WorldWideScience

Sample records for proton polarization measurements

  1. System for measuring the proton polarization in a polarized target

    International Nuclear Information System (INIS)

    Karnaukhov, I.M.; Lukhanin, A.A.; Telegin, Yu.N.; Trotsenko, V.I.; Chechetenko, V.F.

    1984-01-01

    The system for measuring the proton polarization in a polarized target representing the high-sensitivity nuclear magnetic resonance (NMR) is described Q-meter with series connection and a circuit for measuring system resonance characteristic is used for NMR-absorption signal recording. Measuring coil is produced of a strip conductor in order to obtain uniform system sensitivity to polarization state in all target volume and improve signal-to-noise ratio. Polarization measuring system operates ion-line with the M-6000 computer. The total measuring error for the value of free proton polarization in target taking into account the error caused by local depolarization of working substance under irradiation by high-intense photon beam is <= 6%. Long-term application of the described system for measuring the proton polarization in the LUEh-20000 accelerator target used in the pion photoproduction experiments has demonstrated its high reliability

  2. System for measuring of proton polarization in polarized target

    International Nuclear Information System (INIS)

    Derkach, A.Ya.; Lukhanin, A.A.; Karnaukhov, I.M.; Kuz'menko, V.S.; Telegin, Yu.N.; Trotsenko, V.I.; Chechetenko, V.F.

    1981-01-01

    Measurement system of proton polarization in the target, which uses the method of nuclear magnetic resonance is described. To record the signal of NMR-absorption a parallel Q-meter of voltage with analogous subtraction of resonance characteristics of measurement circuit is used. To obtain gradual sensitivity of the system to polarization state in the whole volume of the target the measurement coils is made of tape conductor. The analysis and mathematical modelling of Q-meter are carried out. Corrections for nonlinearity and dispersion are calculated. Key diagrams of the main electron blocks of Q-meter are presented. The system described operates on line with the M6000 computer. Total error of measurement of polarization value of free protons in the target does not exceed 6% [ru

  3. System of measurement of proton polarization in a polarized target

    Energy Technology Data Exchange (ETDEWEB)

    Karnaukov, I.M.; Chechetenko, V.F.; Lukhanin, A.A.; Telegin, Y.N.; Trotsenko, V.I.

    1985-05-01

    This paper describes a nuclear magnetic resonance spectrometer with high sensitivity. The signal of NMR absorption is recorded by a Q-meter with a series circuit and a circuit for compensation of the resonance characteristic of the measuring circuit. In order to ensure uniform sensitivity of the system to the state of polarization throughout the volume of the target and to enhance the S/N ration the measuring coil is made of a flat conductor. The polarization-measuring system works on-line with an M-6000 computer. The total error of measurement of the polarization of free protons in a target with allowance for the error due to local depolarization of free protons in a target with allowance for the error due to local depolarization of the working substance under irradiation with an intense photon beam is less than or equal to 6%.

  4. Method of measuring the polarization of high momentum proton beams

    International Nuclear Information System (INIS)

    Underwood, D.G.

    1976-01-01

    A method of measuring the polarization of high momentum proton beams is proposed. This method utilizes the Primakoff effect and relates asymmetries at high energy to large asymmetries already measured at low energy. Such a new method is essential for the success of future experiments at energies where present methods are no longer feasible

  5. Measurement of the polarization of cumulative protons in γA → pX reaction

    International Nuclear Information System (INIS)

    Avakyan, R.O.; Avakyan, E.O.; Avetisyan, A.Eh.

    1985-01-01

    The polarization of cumulative protons in γA → px reaction is measured in the range of proton energy (190+270) MeV for C, Cu, Sn, Pb nuclei. The measured polarization is practically independent of the energy of protons and the atomic number of nuclei

  6. Measuring the contribution of low Bjorken-x gluons to the proton spin with polarized proton-proton collisions

    Science.gov (United States)

    Wolin, Scott Justin

    The PHENIX experiment is one of two detectors located at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory in Upton, NY. Understanding the spin structure of the proton is a central goal at RHIC, the only polarized proton-on-proton collider in existence. The PHENIX spin program has two primary objectives. The first is to improve the constraints on the polarized parton distributions of the anti-u and anti-d quarks within the proton. The second objective is to improve the constraint on the gluon spin contribution to the proton spin, DeltaG. The focus of this thesis is the second objective. PHENIX experiment has been successful at providing the first meaningful constraints on DeltaG, along with STAR, the other detector located at RHIC. These constraints have, in fact, eliminated the extreme scenarios for gluon polarization through measurements of the double spin asymmetry, ALL, between the cross section of like and unlike sign helicity pp interactions. ALL measurements can be performed with a variety of final states at PHENIX. Until 2009, these final states were only measured for pseudo-rapidities of |eta| Piston Calorimeter (MPC) was installed in 2006 and 2007 at forward rapidity, 3.1 < |eta| < 3.9, with the intention of giving PHENIX the ability to constrain Delta g(x) for x < 0.05. Following this, an electronics upgrade to the MPC will be described which enables the selection of events with two hadrons detected in the MPC. This requirement favors gluons at even lower x than the single hadron event selection. The di-hadron measurement that this upgrade makes possible will allow PHENIX to produce an ALL measurement that constrains Deltag(x) in the range of 5 x 10-4 < x < 0.01. Finally, we discuss the most important systematic uncertainty common to all ALL measurements which arises from the determination of the relative luminosity. A precision ALLL measurement requires measuring the final state yield from the portions of the proton beams that

  7. Measurement of proton and nitrogen polarization in ammonia and a test of equal spin temperature

    CERN Document Server

    AUTHOR|(CDS)2067425; Arvidson, A; Badelek, B; Baum, G; Berglund, P; Betev, L; De Botton, N R; Bradamante, Franco; Bradtke, C; Bravar, A; Bültmann, S; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Dalla Torre, S; Van Dantzig, R; Derro, B R; Dreshpande, A; Dhawan, S K; Dulya, C M; Dutz, H; Eichblatt, S; Fasching, D; Feinstein, F; Fernández, C; Forthmann, S; Frois, Bernard; Gallas, A; Garzón, J A; Gehring, R; Gilly, H; Giorgi, M A; Görtz, S; Gracia, G; De Groot, N; Grosse-Perdekamp, M; Haft, K; Harmsen, J; Von Harrach, D; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, T; Kabuss, E M; Kageya, T; Karev, A G; Ketel, T; Kiryluk, J; Kiselev, Yu F; Kok, E; Krämer, Dietrich; Kröger, W; Kurek, K; Kyynäräinen, J; Lamanna, M; Landgraf, U; Le Goff, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Litmaath, M; Magnon, A; Mallot, G K; Martin, A; Matsuda, T; Mayes, B W; McCarthy, J S; Medved, K S; Meyer, W T; Van Middelkoop, G; Miller, D; Miyachi, Y; Mori, K; Nassalski, J P; Niinikoski, T O; Oberski, J; Ogawa, A; Parks, D P; Pereira da Costa, H D; Perrot-Kunne, F; Peshekhonov, V D; Pinsky, L; Platchkov, S K; Pló, M; Plückthun, M; Polec, J; Pose, D; Postma, H; Pretz, J; Puntaferro, R; Rädel, G; Reicherz, G; Rijllart, A; Rodríguez, M; Rondio, Ewa; Sandacz, A; Savin, I A; Schiavon, R P; Schiller, A; Sichtermann, E P; Simeoni, F; Smirnov, G I; Staude, A; Steinmetz, A; Stiegler, U; Stuhrmann, H B; Tessarotto, F; Tlaczala, W; Tripet, A; Ünel, G; Velasco, M; Vogt, J; Voss, Rüdiger; Whitten, C; Windmolders, R; Wislicki, W; Witzmann, A; Ylöstalo, J; Zanetti, A M; Zaremba, K

    1998-01-01

    The 1996 data taking of the SMC experiment used polarized protons to measure the spin dependent structure function $g_1$ of the proton. Three liters of solid granular ammonia were irradiated at the Bonn electron linac in order to create the paramagnetic radicals which are needed for polarizing the protons. Proton polarizations of $\\pm(90\\pm2.5)\\,\\%$ were routinely reached. An analysis based on a theoretical line-shape for spin-1 systems with large quadrupolar broadening was developed which allowed the nitrogen polarization in the ammonia to be determined with a 10% relative error. The measured quadrupolar coupling constant of $^{14}$N agrees well with earlier extrapolated values. The polarization of the nitrogen nuclei was measured as a function of the proton polarization in order to provide a test of the equal spin temperature (EST) hypothesis. It was found to be closely valid under the dynamic nuclear polarization conditions with which the protons are polarized. Large deviations from EST could be induced by...

  8. Facility for the measurement of proton polarization in nuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Slobodrian, R J; Irshad, M; Labrie, R; Rioux, C; Roy, R; Pigeon, R [Laval Univ., Quebec City (Canada). Lab. de Physique Nucleaire

    1979-02-15

    A polarimetry facility based on high resolution and high efficiency silicon polarimeters with on-line particle identification is described. It has proven its capability to measure polarization in (/sup 3/He, p(pol)) reaction with cross section levels of 40 ..mu..b/sr.

  9. Measurement of longitudinal spin asymmetries for weak boson production in polarized proton-proton collisions at RHIC.

    Science.gov (United States)

    Adamczyk, L; Adkins, J K; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Anson, C D; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Balewski, J; Banerjee, A; Beavis, D R; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Borowski, W; Bouchet, J; Brandin, A V; Brovko, S G; Bültmann, S; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Calderón de la Barca Sánchez, M; Campbell, J M; Cebra, D; Cendejas, R; Cervantes, M C; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, L; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chwastowski, J; Codrington, M J M; Contin, G; Cramer, J G; Crawford, H J; Cui, X; Das, S; Davila Leyva, A; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; Derradi de Souza, R; Dhamija, S; di Ruzza, B; Didenko, L; Dilks, C; Ding, F; Djawotho, P; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Engle, K S; Eppley, G; Eun, L; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Fedorisin, J; Filip, P; Finch, E; Fisyak, Y; Flores, C E; Gagliardi, C A; Gangadharan, D R; Garand, D; Geurts, F; Gibson, A; Girard, M; Gliske, S; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Haag, B; Hamed, A; Han, L-X; Haque, R; Harris, J W; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, H Z; Huang, X; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Kesich, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Koetke, D D; Kollegger, T; Konzer, J; Koralt, I; Kosarzewski, L K; Kotchenda, L; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; LeVine, M J; Li, C; Li, W; Li, X; Li, X; Li, Y; Li, Z M; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, G L; Ma, Y G; Madagodagettige Don, D M M D; Mahapatra, D P; Majka, R; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; McShane, T S; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nelson, J M; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Ohlson, A; Okorokov, V; Oldag, E W; Olvitt, D L; Pachr, M; Page, B S; Pal, S K; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlak, T; Pawlik, B; Pei, H; Perkins, C; Peryt, W; Pile, P; Planinic, M; Pluta, J; Poljak, N; Poniatowska, K; Porter, J; Poskanzer, A M; Pruthi, N K; Przybycien, M; Pujahari, P R; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Riley, C K; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ross, J F; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sangaline, E; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Singaraju, R N; Skoby, M J; Smirnov, D; Smirnov, N; Solanki, D; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Sun, X; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; Szelezniak, M A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Trzeciak, B A; Tsai, O D; Turnau, J; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Vanfossen, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Vossen, A; Wada, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, X L; Wang, Y; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, H; Xu, J; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yan, W; Yang, C; Yang, Y; Yang, Y; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zawisza, Y; Zbroszczyk, H; Zha, W; Zhang, J B; Zhang, J L; Zhang, S; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, F; Zhao, J; Zhong, C; Zhu, X; Zhu, Y H; Zoulkarneeva, Y; Zyzak, M

    2014-08-15

    We report measurements of single- and double-spin asymmetries for W^{±} and Z/γ^{*} boson production in longitudinally polarized p+p collisions at sqrt[s]=510  GeV by the STAR experiment at RHIC. The asymmetries for W^{±} were measured as a function of the decay lepton pseudorapidity, which provides a theoretically clean probe of the proton's polarized quark distributions at the scale of the W mass. The results are compared to theoretical predictions, constrained by polarized deep inelastic scattering measurements, and show a preference for a sizable, positive up antiquark polarization in the range 0.05

  10. Measurement of Longitudinal Spin Asymmetries for Weak Boson Production in Polarized Proton-Proton Collisions at RHIC

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Balewski, J.; Banerjee, A.; Beavis, D. R.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Brovko, S. G.; Bültmann, S.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chwastowski, J.; Codrington, M. J. M.; Contin, G.; Cramer, J. G.; Crawford, H. J.; Cui, X.; Das, S.; Davila Leyva, A.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; Dhamija, S.; di Ruzza, B.; Didenko, L.; Dilks, C.; Ding, F.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Engle, K. S.; Eppley, G.; Eun, L.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Fedorisin, J.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Gangadharan, D. R.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Gliske, S.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Haag, B.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kesich, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Kosarzewski, L. K.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; LeVine, M. J.; Li, C.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, Y. G.; Madagodagettige Don, D. M. M. D.; Mahapatra, D. P.; Majka, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Olvitt, D. L.; Pachr, M.; Page, B. S.; Pal, S. K.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Peryt, W.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Pujahari, P. R.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Riley, C. K.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ross, J. F.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Singaraju, R. N.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Sun, X.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szelezniak, M. A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Vanfossen, J. A.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Vossen, A.; Wada, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, X. L.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, H.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y.; Xu, Z.; Yan, W.; Yang, C.; Yang, Y.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zawisza, Y.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, J. L.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zhu, Y. H.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2014-08-01

    We report measurements of single- and double-spin asymmetries for W± and Z/γ* boson production in longitudinally polarized p+p collisions at √s =510 GeV by the STAR experiment at RHIC. The asymmetries for W± were measured as a function of the decay lepton pseudorapidity, which provides a theoretically clean probe of the proton's polarized quark distributions at the scale of the W mass. The results are compared to theoretical predictions, constrained by polarized deep inelastic scattering measurements, and show a preference for a sizable, positive up antiquark polarization in the range 0.05

  11. Neutron polarization measurements using the pulsed-polarized proton and deuteron beams at TUNL

    International Nuclear Information System (INIS)

    Walter, R.L.

    1981-01-01

    Nanosecond wide pulses of polarized protons or deuterons at a repetition rate of 4 MHz are now routinely available for studying interactions involving outgoing neutrons. Up to 90 nA of protons and 200 nA of deuterons have been observed on target. The authors' first experiments involved the determination of the analyzing power A /SUB y/ (UJ) for a few (→p,n) and (→d,n) reactions using conventional neutron time-of-flight detection. A major program for observing polarization effects in neutron elastic scattering has been initiated. The source of polarized neutrons for this program is the 2 H(→d,n→) 3 He reaction which yields a neutron beam having 90% of the polarization of the incident deuterons

  12. Spin structure function measurements with polarized protons and electrons at HERA

    International Nuclear Information System (INIS)

    Ball, R.D.; Deshpande, A.; Forte, S.; Hughes, V.W.; Lichtenstadt, J.; Ridolfi, G.

    1995-01-01

    Useful insights into the spin structure functions of the nucleon can be achieved by measurements of spin-dependent asymmetries in inclusive scattering of high energy polarized electrons by high energy polarized protons at HERA. Such an experiment would be a natural extension of the polarized lepton-nucleon scattering experiments presently carried out at CERN and SLAC. We present here estimates of possible data in the extended kinematic range of HERA and associated statistical errors. (orig.)

  13. Prospects for Measuring $\\Delta$G from Jets at HERA with Polarized Protons and Electrons

    CERN Document Server

    De Roeck, A.; Kunne, F.; Maul, M.; Schafer, A.; Wu, C.Y.; Mirkes, E.; Radel, G.

    1996-01-01

    The measurement of the polarized gluon distribution function Delta G(x) from photon-gluon fusion processes in electron-proton deep inelastic scattering producing two jets has been investigated. The study is based on the MEPJET and PEPSI simulation programs. The size of the expected spin asymmetry and corresponding statistical uncertainties for a possible measurement with polarized beams of electrons and protons at HERA have been estimated. The results show that the asymmetry can reach a few percent, and is not washed out by hadronization and higher order processes.

  14. Prospects for measuring ΔG from jets at HERA with polarized protons and electrons

    International Nuclear Information System (INIS)

    Roeck, A. de; Feltesse, J.; Kunne, F.; Maul, M.; Schaefer, A.; Wu, C.Y.; Mirkes, E.; Raedel, G.

    1996-09-01

    The measurement of the polarized gluon distribution function ΔG(x) from photon-gluon fusion processes in electron-proton deep inelastic scattering producing two jets has been investigated. The study is based on the MEPJET and PEPSI simulation programs. The size of the expected spin asymmetry and corresponding statistical uncertainties for a possible measurement with polarized beams of electrons and protons at HERA have been estimated. The results show that the asymmetry can reach a few percent, and is not washed out by hadronization and higher order processes. (orig.)

  15. Polarized protons at RHIC

    International Nuclear Information System (INIS)

    Tannenbaum, M.J.

    1990-12-01

    The Physics case is presented for the use of polarized protons at RHIC for one or two months each year. This would provide a facility with polarizations of approx-gt 50% high luminosity ∼2.0 x 10 32 cm -2 s -1 , the possibility of both longitudinal and transverse polarization at the interaction regions, and frequent polarization reversal for control of systematic errors. The annual integrated luminosity for such running (∼10 6 sec per year) would be ∫ Ldt = 2 x 10 38 cm -2 -- roughly 20 times the total luminosity integrated in ∼ 10 years of operation of the CERN Collider (∼10 inverse picobarns, 10 37 cm -2 ). This facility would be unique in the ability to perform parity-violating measurements and polarization test of QCD. Also, the existence of p-p collisions in a new energy range would permit the study of ''classical'' reactions like the total cross section and elastic scattering, etc., and serve as a complement to measurements from p-bar p colliders. 11 refs

  16. Measurement of polarization-transfer to bound protons in carbon and its virtuality dependence

    Science.gov (United States)

    Izraeli, D.; Brecelj, T.; Achenbach, P.; Ashkenazi, A.; Böhm, R.; Cohen, E. O.; Distler, M. O.; Esser, A.; Gilman, R.; Kolar, T.; Korover, I.; Lichtenstadt, J.; Mardor, I.; Merkel, H.; Mihovilovič, M.; Müller, U.; Olivenboim, M.; Piasetzky, E.; Ron, G.; Schlimme, B. S.; Schoth, M.; Sfienti, C.; Širca, S.; Štajner, S.; Strauch, S.; Thiel, M.; Weber, A.; Yaron, I.; A1 Collaboration

    2018-06-01

    We measured the ratio Px /Pz of the transverse to longitudinal components of polarization transferred from electrons to bound protons in 12C by the 12C (e → ,e‧ p →) process at the Mainz Microtron (MAMI). We observed consistent deviations from unity of this ratio normalized to the free-proton ratio, (Px /Pz) 12C /(Px /Pz) 1H, for both s- and p-shell knocked out protons, even though they are embedded in averaged local densities that differ by about a factor of two. The dependence of the double ratio on proton virtuality is similar to the one for knocked out protons from 2H and 4He, suggesting a universal behavior. It further implies no dependence on average local nuclear density.

  17. Measurement of polarization observables of the associated strangeness production in proton proton interactions

    Energy Technology Data Exchange (ETDEWEB)

    Hauenstein, F.; Klaja, P. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen (Germany); Borodina, E.; Dzhygadlo, R.; Gast, W.; Gillitzer, A.; Grzonka, D.; Kilian, K.; Mertens, M.; Roderburg, E.; Roeder, M.; Sefzick, T.; Wintz, P. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); Clement, H.; Doroshkevich, E.; Ehrhardt, K. [Physikalisches Institut der Universitaet Tuebingen, Tuebingen (Germany); University of Tuebingen, Kepler Center for Astro and Particle Physics, Tuebingen (Germany); Eyrich, W.; Kober, L.; Krapp, M. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen (Germany); Jowzaee, S. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); Jagellonian University, Institute of Physics, Cracow (Poland); Moskal, P.; Smyrski, J. [Jagellonian University, Institute of Physics, Cracow (Poland); Ritman, J. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); Juelich Aachen Research Alliance, Forces and Matter Experiments (JARA-FAME), Forschungszentrum Juelich, Juelich (Germany); RWTH Aachen, Aachen (Germany); Ruhr-Universitaet Bochum, Experimentalphysik I, Bochum (Germany); Schroeder, W. [Forschungszentrum Juelich, Corporate Development, Juelich (Germany); Wuestner, P. [Zentralinstitut fuer Engineering, Elektronik und Analytik, Juelich (Germany); Collaboration: The COSY-TOF Collaboration

    2016-11-15

    The Λ polarization, the analyzing power, and the Λ spin transfer coefficient of the reaction pp → pK{sup +} Λ were measured at beam momenta of 2.70 GeV/c and 2.95 GeV/c corresponding to excess energies of 122 MeV and 204 MeV. While the analyzing power and the spin transfer coefficient do not change significantly with the excess energy, the Λ polarization varies strongly and changes its sign. As this is the first measurement of polarization observables below an excess energy of 200 MeV, the change of the sign of the Λ polarization was not observed before. The high statistics of the data (∼ 200 k events for each momentum) enables detailed studies of the dependence of the Λ polarization and the analyzing power on the center-of-mass momentum of the particles. The results of the spin transfer coefficient are in qualitative agreement with the DISTO experiment. The Λ polarization data of 2.95 GeV/c are only conform with the DISTO experiment, while both the 2.70 GeV/c and 2.95 GeV/c data differ strongly from all previous measurements, whether exclusive or inclusive. (orig.)

  18. Polarized proton beams

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    The acceleration of polarized proton beams in circular accelerators is complicated by the presence of numerous depolarizing spin resonances. Careful and tedious minimization of polarization loss at each of these resonances allowed acceleration of polarized proton beams up to 22 GeV. It has been the hope that Siberian Snakes, which are local spin rotators inserted into ring accelerators, would eliminate these resonances and allow acceleration of polarized beams with the same ease and efficiency that is now routine for unpolarized beams. First tests at IUCF with a full Siberian Snake showed that the spin dynamics with a Snake can be understood in detail. The author now has results of the first tests of a partial Siberian Snake at the AGS, accelerating polarized protons to an energy of about 25 GeV. These successful tests of storage and acceleration of polarized proton beams open up new possibilities such as stored polarized beams for internal target experiments and high energy polarized proton colliders

  19. Polarization measurements in high energy elastic scattering of pions, kaons, protons and antiprotons on protons and comparison with Regge phenomenology

    International Nuclear Information System (INIS)

    Gaidot, A.; Bruneton, C.; Bystricky, J.; Cozzika, G.; Deregel, J.; Ducros, Y.; Khantine-Langlois, F.; Lehar, F.; Lesquen, A. de; Merlo, J.P.; Miyashita, S.; Movchet, J.; Pierrard, J.; Raoul, J.C.; Van Rossum, L.; Kanavets, V.P.

    1975-01-01

    The polarization parameter P has been measured for elastic scattering on polarized protons, of π - , K - and anti-p at 40GeV/c and of π + , K + and p at 45GeV/c. Four-momentum transfer ranges from -0.08 to -1.8(GeV/c) 2 for π - p and pp, and from -0.08 to -1.2(GeV/c) 2 for π + , K + or K - and anti-p [fr

  20. Polarized proton colliders

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    High energy polarized beam collisions will open up the unique physics opportunities of studying spin effects in hard processes. This will allow the study of the spin structure of the proton and also the verification of the many well documented expectations of spin effects in perturbative QCD and parity violation in W and Z production. Proposals for polarized proton acceleration for several high energy colliders have been developed. A partial Siberian Snake in the AGS has recently been successfully tested and full Siberian Snakes, spin rotators, and polarimeters for RHIC are being developed to make the acceleration of polarized beams to 250 GeV possible. This allows for the unique possibility of colliding two 250 GeV polarized proton beams at luminosities of up to 2 x 10 32 cm -2 s -1

  1. Measurement of Polarization Observables in the Electro-Excitation of the Proton to its First Excited State

    International Nuclear Information System (INIS)

    Rikki Roche

    2003-01-01

    This thesis reports results from the Thomas Jefferson National Accelerator Facility (Jefferson Lab) Hall A experiment E91-011, which measured double-polarization observables in the pion electroproduction reaction from the proton. Specifically, the experiment measured the recoil proton polarization, polarized response functions, and cross section for the p(rvec e), e(prime) (rvec p) π o reaction at a center-of-mass energy centered at W = 1232 MeV--the peak of the Δ(1232) resonance--and at a four-momentum transfer squared of Q 2 = 1.0 GeV 2 /c 2 . Both the recoil proton polarization and polarized response function results will be presented in this thesis

  2. Measurement of neutrino and proton asymmetry in the decay of polarized neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, M.

    2007-05-09

    The Standard Model of Particle Physics is in excellent agreement with all experimental results. However, it is not believed to be the most fundamental theory. It requires, for example, too many free parameters and is not able to explain the existence of effects such as parity-violation or CP-violation. Thus measurements have to be performed to probe the Standard Model and to search for ''new physics''. An ideal laboratory for this is the decay of the free polarized neutron. In this thesis, we present measurements of the neutrino asymmetry B and the proton asymmetry C in neutron decay. These coefficients describe the correlation between neutron spin and momentum of the respective particle, and provide detailed information on the structure of the underlying theory. The experiment was performed using the electron spectrometer PERKEO II installed at the Institut Laue-Langevin (ILL). It was equipped with a combined electron-proton detector to reconstruct the neutrino in a coincidence measurement. The uncertainty of our neutrino asymmetry result, B=0.9802(50), is comparable to the present best measurement, and, for the first time ever, we obtained a precise value for the proton asymmetry, C=-0.2377(36). Both results are used to analyze neutron decay for hints on ''Physics beyond the Standard Model'' by studying possible admixtures of right-handed currents and of scalar and tensor couplings to the interaction. (orig.)

  3. Measurement of neutrino and proton asymmetry in the decay of polarized neutrons

    International Nuclear Information System (INIS)

    Schumann, M.

    2007-01-01

    The Standard Model of Particle Physics is in excellent agreement with all experimental results. However, it is not believed to be the most fundamental theory. It requires, for example, too many free parameters and is not able to explain the existence of effects such as parity-violation or CP-violation. Thus measurements have to be performed to probe the Standard Model and to search for ''new physics''. An ideal laboratory for this is the decay of the free polarized neutron. In this thesis, we present measurements of the neutrino asymmetry B and the proton asymmetry C in neutron decay. These coefficients describe the correlation between neutron spin and momentum of the respective particle, and provide detailed information on the structure of the underlying theory. The experiment was performed using the electron spectrometer PERKEO II installed at the Institut Laue-Langevin (ILL). It was equipped with a combined electron-proton detector to reconstruct the neutrino in a coincidence measurement. The uncertainty of our neutrino asymmetry result, B=0.9802(50), is comparable to the present best measurement, and, for the first time ever, we obtained a precise value for the proton asymmetry, C=-0.2377(36). Both results are used to analyze neutron decay for hints on ''Physics beyond the Standard Model'' by studying possible admixtures of right-handed currents and of scalar and tensor couplings to the interaction. (orig.)

  4. Measurement of Polarization Observables in the Electro-Excitation of the Proton to its First Excited State

    Energy Technology Data Exchange (ETDEWEB)

    Roche, Rikki [Florida State Univ., Tallahassee, FL (United States)

    2003-08-01

    This thesis reports results from the Thomas Jefferson National Accelerator Facility (Jefferson Lab) Hall A experiment E91-011, which measured double-polarization observables in the pion electroproduction reaction from the proton. Specifically, the experiment measured the recoil proton polarization, polarized response functions, and cross section for the p($\\vec{e}$, e' $\\vec{p}$) π° reaction at a center-of-mass energy centered at W = 1232 MeV--the peak of the Δ(1232) resonance--and at a four-momentum transfer squared of Q2 = 1.0 GeV2/c2. Both the recoil proton polarization and polarized response function results will be presented in this thesis. Data were collected at Jefferson Lab, located in Newport News, Virginia during the summer of 2000. A 4.53 GeV polarized electron beam was scattered off of a cryogenic hydrogen target. The recoil proton polarization was measured in the Focal Plane Polarimeter (FPP), located in one of the two High Resolution Spectrometers (HRS) in Hall A. A maximum likelihood method was used to determine the polarized response functions directly from the measured polarizations and cross sections. A simultaneous fit of the cross sections, the recoil proton polarizations, and angular distributions of the polarized response functions will provide a determination of individual multipole amplitudes. Some of these multipole amplitudes are related to the concept of proton deformation. Both the recoil proton polarizations and polarized response functions were compared to two phenomenological models: MAID and SAID, which have all free parameters fixed, based on fits to previous world data. The measured helicity dependent observables, which are dominated by imaginary parts of Δ(1232)-resonance excitation multipole amplitudes, agree very well with the two models. The measured helicity independent observables, which are dominated by real parts of background multipole amplitudes, do not agree completely with

  5. Measurement of the Induced Proton Polarization Pn in the 12C(e, e', p) reaction

    International Nuclear Information System (INIS)

    Woo, R.J.; Barkhuff, David; Bertozzi, William; Jian-ping Chen; Dan Dale; G. Dodson; K.A. Dow; Marty Epstein; Manouchehr Farkhondeh; Mike Finn; Shalev Gilad; Mark K. Jones; Kyungseon Joo; James Kelly; Stanley Kowalski; Bob Lourie; Richard Madey; Dimitri Margaziotis; Pete Markowitz; Justin McIntyre; Christoph Mertz; Brian Milbrath; Joseph Mitchell; Charles F. Perdrisat; Vina Punjabi; Paul Rutt; Adam Sarty; D. Tieger; C. Tschalaer; William Turchinetz; Paul E. Ulmer; S.P. Van Verst; C. Vellidis; Glen Warren; Lawrence Weinstein

    1998-01-01

    The first measurements of the induced proton polarization Pn for the 12C(e,e',p) reaction are reported. The experiment was performed at quasifree kinematics for energy and momentum transfer (w,q) = (294 MeV, 765 MeV/c) and sampled a missing momentum range of 0-250 MeV/c. The induced polarization arises from final-state interactions and for these kinematics is dominated by the real part of the spin-orbit optical potential. The distorted-wave impulse approximation provides good agreement with data for the 1 p3/2 shell. The data for the continuum suggest that both the 1s1/2 shell and underlying l > 1 configurations contribute

  6. Polarized Proton Collisions at RHIC

    CERN Document Server

    Bai, Mei; Alekseev, Igor G; Alessi, James; Beebe-Wang, Joanne; Blaskiewicz, Michael; Bravar, Alessandro; Brennan, Joseph M; Bruno, Donald; Bunce, Gerry; Butler, John J; Cameron, Peter; Connolly, Roger; De Long, Joseph; Drees, Angelika; Fischer, Wolfram; Ganetis, George; Gardner, Chris J; Glenn, Joseph; Hayes, Thomas; Hseuh Hsiao Chaun; Huang, Haixin; Ingrassia, Peter; Iriso, Ubaldo; Laster, Jonathan S; Lee, Roger C; Luccio, Alfredo U; Luo, Yun; MacKay, William W; Makdisi, Yousef; Marr, Gregory J; Marusic, Al; McIntyre, Gary; Michnoff, Robert; Montag, Christoph; Morris, John; Nicoletti, Tony; Oddo, Peter; Oerter, Brian; Osamu, Jinnouchi; Pilat, Fulvia Caterina; Ptitsyn, Vadim; Roser, Thomas; Satogata, Todd; Smith, Kevin T; Svirida, Dima; Tepikian, Steven; Tomas, Rogelio; Trbojevic, Dejan; Tsoupas, Nicholaos; Tuozzolo, Joseph; Vetter, Kurt; Wilinski, Michelle; Zaltsman, Alex; Zelenski, Anatoli; Zeno, Keith; Zhang, S Y

    2005-01-01

    The Relativistic Heavy Ion Collider~(RHIC) provides not only collisions of ions but also collisions of polarized protons. In a circular accelerator, the polarization of polarized proton beam can be partially or fully lost when a spin depolarizing resonance is encountered. To preserve the beam polarization during acceleration, two full Siberian snakes were employed in RHIC to avoid depolarizing resonances. In 2003, polarized proton beams were accelerated to 100~GeV and collided in RHIC. Beams were brought into collisions with longitudinal polarization at the experiments STAR and PHENIX by using spin rotators. RHIC polarized proton run experience demonstrates that optimizing polarization transmission efficiency and improving luminosity performance are significant challenges. Currently, the luminosity lifetime in RHIC is limited by the beam-beam effect. The current state of RHIC polarized proton program, including its dedicated physics run in 2005 and efforts to optimize luminosity production in beam-beam limite...

  7. What should be measured in deuteron breakup with polarized proton target

    International Nuclear Information System (INIS)

    Strokovskij, E.A.

    1995-01-01

    At present, two different approaches are used for interpretation of inclusive data on deuteron breakup with emission of protons-fragments at zero degree by hadrons. According to one of them the observed characteristics of this reaction (cross sections, polarization observables) are determined by the reaction mechanism and the deuteron structure at short distances (in the commonly accepted sense) plays a minor role. According to the other approach it is the deuteron structure at short distances which determines the observed trend of the data. Neither of these approaches can describe the data even qualitatively in the whole investigated region of kinematical variables, having particular success for some narrow region corresponding to long distances. Installation of the polarized proton target at LHE (Laboratory of High Energies) JINR opens an opportunity to perform a rather simple experiment which could discriminate one of these completing approaches. The idea of this experiment is discussed in the present paper. Measurement of the observable suggested here is a particular example of a general problem of a search for spin correlations in inelastic reactions between particles separated well in 4-velocity or rapidity spaces. In our particular case correlations of spin degrees of freedom between particles, one of which is in the target fragmentation region and the other belongs to the projectile fragmentation region, are discussed. 10 refs., 1 fig

  8. Measurement of the weak nucleon-nucleon interaction by polarized cold neutron capture on protons

    Directory of Open Access Journals (Sweden)

    Alarcon R.

    2014-03-01

    Full Text Available The NPDGamma Experiment at the Spallation Neutron Source at Oak Ridge National Laboratory is measuring the parity-odd correlation between the neutron spin and the direction of the emitted photon in the capture of polarized cold neutrons on protons. A parity violating asymmetry from this process is directly related to the strength of the hadronic weak interaction between nucleons. The experiment was run first with heavier nuclear targets to check systematic effects, false asymmetries, and backgrounds. Since early 2012 the experiment has been collecting data with a 16-liter liquid parahydrogen target. Data taking will continue through 2013 until statistics for a 10−8 asymmetry measurement are expected. The experiment performance will be discussed as well as the status of the asymmetry measurements.

  9. Polarized proton collider at RHIC

    International Nuclear Information System (INIS)

    Alekseev, I.; Allgower, C.; Bai, M.; Batygin, Y.; Bozano, L.; Brown, K.; Bunce, G.; Cameron, P.; Courant, E.; Erin, S.; Escallier, J.; Fischer, W.; Gupta, R.; Hatanaka, K.; Huang, H.; Imai, K.; Ishihara, M.; Jain, A.; Lehrach, A.; Kanavets, V.; Katayama, T.; Kawaguchi, T.; Kelly, E.; Kurita, K.; Lee, S.Y.; Luccio, A.; MacKay, W.W.; Mahler, G.; Makdisi, Y.; Mariam, F.; McGahern, W.; Morgan, G.; Muratore, J.; Okamura, M.; Peggs, S.; Pilat, F.; Ptitsin, V.; Ratner, L.; Roser, T.; Saito, N.; Satoh, H.; Shatunov, Y.; Spinka, H.; Syphers, M.; Tepikian, S.; Tominaka, T.; Tsoupas, N.; Underwood, D.; Vasiliev, A.; Wanderer, P.; Willen, E.; Wu, H.; Yokosawa, A.; Zelenski, A.N.

    2003-01-01

    In addition to heavy ion collisions (RHIC Design Manual, Brookhaven National Laboratory), RHIC will also collide intense beams of polarized protons (I. Alekseev, et al., Design Manual Polarized Proton Collider at RHIC, Brookhaven National Laboratory, 1998, reaching transverse energies where the protons scatter as beams of polarized quarks and gluons. The study of high energy polarized protons beams has been a long term part of the program at BNL with the development of polarized beams in the Booster and AGS rings for fixed target experiments. We have extended this capability to the RHIC machine. In this paper we describe the design and methods for achieving collisions of both longitudinal and transverse polarized protons in RHIC at energies up to √s=500 GeV

  10. Analyzing-power measurements of Coulomb-nuclear interference with the polarized-proton and -antiproton beams at 185 GeV/c

    Energy Technology Data Exchange (ETDEWEB)

    Akchurin, N; Onel, Y [Iowa Univ., Iowa City, IA (USA). Dept. of Physics; Carey, D; Coleman, R; Cossairt, J D; Read, A L [Fermi National Accelerator Lab., Batavia, IL (USA); Corcoran, M D; Nessi-Tedaldi, F; Nessi, M; Nguyen, C; Phillips, G C; Roberts, J B; White, J L [Rice Univ., Houston, TX (USA). Bonner Nuclear Labs.; Derevschikov, A; Matulenko, Yu A; Meschanin, A P; Nurushev, S B; Solovyanov, V L; Vasiliev, A N [Institut Fiziki Vysokikh Ehnergij, Serpukhov (USSR); Gazzaly, M M [Minnesota Univ., Minneapolis (USA). Dept. of Physics; Grosnick, D P; Hill, D; Laghai, M; Lopiano, D; Ohashi, Y; Shima, T; Spinka, H; Stanek, R W; Underwood, D G; Yokosawa, A [Argonne National Lab., IL (USA); Imai, K; Makino, S; Masaike, A; Miyake, K; Nagamine, T; Takeutchi, F; Tamura, N; Yoshida, T [Kyoto Univ. (Japan); Kuroda, K; Michalowicz, A [Institut National de Physique Nucleaire et de Physique des Particules, 74 - Annecy-le-Vieux (France). Lab. de P; E-581/704 Collaboration

    1989-10-12

    The analyzing power A{sub N} of proton-proton, proton-hydrocarbon, and antiproton-hydrocarbon scattering in the Coulomb-nuclear interference region has been measured using the 185 GeV/c Fermilab polarized-proton and -antiproton beams. The results are found to be consistent with theoretical predictions within statistical uncertainties. (orig.).

  11. Acceleration of polarized proton beams

    International Nuclear Information System (INIS)

    Roser, T.

    1998-01-01

    The acceleration of polarized beams in circular accelerators is complicated by the numerous depolarizing spin resonances. Using a partial Siberian snake and a rf dipole that ensure stable adiabatic spin motion during acceleration has made it possible to accelerate polarized protons to 25 GeV at the Brookhaven AGS. Full Siberian snakes are being developed for RHIC to make the acceleration of polarized protons to 250 GeV possible. A similar scheme is being studied for the 800 GeV HERA proton accelerator

  12. Measuring azimuthal asymmetries in semi-inclusive deep-inelastic scattering off transversely polarized protons

    CERN Document Server

    Wollny, Heiner

    2010-01-01

    The COMPASS experiment at the international research center CERN (European Organization for Nuclear Research) is dedicated to study the longitudinal and transverse spin structure of the nucleon. It is a fixed target experiment at the end of the M2 beam line of the SPS accelerator, which provides a 160 GeV/c longitudinally polarized muon beam. In the years 2002, 2003, 2004 and 2006 COMPASS took data scattering off polarized deuterons and in the year 2007 scattering off polarized protons. The analysis of the data taken in 2007 with transversely polarized protons is the topic of this thesis. In leading order and integrating over quark transverse momenta three parton distribution functions are needed for a complete description of the nucleon. Two of them, the quark number density and the helicity distribution are well known. However, the third one, the transversity distribution is up to now almost unknown. In this thesis single spin asymmetries in the cross-section of one hadron and two hadron production are anal...

  13. Electronic device for measuring the polarization parameter in the π-p → π0n charge exchange reaction on a polarized proton target

    International Nuclear Information System (INIS)

    Brehin, S.

    1967-12-01

    An electronic apparatus has been constructed to measure the polarization parameter P 0 (t) in π - p → π 0 n charge exchange scattering at 5.9 GeV/c and 11,2 GeV/c on polarized proton target. This device insures triggering of a heavy plate spark chamber, allowing visualisation of γ rays from the π 0 decays when the associated neutron offers suitable characteristics in direction and energy. The neutron is detected by an array of 32 counters and his energy is measured by a time of flight method. Electronic circuits of this apparatus are described as test and calibration methods used. (author) [fr

  14. Single and double spin asymmetries for deeply virtual Compton scattering measured with CLAS and a longitudinally polarized proton target

    Science.gov (United States)

    Pisano, S.; Biselli, A.; Niccolai, S.; Seder, E.; Guidal, M.; Mirazita, M.; Adhikari, K. P.; Adikaram, D.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Bosted, P.; Briscoe, B.; Brock, J.; Brooks, W. K.; Burkert, V. D.; Carlin, C.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Cortes, O.; Crabb, D. G.; Crede, V.; D'Angelo, A.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fersch, R.; Filippi, A.; Fleming, J. A.; Fradi, A.; Garillon, B.; Garçon, M.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jenkins, D.; Jiang, X.; Jo, H. S.; Joo, K.; Joosten, S.; Keith, C. D.; Keller, D.; Kim, A.; Kim, W.; Klein, F. J.; Kubarovsky, V.; Kuhn, S. E.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacCormick, M.; MacGregor, I. J. D.; Mayer, M.; McKinnon, B.; Meekins, D. G.; Meyer, C. A.; Mokeev, V.; Montgomery, R. A.; Moody, C. I.; Munoz Camacho, C.; Nadel-Turonski, P.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Phelps, W.; Phillips, J. J.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Puckett, A. J. R.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Skorodumina, I.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Tian, Ye; Tkachenko, S.; Turisini, M.; Ungaro, M.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration

    2015-03-01

    Single-beam, single-target, and double spin asymmetries for hard exclusive electroproduction of a photon on the proton e →p →→e'p'γ are presented. The data were taken at Jefferson Lab using the CEBAF large acceptance spectrometer and a longitudinally polarized NH3 14 target. The three asymmetries were measured in 165 four-dimensional kinematic bins, covering the widest kinematic range ever explored simultaneously for beam and target-polarization observables in the valence quark region. The kinematic dependences of the obtained asymmetries are discussed and compared to the predictions of models of generalized parton distributions. The measurement of three DVCS spin observables at the same kinematic points allows a quasi-model-independent extraction of the imaginary parts of the H and H ˜ Compton form factors, which give insight into the electric and axial charge distributions of valence quarks in the proton.

  15. Single and double spin asymmetries for deeply virtual Compton scattering measured with CLAS and a longitudinally polarized proton target

    Energy Technology Data Exchange (ETDEWEB)

    Pisano, S.; Biselli, A.; Niccolai, S.; Seder, E.; Guidal, M.; Mirazita, M.; Adhikari, K. P.; Adikaram, D.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Bosted, P.; Briscoe, B.; Brock, J.; Brooks, W. K.; Burkert, V. D.; Carlin, C.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Cortes, O.; Crabb, D. G.; Crede, V.; D' Angelo, A.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fersch, R.; Filippi, A.; Fleming, J. A.; Fradi, A.; Garillon, B.; Garcon, M.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jenkins, D.; Jiang, X.; Jo, H. S.; Joo, K.; Joosten, S.; Keith, C. D.; Keller, D.; Kim, A.; Kim, W.; Klein, F. J.; Kubarovsky, V.; Kuhn, S. E.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacCormick, M.; MacGregor, Ian J. D.; Mayer, M.; McKinnon, B.; Meekins, D. G.; Meyer, C. A.; Mokeev, V.; Montgomery, R. A.; Moody, C. I.; Munoz Camacho, C.; Nadel-Turonski, P.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Phelps, W.; Phillips, J. J.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Puckett, A. J. R.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatie, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Skorodumina, I.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Tian, Ye; Tkachenko, S.; Turisini, M.; Ungaro, M.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.

    2015-03-19

    Single-beam, single-target, and double-spin asymmetries for hard exclusive photon production on the proton e→p→e'p'γ are presented. The data were taken at Jefferson Lab using the CLAS detector and a longitudinally polarized 14NH3 target. The three asymmetries were measured in 165 4-dimensional kinematic bins, covering the widest kinematic range ever explored simultaneously for beam and target-polarization observables in the valence quark region. The kinematic dependences of the obtained asymmetries are discussed and compared to the predictions of models of Generalized Parton Distributions. As a result, the measurement of three DVCS spin observables at the same kinematic points allows a quasi-model-independent extraction of the imaginary parts of the H and H~ Compton Form Factors, which give insight into the electric and axial charge distributions of valence quarks in the proton.

  16. Facility for the measurement of proton polarization in the range 50-70 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, M; Sakaguchi, H; Sakamoto, H; Ogawa, H; Cynshi, O; Kobayashi, S [Kyoto Univ. (Japan). Dept. of Physics; Kato, S [Osaka Univ., Toyonaka (Japan). Lab. of Nuclear Studies; Matsuoka, N; Hatanaka, K; Noro, T [Osaka Univ., Toyonaka (Japan). Research Center for Nuclear Physics

    1983-07-01

    A proton polarimetry facility based on silicon analyzers combined with high-purity germanium detectors is described. The scattering efficiency is 1.5 x 10/sup -5/ at 60 MeV with an effective analyzing power of 0.71 and the energy resolution is about 300 keV fwhm. The facility has succeeded in measuring the depolarization in p-/sup 13/C elastic scattering separated clearly from inelastic events. In order to use a silicon detector as an analyzer target, measurements of cross sections and analyzing powers have been performed at proton energies of 65, 60, 55, 50 and 45 MeV.

  17. Polarized proton target with horizontal spin orientation

    International Nuclear Information System (INIS)

    Bunyatova, Eh.I.; Kiselev, Yu.F.; Kozlenko, N.G.

    1988-01-01

    Proton target, the polarization vector of which may be arbitrary oriented in horizontal plane relatively to the beam, is developed and tested. 70% value of polarization is obtained. 0.6 K temperature is acquired through 3 He pumping out continuous cycle. 1.2-propylene glycol - Cr(V) was used as working medium. Magnetic system is made in the form of Helmholtz sperconducting coils with working curren close to critical one. Target polarization is measured by NMR technique using original system of proton signal processing

  18. Polarized protons at the AGS

    International Nuclear Information System (INIS)

    Krisch, A.D.

    1981-01-01

    Various aspects of the project of modifying the Brookhaven AGS for the production of polarized proton beams are discussed. It is observed that pure spin state cross sections are of great importance in many investigations since differences between spin states are frequently significant. Financial and technical aspects of the modification of the Brookhaven accelerator are also discussed

  19. ACCELERATION OF POLARIZED PROTONS AT RHIC

    International Nuclear Information System (INIS)

    HUANG, H.

    2002-01-01

    Relativistic Heavy Ion Collider (RHIC) ended its second year of operation in January 2002 with five weeks of polarized proton collisions. Polarized protons were successfully injected in both RHIC rings and maintained polarization during acceleration up to 100 GeV per ring using two Siberian snakes in each ring. This is the first time that polarized protons have been accelerated to 100 GeV. The machine performance and accomplishments during the polarized proton run will be reviewed. The plans for the next polarized proton run will be outlined

  20. Polarized deuteron elastic scattering from a polarized proton target

    Energy Technology Data Exchange (ETDEWEB)

    Schmelzer, R.; Kuiper, H.; Schoeberl, M.; Berber, S.; Hilmert, H.; Koeppel, R.; Pferdmenges, R. (Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.). Physikalisches Inst.); Zankel, H. (Graz Univ. (Austria). Inst. fuer Theoretische Physik)

    1983-01-13

    Measurements are reported of the spin correlation parameter Cy,y for the elastic scattering of 10.0 MeV vector polarized deuterons from a polarized proton target at five CM angles (76/sup 0/,85/sup 0/,98/sup 0/,115/sup 0/,132/sup 0/). The experimental results are compared with different predictions. A Faddeev type calculation on the basis of local potentials also including approximate Coulomb distortion is favoured by our experimental results.

  1. Polarized deuteron elastic scattering from a polarized proton target

    International Nuclear Information System (INIS)

    Schmelzer, R.; Kuiper, H.; Schoeberl, M.; Berber, S.; Hilmert, H.; Koeppel, R.; Pferdmenges, R.; Zankel, H.

    1983-01-01

    Measurements are reported of the spin correlation parameter Cy,y for the elastic scattering of 10.0 MeV vector polarized deuterons from a polarized proton target at five CM angles (76 0 ,85 0 ,98 0 ,115 0 ,132 0 ). The experimental results are compared with different predictions. A Faddeev type calculation on the basis of local potentials also including approximate Coulomb distortion is favoured by our experimental results. (orig.)

  2. Measurement of top quark polarization in top-antitop events from proton-proton collisions at √s = 7 TeV using the ATLAS detector

    CERN Document Server

    Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Aefsky, Scott; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Ammosov, Vladimir; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Astbury, Alan; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Sarah; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernard, Clare; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Bertella, Claudia; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Bittner, Bernhard; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blocki, Jacek; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boek, Thorsten Tobias; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Branchini, Paolo; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Bremer, Johan; Brendlinger, Kurt; Brenner, Richard; Bressler, Shikma; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brost, Elizabeth; Brown, Gareth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Buehrer, Felix; Bugge, Lars; Bulekov, Oleg; Bundock, Aaron Colin; Bunse, Moritz; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Buzatu, Adrian; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Caso, Carlo; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiefari, Giovanni; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christidi, Ilektra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Cirilli, Manuela; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coelli, Simone; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Colas, Jacques; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collins-Tooth, Christopher; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Courneyea, Lorraine; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Damiani, Daniel; Daniells, Andrew Christopher; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Darmora, Smita; Dassoulas, James; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Degenhardt, James; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliot, Frederic; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Demirkoz, Bilge; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dinut, Florin; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Doi, Yoshikuni; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dotti, Andrea; Dova, Maria-Teresa; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Duflot, Laurent; Dufour, Marc-Andre; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Dwuznik, Michal; Ebke, Johannes; Edson, William; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Engelmann, Roderich; Engl, Albert; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Ferencei, Jozef; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Julia; Fisher, Matthew; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Florez Bustos, Andres Carlos; Flowerdew, Michael; Fonseca Martin, Teresa; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gandrajula, Reddy Pratap; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giuliani, Claudia; Giunta, Michele; Gjelsten, Børge Kile; Gkialas, Ioannis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glonti, George; Goblirsch-kolb, Maximilian; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Goeringer, Christian; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramstad, Eirik; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gunther, Jaroslav; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haefner, Petra; Hageboeck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Halladjian, Garabed; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Hartert, Jochen; Hartjes, Fred; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Hejbal, Jiri; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Herbert, Geoffrey Henry; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hofmann, Julia Isabell; Hohlfeld, Marc; Holmgren, Sven-Olof; Holzbauer, Jenny; Hong, Tae Min; Hooft van Huysduynen, Loek; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Janus, Michel; Jared, Richard; Jarlskog, Göran; Jeanty, Laura; Jeng, Geng-yuan; Jen-La Plante, Imai; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalinin, Sergey; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Karnevskiy, Mikhail; Karpov, Sergey; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Keener, Paul; Kehoe, Robert; Keil, Markus; Keller, John; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kitamura, Takumi; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koenig, Sebastian; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laier, Heiko; Laisne, Emmanuel; Lambourne, Luke; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larner, Aimee; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Le, Bao Tran; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legendre, Marie; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmacher, Marc; Lehmann Miotto, Giovanna; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leone, Robert; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lessard, Jean-Raphael; Lester, Christopher; Lester, Christopher Michael; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Losty, Michael; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lund, Esben; Lundberg, Johan; Lundberg, Olof; Lund-Jensen, Bengt; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Mackeprang, Rasmus; Madar, Romain; Madaras, Ronald; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeno, Mayuko; Maeno, Tadashi; Magnoni, Luca; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marques, Carlos; Marroquim, Fernando; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Jean-Pierre; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Homero; Martinez, Mario; Martin-Haugh, Stewart; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matsunaga, Hiroyuki; Matsushita, Takashi; Mättig, Peter; Mättig, Stefan; Mattmann, Johannes; Mattravers, Carly; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazzaferro, Luca; Mazzanti, Marcello; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meehan, Samuel; Meera-Lebbai, Razzak; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mendoza Navas, Luis; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Meric, Nicolas; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Michal, Sebastien; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Moeller, Victoria; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Molfetas, Angelos; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Thibaut; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newcomer, Mitchel; Newman, Paul; Nguyen, Duong Hai; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Papadelis, Aras; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pashapour, Shabnaz; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pearce, James; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penson, Alexander; Penwell, John; Perepelitsa, Dennis; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petteni, Michele; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pizio, Caterina; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Poddar, Sahill; Podlyski, Fabrice; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Quadt, Arnulf; Quarrie, David; Quayle, William; Quilty, Donnchadha; Radeka, Veljko; Radescu, Voica; Radloff, Peter; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Rangel-Smith, Camila; Rao, Kanury; Rauscher, Felix; Rave, Tobias Christian; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reinsch, Andreas; Reisinger, Ingo; Relich, Matthew; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rieck, Patrick; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Ritsch, Elmar; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodrigues, Luis; Roe, Adam; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romeo, Gaston; Romero Adam, Elena; Rompotis, Nikolaos; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rumyantsev, Leonid; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Rutherfoord, John; Ruthmann, Nils; Ruzicka, Pavel; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Saddique, Asif; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarrazin, Bjorn; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Craig; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaelicke, Andreas; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Christopher; Schmitt, Sebastian; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scott, Bill; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Sherwood, Peter; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Mariya; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snow, Joel; Snyder, Scott; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Solovyev, Victor; Soni, Nitesh; Sood, Alexander; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spanò, Francesco; Spearman, William Robert; Spighi, Roberto; Spigo, Giancarlo; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Staude, Arnold; Stavina, Pavel; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Su, Dong; Subramania, Halasya Siva; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tamsett, Matthew; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Tran, Huong Lan; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Tuna, Alexander Naip; Turchikhin, Semen; Turecek, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Berg, Richard; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Wolfgang; Wagner, Peter; Wahrmund, Sebastian; Wakabayashi, Jun; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watanabe, Ippei; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Webb, Samuel; Weber, Michele; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Whittington, Denver; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Williams, Sarah; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wittig, Tobias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xu, Chao; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Liwen; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yen, Andy L; Yildirim, Eda; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zaytsev, Alexander; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Lei; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zibell, Andre; Zieminska, Daria; Zimin, Nikolai; Zimmermann, Christoph; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Zinonos, Zinonas; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zutshi, Vishnu; Zwalinski, Lukasz

    2013-12-04

    This Letter presents measurements of the polarization of the top quark in top–antitop quark pair events, using 4.7 fb$^{¯1}$ of proton–proton collision data recorded with the ATLAS detector at the Large Hadron Collider at √s = 7 TeV. Final states containing one or two isolated leptons (electrons or muons) and jets are considered. Two measurements of $\\alpha_l P$, the product of the leptonic spin-analyzing power and the top quark polarization, are performed assuming that the polarization is introduced by either a CP conserving (CPC) or a CP violating (CPV) production process. The measurements obtained, $\\alpha_l P_{CPC} = −0.035± 0.014(stat) ± 0.037(syst)$ and $\\alpha_l P_{CPV} = 0.020 ± 0.016(stat)^{+0.013} _{-0.017}(syst)$, are in good agreement with the Standard Model prediction of negligible top quark polarization.

  3. First measurement of the π0-photoproduction on transversely polarized protons near the threshold

    International Nuclear Information System (INIS)

    Otte, Peter-Bernd

    2015-01-01

    This thesis addresses the photo induced production of neutral pions very close to the threshold energy. There are two objectives: Firstly, to test predictions made by these effective theories and models and secondly to determine all relevant partial wave amplitudes model independently from measured observables. In the future, this method shall also be applied to higher energies in the region of nucleon resonances. In the thesis, the execution and analysis of an experiment is presented which had been carried out at the Mainzer Mikrotron (MAMI) in the years 2010 to 2013. A circularly polarised, real photon beam was produced via tagged bremsstrahlung technique from the MAMI electron beam. For the first time in such experiments a transversely polarised proton target was utilised. For that purpose, butanol was dynamically polarised within a special apparatus. Because of using butanol as a target material - which resulted in less than 5 % of the pions produced on polarised protons - the background subtraction treatment is an essential task. The target was surrounded by an almost 4π-covering combined CB/TAPS detector setup. Two different background subtraction methods are being described, whereof the better had been applied in the analysis. In conclusion a detailed estimation of systematic errors are presented. For the first time transversely polarised protons provide access to previously not measured spin degrees of freedom. Using the measured data in combination with a previous experiment from the year 2008 with linearly polarised photon beam it was possible for the first time to determine model independently all complex s- and p-partial wave amplitudes. Furthermore, substantial improvements to the experimental apparatus were achieved. Examples are an electron beam polarimeter, a cellular multiplicity trigger for CB, as well as significant improvements to the data acquisition and trigger electronics. Parts of these developments are presented in this thesis.

  4. Measurement of the Induced Proton Polarization Pn in the 12C(e,e'rvec p) Reaction

    International Nuclear Information System (INIS)

    Woo, R.J.; Finn, J.M.; Jones, M.K.; McIntyre, J.I.; Perdrisat, C.F.; Barkhuff, D.H.; Lourie, R.W.; Milbrath, B.D.; Van Verst, S.P.; Bertozzi, W.; Dale, D.; Dodson, G.; Dow, K.A.; Farkhondeh, M.; Gilad, S.; Joo, K.; Kowalski, S.; Sarty, A.J.; Tieger, D.; Tschalaer, C.; Turchinetz, W.; Van Verst, S.P.; Warren, G.A.; Chen, J.P.; Mitchell, J.; Epstein, M.B.; Margaziotis, D.J.; Kelly, J.J.; Markowitz, P.; Madey, R.; Mertz, C.; Punjabi, V.; Rutt, P.M.; Ulmer, P.E.; Weinstein, L.; Vellidis, C.

    1998-01-01

    The first measurements of the induced proton polarization P n for the 12 C( e,e ' rvec p) reaction are reported. The experiment was performed at quasifree kinematics for energy and momentum transfer (ω,q)∼ (294 MeV, 756 MeV/c) and sampled a missing momentum range of 0 - 250 MeV/c. The induced polarization arises from final-state interactions and for these kinematics is dominated by the real part of the spin-orbit optical potential. The distorted-wave impulse approximation provides good agreement with data for the 1p 3/2 shell. The data for the continuum suggest that both the 1s 1/2 shell and underlying scr(l)>1 configurations contribute. copyright 1998 The American Physical Society

  5. FIRST POLARIZED PROTON COLLISIONS AT RHIC

    International Nuclear Information System (INIS)

    ROSER, T.; AHRENS, L.; ALESSI, J.; BAI, M.; BEEBE-WANG, J.; BRENNAN, J.M.; BROWN, K.A.; BUNCE, G.; CAMERON, P.; COURANT, E.D.; DREES, A.; FISCHER, W.; FLILLER, R. III; GLENN, W.; HUANG, H.; LUCCIO, A.U.; MACKAY, W.W.; MAKDISI, Y.; MONTAG, C.; PILAT, F.; PTITSYN, V.; SATOGATA, T.

    2002-01-01

    We successfully injected polarized protons in both RHIC rings and maintained polarization during acceleration up to 100 GeV per ring using two Siberian snakes in each ring. Each snake consists of four helical superconducting dipoles which rotate the polarization by 180 o about a horizontal axis. This is the first time that polarized protons have been accelerated to 100 GeV

  6. Measurement of Spin Observables in Inclusive Lambda and Neutral Kaon (short) Production with a 200 GEV Polarized Proton Beam.

    Science.gov (United States)

    Bravar, Alessandro

    The considerable polarization of hyperons produced at high x_ F has been known for a long time and has been interpreted in various theoretical models in terms of the constituents' spin. The spin dependence in inclusive Lambda and K _sp{s}{circ} production has been studied for the first time at high energy using the Fermilab 200 GeV/c polarized proton beam and a large forward spectrometer. The spin observables analyzing power A_ N, polarization P_0 and depolarization D _{NN} in inclusive Lambda production has been measured in the kinematic range of rm 0.2current picture of spin effects in hadronic interactions is much more complex than naively thought. The data on the spin dependence of the Lambda inclusive production indicate a substantial negative asymmetry A_ N at large x _ F and moderate p_ T, the polarization results P_0 are in fair agreement with previous measurements, and the double spin parameter D_ {NN} increases with x_ F and p_ T to relatively large positive values. The trend of the Lambda A_ N, which shows a kinematical behavior similar to P_0 with same sign but smaller in magnitude, might be suggestive of a common interpretation. These results, however, are difficult to accommodate within the present quark fragmentation models for hyperon polarization, based on SU(6) wave functions where the produced strange quark carries all the spin information of the Lambda, unless spectator di-quarks in the recombination process play a more significant role than generally expected. These results can further test the current ideas on the underlying mechanisms for the hyperon polarization and meson production asymmetry.

  7. Polarized proton beams since the ZGS

    International Nuclear Information System (INIS)

    Krisch, A.D.

    1994-01-01

    The author discusses research involving polarized proton beams since the ZGS's demise. He begins by reminding the attendee that in 1973 the ZGS accelerated the world's first high energy polarized proton beam; all in attendance at this meeting can be proud of this accomplishment. A few ZGS polarized proton beam experiments were done in the early 1970's; then from about 1976 until 1 October 1979, the majority of the ZGS running time was polarized running. A great deal of fundamental physics was done with the polarized beam when the ZGS ran as a dedicated polarized proton beam from about Fall 1977 until it shut down on 1 October 1979. The newly created polarization enthusiats then dispersed; some spread polarized seeds al over the world by polarizing beams elsewhere; some wound up running the High Energy and SSC programs at DOE

  8. Polarized protons and parity violating asymmetries

    International Nuclear Information System (INIS)

    Trueman, T.L.

    1984-01-01

    The potential for utilizing parity violating effects, associated with polarized protons, to study the standard model, proton structure, and new physics at the SPS Collider is summarized. 24 references

  9. The First Asymmetry Measurements in High-Energy Polarized Proton-Nucleus Collision at PHENIX-RHIC

    Directory of Open Access Journals (Sweden)

    Nakagawa Itaru

    2017-01-01

    Full Text Available The single spin asymmetries in very forward neutron production had been first observed about a decade ago at RHIC in transversely polarized proton + proton collision at √s = 200 GeV. Although neutron production near zero degrees is well described by the one-pion exchange (OPE framework, the OPE appeared to be not satisfactory to describe the observed analyzing power AN. The absorptive correction to the OPE generates the asymmetry as a consequence of a phase shift between the spin flip and non-spin flip amplitudes. However the amplitude predicted by the OPE is too small to explain the large observed asymmetries. Only the model which introduces interference between major pion and small a1-Reggeon exchange amplitudes has been successful in reproducing the experimental data. During RHIC Run-15, RHIC delivered polarized proton collisions with Au and Al for the first time, enabling the exploration of the mechanism of transverse single-spin asymmetries with nuclear collisions. A very striking A-dependence was discovered in very forward neutron production at PHENIX in transversely polarized proton + nucleus collision at √s = 200 GeV. Such a dependence has not been predicted from the existing framework which has been succesful in proton + proton collision. In this report, experimental and theoretical efforts are discussed to disentangle the mysterious A-dependence in the very forward neutron asymmetry.

  10. Measurement of recoil proton polarization in the process of. pi. /sup -/ photoproduction from neutrons in the energy range between 700 and 1200 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, H; Arai, I; Fujii, T; Ikeda, H; Iwasaki, H; Kajiura, N; Kamae, T; Kawabata, S; Ogawa, K; Sumiyoshi, T [Tokyo Univ. (Japan). Dept. of Physics

    1980-05-01

    The recoil proton polarization for ..gamma..n ..-->.. ..pi../sup -/p was measured around the third resonance region. Both momentum vectors of the proton and the pion were determined by the magnetic spectrometers. The proton polarization was measured by means of proton-carbon scattering in the polarization analyzer located behind the proton spectrometer. Below 900 MeV incident photon energy, our data are consistent with the other existing experimental data (THETA*sub..pi.. = 90/sup 0/) and the predictions of partial-wave analyses. Above 1000 MeV, however, a large discrepancy was observed between our data and the predictions of the partial-wave analyses. This discrepancy stands out as the pion c.m. angle increases. A new partial-wave analysis was made for ..gamma..n ..-->.. ..pi../sup -/p including our polarization data, and the accuracy of the experimentally determined electromagnetic coupling constants of the third resonances were greatly improved. In particular, a finite amount of the helicity 3/2 amplitude for the ..gamma..n ..-->.. F/sub 15/(1688) resonance was obtained against the predictions of the quark models, by Copley, Karl and Obryk and by Feynman, Kislinger and Ravendal but in agreement with the relativistic quark models of Sugimoto and Toya, and Kubota and Ohta.

  11. The optics of secondary polarized proton beams

    International Nuclear Information System (INIS)

    Carey, D.C.

    1990-05-01

    Polarized protons can be produced by the parity-violating decay of either lambda or sigma hyperons. A secondary bema of polarized protons can then be produced without the difficult procedure of accelerating polarized protons. The preservation of the polarization while the protons are being transmitted to a final focus places stringent limitations on the optics of the beam line. The equations of motion of a polarized particle in a magnetic field have been solved to first order for quadrupole and dipole magnets. The lowest order terms indicate that the polarization vector will be restored to its original direction upon passage through a magnetic system if the momentum vector is unaltered. Higher-order terms may be derived by an expansion in commutators of the rotation matrix and its longitudinal derivative. The higher-order polarization rotation terms then arise from the non-commutivity of the rotation matrices by large angles in three-dimensional space. 5 refs., 3 figs

  12. The G_E/G_M-ratio of the proton by recoil polarization measurement in e+parrow e'+p

    Science.gov (United States)

    Punjabi, Vina; Jones, Mark; Perdrisat, Charles F.; Quemener, Gilles

    1998-10-01

    The recently commissioned Hall A high resolution spectrometers (HRS) and the focal plane polarimeter (FPP) were used to obtain the ratio of the electric and magnetic form factors of the proton, G_E/G_M. This form factor ratio is proportional to the measured ratio of the transverse, P_t, to longitudinal, P_l, components of the recoiling proton polarization. The method takes advantage of the precession of the proton magnetic moment in the hadron HRS, which rotates the longitudinal polarization component into the plane of the FPP analyzer; this allows simultaneous measurement of both components of the polarization. The ratio P_t/P_l is independent of both the electron beam polarization and the polarimeter analyzing power. Most of the data were obtained with polarized beams of 100 μ A with polarization of ~ 0.39 incident on the 15 cm cell of the high power LH2 target. We will report the results for G_E/GM at several values of Q^2 between 0.5 and 3.5 GeV^2.

  13. Polarized proton acceleration program at the AGS

    International Nuclear Information System (INIS)

    Lee, Y.Y.

    1981-01-01

    The unexpected importance of high energy spin effects and the success of the ZGS in correcting many intrinsic and imperfection depolarizing resonances led us to attempt to accelerate polarized protons in the AGS. A multi-university/laboratory collaborative effort involving Argonne, Brookhaven, Michigan, Rice and Yale is underway to improve and modify to accelerate polarized protons. From the experience at the ZGS and careful studies made us confident of the feasibility of achieving a polarization of over 60 percent up to 26 GeV/c with an intensity of 10 11 approx. 10 12 per pulse. The first polarized proton acceleration at the AGS is expected in 1983

  14. Polarizing a stored proton beam by spin flip?

    International Nuclear Information System (INIS)

    Oellers, D.; Barion, L.; Barsov, S.; Bechstedt, U.; Benati, P.; Bertelli, S.; Chiladze, D.; Ciullo, G.; Contalbrigo, M.; Dalpiaz, P.F.; Dietrich, J.; Dolfus, N.; Dymov, S.; Engels, R.; Erven, W.; Garishvili, A.; Gebel, R.; Goslawski, P.

    2009-01-01

    We discuss polarizing a proton beam in a storage ring, either by selective removal or by spin flip of the stored ions. Prompted by recent, conflicting calculations, we have carried out a measurement of the spin-flip cross section in low-energy electron-proton scattering. The experiment uses the cooling electron beam at COSY as an electron target. The measured cross sections are too small for making spin flip a viable tool in polarizing a stored beam. This invalidates a recent proposal to use co-moving polarized positrons to polarize a stored antiproton beam.

  15. Polarized proton acceleration at the Brookhaven AGS

    International Nuclear Information System (INIS)

    Ahrens, L.A.

    1986-01-01

    At the conclusion of polarized proton commissioning in February 1986, protons with an average polarization of 45%, momentum of 21.7 GeV/c, and intensity of 2 x 10 10 protons per pulse, were extracted to an external polarimeter at the Brookhaven AGS. In order to maintain this polarization, five intrinsic and nearly forty imperfection depolarizing resonances had to be corrected. An apparent interaction between imperfection and intrinsic resonances occurring at very nearly the same energy was observed and the correction of imperfection resonances using ''beat'' magnetic harmonics discovered in the previous AGS commissioning run was further confirmed

  16. Measurement of the polarization parameter for antiproton-proton annihilation into charged pion and kaon pairs between 1.0 and 2.2 GeV/c

    International Nuclear Information System (INIS)

    Carter, A.A.; Coupland, M.; Eisenhandler, E.; Franklyn, C.; Gibson, W.R.; Hojvat, C.; Jeremiah, D.R.; Kalmus, P.I.P.; Pritchard, T.W.; Atkinson, M.; Duke, P.J.; Williams, D.T.; Woulds, J.N.; Arnison, G.T.J.; Astbury, A.; Hill, D.; Jones, D.P.

    1977-01-01

    The polarization parameter P for the reactions anti pp→π - π + and anti pp→K - K + has been measured over essentially the full angular range at 11 laboratory momenta between 1.0 and 2.2 GeV/c, using a proton target polarized perpendicular to the scattering plane. The angles and momenta of both final state particles were determined from wire spark chambers, using the deflection caused by the polarized target magnet. Between 1000 and 5300 p - π + events, and 140 and 1300 K - K + events, were measured at each momentum. Differential cross sections for anti pp→π - π + were obtained. These are in excellent agreement with previous results. The polarization parameter for both channels is very close to +1 over much of the angular range. Legendre polynomial fits to the data are presented. (Auth.)

  17. Construction and test of a polarized proton target

    International Nuclear Information System (INIS)

    Aures, R.

    1983-12-01

    This work describes experiments in which for the first time a proton target has been constructed which is polarized by the ''brute-force'' method. This method requires very low temperatures and high magnetic fields. The low temperatures (down to 10 mK) are obtained by a 3 He/ 4 He dilution refrigerator, the magnetic field (up to 9 T) is produced by a superconducting split pair magnet. The proton target has a volume of about 18 cm 3 and consists of pressed titaniumhydride powder, which has a titanium/-hydrogen ratio of 1:1,96. The hydrogen content is 1,3 mol. Titaniumhydride has the advantage of sufficient heat conductivity at low temperatures and a very high proton density. The heat conductivity of the sample is measured, with and without the presence of a magnetic field. Thermodynamical measurements and adiabatic demagnetisation experiments proved quantitatively the polarization of the protons. The polarization of the proton has been measured in a transmission experiment using polarized neutrons of 1.2 MeV. The result shows a good agreement of theoretical and actual polarization. From the results it can be concluded, that this sample can be used successfully as a polarized proton target for neutron scattering experiments to measure spin-correlations. (orig.) [de

  18. Polarized proton target-IV. Operations manual

    International Nuclear Information System (INIS)

    Hill, D.; Fletcher, O.; Moretti, A.; Onesto, F.

    1976-01-01

    Standard operating procedures are presented for the vacuum, cryogenic, and electronic systems of a polarized proton target. The systems are comprised of (1) a target cryostat; (2) a 4 He pumping system; (3) a 3 He pumping system; (4) a microwave system; (5) a magnet and power supply; (6) a computerized polarization monitor; and (7) miscellaneous auxiliary equipment

  19. Analyzing power measurement of pp elastic scattering in the Coulomb-nuclear interference region with the 200-GeV/c polarized-proton beam at Fermilab

    International Nuclear Information System (INIS)

    Akchurin, N.; Langland, J.; Onel, Y.; Bonner, B.E.; Corcoran, M.D.; Cranshaw, J.; Nessi-Tedaldi, F.; Nessi, M.; Nguyen, C.; Roberts, J.B.; Skeens, J.; White, J.L.; Bravar, A.; Giacomich, R.; Penzo, A.; Schiavon, P.; Zanetti, A.; Bystricky, J.; Lehar, F.; de Lesquen, A.; van Rossum, L.; Cossairt, J.D.; Read, A.L.; Derevschikov, A.A.; Matulenko, Y.A.; Meschanin, A.P.; Nurushev, S.B.; Patalakha, D.I.; Rykov, V.L.; Solovyanov, V.L.; Vasiliev, A.N.; Grosnick, D.P.; Hill, D.A.; Laghai, M.; Lopiano, D.; Ohashi, Y.; Shima, T.; Spinka, H.; Stanek, R.W.; Underwood, D.G.; Yokosawa, A.; Funahashi, H.; Goto, Y.; Imai, K.; Itow, Y.; Makino, S.; Masaike, A.; Miyake, K.; Nagamine, T.; Saito, N.; Yamashita, S.; Iwatani, K.; Kuroda, K.; Michalowicz, A.; Luehring, F.C.; Miller, D.H.; Maki, T.; Pauletta, G.; Rappazzo, G.F.; Salvato, G.; Takashima, R.

    1993-01-01

    The analyzing power A N of proton-proton elastic scattering in the Coulomb-nuclear interference region has been measured using the 200-GeV/c Fermilab polarized proton beam. A theoretically predicted interference between the hadronic non-spin-flip amplitude and the electromagnetic spin-flip amplitude is shown for the first time to be present at high energies in the region of 1.5x10 -3 to 5.0x10 -2 (GeV/c) 2 four-momentum transfer squared, and our results are analyzed in connection with theoretical calculations. In addition, the role of possible contributions of the hadronic spin-flip amplitude is discussed

  20. NMR dispersion measurement of dynamic nuclear polarization

    International Nuclear Information System (INIS)

    Davies, K.; Cox, S.F.J.

    1978-01-01

    The feasibility of monitoring dynamic nuclear polarization from the NMR dispersive susceptibility is examined. Two prototype instruments are tested in a polarized proton target using organic target material. The more promising employs a tunnel diode oscillator, inside the target cavity, and should provide a precise polarization measurement working at a frequency far enough from the main resonance for the disturbance of the measured polarization to be negligible. Other existing methods for measuring target polarization are briefly reviewed. (author)

  1. High luminosity polarized proton collisions at RHIC

    International Nuclear Information System (INIS)

    Roser, T.

    2001-01-01

    The Brookhaven Relativistic Heavy Ion Collider (RHIC) provides the unique opportunity to collide polarized proton beams at a center-of-mass energy of up to 500 GeV and luminosities of up to 2 x 10 32 cm -2 s -1 . Such high luminosity and high energy polarized proton collisions will open up the possibility of studying spin effects in hard processes. However, the acceleration of polarized beams in circular accelerators is complicated by the numerous depolarizing spin resonances. Using a partial Siberian snake and a rf dipole that ensure stable adiabatic spin motion during acceleration has made it possible to accelerate polarized protons to 25 GeV at the Brookhaven AGS. After successful operation of RHIC with gold beams polarized protons from the AGS have been successfully injected into RHIC and accelerated using a full Siberian snakes built from four superconducting helical dipoles. A new high energy proton polarimeter was also successfully commissioned. Operation with two snakes per RHIC ring is planned for next year

  2. Measurements of Cosmic-Ray Proton and Helium Spectra from the BESS-Polar Long-Duration Balloon Flights Over Antarctica

    Science.gov (United States)

    Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Itazaki, A.; Kim, K. C.; Kumazawa, T.; Kusumoto, A.; hide

    2016-01-01

    The BESS-Polar Collaboration measured the energy spectra of cosmic-ray protons and helium during two long-duration balloon flights over Antarctica in December 2004 and December 2007, at substantially different levels of solar modulation. Proton and helium spectra probe the origin and propagation history of cosmic rays in the galaxy, and are essential to calculations of the expected spectra of cosmic-ray antiprotons, positrons, and electrons from interactions of primary cosmic-ray nuclei with the interstellar gas, and to calculations of atmospheric muons and neutrinos. We report absolute spectra at the top of the atmosphere for cosmic-ray protons in the kinetic energy range 0.2-160 GeV and helium nuclei 0.15-80 GeV/nucleon. The corresponding magnetic rigidity ranges are 0.6-160 GV for protons and 1.1-160 GV for helium. These spectra are compared to measurements from previous BESS flights and from ATIC-2, PAMELA, and AMS-02. We also report the ratio of the proton and helium fluxes from 1.1 GV to 160 GV and compare to ratios from PAMELA and AMS-02.

  3. MEASUREMENTS OF COSMIC-RAY PROTON AND HELIUM SPECTRA FROM THE BESS-POLAR LONG-DURATION BALLOON FLIGHTS OVER ANTARCTICA

    Energy Technology Data Exchange (ETDEWEB)

    Abe, K.; Itazaki, A.; Kusumoto, A.; Matsukawa, Y.; Orito, R. [Kobe University, Kobe, Hyogo 657-8501 (Japan); Fuke, H. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa 252-5210 (Japan); Haino, S.; Hasegawa, M.; Horikoshi, A.; Kumazawa, T.; Makida, Y.; Matsuda, S.; Matsumoto, K.; Nozaki, M. [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Hams, T.; Mitchell, J. W. [NASA-Goddard Space Flight Center (NASA-GSFC), Greenbelt, MD 20771 (United States); Kim, K. C.; Lee, M. H.; Myers, Z. [IPST, University of Maryland, College Park, MD 20742 (United States); Nishimura, J., E-mail: Kenichi.Sakai@nasa.gov [The University of Tokyo, Bunkyo, Tokyo 113-0033 (Japan); and others

    2016-05-10

    The BESS-Polar Collaboration measured the energy spectra of cosmic-ray protons and helium during two long-duration balloon flights over Antarctica in 2004 December and 2007 December at substantially different levels of solar modulation. Proton and helium spectra probe the origin and propagation history of cosmic rays in the galaxy, and are essential to calculations of the expected spectra of cosmic-ray antiprotons, positrons, and electrons from interactions of primary cosmic-ray nuclei with the interstellar gas, and to calculations of atmospheric muons and neutrinos. We report absolute spectra at the top of the atmosphere for cosmic-ray protons in the kinetic energy range 0.2–160 GeV and helium nuclei in the range 0.15–80 GeV/nucleon. The corresponding magnetic-rigidity ranges are 0.6–160 GV for protons and 1.1–160 GV for helium. These spectra are compared to measurements from previous BESS flights and from ATIC-2, PAMELA, and AMS-02. We also report the ratio of the proton and helium fluxes from 1.1 to 160 GV and compare this to the ratios from PAMELA and AMS-02.

  4. Polarized proton and deuteron solid HD targets

    International Nuclear Information System (INIS)

    Honig, A.

    1977-01-01

    A decade has now elapsed since HD was proposed as a polarized proton and deuteron target with exceptionally desirable properties. These include a very high free proton proportion, independently polarizable proton and deuteron systems, and a ''frozen-spin'' mode of operation which allows separation of the functions of production and utilization of the highly polarized target. A discussion is given of what can be expected of the polarized HD system right now, without further research. The basic features of solid HD pertinent to its use as a ''frozen-spin'' target are outlined, then a summary is given of the particular experimental results which support the contention that the target will perform successfully, and finally, some feasible operating modes and the expected performances from them are presented

  5. Possibility of determining gluon polarization via polarized top pairs in gamma-proton scattering

    International Nuclear Information System (INIS)

    Atag, S.; Billur, A.A.

    2009-01-01

    We study the possibility for directly measuring the polarized gluon distribution in the process γp→t-bar t. It is shown that polarization asymmetry of the final top quarks is proportional to the gluon polarization. With available energy and luminosity, the collision of a polarized proton beam and a Compton backscattered photon beam can create polarized top quarks which carry the spin information of the process. Energy dependence and angular distributions of the polarization asymmetry of the top pairs has been discussed including statistical uncertainty.

  6. Study of the proton structure by measurements of polarization transfers in real Compton scattering at J Lab

    International Nuclear Information System (INIS)

    Fanelli, C.; Salme, G.; Cisbani, E.; Hamilton, D.; Wojtsekhowski, B.

    2014-01-01

    A preliminary analysis of polarization-transfer data at large scattering angle (70 degrees), obtained in an experiment of real Compton scattering on proton, performed in Hall-C of Jefferson Lab, is presented. It is also discussed the relevance of this kind of experiments for shedding light on the non-perturbative structure of the proton, at low energy, and on the transition from the non-perturbative regime to the perturbative one, that occurs at high energy. Moreover, the possibility to extract Compton form factors and the Generalized Parton Distributions (GPD), one of the most promising theoretical tool to determine the total angular momentum contribution of quarks and gluons to nucleon spin, is emphasized. The preliminary results appear consistent with GPD's based and Regge predictions. This is not sufficient yet to exclude pQCD COZ (Chernyak-Oglobin-Zhitnistsky) model, but it is another preliminary indication that the handbag approach seems to be the dominant mechanism at the energy of the experiment

  7. Polarizing a stored proton beam by spin-flip?

    International Nuclear Information System (INIS)

    Oellers, Dieter Gerd Christian

    2010-01-01

    The present thesis discusses the extraction of the electron-proton spin-flip cross-section. The experimental setup, the data analysis and the results are pictured in detail. The proton is described by a QCD-based parton model. In leading twist three functions are needed. The quark distribution, the helicity distribution and the transversity distribution. While the first two are well-known, the transversity distribution is largely unknown. A self-sufficient measurement of the transversity is possible in double polarized proton-antiproton scattering. This rises the need of a polarized antiproton beam. So far spin filtering is the only tested method to produce a polarized proton beam, which may be capable to hold also for antiprotons. In-situ polarization build-up of a stored beam either by selective removal or by spin-flip of a spin-(1)/(2) beam is mathematically described. A high spin-flip cross-section would create an effective method to produce a polarized antiproton beam by polarized positrons. Prompted by conflicting calculations, a measurement of the spin-flip cross-section in low-energy electron-proton scattering was carried out. This experiment uses the electron beam of the electron cooler at COSY as an electron target. The depolarization of the stored proton beam is detected. An overview of the experiment is followed by detailed descriptions of the cycle setup, of the electron target and the ANKE silicon tracking telescopes acting as a beam polarimeter. Elastic protondeuteron scattering is the analyzing reaction. The event selection is depicted and the beam polarization is calculated. Upper limits of the two electron-proton spin-flip cross-sections σ parallel and σ perpendicular to are deduced using the likelihood method. (orig.)

  8. Polarizing a stored proton beam by spin-flip?

    Energy Technology Data Exchange (ETDEWEB)

    Oellers, Dieter Gerd Christian

    2010-04-15

    The present thesis discusses the extraction of the electron-proton spin-flip cross-section. The experimental setup, the data analysis and the results are pictured in detail. The proton is described by a QCD-based parton model. In leading twist three functions are needed. The quark distribution, the helicity distribution and the transversity distribution. While the first two are well-known, the transversity distribution is largely unknown. A self-sufficient measurement of the transversity is possible in double polarized proton-antiproton scattering. This rises the need of a polarized antiproton beam. So far spin filtering is the only tested method to produce a polarized proton beam, which may be capable to hold also for antiprotons. In-situ polarization build-up of a stored beam either by selective removal or by spin-flip of a spin-(1)/(2) beam is mathematically described. A high spin-flip cross-section would create an effective method to produce a polarized antiproton beam by polarized positrons. Prompted by conflicting calculations, a measurement of the spin-flip cross-section in low-energy electron-proton scattering was carried out. This experiment uses the electron beam of the electron cooler at COSY as an electron target. The depolarization of the stored proton beam is detected. An overview of the experiment is followed by detailed descriptions of the cycle setup, of the electron target and the ANKE silicon tracking telescopes acting as a beam polarimeter. Elastic protondeuteron scattering is the analyzing reaction. The event selection is depicted and the beam polarization is calculated. Upper limits of the two electron-proton spin-flip cross-sections {sigma} {sub parallel} and {sigma} {sub perpendicular} {sub to} are deduced using the likelihood method. (orig.)

  9. Polarization measurement for internal polarized gaseous targets

    International Nuclear Information System (INIS)

    Ye Zhenyu; Ye Yunxiu; Lv Haijiang; Mao Yajun

    2004-01-01

    The authors present an introduction to internal polarized gaseous targets, polarization method, polarization measurement method and procedure. To get the total nuclear polarization of hydrogen atoms (including the polarization of the recombined hydrogen molecules) in the target cell, authors have measured the parameters relating to atomic polarization and polarized hydrogen atoms and molecules. The total polarization of the target during our measurement is P T =0.853 ± 0.036. (authors)

  10. Measurement of top quark polarization in top-antitop events from proton-proton collisions at √s=7  TeV using the ATLAS detector.

    Science.gov (United States)

    Aad, G; Abajyan, T; Abbott, B; Abdallah, J; Abdel Khalek, S; Abdinov, O; Aben, R; Abi, B; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Addy, T N; Adelman, J; Adomeit, S; Adye, T; Aefsky, S; Agatonovic-Jovin, T; Aguilar-Saavedra, J A; Agustoni, M; Ahlen, S P; Ahmad, A; Ahsan, M; Aielli, G; Åkesson, T P A; Akimoto, G; Akimov, A V; Alam, M A; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alessandria, F; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Aliev, M; Alimonti, G; Alio, L; Alison, J; Allbrooke, B M M; Allison, L J; Allport, P P; Allwood-Spiers, S E; Almond, J; Aloisio, A; Alon, R; Alonso, A; Alonso, F; Altheimer, A; Alvarez Gonzalez, B; Alviggi, M G; Amako, K; Amaral Coutinho, Y; Amelung, C; Ammosov, V V; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amram, N; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anderson, K J; Andreazza, A; Andrei, V; Anduaga, X S; Angelidakis, S; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonaki, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aperio Bella, L; Apolle, R; Arabidze, G; Aracena, I; Arai, Y; Arce, A T H; Arfaoui, S; Arguin, J-F; Argyropoulos, S; Arik, E; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Arslan, O; Artamonov, A; Artoni, G; Asai, S; Asbah, N; Ask, S; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Astbury, A; Atkinson, M; Atlay, N B; Auerbach, B; Auge, E; Augsten, K; Aurousseau, M; Avolio, G; Axen, D; Azuelos, G; Azuma, Y; Baak, M A; Bacci, C; Bach, A M; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Backus Mayes, J; Badescu, E; Bagiacchi, P; Bagnaia, P; Bai, Y; Bailey, D C; Bain, T; Baines, J T; Baker, O K; Baker, S; Balek, P; Balli, F; Banas, E; Banerjee, Sw; Banfi, D; Bangert, A; Bansal, V; Bansil, H S; Barak, L; Baranov, S P; Barber, T; Barberio, E L; Barberis, D; Barbero, M; Bardin, D Y; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartsch, V; Bassalat, A; Basye, A; Bates, R L; Batkova, L; Batley, J R; Battistin, M; Bauer, F; Bawa, H S; Beale, S; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, S; Beckingham, M; Becks, K H; Beddall, A J; Beddall, A; Bedikian, S; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belloni, A; Beloborodova, O L; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Bensinger, J R; Benslama, K; Bentvelsen, S; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Berglund, E; Beringer, J; Bernard, C; Bernat, P; Bernhard, R; Bernius, C; Bernlochner, F U; Berry, T; Bertella, C; Bertolucci, F; Besana, M I; Besjes, G J; Bessidskaia, O; Besson, N; Bethke, S; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Bieniek, S P; Bierwagen, K; Biesiada, J; Biglietti, M; Bilbao De Mendizabal, J; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Bittner, B; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blazek, T; Bloch, I; Blocker, C; Blocki, J; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Boddy, C R; Boehler, M; Boek, J; Boek, T T; Boelaert, N; Bogaerts, J A; Bogdanchikov, A G; Bogouch, A; Bohm, C; Bohm, J; Boisvert, V; Bold, T; Boldea, V; Bolnet, N M; Bomben, M; Bona, M; Boonekamp, M; Bordoni, S; Borer, C; Borisov, A; Borissov, G; Borri, M; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boterenbrood, H; Bouchami, J; Boudreau, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boutouil, S; Boveia, A; Boyd, J; Boyko, I R; Bozovic-Jelisavcic, I; Bracinik, J; Branchini, P; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Brelier, B; Bremer, J; Brendlinger, K; Brenner, R; Bressler, S; Bristow, T M; Britton, D; Brochu, F M; Brock, I; Brock, R; Broggi, F; Bromberg, C; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brost, E; Brown, G; Brown, J; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Bryngemark, L; Buanes, T; Buat, Q; Bucci, F; Buchanan, J; Buchholz, P; Buckingham, R M; Buckley, A G; Buda, S I; Budagov, I A; Budick, B; Buehrer, F; Bugge, L; Bulekov, O; Bundock, A C; Bunse, M; Burckhart, H; Burdin, S; Burgess, T; Burke, S; Busato, E; Büscher, V; Bussey, P; Buszello, C P; Butler, B; Butler, J M; Buttar, C M; Butterworth, J M; Buttinger, W; Buzatu, A; Byszewski, M; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Caloi, R; Calvet, D; Calvet, S; Camacho Toro, R; Camarri, P; Cameron, D; Caminada, L M; Caminal Armadans, R; Campana, S; Campanelli, M; Canale, V; Canelli, F; Canepa, A; Cantero, J; Cantrill, R; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capriotti, D; Capua, M; Caputo, R; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, A A; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Caso, C; Castaneda-Miranda, E; Castelli, A; Castillo Gimenez, V; Castro, N F; Cataldi, G; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caughron, S; Cavaliere, V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerio, B; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chan, K; Chang, P; Chapleau, B; Chapman, J D; Chapman, J W; Charlton, D G; Chavda, V; Chavez Barajas, C A; Cheatham, S; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, S; Chen, X; Chen, Y; Cheng, Y; Cheplakov, A; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiefari, G; Childers, J T; Chilingarov, A; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Choudalakis, G; Chouridou, S; Chow, B K B; Christidi, I A; Christov, A; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Ciapetti, G; Ciftci, A K; Ciftci, R; Cinca, D; Cindro, V; Ciocio, A; Cirilli, M; Cirkovic, P; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, P J; Clarke, R N; Clemens, J C; Clement, B; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coelli, S; Coffey, L; Cogan, J G; Coggeshall, J; Colas, J; Cole, B; Cole, S; Colijn, A P; Collins-Tooth, C; Collot, J; Colombo, T; Colon, G; Compostella, G; Conde Muiño, P; Coniavitis, E; Conidi, M C; Consonni, S M; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cooper-Smith, N J; Copic, K; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Cottin, G; Courneyea, L; Cowan, G; Cox, B E; Cranmer, K; Crépé-Renaudin, S; Crescioli, F; Cristinziani, M; Crosetti, G; Cuciuc, C-M; Cuenca Almenar, C; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Cuthbert, C; Czirr, H; Czodrowski, P; Czyczula, Z; D'Auria, S; D'Onofrio, M; D'Orazio, A; Da Cunha Sargedas De Sousa, M J; Da Via, C; Dabrowski, W; Dafinca, A; Dai, T; Dallaire, F; Dallapiccola, C; Dam, M; Damiani, D S; Daniells, A C; Dao, V; Darbo, G; Darlea, G L; Darmora, S; Dassoulas, J A; Davey, W; David, C; Davidek, T; Davies, E; Davies, M; Davignon, O; Davison, A R; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Castro, S; De Cecco, S; de Graat, J; De Groot, N; de Jong, P; De La Taille, C; De la Torre, H; De Lorenzi, F; De Nooij, L; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; De Zorzi, G; Dearnaley, W J; Debbe, R; Debenedetti, C; Dechenaux, B; Dedovich, D V; Degenhardt, J; Del Peso, J; Del Prete, T; Delemontex, T; Deliot, F; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Della Pietra, M; della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; Demers, S; Demichev, M; Demilly, A; Demirkoz, B; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Deviveiros, P O; Dewhurst, A; DeWilde, B; Dhaliwal, S; Dhullipudi, R; Di Ciaccio, A; Di Ciaccio, L; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Luise, S; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Diaz, M A; Diehl, E B; Dietrich, J; Dietzsch, T A; Diglio, S; Dindar Yagci, K; Dingfelder, J; Dinut, F; Dionisi, C; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; do Vale, M A B; Do Valle Wemans, A; Doan, T K O; Dobos, D; Dobson, E; Dodd, J; Doglioni, C; Doherty, T; Dohmae, T; Doi, Y; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donini, J; Dopke, J; Doria, A; Dos Anjos, A; Dotti, A; Dova, M T; Doyle, A T; Dris, M; Dubbert, J; Dube, S; Dubreuil, E; Duchovni, E; Duckeck, G; Duda, D; Dudarev, A; Dudziak, F; Duflot, L; Dufour, M-A; Duguid, L; Dührssen, M; Dunford, M; Duran Yildiz, H; Düren, M; Dwuznik, M; Ebke, J; Edson, W; Edwards, C A; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Eisenhandler, E; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Ellis, K; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Engelmann, R; Engl, A; Erdmann, J; Ereditato, A; Eriksson, D; Ernis, G; Ernst, J; Ernst, M; Ernwein, J; Errede, D; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Espinal Curull, X; Esposito, B; Etienne, F; Etienvre, A I; Etzion, E; Evangelakou, D; Evans, H; Fabbri, L; Fabre, C; Facini, G; Fakhrutdinov, R M; Falciano, S; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Fatholahzadeh, B; Favareto, A; Fayard, L; Federic, P; Fedin, O L; Fedorko, W; Fehling-Kaschek, M; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Ferencei, J; Fernando, W; Ferrag, S; Ferrando, J; Ferrara, V; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, J; Fisher, M J; Fitzgerald, E A; Flechl, M; Fleck, I; Fleischmann, P; Fleischmann, S; Fletcher, G T; Fletcher, G; Flick, T; Floderus, A; Flores Castillo, L R; Florez Bustos, A C; Flowerdew, M J; Fonseca Martin, T; Formica, A; Forti, A; Fortin, D; Fournier, D; Fox, H; Francavilla, P; Franchini, M; Franchino, S; Francis, D; Franklin, M; Franz, S; Fraternali, M; Fratina, S; French, S T; Friedrich, C; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gadatsch, S; Gadfort, T; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallo, V; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gandrajula, R P; Gao, Y S; Garay Walls, F M; Garberson, F; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geerts, D A A; Geich-Gimbel, Ch; Gellerstedt, K; Gemme, C; Gemmell, A; Genest, M H; Gentile, S; George, M; George, S; Gerbaudo, D; Gershon, A; Ghazlane, H; Ghodbane, N; Giacobbe, B; Giagu, S; Giangiobbe, V; Giannetti, P; Gianotti, F; Gibbard, B; Gibson, S M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gillman, A R; Gingrich, D M; Giokaris, N; Giordani, M P; Giordano, R; Giorgi, F M; Giovannini, P; Giraud, P F; Giugni, D; Giuliani, C; Giunta, M; Gjelsten, B K; Gkialas, I; Gladilin, L K; Glasman, C; Glatzer, J; Glazov, A; Glonti, G L; Goblirsch-Kolb, M; Goddard, J R; Godfrey, J; Godlewski, J; Goebel, M; Goeringer, C; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gomez Fajardo, L S; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; González de la Hoz, S; Gonzalez Parra, G; Gonzalez Silva, M L; Gonzalez-Sevilla, S; Goodson, J J; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorfine, G; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Gough Eschrich, I; Gouighri, M; Goujdami, D; Goulette, M P; Goussiou, A G; Goy, C; Gozpinar, S; Grabas, H M X; Graber, L; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Gramstad, E; Grancagnolo, F; Grancagnolo, S; Grassi, V; Gratchev, V; Gray, H M; Gray, J A; Graziani, E; Grebenyuk, O G; Greenwood, Z D; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grigalashvili, N; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grishkevich, Y V; Grivaz, J-F; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Groth-Jensen, J; Grybel, K; Guescini, F; Guest, D; Gueta, O; Guicheney, C; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gunther, J; Guo, J; Gupta, S; Gutierrez, P; Gutierrez Ortiz, N G; Guttman, N; Gutzwiller, O; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haefner, P; Hageboeck, S; Hajduk, Z; Hakobyan, H; Hall, D; Halladjian, G; Hamacher, K; Hamal, P; Hamano, K; Hamer, M; Hamilton, A; Hamilton, S; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Handel, C; Hanke, P; Hansen, J R; Hansen, J B; Hansen, J D; Hansen, P H; Hansson, P; Hara, K; Hard, A S; Harenberg, T; Harkusha, S; Harper, D; Harrington, R D; Harris, O M; Hartert, J; Hartjes, F; Harvey, A; Hasegawa, S; Hasegawa, Y; Hassani, S; Haug, S; Hauschild, M; Hauser, R; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayashi, T; Hayden, D; Hays, C P; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heinemann, B; Heisterkamp, S; Hejbal, J; Helary, L; Heller, C; Heller, M; Hellman, S; Hellmich, D; Helsens, C; Henderson, J; Henderson, R C W; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Hensel, C; Herbert, G H; Hernandez, C M; Hernández Jiménez, Y; Herrberg-Schubert, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hickling, R; Higón-Rodriguez, E; Hill, J C; Hiller, K H; Hillert, S; Hillier, S J; Hinchliffe, I; Hines, E; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoffman, J; Hoffmann, D; Hofmann, J I; Hohlfeld, M; Holmgren, S O; Holzbauer, J L; Hong, T M; Hooft van Huysduynen, L; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hsu, P J; Hsu, S-C; Hu, D; Hu, X; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huettmann, A; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Hurwitz, M; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Idarraga, J; Iengo, P; Igonkina, O; Ikegami, Y; Ikematsu, K; Ikeno, M; Iliadis, D; Ilic, N; Inamaru, Y; Ince, T; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Ivashin, A V; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jackson, B; Jackson, J N; Jackson, M; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansen, H; Janssen, J; Janus, M; Jared, R C; Jarlskog, G; Jeanty, L; Jeng, G-Y; Jen-La Plante, I; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Jha, M K; Ji, H; Ji, W; Jia, J; Jiang, Y; Jimenez Belenguer, M; Jin, S; Jinnouchi, O; Joergensen, M D; Joffe, D; Johansson, K E; Johansson, P; Johnert, S; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Jorge, P M; Joshi, K D; Jovicevic, J; Ju, X; Jung, C A; Jungst, R M; Jussel, P; Juste Rozas, A; Kaci, M; Kaczmarska, A; Kadlecik, P; Kado, M; Kagan, H; Kagan, M; Kajomovitz, E; Kalinin, S; Kama, S; Kanaya, N; Kaneda, M; Kaneti, S; Kanno, T; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kar, D; Karakostas, K; Karastathis, N; Karnevskiy, M; Karpov, S N; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kasieczka, G; Kass, R D; Kastanas, A; Kataoka, Y; Katre, A; Katzy, J; Kaushik, V; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Kazarinov, M Y; Keeler, R; Keener, P T; Kehoe, R; Keil, M; Keller, J S; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Kessoku, K; Keung, J; Khalil-zada, F; Khandanyan, H; Khanov, A; Kharchenko, D; Khodinov, A; Khomich, A; Khoo, T J; Khoriauli, G; Khoroshilov, A; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H; Kim, S H; Kimura, N; Kind, O; King, B T; King, M; King, R S B; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kitamura, T; Kittelmann, T; Kiuchi, K; Kladiva, E; Klein, M; Klein, U; Kleinknecht, K; Klemetti, M; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klinkby, E B; Klioutchnikova, T; Klok, P F; Kluge, E-E; Kluit, P; Kluth, S; Kneringer, E; Knoops, E B F G; Knue, A; Ko, B R; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koenig, S; Koevesarki, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohn, F; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Koletsou, I; Koll, J; Komar, A A; Komori, Y; Kondo, T; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Korotkov, V A; Kortner, O; Kortner, S; Kostyukhin, V V; Kotov, S; Kotov, V M; Kotwal, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kral, V; Kramarenko, V A; Kramberger, G; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Kretzschmar, J; Kreutzfeldt, K; Krieger, N; Krieger, P; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Kruker, T; Krumnack, N; Krumshteyn, Z V; Kruse, A; Kruse, M K; Kruskal, M; Kubota, T; Kuday, S; Kuehn, S; Kugel, A; Kuhl, T; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunkle, J; Kupco, A; Kurashige, H; Kurata, M; Kurochkin, Y A; Kurumida, R; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwee, R; La Rosa, A; La Rotonda, L; Labarga, L; Lablak, S; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Laier, H; Laisne, E; Lambourne, L; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lange, C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Larner, A; Lassnig, M; Laurelli, P; Lavorini, V; Lavrijsen, W; Laycock, P; Le, B T; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, H; Lee, J S H; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legendre, M; Legger, F; Leggett, C; Lehan, A; Lehmacher, M; Lehmann Miotto, G; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Lendermann, V; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leone, R; Leonhardt, K; Leontsinis, S; Leroy, C; Lessard, J-R; Lester, C G; Lester, C M; Levêque, J; Levin, D; Levinson, L J; Lewis, A; Lewis, G H; Leyko, A M; Leyton, M; Li, B; Li, B; Li, H; Li, H L; Li, S; Li, X; Liang, Z; Liao, H; Liberti, B; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Limper, M; Lin, S C; Linde, F; Lindquist, B E; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y; Livan, M; Livermore, S S A; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E; Loch, P; Lockman, W S; Loddenkoetter, T; Loebinger, F K; Loevschall-Jensen, A E; Loginov, A; Loh, C W; Lohse, T; Lohwasser, K; Lokajicek, M; Lombardo, V P; Long, R E; Lopes, L; Lopez Mateos, D; Lopez Paredes, B; Lorenz, J; Lorenzo Martinez, N; Losada, M; Loscutoff, P; Losty, M J; Lou, X; Lounis, A; Love, J; Love, P A; Lowe, A J; Lu, F; Lubatti, H J; Luci, C; Lucotte, A; Ludwig, D; Ludwig, I; Ludwig, J; Luehring, F; Lukas, W; Luminari, L; Lund, E; Lundberg, J; Lundberg, O; Lund-Jensen, B; Lungwitz, M; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Maček, B; Machado Miguens, J; Macina, D; Mackeprang, R; Madar, R; Madaras, R J; Maddocks, H J; Mader, W F; Madsen, A; Maeno, M; Maeno, T; Magnoni, L; Magradze, E; Mahboubi, K; Mahlstedt, J; Mahmoud, S; Mahout, G; Maiani, C; Maidantchik, C; Maio, A; Majewski, S; Makida, Y; Makovec, N; Mal, P; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; Manhaes de Andrade Filho, L; Manjarres Ramos, J A; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mapelli, L; March, L; Marchand, J F; Marchese, F; Marchiori, G; Marcisovsky, M; Marino, C P; Marques, C N; Marroquim, F; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, B; Martin, J P; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, H; Martinez, M; Martin-Haugh, S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Matsunaga, H; Matsushita, T; Mättig, P; Mättig, S; Mattmann, J; Mattravers, C; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazzaferro, L; Mazzanti, M; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; Mclaughlan, T; McMahon, S J; McPherson, R A; Meade, A; Mechnich, J; Mechtel, M; Medinnis, M; Meehan, S; Meera-Lebbai, R; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Melachrinos, C; Mellado Garcia, B R; Meloni, F; Mendoza Navas, L; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Meric, N; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Merritt, H; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Meyer, J; Michal, S; Middleton, R P; Migas, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Miller, D W; Mills, W J; Mills, C; Milov, A; Milstead, D A; Milstein, D; Minaenko, A A; Miñano Moya, M; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mirabelli, G; Mitani, T; Mitrevski, J; Mitsou, V A; Mitsui, S; Miyagawa, P S; Mjörnmark, J U; Moa, T; Moeller, V; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Molfetas, A; Mönig, K; Monini, C; Monk, J; Monnier, E; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Mora Herrera, C; Moraes, A; Morange, N; Morel, J; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, M; Morii, M; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Morvaj, L; Moser, H G; Mosidze, M; Moss, J; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Mudd, R D; Mueller, F; Mueller, J; Mueller, K; Mueller, T; Mueller, T; Muenstermann, D; Munwes, Y; Murillo Quijada, J A; Murray, W J; Mussche, I; Musto, E; Myagkov, A G; Myska, M; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagel, M; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Nanava, G; Napier, A; Narayan, R; Nash, M; Nattermann, T; Naumann, T; Navarro, G; Neal, H A; Nechaeva, P Yu; Neep, T J; Negri, A; Negri, G; Negrini, M; Nektarijevic, S; Nelson, A; Nelson, T K; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neusiedl, A; Neves, R M; Nevski, P; Newcomer, F M; Newman, P R; Nguyen, D H; Nguyen Thi Hong, V; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolics, K; Nikolopoulos, K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nodulman, L; Nomachi, M; Nomidis, I; Norberg, S; Nordberg, M; Novakova, J; Nozaki, M; Nozka, L; Ntekas, K; Nuncio-Quiroz, A-E; Nunes Hanninger, G; Nunnemann, T; Nurse, E; O'Brien, B J; O'grady, F; O'Neil, D C; O'Shea, V; Oakes, L B; Oakham, F G; Oberlack, H; Ocariz, J; Ochi, A; Ochoa, M I; Oda, S; Odaka, S; Odier, J; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohshima, T; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olchevski, A G; Olivares Pino, S A; Oliveira, M; Oliveira Damazio, D; Oliver Garcia, E; Olivito, D; Olszewski, A; Olszowska, J; Onofre, A; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Otero y Garzon, G; Otono, H; Ottersbach, J P; Ouchrif, M; Ouellette, E A; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Owen, S; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Padilla Aranda, C; Pagan Griso, S; Paganis, E; Pahl, C; Paige, F; Pais, P; Pajchel, K; Palacino, G; Paleari, C P; Palestini, S; Pallin, D; Palma, A; Palmer, J D; Pan, Y B; Panagiotopoulou, E; Panduro Vazquez, J G; Pani, P; Panikashvili, N; Panitkin, S; Pantea, D; Papadelis, A; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, M A; Parodi, F; Parsons, J A; Parzefall, U; Pashapour, S; Pasqualucci, E; Passaggio, S; Passeri, A; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Patricelli, S; Pauly, T; Pearce, J; Pedersen, M; Pedraza Lopez, S; Pedraza Morales, M I; Peleganchuk, S V; Pelikan, D; Peng, H; Penning, B; Penson, A; Penwell, J; Perepelitsa, D V; Perez Cavalcanti, T; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L; Pernegger, H; Perrino, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, J; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petrolo, E; Petrucci, F; Petteni, M; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Piec, S M; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinder, A; Pinfold, J L; Pingel, A; Pinto, B; Pizio, C; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Poddar, S; Podlyski, F; Poettgen, R; Poggioli, L; Pohl, D; Pohl, M; Polesello, G; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pomeroy, D; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Portell Bueso, X; Pospelov, G E; Pospisil, S; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Prabhu, R; Pralavorio, P; Pranko, A; Prasad, S; Pravahan, R; Prell, S; Price, D; Price, J; Price, L E; Prieur, D; Primavera, M; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Prudent, X; Przybycien, M; Przysiezniak, H; Psoroulas, S; Ptacek, E; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Pylypchenko, Y; Qian, J; Quadt, A; Quarrie, D R; Quayle, W B; Quilty, D; Radeka, V; Radescu, V; Radloff, P; Ragusa, F; Rahal, G; Rajagopalan, S; Rammensee, M; Rammes, M; Randle-Conde, A S; Rangel-Smith, C; Rao, K; Rauscher, F; Rave, T C; Ravenscroft, T; Raymond, M; Read, A L; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Reinsch, A; Reisinger, I; Relich, M; Rembser, C; Ren, Z L; Renaud, A; Rescigno, M; Resconi, S; Resende, B; Reznicek, P; Rezvani, R; Richter, R; Richter-Was, E; Ridel, M; Rieck, P; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Rios, R R; Ritsch, E; Riu, I; Rivoltella, G; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Rocha de Lima, J G; Roda, C; Roda Dos Santos, D; Rodrigues, L; Roe, A; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Romeo, G; Romero Adam, E; Rompotis, N; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, A; Rose, M; Rosendahl, P L; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Ruckstuhl, N; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rumyantsev, L; Rurikova, Z; Rusakovich, N A; Ruschke, A; Rutherfoord, J P; Ruthmann, N; Ruzicka, P; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Saddique, A; Sadeh, I; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Sakamoto, H; Salamanna, G; Salamon, A; Saleem, M; Salek, D; Salihagic, D; Salnikov, A; Salt, J; Salvachua Ferrando, B M; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Sanchez, A; Sánchez, J; Sanchez Martinez, V; Sandaker, H; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, T; Sandoval, C; Sandstroem, R; Sankey, D P C; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Sapronov, A; Saraiva, J G; Sarangi, T; Sarkisyan-Grinbaum, E; Sarrazin, B; Sarri, F; Sartisohn, G; Sasaki, O; Sasaki, Y; Sasao, N; Satsounkevitch, I; Sauvage, G; Sauvan, E; Sauvan, J B; Savard, P; Savinov, V; Savu, D O; Sawyer, C; Sawyer, L; Saxon, D H; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaefer, R; Schaelicke, A; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Scherzer, M I; Schiavi, C; Schieck, J; Schillo, C; Schioppa, M; Schlenker, S; Schmidt, E; Schmieden, K; Schmitt, C; Schmitt, C; Schmitt, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schram, M; Schroeder, C; Schroer, N; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwartzman, A; Schwegler, Ph; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Schwoerer, M; Sciacca, F G; Scifo, E; Sciolla, G; Scott, W G; Scutti, F; Searcy, J; Sedov, G; Sedykh, E; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekula, S J; Selbach, K E; Seliverstov, D M; Sellers, G; Seman, M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Seuster, R; Severini, H; Sforza, F; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shank, J T; Shao, Q T; Shapiro, M; Shatalov, P B; Shaw, K; Sherwood, P; Shimizu, S; Shimojima, M; Shin, T; Shiyakova, M; Shmeleva, A; Shochet, M J; Short, D; Shrestha, S; Shulga, E; Shupe, M A; Shushkevich, S; Sicho, P; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silbert, O; Silva, J; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simoniello, R; Simonyan, M; Sinervo, P; Sinev, N B; Sipica, V; Siragusa, G; Sircar, A; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinnari, L A; Skottowe, H P; Skovpen, K Yu; Skubic, P; Slater, M; Slavicek, T; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, K M; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snow, J; Snyder, S; Sobie, R; Sodomka, J; Soffer, A; Soh, D A; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solfaroli Camillocci, E; Solodkov, A A; Solovyanov, O V; Solovyev, V; Soni, N; Sood, A; Sopko, V; Sopko, B; Sosebee, M; Soualah, R; Soueid, P; Soukharev, A M; South, D; Spagnolo, S; Spanò, F; Spearman, W R; Spighi, R; Spigo, G; Spousta, M; Spreitzer, T; Spurlock, B; St Denis, R D; Stahlman, J; Stamen, R; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Staude, A; Stavina, P; Steele, G; Steinbach, P; Steinberg, P; Stekl, I; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stern, S; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoerig, K; Stoicea, G; Stonjek, S; Stradling, A R; Straessner, A; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Stugu, B; Stumer, I; Stupak, J; Sturm, P; Styles, N A; Su, D; Subramania, Hs; Subramaniam, R; Succurro, A; Sugaya, Y; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, Y; Svatos, M; Swedish, S; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Tackmann, K; Taffard, A; Tafirout, R; Taiblum, N; Takahashi, Y; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tamsett, M C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tanasijczuk, A J; Tani, K; Tannoury, N; Tapprogge, S; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, C; Taylor, F E; Taylor, G N; Taylor, W; Teinturier, M; Teischinger, F A; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Ten Kate, H; Teng, P K; Terada, S; Terashi, K; Terron, J; Testa, M; Teuscher, R J; Therhaag, J; Theveneaux-Pelzer, T; Thoma, S; Thomas, J P; Thompson, E N; Thompson, P D; Thompson, P D; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thong, W M; Thun, R P; Tian, F; Tibbetts, M J; Tic, T; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todorov, T; Todorova-Nova, S; Toggerson, B; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Tonoyan, A; Topfel, C; Topilin, N D; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Tran, H L; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Triplett, N; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; True, P; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsung, J-W; Tsuno, S; Tsybychev, D; Tua, A; Tudorache, A; Tudorache, V; Tuggle, J M; Tuna, A N; Turchikhin, S; Turecek, D; Turk Cakir, I; Turra, R; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Uchida, K; Ueda, I; Ueno, R; Ughetto, M; Ugland, M; Uhlenbrock, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Urbaniec, D; Urquijo, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Vahsen, S; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Berg, R; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; Van Der Leeuw, R; van der Ster, D; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; Vanadia, M; Vandelli, W; Vaniachine, A; Vankov, P; Vannucci, F; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vassilakopoulos, V I; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veloso, F; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigne, R; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Virzi, J; Vitells, O; Viti, M; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, A; Vokac, P; Volpi, G; Volpi, M; Volpini, G; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vu Anh, T; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, W; Wagner, P; Wahrmund, S; Wakabayashi, J; Walch, S; Walder, J; Walker, R; Walkowiak, W; Wall, R; Waller, P; Walsh, B; Wang, C; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, X; Warburton, A; Ward, C P; Wardrope, D R; Warsinsky, M; Washbrook, A; Wasicki, C; Watanabe, I; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, A T; Waugh, B M; Webb, S; Weber, M S; Webster, J S; Weidberg, A R; Weigell, P; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wendland, D; Weng, Z; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Werth, M; Wessels, M; Wetter, J; Whalen, K; White, A; White, M J; White, R; White, S; Whiteson, D; Whittington, D; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wijeratne, P A; Wildauer, A; Wildt, M A; Wilhelm, I; Wilkens, H G; Will, J Z; Williams, E; Williams, H H; Williams, S; Willis, W; Willocq, S; Wilson, J A; Wilson, A; Wingerter-Seez, I; Winkelmann, S; Winklmeier, F; Wittgen, M; Wittig, T; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wong, W C; Wooden, G; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wraight, K; Wright, M; Wrona, B; Wu, S L; Wu, X; Wu, Y; Wulf, E; Wyatt, T R; Wynne, B M; Xella, S; Xiao, M; Xu, C; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yamada, M; Yamaguchi, H; Yamaguchi, Y; Yamamoto, A; Yamamoto, K; Yamamoto, S; Yamamura, T; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, U K; Yang, Y; Yang, Z; Yanush, S; Yao, L; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yen, A L; Yildirim, E; Yilmaz, M; Yoosoofmiya, R; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J; Yuan, L; Yurkewicz, A; Zabinski, B; Zaidan, R; Zaitsev, A M; Zambito, S; Zanello, L; Zanzi, D; Zaytsev, A; Zeitnitz, C; Zeman, M; Zemla, A; Zenin, O; Zeniš, T; Zerwas, D; Zevi Della Porta, G; Zhang, D; Zhang, H; Zhang, J; Zhang, L; Zhang, X; Zhang, Z; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zibell, A; Zieminska, D; Zimin, N I; Zimmermann, C; Zimmermann, R; Zimmermann, S; Zimmermann, S; Zinonos, Z; Ziolkowski, M; Zitoun, R; Zivković, L; Zobernig, G; Zoccoli, A; Zur Nedden, M; Zurzolo, G; Zutshi, V; Zwalinski, L

    2013-12-06

    This Letter presents measurements of the polarization of the top quark in top-antitop quark pair events, using 4.7  fb(-1) of proton-proton collision data recorded with the ATLAS detector at the Large Hadron Collider at √s=7  TeV. Final states containing one or two isolated leptons (electrons or muons) and jets are considered. Two measurements of α(ℓ)P, the product of the leptonic spin-analyzing power and the top quark polarization, are performed assuming that the polarization is introduced by either a CP conserving or a maximally CP violating production process. The measurements obtained, α(ℓ)P(CPC)=-0.035±0.014(stat)±0.037(syst) and α(ℓ)P(CPV)=0.020±0.016(stat)(-0.017)(+0.013)(syst), are in good agreement with the standard model prediction of negligible top quark polarization.

  11. Experiments with Fermilab polarized proton and polarized antiproton beams

    International Nuclear Information System (INIS)

    Yokosawa, A.

    1990-01-01

    We summarize activities concerning the Fermilab polarized beams. They include a brief description of the polarized-beam facility, measurements of beam polarization by polarimeters, asymmetry measurements in the π degree production at high p perpendicular and in the Λ (Σ degree), π ± , π degree production at large x F , and Δσ L (pp, bar pp) measurements. 18 refs

  12. Measurement of the transverse polarization of $\\Lambda$ and $\\bar{\\Lambda}$ hyperons produced in proton--proton collisions at $\\sqrt{s}$=7 TeV using the ATLAS detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baas, Alessandra; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boddy, Christopher Richard; Boehler, Michael; Boek, Thorsten Tobias; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchholz, Peter; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bundock, Aaron Colin; Burckhart, Helfried; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charfeddine, Driss; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiefari, Giovanni; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Chouridou, Sofia; Chow, Bonnie Kar Bo; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Daniells, Andrew Christopher; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dwuznik, Michal; Dyndal, Mateusz; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Engelmann, Roderich; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrag, Samir; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franconi, Laura; Franklin, Melissa; Fraternali, Marco; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Glonti, George; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Grebenyuk, Oleg; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guttman, Nir; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Satoshi; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hoffmann, Dirk; Hohlfeld, Marc; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hee Yeun; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Klok, Peter; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; König, Sebastian; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laier, Heiko; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Hurng-Chun; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzen, Georg; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Lester, Christopher Michael; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan; Long, Robin Eamonn; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeno, Mayuko; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mantoani, Matteo; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Homero; Martinez, Mario; Martin-Haugh, Stewart; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Mechnich, Joerg; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Meric, Nicolas; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Middleton, Robin; Migas, Sylwia; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morton, Alexander; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pearce, James; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pires, Sylvestre; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poddar, Sahill; Podlyski, Fabrice; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Prell, Soeren; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Przysiezniak, Helenka; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Qureshi, Anum; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Rao, Kanury; Rauscher, Felix; Rave, Stefan; Rave, Tobias Christian; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Huan; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rieck, Patrick; Rieger, Julia; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodrigues, Luis; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Matthew; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Saddique, Asif; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R~Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schieck, Jochen; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellers, Graham; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Simoniello, Rosa; Sinervo, Pekka; Sinev, Nikolai; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Kenway; Smith, Matthew; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosa, David; Sosebee, Mark; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spanò, Francesco; Spearman, William Robert; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; Spreitzer, Teresa; St Denis, Richard Dante; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Tran, Huong Lan; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloso, Filipe; Velz, Thomas; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Virzi, Joseph; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chao; Wang, Chiho; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wright, Michael; Wu, Mengqing; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yanush, Serguei; Yao, Liwen; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Lei; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Zinonos, Zinonas; Ziolkowski, Michael; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz

    2015-02-10

    The transverse polarization of $\\Lambda$ and $\\bar\\Lambda$ hyperons produced in proton--proton collisions at a center-of-mass energy of 7 TeV is measured. The analysis uses 760 $\\mu$b$^{-1}$ of minimum bias data collected by the ATLAS detector at the LHC in the year 2010. The measured transverse polarization averaged over Feynman $x_{\\rm F}$ from $5\\times 10^{-5}$ to 0.01 and transverse momentum $p_{\\rm T}$ from 0.8 to 15 GeV is $-0.010 \\pm 0.005({\\rm stat}) \\pm 0.004({\\rm syst})$ for $\\Lambda$ and $0.002 \\pm 0.006({\\rm stat}) \\pm 0.004({\\rm syst})$ for $\\bar\\Lambda$. It is also measured as a function of $x_{\\rm F}$ and $p_{\\rm T}$, but no significant dependence on these variables is observed. Prior to this measurement, the polarization was measured at fixed-target experiments with center-of-mass energies up to about 40 GeV. The ATLAS results are compatible with the extrapolation of a fit from previous measurements to the $x_{\\rm F}$ range covered by this mesurement.

  13. Spin flipping a stored polarized proton beam

    International Nuclear Information System (INIS)

    Caussyn, D.D.; Derbenev, Y.S.; Ellison, T.J.P.; Lee, S.Y.; Rinckel, T.; Schwandt, P.; Sperisen, F.; Stephenson, E.J.; von Przewoski, B.; Blinov, B.B.; Chu, C.M.; Courant, E.D.; Crandell, D.A.; Kaufman, W.A.; Krisch, A.D.; Nurushev, T.S.; Phelps, R.A.; Ratner, L.G.; Wong, V.K.; Ohmori, C.

    1994-01-01

    We recently studied the spin flipping of a vertically polarized, stored 139-MeV proton beam. To flip the spin, we induced an rf depolarizing resonance by sweeping our rf solenoid magnet's frequency through the resonance frequency. With multiple spin flips, we found a polarization loss of 0.0000±0.0005 per spin flip under the best conditions; this loss increased significantly for small changes in the conditions. Minimizing the depolarization during each spin flip is especially important because frequent spin flipping could significantly reduce the systematic errors in stored polarized-beam experiments

  14. Measuring the sea quark polarization

    International Nuclear Information System (INIS)

    Makdisi, Y.

    1993-01-01

    Spin is a fundamental degree of freedom and measuring the spin structure functions of the nucleon should be a basic endeavor for hadron physics. Polarization experiments have been the domain of fixed target experiments. Over the years large transverse asymmetries have been observed where the prevailing QCD theories predicted little or no asymmetries, and conversely the latest deep inelastic scattering experiments of polarized leptons from polarized targets point to the possibility that little of the nucleon spin is carried by the valence quarks. The possibility of colliding high luminosity polarized proton beams in the Brookhaven Relativistic Heavy Ion Collider (RHIC) provides a great opportunity to extend these studies and systematically probe the spin dependent parton distributions specially to those reactions that are inaccessible to current experiments. This presentation focuses on the measurement of sea quark and possibly the strange quark polarization utilizing the approved RHIC detectors

  15. RHIC spin: The first polarized proton collider

    International Nuclear Information System (INIS)

    Roser, T.

    1994-01-01

    The very successful program of QCD and electroweak tests at the high energy hadron colliders have shown that the perturbative QCD has progressed towards becoming a ''precision'' theory. At the same time, it has been shown that with the help of Siberian Snakes it is feasible to accelerate polarized protons to high enough energies where the proven methods of collider physics can be used to probe the spin content of the proton but also where fundamental tests of the spin effects in the standard model are possible. With Siberian Snakes the Relativistic Heavy Ion Collider (RHIC) will be the first collider to allow for 250 GeV on 250 GeV polarized proton collisions

  16. Hyperon beams as a source of polarized protons

    International Nuclear Information System (INIS)

    Underwood, D.G.

    1978-01-01

    A high energy polarized proton beam which would utilize lambda decays as a source of polarized protons was proposed. We discuss the operation of such a beam and related physics experiments. 12 references

  17. ZGS beam transport for transverse or longitudinally polarized protons

    International Nuclear Information System (INIS)

    Colton, E.; Auer, I.P.; Beretvas, A.

    1977-01-01

    A combination of dipole magnets and a superconducting solenoid is utilized to transform the spin direction of transversely polarized protons from the Argonne ZGS for use in proton-proton scattering experiments

  18. Proton-proton elastic scattering measurements at COSY

    Energy Technology Data Exchange (ETDEWEB)

    Bagdasarian, Zara [Forschungszentrum Juelich, Juelich (Germany); Tbilisi State University, Tbilisi (Georgia); Collaboration: ANKE-Collaboration

    2014-07-01

    To construct the reliable phase shift analysis (PSA) that can successfully describe the nucleon-nucleon (NN) interaction it is necessary to measure variety of experimental observables for both proton-proton (pp) and neutron-proton (np) elastic scattering. The polarized beams and targets at COSY-ANKE facility allow a substantial contribution to the existing database. The experiment was carried out in April 2013 at ANKE using a transversely polarized proton beam incident on an unpolarized hydrogen cluster target. Six beam energies of T{sub p}=0.8,1.6,1.8,2.0,2.2,2.4 GeV were used. The aim of this talk is to present the preliminary results for the analyzing power (A{sub y}) for the pp elastic scattering in the so-far unexplored 5 <θ{sub cm}<30 angular range. Our measurements are also compared to the world data and current partial wave solutions.

  19. Testing proton spin models with polarized beams

    International Nuclear Information System (INIS)

    Ramsey, G.P.

    1991-01-01

    We review models for spin-weighted parton distributions in a proton. Sum rules involving the nonsinglet components of the structure function xg 1 p help narrow the range of parameters in these models. The contribution of the γ 5 anomaly term depends on the size of the integrated polarized gluon distribution and experimental predictions depend on its size. We have proposed three models for the polarized gluon distributions, whose range is considerable. These model distributions give an overall range is considerable. These model distributions give an overall range of parameters that can be tested with polarized beam experiments. These are discussed with regard to specific predictions for polarized beam experiments at energies typical of UNK

  20. The first acceleration test of polarized protons in KEK PS

    International Nuclear Information System (INIS)

    Hiramatsu, Shigenori; Sato, Hikaru; Toyama, Takeshi

    1984-03-01

    The outline of the polarized proton acceleration project at KEK and the results of the first acceleration test are described. Depolarization in the 500 MeV booster synchrotron was investigated as the first step of this program. The beam polarization was measured in the 20 MeV beam transport line from the linac to the booster and in the main ring at the injection energy. About 40 % of the linac beam polarization was kept in the main ring. This acceleration test encouraged us to proceed with this program. (author)

  1. Measurement of proton polarization in the reaction. gamma. /ital p//r arrow//ital p/. pi. /sup 0/ at an angle theta/sup *//sub. pi. /sup 0//=80/degree/ in a linearly polarized photon beam

    Energy Technology Data Exchange (ETDEWEB)

    Avakyan, R. O.; Avakyan, E. O.; Avetisyan, A. E.; Aivazyan, R. B.; Arestakesyan, G. A.; Bagdasryan, A. S.; Vartapetyan, G. A.; Garibyan, Y. A.; Eganov, V. S.; Karapetyan, A. P.; and others

    1988-12-01

    Measurements are reported of the energy dependence of the /ital p//sub /ital xz// and /ital P//sub /ital y// components of the polarization vector of the recoil protons in the reaction ..gamma../ital p//r arrow//ital p/..pi../sup 0/ for a ..pi../sup 0/-meson production angle theta/sup *//sub ..pi../sup 0// =80/degree/ in the c.m.s. in the ..gamma..-ray energy range /ital E//sub ..gamma../=730--1066 MeV. The experimental data are compared with the results of various phenomenological analyses.

  2. Polarization of cumulative protons in the reaction. gamma. A r arrow pX

    Energy Technology Data Exchange (ETDEWEB)

    Avakyan, R.O.; Avetisyan, A.E.; Arestakesyan, G.A.; Bartikyan, M.V.; Garibyan, Y.A.; Grigoryan, A.E.; Eganov, V.S.; Karapetyan, A.P.; Karapetyan, M.P.; Keropyan, I.A.; and others

    1989-02-01

    The polarization of cumulative protons has been measured in the reaction {gamma}{ital A}{r arrow}{ital pX} in the proton-energy region 170--270 MeV for C and Sn nuclei in bremsstrahlung beams produced by 4.5- and 1.5-GeV electrons. The measured polarization value is close to zero.

  3. Development of the warm snake and acceleration of polarized protons

    International Nuclear Information System (INIS)

    Takano, Junpei

    2007-01-01

    Acceleration of polarized protons is one of interesting issues of the high energy and accelerator physics. As known as the proton spin crisis, the total of the quark spin is not equal to the proton spin. To explore sources of the proton spin, it has been required to accelerate polarized protons to higher energy as hundreds GeV with higher polarization. However it is difficult to accelerate the polarized protons to higher energy with preserving higher polarization by using circular accelerators since the polarized beam crosses several types of depolarizing resonances. To overcome the depolarizing resonances, unique components are employed to the accelerator chain at the Brookhaven National Laboratory (BNL). On this description, developing a normal conducting helical dipole partial Siberian snake is explained in detail. As the results of upgrading the accelerators, the polarization has been increased recently. (author)

  4. The recoil proton polarization in πp elastic scattering

    International Nuclear Information System (INIS)

    Seftor, C.J.

    1988-09-01

    The polarization of the recoil proton for π + p and π - p elastic scattering has been measured for various angles at 547 MeV/c and 625 MeV/c by a collaboration involving The George Washington University; the University of California, Los Angeles; and Abilene Christian University. The experiment was performed at the P 3 East experimental area of the Los Alamos Meson Physics Facility. Beam intensities varied from 0.4 to 1.0 x 10 7 π - 's/sec and from 3.0 to 10.0 x 10 7 π + 's/sec. The beam spot size at the target was 1 cm in the horizontal direction by 2.5 cm in the vertical direction. A liquid-hydrogen target was used in a flask 5.7 cm in diameter and 10 cm high. The scattered pion and recoil proton were detected in coincidence using the Large Acceptance Spectrometer (LAS) to detect and momentum analyze the pions and the JANUS recoil proton polarimeter to detect and measure the polarization of the protons. Results from this experiment are compared with previous measurements of the polarization, with analyzing power data previously taken by this group, and to partial-wave analysis predictions. 12 refs., 53 figs., 18 tabs

  5. Polarized proton beam for eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roser, T. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    RHIC has provided polarized proton collisions from 31 GeV to 255 GeV in the past decade. To preserve polarization through numerous depolarizing resonances through the whole accelerator chain, harmonic orbit correction, partial snakes, horizontal tune jump system and full snakes have been used. In addition, close attentions have been paid to betatron tune control, orbit control and beam line alignment. The polarization of 60% at 255 GeV has been delivered to experiments with 1.8×1011 bunch intensity. For the eRHIC era, the beam brightness has to be maintained to reach the desired luminosity. Since we only have one hadron ring in the eRHIC era, existing spin rotator and snakes can be converted to six snake configuration for one hadron ring. With properly arranged six snakes, the polarization can be maintained at 70% at 250 GeV. This paper summarizes the effort and plan to reach high polarization with small emittance for eRHIC.

  6. Fractal structure of hadrons in processes with polarized protons at SPD NICA (proposal for experiment)

    International Nuclear Information System (INIS)

    Tokarev, M.V.; Aparin, A.A.; Zborovsky, I.

    2014-01-01

    The concept of z-scaling previously developed for analysis of inclusive reactions in proton-proton collisions is applied for description of processes with polarized protons at the planned Spin Physics Detector NICA in Dubna. A hypothesis of self-similarity and fractality of the proton spin structure is discussed. The possibilities to extract information on spin-dependent fractal dimensions of hadrons and fragmentation process from asymmetries and coefficients of polarization transfer are justified. The double longitudinal spin asymmetry A LL of π 0 -meson production and the coefficient of the polarization transfer D LL of Λ hyperon production in proton-proton collisions measured at RHIC are analyzed in the framework of z-scaling. The spin-dependent fractal dimensions of proton and fragmentation process with polarized Λ hyperon are estimated. A study of the spin-dependent constituent energy loss as a function of transverse momentum of the inclusive hadron and collision energy is suggested.

  7. Proton polarization in the photodisintegration of the deuteron by linearly polarized 400- and 500-MeV γ rays

    International Nuclear Information System (INIS)

    Bratashevskii, A.S.; Gorbenko, V.G.; Gushchin, V.A.

    1982-01-01

    The polarization of the recoil protons at the angle theta(/sub p/ = 90 0 has been measured in the photodisintegration of the deuteron by linearly polarized 400- and 500-MeV γ rays. For the first time, all of the following observables have been determined under identical experimental conditions: Σ, the asymmetry of the cross sections; P/sub y/, the polarization of the recoil proton; and T 1 , the asymmetry of the nucleon polarization for the case of linearly polarized γ rays

  8. Polarized proton and deuteron targets for the usage in intensive proton beams

    International Nuclear Information System (INIS)

    Get'man, V.A.; Derkach, A.Ya.; Karnaukhov, I.M.; Lukhanin, A.A.; Razumnyj, A.A.; Sorokin, P.V.; Sporo, E.A.; Telegin, Yu.N.

    1982-01-01

    Polarized proton and deuteron targets are developed and tested for conducting investigations in intense photon beams. A flowsheet of polarization targets which includes: working agent of the target, superconducting magnet, cryostat of 3 He evaporation with 3 He pumping and recirculation systems, SHF system of 4 mm range for polarization pumping, measuring system of target polarization protons is presented. Working agent of the targets includes frozen balls with 1.5 mm diameter. Ethylene-glucol and 1.2-propylene-glycol were used as a working substance for proton targets. Completely deuterated ethylene-glycol was used for the deuteron target. Vertical magnetic field with 2.7 T intensity is produced by a superconducting magnetic system. Polarization pumping is exercised at 75 GHz frequency. Q-meter of direct current is used for determination of polarization. Working temperature of the cryostat is approximately 0.5 K. The lock device permits to exercise replacement of the target working agent during 30 minutes

  9. RHIC Proton Luminosity and Polarization Improvement

    International Nuclear Information System (INIS)

    Zhang, S. Y.

    2014-01-01

    The RHIC proton beam polarization can be improved by raising the Booster scraping, which also helps to reduce the RHIC transverse emittance, and therefore to improve the luminosity. By doing this, the beam-beam effect would be enhanced. Currently, the RHIC working point is constrained between 2/3 and 7/10, the 2/3 resonance would affect intensity and luminosity lifetime, and the working point close to 7/10 would enhance polarization decay in store. Run 2013 shows that average polarization decay is merely 1.8% in 8 hours, and most fills have the luminosity lifetime better than 14 hours, which is not a problem. Therefore, even without beam-beam correction, there is room to improve for RHIC polarization and luminosity. The key to push the Booster scraping is to raise the Booster input intensity; for that, two approaches can be used. The first is to extend the LINAC tank 9 pulse width, which has been successfully applied in run 2006. The second is to raise the source temperature, which has been successfully applied in run 2006 and run 2012.

  10. Measurement of top quark polarization in top-antitop events from proton-proton collisions at √s = 7 TeV using the ATLAS detector

    Czech Academy of Sciences Publication Activity Database

    Aad, G.; Abajyan, T.; Abbott, B.; Böhm, Jan; Chudoba, Jiří; Hejbal, Jiří; Jakoubek, Tomáš; Kepka, Oldřich; Kupčo, Alexander; Kůs, Vlastimil; Lokajíček, Miloš; Lysák, Roman; Marčišovský, Michal; Mikeštíková, Marcela; Myška, Miroslav; Němeček, Stanislav; Roda Dos Santos, D.; Růžička, Pavel; Schovancová, Jaroslava; Šícho, Petr; Staroba, Pavel; Svatoš, Michal; Taševský, Marek; Tic, Tomáš; Vrba, Václav

    2013-01-01

    Roč. 111, č. 23 (2013), "232002-1"-"232002-6" ISSN 0031-9007 R&D Projects: GA MŠk(CZ) LG13009 Institutional support: RVO:68378271 Keywords : top * polarization * scattering * conservation law * CP * violation * pair production * ATLAS * CERN LHC Coll * dilepton * final state Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 7.728, year: 2013

  11. Spin asymmetry in proton-proton collisions as a probe of sea and gluon polarization in a proton

    International Nuclear Information System (INIS)

    Cheng, H.; Lai, S.

    1990-01-01

    Quark and gluon spin densities in a proton are phenomenologically parametrized based on the European Muon Collaboration (EMC) data and on some plausible theoretical arguments. Four different characteristic values of gluon and sea polarizations suggested by various theoretical conjectures are considered. The sea polarization in a proton is probed by measuring the spin-spin asymmetry A LL DY in the Drell-Yan process, while the helicity asymmetry A LL γ in direct photon production at high p T is employed to test the gluon spin content. Helicity asymmetries in both processes are quite sizable. A LL DY is positive and of order 10 -1 if the sea is polarized opposite to the proton spin, as suggested by the EMC data. However, even in the absence of the sea polarization at the EMC energies, we find A LL DY to be large and negative. Experimental measurements of A LL DY and A LL γ together will not only provide a clean probe of sea and gluon polarizations, but also test whether the combination Δs-(α s /4π)ΔG inferred from the EMC data is valid, i.e., whether gluons contribute to the spin-dependent structure function g 1 p (x,Q 2 ) via the triangular anomaly

  12. Capture of polarized deuterons on protons

    International Nuclear Information System (INIS)

    Fonseca, A.C.; Lehman, D.R.

    1995-01-01

    Full three-body calculations for the cross sections, vector analyzing powers, and tensor analyzing powers for radiative capture of polarized deuterons on protons over the energy range of available data are completed. The Paris, Bonn A, and AV14 two-nucleon interactions are used by means of separable-expansion methods. The Paris and Bonn interactions are handled by the Ernst-Shakin-Thaler (EST) method, whereas the AV14 potential is used through the new expansion of Koike, in order to reduce the two-variable integral equations to a single variable. The electromagnetic transition is calculated with the Siegert long-wavelength E1 operator. Comparisons are made between results for different nucleon-nucleon interactions and with respect to the experimental data. copyright 1995 American Institute of Physics

  13. A model of quasi-free scattering with polarized protons

    International Nuclear Information System (INIS)

    Teodoro, M.R.

    1976-01-01

    A quantitative evaluation, based on a simple model for spin-free coplanar and asymmetric reaction in 16 O, for 215 MeV incoming polarized protons confirms the use of the strong effective polarization of the knocked-out proton by the spin-orbit coupling and of the strong dependence of free, medium energy, proton-proton cross section on the relative orientation of the proton spins. Effective polarizations, momentum distributions and correlation cross sections have been calculated for the 1p sub(1/2), 1 p sub(3/2) and 1s sub(1/2) states in 16 O, using protons totally polarized orthogonal to the scattering plane. Harmonic oscillator and square wells have been used to generate the bound state wave functions, whereas the optical potentials have been taken spin-independent and purely imaginary [pt

  14. Hyperion polarization and transverse momentum properties in proton fragmentation

    International Nuclear Information System (INIS)

    Andersson, B.; Gustafson, G.; Maansson, O.

    1982-11-01

    A dynamical mechanism for proton interaction in hadronic collisions is presented which provides a verification of the model with an essentially one-dimensional colour force field in the proton fragmentation region, proposed earlier. We include here a discussion of the transverse momentum properties of the final state particles and polarization properties for hyperions in proton fragmentation. (Author)

  15. How It's Made - Polarized Proton Beam (444th Brookhaven Lecture)

    International Nuclear Information System (INIS)

    Zelenski, Anatoli

    2008-01-01

    Experiments with polarized beams at RHIC will provide fundamental tests of QCD, and the electro-weak interaction reveal the spin structure of the proton. Polarization asymmetries and parity violation are the strong signatures for identification of the fundamental processes, which are otherwise inaccessible. Such experiments require the maximum available luminosity and therefore polarization must be obtained as an extra beam quality without sacrificing intensity. There are proposals to polarize the high-energy proton beam in the storage rings by the Stern-Gerlach effect or spin-filter techniques. But so far, the only practically available option is acceleration of the polarized beam produced in the source and taking care of polarization survival during acceleration and storage. Two major innovations -- the 'Siberian Snake' technique for polarization preservation during acceleration and high current polarized proton sources make spin physics with the high-energy polarized beams feasible. The RHIC is the first high-energy collider, where the 'Siberian Snake' technique allowed of polarized proton beam acceleration up-to 250 GeV energy. The RHIC unique Optically Pumped Polarized Ion Source produces sufficient polarized beam intensity for complete saturation of the RHIC acceptance. This polarization technique is based on spin-transfer collisions between a proton or atomic hydrogen beam of a few keV beam energy and optically pumped alkali metal vapors. From the first proposal and feasibility studies to the operational source this development can be considered as example of successful unification of individual scientists ingenuity, international collaboration and modern technology application for creation of a new polarization technique, which allowed of two-to-three order of magnitude polarized beam intensity increase sufficient for loading the RHIC to its full capacity for polarization studies.

  16. A study of the internal spin structure of the proton through polarized deep inelastic muon-proton scattering

    International Nuclear Information System (INIS)

    Piegaia, R.N.

    1988-01-01

    This thesis presents a study of the internal spin structure of the proton through the measurement performed by the European Muon Collaboration, EMC, at the European Center for Nuclear Research, CERN, of the spin asymmetry in the deep-inelastic scattering of longitudinally polarized muons by longitudinally polarized protons. The data obtained considerably extend the kinematic range covered by a previous lower-energy polarized electron-proton scattering experiment. Although the results were found to be in agreement in the region of overlap, the study of the low x range (0.01 1 p was computed and found to be in disagreement with the Ellis-Jaffe sum rule. The result seems to indicate that only a small fraction of the proton spin originates from the spins of the quarks

  17. Scattering of polarized protons by yttrium, iron and nickel nuclei

    International Nuclear Information System (INIS)

    Melssen, J.P.M.G.

    1978-01-01

    Results are presented of scattering experiments performed on yttrium and some iron and nickel isotopes with polarized proton beams at energies around 20 MeV. The angular distributions of the differential cross sections and analyzing powers have been measured and comparison of these with predictions from theoretical models has led to information about excited nuclear states like spin, parity and details of the wavefunctions. The DWBA has been mostly used to describe the reaction at the bombarding energies and for the target nuclei investigated. (C.F.)

  18. Polarized proton acceleration at the BNL AGS, 1988

    International Nuclear Information System (INIS)

    Ahrens, L.

    1988-01-01

    The present status of the polarized proton acceleration at the Brookhaven AGS is described. Some details regarding the tune-up and performance during the December 1987-January 1988 physics run are given. 2 refs., 4 figs

  19. Precision Measurement of the Longitudinal Double-Spin Asymmetry for Inclusive Jet Production in Polarized Proton Collisions at sqrt[s]=200  GeV.

    Science.gov (United States)

    Adamczyk, L; Adkins, J K; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Anson, C D; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Banerjee, A; Beavis, D R; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Borowski, W; Bouchet, J; Brandin, A V; Brovko, S G; Bültmann, S; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Calderón de la Barca Sánchez, M; Campbell, J M; Cebra, D; Cendejas, R; Cervantes, M C; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, L; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chwastowski, J; Codrington, M J M; Contin, G; Cramer, J G; Crawford, H J; Cudd, A B; Cui, X; Das, S; Davila Leyva, A; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; Derradi de Souza, R; Dhamija, S; di Ruzza, B; Didenko, L; Dilks, C; Ding, F; Djawotho, P; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Engle, K S; Eppley, G; Eun, L; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Fedorisin, J; Filip, P; Finch, E; Fisyak, Y; Flores, C E; Gagliardi, C A; Gangadharan, D R; Garand, D; Geurts, F; Gibson, A; Girard, M; Gliske, S; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Haag, B; Hamed, A; Han, L-X; Haque, R; Harris, J W; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, H Z; Huang, X; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Kesich, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Koetke, D D; Kollegger, T; Konzer, J; Koralt, I; Kosarzewski, L K; Kotchenda, L; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; LeVine, M J; Li, C; Li, W; Li, X; Li, X; Li, Y; Li, Z M; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, G L; Ma, Y G; Madagodagettige Don, D M M D; Mahapatra, D P; Majka, R; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; McShane, T S; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nelson, J M; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Ohlson, A; Okorokov, V; Oldag, E W; Olvitt, D L; Pachr, M; Page, B S; Pal, S K; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlak, T; Pawlik, B; Pei, H; Perkins, C; Peryt, W; Pile, P; Planinic, M; Pluta, J; Poljak, N; Poniatowska, K; Porter, J; Poskanzer, A M; Pruthi, N K; Przybycien, M; Pujahari, P R; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Riley, C K; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ross, J F; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sangaline, E; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Singaraju, R N; Skoby, M J; Smirnov, D; Smirnov, N; Solanki, D; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Sun, X; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; Szelezniak, M A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Trzeciak, B A; Tsai, O D; Turnau, J; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Vanfossen, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Vossen, A; Wada, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, X L; Wang, Y; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, H; Xu, J; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yan, W; Yang, C; Yang, Y; Yang, Y; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zawisza, Y; Zbroszczyk, H; Zha, W; Zhang, J B; Zhang, J L; Zhang, S; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, F; Zhao, J; Zhong, C; Zhu, X; Zhu, Y H; Zoulkarneeva, Y; Zyzak, M

    2015-08-28

    We report a new measurement of the midrapidity inclusive jet longitudinal double-spin asymmetry, A_{LL}, in polarized pp collisions at center-of-mass energy sqrt[s]=200  GeV. The STAR data place stringent constraints on polarized parton distribution functions extracted at next-to-leading order from global analyses of inclusive deep-inelastic scattering (DIS), semi-inclusive DIS, and RHIC pp data. The measured asymmetries provide evidence at the 3σ level for positive gluon polarization in the Bjorken-x region x>0.05.

  20. Precision Measurement of the Longitudinal Double-Spin Asymmetry for Inclusive Jet Production in Polarized Proton Collisions at √{s }=200 GeV

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Beavis, D. R.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Brovko, S. G.; Bültmann, S.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chwastowski, J.; Codrington, M. J. M.; Contin, G.; Cramer, J. G.; Crawford, H. J.; Cudd, A. B.; Cui, X.; Das, S.; Davila Leyva, A.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; Dhamija, S.; di Ruzza, B.; Didenko, L.; Dilks, C.; Ding, F.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Engle, K. S.; Eppley, G.; Eun, L.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Fedorisin, J.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Gangadharan, D. R.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Gliske, S.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Haag, B.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kesich, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Kosarzewski, L. K.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; LeVine, M. J.; Li, C.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, Y. G.; Madagodagettige Don, D. M. M. D.; Mahapatra, D. P.; Majka, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Olvitt, D. L.; Pachr, M.; Page, B. S.; Pal, S. K.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Peryt, W.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Pujahari, P. R.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Riley, C. K.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ross, J. F.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Singaraju, R. N.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Sun, X.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szelezniak, M. A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Vanfossen, J. A.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Vossen, A.; Wada, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, X. L.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, H.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y.; Xu, Z.; Yan, W.; Yang, C.; Yang, Y.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zawisza, Y.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, J. L.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zhu, Y. H.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2015-08-01

    We report a new measurement of the midrapidity inclusive jet longitudinal double-spin asymmetry, AL L, in polarized p p collisions at center-of-mass energy √{s }=200 GeV . The STAR data place stringent constraints on polarized parton distribution functions extracted at next-to-leading order from global analyses of inclusive deep-inelastic scattering (DIS), semi-inclusive DIS, and RHIC p p data. The measured asymmetries provide evidence at the 3 σ level for positive gluon polarization in the Bjorken-x region x >0.05 .

  1. High proton polarization at high temperature with single crystals of aromatic molecules

    International Nuclear Information System (INIS)

    Iinuma, M.; Takahashi, Y.; Shake, I.; Oda, M.; Masaike, A.; Yabuzaki, T.; Shimizu, H.M.

    2004-01-01

    Protons in single crystals of naphthalene doped with pentacene and p-terphenyl doped with pentacene have been polarized up to 32% and 18%, respectively. Such polarization has been achieved at liquid nitrogen temperature in a magnetic field of 3 kG by means of microwave-induced optical nuclear polarization. We also measured the polarization by the neutron transmission method. The relaxation time at 77 K in 7 G was found to be about 3 h and the enhancement of the obtained polarization compared with thermal polarization reached 8x10 4 . This method is applicable to neutron experiments

  2. Study of proton polarization in charge exchange process on optically oriented sodium atoms

    International Nuclear Information System (INIS)

    Zelenskij, A.N.; Kokhanovskij, S.A.

    1984-01-01

    Using high-power adjustable dye lasers for electron spin orientation in a charge-exchange target enables to significantly increase the proton polarization efficiency. A device is described that permits to avoid growth of the polarized proton beam emittance in a charge-exchange process in a strong magnetic field. The devise main feature is the use of an intensive source of neutral hydrogen atoms and the presence of a helium additional charge-exchange target which actualy is a proton ''source''. The helium charge-exchange cell is placed in the same magnetic field of a solenoid where a cell with oriented sodium is placed, a polarized electron being captured by a proton in the latter cell. In this case the beam at the solenoid inlet and outlet is in a neutral state; emittance growth related to the effect of end magnetic fields is not observed. The device after all prouduces polarized protons, their polarization degree is measured and the effect of various factors on polarization degree is studied. The description of the laser source and laser system is given. Measurement results have shown the beam intensity of neutral 7 keV atoms which passed through a polarizer to be 2 mA. The proton current doesn't depend. On the beeld fin the region of chrge exchange for the 8 kGs magnetic field. The degree of sodium polarization was 80% and polarized proton current approximately 70 μA at a temperature of the polarized sodium cell corresponding to the density of sodium vapar approximately 3x10 13 at/cm 2

  3. The polarized proton and deuteron beam at the Bonn isochronous cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, K G; Enders, R; Hammon, W; Krause, K D; Lesemann, D; Scholzen, A [Bonn Univ. (F.R. Germany). Inst. fuer Angewandte Physik; Euler, K; Schueller, B [Bonn Univ. (F.R. Germany). Inst. fuer Strahlen- und Kernphysik

    1976-02-15

    The present state of the polarized proton and deuteron source at the Bonn cyclotron is described. The source, which is of the atomic beam type, gives typical ion beam intensities of 2 ..mu..A for protons and 3 ..mu..A for deuterons. The overall transmission from the source to the first stopper after extraction from the cyclotron is 3%. Target currents with an energy resolution E/..delta..E=500 are 20 nA for deuterons and 10 nA for protons. For the proton beam, a polarization P=-0.71 was measured. For the deuteron beam, a pure vector polarization Psub(z)=-0.47 or various mixtures of vector and tensor polarization are obtained.

  4. Single-Spin Polarization Effects and the Determination of Timelike Proton Form Factors

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S

    2003-10-24

    We show that measurements of the proton's polarization in e{sup +}e{sup -} {yields} p{bar p} strongly discriminate between analytic forms of models which fit the proton form factors in the spacelike region. In particular, the single-spin asymmetry normal to the scattering plane measures the relative phase difference between the timelike G{sub E} and G{sub M} form factors. The expected proton polarization in the timelike region is large, of order of several tens of percent.

  5. Gluon polarization in the proton: Constraints at low x from the measurement of the double longitudinal spin asymmetry for forward-rapidity hadrons with the PHENIX detector at RHIC

    Science.gov (United States)

    McKinney, Cameron Palmer

    In the 1980s, polarized deep inelastic lepton-nucleon scattering experiments revealed that only about a third of the proton's spin of ½ h is carried by the quarks and antiquarks, leaving physicists with the puzzle of how to account for the remaining spin. As gluons carry roughly 50% of the proton's momentum, it seemed most logical to look to the gluon spin as another significant contributor. However, lepton-nucleon scattering experiments only access the gluon helicity distribution, Delta g, through effects on the quark distributions via scaling violations. Constraining Deltag through scaling violations requires experiments that together cover a large range of Q 2. Such experiments had been carried out with unpolarized beams, leaving g(x) (the unpolarized gluon distribution) relatively well-known, but the polarized experiments have only thus far provided weak constraints on Deltag in a limited momentum fraction range. With the commissioning in 2000 of the Relativistic Heavy Ion Collider, the first polarized proton-proton (pp) collider, and the first polarized pp running in 2002, the gluon distributions could be accessed directly by studying quark-gluon and gluon-gluon interactions. In 2009, data from measurements of double longitudinal spin asymmetries, ALL, at the STAR and PHENIX experiments through 2006 were included in a QCD global analysis performed by Daniel de Florian, Rodolfo Sassot, Marco Stratmann, and Werner Vogelsang (DSSV), yielding the first direct constraints on the gluon helicity. The DSSV group found that the contribution of the gluon spin to the proton spin was consistent with zero, but the data provided by PHENIX and STAR was all at mid-rapidity, meaning Delta g was constrained by data only a range in x from 0.05 to 0.2, leaving out helicity contributions from the huge number of low- x gluons. A more recent analysis by DSSV from 2014 including RHIC data through 2009 for the first time points to significant gluon polarization at intermediate

  6. Electronic device for measuring the polarization parameter in the {pi}{sup -}p {yields} {pi}{sup 0}n charge exchange reaction on a polarized proton target; Un appareillage electronique destine a la mesure du parametre de polarisation dans la reaction d'echange de charge {pi}{sup -}p {yields} {pi}{sup 0}n sur cible de protons polarises

    Energy Technology Data Exchange (ETDEWEB)

    Brehin, S [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-12-15

    An electronic apparatus has been constructed to measure the polarization parameter P{sub 0}(t) in {pi}{sup -}p {yields} {pi}{sup 0}n charge exchange scattering at 5.9 GeV/c and 11,2 GeV/c on polarized proton target. This device insures triggering of a heavy plate spark chamber, allowing visualisation of {gamma} rays from the {pi}{sup 0} decays when the associated neutron offers suitable characteristics in direction and energy. The neutron is detected by an array of 32 counters and his energy is measured by a time of flight method. Electronic circuits of this apparatus are described as test and calibration methods used. (author) [French] Un appareillage electronique a ete realise pour mesurer le parametre de polarisation P{sub 0}(t) dans la reaction d'echange de charge {pi}{sup -}p {yields} {pi}{sup 0}n a 5,9 GeV/c et 11,2 GeV/c sur une cible de protons polarises. Ce dispositif assure le declenchement d'une chambre a etincelles a plaques lourdes, permettant de visualiser les {gamma} de desitegration du {pi}{sup 0}, lorsque le neutron associe presente les caracteristiques convenables en direction et en energie. Le neutron est detecte par un ensemble de 32 compteurs et son energie est mesuree par une methode de temps de vol. Les circuits composant cet appareillage sont decrits ainsi que les methodes d'etalonnage et de verification utilisees. (auteur)

  7. Spin Physics Experiments at NICA-SPD with polarized proton and deuteron beams

    Directory of Open Access Journals (Sweden)

    Savin I.

    2015-01-01

    Full Text Available The brief description of the Letter of Intent proposing primarily to perform measurements of asymmetries of the DY pair production in collisions of non-polarized, longitudinally and transversally polarized protons and deuterons which provide an access to all leading twist collinear and TMD PDFs of quarks and anti-quarks in nucleons.

  8. Polar measurements on profiles

    Energy Technology Data Exchange (ETDEWEB)

    Althaus, D.

    1985-03-01

    Wind tunnel models with a profile depth of t=0.5 m were measured in a laminar wind tunnel by the usual measuring processes. The profile resistance was determined by integration along the width of span. The smooth profiles were examined at Re=0.7/1.0 and 1.5 million. At Re=1.0 million, the position of the changeover points were determined with a stethoscope. Also at this Reynolds number measurements were taken with a trip wire of d=2 mm diameter, directly on the profile nose. The tables contain the co-ordinates of the profiles, the contours, the theoretical speed distributions for 4 different angles of attack, the csub(a)-csub(w) polar measurements and changeover points, and the torque coefficients around the t/4 point. (BR).

  9. Double-polarization observable G in neutral-pion photoproduction off the proton

    Energy Technology Data Exchange (ETDEWEB)

    Thiel, A.; Lang, M.; Afzal, F.; Beck, R.; Boese, S.; Funke, C.; Gottschall, M.; Gruener, M.; Hammann, C.; Hannappel, J.; Hartmann, J.; Hoffmeister, P.; Honisch, C.; Kaiser, D.; Kalinowsky, H.; Kalischewski, F.; Klassen, P.; Klempt, E.; Koop, K.; Kube, M.; Mahlberg, P.; Mueller, J.; Muellers, J.; Piontek, D.; Schmidt, C.; Seifen, T.; Sokhoyan, V.; Spieker, K.; Thoma, U.; Urban, M.; Pee, H. van; Walther, D.; Wendel, C.; Winnebeck, A. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Eberhardt, H.; Bantes, B.; Dutz, H.; Elsner, D.; Ewald, R.; Fornet-Ponse, K.; Frommberger, F.; Goertz, S.; Hammann, D.; Hillert, W.; Jude, T.; Kammer, S.; Kleber, V.; Klein, F.; Reeve, S.; Runkel, S.; Schmieden, H. [Universitaet Bonn, Physikalisches Institut, Bonn (Germany); Anisovich, A.V.; Bayadilov, D.; Nikonov, V.; Sarantsev, A. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Bichow, M.; Meyer, W.; Reicherz, G. [Ruhr-Universitaet Bochum, Institut fuer Experimentalphysik I, Bochum (Germany); Brinkmann, K.T.; Gutz, E. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen und Kernphysik, Bonn (Germany); Universitaet Giessen, II. Physikalisches Institut, Giessen (Germany); Crede, V. [Florida State University, Department of Physics, Tallahassee, FL (United States); Dieterle, M.; Keshelashvili, I.; Krusche, B.; Witthauer, L. [Universitaet Basel, Institut fuer Physik, Basel (Switzerland); Friedrich, S.; Makonyi, K.; Metag, V.; Nanova, M. [Universitaet Giessen, II. Physikalisches Institut, Giessen (Germany); Gridnev, A.; Lopatin, I. [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Wilson, A. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Florida State University, Department of Physics, Tallahassee, FL (United States); Collaboration: The CBELSA/TAPS Collaboration

    2017-01-15

    This paper reports on a measurement of the double-polarization observable G in π{sup 0} photoproduction off the proton using the CBELSA/TAPS experiment at the ELSA accelerator in Bonn. The observable G is determined from reactions of linearly polarized photons with longitudinally polarized protons. The polarized photons are produced by bremsstrahlung off a diamond radiator of well-defined orientation. A frozen spin butanol target provides the polarized protons. The data cover the photon energy range from 617 to 1325 MeV and a wide angular range. The experimental results for G are compared to predictions by the Bonn-Gatchina (BnGa), Juelich-Bonn (JueBo), MAID and SAID partial wave analyses. Implications of the new data for the pion photoproduction multipoles are discussed. (orig.)

  10. Measurement of inclusive lambda, k-short and lambda bar production and lambda polarization from interactions of 400 GeV/c protons with hydrogen

    International Nuclear Information System (INIS)

    Grobel, R.A.

    1980-01-01

    The Lorentz invariant cross sections have been measured for the inclusive production of lambdas, K-shorts and lambda bars with Feynman x ranging from .2 to .98 and transverse momentum values between 0 and 2 GeV/c. This was done by fully analyzing the decays of 1.3 million lambdas, 130,000 K-shorts and 42,000 lambda bars detected in he neutral hyperon beam at Fermilab. The transverse (parity conserving) component of the lambda spin polarization has been found to be non-zero, demonstrating that the polarization is not a complex nuclear effect. The polarization depends on Feynman x and transverse momentum. The global fit of these data shows that the polarization from hydrogen is the same as that from Be

  11. Production and polarization of the Λc+ and the charm of the proton

    International Nuclear Information System (INIS)

    Anjos, J. dos; Magnin, J.; Simao, F.R.A.; Herrera, G.

    1997-02-01

    We propose a two component model involving the parton fusion mechanism and recombination of the ud valence diquark with a sea c-quark of the incident proton to describe Λ c + inclusive production in pp collisions. We also study the polarization of the produced Λ c + in the framework of the Thomas Precession Model for polarization. We show that a measurement of the Λ c polarization is a sensitive test of its production mechanism. In particular the intrinsic charm model predicts a positive polarization for the Λ c within the framework of the Thomas Precession Model, while according to the model presented here the Λ c polarization should be negative. The measurement of the Λ c polarization provides a close examination of intrinsic charm Fock states in the proton and give interesting information about the hadroproduction of charm. (author)

  12. Measurement of double polarization observables in 2π{sup 0}-photoproduction off the proton with the CBELSA/TAPS-experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mahlberg, Philipp [Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Collaboration: CBELSA/TAPS-Collaboration

    2016-07-01

    In contrast to the atomic spectrum with its sharp and well defined excitation levels, the nucleon excitation spectrum is dominated by broad, overlapping resonances. Partial wave analyses are needed to extract the contributing resonances from the experimental data. In order to find an unambiguous solution, the measurement of polarization observables is indispensable. The Crystal Barrel/TAPS experiment at the electron accelerator ELSA is, due to its high photon detection efficiency and its almost complete solid angle coverage, ideally suited to measure neutral mesons decaying into photons. The measurement with double polarization, i.e. a circularly polarized photon beam and a longitudinally polarized target provides access to single and double polarization observables. At higher energies, the cross sections show that multi-meson decay channels gain in importance compared e.g. to single pseudoscalar meson photoproduction. In this talk, preliminary results for the helicity asymmetry E in 2π{sup 0}-photoproduction measured with the CBELSA/TAPS experiment are presented.

  13. Recent results of the STAR high-energy polarized proton-proton program at RHIC at BNL

    International Nuclear Information System (INIS)

    Surrow, Bernd

    2007-01-01

    The STAR experiment at the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) is carrying out a spin physics program colliding transverse or longitudinal polarized proton beams at √(s) 200 - 500GeV to gain a deeper insight into the spin structure and dynamics of the proton. These studies provide fundamental tests of Quantum Chromodynamics (QCD).One of the main objectives of the STAR spin physics program is the determination of the polarized gluon distribution function through a measurement of the longitudinal double-spin asymmetry, ALL, for various processes. Recent results will be shown on the measurement of ALL for inclusive jet production, neutral pion production and charged pion production at √(s) = 200GeV. In addition to these measurements involving longitudinal polarized proton beams, the STAR collaboration has performed several important measurements employing transverse polarized proton beams. New results on the measurement of the transverse single-spin asymmetry, AN, for forward neutral pion production and the first measurement of AN for mid-rapidity di-jet production will be discussed

  14. Polarized light and optical measurement

    CERN Document Server

    Clarke, D N; Ter Haar, D

    2013-01-01

    Polarized Light and Optical Measurement is a five-chapter book that begins with a self-consistent conceptual picture of the phenomenon of polarization. Chapter 2 describes a number of interactions of light and matter used in devising optical elements in polarization studies. Specific optical elements are given in Chapter 3. The last two chapters explore the measurement of the state of polarization and the various roles played in optical instrumentation by polarization and polarization-sensitive elements. This book will provide useful information in this field of interest for research workers,

  15. DeVelopment of the high-intensity polarized H- source with proton charge exchange on sodium optically oriented atoms

    International Nuclear Information System (INIS)

    Zelenskij, A.N.; Kokhanovskij, S.A.

    1982-01-01

    The results of experimental study on the source of polarized H - ions at polarized electron capture by proton from optically oriented sodium atoms are presented. Circular-polarized dye laser radiation with lamp pumping is used for polarization of highly dense sodium vapors in the pulsed mode. A facility for polarization measurement in the ion source is described. Dependence of the counting rate of metastables for the right and left circular radiation polarization in respect to wave length is presented. The results of measuring the degree of polarization under change of sodium density are revealed. The measurements have disclosed that obtaining of high polarization degree at 20-30% charge exchange effectiveness is possible but large radiation power is required. Use of a dense charge exchange target provides high effectiveness of hte whole polarization process. Yield of polarized H - ions can approach 10 μA/1 mA of the initial proton current

  16. Measurement of proton autoneutralization potential

    International Nuclear Information System (INIS)

    Garcia, M.

    1984-09-01

    A proton space charge having multi-MeV kinetic energy was injected through a thin ground plane to extract electrons and produce a time-dependent autoneutralization space potential. An electon-emitting floating-potential resistive divider was used to measure the space potential during 20 ns of the proton current pulse. During this time, proton kinetic energy fell from 10.6 MeV to 8.5 MeV and thus the space potential (taken as 1.09 x the floating potential) fell from 5.8 kV to 4.6 kV

  17. Commissioning of polarized-proton and antiproton beams at Fermilab

    International Nuclear Information System (INIS)

    Yokosawa, A.

    1988-01-01

    The author described the polarized-proton and polarized-antiproton beams up to 200 GeV/c at Fermilab. The beam line, called MP, consists of the 400-m long primary and 350-m long secondary beam line followed by 60-m long experimental hall. We discuss the characteristics of the polarized beams. The Fermilab polarization projects are designated at E-581/704 initiated and carried out by an international collaboration, Argonne (US), Fermilab (US), Kyoto-Kyushu-Hiroshima-KEK (Japan), LAPP (France), Northwestern University (US), Los Alamos Laboratory (US), Rice (US), Saclay (France), Serpukhov (USSR), INFN Trieste (Italy), and University of Texas (US)

  18. Spin structure of the proton from polarized inclusive deep-inelastic muon-proton scattering

    CERN Document Server

    Adams, D.; Arik, E.; Arvidson, A.; Badelek, B.; Ballintijn, M.K.; Bardin, G.; Baum, Guenter; Berglund, P.; Betev, L.; Bird, I.G.; Birsa, R.; Bjorkholm, P.; Bonner, B.E.; de Botton, N.; Boutemeur, M.; Bradamante, F.; Bravar, A.; Bressan, A.; Bueltmann, Stephen L.; Burtin, E.; Cavata, C.; Crabb, D.; Cranshaw, J.; Cuhadar, T.; Dalla Torre, S.; van Dantzig, R.; Derro, B.; Deshpande, A.; Dhawan, S.; Dulya, C.; Dyring, A.; Eichblatt, S.; Faivre, J.C.; Fasching, D.; Feinstein, F.; Fernandez, C.; Frois, B.; Gallas, A.; Garzon, J.A.; Gaussiran, T.; Giorgi, M.; von Goeler, E.; Gracia, G.; de Groot, N.; Grosse Perdekamp, M.; Gulmez, Erhan; von Harrach, D.; Hasegawa, T.; Hautle, P.; Hayashi, N.; Heusch, C.A.; Horikawa, N.; Hughes, V.W.; Igo, G.; Ishimoto, S.; Iwata, T.; Kabuss, E.M.; Karev, A.; Kessler, H.J.; Ketel, T.J.; Kishi, A.; Kiselev, Yu.; Klostermann, L.; Kramer, D.; Krivokhijine, V.; Kroger, W.; Kurek, K.; Kyynarainen, J.; Lamanna, M.; Landgraf, U.; Layda, T.; Le Goff, J.M.; Lehar, F.; de Lesquen, A.; Lichtenstadt, J.; Lindqvist, T.; Litmaath, M.; Lowe, M.; Magnon, A.; Mallot, G.K.; Marie, F.; Martin, A.; Martino, J.; Matsuda, T.; Mayes, B.; McCarthy, J.S.; Medved, K.; van Middelkoop, G.; Miller, D.; Mori, K.; Moromisato, J.; Nagaitsev, A.; Nassalski, J.; Naumann, L.; Niinikoski, T.O.; Oberski, J.E.J.; Ogawa, A.; Ozben, C.; Parks, D.P.; Penzo, A.; Kunne, F.; Peshekhonov, D.; Piegaia, R.; Pinsky, Lawrence S.; Platchkov, S.; Plo, M.; Pose, D.; Postma, H.; Pretz, J.; Pussieux, T.; Pyrlik, J.; Reyhancan, I.; Rijllart, A.; Roberts, J.B.; Rock, S.; Rodriguez, M.; Rondio, E.; Rosado, A.; Sabo, I.; Saborido, J.; Sandacz, A.; Savin, Igor A.; Schiavon, P.; Schuler, K.P.; Segel, R.; Seitz, R.; Semertzidis, Y.; Sever, F.; Shanahan, P.; Sichtermann, E.P.; Simeoni, F.; Smirnov, G.I.; Staude, A.; Steinmetz, A.; Stiegler, U.; Stuhrmann, H.; Szleper, M.; Teichert, K.M.; Tessarotto, F.; Tlaczala, W.; Trentalange, S.; Unel, G.; Velasco, M.; Vogt, J.; Voss, R.; Weinstein, R.; Whitten, C.; Windmolders, R.; Willumeit, R.; Wislicki, W.; Witzmann, A.; Zanetti, A.M.; Zaremba, K.; Zhao, J.

    1997-01-01

    We have measured the spin-dependent structure function $g_1^{\\rm p}$ in inclusive deep-inelastic scattering of polarized muons off polarized protons, in the kinematic range $0.003 < x < 0.7$ and $1\\gevtwo < Q^2 < 60\\gevtwo$. A next-to-leading order QCD analysis is used to evolve the measured $\\gpone(x,Q^2)$ to a fixed $Q^2_0$. The first moment of $\\gpone$ at $Q^2_0 = 10\\gevtwo$ is $\\gammap = 0.136\\pm 0.013 \\,(\\mbox{stat.}) \\pm 0.009\\,(\\mbox{syst.})\\pm 0.005\\ (\\mbox{evol.})$. This result is below the prediction of the Ellis--Jaffe sum rule by more than two standard deviations. The singlet axial charge $\\dsigt$ is found to be $0.28 \\pm 0.16$. In the Adler--Bardeen factorization scheme, $\\Delta g \\simeq 2$ is required to bring $\\Delta \\Sigma$ in agreement with the Quark-Parton Model. A combined analysis of all available proton and deuteron data confirms the Bjorken sum rule.

  19. Modeling of Jovian Auroral Polar Ion and Proton Precipitation

    Science.gov (United States)

    Houston, S. J.; Ozak, N. O.; Cravens, T.; Schultz, D. R.; Mauk, B.; Haggerty, D. K.; Young, J. T.

    2017-12-01

    Auroral particle precipitation dominates the chemical and physical environment of the upper atmospheres and ionospheres of the outer planets. Precipitation of energetic electrons from the middle magnetosphere is responsible for the main auroral oval at Jupiter, but energetic electron, proton, and ion precipitation take place in the polar caps. At least some of the ion precipitation is associated with soft X-ray emission with about 1 GW of power. Theoretical modeling has demonstrated that the incident sulfur and oxygen ion energies must exceed about 0.5 MeV/nucleon (u) in order to produce the measured X-ray emission. In this work we present a model of the transport of magnetospheric oxygen ions as they precipitate into Jupiter's polar atmosphere. We have revised and updated the hybrid Monte Carlo model originally developed by Ozak et al., 2010 to model the Jovian X-ray aurora. We now simulate a wider range of incident oxygen ion energies (10 keV/u - 5 MeV/u) and update the collision cross-sections to model the ionization of the atmospheric neutrals. The polar cap location of the emission and magnetosphere-ionosphere coupling both indicate the associated field-aligned currents must originate near the magnetopause or perhaps the distant tail. Secondary electrons produced in the upper atmosphere by ion precipitation could be accelerated upward to relativistic energies due to the same field-aligned potentials responsible for the downward ion acceleration. To further explore this, we simulate the effect of the secondary electrons generated from the heavy ion precipitation. We use a two-stream transport model that computes the secondary electron fluxes, their escape from the atmosphere, and characterization of the H2 Lyman-Werner band emission, including a predicted observable spectrum with the associated color ratio. Our model predicts that escaping electrons have an energy range from 1 eV to 6 keV, H2 band emission rates produced are on the order of 75 kR for an input

  20. Spin filtering neutrons with a proton target dynamically polarized using photo-excited triplet states

    International Nuclear Information System (INIS)

    Haag, M.; Brandt, B. van den; Eichhorn, T.R.; Hautle, P.; Wenckebach, W.Th.

    2012-01-01

    In a test of principle a neutron spin filter has been built, which is based on dynamic nuclear polarization (DNP) using photo-excited triplet states. This DNP method has advantages over classical concepts as the requirements for cryogenic equipment and magnets are much relaxed: the spin filter is operated in a field of 0.3 T at a temperature of about 100 K and has performed reliably over periods of several weeks. The neutron beam was also used to analyze the polarization of the target employed as a spin filter. We obtained an independent measurement of the proton spin polarization of ∼0.13 in good agreement with the value determined with NMR. Moreover, the neutron beam was used to measure the proton spin polarization as a function of position in the naphthalene sample. The polarization was found to be homogeneous, even at low laser power, in contradiction to existing models describing the photo-excitation process.

  1. Electric form factor of the proton through recoil polarization

    International Nuclear Information System (INIS)

    Punjabi, V.

    2000-01-01

    The electromagnetic form factors of the nucleon, G E and G M , describe the charge and current distribution inside the nucleon and thus are quite intimately related to its structure. Jefferson Lab experiment 93-027 measured P l and Pt, the longitudinal and transverse recoil proton polarization, respectively, for the 1 H(e-vector,e'p-vector) reaction in the four-momentum transfer squared range of 0.5 to 3.5 GeV 2 , using the Hall A facility with two high resolution spectrometers and a Focal Plane Polarimeter. The ratio G Ep /G Mp is directly proportional to the ratio P t /P l . These data have unprecedented precision, and show for the first time that the Q 2 dependence of G Ep and G Mp is very different. (author)

  2. Electronic device for measuring the polarization parameter in the {pi}{sup -}p {yields} {pi}{sup 0}n charge exchange reaction on a polarized proton target; Un appareillage electronique destine a la mesure du parametre de polarisation dans la reaction d'echange de charge {pi}{sup -}p {yields} {pi}{sup 0}n sur cible de protons polarises

    Energy Technology Data Exchange (ETDEWEB)

    Brehin, S. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-12-15

    An electronic apparatus has been constructed to measure the polarization parameter P{sub 0}(t) in {pi}{sup -}p {yields} {pi}{sup 0}n charge exchange scattering at 5.9 GeV/c and 11,2 GeV/c on polarized proton target. This device insures triggering of a heavy plate spark chamber, allowing visualisation of {gamma} rays from the {pi}{sup 0} decays when the associated neutron offers suitable characteristics in direction and energy. The neutron is detected by an array of 32 counters and his energy is measured by a time of flight method. Electronic circuits of this apparatus are described as test and calibration methods used. (author) [French] Un appareillage electronique a ete realise pour mesurer le parametre de polarisation P{sub 0}(t) dans la reaction d'echange de charge {pi}{sup -}p {yields} {pi}{sup 0}n a 5,9 GeV/c et 11,2 GeV/c sur une cible de protons polarises. Ce dispositif assure le declenchement d'une chambre a etincelles a plaques lourdes, permettant de visualiser les {gamma} de desitegration du {pi}{sup 0}, lorsque le neutron associe presente les caracteristiques convenables en direction et en energie. Le neutron est detecte par un ensemble de 32 compteurs et son energie est mesuree par une methode de temps de vol. Les circuits composant cet appareillage sont decrits ainsi que les methodes d'etalonnage et de verification utilisees. (auteur)

  3. Polarization Measurements in Neutral Pion Photoproduction

    International Nuclear Information System (INIS)

    C. Jones; Krishni Wijesooriya; B. Fox; Andrei Afanasev; Moscov Amaryan; Konrad Aniol; Stephen Becher; Kamal Benslama; Louis Bimbot; Peter Bosted; Edward Brash; John Calarco; Zhengwei Chai; C. Chang; Ting Chang; Jian-Ping Chen; Seonho Choi; Eugene Chudakov; Steve Churchwell; Domenick Crovelli; Sonja Dieterich; Scott Dumalski; Dipangkar Dutta; Martin Epstein; Kevin Fissum; Salvatore Frullani; Haiyan Gao; Juncai Gao; Franco Garibaldi; Olivier Gayou; Ronald Gilman; Oleksandr Glamazdin; Charles Glashausser; Javier Gomez; Viktor Gorbenko; Ole Hansen; Roy Holt; Jordan Hovdebo; Garth Huber; Kees de Jager; Xiaodong Jiang; Mark Jones; Jim Kelly; Edward Kinney; Edgar Kooijman; Gerfried Kumbartzki; Michael Kuss; John LeRose; Meme Liang; Richard Lindgren; Nilanga Liyanage; Sergey Malov; Demetrius Margaziotis; Pete Markowitz; Kathy McCormick; Dave Meekins; Zein-Eddine Meziani; Robert Michaels; Joe Mitchell; Ludyvine Morand; Charles Perdrisat

    2002-01-01

    We present measurements of the recoil proton polarization for the 1 H(gamma-vector,p-vector)pi 0 reaction for theta c.m. pi = 60 o -135 o and for photon energies up to 4.1 GeV. These are the first data in this reaction for polarization transfer with circularly polarized photons. Various theoretical models are compared with the results. No evidence for hadron helicity conservation is observed. Models that employ factorization are not favored. It appears from the strong angular dependence of the induced polarization at photon energies of 2.5 and 3.1 GeV that a relatively high spin resonance or background amplitude might exist in this energy region

  4. Polarized proton Target-III operators manual, revision A

    International Nuclear Information System (INIS)

    Hill, D.; Moretti, A.; Onesto, F.; Rynes, P.

    1976-04-01

    A revision is given of a manual containing standard operating procedures for the vacuum, cryogenic, and electronic systems of a polarized proton target. The discussion includes the target cryostat, the 3 He and 4 He pumping systems, remote monitors and controls, the microwave system, the magnet and power supply, the computerized polarization monitor, the 4 He liquifier and gas recovery system, and miscellaneous auxiliary equipment

  5. Recoil-proton polarization in πp elastic scattering at 547 and 625 MeV/c

    International Nuclear Information System (INIS)

    Seftor, C.J.; Adrian, S.D.; Briscoe, W.J.; Mokhtari, A.; Taragin, M.F.; Sadler, M.E.; Barlow, D.B.; Nefkens, B.M.K.; Pillai, C.

    1989-01-01

    The polarization of the recoil proton in π + p and π - p elastic scattering using a liquid-hydrogen target has been measured for backward angles at 547 and 625 MeV/c. The scattered pion and recoil proton were detected in coincidence using the large-acceptance spectrometer to detect and analyze the momentum of the pions and the JANUS polarimeter to identify and measure the polarization of the protons. Results from this experiment agree with other measurements of the recoil polarization, with analyzing-power data previously taken by this group, and with predictions of partial-wave analyses

  6. Broad-aperture polarized proton target with arbitrary orientation of polarization vector

    International Nuclear Information System (INIS)

    Belyaev, A.A.; Get'man, V.A.; Derkach, A.Ya.; Karnaukhov, I.M.; Lukhanin, A.A.; Razumnyj, A.A.; Sorokin, P.V.; Sporov, E.A.; Telegin, Yu.N.; Trotsenko, V.I.

    1985-01-01

    Polarized proton target with the Helmholtz broad-aperture superconducting magnetic system is described. Axial aperture α=95 deg, inter-coil access angle β=23 deg. The structure of the target allows various versions of the installation what make sure an arbitrary orientation of polarization vector. The 0.1 W cold output 3 He evaporation cryostat was used to obtain the work temperature 0.5 K allowing quick transformation to a 3 He- 4 He dilution refrigerator. Results of the study are given on the dynamical proton polarization in 1,2-propylenglycol with various stable Cr 5 complexes

  7. Polarization reversal of proton spins in solid-state targets by superradiance effects

    International Nuclear Information System (INIS)

    Reichertz, L.A.

    1991-02-01

    Scattering experiments with polarized targets are prepared at the Bonn accelerator ELSA. The new Bonn frozen spin target (BOFROST) developed for real photon experiments at the PHOENICS detector has been tested in the laboratory. Proton polarization values of -99% and +94% in ammonia, -96% and +90% in butanol have been achieved at a magnetic field of 3.5 Tesla. At a temperature of 70 mK and a magnetic field of 0.35 Tesla a very fast spontaneous polarization reversal has been observed. This effect occured at negative polarization only and has been identified as a self-induced superradiance effect in the proton spin system. This work describes the polarization and relaxation measurements at BOFROST and detailed experiments concerning the superradiance effect. (orig.) [de

  8. Production of positive pions from polarized protons by linearly polarized photons in the energy region 300--420 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Get' man, V.A.; Gorbenko, V.G.; Grushin, V.F.; Derkach, A.Y.; Zhebrovskii, Y.V.; Karnaukhov, I.M.; Kolesnikov, L.Y.; Luchanin, A.A.; Rubashkin, A.L.; Sanin, V.M.; Sorokin, P.V.; Sporov, E.A.; Telegin, Y.N.; Shalatskii, S.V.

    1980-10-01

    A technique for measurement of the polarization observables ..sigma.., P, and T for the reaction ..gamma..p..-->..n..pi../sup +/ in a doubly polarized experiment (polarized proton target + linearly polarized photon beam) is described. Measurements of the angular distributions of these observables in the range of pion emission angles 30--150/sup 0/ are presented for four photon energies from 300 to 420 MeV. Inclusion of the new experimental data in an energy-independent multipole analysis of photoproduction from protons permits a more reliable selection of solutions to be made.

  9. Proton gyromagnetic precision measurement system

    International Nuclear Information System (INIS)

    Zhu Deming; Deming Zhu

    1991-01-01

    A computerized control and measurement system used in the proton gyromagnetic precision meausrement is descirbed. It adopts the CAMAC data acquisition equipment, using on-line control and analysis with the HP85 and PDP-11/60 computer systems. It also adopts the RSX11M computer operation system, and the control software is written in FORTRAN language

  10. Proton and neutron polarized targets for nucleon-nucleon experiments at SATURNE II

    International Nuclear Information System (INIS)

    Ball, J.; Combet, M.; Sans, J.L.; Benda, B.; Chaumette, P.; Deregel, J.; Durand, G.; Dzyubak, A.P.; Gaudron, C.; Lehar, F.; Janout, Z.; Khachaturov, B.A.

    1996-01-01

    A SATURNE polarized target has been used for nucleon-nucleon elastic scattering and transmission experiments for 15 years. The polarized proton target is a 70 cm 3 cartridge loaded with Pentanol-2. For polarized neutron target, two cartridges loaded with 6 LiD and 6 LiH are set in the refrigerator and can be quickly inserted in the beam. First experiments using 6 Li products in quasielastic pp or pn analyzing power measurements are compared with the same observables measured in a free nucleon-nucleon scattering using polarized proton targets. Angular distribution as a function of a kinematically conjugate angle and coplanarity in nucleon-nucleon scattering is shown for different targets. (author)

  11. Spin Tracking of Polarized Protons in the Main Injector at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, M. [Fermilab; Lorenzon, W. [Michigan U.; Aldred, C. [Michigan U.

    2016-07-01

    The Main Injector (MI) at Fermilab currently produces high-intensity beams of protons at energies of 120 GeV for a variety of physics experiments. Acceleration of polarized protons in the MI would provide opportunities for a rich spin physics program at Fermilab. To achieve polarized proton beams in the Fermilab accelerator complex, shown in Fig.1.1, detailed spin tracking simulations with realistic parameters based on the existing facility are required. This report presents studies at the MI using a single 4-twist Si-berian snake to determine the depolarizing spin resonances for the relevant synchrotrons. Results will be presented first for a perfect MI lattice, followed by a lattice that includes the real MI imperfections, such as the measured magnet field errors and quadrupole misalignments. The tolerances of each of these factors in maintaining polariza-tion in the Main Injector will be discussed.

  12. Spin physics experiments at NICA-SPD with polarized proton and deuteron beams

    Energy Technology Data Exchange (ETDEWEB)

    Savin, I.; Efremov, A.; Pshekhonov, D.; Kovalenko, A.; Teryaev, O.; Shevchenko, O.; Nagajcev, A.; Guskov, A.; Kukhtin, V.; Toplilin, N. [JINR, Dubna (Russian Federation)

    2016-08-15

    This is a brief description of suggested measurements of asymmetries of the Drell-Yan (DY) pair production in collisions of non-polarized, longitudinally and transversally polarized protons and deuterons which provide an access to all leading-twist collinear and TMD PDFs of quarks and anti-quarks in nucleons. Other spin effects in hadronic and heavy-ion collisions may be also studied constituting the spin physics program at NICA. (orig.)

  13. A study of proton polarization in ammonia (NH sub 3 ) under irradiation and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Belyaev, A.A.; Get' man, V.A.; Dzyubak, A.P.; Karnaukhov, I.M.; Lukhanin, A.A.; Neffa, A.Yu.; Semisalov, I.L.; Sorokin, P.V.; Sporov, E.S.; Telegin, Yu.N.; Tolmachev, I.A.; Trotsenko, V.I. (Kharkov Institute of Physics and Technology, Ukrainian SSR, Academy of Sciences, 310108 Kharkov, USSR (UA))

    1989-05-05

    The proton polarization in irradiated NH{sub 3} has been measured as a function of the irradiation dose and annealing temperature. The analysis of the experimental data obtained shows that under low-temperature'' irradiation along with the NH{sup {minus}}{sub 2} the e{sub tr}-radical is likely to be formed which contributes to the polarization build-up and relaxation and influences the radiation damage resistance of the target.

  14. Probing the Spin Structure of the Proton Using Polarized Proton-Proton Collisions and the Production of W Bosons

    Energy Technology Data Exchange (ETDEWEB)

    Beaumier, Michael J. [Univ. of California, Riverside, CA (United States)

    2016-08-01

    This thesis discusses the process of extracting the longitudinal asymmetry, A$W±\\atop{L}$ describing W → μ production in forward kinematic regimes. This asymmetry is used to constrain our understanding of the polarized parton distribution functions characterizing $\\bar{u}$ and $\\bar{d}$ sea quarks in the proton. This asymmetry will be used to constrain the overall contribution of the sea-quarks to the total proton spin. The asymmetry is evaluated over the pseudorapidity range of the PHENIX Muon Arms, 2.1 < |η| 2.6, for longitudinally polarized proton-proton collisions at 510 GeV √s. In particular, I will discuss the statistical methods used to characterize real muonic W decays and the various background processes is presented, including a discussion of likelihood event selection and the Extended Unbinned Maximum Likelihood t. These statistical methods serve estimate the yields of W muonic decays, which are used to calculate the longitudinal asymmetry.

  15. Analyzing power of polarized protons interactions with carbon nuclei at 0.71-3.61 GeV

    International Nuclear Information System (INIS)

    Anoshina, E.V.; Bodyagin, V.A.; Vardanyan, I.N.; Gribushin, A.M.; Ershov, A.A.; Kruglov, N.A.; Sarycheva, L.I.

    1997-01-01

    For the first time at JINR synchrophasotron an experiment in the polarized proton beam was carried out. Beams of polarized protons with energy T p = 0.71-3.61 GeV, polarization P p ≅ 0.5 and intensity I p ≅ 10 6 particles/spell have been formed, their characteristics were investigated, and a possibility to use those beams as initial for physical and methodical investigations has been shown. The proton-carbon interaction analyzing power at the energies of 1.46 and 3.61 GeV has been measured for two values of the scattering angle. 22 refs., 3 figs

  16. Acceleration of polarized protons in the IHEP accelerator complex

    International Nuclear Information System (INIS)

    Anferov, V.A.; Ado, Yu.M.; Shoumkin, D.

    1995-01-01

    The paper considers possibility to accelerate polarized beam in the IHEP accelerator complex (including first stage of the UNK). The scheme of preserving beam polarization is described for all acceleration stages up to 400 GeV beam energy. Polarization and intensity of the polarized proton beam are estimated. The suggested scheme includes using two Siberian snakes in opposite straight sections of the UNK-1, where each snake consists of five dipole magnets. In the U-70 it is suggested to use one helical Siberian snake, which is turned on adiabatically at 10 GeV, and four pulsed quadrupoles. To incorporate the snake into the accelerator lattice it is proposed to make modification of one superperiod. This would make a 13 m long straight section. Spin depolarization in the Booster is avoided by decreasing the extraction energy to 0.9 GeV. Then no additional hardware is required in the Booster

  17. Polarization correlations of 1S0 proton pairs as tests of Bell and Wigner inequalities

    NARCIS (Netherlands)

    Polachic, C.; Rangacharyulu, C.; van den Berg, A.M.; Hamieh, S.; Harakeh, M.N.; Hunyadi, M.D.; de Huu, M.A.; Wörtche, H.J.; Heyse, J.; Bäumer, C.; Frekers, D.; Rakers, S.

    2004-01-01

    We are investigating the feasibility of nuclear physics experiments designed to overcome the loopholes of observer-dependent reality and satisfying the counterfactuality condition. In a first approach, we have measured polarization correlations of proton pairs produced in 12C(d, 2He) and 1H(d, 2He)

  18. Polarization correlations of S-1(0) proton pairs as tests of hidden-variable theories

    NARCIS (Netherlands)

    Polachic, C; Rangacharyulu, C; van den Berg, AM; Hamieh, S; Harakeh, MN; Hunyadi, M; de Huu, MA; Wortche, HJ; Heyse, J; Baumer, C; Frekers, D; Brooke, JA; Busch, P

    2004-01-01

    We are investigating the feasibility of nuclear physics experiments designed to overcome the loopholes of observer-dependent reality and satisfying the counterfactuality condition. In a first approach, we have measured polarization correlations of S-1(0) proton pairs produced in C-12(d, He-2) and

  19. MUSE: Measuring the proton radius with muon-proton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bernauer, Jan Christopher [Massachusetts Institute of Technology, Cambridge (United States)

    2014-07-01

    The proton radius has been measured so far using electron-proton scattering, electronic Hydrogen spectroscopy and muonic Hydrogen spectroscopy, the latter producing a much more accurate, but seven sigma different, result, leading to the now famous proton radius puzzle. The MUSE collaboration aims to complete the set of measurements by using muon scattering to determine the proton radius and to shed light on possible explanations of the discrepancy. The talk gives an overview of the experiment motivation and design and a status report on the progress.

  20. Polarized proton acceleration program at the AGS and RHIC

    International Nuclear Information System (INIS)

    Lee, Y.Y.

    1995-01-01

    Presented is an overview of the program for acceleration of polarized protons in the AGS and their injection into the RHIC collider. The problem of depolarizing resonances in strong focusing circulator accelerators is discussed. The intrinsic resonances are jumped over by the fast tune jump, and a partial Siberian Snake is used to compensate for over forty imperfection resonances in the AGS. Two sets of full Siberian Snake and spin rotators will be employed in RHIC

  1. Measurements of Polarization Transfers in Real Compton Scattering by a proton target at JLAB. A new source of information on the 3D shape of the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Fanelli, Cristiano V. [Sapienza Univ. of Rome (Italy)

    2015-03-01

    In this thesis work, results of the analysis of the polarization transfers measured in real Compton scattering (RCS) by the Collaboration E07-002 at the Je fferson Lab Hall-C are presented. The data were collected at large scattering angle (theta_cm = 70deg) and with a polarized incident photon beam at an average energy of 3.8 GeV. Such a kind of experiments allows one to understand more deeply the reaction mechanism, that involves a real photon, by extracting both Compton form factors and Generalized Parton Distributions (GPDs) (also relevant for possibly shedding light on the total angular momentum of the nucleon). The obtained results for the longitudinal and transverse polarization transfers K_LL and K_LT, are of crucial importance, since they confirm unambiguously the disagreement between experimental data and pQCD prediction, as it was found in E99-114 experiment, and favor the Handbag mechanism. The E99-114 and E07-002 results can contribute to attract new interest on the great yield of the Compton scattering by a nucleon target, as demonstrated by the recent approval of an experimental proposal submitted to the Jefferson Lab PAC 42 for a Wide-angle Compton Scattering experiment, at 8 and 10 GeV Photon Energies. The new experiments approved to run with the updated 12 GeV electron beam at JLab, are characterized by much higher luminosities, and a new GEM tracker is under development to tackle the challenging backgrounds. Within this context, we present a new multistep tracking algorithm, based on (i) a Neural Network (NN) designed for a fast and efficient association of the hits measured by the GEM detector which allows the track identification, and (ii) the application of both a Kalman filter and Rauch-Tung-Striebel smoother to further improve the track reconstruction. The full procedure, i.e. NN and filtering, appears very promising, with high performances in terms of both association effciency and reconstruction accuracy, and these preliminary results will

  2. Equipment and software for the experiment on polarized proton scattering on hydrogen and nuclei

    International Nuclear Information System (INIS)

    Buklej, A.E.; Govorun, N.N.; Zhurkin, V.V.

    1980-01-01

    Installation for the conduction of polarization measurements upon the beam of polarized protons with the 2.1 GeV/c momentum using ITEP synchrotron is described. The installation is designed for polarization measurement in elastic pp-scattering and asymmetry in summary (elastic and inelastic without meson production) scattering of polarized protons upon nuclei in the angle range up to 180 mrad, as well as polarization in elastic pn-scattering. The installation consists of 18 two-coordinate magnetostriction wire spark chambers (s.c.), emitting counters, the system of veto-counters surrounding the target, liquid hydrogen or (deuterium) target and magnet to conduct pulse analysis of scattered particles in the background measurements. Primary processing of the material is conducted on the basis of modernized programs using the M-220 and BESM-6 computers. With a help of the experimental installation described asymmetry measurement on hydrogen, Li, C, Al, Ca have been conducted. The prospect of use of the method described to separate elastic reactions in the range of very small momentum transmitted, where the background of inelastic interactions can be decreased to the negligibly low level, for precise measurement of elastic reactions cross sections and the study of polarization phenomena in the range of coulomb interference is underlined [ru

  3. High-energy polarized proton beams a modern view

    CERN Document Server

    Hoffstaetter, Georg Heinz

    2006-01-01

    This monograph begins with a review of the basic equations of spin motion in particle accelerators. It then reviews how polarized protons can be accelerated to several tens of GeV using as examples the preaccelerators of HERA, a 6.3 km long cyclic accelerator at DESY / Hamburg. Such techniques have already been used at the AGS of BNL / New York, to accelerate polarized protons to 25 GeV. But for acceleration to energies of several hundred GeV as in RHIC, TEVATRON, HERA, LHC, or a VLHC, new problems can occur which can lead to a significantly diminished beam polarization. For these high energies, it is necessary to look in more detail at the spin motion, and for that the invariant spin field has proved to be a useful tool. This is already widely used for the description of high-energy electron beams that become polarized by the emission of spin-flip synchrotron radiation. It is shown that this field gives rise to an adiabatic invariant of spin-orbit motion and that it defines the maximum time average polarizat...

  4. Horizontal cryostat for polarized proton targets; Cryostat horizontal pour cibles de protons polarises

    Energy Technology Data Exchange (ETDEWEB)

    Roubeau, P M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-11-15

    Continuously fed horizontal cryostat to be used for polarized proton targets; includes: 1 standard storage dewar commercially available; 2 shifting of dewar requiring 10 minutes, without any warming of the target; 3 no conventional nitrogen cooled shield but rather taking advantage of the cold helium vapours evaporated in the transfer line and/or the helium evaporated to cool the polarized crystal; 4 a heat exchanger which reduces by a factor of two the consumption of helium lowering in the same ratio the transfer line and/or the helium evaporated to cool the polarized crystal; 5 regulation of the temperature by means of a needle valve included in the superfluid helium line. This cryostat, used in conjunction with a 1000 l/s pump allows one to maintain at 1.06 deg. K a target, in which is dissipated 1 watt hyper frequency power, with an helium consumption of 40 litres/day (measured directly in the storage dewar). (author) [French] Description d'un cryostat horizontal, a alimentation continue, pour cible de protons polarises, presentant les caracteristiques suivantes: 1 utilisation de vases de stockage de modele commercial; 2 echange de vase en 10 minutes sans rechauffement; 3 absence d'azote liquide remplace par les vapeurs froides de l'helium evapore dans la canalisation de transfert et/ou les vapeurs de l'helium evapore pour refroidir le cristal polarise; 4 utilisation d'un echangeur qui aboutit a reduire de moitie la consommation d'helium, donc la pression d'evaporation, et qui permet, pour une pompe donnee, d'abaisser la temperature de fonctionnement de 0.1 degre environ; 5 reglage de la temperature au moyen d'une vanne a aiguille placee sur le circuit d'helium prerefroidi (superfluide). Ce cryostat, utilise avec une pompe de 1000 l/s permet de maintenir a une temperature de 1.06 deg. K une cible dans laquelle est dissipee une puissance d'hyperfrequence de 1 watt, moyennant une consommation d'helium de 40 litres/jour (mesuree dans le vase de stockage). (auteur)

  5. Measurement of the proton spin structure function g1p

    International Nuclear Information System (INIS)

    Pussieux, T.

    1994-10-01

    In order to check the Bjorken sum rule and confirm the EMC surprising conclusion on the spin structure of the proton, the measurement of the spin structure function of the proton has been performed by the Spin Muon Collaboration via the polarized muon nucleon deep inelastic scattering. The results of the 1993 run are presented within a kinematical range of 0.003 2 = 10 GeV 2 . The first moment of the polarized spin structure function g 1 p is found to be two standard deviations below the Ellis-Jaffe sum rule. Assuming SU(3) for hyperons β decays, the quark spin contribution to the proton spin is extracted. Combining all available data on proton, neutron and deuton, The Bjorken sum rule is confirmed within 10%. (author). 25 refs., 3 figs., 2 tabs

  6. Polarization Measurements in High-Energy Deuteron Photodisintegration

    International Nuclear Information System (INIS)

    Adam Sarty; Andrei Afanasev; Arunava Saha; Bogdan Wojtsekhowski; Brendan Fox; Chang, C.; Cathleen Jones; Charles Glashausser; Charles Perdrisat; Cornelis De Jager; Cornelis De Jager; Cornelis de Jager; Crovelli, D.; Daniel Simon; David Meekins; Demetrius Margaziotis; Dipangkar Dutta; Edgar Kooijman; Edward Brash; Edward Kinney; Elaine Schulte; Eugene Chudakov; Feng Xiong; Franco Garibaldi; Garth Huber; Gerfried Kumbartzki; Guido Urciuoli; Haiyan Gao; James Kelly; Javier Gomez; Jens-Ole Hansen; Jian-Ping Chen; John Calarco; John LeRose; Jordan Hovdebo; Joseph Mitchell; Juncai Gao; Kamal Benslama; Kathy McCormick; Kevin Fissum; Konrad Aniol; Krishni Wijesooriya; Louis Bimbot; Ludyvine Morand; Luminita Todor; Marat Rvachev; Mark Jones; Martin Epstein; Meihua Liang; Michael Kuss; Moskov Amarian; Nilanga Liyanage; Oleksandr Glamazdin; Olivier Gayou; Paul Ulmer; Pete Markowitz; Peter Bosted; Holt, R.; Riad Suleiman; Richard Lindgren; Rikki Roche; Robert Michaels; Roman Pomatsalyuk; Ronald Gilman; Ronald Ransome; Salvatore Frullani; Scott Dumalski; Seonho Choi; Sergey Malov; Sonja Dieterich; Steffen Strauch; Stephen Becher; Steve Churchwell; Ting Chang; Viktor Gorbenko; Vina Punjabi; Xiaodong Jiang; Zein-Eddine Meziani; Zhengwei Chai; Wang Xu

    2001-01-01

    We present measurements of the recoil proton polarization for the d(polarized y, polarized p)n reaction at thetac.m. = 90 degrees for photon energies up to 2.4 GeV. These are the first data in this reaction for polarization transfer with circularly polarized photons. The induced polarization py vanishes above 1 GeV, contrary to meson-baryon model expectations, in which resonances lead to large polarizations. However, the polarization transfer Cx does not vanish above 1 GeV, inconsistent with hadron helicity conservation. Thus, we show that the scaling behavior observed in the d(y,p)n cross sections is not a result of perturbative QCD. These data should provide important tests of new nonperturbative calculations in the intermediate energy regime

  7. Letter of Intent for a Drell-Yan Experiment with a Polarized Proton Target

    International Nuclear Information System (INIS)

    Geesaman, D.; Reimer, P.; Brown, C.; Christian, D.; Diefenthaler, M.; Peng, J.C.; Chang, W.C.; Chen, Y.C.; Sawada, S.; Chang, T.H.; Huang, J.; Jiang, X.; Leitch, M.; Klein, A.; Liu, K.; Liu, M.; McGaughey, P.; Beise, E.; Nakahara, K.; Aidala, C.; Lorenzon, W.; Raymond, R.; Badman, T.; Long, E.; Slifer, K.; Zielinski, R.; Guo, R.S.; Goto, Y.; El Fassi, L.; Myers, K.; Ransome, R.; Tadepalli, A.; Tice, B.; Chen, J.P.; Nakano, K.; Shibata, T.A.; Crabb, D.; Day, D.; Keller, D.; Rondon, O.

    2014-01-01

    It is well known that the proton is a spin-1/2 particle, but how the constituents (quarks and gluons) assemble to this quantized spin is still a mystery. There is a worldwide effort to map out the individual contributions to the proton spin. It is established that the quark spins contribute around 30%, while the gluon intrinsic angular momentum is still under active investigation at the Relativistic Heavy Ion Collider. Fully resolving the proton spin puzzle requires information on the orbital angular momentum (OAM) of both quarks and gluons. Recent studies have shown that the so-called transverse momentum-dependent parton distribution functions (TMDs) can inform us about the OAM of the partons. One of the most important TMDs, and the main focus of this LOI, is the so-called Sivers function. To summarize, we propose to make the first measurement of the Sivers function of sea quarks, which is expected to be non-zero if the sea quarks contribute orbital angular momentum to the proton spin, as expected from the pion cloud model, which also partially explains the E866 results. Thus, we will be able to deduce whether or not sea quark orbital motion contributes significantly to the proton spin. Specifically, we will determine the contribution from the anti-up quarks, with Bjorken-x in the range of ~ 0.1 to 0.5. Drell-Yan production off a polarized proton target has never been measured, and is complementary to the recently approved (stage-1) experiment E1027 at Fermilab, which will measure the Sivers function of the valence quarks using a polarized proton beam on an unpolarized proton target. If the measured sea quark Sivers function is non-zero, we will also determine its sign.

  8. Proposal for a source of polarized protons; Projet de source de protons polarises

    Energy Technology Data Exchange (ETDEWEB)

    Abragam, A.; Winter, J. M. [Commissariat a l' energie atomique et aux energies alternatives - CEA, Centre d' Etudes Nucleaires de Saclay, BP2, Gif-sur-Yvette (France)

    1959-07-01

    Proposal for a source of polarized protons based on the theory of adiabatic fast passage due to F. Bloch. Reprint of a paper published in 'Physical review letters', vol 1, n. 10, 15 Nov 1958, p. 374-375 [French] On propose une methode nouvelle pour la realisation d'une source de protons polarises basee sur la theorie du passage adiabatique de F. Bloch. Reproduction d'un article publie dans 'Physical review letters', vol 1, n. 10, 15 nov 1958, p. 374-375.

  9. Elastic scattering of polarized protons on helium three at 800 MeV

    International Nuclear Information System (INIS)

    Azizi, A.

    1985-07-01

    A set of spin dependent parameters and cross sections has been measured for polarized p- 3 He elastic scattering over the range of q .7 to 4.2 fm -1 . The experiment was done at the Los Alamos Meson Physics Facility (LAMPF) using the High Resolution Spectrometer (HRS) with a polarized proton beam at .8 GeV. The focal plane polarimeter of the HRS was used to determine the spin direction of the scattered proton. Since 3 He is one of the simplest nuclei, polarized p- 3 He scattering provides a very sensitive test of multiple scattering theories. The theoretical analysis was done by using two different wave functions for 3 He as input to the multiple scattering theory. The theoretical calculations and experimental data together will give us useful information about nucleon-nucleon amplitudes and also help us to obtain a better understanding of the scattering process. 68 refs., 55 figs., 9 tabs

  10. Recoil proton polarization of neutral pion photoproduction from proton in the energy range between 400 MeV and 1142 MeV

    International Nuclear Information System (INIS)

    Kato, S.; Miyachi, T.; Sugano, K.; Toshioka, K.; Ukai, K.

    1979-08-01

    The recoil proton polarization of the reaction γp → π 0 p were measured at a C.M. angle of 100 0 for incident photon energies between 451 and 1106 MeV, and at an angle of 130 0 for energies from 400 MeV to 1142 MeV. One photon decayed from a π 0 -meson and a recoil proton were detected in coincidence. Two kinds of polarization scatterers were employed. In the range of proton kinetic energy less than 420 MeV and higher than 346 MeV, carbon plates and liquid hydrogen were used for determining the polarization. Results are compared with recent phenomenological analyses. From the Comparison between the present data and the asymmetry data given by the polarized target, the contribution of the invariant amplitudes A 3 can be estimated to be small at 100 0 . (author)

  11. Measurement of the spin asymmetry of the beam in the polarized virtual Compton scattering on the proton. Study of the nucleon's energy spectra through the QCD-type potential model

    International Nuclear Information System (INIS)

    Bensafa, I.K.

    2006-05-01

    The first part of this work presents the analysis and results of the VCS-SSA (virtual Compton scattering - single spin asymmetry) experiment at MAMI (Mainz). It was carried out with beam energy 883 MeV and longitudinal polarization (about 80%), at virtual photon four-momentum transfer squared (Q 2 = 0.35 GeV 2 ) to measure the beam asymmetry in the ep → epγ and ep → epπ 0 reactions. The asymmetry obtained in photon (resp. pion) electro-production is between 0-15% (resp. 0-2%). The dispersion relation model for virtual Compton scattering and MAID model (for π 0 ) reproduce the amplitude globally but not completely the shape of the asymmetry. Perhaps this discrepancy is due to an imperfect parameterization of some pion production multipoles (γ * N → πN). The second part is dedicated to the study of the nucleon energy spectrum in ground-state L=0 and excited-state L=1 in the quark model, using the Coulomb + linear potential type (CL) and a relativistic correction. The hyperfine correction is applied to discriminate the nucleon masses. The values of the mass found for the proton and the Δ(1232) are respectively equal to (968 MeV, 1168 MeV), and the masses of the excited states are between 1564 - 1607 MeV. This part is completed by an application of the CL model to an approximate calculation of generalized polarizabilities of the proton. (author)

  12. Polarizing a stored proton beam by spin flip? - A high statistic reanalysis

    International Nuclear Information System (INIS)

    Oellers, Dieter

    2011-01-01

    Prompted by recent, conflicting calculations, we have carried out a measurement of the spin flip cross section in low-energy electron-proton scattering. The experiment uses the cooling electron beam at COSY as an electron target. A reanalysis of the data leeds to a reduced statistical errors resulting in a factor of 4 reduced upper limit for the spin flip cross section. The measured cross sections are too small for making spin flip a viable tool in polarizing a stored beam.

  13. Study of the reaction. gamma. p. --> delta. /sup + +/. pi. /sup -/ on polarized protons

    Energy Technology Data Exchange (ETDEWEB)

    Belyaev, A.; Get' man, V.; Gorbenko, V.; Gushchin, V.; Derkach, A.; Zhebrovskii, Y.; Zayats, A.; Karnaukhov, I.; Kolesnikov, L.; Lukhanin, A.; Rubashkin, A.; Sobol' , M.; Sorokin, P.; Sporov, E.; Telegin, Y.

    1982-02-01

    We have measured for the first time the asymmetry of the cross section for the reaction ..gamma..p..--> delta../sup + +/..pi../sup -/ on polarized protons. The measurements were made at E/sub ..gamma../ = 660 MeV in the range of pion emission angles 45--120/sup 0/ c.m.s. The experimental data obtained are compared with the theoretical predictions.

  14. Spin-flipping a stored polarized proton beam with an rf dipole

    International Nuclear Information System (INIS)

    Blinov, B.B.; Derbenev, Ya.S.; Kageya, T.; Kantsyrev, D.Yu.; Krisch, A.D.; Morozov, V.S.; Sivers, D.W.; Wong, V.K.; Anferov, V.A.; Schwandt, P.; Przewoski, B. von

    2000-01-01

    Frequent polarization reversals, or spin-flips, of a stored polarized high-energy beam may greatly reduce systematic errors of spin asymmetry measurements in a scattering asymmetry experiment. We studied the spin-flipping of a 120 MeV horizontally-polarized proton beam stored in the IUCF Cooler Ring by ramping an rf-dipole magnet's frequency through an rf-induced depolarizing resonance in the presence of a nearly-full Siberian snake. After optimizing the frequency ramp parameters, we used multiple spin-flips to measure a spin-flip efficiency of 86.5±0.5%. The spin-flip efficiency was apparently limited by the rf-dipole's field strength. This result indicates that an efficient spin-flipping a stored polarized beam should be possible in high energy rings such as RHIC and HERA where Siberian snakes are certainly needed and only dipole rf-flipper-magnets are practical

  15. Pentanol-based target material with polarized protons

    International Nuclear Information System (INIS)

    Bunyatova, E.I.

    1992-01-01

    1-pentanol is a promising material for a target with polarized protons owing to its high resistance to radiation damage. To develop the target, the solutions of 1-pentanol or 2-pentanol with complexes of pentavalent chromium ware investigated. The material based EHBA-Cr(V) solution in a glass-like matrix, consisting of 1-pentanol, 3-pentanol and 1,2-propanediol, was proposed as a target material. It was investigated by the electron paramagnetic resonance and differential scanning calorimetry methods. 24 refs.; 3 figs.; 1 tab

  16. Proton polarizing system with Ar-ion laser for p-vector-RI scattering experiments

    International Nuclear Information System (INIS)

    Wakui, T.; Hatano, M.; Sakai, H.; Uesaka, T.; Tamii, A.

    2005-01-01

    A proton polarizing system for use in scattering experiments with radioactive isotope beams is described. Protons in a naphthalene crystal doped with pentacene are polarized in a magnetic field of 0.3T at 100K by transferring a large population difference among the photo-excited triplet states of pentacene to the hydrogen nuclei. An Ar-ion laser, which demands minimal maintenance during scattering experiments, is employed to excite the pentacene molecules. A proton polarization of 37% is obtained

  17. Spin Transfer in Inclusive Λ0 Production by Transversely Polarized Protons at 200GeV/c

    International Nuclear Information System (INIS)

    Grosnick, D.P.; Hill, D.A.; Laghai, M.; Lopiano, D.; Ohashi, Y.; Spinka, H.; Stanek, R.W.; Underwood, D.G.; Yokosawa, A.; Bystricky, J.; Lehar, F.; Lesquen, A. de; Rossum, L. van; Cossairt, J.D.; Read, A.L.; Iwatani, K.; Belikov, N.I.; Derevschikov, A.A.; Grachov, O.A.; Matulenko, Y.A.; Meschanin, A.P.; Nurushev, S.B.; Patalakha, D.I.; Rykov, V.L.; Solovyanov, V.L.; Vasiliev, A.N.; Akchurin, N.; Onel, Y.; Maki, T.; Enyo, H.; Funahashi, H.; Goto, Y.; Iijima, T.; Imai, K.; Itow, Y.; Makino, S.; Masaike, A.; Miyake, K.; Nagamine, T.; Saito, N.; Yamashita, S.; Takashima, R.; Takeutchi, F.; Kuroda, K.; Michalowicz, A.; Rappazzo, G.F.; Salvato, G.; Luehring, F.C.; Miller, D.H.; Tamura, N.; Yoshida, T.; Adams, D.L.; Bonner, B.E.; Corcoran, M.D.; Cranshaw, J.; Nessi-Tedaldi, F.; Nessi, M.; Nguyen, C.; Roberts, J.B.; Skeens, J.; White, J.L.; Bravar, A.

    1997-01-01

    Surprisingly large polarizations in hyperon production by unpolarized protons have been known for a long time. The spin dynamics of the production process can be further investigated with polarized beams. Recently, a negative asymmetry A N was found in inclusive Λ 0 production with a 200GeV/c transversely polarized proton beam. The depolarization D NN in p↑+p→Λ 0 +X has been measured with the same beam over a wide x F range and at moderate p T . D NN reaches positive values of about 30% at high x F and p T ∼1.0GeV/c . This result shows a sizable spin transfer from the incident polarized proton to the outgoing Λ 0 . copyright 1997 The American Physical Society

  18. Effect of 3D Polarization profiles on polarization measurements and colliding beam experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, W.; Bazilevsky, A.

    2011-08-18

    The development of polarization profiles are the primary reason for the loss of average polarization. Polarization profiles have been parametrized with a Gaussian distribution. We derive the effect of 3-dimensional polarization profiles on the measured polarization in polarimeters, as well as the observed polarization and the figure of merit in single and double spin experiments. Examples from RHIC are provided. The Relativistic Heavy Ion Collider (RHIC) is the only collider of spin polarized protons. During beam acceleration and storage profiles of the polarization P develop, which affect the polarization measured in a polarimeter, and the polarization and figure of merit (FOM) in colliding beam experiments. We calculate these for profiles in all dimensions, and give examples for RHIC. Like in RHIC we call the two colliding beams Blue and Yellow. We use the overbar to designate intensity-weighted averages in polarimeters (e.g. {bar P}), and angle brackets to designate luminosity-weighted averages in colliding beam experiments (e.g.

    ).

  19. Effect of 3D Polarization profiles on polarization measurements and colliding beam experiments

    International Nuclear Information System (INIS)

    Fischer, W.; Bazilevsky, A.

    2011-01-01

    The development of polarization profiles are the primary reason for the loss of average polarization. Polarization profiles have been parametrized with a Gaussian distribution. We derive the effect of 3-dimensional polarization profiles on the measured polarization in polarimeters, as well as the observed polarization and the figure of merit in single and double spin experiments. Examples from RHIC are provided. The Relativistic Heavy Ion Collider (RHIC) is the only collider of spin polarized protons. During beam acceleration and storage profiles of the polarization P develop, which affect the polarization measured in a polarimeter, and the polarization and figure of merit (FOM) in colliding beam experiments. We calculate these for profiles in all dimensions, and give examples for RHIC. Like in RHIC we call the two colliding beams Blue and Yellow. We use the overbar to designate intensity-weighted averages in polarimeters (e.g. (bar P)), and angle brackets to designate luminosity-weighted averages in colliding beam experiments (e.g. ).

  20. The Proton Coulomb Form Factor from Polarized Inclusive e-p Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Christopher Matthew [Univ. of Virginia, Charlottesville, VA (United States)

    2001-05-01

    The proton form factors provide information on the fundamental properties of the proton and provide a test for models based on QCD. In 1998 at Jefferson Lab (JLAB) in Newport News, VA, experiment E93026 measured the inclusive e-p scattering cross section from a polarized ammonia (15NH3) target at a four momentum transfer squared of Q2 = 0.5 (GeV/c)2. Longitudinally polarized electrons were scattered from the polarized target and the scattered electron was detected. Data has been analyzed to obtain the asymmetry from elastically scattered electrons from hydrogen in 15NH3. The asymmetry, Ap, has been used to determine the proton elastic form factor GEp. The result is consistent with the dipole model and data from previous experiments. However, due to the choice of kinematics, the uncertainty in the measurement is large.

  1. Measurement of the left-right asymmetry in pion-proton radiative exchange and charge exchange scattering from 301 to 625 MeV/c on a transversely polarized target

    International Nuclear Information System (INIS)

    Kim, George Jung-Kwang.

    1988-05-01

    The left-right asymmetry A/sub N/ in π/sup /minus//p → γn has been measured at p/sub π = 301, 316, 427, 471, 547, 586, and 625 MeV/c using a transversely polarized target. The final-state neutron and gamma were detected in coincidence by two states of matching neutron and gamma detectors at gamma angles centered around 90/degree and 110/degree/ c.m. A gamma detector consisted of an array of 15 counters, each was 15/times/15/times/25 cm 3 block of lead-glass. A neutron detector consisted of 15 counters also, each one was a cylindrical plastic scintillator 7.6 cm in diameter and 45.7 cm long. The A/sub N/ results are compared with the predictions from the most recent single-pion photoproduction partial-wave analysis by Arai and Fujii. The agreement is poor, casting doubt on the correctness of the value for the radiative-decay amplitude of the neutral Roper resonance now in use. A comparison is made with the 90/degree/recoil proton polarization data of the inverse reaction derived from γd scattering, there are substantial discrepencies. Charge exchange (π/sup /minus/p/ → γ/degree/n) events were the major yield in this experiment. Very precise values of the charge exchange analyzing power were obtained with an error of typically 3%. The charge exchange results are compared with the predictions from recent γn partial wave analyses. At the lower incident energies little difference is seen between the VPI, Karlsruhe-Helsinki, and CMU-LBL analyses, and there is excellent agreement with our experiment. From the onset of the Roper resonance the VPI solution is strongly favored

  2. New measurement of G_E/GM for the proton

    Science.gov (United States)

    Segel, Ralph

    2003-10-01

    Recent polarization transfer measurements of the ratio of the proton electric to magnetic form factor, G E /G_M, find μ_pG E /GM = 1 - 0.13Q ^2 while a long series of L-T separations are fit by μ_pG_E/GM ≈ 1. Jefferson Lab experiment E01-001 used a new technique for making L-T separations that greatly reduces the dominant systematic uncertainties present in previous determinations. Protons from ep scattering were measured over a wide range in ɛ at Q^2 = 2.64, 3.20 and 4.10 GeV^2 and, simultaneously, protons scattered at Q^2 = 0.5 GeV^2 were measured over a small range in ɛ. The Q^2 = 0.5 GeV^2 measurements provided an internal monitor and only kinematic factors and ratios of simultaneously measured cross sections enter into the determinations of G_E/G_M. Measuring the proton cross sections has the advantage that for the same Q^2, count rates change very little with ɛ and also proton momentum is the same at all ɛ thus eliminating the effect of any momentum-dependent inefficiencies. Neither of these is true for L-T separations performed by measuring electron cross sections. Furthermore, the radiative corrections for the proton cross sections are a factor of about 2.5 smaller. All previous L-T separations measured electron cross sections and none had the advantage of an internal monitor. Therefore, the results of E01-001 stringently test whether systematic uncertainties in previous L-T separations may have been sufficient to explain the discrepancy with the recent polarization transfer results.

  3. Polarimeters for the AGS polarized-proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Crabb, D.G.; Bonner, B.; Buchanan, J.

    1983-01-01

    This report describes the three polarimeters which will be used to measure the beam polarization at the AGS polarized beam facility. The beam polarization will be measured before injection into the AGS, during acceleration, and after extraction from the AGS. The 200-MeV polarimeter uses scintillation-counter telescopes to measure the asymmetry in p-carbon inclusive scattering. The internal polarimeter can measure the beam polarization at up to five selected times during acceleration. A continuously spooled nylon filament is swung into the beam at the appropriate time and the asymmetry in pp elastic scattering measured by two scintillation-counter telescopes. This is a relative polarimeter which can be calibrated by the absolute external polarimeter located in the D extracted-beam line. This polarimeter uses scintillation counters in two double-arm magnetic spectrometers to measure clearly the asymmetry in pp elastic scattering from a liquid hydrogen target. The specific features and operation of each polarimeter will be discussed.

  4. Polarimeters for the AGS polarized-proton beam

    International Nuclear Information System (INIS)

    Crabb, D.G.; Bonner, B.; Buchanan, J.

    1983-01-01

    This report describes the three polarimeters which will be used to measure the beam polarization at the AGS polarized beam facility. The beam polarization will be measured before injection into the AGS, during acceleration, and after extraction from the AGS. The 200-MeV polarimeter uses scintillation-counter telescopes to measure the asymmetry in p-carbon inclusive scattering. The internal polarimeter can measure the beam polarization at up to five selected times during acceleration. A continuously spooled nylon filament is swung into the beam at the appropriate time and the asymmetry in pp elastic scattering measured by two scintillation-counter telescopes. This is a relative polarimeter which can be calibrated by the absolute external polarimeter located in the D extracted-beam line. This polarimeter uses scintillation counters in two double-arm magnetic spectrometers to measure clearly the asymmetry in pp elastic scattering from a liquid hydrogen target. The specific features and operation of each polarimeter will be discussed

  5. Measurement of small-angle antiproton-proton and proton-proton elastic scattering at the CERN intersecting storage rings

    NARCIS (Netherlands)

    Amos, N.; Block, M.M.; Bobbink, G.J.; Botje, M.A.J.; Favart, D.; Leroy, C.; Linde, F.; Lipnik, P.; Matheys, J-P.; Miller, D.

    1985-01-01

    Antiproton-proton and proton-proton small-angle elastic scattering was measured for centre-of-mass energies at the CERN Intersectung Storage Rings. In addition, proton-proton elastic scattering was measured at . Using the optical theorem, total cross sections are obtained with an accuracy of about

  6. On some methods to produce high-energy polarized electron beams by means of proton synchrotrons

    International Nuclear Information System (INIS)

    Bessonov, E.G.; Vazdik, Ya.A.

    1980-01-01

    Some methods of production of high-energy polarized electron beams by means of proton synchrotrons are considered. These methods are based on transfer by protons of a part of their energy to the polarized electrons of a thin target placed inside the working volume of the synchrotron. It is suggested to use as a polarized electron target a magnetized crystalline iron in which proton channeling is realized, polarized atomic beams and the polarized plasma. It is shown that by this method one can produce polarized electron beams with energy approximately 100 GeV, energy spread +- 5 % and intensity approximately 10 7 electron/c, polarization approximately 30% and with intensity approximately 10 4 -10 5 electron/c, polarization approximately 100% [ru

  7. Nuclear spin response studies in inelastic polarized proton scattering

    International Nuclear Information System (INIS)

    Jones, K.W.

    1988-01-01

    Spin-flip probabilities S/sub nn/ have been measured for inelastic proton scattering at incident proton energies around 300 MeV from a number of nuclei. At low excitation energies S/sub nn/ is below the free value. For excitation energies above about 30 MeV for momentum transfers between about 0.35 fm/sup /minus/1/ and 0.65 fm/sup / minus/1/ S/sub nn/ exceeds free values significantly. These results suggest that the relative ΔS = 1(ΔS = 0 + ΔS = 1) nuclear spin response approaches about 90% in the region of the enhancement. Comparison of the data with slab response calculations are presented. Decomposition of the measured cross sections into σ(ΔS = 0) and σ(ΔS = 1) permit extraction of nonspin-flip and spin-flip dipole and quadrupole strengths. 29 refs., 11 figs

  8. Analyzing powers and proton spin transfer coefficients in the elastic scattering of 800 MeV polarized protons from an L-type polarized deuteron target at small momentum transfers

    International Nuclear Information System (INIS)

    Adams, D.L.

    1986-10-01

    Analyzing powers and spin transfer coefficients which describe the elastic scattering of polarized protons from a polarized deuteron target have been measured. The energy of the proton beam was 800 MeV and data were taken at laboratory scattering angles of 7, 11, 14, and 16.5 degrees. One analyzing power was also measured at 180 degrees. Three linearly independent orientations of the beam polarization were used and the target was polarized parallel and antiparallel to the direction of the beam momentum. The data were taken with the high resolution spectrometer at the Los Alamos Meson Physics Facility (experiment 685). The results are compared with multiple scattering predictions based on Dirac representations of the nucleon-nucleon scattering matrices. 27 refs., 28 figs., 4 tabs

  9. RHIC polarized proton-proton operation at 100 GeV in Run 15

    International Nuclear Information System (INIS)

    Schoefer, V.; Aschenauer, E. C.; Atoian, G.; Blaskiewicz, M.; Brown, K. A.; Bruno, D.; Connolly, R.; D Ottavio, T.; Drees, K. A.; Dutheil, Y.; Fischer, W.; Gardner, C.; Gu, X.; Hayes, T.; Huang, H.; Laster, J.; Liu, C.; Luo, Y.; Makdisi, Y.; Marr, G.; Marusic, A.; Meot, F.; Mernick, K.; Michnoff, R.; Marusic, A.; Minty, M.; Montag, C.; Morris, J.; Narayan, G.; Nemesure, S.; Pile, P.; Poblaguev, A.; Ranjbar, V.; Robert-Demolaize, G.; Roser, T.; Schmidke, W. B.; Severino, F.; Shrey, T.; Smith, K.; Steski, D.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Wang, G.; White, S.; Yip, K.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S. Y.

    2015-01-01

    The first part of RHIC Run 15 consisted of ten weeks of polarized proton on proton collisions at a beam energy of 100 GeV at two interaction points. In this paper we discuss several of the upgrades to the collider complex that allowed for improved performance. The largest effort consisted in commissioning of the electron lenses, one in each ring, which are designed to compensate one of the two beam-beam interactions experienced by the proton bunches. The e-lenses raise the per bunch intensity at which luminosity becomes beam-beam limited. A new lattice was designed to create the phase advances necessary for a beam-beam compensation with the e-lens, which also has an improved off-momentum dynamic aperture relative to previous runs. In order to take advantage of the new, higher intensity limit without suffering intensity driven emittance deterioration, other features were commissioned including a continuous transverse bunch-by-bunch damper in RHIC and a double harmonic RF cature scheme in the Booster. Other high intensity protections include improvements to the abort system and the installation of masks to intercept beam lost due to abort kicker pre-fires.

  10. Qweak: A Precision Measurement of the Proton's Weak Charge

    International Nuclear Information System (INIS)

    David Armstrong; Todd Averett; James Birchall; James Bowman; Roger Carlini; Swapan Chattopadhyay; Charles Davis; J. Doornbos; James Dunne; Rolf Ent; Jens Erler; Willie Falk; John Finn; Tony Forest; David Gaskell; Klaus Grimm; C. Hagner; F. Hersman; Maurik Holtrop; Kathleen Johnston; R.T. Jones; Kyungseon Joo; Cynthia Keppel; Elie Korkmaz; Stanley Kowalski; Lawrence Lee; Allison Lung; David Mack; Stanislaw Majewski; Gregory Mitchell; Hamlet Mkrtchyan; Norman Morgan; Allena Opper; Shelley Page; Seppo Penttila; Mark Pitt; Benard Poelker; Tracy Porcelli; William Ramsay; Michael Ramsey-musolf; Julie Roche; Neven Simicevic; Gregory Smith; Riad Suleiman; Simon Taylor; Willem Van Oers; Steven Wells; W.S. Wilburn; Stephen Wood; Carl Zorn

    2004-01-01

    The Qweak experiment at Jefferson Lab aims to make a 4% measurement of the parity-violating asymmetry in elastic scattering at very low Q 2 of a longitudinally polarized electron beam on a proton target. The experiment will measure the weak charge of the proton, and thus the weak mixing angle at low energy scale, providing a precision test of the Standard Model. Since the value of the weak mixing angle is approximately 1/4, the weak charge of the proton Q w p = 1-4 sin 2 θ w is suppressed in the Standard Model, making it especially sensitive to the value of the mixing angle and also to possible new physics. The experiment is approved to run at JLab, and the construction plan calls for the hardware to be ready to install in Hall C in 2007. The theoretical context of the experiment and the status of its design are discussed

  11. Polarized proton beam development at COSY with EDDA as a fast internal polarimeter

    International Nuclear Information System (INIS)

    Hinterberger, F.

    2001-01-01

    Polarized protons in the Cooler Synchrotron COSY encounter five imperfection and nine intrinsic depolarizing resonances during the acceleration from 300 to 3300 MeV/c. When crossing imperfection resonances vertical correction dipoles are excited in order to enhance the average vertical displacement and thereby the resonance strength to result in a complete spin flip without loss of polarization. When crossing intrinsic resonances a rapid vertical tune jump is applied to minimize polarization losses. In order to find the optimum machine parameters a novel and fast method was developed to measure the internal beam polarization as a function of the beam momentum in the vicinity of a depolarizing resonance as well as in the full acceleration ramp. Using very thin internal CH 2 - and/or C-fiber targets the polarization is deduced from the left-right asymmetry of fast scaler rates. To this end the EDDA detector is used. This detector consists of two cylindrical scintillation hodoscope layers covering about 87% of 4π for pp elastic scattering. The effective analyzing power of the fast method is obtained by a special calibration procedure using a 'slow but proper' EDDA-style measurement of the elastic pp scattering asymmetries. For this calibration precise analyzing power excitation functions measured by EDDA became available in time

  12. Estimates of rates and errors for measurements of direct-γ and direct-γ + jet production by polarized protons at RHIC

    International Nuclear Information System (INIS)

    Beddo, M.E.; Spinka, H.; Underwood, D.G.

    1992-01-01

    Studies of inclusive direct-γ production by pp interactions at RHIC energies were performed. Rates and the associated uncertainties on spin-spin observables for this process were computed for the planned PHENIX and STAR detectors at energies between √s = 50 and 500 GeV. Also, rates were computed for direct-γ + jet production for the STAR detector. The goal was to study the gluon spin distribution functions with such measurements. Recommendations concerning the electromagnetic calorimeter design and the need for an endcap calorimeter for STAR are made

  13. Large-xF spin asymmetry in π0 production by 200-GeV polarized protons

    International Nuclear Information System (INIS)

    Adams, D.L.; Corcoran, M.D.; Cranshaw, J.; Nessi-Tedaldi, F.; Nessi, M.; Nguyen, C.; Roberts, J.B.; Skeens, J.; White, J.L.; Bystricky, J.; Lehar, F.; Lesquen, A. de; Cossairt, J.D.; Read, A.L.; En'yo, H.; Funahashi, H.; Goto, Y.; Imai, K.; Itow, Y.; Makino, S.; Masaike, A.; Miyake, K.; Nagamine, T.; Saito, N.; Yamashita, S.; Iwatani, K.; Krueger, K.W.; Kuroda, K.; Michalowicz, A.; Luehring, F.C.; Miller, D.H.; Pauletta, G.; Penzo, A.; Schiavon, P.; Zanetti, A.; Salvato, G.; Villari, A.; Takeutchi, F.; Tamura, N.; Tanaka, N.; Yoshida, T.

    1992-01-01

    The spin asymmetry A N for inclusive π 0 production by 200-GeV transversely-polarized protons on a liquid hydrogen target has been measured at Fermilab over a wide range of x F , with 0.5 T F >0.3, the asymmetry rises with increasing x F and reaches a value of A N =0.15±0.03 in the region 0.6 F <0.8. This result provides new input regarding the question of the internal spin structure of transversely-polarized protons. (orig.)

  14. Photoproduction of positive pions from polarized protons in the region of the first resonance

    Energy Technology Data Exchange (ETDEWEB)

    Get' man, V.A.; Gorbenko, V.G.; Derkach, A.Y.; Zhebrovskii, Y.V.; Karnaukhov, I.M.; Kolesnikov, L.Y.; Kuz' menko, V.S.; Lukhanin, A.A.; Ranyuk, Y.N.; Rubashkin, A.L.; Sanin, V.M.; Sorokin, P.V.; Sporov, E.A.; Telegin, Y.N.; Shalatskii, S.V.; Grushin, V.F.

    1980-04-01

    A technique for measuring the T asymmetry for the process ..gamma..p ..-->.. n..pi../sup +/ using a polarized proton target and a quasimonochromatic beam of photons is described. The results of measuring T in the range of pion-emission angles theta(/sub ..pi../ = 3 to 150/sup 0/ at a photon energy of 340 MeV are presented and discussed. It is shown that the results obtained allow a more reliable selection of the solutions of the energy-independent multipole analysis.

  15. Measuring fluorescence polarization with a dichrometer.

    Science.gov (United States)

    Sutherland, John C

    2017-09-01

    A method for obtaining fluorescence polarization data from an instrument designed to measure circular and linear dichroism is compared with a previously reported approach. The new method places a polarizer between the sample and a detector mounted perpendicular to the direction of the incident beam and results in determination of the fluorescence polarization ratio, whereas the previous method does not use a polarizer and yields the fluorescence anisotropy. A similar analysis with the detector located axially with the excitation beam demonstrates that there is no frequency modulated signal due to fluorescence polarization in the absence of a polarizer. Copyright © 2017. Published by Elsevier Inc.

  16. Measurement of the polarization correlation coefficient in elastic pp scattering at 610 MeV

    International Nuclear Information System (INIS)

    Borisov, N.S.; Glonti, L.N.; Kazarinov, M.Yu.

    1977-01-01

    The polarization correlation coefficient Csub(nn) for elastic pp scattering at 610+-10 MeV was measured for four scattering angles: 40, 67, 78 and 90 deg (c.m.s.). A polarized proton beam with a maximum polarization of 0.39+-0.02 and a polarized proton target of the frozen type were used. The maximum polarization of the target was 0.97+-0.04. The experimental procedure is described in detail. The Csub(nn) measured are compared with the results of a phase analysis and the findings at 575 MeV obtained elsewhere. The Csub(nn) coefficients are shown to be valuable to discriminate alternative solutions of the phase analysis. The polarized proton targets of the frozen type, no accounting the complexity of their design, are emphasized to be rather reliable and convenient devices for conducting experiments at accelerators

  17. Acceleration of Polarized Protons up to 3.4 GeV/c in the Nuclotron at JINR

    Science.gov (United States)

    Kovalenko, A. D.; Butenko, A. V.; Mikhaylov, V. A.; Kondratenko, M. A.; Kondratenko, A. M.; Filatov, Yu N.

    2017-12-01

    To preserve proton polarization in the Nuclotron up to 13.5 GeV/c, it is enough to use a partial solenoid snake with maximal field integral of 25 Tm that allows one to eliminate crossings of the most dangerous intrinsic and integer spin resonances. The insertion of weak field integral is sufficient to preserve the proton polarization up to 3.4 GeV/c. This momentum corresponds to the first intrinsic resonance. To preserve polarization during crossings of five integer spin resonances, it is possible to choose crossing rates that correspond to either the fast or the slow resonance crossings. Another possibility is a deliberate increasing of the resonance strength. To eliminate depolarization during protons injection into the Nuclotron, a scheme of matching of the polarization with a vertical direction is presented. During the run in February-March 2017, the three measurements of the proton polarization at kinetic energies of 0.5 GeV, 1 GeV and 2 GeV were made that allow one to obtain the integer spin resonances strengths.

  18. Elastic scattering of polarized protons on helium three at 800 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Azizi, A.

    1985-07-01

    A set of spin dependent parameters and cross sections has been measured for polarized p-/sup 3/He elastic scattering over the range of q .7 to 4.2 fm/sup -1/. The experiment was done at the Los Alamos Meson Physics Facility (LAMPF) using the High Resolution Spectrometer (HRS) with a polarized proton beam at .8 GeV. The focal plane polarimeter of the HRS was used to determine the spin direction of the scattered proton. Since /sup 3/He is one of the simplest nuclei, polarized p-/sup 3/He scattering provides a very sensitive test of multiple scattering theories. The theoretical analysis was done by using two different wave functions for /sup 3/He as input to the multiple scattering theory. The theoretical calculations and experimental data together will give us useful information about nucleon-nucleon amplitudes and also help us to obtain a better understanding of the scattering process. 68 refs., 55 figs., 9 tabs.

  19. Depolarization in the elastic scattering of 17 MeV polarized protons from 9Be

    International Nuclear Information System (INIS)

    Baker, M.P.

    1975-01-01

    The Wolfenstein depolarization parameter D(theta) was measured for the elastic scattering of 17-MeV protons from 9 Be at laboratory scattering angles between 70 0 and 120 0 in 10 0 steps with uncertainties ranging from 0.05 to 0.07. The reaction was initiated by polarized protons and the polarization of those protons elastically scattered by the 9 Be analyzed using a high-resolution, silicon polarimeter. Several of the measured values of D(theta) differed significantly from unity, indicating non-zero probability for proton spin-flip in the elastic scattering process. Theoretical estimates of the depolarization-parameter angular distribution have been made using a multipole expansion of the elastic-scattering amplitude in terms of the amount of angular momentum transferred to the target nucleus during the scattering process. Here the J = 0, 1 and 2 contributions to the scattering amplitude have been explicitly treated for the scattering from 9 Be(I = 3 / 2 ). The J = 0 terms are calculated using the standard, spherical optical-model. The J = 1 and 2 terms can be calculated using DWBA. Both spherical and tensor forms are considered for the J = 1 interaction. The spin-flip probabilities predicted assuming reasonable strengths for the J = 1 potentials are much smaller than those observed experimentally. The J = 2 contribution to the spin-flip probability is calculated assuming a rotational model for 9 Be. Predictions of the J = 2, elastic spin-flip probability are substantially larger than the predictions for the J = 1 contribution and are in rough agreement with the present data. The results of recent coupled-channels calculations also support the conclusion that large elastic spin-flip probabilities can be produced by the J = 2 term in the elastic scattering amplitude

  20. Measurement of the North-South asymmetry in the solar proton albedo neutron flux

    International Nuclear Information System (INIS)

    Ifedili, S.O.

    1979-01-01

    The solar proton albedo neutron flux in the range 10 -2 --10 7 eV measured by a neutron detector on board the Ogo 6 satellite was examined for north-south asymmetry. For the solar proton event of December 19, 1969, the S/N ratio of the solar proton albedo neutron rate at geomagnetic latitude lambda>70 0 was 1.61 +- 0.27 during the event, while for the November 2, 1969, event at 40 0 0 and altitudes ranging from 700 km to 800 km the solar proton albedo neutron rate was 0.40 +- 0.10 count/s in the north and 0.00 +- 0.10 count/s in the south. During the solar proton event of December 18, 1969, the N/S ratio of the solar proton albedo neutron rate at lambda>70 0 was 1.00 +- 0.26. The results are consistent with the expected N-S asymmetry in the solar proton flux. An interplanetary proton anisotropy with the interplanetary magnetic field polarity away from the sun corresponded to larger fluxes of solar proton albedo neutrons at the north polar cap than at the south, while an interplanetary proton anisotropy with the interplanetary magnetic field polarity toward the sun corresponded to larger fluxes of solar proton albedo neutrons at the south polar cap than at the north. This evidence favors the direct access of solar protons to the earth's polar caps via the merged interplanetary and geomagnetic field lines

  1. Polarized proton parameters for the 2015 PP-on-Au setup in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, C. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-08-25

    Values are given for RHIC circumference shifts due to snakes for various situations. Relevant parameters are tabulated for polarized protons (PP) in the booster and in AGS and RHIC for PP-on-Au stores.

  2. Polarized proton parameters for the 2015 PP-on-Aluminum setup in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, C. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-10-02

    Values are given for RHIC circumference shifts due to snakes for various situations. Relevant parameters are tabulated for polarized protons (PP) in the booster and in AGS and RHIC for PP-on-Aluminum stores.

  3. Proton--proton analyzing power measurements at 16 MeV

    International Nuclear Information System (INIS)

    Lovoi, P.A.

    1975-01-01

    Few attempts have been made to measure accurately the proton--proton analyzing powers at low energies. With the advent of polarized particle beams the measurement can now be made with high accuracy. Analyzing powers were measured at nine scattering angles from 10 0 to 35 0 in the laboratory system. As a check on systematic errors, analyzing power measurements were also made by scattering protons from 4 He. In the p vector-p case the measured values are in very good agreement with the phase shift predictions. The p vector- 4 He measurements, while giving the same form and sign as the phase shift predictions, differ from the predictions by as much as 11 standard deviations. The p vector-p analyzing powers had a maximum value of -0.0043 +- 0.0004 at 10 0 (laboratory) and decreased to zero near 25 0 . A new technique to measure analyzing powers without symmetric detectors is explained. This technique preserves the advantages of the symmetric arm method in that current integration, target density, detector efficiencies, and geometry are cancelled from the final expressions. A new scattering chamber, named the Supercube, is described. The Supercube was designed primarily to perform scattering experiments with a polarized beam. It contains both left-right and up-down detectors for use with both spin- 1 / 2 and spin-1 measurements. The Supercube was designed to make analyzing power measurements to an accuracy of 0.001 routine. The Supercube has proved to have low systematic errors and to perform as expected. The systematic errors were found to be equal to or less than 0.0002

  4. Proton--proton analyzing power measurements at 16 MeV

    International Nuclear Information System (INIS)

    Lovoi, P.A.

    1975-07-01

    Few attempts have been made to measure accurately the proton-proton analyzing powers at low energies. With the advent of polarized particle beams the measurement can now be made with high accuracy. Analyzing powers were measured at nine scattering angles from 10 0 to 35 0 in the laboratory system. As a check on systematic errors, analyzing power measurements were also made by scattering protons from 4 He. In the p Vector-p case the measured values are in very good agreement with the phase shift predictions. The p Vector- 4 He measurements, while giving the same form and sign as the phase shift predictions, differ from the predictions by as much as 11 standard deviations. The p Vector-p analyzing powers had a maximum value of -0.0043 +- 0.0004 at 10 0 (laboratory) and decreased to zero near 25 0 . A new technique to measure analyzing powers without symmetric detectors is explained. This technique preserves the advantages of the symmetric arm method in that current integration, target density, detector efficiencies, and geometry are cancelled from the final expressions. A new scattering chamber, named the Supercube, is described. The Supercube was designed primarily to perform scattering experiments with a polarized beam. It contains both left-right and up-down detectors for use with both spin-1/2 and spin-1 measurements. The Supercube was designed to make analyzing power measurements to an accuracy of 0.001 routine. The Supercube has proved to have low systematic errors and to perform as expected. The systematic errors were found to be equal to or less than 0.0002. (23 figures, 14 tables) (auth)

  5. Double Polarized Neutron-Proton Scattering and Meson-Exchange Nucleon-Nucleon Potential Models

    International Nuclear Information System (INIS)

    Raichle, B.W.; Gould, C.R.; Haase, D.G.; Seely, M.L.; Walston, J.R.; Tornow, W.; Wilburn, W.S.; Raichle, B.W.; Gould, C.R.; Haase, D.G.; Seely, M.L.; Walston, J.R.; Tornow, W.; Wilburn, W.S.; Penttilae, S.I.; Hoffmann, G.W.

    1999-01-01

    We report on polarized beam - polarized target measurements of the spin-dependent neutron-proton total cross-section differences in longitudinal and transverse geometries (Δσ L and Δσ T , respectively) between E n =5 and 20MeV. Single-parameter phase-shift analyses were performed to extract the phase-shift mixing parameter var-epsilon 1 , which characterizes the strength of the nucleon-nucleon tensor interaction at low energies. Consistent with the trend of previous determinations at E n =25 and 50MeV, our values for var-epsilon 1 imply a stronger tensor force than predicted by meson-exchange nucleon-nucleon potential models and nucleon-nucleon phase-shift analyses. copyright 1999 The American Physical Society

  6. Measuring the Weak Charge of the Proton via Elastic Electron-Proton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Donald C. [Univ. of Virginia, Charlottesville, VA (United States)

    2015-10-01

    The Qweak experiment which ran in Hall C at Jefferson Lab in Newport News, VA, and completed data taking in May 2012, measured the weak charge of the proton QpW via elastic electron-proton scattering. Longitudinally polarized electrons were scattered from an unpolarized liquid hydrogen target. The helicity of the electron beam was flipped at approximately 1 kHz between left and right spin states. The Standard Model predicts a small parity-violating asymmetry of scattering rates between right and left helicity states due to the weak interaction. An initial result using 4% of the data was published in October 2013 [1] with a measured parity-violating asymmetry of -279 ± 35(stat) ± 31 (syst) ppb. This asymmetry, along with other data from parity-violating electron scattering experiments, provided the world's first determination of the weak charge of the proton. The weak charge of the proton was found to be pW = 0.064 ± 0.012, in good agreement with the Standard Model prediction of pW(SM) = 0.0708 ± 0.0003[2].

  7. Fractal structure of hadrons in processes with polarized protons at SPD NICA (Proposal for experiment)

    Czech Academy of Sciences Publication Activity Database

    Tokarev, M. V.; Zborovský, Imrich; Aparin, A. A.

    2015-01-01

    Roč. 12, č. 1 (2015), s. 48-58 ISSN 1547-4771 R&D Projects: GA MŠk LG14004 Institutional support: RVO:61389005 Keywords : asymmetry * high energy * polarization * proton-proton collisions * Self-similarity Subject RIV: BE - Theoretical Physics

  8. Study of a polarized proton source for a cyclotron using a high frequency transition (1961)

    International Nuclear Information System (INIS)

    Thirion, J.; Beurtey, R.; Papineau, A.

    1961-01-01

    The authors have developed an experimental unit yielding a jet of hydrogen or deuterium atoms in which the protons and deutons are polarized. By use of the 'adiabatic passage' method a proton polarisation approaching 100 per cent is assured. (authors) [fr

  9. Elastic proton-deuteron backward scattering: relativistic effects and polarization observables

    International Nuclear Information System (INIS)

    Kaptari, L.P.; Semikh, S.S.

    1997-10-01

    The elastic proton-deuteron backward reaction is analyzed within a covariant approach based on the Bethe-Salpeter equation with 000. Lorentz boost and other relativistic effects in the cross section and spin correlation observables, like tensor analyzing power and polarization transfer etc., are investigated in explicit form. Results of numerical calculations for a complete set of polarization observables are presented. (orig.)

  10. Measurement of the Proton and Deuteron Spin Structure Functions G1 and G2

    Energy Technology Data Exchange (ETDEWEB)

    Tobias, Al

    2003-04-02

    The SLAC experiment E155 was a deep-inelastic scattering experiment that scattered polarized electrons off polarized proton and deuteron targets in the effort to measure precisely the proton and deuteron spin structure functions. The nucleon structure functions g{sub 1} and g{sub 2} are important quantities that help test our present models of nucleon structure. Such information can help quantify the constituent contributions to the nucleon spin. The structure functions g{sub 1}{sup p} and G{sub 1}{sup d} have been measured over the kinematic range 0.01 {le} x {le} 0.9 and 1 {le} Q{sup 2} {le} 40 GeV{sup 2} by scattering 48.4 GeV longitudinally polarized electrons off longitudinally polarized protons and deuterons. In addition, the structure functions g{sub 2}{sup p} and g{sub 2}{sup d} have been measured over the kinematic range 0.01 {le} x {le} 0.7 and 1 {le} Q{sup 2} {le} 17 GeV{sup 2} by scattering 38.8 GeV longitudinally polarized electrons off transversely polarized protons and deuterons. The measurements of g{sub 1} confirm the Bjorken sum rule and find the net quark polarization to be {Delta}{Sigma} = 0.23 {+-} 0.04 {+-} 0.6 while g{sub 2} is found to be consistent with the g{sub 2}{sup WW} model.

  11. Twist-3 effect from the longitudinally polarized proton for ALT in hadron production from pp collisions

    Directory of Open Access Journals (Sweden)

    Yuji Koike

    2016-08-01

    Full Text Available We compute the contribution from the longitudinally polarized proton to the twist-3 double-spin asymmetry ALT in inclusive (light hadron production from proton–proton collisions, i.e., p↑p→→hX. We show that using the relevant QCD equation-of-motion relation and Lorentz invariance relation allows one to eliminate the twist-3 quark-gluon correlator (associated with the longitudinally polarized proton in favor of one-variable twist-3 quark distributions and the (twist-2 transversity parton density. Including this result with the twist-3 pieces associated with the transversely polarized proton and unpolarized final-state hadron (which have already been calculated in the literature, we now have the complete leading-order cross section for this process.

  12. Measurement of Quarkonium polarization to probe QCD at the LHC

    International Nuclear Information System (INIS)

    Knünz, V.

    2015-01-01

    With the first proton-proton collisions in the Large Hadron Collider (LHC) at CERN in 2010, a new era in high energy physics has been initiated. The data collected by the various experiments open up the possibility to study standard model processes with high precision, in new areas of phase space. The LHC provides excellent conditions for studies of quarkonium production, due to the high quarkonium production rates given the high center-of-mass energy and high instantaneous luminosity of the colliding proton beams. Studies of the production of heavy quarkonium mesons - bound states of a heavy quark and its respective antiquark - are very important to improve our understanding of hadron formation. Until quite recently, experimental and phenomenological efforts have not resulted in a satisfactory overall picture of quarkonium production cross sections and quarkonium polarizations. The Compact Muon Solenoid (CMS) detector is ideally suited to study quarkonium production in the experimentally very clean dimuon decay channel, up to considerably higher values of transverse momentum than accessible in previous experiments. The scope of this thesis is to describe in detail the measurements of the polarizations of the Upsilon(nS) bottomonium states and (in less detail) of the Psi(nS) charmonium states, based on a dimuon data sample collected with the CMS detector in proton-proton collisions at a center-of-mass energy of 7 TeV. Surprisingly, no significant polarizations were found in any of the studied quarkonium states, in none of the studied reference frames, nor in a frame-independent analysis. From an experimental point of view, these results, together with recent results from other experiments, clarify the confusing picture originating from previous measurements, which were plagued by experimental ambiguities and inconsistencies. The currently most favored approach to model and understand quarkonium production is non-relativistic quantum chromodynamics (NRQCD), a QCD

  13. Measurement of parity nonconservation in the proton-proton total cross section at 800 MeV

    International Nuclear Information System (INIS)

    Bowman, J.D.

    1986-01-01

    A report is made of a measurement of parity nonconservation in the transmission of 800-MeV longitudinally polarized protons through an unpolarized, 1-m liquid-hydrogen target. The dependence of transmission on beam properties was studied to measure and to correct for systematic errors. The measured longitudinal asymmetry in the total cross section is A/sub L/ = [+2.4 +- 1.1 (statistical) +- 0.1 (systematic)] x 10 -7 . 25 refs., 2 figs

  14. Experimental measurement of proton penetration in silicon

    International Nuclear Information System (INIS)

    Castaing, C.; Baruch, P.; Picard, C.

    1974-01-01

    After proton implantation in silicon at high fluence, hydrogen precipitation in bubbles is induced by annealing. The stresses are so high that blister formation and peeling occur, leaving flat bottomed pits, with a depth equal to the projected proton range R(p). In this way R(p) was measured between 200 and 600keV, and compared with already published values, and with values computed through LSS (Lindhard, Scharff, and Schiott) theory, using a correct electronic stopping power. A table of ranges and standard deviations, computed in this way is given. The agreement with experimental results is excellent [fr

  15. An overview of Booster and AGS Polarized Proton Operations during Run 17

    Energy Technology Data Exchange (ETDEWEB)

    Zeno, K. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-10-11

    There were only a few differences in the setup between this year’s Polarized Proton run and the previous one (Run 15). Consequently, this note will focus on these differences as well as a few more notable studies done during the course of the run. This year, the Booster input intensity was kept around 7e11 for the majority of the run whereas in Run 15 it was kept around 9e11. It was lowered because there was some indication that the source polarization was higher with this lower input. Some of the polarization measurements that motivated this change will be discussed. Both the emittance and polarization on the AGS flattop show intensity dependence, thought to be related to the peak current, especially early in the AGS acceleration ramp. In Run 15, the AGS Rf was configured for h=8, but in this run h=6 was used to reduce the peak current and also to allow for the possibility of using a dual harmonic to reduce it further. Eventually, a dual harmonic configuration was used for the first 100 ms or so of the AGS acceleration cycle. Two cavities were set to h=12 and phased differently than the other 8 to accomplish this. Quad pumping was also used at Booster extraction to make the bunch injected into the AGS wider in order to match the dual harmonic bucket right at injection. This configuration, which was used for the majority of the run, will be described. Measurements of the intensity dependence of the transverse emittance and polarization with and without it will be compared.

  16. Elastic scattering of polarized protons from 3He at intermediate energies

    International Nuclear Information System (INIS)

    Hasell, D.K.; Bracco, A.; Gubler, H.P.

    1982-09-01

    Using the polarized proton beam facility of the TRIUMF cyclotron, differential cross sections and analyzing powers have been measured in the angular range 20 0 - 150 0 c.m. for proton elastic scattering from 3 He at incident proton energies of 200, 300, 415 and 515 MeV. The differential cross sections exhibit a minimum at t = -0.33 (GeV/c) 2 which becomes more pronounced with increasing energy. There is evidence for the onset of a second minimum corresponding to the interference between double and triple scattering amplitudes. Large analyzing powers are observed at the lower energies. The data from the present analysis, together with data obtained from the literature in the energy range 100-1000 MeV, have been analyzed within the framework of the Glauber multiple scattering formalism. Nucleon-nucleon scattering parameters were taken from a global phase shift analysis of nucleon-nucleon elastic scattering data. Reasonable agreement with the data is obtained

  17. Search for parity non-conservation polarized proton-nucleon scattering at 6 GeV/c

    International Nuclear Information System (INIS)

    Alde, D.M.

    1979-01-01

    An experiment has been performed at the Argonne National Laboratory Zero Gradient synchrotron to measure the dependence of the total proton-nucleon cross section on the helicity of the incident proton. A dependence of the total cross section on the proton helicity is a measure of the strength of the weak interaction in the hadronic system. The cross section was determined by measuring the transmission of 6-GeV/c polarized protons through an H 2 O target. Integral counting techniques were used to achieve the high data rates required for the measurement of the small effect. The measured cross section asymmetry (sigma/sub +/ - sigma/sub -/)/(sigma/sub +/ + sigma/sub -/) - (-26.3 +- 7.5) x 10 -6 , where sigma/sub +/(sigma/sub -/) is the total cross section for positive-(negative-) helicity protons incident on an H 2 O target. The asymmetry is substantially larger than predicted by conventional theories of the weak interaction. Systematic contributions to the asymmetry are discussed. This result may include systematic contributions that were not measured or were measured inadequately by the apparatus. Suggestions for improving the experiment are made. Preliminary results for the asymmetry from the improved version of the experiment are given that are consistent with zero

  18. Measurement of γ-quanta beam polarization

    International Nuclear Information System (INIS)

    Luchkov, B.I.; Tugaenko, V.Yu.; Maishev, V.A.

    1992-01-01

    A beam of polarized γ-quanta is produced and its polarization degree is measured. The experiment is conducted using an electron beam of the Serpukhov accelerator at the 'Kaskad' facility. 28 GeV energy electrons are recorded in a proportional chamber after which they enter a 15 mm thickness silicon crystal. After passing the second proportional chamber the electrons get into complete absorption spectrometer where their energy is measured, and the emitted gamma quanta get to 30 mm thickness silicon crystal. E + e - -pair coordinates are measured in the third proportional chamber. Gamma-quantum polarization value of 0.3±0.1 is obtained. 1 ref.; 1 fig

  19. Azimuthal transverse single-spin asymmetries of inclusive jets and charged pions within jets from polarized-proton collisions at √{s }=500 GeV

    Science.gov (United States)

    Adamczyk, L.; Adams, J. R.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Barish, K.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bryslawskyj, J.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, X.; Chen, J. H.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; Dedovich, T. G.; Deng, J.; Deppner, I. M.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fujita, J.; Fulek, L.; Gagliardi, C. A.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Herrmann, N.; Hirsch, A.; Horvat, S.; Huang, B.; Huang, T.; Huang, X.; Huang, H. Z.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kapukchyan, D.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kim, C.; Kisel, I.; Kisiel, A.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Krauth, L.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, W.; Li, Y.; Li, C.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, F.; Liu, P.; Liu, Y.; Liu, H.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Luo, S.; Ma, G. L.; Ma, L.; Ma, R.; Ma, Y. G.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Mayes, D.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nemes, D. B.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seto, R.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Shen, W. Q.; Shi, S. S.; Shi, Z.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stewart, D. J.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, X.; Sun, X. M.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, G.; Xie, W.; Xu, Y. F.; Xu, J.; Xu, Q. H.; Xu, N.; Xu, Z.; Yang, S.; Yang, Y.; Yang, C.; Yang, Q.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Z.; Zhang, J.; Zhang, S.; Zhang, S.; Zhang, J.; Zhang, Y.; Zhang, X. P.; Zhang, J. B.; Zhao, J.; Zhong, C.; Zhou, L.; Zhou, C.; Zhu, X.; Zhu, Z.; Zyzak, M.; STAR Collaboration

    2018-02-01

    We report the first measurements of transverse single-spin asymmetries for inclusive jet and jet+π± production at midrapidity from transversely polarized proton-proton collisions at √{s }=500 GeV . The data were collected in 2011 with the STAR detector sampled from 23 pb-1 integrated luminosity with an average beam polarization of 53%. Asymmetries are reported for jets with transverse momenta 6 measurements of the inclusive-jet azimuthal transverse single-spin asymmetry, sensitive to twist-3 initial-state quark-gluon correlators; the Collins asymmetry, sensitive to quark transversity coupled to the polarized Collins fragmentation function; and the first measurement of the "Collins-like" asymmetry, sensitive to linearly polarized gluons. Within the present statistical precision, inclusive-jet and Collins-like asymmetries are small, with the latter allowing the first experimental constraints on gluon linear polarization in a polarized proton. At higher values of jet transverse momenta, we observe the first nonzero Collins asymmetries in polarized-proton collisions, with a statistical significance of greater than 5 σ . The results span a range of x similar to results from semi-inclusive deep-inelastic scattering but at much higher Q2. The Collins results enable tests of universality and factorization breaking in the transverse momentum-dependent formulation of perturbative quantum chromodynamics.

  20. Polarized proton and antiproton experiments at Fermilab E-581/704

    International Nuclear Information System (INIS)

    Yokosawa, A.

    1988-01-01

    We summarize activities concerning the Fermilab polarized beams. They include a description of the polarized-beam facility, measurements of beam polarization by polarimeters, asymmetry measurements in the π 0 production at large x, and experiments with polarized beams during the next fixed-target period. 8 refs., 9 figs

  1. Experiments to measure the gluon helicity distribution in protons

    International Nuclear Information System (INIS)

    Spinka, H.; Beddo, M.E.; Underwood, D.G.

    1993-01-01

    Several experiments are described that could obtain information about the gluon helicity distribution in protons. These experiments include inclusive direct-γ, direct-γ + jet, jet, and jet + jet production with colliding beams of longitudinally-polarized protons. Some rates and kinematics are also discussed

  2. IGS polar motion measurement accuracy

    Directory of Open Access Journals (Sweden)

    Jim Ray

    2017-11-01

    Full Text Available We elaborate an error budget for the long-term accuracy of IGS (International Global Navigation Satellite System Service polar motion estimates, concluding that it is probably about 25–30 μas (1-sigma overall, although it is not possible to quantify possible contributions (mainly annual that might transfer directly from aliases of subdaily rotational tide errors. The leading sources are biases arising from the need to align daily, observed terrestrial frames, within which the pole coordinates are expressed and which are continuously deforming, to the secular, linear international reference frame. Such biases are largest over spans longer than about a year. Thanks to the very large number of IGS tracking stations, the formal covariance errors are much smaller, around 5 to 10 μas. Large networks also permit the systematic frame-related errors to be more effectively minimized but not eliminated. A number of periodic errors probably also influence polar motion results, mainly at annual, GPS (Global Positioning System draconitic, and fortnightly periods, but their impact on the overall error budget is unlikely to be significant except possibly for annual tidal aliases. Nevertheless, caution should be exercised in interpreting geophysical excitations near any of the suspect periods.

  3. Self-polarization of stored (anti-)protons: Status of the Spin-Splitter experiment at IUCF

    International Nuclear Information System (INIS)

    Rossmanith, R.

    1990-01-01

    Several years ago a selfpolarization effect for stored (anti-)protons and ions was investigated theoretically. The effect is based on the well-known Stern-Gerlach effect in gradient fields. The aim of the ongoing measurements at IUCF is to verify experimentally the various assumptions on which this effect is based. The final goal is to demonstrate this new polarization effect. The proposed effect could be a powerful tool to produce polarized stored hadron beams both in the low energy range and at SSC and LHC energies

  4. Spin flipping a stored polarized proton beam at the IUCF cooler ring

    International Nuclear Information System (INIS)

    Phelps, R.A.

    1995-01-01

    We recently studied the spin flip of a vertically polarized 139 MeV proton beam stored in the IUCF Cooler Ring. We used an rf solenoid to induce a depolarizing resonance in the ring; we flipped the spin by varying the solenoid field's frequency through this resonance. We found a polarization loss after multiple spin flips less than 0.1% per flip; we also found that this loss increased for very slow frequency changes. This spin flip could reduce systematic errors in stored polarization beam experiments by allowing frequent beam polarization reversals during the experiment. copyright 1995 American Institute of Physics

  5. Determination of polar cusp position by low-energy particle measurements made aboard AUREOLE satellite

    International Nuclear Information System (INIS)

    Gladyshev, V.A.; Jorjio, M.V.; Shuiskaya, F.K.; Crasnier, J.; Sauvaud, J.A.

    1974-01-01

    The Franco-Soviet experiment ARCAD, launched aboard the satellite AUREOLE December 27, 1971, has verified the existence of a particle penetration from the transition zone up to ionospheric altitudes across the polar cusp. The polar cusp is characterized by proton fluxes >10 7 particles/(cm 2 .s.sr.KeV) at 0.5KeV, with energy spectra similar to those in the transition zone. The position and form of the polar cusp are studied from measurements of protons in the range 0.4 to 30KeV during geomagnetically quiet periods (Kp [fr

  6. Polarization of protons produced in diffractive disintegration of deuterons by high-energy pions

    International Nuclear Information System (INIS)

    Gakh, G.Yi.; Rekalo, M.P.

    1996-01-01

    For the process of diffractive disintegration of unpolarized deuterons by the high-energy pions, π + d → π + p + n, the polarization characteristics of produced protons are calculated. Using the vector nature of the Pomeron exchange, the general structure of all components of proton polarization vector is found for d (π, π p) n. By the Pomeron-photon analogy, the amplitude of the process P + d → n + p is approximated by the isoscalar contribution of four Born diagrams similar to the case of deuteron electrodisintegration. Unitarization of the amplitude is achieved by introducing in multipole amplitudes the corresponding phases of np-scattering. The numerical calculation of all components of the polarization vector of protons, produced in the case of noncomplanar kinematics of the reaction π + d → π + p + n, is realized

  7. Determination of strange form factors of nucleon by parity violation asymmetry by polarized electron-proton elastic scattering

    International Nuclear Information System (INIS)

    Jardillier, Johann

    1999-01-01

    In the quark model, the proton is described as a system of three quarks UUD. However, recent experiments (CERN, SLAC) have shown that the strange quarks may contribute in a significant way to the mass and the spin of the proton. The HAPPEX experiment gives one further knowledge about the question of the role the strange quarks play inside the proton. It measures parity violating asymmetry in the scattering of polarized electrons from a proton because the latter is sensitive to the contribution of the strange quarks to the electromagnetic form factors of the nucleon. The observed asymmetry is in the order of a few ppm (part per million). The main difficulty of the experiment is to identify, to estimate and to minimize, as much as possible, all the systematic effects which could give rise to false asymmetries. This thesis discusses the principle of the HAPPEX experiment, its implementation at the Jefferson Lab (JLab), the processing and the analysis of the data, the systematic errors, and finally presents the result of the first data taking (1999) and its present interpretation. The HAPPEX experiment has measured, at Q 2 = 0.5 (GeV/c) 2 , a strange quarks contribution of (1.0 ± 2.3)% to the electromagnetic form factors of the nucleon. The statistics and the systematic effects (measure of the electron beam polarization and knowledge of the neutron electric form factor) contribute equally to the error. (author)

  8. Measurement of $\\Lambda$ polarization from Z decays

    CERN Document Server

    Buskulic, Damir; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Chmeissani, M; Crespo, J M; Delfino, M C; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Alemany, R; Bazarko, A O; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Mir, L M; Moneta, L; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wagner, A; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Wäänänen, A; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Abbaneo, D; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Konstantinidis, N P; Nicod, D; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Chambers, J T; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Köksal, A; Letho, M; Newton, W M; Rankin, C; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Büscher, V; Cowan, G D; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Aleppo, M; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Greening, T C; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1996-01-01

    The polarization of \\Lambda baryons from Z decays is studied with the {\\sc Aleph} apparatus. Evidence of longitudinal polarization of s quarks from Z decay is observed for the first time. The measured longitudinal \\Lambda polarization is P^{\\Lambda}_{L} = -0.32 \\pm 0.07 for z = p/p_{\\mathrm{beam}} > 0.3. This agrees with the prediction of -0.39 \\pm 0.08 from the standard model and the constituent quark model, where the error is due to uncertainties in the mechanism for \\Lambda production. The observed \\Lambda polarization is diluted with respect to the primary s quark polarization by \\Lambda baryons without a primary s quark. Measurements of the \\Lambda forward-backward asymmetry and of the correlation between back-to-back \\Lambda \\bar{\\Lambda} pairs are used to check this dilution. In addition the transverse \\Lambda polarization is measured. An indication of transverse polarization, more than two standard deviations away from zero, is found along the normal to the plane defined by the thrust axis and the \\La...

  9. Measurement of Λ polarization from Z decays

    Science.gov (United States)

    Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Odier, P.; Pietrzyk, B.; Chmeissani, M.; Crespo, J. M.; Delfino, M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Orteu, S.; Pacheco, A.; Padilla, C.; Palla, F.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Farilla, A.; Gelao, G.; Girone, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Natali, S.; Nuzzo, S.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Alemany, R.; Bazarko, A. O.; Bonvicini, G.; Cattaneo, M.; Comas, P.; Coyle, P.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Jacobsen, R.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Martin, E. B.; Mato, P.; Minten, A.; Miquel, R.; Mir, Ll. M.; Moneta, L.; Oest, T.; Palazzi, P.; Pater, J. R.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wagner, A.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajlatouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Wäänänen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Rougé, A.; Rumpf, M.; Tanaka, R.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Focardi, E.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Rensch, B.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Abbaneo, D.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Dornan, P. J.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Stacey, A. M.; Williams, M. D.; Dissertori, G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Whelan, E. P.; Williams, M. I.; Galla, A.; Greene, A. M.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Etienne, F.; Konstantinidis, N.; Nicod, D.; Payre, P.; Rousseau, D.; Talby, M.; Sadouki, A.; Thulasidas, M.; Trabelsi, K.; Abt, I.; Assmann, R.; Bauer, C.; Blum, W.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Jakobs, K.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; Denis, R. St.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Park, H. J.; Park, I. C.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Blair, G. A.; Bryant, L. M.; Cerutti, F.; Chambers, J. T.; Gao, Y.; Green, M. G.; Johnson, D. L.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Beddall, A.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Koksal, A.; Letho, M.; Newton, W. M.; Rankin, C.; Reeve, J.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Büscher, V.; Cowan, G.; Grupen, C.; Lutters, G.; Minguet-Rodriguez, J.; Rivera, F.; Saraiva, P.; Smolik, L.; Stephan, F.; Aleppo, M.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Ragusa, F.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Bellantoni, L.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Greening, T. C.; Harton, J. L.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I. J.; Sharma, V.; Turk, J. D.; Walsh, A. M.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1996-02-01

    The polarization of Λ baryons from Z decays is studied with the ALEPH apparatus. Evidence of longitudinal polarization of s quarks from Z decay is observed for the first time. The measured longitudinal Λ polarization is PLΛ = -0.32 ± 0.07 for z = {p}/{p beam} > 0.3 . This agrees with the prediction of -0.39 ± 0.08 from the standard model and the constituent quark model, where the error is due to uncertainties in the mechanism for Λ production. The observed Λ polarization is diluted with respect to the primary s quark polarization by Λ baryons without a primary s quark. Measurements of the Λ forward-backward asymmetry and of the correlation between back-to-back Λ overlineΛ pairs are used to check this dilution. In addition the transverse Λ polarization is measured. An indication of transverse polarization, more than two standard deviations away from zero, is found along the normal to the plane defined by the thrust axis and the Λ direction.

  10. Study of collective effects in Sm isotopes by polarized proton scattering

    International Nuclear Information System (INIS)

    Petit, R.M.A.L.

    1985-01-01

    Measurements of the differential cross sections and asymmetries in the inelastic scattering of 20.4 MeV polarized protons from 148 , 150 , 152 , 154 Sm have been used to investigate the collective properties of these nuclei, i.e. the vibrator-rotator phase transition, the deformations and the density moments. Experimental results included data for both the positive-parity states 0 1 + ,2 1 + ,(4 1 + ,6 1 + ) and the negative parity states 1 1 - ,3 1 - ,5 1 - , which systematics gives more reliability to the extracted physical quantities of interest. Phenomenological optical potentials have been carefully evaluated following the lines of a generalized optical model developed in this work. (Auth.)

  11. Induced Proton Polarization for pi0 Electroproduction at Q2 = 0.126 GeV2/c2 Around the Delta(1232) Resonance

    International Nuclear Information System (INIS)

    Glen Warren; Ricardo Alarcon; Christopher Armstrong; Burin Asavapibhop; David Barkhuff; William Bertozzi; Volker Burkert; Chen, J.; Jian-Ping Chen; Joseph Comfort; Daniel Dale; George Dodson; Dolfini, S.; Dow, K.; Martin Epstein; Manouchehr Farkhondeh; John Finn; Shalev Gilad; Ralf Gothe; Xiaodong Jiang; Mark Jones; Kyungseon Joo; Karabarbounis, A.; James Kelly; Stanley Kowalski; Kunz, C.; Liu, D.; Lourie, R.W.; Richard Madey; Demetrius Margaziotis; Pete Markowitz; Justin McIntyre; Mertz, C.; Brian Milbrath; Rory Miskimen; Joseph Mitchell; Mukhopadhyay, S.; Costas Papanicolas; Charles Perdrisat; Vina Punjabi; Liming Qin; Paul Rutt; Adam Sarty; Jeffrey Shaw; Soong, S.B.; Tieger, D.; Christoph Tschalaer; William Turchinetz; Paul Ulmer; Scott Van Verst; Vellidis, C.; Lawrence Weinstein; Steven Williamson; Rhett Woo; Alaen Young

    1998-01-01

    We present a measurement of the induced proton polarization P n in π 0 electroproduction on the proton around the Δ resonance. The measurement was made at a central invariant mass and a squared four-momentum transfer of W = 1231 MeV and Q 2 = 0.126 GeV 2 /c 2 , respectively. We measured a large induced polarization, P n = -0.397 ± 0.055 ± 0.009. The data suggest that the scalar background is larger than expected from a recent effective Hamiltonian model

  12. Possibilities of polarized protons in Sp anti p S and other high energy hadron colliders

    International Nuclear Information System (INIS)

    Courant, E.D.

    1984-01-01

    The requirements for collisions with polarized protons in hadron colliders above 200 GeV are listed and briefly discussed. Particular attention is given to the use of the ''Siberan snake'' to eliminate depolarizing resonances, which occur when the spin precession frequency equals a frequency contained in the spectrum of the field seen by the beam. The Siberian snake is a device which makes the spin precession frequency essentially constant by using spin rotators, which precess the spin by 180 0 about either the longitudinal or transverse horizontal axis. It is concluded that operation with polarized protons should be possible at all the high energy hadron colliders

  13. Inelastic scattering of polarized protons and nuclear deformation in 16O, 18O

    International Nuclear Information System (INIS)

    de Swiniarski, R.; Pham, D.L.

    1984-01-01

    Many data concerning inelastic scattering of polarized protons at intermediate energy are now available. We have analyzed some of these data coming from LAMPF at 800 MeV for 16 O (6) and 18 O (7) in order to further study nuclear deformations for these light nuclei. Analyzing powers (A(theta)) and cross-sections ((σ/theta)) for elastic and inelastic scattering of 800 MeV polarized protons from 16 O and 18 O have been analyzed in the coupled-channels (CC) collective model using the code ECIS from Raynal

  14. Large-x sub F spin asymmetry in. pi. sup 0 production by 200-GeV polarized protons

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D L; Corcoran, M D; Cranshaw, J; Nessi-Tedaldi, F; Nessi, M; Nguyen, C; Roberts, J B; Skeens, J; White, J L [Rice Univ., Houston, TX (United States). T.W. Bonner Nuclear Lab.; Akchurin, N; Onel, Y [Iowa Univ., Iowa City, IA (United States). Dept. of Physics; Belikov, N I; Derevschikov, A A; Grachov, O A; Matulenko, Yu A; Meschanin, A P; Nurushev, S B; Patalakha, D I; Rykov, V L; Solovyanov, V L; Vasiliev, A N [Inst. of High Energy Physics, Serpukhov (Russia); Bystricky, J; Lehar, F; Lesquen, A de [CEN-Saclay, 91 - Gif-sur-Yvette (France); Cossairt, J D; Read, A L [Fermi National Accelerator Lab., Batavia, IL (United States); En' yo, H; Funahashi, H; Goto, Y; Imai, K; Itow, Y; Makino, S; Masaike, A; Miyake, K; Nagamine, T; Saito, N; Yamashita, S [Kyoto Univ. (Japan). Dept. of Physics; Grosnick, D P; Hill, D A; Laghai, M; Lopiano, D; Ohashi, Y; Spinka, H; Underwood, D G; Yokosawa, A [Argonne National Lab., IL (United States); FNAL E704 Collaboration

    1992-10-01

    The spin asymmetry A{sub N} for inclusive {pi}{sup 0} production by 200-GeV transversely-polarized protons on a liquid hydrogen target has been measured at Fermilab over a wide range of x{sub F}, with 0.50.3, the asymmetry rises with increasing x{sub F} and reaches a value of A{sub N}=0.15{+-}0.03 in the region 0.6polarized protons. (orig.).

  15. Measurements of proton strength functions and comparisons with theory

    International Nuclear Information System (INIS)

    Arai, E.; Ozawa, Y.

    1986-01-01

    Using a high-resolution proton beam of the Tokyo Institute of Technology Van de Graaff, precise measurements of elastic and inelastic scattering cross sections have been performed in the past 15 years. By directly observing individual proton resonances, their spins, parities and proton decay widths were deduced. From these experiments we have evaluated (1) proton strength functions in terms of target mass number and of incident proton energy and (2) Coulomb matrix elements for split analogue resonances. (orig.)

  16. Study of elastic scattering of polarized proton with 6He by folding model

    International Nuclear Information System (INIS)

    Iseri, Y.; Tanifuji, M.; Ishikawa, S.; Hiyama, E.; Yamamoto, Y.

    2005-01-01

    Experimental data of the elastic scattering of 6 He with polarized proton target has been analyzed using a simple folding model. As we regard 6 He as three bodies consisting of 4 He+n+n, the potential between the proton and 6 He is obtained by folding the two potentials, one between a proton and 4 He and another between a proton and a neutron, with the density distribution of 6 He. Calculated results of both the differential cross section and the vector analyzing power reproduce the experimental data satisfactorily. It is shown that the vector analyzing power of the p- 6 He scattering is mainly due to the spin orbit interaction between the proton and 4 He. (S. Funahashi)

  17. Polarized proton spin density images the tyrosyl radical locations in bovine liver catalase

    Directory of Open Access Journals (Sweden)

    Oliver Zimmer

    2016-09-01

    Full Text Available A tyrosyl radical, as part of the amino acid chain of bovine liver catalase, supports dynamic proton spin polarization (DNP. Finding the position of the tyrosyl radical within the macromolecule relies on the accumulation of proton polarization close to it, which is readily observed by polarized neutron scattering. The nuclear scattering amplitude due to the polarization of protons less than 10 Å distant from the tyrosyl radical is ten times larger than the amplitude of magnetic neutron scattering from an unpaired polarized electron of the same radical. The direction of DNP was inverted every 5 s, and the initial evolution of the intensity of polarized neutron scattering after each inversion was used to identify those tyrosines which have assumed a radical state. Three radical sites, all of them close to the molecular centre and the haem, appear to be equally possible. Among these is tyr-369, the radical state of which had previously been proven by electron paramagnetic resonance.

  18. State of the art in polarized proton sources

    International Nuclear Information System (INIS)

    Alessi, J.G.

    1987-01-01

    Present day polarized H/sup +/ and H/sup -/ ion sources are reviewed by describing the performance of sources representative of each of the techniques being used. New ideas for producing higher intensities are then mentioned. Presently, pulsed H/sup +/ currents in the milliampere range, and H/sup -/ currents of hundreds of μA's, can be obtained

  19. Dependence of proton beam polarization on ion source transition configurations; Determination de la polarisation du faisceau de protons pour les quatre configurations des transitions de la source d`ions

    Energy Technology Data Exchange (ETDEWEB)

    Arvieux, J.; Ausset, P.; Ball, J.; Beauvais, P.Y.; Bedfer, Y.; Chamouard, P.A.; Fontaine, J.M.; Kunne, R.; Lagniel, J.M.; Sans, J.L. [Laboratoire National Saturne - Centre d`Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France); Allgower, Ch.; Kasprzyk, T.E.; Spinka, H.M. [ANL-HEP, Argonne (United States); Bystricky, J.; Lehar, F.; Lesquen, A. de [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l`Instrumentation Associee; Demiere, Ph.; Rapin, D.; Teglia, A. [Geneva Univ. (Switzerland). Dept. de Physique Nucleaire et Corpusculaire; Janout, Z. [Czech Technical Univ., Prague (Czech Republic). Faculty of Civil Engineering; Kalinnikov, V.A.; Khachaturov, B.A.; Popov, A.A. [Laboratory of Nuclear Problems, JINR, Moscow (Russian Federation); Prokofiev, A.N.; Vikhrov, V.V.; Zhdanov, A.A. [Nuclear Physics Inst., St. Petersburg (Russian Federation)

    1997-12-31

    Considerable anomalies were observed in recorded pp elastic scattering spin dependent data at several proton beam energies at SATURNE II. These results suggested that the discrepancies are related to the polarized ion source. In order to understand the observed effects, the proton beam polarizations for each ion source state were determined separately. Convenient procedures, allowing to determine the beam polarization from a beam-line polarimeter are presented. Two distinct experiments are necessary for this purpose. In the first one the LEFT-RIGHT instrumental asymmetry of the beam polarimeter arms is determined. In the second one this correction factor is applied to asymmetries measured with the beam from the polarized ion source in different polarization states. Both experiments determined the scattering asymmetries for all four polarized source states as functions of different source parameters. The measurements were carried out at the proton beam kinetic energy 0.80 GeV, where the pp elastic scattering analyzing power is at its maximum. Results show that the so called `unpolarized states` of the source are polarized, whereas the absolute values of the beam polarizations in `polarized states` are equal. It was observed that the hexapole lens of the ion source provides some beam polarization in the absence of any transition. The beam polarization as function of the hexapole current, of the transition efficiencies and of the rotation solenoid current has been studied. It is also shown, how one way obtain a strictly unpolarized beam using the polarized source only. The results obtained with the SATURNE II ion source HYPERION may be also valid for other accelerators and sources. (authors) 10 refs.

  20. When measured spin polarization is not spin polarization

    International Nuclear Information System (INIS)

    Dowben, P A; Wu Ning; Binek, Christian

    2011-01-01

    Spin polarization is an unusually ambiguous scientific idiom and, as such, is rarely well defined. A given experimental methodology may allow one to quantify a spin polarization but only in its particular context. As one might expect, these ambiguities sometimes give rise to inappropriate interpretations when comparing the spin polarizations determined through different methods. The spin polarization of CrO 2 and Cr 2 O 3 illustrate some of the complications which hinders comparisons of spin polarization values. (viewpoint)

  1. Polarization Sensitive Coherent Raman Measurements of DCVJ

    Science.gov (United States)

    Anderson, Josiah; Cooper, Nathan; Lawhead, Carlos; Shiver, Tegan; Ujj, Laszlo

    2014-03-01

    Coherent Raman spectroscopy which recently developed into coherent Raman microscopy has been used to produce label free imaging of thin layers of material and find the spatial distributions of certain chemicals within samples, e.g. cancer cells.(1) Not all aspects of coherent scattering have been used for imaging. Among those for example are special polarization sensitive measurements. Therefore we have investigated the properties of polarization sensitive CARS spectra of a highly fluorescent molecule, DCVJ.(2) Spectra has been recorded by using parallel polarized and perpendicular polarized excitations. A special polarization arrangement was developed to suppress the non-resonant background scattering from the sample. These results can be used to improve the imaging properties of a coherent Raman microscope in the future. This is the first time coherent Raman polarization sensitive measurements have been used to characterize the vibrational modes of DCVJ. 1: K. I. Gutkowski, et al., ``Fluorescence of dicyanovinyl julolidine in a room temperature ionic liquid '' Chemical Physics Letters 426 (2006) 329 - 333 2: Fouad El-Diasty, ``Coherent anti-Stokes Raman scattering: Spectroscopy and microscopy'' Vibrational Spectroscopy 55 (2011) 1-37

  2. Collective effects in even-mass samarium isotopes by polarized-proton scattering

    NARCIS (Netherlands)

    Petit, R.M.A.L.; Hall, van P.J.; Klein, S.S.; Moonen, W.H.L.; Nijgh, G.J.; Overveld, van C.W.A.M.; Poppema, O.J.

    1993-01-01

    The even-mass samarium isotopes 148,...,152Sm have been investigated by polarized proton scattering at 20.4 MeV beam energy. The data have been analysed with an 'extended' optical model, where the intensities of the first maxima of the main inelastic channels are fitted in a coupled-channels

  3. VME online system of the Bonn polarized nucleon targets and polarization measurements on NH3

    International Nuclear Information System (INIS)

    Thiel, W.

    1991-02-01

    The measurement of spin observables is the main purpose of the PHOENICS detector at the Bonn Electron Accelerator ELSA. Therefore a new frosen spin target was built allowing any spin orientation by means of two perpendicular holding fields and the use of a polarizing field up to 7 Tesla. With a vertical dilution refrigerator the polarization can be frozen at a temperature of 70 mK. This thesis describe a VME based control and monitor system for the various parts of this target. It mainly consists of a VIP processor together with different kinds of I/O and interface boards. Caused by its modular structure in hard- and software it can be easyly set up to control and monitor different hardware environments. A menu and command oriented user interface running on an ATARI computer allows a comfortable operation. Secondly the new NMR system is described in detail. It is based on the Liferpool module allowing a dispersion user interface running on an ATARI computer allows a comfortable operation. Secondly the new NMR system is described in detail. It is based on the Liverpool module allowing a dispersion free detection and a simple adjustment to different magnetic fields. A similar VME system takes care of all the necessary task for the polarization measurements. Fast optodecoupled analog I/O modules a e used as an interface to the NMR hardware. Finally the first measurements with this target are presented. Using NH 3 as target material and a polarizing field of 3.5 Tesla a proton polarization of +94% and -100% could be achieved. By lowering the magnetic field to 0.35 Tesla a superradiance effect was observed. (orig.)

  4. Experimental physics with polarized protons, neutrons and deuterons

    CERN Document Server

    Lehar, František; Wilkin, Colin

    2015-01-01

    The monograph gives a comprehensive overview of the diverse aspects of the experimental study of polarization phenomena in nucleon-nucleon and nucleon-deuteron collisions. The special nature of this volume is that it is based on the original physics results and knowledge gained by one of the authors (F. Lehar), who was a respected researcher in the field for nearly fifty years. The results of these experiments provide valuable information on the spin dependence of the forces acting between nucleons in atomic nuclei, of which all matter is ultimately composed. The fundamental importance of the results means that the subject will remain topical for years to come. The book is designed for teachers and students of natural sciences, espe - cially those with interests in nuclear and particle physics, as well as for ex - perimental physicists who are investigating polarization phenomena using accelerators of charged particles. The writing of the book was initiated by F. Lehar who was the driving force beh...

  5. Polarized proton target-III. Operations manual, revision B

    International Nuclear Information System (INIS)

    Hill, D.; Moretti, A.; Onesto, F.; Rynes, P.

    1978-01-01

    The manual presented contains certain standard operating procedures for the vacuum, cryogenic, and electronic systems of PPT-III. In total, these systems comprise the following major divisions: (1) the target cryostat; (2) the 4 He pumping system; (3) the 3 He pumping system; (4) the remote monitors and controls; (5) the microwave system; (6) the magnet and power supply; (7) the computerized polarization monitor; (8) the 4 He liquefier and gas recovery system; and (9) miscellaneous auxiliary equipment

  6. Measurement of the Asymmetry of Photoproduction of π- Mesons on Linearly Polarized Deuterons by Linearly Polarized Photons

    Science.gov (United States)

    Gauzshtein, V. V.; Zevakov, S. A.; Levchuk, M. I.; Loginov, A. Yu.; Nikolenko, D. M.; Rachek, I. A.; Sadykov, R. Sh.; Toporkov, D. K.; Shestakov, Yu. V.

    2018-05-01

    The first results of a double polarization experiment to extract the asymmetry of the reaction of photoproduction of a π- meson by a linearly polarized photon on a tensor-polarized deuteron in the energy range of the virtual photon (300-700 MeV) are presented. The measurements were performed on an internal tensor-polarized deuterium target in the VEPP-3 electron-positron storage ring for the electron beam energy equal to 2 GeV. The experiment employed the method of recording two protons and the scattered electron in coincidence. The obtained measurement results are compared with the theoretical predictions obtained in the momentum approximation with allowance for πN and NN rescattering in the final state.

  7. Measurements of electron-proton elastic cross sections for 0.4 2 2

    International Nuclear Information System (INIS)

    Christy, M.E.; Ahmidouch, Abdellah; Armstrong, Christopher; Arrington, John; Razmik Asaturyan; Steven Avery; Baker, O.; Douglas Beck; Henk Blok; Bochna, C.W.; Werner Boeglin; Peter Bosted; Maurice Bouwhuis; Herbert Breuer; Brown, D.S.; Antje Bruell; Roger Carlini; Nicholas Chant; Anthony Cochran; Leon Cole; Samuel Danagoulian; Donal Day; James Dunne; Dipangkar Dutta; Rolf Ent; Howard Fenker; Fox, B.; Liping Gan; Haiyan Gao; Kenneth Garrow; David Gaskell; Ashot Gasparian; Don Geesaman; Paul Gueye; Mark Harvey; Roy Holt; Xiaodong Jiang; Cynthia Keppel; Edward Kinney; Yongguang Liang; Wolfgang Lorenzon; Allison Lung; Pete Markowitz; Martin, J.W.; Kevin McIlhany; Daniella Mckee; David Meekins; Miller, J.W.; Richard Milner; Joseph Mitchell; Hamlet Mkrtchyan; Robert Mueller; Alan Nathan; Gabriel Niculescu; Maria-Ioana Niculescu; Thomas O'neill; Vassilios Papavassiliou; Stephen Pate; Buz Piercey; David Potterveld; Ronald Ransome; Joerg Reinhold; Rollinde, E.; Philip Roos; Adam Sarty; Reyad Sawafta; Elaine Schulte; Edwin Segbefia; Smith, C.; Stepan Stepanyan; Steffen Strauch; Vardan Tadevosyan; Liguang Tang; Raphael Tieulent; Alicia Uzzle; William Vulcan; Stephen Wood; Feng Xiong; Lulin Yuan; Markus Zeier; Benedikt Zihlmann; Vitaliy Ziskin

    2004-01-01

    We report on precision measurements of the elastic cross section for electron-proton scattering performed in Hall C at Jefferson Lab. The measurements were made at 28 unique kinematic settings covering a range in momentum transfer of 0.4 2 2 . These measurements represent a significant contribution to the world's cross section data set in the Q 2 range where a large discrepancy currently exists between the ratio of electric to magnetic proton form factors extracted from previous cross section measurements and that recently measured via polarization transfer in Hall A at Jefferson Lab

  8. Polarity-dependence of the defect formation in c-axis oriented ZnO by the irradiation of an 8 MeV proton beam

    Science.gov (United States)

    Koike, Kazuto; Yano, Mitsuaki; Gonda, Shun-ichi; Uedono, Akira; Ishibashi, Shoji; Kojima, Kazunobu; Chichibu, Shigefusa F.

    2018-04-01

    The polarity dependence of the radiation hardness of single-crystalline ZnO bulk crystals is studied by irradiating the Zn-polar and O-polar c-planes with an 8 MeV proton beam up to the fluence of 4.2 × 1016 p/cm2. To analyze the hardness, radiation-induced defects were evaluated using positron annihilation (PA) analysis, and the recovery by post-annealing was examined using continuous-wave photoluminescence (PL) and time-resolved photoluminescence (TRPL) measurements. It was suggested by the PA and PL analyses that the major defects in both polarities were VZnVO divacancies. While the PA data did not show the clear dependence on the polarity, the PL and TRPL results showed that the Zn-polar c-plane had a little higher radiation tolerance than that of the O-polar c-plane, which was consistent with the result that the increase in the electrical resistance by proton beam irradiation was smaller for the former one. Considering these results in total, the polarity dependence is considered to be not so large, but the Zn-polar c-plane has a little higher tolerance than that of the O-polar one.

  9. Nanoscale measurements of proton tracks using fluorescent nuclear track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sawakuchi, Gabriel O., E-mail: gsawakuchi@mdanderson.org; Sahoo, Narayan [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 and Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas 77030 (United States); Ferreira, Felisberto A. [Department of Nuclear Physics, University of Sao Paulo, SP 05508-090 (Brazil); McFadden, Conor H. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Hallacy, Timothy M. [Biophysics Program, Harvard University, Cambridge, Massachusetts 02138 (United States); Granville, Dal A. [Department of Medical Physics, The Ottawa Hospital Cancer Centre, Ottawa, Ontario K1H 8L6 (Canada); Akselrod, Mark S. [Crystal Growth Division, Landauer, Inc., Stillwater, Oklahoma 74074 (United States)

    2016-05-15

    Purpose: The authors describe a method in which fluorescence nuclear track detectors (FNTDs), novel track detectors with nanoscale spatial resolution, are used to determine the linear energy transfer (LET) of individual proton tracks from proton therapy beams by allowing visualization and 3D reconstruction of such tracks. Methods: FNTDs were exposed to proton therapy beams with nominal energies ranging from 100 to 250 MeV. Proton track images were then recorded by confocal microscopy of the FNTDs. Proton tracks in the FNTD images were fit by using a Gaussian function to extract fluorescence amplitudes. Histograms of fluorescence amplitudes were then compared with LET spectra. Results: The authors successfully used FNTDs to register individual proton tracks from high-energy proton therapy beams, allowing reconstruction of 3D images of proton tracks along with delta rays. The track amplitudes from FNTDs could be used to parameterize LET spectra, allowing the LET of individual proton tracks from therapeutic proton beams to be determined. Conclusions: FNTDs can be used to directly visualize proton tracks and their delta rays at the nanoscale level. Because the track intensities in the FNTDs correlate with LET, they could be used further to measure LET of individual proton tracks. This method may be useful for measuring nanoscale radiation quantities and for measuring the LET of individual proton tracks in radiation biology experiments.

  10. Acceleration of polarized proton in high energy accelerators

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1991-01-01

    In low to medium energy accelerators, betatron tune jumps and vertical orbit harmonic correction methods have been used to overcome the intrinsic and imperfection resonances. At high energy accelerators, snakes are needed to preserve polarization. The author analyzes the effects of snake resonances, snake imperfections, and overlapping resonances on spin depolarization. He discusses also results of recent snake experiments at the IUCF Cooler Ring. The snake can overcome various kinds of spin depolarization resonances. These experiments pointed out further that partial snake can be used to cure the imperfection resonances in low to medium energy accelerators

  11. Precision measurement of the weak charge of the proton.

    Science.gov (United States)

    2018-05-01

    Large experimental programmes in the fields of nuclear and particle physics search for evidence of physics beyond that explained by current theories. The observation of the Higgs boson completed the set of particles predicted by the standard model, which currently provides the best description of fundamental particles and forces. However, this theory's limitations include a failure to predict fundamental parameters, such as the mass of the Higgs boson, and the inability to account for dark matter and energy, gravity, and the matter-antimatter asymmetry in the Universe, among other phenomena. These limitations have inspired searches for physics beyond the standard model in the post-Higgs era through the direct production of additional particles at high-energy accelerators, which have so far been unsuccessful. Examples include searches for supersymmetric particles, which connect bosons (integer-spin particles) with fermions (half-integer-spin particles), and for leptoquarks, which mix the fundamental quarks with leptons. Alternatively, indirect searches using precise measurements of well predicted standard-model observables allow highly targeted alternative tests for physics beyond the standard model because they can reach mass and energy scales beyond those directly accessible by today's high-energy accelerators. Such an indirect search aims to determine the weak charge of the proton, which defines the strength of the proton's interaction with other particles via the well known neutral electroweak force. Because parity symmetry (invariance under the spatial inversion (x, y, z) → (-x, -y, -z)) is violated only in the weak interaction, it provides a tool with which to isolate the weak interaction and thus to measure the proton's weak charge 1 . Here we report the value 0.0719 ± 0.0045, where the uncertainty is one standard deviation, derived from our measured parity-violating asymmetry in the scattering of polarized electrons on protons, which is -226.5

  12. First results for the two-spin parameter ALL in π0 production by 200 GeV polarized protons and antiprotons

    International Nuclear Information System (INIS)

    Adams, D.L.; Corcoran, M.D.; Cranshaw, J.; Nessi-Tedaldi, F.; Nessi, M.; Nguyen, C.; Roberts, J.B.; Skeens, J.; White, J.L.; Bystricky, J.; Chaumette, P.; Deregel, J.; Durand, G.; Fabre, J.; Lehar, F.; Lesquen, A. de; Cossairt, J.D.; Read, A.L.; En'yo, H.; Funahashi, H.; Goto, Y.; Imai, K.; Itow, Y.; Makino, S.; Masaike, A.; Miyake, K.; Nagamine, T.; Saito, N.; Yamashita, S.; Grosnick, D.P.; Hill, D.A.; Kasprzyk, T.; Laghai, M.; Lopiano, D.; Ohashi, Y.; Shepard, J.; Spinka, H.; Underwood, D.G.; Yokosawa, A.; Iwatani, K.; Krueger, K.W.; Kuroda, K.; Michalowicz, A.; Pauletta, G.; Penzo, A.; Schiavon, P.; Zanetti, A.; Salvato, G.; Villari, A.; Takeutchi, F.; Tamura, N.; Tanaka, N.; Yoshida, T.

    1991-01-01

    The two-spin parameter A LL in inclusive π 0 production by longitudinally-polarized protons and antiprotons on a longitudinally-polarized proton target has been measured at the 200 GeV Fermilab spin physics facility, for π 0 's at x F = 0 with 1 ≤ p t ≤ 3 GeV/c. The results exclude, at the 95% confidence level, values of A LL (pp) > 0.1 and 0 's produced by protons, and values of A LL (anti pp) > 0.1 and LL (pp) for the gluon spin density is discussed. The data are in good agreement with 'conventional' small or zero, gluon polarization. (orig.)

  13. First results for the two-spin parameter A sub LL in. pi. sup 0 production by 200 GeV polarized protons and antiprotons

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D L; Corcoran, M D; Cranshaw, J; Nessi-Tedaldi, F; Nessi, M; Nguyen, C; Roberts, J B; Skeens, J; White, J L [Rice Univ., Houston, TX (USA). Bonner Nuclear Labs.; Akchurin, N; Onel, Y [Iowa Univ., Iowa City (USA). Dept. of Physics and Astronomy; Belikov, N I; Derevschikov, A A; Grachov, O A; Matulenko, Yu A; Meschanin, A P; Nurushev, S B; Patalakha, D I; Rykov, V L; Solovyanov, V L; Vasiliev, A N [Institut Fiziki Vysokikh Ehnergij, Serpukhov (USSR); Bystricky, J; Chaumette, P; Deregel, J; Durand, G; Fabre, J; Lehar, F; Lesquen, A de [CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France); Cossairt, J D; Read, A L [Fermi National Accelerator Lab., Batavia, IL (USA); En' yo, H; Funahashi, H; Goto, Y; Imai, K; Itow, Y; Makino, S; Masaike, A; Miyake, K; Nagamine, T; Saito, N; Yamashita, S [Kyoto Univ. (Japan). Dept. of Physics; Fukuda, K [Meiji Coll. of Oriental Medicine, Kyoto (Japan); Grosnick, D P; Hill, D A; FNAL E581/704 Collaboration

    1991-05-23

    The two-spin parameter A{sub LL} in inclusive {pi}{sup 0} production by longitudinally-polarized protons and antiprotons on a longitudinally-polarized proton target has been measured at the 200 GeV Fermilab spin physics facility, for {pi}{sup 0}'s at x{sub F} = 0 with 1 {le} p{sub t} {le} 3 GeV/c. The results exclude, at the 95% confidence level, values of A{sub LL} (pp) > 0.1 and < -0.1, for {pi}{sup 0}'s produced by protons, and values of A{sub LL} (anti pp) > 0.1 and < -0.2 for incident antiprotons. The relevance of A{sub LL}(pp) for the gluon spin density is discussed. The data are in good agreement with 'conventional' small or zero, gluon polarization. (orig.).

  14. Polarization measurements for P-12C elastic scattering between 40-75 MeV

    International Nuclear Information System (INIS)

    Kato, S.; Okada, K.; Kondo, M.; Shimizu, A.; Hosono, K.; Saito, T.; Matsuoka, N.; Nagamachi, S.; Nisimura, K.; Tamura, N.

    1980-01-01

    Absolute values of the polarization in p- 12 C elastic scattering have been measured at 60.0 and 64.5 MeV at 47.5 0 in the laboratory system using a double scattering method and a method to measure an asymmetry with a polarized beam. The results are P(60.0 MeV, 47.5 0 ) = 0.965 +- 0.011 and P(64.5 MeV, 47.5 0 ) = 0.975 +- 0.011. Based on these values, the polarization measurements have been extended to the energy range from 40-75 MeV at several angles around 47.5 0 using the polarized proton beam and the energy degrader. Differential cross sections and polarizations from 15-115 0 are also presented at 65 MeV. These data will be valuable for the monitoring of beam polarization in this energy region. (orig.)

  15. Energetic Proton Spectra Measured by the Van Allen Probes

    Science.gov (United States)

    Summers, Danny; Shi, Run; Engebretson, Mark J.; Oksavik, Kjellmar; Manweiler, Jerry W.; Mitchell, Donald G.

    2017-10-01

    We test the hypothesis that pitch angle scattering by electromagnetic ion cyclotron (EMIC) waves can limit ring current proton fluxes. For two chosen magnetic storms, during 17-20 March 2013 and 17-20 March 2015, we measure proton energy spectra in the region 3 ≤ L ≤ 6 using the RBSPICE-B instrument on the Van Allen Probes. The most intense proton spectra are observed to occur during the recovery periods of the respective storms. Using proton precipitation data from the POES (NOAA and MetOp) spacecraft, we deduce that EMIC wave action was prevalent at the times and L-shell locations of the most intense proton spectra. We calculate limiting ring current proton energy spectra from recently developed theory. Comparisons between the observed proton energy spectra and the theoretical limiting spectra show reasonable agreement. We conclude that the measurements of the most intense proton spectra are consistent with self-limiting by EMIC wave scattering.

  16. Investigation of the tensor analyzing power Ayy in the reaction A(d polarized, p)X at large transverse momenta of proton

    International Nuclear Information System (INIS)

    Afanas'ev, S.V.; Arkhipov, V.V.; Azhgirej, L.S.

    1997-01-01

    An experiment on the studying of the tensor analyzing power A yy in the reaction A(d polarized, p)X at large transverse momenta of proton using a polarized deuteron beam of LHE accelerator complex has been proposed. These measurements could provide the valuable information on the spin structure of the deuteron at short distances. The estimation of the beam request for SPHERE set-up is performed

  17. Polarization correlations of {sup 1}S{sub 0} proton pairs as tests of hidden-variable theories

    Energy Technology Data Exchange (ETDEWEB)

    Polachic, C.; Rangacharyulu, C.; Berg, A.M. van den; Hamieh, S.; Harakeh, M.N.; Hunyadi, M.; Huu, M.A. de; Woertche, H.J.; Heyse, J.; Baeumer, C.; Frekers, D.; Rakers, S.; Brooke, J.A.; Busch, P

    2004-03-22

    We are investigating the feasibility of nuclear physics experiments designed to overcome the loopholes of observer-dependent reality and satisfying the counterfactuality condition. In a first approach, we have measured polarization correlations of {sup 1}S{sub 0} proton pairs produced in {sup 12}C(d, {sup 2}He) and {sup 1}H(d, {sup 2}He) reactions in one setting. The results of these measurements are used to test the Bell and Wigner-Belinfante inequalities against the predictions of quantum mechanics.

  18. Gluon polarization measurements and the possible role of diffractive process in the transverse single spin asymmetry measurements in RHIC-PHENIX

    Directory of Open Access Journals (Sweden)

    Nakagawa Itaru

    2017-01-01

    Full Text Available Two selected topics from the latest RHIC spin results are discussed here. For the transversely polarized spin program, an unexpectedly large single spin asymmetry in the very forward neutron production observed in polarized proton + nucleus collisions at √s = 200 GeV is discussed in this document. For the longitudinal program, the latest highlights from the measurements on the gluon spin components of the proton spin is discussed. After a decade of continuous efforts to hunt for the gluon polarization, the RHIC collaboration is about to catch the tail of the experimental evidence that gluon carries substantially large portion of the proton spin.

  19. POLARIZED BEAMS: 2 - Partial Siberian Snake rescues polarized protons at Brookhaven

    International Nuclear Information System (INIS)

    Huang, Haixin

    1994-01-01

    To boost the level of beam polarization (spin orientation), a partial 'Siberian Snake' was recently used to overcome imperfection depolarizing resonances in the Brookhaven Alternating Gradient Synchrotron (AGS). This 9-degree spin rotator recently permitted acceleration with no noticeable polarization loss. The intrinsic AGS depolarizing resonances (which degrade the polarization content) had been eliminated by betatron tune jumps, but the imperfection resonances were compensated by means of harmonic orbit corrections. However, at high energies these orbit corrections are difficult and tedious and a Siberian Snake became an attractive alternative

  20. Complete snake and rotator schemes for spin polarization in proton rings and large electron rings

    International Nuclear Information System (INIS)

    Steffen, K.

    1983-11-01

    In order to maintain spin polarization in proton rings and large electron rings, some generalized Siberian Snake scheme may be required to make the spin tune almost independent of energy and thus avoid depolarizing resonances. The practical problem of finding such schemes that, at reasonable technical effort, can be made to work over large energy ranges has been addressed before and is here revisited in a broadened view and with added new suggestions. As a result, possibly optimum schemes for electron rings (LEP) and proton rings are described. In the proposed LEP scheme, spin rotation is devised such that, at the interaction points, the spin direction is longitudinal as required for experiments. (orig.)

  1. Direct nuclear reactions with polarized protons: an experimental study of Ge and Se

    International Nuclear Information System (INIS)

    Moonen, W.H.L.

    1986-01-01

    The present investigation, is concerned with excited states of some transitional nuclides, which, through the experimental improvements, became accessible for polarized proton experiments. The aim was to see how nuclei behave when they have a proton and/or neutron number inbetween 28 and 50. Another aim was the completion of the picture of even-even nuclei in general where the research started with the nuclei Fe (Z=26) and Ni (Z=28). Therefore some nuclei were chosen which follow this series: Ge, Z=32, N=38,40,42,44; Se, Z=34, N=42,44,46. (Auth.)

  2. Computational simulations of hydrogen circular migration in protonated acetylene induced by circularly polarized light

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xuetao; Li, Wen; Schlegel, H. Bernhard, E-mail: hbs@chem.wayne.edu [Department of Chemistry, Wayne State University, Detroit, Michigan 48202 (United States)

    2016-08-28

    The hydrogens in protonated acetylene are very mobile and can easily migrate around the C{sub 2} core by moving between classical and non-classical structures of the cation. The lowest energy structure is the T-shaped, non-classical cation with a hydrogen bridging the two carbons. Conversion to the classical H{sub 2}CCH{sup +} ion requires only 4 kcal/mol. The effect of circularly polarized light on the migration of hydrogens in oriented C{sub 2}H{sub 3}{sup +} has been simulated by Born-Oppenheimer molecular dynamics. Classical trajectory calculations were carried out with the M062X/6-311+G(3df,2pd) level of theory using linearly and circularly polarized 32 cycle 7 μm cosine squared pulses with peak intensity of 5.6 × 10{sup 13} W/cm{sup 2} and 3.15 × 10{sup 13} W/cm{sup 2}, respectively. These linearly and circularly polarized pulses transfer similar amounts of energy and total angular momentum to C{sub 2}H{sub 3}{sup +}. The average angular momentum vectors of the three hydrogens show opposite directions of rotation for right and left circularly polarized light, but no directional preference for linearly polarized light. This difference results in an appreciable amount of angular displacement of the three hydrogens relative to the C{sub 2} core for circularly polarized light, but only an insignificant amount for linearly polarized light. Over the course of the simulation with circularly polarized light, this corresponds to a propeller-like motion of the three hydrogens around the C{sub 2} core of protonated acetylene.

  3. Absolute measurements methods for proton beam dosimetry

    International Nuclear Information System (INIS)

    Laitano, R.F.

    1998-01-01

    A widespread interest in improving proton beam characteristics and related dosimetry became apparent in the recent years, even if the advantages of protons in radiotherapy were pointed out since 1946. The early treatments by proton beams were made for a long time on a small number of patients in very few accelerators sharing their use with nuclear-physics experiments. The first proton accelerator totally dedicated to radiotherapy was established just in 1990 at the Loma Linda Medical Center in the USA. A further reason of the slowly growing use of protons for therapy in the early years, was the lack of adequate means for accurate localization of the treatment volume. The potentialities of protons in imparting a largest part of their energy to very small volumes became exploitable only after the established clinical use of accurate imaging techniques such as based on CT, NMR, PET, etc

  4. Measurement of the inelastic proton-proton cross section with the ATLAS detector

    Energy Technology Data Exchange (ETDEWEB)

    Zenis, Tibor [Comenius University Bratislava (Slovakia); Collaboration: ATLAS Collaboration

    2013-04-15

    A measurement of the inelastic proton-proton cross-section at centre-of-mass energy of Central diffraction in proton-proton collisions at {radical}(s) = 7TeV using the ATLAS detector at the Large Hadron Collider is presented. Events are selected by requiring hits in scintillator counters mounted in the forward region of the ATLAS detector and the dataset corresponding to an integrated luminosity of 20{mu}b{sup -1}. In addition, the total cross-section is studied as a function of the rapidity gap size measured with the inner detector and calorimetry.

  5. Study of axial injection of polarized protons into the grenoble cyclotron

    International Nuclear Information System (INIS)

    Pabot, J.

    1969-01-01

    By injecting ions axially into a cyclotron, it is possible to accelerate particles (polarized particles, heavy ions, etc...) obtainable only with difficulty when an internal ion source is used. In this work, after justifying the choice of an axial injection device equipped with a 'pseudo-cylindrical' deflector for the Grenoble cyclotron, we study theoretically the principle of such a detector, the choice of its parameters, and the effect of this choice on the conditions of acceleration of the beam by the cyclotron. From the experimental point of view, this report describes two operations which made it possible to check that the chosen injection device operated satisfactorily, qualitatively initially (electron model), then quantitatively (proton model). In conclusion, we believe that the Grenoble cyclotron thus equipped will be able to provide a relatively dense beam of polarized protons. (author) [fr

  6. Measurement of the proton asymmetry (C) in free neutron β-decay with Perkeo III

    Energy Technology Data Exchange (ETDEWEB)

    Raffelt, Lukas Michael

    2016-10-19

    The decay of polarized neutrons can be used to search for Physics Beyond the Standard Model. The non-isotropic angular distributions of the decay particles are parity violating and reveal the true nature of the weak interaction. Many observables are available in the decay of polarized neutrons, but the decay itself is only described by three parameters, which allows searches for new physics in a combined analysis. Measurements of the electron angular correlation coefficient (A) can be used to precisely determine the ratio of the axial to the vector coupling constant. The proton angular correlation coefficient (C) has only been measured once by a predecessor of this experiment. We measured the proton asymmetry with a similar proton detector, but employed a new measuring scheme allowing the collection of the worlds first data on the proton energy dependence of the proton asymmetry. At the current state of the analysis, a statistical uncertainty on the value of C of 0.8 % in each of the two detectors can be reached. For a final value, studies of systematic effects based on field simulations and tracking are still missing. For this measurement I designed and constructed a new detector. For the first time the scintillator was coated with a transparent conductive coating and together with the new CAD milled light-guides in a four-side readout configuration the low energy performance of the detector could be increased. Several systematic effects have been studied, especially the Point Spread Function of the magnetic transport system.

  7. Measuring proton shift tensors with ultrafast MAS NMR.

    Science.gov (United States)

    Miah, Habeeba K; Bennett, David A; Iuga, Dinu; Titman, Jeremy J

    2013-10-01

    A new proton anisotropic-isotropic shift correlation experiment is described which operates with ultrafast MAS, resulting in good resolution of isotropic proton shifts in the detection dimension. The new experiment makes use of a recoupling sequence designed using symmetry principles which reintroduces the proton chemical shift anisotropy in the indirect dimension. The experiment has been used to measure the proton shift tensor parameters for the OH hydrogen-bonded protons in tyrosine·HCl and citric acid at Larmor frequencies of up to 850 MHz. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Measurements and amplitude analysis of small angle pp polarization between 398 and 572 MeV

    CERN Document Server

    Aebischer, D; Greeniaus, L G; Hess, R; Junod, A; Lechanoine-Leluc, C; Nikles, J C; Rapin, D; Werren, D W

    1976-01-01

    Results are reported of an experiment performed at CERN in which a 38% polarized beam of protons was scattered on a carbon target and the measurements were made at 398, 455, 530 and 572 MeV in the CM angular range 4 degrees < Theta *<22 degrees . It is shown that the data are in good agreement with phase shift analysis predictions. (7 refs).

  9. Measurement of the analysing power of elastic proton-proton scattering at 582 MeV

    International Nuclear Information System (INIS)

    Berdoz, A.; Favier, B.; Foroughi, F.; Weddigen, C.

    1984-01-01

    The authors have measured the analysing power of elastic proton-proton scattering at 582 MeV for 14 angles from 20 to 80 0 CM. The angular range was limited to >20 0 by the energy loss of the recoil protons. The experiment was performed at the PM1 beam line at SIN. A beam intensity of about 10 8 particles s -1 was used. (Auth.)

  10. Investigation of the reaction mechanism by means of polarized proton scattering at 30 Si in the range of Ericson fluctuations

    International Nuclear Information System (INIS)

    Wangler, M.

    1978-01-01

    By measuring cross section fluctuations in the area of heavily overlapping resonances (Ericson-fluctuations) one is able to extract nuclear properties like level width and level distance. For the elastic scattering case of polarized spin 1/2-particles at nuclei with zero spin one is able to determine the direct reaction part independently from the model by evaluating the polarized and unpolarized cross sections. For this reason the reaction 30 Si(p,p 0 ) and 30 Si(p,p 1 ) was measured with polarized protons in the angular range 50 0 0 , ΔTHETA = 10 0 . The bombarding energy was varied between 8.500 MeV and 10.680 MeV with 20 keV steps. A mean value of (18.5 +- 2.9) keV resulted for the coherence width that was in agreement for the measurements with polarized and unpolarized particles. To define a final value of the reaction mechanism in elastic scattering the direct part of reaction was determined for all angles. (orig.) [de

  11. Measurement of the thickness of thin films by backscattered protons

    International Nuclear Information System (INIS)

    Samaniego, L.E.Q.

    1976-07-01

    The method of backscattered protons has been used to measure the thickness of thin films. A monoenergetic beam of protons is directed on the film to be measured and the backscattered protons are detected with a particle detector. The film thickness is calculated from the energy spectrum of the protons. In the case of films consisting of several layers of elements with well separated atomic masses, it is possible to separate the spectra of protons scattered from the different elements, permitting a measurement of the thicknesses of the different layers. The method consists of calculating the energy loss of the protons throughout their trajectory, from the point of incidence on the film to the final detection. Thicknesses were measured for the following film combinations: gold on mylar, chromium on mylar, gold on chromium on mylar, and pure mylar. (Author) [pt

  12. Longitudinal double-spin asymmetry and cross section for inclusive jet production in polarized proton collisions at square root of s = 200 GeV.

    Science.gov (United States)

    Abelev, B I; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellingeri-Laurikainen, A; Bellwied, R; Benedosso, F; Bhardwaj, S; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Blyth, S-L; Bonner, B E; Botje, M; Bouchet, J; Brandin, A V; Bravar, A; Burton, T P; Bystersky, M; Cadman, R V; Cai, X Z; Caines, H; Sánchez, M Calderón de la Barca; Castillo, J; Catu, O; Cebra, D; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Das, S; Dash, S; Daugherity, M; de Moura, M M; Dedovich, T G; Dephillips, M; Derevschikov, A A; Didenko, L; Dietel, T; Djawotho, P; Dogra, S M; Dong, W J; Dong, X; Draper, J E; Du, F; Dunin, V B; Dunlop, J C; Mazumdar, M R Dutta; Eckardt, V; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Fatemi, R; Fedorisin, J; Filip, P; Finch, E; Fine, V; Fisyak, Y; Fu, J; Gagliardi, C A; Gaillard, L; Ganti, M S; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Gorbunov, Y G; Gos, H; Grebenyuk, O; Grosnick, D; Guertin, S M; Guimaraes, K S F F; Gupta, N; Gutierrez, T D; Haag, B; Hallman, T J; Hamed, A; Harris, J W; He, W; Heinz, M; Henry, T W; Hepplemann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffman, A M; Hoffmann, G W; Horner, M J; Huang, H Z; Huang, S L; Hughes, E W; Humanic, T J; Igo, G; Jacobs, P; Jacobs, W W; Jakl, P; Jia, F; Jiang, H; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kapitan, J; Kaplan, M; Keane, D; Kechechyan, A; Khodyrev, V Yu; Kim, B C; Kiryluk, J; Kisiel, A; Kislov, E M; Klein, S R; Kocoloski, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kouchpil, V; Kowalik, K L; Kramer, M; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; LaPointe, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lee, C-H; Lehocka, S; LeVine, M J; Li, C; Li, Q; Li, Y; Lin, G; Lin, X; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Liu, Z; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Magestro, D; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Melnick, Yu; Meschanin, A; Millane, J; Miller, M L; Minaev, N G; Mioduszewski, S; Mironov, C; Mischke, A; Mishra, D K; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Netrakanti, P K; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pachr, M; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Poljak, N; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rakness, G; Raniwala, R; Raniwala, S; Ray, R L; Razin, S V; Reinnarth, J; Relyea, D; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Sahoo, R; Sakuma, T; Salur, S; Sandweiss, J; Sarsour, M; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Seger, J; Selyuzhenkov, I; Seyboth, P; Shabetai, A; Shahaliev, E; Shao, M; Sharma, M; Shen, W Q; Shimanskiy, S S; Sichtermann, E P; Simon, F; Singaraju, R N; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Suaide, A A P; Sugarbaker, E; Sumbera, M; Sun, Z; Surrow, B; Swanger, M; Symons, T J M; Szanto de Toledo, A; Tai, A; Takahashi, J; Tang, A H; Tarnowsky, T; Thein, D; Thomas, J H; Timmins, A R; Timoshenko, S; Tokarev, M; Trainor, T A; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Buren, G Van; van der Kolk, N; van Leeuwen, M; Molen, A M Vander; Varma, R; Vasilevski, I M; Vasiliev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Waggoner, W T; Wang, F; Wang, G; Wang, J S; Wang, X L; Wang, Y; Watson, J W; Webb, J C; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Q H; Xu, Z; Yepes, P; Yoo, I-K; Yurevich, V I; Zhan, W; Zhang, H; Zhang, W M; Zhang, Y; Zhang, Z P; Zhao, Y; Zhong, C; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N; Zuo, J X

    2006-12-22

    We report a measurement of the longitudinal double-spin asymmetry A(LL) and the differential cross section for inclusive midrapidity jet production in polarized proton collisions at square root of s = 200 GeV. The cross section data cover transverse momenta 5 < pT < 50 GeV/c and agree with next-to-leading order perturbative QCD evaluations. The A(LL) data cover 5 < pT < 17 GeV/c and disfavor at 98% C.L. maximal positive gluon polarization in the polarized nucleon.

  13. Cosmological CPT violation and CMB polarization measurements

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Jun-Qing, E-mail: xia@sissa.it [Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, I-34136 Trieste (Italy)

    2012-01-01

    In this paper we study the possibility of testing Charge-Parity-Time Reversal (CPT) symmetry with cosmic microwave background (CMB) experiments. We consider two kinds of Chern-Simons (CS) term, electromagnetic CS term and gravitational CS term, and study their effects on the CMB polarization power spectra in detail. By combining current CMB polarization measurements, the seven-year WMAP, BOOMERanG 2003 and BICEP observations, we obtain a tight constraint on the rotation angle Δα = −2.28±1.02 deg (1 σ), indicating a 2.2 σ detection of the CPT violation. Here, we particularly take the systematic errors of CMB measurements into account. After adding the QUaD polarization data, the constraint becomes −1.34 < Δα < 0.82 deg at 95% confidence level. When comparing with the effect of electromagnetic CS term, the gravitational CS term could only generate TB and EB power spectra with much smaller amplitude. Therefore, the induced parameter ε can not be constrained from the current polarization data. Furthermore, we study the capabilities of future CMB measurements, Planck and CMBPol, on the constraints of Δα and ε. We find that the constraint of Δα can be significantly improved by a factor of 15. Therefore, if this rotation angle effect can not be taken into account properly, the constraints of cosmological parameters will be biased obviously. For the gravitational CS term, the future Planck data still can not constrain ε very well, if the primordial tensor perturbations are small, r < 0.1. We need the more accurate CMBPol experiment to give better constraint on ε.

  14. Recent SLAC measurements of the spin dependent structure functions for the proton and neutron

    International Nuclear Information System (INIS)

    Zapalac, G.

    1995-09-01

    The authors present results from SLAC experiments E142 and E143 for the spin dependent structure functions of the proton g 1 p (x, Q 2 ) and neutron g 1 n (x,Q 2 ) measured in deep inelastic scattering of polarized electrons from a polarized target. Experiment E142 measures ∫ 0 1 g 1 n (x)dx = -0.022 ± 0.011 at 2 > = 2 (GeV/c) 2 using a polarized 3 He target. Experiment E143 measures ∫ 0 1 g 1 p (x)dx = 0.129 ± 0.011 at 2 > = 3 (GeV/c) 2 using a polarized NH 3 target. These results are combined at Q 2 = 3 (GeV/c) 2 to yield ∫ 0 1 [g 1 p (x) - g 1 n (x)]dx = 0.151 ± 0.015. The Bjorken sum rule predicts 0.171 ± 0.008

  15. Acceleration of polarized protons and deuterons in the ion collider ring of JLEIC

    Science.gov (United States)

    Kondratenko, A. M.; Kondratenko, M. A.; Filatov, Yu N.; Derbenev, Ya S.; Lin, F.; Morozov, V. S.; Zhang, Y.

    2017-07-01

    The figure-8-shaped ion collider ring of Jefferson Lab Electron-Ion Collider (JLEIC) is transparent to the spin. It allows one to preserve proton and deuteron polarizations using weak stabilizing solenoids when accelerating the beam up to 100 GeV/c. When the stabilizing solenoids are introduced into the collider’s lattice, the particle spins precess about a spin field, which consists of the field induced by the stabilizing solenoids and the zero-integer spin resonance strength. During acceleration of the beam, the induced spin field is maintained constant while the resonance strength experiences significant changes in the regions of “interference peaks”. The beam polarization depends on the field ramp rate of the arc magnets. Its component along the spin field is preserved if acceleration is adiabatic. We present the results of our theoretical analysis and numerical modeling of the spin dynamics during acceleration of protons and deuterons in the JLEIC ion collider ring. We demonstrate high stability of the deuteron polarization in figure-8 accelerators. We analyze a change in the beam polarization when crossing the transition energy.

  16. Physics with polarized beams. Report of the ANL Technical Advisory Panel. [Research with polarized proton beams

    Energy Technology Data Exchange (ETDEWEB)

    1975-11-01

    Experimental directions which will be the most useful in developing underlying theories of hadronic collisions are outlined. As a pedagogical device to accomplish this, approximate percentages of a total program which could be devoted to different areas have been quoted. Findings are presented in the form of a short basic report with several long detailed appendices. In the basic report our opinion as to the amount of polarized beam experimental effort that should be applied to the following areas is stated: nucleon-nucleon scattering, quasi-two-body processes, inclusive production, and new or unexplored areas (such as large p/sub T/ and invariance principles). Our reasoning is discussed briefly, however, the details are left for the appendices. Members of the panel present certain aspects of the above areas, which should be useful for planning and/or performing polarized beam experiments. The seven presentations are abstracted separately in ERA.

  17. Probing CPT violation with CMB polarization measurements

    Energy Technology Data Exchange (ETDEWEB)

    Xia Junqing, E-mail: xia@sissa.i [Scuola Internazionale Superiore di Studi Avanzati, Via Beirut 2-4, I-34014 Trieste (Italy); Li Hong; Zhang Xinmin [Institute of High Energy Physics, Chinese Academy of Science, P.O. Box 918-4, Beijing 100049 (China); Theoretical Physics Center for Science Facilities (TPCSF), Chinese Academy of Science (China)

    2010-04-12

    The electrodynamics modified by the Chern-Simons term L{sub cs}approxp{sub m}uA{sub n}uF-tilde{sup m}u{sup n}u with a non-vanishing p{sub m}u violates the Charge-Parity-Time Reversal symmetry (CPT) and rotates the linear polarizations of the propagating Cosmic Microwave Background (CMB) photons. In this Letter we measure the rotation angle DELTAalpha by performing a global analysis on the current CMB polarization measurements from the five-year Wilkinson Microwave Anisotropy Probe (WMAP5), BOOMERanG 2003 (B03), BICEP and QUaD using a Markov Chain Monte Carlo method. Neglecting the systematic errors of these experiments, we find that the results from WMAP5, B03 and BICEP all are consistent and their combination gives DELTAalpha=-2.62+-0.87deg (68% C.L.), indicating a 3sigma detection of the CPT violation. The QUaD data alone gives DELTAalpha=0.59+-0.42deg (68% C.L.) which has an opposite sign for the central value and smaller error bar compared to that obtained from WMAP5, B03 and BICEP. When combining all the polarization data together, we find DELTAalpha=0.09+-0.36deg (68% C.L.) which significantly improves the previous constraint on DELTAalpha and test the validity of the fundamental CPT symmetry at a higher level.

  18. Spin flipping a stored polarized proton beam with an rf magnetic field

    International Nuclear Information System (INIS)

    Hu, S.Q.; Blinov, B.B.; Caussyn, D.D.

    1995-01-01

    The authors studied the spin flipping of a vertically polarized, stored 139 MeV proton beam with an rf solenoid magnetic field. By sweeping the rf frequency through an rf depolarizing resonance, they made the spin flip. The spin flipping was more efficient for slower ramp times, and the spin flip efficiency peaked at some optimum ramp time that is not yet fully understood. Since frequent spin flipping could significantly reduce the systematic errors in scattering experiments using a stored polarized beam, it is very important to minimize the depolarization after each spin flip. In this experiment, with multiple spin flips, the authors found a polarization loss of 0.0000 ± 0.0005 per spin flip under the best conditions; this loss increased significantly for small changes in the conditions

  19. Optimization of AGS Polarized Proton Operation with the Warm Helical Snake

    CERN Document Server

    Takano, Junpei; Bai, Mei; Brown, Kevin A; Gardner, Chris J; Glenn, Joseph; Hattori, Toshiyuki; Huang, Haixin; Luccio, Alfredo U; MacKay, William W; Okamura, Masahiro; Roser, Thomas; Tepikian, Steven; Tsoupas, Nicholaos

    2005-01-01

    A normal conducting helical dipole partial Siberian snake (Warm Snake) has been installed in the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL) for overcoming all of imperfection depolarizing resonances and reducing the transverse coupling resonances caused by the solenoidal Siberian snake which had been operated in AGS before the last polarized run. The polarized proton beam has been accelerated successfully with the warm snake and the polarization at extraction of the AGS was increased to 50% as opposed to 40% with the solenoidal snake. The magnetic field and beam trajectory in the warm snake was calculated by using the OPERA-3D/TOSCA software. We present optimization of the warm snake with beam during RUN5.

  20. A study of the internal spin structure of the proton through inclusive and semi-inclusive polarized deep-inelastic muon-proton scattering

    International Nuclear Information System (INIS)

    Papavassiliou, V.

    1988-01-01

    The internal spin structure of the proton was studied in a deep-inelastic scattering experiment a CERN, the European Laboratory for Nuclear Research, by the European Muon Collaboration, using a longitudinally polarized muon beam and a longitudinally polarized target at irradiated ammonia. The spin asymmetry was studied as a function of the Bjorken scaling variable x and the results were in agreement over the region of overlap with previous experiments that used lower-energy polarized electron beams. The higher energies of the experiment allowed to study with precision the previously unexplored region of x below 0.1 and to compute the integral of the spin-dependent structure function g 1 of the proton. This integral was found to be in disagreement with the Ellis-Jaffe sum rule which could imply either a breakdown of the SU(3) symmetry in the decays of the members of the baryon octet or a significant polarization of the strange-quark sea of the proton opposite to the proton spin. In either case and assuming the validity of the Bjorken sum rule that relates the integrals of the spin-dependent structure functions of the proton and the neutron, the total helicity of all the quarks is found to account for only a small fraction of the proton helicity. In addition, spin asymmetries in the semi-inclusive reactions where a hadron of definite sign is observed in the final state were studied. The results are consistent with the down quarks being polarized opposite to the proton spin, as expected by symmetry arguments. Implication of the results on different areas in particle physics are presented. Some future prospects for spin physics are discussed and predictions are given for deep-inelastic-scattering experiments on polarized deuterium targets and the spin structure of the neutron

  1. Measurement of Deuteron Tensor Polarization in Elastic Electron Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Kenneth K. [Univ. of Maryland, College Park, MD (United States)

    2000-01-01

    Nuclear physics traces it roots back to the very beginning of the last century. The concept of the nuclear atom was introduced by Rutherford around 1910. The discovery of the neutron Chadwick in 1932 gave us the concept of two nucleons: the proton and the neutron. The Jlab electron accelerator with its intermediate energy high current continuous wave beam combined with the Hall C high resolution electron spectrometer and a deutron recoil polarimeter provided experiment E94018 with the opportunity to study the deuteron electomagnetic structure, in particular to measure the tensor polarization observable t20, at high four momentum transfers than ever before. This dissertation presents results of JLab experiment E94018.

  2. The spin-dependent structure function $g_1(x)$ of the proton from polarized deep-inelastic muon scattering

    CERN Document Server

    AUTHOR|(CDS)2067425; Arvidson, A; Badelek, B; Bardin, G; Baum, G; Berglund, P; Betev, L; Birsa, R; De Botton, N R; Bradamante, Franco; Bravar, A; Bressan, A; Bültmann, S; Burtin, E; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Dalla Torre, S; Van Dantzig, R; Derro, B R; Deshpande, A A; Dhawan, S K; Dulya, C M; Eichblatt, S; Fasching, D; Feinstein, F; Fernández, C; Forthmann, S; Frois, Bernard; Gallas, A; Garzón, J A; Gilly, H; Giorgi, M A; Görtz, S; Gracia, G; De Groot, N; Haft, K; Von Harrach, D; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, T; Kabuss, E M; Kageya, T; Karev, A G; Ketel, T; Kiryluk, J; Kiselev, Yu F; Krivokhizhin, V G; Kröger, W; Kukhtin, V V; Kurek, K; Kyynäräinen, J; Lamanna, M; Landgraf, U; Le Goff, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Litmaath, M; Magnon, A; Mallot, G K; Marie, F; Martin, A; Martino, J; Matsuda, T; Mayes, B W; McCarthy, J S; Medved, K S; Meyer, W T; Van Middelkoop, G; Miller, D; Miyachi, Y; Mori, K; Moromisato, J H; Nassalski, J P; Naumann, Lutz; Niinikoski, T O; Oberski, J; Ogawa, A; Grosse-Perdekamp, M; Pereira, H; Perrot-Kunne, F; Peshekhonov, V D; Pinsky, L; Platchkov, S K; Pló, M; Pose, D; Postma, H; Pretz, J; Puntaferro, R; Rädel, G; Rijllart, A; Reicherz, G; Rodríguez, M; Rondio, Ewa; Roscherr, B; Sabo, I; Saborido, J; Sandacz, A; Savin, I A; Schiavon, R P; Schiller, A; Sichtermann, E P; Simeoni, F; Smirnov, G I; Staude, A; Steinmetz, A; Stiegler, U; Stuhrmann, H B; Szleper, M; Tessarotto, F; Thers, D; Tlaczala, W; Tripet, A; Ünel, G; Velasco, M; Vogt, J; Voss, Rüdiger; Whitten, C; Windmolders, R; Wislicki, W; Witzmann, A; Ylöstalo, J; Zanetti, A M; Zaremba, K

    1997-01-01

    We present a new measurement of the virtual photon proton asymmetry $A_1^{\\rm p}$ from deep inelastic scattering of polarized muons on polarized protons in the kinematic range $0.0008 1$ GeV$^{2}$. A perturbative QCD evolution in next-to-leading order is used to determine $g_1^{\\rm p}(x)$ at a constant $Q^2$. At $Q^{2} = 10$ GeV$^{2}$ we find, in the measured range, $\\int_{0.003}^{0.7} g_{1}^{\\rm p}(x){\\rm d}x = 0.139 \\pm 0.006~({\\rm stat})\\pm 0.008~({\\rm syst)} \\pm 0.006~({\\rm evol})$. The value of the first moment $\\Gamma_{1}^{\\rm p} = \\int_{0}^{1} g_{1}^{\\rm p}(x){\\rm d}x$ of $g_{1}^{\\rm p}$ depends on the approach used to describe the behaviour of $g_{1}^{\\rm p}$ at low $x$. We find that the Ellis-Jaffe sum rule is violated. With our published result for $\\Gamma_{1}^{\\rm d}$ we confirm the Bjorken sum rule with an accuracy of $\\approx 15\\%$ at the one standard deviation level.

  3. Laser Compton polarimetry of proton beams

    International Nuclear Information System (INIS)

    Stillman, A.

    1995-01-01

    A need exists for non-destructive polarization measurements of the polarized proton beams in the AGS and, in the future, in RHIC. One way to make such measurements is to scatter photons from the polarized beams. Until now, such measurements were impossible because of the extremely low Compton scattering cross section from protons. Modern lasers now can provide enough photons per laser pulse not only to scatter from proton beams but also, at least in RHIC, to analyze their polarization

  4. The ratio R = dσL/dσT in heavy-quark pair leptoproduction as a probe of linearly polarized gluons in unpolarized proton

    Science.gov (United States)

    Efremov, A. V.; Ivanov, N. Ya.; Teryaev, O. V.

    2018-05-01

    We study the Callan-Gross ratio R = dσL / dσT in heavy-quark pair leptoproduction, lN →l‧ Q Q bar X, as a probe of linearly polarized gluons inside unpolarized proton, where dσT (dσL) is the differential cross section of the γ* N → Q Q bar X process initiated by a transverse (longitudinal) virtual photon. Note first that the maximal value for the quantity R allowed by the photon-gluon fusion with unpolarized gluons is large, about 2. We calculate the contribution of the transverse-momentum dependent gluonic counterpart of the Boer-Mulders function, h1 ⊥g , describing the linear polarization of gluons inside unpolarized proton. Our analysis shows that the maximum value of the ratio R depends strongly on the gluon polarization; it varies from 0 to Q2/4m2 depending on h1⊥g . We conclude that the Callan-Gross ratio in heavy-quark pair leptoproduction is predicted to be large and very sensitive to the contribution of linearly polarized gluons. For this reason, future measurements of the longitudinal and transverse components of the charm and bottom production cross sections at the proposed EIC and LHeC colliders seem to be very promising for determination of the linear polarization of gluons inside unpolarized proton.

  5. Measurement of the spin asymmetry of the beam in the polarized virtual Compton scattering on the proton. Study of the nucleon's energy spectra through the QCD-type potential model; Mesure de l'asymetrie de spin de faisceau en diffusion compton virtuelle polarisee sur le proton. Etude du spectre d'energie du nucleon par le modele de potentiel de type QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bensafa, I.K

    2006-05-15

    The first part of this work presents the analysis and results of the VCS-SSA (virtual Compton scattering - single spin asymmetry) experiment at MAMI (Mainz). It was carried out with beam energy 883 MeV and longitudinal polarization (about 80%), at virtual photon four-momentum transfer squared (Q{sup 2} = 0.35 GeV{sup 2}) to measure the beam asymmetry in the ep {yields} ep{gamma} and ep {yields} ep{pi}{sup 0} reactions. The asymmetry obtained in photon (resp. pion) electro-production is between 0-15% (resp. 0-2%). The dispersion relation model for virtual Compton scattering and MAID model (for {pi}{sup 0}) reproduce the amplitude globally but not completely the shape of the asymmetry. Perhaps this discrepancy is due to an imperfect parameterization of some pion production multipoles ({gamma}{sup *}N {yields} {pi}N). The second part is dedicated to the study of the nucleon energy spectrum in ground-state L=0 and excited-state L=1 in the quark model, using the Coulomb + linear potential type (CL) and a relativistic correction. The hyperfine correction is applied to discriminate the nucleon masses. The values of the mass found for the proton and the {delta}(1232) are respectively equal to (968 MeV, 1168 MeV), and the masses of the excited states are between 1564 - 1607 MeV. This part is completed by an application of the CL model to an approximate calculation of generalized polarizabilities of the proton. (author)

  6. Measurements of Electron Proton Elastic Cross Sections for 0.4

    International Nuclear Information System (INIS)

    Christy, M.E.; Abdellah Ahmidouch; Christopher Armstrong; John Arrington; Arshak Asaturyan; Steven Avery; Baker, O.; Douglas Beck; Henk Blok; Bochna, C.W.; Werner Boeglin; Peter Bosted; Maurice Bouwhuis; Herbert Breuer; Brown, D.S.; Antje Bruell; Roger Carlini; Nicholas Chant; Anthony Cochran; Leon Cole; Samuel Danagoulian; Donal Day; James Dunne; Dipangkar Dutta; Rolf Ent; Howard Fenker; Fox, B.; Liping Gan; Haiyan Gao; Kenneth Garrow; David Gaskell; Ashot Gasparian; Don Geesaman; Paul Gueye; Mark Harvey; Roy Holt; Xiaodong Jiang; Cynthia Keppel; Edward Kinney; Yongguang Liang; Wolfgang Lorenzon; Allison Lung; Pete Markowitz; Martin, J.W.; Kevin Mcilhany; David Mckee; David Meekins; Miller, M.A.; Richard Milner; Joseph Mitchell; Hamlet Mkrtchyan; Robert Mueller; Alan Nathan; Gabriel Niculescu; Maria-ioana Niculescu; Thomas O'neill; Vassilios Papavassiliou; Stephen Pate; Rodney Piercey; David Potterveld; Ronald Ransome; Joerg Reinhold; Rollinde, E.; Philip Roos; Adam Sarty; Reyad Sawafta; Elaine Schulte; Edwin Segbefia; Smith, C.; Samuel Stepanyan; Steffen Strauch; Vardan Tadevosyan; Liguang Tang; Raphael Tieulent; Alicia Uzzle; William Vulcan; Stephen Wood; Feng Xiong; Lulin Yuan; Markus Zeier; Benedikt Zihlmann; Vitaliy Ziskin

    2004-01-01

    We report on precision measurements of the elastic cross section for electron-proton scattering performed in Hall C at Jefferson Lab. The measurements were made at 28 distinct kinematic settings covering a range in momentum transfer of 0.4 < Q2 < 5.5 (GeV/c)2. These measurements represent a significant contribution to the world's cross section data set in the Q2 range, where a large discrepancy currently exists between the ratio of electric to magnetic proton form factors extracted from previous cross section measurements and that recently measured via polarization transfer in Hall A at Jefferson Lab. This data set shows good agreement with previous cross section measurements, indicating that if a heretofore unknown systematic error does exist in the cross section measurements, then it is intrinsic to all such measurements

  7. Proton polarization in photo-excited aromatic molecule at room temperature enhanced by intense optical source and temperature control

    Energy Technology Data Exchange (ETDEWEB)

    Sakaguchi, S., E-mail: sakaguchi@phys.kyushu-u.ac.jp [Department of Physics, Kyushu University, Fukuoka 812-8581 (Japan); Uesaka, T. [RIKEN Nishina Center, Saitama 351-0198 (Japan); Kawahara, T. [Department of Physics, Toho University, Chiba 274-8510 (Japan); Ogawa, T. [RIKEN Advanced Science Institute, Saitama 351-0198 (Japan); Tang, L. [Center for Nuclear Study, University of Tokyo, Tokyo 113-0001 (Japan); Teranishi, T. [Department of Physics, Kyushu University, Fukuoka 812-8581 (Japan); Urata, Y.; Wada, S. [RIKEN Advanced Science Institute, Saitama 351-0198 (Japan); Wakui, T. [Cyclotron and Radioisotope Center (CYRIC), Tohoku University, Miyagi 980-8578 (Japan)

    2013-12-15

    Highlights: • Proton polarization in p-terphenyl at room-temperature is enhanced by a factor of 3. • Intense laser and temperature control are critically important for high polarization. • Optimization of time structure of laser pulse is effective for further improvement. -- Abstract: Proton polarization at room temperature, produced in a p-terphenyl crystal by using electron population difference in a photo-excited triplet state of pentacene, was enhanced by utilizing an intense laser with an average power of 1.5 W. It was shown that keeping the sample temperature below 300 K is critically important to prevent the rise of the spin–lattice relaxation rate caused by the laser heating. It is also reported that the magnitude of proton polarization strongly depends on the time structure of the laser pulse such as its width and the time interval between them.

  8. Laser polarization dependence of proton emission from a thin foil target irradiated by a 70 fs, intense laser pulse

    International Nuclear Information System (INIS)

    Fukumi, A.; Nishiuchi, M.; Daido, H.; Li, Z.; Sagisaka, A.; Ogura, K.; Orimo, S.; Kado, M.; Hayashi, Y.; Mori, M.; Bulanov, S.V.; Esirkepov, T.; Nemoto, K.; Oishi, Y.; Nayuki, T.; Fujii, T.; Noda, A.; Nakamura, S.

    2005-01-01

    A study of proton emission from a 3-μm-thick Ta foil target irradiated by p-, s-, and circularly polarized laser pulses with respect to the target plane has been carried out. Protons with energies up to 880 keV were observed in the target normal direction under the irradiation by the p-polarized laser pulse, which yielded the highest efficiency for proton emission. In contrast, s- and circularly polarized laser pulses gave the maximum energies of 610 and 680 keV, respectively. The difference in the maximum energy between the p- and s-polarized cases was associated with the difference between the sheath fields estimated from electron spectra

  9. Measurement of the proton scalar polarizabilities at MAMI

    Energy Technology Data Exchange (ETDEWEB)

    Mornacchi, Edoardo [Institut fuer Kernphysik, Universitaet Mainz (Germany); Collaboration: A2-Collaboration

    2016-07-01

    The electric (α{sub E{sub 1}}) and magnetic (β{sub M1}) scalar polarizabilities are fundamental properties related to the internal structure of the nucleon. They play a crucial role not only in our understanding of the nucleon, but also in other areas such as atomic physics, where they provide e.g. corrections to the Lamb Shift. In order to determine the scalar polarizabilities of the proton, the beam asymmetry Σ{sub 3} was measured, for the first time for the Compton scattering, below the pion photoproduction threshold. The measurement was performed at the MAMI accelerator facility in Mainz. The linearly polarized primary photons impinged on a liquid hydrogen target and the outgoing particles were detected in a nearly 4π detector setup, composed by Crystall Ball and TAPS calorimeters. In this talk the results on the Compton scattering beam asymmetry Σ{sub 3} and their influence on the extraction of α{sub E{sub 1}} and β{sub M1} are discussed.

  10. Polarization measurements in the pp → pnπ+ and pp → ppπ0 reactions at 517 and 580 MeV

    International Nuclear Information System (INIS)

    Bach, P.; Cantale, G.; Degli-Agosti, S.; Demierre, P.; Favier, B.; Heer, E.; Hess, R.; Lechanoine-Leluc, C.; Leo, W.; Onel, Y.; and others.

    1989-01-01

    The transverse polarization of the outgoing proton in the pp → pnπ + and pp → ppπ 0 reactions was investigated for the first time. The measurements were performed at SIN (now PSI) at 517 and 580 MeV on the pM1 polarized proton beam line with an average beam polarization higher than 82%, using a liquid hydrogen target. A carbon polarimeter spin-analyzed the scattered proton, 3 MWPC's tracked the recoil charged particle and a 3.84 m 2 neutron detector identified the neutral particle and measured TOF's

  11. /sup 9/Be(p,n)/sup 9/B reaction with polarized protons from 2. 4 to 2. 9 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Rohrer, U [Basel Univ. (Switzerland); Brown, L [Carnegie Institution of Washington, D.C. (USA). Dept. of Terrestrial Magnetism

    1976-04-19

    A polarized beam was used to measure angular distributions of the proton analyzing power of the /sup 9/Be(p,n)/sup 9/B reaction at six energies from 2.4 to 2.9 MeV. The data were measured typically to an accuracy of 0.02 with a target 23 keV thick at 2.5 MeV bombarding energy. The analyzing power can be fitted with three associated Legendre polynomials, the coefficients of which show considerable variation in the vicinity of the pair of degenerate states at 2.56 MeV. The coefficients of the odd polynomials are not zero over the energy range of these states, indicating that they are of opposite parity. Comparison of these analyzing power measurements with previous data for the neutron polarization induced with unpolarized protons shows near equality at all energies, as expected from Conzett's theorem.

  12. Planning and Prototyping for a Storage Ring Measurement of the Proton Electric Dipole Moment

    Energy Technology Data Exchange (ETDEWEB)

    Talman, Richard [Cornell Univ., Ithaca, NY (United States)

    2015-07-01

    Electron and proton EDM's can be measured in "frozen spin" (with the beam polarization always parallel to the orbit, for example) storage rings. For electrons the "magic" kinetic energy at which the beam can be frozen is 14.5 MeV. For protons the magic kinetic energy is 230 MeV. The currently measured upper limit for the electron EDM is much smaller than the proton EDM upper limit, which is very poorly known. Nevertheless, because the storage ring will be an order of magnitude cheaper, a sensible plan is to first build an all-electric electron storage ring as a prototype. Such an electron ring was successfully built at Brookhaven, in 1954, as a prototype for their AGS ring. This leaves little uncertainty concerning the cost and performance of such a ring. (This is documentedin one of the Physical Review papers mentioned above.)

  13. Poster - 25: Neutron Spectral Measurements around a Scanning Proton Beam

    Energy Technology Data Exchange (ETDEWEB)

    Kildea, John; Enger, Shirin; Maglieri, Robert; Mirzakhanian, Lalageh; Dahlgren, Christina Vallhagen; Dubeau, Jacques; Witharana, Sanjeeva [Medical Physics Unit, McGill University Health Centre, Medical Physics Unit, McGill University, Medical Physics Unit, McGill University, Medical Physics Unit, McGill University, Skandion Clinic, Detec Inc., Gatineau, Quebec, Detec Inc., Gatineau, Quebec (Canada)

    2016-08-15

    We describe the measurements of neutron spectra that we undertook around a scanning proton beam at the Skandion proton therapy clinic in Uppsala, Sweden. Measurements were undertaken using an extended energy range Nested Neutron Spectrometer (NNS, Detec Inc., Gatineau, QC) operated in pulsed and current mode. Spectra were measured as a function of location in the treatment room and for various Bragg peak depths. Our preliminary unfolded data clearly show the direct, evaporation and thermal neutron peaks and we can show the effect on the neutron spectrum of a water phantom in the primary proton beam.

  14. Towards polarization measurements of laser-accelerated helium-3 ions

    Energy Technology Data Exchange (ETDEWEB)

    Engin, Ilhan

    2015-08-28

    In the framework of this thesis, preparatory investigations for the spin-polarization measurement of {sup 3}He ions from laser-induced plasmas have been performed. Therefore, experiments aiming at an efficient laser-induced ion acceleration out of a {sup 4}He gas target were carried out at two high-intensity laser facilities: the Arcturus laser at Heinrich-Heine-Universitaet Duesseldorf as well as PHELIX at GSI Darmstadt. The scientific goal of both experiments was to investigate the ion-acceleration process in underdense plasmas by measuring the ion energy spectra and the angular distribution of the ion signal around the gas-jet target. Laser-accelerated MeV-He-ions could successfully be detected. The main acceleration direction at large angles with regard to the laser propagation direction was determined. In a second step, unpolarized {sup 3}He gas was attached in order to cross-check the experimental results with those of {sup 4}He. With the help of the achieved ion yield data, the expected rates of the fusion reaction D({sup 3}He,p){sup 4}He in the polarized case have been estimated: the information regarding the fusion proton yield from this nuclear reaction allows an experimentally based estimation for future experiments with pre-polarized {sup 3}He gas as plasma target. The experimental data is in line with supporting Particle-in-Cell (PIC) simulations performed on the Juelich supercomputers. For this purpose, the simulated target was defined as a neutral gas. The use of pre-polarized {sup 3}He gas demands a special preparation of a polarized {sup 3}He target for laser-acceleration experiments. This layout includes an (external) homogeneous magnetic holding field (field strength of ∝1.4 mT) for storing the pre-polarized gas for long time durations inside the PHELIX target chamber. For this purpose, a precise Halbach array consisting of horizontally arranged rings with built-in permanent magnets had to be designed, optimized, and constructed to deliver high

  15. Target and double spin asymmetries of deeply virtual π0 production with a longitudinally polarized proton target and CLAS

    Directory of Open Access Journals (Sweden)

    A. Kim

    2017-05-01

    Full Text Available The target and double spin asymmetries of the exclusive pseudoscalar channel e→p→→epπ0 were measured for the first time in the deep-inelastic regime using a longitudinally polarized 5.9 GeV electron beam and a longitudinally polarized proton target at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS. The data were collected over a large kinematic phase space and divided into 110 four-dimensional bins of Q2, xB, −t and ϕ. Large values of asymmetry moments clearly indicate a substantial contribution to the polarized structure functions from transverse virtual photon amplitudes. The interpretation of experimental data in terms of generalized parton distributions (GPDs provides the first insight on the chiral-odd GPDs H˜T and ET, and complement previous measurements of unpolarized structure functions sensitive to the GPDs HT and E¯T. These data provide a crucial input for parametrizations of essentially unknown chiral-odd GPDs and will strongly influence existing theoretical calculations based on the handbag formalism.

  16. Target and double spin asymmetries of deeply virtual π 0 production with a longitudinally polarized proton target and CLAS

    Energy Technology Data Exchange (ETDEWEB)

    Kim, A.; Avakian, H.; Burkert, V.; Joo, K.; Kim, W.; Adhikari, K. P.; Akbar, Z.; Anefalos Pereira, S.; Badui, R. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Bosted, P.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Chetry, T.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Cortes, O.; Crede, V.; D' Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Djalali, C.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fedotov, G.; Fersch, R.; Filippi, A.; Fleming, J. A.; Fradi, A.; Garc con, M.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Heddle, D.; Hicks, K.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joosten, S.; Keller, D.; Khachatryan, G.; Khandaker, M.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Lanza, L.; Lenisa, P.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mattione, P.; McCracken, M. E.; McKinnon, B.; Mokeev, V.; Movsisyan, A.; Munevar, E.; Nadel-Turonski, P.; Net, L. A.; Niccolai, S.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Prok, Y.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Salgado, C.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Taiuti, M.; Torayev, B.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Zachariou, N.; Zana, L.; Zhang, J.

    2017-05-01

    The target and double spin asymmetries of the exclusive pseudoscalar channel e→p→→epπ0 were measured for the first time in the deep-inelastic regime using a longitudinally polarized 5.9 GeV electron beam and a longitudinally polarized proton target at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS). The data were collected over a large kinematic phase space and divided into 110 four-dimensional bins of Q2, xB, -t and Φ. Large values of asymmetry moments clearly indicate a substantial contribution to the polarized structure functions from transverse virtual photon amplitudes. The interpretation of experimental data in terms of generalized parton distributions (GPDs) provides the first insight on the chiral-odd GPDs H˜T and ET, and complement previous measurements of unpolarized structure functions sensitive to the GPDs HT and E¯T. These data provide a crucial input for parametrizations of essentially unknown chiral-odd GPDs and will strongly influence existing theoretical calculations based on the handbag formalism.

  17. Target and double spin asymmetries of deeply virtual π0 production with a longitudinally polarized proton target and CLAS

    Science.gov (United States)

    Kim, A.; Avakian, H.; Burkert, V.; Joo, K.; Kim, W.; Adhikari, K. P.; Akbar, Z.; Anefalos Pereira, S.; Badui, R. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Bosted, P.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Chetry, T.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Djalali, C.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fedotov, G.; Fersch, R.; Filippi, A.; Fleming, J. A.; Fradi, A.; Garc con, M.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Heddle, D.; Hicks, K.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joosten, S.; Keller, D.; Khachatryan, G.; Khandaker, M.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Lanza, L.; Lenisa, P.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mattione, P.; McCracken, M. E.; McKinnon, B.; Mokeev, V.; Movsisyan, A.; Munevar, E.; Nadel-Turonski, P.; Net, L. A.; Niccolai, S.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Prok, Y.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Salgado, C.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Taiuti, M.; Torayev, B.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Zachariou, N.; Zana, L.; Zhang, J.

    2017-05-01

    The target and double spin asymmetries of the exclusive pseudoscalar channel e → p → → epπ0 were measured for the first time in the deep-inelastic regime using a longitudinally polarized 5.9 GeV electron beam and a longitudinally polarized proton target at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS). The data were collected over a large kinematic phase space and divided into 110 four-dimensional bins of Q2, xB, -t and ϕ. Large values of asymmetry moments clearly indicate a substantial contribution to the polarized structure functions from transverse virtual photon amplitudes. The interpretation of experimental data in terms of generalized parton distributions (GPDs) provides the first insight on the chiral-odd GPDs H˜T and ET, and complement previous measurements of unpolarized structure functions sensitive to the GPDs HT and EbarT. These data provide a crucial input for parametrizations of essentially unknown chiral-odd GPDs and will strongly influence existing theoretical calculations based on the handbag formalism.

  18. Saturne II: characteristics of the proton beam, field qualities and corrections, acceleration of the polarized protons

    International Nuclear Information System (INIS)

    Laclare, J.-L.

    1978-01-01

    Indicated specifications of Saturne II are summed up: performance of the injection system, quality of the guidance field (magnetic measurements and multipolar corrections), transverse and longitudinal instabilities, characteristics of the beam stored in the machine and of the extracted beam. The problem of depolarization along the acceleration cycle is briefly discussed (1 or 2% between injection and 3 GeV) [fr

  19. Nuclear polarization and neutrons

    International Nuclear Information System (INIS)

    Glaettli, H.

    1985-01-01

    Different possibilities for the use of polarized nuclei in thermal neutron scattering on condensed matter are reviewed. Highly polarized nuclei are the starting point for studying dipolar magnetic order. Systematic measurement of spin-dependent scattering lengths is possible on samples with polarized nuclei. Highly polarized hydrogen should help to unravel complicated structures in chemistry and biology. The use of polarized proton targets as an energy-independent neutron polarizer in the thermal and epithermal region should be considered afresh. (author)

  20. Experimental evaluation of a MOSFET dosimeter for proton dose measurements

    International Nuclear Information System (INIS)

    Kohno, Ryosuke; Nishio, Teiji; Miyagishi, Tomoko; Hirano, Eriko; Hotta, Kenji; Kawashima, Mitsuhiko; Ogino, Takashi

    2006-01-01

    The metal oxide semiconductor field-effect transistor (MOSFET) dosimeter has been widely studied for use as a dosimeter for patient dose verification. The major advantage of this detector is its size, which acts as a point dosimeter, and also its ease of use. The commercially available TN502RD MOSFET dosimeter manufactured by Thomson and Nielsen has never been used for proton dosimetry. Therefore we used the MOSFET dosimeter for the first time in proton dose measurements. In this study, the MOSFET dosimeter was irradiated with 190 MeV therapeutic proton beams. We experimentally evaluated dose reproducibility, linearity, fading effect, beam intensity dependence and angular dependence for the proton beam. Furthermore, the Bragg curve and spread-out Bragg peak were also measured and the linear-energy transfer (LET) dependence of the MOSFET response was investigated. Many characteristics of the MOSFET response for proton beams were the same as those for photon beams reported in previous papers. However, the angular MOSFET responses at 45, 90, 135, 225, 270 and 315 degrees for proton beams were over-responses of about 15%, and moreover the MOSFET response depended strongly on the LET of the proton beam. This study showed that the angular dependence and LET dependence of the MOSFET response must be considered very carefully for quantitative proton dose evaluations

  1. 4-twist helix snake to maintain polarization in multi-GeV proton rings

    Directory of Open Access Journals (Sweden)

    F. Antoulinakis

    2017-09-01

    Full Text Available Solenoid Siberian snakes have successfully maintained polarization in particle rings below 1 GeV, but never in multi-GeV rings, because the spin rotation by a solenoid is inversely proportional to the beam momentum. High energy rings, such as Brookhaven’s 255 GeV Relativistic Heavy Ion Collider (RHIC, use only odd multiples of pairs of transverse B-field Siberian snakes directly opposite each other. When it became impractical to use a pair of Siberian Snakes in Fermilab’s 120  GeV/c Main Injector, we searched for a new type of single Siberian snake that could overcome all depolarizing resonances in the 8.9–120  GeV/c range. We found that a snake made of one 4-twist helix and 2 dipoles could maintain the polarization. This snake design could solve the long-standing problem of significant polarization loss during acceleration of polarized protons from a few GeV to tens of GeV, such as in the AGS, before injecting them into multi-hundred GeV rings, such as RHIC.

  2. 4-twist helix snake to maintain polarization in multi-GeV proton rings

    Science.gov (United States)

    Antoulinakis, F.; Chen, Y.; Dutton, A.; Rossi De La Fuente, E.; Haupert, S.; Ljungman, E. A.; Myers, P. D.; Thompson, J. K.; Tai, A.; Aidala, C. A.; Courant, E. D.; Krisch, A. D.; Leonova, M. A.; Lorenzon, W.; Raymond, R. S.; Sivers, D. W.; Wong, V. K.; Yang, T.; Derbenev, Y. S.; Morozov, V. S.; Kondratenko, A. M.

    2017-09-01

    Solenoid Siberian snakes have successfully maintained polarization in particle rings below 1 GeV, but never in multi-GeV rings, because the spin rotation by a solenoid is inversely proportional to the beam momentum. High energy rings, such as Brookhaven's 255 GeV Relativistic Heavy Ion Collider (RHIC), use only odd multiples of pairs of transverse B-field Siberian snakes directly opposite each other. When it became impractical to use a pair of Siberian Snakes in Fermilab's 120 GeV /c Main Injector, we searched for a new type of single Siberian snake that could overcome all depolarizing resonances in the 8.9 - 120 GeV /c range. We found that a snake made of one 4-twist helix and 2 dipoles could maintain the polarization. This snake design could solve the long-standing problem of significant polarization loss during acceleration of polarized protons from a few GeV to tens of GeV, such as in the AGS, before injecting them into multi-hundred GeV rings, such as RHIC.

  3. 4-twist helix snake to maintain polarization in multi-GeV proton rings

    International Nuclear Information System (INIS)

    Antoulinakis, F.; Chen, Y.; Dutton, A.; Rossi De La Fuente, E.; Haupert, S.

    2017-01-01

    Solenoid Siberian snakes have successfully maintained polarization in particle rings below 1 GeV, but never in multi-GeV rings, because the spin rotation by a solenoid is inversely proportional to the beam momentum. High energy rings, such as Brookhaven’s 255 GeV Relativistic Heavy Ion Collider (RHIC), use only odd multiples of pairs of transverse B-field Siberian snakes directly opposite each other. When it became impractical to use a pair of Siberian Snakes in Fermilab’s 120 GeV/c Main Injector, we searched for a new type of single Siberian snake that could overcome all depolarizing resonances in the 8.9–120 GeV/c range. We found that a snake made of one 4-twist helix and 2 dipoles could maintain the polarization. Here, this snake design could solve the long-standing problem of significant polarization loss during acceleration of polarized protons from a few GeV to tens of GeV, such as in the AGS, before injecting them into multi-hundred GeV rings, such as RHIC.

  4. Measurement of the photon polarization in radiative $B^0_s$ decays at LHCb

    CERN Multimedia

    Sanchez Mayordomo, Carlos

    2017-01-01

    The photon polarization is studied for the first time in $B_s^0$ decays, using an integrated luminosity of 3 fb$^{-1}$ of proton-proton data recorded by the LHCb experiment. An untagged time-dependent analysis of $B_s^0 \\rightarrow \\phi\\gamma$ decays allows to measure the CPV parameter $\\mathcal{A}^{\\Delta}$, which is sensitive to the left- and right-handed helicity amplitudes. The measured value $\\mathcal{A}^{\\Delta} = -0.98 \\; ^{+0.46}_{-0.52}\\text{(stat.)} ^{+0.23}_{-0.20}\\text{(syst.)}$ is consistent with the Standard Model prediction within two standard deviations. This value can put constraints on the Wilson coefficients $\\mathcal{C}_7$ and $\\mathcal{C}_7^{'}$. With a tagged analysis of the same decay the parameter $S_{\\phi\\gamma}$, also sensitive to the photon polarization, could be measured.

  5. The measurement and prediction of proton upset

    Science.gov (United States)

    Shimano, Y.; Goka, T.; Kuboyama, S.; Kawachi, K.; Kanai, T.

    1989-12-01

    The authors evaluate tolerance to proton upset for three kinds of memories and one microprocessor unit for space use by irradiating them with high-energy protons up to nearly 70 MeV. They predict the error rates of these memories using a modified semi-empirical equation of Bendel and Petersen (1983). A two-parameter method was used instead of Bendel's one-parameter method. There is a large difference between these two methods with regard to the fitted parameters. The calculation of upset rates in orbits were carried out using these parameters and NASA AP8MAC, AP8MIC. For the 93419 RAM the result of this calculation was compared with the in-orbit data taken on the MOS-1 spacecraft. A good agreement was found between the two sets of upset-rate data.

  6. Measurement of the spin-dependent structure-functions of the proton and the deuteron

    CERN Multimedia

    2002-01-01

    % NA47 %title \\\\ \\\\The physics motivation of the experiments of the Spin Muon Collaboration is to better understand how the nucleon spin is built-up by its partons and to test the fundamental Bjorken sum rule. \\\\ \\\\The spin-dependent structure functions $g _{1}(x)$ of the proton and the deuteron are determined from the measured cross section asymmetries for deep inelastic scattering of longitudinally polarized muons from longitudinally polarized nucleons. The experiment is similar to the NA2 one of the European Muon Collaboration in which the violation of the Ellis-Jaffe sum rule for the proton was found. \\\\ \\\\The apparatus is the upgraded forward spectrometer which was used originally by the European and New Muon Collaborations. To minimize the systematic uncertainties the target contains two oppositely polarized cells, which were exposed to the muon beam simultaneously. For the experiments in 1991 and 1992 the original EMC polarized target was reinstalled. In 1993 a new polarized target was put into operati...

  7. Determination of strange form factors of nucleon by parity violation asymmetry by polarized electron-proton elastic scattering; Mesure des facteurs de forme etranges du nucleon par asymetrie de violation de parite dans la diffusion elastique electron polarise-proton

    Energy Technology Data Exchange (ETDEWEB)

    Jardillier, Johann [Lab. de Physique Corpusculaire, Clermont-Ferrand-2 Univ., 63 - Aubiere (France)

    1999-09-21

    In the quark model, the proton is described as a system of three quarks UUD. However, recent experiments (CERN, SLAC) have shown that the strange quarks may contribute in a significant way to the mass and the spin of the proton. The HAPPEX experiment gives one further knowledge about the question of the role the strange quarks play inside the proton. It measures parity violating asymmetry in the scattering of polarized electrons from a proton because the latter is sensitive to the contribution of the strange quarks to the electromagnetic form factors of the nucleon. The observed asymmetry is in the order of a few ppm (part per million). The main difficulty of the experiment is to identify, to estimate and to minimize, as much as possible, all the systematic effects which could give rise to false asymmetries. This thesis discusses the principle of the HAPPEX experiment, its implementation at the Jefferson Lab (JLab), the processing and the analysis of the data, the systematic errors, and finally presents the result of the first data taking (1999) and its present interpretation. The HAPPEX experiment has measured, at Q{sup 2} = 0.5 (GeV/c){sup 2}, a strange quarks contribution of (1.0 {+-} 2.3)% to the electromagnetic form factors of the nucleon. The statistics and the systematic effects (measure of the electron beam polarization and knowledge of the neutron electric form factor) contribute equally to the error. (author)

  8. Measurement of electron beam polarization at the SLC

    International Nuclear Information System (INIS)

    Steiner, H.; California Univ., Berkeley

    1988-01-01

    One of the unique features of the SLC is its capability to accelerate longitudinally polarized electrons. The SLC polarization group has been performed to implement the polarization program at the SLC. Technically the polarization project consists of three main parts: (1) a polarized source, (2) spin-rotating superconducting solenoid magnets to be used to manipulate the direction of the electron spin, and (3) the polarimeters needed to monitor and measure the electron beam polarization. It is this last topic that will concern us here. Two types of polarimeters will be used - Compton and Moeller. (orig./HSI)

  9. Azimuthal asymmetries in hard exclusive meson muoproduction off transversely polarized protons

    Energy Technology Data Exchange (ETDEWEB)

    Wolbeek, Johannes ter

    2015-04-15

    } production, which was an evidence for the existence of the transverse GPD H{sub T}. The asymmetries obtained in this analysis can help to constrain Generalized Parton Distributions. This is done by comparing the measurements to model calculations of the asymmetries in the COMPASS kinematics. In this thesis the results are compared to the model from Goloskokov and Kroll, which is in good agreement with the data. Especially in combination with results from other vector meson channels, as for example the ρ{sup 0} meson, which has already been analyzed, additional constrains on quark GPDs E{sup u} and E{sup d} are enabled. Furthermore the pion pole contribution plays an important role in hard exclusive ω production, whereby the ω channel is of special interest. Especially the three single spin asymmetries A{sup sin(φ-φs)}{sub UT}, A{sup sin(2φs-φS)}{sub UT} and A{sup sin} {sup φS}{sub UT} are expected to be sensitive to the sign of the πω form factor and therefore of great importance. The results on the first and second asymmetry are clearly in favor of a negative sign of the form factor, whereas the result on the last one is also compatible with theoretical predictions assuming a positive sign. At the moment the analysis is limited by the available statistic. Therefore more data, taken with transversely polarized protons and deuterons, will be needed. This could also allow for the investigation on heavier vector mesons like the φ and the J/ψ meson, whose production cross section is much smaller compared to the ω and the ρ{sup 0}. The complementary results from various production channels will help to further constrain the GPDs. The present fixed target experiments do not allow for a sufficient increase of statistics. But maybe in the future polarized collider experiments can achieve the needed statistics.

  10. Proton current measurements using the prompt gamma ray diagnostic technique

    International Nuclear Information System (INIS)

    Leeper, R.J.; Burns, E.J.T.; Johnson, D.J.; McMurtry, W.M.

    1981-01-01

    Prompt gamma ray signals from the nuclear reaction 7 Li(p,γ) 8 Be have been used to make time resolved proton current measurements. In these measurements, the proton beam was allowed to strike cylindrical thick lithium metal targets. The time integrated proton current was measured using gamma activation of copper via the reaction 63 Cu(γ,n) 62 Cu(β+). The positron activity of the copper sample was easily measured using coincidence counting techniques. The number of 62 Cu atoms produced per proton incident on a thick Li metal target was determined with separate calibration runs performed on the Sandia 2.5 MeV Van de Graaff accelerator. The time history of the prompt gamma production was measured using six EGG NPM-54 scintillator photomultiplier combinations shielded by 96.5 cm of concrete and 5.1 cm of Pb. The use of six scintillator photomultiplier combinations was necessary to increase the statistical precision of the data. The normalization of the prompt gamma time history data with the total time integrated proton-current measurement yielded the absolute time resolved proton current on target. Data from runs performed on the Sandia Proto I accelerator will be presented

  11. Single-spin asymmetry in electro-production of {pi}{sup +} {pi}{sup -} pairs from a transversely polarized proton target at the HERMES experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiao-Rui

    2008-10-15

    In this thesis, the measurement of an azimuthal amplitude of the asymmetry in the lepto-production of {pi}{sup +}{pi}{sup -} pairs at the HERMES experiment is reported. The experiment was carried out at DESY in Germany, utilizing the longitudinally polarized 27.6 GeV electron/positron beam of the HERA storage ring in combination with a longitudinally or transversely polarized gaseous target internal to the beam pipe. For the present measurement, the transversely polarized proton target was used and the beam polarization was averaged out in order to measure the asymmetry A{sub UT}. A Ring Imaging Cerenkov (RICH) detector allows the precise identification of pions, kaons and protons over essentially the entire momentum range of the experiment. The asymmetry A{sub UT} for {pi}{sup +}{pi}{sup -} pair production was measured for the first time in the world by HERMES. The amplitudes are extracted as functions of different kinematic variables, which can facilitate the comparison with the theoretical models and the extraction of transversity with combination of the measurement of the dihadron fragmentation function. (orig.)

  12. Single-spin asymmetry in electro-production of π+ π- pairs from a transversely polarized proton target at the HERMES experiment

    International Nuclear Information System (INIS)

    Lu, Xiao-Rui

    2008-09-01

    In this thesis, the measurement of an azimuthal amplitude of the asymmetry in the lepto-production of π + π - pairs at the HERMES experiment is reported. The experiment was carried out at DESY in Germany, utilizing the longitudinally polarized 27.6 GeV electron/positron beam of the HERA storage ring in combination with a longitudinally or transversely polarized gaseous target internal to the beam pipe. For the present measurement, the transversely polarized proton target was used and the beam polarization was averaged out in order to measure the asymmetry A UT . A Ring Imaging Cerenkov (RICH) detector allows the precise identification of pions, kaons and protons over essentially the entire momentum range of the experiment. The asymmetry A UT for π + π - pair production was measured for the first time in the world by HERMES. The amplitudes are extracted as functions of different kinematic variables, which can facilitate the comparison with the theoretical models and the extraction of transversity with combination of the measurement of the dihadron fragmentation function. (orig.)

  13. Circular polarization of γ-quanta radiated in the capture of polarized neutrons by protons and the quark compound bag model

    International Nuclear Information System (INIS)

    Grach, I.L.; Shmatkov, M.Zh.

    1983-01-01

    The circular polarization Psub(γ) of γ-quanta radiated in the capture of polarized neutrons by protons is calculated The contribution of the M1 and E2 radiation of nucleons to Psub(γ) is found using the accurate wave functions of the continuous spectrum. The contribution of the six-quark bag to the polarization Psub(γ) is determined. The value of Psub(γ) is related to the admixture of the 6q-bag in the deuteron. Experimental value of Psub(γ) corresponds to small (< or approximately 0.7%) admixture of the bag

  14. Study of J/psi polarization in proton-proton collisions with the ALICE detector at the LHC

    CERN Document Server

    Batista Camejo, Arianna; Rosnet, Philippe

    The main purpose of the ALICE experiment is the study and characterization of the Quark Gluon Plasma (QGP), a state of nuclear matter in which quarks and gluons are deconfined. Quarkonia (bound states of a heayvy quark Q and its anti-quark Q) constitute one of the most interesting probes of the QGP. Besides this motivation, the study of quarkonium production is very interesting since it can contribute to our understanding of Quantum Chromodynamics, the theory of strong interactions. The formation of quarkonium states in hadronic collisions is not yet completely understood. The two main theoretical approaches to describe the production of quarkonium states, the Color Singlet Model and the Non-Relativistic QCD framework (NRQCD), have historically presented problems to simultaneously describe the production cross section and polarization of such states. On the experimental side, quarkonium polarization measurements have not always been complete and consistent between them. So, neither from the theoretical nor fr...

  15. The measurement of proton stopping power using proton-cone-beam computed tomography

    International Nuclear Information System (INIS)

    Zygmanski, P.; Rabin, M.S.Z.; Gall, K.P.; Rosenthal, S.J.

    2000-01-01

    A cone-beam computed tomography (CT) system utilizing a proton beam has been developed and tested. The cone beam is produced by scattering a 160 MeV proton beam with a modifier that results in a signal in the detector system, which decreases monotonically with depth in the medium. The detector system consists of a Gd 2 O 2 S:Tb intensifying screen viewed by a cooled CCD camera. The Feldkamp-Davis-Kress cone-beam reconstruction algorithm is applied to the projection data to obtain the CT voxel data representing proton stopping power. The system described is capable of reconstructing data over a 16x16x16cm 3 volume into 512x512x512 voxels. A spatial and contrast resolution phantom was scanned to determine the performance of the system. Spatial resolution is significantly degraded by multiple Coulomb scattering effects. Comparison of the reconstructed proton CT values with x-ray CT derived proton stopping powers shows that there may be some advantage to obtaining stopping powers directly with proton CT. The system described suggests a possible practical method of obtaining this measurement in vivo. (author)

  16. Spin transfer matrix formulation and snake resonances for polarized proton beams

    International Nuclear Information System (INIS)

    Tepikian, S.

    1986-01-01

    The polarization of a spin polarized proton beam in a circular accelerator is described by a spin transfer matrix. Using this method, they investigate three problems: (1) the crossing of multiple spin resonances, (2) resonance jumping and (3) an accelerator with Siberian snakes. When crossing two (or more) spin resonances, there are no analytic solutions available. However, they can obtain analytic expressions if the two spin resonances are well separated (nonoverlapping) or very close together (overlapping). Between these two extremes they resort to numerical solution of the spin equations. Resonance jumping can be studied using the tools developed for analyzing the cross of multiple spin resonances. These theoretical results compare favorably with experimental results obtained from the AGS at Brookhaven. For large accelerators, resonance jumping becomes impractical and other methods such as Siberian snakes must be used to keep the beam spin polarized. An accelerator with Siberian snakes and isolated spin resonances can be described with a spin transfer matrix. From this, they find a new type of spin depolarizing resonance, called snake resonances

  17. Recent progress in the development of a polarized proton target for reactions with radioactive ion beams

    International Nuclear Information System (INIS)

    Urrego-Blanco, J.P.; Bingham, C.R.; Brandt, B. van den; Galindo-Uribarri, A.; Gomez del Campo, J.; Hautle, P.; Konter, J.A.; Padilla-Rodal, E.; Schmelzbach, P.A.

    2007-01-01

    Polarization observables in nuclear reactions with stable beams have provided important information concerning structural properties of nuclei and reaction mechanisms and hold great promise in the context of exotic nuclei. We report on the development of a polarized target based on plastic foils of 20-200 μm thickness to be used with radioactive ion beams. The operation of such a target requires a moderately high magnetic field and very low temperatures. The plastic foil is placed inside a chamber attached to the mixing chamber of a 3 He- 4 He dilution refrigerator. Cooling of the foil is achieved via a superfluid film of 4 He that can be supplied through two capillaries. The chamber has two thin, highly uniform silicon nitride windows. An NMR coil is attached to the target to monitor the polarization. Results of a first test to characterize the target system, using the elastic scattering of 38 MeV 12 C by protons in inverse kinematics are presented

  18. The g$p\\atop{2}$ Experiment: A Measurement of the Proton's Spin Structure Functions

    Energy Technology Data Exchange (ETDEWEB)

    Zielinski, Ryan B. [Univ. of New Hampshire, Durham, NH (United States)

    2017-09-01

    The E08-027 (g$p\\atop{2}$) experiment measured the spin structure functions of the proton at Jefferson Laboratory in Newport News, Va. Longitudinally polarized electrons were scattered from a transversely and longitudinally polarized solid ammonia target in Hall A, with the polarized NH$_3$ acting as an effective proton target. Focusing on small scattering angle events at the electron energies available at Jefferson Lab, the experiment covered a kinematic phase space of 0.02 GeV$^2$ $< Q^2 <$ 0.20 GeV$^2$ in the proton's resonance region. The spin structure functions, $g_{1}^p(x,Q^2)$ and $g_{2}^p(x,Q^2)$ , are extracted from an inclusive polarized cross section measurement of the electron-proton interaction. Integrated moments of $g_1(x,Q^2)$ are calculated and compared to theoretical predictions made by Chiral Perturbation Theory. The $g_1(x,Q^2)$ results are in agreement with previous measurements, but include a significant increase in statistical precision. The spin structure function contributions to the hyperfine energy levels in the hydrogen atom are also investigated. The $g_2(x,Q^2)$ measured contribution to the hyperfine splitting is the first ever experimental determination of this quantity. The results of this thesis suggest a disagreement of over 100% with previously published model results.

  19. Measurements of low energy observables in proton-proton collisions with the ATLAS Detector.

    CERN Document Server

    Myska, Miroslav; The ATLAS collaboration

    2017-01-01

    Low energy phenomena have been studied in detail at the LHC, providing important input for improving models of non-perturbative QCD effects. The ATLAS collaboration has performed several new measurements in this sector: We present charged-particle distributions sensitive to the underlying event, measured by the ATLAS detector in proton--proton collisions at a centre-of-mass energy of 13 TeV. The results are corrected for detector effects and compared to predictions from various Monte Carlo generators. ATLAS has also studied the correlated hadron production. In particular, an analysis of the momentum difference between charged hadrons in high–energy proton–proton collisions is performed and the results are compared to the predictions of a helical QCD string fragmentation model. New results in forward physics are expected to be available soon. We close this presentation with the measurement of the exclusive "\\gamma\\gamma \\rightarrow \\mu^{+}\\mu^{-}" production in proton-proton collisions at a center-of-mass ...

  20. Measurement of the free neutron-proton analyzing power and spin transfer parameters in the charge exchange region at 790 MeV

    International Nuclear Information System (INIS)

    Ransome, R.D.

    1981-07-01

    The free neutron-proton analyzing power and the spin transfer parameters (K/sub NN/, K/sub SS/, K/sub SL/, and K/sub LL/) were measured at the Los Alamos Meson Physics Facility at 790 MeV between 165 0 and 180 0 center of mass. A 40% polarized neutron beam incident on a liquid hydrogen target was used. The recoil protons were momentum analyzed with a magnetic spectrometer to isolate elastic scatters. A large solid angle carbon polarimeter was used to measure the proton polarization. The measurements are the first at this energy and are in basic agreement with pre-existing phase shift solutions. The proton-carbon analyzing power was measured between 500 and 750 MeV. An empirical fit to the proton-carbon analyzing power between 100 and 750 MeV was done

  1. Comparison of spin asymmetries and cross sections in. pi. sup 0 production by 200 GeV polarized antiprotons and protons

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D L; Corcoran, M D; Cranshaw, J; Nessi-Tedaldi, F; Nessi, M; Nguyen, C; Roberts, J B; Skeens, J; White, J L [Rice Univ., Houston, TX (USA). Bonner Nuclear Labs.; Akchurin, N; Onel, Y [Iowa Univ., Iowa City (USA). Dept. of Physics and Astronomy; Belikov, N I; Derevschikov, A A; Grachov, O A; Matulenko, Yu A; Meschanin, A P; Nurushev, S B; Patalakha, D I; Rykov, V L; Solovyanov, V L; Vasiliev, A N [Institut Fiziki Vysokikh Ehnergij, Serpukhov (USSR); Bystricky, J; Lehar, F; Lesquen, A de [CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France); Cossairt, J D; Read, A L [Fermi National Accelerator Lab., Batavia, IL (USA); En' yo, H; Funahashi, H; Goto, Y; Imai, K; Itow, Y; Makino, S; Masaike, A; Miyake, K; Nagamine, T; Saito, N; Yamashita, S [Kyoto Univ. (Japan). Dept. of Physics; Grosnick, D P; Hill, D A; Laghai, M; Lopiano, D; Ohashi, Y; Spinka, H; Underwood, D G; Yokosawa, A [Argonne National Lab., IL (USA); FNAL E581/704 Collaboration

    1991-05-23

    The single-spin asymmetry A{sub N}(anti pp) for inclusive {pi}{sup 0} production at 0.5 < p{sub t} < 2GeV/c by 200 GeV transversely-polarized antiprotons on protons has been measured at Fermilab over a wide range of x{sub F}. We observe that A{sub N}(anti pp) has the same sign, a similar x{sub F} dependence, and about half the magnitude as A{sub N}(pp) for {pi}{sup 0} production by protons. We also present the ratio of the spin-averaged sections for {pi}{sup 0} production by antiproton and by protons. (orig.).

  2. A measurement of the neutron lifetime by counting trapped protons

    CERN Document Server

    Snow, W M; Dewey, M S; Fei, X; Gilliam, D M; Greene, G L; Nico, J S; Wietfeldt, F E

    2000-01-01

    A measurement of the neutron lifetime tau sub n performed by trapping and counting decay protons from in-beam neutron decays in a Penning trap is in progress at the National Institute of Standards and Technology (NIST). A description of the measurement technique, the status of the data analysis, and prospects for improvements in the measurement are discussed.

  3. High Precision Measurement of the Proton Elastic Form Factor Ratio at Low Q2

    Energy Technology Data Exchange (ETDEWEB)

    Xiaohui Zhan

    2009-12-01

    A high precision measurement of the proton elastic form factor ratio µpGEp/GMp in the range Q2 = 0.3–0.7 GeV2/c2 was performed using recoil polarimetry in Jefferson Lab Hall A. In this low Q2 range, previous data from LEDEX [5] along with many fits and calculations [2, 3, 4] indicate substantial deviations of the ratio from unity. In this new measurement, with 80% polarized electron beam for 24 days, we are able to achieve <1% statistical uncertainty. Preliminary results are a few percent lower than expected from previous world data and fits, indicating a smaller GEp at this region. Beyond the intrinsic interest in nucleon structure, the improved form factor measurements also have implications for DVCS, determinations of the proton Zemach radius and strangeness form factors through parity violation experiments.

  4. Measurement of electron beam polarization at the SLC

    International Nuclear Information System (INIS)

    Steiner, H.

    1987-03-01

    The polarimeters needed to monitor and measure electron beam polarization at the Stanford Linear Collider are discussed. Two types of polarimeters, are to be used. The first is based on the spin dependent elastic scattering of photons from high energy electrons. The second utilizes the spin dependence of elastic electron-electron scattering. The plans of the SLC polarization group to measure and monitor electron beam polarization are discussed. A brief discussion of the physics and the demands it imposes on beam polarization measurements is presented. The Compton polarimeter and the essential characteristics of two Moeller polarimeters are presented

  5. Proton-proton, anti-proton-anti-proton, proton-anti-proton correlations in Au+Au collisions measured by STAR at RHIC

    International Nuclear Information System (INIS)

    Gos, H.P.

    2007-01-01

    The analysis of two-particle correlations provides a powerful tool to study the properties of hot and dense matter created in heavy-ion collisions at ultra-relativistic energies. Applied to identical and non-identical hadron pairs, it makes the study of space-time evolution of the source in femtoscopic scale possible. Baryon femtoscopy allows extraction of the radii of produced sources which can be compared to those deduced from identical pion studies, providing complete information about the source characteristics. In this paper we present the correlation functions obtained for identical and non-identical baryon pairs of protons and anti-protons. The data were collected recently in Au+Au collisions at √(s NN )=62 GeV and √(s NN )=200 GeV by the STAR detector at the RHIC accelerator. We introduce corrections to the baryon-baryon correlations taking into account: residual correlations from weak decays, particle identification probability and the fraction of primary baryons. Finally we compare our results to theoretical predictions. (orig.)

  6. Direct-current proton-beam measurements at Los Alamos

    International Nuclear Information System (INIS)

    Sherman, J.; Stevens, R.R.; Schneider, J.D.; Zaugg, T.

    1994-01-01

    Recently, a CW proton accelerator complex was moved from Chalk River Laboratories (CRL) to Los Alamos National Laboratory. This includes a 50-keV dc proton injector with a single-solenoid low-energy beam transport system (LEBT) and a CW 1.25-MeV, 267-MHz radiofrequency quadrupole (RFQ). The move was completed after CRL had achieved 55-mA CW operation at 1.25 MeV using 250-kW klystrode tubes to power the RFQ. These accelerator components are prototypes for the front end of a CW linac required for an accelerator-driven transmutation linac, and they provide early confirmation of some CW accelerator components. The injector (ion source and LEBT) and emittance measuring unit are installed and operational at Los Alamos. The dc microwave ion source has been operated routinely at 50-keV, 75-mA hydrogen-ion current. This ion source has demonstrated very good discharge and H 2 gas efficiencies, and sufficient reliability to complete CW RFQ measurements at CRL. Proton fraction of 75% has been measured with 550-W discharge power. This high proton fraction removes the need for an analyzing magnet. Proton LEBT emittance measurements completed at Los Alamos suggest that improved transmission through the RFQ may be achieved by increasing the solenoid focusing current. Status of the final CW RFQ operation at CRL and the installation of the RFQ at Los Alamos is given

  7. pt and xF dependence of the polarization of Σ+ hyperons produced by 800 GeV/c protons

    International Nuclear Information System (INIS)

    Morelos, A.; Albuquerque, I.F.; Bondar, N.F.; Carrigan, R. Jr.; Chen, D.; Cooper, P.S.; Lisheng, D.; Denisov, A.S.; Dobrovolsky, A.V.; Dubbs, T.; Endler, A.M.F.; Escobar, C.O.; Foucher, M.; Golovtsov, V.L.; Gottschalk, H.; Gouffon, P.; Grachev, V.T.; Khanzadeev, A.V.; Kubantsev, M.A.; Kuropatkin, N.P.; Lach, J.; Lang Pengfei; Lebedenko, V.N.; Li Chengze; Li Yunshan; Luksys, M.; Mahon, J.R.P.; McCliment, E.; Newsom, C.; Pommot Maia, M.C.; Samsonov, V.M.; Schegelsky, V.A.; Shi Huanzhang; Smith, V.J.; Fukun, T.; Terentyev, N.K.; Timm, S.; Tkatch, I.I.; Uvarov, L.N.; Vorobyov, A.A.; Yan Jie; Wenheng, Z.; Zheng Shuchen; Zhong Yuanyuan

    1995-01-01

    We utilize the angle and momentum resolution of our apparatus to study the polarization of 375 GeV/c Σ + hyperons produced by 800 GeV/c protons incident on a Cu target. By examining in detail two of our high statistics data samples, we find evidence for structure in the p t dependence of Σ + polarization and are able to extract the x F dependence of the Σ + polarization and compare it with x F behavior in the Λ 0 and Ξ - systems

  8. Proton triggered circularly polarized luminescence in orthogonal- and co-assemblies of chiral gelators with achiral perylene bisimide.

    Science.gov (United States)

    Han, Dongxue; Han, Jianlei; Huo, Shengwei; Qu, Zuoming; Jiao, Tifeng; Liu, Minghua; Duan, Pengfei

    2018-05-29

    The orthogonal- or co-assembly of achiral perylene bisimide (PBI) with chiral gelators can be regulated by solvents. While the coassembly leads to the formation of chiroptical nanofibers through chirality transfer, the orthogonal assemblies could not. Moreover, protonation on the coassembled nanofibers could light up the circularly polarized luminescence (CPL).

  9. Measurement of pion, kaon and proton production in proton-proton collisions at $\\sqrt{s}$ = 7 TeV

    CERN Document Server

    Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahmed, Ijaz; Ahn, Sang Un; Aimo, Ilaria; Aiola, Salvatore; Ajaz, Muhammad; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Aronsson, Tomas; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Ball, Markus; Baltasar Dos Santos Pedrosa, Fernando; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biswas, Saikat; Bjelogrlic, Sandro; Blanco, Fernando; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botje, Michiel; Botta, Elena; Boettger, Stefan; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Buxton, Jesse Thomas; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; D'Erasmo, Ginevra; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Erazmus, Barbara Ewa; Erhardt, Filip; Eschweiler, Dominic; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Eum, Jongsik; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Ramirez, Andres; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harris, John William; Hartmann, Helvi; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hilden, Timo Eero; Hillemanns, Hartmut; Hippolyte, Boris; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Ionita, Costin; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacobs, Peter Martin; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kadyshevskiy, Vladimir; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Kamal; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Do Won; Kim, Dong Jo; Kim, Hyeonjoong; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobayashi, Taiyo; Kobdaj, Chinorat; Kofarago, Monika; Kohler, Markus Konrad; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kouzinopoulos, Charalampos; Kovalenko, Oleksandr; Kovalenko, Vladimir; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kucheryaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kulakov, Igor; Kumar, Jitendra; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Lee, Seongjoo; Legrand, Iosif; Lehnert, Joerg Walter; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loggins, Vera Renee; Loginov, Vitaly; Loizides, Constantinos; Lokesh, Kumar; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Lu, Xianguo; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Masui, Hiroshi; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Minervini, Lazzaro Manlio; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Musinsky, Jan; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Nattrass, Christine; Nayak, Kishora; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Paola; Paic, Guy; Pajares Vales, Carlos; Pal, Susanta Kumar; Pan, Jinjin; Pant, Divyash; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Paul, Biswarup; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Razazi, Vahedeh; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reicher, Martijn; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rivetti, Angelo; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Santagati, Gianluca; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Seeder, Karin Soraya; Seger, Janet Elizabeth; Sekiguchi, Yuko; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Seo, Jeewon; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Natasha; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Soegaard, Carsten; Soltz, Ron Ariel; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew Donald; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Sultanov, Rishat; Sumbera, Michal; Symons, Timothy; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Takahashi, Jun; Tanaka, Naoto; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Wang, Yifei; Watanabe, Daisuke; Weber, Michael; Weber, Steffen Georg; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Ping; Yano, Satoshi; Yasnopolskiy, Stanislav; Yin, Zhongbao; Yokohama, Hiroki; Yoo, In-Kwon; Yurchenko, Volodymyr; Yushmanov, Igor; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym

    2015-05-27

    The measurement of primary $\\pi^{\\pm}$, K$^{\\pm}$, p and $\\overline{p}$ production at mid-rapidity ($|y| <$ 0.5) in proton-proton collisions at $\\sqrt{s} = 7$ TeV performed with ALICE (A Large Ion Collider Experiment) at the Large Hadron Collider (LHC) is reported. Particle identification is performed using the specific ionization energy loss and time-of-flight information, the ring-imaging Cherenkov technique and the kink-topology identification of weak decays of charged kaons. Transverse momentum spectra are measured from 0.1 up to 3 GeV/$c$ for pions, from 0.2 up to 6 GeV/$c$ for kaons and from 0.3 up to 6 GeV/$c$ for protons. The measured spectra and particle ratios are compared with QCD-inspired models, tuned to reproduce also the earlier measurements performed at the LHC. Furthermore, the integrated particle yields and ratios as well as the average transverse momenta are compared with results at lower collision energies.

  10. Measurement of pion, kaon and proton production in proton-proton collisions at [Formula: see text] TeV.

    Science.gov (United States)

    Adam, J; Adamová, D; Aggarwal, M M; Rinella, G Aglieri; Agnello, M; Agrawal, N; Ahammed, Z; Ahmed, I; Ahn, S U; Aimo, I; Aiola, S; Ajaz, M; Akindinov, A; Alam, S N; Aleksandrov, D; Alessandro, B; Alexandre, D; Molina, R Alfaro; Alici, A; Alkin, A; Alme, J; Alt, T; Altinpinar, S; Altsybeev, I; Prado, C Alves Garcia; Andrei, C; Andronic, A; Anguelov, V; Anielski, J; Antičić, T; Antinori, F; Antonioli, P; Aphecetche, L; Appelshäuser, H; Arcelli, S; Armesto, N; Arnaldi, R; Aronsson, T; Arsene, I C; Arslandok, M; Augustinus, A; Averbeck, R; Azmi, M D; Bach, M; Badalà, A; Baek, Y W; Bagnasco, S; Bailhache, R; Bala, R; Baldisseri, A; Ball, M; Pedrosa, F Baltasar Dos Santos; Baral, R C; Barbano, A M; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L S; Barret, V; Bartalini, P; Bartke, J; Bartsch, E; Basile, M; Bastid, N; Basu, S; Bathen, B; Batigne, G; Camejo, A Batista; Batyunya, B; Batzing, P C; Bearden, I G; Beck, H; Bedda, C; Behera, N K; Belikov, I; Bellini, F; Martinez, H Bello; Bellwied, R; Belmont, R; Belmont-Moreno, E; Belyaev, V; Bencedi, G; Beole, S; Berceanu, I; Bercuci, A; Berdnikov, Y; Berenyi, D; Bertens, R A; Berzano, D; Betev, L; Bhasin, A; Bhat, I R; Bhati, A K; Bhattacharjee, B; Bhom, J; Bianchi, L; Bianchi, N; Bianchin, C; Bielčík, J; Bielčíková, J; Bilandzic, A; Biswas, S; Bjelogrlic, S; Blanco, F; Blau, D; Blume, C; Bock, F; Bogdanov, A; Bøggild, H; Boldizsár, L; Bombara, M; Book, J; Borel, H; Borissov, A; Borri, M; Bossú, F; Botje, M; Botta, E; Böttger, S; Braun-Munzinger, P; Bregant, M; Breitner, T; Broker, T A; Browning, T A; Broz, M; Brucken, E J; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Buncic, P; Busch, O; Buthelezi, Z; Buxton, J T; Caffarri, D; Cai, X; Caines, H; Diaz, L Calero; Caliva, A; Villar, E Calvo; Camerini, P; Carena, F; Carena, W; Castellanos, J Castillo; Castro, A J; Casula, E A R; Cavicchioli, C; Sanchez, C Ceballos; Cepila, J; Cerello, P; Chang, B; Chapeland, S; Chartier, M; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Chelnokov, V; Cherney, M; Cheshkov, C; Cheynis, B; Barroso, V Chibante; Chinellato, D D; Chochula, P; Choi, K; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Colamaria, F; Colella, D; Collu, A; Colocci, M; Balbastre, G Conesa; Valle, Z Conesa Del; Connors, M E; Contreras, J G; Cormier, T M; Morales, Y Corrales; Maldonado, I Cortés; Cortese, P; Cosentino, M R; Costa, F; Crochet, P; Albino, R Cruz; Cuautle, E; Cunqueiro, L; Dahms, T; Dainese, A; Danu, A; Das, D; Das, I; Das, S; Dash, A; Dash, S; De, S; Caro, A De; Cataldo, G de; Cuveland, J de; Falco, A De; Gruttola, D De; Marco, N De; Pasquale, S De; Deisting, A; Deloff, A; Dénes, E; D'Erasmo, G; Bari, D Di; Mauro, A Di; Nezza, P Di; Corchero, M A Diaz; Dietel, T; Dillenseger, P; Divià, R; Djuvsland, Ø; Dobrin, A; Dobrowolski, T; Gimenez, D Domenicis; Dönigus, B; Dordic, O; Dubey, A K; Dubla, A; Ducroux, L; Dupieux, P; Ehlers, R J; Elia, D; Engel, H; Erazmus, B; Erhardt, F; Eschweiler, D; Espagnon, B; Estienne, M; Esumi, S; Eum, J; Evans, D; Evdokimov, S; Eyyubova, G; Fabbietti, L; Fabris, D; Faivre, J; Fantoni, A; Fasel, M; Feldkamp, L; Felea, D; Feliciello, A; Feofilov, G; Ferencei, J; Téllez, A Fernández; Ferreiro, E G; Ferretti, A; Festanti, A; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Fleck, M G; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Francescon, A; Frankenfeld, U; Fuchs, U; Furget, C; Furs, A; Girard, M Fusco; Gaardhøje, J J; Gagliardi, M; Gago, A M; Gallio, M; Gangadharan, D R; Ganoti, P; Gao, C; Garabatos, C; Garcia-Solis, E; Gargiulo, C; Gasik, P; Germain, M; Gheata, A; Gheata, M; Ghosh, P; Ghosh, S K; Gianotti, P; Giubellino, P; Giubilato, P; Dziadus, E Gladysz; Glässel, P; Ramirez, A Gomez; Zamora, P González; Gorbunov, S; Görlich, L; Gotovac, S; Grabski, V; Graczykowski, L K; Grelli, A; Grigoras, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grinyov, B; Grion, N; Grosse-Oetringhaus, J F; Grossiord, J-Y; Grosso, R; Guber, F; Guernane, R; Guerzoni, B; Gulbrandsen, K; Gulkanyan, H; Gunji, T; Gupta, A; Gupta, R; Haake, R; Haaland, Ø; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Hanratty, L D; Hansen, A; Harris, J W; Hartmann, H; Harton, A; Hatzifotiadou, D; Hayashi, S; Heckel, S T; Heide, M; Helstrup, H; Herghelegiu, A; Corral, G Herrera; Hess, B A; Hetland, K F; Hilden, T E; Hillemanns, H; Hippolyte, B; Hristov, P; Huang, M; Humanic, T J; Hussain, N; Hussain, T; Hutter, D; Hwang, D S; Ilkaev, R; Ilkiv, I; Inaba, M; Ionita, C; Ippolitov, M; Irfan, M; Ivanov, M; Ivanov, V; Izucheev, V; Jacobs, P M; Jahnke, C; Jang, H J; Janik, M A; Jayarathna, P H S Y; Jena, C; Jena, S; Bustamante, R T Jimenez; Jones, P G; Jung, H; Jusko, A; Kalinak, P; Kalweit, A; Kamin, J; Kang, J H; Kaplin, V; Kar, S; Uysal, A Karasu; Karavichev, O; Karavicheva, T; Karpechev, E; Kebschull, U; Keidel, R; Keijdener, D L D; Keil, M; Khan, K H; Khan, M M; Khan, P; Khan, S A; Khanzadeev, A; Kharlov, Y; Kileng, B; Kim, B; Kim, D W; Kim, D J; Kim, H; Kim, J S; Kim, M; Kim, M; Kim, S; Kim, T; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Kiss, G; Klay, J L; Klein, C; Klein, J; Klein-Bösing, C; Kluge, A; Knichel, M L; Knospe, A G; Kobayashi, T; Kobdaj, C; Kofarago, M; Köhler, M K; Kollegger, T; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Kondratyuk, E; Konevskikh, A; Kouzinopoulos, C; Kovalenko, O; Kovalenko, V; Kowalski, M; Kox, S; Meethaleveedu, G Koyithatta; Kral, J; Králik, I; Kravčáková, A; Krelina, M; Kretz, M; Krivda, M; Krizek, F; Kryshen, E; Krzewicki, M; Kubera, A M; Kučera, V; Kucheriaev, Y; Kugathasan, T; Kuhn, C; Kuijer, P G; Kulakov, I; Kumar, J; Kumar, L; Kurashvili, P; Kurepin, A; Kurepin, A B; Kuryakin, A; Kushpil, S; Kweon, M J; Kwon, Y; Pointe, S L La; Rocca, P La; Fernandes, C Lagana; Lakomov, I; Langoy, R; Lara, C; Lardeux, A; Lattuca, A; Laudi, E; Lea, R; Leardini, L; Lee, G R; Lee, S; Legrand, I; Lehnert, J; Lemmon, R C; Lenti, V; Leogrande, E; Monzón, I León; Leoncino, M; Lévai, P; Li, S; Li, X; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Ljunggren, H M; Lodato, D F; Loenne, P I; Loggins, V R; Loginov, V; Loizides, C; Lopez, X; Torres, E López; Lowe, A; Lu, X-G; Luettig, P; Lunardon, M; Luparello, G; Maevskaya, A; Mager, M; Mahajan, S; Mahmood, S M; Maire, A; Majka, R D; Malaev, M; Cervantes, I Maldonado; Malinina, L; Mal'Kevich, D; Malzacher, P; Mamonov, A; Manceau, L; Manko, V; Manso, F; Manzari, V; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Margutti, J; Marín, A; Markert, C; Marquard, M; Martin, N A; Blanco, J Martin; Martinengo, P; Martínez, M I; Martínez García, G; Pedreira, M Martinez; Martynov, Y; Mas, A; Masciocchi, S; Masera, M; Masoni, A; Massacrier, L; Mastroserio, A; Masui, H; Matyja, A; Mayer, C; Mazer, J; Mazzoni, M A; Mcdonald, D; Meddi, F; Menchaca-Rocha, A; Meninno, E; Pérez, J Mercado; Meres, M; Miake, Y; Mieskolainen, M M; Mikhaylov, K; Milano, L; Milosevic, J; Minervini, L M; Mischke, A; Mishra, A N; Miśkowiec, D; Mitra, J; Mitu, C M; Mohammadi, N; Mohanty, B; Molnar, L; Zetina, L Montaño; Montes, E; Morando, M; Godoy, D A Moreira De; Moretto, S; Morreale, A; Morsch, A; Muccifora, V; Mudnic, E; Mühlheim, D; Muhuri, S; Mukherjee, M; Müller, H; Mulligan, J D; Munhoz, M G; Murray, S; Musa, L; Musinsky, J; Nandi, B K; Nania, R; Nappi, E; Naru, M U; Nattrass, C; Nayak, K; Nayak, T K; Nazarenko, S; Nedosekin, A; Nellen, L; Ng, F; Nicassio, M; Niculescu, M; Niedziela, J; Nielsen, B S; Nikolaev, S; Nikulin, S; Nikulin, V; Noferini, F; Nomokonov, P; Nooren, G; Norman, J; Nyanin, A; Nystrand, J; Oeschler, H; Oh, S; Oh, S K; Ohlson, A; Okatan, A; Okubo, T; Olah, L; Oleniacz, J; Silva, A C Oliveira Da; Oliver, M H; Onderwaater, J; Oppedisano, C; Velasquez, A Ortiz; Oskarsson, A; Otwinowski, J; Oyama, K; Ozdemir, M; Pachmayer, Y; Pagano, P; Paić, G; Pajares, C; Pal, S K; Pan, J; Pandey, A K; Pant, D; Papikyan, V; Pappalardo, G S; Pareek, P; Park, W J; Parmar, S; Passfeld, A; Paticchio, V; Paul, B; Pawlak, T; Peitzmann, T; Costa, H Pereira Da; Filho, E Pereira De Oliveira; Peresunko, D; Lara, C E Pérez; Peskov, V; Pestov, Y; Petráček, V; Petrov, V; Petrovici, M; Petta, C; Piano, S; Pikna, M; Pillot, P; Pinazza, O; Pinsky, L; Piyarathna, D B; Płoskoń, M; Planinic, M; Pluta, J; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polichtchouk, B; Poljak, N; Poonsawat, W; Pop, A; Porteboeuf-Houssais, S; Porter, J; Pospisil, J; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puccio, M; Puddu, G; Pujahari, P; Punin, V; Putschke, J; Qvigstad, H; Rachevski, A; Raha, S; Rajput, S; Rak, J; Rakotozafindrabe, A; Ramello, L; Raniwala, R; Raniwala, S; Räsänen, S S; Rascanu, B T; Rathee, D; Razazi, V; Read, K F; Real, J S; Redlich, K; Reed, R J; Rehman, A; Reichelt, P; Reicher, M; Reidt, F; Ren, X; Renfordt, R; Reolon, A R; Reshetin, A; Rettig, F; Revol, J-P; Reygers, K; Riabov, V; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Ristea, C; Rivetti, A; Rocco, E; Cahuantzi, M Rodríguez; Manso, A Rodriguez; Røed, K; Rogochaya, E; Rohr, D; Röhrich, D; Romita, R; Ronchetti, F; Ronflette, L; Rosnet, P; Rossi, A; Roukoutakis, F; Roy, A; Roy, C; Roy, P; Montero, A J Rubio; Rui, R; Russo, R; Ryabinkin, E; Ryabov, Y; Rybicki, A; Sadovsky, S; Šafařík, K; Sahlmuller, B; Sahoo, P; Sahoo, R; Sahoo, S; Sahu, P K; Saini, J; Sakai, S; Saleh, M A; Salgado, C A; Salzwedel, J; Sambyal, S; Samsonov, V; Castro, X Sanchez; Šándor, L; Sandoval, A; Sano, M; Santagati, G; Sarkar, D; Scapparone, E; Scarlassara, F; Scharenberg, R P; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schuchmann, S; Schukraft, J; Schulc, M; Schuster, T; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, R; Seeder, K S; Seger, J E; Sekiguchi, Y; Selyuzhenkov, I; Senosi, K; Seo, J; Serradilla, E; Sevcenco, A; Shabanov, A; Shabetai, A; Shadura, O; Shahoyan, R; Shangaraev, A; Sharma, A; Sharma, N; Shigaki, K; Shtejer, K; Sibiriak, Y; Siddhanta, S; Sielewicz, K M; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simatovic, G; Simonetti, G; Singaraju, R; Singh, R; Singha, S; Singhal, V; Sinha, B C; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Slupecki, M; Smirnov, N; Snellings, R J M; Snellman, T W; Søgaard, C; Soltz, R; Song, J; Song, M; Song, Z; Soramel, F; Sorensen, S; Spacek, M; Spiriti, E; Sputowska, I; Stassinaki, M Spyropoulou; Srivastava, B K; Stachel, J; Stan, I; Stefanek, G; Steinpreis, M; Stenlund, E; Steyn, G; Stiller, J H; Stocco, D; Strmen, P; Suaide, A A P; Sugitate, T; Suire, C; Suleymanov, M; Sultanov, R; Šumbera, M; Symons, T J M; Szabo, A; Toledo, A Szanto de; Szarka, I; Szczepankiewicz, A; Szymanski, M; Takahashi, J; Tanaka, N; Tangaro, M A; Takaki, J D Tapia; Peloni, A Tarantola; Tariq, M; Tarzila, M G; Tauro, A; Muñoz, G Tejeda; Telesca, A; Terasaki, K; Terrevoli, C; Teyssier, B; Thäder, J; Thomas, D; Tieulent, R; Timmins, A R; Toia, A; Trogolo, S; Trubnikov, V; Trzaska, W H; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ullaland, K; Uras, A; Usai, G L; Utrobicic, A; Vajzer, M; Vala, M; Palomo, L Valencia; Vallero, S; Maarel, J Van Der; Hoorne, J W Van; Leeuwen, M van; Vanat, T; Vyvre, P Vande; Varga, D; Vargas, A; Vargyas, M; Varma, R; Vasileiou, M; Vasiliev, A; Vauthier, A; Vechernin, V; Veen, A M; Veldhoen, M; Velure, A; Venaruzzo, M; Vercellin, E; Limón, S Vergara; Vernet, R; Verweij, M; Vickovic, L; Viesti, G; Viinikainen, J; Vilakazi, Z; Baillie, O Villalobos; Vinogradov, A; Vinogradov, L; Vinogradov, Y; Virgili, T; Vislavicius, V; Viyogi, Y P; Vodopyanov, A; Völkl, M A; Voloshin, K; Voloshin, S A; Volpe, G; Haller, B von; Vorobyev, I; Vranic, D; Vrláková, J; Vulpescu, B; Vyushin, A; Wagner, B; Wagner, J; Wang, H; Wang, M; Wang, Y; Watanabe, D; Weber, M; Weber, S G; Wessels, J P; Westerhoff, U; Wiechula, J; Wikne, J; Wilde, M; Wilk, G; Wilkinson, J; Williams, M C S; Windelband, B; Winn, M; Yaldo, C G; Yamaguchi, Y; Yang, H; Yang, P; Yano, S; Yasnopolskiy, S; Yin, Z; Yokoyama, H; Yoo, I-K; Yurchenko, V; Yushmanov, I; Zaborowska, A; Zaccolo, V; Zaman, A; Zampolli, C; Zanoli, H J C; Zaporozhets, S; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zgura, I S; Zhalov, M; Zhang, H; Zhang, X; Zhang, Y; Zhao, C; Zhigareva, N; Zhou, D; Zhou, Y; Zhou, Z; Zhu, H; Zhu, J; Zhu, X; Zichichi, A; Zimmermann, A; Zimmermann, M B; Zinovjev, G; Zyzak, M

    The measurement of primary [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] production at mid-rapidity ([Formula: see text] 0.5) in proton-proton collisions at [Formula: see text][Formula: see text] 7 TeV performed with a large ion collider experiment at the large hadron collider (LHC) is reported. Particle identification is performed using the specific ionisation energy-loss and time-of-flight information, the ring-imaging Cherenkov technique and the kink-topology identification of weak decays of charged kaons. Transverse momentum spectra are measured from 0.1 up to 3 GeV/[Formula: see text] for pions, from 0.2 up to 6 GeV/[Formula: see text] for kaons and from 0.3 up to 6 GeV/[Formula: see text] for protons. The measured spectra and particle ratios are compared with quantum chromodynamics-inspired models, tuned to reproduce also the earlier measurements performed at the LHC. Furthermore, the integrated particle yields and ratios as well as the average transverse momenta are compared with results at lower collision energies.

  11. Measurement of proton momentum distributions using a direct geometry instrument

    International Nuclear Information System (INIS)

    Senesi, R; Andreani, C; Kolesnikov, A I

    2014-01-01

    We report the results of inelastic neutron scattering measurements on bulk water and ice using the direct geometry SEQUOIA chopper spectrometer at the Spallation Neutron Source (USA), with incident energy E i = 6 eV. In this set up the measurements allow to access the Deep Inelastic Neutron Scattering regime. The scattering is centred at the proton recoil energy given by the impulse approximation, and the shape of the recoil peak conveys information on the proton momentum distribution in the system. The comparison with the performance of inverse geometry instruments, such as VESUVIO at the ISIS source (UK), shows that complementary information can be accessed by the use of direct and inverse geometry instruments. Analysis of the neutron Compton profiles shows that the proton kinetic energy in ice at 271 K is larger than in room temperature liquid water, in agreement with previous measurements on VESUVIO

  12. Magnetic field vector and electron density diagnostics from linear polarization measurements in 14 solar prominences

    Science.gov (United States)

    Bommier, V.

    1986-01-01

    The Hanle effect is the modification of the linear polarization parameters of a spectral line due to the effect of the magnetic field. It has been successfully applied to the magnetic field vector diagnostic in solar prominences. The magnetic field vector is determined by comparing the measured polarization to the polarization computed, taking into account all the polarizing and depolarizing processes in line formation and the depolarizing effect of the magnetic field. The method was applied to simultaneous polarization measurements in the Helium D3 line and in the hydrogen beta line in 14 prominences. Four polarization parameters are measured, which lead to the determination of the three coordinates of the magnetic field vector and the electron density, owing to the sensitivity of the hydrogen beta line to the non-negligible effect of depolarizing collisions with electrons and protons of the medium. A mean value of 1.3 x 10 to the 10th power cu. cm. is derived in 14 prominences.

  13. Polarization Property Measurement of the Long Undulator Radiation Using Cr/C Multilayer Polarization Elements

    International Nuclear Information System (INIS)

    Niibe, Masahito; Mukai, Mikihito; Shoji, Yoshihiko; Kimura, Hiroaki

    2004-01-01

    A rotating analyzer ellipsometry (RAE) system was developed with Cr/C multilayers that function as polarization elements for photon energy range of 110 - 280 eV. Polarization properties of a planar undulator change axisymmetrically in off-axial manner, and the second harmonic is more remarkable for the change. By using the RAE system, the polarization property of the second harmonic radiation from the NewSUBARU long undulator at the energy of 180 eV was examined. The degree of linear polarization of the on-axis radiation was over 0.996. The spatial distribution of the polarization azimuth was measured and was in fair agreement with the theoretical calculation. A peculiar behavior of the polarization property near the radiation peak of the second harmonic was observed by changing the height of the undulator gap

  14. Ortho-Babinet polarization-interrogating filter: an interferometric approach to polarization measurement.

    Science.gov (United States)

    Van Delden, Jay S

    2003-07-15

    A novel, interferometric, polarization-interrogating filter assembly and method for the simultaneous measurement of all four Stokes parameters across a partially polarized irradiance image in a no-moving-parts, instantaneous, highly sensitive manner is described. In the reported embodiment of the filter, two spatially varying linear retarders and a linear polarizer comprise an ortho-Babinet, polarization-interrogating (OBPI) filter. The OBPI filter uniquely encodes the incident ensemble of electromagnetic wave fronts comprising a partially polarized irradiance image in a controlled, deterministic, spatially varying manner to map the complete state of polarization across the image to local variations in a superposed interference pattern. Experimental interferograms are reported along with a numerical simulation of the method.

  15. Measurement of the polarized neutron---polarized 3He total cross section

    International Nuclear Information System (INIS)

    Keith, C.D.; Gould, C.R.; Haase, D.G.; Seely, M.L.; Huffman, P.R.; Roberson, N.R.; Tornow, W.; Wilburn, W.S.

    1995-01-01

    The first measurements of polarized neutron--polarized 3 He scattering in the few MeV energy region are reported. The total cross section difference Δσ T for transversely polarized target and beam has been measured for neutron energies between 1.9 and 7.5 MeV. Comparison is made to predictions of Δσ T using various descriptions of the 4 He continuum. A brute-force polarized target of solid 3 He has been developed for these measurements. The target is 4.3x10 22 atoms/cm 2 thick and is polarized to 38% at 7 Telsa and 12 mK. copyright 1995 American Institute of Physics

  16. Polarisation parameter measurement in the proton-proton elastic scattering from 0.5 to 1.2 GeV

    International Nuclear Information System (INIS)

    Ducros, Yves

    1970-01-01

    The angular distribution of the polarisation parameter was measured in the proton-proton elastic - scattering at seven energies between 0.5 and 1.2 GeV. A polarized proton target was used. The results show a maximum of the polarisation parameter of 0.6, at 0.73 GeV. This maximum is due to the important increase of the total cross section between 0.6 and 0.73 GeV. At 1.2 GeV the angular distribution of the polarisation shows a minimum for a momentum transfer value of -1 (GeV/c) 2 . A phase shift analysis was done at 0.66 GeV, using all available experimental data at this energy. There is no evidence of a di-baryonic resonance in the 1 D 2 phase. (author) [fr

  17. Elastic scattering of polarized protons by 20Ne between 4.5 Mev and 5.5 Mev

    International Nuclear Information System (INIS)

    Avila A, O.L.

    1979-01-01

    Starting with the study of 20 Ne(p,p) 20 nuclear reaction, we obtained information about the nuclear structure of 21 Na. The experiment was made at Notre Dame University; a target of 20 Ne was bombarded with polarized protons, changing the incident energy of them between 4.5 Mev and 5.5 Mev at intervals of 10 keV. Fourteen detectors were set covering angles from 35 degrees until 165 degrees, with intervals of 10 degrees each. In this form measurements for computing polarization and differential sections were obtained, with them an analysis of runnings of phase was made, and the parameters associated with two of the excited levels of the composed formed nucleous 21 Na, that are viewed as resonances in the section were settled; those resonances correspond to a level Psub(3/2) of energy excitation 6.877, a total width of 36 keV, and a level Fsub(7/2) of energy excitation 6.992 and total width of 48 keV. I hope that these results will be part of a set of values that will be utilized in order to confront them with the existent nuclear models. (author)

  18. Measurement of the proton $A_1$ and $A_2$ spin asymmetries. Probing Color Forces

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Whitney [Temple University, Philadelphia, PA (United States)

    2015-05-01

    The Spin Asymmetries of the Nucleon Experiment (SANE) measured the proton spin structure function $g_2$ in a range of Bjorken x, 0.3 < x < 0.8, where extraction of the twist-3 matrix element $d_2^p$ (an integral of $g_2$ weighted by $x^2$) is most sensitive. The data was taken from $Q^2$ equal to 2.5 $GeV^2$ up to 6.5 $GeV^2$. In this polarized electron scattering off a polarized hydrogen target experiment, two double spin asymmetries, A∥ and A⊥ were measured using the BETA (Big Electron Telescope Array) Detector. BETA consisted of a scintillator hodoscope, gas Cerenkov counter, lucite hodoscope and a large lead glass electromagnetic calorimeter. With a unique open geometry, a threshold gas Cerenkov detector allowed BETA to cleanly identify electrons for this inclusive experiment. A measurement of $d_2^p$ is compared to lattice QCD calculations.

  19. Measurements of proton energy spectra using a radiochromic film stack

    Science.gov (United States)

    Filkins, T. M.; Steidle, Jessica; Ellison, D. M.; Steidle, Jeffrey; Freeman, C. G.; Padalino, S. J.; Fiksel, G.; Regan, S. P.; Sangster, T. C.

    2014-10-01

    The energy spectrum of protons accelerated from the rear-side of a thin foil illuminated with ultra-intense laser light from the OMEGA EP laser system at the University of Rochester's Laboratory for Laser Energetics (LLE) was measured using a stack of radiochromic film (RCF). The film stack consisted of four layers of Gafchromic HD-V2 film and four layers of Gafchromic MD-V2-55 film. Aluminum foils of various thicknesses were placed between each piece of RCF in the stack. This arrangement allowed protons with energies of 30 MeV to reach the back layer of RCF in the stack. The stack was placed in the detector plane of a Thomson parabola ion energy (TPIE) spectrometer. Each piece of film in the stack was scanned using a commercially available flat-bed scanner (Epson 10000XL). The resulting optical density was converted into proton fluence using an absolute calibration of the RCF obtained at the SUNY Geneseo 1.7 MV Pelletron accelerator laboratory. In these calibration measurements, the sensitivity of the radiochromic film was measured using monoenergetic protons produced by the accelerator. Details of the analysis procedure and the resulting proton energy spectra will be presented. Funded in part by a grant from the DOE through the Laboratory for Laser Energetics.

  20. Design of a device for sky light polarization measurements.

    Science.gov (United States)

    Wang, Yujie; Hu, Xiaoping; Lian, Junxiang; Zhang, Lilian; Xian, Zhiwen; Ma, Tao

    2014-08-14

    Sky polarization patterns can be used both as indicators of atmospheric turbidity and as a sun compass for navigation. The objective of this study is to improve the precision of sky light polarization measurements by optimal design of the device used. The central part of the system is composed of a Charge Coupled Device (CCD) camera; a fish-eye lens and a linear polarizer. Algorithms for estimating parameters of the polarized light based on three images are derived and the optimal alignments of the polarizer are analyzed. The least-squares estimation is introduced for sky light polarization pattern measurement. The polarization patterns of sky light are obtained using the designed system and they follow almost the same patterns of the single-scattering Rayleigh model. Deviations of polarization angles between observation and the theory are analyzed. The largest deviations occur near the sun and anti-sun directions. Ninety percent of the deviations are less than 5° and 40% percent of them are less than 1°. The deviations decrease evidently as the degree of polarization increases. It also shows that the polarization pattern of the cloudy sky is almost identical as in the blue sky.

  1. Azimuthal asymmetries in semi-inclusive deep-inelastic hadron muoproduction on longitudinally polarized protons

    Energy Technology Data Exchange (ETDEWEB)

    Sirtl, Stefan

    2016-06-27

    In recent years, measuring azimuthal asymmetries in semi-inclusive deep-inelastic scattering (SIDIS) off polarized targets emerged as a powerful tool to investigate the nucleon spin structure, one of the main objectives of the COMPASS physics program. The two-stage COMPASS spectrometer at the CERN SPS is characterized by a large acceptance and a broad kinematic coverage. It makes use of a tertiary longitudinally polarized high-energetic μ{sup +} beam, impinging on a transversely or longitudinally polarized ammonia target. This thesis is dedicated to the analysis of both leading and subleading longitudinal target spin dependent asymmetries arising in the SIDIS cross section of one hadron and hadron pair production. The results provide new insights to the longitudinal spin structure of the nucleon, addressing the role of spin-orbit couplings and quark-gluon correlations in the framework of collinear or transverse momentum dependent factorization.

  2. Atmospheric aerosol measurements by employing a polarization scheimpflug lidar system

    Science.gov (United States)

    Mei, Liang; Guan, Peng; Yang, Yang

    2018-04-01

    A polarization Scheimpflug lidar system based on the Scheimpflug principle has been developed by employing a compact 808-nm multimode highpower laser diode and two highly integrated CMOS sensors in Dalian University of Technology (DLUT), Dalian, China. The parallel and orthogonal polarized backscattering signal are recorded by two 45 degree tilted image sensors, respectively. Atmospheric particle measurements were carried out by employing the polarization Scheimpflug lidar system.

  3. An exercise in gigantism: muon polarization measurements at ISABELLE

    International Nuclear Information System (INIS)

    Kasha, H.

    1977-01-01

    The possibility of carrying out muon polarization measurements at ISABELLE is briefly examined. The reasons for doing such measurements may well range from checking the obvious to exploring the unexpected. A measurement of the longitudinal muon polarization can serve as a check of the W + decay sample, or may serve as a tool to shed additional light on a new state or process. It is concluded that muon polarization measurements at ISABELLE are on the threshold of possibility, especially if one has to decide between widely separated values

  4. Precision measurements of g1 of the proton and of the deuteron with 6 GeV electrons

    Science.gov (United States)

    Prok, Y.; Bosted, P.; Kvaltine, N.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Avakian, H.; Baghdasaryan, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Biselli, A. S.; Bono, J.; Briscoe, W. J.; Brock, J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Carlin, C.; Carman, D. S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crabb, D.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dupre, R.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Fersch, R.; Fleming, J. A.; Forest, T. A.; Garçon, M.; Garillon, B.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Girod, F. X.; Giovanetti, K. L.; Goetz, J. T.; Gohn, W.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guler, N.; Hafidi, K.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Ho, D.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jawalkar, S.; Jiang, X.; Jo, H. S.; Joo, K.; Kalantarians, N.; Keith, C.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Meekins, D.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moutarde, H.; Movsisyan, A.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Peng, P.; Phillips, J. J.; Pierce, J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Rimal, D.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Simonyan, A.; Smith, C.; Smith, G.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tang, W.; Tkachenko, S.; Ungaro, M.; Vernarsky, B.; Vlassov, A. V.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Weinstein, L. B.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, B.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration

    2014-08-01

    The inclusive polarized structure functions of the proton and deuteron, g1p and g1d, were measured with high statistical precision using polarized 6 GeV electrons incident on a polarized ammonia target in Hall B at Jefferson Laboratory. Electrons scattered at laboratory angles between 18 and 45 degrees were detected using the CEBAF Large Acceptance Spectrometer (CLAS). For the usual deep inelastic region kinematics, Q2>1 GeV2 and the final-state invariant mass W >2 GeV, the ratio of polarized to unpolarized structure functions g1/F1 is found to be nearly independent of Q2 at fixed x. Significant resonant structure is apparent at values of W up to 2.3 GeV. In the framework of perturbative quantum chromodynamics, the high-W results can be used to better constrain the polarization of quarks and gluons in the nucleon, as well as high-twist contributions.

  5. Precision measurements of g1 of the proton and the deuteron with 6 GeV electrons

    Energy Technology Data Exchange (ETDEWEB)

    Prok, Yelena; Bosted, Peter; Kvaltine, Nicholas; Adhikari, Krishna; Adikaram-Mudiyanselage, Dasuni; Aghasyan, Mher; Amaryan, Moskov; Anderson, Mark; Anefalos Pereira, Sergio; Avagyan, Harutyun; Baghdasaryan, Hovhannes; Ball, Jacques; Baltzell, Nathan; Battaglieri, Marco; Biselli, Angela; Bono, Jason; Briscoe, William; Brock, Joseph; Brooks, William; Bueltmann, Stephen; Burkert, Volker; Carlin, Christopher; Carman, Daniel; Celentano, Andrea; Chandavar, Shloka; Colaneri, Luca; Cole, Philip; Contalbrigo, Marco; Cortes, Olga; Crabb, Donald; Crede, Volker; D' Angelo, Annalisa; Dashyan, Natalya; De Vita, Raffaella; De Sanctis, Enzo; Deur, Alexandre; Djalali, Chaden; Dodge, Gail; Doughty, David; Dupre, Raphael; El Alaoui, Ahmed; El Fassi, Lamiaa; Elouadrhiri, Latifa; Fedotov, Gleb; Fegan, Stuart; Fersch, Robert; Fleming, Jamie; Forest, Tony; Garcon, Michel; Gevorgyan, Nerses; Ghandilyan, Yeranuhi; Gilfoyle, Gerard; Girod-Gard, Francois-Xavier; Giovanetti, Kevin; Goetz, John; Gohn, Wesley; Gothe, Ralf; Griffioen, Keith; Guegan, Baptiste; Guler, Nevzat; Hafidi, Kawtar; Hanretty, Charles; Harrison, Nathan; Hattawy, Mohammad; Hicks, Kenneth; Ho, Dao; Holtrop, Maurik; Ilieva, Yordanka; Ireland, David; Ishkhanov, Boris; Isupov, Evgeny; Jawalkar, Sucheta; Jiang, Xiaodong; Jo, Hyon-Suk; Joo, Kyungseon; Kalantarians, Narbe; Keith, Christopher; Keller, Daniel; Khandaker, Mahbubul; Kim, Andrey; Kim, Wooyoung; Klein, Andreas; Klein, Franz; Koirala, Suman; Kubarovsky, Valery; Kuhn, Sebastian; Kuleshov, Sergey; Lenisa, Paolo; Livingston, Kenneth; Lu, Haiyun; MacGregor, Ian; Markov, Nikolai; Mayer, Michael; McKinnon, Bryan; Meekins, David; Mineeva, Taisiya; Mirazita, Marco; Mokeev, Viktor; Montgomery, Rachel; MOUTARDE, Herve; Movsisyan, Aram; Munevar Espitia, Edwin; Munoz Camacho, Carlos; Nadel-Turonski, Pawel; Niccolai, Silvia; Niculescu, Gabriel; Niculescu, Maria; Osipenko, Mikhail; Ostrovidov, Alexander; Pappalardo, Luciano; Paremuzyan, Rafayel; Park, K; Peng, Peng; Phillips, J J; Pierce, Joshua; Pisano, Silvia; Pogorelko, Oleg; Pozdniakov, Serguei; Price, John; Procureur, Sebastien; Protopopescu, Dan; Puckett, Andrew; Raue, Brian; Rimal, Dipak; Ripani, Marco; Rizzo, Alessandro; Rosner, Guenther; Rossi, Patrizia; Roy, Priyashree; Sabatie, Franck; Saini, Mukesh; Salgado, Carlos; Schott, Diane; Schumacher, Reinhard; Seder, Erin; Sharabian, Youri; Simonyan, Ani; Smith, Claude; Smith, Gregory; Sober, Daniel; Sokhan, Daria; Stepanyan, Stepan; Stepanyan, Samuel; Strakovski, Igor; Strauch, Steffen; Sytnik, Valeriy; Taiuti, Mauro; Tang, Wei; Tkachenko, Svyatoslav; Ungaro, Maurizio; Vernarsky, Brian; Vlasov, Alexander; Voskanyan, Hakob; Voutier, Eric; Walford, Natalie; Watts, Daniel; Weinstein, Lawrence; Zachariou, Nicholas; Zana, Lorenzo; Zhang, Jixie; Zhao, Bo; Zhao, Zhiwen; Zonta, Irene

    2014-08-01

    The inclusive polarized structure functions of the proton and deuteron, g1p and g1d, were measured with high statistical precision using polarized 6 GeV electrons incident on a polarized ammonia target in Hall B at Jefferson Laboratory. Electrons scattered at lab angles between 18 and 45 degrees were detected using the CEBAF Large Acceptance Spectrometer (CLAS). For the usual DIS kinematics, Q^2>1 GeV^2 and the final-state invariant mass W>2 GeV, the ratio of polarized to unpolarized structure functions g1/F1 is found to be nearly independent of Q^2 at fixed x. Significant resonant structure is apparent at values of W up to 2.3 GeV. In the framework of perturbative QCD, the high-W results can be used to better constrain the polarization of quarks and gluons in the nucleon, as well as high-twist contributions.

  6. The JLab polarization transfer measurements of proton elastic form ...

    Indian Academy of Sciences (India)

    A W Hammer, U G Meissner and D Drechsel, Phys. Lett. B385, 343 (1996). [23] P L Chung and F Coester, Phys. Rev. D44, 229 (191). [24] M R Frank, B K Jennings and G A Miller, Phys. Rev. C54, 920 (1996). [25] A V Radyushkin, Acta Phys. Polnica B15, 40 (1984). [26] G Holzwarth, Z. Phys. A356, 339 (1996). [27] E Lomon ...

  7. Measurement of the neutron lifetime by counting trapped protons

    International Nuclear Information System (INIS)

    Byrne, J.; Dawber, P.G.; Spain, J.A.; Williams, A.P.; Dewey, M.S.; Gilliam, D.M.; Greene, G.L.; Lamaze, G.P.; Scott, R.D.; Pauwels, J.; Eykens, R.; Lamberty, A.

    1990-01-01

    The neutron lifetime τ n has been measured by counting decay protons stored in a Penning trap whose magnetic axis coincided with a neutron-beam axis. The result of the measurement is τ n =893.6±5.3 s, which agrees well with the value predicted by precise measurements of the β-decay asymmetry parameter A and the standard model

  8. Crystal Collimation Cleaning Measurements with Proton Beams in LHC

    CERN Document Server

    Rossi, Roberto; Andreassen, Odd Oyvind; Butcher, Mark; Dionisio Barreto, Cristovao Andre; Masi, Alessandro; Mirarchi, Daniele; Montesano, Simone; Lamas Garcia, Inigo; Redaelli, Stefano; Scandale, Walter; Serrano Galvez, Pablo; Rijllart, Adriaan; Valentino, Gianluca; CERN. Geneva. ATS Department

    2016-01-01

    During this MD, performed on July 29th, 2016, bent silicon crystal were tested with proton beams for a possible usage of crystal-assisted collimation. Tests were performed at both injection energy and flat top using horizontal and vertical crystal. Loss maps with crystals at 6.5 TeV were measured.

  9. Proton Radiography: Cross Section Measurements and Detector Development

    International Nuclear Information System (INIS)

    Longo, Michael J.

    2003-01-01

    OAK-B135 The physics goal of this project is to measure forward production of neutrons and photons produced by high-energy proton beams striking a variety of targets. This will provide data essential to proton radiography. This work is being carried out in conjunction with the Fermilab Experiment 907 (MIPP) collaboration including physicists from Lawrence Livermore Laboratory. Our group is responsible for the E907 forward neutron/photon calorimeter. The project is on track to meet its technical milestones, though the overall schedule at Fermilab has slipped. The electromagnetic calorimeter and the hadron calorimeter were both assembled and ready for testing with beam in December 2003

  10. McDONALD OBSERVATORY ARCHIVE OF OPTICAL LINEAR POLARIZATION MEASUREMENTS

    International Nuclear Information System (INIS)

    Wills, Beverley J.; Wills, D.; Breger, M.

    2011-01-01

    We present 990 previously unpublished optical linear polarization measurements of quasars, active galactic nuclei, and some stars observed for interstellar polarization. The observations, covering the period 1981-2000, were made with McDonald Observatory's 2.1 m Struve reflector and the Breger photopolarimeter.

  11. Circular polarization measurements with a Ge(Li) detector

    DEFF Research Database (Denmark)

    Kopecký, J.; Warming, Inge Elisabeth

    1969-01-01

    This paper presents the results obtained in measurements of the degree of circular polarization of gamma transitions to bound states of 33S, 36Cl, 49Ti, 56Mn, 57Fe, 60Co and 64Cu following the capture of polarized thermal neutrons. Spin values have been determined on the basis of these results....

  12. Emittance measurements from the LLUMC proton accelerator

    International Nuclear Information System (INIS)

    Coutrakon, G.; Gillespie, G.H.; Hubbard, J.; Sanders, E.

    2005-01-01

    A new method of calculating beam emittances at the extraction point of a particle accelerator is presented. The technique uses the optimization programs NPSOL and MINOS developed at Stanford University in order to determine the initial values of beam size, divergence and correlation parameters (i.e. beam sigma matrix, σ ij ) that best fit measured beam parameters. These σ ij elements are then used to compute the Twiss parameters α, β, and the phase space area, ε, of the beam at the extraction point. Beam size measurements in X and Y throughout the transport line were input to the optimizer along with the magnetic elements of bends, quads, and drifts. The σ ij parameters were optimized at the accelerator's extraction point by finding the best agreement between these measured beam sizes and those predicted by TRANSPORT. This expands upon a previous study in which a 'trial and error' technique was used instead of the optimizer software, and which yielded similar results. The Particle Beam Optics Laboratory (PBO Lab TM ) program used for this paper integrates particle beam optics and other codes into a single intuitive graphically-based computing environment. This new software provides a seamless interface between the NPSOL and MINOS optimizer and TRANSPORT calculations. The results of these emittance searches are presented here for the eight clinical energies between 70 and 250 MeV currently being used at LLUMC

  13. Size of nuclear sources from measurements of proton-proton correlations at small relative momentum

    International Nuclear Information System (INIS)

    Rebreyend, D.; Kox, S.; Merchez, F.; Noren, B.; Perrin, C.; Khelfaoui, B.; Gondrand, J.C.; Bondorf, J.P.

    1990-01-01

    This contribution will present recent measurements performed on light heavy ion reactions at intermediate energies. Nuclear source sizes were determined by measuring the correlation at small relative momentum, between two protons detected in the EMRIC set-up. This technique allows the determination of the extent of the emitting source by constructing a correlation function for the coincident protons and analyzing it in the framework of a final state interaction model. We found the apparent source size to be large compared to the dimension of the studied system and low sensitivity of the extracted radii as a function of the target mass and detection angle. We will show that simulations may be needed to fully estimate the correlation induced by detectors with small angular acceptance

  14. Simultaneous optical and infrared polarization measurements of blazars

    International Nuclear Information System (INIS)

    Brindle, C.; Hough, J.H.; Bailey, J.A.; Axon, D.J.; Hyland, A.R.

    1986-01-01

    Measurements are presented of the polarization and flux of a sample of 28 blazars (21 BL Lacs and 7 OVV quasars) at optical and near-infrared wavelengths, with repeated observations for some objects. For 20 objects, these are the first reported polarization measurements in either the optical or infrared, and for most of them the first simultaneous measurements at these wavelengths. Out of a total of 42 observations a spectral dependence of polarization level and position angle is found, although not necessarily occurring together, on 15 occasions. (author)

  15. Shielding measurements for a 230 MeV proton beam

    International Nuclear Information System (INIS)

    Siebers, J.V.

    1990-01-01

    Energetic secondary neutrons produced as protons interact with accelerator components and patients dominate the radiation shielding environment for proton radiotherapy facilities. Due to the scarcity of data describing neutron production, attenuation, absorbed dose, and dose equivalent values, these parameters were measured for 230 MeV proton bombardment of stopping length Al, Fe, and Pb targets at emission angles of 0 degree, 22 degree, 45 degree, and 90 degree in a thick concrete shield. Low pressure tissue-equivalent proportional counters with volumes ranging from 1 cm 3 to 1000 cm 3 were used to obtain microdosimetric spectra from which absorbed dose and radiation quality are deduced. Does equivalent values and attenuation lengths determined at depth in the shield were found to vary sharply with angle, but were found to be independent of target material. Neutron dose and radiation length values are compared with Monte Carlo neutron transport calculations performed using the Los Alamos High Energy Transport Code (LAHET). Calculations used 230 MeV protons incident upon an Fe target in a shielding geometry similar to that used in the experiment. LAHET calculations overestimated measured attenuation values at 0 degree, 22 degree, and 45 degree, yet correctly predicted the attenuation length at 90 degree. Comparison of the mean radiation quality estimated with the Monte Carlo calculations with measurements suggest that neutron quality factors should be increased by a factor of 1.4. These results are useful for the shielding design of new facilities as well as for testing neutron production and transport calculations

  16. Measurement of Quarkonium Polarization to Probe QCD at the LHC

    CERN Document Server

    Knunz, Valentin Karl; Strauss, Josef

    2015-01-01

    With the first proton-proton collisions in the Large Hadron Collider (LHC) at CERNin 2010, a new era in high energy physics has been initiated. The data collected bythe various experiments open up the possibility to study standard model processes withhigh precision, in new areas of phase space. The LHC provides excellent conditions forstudies of quarkonium production, due to the high quarkonium production rates giventhe high center-of-mass energy and high instantaneous luminosity of the colliding protonbeams. Studies of the production of heavy quarkonium mesons – bound states of a heavyquark and its respective antiquark – are very important to improve our understanding ofhadron formation. Until quite recently, experimental and phenomenological efforts havenot resulted in a satisfactory overall picture of quarkonium production cross sections andquarkonium polarizations.The Compact Muon Solenoid (CMS) detector is ideally suited to study quarkoniumproduction in the experimentally very clean dimuon decay ch...

  17. Doppler-shift proton fraction measurement on a CW proton injector

    International Nuclear Information System (INIS)

    Kamperschroer, J.H.; Sherman, J.D.; Zaugg, T.J.; Arvin, A.H.; Bolt, A.S.; Richards, M.C.

    1998-01-01

    A spectrometer/Optical Multi-channel Analyzer has been used to measure the proton fraction of the cw proton injector developed for the Accelerator Production of Tritium (APT) and the Low Energy Demonstration Accelerator (LEDA) at Los Alamos. This technique, pioneered by the Lawrence Berkeley National Laboratory (LBNL), was subsequently adopted by the international fusion community as the standard for determining the extracted ion fractions of neutral beam injectors. Proton fractions up to 95 ± 3% have been measured on the LEDA injector. These values are in good agreement with results obtained by magnetically sweeping the ion beam, collimated by a slit, across a Faraday cup. Since the velocity distribution of each beam species is measured, it also can be used to determine beam divergence. While divergence has not yet been ascertained due to the wide slit widths in use, non-Gaussian distributions have been observed during operation above the design-matched perveance. An additional feature is that the presence of extracted water ions can be observed. During ion source conditioning at 75 kV, an extracted water fraction > 30% was briefly observed

  18. Measurement of the Transverse Momentum of Dielectron Pairs in Proton - Anti-Proton Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Dylan Patrick [Univ. of Rochester, NY (United States)

    1997-01-01

    We present a measurement of the transverse momentum distribution of dielectron pairs with invariant mass near the mass of the Z boson. The data were obtained using the DO detector during the 1994-1995 run of the Tevatron Co!lider at Fermilab. The data used in the measurement corresponds to an integrated luminosity of 108.5 $pb^{-1}$ The measurement is compared to current phenomenology for vector boson production in proton-antiproton interactions, and the results are found to be consistent with expectation from Quantum Chromodynamics (QCD).

  19. Measurement of the longitudinal proton structure function at HERA

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2009-03-01

    The reduced cross sections for ep deep inelastic scattering have been measured with the ZEUS detector at HERA at three different centre-of-mass energies, 318, 251 and 225 GeV. From the cross sections, measured double differentially in Bjorken x and the virtuality, Q 2 , the proton structure functions F L and F 2 have been extracted in the region 5 x 10 -4 2 2 . (orig.)

  20. Polarization measurement and vertical aperture optimization for obtaining circularly polarized bend-magnet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kortright, J.B.; Rice, M.; Hussain, Z. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Growing interest in utilizing circular polarization prompted the design of bend-magnet beamline 9.3.2 at the Advanced Light Source, covering the 30-1500 eV spectral region, to include vertical aperturing capabilities for optimizing the collection of circular polarization above and below the orbit plane. After commissioning and early use of the beamline, a multilayer polarimeter was used to characterize the polarization state of the beam as a function of vertical aperture position. This report partially summarizes the polarimetry measurements and compares results with theoretical calculations intended to simulate experimental conditions.

  1. Proton Linear Energy Transfer measurement using Emulsion Cloud Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jae-ik [Proton Therapy Center, National Cancer Center (Korea, Republic of); Division of Heavy Ion Clinical Research, Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul (Korea, Republic of); Park, Seyjoon [Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul (Korea, Republic of); Kim, Haksoo; Kim, Meyoung [Proton Therapy Center, National Cancer Center (Korea, Republic of); Jeong, Chiyoung [Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Cho, Sungkoo [Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul (Korea, Republic of); Lim, Young Kyung; Shin, Dongho [Proton Therapy Center, National Cancer Center (Korea, Republic of); Lee, Se Byeong, E-mail: sblee@ncc.re.kr [Proton Therapy Center, National Cancer Center (Korea, Republic of); Morishima, Kunihiro; Naganawa, Naotaka; Sato, Osamu [Department of Physics, Nagoya University, Nagoya (Japan); Kwak, Jungwon [Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Kim, Sung Hyun [Center for Underground Physics, Institute for Basic Science (IBS), Daejeon (Korea, Republic of); Cho, Jung Sook [Department of refinement education, Dongseo University, Busan (Korea, Republic of); Ahn, Jung Keun [Department of Physics, Korea University, Seoul (Korea, Republic of); Kim, Ji Hyun; Yoon, Chun Sil [Gyeongsang National University, Jinju (Korea, Republic of); Incerti, Sebastien [CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Université Bordeaux 1, CENBG, UMR 5797, F-33170 Gradignan (France)

    2015-04-15

    This study proposes to determine the correlation between the Volume Pulse Height (VPH) measured by nuclear emulsion and Linear Energy Transfer (LET) calculated by Monte Carlo simulation based on Geant4. The nuclear emulsion was irradiated at the National Cancer Center (NCC) with a therapeutic proton beam and was installed at 5.2 m distance from the beam nozzle structure with various thicknesses of water-equivalent material (PMMA) blocks to position with specific positions along the Bragg curve. After the beam exposure and development of the emulsion films, the films were scanned by S-UTS developed in Nagoya University. The proton tracks in the scanned films were reconstructed using the ‘NETSCAN’ method. Through this procedure, the VPH can be derived from each reconstructed proton track at each position along the Bragg curve. The VPH value indicates the magnitude of energy loss in proton track. By comparison with the simulation results obtained using Geant4, we found the correlation between the LET calculated by Monte Carlo simulation and the VPH measured by the nuclear emulsion.

  2. Proton Linear Energy Transfer measurement using Emulsion Cloud Chamber

    International Nuclear Information System (INIS)

    Shin, Jae-ik; Park, Seyjoon; Kim, Haksoo; Kim, Meyoung; Jeong, Chiyoung; Cho, Sungkoo; Lim, Young Kyung; Shin, Dongho; Lee, Se Byeong; Morishima, Kunihiro; Naganawa, Naotaka; Sato, Osamu; Kwak, Jungwon; Kim, Sung Hyun; Cho, Jung Sook; Ahn, Jung Keun; Kim, Ji Hyun; Yoon, Chun Sil; Incerti, Sebastien

    2015-01-01

    This study proposes to determine the correlation between the Volume Pulse Height (VPH) measured by nuclear emulsion and Linear Energy Transfer (LET) calculated by Monte Carlo simulation based on Geant4. The nuclear emulsion was irradiated at the National Cancer Center (NCC) with a therapeutic proton beam and was installed at 5.2 m distance from the beam nozzle structure with various thicknesses of water-equivalent material (PMMA) blocks to position with specific positions along the Bragg curve. After the beam exposure and development of the emulsion films, the films were scanned by S-UTS developed in Nagoya University. The proton tracks in the scanned films were reconstructed using the ‘NETSCAN’ method. Through this procedure, the VPH can be derived from each reconstructed proton track at each position along the Bragg curve. The VPH value indicates the magnitude of energy loss in proton track. By comparison with the simulation results obtained using Geant4, we found the correlation between the LET calculated by Monte Carlo simulation and the VPH measured by the nuclear emulsion

  3. Proton Linear Energy Transfer measurement using Emulsion Cloud Chamber

    Science.gov (United States)

    Shin, Jae-ik; Park, Seyjoon; Kim, Haksoo; Kim, Meyoung; Jeong, Chiyoung; Cho, Sungkoo; Lim, Young Kyung; Shin, Dongho; Lee, Se Byeong; Morishima, Kunihiro; Naganawa, Naotaka; Sato, Osamu; Kwak, Jungwon; Kim, Sung Hyun; Cho, Jung Sook; Ahn, Jung Keun; Kim, Ji Hyun; Yoon, Chun Sil; Incerti, Sebastien

    2015-04-01

    This study proposes to determine the correlation between the Volume Pulse Height (VPH) measured by nuclear emulsion and Linear Energy Transfer (LET) calculated by Monte Carlo simulation based on Geant4. The nuclear emulsion was irradiated at the National Cancer Center (NCC) with a therapeutic proton beam and was installed at 5.2 m distance from the beam nozzle structure with various thicknesses of water-equivalent material (PMMA) blocks to position with specific positions along the Bragg curve. After the beam exposure and development of the emulsion films, the films were scanned by S-UTS developed in Nagoya University. The proton tracks in the scanned films were reconstructed using the 'NETSCAN' method. Through this procedure, the VPH can be derived from each reconstructed proton track at each position along the Bragg curve. The VPH value indicates the magnitude of energy loss in proton track. By comparison with the simulation results obtained using Geant4, we found the correlation between the LET calculated by Monte Carlo simulation and the VPH measured by the nuclear emulsion.

  4. Double polarized neutron-proton scattering and nucleon-nucleon tensor force: An alternative analysis

    International Nuclear Information System (INIS)

    Tornow, W.; Gould, C.R.; Haase, D.G.; Walston, J.R.; Raichle, B.W.

    2002-01-01

    Previous neutron-proton total cross-section difference measurements Δσ L and Δσ T between E n =7.43 and 17.1 MeV have been analyzed in a new way that reduces experimental systematic uncertainties. The results obtained for the 3 S 1 - 3 D 1 mixing parameter ε 1 are very similar to the published values, substantiating the previous conclusion that the nucleon-nucleon tensor force at low energies is stronger than predicted by the Nijmegen partial-wave analysis and, therefore, by all the recent high-precision nucleon-nucleon potential models as well

  5. Measurement of the Proton and Deuteron Spin Structure Function g1 in the Resonance Region

    International Nuclear Information System (INIS)

    Abe, K.; Akagi, T.; Perry Anthony; Antonov, R.; Arnold, R.G.; Todd Averett; Band, H.R.; Bauer, J.M.; Borel, H.; Peter Bosted; Vincent Breton; Button-Shafer, J.; Jian-Ping Chen; T.E. Chupp; J. Clendenin; C. Comptour; K.P. Coulter; G. Court; Donald Crabb; M. Daoudi; Donal Day; F.S. Dietrich; James Dunne; H. Dutz; R. Erbacher; J. Fellbaum; Andrew Feltham; Helene Fonvieille; Emil Frlez; D. Garvey; R. Gearhart; Javier Gomez; P. Grenier; Keith Griffioen; S. Hoeibraten; Emlyn Hughes; Charles Hyde-Wright; J.R. Johnson; D. Kawall; Andreas Klein; Sebastian Kuhn; M. Kuriki; Richard Lindgren; T.J. Liu; R.M. Lombard-Nelsen; Jacques Marroncle; Tomoyuki Maruyama; X.K. Maruyama; James Mccarthy; Werner Meyer; Zein-Eddine Meziani; Ralph Minehart; Joseph Mitchell; J. Morgenstern; Gerassimos Petratos; R. Pitthan; Dinko Pocanic; C. Prescott; R. Prepost; P. Raines; Brian Raue; D. Reyna; A. Rijllart; Yves Roblin; L. Rochester; Stephen Rock; Oscar Rondon-Aramayo; Ingo Sick; Lee Smith; Tim Smith; M. Spengos; F. Staley; P. Steiner; S. St. Lorant; L.M. Stuart; F. Suekane; Z.M. Szalata; Huabin Tang; Y. Terrien; Tracy Usher; Dieter Walz; Frank Wesselmann; J.L. White; K. Witte; C. Young; Brad Youngman; Haruo Yuta; G. Zapalac; Benedikt Zihlmann; Zimmermann, D.

    1997-01-01

    We have measured the proton and deuteron spin structure functions g 1 p and g 1 d in the region of the nucleon resonances for W 2 2 and Q 2 ≅ 0.5 and Q 2 ≅ 1.2 GeV 2 by inelastically scattering 9.7 GeV polarized electrons off polarized 15 NH 3 and 15 ND 3 targets. We observe significant structure in g 1 p in the resonance region. We have used the present results, together with the deep-inelastic data at higher W 2 , to extract Γ(Q 2 ) (triple b ond) ∫ 0 1 g 1 (x,Q 2 ) dx. This is the first information on the low-Q 2 evolution of Gamma toward the Gerasimov-Drell-Hearn limit at Q 2 = 0

  6. Measurement of J/{psi} production in proton-proton collisions by the PHENIX experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bruner, Nichelle [University of New Mexico, Albuquerque, NM (United States)

    2004-07-01

    The PHENIX experiment at the Relativistic Heavy Ion Collider has measured J/{psi} production in proton-proton collisions at {radical}(s)= 200 GeV using data from the 2001-2002 collider run. Distributions of rapidity and transverse momentum are presented and compared with theoretical predictions. The total cross section and mean p{sub T} are calculated and compared to fixed-target results. The total J/{psi} cross section is 4.0{+-}0.6(stat){+-}0.6(sys){+-}0.4(abs){mu}b. The mean p{sub T} is 1.80{+-}0.23(stat){+-}0.16(sys) GeV/c. (orig.)

  7. Measurement of J/ψ production in proton-proton collisions by the PHENIX experiment

    International Nuclear Information System (INIS)

    Bruner, Nichelle

    2004-01-01

    The PHENIX experiment at the Relativistic Heavy Ion Collider has measured J/ψ production in proton-proton collisions at √(s)= 200 GeV using data from the 2001-2002 collider run. Distributions of rapidity and transverse momentum are presented and compared with theoretical predictions. The total cross section and mean p T are calculated and compared to fixed-target results. The total J/ψ cross section is 4.0±0.6(stat)±0.6(sys)±0.4(abs)μb. The mean p T is 1.80±0.23(stat)±0.16(sys) GeV/c. (orig.)

  8. Proton magnetic resonance with parahydrogen induced polarization. Imaging strategies and continuous generation

    Energy Technology Data Exchange (ETDEWEB)

    Dechent, Jan Falk Frederik

    2012-12-17

    A major challenge in imaging is the detection of small amounts of molecules of interest. In the case of magnetic resonance imaging (MRI) their signals are typically concealed by the large background signal of e.g. the tissue of the body. This problem can be tackled by hyperpolarization which increases the NMR signals up to several orders of magnitude. However, this strategy is limited for {sup 1}H, the most widely used nucleus in NMR and MRI, because the enormous number of protons in the body screen the small amount of hyperpolarized ones. Here, I describe a method giving rise to high {sup 1}H MRI contrast for hyperpolarized molecules against a large background signal. The contrast is based on the J-coupling induced rephasing of the NMR signal of molecules hyperpolarized via parahydrogen induce polarization (PHIP) and it can easily be implemented in common pulse sequences. Hyperpolarization methods typically require expensive technical equipment (e.g. lasers or microwaves) and most techniques work only in batch mode, thus the limited lifetime of the hyperpolarization is limiting its applications. Therefore, the second part of my thesis deals with the simple and efficient generation of an hyperpolarization. These two achievements open up alternative opportunities to use the standard MRI nucleus {sup 1}H for e.g. metabolic imaging in the future.

  9. Proton magnetic resonance with parahydrogen induced polarization. Imaging strategies and continuous generation

    International Nuclear Information System (INIS)

    Dechent, Jan Falk Frederik

    2012-01-01

    A major challenge in imaging is the detection of small amounts of molecules of interest. In the case of magnetic resonance imaging (MRI) their signals are typically concealed by the large background signal of e.g. the tissue of the body. This problem can be tackled by hyperpolarization which increases the NMR signals up to several orders of magnitude. However, this strategy is limited for 1 H, the most widely used nucleus in NMR and MRI, because the enormous number of protons in the body screen the small amount of hyperpolarized ones. Here, I describe a method giving rise to high 1 H MRI contrast for hyperpolarized molecules against a large background signal. The contrast is based on the J-coupling induced rephasing of the NMR signal of molecules hyperpolarized via parahydrogen induce polarization (PHIP) and it can easily be implemented in common pulse sequences. Hyperpolarization methods typically require expensive technical equipment (e.g. lasers or microwaves) and most techniques work only in batch mode, thus the limited lifetime of the hyperpolarization is limiting its applications. Therefore, the second part of my thesis deals with the simple and efficient generation of an hyperpolarization. These two achievements open up alternative opportunities to use the standard MRI nucleus 1 H for e.g. metabolic imaging in the future.

  10. Automated multifunction apparatus for spectral and polarization measurements

    International Nuclear Information System (INIS)

    Stepanov, A.N.; Kurakov, A.Ya.

    1992-01-01

    An automated spectral apparatus is described that is based on an SDL-2 spectrometer for spectral and polarization measurements with small specimens (0.15 x 0.15 mm) by the Fourier-coefficient method in the visible and ultraviolet regions over a wide range of temperatures. The absorption, dichroism, birefringence, and polarization orientation of natural waves are determined simultaneously in a single measurement cycle. Polarization-luminescence spectra can also be recorded from one region of the specimen without its adjustment. 3 refs., 3 figs

  11. Relativistic polarized deuteron fragmentation into protons as test of six-quark nature of deuteron at small distances

    International Nuclear Information System (INIS)

    Kobushkin, A.P.; Vizireva, L.

    1981-01-01

    A study of the nature of the short-range few-nucleon correlations in nuclei is proposed in the polarized high-energy deuteron fragmentation experiments. The presence of 6q-state in deuteron with probability of several percents is shown to change essentially the cross-section behaviour of this process in the momentum region where the fraction of the deuteron momentum carried out by proton in the infinite momentum frame is about 0.78. It is shown how the character of the cross-section of the transverse polarized deuteron fragmentation is changed depending on the parameters of 6q-admixure in deuteron [ru

  12. Account of magnetic field effects of polarized proton target on charged particle trajectories in experiments with magnetic spectrometers

    International Nuclear Information System (INIS)

    Telegin, Yu.N.; Ranyuk, Yu.N.; Karnaukhov, I.M.; Lukhanin, A.A.; Sporov, E.A.

    1980-01-01

    Some effects of the influence of magnetic field of a polarized proton target (PPT) on trajectories of secondary particles in experiments using magnetic spectrometers are considered. It is shown that these effects can be eliminated by the target shift relatively to the spectrometer rotation axis and variation of the spectrometer installation angle. Numerical calculations of the correction values were performed for emitted particle momenta of 100-800 MeB/s and working intensity of the H 0 magnetic field H 0 =27 kG. The influence of the PPT magnetic field on the functions of angular and energy resolution in the γp→π + n experiment is investigated. The results obtained can be used in experiments with a polarized proton target

  13. Analyzing power of inclusive production of π+,π-, and KS0 by polarized protons at 13.3 and 18.5 GeV/c

    International Nuclear Information System (INIS)

    Bonner, B.E.; Buchanan, J.A.; Clement, J.M.; Corcoran, M.D.; Krishna, N.M.; Kruk, J.W.; Miettinen, H.E.; Moss, R.M.; Mutchler, G.S.; Nessi-Tedaldi, F.; Nessi, M.; Phillips, G.C.; Roberts, J.B.; Stevenson, P.M.; Tonse, S.R.; Birman, A.; Chung, S.U.; Etkin, A.; Fernow, R.C.; Kirk, H.; Protopopescu, S.D.; Willutzki, H.; Hallman, T.; Madansky, L.; Bar-Yam, Z.; Dowd, J.; Kern, W.; King, E.; Mayes, B.W.; Pinsky, L.S.

    1990-01-01

    We have measured the analyzing power in π + , π - , and K S 0 production by a polarized proton beam at 13.3 and 18.5 GeV/c. The data cover the central and the beam fragmentation region, in the transverse-momentum range up to 2 GeV/c. The results indicate that sizable effects are present at high x F and also persist into the hard-scattering region for K S 0 and π + . A zero value of the analyzing power was observed for π - production

  14. Analyzing power in inclusive π+ and π- production at high xF with a 200 GeV polarized proton beam

    International Nuclear Information System (INIS)

    Adams, D.L.; Bonner, B.E.; Buchanan, J.A.; Clement, J.M.; Corcoran, M.D.; Cranshaw, J.; Nessi-Tedaldi, F.; Nessi, M.; Nguyen, C.; Phillips, G.C.; Roberts, J.B.; Skeens, J.; White, J.L.; Akchurin, N.; Langland, J.; Onel, Y.; Belikov, N.I.; Derevschikov, A.A.; Grachov, O.A.; Matulenko, Yu.A.; Meschanin, A.P.; Nurushev, S.B.; Patalakha, D.I.; Rykov, V.L.; Solovyanov, V.L.; Vasiliev, A.N.; Bystricky, J.; Lehar, F.; Lesquen, A. de; Cossairt, J.D.; Read, A.L.; En'yo, H.; Funahashi, H.; Goto, Y.; Imai, K.; Itow, Y.; Makino, S.; Masaike, A.; Miyake, K.; Nagamine, T.; Saito, N.; Yamashita, S.; Grosnick, D.P.; Hill, D.A.; Lopiano, D.; Ohashi, Y.; Spinka, H.; Stanek, R.W.; Underwood, D.G.; Yokosawa, A.; Iwatani, K.; Krueger, K.W.; Kuroda, K.; Michalowicz, A.; Luehring, F.C.; Miller, D.H.; Maki, T.; Pauletta, G.; Penzo, A.; Schiavon, P.; Zanetti, A.; Van Rossum, L.; Salvato, G.; Villari, A.; Takashima, R.; Takeutchi, F.; Tamura, N.; Tanaka, N.; Yoshida, T.

    1991-01-01

    The analyzing power in inclusive charged pion production has been measured using the 200 GeV Fermilab polarized proton beam. A striking dependence in χ F is observed in which A N increases from 0 to 0.42 with increasing χ F for the π + data and decreases from 0 to -0.38 with increasing χ F for π - data. The kinematic range covered is 0.2≤χ F ≤0.9 and 0.2≤p T ≤2.0 GeV/c. In a simple model our data indicate that at large χ F the transverse spin of the proton is correlated with that of its quark constituents. (orig.)

  15. Analyzing power in inclusive. pi. sup + and. pi. sup - production at high x sub F with a 200 GeV polarized proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D L; Bonner, B E; Buchanan, J A; Clement, J M; Corcoran, M D; Cranshaw, J; Nessi-Tedaldi, F; Nessi, M; Nguyen, C; Phillips, G C; Roberts, J B; Skeens, J; White, J L [T.W. Bonner Nuclear Lab., Rice Univ., Houston, TX (United States); Akchurin, N; Langland, J; Onel, Y [Dept. of Physics, Univ. of Iowa, Iowa City, IA (United States); Belikov, N I; Derevschikov, A A; Grachov, O A; Matulenko, Yu A; Meschanin, A P; Nurushev, S B; Patalakha, D I; Rykov, V L; Solovyanov, V L; Vasiliev, A N [Inst. of High Energy Physics, Serpukhov (USSR); Bystricky, J; Lehar, F; Lesquen, A de [CEN-Saclay, 91 - Gif-sur-Yvette (France); Cossairt, J D; Read, A L [Fermi National Accelerator Lab., Batavia, IL (United States); En' yo, H; Funahashi, H; Goto, Y; Imai, K; Itow, Y; Makino, S; Masaike, A; Miyake, K; Nagamine, T; Saito, N; Yamashita, S [Dept. of Physics, Kyoto Univ. (Japan); Grosnick, D P; Hill, D A; Lopiano, D; Ohashi, Y; Spinka, H; Stanek, R; FNAL E704 Collaboration

    1991-08-01

    The analyzing power in inclusive charged pion production has been measured using the 200 GeV Fermilab polarized proton beam. A striking dependence in {chi}{sub F} is observed in which A{sub N} increases from 0 to 0.42 with increasing {chi}{sub F} for the {pi}{sup +} data and decreases from 0 to -0.38 with increasing {chi}{sub F} for {pi}{sup -} data. The kinematic range covered is 0.2{<=}{chi}{sub F}{<=}0.9 and 0.2{<=}p{sub T}{<=}2.0 GeV/c. In a simple model our data indicate that at large {chi}{sub F} the transverse spin of the proton is correlated with that of its quark constituents. (orig.).

  16. Bounds on the maximum attainable equilibrium spin polarization of protons at high energy in HERA

    International Nuclear Information System (INIS)

    Vogt, M.

    2000-12-01

    For some years HERA has been supplying longitudinally spin polarised electron and positron (e ± ) beams to the HERMES experiment and in the future longitudinal polarisation will be supplied to the II1 and ZEUS experiments. As a result there has been a development of interest in complementing the polarised e ± beams with polarised protons. In contrast to the case of e ± where spin flip due to synchrotron radiation in the main bending dipoles leads to self polarisation owing to an up-down asymmetry in the spin flip rates (Sokolov-Ternov effect), there is no convincing self polarisation mechanism for protons at high energy. Therefore protons must be polarised almost at rest in a source and then accelerated to the working energy. At HERA, if no special measures are adopted, this means that the spins must cross several thousand ''spin-orbit resonances''. Resonance crossing can lead to loss of polarisation and at high energy such effects are potentially strong since spin precession is very pronounced in the very large magnetic fields needed to contain the proton beam in HERA-p. Moreover simple models which have been successfully used to describe spin motion at low and medium energies are no longer adequate. Instead, careful numerical spin-orbit tracking simulations are needed and a new, mathematically rigorous look at the theoretical concepts is required. This thesis describes the underlying theoretical concepts, the computational tools (SPRINT) and the results of such a study. In particular strong emphasis is put on the concept of the invariant spin field and its non-perturbative construction. The invariant spin field is then used to define the amplitude dependent spin tune and to obtain numerical non-perturbative estimates of the latter. By means of these two key concepts the nature of higher order resonances in the presence of snakes is clarified and their impact on the beam polarisation is analysed. We then go on to discuss the special aspects of the HERA-p ring

  17. Measurement of the total proton-proton cross section with ATLAS at LHC

    CERN Document Server

    khalek, Samah Abdel

    It is now nearly fifty years since total proton-proton (pp) cross sections have been found to grow with energy after it was believed for long time that they would become asymptotically constant . The uncertainties of the cosmic ray data, at high energy, do not allow to determine the exact growth with energy of the total cross section .The Large Hadron Collider (LHC) at CERN in Geneva has already delivered collisions with an energy never reached in a particle accelerator. The energy in the center of mass was 7 TeV (2010 - 2011) or 8 TeV (2012) and will ultimately reached 14 TeV in the near future. Thus, this will provide a good environment for a new precise measurement of the total pp cross section at this energy.The ATLAS detector installed in one of the four LHC interaction points is used to collect the result of the pp collisions. Its sub-detector ALFA located 240 m from the interaction point, is used to track protons resulting from elastic collisions.Therefore, within special beam optics conditions, ALFA i...

  18. Measurement of the analyzing power for pion-proton elastic scattering between 471 and 687 MeV/c

    International Nuclear Information System (INIS)

    Mokhtari-Amirmajdi, A.

    1984-01-01

    The analyzing power, A/sub N/, has been measured for π/sup +/-/p → π/sup +/-/p at 471, 547, 625, and 687 MeV/c in an angular range corresponding to -0.9 less than or equal to cos(theta)/sub cm/ less than or equal to 0.8. A polarized proton target with polarization axis normal to the scattering plane was used. The scattered pion and recoil proton were detected in coincidence, using a magnetic spectrometer and a wire chamber/scintillator array, except in cases where one of the particles was kinematically inaccessible. Statistical uncertainties in the data are as low as 0.02; systematic uncertainties are estimated to be less than 5%. The π - p data are characterized by large values of analyzing power, and rapid variations in the angular distribution with incident momentum. The measurements are compared with the results of existing partical wave analysis

  19. High Precision Measurement of the Proton Elastic Form Factor Ratio at Low Q2

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Xiaohui [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2010-01-01

    Experiment E08-007 measured the proton elastic form factor ratio μpGE/GM in the range of Q2 = 0.3-0.7(GeV/c)2 by recoil polarimetry. Data were taken in 2008 at the Thomas Jefferson National Accelerator Facility in Virginia, USA. A 1.2 GeV polarized electron beam was scattered off a cryogenic hydrogen target. The recoil proton was detected in the left HRS in coincidence with the elasticly scattered electrons tagged by the BigBite spectrometer. The proton polarization was measured by the focal plane polarimeter (FPP). In this low Q2 region, previous measurement from Jefferson Lab Hall A (LEDEX) along with various fits and calculations indicate substantial deviations of the ratio from unity. For this new measurement, the proposed statistical uncertainty (< 1%) was achieved. These new results are a few percent lower than expected from previous world data and fits, which indicate a smaller GEp at this region. Beyond the intrinsic interest in nucleon structure, the new results also have implications in determining the proton Zemach radius and the strangeness form factors from parity violation experiments.

  20. Polarization measurements of the Bok globule B361

    Energy Technology Data Exchange (ETDEWEB)

    Williams, I P; Vedi, K [Queen Mary Coll., London (UK); Griffiths, W K [Leeds Univ. (UK); Bhatt, H C; Kulkarni, P V; Ashok, N M [Physical Research Lab., Ahmedabad (India); Wallis, R E [Royal Greenwich Observatory, Hailsham (UK)

    1985-01-01

    The results of the first measurements of the polarization of light from background stars passing through B361 are described. Nearly all the stars show that the direction of the polarized light is approximately north-south. If the polarization is caused by aligned grains within the globule then a magnetic field of the order of 50-100 ..mu..G is required. Both polarimetry and photometry confirm that two of the stars studied are very distant background stars while three of these stars were found to be foreground stars. The analysis indicates that the globule is not further away than 650 pc, but can only establish an approximate upper limit.

  1. Qweak: A Precision Measurement of the Proton's Weak Charge

    Energy Technology Data Exchange (ETDEWEB)

    David Armstrong; Todd Averett; James Birchall; James Bowman; Roger Carlini; Swapan Chattopadhyay; Charles Davis; J. Doornbos; James Dunne; Rolf Ent; Jens Erler; Willie Falk; John Finn; Tony Forest; David Gaskell; Klaus Grimm; C. Hagner; F. Hersman; Maurik Holtrop; Kathleen Johnston; R.T. Jones; Kyungseon Joo; Cynthia Keppel; Elie Korkmaz; Stanley Kowalski; Lawrence Lee; Allison Lung; David Mack; Stanislaw Majewski; Gregory Mitchell; Hamlet Mkrtchyan; Norman Morgan; Allena Opper; Shelley Page; Seppo Penttila; Mark Pitt; Benard Poelker; Tracy Porcelli; William Ramsay; Michael Ramsey-musolf; Julie Roche; Neven Simicevic; Gregory Smith; Riad Suleiman; Simon Taylor; Willem Van Oers; Steven Wells; W.S. Wilburn; Stephen Wood; Carl Zorn

    2004-02-05

    The Qweak experiment at Jefferson Lab aims to make a 4% measurement of the parity-violating asymmetry in elastic scattering at very low Q{sup 2} of a longitudinally polarized electron beam on a proton target. The experiment will measure the weak charge of the proton, and thus the weak mixing angle at low energy scale, providing a precision test of the Standard Model. Since the value of the weak mixing angle is approximately 1/4, the weak charge of the proton Q{sub w}{sup p} = 1-4 sin{sup 2} {theta}{sub w} is suppressed in the Standard Model, making it especially sensitive to the value of the mixing angle and also to possible new physics. The experiment is approved to run at JLab, and the construction plan calls for the hardware to be ready to install in Hall C in 2007. The theoretical context of the experiment and the status of its design are discussed.

  2. Measurement of the Polarized Structure Function $g_1^p$ at HERA

    CERN Document Server

    Ball, R.D.; Forte, S.; Hughes, V.W.; Lichtenstadt, J.; Ridolfi, G.; Ball, Richard D.; Deshpande, Abhay; Forte, Stefano; Hughes, Vernon W.; Lichtenstadt, Jechiel; Ridolfi, Giovanni

    1996-01-01

    We present estimates of possible data on spin-dependent asymmetries in inclusive scattering of high energy polarized electrons by high energy polarized protons at HERA, including statistical errors, and discuss systematic uncertainties. We show that these data would shed light on the small x behaviour of the polarized structure function g_1, and would reduce substantially the uncertainty on the determination of the polarized gluon distribution.

  3. Measuring the influence of aerosols and albedo on sky polarization.

    Science.gov (United States)

    Kreuter, A; Emde, C; Blumthaler, M

    2010-11-01

    All-sky distributions of the polarized radiance are measured using an automated fish-eye camera system with a rotating polarizer. For a large range of aerosol and surface albedo situations, the influence on the degree of polarization and sky radiance is investigated. The range of aerosol optical depth and albedo is 0.05-0.5 and 0.1-0.75, respectively. For this range of parameters, a reduction of the degree of polarization from about 0.7 to 0.4 was observed. The analysis is done for 90° scattering angle in the principal plane under clear sky conditions for a broadband channel of 450 ± 25 nm and solar zenith angles between 55° and 60°. Radiative transfer calculations considering three different aerosol mixtures are performed and and agree with the measurements within the statistical error.

  4. Influences of optical elements on the polarization measurement

    International Nuclear Information System (INIS)

    Goto, M.; Hayakawa, M.; Atake, M.; Iwamae, A.

    2004-01-01

    An emission line of He I λ 667.8 nm is observed and the Large Helical Device (LHD) with a polarimeter, with which two linearly polarized components if the light from the same line of sight is simultaneously measured. The emission line exhibits splitting due to the normal Zeeman effect and the π and σ lights are respectively observed. The results indicate the polarization state of emission lines is different from our expectation. From two measurements, for the second of which the polarimeter is rotated 45 degrees form the first, the polarization ellipses of all the three polarized lights are determined. Some observations for a reversed magnetic field plasma operation, for different emission lines of different ions, and also for operation with some different magnetic field strengths suggest that the distortion state originates not in the atomic radiation itself or the plasma condition, but in the optical window at the observation port of the vacuum chamber. (author)

  5. Polarization measurements of auroral kilometric radiation by Dynamics Explorer-1

    International Nuclear Information System (INIS)

    Shawhan, S.D.; Gurnett, D.A.

    1982-01-01

    The plasma wave instrument (PWI) on the Dynamics Explorer-1 has been used to measure polarization of auroral kilometric radiation (AKR) at frequencies of 50 to 400 kHz in both the northern and the southern nightside auroral regions at altitudes of 1 to 3 R/sub E/ above the AKR source regions. The AKR polarization sense is found to be the same as the right hand polarized auroral hiss found in the frequency range of 0.8 to 6.4 kHz. Consequently, these unambiguous direct polarization measurements of AKR lead to the conclusion that AKR escapes the magnetosphere in the R-X mode. Since DE-1 is close to the source region, it can be inferred that AKR is generated predominately in the R-X mode

  6. Measurement of the $\\Lambda_{b}$ Polarization with $pp$ Collisions at 7 TeV

    CERN Document Server

    Ivova Rikova, Mirena

    This thesis presents a measurement of the $\\Lambda_{b}$ baryon polarization with proton-proton collisions at a center-of-mass energy $\\sqrt{s} =$ 7 TeV. The analysis is performed with the CMS detector at the Large Hadron Collider at CERN. The results are based on data collected in 2011 corresponding to an integrated luminosity $\\mathcal{L} = 5.1$ fb$^{-1}$. $\\Lambda_{b}$ candidates are reconstructed in the decay mode $\\Lambda_{b} \\rightarrow J/\\psi(\\mu^{+}\\mu^{-}) \\Lambda(p\\pi^{-})$. The selected signal yield is $911 \\pm 38$ and $845 \\pm 37$ candidates for $\\Lambda_{b}$ and $\\overline{\\Lambda}_{b}$, respectively. The polarization is extracted through the angular correlations between the daughter particles in the decay by a multi-dimensional likelihood fit. A production polarization of \\begin{equation*} P^{+} = 0.03 \\pm 0.09 \\text{ (stat.)} \\pm 0.03 \\text{ (syst.)}\\text{ for $\\Lambda_{b}$} \\end{equation*} and \\begin{equation*} P^{-} = 0.02 \\pm 0.08 \\text{ (stat.)} \\pm 0.05 \\text{ (syst.)}\\text{ for $\\overl...

  7. Recommendation for a injector-cyclotron and ion sources for the acceleration of heavy ions and polarized protons and deuterons

    International Nuclear Information System (INIS)

    Botha, A.H.; Cronje, P.M.; Du Toit, Z.B.; Nel, W.A.G.; Celliers, P.J.

    1984-01-01

    It was decided to accelerate both heavy and light ions with the open-sector cyclotron. The injector SPS1, was used for light ions and SPS2 for heavy ions. Provision was also made for the acceleration of polarized neutrons. To enable this, the injector must have an axial injection system. The working of a source of polarized ions and inflectors for an axial injection system is discussed. The limitations of the open-sector cyclotron on the acceleration of heavy ions are also dealt with. The following acceleration/ion source combinations are discussed: i) The open-sector cyclotron and a k=40 injector cyclotron with a Penning ion source, and a stripper between the injector and the open-sector cyclotron and also a source of polarized protons and deuterons; ii) The acceleration/ion source combination with the addition of electron beam ion sources; iii) The open-sector cyclotron and a k=11 injector cyclotron with a electron beam ion source and a source of polarized protons and deuterons

  8. Proton polarization above 70% by DNP using photo-excited triplet states, a first step towards a broadband neutron spin filter

    International Nuclear Information System (INIS)

    Eichhorn, T.R.; Niketic, N.; Brandt, B. van den; Filges, U.; Panzner, T.; Rantsiou, E.; Wenckebach, W.Th.; Hautle, P.

    2014-01-01

    The use of polarized protons as neutron spin filter is an attractive alternative to the well established neutron polarization techniques, as the large, spin-dependent neutron scattering cross-section for protons is useful up to the sub-MeV region. Employing optically excited triplet states for the dynamic nuclear polarization (DNP) of the protons relieves the stringent requirements of classical DNP schemes, i.e low temperatures and strong magnetic fields, making technically simpler systems with open geometries possible. Using triplet DNP a record polarization of 71% has been achieved in a pentacene doped naphthalene single crystal at a field of 0.36 T using a simple helium flow cryostat for cooling. Furthermore, by placing the polarized crystal in a neutron optics focus and de-focus scheme, the actual sample cross-section could be increased by a factor 35 corresponding to an effective spin filter cross-section of 18×18mm 2

  9. Proton polarization above 70% by DNP using photo-excited triplet states, a first step towards a broadband neutron spin filter

    Energy Technology Data Exchange (ETDEWEB)

    Eichhorn, T.R. [Laboratory for Developments and Methods (LDM), Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Laboratory of Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Niketic, N.; Brandt, B. van den; Filges, U.; Panzner, T.; Rantsiou, E.; Wenckebach, W.Th. [Laboratory for Developments and Methods (LDM), Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Hautle, P., E-mail: patrick.hautle@psi.ch [Laboratory for Developments and Methods (LDM), Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)

    2014-08-01

    The use of polarized protons as neutron spin filter is an attractive alternative to the well established neutron polarization techniques, as the large, spin-dependent neutron scattering cross-section for protons is useful up to the sub-MeV region. Employing optically excited triplet states for the dynamic nuclear polarization (DNP) of the protons relieves the stringent requirements of classical DNP schemes, i.e low temperatures and strong magnetic fields, making technically simpler systems with open geometries possible. Using triplet DNP a record polarization of 71% has been achieved in a pentacene doped naphthalene single crystal at a field of 0.36 T using a simple helium flow cryostat for cooling. Furthermore, by placing the polarized crystal in a neutron optics focus and de-focus scheme, the actual sample cross-section could be increased by a factor 35 corresponding to an effective spin filter cross-section of 18×18mm{sup 2}.

  10. Measuring centrality with slow protons in proton-nucleus collisions at 18 GeV/c

    International Nuclear Information System (INIS)

    Fernow, R.; Gushue, S.; Kirk, H.; Morrison, D.; Remsberg, L.; Rosati, M.; Torun, Y.; Chemakin, I.; Cole, B.A.; Hiejima, H.; Moulson, M.; Winter, D.; Yang, X.; Zajc, W.A.; Zhang, Y.; Frawley, A.; Maeda, N.; Rosati, M.; Justice, M.; Rai, G.; Thomas, J.; Cianciolo, V.; Hartouni, E.P.; Namboodiri, M.N.; Soltz, R.A.; Thomas, J.; Cianciolo, V.; Gilkes, M.; McGrath, R.L.; Torun, Y.; Mioduszewski, S.; Morrison, D.; Read, K.; Sorensen, S.; Kang, J.H.; Shin, Y.

    1999-01-01

    Experiment E910 has measured slow protons and deuterons from collisions of 18 GeV/c protons with Be, Cu, and Au targets at the BNL AGS. These correspond to the 'grey tracks' first observed in emulsion experiments. We report on their momentum and angular distributions and investigate their use in measuring the centrality of a collision, as defined by the mean number of projectile-nucleon interactions. The relation between the measured N grey and the mean number of interactions bar ν(N grey ) is studied using several simple models, one newly proposed, as well as the RQMD event generator. RQMD is shown to reproduce the N grey distribution, and exhibits a dependence of N grey on centrality that is similar to the behavior of the simple models. We find a strong linear dependence of N grey on ν, with a constant of proportionality that varies with target. For the Au target, we report a relative systematic error for extracting bar ν(N grey ) that lies between 10 and 20;% over all N grey . copyright 1999 The American Physical Society

  11. Linac4 45 keV Proton Beam Measurements

    CERN Document Server

    Bellodi, G; Hein, L M; Lallement, J-B; Lombardi, A M; Midttun, O; Scrivens, R; Posocco, P A

    2013-01-01

    Linac4 is a 160 MeV normal-conducting H- linear accelerator, which will replace the 50 MeV proton Linac2 as injector for the CERN proton complex. Commissioning of the low energy part - comprising the H - source, a 45 keV Low Energy Beam Transport line (LEBT), a 3 MeV Radiofrequency Quadrupole (RFQ) and a Medium Energy Beam Transport (MEBT) - will start in fall 2012 on a dedicated test stand installation. In preparation to this, preliminary measurements were taken using a 45 keV proton source and a temporary LEBT setup, with the aim of characterising the output beam by comparison with the predictions of simulations. At the same time this allowed a first verification of the functionalities of diagnostics instrumentation and acquisition software tools. Measurements of beam profile, emittance and intensity were taken in three different setups: right after the source, after the first and after the second LEBT solenoids respectively. Particle distributions were reconstructed from emittance scan...

  12. Proton Radioactivity Measurements at HRIBF: Ho, Lu, and Tm Isotopes

    International Nuclear Information System (INIS)

    Akovali, Y.; Batchelder, J.C.; Bingham, C.R.; Davinson, T.; Ginter, T.N.; Gross, C.J.; Grzywacz, R.; Hamilton, J.H.; Janas, Z.; Karny, M.; Kim, S.H.; MacDonald, B.D.; Mas, J.F.; McConnell, J.W.; Piechaczek, A.; Ressler, J.J.; Rykaczewski, K.; Slinger, R.C.; Szerypo, J.; Toth, K.S.; Weintraub, W.; Woods, P.J.; Yu, C.-H.; Zganjar, E.F.

    1998-01-01

    Two new isotopes, 145 Tm and 140 Ho and three isomers in previously known isotopes, 141m Ho, 150m Lu and 151m Lu have been discovered and studied via their decay by proton emission. These proton emitters were produced at the Holifield Radioactive Ion Beam Facility (HRIBF) by heavy-ion fusion-evaporation reactions, separated in A/Q with a recoil mass spectrometer (RMS), and detected in a double-sided silicon strip detector (DSSD). The decay energy and half-life was measured for each new emitter. An analysis in terms of a spherical shell model is applied to the Tm and Lu nuclei, but Ho is considerably deformed and requires a collective model interpretation

  13. Impact of ATLAS measurements on the knowledge of proton structure

    CERN Document Server

    Gwenlan, Claire; The ATLAS collaboration

    2016-01-01

    Several measurements performed by the ATLAS collaboration can be used to constrain the proton structure. Measurements of the W+c production and the inclusive W and Z differential cross sections are found to constrain the poorly known strange-quark density at low x. Similarly, the ratio of W+/W- production is found to constrain the valence quarks at low x. New results will be presented using W,Z production at 13 TeV. New precise measurements of Drell-Yan cross section measurements performed above the Z peak region have a different sensitivity to parton flavour, parton momentum fraction x and scale Q compared to measurements on the Z peak. A large impact is found on the photon content of the proton as well as high x quarks. Measurements of the inclusive jet and photon cross sections are standard candles and constrain the medium and high x gluon densities. New precise measurements of inclusive photon and jet cross sections at 8 TeV are presented and compared to various PDF predictions.

  14. A Measurement of the Recoil Polarization of Electroproduced Λ(1116)

    Energy Technology Data Exchange (ETDEWEB)

    McAleer, Simeon B. [Florida State Univ., Tallahassee, FL (United States)

    2002-01-01

    The CEBAF Large Acceptance Spectrometer at the Thomas Jefferson National Laboratory was used to study the reaction e + p → e' + K+ + Λ(1116) for events where Λ(1116) subsequently decayed via the channel Λ(1116) → p + π-. Data were taken at incident electron beam energies of 2.5, 4.0, and 4.2 GeV during the 1999 E1C run period. They hyperon production spectra span the Q2 range from 0.5 to 2.8 GeV2 and nearly the entire range in the center of mass angles. The proton angular distribution in the Λ(1116) rest frame is used to deduce the recoil polarization of the hyperon, and the W and cos θ$K+\\atop{cm}$ dependence of the recoil polarization will be presented. The data show sizeable negative polarizations for the Λ(1116) as a function of both cos θ$K+\\atop{cm}$ and W.

  15. Measurement of the deep-inelastic spin-dependent structure functions of the proton and neutron at HERA

    International Nuclear Information System (INIS)

    Beck, D.H.; Filippone, B.W.; Jourdan, J.

    1988-01-01

    It is possible to measure the deep-inelastic spin-dependent structure functions g 1 /sup p/(x) and g 1 /sup n/(x) for the proton and neutron using internal polarized hydrogen, deuterium, and 3 He targets of polarization 50% and thickness 10 14 to 10 15 cm -2 and the 60 mA longitudinally polarized 30 GeV electron beam in the HERA electron storage ring. The measurement of the deep-inelastic spin-structure of both isospin states of the nucleon at the same kinematics and using the same apparatus allows the Bjorken sum rule to be experimentally checked. In addition, it uniquely constrains the spin distribution of the u and d quarks as a function of x in any model of the nucleon. Possible target and detector configurations are described and an estimate of the accuracy of such a measurement is presented

  16. Jagiellonian University Polarized Drell-Yan measurements at COMPASS

    CERN Document Server

    Longo, R

    2017-01-01

    COMPASS is a fixed-target experiment operating on north area of SPS (M2 beamline) at CERN. An important part of the physics programme of the experiment is the exploration of the transverse spin structure of the nucleon via measurements of spin-(in)dependent azimuthal asymmetries in the semi-inclusive DIS and, recently, also in Drell-Yan processes. Drell-Yan measurements with a 190 GeV/c $\\pi^-$ beam impinging on a transversely polarized NH3 target started in the year 2015 (18 weeks data taking) and will be continued in 2018. The measurement of the Sivers and other azimuthal asymmetries in polarized SIDIS and Drell-Yan performed by COMPASS provides a unique possibility to test (pseudo-)universal features of transverse momentum-dependent parton distribution functions, predicted in QCD. In this review, results of the first ever measurements of the polarized Drell-Yan reaction performed by COMPASS are presented.

  17. Longitudinal spin transfer to Lambda and Lambda hyperons in polarized proton-proton collisions at s=200 GeV

    Czech Academy of Sciences Publication Activity Database

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Beavis, D.R.; Bellwied, R.; Benedosso, F.; Betancourt, M.J.; Betts, R. R.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielčík, Jaroslav; Bielčíková, Jana; Biritz, B.; Bland, L.C.; Bombara, M.; Bonner, B. E.; Botje, M.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bruna, E.; Bueltmann, S.; Burton, T. P.; Bysterský, Michal; Cai, X.Z.; Caines, H.; Sanchez, M.C.D.; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M.C.; Chajecki, Z.; Chaloupka, Petr; Chattopadhyay, S.; Chen, H.F.; Chen, J.H.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K.E.; Christie, W.; Clarke, R.F.; Codrington, M.J.M.; Corliss, R.; Cormier, T.M.; Coserea, R. M.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; De Silva, L.C.; Dedovich, T. G.; DePhillips, M.; Derevschikov, A.A.; de Souza, R.D.; Didenko, L.; Djawotho, P.; Dunlop, J.C.; Mazumdar, M.R.D.; Edwards, W.R.; Efimov, L.G.; Elhalhuli, E.; Elnimr, M.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, C. A.; Gaillard, L.; Ganti, M. S.; Gangaharan, D.R.; Garcia-Solis, E.J.; Geromitsos, A.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y.N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S.M.; Guimaraes, K.S.F.F.; Gupta, A.; Gupta, N.; Guryn, W.; Haag, B.; Hallman, T.J.; Hamed, A.; Harris, J.W.; He, W.; Heinz, M.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A.M.; Hoffmann, G.W.; Hofman, D.J.; Hollis, R.S.; Huang, H.Z.; Humanic, T.J.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W.W.; Jakl, Pavel; Jena, C.; Jin, F.; Jones, C.L.; Jones, P.G.; Joseph, J.; Judd, E.G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitán, Jan; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V.Yu.; Kikola, D.P.; Kiryluk, J.; Kisiel, A.; Klein, S.R.; Knospe, A.G.; Kocoloski, A.; Koetke, D.D.; Kopytine, M.; Korsch, W.; Kotchenda, L.; Kushpil, Vasilij; Kravtsov, P.; Kravtsov, V.I.; Krueger, K.; Krus, M.; Kuhn, C.; Kumar, L.; Kurnadi, P.; Lamont, M.A.C.; Landgraf, J.M.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednický, Richard; Lee, Ch.; Lee, J.H.; Leight, W.; LeVine, M.J.; Li, N.; Li, C.; Li, Y.; Lin, G.; Lindenbaum, S.J.; Lisa, M.A.; Liu, F.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W.J.; Longacre, R.S.; Love, W.A.; Lu, Y.; Ludlam, T.; Ma, G.L.; Ma, Y.G.; Mahapatra, D.P.; Majka, R.; Mall, O.I.; Mangotra, L.K.; Manweiler, R.; Margetis, S.; Markert, C.; Matis, H.S.; Matulenko, Yu.A.; McShane, T.S.; Meschanin, A.; Milner, R.; Minaev, N.G.; Mioduszewski, S.; Mischke, A.; Mitchell, J.; Mohanty, B.; Morozov, D.A.; Munhoz, M. G.; Nandi, B.K.; Nattrass, C.; Nayak, T. K.; Nelson, J.M.; Netrakanti, P.K.; Ng, M.J.; Nogach, L.V.; Nurushev, S.B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorokov, V.; Olson, D.; Pachr, M.; Page, B.S.; Pal, S.K.; Pandit, Y.; Panebratsev, Y.; Panitkin, S.Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S.C.; Poljak, N.; Poskanzer, A.M.; Potukuchi, B.V.K.S.; Prindle, D.; Pruneau, C.; Pruthi, N.K.; Putschke, J.; Raniwala, R.; Raniwala, S.; Ray, R.L.; Redwine, R.; Reed, R.; Ridiger, A.; Ritter, H.G.; Roberts, J.B.; Rogachevskiy, O.V.; Romero, J.L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M.J.; Sahoo, R.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Schambach, J.; Scharenberg, R.P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S.S.; Shi, X.H.; Sichtermann, E.P.; Simon, F.; Singaraju, R.N.; Skoby, M.J.; Smirnov, N.; Snellings, R.; Sorensen, P.; Sowinski, J.; Spinka, H.M.; Srivastava, B.; Stadnik, A.; Stanislaus, T.D.S.; Staszak, D.; Strikhanov, M.; Stringfellow, B.; Suaide, A.A.P.; Suarez, M.C.; Subba, N.L.; Šumbera, Michal; Sun, X.M.; Sun, Y.; Sun, Z.; Surrow, B.; Symons, T.J.M.; de Toledo, A. S.; Takahashi, J.; Tang, A.H.; Tang, Z.; Tarnowsky, T.; Thein, D.; Thomas, J.H.; Tian, J.; Timmins, A.R.; Timoshenko, S.; Tokarev, M. V.; Trainor, T.A.; Tram, V.N.; Trattner, A.L.; Trentalange, S.; Tribble, R. E.; Tsai, O.D.; Ulery, J.; Ullrich, T.; Underwood, D.G.; Van Buren, G.; van Leeuwen, M.; Vander Molen, A.M.; Vanfossen, J.A.; Varma, R.; Vasconcelos, G.S.M.; Vasilevski, I.M.; Vasiliev, A. N.; Videbaek, F.; Vigdor, S.E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S.A.; Wada, M.; Walker, M.; Wang, F.; Wang, G.; Wang, J.S.; Wang, Q.; Wang, X.; Wang, X.L.; Wang, Y.; Webb, G.; Webb, J.C.; Westfall, G.D.; Whitten, C.; Wieman, H.; Wissink, S.W.; Witt, R.; Wu, Y.; Tlustý, David; Xie, W.; Xu, N.; Xu, Q.H.; Xu, Y.; Xu, Z.; Yang, P.; Yepes, P.; Yip, K.; Yoo, I.K.; Yue, Q.; Zawisza, M.; Zbroszczyk, H.; Zhan, W.; Zhang, S.; Zhang, W.M.; Zhang, X.P.; Zhang, Y.; Zhang, Z.; Zhao, Y.; Zhong, C.; Zhou, J.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zuo, J.X.

    2009-01-01

    Roč. 80, č. 11 (2009), 111102/1-111102/7 ISSN 1550-7998 Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z10100502 Keywords : CHARGED CURRENT INTERACTIONS * PP COLLISIONS * (LAMBDA)OVER-BAR POLARIZATION Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 4.922, year: 2009

  18. Absolute luminosity and proton-proton total cross section measurement for the ATLAS experiment at LHC

    International Nuclear Information System (INIS)

    Heller, Matthieu

    2010-01-01

    The Large Hadron Collider (LHC) at CERN in Geneva will soon deliver collisions with an energy never reached in a particle accelerator. An energy in the center of mass of 10 and ultimately 14 TeV will allow to go beyond the borders of the physics known so far. ATLAS, the largest detector ever built, will hunt the Higgs boson and search for new physics beyond the Standard Model. Any physical process is described by a cross section that measures its probability to occur. The events resulting from a given process are registered by ATLAS. To determine their according cross section, one has to know the luminosity. For the ATLAS experiment, a relative measurement of the luminosity can be done using the response of several sub-detectors. However to calibrate these detectors, an absolute measurement has to be performed. The ALFA detector has been designed to measure the elastic scattering spectrum that will allow to determine the absolute luminosity and the proton-proton total cross section. This provides an accurate calibration tool at a percent level. These detectors, located 240 m away from the interaction point, are called roman pots, a mechanical system that allows to approach a scintillating fiber tracker a few millimeters to the beam center. The simulation of the measurement requires to use a charged particles transport program. This program has to be carefully chosen because the determination of the protons lost during their travel from the interaction point to the detector has a major impact on the acceptance computation. The systematical uncertainties affecting the luminosity and the total cross section measurements are also determined using the full simulation chain. The ALFA detector operates in a complex environment and consequently its design requires a great care. A large tests campaign has been performed on the front end electronics. The results and the corresponding data analysis have shown that all requirement where fulfilled. A test beam has been

  19. Polarized Drell-Yan measurement at COMPASS-II

    CERN Document Server

    CERN

    2014-01-01

    The COMPASS experiment at CERN prepares a new measurement on the nucleon structure via Drell-Yan reactions using a transversely polarized ammonia target and a π− beam. This first-ever polarized Drell-Yan measurement will provide the insight into the transverse momentum depen- dent parton distribution functions such as the Sivers and Boer-Mulders functions, complementary to what is measured in the semi-inclusive deep-inelastic scattering process. The important features and status of this project are introduced.

  20. Measurement and interpretation of laser accelerated protons at GSI

    International Nuclear Information System (INIS)

    Al-Omari, Husam

    2014-01-01

    This thesis is structured into 7 chapters: - Chapter 2 gives an overview of the ultrashort high intensity laser interaction with matter. The laser interaction with an induced plasma is described, starting from the kinematics of single electron motion, followed by collective electron effects and the ponderamotive motion in the laser focus and the plasma transparency for the laser beam. The three different mechanisms prepared to accelerate and propagate electrons through matter are discussed. The following indirect acceleration of protons is explained by the Target Normal Sheath Acceleration (TNSA) mechanism. Finally some possible applications of laser accelerated protons are explained briefly. - Chapter 3 deals with the modeling of geometry and field mapping of magnetic lens. Initial proton and electron distributions, fitted to PHELIX measured data are generated, a brief description of employed codes and used techniques in simulation is given, and the aberrations at the solenoid focal spot is studied. - Chapter 4 presents a simulation study for suggested corrections to optimize the proton beam as a later beam source. Two tools have been employed in these suggested corrections, an aperture placed at the solenoid focal spot as energy selection tool, and a scattering foil placed in the proton beam to smooth the radial energy beam profile correlation at the focal spot due to chromatic aberrations. Another suggested correction has been investigated, to optimize the beam radius at the focal spot by lens geometry controlling. - Chapter 5 presents a simulation study for the de-neutralization problem in TNSA caused by the fringing fields of pulsed magnetic solenoid and quadrupole. In this simulation, we followed an electrostatic model, where the evolution of both, self and mutual fields through the pulsed magnetic solenoid could be found, which is not the case in the quadrupole and only the growth of self fields could be found. The field mapping of magnetic elements is

  1. Measurement and interpretation of laser accelerated protons at GSI

    Energy Technology Data Exchange (ETDEWEB)

    Al-Omari, Husam

    2014-04-28

    This thesis is structured into 7 chapters: - Chapter 2 gives an overview of the ultrashort high intensity laser interaction with matter. The laser interaction with an induced plasma is described, starting from the kinematics of single electron motion, followed by collective electron effects and the ponderamotive motion in the laser focus and the plasma transparency for the laser beam. The three different mechanisms prepared to accelerate and propagate electrons through matter are discussed. The following indirect acceleration of protons is explained by the Target Normal Sheath Acceleration (TNSA) mechanism. Finally some possible applications of laser accelerated protons are explained briefly. - Chapter 3 deals with the modeling of geometry and field mapping of magnetic lens. Initial proton and electron distributions, fitted to PHELIX measured data are generated, a brief description of employed codes and used techniques in simulation is given, and the aberrations at the solenoid focal spot is studied. - Chapter 4 presents a simulation study for suggested corrections to optimize the proton beam as a later beam source. Two tools have been employed in these suggested corrections, an aperture placed at the solenoid focal spot as energy selection tool, and a scattering foil placed in the proton beam to smooth the radial energy beam profile correlation at the focal spot due to chromatic aberrations. Another suggested correction has been investigated, to optimize the beam radius at the focal spot by lens geometry controlling. - Chapter 5 presents a simulation study for the de-neutralization problem in TNSA caused by the fringing fields of pulsed magnetic solenoid and quadrupole. In this simulation, we followed an electrostatic model, where the evolution of both, self and mutual fields through the pulsed magnetic solenoid could be found, which is not the case in the quadrupole and only the growth of self fields could be found. The field mapping of magnetic elements is

  2. Measurement of the longitudinal proton structure function at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)

    2009-03-15

    The reduced cross sections for ep deep inelastic scattering have been measured with the ZEUS detector at HERA at three different centre-of-mass energies, 318, 251 and 225 GeV. From the cross sections, measured double differentially in Bjorken x and the virtuality, Q{sup 2}, the proton structure functions F{sub L} and F{sub 2} have been extracted in the region 5 x 10{sup -4}

  3. Measuring political polarization: Twitter shows the two sides of Venezuela

    Science.gov (United States)

    Morales, A. J.; Borondo, J.; Losada, J. C.; Benito, R. M.

    2015-03-01

    We say that a population is perfectly polarized when divided in two groups of the same size and opposite opinions. In this paper, we propose a methodology to study and measure the emergence of polarization from social interactions. We begin by proposing a model to estimate opinions in which a minority of influential individuals propagate their opinions through a social network. The result of the model is an opinion probability density function. Next, we propose an index to quantify the extent to which the resulting distribution is polarized. Finally, we apply the proposed methodology to a Twitter conversation about the late Venezuelan president, Hugo Chávez, finding a good agreement between our results and offline data. Hence, we show that our methodology can detect different degrees of polarization, depending on the structure of the network.

  4. Radiotherapy high energy surface dose measurements: effects of chamber polarity

    International Nuclear Information System (INIS)

    Cheung, T.; Yu, P.K.N.; Butson, M.J.; Cancer Services, Wollongong, NSW

    2004-01-01

    Full text: The effects of chamber polarity have been investigated for the measurement of 6MV and 18MV x-ray surface dose using a parallel plate ionization chamber. Results have shown that a significant difference in measured ionization is recorded between to polarities at 6MV and 18MV at the phantom surface. A polarity ratio ranging from 1 062 to 1 005 is seen for 6MV x-rays at the phantom surface for field sizes 5cm x 5cm to 40cm x 40cm when comparing positive to negative polarity. These ratios range from 1.024 to 1.004 for 18MV x-rays with the same field sizes. When these charge reading are compared to the D max readings of the same polarity it is found that these polarity effects are minimal for the calculation of percentage dose results with variations being less than 1% of maximum. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  5. Vacuum ultraviolet spectropolarimeter design for precise polarization measurements.

    Science.gov (United States)

    Narukage, Noriyuki; Auchère, Frédéric; Ishikawa, Ryohko; Kano, Ryouhei; Tsuneta, Saku; Winebarger, Amy R; Kobayashi, Ken

    2015-03-10

    Precise polarization measurements in the vacuum ultraviolet (VUV) region provide a new means for inferring weak magnetic fields in the upper atmosphere of the Sun and stars. We propose a VUV spectropolarimeter design ideally suited for this purpose. This design is proposed and adopted for the NASA-JAXA chromospheric lyman-alpha spectropolarimeter (CLASP), which will record the linear polarization (Stokes Q and U) of the hydrogen Lyman-α line (121.567 nm) profile. The expected degree of polarization is on the order of 0.1%. Our spectropolarimeter has two optically symmetric channels to simultaneously measure orthogonal linear polarization states with a single concave diffraction grating that serves both as the spectral dispersion element and beam splitter. This design has a minimal number of reflective components with a high VUV throughput. Consequently, these design features allow us to minimize the polarization errors caused by possible time variation of the VUV flux during the polarization modulation and by statistical photon noise.

  6. Measurement of the strange quark contribution to the vector structure of the proton

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Sarah

    2007-11-30

    The goal of the G0 experiment is to determine the contribution of the strange quarks in the quark-antiquark sea to the structure of the nucleon. To this end, the experiment measured parityviolating asymmetries from elastic electron-proton scattering from 0.12 ≤ Q2 ≤ 1.0 (GeV/c)2 at Thomas Jefferson National Accelerator Facility. These asymmetries come from the interference of the electromagnetic and neutral weak interactions, and are sensitive to the strange quark contributions in the proton. The results from the forward-angle measurement, the linear combination of the strange electric and magnetic form factors GsE +ηGsM, suggest possible non-zero, Q2 dependent, strange quark contributions and provide new information to understand the magnitude of the contributions. This dissertation presents the analysis and results of the forward-angle measurement. In addition, the G0 experiment measured the beam-normal single-spin asymmetry in the elastic scattering of transversely polarized 3 GeV electrons from unpolarized protons at Q2 = 0.15, 0.25 (GeV/c)2 as part of the forward-angle measurement. The transverse asymmetry provides a direct probe of the imaginary component of the two-photon exchange amplitude, the complete description of which is important in the interpretation of data from precision electron-scattering experiments. The results of the measurement indicate that calculations using solely the elastic nucleon intermediate state are insufficient and generally agree with calculations that include significant inelastic hadronic intermediate state contributions. This dissertation presents the analysis and results of this measurement.

  7. A Precision Measurement of the Neutron Spin Structure Functions Using a Polarized HE-3 Target

    International Nuclear Information System (INIS)

    Smith, T

    2003-01-01

    This thesis describes a precision measurement of the neutron spin dependent structure function, g 1 n (x). The measurement was made by the E154 collaboration at SLAC using a longitudinally polarized, 48.3 GeV electron beam, and a 3 He target polarized by spin exchange with optically pumped rubidium. A target polarization as high as 50% was achieved. The elements of the experiment which pertain to the polarized 3 He target will be described in detail in this thesis. To achieve a precision measurement, it has been necessary to minimize the systematic error from the uncertainty in the target parameters. All of the parameters of the target have been carefully measured, and the most important parameters of the target have been measured using multiple techniques. The polarization of the target was measured using nuclear magnetic resonance techniques, and has been calibrated using both proton NMR and by measuring the shift of the Rb Zeeman resonance frequency due to the 3 He polarization. The fraction of events which originated in the 3 He, as measured by the spectrometers, has been determined using a physical model of the target and the spectrometers. It was also measured during the experiment using a variable pressure 3 He reference cell in place of the polarized 3 He target. The spin dependent structure function g 1 n (z) was measured in the Bjorken x range of 0.014 2 of 5 (GeV/c) 2 . One of the primary motivations for this experiment was to test the Bjorken sum rule. Because the experiment had smaller statistical errors and a broader kinematic coverage than previous experiments, the behavior of the spin structure function g 1 n (x) could be studied in detail at low values of the Bjorken scaling variable x. It was found that g 1 n (x) has a strongly divergent behavior at low values of x, calling into question the methods commonly used to extrapolate the value of g 1 n (x) to low x. The precision of the measurement made by the E154 collaboration at SLAC puts a tighter

  8. A Precision Measurement of the Neutron Spin Structure Functions Using a Polarized HE-3 Target

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T

    2003-11-05

    This thesis describes a precision measurement of the neutron spin dependent structure function, g{sub 1}{sup n}(x). The measurement was made by the E154 collaboration at SLAC using a longitudinally polarized, 48.3 GeV electron beam, and a {sup 3}He target polarized by spin exchange with optically pumped rubidium. A target polarization as high as 50% was achieved. The elements of the experiment which pertain to the polarized {sup 3}He target will be described in detail in this thesis. To achieve a precision measurement, it has been necessary to minimize the systematic error from the uncertainty in the target parameters. All of the parameters of the target have been carefully measured, and the most important parameters of the target have been measured using multiple techniques. The polarization of the target was measured using nuclear magnetic resonance techniques, and has been calibrated using both proton NMR and by measuring the shift of the Rb Zeeman resonance frequency due to the {sup 3}He polarization. The fraction of events which originated in the {sup 3}He, as measured by the spectrometers, has been determined using a physical model of the target and the spectrometers. It was also measured during the experiment using a variable pressure {sup 3}He reference cell in place of the polarized {sup 3}He target. The spin dependent structure function g{sub 1}{sup n}(z) was measured in the Bjorken x range of 0.014 < x < 0.7 with an average Q{sup 2} of 5 (GeV/c){sup 2}. One of the primary motivations for this experiment was to test the Bjorken sum rule. Because the experiment had smaller statistical errors and a broader kinematic coverage than previous experiments, the behavior of the spin structure function g{sub 1}{sup n}(x) could be studied in detail at low values of the Bjorken scaling variable x. It was found that g{sub 1}{sup n}(x) has a strongly divergent behavior at low values of x, calling into question the methods commonly used to extrapolate the value of g

  9. X-ray polarization measurements at relativistic laser intensities

    International Nuclear Information System (INIS)

    Beiersdorfer, P.; Shepherd, R.; Mancini, R.C.

    2004-01-01

    An effort has been started to measure the short pulse laser absorption and energy partition at relativistic laser intensities up to 10 21 W/cm 2 . Plasma polarization spectroscopy is expected to play an important role in determining fast electron generation and measuring the electron distribution function. (author)

  10. Correcting systematic errors in high-sensitivity deuteron polarization measurements

    Science.gov (United States)

    Brantjes, N. P. M.; Dzordzhadze, V.; Gebel, R.; Gonnella, F.; Gray, F. E.; van der Hoek, D. J.; Imig, A.; Kruithof, W. L.; Lazarus, D. M.; Lehrach, A.; Lorentz, B.; Messi, R.; Moricciani, D.; Morse, W. M.; Noid, G. A.; Onderwater, C. J. G.; Özben, C. S.; Prasuhn, D.; Levi Sandri, P.; Semertzidis, Y. K.; da Silva e Silva, M.; Stephenson, E. J.; Stockhorst, H.; Venanzoni, G.; Versolato, O. O.

    2012-02-01

    This paper reports deuteron vector and tensor beam polarization measurements taken to investigate the systematic variations due to geometric beam misalignments and high data rates. The experiments used the In-Beam Polarimeter at the KVI-Groningen and the EDDA detector at the Cooler Synchrotron COSY at Jülich. By measuring with very high statistical precision, the contributions that are second-order in the systematic errors become apparent. By calibrating the sensitivity of the polarimeter to such errors, it becomes possible to obtain information from the raw count rate values on the size of the errors and to use this information to correct the polarization measurements. During the experiment, it was possible to demonstrate that corrections were satisfactory at the level of 10 -5 for deliberately large errors. This may facilitate the real time observation of vector polarization changes smaller than 10 -6 in a search for an electric dipole moment using a storage ring.

  11. Correcting systematic errors in high-sensitivity deuteron polarization measurements

    Energy Technology Data Exchange (ETDEWEB)

    Brantjes, N.P.M. [Kernfysisch Versneller Instituut, University of Groningen, NL-9747AA Groningen (Netherlands); Dzordzhadze, V. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Gebel, R. [Institut fuer Kernphysik, Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Gonnella, F. [Physica Department of ' Tor Vergata' University, Rome (Italy); INFN-Sez. ' Roma tor Vergata,' Rome (Italy); Gray, F.E. [Regis University, Denver, CO 80221 (United States); Hoek, D.J. van der [Kernfysisch Versneller Instituut, University of Groningen, NL-9747AA Groningen (Netherlands); Imig, A. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Kruithof, W.L. [Kernfysisch Versneller Instituut, University of Groningen, NL-9747AA Groningen (Netherlands); Lazarus, D.M. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Lehrach, A.; Lorentz, B. [Institut fuer Kernphysik, Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Messi, R. [Physica Department of ' Tor Vergata' University, Rome (Italy); INFN-Sez. ' Roma tor Vergata,' Rome (Italy); Moricciani, D. [INFN-Sez. ' Roma tor Vergata,' Rome (Italy); Morse, W.M. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Noid, G.A. [Indiana University Cyclotron Facility, Bloomington, IN 47408 (United States); and others

    2012-02-01

    This paper reports deuteron vector and tensor beam polarization measurements taken to investigate the systematic variations due to geometric beam misalignments and high data rates. The experiments used the In-Beam Polarimeter at the KVI-Groningen and the EDDA detector at the Cooler Synchrotron COSY at Juelich. By measuring with very high statistical precision, the contributions that are second-order in the systematic errors become apparent. By calibrating the sensitivity of the polarimeter to such errors, it becomes possible to obtain information from the raw count rate values on the size of the errors and to use this information to correct the polarization measurements. During the experiment, it was possible to demonstrate that corrections were satisfactory at the level of 10{sup -5} for deliberately large errors. This may facilitate the real time observation of vector polarization changes smaller than 10{sup -6} in a search for an electric dipole moment using a storage ring.

  12. One photon exchange processes and the calibration of polarization of high energy protons

    International Nuclear Information System (INIS)

    Margolis, B.; Thomas, G.H.

    1978-01-01

    Polarization phenomena in small momentum transfer high energy one-photon exchange processes in the reaction p + A → X + A where A is a complex nucleus and X is anything are examined. It is shown that these polarizations can be related directly to photoproduction polarization effects in the reaction γ + p → X at low energies. Explicit formulae are written for polarization effects in the case where X → π 0 + p

  13. Measurement of the polarization of tau--leptons produced in Z decays at CMS and determination of the effective weak mixing angle

    CERN Document Server

    Cherepanov, Vladimir; Lohmann, Wolfgang

    2016-01-01

    In this thesis the first measurement of the τ-lepton polarization in Z → ττ decays is performed at a proton-proton collider. A sample of 8818 events of the decay Z0 → τ + τ − → µνν,a1 ν is used. It is selected in data corresponding to a luminosity of 19.6 fb−1 collected by theCMS detector at 8 TeV. The average polarization is measured to be:

  14. Measurement of the proton form factor ratio at low momentum transfer

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Moshe [Hebrew Univ. of Jerusalem (Israel)

    2016-08-01

    Experiment E08-007-II measured the proton elastic form factor ratio μGE=GM in the momentum transfer range of Q2 ~ 0.02 - 0.08 GeV2, the lowest ever measured by polarization transfer techniques. The experiment was performed at the Thomas Jefferson National Accelerator Facility in Newport News, Virginia, USA during 2012. A polarized electron beam with energies of 1.1, 1.7, and 2.2 GeV was elastically scattered off a polarized solid NH3 target. The asymmetries between the cross section of positive and negative helicity states of the beam were determined. These asymmetries can be used to determine the form factor ratio. In this thesis, we present the asymmetry analysis of the experiment, discuss the main challenges and show preliminary results for part of the data. Preliminary asymmetries indicate an increase in the form factor ratio above unity. However, a complete analysis is required before any conclusion can be made. Further analysis is ongoing, and final asymmetry results and form factor extraction is expected during 2017. We also present first results for 14N asymmetries for elastic and quasi-elastic scattering. The measured asymmetries are in agreement with the shell model approximation, within the low accuracy of the measurement. A change in the asymmetry sign between the elastic and the quasi-elastic processes is seen, and should motivate further theoretical studies. These experimental asymmetries will also be useful for systematic studies of other experiments using polarized NH3 targets.

  15. Exploring the entrance of proton pathways in cytochrome c oxidase from Paracoccus denitrificans: surface charge, buffer capacity and redox-dependent polarity changes at the internal surface.

    Science.gov (United States)

    Kirchberg, Kristina; Michel, Hartmut; Alexiev, Ulrike

    2013-03-01

    Cytochrome c oxidase (CcO), the terminal oxidase of cellular respiration, reduces molecular oxygen to water. The mechanism of proton pumping as well as the coupling of proton and electron transfer is still not understood in this redox-linked proton pump. Eleven residues at the aqueous-exposed surfaces of CcO from Paracoccus denitrificans have been exchanged to cysteines in a two-subunit base variant to yield single reactive cysteine variants. These variants are designed to provide unique labeling sites for probes to be used in spectroscopic experiments investigating the mechanism of proton pumping in CcO. To this end we have shown that all cysteine variants are enzymatically active. Cysteine positions at the negative (N-) side of the membrane are located close to the entrance of the D- and K-proton transfer pathways that connect the N-side with the catalytic oxygen reduction site. Labeling of the pH-indicator dye fluorescein to these sites allowed us to determine the surface potential at the cytoplasmic CcO surface, which corresponds to a surface charge density of -0.5 elementary charge/1000Å(2). In addition, acid-base titrations revealed values of CcO buffer capacity. Polarity measurements of the label environment at the N-side provided (i) site-specific values indicative of a hydrophilic and a more hydrophobic environment dependent on the label position, and (ii) information on a global change to a more apolar environment upon reduction of the enzyme. Thus, the redox state of the copper and heme centers inside the hydrophobic interior of CcO affect the properties at the cytoplasmic surface. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Study of a polarized proton source for a cyclotron using a high frequency transition (1961); Etude d'une source de protons polarises utilisant une transition haute frequence pour un cyclotron (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Thirion, J; Beurtey, R; Papineau, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    The authors have developed an experimental unit yielding a jet of hydrogen or deuterium atoms in which the protons and deutons are polarized. By use of the 'adiabatic passage' method a proton polarisation approaching 100 per cent is assured. (authors) [French] Les auteurs ont mis au point un ensemble experimental permettant d'obtenir un jet d'atomes d'hydrogene ou de deuterium, dans lequel les protons et les deutons sont polarises. Grace a la methode du 'passage adiabatique' une polarisation de protons voisine de 100 pour cent est obtenue. (auteurs)

  17. Polarization phenomena in deuteron proton scattering: a useful tool for the study of nucleon resonances properties

    International Nuclear Information System (INIS)

    Rekalo, M.P.; Tomasi-Gustafsson, E.

    1996-01-01

    The microscopic structure of the nucleon N and its excited states N* can be determined through the (elastic or inelastic) electromagnetic form factors. These form factors should help to understand the nature of the transition regime from soft physics of the confinement region to the hard physics of the perturbative QCD. The authors show that hadron induced reactions with isospin zero projectiles, could be an effective method for the study of the nucleon structure, in particular through the measurement of polarization observables. They analyzed the properties of the inclusive d + p reactions, with particular interest in the domain of nucleonic resonances excitation. The calculated cross section and polarization observables show that it is possible to disentangle the different reaction mechanisms (omega, sigma and eta exchange) and bring new information about the electromagnetic form factors of the deuteron as well as of the nucleonic resonances. Existing data on the tensor analyzing power are in agreement with the prediction based on the omega exchange model. (authors)

  18. Monochromatic Measurements of the JPSS-1 VIIRS Polarization Sensitivity

    Science.gov (United States)

    McIntire, Jeff; Moyer, David; Brown, Steven W.; Lykke, Keith R.; Waluschka, Eugene; Oudrari, Hassan; Xiong, Xiaoxiong

    2016-01-01

    Polarization sensitivity is a critical property that must be characterized for spaceborne remote sensing instruments designed to measure reflected solar radiation. Broadband testing of the first Joint Polar-orbiting Satellite System (JPSS-1) Visible Infrared Imaging Radiometer Suite (VIIRS) showed unexpectedly large polarization sensitivities for the bluest bands on VIIRS (centered between 400 and 600 nm). Subsequent ray trace modeling indicated that large diattenuation on the edges of the bandpass for these spectral bands was the driver behind these large sensitivities. Additional testing using the National Institute of Standards and Technologies Traveling Spectral Irradiance and Radiance Responsivity Calibrations Using Uniform Sources was added to the test program to verify and enhance the model. The testing was limited in scope to two spectral bands at two scan angles; nonetheless, this additional testing provided valuable insight into the polarization sensitivity. Analysis has shown that the derived diattenuation agreed with the broadband measurements to within an absolute difference of about0.4 and that the ray trace model reproduced the general features of the measured data. Additionally, by deriving the spectral responsivity, the linear diattenuation is shown to be explicitly dependent on the changes in bandwidth with polarization state.

  19. Measurement of $\\Lambda_{b}$ polarization in Z decays

    CERN Document Server

    Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Chmeissani, M; Crespo, J M; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Alemany, R; Bazarko, A O; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Mir, L M; Moneta, L; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Bardadin-Otwinowska, Maria; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Saadi, F; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Delfino, M C; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Braun, O; Geweniger, C; Graefe, G; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Abbaneo, D; Beuselinck, R; Binnie, David M; Cameron, W; Colling, D J; Dornan, Peter J; Konstantinidis, N P; Moutoussi, A; Nash, J; San Martin, G; Sedgbeer, J K; Stacey, A M; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Raab, J; Renk, B; Sander, H G; Wanke, R; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Thulasidas, M; Nicod, D; Payre, P; Rousseau, D; Talby, M; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Brown, D; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Cordier, A; Courault, F; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Chambers, J T; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Edwards, M; Maley, P; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Köksal, A; Letho, M; Newton, W M; Rankin, C; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Greening, T C; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1996-01-01

    The \\Lambda_{\\mathrm{b}} polarization in hadronic \\mathrm{Z} decays is measured in semileptonic decays from the average energies of the charged lepton and the neutrino. In a data sample of approximately 3 million hadronic \\mathrm{Z} decays collected by the ALEPH detector at LEP between 1991 and 1994, 462\\pm 31 \\Lambda_{\\mathrm{b}} candidates are selected using (\\Lambda \\pi^+)--lepton correlations. From this event sample, the \\Lambda_{\\m athrm{b}} polarization is measured to be \\cal P_{\\Lambda_{\\mathrm{b}}}=-0.23^{+0.24}_{-0.20}(\\m athrm{stat}.)^{+0.08}_{-0.07} (\\mathrm{syst.})\\,.

  20. Internal magnetic turbulence measurement in plasma by cross polarization scattering

    Energy Technology Data Exchange (ETDEWEB)

    Zou, X L; Colas, L; Paume, M; Chareau, J M; Laurent, L; Devynck, P; Gresillon, D

    1994-09-01

    For the first time, the internal magnetic turbulence is measured by a new cross polarization scattering diagnostic in Tore Supra tokamak. The principle of this experiment is presented. It is based on the polarization change or mode conversion of the e.m. wave scattering by magnetic fluctuations. The role of different physical processes on the signal formation are investigated. From the Observation, a rough estimate for the relative magnetic fluctuations of about 10{sup -4} is obtained. A strong correlation of the measured signal with additional heating is observed. (author). 14 refs., 4 figs.

  1. Measurement of the Λb polarization in Z decays

    Science.gov (United States)

    Buskulic, D.; Casper, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Odier, P.; Pietrzyk, B.; Chmeissani, M.; Crespo, J. M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll; Juste, A.; Martinez, M.; Orteu, S.; Pacheco, A.; Padilla, C.; Palla, F.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Farilla, A.; Gelao, G.; Girone, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Natali, S.; Nuzzo, S.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Alemany, R.; Bazarko, A. O.; Bonvicini, G.; Cattaneo, M.; Comas, P.; Coyle, P.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Jacobsen, R.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Martin, E. B.; Mato, P.; Minten, A.; Miquel, R.; Mir, Ll. M.; Moneta, L.; Oest, T.; Palazzi, P.; Pater, J. R.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Bardadin-Otwinowska, M.; Barres, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rossignol, J.-M.; Saadi, F.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Rougé, A.; Rumpf, M.; Tanaka, R.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Focardi, E.; Parrini, G.; Corden, M.; Delfino, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Braun, O.; Geweniger, C.; Graefe, G.; Hanke, P.; Hepp, V.; Kluge, E. E.; Putzer, A.; Rensch, B.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Abbaneo, D.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Colling, D. J.; Dornan, P. J.; Konstantinidis, N.; Moutoussi, A.; Nash, J.; San Martin, G.; Sedgbeer, J. K.; Stacey, A. M.; Dissertori, G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Whelan, E. P.; Williams, M. I.; Galla, A.; Greene, A. M.; Kleinknecht, K.; Quast, G.; Raab, J.; Renk, B.; Sander, H.-G.; Wanke, R.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Etienne, F.; Thulasidas, M.; Nicod, D.; Payre, P.; Rousseau, D.; Talby, M.; Abt, I.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Jakobs, K.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; Denis, R. St; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Courault, F.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Park, H. J.; Park, I. C.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Blair, G. A.; Bryant, L. M.; Cerutti, F.; Chambers, J. T.; Gao, Y.; Green, M. G.; Johnson, D. L.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Edwards, M.; Maley, P.; Norton, P. R.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Beddall, A.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Koksal, A.; Letho, M.; Newton, W. M.; Rankin, C.; Reeve, J.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Cowan, G.; Feigl, E.; Grupen, C.; Lutters, G.; Minguet-Rodriguez, J.; Rivera, F.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Ragusa, F.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Bellantoni, L.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Greening, T. C.; Harton, J. L.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I. J.; Sharma, V.; Turk, J. D.; Walsh, A. M.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1996-02-01

    The Λb polarization in hadronic Z decays is measured in semileptonic decays from the average energies of the charged lepton and the neutrino. In a data sample of approximately 3 million hadronic Z decays collected by the ALEPH detector at LEP between 1991 and 1994, 462 ± 31 Λb candidates are selected using ( Λπ+)-lepton correlations. From this event sample, the Λb polarization is measured to be PΛ b = -0.23 -0.20+0.24(stat.) -0.07+0.08(syst.).

  2. Dual polarized receiving steering antenna array for measurement of ultrawideband pulse polarization structure

    Energy Technology Data Exchange (ETDEWEB)

    Balzovsky, E. V.; Buyanov, Yu. I.; Koshelev, V. I., E-mail: koshelev@lhfe.hcei.tsc.ru; Nekrasov, E. S. [Institute of High Current Electronics SB RAS, IHCE SB RAS, Tomsk 634055 (Russian Federation)

    2016-03-15

    To measure simultaneously two orthogonal components of the electromagnetic field of nano- and subnano-second duration, an antenna array has been developed. The antenna elements of the array are the crossed dipoles of dimension 5 × 5 cm. The arms of the dipoles are connected to the active four-pole devices to compensate the frequency response variations of a short dipole in the frequency band ranging from 0.4 to 4 GHz. The dipoles have superimposed phase centers allowing measuring the polarization structure of the field in different directions. The developed antenna array is the linear one containing four elements. The pattern maximum position is controlled by means of the switched ultrawideband true time delay lines. Discrete steering in seven directions in the range from −40° to +40° has been realized. The error at setting the pattern maximum position is less than 4°. The isolation of the polarization exceeds 29 dB in the direction orthogonal to the array axis and in the whole steering range it exceeds 23 dB. Measurement results of the polarization structure of radiated and scattered pulses with different polarization are presented as well.

  3. Reduction of the effects of transverse polarization in a measurement of parity violation in p-p scattering at 230 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Birchall, J. [Univ. of Manitoba, Winnipeg, Manitoba (Canada)

    1987-12-15

    An outline is given of an experiment planned at TRIUMF which will measure an angular distribution of the parity-violating analyzing power A{sub z} in proton-proton scattering at 230 MeV. Measurements will be made in six angle bins by a cylindrically symmetric planar ionization chamber. At the same time, a cross-check of the results will be provided by a low-noise ionization detector downstream of the target which will measure the angle-integrated A{sub z}. Emphasis is placed on the systematic errors that are expected to be present in this measurement and which are in some cases unlike systematic errors in previous measurements of parity violation in proton scattering. As in other measurements, the major origin of systematic error is the polarization of the beam not being entirely parallel to its momentum. A scanning polarimeter to determine the distribution of these polarization components throughout the beam is sketched. (author)

  4. Elimination of the 12 C and 16 O in the elastic scattering of 14 C by polarized protons

    International Nuclear Information System (INIS)

    Avila A, O.L.; Ramirez T, J.J.; Murillo O, G.; Fernandez B, M.

    1991-04-01

    The study of the elastic scattering of 14 C for polarized protons it provides information on the nuclear structure of 15 N. In the Tandem accelerator of the Nuclear Center in collaboration with the University of Notre Dame is carrying out this study to energy between 5.0 and 9.0 MeV in steps of 10 keV. The measures of differential section and vectorial analyzer power are subjected to shift analysis of phase being able to determine the parameters of the excited levels of 15 N that are it angular momentum, parity, level width and elastic width. The details of this experiment are presented in the ACEL-9102 technical report while in this work it was discussed the way in that contributions of 12 C and 16 O are eliminated that are present as impurities in our target of 14 C. At small angles the elastic components of these impurities are shoveled with the elastic of 14 C. In the experiment carried out in the Nuclear Center were take measures of differential section for 6 angles; 35, 45, 55, 65, 145 and 165 using surface barrier detectors. It is observed that it exists shovels at 35, 45, 55 and 65 while at 145 and 165 the 12 C, the 14 C and the 16 O are totally separate. With the purpose of being able to subtract of the elastic of 14 C the proportion of 12 C, it was decided to bombard a target of 12 C leaving the same geometry that had been used to bombard 14 C. With this also carried out the reaction 12 C (p,p) 12 C between 5.0 and 9.0 MeV in steps of 50 keV. Starting from these spectra are the integration (yield) of the elastic of 12 C. (Author)

  5. The donut and dynamic polarization effects in proton channeling through carbon nanotubes

    International Nuclear Information System (INIS)

    Borka, D; Petrovic, S; Neskovic, N; Mowbray, D J; Miskovic, Z L

    2010-01-01

    We investigate the angular and spatial distributions of protons with an energy of 0.223 MeV after channeling them through an (11, 9) single-wall carbon nanotube of 0.2 μm length. The proton incident angle is varied between 0 and 10 mrad, being close to the critical angle for channeling. We show that, as the proton incident angle increases and approaches the critical angle for channeling, a ring-like structure is developed in the angular distribution-the donut effect. We demonstrate that it is the rainbow effect. If the proton incident angle is between zero and half of the critical angle for channeling, the image force affects considerably the number and positions of the maxima of the angular and spatial distributions. However, if the proton incident angle is close to the critical angle for channeling, its influence on the angular and spatial distributions is considerably decreased. We demonstrate that an increase of the proton incident angle can lead to a significant rearrangement of the propagating protons within the nanotube. This effect may be used to locate atomic impurities in nanotubes as well as for creating nanosized proton beams to be used in materials science, biology and medicine.

  6. The donut and dynamic polarization effects in proton channeling through carbon nanotubes

    DEFF Research Database (Denmark)

    Borka, D.; Mowbray, Duncan; Miskovic, Z.L.

    2010-01-01

    We investigate the angular and spatial distributions of protons with an energy of 0.223 MeV after channeling them through an (11, 9) single-wall carbon nanotube of 0.2 mu m length. The proton incident angle is varied between 0 and 10 mrad, being close to the critical angle for channeling. We show...... that, as the proton incident angle increases and approaches the critical angle for channeling, a r