 %, and drug therapy 6 %. In addition to curative treatment, radiotherapy plays a crucial role in palliative treatment, i.e. treatment that alleviates symptoms. The sensitivity of malignant tumours to radiotherapy varies over a wide range; the same is true for healthy tissues. Radiotherapy can only be used to cure a tumour that is more sensitive to radiation than the surrounding healthy tissue. The tumour must also be sufficiently small in size and limited to a relatively small area. (orig.)

  1. Measurement of small-angle antiproton-proton and proton-proton elastic scattering at the CERN intersecting storage rings

    NARCIS (Netherlands)

    Amos, N.; Block, M.M.; Bobbink, G.J.; Botje, M.A.J.; Favart, D.; Leroy, C.; Linde, F.; Lipnik, P.; Matheys, J-P.; Miller, D.

    1985-01-01

    Antiproton-proton and proton-proton small-angle elastic scattering was measured for centre-of-mass energies at the CERN Intersectung Storage Rings. In addition, proton-proton elastic scattering was measured at . Using the optical theorem, total cross sections are obtained with an accuracy of about

  2. Three eras of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Huq, Saleemul; Toulmin, Camilla

    2006-10-15

    Climate change as a global challenge has evolved through a series of stages in the last few decades. We are now on the brink of a new era which will see the terms of the debate shift once again. The different eras are characterised by the scientific evidence, public perceptions, responses and engagement of different groups to address the problem. In the first era, from the late 1980s to 2000, climate change was seen as an “environmental” problem to do with prevention of future impacts on the planet's climate systems over the next fifty to hundred years, through reductions in emissions of greenhouse gases, known as “mitigation”. The second era can be said to have started around the turn of the millennium, with the recognition that there will be some unavoidable impacts from climate change in the near term (over the next decade or two). These impacts must be coped with through “adaptation”, as well as mitigation, to prevent much more severe and possibly catastrophic impacts in the longer term. It has become clear that many of the impacts of climate change in the near term are likely to fall on the poorest countries and communities. The third era, which we are just about to enter, will see the issue change from tackling an environmental or development problem to a question of “global justice”. It will engage with a much wider array of citizens from around the world than previous eras.

  3. Stereotactic Body Radiotherapy for Centrally Located Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Yuming WAN

    2018-05-01

    Full Text Available A few study has proven that about 90% of local control rates might be benefit from stereotactic body radiotherapy (SBRT for patients with medically inoperable stage I non-small cell lung cancer (NSCLC, it is reported SBRT associated overall survival and tumor specific survival is comparable with those treated with surgery. SBRT has been accepted as the first line treatment for inoperable patients with peripheral located stage I NSCLC. However, the role of SBRT in centrally located lesions is controversial for potential toxic effects from the adjacent anatomical structure. This paper will review the definition, indication, dose regimens, dose-volume constraints for organs at risk, radiation technology, treatment side effect of centrally located NSCLC treated with SBRT and stereotactic body proton therapy.

  4. Ecological recovery in ERA

    DEFF Research Database (Denmark)

    EFSA Scientific Committee (Scientific Committee); Topping, Christopher John

    2016-01-01

    knowledge and data retrieved from the literature. Finally, the information presented in this opinion was reviewed by experts from the relevant EFSA Panels, European risk assessment bodies and through an open consultation requesting input from stakeholders. A conceptual framework was developed to address...... recognises the importance of more integrated ERAs considering both the local and landscape scales, as well as the possible co-occurrence of multiple potential stressors that fall under the remit of EFSA, which are important when addressing ecological recovery. In this scientific opinion, the Scientific...... Committee gathered scientific knowledge on the potential for the recovery of non-target organisms for the further development of ERA. Current EFSA guidance documents and opinions were reviewed on how ecological recovery is addressed in ERA schemes. In addition, this scientific opinion is based on expert...

  5. Smashing Protons to Smithereens: Searching for the Origin of Mass Using the ATLAS Particle Detector

    International Nuclear Information System (INIS)

    Pleier, Marc-Andre

    2010-01-01

    During a free and public talk, Marc-Andre Pleier, a physicist at the U.S. Department of Energy's Brookhaven National Laboratory, will discuss the extraordinary research taking place at the Large Hadron Collider (LHC) - the world's newest, biggest, and highest energy particle accelerator located at CERN, the European physics lab in Switzerland. On March 30, 2010, the Large Hadron Collider launched a new era of particle physics by colliding protons at an energy that's three-and-a-half times greater than has ever been achieved. Smashing such high-energy protons to smithereens is providing the LHC's four particle detectors - including ATLAS - with lots of data to analyze in their search for the Higgs boson and other new physics phenomena. The goal of this particle smashing is to answer fundamental questions about the origin of mass, the nature of dark matter, and the earliest moments of the universe.

  6. Success Stories in Radiotherapy Development Projects: Lessons Learned from Radiotherapy Development Projects. Chapter 29

    International Nuclear Information System (INIS)

    Zubizarreta, E.; Van Der Merwe, D.

    2017-01-01

    This chapter examines some problems found to be common in the process of setting up, running or expanding radiotherapy facilities. The establishment of radiotherapy services is essential to consolidate any national cancer control plan. In other words, such a plan cannot exist without radiotherapy. The IAEA guidance on setting up a radiotherapy programme covering the clinical, medical physics, radiation protection and safety aspects gives an estimate of one teletherapy machine needed per million population]. The IAEA’s Directory of Radiotherapy Centres (DIRAC) shows that the number of megavoltage (MV) machines per million population varies from 8.2 in the United States of America to 5.5 in western Europe. There are still many countries without a single radiotherapy department, especially in Africa, and many others have very low coverage, e.g. up to one external beam radiotherapy machine to cover a population of 35 million, which is close to having no coverage. There are many possible reasons for this situation. In many low income countries, the combination of lower life expectancy, low income taxes, a small budget for public health, and unmet basic needs such as housing, prevention and/or treatment of infectious diseases (malaria, tuberculosis, human immunodeficiency virus (HIV), diarrhoea), drinkable water and sewerage makes the cancer control problem a lower priority. The indicators shown illustrate these points. Establishing a radiotherapy programme requires careful planning, including the requirement for successive phases. Resources should be available for designing, building, purchasing, maintaining and replacing equipment, and for providing training in its use. In the case of a first radiotherapy facility with basic staffing levels, there is not likely to be enough expertise to guide and oversee the process in many or all of these areas.

  7. Postoperative radiotherapy for prostate cancer. Morbidity of local-only or local-plus-pelvic radiotherapy

    International Nuclear Information System (INIS)

    Waldstein, Cora; Poetter, Richard; Widder, Joachim; Goldner, Gregor; Doerr, Wolfgang

    2018-01-01

    The aim of this work was to characterise actuarial incidence and prevalence of early and late side effects of local versus pelvic three-dimensional conformal postoperative radiotherapy for prostate cancer. Based on a risk-adapted protocol, 575 patients received either local (n = 447) or local-plus-pelvic (n = 128) radiotherapy. Gastrointestinal (GI) and genitourinary (GU) side effects (≥grade 2 RTOG/EORTC criteria) were prospectively assessed. Maximum morbidity, actuarial incidence rate, and prevalence rates were compared between the two groups. For local radiotherapy, median follow-up was 68 months, and the mean dose was 66.7 Gy. In pelvic radiotherapy, the median follow-up was 49 months, and the mean local and pelvic doses were 66.9 and 48.3 Gy respectively. Early GI side effects ≥ G2 were detected in 26% and 42% of patients respectively (p < 0.001). Late GI adverse events were detected in 14% in both groups (p = 0.77). The 5-year actuarial incidence rates were 14% and 14%, while the prevalence rates were 2% and 0% respectively. Early GU ≥ G2 side effects were detected in 15% and 16% (p = 0.96), while late GU morbidity was detected in 18% and 24% (p = 0.001). The 5-year actuarial incidence rates were 16% and 35% (p = 0.001), while the respective prevalence rates were 6% and 8%. Despite the low prevalence of side effects, postoperative pelvic radiotherapy results in significant increases in the actuarial incidence of early GI and late GU morbidity using a conventional 4-field box radiotherapy technique. Advanced treatment techniques like intensity-modulated radiotherapy (IMRT) or volumetric modulated arc radiotherapy (VMAT) should therefore be considered in pelvic radiotherapy to potentially reduce these side effects. (orig.) [de

  8. On proton CT reconstruction using MVCT-converted virtual proton projections

    Energy Technology Data Exchange (ETDEWEB)

    Wang Dongxu; Mackie, T. Rockwell; Tome, Wolfgang A. [Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705 and Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242 (United States); Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705 and Morgridge Institute of Research, University of Wisconsin, Madison, Wisconsin 53715 (United States); Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705 and Oncophysics Institute, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10461 (United States)

    2012-06-15

    Purpose: To describe a novel methodology of converting megavoltage x-ray projections into virtual proton projections that are otherwise missing due to the proton range limit. These converted virtual proton projections can be used in the reconstruction of proton computed tomography (pCT). Methods: Relations exist between proton projections and multispectral megavoltage x-ray projections for human tissue. Based on these relations, these tissues can be categorized into: (a) adipose tissue; (b) nonadipose soft tissues; and (c) bone. These three tissue categories can be visibly identified on a regular megavoltage x-ray computed tomography (MVCT) image. With an MVCT image and its projection data available, the x-ray projections through heterogeneous anatomy can be converted to the corresponding proton projections using predetermined calibration curves for individual materials, aided by a coarse segmentation on the x-ray CT image. To show the feasibility of this approach, mathematical simulations were carried out. The converted proton projections, plotted on a proton sinogram, were compared to the simulated ground truth. Proton stopping power images were reconstructed using either the virtual proton projections only or a blend of physically available proton projections and virtual proton projections that make up for those missing due to the range limit. These images were compared to a reference image reconstructed from theoretically calculated proton projections. Results: The converted virtual projections had an uncertainty of {+-}0.8% compared to the calculated ground truth. Proton stopping power images reconstructed using a blend of converted virtual projections (48%) and physically available projections (52%) had an uncertainty of {+-}0.86% compared with that reconstructed from theoretically calculated projections. Reconstruction solely from converted virtual proton projections had an uncertainty of {+-}1.1% compared with that reconstructed from theoretical projections

  9. On proton CT reconstruction using MVCT-converted virtual proton projections

    International Nuclear Information System (INIS)

    Wang Dongxu; Mackie, T. Rockwell; Tomé, Wolfgang A.

    2012-01-01

    Purpose: To describe a novel methodology of converting megavoltage x-ray projections into virtual proton projections that are otherwise missing due to the proton range limit. These converted virtual proton projections can be used in the reconstruction of proton computed tomography (pCT). Methods: Relations exist between proton projections and multispectral megavoltage x-ray projections for human tissue. Based on these relations, these tissues can be categorized into: (a) adipose tissue; (b) nonadipose soft tissues; and (c) bone. These three tissue categories can be visibly identified on a regular megavoltage x-ray computed tomography (MVCT) image. With an MVCT image and its projection data available, the x-ray projections through heterogeneous anatomy can be converted to the corresponding proton projections using predetermined calibration curves for individual materials, aided by a coarse segmentation on the x-ray CT image. To show the feasibility of this approach, mathematical simulations were carried out. The converted proton projections, plotted on a proton sinogram, were compared to the simulated ground truth. Proton stopping power images were reconstructed using either the virtual proton projections only or a blend of physically available proton projections and virtual proton projections that make up for those missing due to the range limit. These images were compared to a reference image reconstructed from theoretically calculated proton projections. Results: The converted virtual projections had an uncertainty of ±0.8% compared to the calculated ground truth. Proton stopping power images reconstructed using a blend of converted virtual projections (48%) and physically available projections (52%) had an uncertainty of ±0.86% compared with that reconstructed from theoretically calculated projections. Reconstruction solely from converted virtual proton projections had an uncertainty of ±1.1% compared with that reconstructed from theoretical projections. If

  10. MEMAKNAI SUMPAH PEMUDA DI ERA REFORMASI

    Directory of Open Access Journals (Sweden)

    Sutejo K. Widodo

    2013-03-01

    Full Text Available The moment of Sumpah Pemuda (Young Man Oath took place 84 years ago, reflecting the spirit of nationalism that is still very important in this Reformation era. This paper endeavors to dig deeper meaning of Sumpah Pemuda in its pre-independence era and applying it to our contemporary situation. The method used here is historical research using literature resources, such as articles, books, and other readings in internet. It is then concluded that the spirit of Sumpah Pemuda should be our contemplative materials and valuable Iesson so that Reformation era may succeed in achieving national goals stated in the Constitution, a society that is fair, prosperous, and democratic. Keywords: Sumpah Pemuda, Reformation era, nationalism.

  11. Intraoperative radiotherapy in breast cancer: literature review

    International Nuclear Information System (INIS)

    Alfaro Hidalgo, Sabrina A.

    2013-01-01

    A literature review was performed on intraoperative radiotherapy of breast cancer. The strength and attractiveness is established of techniques of partial irradiation in the treatment of breast cancer. The benefit is originated to restrict the area immediate of radiotherapy to the tumor bed or quadrant index and identifying the benefit of being applied during the radiotherapy while surgical lumpectomy. The impact of local recurrence has been established using intraoperative radiotherapy. The advantages of intraoperative radiotherapy was compared in the management of the conservative surgery in early stages of breast cancer with external radiotherapy. Different methods of intraoperative radiotherapy have been compared and individual impact on local recurrence ranges. Intraoperative radiotherapy has had many advantages: radiobiological, technical, clinical, psychological and economical in the handling of conservative surgery in early stages of breast cancer, compared with external radiotherapy [es

  12. Long-term results of radiotherapy for pituitary adenomas. Evaluation of tumor control and hypopituitarism after radiotherapy

    International Nuclear Information System (INIS)

    Tsuchida, Emiko; Sakai, Kunio; Matsumoto, Yasuo; Sugita, Tadashi; Sasamoto, Ryuta

    1999-01-01

    To evaluate the results of conventional radiotherapy for pituitary adenomas assessed with computed tomography (CT) or magnetic resonance imaging (MRI). Endpoints include tumor control, normalization of hormone levels in functioning adenomas, and hypopituitarism after radiotherapy as an adverse effect. Forty-two patients were treated with radiotherapy from 1982 to 1995 at Niigata University Hospital. Forty patients were irradiated after surgery because of residual adenomas in 33 patients and tumor regrowth in 7 patients. One patient was treated with radiotherapy alone, and the remaining 1 patient was treated with preoperative radiotherapy. Tumor size and extension were evaluated using CT or MRI, and all tumors were macroadenomas. They consisted of 18 non-functioning and 24 functioning adenomas (growth hormone (GH)-secreting: 11, prolactinomas: 7, concomitant GH and prolactin (PRL)-secreting: 5, gonadotropin-secreting: 1). Treatment was given in 200 cGy daily fraction size and a total dose of 50 Gy was given to most patients. Sixteen patients with GH- and/or PRL-secreting adenomas received bromocriptine. Tumor progression was determined by increase in tumor size as shown by CT or MRI. Hypopituitarism after radiotherapy was evaluated using the functions of corticotropin (ACTH), thyrotropin (TSH), and gonadotropin. Median follow-up time from the end of radiotherapy was 103 months. Tumor progression occurred in 2 out of 42 patients and 10-year progression-free rate for all patients was 93.7%. Normalization of GH levels was obtained in 12 of 16 GH-secreting adenomas with a mean time of 27 months after radiotherapy, and 9 of 12 PRL-secreting adenomas achieved normalization of PRL levels with a mean time of 34 months. One gonadotropin-secreting adenoma achieved normalization of gonadotropin level at 21 months after radiotherapy. The incidence of hypopituitarism after radiotherapy increased with time, and cumulative risk of deficiencies of ACTH, TSH, and gonadotropin at 10

  13. SU-E-T-266: Proton PBS Plan Design and Robustness Evaluation for Head and Neck Cancers

    International Nuclear Information System (INIS)

    Liang, X; Tang, S; Zhai, H; Kirk, M; Kalbasi, A; Lin, A; Ahn, P; Tochner, Z; McDonough, J; Both, S

    2014-01-01

    Purpose: To describe a newly designed proton pencil beam scanning (PBS) planning technique for radiotherapy of patients with bilateral oropharyngeal cancer, and to assess plan robustness. Methods: We treated 10 patients with proton PBS plans using 2 posterior oblique field (2F PBS) comprised of 80% single-field uniform dose (SFUD) and 20% intensity-modulated proton therapy (IMPT). All patients underwent weekly CT scans for verification. Using dosimetric indicators for both targets and organs at risk (OARs), we quantitatively compared initial plans and verification plans using student t-tests. We created a second proton PBS plan for each patient using 2 posterior oblique plus 1 anterior field comprised of 100% SFUD (3F PBS). We assessed plan robustness for both proton plan groups, as well as a photon volumetric modulated arc therapy (VMAT) plan group by comparing initial and verification plans. Results: The 2F PBS plans were not robust in target coverage. D98% for clinical target volume (CTV) degraded from 100% to 96% on average, with maximum change Δ D98% of −24%. Two patients were moved to photon VMAT treatment due to insufficient CTV coverage on verification plans. Plan robustness was especially weak in the low-anterior neck. The 3F PBS plans, however, demonstrated robust target coverage, which was comparable to the VMAT photon plan group. Doses to oral cavity were lower in the Proton PBS plans compared to photon VMAT plans due to no lower exit dose to the oral cavity. Conclusion: Proton PBS plans using 2 posterior oblique fields were not robust for CTV coverage, due to variable positioning of redundant soft tissue in the posterior neck. We designed 3-field proton PBS plans using an anterior field to avoid long heterogeneous paths in the low neck. These 3-field proton PBS plans had significantly improved plan robustness, and the robustness is comparable to VMAT photon plans

  14. Achieving Transformational Materials Performance in a New Era of Science

    International Nuclear Information System (INIS)

    Sarrao, John

    2009-01-01

    The inability of current materials to meet performance requirements is a key stumbling block for addressing grand challenges in energy and national security. Fortunately, materials research is on the brink of a new era - a transition from observation and validation of materials properties to prediction and control of materials performance. In this talk, I describe the nature of the current challenge, the prospects for success, and a specific facility concept, MaRIE, that will provide the needed capabilities to meet these challenges, especially for materials in extreme environments. MaRIE, for Matter-Radiation Interactions in Extremes, is Los Alamos' concept to realize this vision of 21st century materials research. This vision will be realized through enhancements to the current LANSCE accelerator, development of a fourth-generation x-ray light source co-located with the proton accelerator, and a comprehensive synthesis and characterization facility focused on controlling complex materials and the defect/structure link to materials performance.

  15. Characterization of the microbunch time structure of proton pencil beams at a clinical treatment facility.

    Science.gov (United States)

    Petzoldt, J; Roemer, K E; Enghardt, W; Fiedler, F; Golnik, C; Hueso-González, F; Helmbrecht, S; Kormoll, T; Rohling, H; Smeets, J; Werner, T; Pausch, G

    2016-03-21

    Proton therapy is an advantageous treatment modality compared to conventional radiotherapy. In contrast to photons, charged particles have a finite range and can thus spare organs at risk. Additionally, the increased ionization density in the so-called Bragg peak close to the particle range can be utilized for maximum dose deposition in the tumour volume. Unfortunately, the accuracy of the therapy can be affected by range uncertainties, which have to be covered by additional safety margins around the treatment volume. A real-time range and dose verification is therefore highly desired and would be key to exploit the major advantages of proton therapy. Prompt gamma rays, produced in nuclear reactions between projectile and target nuclei, can be used to measure the proton's range. The prompt gamma-ray timing (PGT) method aims at obtaining this information by determining the gamma-ray emission time along the proton path using a conventional time-of-flight detector setup. First tests at a clinical accelerator have shown the feasibility to observe range shifts of about 5 mm at clinically relevant doses. However, PGT spectra are smeared out by the bunch time spread. Additionally, accelerator related proton bunch drifts against the radio frequency have been detected, preventing a potential range verification. At OncoRay, first experiments using a proton bunch monitor (PBM) at a clinical pencil beam have been conducted. Elastic proton scattering at a hydrogen-containing foil could be utilized to create a coincident proton-proton signal in two identical PBMs. The selection of coincident events helped to suppress uncorrelated background. The PBM setup was used as time reference for a PGT detector to correct for potential bunch drifts. Furthermore, the corrected PGT data were used to image an inhomogeneous phantom. In a further systematic measurement campaign, the bunch time spread and the proton transmission rate were measured for several beam energies between 69 and 225 Me

  16. A phase I study on combined therapy with proton-beam radiotherapy and in situ tumor vaccination for locally advanced recurrent hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Abei, Masato; Mizumoto, Masashi; Sakae, Takeji; Sakurai, Hideyuki; Zenkoh, Junko; Ariungerel, Gerelchuluun; Sogo, Yu; Ito, Atsuo; Ohno, Tadao; Tsuboi, Koji; Okumura, Toshiyuki; Fukuda, Kuniaki; Hashimoto, Takayuki; Araki, Masahiro; Ishige, Kazunori; Hyodo, Ichinosuke; Kanemoto, Ayae; Numajiri, Haruko

    2013-01-01

    Proton-beam radiotherapy (PBT) has been shown to be effective to hepatocellular carcinoma (HCC) as a nonsurgical local treatment option. However, HCC still remains as one of the most difficult cancers to be cured because of frequent recurrences. Thus, methods to inhibit the recurrence need to be explored. To prevent the HCC recurrence, we here report on a prospective phase I study of ‘in situ’ tumor vaccination using CalTUMP, a newly developed immunoadjuvant consisting of BCG extract bound to hydroxyapatite and microparticulated tuberculin, following local PBT for HCC. Patients with locally advanced recurrent HCC, which had been heavily pretreated with various treatments, were enrolled. PBT was performed with the conventional method to the target HCC. Subsequently, CalTUMP was injected into the same irradiated-tumor three times at one-week intervals. Three dose-levels of CalTUMP (1/10, 1/3, and 1/1) were administered to 3 patients each. Vital signs, blood samples, ultrasound, and computed tomographic scans were monitored to evaluate the safety. Three intratumoral injections of CalTUMP following PBT (median dose: 72.6 GyE) were accomplished in 9 patients. Transient low-grade fever and minor laboratory changes were observed in 7 patients after CalTUMP injections. No other treatment-related adverse events were observed. Median progression-free survival was 6.0 months (range: 2.1-14.2) and 4 patients were progression-free for more than 1 year. Intratumoral injection of CalTUMP following PBT was feasible and safe in patients with heavily pre-treated HCC. Further clinical studies to evaluate the efficacy of this in situ tumor vaccination are warranted

  17. High energy nuclear data evaluations for neutron-, proton-, and photon-induced reactions at KAERI

    International Nuclear Information System (INIS)

    Lee, Young Ouk; Chang, Jong Hwa; Kim, Doo Hwan; Lee, Jeong Yeon; Han, Yinlu; Sukhovitski, Efrem Sh.

    2001-01-01

    The Korea Atomic Energy Research Institute (KAERI) is building high energy neutron-, proton-, and photon-induced nuclear data libraries for energies up to hundreds MeV in response to nuclear data needs from various R and Ds and applications. The librares provide nuclear data needed for the accelerator-driven transmutation of nuclear waste and radiation transport simulations of cancer radiotherapy. The neutron library currently has 10 isotopes such as C-12, N-14, O-16, Al-27, Si-28, Ca-40, Fe-56, Ni-58, Zr-90, Sn-120, and Pb-208 for energies from 20 up to 400 MeV. The proton nuclear data were evaluated in a consistent manner with the neutron case, using the same nuclear model parameters. In addition to the same isotopes included in the neutron library, the proton library has 70 extra isotopes of 24 elements ranging from nitrogen to lead up to 150 MeV for which the evaluations are focused on the medical and activation analyses applications. The photonuclear data library has been built along with international collaboration by participating in the IAEA's Coordinated Research Project (CRP) which ended last year. Currently the KAERI photonuclear library includes 143 isotopes of 39 elements

  18. Advice concerning radiotherapy

    International Nuclear Information System (INIS)

    1984-01-01

    Dutch National cancer incidence figures were calculated by using the reliable data on cancer incidence in the Eindhoven area and population forecasts and information obtained from the Central Bureau of Statistics. Several radiotherapy departments suffer from under capacity (a lack of resources and understaffing). Data have also shown that 35% of cancer patients receive radiotherapy, instead of 50%. Calculations have been made by the committee on the present and future needs with regard to equipment and staff. In 1983, the number of megavoltage therapy units amounted to 38, but should have been 65. It should be 80 in 1990 and 90 in 2000. Since building and installing such equipment is a lengthy process a considerable effort is needed to make up for the arrears. The committee advocates the extension of the system of regional cooperation in cancer care (comprehensive cancer centres), in which radiotherapy departments play a crucial role. Working parties from the committee provided a comprehensive description of current radiotherapy practice with reference to physical, technical, clinical and management aspects. Another working party assessed the results of cancer treatment with regard to many different tumour sites. Recent and expected developments were analysed or indicated. The Radiotherapy Committee commissioned an external team to conduct a project to achieve a picture of future developments using methods different to those of the committee's. An interim advice has been added on this subject. (Auth.)

  19. Radiotherapy and skin tumors; Radiotherapie et tumeurs curanees

    Energy Technology Data Exchange (ETDEWEB)

    Calitchi, E.; KIrova, Y.; Le bourgeois, J.P. [Hopital Henri-Mondor, 94 - Creteil (France)

    1998-09-01

    Radiotherapy plays an important role in treatment of skin tumours. For skin carcinomas, external irradiation (kilo-voltage X-rays or electrons according to clinical characteristics) is more valuable than interstitial brachytherapy, which is recommended for tumours of the lip and of the nasal vestibule. In mycosis fungoides, total cutaneous electron beam radiation therapy is efficient for patients with limited superficial plaques. In the classical form of Kaposi`s sarcoma, radiotherapy can achieve local control-whereas it obtains good palliative results in the epidemic form. (author)

  20. Evaluation of proton MR spectroscopy at 3 Tesla without endorectal coil in patients with a localized prostate cancer treated with exclusive radiotherapy

    International Nuclear Information System (INIS)

    Crehange, G.

    2011-01-01

    Prostate cancer is the most frequent tumour affecting the male population. When the prostate is not removed and is treated with radiation therapy, PSA slowly decreases over time to reach its nadir, even sometimes 18 to 24 months after the completion of radiation therapy without combined androgen suppression therapy. When combined with hormones, PSA falls abruptly with no possibility to perceive the impact of either hormones or radiation effects on PSA.The optimal value of PSA that should be reached after radiation therapy (nadir) and time to this nadir are still unclear.Even when a satisfactory value of the PSA nadir is reached, on-going variations of the PSA and its 'bounce' effects, which occurs in 20% to 40% of the cases.Proton magnetic resonance spectroscopy allows one to assess the relative concentration of Choline and Citrate. Choline is a metabolite of whose concentration is often increased in the presence of a tumour, whereas the synthesis and the oxidation of Citrate are two decisive elements of the normal metabolism, functional abilities, growth, reproduction and survival of prostatic cells. This MR technique can be performed in combination with diffusion-weighted MRI and DCE-MRI (multi-parametric MRI).The goal of our study was to evaluate the feasibility of a 3D CSI proton MR spectroscopy of the entire prostate gland at 3.0 Tesla without an endorectal coil among patients with a localised prostate cancer treated with radiation therapy, with or without hormones. We first have classified spectra in a 5-point scale (from benign: class I, to malign: class V) based on a control group with radical prostatectomy as the standard of reference. This classification enabled us to establish a strong correlation between malignant spectra or the metabolic tumor volume and clinically validated prognostic factors.In parallel, a prospective clinical trial of which the aim is to Evaluate the Response to Irradiation with proton MR Spectroscopy (ERIS trial) has been set up to

  1. The situation of radiotherapy in 2011

    International Nuclear Information System (INIS)

    2012-06-01

    Published within the frame of the French 2009-2013 cancer plan, this report proposes an analysis of the situation of radiotherapy in France. More particularly, it analyses the French offer in terms of radiotherapy treatments and the French position in Europe. A second part analyses equipment (accelerators and other equipment) and techniques aimed at radiotherapy treatment preparation and delivery. The following techniques are addressed: three-dimensional conformational, intensity modulation, intracranial and extracranial stereotactic, image-guided, total body irradiation, hadron-therapy, and peri-operative radiotherapy. The last parts analyse the activity of radiotherapy centres in terms of treated patients, of patient age structure, of sessions and preparations, and of treated pathologies, the medical and paramedical personnel in charge of radiotherapy, and financial and cost aspects

  2. Radiotherapy.

    Science.gov (United States)

    Krause, Sonja; Debus, Jürgen; Neuhof, Dirk

    2011-01-01

    Solitary plasmocytoma occurring in bone (solitary plasmocytoma of the bone, SBP) or in soft tissue (extramedullary plasmocytoma, EP) can be treated effectively and with little toxicity by local radiotherapy. Ten-year local control rates of up to 90% can be achieved. Patients with multiple myeloma often suffer from symptoms such as pain or neurological impairments that are amenable to palliative radiotherapy. In a palliative setting, short treatment schedules and lower radiation doses are used to reduce toxicity and duration of hospitalization. In future, low-dose total body irradiation (TBI) may play a role in a potentially curative regimen with nonmyeloablative conditioning followed by allogenic peripheral blood stem cell transplantation.

  3. Radiotherapy-induced emesis. An overview

    International Nuclear Information System (INIS)

    Feyer, P.; Buchali, A.; Hinkelbein, M.; Budach, V.; Zimmermann, J.S.; Titlbach, O.J.

    1998-01-01

    Background: A significant number of patients receiving radiotherapy experience the distressing side effects of emesis and nausea. These symptoms are some of the most distressing problems for the patients influencing their quality of life. Methods: International study results concerning radiotherapy-induced emesis are demonstrated. A German multicenter questionnaire examining the strategies to prevent or to treat radiotherapy-induced nausea and emesis is presented. An international analysis concerning incidence of emesis and nausea in fractionated radiotherapy patients is discussed. Finally the consensus of the consensus conference on antiemetic therapy from the Perugia International Cancer Conference V is introduced. Results: Untreated emesis can lead to complications like electrolyte disorders, dehydration, metabolic disturbances and nutrition problems with weight loss. Prophylactic antiemetics are often given to patients receiving single high-dose radiotherapy to the abdomen. A survey has revealed that antiemetic prophylaxis is not routinely offered to the patients receiving fractionated radiotherapy. However, there is a need for an effective treatment of emesis for use in this group of patients, too. In 20% of patients nausea and emesis can cause a treatment interruption because of an inadequate control of symptoms. Like in chemotherapy strategies there exist high, moderate, and low emetogenic treatment regimens in radiotherapy as well. The most emetogenic potential has the total body irradiation followed by radiotherapy to the abdomen. Radiotherapy induced emesis can be treated effectively with conventional antiemetics up to 50%. Conclusions: Studies with total body irradiation, fractionated treatment and high-dose single exposures have cleary demonstrated the value of 5-HT3-receptor antagonist antiemetics. There is a response between 60 and 97%. There is no difference in the efficacy of the different 5-HT3-antagonists. High-risk patients should be prophylactic

  4. A Dosimetric Comparison of Breast Radiotherapy Techniques to Treat Locoregional Lymph Nodes Including the Internal Mammary Chain.

    Science.gov (United States)

    Ranger, A; Dunlop, A; Hutchinson, K; Convery, H; Maclennan, M K; Chantler, H; Twyman, N; Rose, C; McQuaid, D; Amos, R A; Griffin, C; deSouza, N M; Donovan, E; Harris, E; Coles, C E; Kirby, A

    2018-06-01

    Radiotherapy target volumes in early breast cancer treatment increasingly include the internal mammary chain (IMC). In order to maximise survival benefits of IMC radiotherapy, doses to the heart and lung should be minimised. This dosimetry study compared the ability of three-dimensional conformal radiotherapy, arc therapy and proton beam therapy (PBT) techniques with and without breath-hold to achieve target volume constraints while minimising dose to organs at risk (OARs). In 14 patients' datasets, seven IMC radiotherapy techniques were compared: wide tangent (WT) three-dimensional conformal radiotherapy, volumetric-modulated arc therapy (VMAT) and PBT, each in voluntary deep inspiratory breath-hold (vDIBH) and free breathing (FB), and tomotherapy in FB only. Target volume coverage and OAR doses were measured for each technique. These were compared using a one-way ANOVA with all pairwise comparisons tested using Bonferroni's multiple comparisons test, with adjusted P-values ≤ 0.05 indicating statistical significance. One hundred per cent of WT(vDIBH), 43% of WT(FB), 100% of VMAT(vDIBH), 86% of VMAT(FB), 100% of tomotherapy FB and 100% of PBT plans in vDIBH and FB passed all mandatory constraints. However, coverage of the IMC with 90% of the prescribed dose was significantly better than all other techniques using VMAT(vDIBH), PBT(vDIBH) and PBT(FB) (mean IMC coverage ± 1 standard deviation = 96.0% ± 4.3, 99.8% ± 0.3 and 99.0% ± 0.2, respectively). The mean heart dose was significantly reduced in vDIBH compared with FB for both the WT (P FB). Simple WT radiotherapy delivered in vDIBH achieves satisfactory coverage of the IMC while meeting heart and lung dose constraints. However, where higher isodose coverage is required, VMAT(vDIBH) is the optimal photon technique. The lowest OAR doses are achieved by PBT, in which the use of vDIBH does not improve dose statistics. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  5. El lenguaje en la era digital

    Directory of Open Access Journals (Sweden)

    Juan Carlos Vergara Silva

    1998-02-01

    Con base en la interrelación entre lenguaje y pensamiento se plantea el papel fundamental que el lenguaje ocupa en el modelo económico, educativo y cultural generado por la aparición de la era digital o era del conocimiento. en este artículo se evidencian los retos que genera una era marcada por un esquema digital en el desarrollo y uso de habilidades comunicativas tanto en la docencia superior como en el ejercicio profesional eficiente.

  6. Radiotherapy for breast cancer and pacemaker; Radiotherapie pour un cancer du sein et stimulateur cardiaque

    Energy Technology Data Exchange (ETDEWEB)

    Menard, J.; Campana, F.; Bollet, M.A.; Dendale, R.; Fournier-Bidoz, N.; Marchand, V.; Mazal, A.; Fourquet, A.; Kirova, Y.M. [Oncologie-radiotherapie, institut Curie, 26, rue d' Ulm, 75005 Paris (France); Kirov, K.M.; Esteve, M. [Departement d' anesthesie-reanimation-douleur, institut Curie, 75005 Paris (France)

    2011-06-15

    Purpose. - Patients with permanent cardiac pacemakers occasionally require radiotherapy. Therapeutic Irradiation may cause pacemakers to malfunction due to the effects of ionizing radiation or electromagnetic interference. We studied the breast cancer patients who needed breast and/or chest wall and lymph node irradiation to assess the feasibility and tolerance in this population of patients. Patients and methods. - From November 2008 to December 2009, more than 900 patients received radiotherapy for their breast cancer in our department using megavoltage linear accelerator (X 4-6 MV and electrons). Among them, seven patients were with permanent pacemaker. All patients have been treated to the breast and chest wall and/or lymph nodes. Total dose to breast and/or chest wall was 50 Gy/25 fractions and 46 Gy/23 fractions to lymph nodes. Patients who underwent conserving surgery followed by breast irradiation were boosted when indicated to tumour bed with 16 Gy/8 fractions. All patients were monitored everyday in presence of radiation oncologist to follow the function of their pacemaker. All pacemakers were controlled before and after radiotherapy by the patients' cardiologist. Results. - Seven patients were referred in our department for postoperative breast cancer radiotherapy. Among them, only one patient was declined for radiotherapy and underwent mastectomy without radiotherapy. In four cases the pacemaker was repositioned before the beginning of radiotherapy. Six patients, aged between 48 and 84 years underwent irradiation for their breast cancer. Four patients were treated with conserving surgery followed by breast radiotherapy and two with mastectomy followed by chest wall and internal mammary chain, supra- and infra-clavicular lymph node irradiation. The dose to the pacemaker generator was kept below 2 Gy. There was no pacemaker dysfunction observed during the radiotherapy. Conclusion. - The multidisciplinary work with position change of the pacemaker

  7. Epigenetics in radiotherapy: Where are we heading?

    International Nuclear Information System (INIS)

    Smits, Kim M.; Melotte, Veerle; Niessen, Hanneke E.C.; Dubois, Ludwig; Oberije, Cary; Troost, Esther G.C.; Starmans, Maud H.W.; Boutros, Paul C.; Vooijs, Marc; Engeland, Manon van; Lambin, Philippe

    2014-01-01

    Radiotherapy is an important component of anti-cancer treatment. However, not all cancer patients respond to radiotherapy, and with current knowledge clinicians are unable to predict which patients are at high risk of recurrence after radiotherapy. There is therefore an urgent need for biomarkers to guide clinical decision-making. Although the importance of epigenetic alterations is widely accepted, their application as biomarkers in radiotherapy has not been studied extensively. In addition, it has been suggested that radiotherapy itself introduces epigenetic alterations. As epigenetic alterations can potentially be reversed by drug treatment, they are interesting candidate targets for anticancer therapy or radiotherapy sensitizers. The application of demethylating drugs or histone deacetylase inhibitors to sensitize patients for radiotherapy has been studied in vitro, in vivo as well as in clinical trials with promising results. This review describes the current knowledge on epigenetics in radiotherapy

  8. Gene therapy and radiotherapy in malignant tumor

    International Nuclear Information System (INIS)

    Zhang Yaowen; Cao Yongzhen; Li Jin; Wang Qin

    2008-01-01

    Tumor treatment is one of the most important fields in medical research. Nowadays, a novel method which is combined gene therapy with radiotherapy plays an important role in the field of cancer research, and mainly includes immune gene therapy combined with radiotherapy, suicide gene therapy or tumor suppressor gene therapy combined with radiotherapy, antiangiogenesis gene therapy combined with radiotherapy and protective gene therapy combined with radiotherapy based on the technical features. This review summarized the current status of combined therapies of gene therapy and radiotherapy and possible mechanism. (authors)

  9. Dakwah di Era Digital

    OpenAIRE

    Budiantoro, Wahyu

    2018-01-01

    These days dakwah is not only interpreted as transformation of a pure religious value, but also transformation of a more relevant value including many aspects in digital era. Digital era is when society succumbed into the flow of information causing cultural shock and difficulties on synthesizing meaning from those scattered information. Dakwah on Digital age must accommodate societal needs which tend to move into a mass society. It results in strategy and more humane and innovative dakwah me...

  10. On the clinical spatial resolution achievable with protons and heavier charged particle radiotherapy beams

    International Nuclear Information System (INIS)

    Andreo, Pedro

    2009-01-01

    The 'sub-millimetre precision' often claimed to be achievable in protons and light ion beam therapy is analysed using the Monte Carlo code SHIELD-HIT for a broad range of energies. Based on the range of possible values and uncertainties of the mean excitation energy of water and human tissues, as well as of the composition of organs and tissues, it is concluded that precision statements deserve careful reconsideration for treatment planning purposes. It is found that the range of I-values of water stated in ICRU reports 37, 49 and 73 (1984, 1993 and 2005) for the collision stopping power formulae, namely 67 eV, 75 eV and 80 eV, yields a spread of the depth of the Bragg peak of protons and heavier charged particles (carbon ions) of up to 5 or 6 mm, which is also found to be energy dependent due to other energy loss competing interaction mechanisms. The spread is similar in protons and in carbon ions having analogous practical range. Although accurate depth-dose distribution measurements in water can be used at the time of developing empirical dose calculation models, the energy dependence of the spread causes a substantial constraint. In the case of in vivo human tissues, where distribution measurements are not feasible, the problem poses a major limitation. In addition to the spread due to the currently accepted uncertainties of their I-values, a spread of the depth of the Bragg peak due to the varying compositions of soft tissues is also demonstrated, even for cases which could be considered practically identical in clinical practice. For these, the spreads found were similar to those of water or even larger, providing support to international recommendations advising that body-tissue compositions should not be given the standing of physical constants. The results show that it would be necessary to increase the margins of a clinical target volume, even in the case of a water phantom, due to an 'intrinsic basic physics uncertainty', adding to those margins usually

  11. Prospective Preference Assessment of Patients' Willingness to Participate in a Randomized Controlled Trial of Intensity-Modulated Radiotherapy Versus Proton Therapy for Localized Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Anand [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States); Efstathiou, Jason A.; Paly, Jonathan J. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); Halpern, Scott D. [Department of Medicine, University of Pennsylvania, Philadelphia, PA (United States); Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA (United States); Center for Bioethics, University of Pennsylvania, Philadelphia, PA (United States); Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, PA (United States); Bruner, Deborah W. [Winship Cancer Institute, Emory University, Atlanta, GA (United States); Christodouleas, John P. [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States); Coen, John J. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); Deville, Curtiland; Vapiwala, Neha [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States); Shipley, William U.; Zietman, Anthony L. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); Hahn, Stephen M. [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States); Bekelman, Justin E., E-mail: bekelman@uphs.upenn.edu [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States); Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, PA (United States)

    2012-05-01

    Purpose: To investigate patients' willingness to participate (WTP) in a randomized controlled trial (RCT) comparing intensity-modulated radiotherapy (IMRT) with proton beam therapy (PBT) for prostate cancer (PCa). Methods and Materials: We undertook a qualitative research study in which we prospectively enrolled patients with clinically localized PCa. We used purposive sampling to ensure a diverse sample based on age, race, travel distance, and physician. Patients participated in a semi-structured interview in which they reviewed a description of a hypothetical RCT, were asked open-ended and focused follow-up questions regarding their motivations for and concerns about enrollment, and completed a questionnaire assessing characteristics such as demographics and prior knowledge of IMRT or PBT. Patients' stated WTP was assessed using a 6-point Likert scale. Results: Forty-six eligible patients (33 white, 13 black) were enrolled from the practices of eight physicians. We identified 21 factors that impacted patients' WTP, which largely centered on five major themes: altruism/desire to compare treatments, randomization, deference to physician opinion, financial incentives, and time demands/scheduling. Most patients (27 of 46, 59%) stated they would either 'definitely' or 'probably' participate. Seventeen percent (8 of 46) stated they would 'definitely not' or 'probably not' enroll, most of whom (6 of 8) preferred PBT before their physician visit. Conclusions: A substantial proportion of patients indicated high WTP in a RCT comparing IMRT and PBT for PCa.